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CHAPTER I

INTRODUCTION

Wireless Mesh Networks

Wireless mesh networks (WMNs) have attracted increasing attention by re-

search groups as well as for-profit companies [1, 2, 3, 4, 5, 6, 7]. Their easy-

to-deploy feature and stable structure make them a competitive candidate as a

high-performance and low-cost solution to last-mile broadband Internet access

and disaster recovery in areas where wireline network deployment is impossible

or expensive.

A WMN usually consists of local access points, relaying wireless routers, and

gateways. Local access points aggregate the traffic from associated mobile clients.

They communicate with each other and with relaying wireless routers, forming a

multi-hop wireless backbone network that forwards the traffic to gateways, which

have wireline connections to the Internet. In this dissertation, we refer to local

access points, gateway access points, and mesh routers all as mesh nodes.

As a multi-hop wireless network, the WMN is easy to deploy. In areas where

deploying cables is expensive or impossible, WMNs provide a practical solution

for broadband Internet access with reduced deployment cost. In addition, WMNs

have the following features that make them different from other multi-hop wireless

networks:

• Fixed Topology. Compared with mobile ad hoc networks, where nodes are

mobile and topologies are dynamic, mesh nodes in WMNs are usually fixed at

specific locations. Since WMNs usually have infrequent topology changes [8]
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and relatively stable backbone structures, their routing paths are usually

maintained for longer periods of time to reduce the route control message

overhead. Identifying the high throughput paths is thus particularly impor-

tant for WMNs. In mobile ad hoc networks, on the other hand, maintaining

network connectivity is the key issue for routing.

• Consistent Power Supply. Fixed node location in WMNs also makes it pos-

sible for mesh nodes to use stable power supplies from external systems.

Compared with wireless sensor networks, which operate on batteries with

limited power supply, WMNs face fewer constraints on energy consumption

in their design.

• Multiple radio interfaces. To improve the network capacity, the mesh nodes

are usually equipped with multiple radio interfaces which can operate over

different frequency spectrums simultaneously. This type of mesh network is

usually referred to as a multi-radio multi-channel mesh network. The avail-

ability of multiple ratios provides a new dimension for traffic load balancing

(i.e., along the spectrum domain). Thus, it has the potential to enhance the

network capacity, but it also complicates the design of traffic distribution.

Problem Description and Research Goal

Traffic distribution plays a critical role in determining WMN performance. The

traffic collected at local access points needs to be delivered via multiple relaying

routers to reach the gateways that are connected to the Internet and vice versa.

In a multi-radio multi-channel mesh network, traffic distribution involves two ma-

jor components: channel assignment and traffic routing. Wireless communication
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standards, such as IEEE 802.11 [9], divides frequency bands into channels. This

allows simultaneous transmissions over different channels whose frequency bands

do not overlap. The purpose of channel assignment is to assign a radio interface to

operate on a channel during a certain time interval. Once radio interfaces are as-

signed to channels, it determines the set of neighbors that a node can communicate

directly with, as two nodes can communicate only if they have radio interfaces over

the same channel. This also means that the network topology is determined for

this time interval. On the other hand, traffic routing distributes the traffic along

different paths (in the spatial domain) and different channels (in the spectrum do-

main) in the network. For a wireless relaying node with multiple interfaces, traffic

routing determines which radio interface an incoming-flow (or a packet) should be

forwarded to and which neighboring node it should be sent to.

While channel assignment is a new problem for wireless networks, traffic routing

is a classic problem that has been extensively studied in wireline networks [10,

11, 12, 13]. However, the routing algorithms introduced in the context of wireline

networks cannot be applied to WMNs directly due to the following unique features

of WMNs:

• Wireless Interference. Wireless communication suffers from location depen-

dent interference. A variety of models (e.g., physical model [14], protocol

model [14]) has been developed to characterize such interference effects at

different levels in the existing literature. To provide a simple overview, if

two radio interfaces on the same channel are within the interference range of

each other, then they cannot transmit at the same time. On the other hand,

if they are far away from each other (i.e., out of the interference range), they

can transmit simultaneously, which is called spatial reuse of the channel. The
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location dependent resource contention couples the available bandwidth of a

wireless link with the media access control and link-level scheduling scheme,

and complicates the traffic distribution problem.

• Availability of Multiple Radios and Multiple Channels. While the availability

of multiple radios and multiple channels in a WMN has the potential to im-

prove the network performance, effectively utilizing them presents two new

dimensions to the traffic distribution problem. Radio-to-channel assignment

and traffic-to-radio forwarding considered under the wireless interference con-

straint are challenges that do not exist in wireline networks.

• Dynamic Traffic. The traffic in WMNs is highly dynamic and bursty, com-

pared with the wireline peers. This is mainly due to the mobility of clients

and the insufficient traffic multiplexing at local access points. As a result, the

traffic pattern observed at WMNs is significantly different from the Internet

backbone network, which requires new traffic models.

Given the importance of traffic distribution to the performance of WMN, it

has recently become a research focus. Several algorithms have been proposed for

traffic routing in single-radio and single-channel mesh networks, as well as joint

routing and channel assignment in multi-radio and multi-channel mesh networks.

The proposed approaches usually fall in two ends of the spectrum. On one end

of the spectrum are the heuristic routing algorithms (e.g., [15, 16, 17]). Although

many of them are adaptive to the dynamic environments of wireless networks,

these algorithms lack the theoretical foundation to allow analysis of how well the

network performs globally (e.g., whether the traffic shares the network in a fair

fashion).
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On the other end of the spectrum, there are theoretical studies that formu-

late mesh network routing as optimization problems (e.g., [18, 19]). The routing

algorithms derived from these optimization formulations can usually claim ana-

lytical properties such as resource utilization optimality and throughput fairness.

In these optimization frameworks, traffic demand is usually implicitly assumed

as static and known a priori. Contradictorily, recent studies of wireless network

traces [20] show that the traffic demand, even being aggregated at access points,

is highly dynamic and hard to estimate. Such observations have significantly chal-

lenged the practicability of the existing optimization-based routing solutions in

WMNs.

The objective of this dissertation is to design and evaluate an optimization-based

traffic distribution solution for multi-radio, multi-channel wireless mesh networks

which takes into account the dynamic nature of wireless traffic demand.

Research Approach and Dissertation Contribution

In this dissertation, we propose a framework that integrates traffic distribution

with traffic prediction as shown in Fig I.1. The traffic analysis component of the

framework establishes traffic models for wireless access points and uses them to

predict the future traffic demand for load distribution. In particular, we character-

ize historical traffic using time series models, then predict the future traffic demand

based on the established models. We propose two different traffic prediction mod-

els. The single value prediction provides the expected value for predicted traffic

demand. The prediction with statistic distribution provides possible traffic values

with their corresponding probabilities. These two traffic prediction models will be

used in two different routing algorithms in the traffic distribution component.
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Figure I.1: Framework Overview

In the traffic distribution component, we develop optimization-based algorithms

to balance the traffic load. The fixed-demand routing algorithm takes the single-

value prediction result and computes the optimal routing based on the determined

traffic information. The uncertain-demand routing takes the result from the pre-

diction with distribution traffic model as the input and computes the routing paths

that optimize the expected network performance. By considering the distribution

information, we can minimize the impact of sub-optimal routing solutions due to

the prediction error caused by the single-value traffic prediction. We study our

routing algorithms under three different network models. The first network model

has only a single channel. The routing algorithms developed under this model serve

as the baseline algorithms for the other two network models. The second network

model incorporates the existence of multiple radios and multiple channels, where

the baseline routing algorithms in the first network model are extended to joint

solution of channel assignment and routing solutions. The third network model

considers the wireless random losses in traffic distribution.
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The original contributions of this dissertation as follows:

• Practically, the integration of traffic estimation and distribution optimization

effectively improves the performance of WMNs under dynamic and uncertain

traffic. Most existing routing algorithms ignore the fact of dynamic traffic,

which can lead to poor results when implemented in real networks. Our

algorithms are adaptive to dynamic traffic and can improve wireless network

performance under uncertain traffic. The full-fledged simulation study based

on real wireless network traffic traces provides convincing validation of the

practicability of our solution.

• Theoretically, we extend the classical linear network optimization algorithm,

which only accepts the fixed-value demand as input, into a stochastic opti-

mization solution capable of serving uncertain demands that are modeled by

their statistical distributions.

Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter II presents

an overview of existing related literature, which includes traffic routing in wire-

line networks, wireless network routing and network traffic analysis. Chapter III

introduces WMN models. Chapter IV describes how we use network traces to char-

acterize traffic and explains the methods we take to predict traffic. In Chapter V,

we present our formulation of the WMN routing problem and propose routing

algorithms that are capable of handling dynamic traffic input for single channel

WMNs. Chapter VI presents joint channel assignment and routing algorithms,

which extend routing algorithms proposed in Chapter V to multi-radio and multi-

channel WMN environment. Algorithms presented in Chapter V and VI assume

7



ideal stable wireless connections. In Chapter VII, we extend solutions for lossy

WMNs, where packet loss exists in wireless transmission. Finally, Chapter VIII

concludes this dissertation.

8



CHAPTER II

BACKGROUND AND RELATED WORKS

This dissertation is related to work from three areas: 1) network routing, 2)

traffic analysis, and 3) optimization methods with uncertain input. This chapter

will review these existing works and highlight the open issues that remain unad-

dressed.

Network Routing

Routing refers to the operation of choosing paths from the source node to the

destination nodes for packet delivery. It balances the traffic load throughout the

network and plays a critical role in determining the network performance. A well-

designed routing algorithm, depending on its specific goal, can increase network

throughput, decrease network congestion, and/or minimize packet delays.

Routing Algorithms for Wireline Networks

Routing in wireline networks has been investigated extensively. The existing

routing algorithms can be broadly classified into two categories: the single-flow

routing algorithm and the multiple-commodity routing algorithm.

The single-flow routing algorithm considers the performance of a single flow

independently as its objective. The routing objective is usually defined using link

cost metrics, and the goal is to choose a path with minimum cost for a given flow.

The routing algorithms are usually designed based on Dijkstra’s algorithm [10, 11,
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12, 13, 21, 22] in a centralized manner or Bellman-Ford algorithm in a distributed

manner [23, 24, 25].

A communication network usually needs to support multiple flows between dif-

ferent source and destination nodes. Optimizing the routing paths for individual

flows separately may lead to sub-optimal network performance if viewed glob-

ally. For example, some low-cost links may get overloaded by traffic. The multi-

commodity routing algorithms are proposed to address this problem and optimize

the performance of all flows simultaneously in the network. These algorithms usu-

ally formulate routing problems as optimization problems and compute routing

paths according to the solution of the formulation. Depending on the optimization

objective, the optimization-based routing algorithms include minimum cost rout-

ing [26, 27, 28], maximum throughput routing [29, 30] and maximum concurrent

flow [31, 32]. The minimum cost routing is to find a set of paths with minimum

aggregated cost. The maximum throughput routing algorithms maximize the ag-

gregated throughput of all flows. Usually maximum throughput routing algorithms

do not consider the demand of each flow, and the routing paths computed by these

algorithms may be unfair to some flows. The maximum concurrent flow routing

algorithm solves this problem by including traffic demand in the routing formula-

tion so that the algorithm finds optimal paths based on the demand scaling factor

of all flows, which is the ratio of the routed throughput and the traffic demand of

the flows. For this reason, the maximum concurrent flow routing algorithm is the

best fit for balancing traffic distribution in a network.

Routing algorithms for wireline networks provide a solid theoretical foundation

for designing WMN routing algorithms. For example, many heuristic algorithms

for WMNs use link metrics as a criteria for routing. They are similar to the

single-flow routing algorithm in wireline networks. The unique features of wireless
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transmission, however, prevent the direct application of existing wireline network

routing algorithms to WMNs. For example, several research results [33, 34, 16]

show that the shortest-flow routing algorithm has to consider wireless losses and

other wireless features in its cost metrics definition in order to be applied to WMNs.

In fact, routing algorithms based on minimum hop count may lead to poor network

performance because they favor more distant links, which may cause larger inter-

ference that decreases network capacity. Optimization based routing algorithms for

WMNs can also find their counterparts in multiple-commodity routing algorithms

that are designed for wireline networks with adaptation to WMN characteristics,

including wireless interference, scheduling and radio to channel allocation, etc. The

routing algorithms for wireless networks are reviewed in the next section.

Wireless Network Routing

The existing routing algorithms for WMNs fall at two ends of the spectrum:

they are either heuristic or optimization-based. Heuristic algorithms are usually

adaptive to dynamic traffic environments. However, they lack the theoretical foun-

dation to analyze the throughput a WMN could achieve. Optimization based

approaches, on the other hand, can usually claim resource utilization optimality,

but most of those algorithms assume static traffic. The routing algorithms can

also be classified as distributed and centralized algorithms based on the protocol

implementations. Distributed algorithms (e.g., [17, 35, 36]) perform the routing

decisions locally based on the information received from neighboring nodes. They

make the system scalable and easy to manage, but often suffer from sub-optimal

performance penalty. Centralized algorithms (e.g., [37, 38, 18]), by managing the

traffic routing globally, usually outperform the distributed algorithms. However,
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overhead introduced by control messages can make centralized algorithms less ef-

ficient and harder to manage compared to the distributed ones.

Table II provides an overview of the existing routing algorithms. As evident

in this table, this dissertation provides an important piece of information that has

been missing in previous work.

Adaptive to Network
Traffic

Not adaptive to
Network Traffic

Global Network
Performance
Assurance

Yes The work of this
dissertation

Optimization-based
Algorithms

No Heuristic Algorithms
(ETT, CARP, ...)

Heuristic Algorithms
(ETX, ETOP, ...)

Table II.1: Existing Routing Algorithms for WMNs

Heuristic Algorithms

One feature of heuristic algorithms is their adaptiveness to dynamic environ-

ments of wireless networks. Although there are some centralized heuristic algo-

rithms, the majority are performed in a distributed way, which makes the algo-

rithms scalable. Those algorithms put different strategies into mesh nodes and

attempt global optimization by optimizing at each local node. Nodes in most

distributed algorithms need to collect information from their neighbors, make de-

cisions based on the information received, and perform changes according to pre-

defined protocols. Because each node make its own decision, the systems are agile

for configuration changes and easy to implement. The disadvantage of heuristic

algorithms is that they lack the theoretical foundation to analyze how well the
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network performs globally. It is still unknown whether the network resource is

fully utilized.

The approaches of heuristic algorithms vary greatly from one to another. One

popular approach is to use a routing metric to find optimal single-flow routing

paths. A metric can be defined in several ways, including loss rate [33], trans-

mission time [15], interference [39] and link congestion [40]. The definition of the

routing metric is important because it can directly influence the algorithm perfor-

mance.

Routing Metrics

Due to wireless transmission and signal interference, the traditional shortest

path routing algorithms in wired networks, also known as minimum hop count

routing, are no longer the best routing algorithms for WMNs. One possible ap-

proach to overcome this deficiency is to revise the routing metric, which is the

hop number in minimum hop count routing, so that paths found by new routing

algorithms can reduce the interference and increase the throughput. A new metric

can consider either low level features, such as link lost rate, or high level status,

such as flow rate and channel configuration, or both, depending on which WMN

scenario is addressed. A common method of implementing metric-based algorithms

is to collect and exchange the link cost information from neighboring nodes. Given

this information, routing algorithms find the path based on the link cost metrics.

Below, we review some metrics used in the existing heuristic routing algorithms.

ETX (Expected Transmission Count) [33]: Link loss is a common phe-

nomenon in wireless networks, yet simply choosing a link based on a loss rate

threshold may be insufficient. The ETX metric is an early work to address this

problem. It considers the effects of link loss, asymmetry of loss ratios between two

directions of each link and the interference among the successive links of a path
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together. The primary goal of ETX design is to find paths with high throughput

despite losses.

In the formulation, the expected number of transmissions is expressed as fol-

lows: ETX =
1

df × dr
where df is the forward delivery ratio and dr is the reverse

delivery ratio. The delivery ratios df and dr are measured by using dedicated link

probe packets. Each probe packet is broadcasted at an average period τ and no

acknowledgement and retransmission are involved. Every node records the probes

it receives during the last w seconds and calculates the delivery ratio from the

sender at time t as : r(t) =
count(t− w, t)

w/τ
, where count(t − w, t) is the number

of packets received during the last w seconds and w/τ is the number of packets

expected to be received from the sender. Each probe sent by node X carries the

number of packets received by X from each of its neighbors during the last w

seconds, which allows neighboring nodes to calculate the delivery ratio to node X.

The ETX of a route is the sum of the ETXs of links.

ETX addresses the throughput issue by choosing the delivery ratios, and it

handles asymmetry by incorporating loss ratios in both directions. One of the

major reasons that ETX does not use the product of link delivery ratios as the

route metric is that the product fails to account for inter-hop interference. Instead,

it uses the sum of link delivery ratios to penalize routes with more hops, which

have lower throughput.

However, the problem with ETX is that it does not consider link capacity and

congestion. It does not balance the traffic to avoid congested links. Thus it may

not fully utilize the network resource or balance the network traffic. Also, ETX

was developed at an earlier time when multi-radio had not been not introduced to

increase network capacity, so ETX does not include the multi-radio feature in the
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metric. This is a drawback of ETX because the multi-radio feature has become

common in wireless networks.

WCETT (Weighted Cumulative Expected Transmission Time) [15]:

WCETT is an improvement of ETX. It includes not only the loss rate, which ETX

also does, but also the link bandwidth. WCETT is a metric describing a whole

route, which is comprised of several individual links, while Expected Transmission

Time (ETT) only describes an individual link weight. As an improvement of

ETX, WCETT incorporates both the link capacity and the multiple channels into

existing solutions to make better use of available network resources.

The ETT of a link is defined as a “bandwidth-adjusted ETX” and is expressed

as ETT = ETX ∗ S

B
where S is the size of packets and B is the bandwidth of

a link. The proposed WCETT is calculated as follows: WCETT = (1 − β) ×
n∑

i=1

ETTi+β× max
1≤j≤k

Xj, where Xj is the sum of transmission times (ETT) of hops

on channel j and β is a tunable parameter subject to 0 ≤ β ≤ 1. The use of Xj

is to encourage channel diversity. Finding maxXj is to search the most congested

channel set. Based on the definition, the WCETT metric tries to balance between

the global and local network performance. The first term reflects the total network

resource consumed on this path while the second term reflects the channel set that

has the most impact on the throughput. At the same time, WCETT is also a

combination of delay and throughput where the first term is a measurement of

path latency and the second term is path throughput.

Although WCETT can claim better network performance than ETX, there are

still some remaining issues. One of the issues is that WCETT does not consider the

traffic demand. Although the link capacity is included in the metric, the actual

available/consumed bandwidth is not considered, which may cause unbalanced
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traffic load and network congestion. Although WCETT also considers the multi-

radio feature, it does not assign channels to links, thus it depends on the pre-

assigned channel schemes to find paths. It is difficult to reach the global network

optimum without considering channel assignment in the metric. Finally, WCETT

does not capture the inter-flow interference.

iAWARE (Interference Aware) [39]: iAWARE has a similar structure as

WCETT, but as an improvement, iAWARE also considers the flow interference. In

both ETX and WCETT, only intra-path interference is captured, and paths with

more hops are less likely to be selected due to the interference. However, these

metrics do not consider the interference effect among different paths. iAWARE,

on the other hand, captures the effects of variation in link loss-ratio, differences in

transmission rates, as well as inter-path and intra-path interference.

In iAWARE, the physical interference model (described in Chapter III) is intro-

duced. In this model, the signal-to-noise ratio is used to measure how signals from

other nodes interfere at receiving nodes. The interference ratio IRi(u) for a node u

in a link i = (u, v) is defined as the ratio of noise received over total interfered sig-

nal, including the noise and weighted signal interference from other nodes, and the

interference ratio IRi for link i = (u, v) is min(IRi(u), IRi(v)). When there is no

interference, IRi is 1 and the link quality is only determined by the link loss-ratio

and the data rate, which are captured by ETT. The new metric iAWARE(p) for a

path p is defined as follows: iAWARE(p) = (1−α)×
n∑

i=1

iAWAREi+α×max
1≤j≤k

Xj,

where iAWAREj for link j is defined as iAWAREj =
ETTj

IRj

. Xj has a similar

definition as that in ETT, which exploits the channel diversity. According to the

16



definition of link metric iAWAREj, IRj is the wireless interference and ETTj cap-

tures the link loss and retransmission. A higher IRj and a lower ETTj produce a

lower iAWAREj, which means better link quality.

Although iAWARE can be applied to network scenarios with multiple radios, it

cannot incorporate this feature into the metric, and thus, like WCETT, it is unable

to optimize routing together with channel assignment. Also, traffic balancing is

not included in iAWARE, which could lead to poor performance when a network

is congested.

ETOP (Expected Number of Transmissions On a Path) [41]: All of the

previous described metrics assume that the number of retransmissions is unlimited.

In reality, when the link quality is low and the transmission fails, a retransmission

will always be initiated until packet delivery is successful. However, this assump-

tion does not hold in real network scenarios. Instead, only a limited number of

retransmissions are performed before a packet is discarded and a transmission fail-

ure is reported to the source. End-to-end transmission, depending on different

applications, usually will be initiated from the source node instead of the interme-

diate node. The fact that the number of retransmissions is limited makes paths

with weak links (high loss rate) that are closer to the destination unfavorable.

When the transmission at a weak link fails and the retransmission is initiated from

the source, fewer retransmissions are required when the weak link is closer to the

source node. The metric of ETOP is based on the number of retransmissions, the

link loss rate, as well as the link position in the whole path. It provides a new view

on the link stability problem for wireless mesh routing. It shows how the position

of a weak link in the path can affect the routing, which is a closer formulation
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to real networks. However, similar to other metrics, ETOP fails to include traf-

fic balancing and channel assignment in the metric. Thus, traffic congestion and

sub-optimal channel assignment still remain as open issues.

There are other proposed metrics that consider several features in WMNs, such

as wireless interference and link loss rates. For example, ENT (Effective Number

of Transmission) [42] is a quality-aware routing metric. The premise for such a

heuristic is that the loss rate of a link can vary from time to time. Using a mean

value to measure the link loss rate may be inaccurate and lead to poor performance

because it fails to adapt to burst loss conditions. The ETX metric cannot update

the link loss status frequently due to the overhead. In contrast, ENT provides a

framework that combines the mean and standard deviations of link loss ratios to

capture the time-varying characteristic of wireless links.

The link loss ratio is not the only metric that can reflect link quality. The link

capacity and available bandwidth are also important metrics to a link. For exam-

ple, CARP (Channel Characteristics-Aware Routing Protocol) [43] uses residual

link bandwidth to balance the traffic load over a network and avoid link conges-

tion. In addition, the CARP based routing algorithm supports multi-path routing

in order to exploit potential throughput. As another example, CCM (Channel

Cost Metric) [35] takes both interference and channel diversity into account and

reflects the interference cost. Unlike previous metrics, a distributed channel as-

signment algorithm works together with CCM to assign channels to links in a

distributed fashion, which is an improvement to the previous metrics where chan-

nel assignment was assumed to be performed before routing. Furthermore, most

link metrics assume that all links use the same link rate for transmission. However,

wireless links may select a different rate from a set of rates predefined by MAC

protocols. Different rates may, in turn, affect other important factors, including
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link loss rate and transmission distances. In [44], the relationship between differ-

ent rates, transmission distance, and other factors are studied. They proposed a

new metric that considers transmission rates and show that it tends to find paths

with higher throughput. Additionally, multicast routing metrics for WMNs are

discussed in [45],

The link quality is included partially or entirely by link metrics. One of the

challenges of implementing a metrics based routing algorithm is how to measure

the link quality accurately. Inaccurate measurement of the link quality can cause

a routing algorithm to choose suboptimal relaying nodes and low-quality paths.

In [46], the authors discuss pros and cons of existing techniques for measuring

the link quality. They point out that measurement techniques should consider

both accuracy and efficiency. The broadcast-based active probing, used by ETX

and ETT, is inexpensive. However, since it uses a fixed and low data rate, it

is more tolerant of errors, which can be more optimal than the actual link loss

rate. They also point out that measurement techniques should be aware of link

asymmetry and be sufficiently flexible to cope with the time-varying link quality

without introducing extra overhead.

Designing a good routing metric requires consideration of several aspects of

WMNs to ensure that the algorithm is valid and efficient. In [47], several require-

ments for evaluating a metric are discussed. For example, proposed metrics should

be loop free and produce good routing performance, and an algorithm for finding

paths based on metrics should be efficient. Another important requirement for

a routing-based algorithm is that routing metrics should ensure route stability.

