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CHAPTER I 

 

1 INTRODUCTION 

 

With increase in complexity due to the ever decreasing device sizes of the modern day 

electronic components, their enhanced sensitivity to the radiation environment remains an ever 

greater source of concern. Simulators play a vital role in understanding the interactions between 

bombarding energetic particles and semiconductor devices. The simulation of radiation effects in 

integrated circuits (ICs) is generally performed using SPICE–like simulators. The transistor level 

model of a complex circuit (the complexity is in terms of types of analyses and number of 

components) used in SPICE simulators can result in very long, sometimes unaffordable, 

computing time. It has been shown that the memory and computing time required by SPICE 

grow super-linearly with the circuit size [1].   

The purpose of behavioral models is to simulate circuit performance within acceptable 

accuracy limits without the requirement of a complete transistor-level model of an IC, and its 

associated development time and cost. The general approach of behavioral modeling is to 

represent circuit functions with abstract mathematical models that are weakly coupled to 

underlying circuit architectures or detailed transistor schematics. Once the operation of the IC is 

understood (from either hardware testing or detailed simulations), Hardware Description 

Languages (HDL) behavioral models enable the capture of this macro operation in a 

straightforward implementation conducive to high-level simulations. Such behavioral models can 

offer reasonable accuracy, coupled with increased simulation speed, for complex circuits 

incorporating many ICs (such as a board-level system).    
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This thesis presents a generic behavioral modeling technique for total-ionizing dose 

(TID) degradation using VHDL-AMS that is applicable to a wide range of voltage feedback 

amplifiers.  We demonstrate the technique via an LM124 - a common, high gain, internally 

frequency compensated operational amplifier designed to operate over a wide range of voltages.  
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CHAPTER II 

 

2 RADIATION EFFECTS OVERVIEW 

 

 We live in a universe bombarded with radiation. Since semiconductor technology began 

to be used in space and military environments, extensive study has been done to understand the 

effects of radiation on the semiconductor devices and circuits. In many of the commercial or 

military space systems the ICs are required to be tolerant to high levels of ionizing or total-dose 

radiation. This type of radiation can result from space environment, nuclear reactor environment, 

nuclear weapon environment, controlled fusion environment or from high-energy physics 

accelerators. Also, the ICs are exposed to ionizing radiation during their fabrication process. 

Independent of its source, the exposure to these ionizing particles results in considerable damage 

to the IC materials. This damage can lead to circuit performance degradation, logic upset, and 

even catastrophic circuit failure. A brief introduction on the most important radiation 

environment – the space environment and the interaction of ionizing radiation with the 

semiconductor devices and circuits is discussed here. 

 

2.1 Space Environment: 

The space radiation environment consists of variety of energetic particles with energies 

varying from keV to GeV and beyond. There are three main categories of these particles.  

1. Trapped particles: This consists of a broad spectrum of energetic particles that are trapped 

by the earth magnetic field called the Van Allen Belts. These divide into two belts, an 
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inner belt extending to 2.5 times earth radii and comprising of energetic protons up to 600 

MeV together with electrons up to several MeV, and an outer belt comprising of mainly 

electrons extending to 10 times earth radii. 

2. Galactic cosmic rays: This consists of low fluxes of energetic charge particle that originate 

outside of our solar system. These cosmic rays comprises of 85% protons (hydrogen 

nuclei), 14% alpha particles (helium nuclei) and 1% heavy ions with energies extending 

up to 1 GeV. 

3. Solar particle events: This consists of sporadic bursts of radiation emitted by the sun, 

mainly protons and heavy ions. Energies typically range up to several hundred MeV to 

GeV. 

 

The low energy particles are stopped by the layer of shielding material that is used to 

protect the IC.  For a typical shielding depth of 1 to 5 mm, photons with energy above 20keV, 

electrons above 1 MeV and protons above 10MeV can penetrate into the semiconductor.  

 

2.2 Interaction of ionizing radiation with semiconductor material: 

When the radiation particle present in the environment strikes the semiconductor material 

it generates secondary electrons that are very energetic when compared to the energies of the 

valence electrons. These energetic secondary electrons can in turn ionize the atoms, generating 

electron-hole pairs. As long as energies of the generated electrons and holes are greater than the 

minimal energy required for an electron-hole pair generation, they can in turn generate 

supplementary pairs. As a result, one single incident particle can create millions of electron-hole 

pairs. The total amount of energy deposited by a particle that results in electron-hole pair 
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production is commonly referred to as total ionizing dose (TID). The typical unit of TID that is 

used is rad, which denotes the energy absorbed per unit mass of SiO2. A rad (SiO2) is 100 ergs 

per gram of SiO2. SiO2 is specified because it is the material most sensitive to ionization damage 

in the devices and circuits. The basic degradation mechanism of ionizing radiation on MOS and 

BJT are different and is presented below.                                                                                                            

 

2.3 Total-Dose Ionizing effects on MOS structures: 

Mechanism: 

The damage responsible for the total-dose degradation of MOS devices occurs in the 

SiO2 (insulator) layer of device. The radiation damage in SiO2 layers consists of three 

components: build up of trapped charge in the oxide, an increase in number of interface traps and 

an increase in number of bulk oxide traps. Fig. 1 depicts the total-dose radiation effects with the 

use of an MOS band diagram.  

 

Figure 1. Band diagram illustrating the physical processes governing the response of MOS devices to 

total-dose ionizing radiation. (After F. B. McLean et al., Ref. [2]) 
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When ionizing radiation is incident on the metal-oxide-semiconductor (MOS) structures, 

electron-hole pairs are generated along the track of the incident particle. Some fraction of these 

electron-hole pairs will recombine but that fraction is a complicated function of the material, the 

type of radiation and the applied bias. Since the generation of electron-hole pairs causes the 

change in threshold voltage of the MOS device, the fraction of electron-hole pairs that escape 

recombination can be determined experimentally. In SiO2, the rate of electron-hole pair creation 

is directly related to the electron-hole pair creation energy (≈ 17 eV) [5-6]. Hence the total 

number of electron-hole pair created in SiO2 is approximately equal to the total energy of 

ionizing radiation divided by 17 eV. The electron-hole pairs thus created are free to move under 

the applied bias. The electrons are very mobile in SiO2 and under a positive gate bias it quickly 

moves to the contacts. In contrast the holes have a very low effective mobility and transport via a 

complicated stochastic trap-hopping process [7]. Some of the holes might get trapped inside the 

oxide leading to net positive charge. Others might move to the SiO2/Si interface where a certain 

fraction of it is trapped. Since the number of electron-hole pairs created is directly proportional 

to the amount of energy deposited by the radiation (or the energy absorbed by the material), the 

degradation of the device behaviors is also roughly proportional to the total dose of radiation 

received. 

