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CHAPTER I 
 

INTRODUCTION 

 

Liquid chromatography based tandem mass spectrometry (LC-MS/MS) has 

become the method of choice for large-scale identification of proteins present in complex 

biological samples (Aebersold and Mann, 2003; Domon and Aebersold, 2006). A typical 

LC-MS/MS experiment routinely generates tens of thousands of tandem mass spectra 

(MS/MS) due to recent advances in instrumentation. The generated MS/MS spectra are 

matched to a protein database using search engines like MyriMatch (Tabb, et al., 2007), 

Sequest (Eng, 1994), or Mascot (Perkins, et al., 1999). These search engines enumerate 

peptides from the database, predict their fragment ions, and match them to the MS/MS 

spectra, resulting in thousands of peptide identifications per LC-MS/MS experiment. 

Because a large proportion of MS/MS spectra cannot be matched successfully to peptide 

sequences, raw identifications must be filtered to retain the most accurate results (Domon 

and Aebersold, 2006; Nesvizhskii, et al., 2007).  

The size and the complexity of contemporary data sets require automated 

handling. Several methods that convert arbitrary search scores of raw identifications into 

statistical measures have been developed (Choi, et al., 2008; Elias and Gygi, 2007; Kall, 

et al., 2008; Yang, et al., 2004; Zhang, et al., 2007). A common technique, exemplified 

by IDPicker (Zhang, et al., 2007), employs decoy database searches to compute the False 

Discovery Rate (FDR) of raw identifications. The FDR-based methods generally use only 

one scoring metric reported by a search engine, making them easily portable to new 

search engines. Database search engines, however, generally report multiple scoring 
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metrics to assess the quality of a spectrum match. If all these metrics are used in 

combination, higher discrimination is possible than any single score (Du, et al., 2008; 

Kall, et al., 2007; Keller, et al., 2002; Moore, et al., 2002; Tabb, et al., 2002; Zhang, et al., 

2007).  

The DTASelect (Tabb, et al., 2002) v2.0 and PeptideProphet (Keller, et al., 2002) 

tools can combine multiple scores for each identification into a single discriminant score 

through statistical analysis. Because search engine scores differ in type and distribution, 

however, these complex systems must be tuned separately for each search engine. The 

Percolator (Kall, et al., 2007) tool introduced an alternative method that can combine 

multiple scores from any search engine via FDRs and machine learning. Here I introduce 

a generic score combination method that does not require any statistical distribution 

inference or machine learning. 

 Peptides present in trypsin-digested samples can be identified using a semi-tryptic 

or unconstrained database search. These searches have an added advantage of identifying 

non-enzymatic and semi-tryptic peptides that are generated due to chymotryptic activity 

and in-source fragmentation. Peptides with basic residues at the C-terminus tend to 

produce higher scoring fragment ion spectra than other peptides (Tabb, et al., 2004).  

Choosing a single threshold for a mix of tryptic, semi-tryptic, and other peptides 

preferentially retains peptides that have basic residues at the C-terminus. This scenario is 

comparable to the effect seen in identifications for peptides of different charges; if scores 

for +3 peptides are higher than for +2 peptides, it makes little sense to apply the same 

threshold score to both charge states (Choi and Nesvizhskii, 2008; Keller, et al., 2002; 

Resing, et al., 2004).   
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 Researchers routinely check for contaminating proteins present in their LC-

MS/MS experiments by identifying spectra against a multispecies protein database such 

as Swiss-Prot. Other researchers make use of databases such as the human subset of 

“NCBI NR” in order to recognize mutant or isoform variants of proteins. Such databases 

often contain highly homologous protein sequences due to natural sequence diversity. As 

a result, the search results contain large numbers of peptide identifications that map to 

multiple proteins, yielding spurious peptide identifications that confuse the process of 

protein assembly.  

In this thesis, I describe recent improvements to IDPicker (Zhang, et al., 2007). In 

summary, IDPicker filters peptide identifications to a desired FDR using decoy database 

matches, builds a bipartite graph of peptide-protein relationships, and assembles a list of 

protein identifications through a parsimony reduction of the bipartite graph. The new 

version of IDPicker improves peptide identification by automatically combining multiple 

scores reported by database search engines. The software partitions peptides based on 

their number of tryptic termini and observed charge state, and it estimates their error rates 

separately, improving identification sensitivity in semi-tryptic and unconstrained 

database searches. The new IDPicker features a novel filter to remove spurious protein 

identifications from multispecies or NCBI NR database search results. I evaluated the 

new software using multiple data sets obtained from several MS platforms with different 

sample complexities. I also compared the performance of IDPicker to the most 

commonly used program, PeptideProphet, in three data sets. The new IDPicker is now 

accessible by a graphical user interface (GUI) for easy incorporation into the current 

workflow of any proteomics laboratory. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

II.1 Improvement of IDPicker 

IDPicker (Zhang, et al., 2007) is an analysis pipeline for assembling confident and 

parsimonious protein identification lists from raw spectral identifications. The software 

consists of three separate modules: idpQonvert, idpAssemble, and idpReport. The first 

module, idpQonvert, reads peptide identifications from pepXML (Keller, et al., 2005) 

files, estimates their FDR values using decoy matches, and records this information to an 

XML file. The second module, idpAssemble, categorizes the generated XML reports into 

appropriate groups (e.g., technical replicates or 2-D gel LC fractions combined as a single 

group), filters the peptides to a user-chosen FDR value (typically 5%), and generates a 

unified XML file with all the information. The final module, idpReport, reads the unified 

XML file, generates a parsimonious list of proteins, and generates HTML reports of 

protein, peptide, and spectral identifications. Several algorithmic changes were made to 

IDPicker in order to improve the sensitivity of its peptide identification and accuracy of 

its protein assembly. A new graphical user interface (GUI) was also developed to make it 

easier for new users of the tool to make use of the IDPicker modules. 

 

II.2 Multiple Score Combination and Peptide Separation 

IDPicker can combine complementary scoring metrics of a search engine using 

decoy sequences and FDRs without making any assumptions about the underlying 
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distribution of search engine scores. Users can specify which scoring metrics are to be 

included from their search results. To accommodate scores of different distributions, 

IDPicker can normalize scoring metrics to a quantile scale prior to score combination. 

More specifically, the scoring metrics can be converted to percentiles, where each 

percentile represents the score below which a certain percent of total scores may be found. 

