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most search algorithms to evaluate the quality of peptide-spectrum matches (PSMs) is not 

adequate to discriminate between correct and incorrect spectrum identification. Here, we used 
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search engines. New features, such as retention time differences and a number of other 

modifications, were also incorporated to build a better binary classifier. We validated these 

methods through bootstrapping and compared their performance to each other. My study has 

shown that these methods, with their unique strengths, have improved performance - specifically 

with higher area under ROC curve and better discrimination indices - to classify correct from 

incorrect peptide spectrum matches.  
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Chapter 

I. INTRODUCTION 
 

1.1 Shotgun Proteomics 

Proteomics is a discipline for identifying and quantifying the complete set of proteins in a sample. Mass 

spectrometry (MS)-based approaches are increasingly used to address diverse questions in proteomics 

research, enabling one to comprehensively analyze all proteins in complex samples. The application of 

MS-based proteomics approaches has proved to be successful in molecular and cellular biology research 

including protein-protein interaction and post-translational modification (PTM) identification. 

Proteomics has advanced greatly over the past few years with improvements in instrumentation and 

methodology, enabling many powerful applications such as global analysis of PTM [1-3], large-scale 

reconstruction of protein interaction networks, functional analysis of complex organisms [4-7], and 

introduction of proteomics in clinical and translational research [8]. 

Shotgun proteomics has become the most widely used tool for global characterization of proteins within 

complex mixtures (Figure 1). The first step is to reduce the complexity of a biological sample by one of 

several separation techniques such as one- or two-dimensional gel electrophoresis. Large proteins are 

then digested to peptides using site-specific proteases. Next, peptide mixtures are separated by liquid 

chromatography and ionized in a mass spectrometer. Precursor ions with particular mass-to-charge 

(m/z) values are selected and collided with nonreactive gas to generate fragment ions. The 

corresponding m/z values and peak intensities of fragment ions are recorded in tandem mass spectra, 

which are interpreted as peptides by computational tools. Finally, the identified peptides are assembled 

into a list of proteins that are most likely present in the sample. 
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Figure 1. Shotgun proteomics workflow. 

 

  

 

A typical shotgun proteomics experiment generates tens of thousands of tandem mass spectra. 

Database search techniques such as SEQUEST [9], Myrimatch [10] and MASCOT [11] are usually used for 

matching MS/MS spectra to a protein database, resulting in thousands of peptide identifications. 

Evaluating the quality of the match between an observed spectrum and a candidate peptide with the 

scoring function is critical to any database search technique. The scoring functions such as the MVH 

score in Myrimatch and Xcorr score in SEQUEST reflect the similarity between the observed and 

theoretical spectra. The scoring function ranks candidate peptides relative to a single spectrum, 

producing a best peptide-spectrum match (PSM) for each spectrum. The scores of different PSMs are 

compared to each other so that correct PSMs with high scores are distinguished from incorrect PSMs. 
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Although database search algorithms work well, the current scoring methods cannot distinguish correct 

and incorrect peptide identifications effectively [12-16]. The purpose of my thesis study is to reduce 

false positive identifications by developing a method to integrate search scores and features to filter out 

incorrect peptide identifications. 

The protein identification problem can be represented as a tripartite graph with layers corresponding to 

spectra, peptides and proteins [17-19] (Figure 2). An edge between a spectrum and a peptide indicates 

that the spectrum is assigned to a peptide with a high score.  It is also possible that more than one 

peptide are matched to the same spectra. One peptide can have multiple spectra and abundant 

peptides can have hundreds of spectra in a LC-MS experiment. An edge from a peptide to a protein 

indicates the peptide occurs in the protein.  This relationship is many to many because one protein may 

contain multiple peptides while one peptide may be shared among multiple proteins.  

 

Figure 2. Tripartite graph of relationship between spectra, peptides and proteins [20].  
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1.2 Previous studies using statistical learning methods 

Database search engines generally report multiple score metrics to assess the quality of a PSM. 

Automating accurate spectral identification is an ongoing effort in the proteomics community. The 

easiest way for automating the analysis is to define specific score cut-offs (e.g. accepting SEQUEST 

scores with xcorr> 2 and deltaCn value of at least 0.1. However, a previous study has shown that 

combining multiple score criteria rather than any single score is possible to reach higher discriminations 

[21].  

There are several approaches for re-ranking the PSMs and setting a threshold automatically in the re-

ranked list. IDPicker, a protein assembly tool, uses either a user defined (static) or Monte Carlo 

simulation method (dynamic) to combine score metrics [22, 23]. In the dynamic method, IDPicker tests 

linear combination of scores with randomized weights to determine which maximizes the total number 

of confident identifications. However, the number of weight combinations that can be assigned to the 

scores is limited. Moreover, this method does not take into account the features of PSMs such as 

precursor mass error, number of peaks, peptide N/C terminus enzymatic specificity, peptide length, 

charge segregation, missed cleavages, and so forth. These features are important confounding factors 

that could improve the ability to discriminate correct and incorrect PSMs. 

PeptideProphet [21] uses four statistics computed by SEQUEST search as input to a linear discriminant 

analysis classifier. It implements a probabilistic approach to assess the validity of peptide assignments 

generated by database search algorithms. Their approach contains elements of both semi-supervised 

and supervised learning, achieving higher accuracy than the score threshold method. This system is 

trained from labeled correct and incorrect PSMs derived from a purified sample of known proteins and 

retrained in each dataset to which it applied. Problematically, the PeptideProphet algorithm is 
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challenging to improve with additional information, making this algorithm insufficiently flexible to adapt 

to the fast development of mass spectrometry.   

Percolator built a support vector machine model with a linear kernel to classify PSMs [24, 25]. This 

method has the benefit of freely exploiting a variety of specific features of the data without overfitting 

to a particular type of spectrum. However, this method uses a linear kernel which is not capable of 

modeling non-linear separations and it adds additional parameters that must be tuned, usually 

numerically. This method freely exploits a variety of specific features of the data without overfitting to a 

particular type of spectrum; however, the optimization depends on the number of iterations during the 

course of training [25].  

Anderson et.al [26] showed that support vector machines could perform well on ion trap spectra 

searched with SEQUEST database search algorithm. Ulintz et.al [27] demonstrated that tree-based 

ensemble methods such as boosting and random forests are suitable for peptide classification problem 

and provide improved classification accuracy.  However, no study uses logistic regression, a popular 

binary classifier in statistics, to improve peptide classification.  Moreover, there is no study comparing 

the performances of the three statistical learning methods: support vector machines, random forests 

and logistic regression within the same dataset and using the same validating and evaluating metrics.  

I used three methods - logistic regression, SVM and random forests - to distinguish correct peptide-

spectrum matches from incorrect ones in a real biological dataset with a gold standard. I also developed 

a valid comparison scheme to learn the properties of these three methods and suggested the best 

method for peptide classification problems in proteomics.  For logistic regression, I used non-linear 

transformation of predictor and interactions between predictors to increase the flexibility.  By 

comparing models of different complexity, I am able to explore the mechanism underlying the 

relationship between experimental measures and the correctness of spectra. For support vector 

machines, I used linear and Gaussian kernels. The former has been used in Percolator but they only used 
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3 fold cross validation to select the parameters, which might not be well tuned to the datasets. The 

latter has not been used in previous studies, but has proved very powerful and is maybe the most widely 

used kernel to transform the input domain into a nonlinear feature domain.   Random forests were also 

used with the number of features per split tuned by 5-fold cross-validation. The results were validated 

by bootstrapping.  

1.3 Logistic Regression 

1.3.1 Logistic Function 

Logistic regression is a type of probabilistic statistical classification model used for predicting the 

outcome of a categorical dependent variable (i.e., a class label) based on one or more predictor 

variables. The binary logistic regression model was first developed by Cox [28] and Walker and Duncan 

[29]. In logistic regression, we use the logistic function 

 

The logistic function always produces an S-shaped curve.  After a bit of manipulation of the formula, we 

have 

 

Where is called the odds and can take any value between 0 and ∞ 

 

In a logistic regression, increasing X by one unit changes the log odds by β1 or equivalently, it multiplies 

the odds by eβ1.  

http://en.wikipedia.org/wiki/Dependent_and_independent_variables
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1.3.2 Maximum Likelihood Estimation 

 

 Maximum likelihood can be used to estimate the coefficients.  The likelihood function is  

 

Values of  and  are chosen to maximize the likelihood function.  

More generally, denoting the response and probability of response of the i th subject by Yi and Pi, 

respectively, the model states that 

 

The likelihood of an observed response Yi given predictors Xi and the unknown parameters β  is 

 

The joint likelihood of all responses Y1, Y2…. Yn is the sum of the log-likelihood for i=1…n: 

 

To maximize the log likelihood, the derivative is set to zero. The score equation U(B) is 

 

The maximum likelihood estimator of β usually cannot be calculated explicitly. The Newton-Raphson 

method, based on approximating U(B) by a linear function of B in a small region, is usually used to 
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solve maximum likelihood estimator. The value of  β- b
0
  is initialized arbitrarily and the linear 

approximation 

 

is equated to 0 and solve by b yielding  

 

At each iteration, the next estimate is obtained by the previous estimate using the formula 

 

Iteration continues until the -2 log likelihood changes by some pre-specified small amount- Δ over the 

previous iteration. The reasoning behind this stopping rule is that estimates of B that change the -2 log 

likelihood by less than Δ do not affect statistical inference since -2 log likelihood is on the chi-squared 

scale. 

The regression parameters can also be written in terms of odds ratios. Logistic regression is mostly used 

as an inference and data analysis tool to understand the roles of input variables in explaining the 

outcomes. Compared to other classification models (e.g. SVM, random forests), logistic regression is the 

most interpretable. One can study the effect and association of every predictor from the models.   