The incident radiation along with the creation of electron-hole pairs could break the 

chemical bonds in the oxide structure. Some of these bonds may be reformed during the electron-

hole recombination, but others remain broken that leads to defect centers. These defect centers 

can serve as interface traps.  The defects created by the radiation may themselves move to the 

strained region near the SiO2-Si interface and may also result in the formation of interface traps. 

There are many models predicting the holes trapping and annealing in SiO2-Si interface [8-9] and 
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buildup of radiation induced interface traps [10-11]. Radiation induced interface traps can either 

be of a donor or acceptor state. A donor trap level is in a neutral charge state when it is below the 

Fermi level, and becomes positively charge state by giving up an electron when it moves above 

the Fermi level. An acceptor trap level is in a neutral charge state when it is above the Fermi 

level, and becomes negatively charged by accepting an electron when it moves below the Fermi 

level. When an external bias is applied to the gate of MOS, the energy level of the interface traps 

moves either up or down relative to the Fermi level. The charge state of the traps changes when 

the energy state crosses the Fermi level.  

The radiation-induced charge components mentioned above, affects the characteristics of 

MOS transistors. The oxide-trapped charge shifts the IDS-VDS curve in the negative direction. The 

interface traps tends to “stretch-out” the IDS-VDS curve, so that a greater change in applied bias is 

required to cause the same change in current [12].  Fig 2 shows the plot of the drain current of 

NMOS transistor with the gate bias before and after radiation. 

 

Fig. 2. Logarithmic function of drain current (Id) of NMOS with applied gate bias for pre-radiation and 

post-radiation [11]. 
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We can see the curve shifts in the negative direction, just as in the case of MOS 

capacitor. This means that the threshold voltage of the NMOS has decreased, which implies that 

lesser gate voltage is required to turn on the device. Also, the curve is less steep compared to the 

pre-radiation case. This means that a greater change of applied bias is required for the same 

change in the drain current as before radiation. 

The magnitude of the above changes depends on number of factors namely, the total dose 

of radiation, dose rate, applied bias, temperature during irradiation, type of transistor, length of 

time and temperature after irradiation. These changes in the properties of MOS integrated 

circuits could lead to profound changes in the circuit’s characteristics, some which might be 

difficult to predict without extensive circuit simulations.  

 

2.4 Effect of total dose radiation on MOS devices and circuits: 

 As discussed in the previous section, the generation of electron-hole pairs in the 

SiO2 layer is the primary effect of ionizing radiation on MOS structures. The generated electron-

hole pairs can either recombine or transport through the oxide. The electrons being very mobile,  

move quickly towards the gate contact and exit out of the oxide while the less mobile holes 

eventually become trapped within the oxide region. The electrons and holes that escape the 

initial recombination process can produce photocurrents and space charge effects in MOS 

devices and circuits. The buildup of space charge in the SiO2 layer can cause the following 

effects: 

• Voltage offsets  

• Induced parasitic leakage currents 
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• Speed /mobility degradation. 

 

2.4.1 Effect of threshold voltage shifts on MOS transistors: 

The threshold voltage of NMOS and PMOS transistors as a function of total-dose is 

illustrated in Fig. 3. The voltage shift is due to trapping of holes in the oxide and the buildup of 

interface traps [11]. In general, the effect of radiation-generated charge, ∆ρ, on the threshold 

voltage shift, ∆Vth, of a transistor is given by            

                                                                tox 

∆Vth = (-1/COX) ∫ ∆ρ(x) (x/tOX) dx    (1) 

                                  
0 

Where,         tOX: Thickness of the oxide 

                    COX: Capacitance of the oxide,  

                     x   : Distance is measured from the gate of MOS.  

We can deduce from Eq. (1) that the trapped positive charge (holes) in the oxide (i.e. ∆ρ 

is positive) will cause will cause a negative shift in the threshold voltage of a device and negative 

charge will cause a positive shift in the threshold voltage. Generally, the initial response of an 

MOS transistor to radiation is a negative shift in the threshold voltage due to the buildup of 

trapped holes. The NMOS device may turn ‘ON” at zero gate bias (no voltage applied to the 

gate) if sufficient amount of holes are trapped in the oxide. In this case, the device is said to have 

gone into “depletion mode” and the device is permanently in the “ON” state. 
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Fig. 3. Threshold voltage versus dose for irradiated n- and p-channel transistors [11]. 

 

After sometime, the acceptor-like (negatively charged) interface traps can shift the 

threshold voltage in the positive direction. This is termed as turn-around and can be attributed to 

negatively charged interface traps building up at a higher rate than trapped oxide charge. If 

sufficient negative charge is built-up in the interface traps then it is possible for the threshold 

voltage of NMOS device to increase to values more than the pre-irradiation (pre-rad) value. This 

condition is termed as “rebound” [11] or “super-recovery” [12] where most of the trapped holes 

are annealed leaving primarily the negative charge contribution of the interface traps. Hence we 

can say that the threshold voltage shift is time dependant, causing the shift at long times to be 

opposite to that observed at short times after irradiation. For the case of PMOS transistor, both 

the oxide trapped charge and interface trap charge (donor-like states) are positively charged. 

Hence the threshold voltage shift is negative and continues to increase in magnitude. The PMOS 
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can become permanently turned “OFF” if the magnitude of the threshold voltage increases more 

than the power supply voltage. 