For example, a score ranked as 11th over all 100 scores will be converted to 0.1 because 

there are 10 observed scores below this score value. The combined score for a search 

engine is defined as a weighted summation of its subscores: nn swswswS ++= 2211 , 

where each subscore  is associated with a particular weight . Weights may either be 

user-defined (static) or automatically determined using a Monte Carlo simulation method 

(dynamic). In the dynamic mode, IDPicker tests random score weights to determine 

which maximizes the total number of confident identifications for the specified FDR. To 

combine XCorr and DeltaCN scoring metrics from Sequest search results, for example, 

the Monte Carlo simulation method will randomly assign weights to two subscores and 

compute the weighted summation such as 0.9*XCorr+0.1*DeltaCN, and then choose the 

score combination which yields the maximal number of confident identifications at 

specified FDR threshold. Since this method will also test weight 0 on each subscore, it is 

guaranteed that the dynamic weighting method will produce higher or equal number of 

confident identifications than using individual subscores.  

is iw

It should be noticed that the Monte Carlo simulation method derives optimized 

score weights from a data set and applies these weights to the same data set. Therefore, it 

is possible that the score combination model is overfitted. This problem can be solved by 

introducing cross-validation method in score combination. In brief, a number of sub data 
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sets can be generated by random sampling. The Monte Carlo method assigns optimized 

weights to each sub data set, and the final score weights can be determined based on the 

weights of each sub data set. The error rates in cross-validation process can be used to 

monitor the overfitting problem.     

A database search may be constrained to consider only tryptic peptides or it may 

be left unconstrained, to consider any peptide that can be generated from protein 

sequences. These unconstrained searches yield peptides with different numbers of tryptic 

termini (NTT): fully-tryptic (NTT = 2), semi-tryptic (NTT = 1), and nonspecific (NTT = 

0). A “tryptic terminus” is one that conforms to a cut after arginine, to a cut after lysine, 

or to a protein terminus. A peptide that was bounded by two standard trypsin cutting sites 

yields an NTT of 2. A peptide for which only one of the termini corresponds to a standard 

trypsin cutting site, however, is semi-tryptic, with NTT = 1. A peptide that lacks a 

standard trypsin cutting site on both ends yields an NTT of 0. 

IDPicker was modified to partition spectral matches from a database search into 

nine separate peptide classes based on the NTT (0, 1, or 2) and Z state (charge state 1+, 

2+, or 3+) of the observed peptides. For each peptide class, a combined search score is 

generated and its threshold corresponding to the user-specified FDR is computed using 

the above method. Peptide identifications passing the score thresholds of each class are 

pooled for protein assembly (Zhang, et al., 2007). 

 

II.3 Robust Protein Assembly for Multispecies and NCBI NR Database Searches 

When databases that contain many homologous sequences are used for 

identification, spectra may be erroneously matched to sequences that differ from the true 
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peptide by minor sequence changes. These peptides can greatly complicate the process of 

protein sequence assembly (see Figure 1). A new filter “minimum additional peptides per 

protein group” was introduced in IDPicker to counteract these near-miss peptides. The 

parsimony analysis adds a protein to a cluster only if it explains a minimum number of 

peptides that were not previously explained by the proteins that already present in the 

candidate cluster. Setting this filter to > 1 can greatly reduce the number of orthologous 

protein identifications in multispecies database searches. 

 

CERU_HUMAN

GEFYIGSK

TYCSEPEKVDK

DIFTGLIGPMK

MYYSAVDPTK
MYYSGVDPTK

MFTTAPDQVDK
MFTTAPENVDK

CERU_MOUSE

CERU_RAT
 

Figure 1. Robust Protein Assembly for High Sequence Homology Database Searches. In 
this diagram, seven peptides observed in human serum are associated with the 
ceruplasmin sequence from three different species. Most protein assembly tools would 
include all three proteins because each is associated with at least two peptides, with at 
least one peptide being unique to each protein sequence. IDPicker, however, is able to 
screen out the mouse and rat sequences by requiring proteins to explain more than one 
new peptide for inclusion in the final list. The two peptides starting with “MYYS” differ 
at the fifth amino acid; this sequence difference probably reflects that the serum used in 
this study was a pool, reflecting the variant sequences of a population of blood donors.  
The two peptides starting with “MFTT,” on the other hand, are isobaric; the differing 
sequences “DQ” and “EN” are exactly the same mass. Of all the y ions generated by the 
two sequences starting with “MFTT,” only y4 could distinguish the peptides. 
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II.4 Graphical User Interface (GUI) 

A new GUI was developed to make it easier for new users to work with IDPicker. 

Appendix A contains screenshots of the GUI during analysis of search engine results 

from an example data set. The GUI guides users through the process of selecting 

pepXML files, organizing these files in a multi-layer experimental hierarchy, and 

configuring the thresholding that the software will use for filtering raw identifications and 

assembled proteins. The GUI then launches the analysis and tracks its progress in 

creating the HTML reports. IDPicker reports can be evaluated via a Web browser or 

spreadsheet. The reports are intended to satisfy the Paris guidelines 

(http://www.mcponline.org/misc/ParisReport_Final.dtl), showing explicitly which 

peptides support particular proteins. The GUI can also export the identification reports as 

ZIP or CSV files for easy sharing. If IDPicker reports are viewed via the GUI, users can 

employ an integrated spectrum viewer for manual validation of spectral matches. A 

screenshot of this viewer can be seen in Figure 2. 
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Figure 2. A Screenshot of IDPicker GUI Report. Three samples from cancer subjects and 
three samples from control subjects were arranged in a tree hierarchy to reflect their 
biological meaning. Each sample has three replicate LC-MS/MS experiments that were 
grouped together. The final protein identification report arranges the protein, peptide, and 
spectral identifications in the above-described hierarchy. The numbers of identifications 
at each node are reported by summarizing the identifications of its child nodes. For 
example, this above report starts with the “root” level of hierarchy, designated by the “/” 
label, that summarizes all identifications present in the analysis. Following the root node, 
the numbers of identifications for next lower level hierarchies (cancer and control groups) 
are summarized, followed by each sample and individual technical replicate. The report 
also contains a navigation frame (shown on the left side) that allows the user to browse 
the protein identifications using different indices. Users can also manually validate the 
spectral matches using a built-in spectrum viewer. For example, the bottom window 
highlights the fragment ion matches of a tandem mass spectrum that was mapped to the 
peptide “IAQWQSFQLEGGLK”. 
 