The Akaike information criterion (AIC) is a measure of the relative quality of a statistical model for a 

given set of data. It provides a way for model selection [40]. For any statistical model, the AIC value is  

                

Where k is the number of parameters in the model, L is the maximized value of the likelihood function 

for the model. 
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1.3.3 Cubic Spline Function 

The cubic spline function is a spline constructed of piecewise third-order polynomials which pass 

through a set of m control points [30].  A smooth cubic spline function with three knots (a, b, c) is 

represented as: 

 

Where  

 

If the cubic spline has k knots, the function will estimate k+3 coefficients [31]. The smooth spline 

function has the drawback that they are poorly behaved in the tails. The restricted cubic spline function 

has k-1 parameters. Restricted cubic spline function with k knots: (t1… tk) can be represented as:  

 

The restricted cubic spline function was implemented in the rcs function in the Hmisc package[32]. The 

fitting of restricted cubic splines depends on the number of knots. Placing knots at fixed quantiles of a 

predictor's marginal distribution is a good approach for most datasets. When the sample size is large 

with a continuous uncensored response variable, k = 5 is a good choice. The default knots are located 

at .05 .275 .5 .725 .95 for k=5 [31]. 
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1.4   Support Vector Machines 

The support vector machine is an approach for classification developed in the 1990’s and has grown in 

popularity since then [33]. A support vector machine constructs a hyperplane or a set of hyperplanes in 

a high- or infinite-dimensional space, which can be used for classification, regression, or other tasks. A 

good separation is achieved by the hyperplane that has the largest distance to the nearest training data 

point of any class [34].  The dimension of the transformed space can be very large, even infinite in some 

cases. This seemingly prohibitive computation is achieved through a positive definite reproducing kernel, 

which gives the inner product in the transformed space.   

1.4.1 Maximal Margin Hyperplane 

 

In a p-dimensional space, a hyperplane is a subspace of dimension p – 1. In p-dimensional setting, a 

hyperplane is defined as: 

 

If a point satisfies the formula, then X lies on the hyperplane.  

If , then X lies to one side of the hyperplane,  

If , then X lies to the other side of the hyperplane. 

 

For binary responses, the two classes are usually labeled either by yi=1 and yi=0 or by yi =1 and yi 

=-1 respectively. These two labels are equivalent in separating two categories of observations.  yi=1 

and yi=0 was used in my study. To demonstrate the theory, we label the observations as yi=1 and 

yi=0.   

http://en.wikipedia.org/wiki/hyperplane
http://en.wikipedia.org/wiki/High-dimensional_space
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A separating hyperplane has the property that  

 

Equivalently  

 

A classifier that is based on a separating hyperplane leads to a linear decision boundary. 

The maximal margin hyperplane is the separating hyperplane for which the margin is largest. In other 

words, it is the hyperplane that has the farthest minimum distance to the training observations. 

Maximal margin is used to classify observations by which side of the maximal margin hyperplane it lies. 

Maximizing the margin is good because points near the separating hyperplane represent very uncertain 

classification decisions. A hyperplane with a large margin makes less low certainty classification 

decisions: a slight error or variation is less likely to cause a misclassification. A good separation can be 

achieved by this hyperplane since usually the larger the margin the lower the generalization error of the 

classifier [54].  

To build maximal margin classifier based on n training observations: and 

associated outcomes . The maximum hyperplane is the solution to the 

optimization problem: 
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M represents the width of margin of the hyperplane, C is non-negative tuning parameter, 

 are slack variables that allow individual observations on the wrong side of the 

hyperplane.   indicates the ith observation is on the right side. We classify the test 

observation based on the sign of  

 

As C increases, we are more tolerant of violations to the margins, so the margins will widen. Therefore 

C controls the bias-variance trade-off of the support vector classifier.  Support vectors are the subset of 

the training data that lie on the margin. 

The optimization problem is solved by a Lagrange multiplier [35].  

 

Setting the derivatives to zero, we have  

 

Substituting these two into Lp, we have the Wolfe dual 
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1.4.2 Kernels 

The solution to the SVM problem involves only the inner product of the observations. The inner product 

of two observations Xi, Xi’ is 

 

The linear support vector classifier is  

 

Where there are n parameters, one per training observation. αi is non-zero only for support vectors, 

therefore, we have f(x): 

 

We replace the inner product with a generalized function, termed Kernel 

 

Kernel is a symmetric, semi-positive definite function to quantify the similarity of two observations. A 

linear kernel is  
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The support vector classifier with a linear kernel is linear in the features.  The effectiveness of SVM 

depends on the selection of kernel, the kernel's parameters, and soft margin parameter C. Kernel 

function can implicitly map the data into a feature space. One can choose among many types of kernels.  

One choice is the polynomial kernel with degree d 

 

Using d>1 leads to a more flexible decision boundary than linear kernel. 

In practice, a common choice is the Gaussian kernel (radial kernel): 

 
 

They are flexible and can build a lot of possible relations quickly. γ controls the radial basis of the kernel.  

It is necessary to choose appropriate tuning parameters for the model. The conventional way is to use k-

fold cross validation:  

1. Divide the data into k equal subsets, s=1…k, start with s =1; 

2. Pick a value for the tuning parameter;  

3. Fit the model using k-1 subsets other than subset s; predict for subset s and measure the associated 

loss;  

4. Repeat the iteration for every s =1…k[36] .   

The best combination of C and γ is often selected by grid search from a list of C and γ that uniformly 

spanned a logarithmic space [37]. Usually, each combination of parameter choices is checked using cross 

validation, and the parameters with best cross-validation accuracy are picked. The final model, which is 

used for testing and for classifying new data, is then trained on the whole training set using the selected 

parameters. Currently, polynomial kernels are less widely used than the Gaussian kernel, which maps 

http://en.wikipedia.org/wiki/Cross-validation_(statistics)
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data to an infinite dimensional space. Previous studies have shown for some data, the testing accuracy 

through polynomial kernel is slightly worse than Gaussian kernel under similar training and testing costs 

[38].  

1.4.3 Advantages and Disadvantages of SVM 

By introducing the kernel, SVM gains flexibility in classification. Since the kernel implicitly contains a 

non-linear transformation, no assumptions about the functional form of the transformation, which 

makes data linearly separable, is necessary. SVMs provide a good out-of-sample generalization, e.g. if 

the parameters C and γ in the case of a Gaussian kernel are appropriately chosen. This means that, by 

choosing an appropriate generalization grade, SVMs can be robust, even when the training sample has 

some bias. SVMs deliver a unique solution, since the optimality problem is convex. This is an advantage 

compared to neural networks, which have multiple solutions associated with local minima and for this 

reason may not be robust over different samples. The disadvantages of SVM include the lack of 

transparency of the results [27] and that it is memory intensive.  Non-linear kernel suffers from high 

time and space complexity associated with the need of operating kernel matrix.   

 

 

1.5 Random Forests 
Random forests is an ensemble learning method for classification (and regression) that operates by 

constructing a set of decision trees that returns the class that is the mode of the classes output by 

individual trees[17][34]. The method randomly selects, with replacement, n samples from the original 

training data. A small group of input variables on which to split are randomly selected. Growing a tree 

means partitioning the data based on some attribute of them at each node. Each tree is grown to the 

largest extent possible. To classify a new sample from an input, one runs the input down each of the 

trees in the forest. Each tree gives a classification (vote) and the forest chooses the classification having 

the most votes over all the trees in the forest.  

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Mode_(statistics)
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1.5.1 Decision Trees 

Tree-based methods are useful in that they are easy to interpret. Decision trees can be applied to both 

regression and classification problems. For a classification tree, we predict that each observation 

belongs to the most commonly occurring class of training observations in the region to which it belongs.  

There are different measures of node impurity: classification error, the Gini index, and cross-entropy.   

These measures are used as the criterion to make the splits.  

The classification error is the fraction of the training observations in that region that do not belong to 

the most common class [33].  

 

where represents the proportion of training observations in the m region that are from the kth 

class. 

 In addition to the classification errors, another measure, the Gini index, is preferred for tree-growing.  

The Gini index is defined as a measure of total variance across the k classes 

 

The Gini index is small if all of the  are close to zero or one. The Gini index is a measure of node 

purity - a small value indicates a node contains predominately observations from a single class.  

Cross-entropy is defined as:                            

                                          H= 

 

All three measures are similar; however, cross-entropy and the Gini index are more differentiable and 

more amenable to numerical optimization [39]. Therefore, when building a classification tree, the Gini 

index and cross-entropy are usually used to evaluate the quality of a particular split. The expected 
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information gain is the change in information entropy H from a prior state to a state that takes 

additional information. The information gain for a given attribute a is defined as follows 

                    

A tree model is able to capture multi-way interactions between the splitting predictors. It also naturally 

handles categorical and continuous variables, missing values, non-linearity, different scales between 

variables, etc. [30, 55].  However, tree models have problems in selecting a non-redundant feature set 

[55].  A decision tree select a feature at each split based on information-theoretic criterion, without 

considering if the feature is redundant to the features selected in previous nodes. Deng et al. proposed 

a tree regularization framework which penalizes selecting a new feature for splitting when its gain is 

similar to the feature used in previous splits. This regularization method was applied to random forests 

(regularized random forests (RRF)) and was shown to be able to select high-quality feature subsets [55].  

Pruning is a technique in machine learning that reduces the size of decision trees by removing nodes 

that provide little power for classification. The goal is to reduce the complexity of the classifier and 

increase prediction accuracy by removing the section of the classifier that might be based on noise.  

There are several ways of pruning. The main two categories of pruning are top-down (traverse and trim 

sub-trees from the root of the tree) or bottom-up methods (traverse and trim sub-trees from the leaves 

of the tree).  There are two main methods: reduce error pruning and cost complexity pruning. Reducing 

error pruning is to replace each node with its most popular class. If the prediction accuracy does not 

decrease, this change is kept. Cost complexity pruning generate a series of trees:  

Ti is created by removing a sub-tree from Ti-1 and replacing it with a leaf node.  T0 is the initial tree 

and Tm is the root alone.  The sub-tree that is removed is chosen to minimize the following measure:  
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where   err(T, S) is the error rate of tree T over data set S  [35].  |leaves(T)| is the number of leaves in 

tree T. The function  prune(T, t) defines the tree returned by pruning the sub-trees t  from the tree T. 