Additionally, most routing metrics discover routing paths hop-by-hop based on

metrics without global coordination. Once the paths are found, they may not be

updated or may be updated less frequently. There are two reasons behind such a
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design: 1) the metric itself does not change frequently; 2) frequent route changes

will result in routing instability, introduce operation overhead and degrade network

performance. In [48], routing stability is studied on two actual networks using the

WCETT protocol described above. Their findings show that dominated routes are

short-lived because of an excessive number of route flaps, and the routing metric

should balance the performance adaptability and routing stability.

The major limitation of metric-based routing algorithms is that they lack a

theoretical foundation for global resource coordination. For example, most metric-

based algorithms described above cannot handle the channel assignment issue for

multi-radio WMNs. They can diversify the channel selection for routing based on a

preassigned channel scheme, but there is no perfect solution for these algorithms to

participate in channel assignment to optimize the whole network. Some algorithms

consider the link capacity in their metrics, but they fail to balance the traffic and

can overload links with large capacities. These are limitations that cannot be

addressed by link metrics themselves. As an alternative solution, a system-wide

optimization needs to be applied for routing to coordinate constraints and reach a

global network performance optimum.

Other Heuristic Algorithms

In addition to link-metric-based routing, several other heuristic routing, and

joint routing, and channel allocation algorithms are presented in the existing liter-

ature. In [17], the authors propose a distributed algorithm similar to BGP (Border

Gateway Protocol), where reachability information is broadcasted when a routing

tree is constructed. Nodes are assigned with priorities according to their local

environments. There are several works (e.g., [49, 50]) in particular that focus on

the channel assignment. [49], for instance, proposes a dynamic interference-aware
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channel assignment algorithm. As another example, the channel assignment algo-

rithm in [50] considers the interference problem among orthogonal channels due to

crosstalk or leakage. Additionally, Slotted Seeded Channel Hopping (SSCH) [51] is

a hop-by-hop routing algorithm that uses time multiplexing to exploit the channel

diversity. The goal of this algorithm is to design a channel switching scheme so

that nodes that want to communicate can be on the same channel while avoiding

the use of overlapping channels for the interfered links.

Opportunistic Routing

In wireless networks, the connectivity between two nodes can be intermittent.

In the traditional routing schemes presented above, packets are usually forwarded

along a fixed path which is determined by the routing algorithm. Opportunistic

routing, on the other hand, forwards the packets in an undeterministic way by

choosing among multiple forwarders [16, 52] and multiple paths [53, 54], depending

on which nodes actually receive the packets. By using high risk resources (e.g.,

high loss-rate links), it [16, 55, 53] has been shown that opportunistic routing

algorithms can have better throughput than traditional routing.

GeRaF [56] is an earlier work studying opportunistic routing algorithms. It

assumes that each node in a network has precise location information of other

nodes. Unlike later studies, the forwarding nodes exploit the next relaying node

by themselves and then pick nodes close to the destination to which they forward

packets. An improved algorithm, ExOR [16], is an integrated routing-and-MAC-

opportunistic routing algorithm. ExOR broadcasts the message to neighboring

nodes with an ordered list of preferred relaying nodes. The priority order is based

on the expected cost, a metric similar to ETX, of delivering a packet from each

node in the list to the destination. A node will wait its turn to forward the

message unless it is notified that nodes before it in the list already did. At the

21



same time, ExOR operates on batches of packets. When 90% of the batch messages

have been forwarded through the priority list, the remaining packets are forwarded

through traditional routing to control the routing cost. One of the limitations of

ExOR is that it prevents spacial reuse and thus underutilizes the wireless medium.

MORE [53] improves ExOR with intra-flow network coding. It mixes the packets

randomly before forwarding to ensure that routers receiving the same transmission

do not forward the same packet. The work of [55] further extends MORE with the

consideration of multiple data transmission rates in wireless networks.

Optimal Routing Algorithms

Though empirical studies have validated the performance of many heuristic

wireless mesh routing algorithms under different network scenarios, the heuristic

designs lack the theoretical foundation to generalize the empirical results and ana-

lyze the network performance with respect to the corresponding optimal cases. On

the other hand, there are theoretical studies that formulate mesh network routing

as optimization problems (e.g., [18, 38, 19]). The routing algorithms derived from

this optimization formulations often claim analytical properties, such as resource

utilization optimality and throughput fairness.

There are multiple factors affecting the performance of a network, and choos-

ing the right model to describe the network is an important step that affects the

formulation for the optimization problem. Common wireless interference models

include the protocol model and the physical model (Chapter III). A popular ap-

proach is to use the protocol model, which is simpler than the physical model. The

interference in the physical model is based on actual signal-to-noise ratio, which

may change from one time to another depending on the environment. This makes
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problem formulation difficult because each node has its unique way of computing

the interference. The protocol model, on the other hand, uses the concept of a

precomputable interference set to represent wireless interference to simplify the

computation.

A common approach for optimal routing formulation is based on linear pro-

gramming (LP). The objective of LP is to maximize the throughput or minimize

the most congested region, which is similar to the maximum flow problem in wire-

line networks. However, there are some differences between the problem in WMNs

and the one in wireline networks. One of the major differences is that the link ca-

pacity constraint is the only constraint in wireline networks, while in WMNs, the

wireless interference also limits performance. Thus the constraints on LP models

usually include the link capacity, interference set capacity (in protocol model), and

flow requirements.

The solution space and the flow requirements vary in different methods pro-

posed for WMN optimization. For example, [18] and [38] investigate the optimal

solution of joint channel assignment and routing for maximum throughput under

a multi-commodity flow problem formulation. As another example, [19] presents

bandwidth allocation schemes to achieve maximum throughput and lexicograph-

ical max-min fairness. Also, distributed algorithms have been proposed for joint

scheduling and routing as well as for joint channel assignment, scheduling, and

routing in [36]. The distributed algorithms use local information for traffic routing

and thus have the potential to accommodate dynamic traffic.

LP-based routing optimization algorithms manage the system resources glob-

ally and can produce close to optimal values. LP models assume that mesh nodes

should have similar or the same configurations, which makes it simple to analyze

the problem. For example, LP models usually assume that each node in a WMN
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has the same transmission and interference range, and apply the protocol model

in the system. However, [57] shows that actual values of interference and trans-

mission ranges are more periodic with several values instead of a single value, and

these can vary across nodes. Another problem with optimization based algorithms

is their flexibility. Their solutions are based on global information and may not be

agile enough to adapt according to individual wireless transmission changes. Fi-

nally, optimization-based algorithms usually require global information to perform

routing, which makes it difficult to deploy in real systems.

Solving the routing optimization usually requires high runtime complexity, but

it may be unnecessary to derive an optimal solution in many scenarios. Instead, ap-

proximate solutions, polynomial in computation complexity, are sufficient for most

applications [58]. The results from approximate solutions may be sub-optimal,

but they require less computation time because they drop results that consume

the same amount of network resources but make a smaller contribution to the final

solution. There are several methods that can derive approximate solution in poly-

nomial time [19] or even constant time [18]. Some general forms and approximate

algorithms are discussed in [59, 60].

The traffic distribution solution presented in this dissertation, i.e., via joint

routing and channel assignment, falls into this category of optimal routing algo-

rithms. It targets the limitations of optimization-based routing solutions. The key

contribution of this dissertation is to provide an adaptive traffic distribution solu-

tion that handles the dynamic traffic demands with fast approximation algorithms

of low complexities that are suitable for distributed implementation.
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Wireless Network Capacity

Wireless network capacity, or how much traffic can be delivered through a

wireless network, is an important metric for the wireless network. It reflects the

upper bound for the network routing performance. The wireless network capacity

problem has been studied in several works [14, 38, 61, 62, 63, 64]. [14] studies net-

work capacity in a wireless network with n identical randomly distributed nodes,

and it found that the throughput obtainable by each node for a randomly chosen

destination is Θ( w√
n logn

) where w is the transmitted rate. [14] models a network

using both physical model and protocol model to compute the capacity. It also

analyzes the capacity of an arbitrary network. However, it considers single chan-

nel networks or multi-channel networks with only one radio at each node. In [38]

and [61], the authors extend wireless network capacity analysis to multi-channel

and multi-radio networks. [65] also studies the impact of the number of channels

and interfaces to multi-channel and multi-radio networks and shows how wireless

network capacity scales as the number of nodes increases. The existing literature

also investigates other factors of network capacity. For instance, [62] studies the

capacity of multi-channel networks with channel switch constraints, such as hard-

ware complexity and spectrum use. Optimization methods in expanding WMNs

with new nodes are discussed in [63]. At the same time, [64] presents a through-

put capacity analysis of a specific flow where node location and interference are

considered.

The capacities discussed above are the theoretical upper bound of the traffic

that can be routed through a network. It depends on routing algorithms to pro-

vide a feasible solution to route the traffic and determine whether the bound is

achievable or not. In reality, the actual network performance may be less than the

25



capacity due to various reasons. The goal of this dissertation is to design a routing

algorithm that can route traffic that is close to that bound.

Wireless Network Traffic Analysis

Traffic demand is an important component in determining wireless network

routing algorithm performance. A good understanding of network traffic, which

includes traffic patterns and user behaviors, can provide correct input for routing

algorithms to compute optimal routing paths. Network traffic can be analyzed by

studying its trace files, which contain network protocols, and flow information. By

learning from these information sources, we can understand current traffic status

and possible future traffic. [66] and [67] use network trace to analyze campus

network traffic. Their studies show that the activity and traffic are dynamic and

vary over different time scales and different locations. Also, their studies show that

neither inbound nor outbound traffic dominates the network traffic, and the ratio

also varies from time to time. Thus, asymmetric bandwidth design is not practical

in their traces. Based on the analysis of trace files, it is possible to derive a formal

model for network traffic. The work of [20] uses the Weibull regression model to

characterize flow arrival and explains the implication from user perspective and

application demands.

Network traffic is generated by users, and user behavior is a key factor that af-

fects wireless traffic patterns. Studying user behavior, including user arrival/departure

and user traffic demand, can help better explain the root cause of wireless traffic

problems. [68] studies the user activities in a public wireless network and shows

user arrivals are correlated in time and space. It also shows that most wireless users
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have short session time, for which the distribution follows the General Pareto dis-

tribution and medium bandwidth consumption is between 15 and 80 Kbps. [69]

proposes a spatial model for mobile user registration patterns as they move from

one access point to another within the same network. The study finds that user

registration patterns show a distinct hierarchy, and access points can be clustered

based on the user transition probability. Unlike in mobile wireless networks, mobil-

ity is rarely discussed in WMNs because WMN routing focuses on traffic aggregated

at fixed access points, and most users limit movement to the area within a single

access point’s coverage [66, 67].

A good understanding of traffic characteristics can help to develop good traf-

fic prediction algorithms, which can, in turn, provide accurate traffic information

for routing algorithms. It should reliably predict general long term trends and

be agile enough to catch dynamics at short terms. One popular mathematical

tool for traffic modeling is time series analysis. This tool provides solutions for

studying correlation in data by identifying the trend of data and the distribution

of variation. When predicting data via time series analysis, one must consider the

relationship with historical data as well as the overall trend and other variations.

There are several factors that can facilitate traffic prediction, including historical

traffic and network properties. Traffic analysis that is solely based on the data

and time series models may not be accurate and efficient. Embedding the network

context into the modeling may provide more insightful information about the traf-

fic, help characterize network traffic (including correlation and seasonality), and

ultimately produce more accurate traffic prediction. A detailed introduction of

traffic prediction and time series analysis can be found in Chapter IV.
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Optimization Frameworks with Uncertain Inputs

To develop a routing optimization solution that can handle uncertain and dy-

namic traffic demands, we need a mathematical optimization technique that can

take uncertain inputs. There are two mathematical programming techniques that

accomplish this: Stochastic Optimization [70] and Robust Optimization [71, 72].

The major difference between these two frameworks is their optimization objec-

tives. In Stochastic Optimization, the objective is to find a solution that is opti-

mized for the expected case. In Robust Optimization, on the other hand, the goal

is to optimize for the worst case scenario. Robust Optimization is gaining in pop-

ularity for network routing research, and several extended works based on robust

optimization have been proposed. For example, [73] proposes a two-stage robust

routing algorithm for network flows that allows one to control the conservatism

of solutions. A distributed version of robust optimization is proposed in [74] and

robust discrete optimization is described in [75]. Compared to Robust Optimiza-

tion, the application of Stochastic Optimization is less common in network routing

due to the following reasons [75]: 1) a good estimation of data distribution is re-

quired and 2) the size of the problem grows quickly as a function of the number of

scenarios.

The work by Wellons et al. [76] is based on a robust optimization framework

and focuses on the worst-case performance guarantee. This algorithm provides

robust routing performance in highly dynamic network environments where traffic

demand is unknown and traffic behavior is hard to predict. However, its average

network performance has a large gap to the optimal value.
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On the other hand, our uncertainty-aware traffic distribution framework is

closely related to Stochastic Optimization. We address the challenges of stochas-

tic optimization using 1) a traffic prediction algorithm which provides accurate

traffic demand estimation and 2) a fast approximation algorithm which provides a

feasible solution with a low computational cost.
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CHAPTER III

MODELS

This chapter introduces features and models used in WMNs.

Internet

gateway access point

clients

mesh node

local access point

Backbone Network

aggregated 
flow

Figure III.1: Illustration of Wireless Mesh Network

Network Model

A multi-hop wireless mesh network is illustrated as shown in Fig. III.1. In this

network, mobile devices, which are not the backbone of WMN, are connected to

the WMN via local access points. Local access points aggregate the traffic from
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associated mobile clients. They communicate with each other and with stationary

wireless routers, forming a multi-hop wireless backbone network which forwards

the user traffic to gateway access points. These access points usually have wired

connections to the Internet which send incoming traffic back in the reverse di-

rection. In the following discussion, local access points, gateway access points,

and mesh routers are collectively called mesh nodes. With the help of the WMN,

mobile clients can access the remote Internet seamlessly.

For the sake of simplicity, we use the following notations: The backbone of a

WMN can be modeled as a directed graph G = (V,E), where each node u ∈ V

represents a mesh node. Among these nodes, g ∈ V is one of the gateway access

points that connect to the Internet.

Interference Model

Signal interference plays an important role in wireless network transmission.

When one node sends out packets, its signal may be heard not only by the receiver,

but also by some of neighboring nodes. When two nodes are far enough away from

each other, the signal from each node cannot be heard by the other and no direct

transmission is possible between these two nodes. At the same time, there is no

interference between those two nodes, which means one node’s communication will

not affect the other. On the other hand, when two nodes are close enough, they

can hear the signal clearly and communicate directly with each other. There is

also an intermediate state, when two nodes may not be able to receive each other’s

signal clearly, which means direct communication is not possible, but the signal

can still be detected; this is usually called noise. The noise received at one node

can affect its transmission with other nodes. We say node A interferes with node
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B when node B’s receiving capability is disturbed by node A’s signal. Sometimes,

the noise at the receiving node is so strong that it prevents the node from receiving

packets from others.

Several models have been proposed to describe this interference character. Two

popular models, protocol model and physical model, define the condition for a suc-

cessful wireless transmission and describe when two nodes are encountering inter-

ference [14]. The physical model is based on real scenarios and is much closer to

actual networks. The protocol model, on the other hand, is a simplified, though

popular, model favored in the research area.

Physical Model: When a node is transmitting packets to another node, its

signal can be heard by neighboring nodes. The strength of the signal received

at each node depends on the distance to transmitting nodes. Usually the far-

ther it is away from transmitting nodes, the weaker the signal it receives. In the

physical model, packet transmission from node u to v is successful if and only if:

SNRuv ≥ SNRthresh, where SNRuv is the signal-to-noise ratio received at node v

and SNRthresh is the threshold value. Noise at node v consists of ambient noise

and interference of transmission from other nodes in the network.

The physical model’s description of signal interference is close to that in actual

networks, where it completely depends on the signal-to-noise ratio at the wire-

less card to determine whether a node can hear the signal clearly and decode it.

One node’s signal may interfere with another node at one moment, but it may

not interfere with that node at another moment. In the physical model, only

the signal-to-noise ratio at the receiving node at a specific moment can determine

whether it is disturbed by other nodes and whether it can receive the signal suc-

cessfully. Although it models how interference is interpreted at the receiving node,
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the physical model is complicated and not easy to analyze. The protocol model,

on the other hand, provides an easier modeling.

Protocol Model: In the protocol model, each node u ∈ V has a transmission

range (denoted by RT (u)) and an interference range (denoted by RI(u)). RT (u) is

defined as the maximum distance node u’s transmission can be received successfully

by other nodes. Most models, especially those used in centralized algorithms,

assume all mesh nodes have a uniform transmission range, and thus RT (u) can

be simplified to RT . We denote r(u, v) as the distance between u and v. A

directed edge e = (u, v) ∈ E denotes that u can transmit to v directly. An edge

e = (u, v) ∈ E exists if and only if r(u, v) ≤ RT . If node u is transmitting packets

to node v, u’s signal can also be heard by node t if r(u, t) is within a certain range,

which is denoted by RI(u). The signal from node u is treated as noise by node

t if t is not the intended receiver and the noise also successfully prevents t from

receiving packets from other nodes. Most existing works that use this model also

assume that all mesh nodes have a uniform interference range RI . The relationship

between RT and RI can be expressed as RI = (1+∆)RT , where ∆ ≥ 0 is a constant.

Packet transmission from node u to node v is successful if and only if

1. the distance between these two nodes r(u, v) satisfies r(u, v) < RT , and

2. any other node w ∈ V within the interference range of the receiving node v,

i.e., r(w, v) ≤ RI , is not transmitting.

Fig.III.2 shows an example in which nodes w, x and v are within the trans-

mission range of node u. Transmission between any node from w, v, x and node

u is valid. At the same time, nodes w, v, x, b and c are all within the interference

range of node u. Although node u can only transmit information to node w, v, x,

its transmission signal can also be heard by nodes from b and c. Each node within
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Figure III.2: Illustration of Transmission and Interference Range (node u)

u’s interference range is disturbed when node u is in transmission and it is not the

intended receiver. Node a is out of node u’s interference range RI(u), and is not

affected by node u.

Transmission always happens between two nodes, and the traffic can be in one

direction or the other. When there is signal transmitting over a wireless link,

it must be either one node or the other of the link sending the packet. Any

external interference with any of the two nodes on the link also interferes with

the transmission of that link. This means that when one link is in transmission it

may affect the transmission of other links. All affected links are included in the

interference set of that link.

When one node pair is in transmission, other nodes within the transmission

range may not be able to transmit. Two edges e, e′ interfere with each other if

they cannot transmit simultaneously. We use I(e) to denote the set of edges which

interfere with edge e. Fig. III.3 shows an example of interference set I(euv). The

circles show the interference range of node u and v. Edges eab, exy are all in the

interference set I(euv) and encounter interference when edge euv is in transmission.
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Multi-radio and Channel Assignment

Wireless interference has a great impact on throughput performance of WMNs.

Simultaneous transmission is possible only when two links do not interfere with

each other. The impact is amplified, especially in a multi-hop network where

interference is heavy, when the number of transmitting links increases.

The IEEE 802.11 protocol provides several non-overlapping channels to address

the simultaneous transmission problem in wireless networks. For example, 802.11b

and 802.11g have 3 and 12 orthogonal channels, respectively. Those channels use

the same transmit protocol, but they transmit on different frequencies and do not

interfere with each other. This greatly broadens WMN capacity and increases the

throughput. As long as they use the same channel, two nodes are able to com-

municate with each other. However, transmission is impossible if they operate on

different channels. Since only one channel is allowed on each wireless interface card

(also called radio), each node can be equipped with multiple radios and operate

them on different channels to increase transmission capacity with other nodes.

The purpose of channel assignment is to assign a channel to both radios on

each pair of nodes so that two nodes can communicate on the same channel. The
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channel assignment problem is different from the graph-coloring problem in that

standard graph-coloring cannot capture the constraints in channel assignment [37].

One challenge is that the number of radios on each mesh node is limited due to

design issues and may be far fewer than available orthogonal channels. Learning

how to assign channels to limited radios to reduce the interference while increasing

WMN throughput has become one of the major topics in this area.
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Figure III.4: Network Topology with Multi-radio

Fig. III.4 shows an example of network topology after channel assignment.

There are five interfaces on node u. Three different channels are used to com-

municate with node a, b, d respectively. Two channels are assigned to node u for

communicating with node c. It is valid to use more than one channel for single-pair

node communication in order to increase the total transmission capacity. Channel

assignment is not intended to prevent interference but to reduce the interference.

As in this example, both link ad and bu use channel 2 for communication. It is

still possible that those two channels may interfere with each other.
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Schedulability

To study the optimal routing problem, we first need to understand the con-

straint of the flow rates. Let y = (ye, e ∈ E) denote the wireless link rate vector,

where ye is the aggregated flow rate along wireless link e. Link rate vector y is

said to be schedulable if there exists a stable schedule that ensures every packet

transmission with a bounded delay. Essentially, the constraint of the flow rates is

defined by the schedulable region of the link rate vector y. For ease of exposition,

we assume that the wireless link data rate, which is the maximum data that can

be carried in a unit of time, is the same for all e ∈ E and is denoted as q. q is also

referred to as channel capacity in the following discussions.

The link rate schedulability problem has been studied in several existing works

which have led to different models [77, 78, 79]. In this dissertation, we adopt the

model in [78], which presents a sufficient condition under which a link scheduling

algorithm is given to achieve stability with bounded and fast approximation of an

ideal schedule. Based on this model, we define I ′e as a subset of Ie where each e′ ∈ I ′e

has a length r(e′) greater than or equal to r(e). We further define Se = {e} ∪ I ′e

as the adjusted interference set of e. Based on the scheduling algorithm and its

properties presented in [78], we have the following claim.

Claim 1. (Sufficient Condition of Schedulability) The link rate vector y is

schedulable if the following condition is satisfied:

∀e ∈ E,
∑
e′∈Se

ye′ ≤ q (III.1)

If we extend this model to multi-channel, multi-radio networks, we have the

following claim.
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Claim 1a. (Sufficient Condition of Schedulability) The link rate vector y is

schedulable if the following condition is satisfied:

∀e ∈ E,
∑
e′∈Se

ye′ ≤ q (III.2)

Some existing works also study the necessary condition for multi-radio, multi-

channel networks. Formally, let ye(c) be the flow rate on edge e(c) ∈ Ec, y be the

link flow vector, ρe(c) =
ye(c)
ϕe(c)

be the utilization of channel c over link e, and E(v)

be the set of links that is adjacent to node v. Based on the results presented in [18],

the necessary conditions of channel assignment and scheduling are summarized in

the following claim.

Claim 2. (Necessary Condition of Channel Assignment and Schedulability) For

the multi-channel, multi-radio wireless mesh network, if a given link flow vector y

does not satisfy the following inequalities:

∑
e′∈Ie(c)

ρe′(c) ≤ γ(∆);∀e(c) ∈ Ec (III.3)

∑
c∈C

∑
e(c)∈E(v)

ρe(c) ≤ κ(v);∀v ∈ V (III.4)

then y is not schedulable.

In particular, Inequality (III.3) is the congestion constraint over an individual

channel. γ(∆) is a constant that only depends on the interference model. Inequal-

ity (III.4) gives the node radio constraint. Recall that a mesh node v ∈ V has κ(v)

radios, and thus can only support κ(v) simultaneous communications.
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Wireless Link Quality

Wireless networks are different from traditional wired networks in several as-

pects, including wireless interference and link stability. It has become important to

study those behaviors and properties in actual wireless networks before designing

routing algorithms. Questions such as how much traffic can be routed through

a network or a specific link are critical to overall system performance. Several

research endeavors (e.g., [57, 80, 81, 82]) have focused on studying wireless link

properties in deployed wireless networks.

Unlike wired links that are relatively stable during transmission, wireless links

have an instability problem. Transmission between two nodes may succeed at one

time but may fail at another time for various reasons. One metric measuring link

transmission quality is the link loss rate, which is the rate of packets not received

by the receiver. The link loss rate is an important factor that reflects the link qual-

ity, including the number of retransmissions and the actual link capacity. It [57]

has been shown that link loss rates in a wireless network are usually uniformly

distributed, and there is no absolute threshold distinguishing whether two nodes

are “in range” or “out of range.” According to their results, the protocol model, a

simplified model introduced earlier, does not reflect the actual link connectability.