II.5 Data Sets 
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Three shotgun proteomics data sets of different complexities were used to 

demonstrate the utility of improved IDPicker. The data sets are available for download 

from Vanderbilt University Mass Spectrometry Research Center’s Web site 

(http://www.mc.vanderbilt.edu/msrc/bioinformatics/data.php) 

 

II.5.1 Data Set I: Serum Orbi 

The 12 most abundant proteins were depleted from 50 µL of human serum using 

an IgY-12 LC2 (Beckman Coulter, Fullerton, CA) column following the manufacturer’s 

instructions. Proteins present in the flow-through fraction were reduced with 50 mM 

dithiothreitol (DTT), alkylated with 100 mM iodoacetamide (IAM), and digested by 

incubating overnight at 37 °C with trypsin added at 1:50 enzyme/substrate ratio. 

Digestion was quenched by adding formic acid (FA) at pH 2.0 to a final concentration of 

5%. The resulting peptide mixture was lyophilized and reconstituted with 0.1% FA to a 

final concentration of 0.2 µg/µL. Two microliter portions of peptide mixture were 

analyzed using an LTQ-Orbitrap hydrid mass spectrometer (Thermo, San Jose, CA) 

equipped with an Eksigent 1D Plus NanoLC (Eskigent, Dublin, CA) system. Peptides 

were solid-phase extracted using an in-line column (100 μm X 6 cm) packed with Jupiter 

C18 resin (5 μm, 300 Å, Phenomenex, Torrence, CA) and separated on a capillary tip 

(100 μm X 11 cm, Polymicro Technologies, Phoenix, AZ) packed with the same C18 

resin as previously described (Cortes, 1987; Licklider, et al., 2002). Following the 

injection, peptides were solid-phase extracted by washing with 0.1% FA (mobile phase A) 

for 15 min at a flow rate of 1.5 µL/min. Mobile phase B consisted of acetonitrile (ACN) 

with 0.1 % FA. Peptides were separated using a gradient of 2-25% B for 35 min, 
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followed by a rapid increase of B from 25-90% in 15 min, and held at 90% B for 9 min 

before returning to initial conditions of 98% A. Survey scans were collected in the 

Orbitrap at a resolution of 60,000 within a mass range of 300-2000 Dalton. Following 

each survey scan, the eight most intense ions were selected for MS/MS fragmentation in 

the LTQ portion of the instrument using the dynamic exclusion feature (exclusion mass 

width of ±0.6 Da, exclusion duration of 60 s, and repeat count of 1). A total of five 

replicate LC-MS/MS experiments were performed and 32,740 MS/MS spectra were 

collected. Binary spectral data present in the raw files were converted to mzML format 

using msconvert tool of the ProteoWizard (Kessner, et al., 2008) library. DTAs or MGFs 

were extracted from the mzML files using mzxml2search program of Trans-Proteomic 

Pipeline (Keller, et al., 2005) (Institute of Systems Biology, Seattle, WA). 

 

II.5.2 Data Set II: DLD1 LTQ 

Human colon adenocarcinoma cells (DLD-1 cell line, American Type Culture 

Collection, Manassas, VA) were grown in RPMI-1640 media supplemented with 10% 

fetal bovine serum (FBS) and penicillin/streptomycin antibiotics at 37 °C and 5% CO2. 

Cells were harvested (at >90% confluence), washed in 1X phosphate-buffered saline 

(PBS), and spun down at 1000g. Cell pellets were collected and stored at -80 °C until 

further use. Protein was extracted from the cell pellets by subjecting them to 1h vigorous 

shaking (1000 rpm) followed by repeated sonication (3 x 20 s) in 200 µL of ammonium 

bicarbonate buffer (NH4HCO3; pH 8.0) with 50% tetrafluoroethylene (TFE). 

Concentration of extracted protein was estimated using BCA protein assay (Pierce, 

Rockford, IL). Protein samples were reduced using 100 mM DTT and 40 mM tris(2-
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carboxymethyl)-phosphine (TCEP) at either pH 8.0 or pH 4.0. Reduced samples were pH 

adjusted by adding 600 µl of 50 mM NH4HCO3 buffer (pH 8.0), alkylated with IAM, and 

digested by incubating overnight at 37 °C with trypsin added at 1:50 enzyme/substrate 

ratio. Peptides were solid phase extracted using C18 column and resuspended in 200 µL 

of 0.1% FA for reverse-phase separations using an Eskigent nanoLC (Eskigent, Dublin, 

CA) system and an LTQ (Thermo, San Jose, CA) mass spectrometer. Two microliter 

portions of peptide mixture were applied at 0.7 µL/min to a trap cartridge (Phenomenex, 

Torrance, CA), and then shifted to a 100 mm x 11 cm Jupiter C18 capillary column 

(Phenomenex, Torrance, CA) using a mobile phase containing 0.1% of FA. The peptide 

mixture was resolved using a 2-90% ACN gradient over 60 min at a flow rate of 0.7 

µL/min. The five most abundant ions following each survey scan were selected for 

MS/MS fragmentation using dynamic exclusion (mass width -1.0 to 2.0 m/z; repeat count 

1; and duration of 1). A total of four LC-MS/MS experiments were performed (2 

replicates of the sample reduced at pH 8.0 and 2 replicates of the sample reduced at pH 

4.0), and 51,652 tandem mass spectra were collected. Binary spectral data were converted 

to mzML, DTA, and MGF formats as for the “Serum Orbi” set. 

 

II.5.3 Data Set III: Plasma QSTAR 

Human blood collection and plasma processing were performed using the 

protocol developed by the Clinical Proteomics Technologies Assessment for Cancer 

(CPTAC) Biospecimen Working Group (http://proteomics.cancer.gov/). The 14 most 

abundant proteins were depleted from batches of 40 µl of human plasma using a MARS-

Hu-14 (4.6 x 100 mm) column from Agilent (Santa Clara, CA) on a Michrom Paradigm 
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MG4 HPLC system (Auburn, CA) following the manufacturer’s instructions. The protein 

flow-through fraction was collected and readjusted to the original volume using a 5 kDa 

MWCO centrifugal concentrator (Sartorius AG, Goettingen, Germany). Depleted plasma 

samples were reduced with DTT, alkylated with IAM, and digested using trypsin as 

previously described (Keshishian, et al., 2007). One microliter aliquots of peptide 

mixture (approximately 1 µg/µL) were analyzed using an Eksigent nano-LC 2D HPLC 

system (Eksigent, Dublin, CA) connected to a quadrupole time-of-flight (QqTOF) 