 

2.4.2 Effects of threshold voltage shifts on ICs  

From the above section we can see that the threshold voltage shifts in NMOS and PMOS 

transistors can lead to functional failure of the IC when the threshold voltage of the NMOS 

transistor becomes lesser than 0V and/or the magnitude of threshold voltage of PMOS transistor 

becomes greater than supply voltage. During “rebound” of NMOS transistors, the increase of 

threshold voltage more than the pre-rad value causes the reduction of the drain current or the 

current drive of the transistor thereby slowing down the IC. “Rebound” has been observed to 

cause IC failure [9]. The threshold voltage shifts in PMOS transistors also reduce the current 

drive and lead to a degradation in speed or loss of TTL comparability. Finally, increased off-

mode transistor leakage will be reflected by an increase in standby power supply current for an 

IC.  

 

2.4.3 Induced parasitic leakage currents 

The charge build-up in the isolation or the field oxide regions is the dominant effect of 

the ionizing radiation in the commercial CMOS process. Fig 5 shows the cross-section of a 

recessed field-oxide structure, specifically called local oxidation of silicon (LOCOS) that is used 

for device-to-device isolation. During the growth of a thick SiO2 layer, a bird’s beak structure is 

formed as illustrated in the Fig 5. The incident radiation causes a buildup in positive charge in 

the field oxide and hence there is a parasitic leakage path between the source and the drain of 
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adjacent devices as shown in Fig 4. Hence there is an increase in leakage current when the device 

is off.  

 

 
 

Fig. 4. Parasitic leakage path between source 

and drain (After F. B. McLean et al., Ref.[2] 

Fig. 5. Cross-section showing LOCOS isolation with 

bird’s beak formation and radiation induced leakage 

paths [2].  

 

2.4.4 IC Speed/Mobility degradation 

Interface traps results in undesirable threshold voltage shifts, degradation of channel 

mobility and transconductance of the device. This causes the parametric degradation of IC’s 

speed, timing, drive etc. The interface traps generated due to radiation causes change in the shape 

of current-voltage characteristics.  The interface traps are either filled or empty when the gate 

voltage of the MOSFET is swept. Hence, depending on the state of the traps, more (or less) 

charge (in turn, gate voltage) is needed at the gate to produce a given surface field in the device. 

Fig. 6 shows the drain current (IDS) versus gate voltage (VG) at different regions of 

operation of the MOS device for varying total dose of radiation. There are two regions of 

operation that are of particular importance, namely the sub-threshold and saturation. At sub-
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threshold, there are two characteristics of the curve that changes due to radiation. First, the shift 

of the ID-VG curve towards the left for both NMOS and PMOS and this is due to the build-up of 

positive oxide trapped charges. Second, the decrease in the slope of the curve which is due to the 

radiation induced build-up of interface traps. The decrease in sub-threshold slope means that a 

larger gate voltage swing is needed to bring the device into strong inversion. Hence the interface 

traps decreases the switching speed of the device.   

.   

Fig. 6. Sub-threshold current-voltage curves for an MOS transistor before irradiation and at four different 

radiation levels [12]. 

 

Mobility degradation in another important effect of the build-up of interface traps. The 

increase in lattice and Coulomb scattering by charged interface traps results in the degradation of 

mobility [15-17].  Also, this reduction in mobility due to radiation leads to decrease in sub-

threshold slope, transconductance and circuit speed. 
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All these degradation of IC behaviors discussed thus far could lead to the functional 

failure of ICs.  

 

2.5 Total-Dose Ionizing effects on BJT structures: 

Bipolar junction transistors (BJTs) remain as important devices in the microelectronics 

industry, although the majority of products employ metal-oxide-semiconductor (MOS) 

transistors. Bipolar remains the dominant process for linear and mixed-signal circuits, and 

BiCMOS has become an important process for high-performance analog-to-digital converters 

(ADCs) and other mixed-signal microcircuits. 

 Bipolar is the dominant linear process due to performance advantages of higher voltage 

operation and current drive capability, lower noise, better linearity, and superior device 

matching. Bipolar microcircuits are the primary ICs used in the modern satellite power, signal 

processing, and control systems. BJT are commonly used in operational amplifiers, analog-to-

digital converters, comparators, digital-to-analog converters, analog switches, multiplexer, 

voltage regulators, voltage references, and pulse width modulators.  

There are different types of process that are used for fabrication of BJTs. The radiation 

response of the transistor is dependent on the type of process used and may vary significantly. 

Some of the factors that influence the radiation response are transistor vertical geometry, layout, 

presence of electrical fields due to field plates and other vertical fields, fringing fields, surface 

doping concentration, surface oxide quality and thickness. The most important factors that 

influences the total dose response out of the list specified above are the quality and thickness of 

the surface oxide (especially at the emitter base junction and over the base area) and the base and 
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emitter doping concentration at the Si-SiO2 interface. The surface inversion and the gain 

degradation are the two important mechanisms due to total dose. 

 

2.5.1 Substrate, Sidewall and Surface Inversion 

Inversion occurs where lightly doped p-type silicon is near to a thick field oxide. 

Inversion of p-type silicon at the SiO2 interface is due to positive-type charge trapped in the SiO2 

next to the interface that depletes the p-type silicon surface to a maximum value. This causes 

channeling between the adjacent buried layers [19]. There are three major kinds of inversion, 

namely, the substrate, sidewall and surface inversion. In all cases of inversion, the formation of 

an inversion layer is strongly bias-dependent and is aided by a positive electric field. Many linear 

circuits operate at very low currents, for example in input structures and bias circuits that 

establish the operating conditions for the input stage. These circuits are inherently sensitive to 

small increases in leakage currents, such that even partial channeling due to inversion can have a 

major impact on circuit performance and parametric degradation. 

 

2.5.2 Transistor Gain Degradation 

One of the key figures of merit for a BJT is the common emitter current gain (β) which is 

the ratio of collector current to the base current (β=IC/IB). It is desired to have a large β as 

possible in a forward biased BJT.  