There are several factors that can affect the link loss rate. Signal-to-noise

ratio, which reflects the signal interference, and distance, which reflects the signal

attenuation, are both important factors that make major contributions to the link

loss rate. Some studies [57] also show that multiple-path fading is a determining

factor for the links that have intermediate loss rate. Other studies [83] shows that

wireless interference and contention may even starve links with nodes at certain

locations.
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Models [82, 81] based on the measurement of deployed networks have been

proposed to study link quality. [84] presents the link capacity of any given link in

the presence of any given number of interferences in a deployed network. In [82],

models based on measurements of wireless network signal characteristics are used

to predict the performance of networks with different settings. On the other hand,

models may not be able to reflect actual link conditions. [81] shows that inaccurate

signal characterization will result in poor network performance. The loss rate of

a specific link is not constant and may change over time. This characteristic is

supported by research in [80], which shows increased variability in channels at a

time scale that is smaller than a single packet increases the link-level throughput

while longer time scale variability reduces it.
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CHAPTER IV

WIRELESS NETWORK TRAFFIC ANALYSIS

Many existing routing algorithms for WMNs that take traffic information as

input assume it is static or known a priori. However, studies (e.g., [20, 85, 86, 87,

88, 68, 89, 90, 91]) show that traffic demand, even aggregated at access points, is

highly dynamic and hard to estimate.

Such observations reveal the limits of the algorithms that are not adaptive

to dynamic traffic because those algorithms may not only generate sub-optimal

solutions, but they can also produce even worse performance due to the mismatch

between the demand used in routing and the actual traffic. Consequently, it has

become more and more important to provide precise future traffic estimation so

that routing algorithms can compute optimal routing paths. A straightforward

approach for traffic prediction is to predict future traffic by observing historical

data. A simple example for this approach is using traffic at a previous time slot as

the prediction for the current slot. More often, traffic cannot be predicted based

on previous time slot, and a more general formal approach is needed.

In order to study the relationship between historical and future data, a com-

mon metric called autocorrelation is used. This metric reveals how strong the

correlation is between sub-series at different time points from the same data series.

Using this concept, we can develop models based on observed traffic information

and then predict the traffic based on the developed model. Time series analysis is

one such methodology. Time series analysis is a tool for studying, modeling, and

predicting a series of data. It uses stochastic approaches to model historical data
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and predict future traffic, and it has been extensively studied in many references

and books [92, 93, 94, 95, 96, 97, 98].

Traffic estimation can predict future traffic demand by studying historical data

as well as the network environment. Traffic prediction models can be built ei-

ther based on specific system property, or historical traffic demand, or both.

In [68, 87, 20, 89], traffic predictions are made by studying user behaviors or traffic

patterns at the flow level. As another approach, traffic can be analyzed through

decomposition because the variation at different timescales are usually caused by

different network mechanisms. In [99], traffic is decomposed into different scales

and each decomposed traffic is predicted independently using time series analysis

models. In [20], two-tier modeling based on different time granularity is used to

capture the nonstationarity characteristic of wireless network flows. Weibull Re-

gression model is then applied to both time scales to characterize the traffic. The

benefit of using system properties is to provide traffic prediction based on inter-

nal factors that cause the traffic change, which can usually produce precise traffic

prediction, especially for patterns that change rapidly. However, system proper-

ties may vary from one to another, and it would be difficult to develop a general

solution for all different situations.

In most scenarios, traffic prediction provides a single determined value for future

traffic at a specific time slot based on the historical data. However, this can be

insufficient since the prediction result is probabilistic in nature. In order to address

this problem, we present a novel method to describe the future traffic. Instead of

relying on a single value to predict future traffic, we use a set of possible traffic

values together with corresponding probabilities.

In this chapter, we first present the wireless network trace files, which we will

use for our routing algorithms for simulation and verification. Then, we introduce
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the concepts of data correlation, time series analysis method, and other approaches

that can be used to analyze and characterize network traffic. Using these tools, we

then present the mean value traffic prediction method, which generates single-value

traffic prediction, and mean value traffic prediction with statistical distribution

method, which provides corresponding probabilities for predicted traffic demand

values.

Trace Data Sets

In order to develop realistic traffic models, it is very important to have traffic

information that is close to that of real networks. One of the best approaches is

to use the trace files from real networks. Crawdad [100] is a popular website that

maintains wireless network traces collected by different institutions and groups.

Those traces are generated by different networks and environments, which include

wireless LANs, ad-hoc networks, and WMNs. Those networks include large-scale

systems that are deployed in colleges and public locations, as well small-scale sys-

tems, such as homes. The length of the trace files varies from several hours to

several years, depending on different properties of networks. Traces from tem-

porarily deployed networks, such as a Wi-Fi network for a conference, have rela-

tively short length, while permanently deployed networks may collect longer traces.

The contents of the trace files include traffic load, location information and signal

strength. The trace file formats also vary depending on the purpose and content

of each file and the way the trace file is collected. Common file formats include

tcpdump, SNMP, and Syslog, which are usually produced by common tools like

sniffer software tcpdump. Some traces generated by self-developed programs may

use proprietary formats to record trace files.
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Our study focuses on the traffic routing in the backbone WMNs, and it requires

that traffic load information be collected at access points as the traffic demands.

The preferred trace data that match our needs are traffic collected from WMNs.

However, only limited traces from WMNs are available on Crawdad. On the other

hand, several traces collected from wireless LANs are available. We believe traffic

traces from wireless LANs also qualify our study for the following reasons. First,

we are only interested in traffic demands that are gathered at access points. The

information about how traffic is routed through wireless routers is not important

from trace files. Second, from an end users’ view, the network structures of wireless

LANs and WMNs are similar to each other. Also, users in both networks have

similar behaviors. Therefore, it is reasonable to use wireless LAN traffic for our

study.

We are primarily interested in SNMP, tcpdump file formats, which keep the

network traffic load information. We prefer trace files in SNMP format because it

gives detailed and complete traffic information at each node and also provides an

easier way to extract traffic information from the trace file. Trace files, like those

from tcpdump, do not track the traffic flow directly through a specific access point

directly, so extra work is required to extract the traffic information.

Based on the criteria described above, we summarize the data sets that are

used in our study below.

dartmouth/campus This data set contains complete wireless network infor-

mation from Dartmouth College for several years. This is the most complete data

set on Crawdad with the longest duration. The formats of the trace files include

syslog, SNMP, and tcpdump. However, trace files with all three formats are only

available for the early years’ (2002 - 2003) traffic. A problem with early years’

wireless traffic is that wireless technology was not as popular it is now, and traffic
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shows more random trends due to a low number of users. Only syslog files, which

do not have detailed traffic information, are available for recent years, and cannot

be used for our study.

ibm/watson It is a wireless LAN data set from the IBM research center

recorded in 2002. The duration for the trace file is several weeks and the for-

mat of the trace files is SNMP.

Mean Traffic Prediction

With the help of trace data from real networks, it is possible for us to study

traffic demand characteristics and develop traffic prediction algorithms. Under-

standing traffic is the first step for a traffic prediction algorithm, which gives us

general pictures of the data sets and how data are linked.

Understanding Traffic

Preliminaries

As a preliminary step of finding traffic patterns, it is necessary to study its

correlation. In statistics, correlation is defined as the relationship between two or

more sets of variables, and autocorrelation of a traffic series within this dissertation

is the correlation between its subseries starting at different times. There are several

ways to study traffic autocorrelations. One basic approach is to assume one traffic

series is a function of the other with a different time offset and tries to find a model

that fits two traffic series relationship.

Fig. IV.1 illustrates an example of finding traffic correlation between traffic at

current time and previous hour. The x axis represents the traffic at current hour

and the y axis represents the traffic at previous hour. It is easy to see that the
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Figure IV.1: A Basic Approach for Studying Traffic Correlation

data plot shown in the figure indicates a strong linear relationship, and we can use

tools such as least squares to find the linear relationship that best fits data and

show how strong the linear relation of the traffic is with its previous hour.

Correlation

The above approach provides a basic tool for studying the relationship within

a traffic series. However, the weakness of this approach is that it can only study

relationships between a limited number of sub-series at each time. It also depends

on individual experience to choose which sub-series may have strong relationships

and analyze them. In statistics, autocorrelation describes how sub-series with

different time lags are similar to each other. Let µ = E(X) be the mean of a time

series X, and σ be its standard deviation. We define the autocorrelation ρτ of two

sub series Xt and Xt+τ , starting at time point t and t+ τ respectively, as
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ρτ =
E[(Xt − µ)(Xt+τ − µ)]

σ2
(IV.1)

E[(Xt − µ)(Xt+τ − µ)] is also known as autocovariance and τ is the lag. A

higher autocorrelation value indicates a stronger correlation. It is easy to see that

the autocorrelation of a time series Xt itself is 1 when τ is 0, which is the strongest

correlation.

The above definition assumes continuous traffic series, and we also assume that

the traffic length (duration) is large enough that the difference caused by τ can

be ignored. However, in our data analysis, which is obtained from network traces,

the collected traffic series is discrete, and its length is finite. For a discrete traffic

series with length N , we refine the previous definition of Xt and Xt+τ as sets of

{xt, xt+1, ..., xN−τ} and {xt+τ , xt+τ+1, ..., xN}, respectively, where xt is the traffic

at time point t so that two sub-series share the same length. All other variables in

Equation IV.1 remain unchanged and use values from the original series.

Beyond Correlation
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Figure IV.2: A Traffic Series and its Autocorrelation
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Fig. IV.2 is an example of a traffic series. Fig. IV.2 (a) is the original traffic

and Fig. IV.2 (b) is its autocorrelation. The traffic is recorded hourly, and the lag

used in the x axis is also indexed by hour. It is obvious to observe from the figure

that there are peaks around hour 24, 48, ..., 120, which means traffic at time t has

stronger correlations with traffic at t + 24, t + 48, ..., t + 120. This result further

indicates that traffic at the current hour has stronger correlation with traffic at

the same hour of previous days. At the same time, the values at lag 1, 2 are high,

which leads to the conclusion that the traffic at previous hours also has stronger

correlations with the traffic at the current hour.

The above example is from an access point trace in a typical corporation net-

work, which renders certain patterns in terms of correlation. The data series itself

determines its correlation; however, the way we collect data from network traf-

fic trace can generate different series and thus lead to different correlation results.

For example, access points at different locations may show different traffic patterns

and correlations. Series from corporation networks may have different correlations

than those from campus networks. Also, different time scales used for measuring

traffic can lead to different autocorrelation results. Traffic aggregated by minutes

may show no strong correlation among different minutes, but when aggregated by

hours, it may show stronger autocorrelation.

We collect traces from various network environments, and those traffic series

can vary from one to another. Even in the same environment, different Access

Points (APs) may have different traffic behaviors. Fig. IV.3 illustrates an example

where two APs from the same network show different autocorrelations. Series A

shows almost no correlation among historical hours. It is more like a random traffic

pattern, and it cannot be analyzed using an autocorrelation approach. Series B,

however, shows a better correlation among historical hours than series A. Since
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Figure IV.3: Autocorrelations from Different Traffic Series

different traffic series have different traffic patterns, it is impractical to derive a

single traffic pattern model for all APs. Analysis based on individual traffic sources

is necessary.
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Figure IV.4: Traffic with Weekend Traffic Removed
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Different traffic series have different patterns, and data inside a traffic series

can also have different behaviors. It is difficult to study those series if we use the

complete series as a single one. Decomposing those data based on different traffic

behaviors, grouping data that share the same characteristic, and studying those

series group by group can provide a better picture of traffic and make analysis more

efficient. Fig. IV.2 is a typical traffic trace from a company. From our previous

analysis, we know traffic have certain correlations with those from previous days at

the same hour, but the correlation is not strong. In that figure, we use the whole

set of traffic data, including weekday and weekend traffic. However, we know the

employers of most companies do not work over the weekends, so weekend traffic can

vary greatly from weekday traffic. By removing weekend traffic from the trace, we

keep all weekday traffic, which has closer patterns than weekend traffic. Fig. IV.4

is the autocorrelation diagram after weekend traffic is removed. It shows a stronger

correlation with traffic from previous days at the same hour.

Besides different patterns, it is also critical to choose appropriate time scales

to measure traffic. Using larger or smaller time scales that are not compatible

with actual system properties may hide or remove traffic correlations and make it

impossible to study traffic relationships. Fig. IV.5 is an example of how important

it is to choose a proper time scale to measure traffic. The original trace file records

traffic every 5 minutes. If we use this traffic information directly and compute

its correlation, we get the result as shown in Fig. IV.5 (a). It is easy to observe

from the figure that little correlation exists if traffic is recorded every 5 minutes.

However, we can obtain a better correlation result as shown in Fig. IV.5 (b) after

we aggregate traffic hour by hour. This indicates that the time scale based on

every 5 minutes is not a good metric for this trace file. Different traces represent
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different system properties, and a proper time scale can be estimated by studying

the system properties and the trace files.
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Figure IV.5: Autocorrelations Using Different Time Scales

Traffic Prediction

With this understanding of data series patterns, we now apply mathematical

tools to model the pattern and use the model to predict future traffic. As we

introduced in the previous section, one of the tools is regression. By setting up

a sub-series as a function of others, regression tries to find a fit function that

can best describe the relationships of those series. Regression, however, can only

handle simple data that a single function can fit directly. This is complicated by

the fact that network traffic is not simple and contains complicated relationships.

Time series analysis is a tool that addresses the problem where data contain more

than one level of correlation and patterns. It processes series by decomposing data

into different components and modeling each component. Then it uses the models

to predict the future traffic.
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Regression

Regression uses one sub-series as a dependent variable and one or more sub-

series as independent variables, and then it tries to find a fit function that satisfies

those variables and can best describe the relationship between them. Common

fit functions include linear and polynomial functions; thus, corresponding linear

regression and non-linear regression compute the best fit functions. Besides those

regressions, there are also other regression techniques addressing certain specific

problems, such as robust regression where abnormal data are dropped during the

computation.

We illustrate an example to show how we can use regression to predict future

traffic. First, we believe there is certain correlation between the current hour traffic

and its previous hour in our example series. In order to study the relationship, one

can use the series of current hour traffic as the dependent variable and the series

of corresponding previous hour traffic as the independent variable. Fig. IV.6 plots

the data of those two series where x axis is series xt−1 while y axis is series xt.

Based on the observation of the plot, we can see these two sub-series have linear

relationship, and the red line plotted in the figure is the result computed from

linear regression. Based on this result, we can use the linear model to compute

next hour traffic using current hour value.

From the example given above, we know that regression is a simple tool to

model series relationships, and that it uses the model to predict future traffic.

There are also problems with using this approach. The first problem comes from

the fact that users need to determine which sub-series have strong correlations.

Regression can only find the best fit function for given sub-series and show how

close they are compared to that function, but it leaves users to choose the right
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Figure IV.6: Traffic Regression Prediction

sub-series. Second, regression cannot process data with complex correlations or

data patterns. For example, it is inaccurate to predict monthly sales data without

removing some abnormal values caused by a holiday shopping burst. In order to

address those issues, we introduce time series analysis for advanced data analysis

in the next section.

Time Series Analysis

A time series is a collection of data observed over time. Typical examples of

a time series include monthly airline passengers and yearly sale numbers. Time

series can help find models for a better understanding of known data, and also use

the model to predict future data.

A classic time series is usually composed of the four following components:

Trend: Trend in a time series is a component that has a steady growth or

decline, and it reflects long-term changes in a time series.
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Seasonal variation: Seasonal variation is a trend at a short time interval, and

it repeats along the whole time series. A typical example for seasonal variation is

a sales pattern of a product which may always be high during winter months and

low in summer.

Cyclic variation: Cyclic variation is a trend at a time scale different from

seasonal variation, and it may vary from cycle to cycle.

Irregular activity: Irregular activity is what is left after removing the trend,

seasonal variation, and cyclic variation. It is usually a random component beyond

forecast.

The value in a time series Xt at time t is a result of the above four components

at that time point: trend Tt, seasonal variation St, cyclic variation Ct and irreg-

ular activity It. Addictive model and multiplicative model are two direct models

for describing the combination of the four components. In addictive model, Xt is

expressed as: Xt = Tt + St + Ct + It, while in multiplicative model, Xt is multipli-

cation of the four components: Xt = Tt × St × Ct × It. In some models, trend Tt

and cyclic variation Ct are considered jointly as a single component as TCt.

Time Series Models: Models for describing time series are simple when data

is dominated by stationary trend and/or seasonality. However, those models are

less efficient when the trend and/or seasonality are changing or successive irregular

activity values are correlated. In those time series, successive values in the same

series, usually in a short time interval, show certain correlation. The correlation

within a series is generally called autocorrelation. More sophisticated models that

are based on the relationship of successive data are needed.

A series is deterministic if values in the series can be determined completely

based on past values. Most time series, however, are stochastic, which means

they can only be determined partly by past values. However, it is still possible to
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calculate the probability of a future value. Such a process is called a stochastic

process, and the model used is a stochastic model. An important class of stochastic

models is called stationary models, where the mean is constant through time.

In reality, there are many time series that do not have constant means and are

called nonstationary process. However, analysis for nonstationary models is usually

specific to certain series and may not be general to all. More analysis is actually

based on stationary models, and nonstationary models can always be transformed

into corresponding stationary ones.

We next introduce some common models for describing time series.

Autoregressive (AR) Model AR model is a stochastic model, where the

value Xt at time t is the weighted sum of past p values plus a random shock at.

That is

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + at (IV.2)

Then, the series X is an AR process of order p. The simplest AR model is

when p = 1. Then AR(1) can be simplified as

Xt = ϕ1Xt−1 + at (IV.3)

AR(1) is stationary when |ϕ1| < 1. From Equation IV.3, we find that the only

data that will affect Xt at time t is its precedent Xt−1.

If we use a lag operator L to represent the relationship between two consecutive

variables, LXt = Xt−1, then Equation IV.2 can be rewritten as follows:

ϕ(L)Xt = at (IV.4)
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where ϕ(L) = 1− ϕ1L− ϕ2L
2 − ...− ϕpL

p

Moving Average (MA) Model MA model is a stochastic model, where the

value Xt at time t is the weighted sum of last q random shocks. That is

Xt = at + θ1at−1 + θ2at−2 + ...+ θqat−q (IV.5)

Then we call the series X an MA process of order q. If we define θ(L) =

1 + θ1B + θ2B
2 + ...+ θqB

q, then Equation IV.5 can be rewritten as follows:

Xt = θ(L)at (IV.6)

Autoregressive Moving Average (ARMA) Model In order to achieve

greater flexibility of fitting time series, a mixed autoregressive and moving average

model called ARMA model is needed. An ARMA (p, q) model is a mixed model

that has p autoregressive terms, and q moving average terms and it is usually

expressed as

ϕ(L)Xt = θ(L)at (IV.7)

where the definitions of ϕ(L) and θ(L) are the same as in Equation IV.4

and IV.6.

Autoregressive Integrated Moving Average (ARIMA) Model Many

time series actually are not stationary, and AR, MA and ARMA cannot be applied

directly to those series. One way to process those series is using differencing to

convert nonstationary series to stationary ones. The converted series after the first

differences at time t is Xt−Xt−1 = (1−L)Xt, where Xt is the value from original

series. It is possible that a nonstationary series may need to apply differencing
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more than once to become stable. The series after the dth differences can be

expressed as (1 − L)dXt. An ARIMA (p, d, q) model for a time series means the

series can fit into an ARMA (p, q) model after applying differencing d times.

Seasonal Autoregressive Integrated Moving Average (SARIMA)Model

A seasonal ARIMA may apply if a time series has a repeated pattern with s

time periods over the time. In the SARIMA model, Ls is an operator such that

LsXt = Xt−s. A typical SARIMA (p, d, q) × (P,D,Q)s model usually includes

non-seasonal terms with order (p, d, q) and seasonal terms with order (P,D,Q).

Model Building

To build a model for a time series, the first step is to identify a proper one.

Actual time series may never be stationary initially, and thus the ARMA model

cannot be applied directly to the series. Those nonstationary time series usually

contain trend and/or seasonality, and additional processing is required to remove

trend and/or seasonality.

Seasonality of a time series can be found and verified by calculating its auto-

correlation function and the actual mean of the series. For example, in a time

series of monthly airline passenger numbers, a repeated peak season pattern can

be found every month. It can also be verified by calculating its autocorrelation

function; strong correlations can be found every 12 months. A reversed process

can also be used to confirm the actual mean of a time series. After the seasonal

pattern of a time series is found, it can be decomposed from the original series.

If a time series is still nonstationary after removing the seasonality, then there

may be trends in the series. Using differencing to build a new series can remove the

trend and make it stationary. Sometimes, it may take more than one differencing

before the series becomes stationary.
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The preprocessed series, after removing seasonality and trends, should be a

stationary process, and can use the ARMA(p, q) model to fit the series. The first

step of applying the ARMA(p, q) model is to identify the values of p and q, which

is the same as identifying the AR(p) and MA(q) models, and it can be found by

studying a series’ autocorrelation function and partial autocorrelation function. In

reality, the values p and q are usually small for actual time series. By studying

all ARMA(p, q) models of possible combinations, unique features can be found in

each type of model. Possible matching models can be found by comparing a se-

ries’ autocorrelation function and the partial autocorrelation function with those

unique features. A detailed description of the unique features of the autocorre-

lation function and partial autocorrelation function in each model can be found

in [92]. After possible matching models are found, the next step is to calculate the

parameters of the models to get a complete model for the series. Parameters can

be computed based on best fitting theory such as minimum squares. When more

than one model can fit a series, one approach is to pick the model that best fits

the data.

As a last step in verifying that the identified model is correct, the computed

model should be put back into the series to calculate its residuals from the original

series. The residuals from a correct model should be independent and have no

obvious correlation with each other.

In our traffic model, the strength of our traffic prediction algorithm also relates

to how dynamic traffic is. If traffic is highly dynamic and there is no correlation

between current and historical traffic, then the traffic prediction algorithm does

not work. However, it does not mean that the traffic prediction algorithm is

not adaptive to dynamic traffic environment. The sensitivity of traffic prediction

algorithm relies on the window size of historical data as well as the weight of each
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historical data, both of which contribute to the final prediction. A larger weight

of recent traffic implies a prediction algorithm that is more sensitive to the recent

change. A larger weight of older traffic, on the other hand, is less sensitivity to

recent traffic. Different traffic environments produce different traffic modeling for

prediction. Those parameters from models determine the sensitiveness to traffic

change.

Example

In this section, we give a general example of how to process data from trace

files, model the data using time series analysis, and predict the traffic using the

model.

Some trace files track networks for several days or several weeks, but the traffic

information is usually recorded every several minutes or less. Such a fine granular-

ity may not fit our study because traffic variation at minute level usually does not

show a strong pattern. Aggregated traffic within each hour, on the other hand, can

smooth the irregular traffic patterns at minute level and show a more consistent

traffic trend. Also, using traffic information at minute level requires routing paths

to change at the same frequency. Frequent routing table updates will introduce

extra overhead to the system. Therefore, we believe measuring traffic at hour

level best fits the system implementation. We use aggregated minute based traffic

within the same hour to represent the traffic at that hour.

Fig. IV.7 shows traffic information collected at an AP for about 480 hours.

Overall, the traffic has a repeated pattern every 24 hours. We use the first 240

hour trace (Fig. IV.8) as the history data to build a time series model. The length

of the series for history data varies depending on the actual traffic. Various factors

help determine the right time period for training. A shorter time period may be
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not enough for algorithms to learn the behavior, while a longer time period could

introduce longer computation time complexity. We choose the best time period

by identifying network traffic behavior so that history data is enough for traffic

prediction algorithms to learn without imposing too much computational load. For

online algorithms, where it is not possible to learn historical data at the beginning,

time period can be adjusted as traffic prediction algorithms try to adapt dynamic

traffic.
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Figure IV.7: Hourly Traffic

According to the calculation of the trace and our understanding of the whole

system, we find there is no obvious trend in this series, although the series shows

seasonal variations. The first step is to find the seasonal trend of the series

(Fig. IV.9), which can be calculated based on the same hour in each period (24

hours in this series), and remove it from the original series ((Fig. IV.10)).
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Figure IV.8: First Half Traffic

We use software programs (Matlab) to find the best model that fits this series,

and the fitted model with seasonality included can be found in Fig. IV.11. The

final fitted traffic with seasonality included is shown in Fig. IV.12.

Finally, we use the model developed from the first half of the trace to predict

the second half (Fig. IV.13), and the overall traffic together with the fitted model

and predicted traffic can be found in Fig. IV.14.