QSTAR Elite mass spectrometer (MDS SCIEX, Concorde, Canada). Peptides were 

loaded on a guard column (C18 Acclaim PepMap100, 300 µm I.D. x 5 mm, 5 µm particle 

size, 100 Å pore size, Dionex, Sunnyvale, CA), washed for 10 min. using mobile phase A 

containing 0.1% FA at a flow rate of 20 µL/min, and transferred to an analytical C18-

nanocapillary HPLC column (C18 Acclaim PepMap100, 300 µm i.d. x 15 cm, 3 µm 

particle size, 100 Å pore size, Dionex, Sunnyvale, CA). Mobile phase B consisted of 

ACN with 0.1 % FA. Peptides were separated using a gradient of 2-40% B for 120 min, 

followed by a rapid increase of B from 40-90% in 15 min, and held at 90% B for 9 min 

before returning to initial conditions of 98% A (flow rate 300 nL/min). All mass spectra 

were recorded at a resolution of 12,000-15,000. Following each survey scan, the six most 

abundant ions were selected and fragmented using the advanced information dependent 

acquisition (IDA) feature along with QSTAR Elite specific features such as “Smart 

Collision” and “Smart Exit” (fragment intensity multiplier set to 2.0 and maximum 

accumulation time of 1.5 s). MS/MS spectra were acquired using the dynamic exclusion 

feature (exclusion mass width 50 mDa m/z and exclusion duration of 60 s) of the mass 

spectrometer. A total of five replicate LC-MS/MS experiments were performed and 
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35,290 MS/MS spectra were collected. WIFF files were processed using Protein Pilot 

software (version 2.0.1, Applied Biosystems, Carlsbad, CA) and tandem mass spectra 

were exported in MGF file format. Generated MGF files were transcoded to mzXML 

format using LibMSR software, a precursor of the ProteoWizard (Kessner, et al., 2008) 

library. 

 

II.6 Database Searching and Peptide Validation 

Table 1 summarizes the search engines, protein sequence databases, and 

parent/fragment ion mass tolerances used to process the data sets. All protein databases 

contained sequences in both forward and reverse orientations for estimation of protein 

and peptide identification error rates. All search engines were configured to use a static 

mass shift of 57.0215 Da for alkylated cysteines and allow the variable modification of 

oxidation of methionine (+15.9949 Da). MyriMatch and Mascot were also configured to 

allow formation of N-terminal pyroglutamate (-17.0265 Da) as a variable modification. 

Detailed configuration of all search engines is given in Appendix B.  

All identifications were processed from pepXML format. Identifications in 

Sequest OUT files were transcoded into pepXML format using out2xml program of the 

Trans-Proteomic Pipeline (Keller, et al., 2005) (Institute of Systems Biology, Seattle, 

WA). The RefreshParser tool (also from ISB) corrected the peptide/protein associations 

in the produced pepXML file.  Mascot (Matrix Science, London, U.K.) DAT files were 

translated to pepXML format using the Export Search Results option from the Select 

Summary Report.  Throughout this study, IDPicker was configured to derive score 

thresholds to yield a 5% False Discovery Rate (FDR). Peptides passing these thresholds 
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were considered as legitimate identifications. IDPicker assembled protein identifications 

from the legitimate peptide identifications using parsimony rules (Zhang, et al., 2007). 

 

data set namea replicates 
average no. 
of MS/MS 

scans 

database search 
tools 

precursor / 
fragment 

m/z 
tolerance 

databases used for 
searchb

Score Combination Evaluation Data Sets 

Serum Orbi 5 6548 MyriMatch, 
Sequest, Mascot 0.1/0.5 ipi.HUMAN.v3.47 

Plasma QSTAR 5 7058 MyriMatch, 
Sequest, Mascot 0.25/0.25 ipi.HUMAN.v3.47 

DLD1 LTQ 4 12913 MyriMatch, 
Sequest, Mascot 1.25/0.5 ipi.HUMAN.v3.47 

Peptide Segregation Evaluation Data Sets   
DLD1 LTQ 4 12913 MyriMatch 1.25/0.5 ipi.HUMAN.v3.47 
Serum Orbi 5 6548 MyriMatch 0.1/0.5 ipi.HUMAN.v3.47 

Parsimony Performance Evaluation Data Sets   

DLD1 LTQ 4 12913 MyriMatch 1.25/0.5 uniprot_sprot-
rel56.2 

Serum Orbi 5 6548 MyriMatch 0.1/0.5 uniprot_sprot-
rel56.2 

 
Table 1. Experimental Data Sets Summary. aData set names represent sample type and 
the mass spectrometer used in the analysis (see Materials and Methods for additional 
details). bAll protein databases contained reversed sequence entries (decoys) for 
estimation of false discovery rates. Exhaustive database search configurations were made 
available in Appendix B. 
 

II.7 Alternative Peptide Validation Using PeptideProphet 

Sequest search engine results from all three data sets were loaded into 

PeptideProphet (Trans-Proteomic Pipeline version 4.2), and peptide-spectrum match 

(PSM) probabilities were computed using default parameters. For each MS/MS, only the 

top scoring PSM was retained for further analysis. A simple Perl script was used to 

extract the peptide probability and decoy status from the retained PSMs. The script was 

configured to assign a decoy-status of F for forward hits and R for reverse hits. PSMs 

matching both forward and reversed sequences were omitted from both counts, as in 
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IDPicker. The PSMs were ordered based on the decreasing probability score, and the 

probability threshold that corresponds to 5% FDR was computed using the high scoring 

reverse hits. This FDR computation method mimics the method used by IDPicker. The 

PSMs that pass the computed probability threshold were considered as confident 

identifications by PeptideProphet. 
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CHAPTER III 

 

RESULTS AND DISCUSSION 

 

III.1 Combining Multiple Scores Increases Confident Identifications 

Most search engines report multiple scoring metrics for peptide-spectrum matches. 

These scores can be combined using different weights to generate a single score for the 

search engine. The combined score needs to be optimized for each sample due to the 

technical and biological variability of the samples. We have implemented a new Monte 

Carlo method in IDPicker that efficiently combines multiple scores, on a per sample basis, 

using decoy sequences and false discovery rates (see Materials and Methods).  

In this study, the effect of score combination on peptide identifications was 

evaluated using three different search engines: MyriMatch, Sequest, and Mascot. The 

following primary and secondary scores from each search engine were considered for 

score combination: MVH and mzFidelity from MyriMatch; XCorr and DeltaCN from 

Sequest; IonScore and IdentityScoreThreshold from Mascot. The MyriMatch MVH 

(“Multivariate Hypergeometric”) score evaluates the probability that a random peptide 

would match to fragments as intense in the observed spectrum as a particular candidate 

sequence.  The MyriMatch mzFidelity score, currently under development, is a metric to 

evaluate how closely observed fragment m/z values match their expected locations.  

