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CHAPTER I 

 

INTRODUCTION 

 

  As mammals, our major defense against an ever-changing constellation of 

pathogens is provided by B and T lymphocytes, which express clonally 

distributed antigen receptors.  An enormous diversity of B and T cell receptors 

(BCR and TCR) are generated during lymphocyte development in an antigen-

independent manner.  The large repertoire of lymphocytes, each bearing a 

signature antigen-binding specificity, is poised to recognize pathogens and signal 

for their elimination by host effector functions.  

  The ability of lymphocytes to generate such an enormous diversity of 

antigen receptors (> 108 in healthy individuals), coupled with known restrictions 

on our genomic complexity, confounded explanation for decades.  In the mid-

1970s, Susumu Tonegawa and colleagues discovered that, unlike other known 

genes, those encoding for immunoglobulin (Ig) proteins were inherited in a non-

functional form.  Indeed, the variable region exons of Ig and TCR genes must be 

assembled from arrays of variable (V), diversity (D), and joining (J) gene 

segments via somatic recombination (Brack, Hirama et al. 1978; Weigert, 

Gatmaitan et al. 1978).  This genetic reorganization occurs only in precursor, 

receptor-negative lymphocytes and is an integral component of their program for 

ordered development.  The assembly of all antigen receptor genes is mediated 

by a single V(D)J recombinase consisting of the recombination activating genes-



 2 

1 and -2 (RAG-1 and RAG-2) proteins, which serve as its key enzymatic 

components (Schatz, Oettinger et al. 1989; Oettinger, Schatz et al. 1990).  The 

RAG complex targets conserved recombination signal sequences (RSSs) 

flanking all Ig and TCR gene segments (Sakano, Huppi et al. 1979).   

  Although the generation of receptor diversity by V(D)J recombination is 

beneficial, it is also an inherently dangerous process.  Defects in V(D)J 

recombination can cause immunodeficiencies or chromosomal translocations 

that lead to lethal lymphoid malignancies (Kuppers and Dalla-Favera 2001; 

Bassing, Swat et al. 2002).  With regards to the latter aberration, cryptic RSSs 

and unusual DNA structures can serve as RAG targets leading, in some cases, 

to the translocation of protooncogenes into highly expressed antigen receptor loci 

(Raghavan, Swanson et al. 2005).  Thus, normal immune development requires 

the stringent regulation of recombinase targeting, which is controlled at several 

levels, including: (i) tissue-specificity (e.g., precursor B cells rearrange only Ig, 

not TCR loci), (ii) locus-specificity (e.g., TCRβ rearrangements occur prior to 

TCRα rearrangements), and (iii) allelic exclusion (only one functional allele is 

produced for each Ig and TCR gene). 

  Early insights into the molecular mechanisms controlling antigen receptor 

gene assembly came from the discovery that unrearranged (germline) gene 

segments are transcribed coincident with their recombination (Van Ness, Weigert 

et al. 1981; Yancopoulos and Alt 1985).  These observations led to the 

hypothesis that V(D)J recombination is regulated by changes in chromatin that 

permit or deny access of nuclear factors to gene segments.  In non-lymphoid 



 3 

cells, Ig and TCR loci reside in closed chromatin, which is inaccessible to the 

transcription and recombinase machinery.  However, at the appropriate stage of 

lymphocyte development, chromatin associated with specific clusters of gene 

segments opens and becomes a target for transcription/recombination.  The links 

between gene expression and recombination suggested that transcriptional 

control elements within antigen receptor loci might also serve to regulate 

chromatin accessibility at neighboring gene segments.  Consistent with this 

model, targeted deletion of promoters or enhancers from antigen receptor loci 

severely impairs their recombination in cis (Oltz 2001; Krangel 2003; Schlissel 

2003; Dudley, Chaudhuri et al. 2005).  Thus, the biologic action of V(D)J 

recombinase is tightly regulated by promoters/enhancers, which serve as 

accessibility control elements (ACEs) to guide antigen receptor gene assembly 

and lymphocyte development.   

  

V(D)J Recombination: A Mechanistic Perspective 

  V(D)J recombination is mediated by RSSs that directly flank all Ig and 

TCR gene segments.  Each RSS contains a conserved palindromic heptamer 

and an AT-rich nonamer, which are separated by a non-conserved spacer of 12 

or 23 bp in length.  Under physiologic conditions, recombination requires two 

gene segments flanked by a 12 and a 23 bp RSS (Sakano, Huppi et al. 1979). 

Experiments conducted with artificial substrates have demonstrated that: (i) 

V(D)J recombinase is restricted to precursor lymphocytes (Lieber, Hesse et al. 

1987), (ii) all Ig and TCR genes are assembled by a single recombinase activity 
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(Yancopoulos, Blackwell et al. 1986), and (iii) the tissue-specific components of 

V(D)J recombinase are encoded by a pair of linked genes, termed 

Recombination Activating Genes 1 and 2 (RAG-1 and -2) (Schatz, Oettinger et 

al. 1989; Oettinger, Schatz et al. 1990).  Early functional experiments with RAG 

expression vectors showed that RAG-1/2 are sufficient to confer recombinase 

activity to any cell type tested (Oettinger, Schatz et al. 1990; Oltz, Alt et al. 1993).  

Accordingly, loss of RAG function by targeted deletions in mice or natural 

mutations in humans produce a severe combined immunodeficiency (SCID) due 

to an inability to initiate V(D)J recombination (Mombaerts, Iacomini et al. 1992; 

Shinkai, Rathbun et al. 1992; Schwarz, Gauss et al. 1996). 

 The advent of in vitro V(D)J recombination systems produced a bounty of 

data that support the following model for recombination by RAG proteins (Fig. 1) 

(McBlane, van Gent et al. 1995; Eastman, Leu et al. 1996).  First, the RAG-1/2 

complex binds to an RSS, with initial contact between RAG-1 and the nonamer 

sequence (Swanson and Desiderio 1998).  Association of RAG-1 with RAG-2 

enhances contact between recombinase and the heptamer (Swanson and 

Desiderio 1999). The stoichiometry of active RAG complexes in vivo remains 

unclear; however, current evidence suggests that RAG first binds to a 12 bp-RSS 

and introduces a single-strand nick precisely at heptamer/coding border 

(Eastman, Leu et al. 1996; van Gent, Ramsden et al. 1996).  The RAG complex 

then searches for a 23 bp-RSS, forming a synapse, and introduces a similar nick 

at the second RSS(Jones and Gellert 2002; Mundy, Patenge et al. 2002). 
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Figure 1.  General V(D)J recombination mechanism.  The mechanism is 
exemplified for a portion of the TCRβ locus and shows rearrangement of a single 
Dβ/Jβ pair.  RSSs are represented by black and white triangles and coding 
segments are depicted as black or gray rectangles.  In brief, the RAG-1/2 
recombinase complex (gray ovals) forms a synapse with two compatible RSSs, 
introduces double-strand breaks at the RSS/coding border, and the breaks are 
resolved by the NHEJ machinery as imprecise coding joins and precisely fused 
signal joins.  Refer to text for a detailed description of the process. 
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 The liberated hydroxyl groups then attack the opposing phosphate backbones at 

each RSS to generate a pair of blunt signal ends (SE) and sealed hairpins at the 

coding ends (CE) (Roth, Menetski et al. 1992).  In vitro studies indicate the 

existence of a post-cleavage complex, which contains the RAG proteins as well 

as the CEs and SEs (Agrawal and Schatz 1997; Hiom and Gellert 1998).   This 

complex is transient in nature and dissolves rapidly to generate a SE complex 

(SEC) that retains bound RAG proteins and CEs as free DNA hairpins. 

  Formation of the SEC and CEs represents the endpoint of RAG-

dependent events in vitro.  Completion of V(D)J recombination requires 

resolution of DNA ends to rescue the chromosome and generate coding joins 

(CJs).  Studies of V(D)J recombination in CHO mutant cells engineered to 

express RAG proteins revealed an important role for the ubiquitous double-

strand break repair machinery in the resolution of both SEs and CEs (Pergola, 

Zdzienicka et al. 1993; Taccioli, Rathbun et al. 1993).  Together with subsequent 

studies, the following model has emerged for the resolution of V(D)J  breaks by 

the non-homologous end-joining (NHEJ) repair pathway (Dudley, Chaudhuri et 

al. 2005).  Free ends are first recognized by a heteromeric complex of KU 

proteins, which in turn recruit the catalytic component of DNA-dependent protein 

kinase (DNA-PKcs).  Activated DNA-PKcs phosphorylate numerous targets that 

control cell cycle progression (e.g., p53) and subsequent DNA repair.  These 

include the Artemis protein and the variant histone, H2AX, which is 

phosphorylated over a broad region surrounding the break (Chen, Bhandoola et 

al. 2000).  Phosphorylation of Artemis activates its endonuclease activity, which 
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is critical for opening hairpins at CEs (Ma, Pannicke et al. 2002) and creating 

palindromic sequences (P elements) at many V(D)J junctions (Lafaille, DeCloux 

et al. 1989).  Moreover, endonuclease activity associated with Artemis generates 

further diversity at CJs via the random deletion of nucleotides from exposed ends 

(Ma, Pannicke et al. 2002).  The precursor lymphocyte-specific protein, terminal 

deoxynucleotidyl transferase (TdT), enhances junctional diversity through the 

random addition of nucleotides at CEs (Komori, Okada et al. 1993).   

  Final resolution of both CEs and SEs is achieved following the recruitment 

of XRCC4, which binds to and activates DNA ligase IV (Li, Otevrel et al. 1995; 

Grawunder, Wilm et al. 1997).  More recent studies suggest that an additional, 

yet unidentified repair factor may facilitate V(D)J recombination in vivo (Dai, 

Kysela et al. 2003).  Notwithstanding, the end result of the repair process is a 

highly modified CJ, which enhances sequence diversity at the CDR3 region of Ig 

and TCR proteins.  The exposed CJs are resolved rapidly by the NHEJ 

machinery, whereas SEs are resolved slowly and the resultant SJs are usually 

deleted from the genome as episomal circles (Hesslein and Schatz 2001). 

  Mouse knockouts confirmed the in vivo relevance of these cell model 

studies on NHEJ repair.  In addition to radiosensitivity, mice harboring null 

mutations of KU, DNA-PKcs, Artemis, XRCC4, or DNA-ligase IV all exhibited a 

SCID phenotype due to defects in the formation of coding joins or opening of 

hairpins (reviewed in (Dudley, Chaudhuri et al. 2005).  Dual deletion of most 

NHEJ components and p53 produced mice with aggressive lymphocytic tumors 

exhibiting chromosomal translocations that are hallmarks of defective V(D)J 
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recombination (Gao, Ferguson et al. 2000; Dudley, Chaudhuri et al. 2005).  

Recombinase activity and NHEJ are also coupled via changes in RAG protein 

stability during the cell cycle.  Specifically, RAG-2 is phosphorylated, 

ubiquitinated, and rapidly degraded in dividing cells (Lin and Desiderio 1993; 

Jiang, Chang et al. 2005).  This cell cycle-dependent control restricts 

recombinase activity to resting G0/G1 cells, where the NHEJ mechanism of DNA 

repair predominates (Lee and Desiderio 1999).  The importance of this regulatory 

mechanism was recently confirmed in mice that express a phosphodefective 

mutant of RAG-2 in thymocytes.  These mutant animals possessed high levels 

TCR signal ends in cycling pre-T cells and exhibited defective TCR joins that 

were reminiscent of those from NHEJ-deficient mice (Jiang, Ross et al. 2004).  

Together, these in vivo studies underscore the importance of proper targeting, 

regulation, and constraint of V(D)J recombination during the stepwise process of 

lymphocyte development. 

 

Genomic Architecture of Ig and TCR Loci 

  The TCR and Ig components of antigen receptors are encoded by seven 

distinct genetic loci.    Two distinct classes of T cells exist, which express either a 

TCRβ/TCRα or TCRγ/TCRδ heterodimers. The B cell antigen receptor is a 

tetrameric structure composed of two identical Ig heavy chains (IgH) covalently 

linked to their partner light chains (IgL, either Igκ or Igλ).  In contrast to the split 

nature of gene segments that comprise variable exons, the constant regions of 

antigen receptor genes exhibit a normal exon/intron structure.  Each of the exons 
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encode for a single Ig-fold domain, a β-barrel structure that is commonly found in 

many surface receptors.  

 The TCRβ locus spans approximately one Mb on mouse chromosome 6 

(Glusman, Rowen et al. 2001).  The 5’ region of the locus is composed of 35 Vβ 

segments, 14 of which are nonfunctional pseudogenes.  The 3’ region of the 

locus harbors two DβJβ clusters, each containing one Dβ and six functional Jβ 

segments (Fig. 2).  Coding exons for the TCRβ constant region reside 

downstream of each DβJβ cluster (Cβ1 or Cβ2).  Finally, a single Vβ element, 

called Vβ14, lies downstream of Cβ2 and rearranges by an inversional 

mechanism.  All Vβ gene segments are flanked on their 3’ sides by a 23 bp RSS, 

while the Jβ elements are bordered by 12 bp RSSs.  The two Dβ elements are 

flanked by a 12 and a 23 bp RSS, on their 5’ and 3’ sides, respectively.  In 

theory, this RSS arrangement should permit direct VβJβ recombination.  

However, these joins are rarely observed in vivo due to undefined constraints of 

the recombination process, termed “beyond 12/23 restriction” (Bassing, Alt et al. 

2000; Jung, Bassing et al. 2003; Tillman, Wooley et al. 2003). 

 The gene segments encoding mouse TCRα and TCRδ are intermingled in 

a single locus spanning 1.5 Mb on chromosome 14 (Glusman, Rowen et al. 

2001; Bosc and Lefranc 2003).  In total, the locus contains over 100 V segments, 

some of which rearrange only with Jα gene segments, some with only DδJδ joins, 

and some contribute to both the TCRα and TCRδ repertoires (Krangel, Carabana  
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et al. 2004).  A pair of Dδ and Jδ segments lies between the V cluster and the Cδ 

coding region.  Further downstream of Cδ lie 60 Jα gene segments followed by 

the Cα coding region. 

  The TCRγ locus is distributed across a short region of DNA (~200 kb) on 

mouse chromosome 13 (Glusman, Rowen et al. 2001).  This locus consists of 

seven Vγ gene segments and one Vγ pseudogene interspersed among three 

functional Jγ-Cγ units and one nonfunctional Jγ-Cγ unit.  All of the TCRγ gene 

segments are positioned in the same transcriptional orientation, with Vγ 

segments flanked by 23-bp RSSs and Jγ gene segments flanked by 12-bp RSSs. 

  The mouse IgH locus spans a region on chromosome 12 of approximately 

three megabases (Chevillard, Ozaki et al. 2002).  The constant region coding 

exons, ordered Cµ, Cδ, Cγ3, Cγ1, Cγ2b, Cγ2a, Cε, and Cα are spread over a 

region of approximately 200 kb at the 3’ end of the locus.  Four JH gene 

segments are positioned in a small cluster located 7.5 kb upstream of Cµ coding 

exons and the thirteen DH segments are located in a linear array further 

upstream.  Approximately 150 VH segments are dispersed over a 1 Mb region 

upstream from the DH cluster.  In mouse, these VH segments are arranged in 

families that share a high level of sequence similarity.  The D-proximal family, 

termed 7183, is preferentially used in IgH rearrangements by pro-B cells 

(Malynn, Yancopoulos et al. 1990).  The most distal VH family (J558) is the 

largest and predominates the peripheral B cell repertoire (Chevillard, Ozaki et al. 