Mean Traffic Prediction With Statistical Distribution

Not all traffic can be predicted precisely, and this is particularly true when

network traffic is highly dynamic and hard to predict. At the same time, incorrect

traffic prediction provides wrong information for the routing algorithm and can

affect network performance. In this case, single-value mean traffic prediction is not

sufficient to address the problem. On the other hand, mean traffic predictions with
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Figure IV.9: Average Seasonal Traffic Pattern

statistical distribution can properly capture this limit of mean value prediction.

Instead of providing single value traffic information, it characterizes traffic by using

a set of possible traffic values and corresponding probabilities. This approach is

based on the mean traffic prediction. By comparing the deviation of predicted value

from actual traffic, we can get a picture of error distribution in the traffic prediction.

With this error distribution, we derive the distribution function of the predicted

traffic demand. Traffic distribution algorithms that utilize the probabilistic traffic

distribution information are more resilient to traffic dynamics.

A Complete Example

In this section, we describe a complete example from trace data analysis to

traffic modeling to predict traffic with mean values and distribution. We study

the dynamic behavior of aggregated traffic at local access points. Our goal is to
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Figure IV.10: Traffic After Removing Seasonality

(1) develop a reliable estimation method that is able to predict the aggregated

traffic demand of an access point based on its historical data, and (2) develop

a statistical model to characterize the prediction results. The estimated traffic

demand will serve as the input of mesh network routing algorithms which will be

presented in the chapters to follow.

In order to develop such a traffic demand model, we study the traces collected

at the campus wireless LAN network of Dartmouth College in Spring 2002 [100].

By analyzing the snmp log from each access point, we derive the dynamic behavior

of the aggregated traffic demand. We argue that the access points of a wireless

LAN serve a similar role and thus exhibit similar behavior because the local access

points of a wireless mesh network as both networks server similar mobile clients.

To illustrate our analysis procedure, we choose one of the access points (Res-

Bldg97AP3) as an example. The time series of its incoming traffic is plotted in
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Figure IV.11: Raw Prediction Based Traffic without Seasonality

Fig. IV.15. From the figure, we can easily observe that (1) the traffic demand is

non-stationary over large time scales due to the diurnal and weekly working cycles;

(2) compared with the traffic behavior in the backbone Internet [101], the traffic

at an access point is bursty due to the insufficient level of multiplexing. The above

observations are consistent with the findings in [20].

The first step of our analysis is to identify and remove the daily and weekly

cyclic patterns in the time series. This requires us to calculate the weekly/daily

cyclic average. Formally, let us denote x(t) as the raw traffic series. We estimate

the moving average of this series based on the same time of the same day of the

week, i.e.,

x̄(t) =
W∑
i=1

x(t− 24× 7× i)/W (IV.8)

where W is the size of moving window. To eliminate the effect of bursty traffic, we

also filter out the spike traffic during the above averaging procedure. Fig. IV.16(a)
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Figure IV.12: Predicted Traffic for the Original Series

plots the raw traffic as well as its moving average with W = 5. By removing the

cyclic effect from the raw data, we derive the adjusted traffic series z(t) as follows.

z(t) = x(t)− x̄(t) (IV.9)

The adjusted series of the one shown in Fig. IV.16(a) is given in Fig. IV.16(b).

This adjusted traffic exhibits short-term (a few hours) traffic correlations. We

model the adjusted traffic series with an autoregressive process as follows1.

z(t) = β1z(t− 1) + β2z(t− 2) + ...+ βKz(t−K) + ϵ (IV.10)

where K is the process order. To apply this model for prediction, we estimate the

parameters of this process. Given N observations z1, z2, ..., zN , the parameters β1,

1Ideally, z(t) should have zero mean. In some cases, z(t) has a small mean value which needs
to be removed before fitting an autoregressive process.
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Figure IV.13: Raw Prediction Based Traffic without Seasonality

..., βK are estimated via least squares by minimizing:

N∑
t=K+1

[
z(t)− β1z(t− 1)...− βKz(t−K)

]2
(IV.11)

Based on these parameters, we further derive the adjusted traffic prediction ẑ(t)

as follows:

ẑ(t) = β1z(t− 1) + β2z(t− 2) + ...+ βKz(t−K) (IV.12)

Fig. IV.17 illustrates the estimation results for the adjusted traffic series in

Fig. IV.16(b), where K = 2, β1 = 0.531, β2 = 0.469. The figure plots the predicted

series for the adjusted traffic as well as its raw data. In this figure, the number
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Figure IV.14: Predicted Traffic for the Original Series

of observations used for parameter estimation is N = 60. For the purpose of

comparison, the fitted traffic series is also plotted for the interval [720, 779].

We now consider the errors involved in this prediction process. In particular,

we define the adjusted traffic prediction error as follows.

ϵz(t) = z(t)− ẑ(t) (IV.13)
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Figure IV.15: Incoming Traffic Time Series of A Residential Building on an Aca-
demic Campus
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Figure IV.16: Traffic Series in 5 weeks

Based on this definition, Fig. IV.18(a) plots the cumulative distribution func-

tion of the prediction error of the adjusted traffic series shown in Fig. IV.17. It is

obvious that the error distribution fits the normal distribution with a mean close

to zero.
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Figure IV.17: Adjusted Traffic and Its Prediction
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Finally, we define traffic prediction x̂ as follows:

x̂(t) = [x̄(t) + ẑ(t)]+ (IV.14)

where [x]+ = max{0, x}. Fig. IV.19 plots the predicted traffic series x̂(t) in

comparison with the raw traffic. We can see that the predicted traffic closely

matches the real(raw) traffic. The cumulative distribution function of the predic-

tion error ϵx(t), which is defined as ϵx(t) = x(t)− x̂(t), is plotted in Fig. IV.18(b).

It clearly shows that this distribution also fits the normal distribution with a near-

zero mean.
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Figure IV.18: Cumulative Density Function of Prediction Error

We can consider the estimated traffic demand at time t as a random variable

X(t) which follows the normal distribution with mean x̂(t) and the same variance

as ϵx. Fig. IV.20 shows the distribution of the predicted traffic demand of the

976th hour.

To summarize, the presented traffic prediction method provides two traffic mod-

els: mean value and statistical distribution. These two traffic models will serve as
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Figure IV.20: Traffic Estimation Distribution

the inputs for the fixed-demand mesh network routing algorithm (FMR) and the

uncertain-demand mesh network routing algorithm (UMR), which are presented

in the next chapter.
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CHAPTER V

ROUTING ALGORITHMS FOR SINGLE-CHANNEL WIRELESS
MESH NETWORKS

Solution Overview

This chapter presents an integrated framework for single-channel wireless mesh

network routing, which integrates the demand prediction into traffic routing so that

minimum congestion will be incurred. This routing objective can be transformed

into the throughput optimization problem, where the throughput of aggregated

flows is maximized subject to fairness constraints that are weighted by the traf-

fic demands. In particular, two forms of traffic demands are considered as the

inputs for routing optimization, namely the mean value of the demand predic-

tion and its statistical distribution. We present two routing algorithms for each

form of the traffic demand estimation respectively. For the first case, based on

the classical maximum concurrent flow problem, we formulate optimal mesh net-

work routing as a linear programming problem to maximize, among all flows, the

minimum scaling factor of throughput to fixed-value demand (λ) and present a

fast (1 − ϵ)-approximation algorithm (i.e. fixed-demand mesh network routing

(FMR) algorithm) which could accept the mean value of the demand prediction

as the input. For the second case, in order to incorporate the statistical distribu-

tion of the demand estimation into the problem formulation, we characterize the

traffic demand using a random variable. Now the scaling factor λ under a given

routing solution is also a random variable. The throughput optimization problem

is then extended to a stochastic optimization problem where the expected value
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of the scaling factor λ is maximized. Finally, based on the design of FMR algo-

rithm, a (1−ϵ)-approximation algorithm (uncertain-demand mesh network routing

(UMR)) is presented for optimal mesh network routing under uncertain demand.

The notations used in this chapter are summarized in Table V.1.

Notation Definition
G = (V,E) Network
G′ = (V ′, E ′) Network with virtual gateway/links
u ∈ V Node
e = (u, v) ∈ E Edge connecting nodes u and v
f ∈ F Aggregated flow
x = (xf , f ∈ F ) Aggregated flow rate vector
y = (ye, e ∈ E) Wireless link rate vector
d = (df , f ∈ F ) Flow traffic demands
p(d) Probability of d
Pf Set of paths that can route f
xf (P ) Rate of flow f over path P ∈ Pf

Se Adjusted interference set of e ∈ E
AeP = |Se ∩ P | Number of wireless links P passes in Se

x(t) Raw traffic series
z(t) Adjusted traffic series
x̄(t) Average traffic series
x̂(t) Predicted traffic series
ẑ(t) Predicted adjusted traffic series
ϵx(t), ϵz(t) Prediction error
λ = minf∈F{xf

df
} Scaling factor

θ = maxe∈E{
∑

e′∈Se
y′e

c
} Congestion, maximum adjusted independent set

utilization
µe Price of Se

Table V.1: Notations

Fixed Demand Mesh Network Routing

This section investigates the optimal routing strategy for wireless mesh back-

bone networks under fixed traffic demand. A common routing performance metric
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with respect to a fixed traffic demand is resource utilization. For example, link

utilization is commonly used for traffic engineering in the Internet [101], whose

objective is to minimize the utilization at the most congested link. However,

in a multihop wireless network, such as a mesh backbone network, wireless link

utilization may be inappropriate as a metric of routing performance due to the

location-dependent interference.

On the other hand, the existing works on optimal mesh network routing [18]

usually aim at maximizing the flow throughput, while satisfying the fairness con-

straints. In this formulation, traffic demand is reflected as the flow weight in the

fairness constraints. In light of these results, we first outline the relation between

the throughput optimization problem and the congestion minimization problem,

and define the utilization (so-called congestion) of the adjusted interference set

as the routing performance metric. We show that the solution derived from the

throughput optimization could naturally lead to the routing scheme which bal-

ances the resource utilization and minimizes the network congestion under fixed

traffic demand. We then present a fully polynomial time approximation algorithm,

which finds an ϵ-approximate solution. The problem formulation and algorithm

presented in this section will accept the mean-value traffic prediction as the input

for routing. It also serves as the basis of uncertain demand routing discussed in

the next sections.

Problem Formulation

We first study the formulation of the throughput optimization routing problem

in a wireless mesh backbone network under the fixed traffic demand. We regard

the virtual node w∗ that connects to gateways as the source of all incoming traffic
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and the destination of all outgoing traffic of a mesh network. Similarly, the local

access points, which aggregate the client traffic, serve as the sources of all outgoing

traffic and the destinations of incoming traffic. It is worth noting that although we

consider only the aggregated traffic between gateway access points and local access

points, our problem formulations and algorithms could be easily extended to handle

inter-mesh-router traffic. Recall that f ∈ F is the aggregated traffic flow between

the local access points and the virtual gateway. We use df to denote the demand

of flow f and d = (df , f ∈ F ) to denote the demand vector consisting of all flow

demands. Consider the fairness constraint that, for each flow f , its throughput

being routed is in proportion to its demand df . Our goal is to maximize λ (so

called scaling factor) where at least λ · df amount of throughput can be routed for

flow f . We assume an infinitesimally divisible flow model where the aggregated

traffic flow could be routed over multiple paths and use Pf to denote the set of

unicast paths that could route flow f .

Let xf (P ) be the rate of flow f over path P ∈ Pf . Obviously the aggregated

flow rate ye along edge e ∈ E is given by ye =
∑

f :P∈Pf&e∈P xf (P ), which is the

sum of the flow rates that are routed through paths P passing edge e. Based on

the sufficient condition of schedulability in Claim 1 (Eq.(III.1)), we have that

∑
e′∈Se

∑
f :P∈Pf&e′∈P

xf (P ) ≤ c (V.1)

To simplify the above equation, we define AeP = |Se ∩ P | as the number of

wireless links path P passes in the adjusted interference set Se. The throughput

optimization routing with fairness constraint is then formulated as the following

linear programming (LP) problem:
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PT : maximize λ (V.2)

subject to
∑
P∈Pf

xf (P ) ≥ λ · df ,∀f ∈ F (V.3)

∑
f∈F

∑
P∈Pf

xf (P )AeP ≤ c, ∀e ∈ E (V.4)

λ ≥ 0, xf (P ) ≥ 0, ∀f ∈ F, ∀P ∈ Pf (V.5)

In this problem, the optimization objective is to maximize λ, such that at

least λ · df units of data can be routed for each aggregated flow f with demand

df . Inequality (V.3) enforces fairness by requiring that the comparative ratio of

traffic routed for different flows satisfies the comparative ratio of their demands.

Inequality (V.4) enforces capacity constraint by requiring the traffic aggregation of

all flows passing wireless link e ∈ E satisfy the sufficient condition of schedulability.

This problem formulation follows the classical maximum concurrent flow problem.

Now we proceed to study the congestion minimization routing. Let x′
f (P )

be the rate of flow f on path P under traffic demand df . It is obvious that∑
P∈Pf

x′
f (P ) = df . The traffic being routed within the adjusted interference set

Se is given by
∑

f∈F
∑

P∈Pf
x′
f (P )AeP . We define the congestion of an adjusted

interference set Se using its utilization (i.e., the ratio between its load and the

channel capacity) and denote it as θe:

θe =

∑
f∈F

∑
P∈Pf

x′
f (P )AeP

c
(V.6)

Further, we define θ = maxe∈E θe as the maximum congestion among all the

adjusted interference sets. The congestion minimization routing problem is then

formulated as follows:
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PC : minimize θ (V.7)

subject to
∑
P∈Pf

x′
f (P ) ≥ df ,∀f ∈ F (V.8)

∑
f∈F

∑
P∈Pf

x′
f (P )AeP ≤ c · θ,∀e ∈ E (V.9)

θ ≥ 0, x′
f (P ) ≥ 0,∀f ∈ F, ∀P ∈ Pf (V.10)

To reveal the relation between PT and PC, we let θ = 1
λ
and x′

f (p) =
xf (p)

λ
.

Problem PC is then transformed to:

P′
C : minimize

1

λ
(V.11)

subject to
1

λ

∑
P∈Pf

xf (P ) ≥ df , ∀f ∈ F (V.12)

1

λ

∑
f∈F

∑
P∈Pf

x′
f (P )AeP ≤ c · θ, ∀e ∈ E (V.13)

λ ≥ 0, x′
f (P ) ≥ 0,∀f ∈ F, ∀P ∈ Pf (V.14)

which is obviously equivalent to the throughput optimization problem PT.

Algorithm

Both problems PT and PC could be solved by an LP-solver such as [102].

To reduce the complexity for practical use, we present a fully polynomial time

approximation algorithm for problem PT , which finds an ϵ-approximate solution.

The key to a fast approximation algorithm lies on the dual of this problem, which

is formulated as follows. We assign a price µe to each set Se for e ∈ E. The
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objective is to minimize the aggregated price for all adjusted interference sets. As

the constraint, Inequality (V.16) requires that the price
∑

e∈E AePµe of any path

P ∈ Pf for flow f must be at least µf , the price of flow f . Further, Inequality

(V.17) requires that the weighted flow price µf over its demand df must be at least

1.

DT : minimize
∑
e∈E

c · µe (V.15)

subject to
∑
e∈E

AePµe ≥ µf ,∀f ∈ F, ∀P ∈ Pf (V.16)∑
f∈F

µfdf ≥ 1 (V.17)

FMR: Mesh Network Routing Under Fixed Demand
1 ∀e ∈ E, µe ← β/c
2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 while

∑
e∈E c · µe < 1

4 for ∀f ∈ F do
5 d′f ← df
6 while

∑
e∈E c · µe < 1 and d′f > 0 do

7 P ← lowest priced path in Pf using µe

8 δ ← min{d′f ,mine∈P AeP}
9 d′f ← d′f − δ
10 xf (P )← xf (P ) + δ
11 ∀e s.t. AeP ̸= 0, µe ← µe(1 + ϵδAeP )
12 end while
13 end for
14 end for

Table V.2: Routing Algorithm Under Fixed Demand

Based on the above dual problem DT, our fast approximation algorithm is

presented in Table V.2. The algorithm design follows the idea of [59]. To start, we
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initialize the price on each adjusted interference set Se as β/c (Line 1). We also

zero the traffic on all paths P ∈ Pf (Line 2). Then for each flow f , we route df

units of data. We do so by finding the lowest priced path in the path set Pf (Line

7), then filling traffic to this path by its bottleneck capacity (Lines 8 to 10). Then

we update the prices for adjusted interference sets appeared in this path based

on the function defined in Line 11. We keep filling traffic to flow f in the above

fashion until all df units are routed. This procedure is repeated until the aggregate

price of interference sets Se for all e ∈ E weighted by c exceeds 1 (Line 3).

We make following notes to our algorithm. First, it completes in finite time,

which is guaranteed by the asymptotic link price update function defined in Line

11. ϵ here is the step size, which controls the growing speed of the link price.

Second, since capacity c is the same for all the adjusted interference sets, its value

does not affect the routing solution. Third, as one might see, the algorithm in

fact routes more traffic than its actual demand, Therefore, a scaling procedure is

needed to scale down the routed traffic so it fits its actual demand. In particular,

xf (P ) will be scaled as follows

x′
f (P ) = xf (P ) · df∑

P∈Pf
xf (P )

(V.18)

We formally analyze the properties of our algorithm in the following theorem.

The proofs of the theorems in this chapter are available in the Appendix I.

Theorem 1: If β = (|E|/(1− ϵ))−1/ϵ, then the final flow generated by FMR is

at least (1−3ϵ) times the optimal value ofP. The running time isO( 1
ϵ2
[log |E|(2|F | log |F |+

|E|) + logU)]) · Tmp, where U is the length of the longest path in G, and Tmp is

the running time to find the shortest path.
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The actual time complexity in terms of |V | can be analyzed as follows. The time

complexity for the shortest path routing algorithm Tmp is usually O(|V |2). U , on

the other hand, represents the longest path in G and should have a time complexity

no larger than O(|V |). The same answer can be applied to |F |. Although |F | can

be much less than |V |, the upper bound can be no larger than |V |. We have the

same issue in estimating |E|. Although |E| can vary from a small number to a very

large number, it will never be over its upper bound of |V |2. Following previous

reduction, we have a simplified upper bond of |V |4 log |V |. However, we should

realize that it is a much loose upper bound, and the actual time complexity should

be lower than this value.

Uncertain Demand Mesh Network Routing

Now we proceed to investigate the throughput optimization routing problem for

wireless mesh backbone network when the aggregated traffic demand is uncertain.

We model such uncertain traffic demand of an aggregated flow f ∈ F using a

random variable Df . We assume that Df follows the following discrete probability

distribution

Pr(Df = dif ) = qif (V.19)

whereDf = {d1f , d2f , ..., dmf } is the set of of values forDf with non-zero probabilities.

Let d = (df , df ∈ Df , f ∈ F ) be a sample traffic demand vector, D be the

corresponding random variable, and D be the sample space. We further assume

that the demand from different access points are independent from each other.

Thus the distribution of D is given by the joint distribution of these random

variables as follows.
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Pr(D = d) = Pr(Df = dif , f ∈ F ) = Πf∈F q
i
f (V.20)

Let us consider a traffic routing solution (xf (P ), P ∈ Pf , f ∈ F ) that satisfies

the capacity constraint (Inequality (V.4)). It is obvious that λ is a function of d:

λ(d) = min
f∈F
{xf

df
} (V.21)

where xf =
∑

P∈Pf
xf (P ). Further let us consider the optimal routing solution

under demand vector d. Such a solution could be easily derived based on Algorithm

we shown in Table V.2. We denote the optimal value of λ as λ∗(d). We further

define the performance ratio ω of routing solution (xf (P ), P ∈ Pf , f ∈ F ) as

follows:

ω(d) =
λ(d)

λ∗(d)

Obviously, the performance ratio is also a random variable under uncertain

demand. We denote it as Ω. Ω is a function of random variable D. Now we extend

the wireless mesh network routing problem to handle such uncertain demand. Our

goal is to maximize the expected value of Ω, which is given as follows.

E(Ω) = Pr(D = d)× λ(d)

λ∗(d)
(V.22)

We abbreviate Pr(D = d) as p(d). It is obvious that
∑

d∈D p(d) = 1. For-

mally, we formulate the throughput optimization routing problem for wireless mesh

backbone network under uncertain traffic demand as follows.
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PU : maximize
∑
d∈D

p(d)
λ(d)

λ∗(d)
(V.23)

subject to ∀d ∈ D,where d = (df , f ∈ F )∑
P∈Pf

xf (P ) ≥ λ(d) · df , ∀f ∈ F (V.24)

∑
f∈F

∑
P∈Pf

xf (P )AeP ≤ c, ∀e ∈ E (V.25)

λ ≥ 0, xf (P ) ≥ 0,∀f ∈ F, ∀P ∈ Pf (V.26)

Similar to problem PT, the constraints of PU come from the fairness require-

ment and the wireless mesh network capacity. In particular, Inequality (V.24)

enforces fairness for all demand d ∈ D, and Inequality (V.25) enforces capacity

constraint as Inequality (V.4) in problem PT.

Now we consider the dual problem DU of PU. Similar to DT, the objective of

DU is to minimize the aggregated price for all adjusted interference sets. However,

in Inequality (V.29), for each sample demand vector d, the aggregated price of all

flows weighted by their demand needs to be larger than its probability.

DU : minimize
∑
e∈E

c · µe (V.27)

subject to
∑
e∈E

AePµe ≥ µf ,∀f ∈ F, ∀P ∈ Pf (V.28)

∑
f∈F

µfdf ≥
p(d)

λ∗(d)
, ∀d ∈ D (V.29)

where d = (df , f ∈ F )
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UMR: Mesh Network Routing Under Uncertain Demand
1 ∀e ∈ E, µe ← β
2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 loop
4 for ∀f ∈ F do
5 P̄ ← lowest priced path in Pf using µe

6 µf ←
∑

e∈E AeP̄µe

7 end for
8 for ∀d ∈ D do

9 µd ←
∑

f∈F µfdf
λ∗(d)
p(d)

10 end for
11 µmin ← mind∈D µd

12 dmin ← argmind∈D µmin

13 if µmin ≥ 1
14 return
15 for ∀f ∈ F do
16 d′f ← dmin

f

17 while d′f > 0 do
18 P ← lowest priced path in Pf using µe

19 δ ← min{d′f ,mine∈P
1

AeP
}

20 d′f ← d′f − δ
21 xf (P )← xf (P ) + δ

22 ∀e s.t. AeP ̸= 0, µe ← µe(1 + ϵδAeP × λ∗(dmin)
p(dmin)

)

23 end while
24 end for
25 end loop

Table V.3: Routing Algorithm Under Uncertain Demand
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Now we present an approximation algorithm for PU in Table V.3. Note that

since the channel capacity c will not affect the final result of the algorithm, we

simply omit it here. This algorithm (UMR) has the same initialization as the

algorithm for problem PT (FMR). Then we march into the iteration, in which

we find dmin, the demand whose price µmin is the minimum among others (Lines

4 to 12). If µmin ≥ 1, then the algorithm stops (Lines 13 and 14), since Inequality

(V.28) and (V.29) would be satisfied for all demand. Otherwise, we will increase

the price of dmin by routing more traffic through its node pairs. This procedure

(Lines 16 to 22) is the same as what has been described in Lines 4 to 11 of FMR

algorithm. Following the same proving sequence for FMR, we am able to prove

the similar properties with UMR.

Theorem 2: If β = (|E|/(1−ϵ))−1/ϵ, then the final flow generated by UMR is

at least (1−3ϵ) times the optimal value ofPU. The running time isO( 1
ϵ2
[log |E|(2|D||Tfmr||F | log |F |+

|E|) + logU)]) · Tmp, where U is the length of the longest path in G, Tmp is the

running time to find the shortest path, and Tfmr is the running time of the FMR

algorithm.

Following the similar analysis in the previous algorithm, we can estimate the

time complexity of this algorithm in terms of |V |. Since this algorithm is extended

from FMR, it has a higher time complexity of about |V |7
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Simulation Study

Simulation Setup

AP 31AP3 34AP5 55AP4 57AP2 62AP3 62AP4 82AP4 94AP1 94AP3 94AP8
Node ID 22 18 57 5 55 20 53 3 56 27

AP 27AP3 3AP3 21AP2 23AP4 33AP2 62AP2 82AP3 84AP1 90AP2 97AP2
Node ID 9 23 25 33 19 35 58 42 6 48

Table V.4: Overview of Traffic Demand

We evaluate the performance of our algorithms via simulation study. In the

simulated wireless mesh network, 60 mesh nodes are randomly deployed over a

1000 × 2000m2 region. The simulated network topology is shown in Fig. V.1. In

the basic setting, 10 nodes at the edge of this network are selected as the local

access points (LAP) that forward traffic for clients. Two nodes (31 and 1) in the

center of the deploy region are selected as the gateway access points. Aside from

this basic setting, we have also evaluated the performance of our algorithms with

different configurations of LAPs and gateways, which we will show at the later

part of this section. Each mesh node has a transmission range of 250m and an

interference range of 500m. The channel capacity c is set as 54 Mbps.