Once the series of trees has been created, the best tree is chosen by generalized accuracy as measured 

by a training set or cross-validation [37]. 

1.5.2 Bagging 

Trees are easier to interpret than linear regression. For example, trees can easily handle qualitative 

predictors without the need to create dummy variables. However, trees have lower predictive accuracy 

relative to other classification approaches such as SVM and logistic regression.  They also suffer from 

high variance. However, by aggregating many decision trees using bagging or random forests, the 

predictive accuracy can be greatly improved and the variance reduced. For regression trees, a set of 

predictions                          can be calculated from B separate training sets. The predictions 

from all individual regression trees can be averaged by: 

 

Bagging trains the method on the bth bootstrap training set in order to get , on a total number of 

B bootstraps, we can get the average of all predictions: 

 

For classification trees, we take a majority vote of B trees: the overall prediction is the most commonly 

occurring class among B predictions.  Each tree makes use of a subset of the observations. The 

remaining observations not used to fit a given bagged tree are out-of-bag (OOB) observations [34]. The 

classification error of these OOB observations is called OOB error.   
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1.5.3 Random Forests 

The difference between random forests and bagging is that random forests choose one of a random 

sample of m candidate predictors from a full set of p predictors.  A fresh sampling of m predictors is 

taken at each split, where m is usually approximately the square root of the total number of predictors. 

The predictions from the bagged trees will be highly correlated. Averaging these predictions will not 

reduce variance as much as averaging uncorrelated predictions.  Random forests overcome this problem 

by only considering a subset of predictors in each split. On average, (p-m)/p of the splits will not 

examine the strong predictor, making the resulting trees more reliable. No pruning is needed for 

random forests [30]. Overfitting is less likely to happen in random forests since the samples used to train 

individual trees are random bootstrap samples, and in each split random features are used.   

1.5.4 Importance of Predictors 

Bagging a number of trees makes it impossible to interpret the resulting model.  Random forests use the 

OOB samples to construct an importance value to measure the prediction strength for every predictor. 

When the tree is grown, the OOB samples are passed down the tree, and the prediction accuracy is 

computed. Then we randomly permute values of the predictor of interest- m in the OOB samples and 

examine the resultant changes in accuracy; decreased accuracy is recorded as the raw importance score 

of m in the dataset.  

If the values of this score from tree to tree are independent, then the standard error can be computed 

by a standard computation. The correlations of these scores between trees have been computed for a 

number of datasets and proved to be very low; therefore, standard error can be computed by dividing 

the raw score by its standard error to get a z-score, and assigning a significance level to the z-score 

assuming normality [34]. If the number of variables is large, random forests can be run once with all the 

variables then run again using the most important variables from the first run [56].  
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This permutation method of determining variable importance has some drawbacks. For example, for 

data including categorical variables with different number of levels, random forests are biased in favor 

of the attributes with more levels. Methods such as partial permutations can be used to solve the 

problem [57].    

Every time a split of a node is made on variable m, the Gini index for the two descendent nodes is less 

than that of the parent node. Adding up the Gini index increase for each individual variable over all trees 

in the random forests gives a fast variable importance called the Gini importance. The Gini importance is 

often very consistent with the permutation importance measure [56].  

Another useful tool from random forest is the proximity which can be used to cluster data. The 

proximities originally formed an N*N matrix (N is the number of cases in the data). After a tree is grown, 

put all of the data, both training and testing down the tree. If case k1 and k2 are in the same terminal 

node, increase their proximity by one. At the end, normalize the proximities by dividing by the number 

of trees.   

1.5.5 Advantages and Disadvantages of Random Forests 

 Random forests have several nice features: they give estimates of which variables are important for 

classification and are robust with respect to input variable noise. When the number of variables is large 

but the number of relevant variables is small (there are a lot of noise variables), in each split the 

probability that the relevant variables are selected is small. Random forests may perform poorly with 

small m (number of variables selected at each split).  When the number of relevant variables increases, 

random forests are robust when the number of noise variables increases. The robustness is largely due 

to the fact that misclassification cost is relatively insensitive to the variance and bias of the probability 

estimates in each tree.   Random forests also account for interactions among predictors and do not need 

to tune a lot of parameters, unlike SVM. Generally, random forests are robust to overfitting; however, 

they may overfit for some datasets with noisy classification or regression tasks. For data that includes 
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categorical variables with different number of levels, random forests are biased in favor of those 

attributes with more levels. Therefore, the variable importance scores from random forest are not 

reliable for these data[38].  

 

1.6 Model Validation 

Model validation determines whether predicted values from the model are likely to accurately predict 

responses on future subjects or subjects not used to develop our model. There are two major modes of 

model validation, external and internal. The most stringent form of external validation is to validate in a 

completely different source of data, e.g. testing a final model developed in one country on subjects in 

another similar country at another time. In other words, external validation of a prediction tool uses 

data that were not used to fit the model. The least stringent form of external validation involves using 

the first m of n observations for model training and using the remaining n - m observations as a test 

sample. Even though external validation is frequently favored by non-statisticians, it is often difficult to 

obtain separate validation data.   Internal validation involves fitting and validating the model by carefully 

using one series of subjects [40]. One uses the combined dataset in this way to estimate the likely 

performance of the final model on new subjects, which is often of most interest. Bootstrap is a general-

purpose technique for obtaining estimates of the properties of statistical estimators without making 

assumptions about the distribution giving rise to the data. The basic idea is to repeatedly simulate a 

sample of size n from the dataset, computing the statistic of interest, and assessing how the statistic 

behaves over B repetitions [41].   

 

In this study, I performed classification for shotgun proteomics using logistic regression and multiple 

statistical learning methods to combine multiple scores and PSM features, and compared the fitted or 

predicted outcomes to the gold standard . I also demonstrated the advantages and disadvantages of 



22 

 

these algorithms in working with mass spectrometry data and recommended the best methods to use in 

this field.     
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II.     MATERIALS AND METHODS 

2.1 Mass Spectrometry Data Collection 

In most statistics studies, we use simulations to model random events. As some real-world datasets may 

be difficult, expensive or time-consuming to analyze, using simulation can help researchers gain insights 

on real world situations.  Mass spectrometry datasets in particular are easily obtained but challenging to 

interpret due to their large size and high noise levels. The mechanism of these noises is not fully 

understood, making it hard to mimic the datasets with simulations. Simulations are useful only if it 

closely mimics real-world situations. Therefore, using a real dataset instead of a simulated one is a more 

feasible way to train and test the classifiers. A shotgun proteomics dataset, “UPS2 standard dataset”, 

created by Ivanov et al [42, 43] was selected as a standard scheme to compare three different statistical 

learning methods. This dataset has become the “gold standard” of training datasets due to its prior use 

in several studies for validating new bioinformatics and biostatistics algorithms [42, 43]. 

The UPS2 dataset contains 48 human proteins with a dynamic range spanning 0.5-50,000 fmol. I used a 

subset consisted of proteins with UPS2 concentration over 100 fmol. There were 18 LC MS/MS runs, and 

each run contained one specified amounts of the UPS2 standard spanning over 2 orders of magnitude. 

Data were searched against the human protein database.  
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Figure 3. Mass spectrometry data collection workflow  
 

 

 

  

Reformat the search result into database 
files using IDPicker 

Extract scores and features for each PSM 
with protein information with SQL 
queries 

Process data by assigning PSMs from 
UPS2 proteins as correct and the rest as 
incorrect 

Search raw data (mzML) against protein 
database to get peptide-spectrum 
matches (PSMs) with Myrimatch 
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2.2 Mass Spectra Data Processing 

MS/MS scans were converted to mzML by the msconvert tool that is part of the ProteoWizard[44] 

software package. All protein databases contained both forward and reverse sequences for estimating 

protein and peptide identification errors. Peptides were identified with MyriMatch (version 1.6.79) [10]. 

MyriMatch applied a precursor tolerance of 10 ppm for Orbitrap data and was configured to use a static 

mass shift of 57.0215 Da for alkylated cysteines and allowed the variable modification of oxidation of 

methionine (+15.9949 Da) and formation of N-terminal pyroglutamate (–17.0265 Da) . The search 

results were converted by IDPicker (version 3.0.515) from pepXML format to IDPDB format [22, 23, 43, 

45]. There were 17095 PSMs in total, 11354 (66.42%) of them were correct and 5741 (33.58%) of them 

were incorrect.  

Scores and features for each PSM were collected from the assembled summary database file from 

IDPicker by SQL queries (Figure 3). Because there were only the UPS2 proteins and contaminant proteins 

in the set, the spectrum that matched to peptides from the correct proteins were marked as correct, 

otherwise marked as incorrect. Spectra are stratified into four groups depending on their charges: 1, 2, 3 

and >=4. Peptide hydrophobicity was calculated by SSRCalc[46]. Retention time was predicted by 

hydrophobicity and the differences between observed scan time and predicted retention time were 

calculated as variable : Rtdiff.   

2.2.1 Features of PSMs 

PSMs were presented using 3 scores and 12 features. Scores described the quality of match between the 

observed and theoretical spectra, and features described properties of the peptide or the spectrum 

(Table 1). Some of these scores and features were also used by Percolator: xcorr, massError, 

absMassError, monoMass, missCleavages, enzN, enzC, pepLen, charge 1-3. Others were new features 

that were considered important in this algorithm: matchedPeaks, unmatchedPeaks, numMods, RTdiff.   
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2.3 Descriptive Statistics 

  

The distributions of univariates were described by empirical cumulative distribution with the Ecdf 

function and univariate summary plots from Hmisc package. The Spearman’s rank correlations between 

pairs of predictor variables were calculated to measure their statistical dependence. Variables were 

clustered based on Spearman’s rank correlation by varclus function from Hmisc package.  

2.4 Models 

2.4.1 Logistic Regression Models 

Four logistic regression models were fitted to the dataset. To avoid scaling issues in models, all 

continuous predictor were standardized to mean=0 SD=1 in logistic regression. Only missCleavages 

(categorical, 0-6), enzN (binary, 0/1), enzC( binary 0/1), charge.cat( categorical, 1-4 ) were used in their 

original scale for interpretability.   