MyriMatch and Sequest scores were converted to quantiles and combined using the 

Monte Carlo method. Mascot scores were combined as “IonScore-
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IdentityScoreThreshold” using static weights following the Matrix Science 

recommendation. 

Peptides present in the “Serum Orbi” data set were identified using all three 

search engines (see Material and Methods). For each search engine result, IDPicker was 

configured to use either its primary score or a combination of its scores while deriving 

score thresholds at an FDR of ≤  5%. Figures 3A-C shows the percent overlap of 

confident peptide identifications passing the score thresholds when using either single or 

multiple scores. Similar analysis was also performed for “Plasma QSTAR” and “DLD1 

LTQ” samples and the results are shown in Figures 3D-I.  

Irrespective of the sample type, combining multiple scores from a search engine 

consistently identified more peptides than using a single score (see Figure 3). Sequest 

benefited significantly more from score combination than MyriMatch and Mascot. One 

possible interpretation is that XCorr is very good for ranking peptides for a particular 

spectrum but is more comparable among multiple spectra when DeltaCN is included.  

Subtracting away the Identity Score Threshold in Mascot or combining the mzFidelity 

score in MyriMatch produced far smaller gains in identification.  Figure 3 also highlights 

that some identifications may be lost when multiple scores are combined. 
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Figure 3. Combining Multiple Scores From a Search Engine Improves Peptide 
Identification Rate. Tandem mass spectra from three different samples were matched to 
IPI human protein database (version 3.47) using MyriMatch, Sequest, and Mascot search 
engines (see Materials and Methods for additional details). Peptide identifications from 
all search engines were loaded into IDPicker. For each search engine, IDPicker was 
configured to use either its primary score or a combination of its scores to identify 
peptides at an FDR ≤ 5%. Panels A-I show the percent overlap between valid peptide 
identifications when IDPicker was using either a single score or multiple scores from 
respective search engines. Combining multiple scores from a search engine yielded more 
peptide identifications from all samples. There were few peptide identifications that were 
identified only when using the primary score of a search engine but not the score 
combination. 
 

III.2 Comparison of PeptideProphet versus IDPicker Score Combination Methods 

Probabilistic frameworks like PeptideProphet (Keller, et al., 2002) can combine 

multiple search engine scores into a single discriminant score and compute peptide 

probabilities based on mixture modeling of the score distributions. These frameworks 

have also been extended to use decoy database entries to accurately model the incorrect 

and correct score distributions (Choi, et al., 2008; Choi and Nesvizhskii, 2008).  However, 

algorithms implementing the mixture model techniques are very complex and are not 
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easily extensible to accommodate new search engines or different scoring metrics of an 

existing search engine.  

  In contrast, the score combination implemented in IDPicker is based on a simple 

non-parametric Monte Carlo simulation method. This approach uses decoy sequences and 

FDRs to combine multiple scoring metrics of a search engine. Because IDPicker is 

computing aggregate identification FDRs rather than individual identification 

probabilities, its approach can be configured to combine multiple scoring metrics from 

arbitrary search engines as long as decoy sequences are included in the database.  

In this study, I compared the score combination methods implemented in 

IDPicker with PeptideProphet using Sequest search engine results from three different 

types of data sets (see Table 1). The search results from each data set were separately 

loaded into PeptideProphet and IDPicker. Both algorithms were configured to filter the 

peptide-spectrum matches (PSMs) using 5% FDR (see Materials and Methods). Table 2 

summarizes the average number of identifications and standard deviation among 

replicates in each data set. A p-value is computed based on a paired Student’s t-test for 

each data set, implying the probability to reject the null hypothesis that IDPicker and 

PeptideProphet have no significant different performance. Computed p-values of less 

than 0.05 suggest that the numbers of identifications produced by these two methods are 

different. Figure 4 visualizes the total number of confident PSMs identified by 

PeptideProphet and IDPicker in each replicate of the “Serum Orbi”, “Plasma QSTAR”, 

and “DLD1 LTQ” data sets. IDPicker consistently produced more confident PSMs than 

PeptideProphet from the “Serum Orbi” data set, while the opposite was true for the 

“Plasma QSTAR” data set (see Figure 4). Both algorithms produced similar number of 
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confident PSMs from the “DLD1 LTQ” data set (see Figure 4). In short, neither 

algorithm consistently out-performed the other.  These data demonstrate that the 

performance of the simple IDPicker score combination model is on par with the far more 

complex statistical model in PeptideProphet. 

 

data set name IDPicker PeptideProphet p-value 

Serum Orbi 692.60 ± 35.29 653.40 ± 36.20 0.000195 

Plasma QSTAR 2489.00 ± 104.32 2579.40 ± 86.76 0.00322 

DLD1 LTQ 3111.25 ± 327.36 3139.25 ± 347.56 0.233865 
 
Table 2. A Summary of Confident Peptide Identifications from IDPicker and 
PeptideProphet Score Combination Methods. The average number of identifications 
across multiple replicates in each data set is calculated, along with a standard deviation. 
The p-values are computed by paired Student’s t-test, indicating the statistical 
significance of identification differences between IDPicker and PeptideProphet. 
 

The Percolator (Kall, et al., 2007) tool can also combine multiple scores from 

arbitrary search engines by generating a linear classifier and retraining it for each 

individual data set using target and decoy matches (machine learning). This tool is 

designed to work with separated target-decoy database searches. These types of searches 

may be less sensitive than the concatenated target-decoy database searches used by 

IDPicker (Elias and Gygi, 2007). Several attempts to include Percolator in the above 

comparison were unsuccessful because the software is designed for searches in which 

forward and reversed sequences are searched separated. 
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Figure 4. Comparison of IDPicker and PeptideProphet Score Combination Methods. 
Tandem mass spectra from three different samples were matched to the IPI human 
protein database (version 3.47) using the Sequest search engine (see Materials and 
Methods). The search results were separately processed by IDPicker and PeptideProphet. 
Both algorithms were configured to filter PSMs using a 5% FDR threshold. The total 
number of confident PSMs identified by both algorithms in each replicate of all three data 
sets is shown above. IDPicker produced more confident PSMs than PeptideProphet in 
some data sets and vice versa, but the algorithms performed similarly in all data sets, with 
a maximum difference of 5.7%. The simple non-parametric score combination method 
implemented in IDPicker performs as well as the complex probabilistic frameworks 
implemented in PeptideProphet, but the IDPicker score combination method can be more 
easily extended to combine multiple search scores from new search engines. 
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III.3 Partitioning Peptides Based on Number of Tryptic Termini (NTT) and Z State 