The degradation of the gain could be caused due to the increase in base current or a 

decrease in collector current. The base current has two main components, the bulk and surface 

components. The increase in surface component of the base current is the more important of the 

two. The bulk component is significant on wide-base structures such as lateral pnp and substrate 
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pnp transistors [20].  The surface component of the base current increase primarily due to the 

increase in interface states at the surface of the base and build-up of the positive charge in the 

emitter-base junction. This causes an increase in the base recombination current which results in 

increase in base current and decrease in gain. In most of the cases IC remains constant, in some 

cases it increases with the dose, but the dominant mechanism is the increase in base current [21].  

The dependence of increase in base current (or decrease in β) with total dose as a function 

of process, device design and test parameters are given below: 

Transistor polarity:  In the case of npn transistors the positive oxide charge and interface states 

interact over the p-type base causing a significant base current increase. In the pnp case, the 

positive charge and interface traps offset and result in lesser base current.  Hence with all other 

factors being equal, a pnp transistor will degrade less than an npn transistor [19]. 

Oxide thickness: The thicker the oxide is over the base and base-emitter junction areas, the greater 

the total trapped charge and the larger the increase in base current [20].  

Surface doping concentration: The depletion effect of the trapped charges on the surface decreases 

with the doping concentration of base and emitter areas [19].  Hence, the more heavily doped 

base and emitter surfaces have lesser increase in base current. 

Emitter perimeter-to-area ratio:  The increase in base current occurs mainly in the base-emitter 

perimeter. Hence, decreasing the ratio of perimeter-to-area will result in lesser base current [19]. 

Also studies have shown that vertical pnp transistor has the least degradation; the substrate pnp 

transistor degradation is second; and the lateral pnp transistor has the most degradation. 

Transistor geometry: A significant factor in the BJT total dose response is the transistor geometry 

(vertical, substrate and lateral transistors).  It is determined by the ratio of lateral current flow to 
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the surface current flow in the base area [19]. It has been shown that the almost all the current 

flow in vertical device is in the vertical direction. Both the substrate and lateral devices have 

significant amount of current flowing in the surface. Hence vertical transistors have lesser 

degradation than the surface (substrate and lateral) transistors. 

 

2.5.3 Effect of total dose radiation on bipolar integrated circuits 

This section will discuss the response of bipolar microcircuits to ionizing radiation. The 

response of digital microcircuits that are primarily fabricated in oxide-isolated processes will be 

discussed in the first section. The second section will discuss the response of linear ICs and 

introduce low rate effects. 

 

2.5.3.1 Bipolar Digital Circuits 

The bipolar digital microcircuits are primarily fabricated in recessed field oxide isolated 

process [21]. The failure modes of these processes are primarily associated with parasitic field-

oxide leakage due to inversion associated with the recessed field oxide isolation. The recessed 

oxide is a field oxide which extends from the surface into the silicon as deep as the active 

components. This oxide provides lateral dielectric isolation, acts as a diffusion stop, and 

minimizes junction capacitances. Thus, recessed oxides allow much smaller feature size, 

increased packing density, and higher speed. However, when irradiated, several parasitic leakage 

paths can be formed including buried layer to buried layer channeling, collector to emitter 

channeling on walled emitters, and increased sidewall current [17]. The increased current 

associated with inversion of these parasitic MOS field transistors can lead to circuit failure as 
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low as 10 krad (Si) [17].  Also, the radiation response of bipolar circuits is highly sensitive to the 

bias conditions during the irradiation [18] 

 

2.5.3.2 Bipolar Linear Circuits 

The radiation response of bipolar circuits is much more complex than the degradation of 

individual transistors. The interaction between transistors may cause offsetting effects, 

multiplicative effects or threshold effects [35]. Although the circuit response can be predicted 

based on the degradation of individual transistors, it is usually not possible to obtain device-level 

data for every transistor and bias condition in the circuit. The oxide-charge and interface-trap 

densities may depend on the bias of each particular device during irradiation and the gain also 

depends on the operating point. Changes in the characteristics of one device may result in 

changes to the bias points of other transistors. The problem is particularly difficult for 

technologies in which there are multiple types of transistors (npn, lateral pnp, substrate pnp, n-

channel MOSFETs, p-channel MOSFETs, etc.). In addition, the gain degradation in bipolar 

transistors is a function of geometry [19] and it is rare to have test transistors available 

corresponding to all of the different device sizes used in a given circuit. 

There have been numerous studies on the TID degradation of specific bipolar integrated 

circuits [30 – 34]. Few of the papers are discussed in this section. Johnston, et al. examined a 

variety of linear integrated circuits and found that in many ICs (at least at moderate total-dose 

levels) the input current is a good indicator of β degradation in the input transistors [22]. This 

paper was important in pointing out the high levels of degradation that may occur in integrated 

circuits that use lateral pnp BJTs and especially in pointing out the very significant ELDRS 

effects that may occur in these ICs. 
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Beaucour, et al. analyzed TID effects on LM137 voltage regulators from several different 

manufacturers [30]. Using circuit analysis and irradiation of individual transistors using a 

scanning transmission electron microscope, the failures were attributed to gain degradation in a 

multiple-collector lateral pnp transistor that supplies current to other parts of the circuit. 

Irradiating individual transistors within the circuit is a powerful technique for understanding the 

role of specific devices in determining the circuit-level degradation or the interaction between 

different devices. 

The noise performance of bipolar linear integrated circuits also has been examined [35]. 

The increase in noise was attributed to increased recombination noise at the Si/SiO2 interface 

and in the emitter-base depletion region. Radiation-induced changes in the bias point also may 

lead to changes in 1/f noise due to the parasitic resistances. 

In some cases, the radiation-induced changes in circuit parameters may not track the 

degradation of individual BJTs because of compensating effects in the circuit design. An 

example of this phenomenon has been analyzed for the LM111 voltage comparator [1]. At low 

total doses, the input bias current of the LM111 increases due to gain degradation in the circuit’s 

input transistors. However, at high total doses, the input bias current decreases due to changes in 

the operating point of the input transistors caused by degradation in transistors elsewhere in the 

circuit.  