1. Linear main effect model (modelReg) 

The first model was a logistic regression with only main effects. The outcome was the correctness of the 

PSMs and the predictors were the 3 scores and 12 features [31].   Since the dataset was large, variable 

reduction was not necessary. The odds ratio of each predictor and its confidence interval were 

estimated to understand the effect of each predictor on the outcome. 

The main effect model can be represented below: 
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2. Spline model (modelReg.spline) 

I also fitted a logistic regression model with transformed continuous predictors and untransformed 

categorical predictors [47, 48]. Continuous variables were transformed with restricted cubic spline 

function (rcs) with 5 knots. This model was compared to the main effect model to show how non-linear 

transformation of these predictors affects accuracy of prediction. 

The spline model can be represented below: 

 

                                                                       

                                                                    

                                                        

                

                                                            

3. Linear model with interactions (modelReg.inter) 

I fitted logistic regression with non-transformed predictors and 2-way interaction terms between charge 

and MVH, massError, RTdiff, ModNumber, enzN and enzC. According to previous studies, charge is an 

important confounding factor which may interact with other predictors in the model.  This interaction 

model was used to show how interactions between charge and other predictors affected accuracy of 

prediction.  

The linear model with interaction can be represented as:  
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4. Spline model  with interactions (modelReg.spline.inter) 

4.1 Two models were fitted with the data – the first model was based on the previous observations 

that charge may interact with other variables such as scores and retention time difference. 2-way 

interaction terms between charge and MVH, massError, RTdiff, ModNumber, enzN and enzC were 

included in the model.  Predictors such as missCleavages, mzFidelity, xcorr, monoMass, unmatchedPeaks 

were included as additive predictors since including them in the interaction terms caused singularity in 

regression. All continuous predictors were transformed with restricted cubic spline function. 

This model can be represented as:  

 

                                                                     

                                                                        

                                                              

4.2    The second model included interactions between misscleavages (the variable with the highest 

apparent importance) and other variables, and also included the interactions introduced in 4.1. It was a 

complex model which allowed a lot of flexibility.  

This model can be represented as  
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AIC was used to evaluate the quality of these models. The corresponding AIC value of each model was 

obtained and compared to each other.  

I did not fit more complex models due to collinearity in the predictors. For the spline model with 

interactions, validation with 32 out of 200 bootstrapped samples could not converge, indicating no 

maximum likelihood estimator exists. Therefore, I used these two models to show how the combination 

of non-linear transformation and variable interactions affected the prediction accuracy. 

I did not penalize the models since there were only less than 20 predictors but over 5000 observations in 

each category of dataset. The sample size was sufficient for logistic regression analyses. To show this, I 

tried to use the function pentrace[49] from the rms package to choose the best penalty factor for the 

models. The best penalty factor is 0, indicating no penalty was needed for these analyses.  

 

2.4.2 Support Vector Machine 

1. SVM with a linear kernel 
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All predictors were standardized before analysis. Five cost parameters that uniformly spanned a 

logarithmic space were used: 0.01, 0.1, 1, 10, and 100. The best cost parameter was selected based on 

5-fold cross validation.  

2. SVM with a Gaussian kernel 

I trained SVM models with a Gaussian kernel. I selected from five cost parameters (0.01, 0.1, 1, 10, 100) 

and five gamma parameters (0.005, 0.05, 0.1, 0.5, 1) using a grid search. The best parameter 

combination was selected based on 5-fold cross validation. The best parameters were 10 for C and 1 for 

γ.  Gaussian kernels non-linearly map the data space into a higher dimensional space.  Its use with 

appropriate regularization guarantees a globally optimal predictor which minimizes both the estimation 

and approximation errors of a classifier.  In this thesis, I compared different SVM with different kernel 

allowing flexibility to classify spectra.   I did not use polynomial kernel because previous studies have 

shown that polynomial kernel may not give higher accuracy than Gaussian kernel under similar training 

and testing costs [38].  

2.4.3 Random Forests 

I used tuneRF function in RandomForest package in R to tune parameter m (the size of the random 

subsets of features to consider when splitting a node). I started with the default number of m and search 

for the optimal value (with respect to out-of-bag error estimate) of m for randomForest.  The validated 

best m was 4 which was approximately the same as the default square root of number of variables (15).   

2.4.4 Model Validation 

All models were validated using the same bootstrapping strategy. The logistic regression models were 

validated using the validate function in the rms package [49].  This function validates models with 

statistical indices to quantify discrimination ability (e.g., R2, model  χ2, Somers' Dxy, Spearman's  ρ, area 

under ROC curve). Two important indices are Dxy and calibration slope. Dxy is Somers' rank correlation 

between predicted probability that Y = 1 vs. the binary Y values. This equals 2(C-0.5) where C is the 
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ROC Area or concordance probability. Calibration slope is slope of predicted log odds vs. true log odds 

[40].  

For SVM and random forests, I drew a training set of N (N=17095) observations from the original data of 

size N with replacements. Then, I fitted models with the training data and evaluated the model based on 

the out-of-bag (oob) samples. These three steps were repeated 1000 times. For each iteration, 

sensitivity, specificity, precision, accuracy (at probability threshold 0.5), AUC and F-measure were 

estimated in the training sets and out-of-bag test sets. 

The probabilities based on the output of the machine learning models were used as the classifier for the 

PSMs. PSMs with probability greater than 0.5 were considered positive by the test, otherwise negative. I 

used this criterion to assess the performance of the classifiers by classification matrix, accuracy, 

sensitivity, precision, specificity, F-measure etc.  I understand this criterion- 0.5 might be arbitrary, and 

that choosing different cutoffs will lead to different results. Therefore, I mainly used discrimination 

indices and AUC to assess the models.    

  

Table 1. Three scores and twelve features used to distinguish correct and incorrect PSMs 

 Predictor Description 

Score 1 MVH Score evaluating the probability that a random peptide would 

match to fragments as intense in the observed spectrum as a 

particular candidate sequence by multivariate hypergeometric 

(MVH) distribution[10] 

Score 2 mzFidelity Score evaluating a PSM occurred by random change by 

multinomial distribution[50-52] 

Score 3 Xcorr Cross correlation between calculated and observed spectra[53] 

Feature 1 matchedPeaks number of matched peaks 
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Feature 2 unmatchedPeaks number of unmatched peaks 

Feature 3 massError the difference in calculated and observed monoisotopic mass 

Feature 4 AbsMassError Absolute value of the difference in calculated and observed 

monoisotopic mass 

Feature 5 Charge  Categorical feature  

1: charge state 1; 

2: charge state 2;   

3: charge state 3 

4: charge state >=4 

Feature 6 enzN Boolean: is the peptide preceded by an enzymatic site 

Feature 7 enzC Boolean: does the peptide have an enzymatic C-terminus 

Feature 8 missCleavages Number of missed internal enzymatic sites 

Feature 9 pepLen The length of the matched peptide, in residues 

Feature 10 monoMass The monoisotopic mass of the peptide 

Feature 11 RTdiff Difference between predicted and observed retention time (in 

seconds) 

Feature 12 numMods Number of modifications in the peptide  
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III. RESULTS 
 

3.1 Descriptive Statistics 

The distributions of the predictors were segregated by the correctness of the PSMs (Figure 4, 

supplementary table 1) . The three scores (MVH, Xcorr and mzFidelity) were distributed differently in 

correct versus incorrect PSMs; Incorrect PSMs had a higher density of scores at the low end. However, 

none of these three scores was able to separate correct from incorrect PSMs very well because there 

was significant overlap between the scores of two groups.  The distributions of the MVH and Xcorr 

scores had longer tails than the mzFidelity score. Correct PSMs had a larger number of matched peaks 

and a smaller number of unmatched peaks than incorrect PSMs. Distribution of both mass error and 

absolute mass error showed a spike around 0 for correct PSMs and a wide distribution for incorrect 

ones. There were 9 different charge values: 1, 2, 3, 4, 5, 6, 11, 12, and 13. Since in liquid 

chromatography mass spectrometry results, charge states more than 4 are very rare (Figure 4). , I 

collapsed PSMs with charge >=4 into one group and kept charge 1, 2, 3 as individual groups.  The 

enzyme cleavages were more specific at N terminus and C terminus for correct PSMs. The number of 

missed cleavages was mostly 0 for correct PSMs, while they were distributed more widely for incorrect 

ones. Correct PSMs had slightly higher densities of peptide length around 15. A similar distribution was 

found at the monoisotopic mass distribution. The distribution of retention time differences was 

narrower and higher around 0 for correct PSMs, indicating that the scan time of correct PSMs is closer to 

the predicted retention time calculated by hydrophobicity of the peptides.  An empirical cumulative 

distribution plot of the continuous variables in the dataset led me to the same conclusion as above 

(Figure 5). PSM with peptide charge 3 had the highest proportion of correctness, followed by charge 2 

and charge 1. Charge more than or equal to 4 had the lowest proportion of correctness (Figure 6). 
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Figure 4: Stratified distributions of predictor variables. The distribution of the predictor 
variables were shown segregated by the correctness of the PSMs. The red lines/bars are 
correct PSMs. The black lines/bars are incorrect PSMs.
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Figure 5. Empirical cumulative distribution plot of the continuous variables in the dataset 

 

 

 

Although MVH, mzFidelity and Xcorr scores are all related to the quality of the same PSMs, their 

correlation was around 0.8 [40] (Figure 7, Figure 8).  Using all three scores can provide more information 
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for PSM classification. The correlation between peptide length and peptide monoisotopic mass was 