Improves Peptide Identification Rate 

Search engines may be configured to identify peptides that do not conform to 

trypsin cutting sites on both termini. Unconstrained searches yield identifications with 

different NTT, allowing the algorithms to identify alternative cutting sites for other 

proteases, chymotryptic activity for trypsin, and in-source fragmentation of peptides. Of 

all candidate peptides considered in an “unconstrained” search, only about 1% 

correspond to peptides with trypsin cutting sites on both ends (NTT = 2). Approximately 

an order of magnitude more peptides are “semi-tryptic,” with a trypsin cutting site on 

only one end of the peptide (NTT = 1). The great majority of candidate peptides 

compared to spectra in an unconstrained search do not match trypsin cutting sites on 

either end (NTT = 0). Peptides of different NTT values are likely to produce scores in 

different ranges due to the positions of basic residues and the relative concentrations of 

peptide ions produced in digestion. This phenomenon is more widely appreciated with 

respect to peptide charge. For quite some time, the identifications of triply charged 

peptides have been required to meet different scoring requirements than identifications of 

doubly charged peptides. The new IDPicker compensates for these scoring differences by 

explicitly segregating peptide identifications on the basis of both peptide charge and NTT 

value, improving the numbers of identifications produced from each RPLC separation.  

The effect of peptide partitioning was determined for three different search 

strategies: fully-tryptic, semi-tryptic, and unconstrained. The following four different 

peptide partition styles were tested for each database search strategy: (A) no partitioning, 

(B) Z state (1+, 2+, or 3+) only, (C) NTT (0, 1, or 2) only, (D) both Z state and NTT. 
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Tandem mass spectra from a whole cell lysate data set (“DLD1 LTQ”) were searched 

against an IPI Human protein database with MyriMatch using all three search strategies. 

Peptide identifications from each database search were loaded into IDPicker and peptides 

were partitioned using all four partition styles separately. For each partition style, 

IDPicker determined the number of identifications that met the 5% FDR threshold.  The 

results from the four technical replicates were averaged in Figure 5A. A comparable 

analysis was also performed using a human serum data set (“Serum Orbi”) and results 

were shown in Figure 5B.  

As expected, partitioning peptide identifications according to charge state (Z) 

improved the peptide identification rate regardless of database search strategy and the 

type of sample.  When the search included semi-tryptic or nonspecific peptides, 

partitioning peptides on both NTT and Z state outperformed the other partitioning 

methods (see Figure 5).  Since falsely identified spectra are more likely to be nonspecific 

or semi-tryptic, partitioning the identifications by their NTT values has the effect of 

separating most false identifications from most of the true identifications. 
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(A)  

 
(B) 

 

Figure 5. Partitioning Peptides Based on Charge State (Z) and Number of Tryptic 
Termini (NTT) Improves Peptide Identification. “DLD1 LTQ” and “Serum Orbi” 
samples were matched to the IPI human protein database (version 3.47) using three 
search strategies: fully-tryptic, semi-tryptic and unconstrained. Peptide identifications 
from each search were loaded into IDPicker and partitioned into and separate classes 
using four different methods shown in the figure. The average numbers of peptide 
identifications that have an FDR ≤ 5% when using a particular partition method are 
computed using reverse sequences present in the database and plotted for “DLD1 LTQ” 
(A) and “Serum Orbi” (B) data sets separately. The error bars in A and B represent the 
standard deviations from the replicates. Separating peptide identifications based on NTT 
and Z state improved the number of identified peptides in semi-tryptic and unconstrained 
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searches. Improvement of peptide identification rate in the fully-tryptic search (NTT = 2) 
is due to Z state only. 
   

The concept of using both NTT and Z state values of peptides for improved 

validation is not novel to this work. PeptideProphet first implemented this concept by 

generating separate disciminant scores for each charge state and conditioning the 

identification probabilities on peptide NTT values. The same concept was implemented 

in the new IDPicker by segregating the identifications into separate classes on the basis of 

peptide NTT and Z state values and calculating their FDRs separately. This approach is 

simple and easily configurable to handle peptides with higher charge states (>3+) that are 

typically seen in high resolution data sets (approximately 10%-15% of MS/MS in LTQ-

Orbitrap data sets are from higher charge state peptides). 

 

III.4 Does an Unconstrained Search Always Yield More Peptide Identifications? 

The white bars in panels A and B of Figure 5 show the number of peptide 

identifications from a fully-tryptic search, semi-tryptic search, and an unconstrained 

search of “DLD1 LTQ” and “Serum Orbi” data sets, respectively. Similar trypsin 

digestion protocols were used to perform proteolysis of both “DLD1 LTQ” and “Serum 

Orbi” samples. However, more semi-tryptic peptides were identified in the “Serum Orbi” 

sample than the “DLD1 LTQ” sample (compare the difference between fully-tryptic and 

semi-tryptic searches in panels B and A). Both samples are complex, but the depleted 

serum sample is disproportionately dominated by a few major proteins. These major 

proteins often contribute large numbers of semi-tryptic peptides. Although semi-tryptic 

peptides might be generated at lower probability than the tryptic peptides for a given 
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protein, the semi-tryptic peptides for a high concentration protein may compete 

successfully with the tryptic peptides of low concentration proteins in being selected for 

fragmentation.  “DLD1 LTQ” is less dominated by a small number of major proteins, and 

thus shows less advantage for the semi-tryptic search. 

 

III.5 Reducing Spurious Subsumable Protein Identifications in Multispecies and NCBI 

NR Database Searches 

Multispecies and NCBI NR protein databases contain numerous homologous 

sequences due to natural sequence diversity. Matching tandem mass spectra against these 

databases often generates protein identifications that have overlapping peptide 

identifications (see Figure 1). A new “minimum additional peptides per protein group” 

filter was added to the protein assembly process to resist adding spurious homologous 

proteins. This filter adds a new protein to the minimal list of protein identifications only 

if it contributes a specified number of distinct peptide identifications that are not already 

explained by other proteins. The new “minimum additional peptides per protein group” 

filter may at first be confused with the existing “minimum distinct peptides per protein” 

filter of IDPicker. The latter filter is applied to all proteins in the report, typically 

requiring each protein to be supported by at least two different peptide sequences for 

inclusion. The new filter, though, is used to control how a cluster of overlapping 

peptide/protein associations is decomposed into a minimal protein list (a.k.a parsimony 

process). If zero additional peptides are specified, even subset and subsumable proteins 

will be reported; this is equivalent to disabling parsimony. If one additional peptide is 

required, then the parsimony behavior described in the prior IDPicker publication results.  
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When the minimum additional peptide count is set to 2, IDPicker can discard 

homologous proteins from the list. We emphasize that none of the existing protein 

assembly tools provide as much user control over the parsimony process as does the new 

IDPicker. 