Many complicated responses are possible in irradiated bipolar linear ICs and in general it 

is necessary to examine each circuit type in order to identify the critical transistors and failure 

mechanisms. In some cases, this task is simplified if a single transistor is responsible for the 

majority of the radiation-induced change. The most common example of this phenomenon is the 

relationship between input bias current and excess base current in input transistors [22].  
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The degradation of circuit parameters depends not only on the total dose but also on the 

dose rate. It has been demonstrated that many bipolar circuits are much more sensitive at low 

dose rates (<1 rad/s) than at typical laboratory dose rates (50–300 rad/s) [24-25]. This 

dependence on low dose rate is known as the enhanced low dose rate sensitivity (ELDRS). 

 

2.5.4 Enhanced low dose rate sensitivity  

Bipolar linear circuits are in common use in space systems where they are exposed to 

ionizing radiation at very low dose rates. It has been demonstrated that many bipolar linear 

circuits exhibit a “true” dose rate effect that has become commonly known as enhanced low dose 

rate sensitivity. ELDRS is characterized by a low dose rate enhancement factor that is the ratio of 

the parametric degradation at a low dose rate to the degradation at a high dose rate for a fixed 

dose [25].  

The total dose and dose rate response for circuits with large low dose rate enhancement 

depend on a number of factors, including processing, final passivation [26–28], pre irradiation 

thermal stresses during burn-in or packaging [29] and the amount of an external source of 

hydrogen, e.g. in the sealed package [30]. The largest low dose rate enhancement factors that 

have been observed occur in bipolar linear circuits that incorporate lateral and substrate pnp 

transistors [31]. 

ELDRS in bipolar linear circuits is characterized by the degradation of various circuit 

parameters such as input bias current, input offset voltage and output drive current. These 

parameters are often a combination of the degradation in several different types of transistors: 

vertical npn, substrate pnp and lateral pnp. In order to predict the ELDRS response of a circuit, 

the dose rate response of the various transistors used in the circuit must be known. 
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The parametric degradation of the circuit parameters discussed so far, for both MOS and 

bipolar circuits can be accurately captured in the behavioral model. Once captured, this 

behavioral model could be used to predict the behavior of the circuit at a given dose level. The 

basics of behavioral modeling are discussed in the next section. 
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CHAPTER III 

3 BEHAVIORAL MODELING TECHNIQUE 

 

3.1 Basics of Behavioral Modeling  

The complexity of electronic systems being designed today is increasing in many 

dimensions. Designing to realize functionality while meeting a set of performance specifications 

requires the need for tools capable of overcoming relatively inaccurate and lengthy hand 

calculations. Circuit simulation with accurate and realistic models has been an invaluable tool for 

the verification of the performance of integrated circuits. Simulators hold a particularly 

important place in the world of analog and mixed-signal tools. The main objective of computer-

aided-design (CAD) is the creation of methodologies and tools for design of engineering 

systems, helping the designers build functionalities while satisfying intended performance 

specifications. Primarily, the designers verify that the circuit designed will perform as expected. 

Over the past decades, the development of computer aids for the design of electronic systems has 

been the fastest growing areas of activity. Electronic ICs have grown rapidly from the relatively 

low complexity of the early days to the high sophistication of today. The task of circuit designers 

has become increasingly difficult, hence the need for more advance design aids.  

Accuracy and speed of simulation are the two most important criteria for any simulator 

[1]. The complexity is in terms of number of components and of the types of analyses used. The 

transistor level model of a complex circuit used in SPICE simulators result in very long 

(sometimes unaffordable) computing time. It has been shown that the memory and computing 

time required by SPICE grow super-linearly with the circuit size [1]. Hence when complex 
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analog and mixed-signal systems are being designed, accurate circuit of the entire circuit is out 

of the question. In some cases, even if the circuit size if small, it might still be impossible to do a 

detailed SPICE simulation. For instance, in phased-locked-loop (PLL) circuits the period of the 

voltage-controlled-oscillator (VCO) is much smaller than the loop time constant. As a result, the 

simulation has to go through many cycles of the VCO to get an idea about the behavior of the 

circuit which makes SPICE simulation almost impractical [1].  

Radiation effects simulations of microelectronics circuits are generally performed using 

SPICE-based simulators [38]. Unfortunately, transistor level simulations with SPICE are 

extremely time consuming and require a large amount of engineering work. Typical IC model 

development flow for total ionizing dose radiation enabled SPICE based models includes  

• Designing, irradiating and testing transistor array structures manufactured with a 

particular fabrication process 

• Characterizing SPICE transistor models and developing transistor parameter scaling with 

dose 

• Constructing SPICE netlists representative of the actual circuit implementation 

• Testing, tuning and validating against available macro circuit behaviors  

An alternative that could be used to simulate analog/mixed signal design is the behavioral 

modeling technique.  Behavioral IC models can be implemented without modeling the detailed 

transistor level implementation, and its associated development tasks and costs. Behavioral 

modeling offers excellent accuracy coupled with increased in simulation speed of complex 

circuits. The objective of behavioral modeling, in general, is to represent circuit functions with 

abstract mathematical models that are independent of circuit architectures or schematics. In top-
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down design, designers can verify the system design before investing time in detailed circuit 

implementation, which enables them to explore the system design space rapidly [1]. In bottom-

up design verifications, designers can verify complex system behavior efficiently, because 

evaluations of behavioral models are computationally cheap, resulting in fast system simulations 

[43].  

The top-down design process implies a well-defined behavioral description of the analog 

function. The behavioral characterization of analog circuits is quite different from the digital one; 

the analog characterization is composed of not only the function the circuit is to perform, but 

also the second-order non-idealities intrinsic to analog operation. In fact, errors in the design 

often stem from the non-ideal behavior of the analog section, not from the selection of “wrong” 

functionality [1]. The behavioral modeling and simulation can help in selecting the correct 

architecture to implement the analog function with bounds (constraints) on the amount of non-

idealities that is allowable given a set of specifications at the system level.  

For digital circuits, behavioral modeling and simulation can be performed using hardware 

description languages like VHDL [44] or Verilog [45]. For analog and mixed-signal circuits, 

behavioral modeling and simulation can be performed using hardware description languages like 

MAST (Analogy, 1986), Verilog–AMS (Open Verilog International, under development) and 

VHDL-AMS (IEEE, 1999). VHDL simulations are computationally efficient compared to SPICE 

simulations because a VHDL simulator is event driven while SPICE is a node driven simulator 

[46]. 