0.98, indicating high collinearity; therefore, only monoisotopic mass (monomass) was included in the 

models (Figure 7). R2 of absmasserror and matchedPeaks from redundancy analysis by redun function in 

rms were 0.999 and 0.970 respectively, indicating these two variables could be predicted from other 

predictors. Therefore, these two variables were excluded from the logistic regression models to avoid 

matrix singularity.  
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Figure 6. Univariate summaries of PSM correctness. The marginal proportion of correct 
PSMs is shown separately by categories of predictors.  
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Figure 7: Correlation of all predictor variables. The values of Spearman’s rank correlation 
are shown for any two variables. 
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Figure 8. Variable clustering based on Spearman’s rank correlation 
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3.2 Main Effect Logistic Regression Model Fitting and Validation 

In the main effect model, all the predictors were significantly associated with the outcome label under 

alpha=0.05 (Table 2, Table 3, Figure 10).  Among these variables, the 95% confidence interval of log odds 

ratios of MVH, Xcorr,  enzN, enzC, ModNumber do not include zero, which I interpreted as evidence of a 

positive association between the variables and the PSM. On the other hand, as the missCleavages, 

unmatchedPeaks, massError, retention time difference increases, the odds of correctness decrease 

(Figure 11). The 95% confidence intervals of odds ratio of charge group 2, 3, 4 compared to charge group 

1 were (0.3464, 0.4613), (0.4758, 0.7299), (0.1964, 0.4099) respectively. The spectrum with charge 

group 1 had the highest odds of being correct in this dataset, while the charge greater than or equal to 4 

had the lowest odds of correctness. Consistent with observations in the summary statistics, the three 

scores, enzyme specificity, retention time difference, and mass error were good predictors to separate 

correct PSMs from incorrect ones.  There might be interactions between predictors or non-linear 

relationship between predictors and the outcome. The effects of these 6 predictors (MVH, massError, 

RTdiff, ModNumber, enzN, enzC) on correctness of PSM vary among different charge groups (Figure 9). 

Therefore, it was reasonable to include interaction terms between charge.cat and these 6 predictors. 
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Figure 9. Nonparametric regression estimates of the relationship between predictors of 
interest and the probability of PSM correctness. The relationship is stratified by four charge 
categories. The curves appear different for different charges in each predictor. Therefore, it is 
reasonable to include interaction between charge and other predictors.  
 

The effects of MVH, massError, RTdiff, ModNumber, enzN, enzC are stratified by charge (black: 
charge 1, red: charge 2, green: charge 3, blue: charge >=4). 
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Table 2.  Estimate and 95% confidence interval of correlation coefficients of the logistic 
regression model with main effects. MVH, Xcorr, unmatchedPeaks, massError, charge.cat, 
enzN, enzC, missCleavages, RTdiff and ModNumber are highly associated with correctness of 
spectra. 
 

 
Estimate Std.Error 

95% CI lower 
bound 

95% CI upper 
bound 

(Intercept) 0.4585 0.1241 0.2153 0.7017 

MVH 0.6789 0.054 0.5732 0.7847 

mzFidelity -0.1199 0.0753 -0.2675 0.0276 

Xcorr 1.0561 0.0465 0.9651 1.1472 

unmatchedPeaks -0.3869 0.0744 -0.5328 -0.241 

massError -0.0533 0.0237 -0.0998 -0.0068 

as.factor(charge.cat)2 -0.9172 0.0731 -1.0605 -0.7738 

as.factor(charge.cat)3 -0.5288 0.1091 -0.7427 -0.3149 

as.factor(charge.cat)4 -1.2597 0.1877 -1.6276 -0.8919 

enzN 1.3577 0.06 1.2401 1.4752 

enzC 0.5605 0.0971 0.3701 0.7508 

missCleavages -1.6896 0.0509 -1.7895 -1.5897 

monoMass -0.159 0.0832 -0.3222 0.0041 

RTdiff -0.0542 0.0215 -0.0963 -0.0121 

ModNumber 0.1269 0.0322 0.0637 0.1901 
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Figure 10.  Interquartile-range odds ratios for continuous predictors and simple odds 
ratios for categorical predictors. Numbers at left are upper quartile : lower quartile or 
current group : reference group. The bars represent 0:9; 0:95; 0:99 confidence limits. The 
intervals are drawn on the log odds ratio scale and labeled on the odds ratio scale. Ranges are 
on the original scale. 
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Figure 11. Plot of effects of variables estimated by main effect model. Odds of correct PSM 
increase when xcorr or MVH increases, decrease when unmatchedPeaks and missCleavages 
increase.  

  

Table 3. Wald statistics and p-values of predictors in the main effect model 

 

  



46 

 

Figure 12. Ranking of apparent importance of predictors by χ2 -df of spectrum correctness 
in logistic regression model with main effects. MissCleavages has the highest apparent 
importance followed by xcorr, enzN and charge.cat.  

 

The importance of predictors were compared by χ2 –df and ranked from lowest to highest (Figure 12). 

Misscleavages had the highest importance with χ2 –df value over 1000. Xcorr had the second highest 

importance followed by charge.cat, MVH.  mzFidelity and  massError had low importance probably 

because their effects are masked by other correlating variables. MonoMass did not have high predictive 

importance since it was obvious that higher or lower monoisotopic mass should not determine the 

correctness of spectra.   

 

3.3 Logistic Regression with Interactions Model Fitting and Validation 

The estimates and confidence intervals of odds ratio of MVH, enzN, enzC were similar in charge group 1 

and 3 (Figure 13.1, Figure 13.3, Supplementary table 2). The estimates were more precise in charge 

group 2 (Figure 13.2). In charge >=4 group, the confidence interval of odds ratio of charge 1, 2 or 3 vs. 

charge 4 was very wide. This might be due to the data of PSMs in the charge >=4 group were very noisy. 
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Additionally, the number of observations in this group was small and the odds of correctness differed a 

lot across individual charge groups. 
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Figure 13.  Interquartile-range odds ratios for continuous predictors and simple odds 
ratios for categorical predictors in logistic regression model with interactions. The odds 
ratios were plotted separately for charge=1, charge=2 and charge =3 groups.  To evaluate the 
effects of different charge groups, continuous variables were adjusted to its medium, and 
categorical variables were adjusted to the default value 0. The odds ratios of charge.cat were 
plotted with interacting variables adjusted to:  MVH=-0.1754578 massError=0.03677613 
enzN=0 enzC=0 RTdiff=-0.1505191 ModNumber=0. The effects were similar for charge =1 and 
charge =3. The confidence intervals of the effects in charge=2 group were narrower, 
indicating higher precision. Charge>=4 group was not shown because estimates and 
confidence intervals were obtained from data with a small number of noisy observations. 
14.1 
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14.2 

 
14.3 
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Table 4. Wald statistics of predictors in logistic regression model with interactions 
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Figure 14. Ranking of apparent importance of predictors by χ2 -df of spectrum correctness 
in logistic regression model with interactions.  

 
The Wald statistics of predictors in this model showed that all were significantly associated with the 

outcome label under alpha=0.05, except interaction between charge.cat and massError (Table 4). 

Consistent with the main effect model, missCleavages was the most important predictor followed by 

enzN and xcorr (Figure 14). The interaction between charge.cat and enzN was most important among all 

the interactions terms with χ2 –df  value over 150. RTdiff had higher importance in this model than in 

the main effect model.  
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3.4 Logistic Regression with Splines Model Fitting and Validation 

 
The Wald statistics of predictors in this model showed that all except non-linear effect of unmatched 

peaks were significantly associated with the outcome label under alpha=0.05 (Supplementary table 4, 

Table 5, Figure 15). MissCleavages was the most important predictor followed by RTdiff and xcorr (Table 

5, Figure 16). The effect of RTdiff on the outcome was non-linear. RTdiff and its non-linear terms had the 

second highest importance with χ2 –df  value over 400. The absolute difference between the observed 

retention time of a spectrum and the expected retention time of the matching peptide was negatively 

associated with correctness of the match. It did not matter if the observed time was higher or lower 

than the calculated time, therefore the relationship was non-linear. The log odds of correctness of 

spectra decreased when RTdiff was farther away from zero (Figure 17).    
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Table 5. Wald statistics of logistic regression model with restricted cubic spline of 
predictors with 3 knots 
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Figure 15. Interquartile-range odds ratios for continuous predictors and simple odds ratios 
for categorical predictors in logistic regression model with splines. This plot is similar as 
Figure 11 for main effect model 
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Figure 16. Ranking of apparent importance of predictors by χ
2 
-df of spectrum correctness 

in logistic regression model with splines 
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Figure 17. Plot of effects of variables estimated by main effect model. Odds of correct PSM 
increase when xcorr or MVH increases, decrease when unmatchedPeaks and missCleavages 
increase. The odds of correct PSM increase with an increase in RTdiff when RTdiff is below 0, 
decrease with an increase in RTdiff when RTdiff is above 0. It is consistent with the fact that 
smaller absolute retention time difference in observation is associated with higher odds of 
correct PSMs. This plot demonstrates the existence of non-linear effect for some predictors.  
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3.5 Logistic Regression with Splines and Interactions Model Fitting and Validation 

 
The Wald statistics of predictors in this model showed that all except interactions between charge.cat 

and modNumber/enzC were significantly associated with the outcome label under alpha=0.05 

(Supplementary table 5, Table 6, Figure 18). MissCleavages was the most important predictor followed 

by charge.cat and RTdiff (Figure 18). The results of this model also demonstrated the effect of RTdiff on 

the outcome was non-linear (Table 6).   
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Table 6. Wald statistics of predictors of logistic regression model with restricted cubic 
spline of predictors and interactions 
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Figure 18. Ranking of apparent importance of predictors by χ2 -df of spectrum correctness 
in logistic regression model with splines and interactions 

 

 

The AIC’s of modelReg, modelReg.inter,  modelReg.spline, modelReg.spline.inter1 and modelReg. 

Spline.inter 2 were 14500, 13980, 12890, 12170 and 11546 respectively. The model with splines with the 

most interaction terms (modelReg. Spline.inter 2) had the lowest AIC. The log odds ratios of these 

predictors and their confidence intervals from the four models were shown in supplementary tables. 