To realistically simulate the traffic demand at each LAP, we employ the traces

collected in the campus wireless LAN network. The network traces used in this

work are collected in Spring 2002 at Dartmouth College and provided by CRAW-

DAD [100]. By analyzing the snmp log trace at each access point, we are able to

derive its 1847-hour incoming and outgoing traffic volume since 12:00AM, March

25, 2002 EST. We argue that the LAPs of a wireless mesh network serve a similar
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Figure V.1: Mesh Network Topology.

role as the access points of wireless LAN networks at aggregating and forwarding

client traffic. Thus, we select the access points from the Dartmouth campus wire-

less LAN and assign their traffic traces to the LAPs in our simulation. The traffic

assignment is given in Table V.4. In the basic setting, the 10 access points in the

first row of the table are used.

We evaluate and compare different traffic prediction and routing strategies for

this simulated network. In particular, we consider the following strategies.

• Oracle Routing (OR). In this strategy, the traffic demand is known a priori.

It runs the FMR algorithm (presented in Tab. V.2) based on this demand.

This solution runs every hour based on the up-to-date traffic demand from the

trace and returns the optimal set of routes. This ideal strategy is designed

to return the benchmark result, which the rest of the practical strategies

compare to.

• Mean-Value Prediction Routing (MVPR). This strategy does not know the

traffic demand a priori. Instead, it only predicts the traffic demand based

on its historical data. In particular, it employs the mean value prediction
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model and runs the FMR algorithm based on this predicted demand. This

solution also runs every hour to provide the set of routes for the next hour.

• Statistical-Distribution Prediction Routing (SDPR). Similar to MVPR, this

strategy also relies on traffic prediction. It predicts not only the mean-value

of the traffic demand in the next hour, but also its distribution. It runs

the UMR algorithm (presented in Tab. V.3) with the predicted traffic de-

mand distribution as its input. Since UMR only accepts discrete probability

distribution, we need to discretize the demand distribution as follows.

−2σ µ 2σ−σ σ

34.1% 34.1%

13.6% 13.6%

0.
1

0.
2

0.
3

0.
4

Figure V.2: Discretization of Traffic Distribution

As illustrated in Fig. V.2, we sample the following values, the mean value µ,

and values µ− σ, µ + σ, µ− 2σ, and µ− 2σ. Since about 95% of all traffic

demand values fall within the range [µ − 2σ, µ + 2σ], we ignore the values

which has a probability smaller than 5%.

• Shortest-Path Routing (SPR). This strategy is agnostic of traffic demand, and

returns a fixed routing solution purely based on the shortest distance (number
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of hops) from each mesh node to the gateway. The purpose to evaluate this

strategy is to quantitatively contrast the advantage of our traffic-predictive

routing strategies.

Simulation Results

We experiment with the above routing strategies along the time range [108, 1847],

a 1740-hour period excerpted from the trace1. We mainly study the congestion θ

of each routing strategy under the given traffic demands.
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Figure V.3: Overview of All Strategies

We start by presenting the congestion achieved by all strategies (OR, MVPR,

SDPR, and SPR) during the entire 1740-hour simulation period. As seen in

Fig. V.3, OR constantly achieves the minimum worst-case congestion among oth-

ers, due to its unrealistic capability to know the actual traffic demand. We note

that the burstiness of θ applies to all strategies including OR. Such observation

comes from the burstiness of the traffic load in the snmp log trace, which is caused

by the insufficient level of traffic multiplexing at wireless local access points.

To filter out the noise caused by traffic burstiness, in Fig. V.4(a), we normalize

θ achieved by other strategies by the same value of OR. Since OR always achieves

1Note that the beginning part of the trace [0, 107] is used as training data, thus is not included
in the simulation result.
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the minimum θ among others, this ratio will end up at least 1. Also we take a close-

up look during the hour range [201, 300]. Here, all three strategies (MVPR, SDPR,

and SPR) achieve less than 2 times of the optimal congestion. Although MVPR

has the worst performance at a few occasions, SPR causes greater congestion than

others in the most of the time, revealing the disadvantage of overlooking the varying

traffic demand. SDPR constantly achieves lower congestion than MVPR due to

more comprehensive representation of the traffic demand estimation.

The above observations get clearer when we sort out the normalized congestion

ratio for the three strategies in Fig. V.4(b). Interestingly, although SPR is inferior

to the traffic-prediction strategies generally, its worst-case congestion is lower than

MVPR in 25% of the time, and SDPR in less than 5% of the time. This problem

can be mostly attributed to the inaccuracy of traffic prediction. In other words,

wrong estimation of traffic demand can cause routing solutions worse than being

agnostic about it. However, more sophisticated prediction technique (SDPR) can

greatly reduce its occurring probability than the simple one (MVPR).

Next, we take a closer look at each strategy’s ability to balance the traffic within

the mesh network. In Fig. V.5, we unfold a single time instance at hour 1521 and

exhibit the congestion at each adjusted interference set resulted from each strat-

egy. In order to achieve the lowest worst-case congestion, a good strategy should

maximally even out the traffic routed through all interference sets. Obviously, OR

achieves such optimality, which resulting in the best θ value 0.8. SPR has the

highest θ value as more than 1. The results for MVPR and SDPR are 0.9 and

0.8 respectively. In MVPR, 120 out of 140 interference sets have their congestions

less than 0.4. Comparatively, in SDPR, about 100 interference sets are below this

threshold, whereas the number is below 100 in OR, and above 120 in SPR. This

observation keeps consistent when we repeat with different threshold in θ.
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In what follows, we alter our simulation configurations to examine the abilities

of different strategies at adapting various network settings. Here, we focus on

the traffic prediction strategies, namely, MVPR and SDPR. Also we plot their

performances by the congestion ratio θ/θOR normalized by the OR routing results.

Since deploying multiple gateways is a commonly-used solution to improve

mesh network throughput and avoid hot spots, we first evaluate our solutions’

capabilities at taking this advantage to reduce congestion. We emphasize the

additionally-deployed gateways in Fig. V.1. In Fig. V.6, we observe that the highest

congestion ratios by both strategies drop linearly as we double the number of

gateways, i.e., 2.6 at 2 gateways, 2.2 at 4 gateways, and 1.8 at 8 gateways. Also

SDPR consistently outperforms MVPR at approaching the optimal OR strategy.

In case of 2 and 4 gateways, more than 80% of the time, the performance of SDPR

is within 20% of optimal congestion, whereas the same value is 40% for MVPR. In

addition, in case of 8 gateways, SDPR achieves within 60% of optimal congestion

of all times, 20% less than MVPR.
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Finally, by doubling the number of LAPs to 20, we test our solutions’ adapt-

ability to traffic demand. The traffic assignments of these 20 LAPs are shown in

Table V.4. Here, we observe that both solutions show good and stable approxi-

mation to the optimal OR strategy. In fact, more intensive traffic (with increasing

multiplexing) makes our solution approximates closer to the optimal. Compared

to the case of 10 LAPs, the worst-case performance of MVPR moves closer from

within 100% optimality to 80%. For SDPR, it reduces from within 60% to 40%,

consistently outperforming MVPR by 40%. In addition, SDPR achieves the same

congestion with OR in 50% of the times, a 10% increase from the case of 10 LAPs.
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CHAPTER VI

JOINT CHANNEL ASSIGNMENT AND ROUTING ALGORITHMS
FOR MULTI-RADIO MULTI-CHANNEL WIRELESS MESH

NETWORKS

Solution Overview

This chapter investigates the optimal routing strategy for wireless mesh back-

bone networks with multi radios and multi channels. The solution expends the

single-channel routing solution introduced in the previous chapter. As part of

solution for multi-radio multi-channel WMN environment, we provide channel as-

signment solution in addition to optimal routing paths.

The performance of a multi-radio multi-channel wireless mesh network critically

depends on the design of three interdependent components: scheduling, channel

assignment, and routing. Their joint design has been studied in several existing

works [38, 18]. In this chapter, we adopt the same approach as in [18] which

formulates this problem as an integer linear programming problem. To solve this

problem, [18] first solves its LP relaxation and derives the routing solution based

on the necessary conditions of channel assignment and schedulability. Then the

channel assignment and post processing algorithms are designed to adjust the flows

to yield a feasible solution.

We assume that the system operates synchronously in a time-slotted mode.

The result we obtain will provide an upper bound for systems using IEEE 802.11

MAC. We further assume that the traffic between a local access point and the

Internet could be infinitesimally divided and routed over multiple paths to multiple

gateways achieving the optimal load balancing and the least congestion.
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The focus of this chapter is to investigate the optimal routing scheme under

dynamic traffic based on the above necessary conditions of channel assignment

and schedulability. Once the flow routes are derived, we simply apply the same

method presented in [18] to adjust the flow routes and scale the flow rates to yield

a feasible routing and channel assignment.

The objective is to determine the necessary and sufficient conditions for the

link flow rates to be achievable in the network in terms of a valid schedule. We

define a 0− 1 scheduling variable Ye(c)

Y t
e (c) =

 1 if link e is active on channel c in time slot t

0 otherwise

The notations used in this chapter are summarized in Table VI.1.

Fixed Demand Mesh Network Routing

We first study the formulation of throughput optimization routing problem in

a wireless mesh backbone network under the fixed traffic demand. We use df to

denote the demand of flow f and d = (df , f ∈ F ) to denote the demand vector

consisting of all flow demands. Consider the fairness constraint that, for each flow

f , its throughput being routed is in proportion to its demand df . Our goal is to

maximize λ (so called scaling factor) where at least λ · df amount of throughput

can be routed for flow f .

We assume an infinitesimally divisible flow model where the aggregated traffic

flow could be routed over multiple paths and use Pf to denote the set of uni-

cast paths that connect the source of f and w∗. Let xf (P ) be the rate of flow

f over path P ∈ Pf . Obviously the link flow rate ye(c) is given by ye(c) =

95



Notation Definition
G = (V,E) Network
G′ = (V ′, E ′) Network with virtual gateway/links
u ∈ V Node
e = (u, v) ∈ E Edge connecting nodes u and v
f ∈ F Aggregated flow
x = (xf , f ∈ F ) Aggregated flow rate vector
y = (ye, e ∈ E) Wireless link rate vector
d = (df , f ∈ F ) Flow traffic demands
p(d) Probability of d
Pf Set of paths that can route f
xf (P ) Rate of flow f over path P ∈ Pf

Se Adjusted interference set of e ∈ E
AeP = |Se ∩ P | Number of wireless links P passes in Se

x(t) Raw traffic series
z(t) Adjusted traffic series
x̄(t) Average traffic series
x̂(t) Predicted traffic series
ẑ(t) Predicted adjusted traffic series
ϵx(t), ϵz(t) Prediction error
λ = minf∈F{xf

df
} Scaling factor

θ = maxe∈E{
∑

e′∈Se
y′e

c
} Congestion, maximum adjusted independent set

utilization
µe Price of Se

Table VI.1: Notations
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∑
f :P∈Pf&e(c)∈P xf (P ), which is the sum of the flow rates that are routed through

paths P passing edge e(c) ∈ Ec. Based on the necessary conditions of scheduling

and channel assignment in Claim 1 (Eq.(III.3) and Eq.(III.4)), we have that

∑
e′(c)∈Ie(c)

1

ϕe(c)

∑
f :P∈Pf&e′(c)∈P

xf (P ) ≤ γ(∆);∀e(c) ∈ Ec (VI.1)

∑
c∈C

∑
e′(c)∈E(v)

1

ϕe(c)

∑
f :P∈Pf&e′(c)∈P

xf (P ) ≤ κ(v);∀v ∈ V (VI.2)

To simplify the above equations, we define Ae(c)P =
∑

e′(c)∈Ie(c),e′(c)∈P
1

ϕe′(c)
and

BvP =
∑

c∈C
∑

e′(c)∈E(v),e′(c)∈P
1

ϕe′(c)
. The throughput optimization routing with

fairness constraint is then formulated as the following LP problem:

PT : maximize λ (VI.3)

subject to
∑
P∈Pf

xf (P ) ≥ λ · df ,∀f ∈ F (VI.4)

∑
f∈F

∑
P∈Pf

xf (P )Ae(c)P ≤ γ(∆),

∀e(c) ∈ Ec (VI.5)∑
f∈F

∑
P∈Pf

xf (P )BvP ≤ κ(v), ∀v ∈ V (VI.6)

λ ≥ 0, xf (P ) ≥ 0, ∀f ∈ F, ∀P ∈ Pf (VI.7)

In this problem, the optimization objective is to maximize λ, such that at least

λ · df units of data can be routed for each aggregated flow f with demand df . In-

equality (VI.4) enforces fairness by requiring that the comparative ratio of traffic
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routed for different flows satisfies the comparative ratio of their demands. Inequal-

ity (VI.5) and (VI.6) come from the necessary conditions of channel assignment

and scheduling. This problem formulation follows the same form as the maximum

concurrent flow problem.

Problem PT could also be solved by a LP-solver [102]. To reduce the complex-

ity for practical use, we present a fully polynomial time approximation algorithm

for problem PT, which finds an ϵ-approximate solution. The key to a fast ap-

proximation algorithm lies on the dual of this problem, which is formulated as

follows. We assign a price µe to each set Ie(c) for e(c) ∈ Ec and a price µv to each

node v ∈ V . The objective is to minimize the aggregated price for all interference

sets and all nodes. As the constraint, Inequality (VI.9) requires that the price∑
e(c)∈Ec

Ae(c)Pµe +
∑

v∈V BvPµv of any path P ∈ Pf for flow f must be at least

µf , the price of flow f . Further, Inequality (VI.10) requires that the weighted flow

price µf over its demand df must be at least 1.

DT : minimize
∑

e(c)∈Ec

γ(∆) · µe +
∑
v∈V

κ(v)µv (VI.8)

subject to
∑

e(c)∈Ec

Ae(c)Pµe +
∑
v∈V

BvPµv ≥ µf ,

∀f ∈ F, ∀P ∈ Pf (VI.9)∑
f∈F

µfdf ≥ 1 (VI.10)

Based on the above dual problem DT, our fast approximation algorithm is pre-

sented in Table VI.2. The algorithm design follows the idea of [59]. In particular,

Line 1 and Line 2 initialize the algorithm. Then for each flow f , we route df units

of data. We do so by finding the lowest priced path in the path set Pf (Line 7),
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FMR: Mesh Network Routing Under Fixed Demand

1 ∀e ∈ E, γ ← γ(∆), µe ← β/γ, µv ← β/κ(v)
2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 while

∑
e(c)∈E(c) γ · µe +

∑
v∈V κ(v)µv < 1

4 for ∀f ∈ F do
5 d′f ← df
6 while

∑
e(c)∈E(c) γ · µe +

∑
v∈V κ(v)µv < 1 and

d′f > 0 do

7 P ← lowest priced path in Pf using µe and µv

8 δ ← min{d′f ,mine(c)∈P
γ

Ae(c)P
,minv∈V

κ(v)
BvP
}

9 d′f ← d′f − δ

10 xf (P )← xf (P ) + δ
11 ∀e(c) ∈ Ec s.t. Ae(c)P ̸= 0, µe ← µe(1+

ϵδAe(c)P /γ)

12 ∀v ∈ V s.t. BvP ̸= 0, µv ← µv(1 + ϵδBvP /κ(v))
13 end while
14 end for
15 end for

Table VI.2: Routing Algorithm Under Fixed Demand

then filling traffic to this path by its bottleneck capacity (Lines 8 to 10). Then

we update the prices for the interference sets and the nodes appeared in this path

based on the function defined in Line 11 and Line 12. We keep filling traffic to flow

f in the above fashion until all df units are routed. This procedure is repeated

until the weighted aggregated price of the interference sets and the nodes exceeds

1 (Line 3).

We formally analyze the properties of our algorithm in the following theorem.

The proofs of the theorems in this chapter are available in the Appendix II.

Theorem 1: If β = ((|Ec| + |V |)/(1 − ϵ))−1/ϵ, then the final flow generated

by FMR is at least (1 − 3ϵ) times the optimal value of P. The running time is

O( 1
ϵ2
[log(|Ec|+ |V |)(2|F | log |F |+ |Ec|+ |V |)+ logU)]) ·Tmp, where U is the length

of the longest path in G, and Tmp is the running time to find the shortest path.
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We have estimated the time complexity of the corresponding algorithm in the

previous chapter in terms of |V |. Although the exact time complexity has changed

due to the introduction of channels, the general upper bound in terms of |V |

remains |V |4 log V assuming the channel number is a constant.

Uncertain Demand Mesh Network Routing

Now we proceed to investigate the throughput optimization routing problem for

wireless mesh backbone network when the aggregated traffic demand is uncertain.

We model such uncertain traffic demand of an aggregated flow f ∈ F using a

random variable Df . We assume that Df follows the following discrete probability

distribution Pr(Df = dif ) = qif , where Df = {d1f , d2f , ..., dmf } is the set of of values

for Df with non-zero probabilities. Let d = (df , df ∈ Df , f ∈ F ) be a sample

traffic demand vector, D be the corresponding random variable, and D be the

sample space. Thus the distribution of D is given by the joint distribution of

these random variables: Pr(D = d) = Pr(Df = dif , f ∈ F ).

Let us consider a traffic routing solution (xf (P ), P ∈ Pf , f ∈ F ) that satisfies

the capacity and node-radio constraints (Inequality (VI.5) and (VI.6)). It is ob-

vious that λ is a function of d: λ(d) = minf∈F{xf

df
}, where xf =

∑
P∈Pf

xf (P ).

Further let us consider the optimal routing solution under demand vector d. Such

a solution could be easily derived based on Algorithm I shown in Table VI.2. We

denote the optimal value of λ as λ∗(d). We further define the performance ratio ω

of routing solution (xf (P ), P ∈ Pf , f ∈ F ) as ω(d) = λ(d)
λ∗(d)

Obviously, the performance ratio is also a random variable under uncertain

demand. We denote it as Ω which is a function of random variable D. Now

we extend the wireless mesh network routing problem to handle such uncertain
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demand. Our goal is to maximize the expected value of Ω, which is given by

E(Ω) = Pr(D = d)× λ(d)
λ∗(d)

We abbreviate Pr(D = d) as p(d). It is obvious that
∑

d∈D p(d) = 1. For-

mally, we formulate the throughput optimization routing problem for wireless mesh

backbone network under uncertain traffic demand as follows.

PU :

maximize
∑
d∈D

p(d)
λ(d)

λ∗(d)
(VI.11)

subject to ∀d ∈ D,where d = (df , f ∈ F )∑
P∈Pf

xf (P ) ≥ λ(d) · df , ∀f ∈ F (VI.12)

∑
f∈F

∑
P∈Pf

xf (P )Ae(c)P ≤ γ(∆), ∀e(c) ∈ Ec

(VI.13)∑
f∈F

∑
P∈Pf

xf (P )BvP ≤ κ(v),∀v ∈ V (VI.14)

λ ≥ 0, xf (P ) ≥ 0, ∀f ∈ F, ∀P ∈ Pf (VI.15)

Similar to problem PT, the constraints of PU come from the fairness require-

ment and the wireless mesh network capacity. In particular, Inequality (VI.12)

enforces fairness for all demand d ∈ D, and Inequality (VI.13) enforces capacity

constraint as Inequality (VI.5) in problem PT.

Now we consider the dual problem DU of PU. Similar to DT, the objective of

DU is to minimize the aggregated price for all adjusted interference sets. However,

in Inequality (VI.18), for each sample demand vector d, the aggregated price of all

flows weighted by their demand needs to be larger than its probability.
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DU : minimize
∑

e(c)∈Ec

γ(∆) · µe +
∑
v∈V

κ(v)µv (VI.16)

subject to
∑

e(c)∈Ec

Ae(c)Pµe +
∑
v∈V

BvPµv ≥ µf ,

∀f ∈ F, ∀P ∈ Pf (VI.17)∑
f∈F

µfdf ≥
p(d)

λ∗(d)
,∀d ∈ D (VI.18)

where d = (df , f ∈ F )

Now we present an approximation algorithm for PU in Table VI.3. This algo-

rithm (UMR) has the same initialization as the algorithm for problemPT (FMR).

Then we march into the iteration, in which we find dmin, the demand whose price

µmin is the minimum among others (Lines 4 to 12). If µmin ≥ 1, then the algorithm

stops (Lines 13 and 14), since Inequality (VI.17) and (VI.18) would be satisfied for

all demand. Otherwise, we will increase the price of dmin by routing more traffic

through its node pairs. This procedure (Lines 16 to 23) is the same as what has

been described in Lines 4 to 11 of FMR algorithm. Following the same proving

sequence for FMR, we are able to prove the similar properties with UMR.

Theorem 2: If β = ((|Ec| + |V |)/(1 − ϵ))−1/ϵ, then the final flow generated

by UMR is at least (1− 3ϵ) times the optimal value of PU. The running time is

O( 1
ϵ2
[log(|Ec| + |V |)(2|D||F | log |F | + |Ec| + |V |) + logU)]) · Tmp, where U is the

length of the longest path in G, Tmp is the running time to find the shortest path.

Similar to the previous algorithm, although the exact time complexity has

changed due to the introduction of channels, the general upper bound in terms of

|V | remains |V |7, which is the same as the one in the previous chapter, assuming

the channel number is a constant.
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UMR: Mesh Network Routing Under Uncertain Demand

1 ∀e ∈ E, γ ← γ(∆), µe ← β/γ, µv ← β/κ(v)
2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 loop
4 for ∀f ∈ F do
5 P̄ ← lowest priced path in Pf using µe, µv

6 µf ←
∑

e∈E Ae(c)P̄µe +BvP̄µv

7 end for
8 for ∀d ∈ D do

9 µd ←
∑

f∈F µfdf
λ∗(d)
p(d)

10 end for
11 µmin ← mind∈D µd

12 dmin ← argmind∈D µmin

13 if µmin ≥ 1
14 return
15 for ∀f ∈ F do
16 d′f ← dmin

f

17 while d′f > 0 do

18 P ← lowest priced path in Pf using µe, µv

19 δ ← min{d′f ,mine(c)∈P
γ

Ae(c)P
,minv∈V

κ(v)
BvP
}

20 d′f ← d′f − δ

21 xf (P )← xf (P ) + δ
∀e(c) ∈ Ec s.t. Ae(c)P ̸= 0, µe ← µe(1+

22 ϵδAe(c)P /γ)

23 ∀v ∈ V s.t. BvP ̸= 0, µv ← µv(1 + ϵδBvP /κ(v))
24 end while
25 end for
26 end loop

Table VI.3: Routing Algorithm Under Uncertain Demand
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Channel Assignment Algorithms

The previous solutions provide a theoretical upper bound that a network can

achieve with given constraints. However, the solutions may not be feasible in real

network implementation because they do not include detailed information such as

how channels are assigned or links are scheduled. It requires further algorithms

to design feasible implementations based on the optimal solutions computed from

LP. Those algorithms can provide detailed channel assignment and scheduling so-

lutions for WMNs so that traffic can be routed following the solutions during

network implementation phase. It is easy to see that a good channel assignment

and scheduling algorithm should be able to achieve performance that is close to

the theoretical upper bound.

Although it is not the focus of our work to design a channel assignment and

scheduling algorithm to optimize the network performance, it makes the whole

solution complete by adding this approach into our framework. Algorithms for

wireless network channel assignment have been extensively discussed in several

literatures [37, 17, 103, 38, 49, 104]. Instead of proposing a new algorithm for

channel assignment, we utilize solutions from Kodialam et al.’s channel assignment

algorithms [38] to provide further solutions to our routing algorithm results. A

major reason for choosing this algorithm as part of our framework is that the

results of our routing algorithms can be applied as the input of Kodialam et al.’s

algorithms with little modification.

In Kodialam et al.’s work, they proposed two channel assignment algorithms.