The effect of this new filter in reducing spurious orthologous protein 

identifications from a multispecies database search was tested using human “DLD1 

LTQ” and “Serum Orbi” data sets. Both these data sets were matched to a multispecies 

Swiss-Prot database using MyriMatch. Peptide identifications were loaded into IDPicker 

and filtered at FDR of 5%. Valid peptide identifications were used to assemble a minimal 

list of protein identifications. Proteins that shared degenerate set of peptides were 

grouped together as a single entity. Three different settings (1, 2 or 3) were used for the 

“Minimum additional peptides per protein group” filter in the assembly process. At each 

setting, the number of human and non-human protein groups that passed the filter were 

shown for “DLD1 LTQ” and “Serum Orbi” samples in Figure 6, panels A and B, 

respectively. The new IDPicker filter reduces the number of orthologous protein 

identifications from Swiss-Prot, with minimal effect on the human proteins reported. 
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Figure 6. Reduction of Orthologous Protein Identifications in a Multispecies Database 
Search. Two different human samples (“DLD1 LTQ” and “Serum Orbi”) were matched 
to the Swiss-Prot multispecies database (version 56.2) using MyriMatch. Protein groups 
(containing indistinguishable proteins) were assembled from peptide identifications using 
IDPicker. Three different settings were used for the “Minimum additional peptides per 
protein group” filter in the assembly process. At each setting the total numbers of human 
and non-human protein groups were enumerated and plotted for both “DLD1 LTQ” (A) 
and “Serum Orbi” (B) samples. Setting the filter to 2 dramatically reduced the number of 
non-human (orthologous) protein identifications from a multispecies database search 
without significantly affecting the number of human (paralogous) protein identifications. 
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CHAPTER IV 

 

CONCLUSIONS 

 

The new version of IDPicker improves the sensitivity and reliability of peptide 

and protein identification. By combining multiple scores from a search engine, the new 

software made particular gains in processing Sequest results. Its new peptide partitioning 

strategy improved sensitivity for semi-tryptic and unconstrained searches. The new GUI 

should make the advanced features of the software more accessible to new users.  

IDPicker reports can be shared among laboratories because they are simple directories of 

HTML files. Support for reading identifications from pepXML format enables 

compatibility with any workflow that can produce them. Advanced by its high 

discrimination filters and parsimony analysis, IDPicker offers an efficient, accurate and 

transparent protein assembly tool for large scale proteomics studies. 

The current version of IDPicker was developed as stand-alone Microsoft 

Windows desktop software. The latest version of IDPicker is available under the Mozilla 

Public License at http://fenchurch.mc.vanderbilt.edu/. In future work, we plan to have 

IDPicker reporting the sequence coverage for identified proteins. A number of attributes 

in pepXML files, such as original search scores and alternative matched proteins, may 

also be included in final report. In addition, the development of more complicate 

approaches that can weight identified peptides in protein assembly is also a possible 

direction to continue this work. 
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APPENDIX A 

 

IDPICKER GUI INSTRUCTION FOR A DEMO PROJECT 

Demo 1. Setting Up a Project 
 

 
 

The GUI allows the user to select two folders: a parent folder containing search 
engine results (in pepXML format) and a folder for creating the parsimony report. The 
GUI recursively reads the parent folder and presents all result files to the user using a 
directory tree view. In this project, the parent folder contains two subfolders: cancers and 
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controls. Each subfolder contains pepXML files from three biological replicate samples 
and each sample contains three technical replicates. Only user-selected pepXML files 
will be included in the analysis. The “Advanced Options” window allows users to 
configure parameters for multiple score combination and specify whether particular 
modifications will be considered as distinct peptides in protein assembly. 

 
Demo 2. Grouping pepXML Files and Configuring Peptide and Protein Level Filters 

 

 
 

Users can interact with IDPicker GUI to categorize the results into arbitrary 
numbers of hierarchical groups to reflect their experimental or biological structures. The 
confidence of peptide identifications in pepXML files will be assessed by false discovery 
rate and peptides passing all peptide level filters will be retained for protein assembly. 
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Two protein level filters can be specified for the parsimony assembly process. Setting 
“minimum distinct peptides per protein” filter to 2 efficiently removes “one hit wonders” 
that are only identified by one peptide. For data sets searched against multispecies 
database, setting “minimum additional peptides per protein group” filter to 2 reduces the 
falsely identified orthologous proteins. 

 
Demo 3. Reporting and Examining Analysis Results 

 

 
 

All analysis results are reported as HTML files. The identification report contains 
proteins, peptides, and the corresponding spectral matches found in the sample(s). Results 
in the report are logically arranged to reflect the sample hierarchy defined by the user. 
IDPicker reports the identification information in each level of hierarchy. In this demo 
project, the report starts with the “root” level of hierarchy, designated by the “/” label, to 
show all identifications in this analysis. The numbers of identifications for the next lower 
hierarchy cancer and control groups are then reported, followed by the summarization for 
each sample and individual replicate. On the left, the navigation frame links to different 
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clusters of protein identifications. The report also contains the data processing details, 
allowing users to track database search parameters and IDPicker parameter 
configurations. 

 
Demo 4. Tracking Peptide Evidence for Protein Identifications 

 

 
 

IDPicker groups proteins having shared peptides to the same cluster and reports a 
peptide-protein association table to visualize the shared peptide relationships among 
homologous protein identifications. In the demo project, for example, cluster 12 contains 
two proteins and three peptide groups (indistinguishable peptides are gathered to the 
same group). 52 peptides in peptide group 3 can be mapped to both proteins, while 
peptides in peptide group 2 and 1 were only identified for protein A and B, respectively.  
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APPENDIX B 

 
SEARCH ENGINE CONFIGURATIONS 

 

MyriMatch Configurations 
 
“Serum Orbi” data set configuration: 
CleavageRules          = [|[M|K|R . . ] 
CalculateRelativeScores = 0 
DynamicMods            = M * 15.9949 (Q! % -17.0265 
StaticMods            = C 57.0215 
PrecursorMzTolerance   = 0.1 
FragmentMzTolerance    = 0.5 
TicCutoffPercentage    = 0.95 
UseAvgMassOfSequences  = 0 
UseChargeStateFromMS   = 0 
AdjustPrecursorMass    = true  
MinPrecursorAdjustment = -1.008665  
MaxPrecursorAdjustment = 1.008665  
PrecursorAdjustmentStep = 1.008665  
NumSearchBestAdjustments = 3 
NumMinTerminiCleavages = 2 for fully-tryptic search; 1 for semi-tryptic search; 0 for 
unconstrained search  
 