Because there were too many predictors in modelReg.spline.inter2 model, the estimates and confidence 

intervals of the log odds ratio were not shown.  
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3.6 Logistic Regression Model Validation 

 

The main effect model worked comparably well with an average AUC of 0.86 in both training and test 

sets (Table 7, Table 8). Linear model with interaction had slightly better AUC (0.87) in training sets but 

the same AUC 0.86 in test sets. Spline model without interaction had higher AUC -0.88, 0.87 in training 

and test sets.  Spline model with interactions had the highest AUC 0.90 in training sets but the number 

slightly decreased in test sets (0.87). The performances of all these models in training sets were 

approximately the same as the test sets, indicating there was not much overfitting.  

Table 7. Performance measures of logistic regression models in training sets 
 Sensitivity specificity precision Accuracy F-measure AUC 

linear main effect 
model 

0.92 
(0.92,0.93) 

0.62 
(0.60,0.64) 

0.83 
(0.82,0.83) 

0.82 
(0.82,0.83) 

0.87 
(0.87,0.88) 

0.86 
(0.85,0.87) 

linear model with 
interaction 

0.93 
(0.92,0.93) 

0.63 
(0.61,0.65) 

0.83 
(0.83,0.84) 

0.83 
(0.82,0.83) 

0.88 
(0.87,0.88) 

0.87 
(0.86,0.87) 

spline model 0.94 
(0.93,0.94) 

0.70 
(0.68,0.71) 

0.86 
(0.85,0.86) 

0.86 
(0.85,0.86) 

0.90 
(0.89,0.90) 

0.88 
(0.88,0.89) 

spline model with 
interaction 

0.94 
(0.94,0.94) 

0.72 
(0.71,0.73) 

0.87 
(0.86,0.87) 

0.87 
(0.86,0.87) 

0.90 
(0.90,0.91) 

0.90 
(0.89,0.90) 

Table 8. Performance measures of logistic regression models in test sets 
 

 sensitivity specificity precision accuracy F-measure AUC 

linear main effect 
model 

0.92 
(0.91,0.93) 

0.62 
(0.60,0.64) 

0.83 
(0.82,0.84) 

0.82 
(0.81,0.83) 

0.87 
(0.87,0.88) 

0.86 
(0.85,0.87) 

linear model with 
interaction 

0.92 
(0.91,0.93) 

0.63 
(0.60,0.65) 

0.83 
(0.82,0.84) 

0.82 
(0.82,0.83) 

0.87 
(0.87,0.88) 

0.86 
(0.85,0.87) 

spline model 0.93 
(0.87,0.96) 

0.67 
(0.54,0.75) 

0.85 
(0.81,0.88) 

0.84 
(0.81,0.86) 

0.89 
(0.86,0.90) 

0.87 
(0.82,0.89) 

spline model with 
interaction 

0.92 
(0.85,0.96) 

0.69 
(0.56,0.76) 

0.85 
(0.81,0.88) 

0.84 
(0.80,0.86) 

0.88 
(0.85,0.90) 

0.87 
(0.83,0.89) 

 

I validated these four models with 200 bootstrap validation using validate function in rms package (Table 

9).  The most flexible model ModelReg.spline.inter (Table 9.4, Table 9.5) had the highest Dxy, R
2 , D, Q 

and g-index. Overall, the simplest main effect model modelReg had the worst predictive accuracy indices 
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compared to other models. Additive model with splines (modelReg.spline, Table 9.3) had higher 

accuracy indices than the one with interactions (modelReg.inter, Table 9.2).  The optimism values were 

small in the four models, also indicating there was not much overfitting in the models. The model with 

most interactions terms (ModelReg.spline.inter2, Table 9.5) had the highest corrected Dxy: 0.8037. The 

main effect model had the best slope shrinkage factor 0.9973 (Table 9.1).  

Table 9. Indices of predictive accuracy in logistic regression models  

9.1. Indices of predictive accuracy  in linear main effect model 
  index.orig training test optimism index.corrected 

Dxy 0.72 0.72 0.72 0.00 0.72 

R2 0.48 0.49 0.48 0.00 0.48 

Intercept 0.00 0.00 0.00 0.00 0.00 

Slope 1.00 1.00 1.00 0.00 1.00 

Emax 0.00 0.00 0.00 0.00 0.00 

D 0.43 0.43 0.43 0.00 0.43 

U 0.00 0.00 0.00 0.00 0.00 

Q 0.43 0.43 0.43 0.00 0.43 

B 0.13 0.13 0.13 0.00 0.13 

g 2.26 2.26 2.25 0.01 2.25 

gp 0.32 0.32 0.32 0.00 0.32 

9.2 Indices of predictive accuracy in Linear model with interactions 
  index.orig training test optimism index.corrected 

Dxy 0.73 0.73 0.73 0.00 0.73 

R2 0.50 0.50 0.50 0.00 0.49 

Intercept 0.00 0.00 0.01 -0.01 0.01 

Slope 1.00 1.00 0.99 0.01 0.99 

Emax 0.00 0.00 0.00 0.00 0.00 

D 0.45 0.45 0.44 0.00 0.44 

U 0.00 0.00 0.00 0.00 0.00 

Q 0.45 0.45 0.44 0.00 0.44 

B 0.13 0.13 0.13 0.00 0.13 

g 2.36 2.37 2.35 0.03 2.33 

gp 0.33 0.33 0.33 0.00 0.33 

9.3. Indices of predictive accuracy in additive spline model 
  index.orig training test optimism index.corrected 

Dxy 0.76 0.76 0.76 0.00 0.76 

R2 0.57 0.57 0.57 0.01 0.56 
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Intercept 0.00 0.00 0.01 -0.01 0.01 

Slope 1.00 1.00 0.98 0.02 0.98 

Emax 0.00 0.00 0.01 0.01 0.01 

D 0.53 0.53 0.53 0.01 0.52 

U 0.00 0.00 0.00 0.00 0.00 

Q 0.53 0.53 0.52 0.01 0.52 

B 0.11 0.11 0.11 0.00 0.11 

g 2.43 2.49 2.44 0.05 2.38 

gp 0.35 0.35 0.35 0.00 0.35 

9.4 Indices of predictive accuracy in spline model with interactions 1 
  index.orig training test optimism index.corrected 

Dxy 0.79 0.79 0.79 0.01 0.78 

R2 0.61 0.61 0.60 0.01 0.59 

Intercept 0.00 0.00 0.04 -0.04 0.04 

Slope 1.00 1.00 0.94 0.06 0.94 

Emax 0.00 0.00 0.02 0.02 0.02 

D 0.57 0.58 0.57 0.01 0.56 

U 0.00 0.00     Inf    -Inf     Inf 

Q 0.57 0.58    -Inf     Inf    -Inf 

B 0.11 0.10 0.11 0.00 0.11 

g 3.25 3.42 3.24 0.18 3.07 

gp 0.36 0.36 0.35 0.01 0.35 

*In 32 out of 200 iterations, this model does not converge, leaving the corrected index of U and Q 

infinite. 

9.5. Indices of predictive accuracy in spline model with interactions 2 
  index.orig training test optimism index.corrected 

Dxy 0.81 0.82 0.81 0.01 0.80 

R2 0.64 0.64 0.63 0.02 0.62 

Intercept 0.00 0.00 0.08 -0.08 0.08 

Slope 1.00 1.00 0.91 0.09 0.91 

Emax 0.00 0.00 0.03 0.03 0.03 

D 0.61 0.62 0.60 0.02 0.59 

U 0.00 0.00 0.02 -0.02 0.02 

Q 0.61 0.62 0.58 0.04 0.57 

B 0.10 0.10 0.10 0.00 0.10 

g 4.40 4.65 4.29 0.36 4.04 

gp 0.36 0.37 0.36 0.01 0.35 

    Dxy: Somers' rank correlation between predicted probability that Y = 1 vs. the binary Y values. This 
equals 2(C – 0.5) where C is the “ROC Area". 
    D: Discrimination index,  likelihood ratio χ2 divided by the sample size 
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    Q: Logarithmic accuracy score, a scaled version of the log-likelihood achieved by the predictive model 
    g: g-index, measure of model’s predictive discrimination based on Gini’s mean difference for a 
variable Z. 

     gp: g-index on the probability scale, Gini’s mean difference of     
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3.7 SVM and Random Forest Model Fitting and Validation 

SVM with a Gaussian kernel outperformed SVM with a linear kernel as in Percolator[24, 25] with a 

higher mean AUC  and F-measure in both training and test sets (Table 10, Table 11). Random forest and 

SVM with Gaussian kernels performed the best among these models. The AUC of the random forest was 

the highest at -1.0 and 0.99 in training and test sets respectively.  The AUC of SVM Gaussian model was 

also very high at -1.00 and 0.97 in training and test sets respectively.  SVM linear model performed 

similarly to logistic regression with splines and interactions, with AUC 0.87 in both training and test sets. 

Comparably, logistic regression with interactions achieved higher AUC in training set -0.90 .  These 

accuracy measures were very precise with narrow bootstrap confidence intervals.  Validated by 1000 

bootstrap simulations, retention time difference and monoisotopic mass were most important for 

classification of the PSMs in random forests (Figure 19), followed by number of missed cleavages and 

Xcorr score.   MVH score, charge (charge.cat), mass error (massError), enzyme specificity at N terminus 

(enzN ) were moderately important in predictions. Enzyme specificity at C terminus (enzC) was the least 

important for prediction.  I compared the apparent importance estimated by χ2-df in Figure 12, 14, 16, 

18 in logistic regression models. MissCleavages, xcorr, enzN, charge, RT diff are the four most important 

variables in the logistic regression models. According to our previous knowledge, monoisotopic mass 

might not be a good predictor for correctness of peptide-spectrum matches, therefore, the importance 

evaluated by χ2-df in logistic regression models were more reasonable. 