One is static channel assignment, where link channels are fixed at the beginning and

won’t change during the routing. The other is dynamic channel assignment, where

links may switch to different channels at different time slot. The dynamic channel
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assignment has the most flexibility of channel assignment and better performance

than static channel assignment, but frequent channel switch is an overhead to net-

work operations. On the other hand, static channel assignment is a special case of

the dynamic one. Fixed channel assignment may restrict exploring potential per-

formance improvement in dynamic channel assignment, but the simplicity makes

it easy to deploy and use.

Static Channel Assignment Algorithm

The static channel assignment algorithm assigns link channels at the beginning

and the assignment remains unchanged for the rest of time slots. The main idea

of static channel assignment algorithms is to balance traffic assigned to each in-

terference set so that none of the interference sets are overloaded by any channel,

otherwise a large amount of time slots will be used to solve conflict caused by heavy

traffic assigned to a single interference set. Table VI.4 is the detailed description

of the whole algorithm.

Static Channel Assignment Algorithm

1 µi = 0, ∀i ∈ interference sets I; M = ϕ
2 t(e) =

∑
f∈F

∑
P∈Pf&&P∋e xf (P ), ∀e ∈ E

3 while
∑

e∈E t(e) > 0
4 for e ∈ E\M
5 m(e, c) = maxi∋(e,c) µi, ∀c ∈ C

6 w(e) = mincm(e, c)
7 b(e) = arg mincm(e, c)
8 end for
9 δ = arg mine/∈M w(e)
10 assign w(δ) to channel b(δ)
11 µi = µi + t(δ), ∀i ∈ I&&i ∋ (l, b(δ))
12 fb(δ)(δ) = t(δ); fc(δ) = 0, ∀c ̸= b(δ)

13 M = M ∪ l; t(δ) = 0
14 end while

Table VI.4: Static Channel Assignment Algorithm
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In this algorithm, we assume that only one channel is assigned to each link

for simplicity. For each pair of (e, c), e represents a link and c represents a chan-

nel. The definition of m(e, c) = maxi∋(e,c) µi tries to determine maximum load of

each interference set containing the link pair (e, c). Then the algorithm chooses a

link that has the minimum value of minc m(e, c), assigns the channel to the cor-

responding c and re-allocate all traffic associated with link e to (e, c). The major

reason of using min-max allocation in this algorithm is to balance the traffic load

on interference sets.

The static channel assignment algorithm provides a result with flows are as-

signed to some specific channels. Based on this solution, Kodialam et al. use a

greedy coloring algorithm to assign channel traffic to each time slot. The greedy

scheduling algorithm first multiples all flows by a large number X and ignore the

fractional part so that all flows are integer. Next, it chooses a link that has the

highest residual traffic and assign links that are not interfered with to the smallest

time-slot. Then it reduces all newly scheduled flow based on the time slot assigned,

and repeats the whole process until all the flows have been scheduled.

If N denotes the maximum number of time slots taken by all the channels, then

then new scaling factor λ′ after scheduling is calculated as

λ′ =
X

N
× λ (VI.19)

where λ is the scaling factor computed in the optimal routing in the first phase.
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Dynamic Channel Assignment Algorithm

The static channel assignment algorithm assigns link channels at the beginning

of time slot and the channel assignment remains the same after the rest of time

period. Dynamic channel assignment algorithm, on the other hand, allows links to

switch different channel every T time slots, which implies that channel assignment

needs to be reschedule and coordinated at the end of every T time slots. When T is

equal to 1, the algorithm has the most flexibility to achieve optimal performance.

However, frequent coordination can be an overhead to networks. The static channel

assignment algorithm can be treated as a special version of the dynamic channel

assignment algorithm when T becomes infinite large.

The main idea of Kodialam et al.’s dynamic channel assignment algorithm is

to pack flow greedily in each time slot. Similar to the static channel assignment

algorithm, it first packs solutions from LP for optimal routing so that traffic from

the same link but different channels is merged into a single link. Then it picks the

link that has the highest remaining traffic and assigns the link to the channel that

has the highest remaining capacity. Next, it checks links with remaining traffic

in descend order and assign links with channels that have the highest remaining

capacity. The remaining links that are not assigned with any channel during that

time slot are moved to next time slot. The algorithm exits when all the traffic is

assigned to certain channels. Table VI.5 is the detailed description of the whole

algorithm.

The new scaling factor λ′ after scheduling is calculated also as

λ′ =
X

N
× λ (VI.20)
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Dynamic Channel Assignment Algorithm

1 N = 0; M = E
2 t(e) =

∑
f∈F

∑
P∈Pf&&P∋e xf (P ), ∀e ∈ E

3 while M ̸= ϕ
4 N = N + T
5 Sort E in descending order of t(e)
6 yi = 0, ∀i ∈ interference sets I
7 for each e in sorted E
8 if ∃l such that yi == 0 ∀i ∈ I&&i ∋ (e, l)
9 l = arg maxc Cc(e)
10 Assign e to channel l
11 t(e) = t(e)− T · Cc(e)
12 if t(e) == 0 then M = M\e
13 yi = 1, ∀i ∈ I&&i ∋ (e, l)
14 end if
15 end for
16 end while

Table VI.5: Dynamic Channel Assignment Algorithm

where λ is the scaling factor computed in the optimal routing in the first phase.

Simulation Study

We evaluate the performance of our algorithms via a simulation study. In the

simulated wireless mesh network, 60 mesh nodes are randomly deployed over a

1000 × 2000m2 region. 20 nodes at the edge of this network are selected as the

local access points (LAP) that forward traffic for clients. 4 nodes in the center of

the deploy region are selected as the gateway access points. The simulated network

topology is shown in Fig. VI.1. Each mesh node has a transmission range of 250m

and an interference range of 500m, which means ∆ = 2. The channel capacity

ϕc(e) is the same for all links e and channels c, which is set as 54 Mbps. In the

basic setting, each mesh nodes are equipped with 3 radio interfaces. And there are

3 orthogonal channels in the network. Aside from this basic setting, we have also
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evaluated the performance of our algorithms with different configurations of radio

and channel numbers, which we will show in the later part of this section.
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Figure VI.1: Mesh Network Topology.

To realistically simulate the traffic demand at each LAP, we employ the traces

collected in the campus wireless LAN network. The network traces used in this

work are collected in Spring 2002 at Dartmouth College and provided by CRAW-

DAD [100]. By analyzing the snmp log trace at each access point, we are able to

derive its 1108-hour incoming and outgoing traffic volume since 12:00AM, March

25, 2002 EST. We select the access points from the Dartmouth campus wireless

LAN and assign their traffic traces to the LAPs in our simulation. The traffic

assignment is given in Table VI.6.

AP 31AP3 34AP5 55AP4 57AP2 62AP3 62AP4 82AP4 94AP1 94AP3 94AP8
Node ID 22 18 57 5 55 20 53 3 56 27

AP 27AP3 3AP3 21AP2 23AP4 33AP2 62AP2 82AP3 84AP1 90AP2 97AP2
Node ID 9 23 25 33 19 35 58 42 6 48

Table VI.6: Overview of Traffic Demand Assignment
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We evaluate and compare different traffic prediction and routing strategies for

this simulated network. In particular, we consider the following strategies.

• Oracle Routing (OR). In this strategy, the traffic demand is known a priori.

It runs the FMR algorithm (presented in Tab. VI.2) based on this demand.

This solution runs every hour based on the up-to-date traffic demand from the

trace and returns the optimal set of routes. This ideal strategy is designed

to return the benchmark result, which the rest of the practical strategies

compare to.

• Mean-Value Prediction Routing (MVPR). This strategy does not know the

traffic demand a priori. Instead, it only predicts the traffic demand based

on its historical data. In particular, it employs the mean value prediction

model and runs the FMR algorithm based on this predicted demand. This

solution also runs every hour to provide the set of routes for the next hour.

• Statistical-Distribution Prediction Routing (SDPR). Similar to MVPR, this

strategy also relies on traffic prediction. It predicts not only the mean-value

of the traffic demand in the next hour, but also its distribution. It runs the

UMR algorithm (presented in Tab. VI.3) with the predicted traffic demand

distribution as its input. Since UMR only accepts discrete probability dis-

tribution, we need to discretize the demand distribution by sampling the

following values, the mean value µ, and values µ − σ, µ + σ, µ − 2σ, and

µ − 2σ. Since about 95% of all traffic demand values fall within the range

[µ − 2σ, µ + 2σ], we ignore the values which has a probability smaller than

5%.
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• Shortest-Path Routing (SPR). This strategy is agnostic of traffic demand, and

returns fixed routing solution purely based on the shortest distance (number

of hops) from each mesh node to the gateway. The purpose to evaluate this

strategy is to quantitatively contrast the advantage of our traffic-predictive

routing strategies.

Note that the flows derived from the above routing strategies will be adjusted

by the channel assignment, post processing and flow scaling algorithms in [18].

We denote the final rate of flow f along path P as xA
f =

∑
P∈Pf

xA
f (P ). This

is the maximum flow throughput under the fairness constraint weighted by the

traffic demand, which maximizes the scaling factor λ. However, for performance

study, λ is not a suitable performance metric. First, we are more interested in

the network performance (i.e., congestion) incurred by the given traffic demand,

instead of the achievable throughput. Second, the absolute value of λ could be

misleading, especially when the actual demand is not the same as the predicted

demand which is being used for routing.

Now we proceed to define the performance metric we use in the simulation

study. First, we scale the achievable flow rate xA
f derived from the routing and

channel assignment process by its actual traffic demand df :

x′
f (P ) = xA

f (P ) · df
xA
f

(VI.21)

x′
f (P ) is the actual traffic load that is imposed on path P under our routing

and channel assignment scheme. Thus the traffic being routed within the inter-

ference set Ie(c) over channel c is given by
∑

f∈F
∑

P∈Pf
x′
f (P )Ae(c)P . We define

the congestion of an interference set Ie(c) using its utilization and denote it as
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θche (c) =

∑
f∈F

∑
P∈Pf

x′
f (P )Ae(c)P

γ(∆)
. Then θch = maxe(c)∈Ec θ

ch
e (c) is the maximum con-

gestion among all the interference sets. We further consider the congestion at a

single mesh node incurred by the traffic from all channels. The congestion of a

node v is defined as θrdv =

∑
f∈F

∑
P∈Pf

x′
f (P )BvP

κ(v)
. And θrd = maxv∈V θrdv . Finally, the

network congestion θ is defined as θ = max{θrd, θch}.

Finally, we should point out that our algorithms are centralized algorithms

which collect global information before the computation. That means, traffic will

be automatically rerouted once the centralized node notice network change, includ-

ing not only traffic but also node failure and/or new node joining. The sensitiveness

to the topology change depends on how quickly the centralized node receive the

topology change.

Simulation Results

We experiment with the above routing strategies along the time range [108, 1108],

a 1000-hour period excerpted from the trace1. Note that all the simulation results

presented in this section are using 108 as the zero point.

 200  400  600  800  1000

θ

Time (#hour since 03/29/2002, 11am EST)

Figure VI.2: Overview of All Strategies

1Note that the beginning part of the trace [0, 107] is used as training data, thus is not included
in the simulation result.
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We start by presenting the congestion achieved by all strategies (OR, MVPR,

SDPR, and SPR) during the entire 1000-hour simulation period. As seen in

Fig. VI.2, OR constantly achieves the minimum worst-case congestion among oth-

ers, due to its unrealistic capability to know the actual traffic demand. We note

that the burstiness of θ applies to all strategies including OR. Such observation

comes from the burstiness of the traffic load in the snmp log trace, which is caused

by the insufficient level of traffic multiplexing at wireless local access points.
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Figure VI.3: Comparison to OR

To filter out the noise caused by traffic burstiness, in Fig. VI.3(a), we normalize

θ achieved by other strategies by the same value of OR. Since OR always achieves

the minimum θ among others, this ratio will end up at least 1. Also we take a close-

up look during the hour range [190, 290]. Here, the MVPR and SDPR strategies

achieve less than 2 times of the optimal congestion in most cases, while the SPR

strategy can only achieve 4 − 7 times of the optimal performance. The above

observations get clearer when we sort out the normalized congestion ratio for the

three strategies in Fig. VI.3(b). It is clear that our MVPR and SDPR strategies,

which integrate the traffic prediction with the optimal routing, outperform the

SPR strategy which is agnostic about the traffic demand. Further, SDPR achieves
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lower congestion than MVPR in most of the time due to more comprehensive

representation of the traffic demand estimation. However, in a few cases (less than

10% of the time), the worst-case congestion of SDPR is higher than MVPR. This

problem can be mostly attributed to the inaccuracy of traffic prediction.
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Figure VI.4: Adjusted Interference Set Sorted By Congestion

Next, we take a closer look at each strategy’s ability to balance the traffic within

the mesh network. In Fig. VI.4, we unfold a single time instance at hour 271 and

exhibit the congestion θche(c) at each interference set Ie(c) resulted from each strat-

egy. In order to achieve the lowest worst-case congestion, a good strategy should

maximally even out the traffic routed through all interference sets. Obviously, OR

achieves such a balance, which resulted in the best θ value 0.65. SPR has the

highest θ value as more than 2. The results for MVPR and SDPR are 0.8 and

0.7 respectively. We also observe that the distribution of θche(c) under the SDPR

strategy closely matches the OR strategy.

In what follows, we alter our simulation configurations to examine the abilities

of different strategies at adapting various network settings, such as radio interface

numbers and channel numbers. Here, we focus on the traffic prediction strategies,
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Figure VI.5: Impact of Number of Radio Interfaces

namely, MVPR and SDPR. Also we plot their performances by the congestion

ratio θ/θOR normalized by the OR routing results. We first vary the number of

radio interfaces from 2 to 4 and study the congestion θ during the time interval

[190, 290]. Fig. VI.5 plots the sorted normalized congestion θ
θOR

of the two strate-

gies. Comparing these two figures, we could see that the SDPR strategy performs

slightly better than the MVPR strategy. The improvement of both strategies over

the OR strategy increases (i.e., normalized congestion decreases) with the radio

number.
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Figure VI.6: Impact of Channel/Radio
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Also, Fig. VI.6 plots the normalized congestion under different radio and chan-

nel numbers at a single time instance 271 for these two strategies. The results

show that the improvement of both strategies over the OR strategy decreases with

the channel number. This is because when the network has more channels, the

algorithms are likely to find more paths and the prediction error is more likely to

be magnified.

As we point out in earlier sections, OR, MVPR, and SDPR only provide a

theoretical upper bond for each scenario. It requires actual channel assignment

together with scheduling algorithm to deliver a feasible solution. The implemented

algorithm may affect computed performance at difference levels.

In our research, we are interested in knowing how those algorithms can im-

pact the original performance of our predicted algorithm. We picked a period of

time from our simulation, and implemented SDPR results using both static and

dynamic channel assignment algorithms. Fig. VI.7 shows throughput performance

of static and dynamic channel assignment algorithms comparing to original SDPR

throughput. It is easy to notice that dynamic channel assignment can produce

thoughput that is almost the same as the original SDPR. Static channel assign-

ment algorithm, on the other hand, can only generate about half of original SDPR

throughput on average. The reason for this difference is that the dynamic feature

of channel assignment gives maximum flexibility and allows links to reuse used

channels as much as possible so that maximum traffic can be routed over links.

Finally, channel assignment and scheduling algorithms can ease traffic conges-

tion over networks, which is also supported by Fig. VI.8. It compares the traffic

congestion over the same period to SDPR. Both static and dynamic channel as-

signment algorithms show that the network become less congested after applying

those algorithms overall. However, comparing to dynamic channel assignment,
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Figure VI.7: Throughput after SDPR is implemented by channel assignment algo-
rithms

static channel assignment does not reduce traffic congestion heavily. In some time

slots, the performance is even worse then SDPR algorithm. It is mainly because

that static channel assignment merges traffic from different channels of the same

link, and it actually has worse congestion than SDPR algorithm. However, the

reduced throughput of static channel algorithm reduce the congestion. So overall,

it does a poor job in reducing congestion. Dynamic channel assignment algorithm,

on the other hand, distributed traffic to different channels and make the network

less congested.
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CHAPTER VII

ALGORITHM EXTENSION FOR LOSSY WIRELESS MESH
NETWORKS

Solution Overview

As an important factor in wireless mesh network routing, wireless link quality,

especially link loss, has a direct impact on traffic routing. Routing algorithms with-

out considering link loss may heavily use links that have high loss ratio and can

lead to poor network performance. Link loss aware routing algorithms can accu-

rately reflect physical network environment and design routing paths by adapting

this feature. In this chapter, we extend the routing joint channel assignment and

routing algorithms for stable wireless mesh networks introduced in the previous

chapter. We incorporate the lossy link characteristic into the modeling and penal-

ize links with higher loss ratio so that routing paths will favor links with lower loss

ratio.

The joint channel assignment and routing algorithms for lossy WMNs intro-

duced in this chapter are the extension of solutions for stable WMNs in Chapter VI,

so the solution may look similar to each other. However, the solutions after in-

troducing the link loss concept into the formulation are adaptive to lossy network

environment.

We assume that the system operates synchronously in a time-slotted mode.

The result we obtain will provide an upper bound for systems using IEEE 802.11

MAC. We further assume that the traffic between a local access point and the

Internet could be infinitesimally divided and routed over multiple paths to multiple

gateways achieving the optimal load balancing and the least congestion.
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To study the optimal routing problem, we also need to understand the link

stability problem in wireless links. Links in wireless networks are less stable com-

pared to traditional wireline network links, and packets in wireless transmission

can be lost due to various reasons such as wireless noise. One common metric for

describing wireless link transmission status is link loss ratio, which measures the

percentage of packet lost over a link during a certain time period. For ease of expo-

sition, we use delivery ratio γe(c), an opposite metric of link loss ratio, to describe

the ratio of packets received over link e(c). Based on this metric, a node will have

a receiving rate yre(c) equal to γe(c)y
s
e(c) if the other node of a link has a sending

rate of yse(c). Further, we can have effective link capacity ϕ′
e(c) = γe(c)ϕe(c), which

represents the actual maximum traffic that can be transmitted through link e(c)

compared to the claimed link capacity ϕe(c).

Our algorithms are flow based algorithms, while traffic in WMNs is transmitted

packet by packet. A flow-based solution may not be schedulable at the packet

level. Our algorithms should guarantee that the solution is not only feasible at the

theoretical level, but also practical at the implementation level. It is important to

understand the constraint of the flow rates in order to address the optimal routing

problem.

We still use Claim 2 introduced in Chapter III as the necessary condition for the

following formulation. However, the definitions of some variables in Claim 2 have

been refined in the new context of lossy wireless networks. Let y = (yse(c), e ∈ E)

denote the wireless link rate vector, where yse(c) is the aggregated flow sending rate

along wireless link e(c). Link rate vector y is said to be schedulable, if there exists

a stable schedule that ensures every packet transmission with a bounded delay.

Essentially, the constraint of the flow rates is defined by the schedulable region of
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the link rate vector y. Let ρe(c) =
yse(c)
ϕe(c)

= yre(c)
ϕ′
e(c)

be the utilization of channel c over

link e, and E(v) be the set of links that is adjacent to node v.

The focus of this chapter is to investigate the optimal routing scheme under

dynamic traffic based on the above necessary conditions of channel assignment

and schedulability. Once the flow routes are derived, we simply apply the same

method presented in [18] to adjust the flow routes and scale the flow rates to yield

a feasible routing and channel assignment.

The objective is to determine the necessary and sufficient conditions for the

link flow rates to be achievable in the network in terms of a valid schedule. We

define a 0− 1 scheduling variable Ye(c)

Y t
e (c) =

 1 if link e is active on channel c in time slot t

0 otherwise

The notations used in this chapter are summarized in Table VII.1.

Fixed Demand Multi-Radio Multi-Channel Mesh Network Routing (FM3R)

We first study the formulation of throughput optimization routing problem in

a wireless mesh backbone network under the fixed traffic demand. We use df to

denote the demand of flow f and d = (df , f ∈ F ) to denote the demand vector

consisting of all flow demands. Consider the fairness constraint that, for each flow

f , its throughput being routed is in proportion to its demand df . Our goal is to

maximize λ (so called scaling factor) where at least λ · df amount of throughput

can be routed for flow f .
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Notation Definition
G = (V,E) Network
G′ = (V ′, E ′) Network with virtual gateway/links
u ∈ V Node
e = (u, v) ∈ E Edge connecting nodes u and v
f ∈ F Aggregated flow
x = (xf , f ∈ F ) Aggregated flow rate vector
y = (ye, e ∈ E) Wireless link rate vector
d = (df , f ∈ F ) Flow traffic demands
p(d) Probability of d
Pf Set of paths that can route f
xf (P ) Rate of flow f over path P ∈ Pf

γe(c) Effective receiving ratio of link e(c)
ϕe(c) Claimed link capacity of e on channel c
ϕ′
e(c) Effective link capacity of e on channel c

Ie Interference set of e ∈ E
AeP = |Ie ∩ P | Number of wireless links P passes in Ie
λ = minf∈F{xf

df
} Scaling factor

µe Price of Ie

Table VII.1: Notations

We assume an infinitesimally divisible flow model where the aggregated traffic

flow could be routed over multiple paths and use Pf to denote the set of unicast

paths that connect the source of f and w∗. Let xf (P ) be the rate of flow f over

path P ∈ Pf . We define xf (P ) as the receiving rate at the destination node of

the flow f(P ) and have xf (P ) ≤ yre(c),∀e(c) ∈ P . According to this definition,

it is easy to see that in a lossy environment, a relaying node of a flow does not

have equal incoming (receiving) flow rate and out (sending) flow rate because

the sending flow will retransmit the lost packets. In the following description,

we assume the rate is the receiving rate by default and only use the concept of

sending rate whenever necessary. Obviously the link flow rate ye(c) is given by

ye(c) =
∑

f :P∈Pf&e(c)∈P xf (P ), which is the sum of the flow rates that are routed
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through paths P passing edge e(c) ∈ Ec. Based on the necessary conditions of

scheduling and channel assignment in Claim 2 (Chapter III)), we have that

∑
e′(c)∈Ie(c)

1

ϕ′
e′(c)

∑
f :P∈Pf&e′(c)∈P

xf (P ) ≤ 1;∀e(c) ∈ Ec (VII.1)

∑
c∈C

∑
e′(c)∈E(v)

1

ϕ′
e′(c)

∑
f :P∈Pf&e′(c)∈P

xf (P ) ≤ κ(v);∀v ∈ V (VII.2)

To simplify the above equations, we define Ae(c)P =
∑

e′(c)∈Ie(c),e′(c)∈P
1

ϕ′
e′(c)

and

BvP =
∑

c∈C
∑

e′(c)∈E(v),e′(c)∈P
1

ϕ′
e′(c)

. The throughput optimization routing with

fairness constraint is then formulated as the following linear programming (LP)

problem:

PT : maximize λ (VII.3)

subject to
∑
P∈Pf

xf (P ) ≥ λ · df ,∀f ∈ F (VII.4)

∑
f∈F

∑
P∈Pf

xf (P )Ae(c)P ≤ 1,

∀e(c) ∈ Ec (VII.5)∑
f∈F

∑
P∈Pf

xf (P )BvP ≤ κ(v), ∀v ∈ V (VII.6)

λ ≥ 0, xf (P ) ≥ 0, ∀f ∈ F, ∀P ∈ Pf (VII.7)

In this problem, the optimization objective is to maximize λ, such that at least

λ · df units of data can be routed for each aggregated flow f with demand df . In-

equality (VII.4) enforces fairness by requiring that the comparative ratio of traffic
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routed for different flows satisfies the comparative ratio of their demands. Inequal-

ity (VII.5) and (VII.6) come from the necessary conditions of channel assignment

and scheduling. This problem formulation follows the same form as the maximum

concurrent flow problem.

Problem PT could be solved by a LP-solver such as [102]. To reduce the

complexity for practical use, we present a fully polynomial time approximation

algorithm for problem PT, which finds an ϵ-approximate solution. The key to a

fast approximation algorithm lies on the dual of this problem, which is formulated

as follows. We assign a price µe to each set Ie(c) for e(c) ∈ Ec and a price µv

to each node v ∈ V . The objective is to minimize the aggregated price for all

interference sets and all nodes. As the constraint, Inequality (VII.9) requires that

the price
∑

e(c)∈Ec
Ae(c)Pµe +

∑
v∈V BvPµv of any path P ∈ Pf for flow f must

be at least µf , the price of flow f . Further, Inequality (VII.10) requires that the

weighted flow price µf over its demand df must be at least 1.