2002).  The DH gene segments are flanked by 12 bp-RSSs on both sides, while 

the VH and JH segments each have 23 bp RSSs.  In keeping with the 12/23 rule,  
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Figure 2.  Schematic depiction of mouse Ig and TCR loci (not to scale).  Gene 
segments are represented by rectangles and RSSs are depicted as triangles (23 
bp, black and 12 bp, white).  Transcriptional promoters and enhancers are shown 
as gray diamonds and circles, respectively, and constant regions as black 
squares.  Estimated numbers of gene segments are displayed above the 
represented V, D, and J regions.  For the IgH locus, the most proximal (7183) 
and distal VH families (J558) are shown. 
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this RSS composition precludes VHJH joining and ensures the inclusion of a DH 

element in all IgH joins.   

  The Igκ locus is composed of approximately 140 Vκ and 4 functional Jκ 

gene segments, which are spread over 3 Mb on mouse chromosome 6 

(Kirschbaum, Pourrajabi et al. 1998; Thiebe, Schable et al. 1999).  A single Cκ 

exon lies 2.5 kb downstream of the Jκ cluster.  A subset of Vκ gene segments 

are in a reverse transcriptional orientation relative to the Jκ segments.  As such, 

rearrangements involving these segments occur via large-scale inversion of DNA 

between the selected Vκ/Jκ segments rather than the usual deletion mechanism 

of joining (Gorman and Alt 1998).  In addition to the RSSs associated with Vκ 

and Jκ gene segments, consensus RSSs are positioned downstream of the Jκ 

cluster (Muller, Stappert et al. 1990).  These RSSs can recombine with Vκ gene 

segments to inactivate the targeted Igκ allele during the process of receptor 

editing.  

 The mouse Igλ locus spans about 200 kb on chromosome 16 and harbors 

three distinct cassettes of Vλ/Jλ gene segments and Cλ exons (Gorman and Alt 

1998).  Only two of the three Vλ gene segments (Vλ1 and Vλ2) are used 

predominantly in developing B cells.  In cells that fail to express functional Igκ 

genes, these Vλ segments rearrange preferentially to their most proximal Jλ-Cλ 

clusters (Vλ2 with Jλ2 and Vλ1 with Jλ1/Jλ3) (Reilly, Blomberg et al. 1984).   As 

a result, the repertoire of mouse Igλ rearrangements is far more restricted than 

that observed for the Igκ locus.  
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Control of Antigen Receptor Gene Assembly in Lymphocyte Development 

  The generation of functional T and B lymphocytes requires the precise 

orchestration of antigen receptor gene assembly and a highly ordered program of 

cellular differentiation (Busslinger 2004; Rothenberg and Taghon 2005).  Both 

lineages derive from pluripotent stem cells in adult bone marrow, which 

differentiate into common lymphoid progenitor (CLPs) cells.  T cell progenitors 

migrate from the bone marrow and complete their development in the thymus.  In 

contrast, B lymphopoiesis occurs in the liver during fetal development but 

continues in the bone marrow of adults.  T and B cell precursors initially lack 

surface antigen receptors but, upon their commitment, they rapidly initiate the 

program of V(D)J recombination at either TCR or Ig loci.  This ordered process is 

an integral component of developmental pathways, with the protein products 

from each step guiding cellular differentiation and subsequent steps of gene 

assembly.  The end result of this genetic program is the acquisition of TCR or Ig 

expression and a signature antigen binding specificity on each lymphocyte clone.   

  To initiate V(D)J recombination, precursor lymphocytes must first express 

the tissue-specific components of recombinase – the RAG genes.  The RAG-1/2 

genes are located approximately 15 kb apart on chromosome 2 in mouse, and 

are under the transcriptional control of multiple cis-acting elements.  These 

elements work in concert to repress RAG expression in non-lymphoid cells and 

activate expression in precursor lymphocytes (Yu, Misulovin et al. 1999; Hsu, 

Lauring et al. 2003).  More recent studies have shown that RAG-1/2 expression 

initiates in CLPs and a significant portion of these cells target the IgH locus for 
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DHJH recombination (Borghesi, Hsu et al. 2004).  This expression pattern likely 

explains the presence of DHJH joins in thymocytes (Born, White et al. 1988).  

However, neither the ordered assembly nor the cell-type specificity of V(D)J 

recombination can be explained simply by RAG expression patterns because 

both genes are expressed at varying levels throughout all stages of precursor 

lymphocyte development.   

  One of two classes of TCRs can arise during T cell lymphopoiesis.  The 

majority of precursors become α/β rather than γ/δ T cells, and lineage 

commitment appears to hinge on which set of genes first undergo productive 

rearrangements (Robey 2005).  Upon T lineage commitment, thymocytes lack 

expression of the CD4/CD8 co-receptors and are termed double negative (DN) 

pro-T cells.  The DN population can be further categorized into the DNI-DNIV 

subsets based on CD44/CD25 expression (Rothenberg and Taghon 2005).  The 

DNII-DNIII subsets first target recombinase to the DβJβ clusters, followed by 

VβDβJβ rearrangement.  Assembly of a functional TCRβ gene leads to 

expression of a pre-TCR in DNIV cells, which consists of the TCRβ chain, the 

surrogate TCRα chain (pTα), and the CD3 co-receptor complex (von Boehmer 

2005).  Expression of the pre-TCR inhibits further VβDβJβ recombination but 

stimulates several other processes (collectively called β-selection), including (i) 

clonal expansion of TCRβ+ pro-T cells, (ii) differentiation into CD4+/CD8+ double 

positive (DP) pre-T cell stage, and (iii) activation of VαJα recombination  

(Shinkai, Koyasu et al. 1993; Aifantis, Buer et al. 1997).  T cell clones that 

express a functional TCRα gene undergo positive selection and differentiate into 
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the CD4 helper or CD8 cytotoxic T cell lineage.  Autoreactive clones are removed 

from the T cell repertoire by apoptosis during negative selection in the thymus.  

Additionally, precursor T cells can undergo multiple rounds of VαJα 

recombination until these cells express a TCR that progresses through both the 

positive and negative selection checkpoints (Hawwari, Bock et al. 2005; Huang, 

Sleckman et al. 2005). 

  Should a CLP commit to the B cell lineage, its subsequent development 

can be tracked using a combination of surface marker expression and the 

rearrangement status of Ig loci.  The first developmental stage, termed a pro-B 

cell, is identified by expression of the lineage marker B220 and the CD43 surface 

protein.  Pro-B cells can be categorized further into fractions A-C (Li, Wasserman 

et al. 1996).  Fraction A/B cells first target the IgH locus for DHJH 

recombination, which almost always occurs on both alleles.  Fraction B cells then 

initiate VHDHJH recombination, which appears to be a less efficient process 

and targets each allele sequentially (Hardy, Carmack et al. 1991).  Formation of 

a functional VHDHJH exon permits expression of IgH protein (IgM isotype) in the 

cytoplasmic compartment (Igµ protein).  In turn, Igµ associates with two 

surrogate light chains (λ5 and Vpre-B) and the signaling molecules Igα and Igβ to 

generate the pre-B cell receptor (pre-BCR) (Hombach, Tsubata et al. 1990; 

Melchers 2005).  

     The pre-BCR triggers a proliferative burst to expand the numbers of pro-B 

cells expressing IgH protein, which can then couple with distinct IgL chains 

(Young, Ardman et al. 1994).  The vast majority of pre-B cells first target the Igκ 
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locus for VκJκ recombination (Ehlich, Schaal et al. 1993).  However, if both Igκ 

alleles are assembled out-of-frame, the pre-B cell clone retargets recombinase 

activity to the Igλ locus.  Functional rearrangement at either IgL locus permits 

expression of a complete BCR.  The emerging B cell terminates RAG expression 

and migrates to the spleen where it undergoes further differentiation to become a 

mature B lymphocyte (Hardy and Hayakawa 2001).  

 

Regulation of V(D)J Recombination by the Accessibility Hypothesis and 
Beyond 

 
  The stepwise, ordered assembly of antigen receptor genes requires 

targeting, then retargeting, of V(D)J recombinase to distinct regions within TCR 

and Ig loci at different stages of lymphocyte development.  The numerous levels 

of regulation include: (i) tissue-specificity, (ii) ordered assembly within each locus 

(DJ then VDJ), (iii) stage-specificity (e.g., TCRβ in pro-T and TCRα in pre-T 

cells), and (iv) allelic exclusion.  The selectivity of these genomic rearrangements 

occurs despite the use of a common recombinase that is expressed at all stages 

of precursor B and T cell development (Yancopoulos, Blackwell et al. 1986).  

Moreover, the RSS substrates for V(D)J recombinase are virtually 

indistinguishable when comparing TCR and Ig loci. 

  A first clue to the mechanisms by which a common enzyme/substrate 

system differentially targets gene segments for recombination came from the 

discovery of “germline transcripts” by the Alt and Perry laboratories.  Their 

studies revealed that transcription of germline gene segments is initiated in the 

cell types that target these segments for recombination (Van Ness, Weigert et al. 
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1981; Yancopoulos and Alt 1985).  For example, unrearranged Vβ segments are 

transcribed in pro-T cells but not in pre-T or B lineage cells (Senoo and Shinkai 

1998).  Since these initial observations, the general correlation between germline 

transcription and V(D)J recombination has been extended to all TCR and Ig gene 

segments and even artificial substrates (reviewed in (Sleckman, Gorman et al. 

1996; Oltz 2001).   

  The link between transcription and recombination led to the hypothesis 

that each step in antigen receptor gene assembly is controlled by alterations in 

chromatin accessibility to the common recombinase complex.  Specifically, 

recombinationally inert gene segments would be packaged into a chromatin 

configuration that is refractory to RAG binding and cleavage; whereas targeted 

gene segments would be packaged into an “open” chromatin configuration that is 

accessible to both RAG and transcriptional complexes.  Further support for the 

accessibility hypothesis derived from studies showing that fibroblasts engineered 

to express RAG-1/2 could target actively expressed chromosomal substrates 

(“open”) for recombination while endogenous TCR and Ig loci remained both 

transcriptionally and recombinationally silent (Schatz, Oettinger et al. 1992).  

Subsequently, the accessibility hypothesis has been validated by numerous 

experimental approaches that directly or indirectly measure levels of chromatin 

accessibility at gene segments. 

  Although changes in chromatin accessibility can account for the majority 

of regulatory processes governing V(D)J recombination, the RAG complex and 

its substrate RSSs can also influence rearrangement efficiencies.  Mouse 
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knockouts and cell model studies show that a truncated form of RAG-2 (lacking 

its C-terminus) encodes for its “core” enzymatic activity and can efficiently 

perform DJ but not VDJ recombination (Kirch, Rathbun et al. 1998; Liang, 

Hsu et al. 2002; Akamatsu, Monroe et al. 2003).  In a recent development, 

Cortes and colleagues reported that the C-terminus of RAG-2 binds directly to all 

four core histones (West, Singha et al. 2005).  Specific mutations in the C-

terminus that abolish its binding to histones also impair VHDHJH but not DHJH 

recombination in pro-B cell lines.  One exciting possibility is that the C-terminus 

of RAG-2 may serve as bridge between chromatin and recombinase to facilitate 

the long-range synapsis of RSSs. 

  The precise sequence of RSSs also contributes to restrictions in the order 

and type of gene segments used at the TCRβ locus.  Although the 12/23 rule 

permits direct joining between Vβ and Jβ gene segments, these recombination 

products are almost never observed in vivo (Bassing, Alt et al. 2000).  Using an 

elegant series of knockout and substrate models, Alt and Sleckman have shown 

that an intrinsic property of the Jβ-RSS restricts its efficient usage to 

recombination with Dβ- but not with Vβ-RSSs.  In contrast, the Vβ-RSSs are 

more compatible for recombination with the 5’Dβ-RSS (Bassing, Alt et al. 2000; 

Sleckman, Bassing et al. 2000).  The precise mechanisms involved in this 

“beyond 12/23” control remain unknown.  However, the specificity of gene 

segment selection at TCRβ does not rely on thymocyte-specific factors and likely 

reflects a more general feature of the recombinase itself, which may 

preferentially pair certain RSSs for coupled cleavage (Jung, Bassing et al. 2003; 
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Tillman, Wooley et al. 2003).  Consistent with this possibility, ordered DβJβ 

then VβDβJβ recombination is not controlled by simple proximity of the Dβ and 

Jβ gene segments.  This order is recapitulated at engineered TCRβ loci in which 

the Vβ cluster is positioned proximal to Dβ1 (Ferrier, Krippl et al. 1990; Senoo, 

Wang et al. 2003). 

  Notwithstanding these important but more specialized restrictions, it has 

become clear that chromatin accessibility is the primary determinant for 

establishing the recombination potential of gene segment clusters.   

 

Chromatin Structure and Accessibility Control Mechanisms 

  A significant hurdle for the evolution of eukaryotes from prokaryotes was 

the packaging of approximately two meters of chromosomal DNA into nuclei that 

are several microns in size.  Eukaryotes solved this problem by packaging 

genomic DNA into nucleosomes, the basic building block of chromatin.  A single 

nucleosome consists of ~146 bp of DNA wrapped around an octamer of four 

histone pairs (H2A, H2B, H3 and H4) (Wolffe and Guschin 2000; 

Khorasanizadeh 2004). In most chromatin, nucleosomes are separated by ~20 to 

60 bp of spacer DNA, which gives rise to a simple structure resembling “beads 

on a string”.  The histone protein, termed H1, can bind to linker DNA and is 

essential for the condensation of “open” chromatin into more compact forms 

(e.g., the 30 nm fiber) (Wolffe and Guschin 2000).  The mechanisms that give 

rise to even higher degrees of chromatin compaction remain vague.   
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Figure 3.  Top: schematic representation of recombinase accessible (left) and 
inaccessible chromatin (right).  Germline promoters and enhancers are depicted 
as diamonds and circles, respectively.  The two types of chromatin are shown at 
increasing levels of resolution (top to bottom).  Middle: Nucleosomal DNA (dark 
spirals) wrapped around an octamer of 4 histones (H2A, H2B, H3, H4), which is 
represented as a cylinder.  Nucleosomes are loosely packed in accessible 
chromatin (left) and usually associate with activating TFs, HATs, and 
nucleosome remodeling complexes (SWI/SNF).  Inaccessible chromatin has 
more densely packed nucleosomal arrays (right) and associates with an 
interacting cascade of chromatin modifiers that usually includes DNA 
methyltransferases (Dnmt), methyl-CpG binding proteins (MeCP), histone 
deacetylases (HDAC), histone methyltransferases, and the heterochromatin 
protein HP-1.  Bottom:  The general patterns of chromatin modifications at 
accessible (left) and inaccessible chromatin (right) are shown.  A key for symbols 
representing each modification is given at the bottom. 
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  Eukaryotes harbor three general types of chromatin in their nuclei (Fig. 3).  

The most highly compacted form, constitutive heterochromatin, is heavily stained 

by DNA-specific dyes and represents the most inaccessible state.  Accordingly, 

very few expressed genes are found in heterochromatic regions, which include 

pericentric repeats and the inactive X chromosome (Fahrner and Baylin 2003).  A 

second form of chromatin, termed euchromatin, is not highly stained by DNA 

dyes and represents an open state that contains most of the cell’s expressed 

genes.  Regions of euchromatin are generally more accessible to nuclear factors 

and susceptible to attack by nucleases.  A third configuration of chromatin, called 

facultative heterochromatin, is an intermediate form that exhibits many hallmarks 

of inactive chromatin but is not constitutively closed.  Regions of facultative 

heterochromatin contain genetic loci that are silent but can be induced for 

expression given the proper cues and chromatin remodeling (Fahrner and Baylin 

2003).  In addition to standard histones, eukaryotes express a panel of variants 

that perform specialized functions.  These include: (i) macroH2A, which is a 

major component of constitutive heterochromatin (Chadwick, Valley et al. 2001), 

(ii) H3.3, which replaces H3 at expressed genes and marks the locus for 

continued expression (McKittrick, Gafken et al. 2004), and (iii) H2AX, which is 

found in approximately 10% of nucleosomes and becomes phosphorylated at 

sites of DNA damage (Chen, Bhandoola et al. 2000). 