The following are the features essential for the behavioral modeling of analog blocks [1]: 

• The simulator and behavioral models have to be general. The behavioral model of a given 

analog block must describe the behavior of that block considered as a black box, 
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describing it input-output behavior in terms of set of model parameters to be supplied by 

the designer. It also has to hide all the internal architectural details as much as possible, 

resulting in generic models.  

• The simulation engine must be independent of any particular model, so that it is possible 

to simulate in different architectures in the same environment instead of having a different 

dedicated simulator for each of the architecture. 

• The behavioral models for analog blocks must include not only the first-order behavior of 

the circuit, but also the analog second order effects, such as noise and distortion in order to 

get the realistic idea of the performance of the overall system.  

• The behavioral simulation has to be done in time or frequency domain or in a mixture of 

both. 

In order to realize a design having the features discussed above, the strategy is to first 

find the best abstract mathematical representations for specific types of analog circuits. This 

mathematical representation of the circuit functionality is referred to as the “Basis Functions”. 

The basis function could be any of the following: 

• Algebraic expressions  

• Differential equations 

• State-space representation 

• Nodal equations using Kirchoff’s voltage/current law 

• s-domain or z-domain transfer functions 

• Random process variables 

• Look-up tables 
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Next step is to develop the behavioral simulation techniques to validate the model 

developed. Both time and frequency domain simulation has to be done in order to check the 

validity of the model in both the domains.  

The behavioral model of this work was constructed using VHDL-AMS, a hardware 

description language. A brief introduction on VHDL-AMS is discussed below. 

 

3.2 Overview of VHDL-AMS  

VHDL-AMS is the result of an IEEE effort to extend the VHDL language to support the 

modeling and simulation of analog and mixed-signal systems. It extends the digital HDL with 

new behavioral and structural language constructs and new simulation mechanisms [46]. VHDL-

AMS is designed to fill a number of needs in the design process. First, it allows the description 

of the structure if a system, that is, how it is decomposed into sub-systems and how those sub-

systems are interconnected. Second, it allows the specifications of the function of a system using 

familiar programming language and equations forms. Third, as a result, it allows the design of a 

system to be simulated before being manufactured, so that designers can quickly compare 

alternatives ad test correctness without the delay and expense of hardware prototyping. Fourth, it 

allows the detailed structure of a design to be synthesized from a more abstract specification, 

allowing designers to concentrate on more strategic design decisions and reducing time to 

market. 

A VHDL-AMS model consists of an entity and one or more architectures. The entity 

specifies the interface of the model to the outside world. It includes the description of the ports of 

the model (the points that can be connected to other models) and the definition of its generic 

parameters. The architecture contains the implementation of the model. It may be coded using a 
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structural style of description, a behavioral style, or a style combining structural, and behavioral 

elements. A structural description is a netlist; it is a hierarchical decomposition of the model into 

appropriately connected instances of other models. A behavioral description consists of 

concurrent statements to describe event-driven behavior and simultaneous statements to describe 

continuous behavior. Concurrent statements include the concurrent signal assignment for data 

flow modeling and the process statement for more general event-driven modeling. 

When a VHDL-AMS model is instantiated in a structural description, the designer can 

specify which of several architectures to use for each instance. Alternatively, the decision can be 

postponed until immediately prior to the simulation. This allows for an easy and flexible 

reconfiguration of the model. For example, in top-down design, one architecture can describe a 

subsystem behaviorally with little detail, while another can add parasitic and a third can 

decompose the subsystem into lower level components [43]. 

A model of an analog system consists of the circuit nodes, analog unknowns to be 

calculated and the characteristic mathematical equation or the basis functions that specify analog 

behavior. In VHDL-AMS, terminals are used to represent the circuit nodes, quantities for the 

analog unknowns and simultaneous statements for the basis functions. The energy conservation 

laws apply at all the terminals. In electrical domain, the Kirchoff’s current and voltage laws are 

applied at all the terminals. 

The VHDL-AMS model is often tested using an enclosing model called the test bench. 

The test bench consists of an architecture body containing an instance of the component to be 

tested and processes that generate stimuli on signals, terminals and quantities connected to the 

component instance.  
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The simulation of the behavioral model developed in VHDL-AMS involves three stages: 

analysis, elaboration and execution. In the first stage, analysis, the VHDL-AMS description of 

the system is checked for various kinds of semantic and syntactic errors. If the analyzer finds no 

errors in the design, it creates an intermediate representation of the unit and stores it in the 

library. The second stage in simulating a model, elaboration, is the act of working through the 

design hierarchy and creating all the objects specified in the declarations. The ultimate result of 

the elaboration process is a collection of processes interconnected by nets and characteristic 

expressions, with each process possibly containing variables. The third stage of simulation is the 

execution of model. For digital portion of simulation, the passage of time is simulated in discrete 

steps depending on the events. Analog portions of the simulated system are evaluated by an 

analog solver at analog solutions points in continuous time.  

The simulation starts with an initialization phase, followed by repetitive execution of 

simulation cycles. During the initialization phase, each signal and analog quantity is given an 

initial value depending on its type. The simulation time is set to zero, then each process instance 

is activated and its sequential statements executed. Execution of a process continues until it 

reaches a wait statement, which causes the process to be suspended. During the simulation cycle, 

the analog solver is first executed. Next, the simulation time is advanced to the next time at 

which a transaction on a signal has been scheduled. Then, all the transactions scheduled for that 

time is performed. When all the process have suspended again, the simulation cycle is repeated. 

Once the simulation gets to the stage where there are no further transactions scheduled, it stops 

since the simulation is then complete [46]. 

This thesis describes a generic behavioral modeling technique for total-ionizing dose 

(TID) degradation using VHDL-AMS that is applicable to a wide range of voltage feedback 
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amplifiers.  All the functional simulation is done using SystemVision, a system modeling and 

analysis tool by Mentor Graphics. It provides a mixed-signal modeling and simulation 

environment using the power of VHDL-AMS and SPICE. We demonstrate the technique via an 

LM124 operational amplifier. A brief introduction on LM124 op amp is discussed below. 