DT : minimize
∑

e(c)∈Ec

µe +
∑
v∈V

κ(v)µv (VII.8)

subject to
∑

e(c)∈Ec

Ae(c)Pµe +
∑
v∈V

BvPµv ≥ µf ,

∀f ∈ F, ∀P ∈ Pf (VII.9)∑
f∈F

µfdf ≥ 1 (VII.10)

Based on the above dual problem DT, our fast approximation algorithm is pre-

sented in Table VII.2. The algorithm design follows the idea of [59]. In particular,

Line 1 and Line 2 initialize the algorithm. Then for each flow f , we route df units

of data. We do so by finding the lowest priced path in the path set Pf (Line 7),
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FM3R: Mesh Network Routing Under Fixed Demand

1 ∀e ∈ E, µe ← β, µv ← β/κ(v)
2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 while

∑
e(c)∈E(c) µe +

∑
v∈V κ(v)µv < 1

4 for ∀f ∈ F do
5 d′f ← df
6 while

∑
e(c)∈E(c) µe +

∑
v∈V κ(v)µv < 1 and d′f > 0 do

7 P ← lowest priced path in Pf using µe and µv

8 δ ← min{d′f ,mine(c)∈P
1

Ae(c)P
,minv∈V

κ(v)
BvP
}

9 d′f ← d′f − δ

10 xf (P )← xf (P ) + δ
11 ∀e(c) ∈ Ec s.t. Ae(c)P ̸= 0, µe ← µe(1 + ϵδAe(c)P )

12 ∀v ∈ V s.t. BvP ̸= 0, µv ← µv(1 + ϵδBvP /κ(v))
13 end while
14 end for
15 end for

Table VII.2: Routing Algorithm Under Fixed Demand

then filling traffic to this path by its bottleneck capacity (Lines 8 to 10). Then

we update the prices for the interference sets and the nodes appeared in this path

based on the function defined in Line 11 and Line 12. We keep filling traffic to flow

f in the above fashion until all df units are routed. This procedure is repeated

until the weighted aggregated price of the interference sets and the nodes exceeds

1 (Line 3).

Uncertain Demand Multi-Radio Multi-Channel Mesh Network Routing (UM3R)

Now we proceed to investigate the throughput optimization routing problem for

wireless mesh backbone network when the aggregated traffic demand is uncertain.

We model such uncertain traffic demand of an aggregated flow f ∈ F using a

random variable Df . We assume that Df follows the following discrete probability

distribution Pr(Df = dif ) = qif , where Df = {d1f , d2f , ..., dmf } is the set of of values
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for Df with non-zero probabilities. Let d = (df , df ∈ Df , f ∈ F ) be a sample

traffic demand vector, D be the corresponding random variable, and D be the

sample space. Thus the distribution of D is given by the joint distribution of

these random variables: Pr(D = d) = Pr(Df = dif , f ∈ F ).

Let us consider a traffic routing solution (xf (P ), P ∈ Pf , f ∈ F ) that satisfies

the capacity and node-radio constraints (Inequality (VII.5) and (VII.6)). It is

obvious that λ is a function of d: λ(d) = minf∈F{xf

df
}, where xf =

∑
P∈Pf

xf (P ).

Further let us consider the optimal routing solution under demand vector d. Such

a solution could be easily derived based on Algorithm I shown in Table VII.2. We

denote the optimal value of λ as λ∗(d). We further define the performance ratio ω

of routing solution (xf (P ), P ∈ Pf , f ∈ F ) as ω(d) = λ(d)
λ∗(d)

Obviously, the performance ratio is also a random variable under uncertain

demand. We denote it as Ω, which is a function of random variable D. Now

we extend the wireless mesh network routing problem to handle such uncertain

demand. Our goal is to maximize the expected value of Ω, which is given by

E(Ω) = Pr(D = d)× λ(d)
λ∗(d)

We abbreviate Pr(D = d) as p(d). It is obvious that
∑

d∈D p(d) = 1. For-

mally, we formulate the throughput optimization routing problem for wireless mesh

backbone network under uncertain traffic demand as follows.
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PU : maximize
∑
d∈D

p(d)
λ(d)

λ∗(d)
(VII.11)

subject to ∀d ∈ D,where d = (df , f ∈ F )∑
P∈Pf

xf (P ) ≥ λ(d) · df , ∀f ∈ F (VII.12)

∑
f∈F

∑
P∈Pf

xf (P )Ae(c)P ≤ 1, ∀e(c) ∈ Ec (VII.13)

∑
f∈F

∑
P∈Pf

xf (P )BvP ≤ κ(v),∀v ∈ V (VII.14)

λ ≥ 0, xf (P ) ≥ 0,∀f ∈ F, ∀P ∈ Pf (VII.15)

Similar to problem PT, the constraints of PU come from the fairness require-

ment and the wireless mesh network capacity. In particular, Inequality (VII.12)

enforces fairness for all demand d ∈ D, and Inequality (VII.13) enforces capacity

constraint as Inequality (VII.5) in problem PT.

Now we consider the dual problem DU of PU. Similar to DT, the objective of

DU is to minimize the aggregated price for all adjusted interference sets. However,

in Inequality (VII.18), for each sample demand vector d, the aggregated price of

all flows weighted by their demand needs to be larger than its probability.
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DU : minimize
∑

e(c)∈Ec

µe +
∑
v∈V

κ(v)µv (VII.16)

subject to
∑

e(c)∈Ec

Ae(c)Pµe +
∑
v∈V

BvPµv ≥ µf ,

∀f ∈ F, ∀P ∈ Pf (VII.17)∑
f∈F

µfdf ≥
p(d)

λ∗(d)
,∀d ∈ D

where d = (df , f ∈ F ) (VII.18)

Now we present an approximation algorithm for PU in Table VII.3. This

algorithm (UM3R) has the same initialization as the algorithm for problem PT

(FM3R). Then we march into the iteration, in which we find dmin, the demand

whose price µmin is the minimum among others (Lines 4 to 12). If µmin ≥ 1, then

the algorithm stops (Lines 13 and 14), since Inequality (VII.17) and (VII.18) would

be satisfied for all demand. Otherwise, we will increase the price of dmin by routing

more traffic through its node pairs. This procedure (Lines 16 to 23) is the same

as what has been described in Lines 4 to 11 of FM3R algorithm. Following the

same proving sequence for FM3R, we are able to prove the similar properties with

UM3R.

Theorem 2: If β = ((|Ec| + |V |)/(1 − ϵ))−1/ϵ, then the final flow generated

by UM3R is at least (1− 3ϵ) times the optimal value of PU. The running time is

O( 1
ϵ2
[log(|Ec| + |V |)(2|D||F | log |F | + |Ec| + |V |) + logU)]) · Tmp, where U is the

length of the longest path in G, Tmp is the running time to find the shortest path.

128



UM3R: Mesh Network Routing Under Uncertain Demand

1 ∀e ∈ E, µe ← β, µv ← β/κ(v)
2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 loop
4 for ∀f ∈ F do
5 P̄ ← lowest priced path in Pf using µe, µv

6 µf ←
∑

e∈E Ae(c)P̄µe +BvP̄µv

7 end for
8 for ∀d ∈ D do

9 µd ←
∑

f∈F µfdf
λ∗(d)
p(d)

10 end for
11 µmin ← mind∈D µd

12 dmin ← argmind∈D µmin

13 if µmin ≥ 1
14 return
15 for ∀f ∈ F do
16 d′f ← dmin

f

17 while d′f > 0 do

18 P ← lowest priced path in Pf using µe, µv

19 δ ← min{d′f ,mine(c)∈P
1

Ae(c)P
,minv∈V

κ(v)
BvP
}

20 d′f ← d′f − δ

21 xf (P )← xf (P ) + δ
22 ∀e(c) ∈ Ec s.t. Ae(c)P ̸= 0, µe ← µe(1 + ϵδAe(c)P )

23 ∀v ∈ V s.t. BvP ̸= 0, µv ← µv(1 + ϵδBvP /κ(v))
24 end while
25 end for
26 end loop

Table VII.3: Routing Algorithm Under Uncertain Demand
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Simulation Study

Part of the content in section is similar to the simulation part of the previous

chapter. However, in order to make this chapter as a self-contained chapter, we

still keep this content for ease of reading.

To realistically simulate the traffic demand at each LAP, we employ the traces

collected in the campus wireless LAN network. The network traces used in this

work are collected in Spring 2002 at Dartmouth College and provided by CRAW-

DAD [100]. By analyzing the snmp log trace at each access point, we are able to

derive its 1108-hour incoming and outgoing traffic volume since 12:00AM, March

25, 2002 EST. We select the access points from the Dartmouth campus wireless

LAN and assign their traffic traces to the LAPs in our simulation.

We evaluate and compare different traffic prediction and routing strategies for

this simulated network. In particular, we consider the following strategies.

• Perfect Routing (PR). In this strategy, the traffic demand is known a priori.

It runs the FM3R algorithm (presented in Tab. VII.2) based on this demand.

This solution runs every hour based on the up-to-date traffic demand from the

trace and returns the optimal set of routes. This ideal strategy is designed

to return the benchmark result, which the rest of the practical strategies

compare to.

• Single-Value Prediction Routing (SVPR). This strategy does not know the

traffic demand a priori. Instead, it only predicts the traffic demand based

on its historical data. In particular, it employs the mean value prediction

model and runs the FM3R algorithm based on this predicted demand. This

solution also runs every hour to provide the set of routes for the next hour.
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• Prediction with Distribution Routing (PDR). Similar to SVPR, this strat-

egy also relies on traffic prediction. It predicts not only the mean-value of

the traffic demand in the next hour, but also its distribution. It runs the

UM3R algorithm (presented in Tab. VII.3) with the predicted traffic demand

distribution as its input. Since UM3R only accepts discrete probability dis-

tribution, we need to discretize the demand distribution by sampling the

following values, the mean value µ, and values µ − σ, µ + σ, µ − 2σ, and

µ − 2σ. Since about 95% of all traffic demand values fall within the range

[µ − 2σ, µ + 2σ], we ignore the values which has a probability smaller than

5%.

−2σ µ 2σ−σ σ

34.1% 34.1%

13.6% 13.6%

0.
1

0.
2

0.
3

0.
4

Figure VII.1: Discretization of Traffic Distribution

As illustrated in Fig. VII.1,

• Shortest-Path Routing (SPR). This strategy is agnostic of traffic demand, and

returns fixed routing solution purely based on the shortest distance (number

of hops) from each mesh node to the gateway. The purpose to evaluate this

strategy is to quantitatively contrast the advantage of our traffic-predictive

routing strategies.
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Note that the flows derived from the above routing strategies will be adjusted

by the channel assignment, post processing and flow scaling algorithms in [18].

We denote the final rate of flow f along path P as xA
f =

∑
P∈Pf

xA
f (P ). This

is the maximum flow throughput under the fairness constraint weighted by the

traffic demand, which maximizes the scaling factor λ. However, for performance

study, λ is not a suitable performance metric. First, we are more interested in

the network performance (i.e., congestion) incurred by the given traffic demand,

instead of the achievable throughput. Second, the absolute value of λ could be

misleading, especially when the actual demand is not the same as the predicted

demand which is being used for routing.

Now we proceed to define the performance metric we use in the simulation

study. First, we scale the achievable flow rate xA
f derived from the routing and

channel assignment process by its actual traffic demand df :

x′
f (P ) = xA

f (P ) · df
xA
f

(VII.19)

x′
f (P ) is the actual traffic load that is imposed on path P under our routing

and channel assignment scheme. Thus the traffic being routed within the inter-

ference set Ie(c) over channel c is given by
∑

f∈F
∑

P∈Pf
x′
f (P )Ae(c)P . We define

the congestion of an interference set Ie(c) using its utilization and denote it as

θche (c) =

∑
f∈F

∑
P∈Pf

x′
f (P )Ae(c)P

γ(∆)
. Then θch = maxe(c)∈Ec θ

ch
e (c) is the maximum con-

gestion among all the interference sets. We further consider the congestion at a

single mesh node incurred by the traffic from all channels. The congestion of a

node v is defined as θrdv =

∑
f∈F

∑
P∈Pf

x′
f (P )BvP

κ(v)
. And θrd = maxv∈V θrdv . Finally, the

network congestion θ is defined as θ = max{θrd, θch}.
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Simulation on Self-developed Simulator

This section describes the simulation results from the self-developed simulator.

In the simulated wireless mesh network, 60 mesh nodes are randomly deployed

over a 1000 × 2000m2 region. 20 nodes at the edge of this network are selected

as the local access points (LAP) that forward traffic for clients. 4 nodes in the

center of the deploy region are selected as the gateway access points. Each mesh

node has a transmission range of 250m and an interference range of 500m, which

means ∆ = 2. The channel capacity ϕc(e) is the same for all links e and channels

c, which is set as 54 Mbps. In the basic setting, each mesh nodes are equipped

with 3 radio interfaces. And there are 3 orthogonal channels in the network. Aside

from this basic setting, we have also evaluated the performance of our algorithms

with different configurations of radio and channel numbers, which we will show in

the later part of this section.
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Figure VII.2: Mesh Network Topology.
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AP 31AP3 34AP5 55AP4 57AP2 62AP3 62AP4 82AP4 94AP1 94AP3 94AP8
Node ID 22 18 57 5 55 20 53 3 56 27

AP 27AP3 3AP3 21AP2 23AP4 33AP2 62AP2 82AP3 84AP1 90AP2 97AP2
Node ID 9 23 25 33 19 35 58 42 6 48

Table VII.4: Node Assignment in Self-developed Simulator

We experiment with the above routing strategies along the time range [108, 1108],

a 1000-hour period excerpted from the trace1. Note that all the simulation results

presented in this section are using 108 as the zero point.

We start by presenting the congestion achieved by all strategies (PR, SVPR,

PDR, and SPR) during the entire 1000-hour simulation period. The overall simula-

tion result shows that PR constantly achieves the minimum worst-case congestion

among others, due to its unrealistic capability to know the actual traffic demand.

We note that the burstiness of θ applies to all strategies including PR. Such obser-

vation comes from the burstiness of the traffic load in the snmp log trace, which

is caused by the insufficient level of traffic multiplexing at wireless local access

points.
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Figure VII.3: Sorted View of Congestion Ratio

1Note that the beginning part of the trace [0, 107] is used as training data, thus is not included
in the simulation result.
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To filter out the noise caused by traffic burstiness, we normalize θ achieved by

other strategies by the same value of PR. Since PR always achieves the minimum

θ among others, this ratio will end up at least 1. Also we take a close-up look

during the hour range [190, 290]. We sort out the normalized congestion ratio for

the three strategies in Fig. VII.3. Here, the SVPR and PDR strategies achieve

less than 2 times of the optimal congestion in most cases, while the SPR strategy

can only achieve 4 − 7 times of the optimal performance. It is clear that our

SVPR and PDR strategies which integrate the traffic prediction with the optimal

routing outperform the SPR strategy which is agnostic about the traffic demand.

Further, PDR achieves lower congestion than SVPR in most of the time due to

more comprehensive representation of the traffic demand estimation. However, in

a few cases (less than 10% of the time), the worst-case congestion of PDR is higher

than SVPR. This problem can be mostly attributed to the inaccuracy of traffic

prediction.
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Figure VII.4: Adjusted Interference Set Sorted By Congestion

Next, we take a closer look at each strategy’s ability to balance the traffic within

the mesh network. In Fig. VII.4, we unfold a single time instance at hour 271 and
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exhibit the congestion θche(c) at each interference set Ie(c) resulted from each strat-

egy. In order to achieve the lowest worst-case congestion, a good strategy should

maximally even out the traffic routed through all interference sets. Obviously, PR

achieves such a balance, which resulted in the best θ value 0.65. SPR has the

highest θ value as more than 2. The results for SVPR and PDR are 0.8 and 0.7

respectively. We also observe that the distribution of θche(c) under the PDR strategy

closely matches the PR strategy.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60  70  80  90  100

θ/
θ P

R

Time Instances

# of radio=2
# of radio=3
# of radio=4

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60  70  80  90 100

θ/
θ P

R


Time Instances

# of radio=2
# of radio=3
# of radio=4

(a) SVPR (b) PDR

Figure VII.5: Impact of Number of Radio Interfaces

In what follows, we alter our simulation configurations to examine the abilities

of different strategies at adapting various network settings, such as radio interface

numbers and channel numbers. Here, we focus on the traffic prediction strategies,

namely, SVPR and PDR. Also we plot their performances by the congestion ratio

θ/θPR normalized by the PR routing results. We first vary the number of radio in-

terfaces from 2 to 4 and study the congestion θ during the time interval [190, 290].

Fig. VII.5 plots the sorted normalized congestion θ
θPR

of the two strategies. Com-

paring these two figures, we could see that the PDR strategy performs slightly
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better than the SVPR strategy. The improvement of both strategies over the PR

strategy increases (i.e., normalized congestion decreases) with the radio number.
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Figure VII.6: Impact of Channel/Radio

Finally, Fig. VII.6 plots the normalized congestion under different radio and

channel numbers at a single time instance 271 for these two strategies. The results

show that the improvement of both strategies over the PR strategy decreases with

the channel number. This is because when the network has more channels, the

algorithms are likely to find more paths and the prediction error is more likely to

be magnified.

Simulation on NS2

The previous section shows the simulation results from the self-developed sim-

ulation tool, and in this section we present the results from further implement of

our algorithms on NS2. Due to some limitations in NS2, we have to make changes

to make it better serve for the simulation purpose.

We simulate our algorithms in a wireless mesh network with 64 mesh nodes

which are randomly distributed in a 1000 × 1000m2 area. We define that each

node has a transmission range and an interference range of both 155m. All other

settings use the default values set in NS2.
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We pick two nodes as gateways for the simulation, and ten nodes as LAPs.

We still use the same set of traffic generated from Dartmouth College. However,

due to the computation complexity, we only use a portion of trace (the hour range

[190, 290]) for the simulation in NS2.

AP 31AP3 34AP5 55AP4 57AP2 62AP3 62AP4 82AP4 94AP1 94AP3 94AP8
Node ID 28 54 34 43 26 27 49 58 23 13

Table VII.5: Overview of Traffic Demand Assignment in NS2

The simulation on NS2 makes it possible to implement our routing algorithms

as well as other existing routing algorithms. By using the same configuration on

NS2, we can compare our algorithms performance with those algorithms. In this

simulation, we compare some popular routing algorithms (AODV and ETX [33]).

Please note that in our simulation, we have multiple gateways and LAPs can have

multiple flows to route the traffic to any gateway. AODV and ETX, on the other

hand, does not support this mode directly and these routing algorithms can only

support a single flow solution, so they will choose an optimal routing path to one

of gateways based on their own metric.

In the previous simulation that is based on the self-developed simulator, we

use θ as the metric to compare how congested the network can be after applying

different routing algorithms. In the NS2 simulation, however, it is not possible

to measure this metric at each interference set directly. Instead of using θ, we

use the original definition of the scaling factor λ in the formulation. It is obvious

that, the larger the value of λ is, the better the performance of the algorithm is.

We find that there is zero demand traffic in some APs during certain time in the

original trace, which could lead λ to 0, and we believe it should be ignored from

our algorithm comparison.
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We simulate both lossy and lossless network environments. The first set of our

simulation assumes that all links are stable, and there is no packet loss due to

noises from external environment. Since ETX uses a metric that is based on the

link loss, the performance comparison in this set of simulations does not include

this routing algorithm.
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Figure VII.7: Sorted View of Scaling Factor Ratios

Fig. VII.7 is an overview of scaling factor λ using different routing algorithms

during the hour range [190, 290] after we normalize the values of routing algorithms

by the corresponding ones of PR and sort. We can see that PR, SVPR and PDR

have much higher values of the scaling factor. Over 20% of the time in the simu-

lation, SVPR and PDR, especially PDR, have performance that is at least 70% of

the optimal solution. Please note that there is 5−10% of the time, our algorithms

are better than the optimal, which we believe is the gap generated by the difference

between algorithm modeling and real network environment.

In Fig. VII.7, we find that SVPR and PDR have higher throughput than AODV.

However, the performance between these two algorithms is not clear. In Fig. VII.8,

we compare the simulation results by normalize PDR using SVPR. It is clear to
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see that more than 60% of the time, PDR outperforms SVPR and over 10% of the

time the performance of PDR is at least twice as good as SVPR.
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Figure VII.9: Sorted View of Scaling Factor Ratios under Normal Distribution
with 20% Average Link Loss

In the second set of the simulation, we simulate algorithms under several lossy

environments. The link loss has certain correlation with the link distance, and

longer links are more likely to lose packets than shorter ones. We create three

different scenarios in order to compare simulation results under different environ-

ments. In our first two scenarios, we assume the link distances in our simulation

follow a normal distribution and assign loss ratios in proportion to link distances.
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We assume the average loss ratio is 40% in the first scenario and 20% in the second

one. At the same time, we understand that link distance is not the determined

factor for the link loss and there are also other factors that can lead to the packet

loss. So in our third scenario, we assign loss ratio randomly to the links with an

average loss ratio of 20%.

Fig. VII.9 shows the simulation results from the second scenario where link loss

follows link distance and has an average of 20%. We find that both SVPR and

PDR generally have higher performance than ETX and AODV. We also run our

algorithms under two other network environments. When comparing the first two

scenarios (normal distribution with 40% and 20% average link loss respectively),

we find AODV algorithm, which does not consider loss ratio, has the similar per-

formance whenever the loss ratio is high or low when comparing to optimal routing

algorithm. SVPR, PDR and ETX have better performance when the loss ratio is

high, which confirms that those routing algorithms are adaptive to lossy network

environment especially when the link loss becomes critical. When comparing the

second scenario to the third scenario where it has the same link loss but assigns

randomly, we find that routing algorithms performs better in a simulated environ-

ment where link loss is linked to link distance, which also supports our assumption

that it is meaningful to assign link loss based on link length.

The packet delay from a sender to a receiver is another important metric for

routing algorithms. We trace the time when packets are sent and received and ana-

lyze the delay of each packet. A typical simulation result from different scenarios is

shown in Fig. VII.10 where link loss is distributed according to link length with an

average loss ratio of 20%. In this figure, we compare the delay of all other routing

algorithms to that of AODV which we believe should generally have longer delay

because less-planned flows in AODV may congest the network and it may take
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longer time to deliver the packet. The results from Fig. VII.10 show that although

AODV tries to use the shortest path, it does not necessarily lead to the shortest

delay. About 80% of the time all other algorithms except OR have shorter delay

than AODV. The main reason that OR has the similar delay as AODV is that OR

tends to find more links to route traffic in order to reach the optimal value, of which

some have longer delay. SVPR, SPDR and ETX have similar performance in the

simulation and we can not find obvious delay difference among those algorithms.
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CHAPTER VIII

CONCLUSION

The WMN is gaining increasing popularity as a high-performance and low-cost

solution to last-mile broadband Internet access and disaster recovery. Traffic dis-

tribution plays a critical role in determining WMN performance. This dissertation

studies a framework that integrates traffic distribution with traffic prediction. It

is an optimization-based traffic distribution solution for multi-radio, multi-channel

wireless mesh networks, which takes into account the dynamic nature of wireless

traffic demand.

The traffic analysis component of the framework establishes traffic models for

wireless access points and uses them to predict the future traffic demand for load

distribution. We characterize historical traffic using time series models, and predict

the future traffic demand based on the established models. We propose two dif-

ferent traffic prediction models. The single value prediction provides the expected

value for predicted traffic demand, while prediction with statistic distribution pro-

vides possible traffic values with their corresponding probabilities. Traffic distri-

bution algorithms that utilize the probabilistic traffic distribution information is

more resilient to traffic dynamics.

In the traffic distribution component, we develop optimization-based algorithms

to balance the traffic load. The fixed-demand routing algorithm takes the single-

value prediction result and computes the optimal routing based on the determined

traffic information. The uncertain demand routing takes the prediction with dis-

tribution traffic model as the input and compute the routing that optimizes the
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expected network performance. We study our routing algorithms under three dif-

ferent network models. The first network model only has a single channel. The

routing algorithms developed under this model serve as the baseline algorithms for

the other two network models. The second network model incorporates the exis-

tence of multiple radios and multiple channels. The baseline routing algorithms are

extended to joint solution of channel assignment and routing solutions. The third

network model considers the wireless random losses in traffic distribution. Link

loss aware routing algorithms can accurately reflect physical network environment

and design routing paths by adapting this feature.