  Although the nucleosomal structure of cellular DNA solves the basic 

packaging problem, it generally impedes interactions between DNA and most 

non-histone proteins, including transcription factors (TFs) and the basal 
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transcription machinery (Geiman and Robertson 2002).  In this regard, numerous 

lines of evidence indicate that V(D)J recombinase can engage its target RSSs in 

nucleosomal DNA only after substrates become accessible.  First, RAG cleavage 

of RSSs is blocked in vitro when substrates are packaged into 

mononucleosomes (Kwon, Imbalzano et al. 1998).  Second, antigen receptor loci 

undergoing rearrangement exhibit many hallmarks of accessible euchromatin, 

including hypersensitivity to nucleases; whereas recombinationally silent loci are 

largely refractory to nucleases (Chattopadhyay, Whitehurst et al. 1998; 

Chowdhury and Sen 2003).  Third, Schlissel and colleagues have shown that 

recombinant RAG proteins cleave RSSs in nuclei from primary lymphocytes with 

the appropriate tissue-, stage-, and allele-specificity (Stanhope-Baker, Hudson et 

al. 1996).  Together, these studies suggest that most antigen receptor loci begin 

as facultative heterochromatin in CLPs.  Upon lineage commitment, 

developmental cues signal for an opening of specific chromatin domains to 

render the appropriate gene segments accessible to recombinase.   

  Eukaryotes have developed a complex set of mechanisms to alter 

chromatin accessibility at both the local and long-range levels.  Many of these 

mechanisms involve the recruitment of protein complexes that covalently modify 

either the histone or DNA components of chromatin (Berger 2002; Richards and 

Elgin 2002).  A broad panel of transcription factors recruits protein complexes 

that acetylate, methylate, phosphorylate, or ubiquitinate histones.  These 

modifications enable nucleoprotein modules to recruit other co-activators, 

including components of the core transcription machinery.  These observations 
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have led to the “histone code” hypothesis.  According to this hypothesis, 

modifications in N-terminal tails of histones generate binding sites for additional 

chromatin remodeling complexes, which in turn control the transcriptional status 

of flanking genes (Fig. 3) (Jenuwein and Allis 2001). 

  A well-recognized example of the histone code hypothesis is the 

modification of lysine-9 on histone H3 (H3-K9).  This amino acid is targeted by a 

broad spectrum of histone acetyltransferases (HATs) and histone deacetylases 

(HDACs), which do not bind DNA directly but are recruited by TFs or repressor 

complexes (Nakayama, Rice et al. 2001; Emerson 2002; Narlikar, Fan et al. 

2002).   

  Acetylation of H3-K9 leads to high-affinity interactions with bromodomains 

in other HAT or nucleosome remodeling complexes, which further augment 

chromatin accessibility (Peterson and Workman 2000).  Accordingly, expressed 

loci normally associate with nucleosomes bearing H3-K9 acetylation, whereas 

silent loci are characterized by hypoacetylated H3-K9 residues (Litt, Simpson et 

al. 2001).  Recent studies have extended these links to the process of V(D)J 

recombination.  Acetylation of nucleosomes can partially relieve the inhibition of 

RAG-mediated cleavage at RSSs in vitro (Kwon, Morshead et al. 2000).  

Moreover, antigen receptor loci that undergo active rearrangement are 

associated with hyperacetlyated histones in vivo, whereas inert gene clusters 

remain hypoacetylated (McMurry, Hernandez-Munain et al. 1997; Chowdhury 

and Sen 2003; Morshead, Ciccone et al. 2003). 
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  In contrast to acetylation, methylation at H3-K9 leads to the reduced 

expression of associated transcription units (Lachner, O'Carroll et al. 2001).  The 

degree of methylation at H3-K9 also influences the magnitude of gene repression 

and the formation of distinct chromatin configurations.  Di-methylation at H3-K9 is 

found predominantly at repressed genes in euchromatin or facultative 

heterochromatin.  This epigenetic mark is imprinted by two histone 

methyltransferases (HMTs) in mammals, called G9a and GLP (Tachibana, 

Sugimoto et al. 2002; Peters, Kubicek et al. 2003; Tachibana, Ueda et al. 2005).  

Tri-methylation of H3-K9 is observed predominantly at constitutive or pericentric 

heterochromatin and is the enzymatic product of two redundant HMTs called 

Suv39h1 and Suv39h2 (Peters, O'Carroll et al. 2001; Peters, Kubicek et al. 

2003).   

  Consistent with the histone code hypothesis, methylated H3-K9 recruits 

an entirely different set of remodeling complexes relative to its acetylated 

counterpart.  This set of complexes feature the presence of a chromodomain and 

function to impair chromatin accessibility (Bannister, Zegerman et al. 2001; 

Lachner, O'Carroll et al. 2001).  Indeed, H3-K9 methylation marks antigen 

receptor gene segments that are recombinationally inert and this modification 

can dominantly repress accessibility to V(D)J recombinase at chromosomal 

substrates (Morshead, Ciccone et al. 2003; Johnson, Pflugh et al. 2004; 

Osipovich, Milley et al. 2004). 

  In addition to acetylation/methylation of H3-K9, mammalian histones are 

marked by a constellation of covalent modifications (Jenuwein and Allis 2001; 
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Cosgrove, Boeke et al. 2004).  Several of these epigenetic marks have been 

studied extensively in the context of gene expression, and to some extent, for 

correlations with V(D)J recombination.  These include: (i) histone H4 acetylation, 

which correlates with transcriptional activation at open chromatin (Jenuwein and 

Allis 2001), (ii) H3-K4 methylation, which is accomplished by SET1 and is 

characteristic of expressed genes (Santos-Rosa, Schneider et al. 2002), (iii) H3-

K27 methylation, which is targeted by the Ezh2 component of polycomb 

complexes and serves as a long-term memory mark for silent chromatin (Cao, 

Wang et al. 2002; Kuzmichev, Nishioka et al. 2002), and (iv) H3-K79 methylation 

by the DOT1 methyltransferase, which identifies active chromatin and prevents 

silencing in yeast (Ng, Ciccone et al. 2003).  Collectively, these and other histone 

modifications comprise a flexible, yet highly complex code, which specifies 

numerous cellular processes, including gene activation and V(D)J recombination.  

  The exquisite specificity of the histone code is underscored by recent 

studies of the IFNβ regulatory region, which forms an enhanceosome structure 

upon binding its cognate TFs.  Acetylation of the enhanceosome-proximal 

nucleosome at H3-K9/K14 is required for the recruitment of TFIID via a pair of 

bromodomains (Agalioti, Chen et al. 2002). In contrast, the SWI/SNF 

nucleosome remodeling complex is recruited via interactions between its 

bromodomain and an acetylated lysine at H4-K8.  

  In addition to histone tail modifications, the DNA component of chromatin 

can be covalently marked by methylation at CpG dinucleotides (Bird 2002).  This 

reversible modification is mediated by a family of DNA methyltransferases 
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(Dnmt) that exhibit distinct functions.  In mammals, the Dnmt1 enzyme maintains 

CpG methylation following cellular replication, while Dnmt3 isoforms perform de 

novo methylation (Bestor 2000; Chen, Ueda et al. 2003).  In general, CpG 

methylation is indicative of transcriptional repression, whereas actively 

expressed genes are hypomethylated (Bird 2002).  Mounting evidence suggests 

a functional interplay between the H3-K9 and DNA methylation machineries.  

Nucleosomes methylated at H3-K9 present a docking site for heterochromatin-

associated proteins, including isoforms of HP1 (Bannister, Zegerman et al. 2001; 

Lachner, O'Carroll et al. 2001).  The HP1α isoform interacts with Dnmt3, which 

may then target local CpG sites for methylation (Fuks, Hurd et al. 2003).  

Modified CpG sites interact with a specialized set of DNA binding proteins (e.g., 

MeCP2) that form complexes with HDACs and HMTs (Jones, Veenstra et al. 

1998; Fuks, Hurd et al. 2003).  Thus, recruitment of G9a or Suv39h1/2 

suppresses gene expression through a self-reinforcing mechanism that relies on 

extensive cross-talk between the histone and DNA methylation machineries.  In 

the context of antigen receptor gene assembly, the vast majority of 

recombinationally active loci are hypomethylated on CpG dinucleotides, whereas 

recombinationally inert loci exhibit CpG hypermethylation (Bergman, Fisher et al. 

2003).  Moreover, CpG methylation has been shown to directly suppress V(D)J 

recombination of ectopic or transgenic substrates (Engler, Haasch et al. 1991; 

Hsieh, Gauss et al. 1992; Demengeot, Oltz et al. 1995).   

  Chromatin modifications and transcription factors serve as binding 

platforms for ATP-dependent complexes that remodel neighboring nucleosomes 
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and expose associated DNA (Kingston and Narlikar 1999).  Three major families 

of remodeling complexes have been characterized to date.  Two of these 

families, termed ISWI and Mi-2, function mainly as transcriptional repressors 

(Emerson 2002; Narlikar, Fan et al. 2002).   In contrast, members of the 

SWI/SNF family facilitate transcription of nucleosomal substrates and can 

interact with the activation domains of TFs (Peterson and Workman 2000).  In 

keeping with the histone code, components of the SWI/SNF complex possess 

bromodomains to enhance binding at acetylated regions within the chromatin of 

expressed loci (Hassan, Neely et al. 2001).  Although the composition of 

SWI/SNF can vary, two general classes have been identified. These classes are 

functionally distinct and contain either Brg1 or Brm as their critical ATPase 

subunit (Kadam and Emerson 2003).  The precise mechanism of SWI/SNF 

action on nucleosome arrays has not been established. However, the functional 

outcome of SWI/SNF action is three-fold:  it alters the translational position of 

nucleosomes on DNA, it modifies histone octamers to increase DNA 

accessibility, and it loops out intervening DNA between nucleosome entry and 

exit sites (Kingston and Narlikar 1999; Kassabov, Zhang et al. 2003).  A link 

between nucleosome remodeling and V(D)J recombination is suggested by 

recent in vitro studies.  Pretreatment of mononucleosome substrates with 

SWI/SNF partially rescues RSS cleavage by RAG proteins (Kwon, Morshead et 

al. 2000).  Moreover, chromatin immunoprecipitation (ChIP) analyses revealed 

that Brg1 occupies regions within Ig and TCR loci that are recombinase-

accessible (Morshead, Ciccone et al. 2003). 
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Regulation of Chromatin Accessibility and V(D)J Recombination by  
Cis-Acting Elements 

 

  Gene expression programs are specified in large part by a collection of 

cis-acting elements that include transcriptional promoters, enhancers, locus 

control regions (LCRs), silencers, and boundary elements.  A primary function of 

these regulatory motifs is to dock TFs that indirectly modulate the accessibility of 

neighboring chromatin.  The observed link between germline transcription and 

recombination of gene segments suggests these two processes share common 

regulatory elements.  Consistent with this possibility, transcriptional control 

elements are scattered throughout TCR and Ig loci.  Promoters and enhancers 

within these loci are mostly arranged in a split configuration, which may afford 

modular control of transcription and/or recombination at distinct clusters of gene 

segments.   

  This regulatory model was confirmed in early studies using TCRβ or TCRδ 

transgenic substrates, which demonstrated a direct role for transcriptional 

enhancers in targeting their efficient recombination (Ferrier, Covey et al. 1990; 

Lauzurica and Krangel 1994).  Likewise, recombination of chromosomal 

substrates in cell models requires the inclusion of any active enhancer/promoter 

combination, even those of viral origin (Oltz, Alt et al. 1993; Sikes, Suarez et al. 

1999).  Germline deletion of enhancers or promoters within antigen receptor loci 

consistently impairs rearrangement of linked gene segments.  Together, these 

studies demonstrate that the biologic action of V(D)J recombinase is tightly 
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regulated by promoters and enhancers, which serve as accessibility control 

elements to guide antigen receptor gene assembly and lymphocyte development.   

 

Regulation of TCRβ gene assembly 

  The TCRβ locus provides an excellent model for cis-acting regulation 

because the DβJβ region contains only a single enhancer (Eβ) and one germline 

promoter in each DβJβ cluster (Fig. 2).  Eβ function is T lineage-specific and is 

activated at the earliest stage of thymocyte development (McDougall, Peterson et 

al. 1988).  Accordingly, inclusion of Eβ in a transgenic TCRβ minilocus activates 

its recombination in DN thymocytes (Ferrier, Covey et al. 1990).  The ACE 

function of Eβ was confirmed by its targeted deletion in mice, which cripples 

recombination at both DβJβ clusters (Bories, Demengeot et al. 1996; Bouvier, 

Watrin et al. 1996).  The Eβ knockout also ablates germline transcription of both 

DβJβ clusters and converts their associated chromatin modifications into a 

heterochromatic pattern (e.g., H3/H4 hypoacetylation and CpG hypermethylation) 

(Mathieu, Hempel et al. 2000; Spicuglia, Kumar et al. 2002).  Interestingly, the 

ACE function of Eβ can be replaced with a heterologous enhancer.  In transgenic 

miniloci, the IgH enhancer, Eµ, can target DβJβ recombination in both B and T 

lineage cells (Ferrier, Covey et al. 1990).  However, targeted replacement of the 

endogenous Eβ element by Eµ permits TCRβ recombination in thymocytes but 

not in B lineage cells, where Eµ normally functions (Bories, Demengeot et al. 

1996).  These findings suggest that a negative regulatory element, which is 
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missing from the transgenic substrate, may repress Eµ function in precursor B 

cells if the enhancer is positioned within the TCRβ locus. 

  A second reason that many studies of accessibility control have focused 

on the TCRβ locus is the extensive characterization of a germline promoter 

associated with the Dβ1 gene segment.  This promoter, called PDβ1, is 

positioned directly 5’ of Dβ1, includes a consensus TATA sequence within the 

5’Dβ-RSS, and directs germline transcription through the Dβ1Jβ cluster in pro-T 

cells (Sikes, Gomez et al. 1998; Doty, Xia et al. 1999).  Germline transcription 

analyses indicate the presence of an analogous promoter near Dβ2; however, 

the putative PDβ2 element remains to be characterized (Whitehurst, 

Chattopadhyay et al. 1999). 

  The essential ACE function of PDβ1 in TCRβ gene assembly has been 

demonstrated at both the endogenous locus and in model substrates (Sikes, 

Suarez et al. 1999; Whitehurst, Schlissel et al. 2000).  Deletion of PDβ1 cripples 

transcription and rearrangement of the Dβ1Jβ but not the Dβ2Jβ cluster, 

suggesting that the promoter may influence chromatin accessibility over a limited 

range (Whitehurst, Chattopadhyay et al. 1999).  In this regard, DβJβ 

recombination in minilocus substrates is severely impaired by moving PDβ1 only 

400 bp from its native location, even though the promoter remains 

transcriptionally active (Sikes, Meade et al. 2002).   

  In contrast to DβJβ rearrangement, much less is known about the cis-

acting elements that regulate the second step of TCRβ gene assembly, 

VβDβJβ recombination.  Vβ gene segments are clearly active for germline 
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transcription and exhibit hallmarks of active chromatin in DN cells (Senoo and 

Shinkai 1998; Jackson and Krangel 2005). However, neither of these features 

are altered in Eβ knockout thymocytes, suggesting this element does not control 

chromatin accessibility at Vβ segments (Mathieu, Hempel et al. 2000).  The 

additional element(s) that controls Vβ accessibility likely is not located between 

the Vβ cluster and Dβ1 because germline deletion of this region has no effect on 

TCRβ gene assembly (Senoo, Wang et al. 2003).  Recent studies have 

demonstrated that Vβ promoters, which drive transcription of rearranged VβDβJβ 

exons, also contribute an ACE function for their recombination.  Deletion of the 

Vβ13 promoter significantly inhibits its rearrangement in cis; however, allelic 

exclusion of the gene segment remained intact (Ryu, Haines et al. 2004).  