“Plasma QSTAR” data set configuration: 
CleavageRules          = [|[M|K|R . . ] 
CalculateRelativeScores = 0 
DynamicMods            = M * 15.9949 (Q! % -17.0265 
StaticMods            = C 57.0215 
PrecursorMzTolerance   = 0.25 
FragmentMzTolerance    = 0.25 
TicCutoffPercentage    = 0.95 
UseAvgMassOfSequences  = 0 
UseChargeStateFromMS   = 0 
AdjustPrecursorMass    = true  
MinPrecursorAdjustment = -1.008665  
MaxPrecursorAdjustment = 1.008665  
PrecursorAdjustmentStep = 1.008665  
NumSearchBestAdjustments = 3 
NumMinTerminiCleavages = 2 for fully-tryptic search; 1 for semi-tryptic search; 0 for 
unconstrained search 
 
 “DLD1 LTQ” data set configuration: 
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CleavageRules          = [|[M|K|R . . ] 
CalculateRelativeScores = 0 
DynamicMods            = M * 15.9994 (Q! % -17.0305 
PrecursorMzTolerance   = 1.25 
FragmentMzTolerance    = 0.5 
TicCutoffPercentage    = 0.95 
UseAvgMassOfSequences  = 1 
UseChargeStateFromMS   = 0 
StaticMods            = C 57.0513 
NumMinTerminiCleavages = 2 for fully-tryptic search; 1 for semi-tryptic search; 0 for 
unconstrained search 
 

Sequest Configurations 
 
“Serum Orbi” data set configuration: 
database_name =/hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
first_database_name =/hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
peptide_mass_tolerance = 0.2 
create_output_files = 1 
ion_series = 0 1 1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
fragment_ion_tolerance = 0.0  
num_output_lines = 5 
num_description_lines = 5 
num_results = 500 
show_fragment_ions = 0 
print_duplicate_references = 1 
enzyme_number = 1 
diff_search_options = 15.9949 M 
term_diff_search_options = 0.000 0.000 
max_num_differential_AA_per_mod = 2 
nucleotide_reading_frame = 0 
mass_type_parent = 1 
mass_type_fragment = 1 
remove_precursor_peak = 0 
ion_cutoff_percentage = 0.0 
protein_mass_filter = 0 0 
max_num_internal_cleavage_sites = 2 
match_peak_count = 0 
match_peak_allowed_error = 1 
match_peak_tolerance = 1.0 
add_C_Cysteine = 57.0215 
 
“Plasma QSTAR” data set configuration: 
database_name =/hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
first_database_name =/hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
peptide_mass_tolerance = 0.5 
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create_output_files = 1 
ion_series = 0 1 1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
fragment_ion_tolerance = 0.0  
num_output_lines = 5 
num_description_lines = 5 
num_results = 500 
show_fragment_ions = 0 
print_duplicate_references = 1 
enzyme_number = 1 
diff_search_options = 15.9949 M 
term_diff_search_options = 0.000 0.000 
max_num_differential_AA_per_mod = 2 
nucleotide_reading_frame = 0 
mass_type_parent = 1 
mass_type_fragment = 1 
remove_precursor_peak = 0 
ion_cutoff_percentage = 0.0 
protein_mass_filter = 0 0 
max_num_internal_cleavage_sites = 2 
match_peak_count = 0 
match_peak_allowed_error = 1 
match_peak_tolerance = 1.0 
add_C_Cysteine = 57.0215 
  
“DLD1 LTQ” data set configuration: 
database_name =/hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
first_database_name =/hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
peptide_mass_tolerance = 2.5 
create_output_files = 1 
ion_series = 0 1 1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
fragment_ion_tolerance = 0.0  
num_output_lines = 5 
num_description_lines = 5 
num_results = 500 
show_fragment_ions = 0 
print_duplicate_references = 1 
enzyme_number = 1 
diff_search_options = 15.9949 M 
term_diff_search_options = 0.000 0.000 
max_num_differential_AA_per_mod = 2 
nucleotide_reading_frame = 0 
mass_type_parent = 1 
mass_type_fragment = 1 
remove_precursor_peak = 0 
ion_cutoff_percentage = 0.0 
protein_mass_filter = 0 0 
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max_num_internal_cleavage_sites = 2 
match_peak_count = 0 
match_peak_allowed_error = 1 
match_peak_tolerance = 1.0 
add_C_Cysteine = 57.0215 
 

Mascot Configurations 
 
“Serum Orbi” data set configuration: 
ProteinDatabase /hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
Taxonomy  Homo sapiens (human) 
Enzyme   Trypsin 
NumMaxMissedCleavages 2 
Fixed modifications Carbamidomethyl (C) 
Variable modifications Gln->pyro-Glu (N-term Q),Oxidation (M) 
Peptide tol.   0.2 Da 
MS/MS tol.  0.5 Da 
Mass   Monoisotopic 
Peptide charge  2+ and 3+ 
Instrument  ESI-FTICR 
Error tolerant   1 
  
“Plasma QSTAR” data set configuration: 
ProteinDatabase /hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
Taxonomy  Homo sapiens (human) 
Enzyme   Trypsin 
NumMaxMissedCleavages 2 
Fixed modifications Carbamidomethyl (C) 
Variable modifications Gln->pyro-Glu (N-term Q),Oxidation (M) 
Peptide tol.   0.2 Da 
MS/MS tol.  0.2 Da 
Mass   Monoisotopic 
Peptide charge  2+ and 3+ 
Instrument  ESI-QUAD-TOF 
Error tolerant   1 
 
 
“DLD1 LTQ” data set configuration: 
ProteinDatabase /hactar/fasta/20080729-IPI-HUMAN-347-Trypsin-reverse.fasta 
Taxonomy  Homo sapiens (human) 
Enzyme   Trypsin 
NumMaxMissedCleavages 2 
Fixed modifications Carbamidomethyl (C) 
Variable modifications Gln->pyro-Glu (N-term Q),Oxidation (M) 
Peptide tol.   2.5 Da 
MS/MS tol.  0.5 Da 
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Mass   Average 
Peptide charge  2+ and 3+ 
Instrument  ESI-TRAP 
Error tolerant   1 
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