 

3.3 LM124 – A classic three stage operational amplifier 

LM124, is a high gain, internally frequency compensated operational amplifier which is 

designed specifically to operate over a wide range of voltages. Fig. 7 shows the simplified 

transistor level model (SPICE netlist also available) of the LM124 [39] op-amp, and illustrates 

the classic three stage op amp architecture [41]. The op amp contains an input or differential 

stage, an intermediate single-ended high-gain stage, and an output-buffering stage.  
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               Input/Differential Stage                 High Gain Stage                   Output Stage 

Fig. 7. Simplified schematic of LM124 [39] 

 

3.3.1 Input Stage 

The input stage consists of transistors Q17, Q18, Q20, Q21, Q3 and Q4 along with the 

biasing circuitry.  It is a transconductance amplifier as it converts the differential voltage input 

into single-ended current output. Ideally, the input impedance of an op amp should be infinite, 

but in practice the input impedance of LM124 is about 10 MΩ and is dependent on frequency 

due to the capacitor component of the impedance. The output of the input stage is at the collector 

of Q5. 
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3.3.2 Second Stage 

The second stage is the high gain trans-resistance amplifier that converts the current 

output from the input stage into voltage. It is composed of Q6, Q9, Q12, current source I2 and 

the 50 KΩ resistor connected to the emitter of Q6. Q6 acts as an emitter follower, thus giving the 

second stage a high input resistance. This minimizes the loading on the input stage and avoids 

loss of gain.  Q9 acts as a common-emitter amplifier a 100 Ω resistor in the emitter. Its load is 

composed of high output resistance of current source I2 in parallel with the input resistance of 

the output stage (looking into the base of transistor Q22).  Using the transistor current source as 

the load resistance (called active load) enables one to obtain high gain without resorting to the 

use of large load resistances, which would occupy a large chip area and require large power-

supply voltages.  

The output of the second stage is taken at the collector of Q9. Capacitor Cc is connected 

in the feedback path of the second stage to provide frequency compensation using the Miller 

compensation technique.  

 

3.3.3 Output Stage 

The purpose of the output stage is to provide the op amp with low output resistance. In 

addition, the output stage should be able to supply relatively large load currents without 

dissipating an unduly large amount of power in the IC. Transistor Q22, Q13, Q14, Q12 along 

with the resistances R2 and R1 form the output stage.  
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3.4 Functional Template of the Behavioral Model 

The functional template of the behavioral model is built generically and captures the 

important macro behaviors of the three stage amplifiers. The approach taken in building the 

functional template is to identify the different stages of the circuit that has to be modeled, 

LM124 in this case. Once this is done, the stages are modeled and tested separately and then it is 

integrated to form the whole system. Since we know the stages that make up LM124, the 

functional template is build with five functional blocks as shown in Fig. 8. A brief functional 

description of each block is provided below. 

   

      

Fig. 8. Five stages in the behavioral model developed 

The non-dominant, high-frequency pole of the op amp, also known as the second pole, is 

modeled in the second pole block.  Other important non-ideal input behaviors such as input 

offset voltage and input offset/bias current are also implemented in this block. The non-linear 

transconductance block models slew-rate limiting.  The gain stage blocks models open loop gain, 

gain-bandwidth product, Miller capacitance effect, and output voltage saturation. The output 

buffer block implements the output impedance of the amplifier. 

 

3.4.1 Input Impedance:  

The input impedance block is used to model the frequency dependant impedances seen 

by the differential mode input signal and the common mode input signal.  These are two separate 
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impedances, the differential mode input impedance and the common mode input impedance and 

is implemented using RC ladder networks. 

 

3.4.2 Second pole: 

The second pole or the non-dominant, high-frequency pole due to parasitic capacitance in 

the circuit is modeled in this stage. It is implemented at the early stages of the behavioral model 

to be kind to the simulator so as to limit the nodes where higher frequency content must be 

simulated. 

Other important non-ideal input op amp behaviors like input offset voltage, input offset 

current, input bias currents are also modeled in this stage. 

 

3.4.3 Non-linear Transconductance: 

The non-linear transconductance block corresponds to the input stage of the 3-stage op 

amp where the input differential voltage is converted to the output current. This stage models the 

slew-rate limiting. 

 

3.4.4 High-Gain: 

The high-gain block corresponds to the second stage of the 3-stage op amp which is the 

high gain stage. This block models open loop gain, gain-bandwidth product, Miller capacitance 

effect, and output voltage saturation. 
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3.4.5 Output Buffer: 

The output buffer block corresponds to the output stage of the op amp. This block 

implements the output impedance of the amplifier  

Once the generic template was constructed, the next step was to extract and characterize 

the macro behaviors associated with each module of Fig. 9.   
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CHAPTER IV 

 

4 OP AMP PARAMETER EXTRACTION AND CHARACTERIZATION 

 

With the development of the generic template of the behavioral model the next step was 

to characterize the op amps behaviors for pre-rad case and post-rad case. In general, the 

characterization process involves modeling of data-set available from hardware tests. 

Appropriate test structures have to be designed using the hardware parts. The degradation due to 

total dose radiation of the behaviors is measured by irradiating them to desired dose level. 

In order to avoid this more tedious measurement of op amp behaviors using hardware test 

circuits and make use of the available SPICE netlist, the SPICE model was used for both the 

characterization processes. The SPICE model is considered as a black box and only the 

quantities related to the external terminals are used in the characterization process, hence it could 

well be replaced by hardware. 

Before the characterization process, the SPICE netlist of LM124 was validated against a 

vendor data sheet [42] for pre-rad behaviors and the experiment results available from [40] for 

post-rad behaviors. All the op amp behaviors that were modeled were found to be in accordance 

with the data sheet. Table.1 compares the pre-rad values of the behaviors measured from the 

SPICE model with values provided in the data sheet.  