Accessible chromatin is restricted to regions surrounding Vβ segments in DN 

cells rather than spread throughout the entire Vβ cluster (Jackson and Krangel 

2005).  Together, these findings suggest that Vβ promoters may function as 

enhancer-independent ACEs to induce highly localized changes in chromatin and 

target Vβ gene segments for recombination.  However, validation of this model 

awaits additional Vβ promoter knockouts and a more extensive characterization 

of chromatin in thymocytes from these animals. 

 

Regulation of additional TCR and Ig genes 

    In addition to insights gained by examination of the TCRβ locus, much has 

been learned by studying genetic loci that encode the five other antigen 
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receptors.  This section describes several unique aspects of cis-acting regulation 

in these additional TCR and Ig loci.    

  Transcription within the TCRα/δ locus is controlled by distinct enhancers.  

The Eα element is positioned downstream of Cα, while Eδ is situated between 

the Vα and Jα clusters (Fig. 2).  Targeted deletion of the Eα results in a severe 

reduction of germline Jα transcription and VαJα rearrangement in developing 

thymocytes (Sleckman, Bardon et al. 1997).  More recent studies have shown 

that Eα controls not only the Jα cluster but also affects germline transcription and 

chromatin modifications at the subset of proximal Vα gene segments that are 

used preferentially in DP cells (Hawwari and Krangel 2005).  Thus, the ACE 

function of Eα extends over an astounding range of at least 400 kb.   

  Elimination of Eα did not significantly alter the level of TCRδ 

rearrangement but attenuated transcription of rearranged TCRδ genes 

(Sleckman, Bardon et al. 1997).  In contrast, germline deletion of Eδ severely 

impairs recombination of TCRδ gene segments, but spares VαJα 

rearrangement (Monroe, Sleckman et al. 1999).  Interestingly, regional control  

within the TCRα/δ locus by the two separate enhancers cannot be explained by 

enhancer location because replacement of Eα with Eδ fails to restore TCRα 

recombination (Bassing, Tillman et al. 2003).   

  The promoter elements that control transcription at the TCRα/δ locus have 

been studied in considerable detail.  A germline promoter, termed T early alpha 

(TEA) is positioned upstream of the most 5’ Jα (Jα61) gene segment.  A 

localized ACE function for TEA was confirmed by its germline deletion, which 
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abrogates both transcription and recombination specifically of 5’ Jα segments 

(Villey, Caillol et al. 1996).  Furthermore, recent studies indicate that a series of 

at least four germline promoters control the accessibility of specific regions within 

the Jα cluster (Hawwari, Bock et al. 2005). 

   Gene expression at the Igκ locus is controlled by a collection of cis-acting 

elements that includes three enhancers: one in the Jκ/Cκ intron (iEκ), a second 

located 9 kb downstream of Cκ (3’Eκ), and a recently defined element, called Ed, 

positioned downstream of 3’Eκ (Fig. 2) (Gorman and Alt 1998; Liu, George-

Raizen et al. 2002).  To date, the ACE functions of only iEκ and 3’Eκ have been 

tested by germline deletions.  Single deletions of either enhancer significantly 

impair VκJκ rearrangement (5-10X each), while a dual Eκ/3’Eκ deletion 

completely cripples Jκ transcription and recombination in cis.  These results 

suggest that a collaborative effort between cis-acting enhancers is required for 

efficient transcription and rearrangement to occur at the Igκ locus.  Pre-B cells 

that fail to generate an alloreactive Igκ allele proceed to rearrange their Igλ locus.  

Consistent with the emerging theme that promoters regulate accessibility to 

recombinase in a highly localized manner, targeted insertion of a neo expression 

cassette upstream of Jλ1 dramatically increases its germline transcription and 

rearrangement (Sun and Storb 2001).  Thus, the strength of a promoter driving 

Jλ germline transcription, rather than its specific architecture, may determine the 

efficiency of recombination at Igλ.   
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Role of Transcription in Accessibility Control of V(D)J Recombination 

  Cis-acting elements regulate chromatin accessibility and recruit factors 

that facilitate efficient transcription of linked genes.  Numerous studies 

established tight spatial and temporal correlations between transcription and 

changes in chromatin accessibility that render gene segments accessible to 

V(D)J recombinase.  These studies suggest that transcription itself may regulate 

the recombination potential of gene segments.  Alternatively, chromatin 

alterations that generate recombinase accessibility may coincidentally permit 

transcription as a byproduct of chromatin opening at promoters. 

  Many studies support a role for transcription in accessibility control 

mechanisms.  Expression of transfected recombination substrates almost 

invariably correlates with their recombination efficiencies (Blackwell, Moore et al. 

1986; Oltz, Alt et al. 1993).  Targeted deletion of germline promoters that drive 

transcription through linked gene segments block their efficient rearrangement 

(Villey, Caillol et al. 1996; Whitehurst, Schlissel et al. 2000; Sikes, Meade et al. 

2002; Hawwari, Bock et al. 2005).  Mice defective for IL-7 signaling exhibit a 

dramatic reduction in both transcription and recombination of distal VH gene 

segments (Corcoran, Riddell et al. 1998).   

  Despite these findings, mounting evidence suggests that promoters and 

enhancers function as ACEs via mechanisms that are independent of 

transcription.  Numerous examples have been reported where transcription of 

gene segments is insufficient for their recombination (Okada, Mendelsohn et al. 

1994; Tripathi, Mathieu et al. 2000).   Certain VH segments are transcribed in 
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wild-type or PAX-5-deficient pro-B cells but are not rearranged efficiently 

(Angelin-Duclos and Calame 1998; Hesslein, Pflugh et al. 2003).  Moreover, 

targeted insertion of Eα adjacent to the Vβ12 segment drives its transcription in 

DP thymocytes but fails to target it for rearrangement (Jackson, Kondilis et al. 

2005).   

     Conversely, several examples of transcription-independent recombination 

have been reported.  Tethering of the glucocorticoid receptor to episomal 

substrates disrupts nucleosomal arrays at neighboring gene segments and leads 

to their recombination in the absence of detectable transcription (Cherry and 

Baltimore 1999).  Likewise, inversion of the PDβ1 promoter in chromosomal 

substrates cripples transcription through DβJβ gene segments but DβJβ 

rearrangement is unaffected (Sikes, Meade et al. 2002).  Thus, a regulatory 

model has emerged in which transcriptional read through of gene segments is 

neither necessary nor sufficient for their recombination.  Instead, the ACE 

function of promoters is necessary to induce localized changes in chromatin 

accessibility that facilitates recognition by the RAG complex.  It remains likely, 

however, that transcription can serve to either augment or to propagate 

recombinase accessibility beyond promoter-proximal regions. 

  Classic sterile transcripts initiate from either germline or V segment 

promoters and proceed in a sense direction through target gene segments and 

RSSs.  However, recent studies have shown that a second form of germline 

transcription exists within the VH cluster.  Corcoran and colleagues detected both 

genic and intergenic transcripts through the VH region in pro-B cells (Bolland, 
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Wood et al. 2004).  These newly identified RNAs were expressed in an anti-

sense orientation relative to the VH promoters and coding regions.  Importantly, 

anti-sense transcription is developmentally regulated and correlates with the 

targeting of VH gene segments for recombination (i.e., activated subsequent to 

DHJH recombination and extinguished following VHDHJH rearrangement).  

Analogous to its function at the β-globin locus (Gribnau, Diderich et al. 2000), 

anti-sense transcription may play an important role in the initiation and/or 

propagation of remodeling events that extend chromatin accessibility over the 

broad VH region.   

 

Control of Recombinase Accessibility by Chromatin Modifications and 
Remodeling 

 
        Although it is clear that accessibility to V(D)J recombinase requires 

chromatin remodeling, the epigenetic and biochemical mechanisms involved in 

this process are just beginning to emerge.  Similar to studies of gene expression, 

numerous correlations now exist between chromatin modifications, nuclease 

sensitivity, and V(D)J recombination.  Despite these links, causal relationships 

between many of these processes have not been established.  Moreover, 

tantalizing new data suggest that RAG proteins play a more direct role in bridging 

chromatin and recombination because the C-terminus of RAG-2 binds directly to 

histones in vitro (West, Singha et al. 2005).  This may translate in vivo to a 

regulatory scheme in which the RAG complex associates with higher affinity to 

histones bearing specific modifications, increasing the local concentration of 

recombinase at specific RSSs.   
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CpG methylation 

 Methylation of CpG dinucleotides is an important component of many 

mechanisms that enforce heritable silencing of genetic loci.  Accordingly, 

hypermethylated regions within the genome generally adopt inaccessible 

chromatin configurations (Vermaak, Ahmad et al. 2003).  The repressive nature 

of this DNA modification is likely due to the recruitment of methyl-CpG binding 

proteins, such a MeCP2, which interact with HDAC activities and can recruit 

nucleosome remodeling complexes that establish a repressive chromatin 

environment (Nan, Ng et al. 1998; Fuks, Hurd et al. 2003).  Consistent with this 

model, gene segments located in regions of CpG hypermethylation are usually 

silent with respect to V(D)J recombination (Bergman, Fisher et al. 2003).  Thus, 

erasure of CpG methylation is thought to be a prerequisite for the establishment 

of a recombinase accessible locus. 

  A primary function of ACEs may be to target demethylation or to protect 

gene segments from de novo methylation (Demengeot, Oltz et al. 1995; 

Mostoslavsky, Singh et al. 1998).  Deletion of either PDβ1 or Eβ from the 

endogenous TCRβ locus produces a dramatic increase in CpG methylation and a 

corresponding decrease in nuclease sensitivity within the DβJβ cluster (Mathieu, 

Hempel et al. 2000; Whitehurst, Schlissel et al. 2000).  In one reported instance, 

CpG methylation was shown to directly suppress V(D)J recombination.  The 

3’Dβ1-RSS contains a CpG dinucleotide.  Analysis of joins at TCRβ loci lacking 

PDβ1 suggested that methylation at this dinucleotide is incompatible with RAG-
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mediated cleavage (Whitehurst, Schlissel et al. 2000).  Subsequent in vitro 

studies confirmed this interpretation (Nakase, Takahama et al. 2003).  However, 

because the vast majority of RSSs lack a CpG motif, the primary effect of CpG 

methylation at antigen receptor loci likely is to inhibit chromatin accessibility of 

gene segments to recombinase. 

  Changes in DNA methylation play a dual regulatory role at the Igκ locus, 

ensuring its stage-specific activation while restricting functional rearrangement to 

a single Igκ allele (Bergman and Cedar 2004).  During the pro-Bpre-B cell 

transition, a single, randomly selected Igκ allele undergoes demethylation within 

the JκCκ region (Mostoslavsky, Singh et al. 1998).  The demethylated allele 

exhibits numerous hallmarks of an accessible locus, including early replication, 

germline Jκ transcription, and histone hyperacetylation (Goldmit, Ji et al. 2005).  

In contrast, the remaining hypermethylated allele associates with repressive 

chromatin and is decorated with the heterochromatin protein, HP1.  Monoallelic 

demethylation is enhancer-dependent (iEκ and 3’Eκ are required) and the 

hypomethylated allele is indeed targeted for the vast majority of VκJκ 

recombination (Mostoslavsky, Singh et al. 1998).  Thus, ACE-mediated 

demethylation may be a primary mechanism for maintaining allelic exclusion at 

Igκ.   

 

Histone modifications 

  In general, gene segments within recombinationally active loci exhibit the 

same pattern of histone modifications that characterize expressed genes.  For 
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example, recombinogenic DβJβ clusters in pro-T cells possess high levels of H3-

K9 and H4 acetylation, high levels of H3-K4 methylation, but low levels of H3-K9 

methylation (Tripathi, Jackson et al. 2002; Morshead, Ciccone et al. 2003).  The 

opposite pattern of histone modifications is seen at the DβJβ region in pro-B cells 

(Morshead, Ciccone et al. 2003).  These correlative data strongly suggest that 

the histone code is a primary determinant in controlling tissue-, stage-, and allele-

specific changes in chromatin accessibility to the RAG complex. 

 

Histone acetylation 

  Numerous correlations have emerged between H3/H4 acetylation and the 

recombination potential of antigen receptor gene segments (McMurry and 

Krangel 2000; Chowdhury and Sen 2003; Morshead, Ciccone et al. 2003; 

Espinoza and Feeney 2005).  These data suggest that histone hyperacetylation 

is a necessary component of recombinase accessibility; however, definitive 

cause/effect relationships between these two processes have not been 

established.  A growing body of evidence indicates that histone hyperacetylation 

clearly is not sufficient for targeting rearrangements.  Deletion of a germline 

promoter left histones hyperacetylated over most of the Dβ1Jβ cluster in an 

artificial TCRβ minilocus, but these gene segments failed to rearrange 

(Whitehurst, Schlissel et al. 2000).  A similar disconnect between 

hyperacetylation and recombination was reported for distal VH gene segments in 

pro-B cells from PAX-5-deficient mice (Hesslein, Pflugh et al. 2003). 
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  Hypoacetylation of H3/H4 is clearly a feature of recombinationally inert 

gene segments.  The conversion from a hyper- to a hypoacetylated status at H3-

K9 appears to be an important component of allelic exclusion.  During the pro-

Bpre-B cell transition, the loss of IL-7R signaling leads to a simultaneous 

reduction in acetylation levels and chromatin accessibility at VH gene segments 

(Chowdhury and Sen 2003).   A similar reduction in acetylation is observed at Vβ 

segments during the DNDP transition (Tripathi, Jackson et al. 2002).  Little is 

known about the HATs and HDACs that mediate changes in the acetylation 

status of antigen receptor loci.  However, deletion of Eβ perturbs the ratio of HAT 

complexes at the germline promoter region, leading to an increased occupancy 

by P300 at expense of CBP and PCAF (Spicuglia, Kumar et al. 2002).  The 

shifting balance of HAT complexes may alter the precise array of H3 and H4 

lysine residues that are targeted for acetylation and thereby fail to present the 

proper docking platform for requisite chromatin remodeling complexes (Agalioti, 

Chen et al. 2002). 

 

H3-K9 methylation 

  Chromatin at recombinationally inert loci is invariably hypoacetylated at 

H3-K9 but is enriched for methylation on this histone residue (Morshead, Ciccone 

et al. 2003; Johnson, Pflugh et al. 2004).  For example, VH segments display a 

tissue-specific difference in di-methyl H3-K9, with a hypermethylated status in 

thymocytes and non-lymphoid cells versus a hypomethylated/hyperacetylated 

status in pro-B cells (Johnson, Pflugh et al. 2004).  This tissue-specific erasure of 
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H3-K9 methylation at VH segments requires the expression of PAX-5 in pro-B 

cells.  Thus, PAX-5 potentially regulates VHDHJH recombination at two distinct 

levels – IgH locus contraction and revision of chromatin modifications at the VH 

cluster (Fuxa, Skok et al. 2004; Johnson, Pflugh et al. 2004).  In contrast to its 

tissue-specific regulation, H3-K9 di-methylation apparently is not involved in 

stage-specific control of VHDHJH recombination because the VH cluster 

remains hypomethylated in pre-B cells after allelic exclusion inhibits their 

recombination (Johnson, Pflugh et al. 2004).  However, the status of tri-methyl 

H3-K9, a modification that has been implicated in more stable forms of gene 

repression, has not been examined at the VH or any other gene segment cluster.   