Table 10. Performance measures of the SVM model with a linear or a Gaussian kernel and 
random forests in training set. 
 Sensitivity specificity precision accuracy Fmeasure Auc 

Spline model with 
interaction 

0.94 
(0.94,0.94) 

0.72 
(0.71,0.73) 

0.87 
(0.86,0.87) 

0.87 
(0.86,0.87) 

0.90 
(0.90,0.91) 

0.90 
(0.89,0.90) 

SVM Gaussian 0.99 
(0.99,0.99) 

0.98 
(0.97,0.98) 

0.99 
(0.98,0.99) 

0.99 
(0.99,0.99) 

0.99 
(0.99,0.99) 

1.00 
(0.99,1.00) 

SVM linear 0.94  
(0.94,0.95) 

0.65 
(0.62,0.67) 

0.85 
(0.83,0.86) 

0.84 
(0.83,0.85) 

0.90 
(0.88,0.92) 

0.87 
(0.87,0.88) 

RF 1.00 
(1.00,1.00) 

1.00 
(1.00,1.00) 

1.00 
(1.00,1.00) 

1.00 
(1.00,1.00) 

1.00 
(1.00,1.00) 

1.00 
(1.00,1.00) 
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Table 11. Performance measures of the SVM model with a linear or a Gaussian kernel and 
random forests in test set (OOB set). 
 Sensitivity specificity precision accuracy Fmeasure Auc 

Spline model with 
interaction 

0.92 
(0.85,0.96) 

0.69 
(0.56,0.76) 

0.85 
(0.81,0.88) 

0.84 
(0.80,0.86) 

0.88 
(0.85,0.90) 

0.87 
(0.83,0.89) 

SVM Gaussian 0.95 
(0.94,0.96) 

0.91 
(0.89,0.92) 

0.94 
(0.89,0.96) 

0.94 
(0.93,0.94) 

0.95 
(0.92,0.96) 

0.97 
(0.96,0.97) 

SVM linear 0.94 
(0.93,0.95) 

0.64 
(0.62,0.66) 

0.85 
(0.83,0.88) 

0.84 
(0.84,0.85) 

0.90 
(0.88,0.93) 

0.87 
(0.86,0.88) 

RF 0.97 
(0.96,0.98) 

0.88 
(0.87,0.90) 

0.94 
(0.94,0.95) 

0.94 
(0.94,0.95) 

0.96 
(0.95,0.96) 

0.99 
(0.98,0.99) 

 

Figure 19. Variable importance boxplot by the random forests model. Variable importance 
values were computed using the mean decrease in the Gini index, and expressed relative to the 
maximum. 
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IV. DISCUSSION 
 

This study is the first attempt to compare the performances of logistic regression, support vector 

machines, and random forests methods for spectrum discrimination. This study is also novel for applying 

logistic regression to this type of study and demonstrating its advantages compared to other methods. It 

is also the first study that demonstrates that a logistic regression model with spline functions and 

interactions perform as well as (if not better than) SVM with a linear kernel which is currently widely 

used on proteomics data and is preferable due to faster computing time and better interpretability.  

In a production proteomics laboratory, researchers must often create large lists of peptide 

identifications based on various confidence statistics generated by search engines. The common 

methodology for selecting correct peptide-spectrum matches from incorrect ones is based on arbitrary 

thresholds. This could lead to a lot of false discoveries. Statistical learning algorithms such as logistic 

regression and random forests provide a more accurate method for spectrum classification. Additional 

newer scoring criteria continue to be published to improve discrimination of correct search results from 

incorrect ones. These newer scores can complement the current scoring measures generated by popular 

search engines such as Mascot and Sequest. Flexible methods that allow incorporation of these new 

scoring measures are necessary for current proteomics research. All of the three statistical learning 

methods discussed in my study can be applied to incorporate newer search measures. They can not only 

combine sub-scores from one search engine but also scores from different search engines during the 

statistical evaluation of the quality of the matches. 

Using logistic regression I was able to interpret outcome probabilities and correlation coefficients for the 

predictor variables.  Since there were usually adequate observations in proteomics studies, logistic 

regression model with splines and interactions had better performance than less complex models that I 

tested. The inferences of features and scores derived from logistic regression will be useful for 
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understanding the mechanism of peptide-spectrum matches. Interactions exist between missCleavages 

or charge with other predictors. The new features such as retention time difference (RTdiff) found 

important by logistic regression in this study can be integrated in current classification algorithms to 

improve spectrum classifications.  To understand the effect of each variable or to select variables for 

prediction in spectral classification, I recommend logistic regression.  

Compared to support vector machines with Gaussian kernels or random forest, logistic regression may 

not be as flexible – there is always a trade-off between performance and interpretability. If the purpose 

of a study is to understand the importance and effects of certain predictors (e.g. retention time 

difference, a certain score of interest), logistic regression is the method of choice. Compared to random 

forests, it gave a better and more reasonable estimation of importance of predictors. However, if the 

purpose is to build an accurate model for spectrum classification, random forest is preferred.  

SVM with a non-linear kernel function has high accuracy even when the data are not linearly separable 

in the base feature space. However, it is memory intensive and time-consuming to tune its parameters. 

Most the proteomics datasets are very large with thousands of thousands of spectra, therefore, 

although Percolator is widely used, from my testing and validation results, SVM is not recommended 

compared to the two other methods (Table 12).   

Random forests outperform other methods in analyzing proteomics data, perhaps because proteomics 

datasets usually contain millions of spectra but only a few predictors. We need a classifier which is very 

flexible, easy to construct, and accurate.  Random forests are non-parametric and can easily handle 

feature interactions. It is robust to outliers, as well as being fast and scalable. It can deal with 

classification problems of unbalanced, multiclass, and small sample data without data preprocessing 

procedures.  In this study, compared to other methods, random forests was robust, easy to tune, and 

has the best performance in PSM classification (Table 12). Overall, I recommend random forests since it 
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has the highest accuracy while the interpretability is not of concern in the study.  It has a great potential 

to be widely applied in shotgun proteomics analysis.  

 I stress that the methods used in this study are not restricted to any mass spectrometry instrument. 

However, improved results could be obtained by using datasets from particular instruments, e.g. for 

Orbitrap spectrum classification, better models can be obtained by training on Orbitrap datasets than 

training on datasets from a different instrument. In the future, it remains to be seen that if the 

recommended method can perform well across the rich variety of experimental datasets.  It will also be 

valuable to see whether the protein identification tools such as ProteinProphet, which could naturally fit 

into this recommended method, could perform robustly in finding the true proteins when applied to 

various experimental datasets.    

Table 12. Advantages and disadvantages of three methods found when applying to 
proteomics data 
Method Advantage Disadvantages 

Logistic regression Interpretable 
Fast  
Scalable 

Main effect model is not as flexible 

Support vector 
machines 

High accuracy 

Optimal solution 

Flexible with non-linear 
kernels 

Memory-intensive, not suitable for 
large datasets 
Hard to interpret 
Tuning its parameters takes a lot of 
effort 

Random forests Robust to outliers 
Fast 
Scalable 

Easy to tune 

Hard to interpret 
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APPENDIX 
 

Supplementary Table 1. Summary statistics of predictor variables by correctness of spectra 

 

 

Supplementary Table 2.  Estimate and confidence interval of correlation coefficients of the 
logistic regression model with restricted cubic spline of predictors with 3 knots 
(modelReg.spline). 
 
  Estimate Std.Error 95% CI lb 95% CI ub 

(Intercept) 2.19 0.43 1.35 3.03 

rcs(MVH)MVH 0.38 0.24 -0.08 0.84 

rcs(MVH)MVH' 4.88 2.26 0.45 9.32 

rcs(MVH)MVH'' -17.63 6.17 -29.71 -5.54 

rcs(MVH)MVH''' 20.79 5.85 9.33 32.26 
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rcs(mzFidelity)mzFidelity -1.28 0.20 -1.66 -0.90 

rcs(mzFidelity)mzFidelity' 5.95 1.29 3.43 8.47 

rcs(mzFidelity)mzFidelity'' -14.34 4.68 -23.51 -5.17 

rcs(mzFidelity)mzFidelity''' 4.42 5.65 -6.65 15.49 

rcs(xcorr)xcorr 2.11 0.20 1.71 2.50 

rcs(xcorr)xcorr' -2.65 1.29 -5.17 -0.12 

rcs(xcorr)xcorr'' 2.83 4.15 -5.30 10.96 

rcs(xcorr)xcorr''' 0.87 4.72 -8.38 10.12 

rcs(unmatchedPeaks)unmatchedPeaks -1.07 0.26 -1.58 -0.56 

rcs(unmatchedPeaks)unmatchedPeaks' 14.60 10.58 -6.14 35.35 

rcs(unmatchedPeaks)unmatchedPeaks'' -24.50 18.34 -60.45 11.45 

rcs(unmatchedPeaks)unmatchedPeaks''' 11.60 9.91 -7.82 31.02 

rcs(massError)massError 0.00 0.05 -0.10 0.11 

rcs(massError)massError' 5.49 0.43 4.65 6.33 

rcs(massError)massError'' -325.33 22.47 -369.36 -281.30 

rcs(massError)massError''' 924.57 66.03 795.15 1053.99 

enzN 1.26 0.07 1.13 1.39 

enzC 0.70 0.11 0.49 0.91 

missCleavages -1.63 0.06 -1.73 -1.52 

rcs(monoMass)monoMass 1.50 0.23 1.05 1.96 

rcs(monoMass)monoMass' -7.41 1.95 -11.24 -3.59 

rcs(monoMass)monoMass'' 19.91 6.26 7.63 32.18 

rcs(monoMass)monoMass''' -15.66 6.83 -29.05 -2.26 

rcs(RTdiff)RTdiff 1.82 0.12 1.59 2.06 

rcs(RTdiff)RTdiff' -10.55 1.22 -12.94 -8.17 

rcs(RTdiff)RTdiff'' 37.85 10.18 17.90 57.80 

rcs(RTdiff)RTdiff''' -22.22 14.08 -49.81 5.38 

ModNumber 0.16 0.04 0.10 0.23 

(charge.cat)2 -1.09 0.09 -1.27 -0.91 

(charge.cat)3 -0.61 0.13 -0.87 -0.36 

(charge.cat)4 -1.09 0.21 -1.51 -0.68 

 