The contributions of this dissertation are as follows. First, the integration

of traffic estimation and distribution optimization effectively improves the per-

formance of WMNs under dynamic and uncertain traffic. Unlike most existing

routing algorithms that ignore the fact of dynamic traffic and lead to poor results

when implemented in real networks, our algorithms are adaptive to dynamic traf-

fic, and can improve wireless network performance under uncertain traffic. The

full-fledged simulation study based on real wireless network traffic traces provide

convincing validation of the practicability of our solution. Second, we extend the

classical linear network optimization algorithm, which only accepts the fixed-value

demand as input, into a stochastic optimization solution capable of serving un-

certain demands that are modeled by their statistical distributions. The results

show that our algorithms can achieve better performance under dynamic network

environment than classical routing algorithms.
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APPENDIX A

APPENDIX I

Proof for Theorem 1

The proof to Theorem 1 is precluded by a sequence of lemmas. We first make

the following denotations. We use OPT to represent the optimal solution of both

PT and DT, and OPT ′ to represent the solution derived from FMR algorithm.

Lemma 1 : If OPT ≥ 1, scaling the final flow by log1+ϵ 1/β yields a feasi-

ble primal solution of value OPT ′ = t−1
log1+ϵ 1/β

, t being the number of phases the

algorithm takes to stop.

Proof. We first make the following denotations. Regarding a set of price assign-

ments µe for Se (e ∈ E), the objective function ofD is Lµe ,
∑

e∈E c·µe. Let P
µe(f)

be the minimum path of the flow f ∈ F using µe. µ(P
µe(f)) ,

∑
e∈E AePµe (f)µe is

the aggregated price of P µe(f). Each phase contains |F | iterations, where traffic

for each flow in F is routed according to its demand. In each iteration, the price

of an interference set is updated. We use µ
(i)(j)
e to denote the price of Se for e ∈ E

after the jth iteration of the ith phase. Regarding µ
(i)(j)
e , we simplify the notation

Lµ
(i)(j)
e into L(i)(j), P µ

(i)(j)
e into P (i)(j), and µ(P µ

(i)(j)
e ) into µ(P (i)(j)). Based on the

price update function (Line 11 in Tab. V.2), we have

L(i)(j)

=
∑
e∈E

µ(i)(j−1)
e + ϵ

∑
e∈P (i)(j−1)

AeP (i)(j−1)µ(i)(j−1)
e d(fj)

= L(i)(j−1) + d(fj)µ(P
(i)(j−1))
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The price assignment at the start of the (i + 1)th phase are the same as that at

the end of the ith phase, i.e., µ
(i+1)(0)
e = µ

(i)(|F |)
e . The price of any interference set

Se is initialized as µ
(1)(0)
e = µ

(0)(|F |)
e = β/c. Hence,

L(i)(|F |) ≤ L(i)(0) + ϵ

|F |∑
j=1

d(fj)µ(P
(i)(|F |))

since the edge lengths are monotonically increasing.

Let us define µ(i)(|F |) =
∑|F |

j=1 d(fj)µ(P
(i)(|F |)). Then the objective of DT is to

minimize L(i)(|F |), subject to the constraint that µ(i)(|F |) ≥ 1. This constraint can

be easily satisfied if we scale the length of all inference sets by 1/µ(i)(|F |). So DT is

equivalent to finding a set of inference set lengths, such that L(i)(|F |)

µ(i)(|F |) is minimized.

Thus the optimal value of DT is OPT , minµ(i)(|F |)
L(i)(|F |)

µ(i)(|F |) .

Since L(i)(|F |)

µ(i)(|F |) ≥ OPT , we have

L(i)(|F |) ≤ β|E|
1− ϵ

e
ϵ(i−1)

OPT (1−ϵ)

Since L(0)(|F |) = β|E|, we have

L(i)(|F |) ≤ β|E|
(1− ϵ/OPT )i

=
β|E|

(1− ϵ/OPT )
(1 +

ϵ

OPT − ϵ
)i−1

≤ β|E|
(1− ϵ/OPT )

e
ϵ(i−1)
OPT−ϵ

≤ β|E|
1− ϵ

e
ϵ(i−1)

OPT (1−ϵ)
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where the last inequality assumes that OPT ≥ 1. The algorithm stops at the

first phase t for which L(t)(|F |) ≥ 1. Therefore,

1 ≤ L(t)(|F |) ≤ β|E|
1− ϵ

e
ϵ(t−1)

OPT (1−ϵ)

which implies

OPT

t− 1
≤ ϵ

(1− ϵ) ln 1−ϵ
β|E|

(A.1)

Now consider an interference set Se. For every c units of flow routed through

Se, we increase its price by at least a factor (1 + ϵ). Initially, its length is β/c

and after t− 1 phases, since L(t)(|F |) < 1, the price of Se satisfies µ
(t−1)(|F |)
e < 1/c.

Therefore the total amount of flow through Se in the first t−1 phases is strictly less

than log1+ϵ
1/c
β/c

= log1+ϵ 1/β times its capacity. Thus, scaling the flow by log1+ϵ 1/β

will yield a feasible solution. Since in each phase, d(f) units of data are routed for

each flow, we have OPT ′ = t−1
log1+ϵ 1/β

.

Lemma 2: If OPT ≥ 1, then the final flow scaled by log1+ϵ 1/β has a value at

least (1− 3ϵ) times OPT , when β = (|E|/(1− ϵ))−1/ϵ.

Proof. By Lemma 1, scaling the final flow by log1+ϵ 1/β yields a feasible solution.

Therefore,

OPT

OPT ′ < log1+ϵ 1/β (A.2)

Substituting the bound on OPT/(t− 1) from In Equality (B.1), we get

OPT

OPT ′ <
ϵ log1+ϵ 1/β

(1− ϵ) ln 1−ϵ
β|E|

=
ϵ

(1− ϵ) ln(1 + ϵ)

ln 1/β

ln 1−ϵ
β|E|
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When β = (|E|/(1− ϵ))−1/ϵ, the above in Equality becomes

OPT

OPT ′ <
ϵ

(1− ϵ)2 ln(1 + ϵ)
≤ ϵ

(1− ϵ)2(ϵ− ϵ2/2)

1

≤ (1− ϵ)3

≤ (1− 3ϵ)

Lemma 3: If OPT ≥ 1 and β = (|E|/(1 − ϵ))−1/ϵ, Algorithm I terminates

after at most t = 1 + OPT
ϵ

log1+ϵ
|E|
1−ϵ

phases.

Proof. From In Equality (B.2) and weak-duality, we have

1 ≤ OPT

OPT ′ < log1+ϵ 1/β

Hence, the number of phases t is strictly less than 1 + OPT log1+ϵ 1/β. If

β = (|E|/(1− ϵ))−1/ϵ, then t ≤ 1 + OPT
ϵ

log1+ϵ
|E|
1−ϵ

These lemmas require that OPT ≥ 1. The running time of the algorithm also

depends on OPT . Thus we need to ensure that OPT is at least one and not too

large. Let ζi be the maximum traffic value of flow fi when all other flows have

zero traffic. Let ζ = mini
ζi

d(fi)
. Since at best all single commodity maximum flows

can be routed simultaneously, ζ is an upper bound on OPT ′. On the other hand,

routing 1/|F | fraction of each flow of value ζi is a feasible solution, which implies

that ζ/|F | is a lower bound on OPT . To ensure that OPT ≥ 1, we can scale the

original demands so that ζ/|F | is at least one. However, by doing so, OPT might

be made as large as |F |, which is also undesirable.

To reduce the dependence on the number of phases on OPT , we adopt the

following technique. If the algorithm does not stop after T = 2
ϵ
log1+ϵ

|E|
1−ϵ

phases,
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it means that OPT > 2. We then double demands of all commodities, so that

OPT is halved and still at least 1. We then continue the algorithm, and double

demands again if it does not stop after T phases.

These lemmas require that OPT ≥ 1. The running time of the algorithm also

depends on OPT . Thus we need to ensure that OPT is at least one and not too

large. Let ζf be the maximum traffic value of flow f when all other flows have

zero traffic. Let ζ = minf
ζf
df
. Since at best all single commodity maximum flows

can be routed simultaneously, ζ is an upper bound on OPT ′. On the other hand,

routing 1/|F | fraction of each flow of value ζf is a feasible solution, which implies

that ζ/|F | is a lower bound on OPT . To ensure that OPT ≥ 1, we can scale the

original demands so that ζ/|F | is at least one. However, by doing so, OPT might

be made as large as |F |, which is also undesirable.

To reduce the dependence on the number of phases on OPT , we adopt the

following technique. If the algorithm does not stop after T = 2
ϵ
log1+ϵ

|E|
1−ϵ

phases,

it means that OPT > 2. We then double demands of all commodities, so that

OPT is halved and still at least 1. We then continue the algorithm, and double

demands again if it does not stop after T phases.

Lemma 4: Given ζf for each flow f , the running time of Algorithm I is

O( log |E|
ϵ2

(2|F | log |F |+ |E|)) · Tmp.

Proof. The above demand-doubling procedure is repeated for at most log |F | times.

Thus, the total number of phases is at most T log k. Since each phase contains k

iterations, the algorithm runs for at most kT log k iterations.

Now we observe how many steps are within each iteration. For each step except

for the last step in an iteration, the algorithm increases the length of some edge
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(the bottleneck edge on t) by 1 + ϵ. de has initial value β/c and value at most

1/c before the final step of the algorithm. Otherwise, the stop criterion of the

algorithm,
∑

e∈E c · de ≥ 1, would have been reached. This means that the length

of an edge can be updated in at most log1+ϵ
1
β
= 1

ϵ
log1+ϵ

|E|
1−ϵ

steps. Therefore, the

algorithm contains at most

|E|
ϵ
log1+ϵ

|E|
1−ϵ
≤ |E|

ϵ2
log |E|

1−ϵ
such “normal” steps, and kT log k ≤ 2k log k

ϵ2
log |E|

1−ϵ
“fi-

nal” steps. Each step contains a minimum overlay spanning tree operation.

Theorem 1: The total running time ofAlgorithm I isO( 1
ϵ2
[log |E|(2|F | log |F |+

|E|) + logU)]) · Tmp.

Proof. Computing ζi corresponds to the maximum flow problem, where fi is the

only commodity. The running time of getting ζi is O( |E|
ϵ2
(logU)) · Tmp, where U is

the length of the longest unicast route, and Tmp denotes the running time to find

the minimum path. Such an operation has to be repeated for each flow. Also from

the result of Lemma 4, we can obtain the total running time as described by the

theorem.

Proof for Theorem 2

The proof for Theorem 2 follows the same sequence as the proof to Theorem

1, with minor modification. We start with Lemma 1. Each phase of the algorithm

contains |F | iterations, where traffic for each flow in F is routed according to its

demand. We reuse the same denotations defined in the original proof to Lemma

1. We further introduce d(i) as the demand vector chosen at the ith phase.
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Based on the price update function (Line 11 in Tab. V.2), we have

L(i)(j)

= L(i)(j−1) + d(fj)µ(P
(i)(j−1))

λ∗(d(i))

p(d(i))

The price assignment at the start of the (i + 1)th phase are the same as that at

the end of the ith phase, i.e., µ
(i+1)(0)
e = µ

(i)(|F |)
e . The price of any interference set

Se is initialized as µ
(1)(0)
e = µ

(0)(|F |)
e = β/c. Hence,

L(i)(|F |) = L(i)(0) + ϵ

|F |∑
j=1

d(fj)µ(P
(i)(j−1))

λ∗(d(i))

p(d(i))

≤ L(i)(0) + ϵ

|F |∑
j=1

d(fj)µ(P
(i)(|F |))

λ∗(d(i))

p(d(i))

since the edge lengths are monotonically increasing.

Let us define µ(i)(|F |) =
∑|F |

j=1 d(fj)µ(P
(i)(|F |))λ

∗(d(i))

p(d(i))
. Then the objective of D is

to minimize L(i)(|F |), subject to the constraint that µ(i)(|F |) ≥ 1, i.e., L(i)(|F |)

µ(i)(|F |) ≥ OPT .

The rest of the proof follows the same as the original proof to Lemma 1. The

proofs to Lemma 2, 3, 4, and Theorem 1 remain the same.
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APPENDIX B

APPENDIX II

Proof for Theorem 3

The proof to Theorem 3 is precluded by a sequence of lemmas. We first make

the following denotations. We use OPT to represent the optimal solution of both

PT and DT, and OPT ′ to represent the solution derived from FM3R algorithm.

Lemma 1 : If OPT ≥ 1, scaling the final flow by log1+ϵ 1/β yields a feasi-

ble primal solution of value OPT ′ = t−1
log1+ϵ 1/β

, t being the number of phases the

algorithm takes to stop.

Proof. We first make the following denotations. Regarding a set of price as-

signments µe for e(c) (e(c) ∈ Ec), µv for v (v ∈ V ), the objective function of

DT is Lµ. Let P µ(f) be the minimum path of the flow f ∈ F using µe and

µv. µ(P µ(f)) ,
∑

e(c)∈Ec
Ae(c)Pµ(f)µe +

∑
v∈V BvPµ(f)µv is the aggregated price

of P µ(f). Each phase contains |F | iterations, where traffic for each flow in F is

routed according to its demand. In each iteration, the price of an interference set

is updated. We use µ
(i)(j)
e to denote the price of e(c) ∈ Ec, µ

(i)(j)
v to denote the

price of v ∈ V after the jth iteration of the ith phase. Regarding µ
(i)(j)
e and µ

(i)(j)
v ,

we simplify the notation Lµ(i)(j)
into L(i)(j), P µ(i)(j)

into P (i)(j), and µ(P µ(i)(j)
) into
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µ(P (i)(j)). Based on the price update function (Line 11 in Tab. VI.2), we have

L(i)(j)

=
∑

e(c)∈Ec

µ(i)(j−1)
e + ϵ

∑
e(c)∈P (i)(j−1)

Ae(c)P (i)(j−1)µ(i)(j−1)
e d(fj)

+
∑
v∈V

µ(i)(j−1)
v + ϵ

∑
v∈P (i)(j−1)

BvP (i)(j−1)µ(i)(j−1)
v d(fj)

= L(i)(j−1) + d(fj)µ(P
(i)(j−1))

The price assignment at the start of the (i + 1)th phase are the same as that at

the end of the ith phase, i.e., µ
(i+1)(0)
e = µ

(i)(|F |)
e . The price of any interference set

e(c) is initialized as µ
(1)(0)
e = µ

(0)(|F |)
e = β/γ(∆), and the price of any node v is

initialized as µ
(1)(0)
v = µ

(0)(|F |)
V = β/κ(v). Hence,

L(i)(|F |) ≤ L(i)(0) + ϵ

|F |∑
j=1

d(fj)µ(P
(i)(|F |))

since µe and µv are monotonically increasing.

Let us define µ(i)(|F |) =
∑|F |

j=1 d(fj)µ(P
(i)(|F |)). Then the objective of DT is to

minimize L(i)(|F |), subject to the constraint that µ(i)(|F |) ≥ 1. This constraint can

be easily satisfied if we scale the prices of all inference sets and nodes by 1/µ(i)(|F |).

So DT is equivalent to finding a set of inference set lengths, such that L(i)(|F |)

µ(i)(|F |) is

minimized. Thus the optimal value of DT is OPT , minµ(i)(|F |)
L(i)(|F |)

µ(i)(|F |) .

Since L(i)(|F |)

µ(i)(|F |) ≥ OPT , we have

L(i)(|F |) ≤ L(0)(|F |)

1− ϵ
e

ϵ(i−1)
OPT (1−ϵ)
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Since L(0)(|F |) = β(|Ec|+ |V |), we have

L(i)(|F |) ≤ β(|Ec|+ |V |)
(1− ϵ/OPT )i

=
β(|Ec|+ |V |)
(1− ϵ/OPT )

(1 +
ϵ

OPT − ϵ
)i−1

≤ β(|Ec|+ |V |)
(1− ϵ/OPT )

e
ϵ(i−1)
OPT−ϵ

≤ β(|Ec|+ |V |)
1− ϵ

e
ϵ(i−1)

OPT (1−ϵ)

where the last inequality assumes that OPT ≥ 1. The algorithm stops at the

first phase t for which L(t)(|F |) ≥ 1. Therefore,

1 ≤ L(t)(|F |) ≤ β(|Ec|+ |V |)
1− ϵ

e
ϵ(t−1)

OPT (1−ϵ)

which implies

OPT

t− 1
≤ ϵ

(1− ϵ) ln 1−ϵ
β(|Ec|+|V |)

(B.1)

Now consider an interference set e(c). For every γ(∆) units of flow routed

through e(c), we increase its price by at least a factor (1 + ϵ). Initially, its length

is β/γ(∆) and after t − 1 phases, since L(t)(|F |) < 1, the price of e(c) satisfies

µ
(t−1)(|F |)
e < 1/γ(∆). Therefore the total amount of flow through e(c) in the first

t− 1 phases is strictly less than log1+ϵ
1/γ(∆)
β/γ(∆)

= log1+ϵ 1/β times its capacity. The

same procedure applies for any node v. Thus, scaling the flow by log1+ϵ 1/β will

yield a feasible solution. Since in each phase, d(f) units of data are routed for each

flow, we have OPT ′ = t−1
log1+ϵ 1/β

.
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Lemma 2: If OPT ≥ 1, then the final flow scaled by log1+ϵ 1/β has a value at

least (1− 3ϵ) times OPT , when β = ((|Ec|+ |V |)/(1− ϵ))−1/ϵ.

Proof. By Lemma 1, scaling the final flow by log1+ϵ 1/β yields a feasible solution.

Therefore,

OPT

OPT ′ < log1+ϵ 1/β (B.2)

Substituting the bound on OPT/(t− 1) from In Equality (B.1), we get

OPT

OPT ′ <
ϵ log1+ϵ 1/β

(1− ϵ) ln 1−ϵ
β(|Ec|+|V |)

=
ϵ

(1− ϵ) ln(1 + ϵ)

ln 1/β

ln 1−ϵ
β(|Ec|+|V |)

When β = ((|Ec|+ |V |)/(1− ϵ))−1/ϵ, the above in Equality becomes

OPT

OPT ′ <
ϵ

(1− ϵ)2 ln(1 + ϵ)
≤ ϵ

(1− ϵ)2(ϵ− ϵ2/2)

1

≤ (1− ϵ)3

≤ (1− 3ϵ)

Lemma 3: If OPT ≥ 1 and β = ((|Ec| + |V |)/(1 − ϵ))−1/ϵ, Algorithm I

terminates after at most t = 1 + OPT
ϵ

log1+ϵ
|Ec|+|V |

1−ϵ
phases.

Proof. From In Equality (B.2) and weak-duality, we have

1 ≤ OPT

OPT ′ < log1+ϵ 1/β

Hence, the number of phases t is strictly less than 1 + OPT log1+ϵ 1/β. If

β = ((|Ec|+ |V |)/(1− ϵ))−1/ϵ, then t ≤ 1 + OPT
ϵ

log1+ϵ
|Ec|+|V |

1−ϵ

These lemmas require that OPT ≥ 1. The running time of the algorithm also

depends on OPT . Thus we need to ensure that OPT is at least one and not too
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large. Let ζi be the maximum traffic value of flow fi when all other flows have

zero traffic. Let ζ = mini
ζi

d(fi)
. Since at best all single commodity maximum flows

can be routed simultaneously, ζ is an upper bound on OPT ′. On the other hand,

routing 1/|F | fraction of each flow of value ζi is a feasible solution, which implies

that ζ/|F | is a lower bound on OPT . To ensure that OPT ≥ 1, we can scale the

original demands so that ζ/|F | is at least one. However, by doing so, OPT might

be made as large as |F |, which is also undesirable.

To reduce the dependence on the number of phases on OPT , we adopt the

following technique. If the algorithm does not stop after T = 2
ϵ
log1+ϵ

(|Ec|+|V |)
1−ϵ

phases, it means that OPT > 2. We then double demands of all commodities,

so that OPT is halved and still at least 1. We then continue the algorithm, and

double demands again if it does not stop after T phases.

These lemmas require that OPT ≥ 1. The running time of the algorithm also

depends on OPT . Thus we need to ensure that OPT is at least one and not too

large. Let ζf be the maximum traffic value of flow f when all other flows have

zero traffic. Let ζ = minf
ζf
df
. Since at best all single commodity maximum flows

can be routed simultaneously, ζ is an upper bound on OPT ′. On the other hand,

routing 1/|F | fraction of each flow of value ζf is a feasible solution, which implies

that ζ/|F | is a lower bound on OPT . To ensure that OPT ≥ 1, we can scale the

original demands so that ζ/|F | is at least one. However, by doing so, OPT might

be made as large as |F |, which is also undesirable.

To reduce the dependence on the number of phases on OPT , we adopt the

following technique. If the algorithm does not stop after T = 2
ϵ
log1+ϵ

(|Ec|+|V |)
1−ϵ

phases, it means that OPT > 2. We then double demands of all commodities,

so that OPT is halved and still at least 1. We then continue the algorithm, and
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double demands again if it does not stop after T phases.

Lemma 4: Given ζf for each flow f , the running time of Algorithm I is

O( log(|Ec|+|V |)
ϵ2

(2|F | log |F |+ |Ec|+ |V |)) · Tmp.

Proof. The above demand-doubling procedure is repeated for at most log |F | times.

Thus, the total number of phases is at most T log |F |. Since each phase contains

|F | iterations, the algorithm runs for at most |F |T log |F | iterations.

Now we observe how many steps are within each iteration. For each step

except for the last step in an iteration, the algorithm increases the price of some

edge inference set or node by 1+ ϵ. µe has initial value β/γ(∆) and value at most

1/γ(∆) before the final step of the algorithm. The same condition applies for nodes

v ∈ V . Otherwise, the stop criterion of the algorithm would have been reached.

This means that the price of an edge inference set or node can be updated in at

most log1+ϵ
1
β
= 1

ϵ
log1+ϵ

|Ec|+|V |
1−ϵ

steps. Therefore, the algorithm contains at most

|Ec|+|V |
ϵ

log1+ϵ
|Ec|+|V |

1−ϵ
≤ |Ec|+|V |

ϵ2
log |Ec|+|V |

1−ϵ
such “normal” steps, and |F |T log |F | ≤

2|F | log |F |
ϵ2

log |Ec|+|V |
1−ϵ

“final” steps. Each step contains a minimum overlay spanning

tree operation.

Theorem 3: The total running time of Algorithm I is O( 1
ϵ2
[log(|Ec| +

|V |)(2|F | log |F |+ |Ec|+ |V |) + logU)]) · Tmp.

Proof. Computing ζi corresponds to the maximum flow problem, where fi is the

only commodity. The running time of getting ζi is O( |Ec|+|V |
ϵ2

(logU)) · Tmp, where

U is the length of the longest unicast route, and Tmp denotes the running time to

find the minimum path. Such an operation has to be repeated for each flow. Also

from the result of Lemma 4, we can obtain the total running time as described

by the theorem.
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Proof for Theorem 4

The proof for Theorem 4 follows the same sequence as the proof to Theorem

3, with minor modification. We start with Lemma 1. Each phase of the algorithm

contains |F | iterations, where traffic for each flow in F is routed according to its

demand. We reuse the same denotations defined in the original proof to Lemma

1. We further introduce d(i) as the demand vector chosen at the ith phase.

Based on the price update function (Line 11 in Tab. VI.2), we have

L(i)(j)

= L(i)(j−1) + d(fj)µ(P
(i)(j−1))

λ∗(d(i))

p(d(i))

The price assignment at the start of the (i + 1)th phase are the same as that at

the end of the ith phase, i.e., µ
(i+1)(0)
e = µ

(i)(|F |)
e . The price of any interference set

Se is initialized as µ
(1)(0)
e = µ

(0)(|F |)
e = β/γ(∆), µ

(1)(0)
v = µ

(0)(|F |)
v = β/κ(v). Hence,

L(i)(|F |) = L(i)(0) + ϵ

|F |∑
j=1

d(fj)µ(P
(i)(j−1))

λ∗(d(i))

p(d(i))

≤ L(i)(0) + ϵ

|F |∑
j=1

d(fj)µ(P
(i)(|F |))

λ∗(d(i))

p(d(i))

since the edge lengths are monotonically increasing.

Let us define µ(i)(|F |) =
∑|F |

j=1 d(fj)µ(P
(i)(|F |))λ

∗(d(i))

p(d(i))
. Then the objective of D is

to minimize L(i)(|F |), subject to the constraint that µ(i)(|F |) ≥ 1, i.e., L(i)(|F |)

µ(i)(|F |) ≥ OPT .

The rest of the proof follows the same as the original proof to Lemma 1. The

proofs to Lemma 2, 3 remain the same. In the proof of Lemma 4, the total

number of phases is changed from at most T log |F | to T |D| log |F |. The proof of

Theorem 4 follows these results.
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