  Unlike other histone modifications, a direct cause/effect relationship 

between H3-K9 methylation and recombinase accessibility has been established 

using a TCRβ minilocus.  Recruitment of the G9a histone methyltransferase 

(HMT) to active chromosomal substrates cripples both germline transcription and 

DβJβ recombination even when functional ACEs are present (Osipovich, Milley 

et al. 2004).  The repressive effects of G9a recruitment on histone modifications 

and substrate accessibility are highly localized and reversible in nature.  These 

features are reminiscent of the transient silencing induced at the TdT and RAG 

loci in DP thymocytes, where only small regions proximal to their promoters are 

reversibly methylated at H3-K9 (Su, Brown et al. 2004).  In contrast, persistent 

and widespread H3-K9 methylation occurs upon the heritable silencing of these 

genes during DPSP differentiation.  It remains possible that pro-B cells employ 

a similar strategy to rapidly establish inaccessible chromatin at VH segments for 
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allelic exclusion (and perhaps pro-T cells for Vβ segments).  This may occur by 

recruitment of an HMT to establish highly localized regions of H3-K9 di-

methylation at VH segments, which would rapidly extinguish their accessibility to 

recombinase.  A more stable form of repression may develop upon differentiation 

to the pre-B cell stage via widespread distribution of tri-methyl H3-K9 and CpG 

methylation throughout the entire VH cluster.   

 

H3-K27 methylation 

  Methylation of H3-K27 normally associates with the stable repression of 

transcription units (Peters, Kubicek et al. 2003).  The methyl-H3-K27 mark is 

imprinted by Polycomb group proteins, such as the Ezh2 methyltransferase, 

which is a critical component of the PRC2 repressor complex (Cao, Wang et al. 

2002; Kuzmichev, Jenuwein et al. 2004).  To date, there have been no reports of 

H3-K27 methylation status at recombinase accessible versus inaccessible 

antigen receptor loci.  This may be due to the limited utility of available antibodies 

for ChIP assays.  However, the Ezh2 gene has been deleted specifically in B 

lineage cells using a conditional knockout approach.  Surprisingly, the Ezh2 

deletion inhibits rearrangement of distal VH gene segments but has no effect on 

their germline transcription or histone acetylation (Su, Basavaraj et al. 2003).  

Ablation of Ezh2 reduces the overall levels of histone methylation at distal VH 

segments but it remains unclear whether this decrease corresponds to 

methylation at the H3-K27 residue.  Because Ezh2 and H3-K27 methylation are 
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normally repressive, this unexpected finding may reflect an indirect rather than a 

direct effect of the HMT on recombinational control at the distal VH cluster. 

 

Nucleosome remodeling  

  In vitro studies have clearly established that positioned nucleosomes form 

potent barriers for RAG-mediated cleavage of substrates (Kwon, Imbalzano et al. 

1998).  This reductionist approach also revealed that the precise phasing of a 

nucleosome relative to an RSS profoundly influences the efficiency of RAG 

cleavage.  Importantly, treatment of nucleosomal substrates with Brg1, the 

ATPase component of many SWI/SNF remodeling complexes, rescues RAG 

cleavage (Kwon, Morshead et al. 2000).  These studies are even more exciting 

given the recent finding that many RSSs have an intrinsic nucleosome 

positioning function, which may provide an inherent protection from inappropriate 

recombination until the associated nucleosome is remodeled (Baumann, Mamais 

et al. 2003). Thus, recombinase accessibility at compatible RSSs almost certainly 

relies on the reorganization of resident nucleosomes via the action of ACEs.  

  In this regard, a subset of histone modifications (e.g., acetylation), as well 

as the basal transcription machinery itself, can recruit SWI/SNF complexes to 

sites of active transcription (Hassan, Neely et al. 2001).  Recent ChIP studies 

have revealed that the catalytic component of this remodeling complex, Brg1, is 

broadly associated with clusters of gene segments that are poised for 

recombination (Morshead, Ciccone et al. 2003).  Importantly, this association is 

enhancer-dependent for the DβJβ cluster in pro-T cells (Spicuglia, Kumar et al. 
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2002).  A medium resolution map of nucleosomes at the DβJβ cluster suggests 

that deletion of Eβ may increase nucleosome density at the recombinase-

inaccessible Dβ segment (Spicuglia, Kumar et al. 2002).  Despite these 

advances, large gaps exist in our knowledge of the genetic and epigenetic 

requirements for recruitment of remodeling complexes to antigen receptor loci.  

Likewise, the ACE-dependent features of nucleosome organization and 

reorganization that occurs at targeted gene segments needs to be addressed. 

 

Statement of the Problem 

  Although precursor T and B lymphocytes share a common enzyme and a 

common substrate, V(D)J recombination is strictly regulated at several levels 

including  tissue and stage-specificity.  Previous experiments have shown that 

this is not due to differential expression of the RAG recombinase since this 

enzyme complex is expressed throughout T and B cell lymphopoeisis.  

Therefore, it has been proposed that substrate specificity is regulated by 

changes in the chromatin accessibility at V, D, and J gene segments.  In keeping 

with this hypothesis, it has been shown that germline transcripts of antigen 

receptor genes originate from rearranging loci (Van Ness, Weigert et al. 1981; 

Yancopoulos and Alt 1985).  Due to this discovery, the role of transcriptional 

control elements in the regulation of V(D)J recombination quickly came under 

scrutiny. 

  The TCRβ locus, like all antigen receptor loci, contains multiple cis-acting 

elements including a single enhancer (Eβ) and two germline promoters in its 
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DβJβ clusters.  In mice, deletion of either transcriptional control element, leads to 

a significant loss in levels of transcription as well as DβJβ rearrangement.  

While deletion of Eβ cripples rearrangement across the entire DβJβ cluster, 

removal of the germline promoter, PDβ1, specifically inhibits recombination and 

transcription of the Dβ1Jβ gene family (Bories, Demengeot et al. 1996; Bouvier, 

Watrin et al. 1996; Whitehurst, Chattopadhyay et al. 1999).  Interestingly, studies 

using an artificial substrate, the TCRβ minilocus, have demonstrated that 

promoter positioning is critical in directing efficient rearrangement (Sikes, Meade 

et al. 2002).  Relocation of the promoter to a position less than 500 bp from its 

native position results in a considerable decrease in recombination.  

Furthermore, rearrangement of Dβ and Jβ gene segments can occur despite 

mutations that abrogate transcription through the Dβ1Jβ cluster.  Together, these 

data suggest that in addition to directing transcription an alternate role exists for 

the germline promoter, PDβ1, in directing DβJβ rearrangement.     

  The primary goal of the research presented in this dissertation is to define 

the molecular and epigenetic mechanisms by which cis-acting elements in the 

TCRβ locus regulate V(D)J recombination.  Specifically, my studies focus on the 

individual and cooperative impact of the germline promoter, PDβ1, and the 

enhancer, Eβ, on chromatin structure during DβJβ rearrangement in 

thymocytes.     
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CHAPTER II 

 

DIFFERENTIAL REGULATION OF CHROMATIN ACCESSBILITY BY  
CIS-ACTING ELEMENTS 

 

Introduction   

In lymphocytes, the regulation of antigen receptor loci involves the 

concerted action of promoters and enhancers that are separated by large 

distances.  A collection of these cis-acting elements controls not only the 

transcription of functional immunoglobulin (Ig) and T-cell receptor (TCR) genes, 

but also regulates a unique genetic process required for their assembly (Oltz 

2001; Krangel 2003; Jung and Alt 2004).  The assembly process, termed V(D)J 

recombination, creates a diverse repertoire of  Ig and TCR variable region genes 

from large arrays of V (variable), D (diversity), and J (joining) gene segments.  

Rearrangement of the gene segments in precursor lymphocytes is mediated by 

an enzymatic complex (V(D)J recombinase) containing RAG-1 and RAG-2 

proteins (Schatz, Oettinger et al. 1989; Oettinger, Schatz et al. 1990; Hesslein 

and Schatz 2001).  The RAG complex targets Recombination Signal Sequences 

(RSSs) that directly flank the coding region of each gene segment.  Individual 

RSSs include a conserved heptamer/nonamer pair separated by a non-

conserved spacer that is either 12 or 23 base pairs (bp) in length.  For two gene 

segments to undergo recombination, one segment must be flanked by a 12 bp 

RSS and the other segment by a 23 bp RSS (12/23 rule).  Following recognition 

of two compatible RSSs, the RAG complex introduces double-stranded breaks 
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precisely at the RSS/coding region borders.  The resultant DNA ends are 

resolved by ubiquitous repair factors to form signal joints and chromosomal 

coding joints (Roth, Lindahl et al. 1995; Hesslein and Schatz 2001; Bassing, 

Swat et al. 2002).  Thus, all Ig and TCR rearrangements share a common 

enzyme/substrate system (RAG-1/2 and RSSs).    

Despite this shared recombination system, the assembly of antigen 

receptor genes is controlled at numerous levels, including tissue- and stage-

specificity.  For example, TCR gene rearrangements are restricted to developing 

thymocytes, whereas complete Ig gene assembly occurs only in precursor B cells 

(Oltz 2001; Krangel 2003; Mostoslavsky, Alt et al. 2003).  In the context of stage-

specificity, thymocytes initiate rearrangement of the TCRβ locus in pro-T cells 

(DβJβ then VβDβJβ).  Assembly of an in-frame TCRβ gene leads to the 

expression of a pre-T cell receptor, differentiation of the pro-T cell clone to the 

pre-T cell stage, and the initiation of TCRα rearrangement (Shinkai, Koyasu et al. 

1993).  Prior studies have shown that the tissue- and stage-specific aspects of 

V(D)J recombination are governed by changes in the accessibility of gene 

segment clusters to the RAG1/2 complex (Stanhope-Baker, Hudson et al. 1996).  

Chromatin associated with rearranging gene segments adopts a more “open” 

configuration than chromatin at recombinationally inert regions within a locus 

(Mathieu, Hempel et al. 2000; Chowdhury and Sen 2003).  Recombinase 

accessibility has also been correlated with the transcription of unrearranged gene 

segments, suggesting that the two processes share common regulatory elements 

(Yancopoulos and Alt 1985).  Indeed, deletion of either transcriptional promoters 
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or enhancers from antigen receptor loci dramatically impairs V(D)J recombination 

in cis (Bories, Demengeot et al. 1996; Bouvier, Watrin et al. 1996; Whitehurst, 

Chattopadhyay et al. 1999; Krangel 2003; Mostoslavsky, Alt et al. 2003).  These 

findings indicate that enhancers and germline promoters function as accessibility 

control elements (ACEs) to regulate the tissue- and stage-specific assembly of 

antigen receptor genes. 

The TCRβ locus has served as a tractable model to study the mechanisms 

by which ACEs regulate V(D)J recombination.  The mouse TCRβ locus consists 

of approximately 30 Vβ genes located upstream of two distinct DβJβ clusters 

(refer to Figs. 2 and 4).  In pro-T cells, transcription of each DβJβ cluster is 

initiated at germline promoters that neighbor the Dβ gene segments (PDβ1 and 

PDβ2) and require the activity of a single enhancer located at the 3’ end of the 

locus (Eβ) (Bories, Demengeot et al. 1996; Bouvier, Watrin et al. 1996; Sikes, 

Gomez et al. 1998; Whitehurst, Chattopadhyay et al. 1999).  Consistent with this 

regulatory architecture, deletion of Eβ abrogates rearrangement of both DβJβ 

clusters, while deletion of PDβ1 specifically impairs recombination at the Dβ1Jβ 

cluster.  The ACE function of PDβ1 is position-dependent in model recombination 

substrates and must reside proximal to the Dβ1 gene segment to direct its 

efficient rearrangement (Sikes, Meade et al. 2002).  Together, these findings 

suggest several possible models by which germline promoters and Eβ 

 coordinately regulate recombinase accessibility at the TCRβ locus.  For 

example, Eβ may function solely to activate the Dβ germline promoters.  These 

promoters would then serve as position-dependent ACEs to open chromatin 
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throughout the DβJβ clusters.  In this model, Eβ would exhibit no inherent ACE 

function in opening TCRβ chromatin.  Alternatively, Eβ may possess an 

independent ACE function that directs a generalized opening of chromatin 

throughout the DβJβ clusters.  However, activation of the germline promoters 

may be required to direct a highly localized form of chromatin remodeling that 

fully unmasks the neighboring Dβ-RSS for recombination.    

 To determine how ACEs control TCRβ gene assembly, I measured 

chromatin accessibility in thymocytes from mice lacking either the Dβ1 germline 

promoter (ΔPDβ1) or the Eβ enhancer element (ΔEβ).  I found that deletion of Eβ 

dramatically reduces chromatin accessibility throughout the DβJβ cluster, 

including Dβ- and Jβ-RSSs.  In contrast, deletion of PDβ1 significantly reduces 

the accessibility of chromatin associated with the proximally located Dβ1-RSS 

but spares accessibility at neighboring Jβ-RSSs.  These data indicate that 

distinct aspects of chromatin remodeling are orchestrated by each transcriptional 

control element to trigger TCRβ gene assembly.  
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Methods 

 

Cell Lines and Mice   

 The RAG-deficient pro-B (63-12) and pro-T cell lines (P5424) have been 

described previously (Shinkai, Rathbun et al. 1992; Chattopadhyay, Whitehurst 

et al. 1998).  These cells were maintained in RPMI 1640 medium supplemented 

with 10% fetal bovine serum, 1% L-glutamine, 1% Penicillin-Streptomyocin, and 

0.05 mM β-mercaptoethanol.  Analyses of wild-type TCRβ loci were performed 

using thymocytes from RAG1-deficient mice.  Mice harboring deletions of either 

Eβ or PDβ1 were bred onto a RAG-deficient background and have been 

described previously (Mathieu, Hempel et al. 2000; Whitehurst, Schlissel et al. 

2000).   

 

Restriction Endonuclease Sensitivity Assays  

 Nuclei were prepared from either cultured cells or primary lymphocytes (1 

x 107) by resuspension in NP-40 lysis buffer on ice for 5 minutes (10 mM Tris [pH 

7.4], 10 mM NaCl, 3 mM MgCl2, 0.5% NP-40, 0.15 mM spermine, and 0.5 mM 

spermidine) (Weinmann, Mitchell et al. 2001).  Cell nuclei were centrifuged (1000 

rpm, 5 min., 4˚C), washed with 100 µl of chilled RE digestion buffer (10 mM Tris 

[pH 7.4], 50 mM NaCl, 10 mM MgCl2, 0.2 mM  EDTA, 0.2 mM EGTA, 1 mM β-

Mercaptoethanol, 0.15 mM spermine, and 0.5 mM spermidine) (Weinmann, 

Mitchell et al. 2001), centrifuged, and resuspended in the recommended buffer 

for restriction enzyme digestion (50 µl, New England Biolabs).  The nuclei were 
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incubated on ice for 1 hour with increasing amounts of REs (refer to Fig. 5 legend 

for concentrations of each enzyme).  The RE digestions were terminated by the 

addition of 2X proteinase K buffer (50 µl, 100 mM Tris [pH 7.4], 200 mM NaCl, 2 

mM EDTA, and 1% SDS) and incubated at 56˚C for 1 hour.  Each DNA sample 

was then supplemented with 50 µl of 1X proteinase K buffer, 50 µl of RE 

digestion buffer, and 5 µl of proteinase K (10 mg/ml) and allowed to incubate 

overnight at 37˚C (Weinmann, Mitchell et al. 2001).  The genomic DNA was 

extracted with phenol/chloroform, treated with RNase A (20 µg, 4 hours, 37˚C), 

precipitated with ethanol, and resuspended in 200 µl TE buffer. 