Supplementary Table 3.  Estimate and confidence interval of correlation coefficients of the 
logistic regression model with restricted cubic spline of predictors and interactions 
(modelReg.spline.inter). 
  Estimate  Std.Error 95% CI lb 95% CI ub 

(Intercept) 0.56 0.92 -1.24 2.37 

(charge.cat)2 1.06 0.93 -0.77 2.89 

(charge.cat)3 4.34 1.75 0.91 7.77 

(charge.cat)4 55.98 39.78 -21.98 133.94 

rcs(MVH)MVH 0.95 0.48 0.01 1.89 



71 

 

rcs(MVH)MVH' 1.42 8.46 -15.16 18.01 

rcs(MVH)MVH'' -52.21 40.17 -130.94 26.51 

rcs(MVH)MVH''' 377.92 218.19 -49.73 805.56 

rcs(massError)massError -0.10 0.05 -0.20 -0.01 

rcs(massError)massError' 7.38 2.25 2.96 11.80 

rcs(massError)massError'' -313.69 96.56 -502.96 -124.42 

rcs(massError)massError''' 835.60 270.21 305.98 1365.22 

rcs(RTdiff)RTdiff -0.45 0.43 -1.30 0.40 

rcs(RTdiff)RTdiff' 10.40 3.94 2.68 18.12 

rcs(RTdiff)RTdiff'' -125.02 32.25 -188.23 -61.81 

rcs(RTdiff)RTdiff''' 189.37 44.38 102.38 276.36 

ModNumber 0.36 0.19 -0.01 0.73 

enzN 1.83 0.18 1.48 2.19 

enzC 0.17 0.35 -0.51 0.86 

missCleavages -1.75 0.06 -1.87 -1.63 

rcs(mzFidelity)mzFidelity -1.12 0.20 -1.51 -0.72 

rcs(mzFidelity)mzFidelity' 5.82 1.33 3.20 8.43 

rcs(mzFidelity)mzFidelity'' -13.38 4.88 -22.94 -3.81 

rcs(mzFidelity)mzFidelity''' 2.05 5.93 -9.58 13.68 

rcs(xcorr)xcorr 2.24 0.21 1.82 2.65 

rcs(xcorr)xcorr' -4.49 1.37 -7.17 -1.82 

rcs(xcorr)xcorr'' 11.23 4.43 2.54 19.91 

rcs(xcorr)xcorr''' -11.31 5.13 -21.38 -1.25 

rcs(monoMass)monoMass 1.47 0.26 0.97 1.98 

rcs(monoMass)monoMass' -9.12 2.14 -13.31 -4.93 

rcs(monoMass)monoMass'' 27.33 6.88 13.83 40.82 

rcs(monoMass)monoMass''' -28.64 7.68 -43.70 -13.58 

rcs(unmatchedPeaks)unmatchedPeaks -1.08 0.27 -1.60 -0.56 

rcs(unmatchedPeaks)unmatchedPeaks' 6.38 10.84 -14.87 27.63 

rcs(unmatchedPeaks)unmatchedPeaks'' -9.36 18.86 -46.33 27.61 

rcs(unmatchedPeaks)unmatchedPeaks''' 4.35 10.34 -15.91 24.61 

(charge.cat)2:rcs(MVH)MVH -0.63 0.53 -1.66 0.41 

(charge.cat)3:rcs(MVH)MVH 0.28 1.59 -2.83 3.38 

(charge.cat)4:rcs(MVH)MVH 40.04 51.77 -61.43 141.51 

(charge.cat)2:rcs(MVH)MVH' 5.25 8.84 -12.08 22.58 

(charge.cat)3:rcs(MVH)MVH' 0.28 14.25 -27.65 28.21 

(charge.cat)4:rcs(MVH)MVH' -248.96 305.86 -848.46 350.53 

(charge.cat)2:rcs(MVH)MVH'' 27.12 40.81 -52.86 107.11 

(charge.cat)3:rcs(MVH)MVH'' 41.48 49.00 -54.57 137.52 

(charge.cat)4:rcs(MVH)MVH'' 592.00 646.85 -675.84 1859.83 

(charge.cat)2:rcs(MVH)MVH''' -347.85 218.29 -775.70 80.00 

(charge.cat)3:rcs(MVH)MVH''' -357.00 219.40 -787.03 73.03 

(charge.cat)4:rcs(MVH)MVH''' -706.88 430.35 -1550.36 136.60 
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(charge.cat)2:rcs(massError)massError 0.03 0.11 -0.18 0.24 

(charge.cat)3:rcs(massError)massError 2.11 0.40 1.33 2.89 

(charge.cat)4:rcs(massError)massError 2.61 0.71 1.22 4.00 

(charge.cat)2:rcs(massError)massError' -1.61 2.31 -6.13 2.91 

(charge.cat)3:rcs(massError)massError' -10.12 2.83 -15.68 -4.57 

(charge.cat)4:rcs(massError)massError' -3.22 6.87 -16.70 10.25 

(charge.cat)2:rcs(massError)massError'' -24.87 99.34 -219.58 169.84 

(charge.cat)3:rcs(massError)massError'' 241.95 120.34 6.09 477.80 

(charge.cat)4:rcs(massError)massError'' -20.67 371.07 -747.98 706.63 

(charge.cat)2:rcs(massError)massError''' 133.75 278.34 -411.79 679.30 

(charge.cat)3:rcs(massError)massError''' -584.92 340.50 -1252.29 82.46 

(charge.cat)4:rcs(massError)massError''' 56.27 1099.45 -2098.66 2211.20 

(charge.cat)2:rcs(RTdiff)RTdiff 2.20 0.46 1.30 3.09 

(charge.cat)3:rcs(RTdiff)RTdiff 3.72 0.58 2.58 4.85 

(charge.cat)4:rcs(RTdiff)RTdiff 31.96 10.29 11.79 52.13 

(charge.cat)2:rcs(RTdiff)RTdiff' -24.19 4.19 -32.41 -15.98 

(charge.cat)3:rcs(RTdiff)RTdiff' -30.69 5.47 -41.42 -19.97 

(charge.cat)4:rcs(RTdiff)RTdiff' -192.81 60.56 -311.51 -74.11 

(charge.cat)2:rcs(RTdiff)RTdiff'' 201.92 34.40 134.50 269.35 

(charge.cat)3:rcs(RTdiff)RTdiff'' 243.12 45.45 154.03 332.21 

(charge.cat)4:rcs(RTdiff)RTdiff'' 1179.44 353.32 486.92 1871.96 

(charge.cat)2:rcs(RTdiff)RTdiff''' -269.23 47.37 -362.08 -176.38 

(charge.cat)3:rcs(RTdiff)RTdiff''' -333.81 63.28 -457.85 -209.78 

(charge.cat)4:rcs(RTdiff)RTdiff''' -1397.98 403.60 -2189.03 -606.94 

(charge.cat)2:ModNumber -0.10 0.19 -0.48 0.29 

(charge.cat)3:ModNumber -0.21 0.21 -0.62 0.19 

(charge.cat)4:ModNumber -0.46 0.38 -1.21 0.29 

(charge.cat)2:enzN -0.78 0.20 -1.17 -0.40 

(charge.cat)3:enzN 0.32 0.29 -0.25 0.90 

(charge.cat)4:enzN 1.66 1.27 -0.84 4.15 

(charge.cat)2:enzC 0.50 0.37 -0.22 1.23 

(charge.cat)3:enzC 0.08 0.54 -0.97 1.13 

(charge.cat)4:enzC 1.85 1.56 -1.21 4.91 

 

Supplementary Table 4.  Estimate and confidence interval of correlation coefficients of the 
logistic regression model with linear main effect and interactions (modelReg.inter). 
 

  Estimate Std.Error 95% CI lb 95% CI ub 

(Intercept) -0.21 0.35 -0.90 0.47 

(charge.cat)2 0.30 0.37 -0.43 1.03 

(charge.cat)3 -0.78 0.51 -1.78 0.22 
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(charge.cat)4 -5.35 1.06 -7.42 -3.28 

MVH 1.10 0.18 0.75 1.46 

massError -0.04 0.06 -0.15 0.07 

enzN 2.20 0.16 1.89 2.51 

enzC 1.03 0.34 0.37 1.69 

RTdiff -0.59 0.09 -0.77 -0.40 

ModNumber 0.04 0.17 -0.30 0.38 

xcorr 1.09 0.05 1.00 1.19 

missCleavages -1.72 0.05 -1.82 -1.62 

mzFidelity -0.08 0.08 -0.23 0.08 

monoMass -0.29 0.09 -0.47 -0.11 

unmatchedPeaks -0.30 0.08 -0.45 -0.14 

(charge.cat)2:MVH -0.56 0.18 -0.92 -0.21 

(charge.cat)3:MVH 0.17 0.21 -0.23 0.58 

(charge.cat)4:MVH 0.16 0.26 -0.34 0.66 

(charge.cat)2:massError 0.00 0.07 -0.13 0.13 

(charge.cat)3:massError -0.23 0.11 -0.44 -0.03 

(charge.cat)4:massError 0.04 0.09 -0.13 0.22 

(charge.cat)2:enzN -1.30 0.17 -1.64 -0.96 

(charge.cat)3:enzN 0.29 0.25 -0.19 0.77 

(charge.cat)4:enzN 1.10 0.59 -0.06 2.26 

(charge.cat)2:enzC -0.70 0.35 -1.40 -0.01 

(charge.cat)3:enzC -0.45 0.46 -1.35 0.45 

(charge.cat)4:enzC 2.77 0.78 1.24 4.29 

(charge.cat)2:RTdiff 0.61 0.10 0.42 0.80 

(charge.cat)3:RTdiff 0.62 0.11 0.41 0.83 

(charge.cat)4:RTdiff 0.00 0.15 -0.30 0.29 

(charge.cat)2:ModNumber 0.15 0.18 -0.20 0.50 

(charge.cat)3:ModNumber 0.09 0.18 -0.27 0.46 

(charge.cat)4:ModNumber -0.26 0.21 -0.68 0.16 
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