 

Ligation-Mediated PCR   

 Genomic DNA (5 µg) isolated from RE-treated nuclei was ligated with 

linkers specific for overhangs resulting from each enzyme digestion in a 100 µl 

reaction (see Table 1 for linker sequences).  The linker-ligated DNAs (3 µl) were 

amplified using a nested PCR strategy with primers specific for the following 

regions within the endogenous TCRβ locus: the 3’Dβ1-RSS (Dβ1-RSS (HinfI)), 

Dβ1/Jβ1.1 intervening sequences (Dβ1(Hinf)Jβ1), the Jβ1.6-RSS (Jβ1.6-

RSS(PvuII)), and the 3’Dβ2-RSS (Dβ2-RSS(HinfI)) (see Table 2 for PCR primer 

sequences and reaction profiles).  The initial amplification was performed for 12 

cycles using a linker-specific primer and a TCRβ sequence-specific primer.  A 3 

µl aliquot of this reaction was used as template for a second, 25-cycle 

amplification with nested primers (see Table 2).  A control PCR assay for total 

DNA content (Cλ) has been described previously (Sikes and Oltz 1999).  A 
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separate PCR assay for enzyme cleavage efficiency in the constitutively 

expressed c-myc gene was performed using conditions shown in Table 2.  

Quantification of RES data was accomplished by PhosphorImager analysis (Fuji) 

and all values were normalized for total DNA content (Cλ).  
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Table 1.  RE accessibility assay linker sequences. 

 

 

 

 

Site of RE 
Digestion 

Linkers [BW1 and BW2(variable)] 

Dβ1-RSS (HinfI) BW1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
BW2(HinfI-1): 
 5’AATGAATTCAGATCTCCCGGGTCACCGC3’   

Dβ1(HinfI)Jβ1 BW1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
BW2(HinfI-2): 
 5’ATTGAATTCAGATCTCCCGGGTCACCGC3’ 

Jβ1.6-RSS (PvuII) BW1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
BW2 (PvuII): 
 5’GAATTCAGATC3’ 

Dβ2-RSS (HinfI) BW1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
BW2 (HinfI-2): 
 5’ATTGAATTCAGATCTCCCGGGTCACCGC3’ 

C-myc (HinfI) BW1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
BW2 (Hinf-3): 
 5’AGTGAATTCAGATCTCCCGGGTCACCGC3’ 

C-myc (PvuII) BW1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
BW2 (PvuII): 
 5’GAATTCAGATC3’ 
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Table 2.  RE accessibility assay nested PCR primer sequences and reaction 
profiles. 
 

1 Annealing temperature and cycle number 
 

 

PCR amplicon PCR primers and probes PCR 
conditions
1 

Comment 

Dβ1-RSS PCR1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
 5’TTATGGACGTTGGCAGAAGAGGAT3’ 
PCR2: 
 5’CCGGGAGATCTGAATTCATTC3’ 
 5’TGCATCCTTTGCTGCTAGGGCC3’ 
 5’GATCTAAACACATCTAGGCTTG3’ (probe) 

PCR1: 
60˚C, 12 
 
PCR2: 
60˚C, 25 

Fig. 
5,6,7,9 

Dβ1(Hinf)Jβ1 PCR1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
 5’GGTTCCTTTACCAAAGAAGACTTCTG3’ 
PCR2: 
 5’CCGGGAGATCTGAATTCAATC3’ 
 5’GCACAGTGCCATAGGATGAGGAG3’ 
 5’GAGTAATCGCTTTGTG3’ (probe) 

PCR1: 
62˚C, 12 
 
PCR2: 
62˚C, 25 

Fig. 9 

Jβ1.6-RSS PCR1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
 5’GGCATTCTGTGTCCAGAACACG3’ 
PCR2: 
 5’CCGGGAGATCTGAATTCCTGT3’ 
 5’CCCAGAGAAGAGCAAGCGACCAGGC3’ 
 5’GGTCATCCAACACAGGCACAACCCC3’ (probe) 

PCR1: 
62˚C, 12 
 
PCR2: 
62˚C, 25 

Fig. 5, 6, 
7 

Dβ2-RSS PCR1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
 5’GGTAGGGACCTTATCACTTCACTCC3’ 
PCR2: 
 5’CCGGGAGATCTGAATTCAATC3’ 
 5’CCTTATCACTTCACTCCTCCCACCC3’ 
 5’GGTGCCTACCCCAGAGCCTG3’(probe) 

PCR1: 
62˚C, 12 
 
PCR2: 
62˚C, 25 

Fig. 6, 7 

C-myc for  
Dβ1-RSS 
Dβ1(H)Jβ1, 
Dβ2-RSS 

PCR1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
 5’CCCTTGGGGAGAAGGACG3’ 
PCR2: 
 5’CCGGGAGATCTGAATTCACTC3’ 
 5’CCGCAACATAGGATGGAG3’ 
 5’GCTGCTTCCCACCCCGCCCC3’ (probe) 

PCR1: 
58˚C, 12 
 
PCR2: 
58˚C, 25 

Fig. 5, 6, 
7, 9 

C-myc for  
Jβ1.6-RSS 

PCR1: 
 5’GCGGTGACCCGGGAGATCTGAATTC3’ 
 5’GGGGAAGACCACTGAGGGGTC3’ 
PCR2: 
 5’CCGGGAGATCTGAATTCCTGC3’ 
 5’CACTGAGGGGTCAATGCACTCGG3’ 
 5’CGGAGAAGCTGGCCTCCTACC3’ (probe) 

PCR1: 
62˚C, 12 
 
PCR2: 
62˚C, 25 

Fig. 5, 6, 
7 
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Results 

 

Chromatin Accessibility of Dβ- and Jβ-RSSs 

 The nucleosomal structure of cellular DNA impedes its interaction with 

most non-histone proteins, including V(D)J recombinase (Kwon, Imbalzano et al. 

1998).  Germline promoters and enhancers within antigen receptor loci function 

to reorganize chromatin structure and generate accessibility to the RAG complex 

(Whitehurst, Chattopadhyay et al. 1999; Mathieu, Hempel et al. 2000).  However, 

the precise role of each ACE in the control of chromatin accessibility at individual 

RSSs is unknown.  For this purpose, we designed restriction endonuclease 

sensitivity (RES) assays that independently probe chromatin accessibility at 

specific Dβ- and Jβ-RSSs.  This experimental approach offers a distinct 

advantage over assays that monitor cleavage by the RAG complex because 

such assays require simultaneous accessibility at two compatible RSSs.  Thus, if 

an ACE deletion impairs accessibility at the Dβ- but not at Jβ-RSSs, RAG 

cleavage would be blocked at both gene segments.  However, the appropriate 

RES assays would reveal differential accessibility of chromatin at the Dβ- versus 

Jβ-RSS. 

 A potential complication of RES experiments is that certain restriction sites 

may lie in a DNA linker between two positioned nucleosomes.  In this case, the 

RE site would be accessible in all cells, independent of the ACE functions that 

regulate DβJβ rearrangement.  Indeed, preliminary experiments identified a 

small set of RE sites within the DβJβ cluster that were equally accessible in 
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nuclear chromatin from pro-T and non-T cells (data not shown).  Thus, an 

important criterion applied to each RES assay used in our studies is that a 

specific site must be accessible in cells poised for TCRβ assembly (pro-T cells), 

but inaccessible in other cell types.  We first probed chromatin accessibility at 

restriction sites that lie within three distinct RSSs: Hinf I sites at the 3’ Dβ1- and 

Dβ2-RSSs (Fig. 4, H#1 and H#2, respectively) and a Pvu II site in the Jβ1.6-RSS 

(Fig. 4, P#1).  Nuclei from two RAG-deficient cell lines that represent the pro-T 

(P5424) and pro-B stages (63-12) were treated with escalating concentrations of 

Hinf I or Pvu II.  In both cell types, the TCRβ locus is frozen in its germline 

configuration due to the lack of RAG proteins.  This feature of the cell model 

circumvents complications of ongoing DβJβ recombination that would delete 

RE targets in wild-type pro-T cells.  Genomic DNAs from the treated nuclei were 

analyzed by ligation mediated-PCR reactions (LM-PCR), which were designed to 

detect specific products of RE cleavage.  As shown in Figure 5, RE sites within 

the Dβ1- and Jβ1.6-RSSs were cleaved efficiently in the pro-T cell line but were 

largely resistant to cutting in the pro-B cell line (top panel).  These results cannot 

be attributed to global differences in the efficiency of RE digestion between the 

two cell lines because similar levels of Hinf I and Pvu II cleavage products were 

detected for sites in the ubiquitously expressed c-myc gene (Fig. 5, middle 

panel).  

 To verify the utility of these assays in vivo, we tested whether the 

accessibility of chromatin at the Dβ- and Jβ-RSSs exhibit tissue-specific 

differences in primary mouse lymphocytes.  Accordingly, we compared RE  
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Figure 4.  Schematic map depicting the DβJβ region of the mouse TCRβ locus 
(∼25 kb).  The locations of Hinf I (H) and Pvu II (P) sites used in the RE 
sensitivity assays are indicated.  Constant region exons (Cβ1 and Cβ2) are 
shown as a single box and the map is not drawn to scale.  
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Figure 5.   Nuclei from pro-T (P5424) and pro-B (63-12) cells were treated with 
increasing amounts of the indicated enzyme (0.1 and 1 U of Hinf I, 0.01 or 0.1 U 
of Pvu II).  Enzyme cleavage at the indicated site(s) was analyzed using LM-PCR 
and Southern blotting as described in the Methods section.  Control PCR assays 
for DNA content (Cλ) and enzyme cutting efficiency (c-myc) were performed 
using the same samples of Hinf I- or Pvu II-digested linker-ligated DNA.  The 
linearity of each assay was confirmed by serial dilutions of the maximally 
digested pro-T sample.   
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Figure 6.  Nuclei from RAG-deficient thymocytes, splenocytes, and bone marrow 
cells were analyzed using RES assays as described in Figure 5.  
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cleavage in nuclei obtained from RAG-deficient thymocytes (pro-T cells) versus 

nuclei from tissues in these mice that lack T-lineage cells (spleen and bone 

marrow).  Consistent with data from transformed cell lines, the Dβ1-, Dβ2-, and 

Jβ1.6-RSSs were cleaved efficiently in RAG-deficient thymocytes, whereas RE 

cleavage products were nearly undetectable in nuclei from spleen and bone 

marrow (Fig. 6).  Thus, the RES assays serve as bona fide readouts for changes 

in chromatin accessibility at these Dβ- and Jβ-RSSs. 

 

Differential regulation of RSS accessibility by PDβ  and Eβ  

 The critical first step of TCRβ gene assembly is DβJβ rearrangement, 

which requires the function of both known ACEs -- the Eβ enhancer and the Dβ1 

germline promoter (at the Dβ1Jβ cluster) (Bories, Demengeot et al. 1996; 

Bouvier, Watrin et al. 1996; Whitehurst, Chattopadhyay et al. 1999).  However, 

the overall function of each ACE in the regulation of long-range versus local 

chromatin accessibility at Dβ- and Jβ-RSSs is unknown.  Indeed, it remains 

unclear whether Eβ possesses an inherent ACE function or completely depends 

on its communication with PDβ to influence recombinase accessibility.  To 

address these fundamental issues, we monitored changes in chromatin 

accessibility at TCRβ loci in mice that lack either Eβ or the PDβ1 germline 

promoter.  The first mutation removes the core Eβ element (ΔEβ) and completely 

blocks DβJβ recombination in cis (Bouvier, Watrin et al. 1996).  The germline 

promoter knockout eliminates approximately 3 kb upstream of the Dβ1 gene 

segment, including the functional PDβ1 element (ΔPDβ1).  Recombination at the 
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Dβ1Jβ cluster is profoundly reduced in mice harboring the ΔPDβ1 mutation, 

whereas Dβ2Jβ rearrangement is unaffected (Whitehurst, Schlissel et al. 

2000).  

 To monitor the effects of ACE function on DβJβ accessibility, we obtained 

thymocytes from mice containing either wild-type (WT), ΔPDβ1, or ΔEβ alleles 

bred onto a RAG-deficient background.  As shown in Fig. 7, RES assays 

revealed substantial levels of chromatin accessibility at all three RSSs in RAG-/- 

thymocytes harboring wild-type TCRβ alleles (Dβ1-, Jβ1.6-, and Dβ2-RSSs).  In 

sharp contrast, RSSs throughout both DβJβ clusters were largely inaccessible to 

RE digestion in ΔEβ mice, even at the highest enzyme concentrations.  

Quantitative analysis of these data indicates that cleavage at the Dβ1-, Jβ1.6-, 

and Dβ2-RSS was inhibited five to ten-fold in the ΔEβ thymocytes (Fig. 8).  These 

data demonstrate that the deletion of Eβ impairs chromatin accessibility 

throughout both DβJβ clusters. 

 The dramatic decrease in Dβ1Jβ rearrangement observed at ΔPDβ1 

alleles may result from a loss of chromatin accessibility at either the Dβ1-RSS, 

the Jβ-RSSs, or at all RSSs within the gene segment cluster.  To distinguish 

between these possibilities, I performed RES assays on thymocytes from RAG-

deficient mice containing ΔPDβ1 alleles.  Consistent with its overall effect on 

DβJβ rearrangement, deletion of PDβ1 severely impaired accessibility to Hinf I 

at the 3’Dβ1-RSS but spared chromatin accessibility at an analogous site in the 

3’Dβ2-RSS.  When compared with WT TCRβ alleles, Hinf I cleavage at the  
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Figure 7.  Thymocyte nuclei from RAG-deficient mice containing either wild-type 
(WT), ΔEβ, or ΔPDβ1 alleles were treated with increasing concentrations of the 
indicated enzyme and analyzed as described in Figure 5. 
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Figure 8.  Quantification of LM-PCR assays shown in Figure 7.  Signal intensities 
for the RE cleavage products were measured using a Fuji PhosphorImager and 
normalized for DNA content (Cλ).  Results for RAG-/-ΔEβ and RAG-/-ΔPDβ1 
thymocytes are displayed as a percentage of the signals obtained from RAG-/- 
thymocytes (WT). 
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 3’Dβ1-RSS was reduced more than eight-fold in ΔPDβ1 thymocytes (Fig. 8).  In 

contrast, the PDβ1 deletion had only modest effects on chromatin accessibility at 

the Jβ1.6-RSS (approximately two-fold relative to the WT TCRβ allele) (Fig. 8).  

These data suggest that the ACE function of this germline promoter is largely 

restricted to the Dβ1 gene segment, while Eβ exhibits a much broader influence 

on chromatin accessibility that spreads throughout both DβJβ clusters.  

 To define the precise chromatin domains under the influence of PDβ1 and 

Eβ, I examined cleavage at additional Hinf I sites within the Dβ1Jβ cluster (Fig. 

9).  Consistent with chromatin accessibility at the RSSs, numerous Hinf I sites 

distributed throughout the Jβ1.4 to Jβ1.6 region were refractory to enzyme 

cleavage in ΔEβ thymocytes (~8-fold average reduction relative to WT).  

Accessibility at these same sites was only modestly inhibited upon deletion of the 

Dβ1 germline promoter.  Although the exact magnitude of changes in chromatin 

accessibility varied between Hinf I sites upon PDβ1 deletion, all of these sites 

were significantly less accessible upon deletion of Eβ.  Importantly, RE cleavage 

at the Hinf I site located most proximal to the Dβ1-RSS was relatively unaffected 

in ΔPDβ1 thymocytes (H#3, 450 bp 3’ to Dβ1, Fig. 9).  These data demonstrate 

that the PDβ1 germline promoter has a minimal range of influence on chromatin 

accessibility within the Dβ1Jβ cluster (< 450 bp).  Together, these findings 

indicate that Eβ serves as a promoter-independent ACE to regulate long-range 

chromatin accessibility at RSSs throughout both DβJβ clusters, with the 

exception of the Dβ1-RSS.  In contrast, the ACE function of PDβ1, which  
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Figure 9.  Thymocyte nuclei from the indicated TCRβ genotypes on a RAG-
deficient background were treated with Hinf I or Pvu II and analyzed as described 
in Figure 5.  The relative positions of RE sites are displayed in a schematic of the 
Dβ1Jβ cluster (top). 
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depends on Eβ directs a highly localized opening of chromatin that is required to 

render only the most proximal RSS accessible. 

 

Discussion 

 During Ig and TCR gene assembly, germline promoters and enhancers 

serve as accessibility control elements that direct chromatin remodeling at each 

locus and regulate the availability of RSSs to V(D)J recombinase (Oltz 2001; 

Krangel 2003; Jung and Alt 2004). Enhancers serve as location- independent 

regulatory elements, while the ACE function of germline promoters is highly 

dependent on their location relative to target gene segments (Sikes, Suarez et al. 

1999; Sikes, Meade et al. 2002).  However, little was known regarding the 

specific role of each ACE in controlling local versus long-range accessibility to 

RSSs. 

 Our studies indicate unique functions for the germline promoters and 

enhancer in opening DβJβ chromatin.  Loci lacking PDβ1 undergo Eβ-dependent 

remodeling that renders Jβ1-RSSs accessible for RE cleavage, while Dβ1-

proximal sequences remain inaccessible.  These data demonstrate that Eβ 

possesses an inherent ACE function independent of any interaction with the Dβ1 

germline promoter.  Notwithstanding, the generality of our finding that Eβ 

possesses an inherent ACE function is supported by previous studies showing 

that the Ig heavy chain enhancer Eµ can regulate chromatin accessibility at a 

prokaryotic promoter in the absence of any collaboration between these two  
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elements (Jenuwein, Forrester et al. 1997).  The inherent ACE function of Eβ is 

exerted throughout both Jβ clusters at distances of at least 15 kb.  Interestingly, 

proximal sequences downstream of Eβ remain hypoacetylated at histone 3 in 

thymocytes (Mathieu, Hempel et al. 2000), indicating a directionality for its ACE 

function. 

 Enhancer-mediated accessibility at the TCRβ locus also activates the Dβ 

germline promoters, which are uniquely required for highly localized remodeling 

of chromatin at the Dβ1-RSS.  The spatially restricted ACE function of germline 

promoters provides a unifying explanation for a series of observations relevant to 

the control of antigen receptor gene assembly.  First, PDβ1 functions as a 

position-dependent ACE in model recombination substrates.  Efficient substrate 

rearrangement requires a promoter position of less than 500 bp from the Dβ1 

gene segment (Sikes, Meade et al. 2002).  This range of ACE function in model 

substrates is consistent with our new finding that deletion of PDβ1 inhibits 

chromatin accessibility at distances of less than 450 bp downstream of Dβ1.  

Second, efficient rearrangement of Jα gene segments requires a series of 

germline promoters, which exert only a limited range of ACE function (Hawwari, 

Bock et al. 2005).  Third, promoters (germline or conventional) are consistently 

located proximal to target gene segments at all antigen receptor loci.  Fourth, the 

ACE function of germline promoters is independent of transcription through target 

gene segments (Sikes, Meade et al. 2002).  The latter finding suggests that the 

most important role for promoters in V(D)J recombination is to recruit factors that 

direct highly localized remodeling of chromatin associated with proximal RSSs, 
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which leads to V(D)J recombinase accessibility and ensuing gene 

rearrangement. 
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CHAPTER III 

 

FORMATION OF A PDβ/Eβ HOLOCOMPLEX 

 

Introduction     

 The transcriptional regulation of multigenic loci is controlled by a dynamic 

cross-talk between cis-acting elements, including promoters, enhancers, and 

locus control regions (LCRs).  In many cases, these complex loci contain multiple 

promoters that compete for activation by a common enhancer or LCR to achieve 

cell type- or stage-specific expression of a given gene (Bulger and Groudine 

1999; Smale and Fisher 2002; Tolhuis, Palstra et al. 2002).  This regulatory 

strategy requires communication between promoters and enhancers that are 

separated in the genome by distances ranging from one to hundreds of 

kilobases.  Two basic models have been proposed for promoter/enhancer cross-

talk (Bulger and Groudine 1999).  In one model, enhancer activation opens a 

limited area of chromatin, which ultimately spreads throughout the locus and 

permits access of transcription factors to a distal promoter (Bulger and Groudine 

1999; Dorsett 1999; Engel and Tanimoto 2000).  An important feature of this 

model is that no direct contact between the promoter and enhancer elements is 

required. 

 A second long-standing paradigm for transcriptional regulation by 

promoters and their distal enhancers is the looping model.  This model states 

that regulatory elements communicate via through-space interactions between 
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proteins bound to the DNA elements (Tolhuis et al).  Emerging studies have 

verified this model for the β-globin and HNF-4α loci (Tolhuis et al, Hatzis et al).  

Moreover, studies of the HNF-4α locus have provided insight into the temporal 

molecular interactions that lead to promoter activation by a distal enhancer.  

Upon enterocyte differentiation, histone modifiers are recruited to the HNF-4α 

enhancer element, while the transcriptional machinery assembles proximal to the 

promoter region.  The activated enhancer then tracks along the intervening DNA 

in a unidirectional fashion, altering nucleosomes and acetylating H3 and H4 

proteins as it proceeds, until reaching the HNF-4α promoter.  Assembly of a 

stable promoter/enhancer complex triggers a new wave of chromatin 

modifications within the promoter region, which generates an environment 

permissible for transcription.  Despite these insights into the control of other 

genetic loci, the mechanisms of crosstalk between transcriptional promoters and 

enhancers in the regulation of chromatin accessibility for V(D)J recombination 

remains unclear. 

To explore the mechanisms by which the germline promoter, PDβ1, and 

the distal enhancer, Eβ, control recombination within the DβJβ cluster, I used 

mice lacking each of these regulatory elements to perform Chromosome 

Conformation Capture assays at the TCRβ locus.  Importantly, I find that PDβ 

and Eβ are in direct physical contact, forming a stable holocomplex in 

thymocytes.  These results suggest a new paradigm for TCRβ gene assembly in 

which PDβ1 and Eβ form a holocomplex which is required to control RSS 

accessibility during T cell development.   
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Methods 

 

Cell Lines and Mice   

 The RAG-deficient pro-B (63-12) and pro-T cell lines (P5424) have been 

described previously (Shinkai, Rathbun et al. 1992; Chattopadhyay, Whitehurst 

et al. 1998).  These cells were maintained in RPMI 1640 medium supplemented 

with 10% fetal bovine serum, 1% L-glutamine, 1% Penicillin-Streptomyocin, and 

0.05 mM β-mercaptoethanol.  Analyses of wild-type TCRβ loci were performed 

using thymocytes from RAG1-deficient mice.  Mice harboring deletions of either 

Eβ or PDβ1 were bred onto a RAG-deficient background and have been 

described previously (Mathieu, Hempel et al. 2000; Whitehurst, Schlissel et al. 

2000).  

 

3C analyses  

 We employed a modified version of 3C methods that were described 

previously (Tolhuis, Palstra et al. 2002; Spilianakis and Flavell 2004).  In brief, 

formaldehyde (2% final concentration) was added to 1 x 107 cells in RPMI/10% 

FCS and cross-linked 10 minutes on ice.  The reaction was quenched with 

glycine (0.125 M final concentration).  Nuclei were isolated using an ice-cold cell 

lysis buffer containing 10 mM Tris (pH 8.0), 10 mM NaCl, 0.2% NP-40, and 

protease inhibitors.  Nuclei were resuspended in restriction enzyme buffer 

containing 0.3% SDS followed by 2% TX-100, each of which were incubated with 

shaking at 37°C for 1 hour.  These samples were digested with Xba I (400 U 
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+BSA) overnight at 37°C followed by 400 additional units of enzyme and four 

hours of incubation.  Xba I digestion was terminated by addition of 1.6% SDS 

and incubation at 68°C for 25 minutes.  Samples were diluted in 1X ligation buffer 

(30 mM Tris, 10 mM MgCl2, and 1% TX-100, 10 mM DTT, and 1 mM DTT) and 

incubated under conditions that favor intramolecular ligation (500 U of T4 DNA 

ligase in a total reaction volume of 7 ml).  Ligations proceeded overnight at 16°C, 

an additional 500 U of ligase were then added and incubated at 16°C (4 hours), 

followed by a 30 minute incubation at room temperature.  Samples were treated 

with Proteinase K overnight at 68°C and RNase A (37°C, 1 hour) prior to 

standard DNA purification. 

Control templates for the PCR reactions were prepared from a BAC that 

spans 204 kb of the murine TCRβ locus (BAC clone #RP23-421M9).  The BAC 

(30 µg) was digested with Xba I overnight at 37°C.  Equimolar amounts of the 

resultant Xba I fragments were ligated at a high concentration using T4 DNA 

ligase to form all possible ligation products (Spilianakis and Flavell 2004).  The 

control templates for IKKβ were prepared from a PCR-generated genomic 

fragment spanning two Xba I sites.  The purified PCR product was digested to 

completion with Xba I, and the three resultant fragments were ligated to generate 

all possible products.  Touchdown PCR assays were developed for each set of 

primers and optimized to ensure linearity.  Each TCRβ PCR assay utilized an 

anchor primer situated downstream of Eβ and another primer located within 

either the Vβ14, Cβ2, Dβ2, Dβ1, or 30 kb 5’ of Dβ1 (see Table 3 for primer 

sequences and reaction profiles).  IKKβ primers reside in two Xba I fragments 
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separated by a single restriction fragment and serve as a control for cross-linking 

efficiencies.  PCR products were analyzed on 2% agarose gels, blotted, and 

hybridized to a radiolabeled internal DNA probe.  All PCR reactions were 

performed in triplicate and provided consistent results. 
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Table 3.  Chromsome Conformation Assay PCR primer sequences and reaction 
profiles. 
 
 

 
PCR 

amplicon 

PCR primers and probe sequences PCR 

conditions1 

Comment 

 Eβ  

Anchor  

Vβ14 

Cβ2 

Dβ2 

Dβ1 

5' Dβ1 

probe 

5’GCCAATCCTGCTCTATCCATC3' 

5'GATGGTACCAGGCAAAGCTAC3' 

5'CTGTACCTAACATCCTCAACCC3' 

5'GGATGATGACTACACCTCCATG3' 

5'GCTTGTTCAGAGAGGCCCAG3' 
5'GCCTGTGGTCACTGTGCTTTG3' 

5'GTAGCCCAGCCTTCCTAAG3' 

66°C, 5 
cycles 
64°C, 5 
cycles 
62°C, 5 
cycles 
57°C, 18-20 
cycles 
 

Fig. 11, 12 

5' IKKβ  

3'IKKβ  

probe 

5'CGTGTCCCTTCTCTAGCCTG3' 

5'GCATGCCCTCTGGTCCCTAG3' 

5'GGCATCAAACTTGCTCTGTGGC3' 

66°C, 5 
cycles 
64°C, 5 
cycles 
62°C, 5 
cycles 
60°C, 20 
cycles 
 

Fig. 11, 12 

 

               1 Annealing temperature and cycle number for touchdown PCR 

 An initial 3 minute 94°C denaturation step was added to the beginning of each 

PCR followed by cycles of 94°C for 30 seconds, annealing temp for 30 seconds, 

and 72°C for 1 minute. 
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Results 

 

Direct interactions between distal Eβ  and Dβ  regions in vivo 

   To directly probe the spatial organization of DβJβ clusters in vivo, I 

utilized Chromosome Conformation Capture (3C) using cells that contain either 

accessible or inaccessible TCRβ loci (Dekker, Rippe et al. 2002).  In the 3C 

technique, nuclear chromatin is chemically cross-linked and then subjected to 

restriction enzyme digestion.  Following digestion, only the distal regions that 

form stable interactions will remain covalently attached in the cross-linked 

chromatin.  The digested chromatin is then ligated at concentrations that favor 

intramolecular reactions between cross-linked restriction fragments rather than 

between random pieces of DNA.  The ligated chromatin is then stripped of 

protein and specific ligation products are detected by PCR analysis.  Using this 

method, PCR primers specific for distal regions of DNA will generate 

amplification products only if the two regions associate in a stable conformation 

that brings them into spatial proximity (Dekker, Rippe et al. 2002; Tolhuis, Palstra 

et al. 2002; Spilianakis and Flavell 2004).   

I began the 3C analyses by using stable cell lines that harbor either an 

accessible (pro-T, P5424) or inaccessible TCRβ locus (pro-B, 63-12).  Cross-

linked chromatin from these cells was digested with Xba I (refer to Fig. 11 for 

details), which generates separate restriction fragments encompassing Eβ, 

PDβ1, PDβ2, or several regions lacking known transcriptional control elements 

(e.g., Cβ2 and 5’Dβ1, Fig. 10).  Ligated DNA was analyzed by PCR using an 
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invariant anchor primer located directly downstream of Eβ (primer E) and a panel 

of primers derived from several relevant Xba I restriction fragments (Fig. 10).  

The efficiency of each PCR assay was monitored using a sample that contained 

all possible ligation products from the DβJβ clusters.  This sample was prepared 

from a bacterial artificial chromosome (BAC) following complete Xba I digestion 

and ligation of the fragments at high DNA concentration to force intermolecular 

reactions.   

 As shown in Fig. 11, chromatin from pro-T cells yields amplification 

products for the Eβ-specific primer when it is coupled with either the Dβ1 or Dβ2 

primers (primers B or C).  These 3C data indicate a stable interaction between 

the enhancer and Dβ regions in this accessible TCRβ locus.  Intrachromosomal 

association of these regions is cell type-specific because little or no amplification 

is observed in pro-B cells, which contain inaccessible TCRβ loci.  Consistent 

results were obtained from triplicate PCR amplifications with two independent 

DNA preparations (data not shown).  Proximal restriction fragments within the 

TCRβ locus (Eβ/Vβ14) or the constitutively active IKKβ locus provide equivalent 

levels of amplification in both cell types.  These control assays exclude the 

possibility that cell type specificity observed for Eβ/Dβ interactions is solely due to 

differences in chromatin cross-linking between the two cell lines.  Furthermore, 

the Eβ/Dβ interactions are restricted spatially because a primer specific for Cβ2 

(primer D), which lies between the Dβ2 region and Eβ, does not afford PCR 

products with the Eβ anchor.  Likewise, long-range interactions are not observed 

between Eβ and a region upstream of the Dβ1 germline promoter(5’Dβ primer A).  



 77 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 10.  Chromosome Conformation Capture (3C) assay of DβJβ clusters.   
Schematic depiction of a 60 kb region spanning the murine DβJβ clusters.  Xba I 
restriction enzyme sites are denoted by “X” and specific Xba I fragments assayed 
by the 3C technique are highlighted below the schematic (e.g., 5’Dβ1).  The 
relative locations of each Xba I fragment are drawn to scale with the exception of 
5’Dβ1, which resides approximately 30 kb upstream of Dβ1.   Primers used in the 
3C assays are represented by bold lines (A-F).  Primer E, located directly 
downstream of Eβ, is the invariant anchor primer used in all PCR assays.   
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Figure 11.  3C analyses of the DβJβ clusters in stable cell lines.  Cross-linked 
chromatin from the P5425 (pro-T) and 63-12 (pro-B) cell lines were subjected to 
3C analyses using the anchor primer E located within the Eβ fragment.  This 
anchor was paired in PCR assays with a series of primers that detect potential 
interactions between Eβ and other regions within the TCRβ locus (primer A: 
5’Dβ1, primer B: Dβ1, primer C: Dβ2, primer D: Cβ2, and primer F: Vβ14).  Each 
analysis contained a titration of template DNAs corresponding to 600, 200, and 
50 ng to confirm assay linearity.  The Vβ14 and IKKβ assays provide controls for 
cross-linking efficiencies.  PCR products from these two assays derive from 
proximal Xba I fragments within their respective chromosomes, which should 
cross-link with similar efficiencies in both cell types.  The relative efficiencies of 
each PCR assay were monitored using control templates containing all possible 
ligation products from these regions of the TCRβ and IKKβ loci (see Methods).  
Background signals in each assay were controlled using Xba I digested 
chromatin that was not subjected to ligation conditions (no ligase).  
Representative data are shown for experiments that were performed in triplicate 
on two separate preparations of cross-linked DNA.   
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 An identical pattern of association between Eβ and the two Dβ regions is 

observed in primary thymocytes from RAG-deficient mice (Fig. 12).  The 

interaction is spatially restricted to the Dβ regions (i.e., Cβ2 and 5’Dβ1 regions 

are excluded) and is tissue-specific because only low levels of cross-linking are 

observed in T cell-deficient splenocytes from these animals.  Importantly, the in 

vivo association between these distal regions is ACE-dependent.  Amplification 

products from the Eβ/Dβ1 assay are dramatically reduced (>10-fold) upon 

deletion of either the enhancer or the Dβ1 germline promoter (ΔEβ or ΔPDβ1, 

respectively).  As expected, interactions between Eβ and the Dβ2 region are 

disrupted by the enhancer deletion but are unaffected by removal of the Dβ1 

promoter.  Taken together, results from 3C analysis directly demonstrate that 

regions containing the Dβ germline promoters stably associate with the distal 

Eβ element to form a stable holocomplex in DN thymocytes poised for DβJβ 

recombination. 

 
Discussion 

 The tissue- and stage-specific expression of multigenic loci typically relies 

on the regulated cross-talk between multiple promoters and distally located 

enhancers.  This regulatory strategy is particularly important for the ordered 

assembly and expression of antigen receptor loci in precursor lymphocytes. 

During Ig and TCR gene assembly, germline promoters and enhancers serve as 

accessibility control element that direct chromatin remodeling at each locus and 

regulate the availability of RSSs to V(D)J recombinase (Oltz 2001; Krangel 2003;   
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Figure 12.  In vivo 3C analysis of the DβJβ region in DN thymocytes from RAG-
deficient mice harboring either WT, ΔPDβ1, or ΔEβ alleles of the TCRβ locus.  
Samples were analyzed as described in Fig. 11.  Splenocytes from the RAG-
deficient mouse were included as a control for the cell type specificity of 
observed interactions. 
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Jung and Alt 2004).  Although a cooperative interaction between promoter and 

enhancer elements is required for rearrangement of linked gene segments, the 

mode of action for each ACE is distinct.  Enhancers serve as location-

independent regulatory elements, while the ACE function of germline promoters 

is highly dependent on their location relative to target gene segments (Sikes, 

Suarez et al. 1999; Sikes, Meade et al. 2002).  Despite these advances, little was 

known regarding the mechanisms of ACE cross-talk in vivo. 

I have used mice lacking either the TCRβ enhancer, Eβ, or the Dβ1 

germline promoter, PDβ1, to establish a mechanistic framework for ACE 

communication during the earliest stages of thymocyte development.  These 

findings demonstrate that DβJβ recombination requires a functional interplay 

between ACEs, which includes their stepwise activation, formation of a stable 

promoter/enhancer holocomplex, and local versus long-range opening of DβJβ 

chromatin (Chapters II and III).  Initially, Eβ is activated by tissue-specific 

transcription factors (Capone, Watrin et al. 1993).  Subsequently, enhancer 

function is sufficient to direct H3-K9 acetylation through most of the DβJβ clusters 

and opens Jβ-associated chromatin.  At this early stage of TCRβ activation, the 

Dβ1-RSS is largely protected from H3-K9 acetylation and remains in a 

recombinase-inaccessible state.  The enhancer-mediated reorganization of 

TCRβ chromatin then permits the binding of additional transcription factors to the 

Dβ1 germline promoter (Spicuglia, Kumar et al. 2002).   

Despite their independent roles in opening DβJβ chromatin, cooperation 

between germline promoters and Eβ is required to initiate TCRβ gene assembly.  
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Previous models for cross-talk between ACEs at antigen receptor loci invoked 

either direct contact between promoters and enhancers (looping) or contact-

independent communication (linking model) (Bulger and Groudine 1999; Dorsett 

1999; Engel and Tanimoto 2000). ChIP data reveal a reciprocal association 

between promoter- and enhancer-specific factors (SP1 and RUNX1, 

respectively) that cannot be explained by coincidental binding of each factor to a 

cryptic site in the non-cognate element (e.g., a cryptic SP1 site in Eβ) (Oestreich 

et al. 2006).   These in vivo data, coupled with 3C analyses, firmly establish that 

the distal Eβ and PDβ elements directly contact one another to form a stable 

holocomplex.  Importantly, this holocomplex forms precisely at the developmental 

stage that DβJβ clusters are targeted for rearrangement (pro-T cells).  In contrast 

to SP1, a subset of promoter factors associate with Eβ even after PDβ1 deletion 

(e.g., TBP), strongly suggesting that the undefined Dβ2 promoter continues to 

associate with the enhancer in ΔPDβ1 thymocytes.  Alternatively, Eβ may directly 

recruit these factors for delivery to germline promoters during formation of the 

stable holocomplex (Spicuglia, Kumar et al. 2002).  Resolution of these issues 

awaits a functional definition of PDβ2 and the generation of appropriate knockout 

mice. 

 Interactions between Eβ and germline promoters could occur as either a 

tripartite complex containing all three elements or exclusive bipartite complexes 

containing Eβ and either of the promoters (Tolhuis, Palstra et al. 2002; 

Spilianakis and Flavell 2004; Liu and Garrard 2005).  ChIP assays for SP1 

support the latter mode of interaction.  In RAG-deficient thymocytes, SP1 binds 
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specifically to PDβ1 and associates with Eβ but not with Dβ2 (Oestreich et al. 

2006).  In a tripartite complex, it is likely that SP1 immunocomplexes would also 

contain Dβ2 sequences.  Thus, ACE interactions at the TCRβ locus are 

reminiscent of those observed at the multigenic globin and Igκ loci, in which 

multiple enhancer/LCR elements are permitted to associate with only a single 

promoter at any given time (Tolhuis, Palstra et al. 2002; Spilianakis and Flavell 

2004; Liu and Garrard 2005).  The mechanisms that restrict interactions between 

multiple promoters with Eβ and the identity of factors that facilitate formation of 

holocomplexes remain to be determined.  Notwithstanding, these studies clearly 

establish a contact mechanism for ACE communication at the TCRβ locus and 

strongly suggest that PDβ/Eβ holocomplexes direct highly localized changes in 

chromatin accessibility to trigger TCRβ gene assembly.  
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CHAPTER IV 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

  

The research in this dissertation has focused on understanding the 

regulation of V(D)J recombination at the TCRβ locus.  V(D)J recombination is the 

primary mechanism for generation of immunologic diversity and is one of two 

known site-specific processes of DNA rearrangement in mammals. Although the 

generation of receptor diversity by V(D)J recombination is beneficial, it is also an 

inherently dangerous process. Defects in V(D)J recombination can cause 

immunodeficiencies or chromosomal translocations that lead to lethal lymphoid 

malignancies.  The rearrangement of antigen receptor genes is regulated by 

distal transcriptional control elements, which modulate chromatin accessibility of 

Recombination Signal Sequences (RSSs) to V(D)J recombinase.  However, the 

manner in which these elements regulate chromatin structure and their functional 

interplay during lymphocyte development remained unclear. 

 To define the mechanisms by which cis-acting elements control TCRβ 

gene assembly, I used RE sensitivity to demonstrate that, in the absence of 

PDβ1, the Eβ enhancer has an intrinsic ACE function.  This function generates a 

nearly full level of chromatin accessibility throughout both DβJβ clusters, most 

notably at the Jβ-RSSs.  However, the striking exception is the Dβ1 gene 

segment, which remains inaccessible in promoterless loci.  This “privileged” Dβ1 

gene segment becomes accessible only after formation of the promoter/enhancer 
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holocomplex identified by the 3C studies.  These findings inspire two questions 

that will be important to address in future studies: (i) why is formation of a 

holocomplex required rather than relying exclusively on the ACE function of Eβ, 

and (ii) how are the additional restrictions placed on Dβ1 accessibility?   

 Clearly, the requirement for ACE cross-talk affords more stringent control 

over DβJβ recombination by precluding inappropriate TCRβ rearrangements in 

lymphoid progenitors that coincidentally activate either ACE.  Another possibility 

is that formation of the PDβ/Eβ holocomplex facilitates subsequent VβDβJβ 

recombination.  Perhaps, the holocomplex interacts with other cis-elements in the 

Vβ cluster to draw these distal regions into spatial proximity.  The holocomplex 

may also serve as a temporary “glue” that holds Dβ and Jβ coding ends together 

until the double-strand break repair machinery can rescue the chromosome via 

coding join formation (Bogue et al., 1998).  The targeted deletion and subsequent 

relocation of Eβ to a location upstream of the Jβ1 gene cluster would in part test 

this hypothesis.  Following double-stranded break formation at the Dβ- and Jβ-

RSSs, the now untethered Jβ gene element would lead to a functional coding 

joint if the holocomplex is not essential.  Alternatively, it is possible that 

chromosomal translocations and/or immunodeficiencies could be seen if indeed 

holocomplex formation is required for efficient repair.    

 The mechanisms that protect Dβ1-associated chromatin from the intrinsic 

ACE function of Eβ remain unknown.  Interestingly, unlike Jβ-RSSs, both of the 

Dβ-RSSs contain a consensus sequence for nucleosome positioning (Baumann, 

Mamais et al. 2003).  Accessibility of a fixed nucleosome over the Dβ1-RSS may 
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require additional aspects of chromatin remodeling by factors specifically 

recruited to the PDβ1/Eβ holocomplex.  Experiments to test this hypothesis are 

outlined below.  Alternatively, a transcriptional repressor may associate with Dβ1, 

but not with the Jβ region, prior to promoter activation.  Expulsion of this putative 

repressor may occur only after holocomplex formation.  In what may be a related 

finding, the Dβ1-RSS contains a CpG sequence that remains hypermethylated in 

ΔPDβ1 thymocytes (Whitehurst, Schlissel et al. 2000).  This chromatin 

modification recruits repressor complexes via interactions with methyl-CpG 

binding proteins (Jones, Veenstra et al. 1998; Nan, Ng et al. 1998).  Identification 

of such inhibitory complexes by ChIP assay and mutational analysis of this site 

would be useful in determining if this is indeed the case.  Thus, formation of the 

PDβ/Eβ holocomplex may generate a high local concentration of chromatin 

modifiers and remodeling complexes that, in turn, counteract Dβ-associated 

repressors, remodel a positioned nucleosome at the Dβ1-RSS, and trigger TCRβ 

gene assembly (Fig. 13). 

Therefore, a primary goal of future studies will be to examine the role of 

nucleosomal organization in the regulation of V(D)J recombination at the TCRβ 

locus.  To address this issue, it will be necessary to conduct nucleosome 

mapping studies of the TCRβ locus.  Low resolution, micrococcal nuclease 

(MNase) Southern blotting analyses would be invaluable by showing whether or 

not nucleosomes are positioned in an ordered array at the locus.  Subsequent, 

higher resolution assays, such as nucleosome scanning or high resolution LM-
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PCR assays could further define nucleosome positioning at the Dβ1-RSS and 

other locations of interest (e.g. PDβ1, Jβ-RSSs, and Dβ2-RSS). 

 An additional finding of these studies is that the germline promoter, PDβ1, 

and the distally located Eβ interact, presumably via factors bound to each ACE, 

generating a stable PDβ/Eβ holocomplex.  As such, experiments identifying the 

transcription factors involved in PDβ/Eβ holocomplex formation would prove to be 

extremely helpful.  Mutational analysis of transcription factor binding sites in both 

PDβ1 and Eβ coupled with 3C analysis would be critical in identifying such 

complexes.  Continued ChIP analysis will also provide candidate protein 

complexes for mutational and 3C analysis.  Furthermore, precise definition of the 

promoter associated with the Dβ2 gene segment will lead to a new wave of 

experiments examining transcription factor binding at “PDβ2” as well as possible 

interactions with other cis-acting elements (e.g. PDβ1 or Eβ) within the TCRβ 

locus. 

 It is quite possible that the formation of the PDβ1/Eβ holocomplex creates 

a unique binding surface to recruit additional remodeling factors (e.g., SWI/SNF) 

to direct highly localized chromatin modifications critical for unmasking the TATA 

box and Dβ1-RSS to trigger both germline transcription and DβJβ 

recombination.  To this end, I have taken advantage of a system in which the 

ATPase subunit, Brg1, a critical component of the SWI/SNF complex, can be 

targeted to artificial TCRβ miniloci.  These studies show that targeted recruitment 

of Brg1 can rescue chromatin accessibility at the Dβ1-RSS in a promoterless   
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Figure 13.  Proposed model for ACE function in the regulation of DβJβ 
recombination.  Refer to “Conclusions and Future Directions” for a complete 
description.  For simplicity, only the Dβ1Jβ cluster of gene segments is shown.  
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TCRβ minilocus substrate (Fig. 14).  It is likely that multiple chromatin modifiers 

are involved in the regulation of substrate accessibility.  In addition to Brg1, 

targeted recruitment of the histone methyltransferase (HMT), G9a, is able to 

repress DβJβ rearrangement (Osipovich, Milley et al. 2004).  However, the 

particular effect of additional modifiers on rearrangement is unknown.  Similar 

studies examining additional proteins and protein complexes will help to establish 

the functional hierarchy of chromatin modifiers in the regulation of substrate 

accessibility. 

Despite the utilization of a unique recombinatorial process for functional 

assembly, antigen receptor loci share many hallmarks of transcriptional 

regulation with numerous other genes.  The data provided in this dissertation 

offer exciting revelations about the mechanisms of gene regulation not only at 

antigen receptor loci but, undoubtedly, at other genes as well.  Indeed, it has 

already been shown that the β-globin and HNF-4α genes share common 

mechanisms of transcriptional regulation with those seen at the Igκ and 

TCRβ loci (Hatzis and Talianidis 2002; Tolhuis, Palstra et al. 2002; Liu and 

Garrard 2005; Oestreich, Cobb et al. 2006).  Therefore, it is likely that the 

lessons garnered from continued exploration into the regulation of V(D)J 

recombination will enhance our knowledge of this inherently dangerous but vital 

process, while providing new insight into the global mechanisms of gene 

regulation.   
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Figure 14.  Targeted recruitment of Brg1 leads to enhanced chromatin 
accessibility in the Dβ1-RSS.  Nuclei from 5B3 cells were treated with increasing 
amounts of the indicated enzyme (0.1, 0.5, and 2.5 U of Hinf I).  Enzyme 
cleavage at the indicated site(s) was analyzed using LM-PCR and Southern 
blotting as described in the Methods section (Chapter II).   Control PCR assays 
for DNA content (Cλ) and enzyme cutting efficiency (c-myc) were performed 
using the same samples of Hinf I-digested, linker-ligated DNA.  The linearity of 
each assay was confirmed by serial dilutions of the maximally digested 5B3, 
P+E+ sample. 
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