  



36 

 

Op Amp behaviors SPICE model Data Sheet Unit 

  Min        Typ        Max  

Input offset voltage 0.572                 1              2 mV 

Input bias current 28.2                  20              50   nA 

Input offset current 0.08                    2              10 nA 

Open loop gain 837 50            100 V/mV 

Gain-bandwidth 

product 

0.6 1 MHz 

Output voltage swing (VDD –VCC) – 1.9 (VDD –VCC) – 1.5 V 

Table. 1 Comparison of values obtained from SPICE with data sheet 

 

In the SPICE model, from the BJT model parameter (.MODEL) file, RB, ISE and IKF 

were chosen as the parameters that could be used to model the total dose degradation of the op 

amp. RB is the zero-bias base resistance of the transistor.  ISE represents the base emitter 

leakage saturation current. IKF is the knee current used to model the drop in β due to high level 

injection. Changing the values of RB, ISE and IKF causes the change in β of the transistor. Total 

dose degradation was modeled using the first-order approximation of uniformly changing these 

parameter values in the transistor device models. The experimental results that are available from 

[40] were used to validate the results from the SPICE model. 

Experimental results [40] are available for  

• TID degradation of LM124 behaviors  

• TID degradation of regulator output of voltage regulator using LM124 as the error 

amplifier  
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The TID degradation of the op amp behaviors of SPICE model was able to match the 

trend observed in the experimental results. The voltage regulator was built using the LM124 

SPICE model. The SPICE model was able to accurately match degradation of voltage regulator 

output with the experimental results. Thus the SPICE model was validated for post-rad 

behaviors.  

The characterization of the op amp model was performed independently in two parts: a 

pre-rad model and a post-rad model.  The pre-rad model was built by incorporating the 

dependence of the op amp behaviors on the supply voltage and signal inputs via constructing and 

testing appropriate circuits using the SPICE model (or hardware tests if available). To obtain the 

dependence of behaviors with supply voltage, the behaviors were measured at the following 6 

supply voltages: ±5V, ±10V, ±15V, ±20V, ±25V, ±30V. Section 4.1 – 4.10 provides the results 

of these measurements. 

Once the pre-rad behavioral model was developed, the next step was to capture the TID 

degradation of each of the op amp behavior. The dependence of op amp behaviors with TID was 

simulated using the SPICE model and appropriate basis functions were formulated. Thus, a TID 

aware behavioral model of LM124 was developed.  

Since we know the pre-rad dependence of the parameters separately from TID 

dependence, the basis functions of the op amp behaviors are of the form:   

                                               Parameter = f (pre-rad) [1 + g (TID)]                                    (2)   

Here the TID is assumed as an input parameter during the simulation and is known to the 

simulator at run-time. Since our experimental TID data set includes only a particular supply 

voltage (±15V) and temperature (300K), the amp behaviors under TID are assumed to scale with 

supply voltage and temperature with the same scaling as pre-rad. To include the degradation of 
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parameters due to TID under different supply voltages and temperatures (assuming a more 

complete data set is available) the same form of the basis function could be extended as 

                 Parameter = f (pre-rad) [1 + g (TID, Supply Voltage, Temperature)]             (3)   

The form of some basis functions is directly related to the simulation speed; the simpler 

the function, the faster the simulator is able to resolve the function. Considering the trade-off 

between simplicity and the accuracy of simulation, a simple but reasonably accurate basis 

functions have been selected.  

 

The following are the op amp behaviors that were implemented in the behavior model: 

• Input Impedance 

• Second Pole 

• Input Offset Voltage 

• Input Offset Current 

• Input Bias Current 

• Slew-rate Limiting 

• Open Loop Gain 

• Gain-bandwidth Product 

• Miller Capacitance Effect 

• Output Voltage Saturation 

• Output Impedance 

 

The modeling procedure used for each of the op amp behaviors is discussed below. 
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4.1 Gain Bandwidth Product (GBW): 

GBW is equal to the unity-gain frequency and is constant for a particular op amp. It not 

only tells us the upper useful frequency of a circuit, but allows us to determine the bandwidth for a 

given gain.   

GBW = gain × bandwidth = unity-gain frequency. 

To measure the GBW of our op amp, the non-inverting amplifier configuration was used 

with a closed loop gain of 20 as shown in the fig. 9.  

 

   

Fig. 9. Non-inverting op amp configuration with gain of 20 to measure GBW. 

 Fig. 10 shows the dependence of GBW with supply voltage (Vsup) obtained from the SPICE model of 

LM124. GBW increases linearly with Vsup, hence the form of pre-rad basis function is:   

                                  GBW (pre-rad) = 26240Vsup + 313700                                             (4)       

From Fig. 11 we see that, initially the GBW falls off quickly with increase in total dose. 

As the total dose level increases the decrease in GBW becomes lesser (as seen from the decrease 
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in slope of the curve). This can be modeled using a log function, hence the form of the TID basis 

function is: 

                             GBW (TID) = 545000[1 - 0.305185Log (1+ 9TID)                              (5) 

The final form of GBW is obtained as:  

                                    GBW = [GBW (pre-rad)] [1 + GBW (TID)]                                      (6) 

Fig. 10. Pre-rad dependence of GBW with supply 

voltage for SPICE and behavioral model. 

Fig. 11. Dependence of GBW with TID and for 

SPICE and behavioral model. 

 

4.2 Open Loop Gain (Avol): 

Open loop gain is the ratio of the output voltage change to the input differential voltage 

change and it is dependent on the following parameters (quantities): differential input voltage 

(Vindiff), Vsup and frequency of operation. This dependence of Avol with Vindiff gives rise to 

the non-linearity in the model and is an important effect to be modeled. 

                  Avol = ∂Vout / ∂Vin                                      (7) 
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Open loop gain can be measured by applying a very small signal directly to the inputs of 

the op amp as shown in fig. 12. The input offset voltage normally will cause the output of the op 

amp to saturate, or lock-up at one of the power supply voltages when trying to measure open 

loop gain directly. Hence a dc sweep of the input voltage is done and corresponding output 

voltage is plotted. The first derivative of this output with respect to the input sweep is the open 

loop gain.  

 

   

Fig. 12. To measure the open loop gain of op amp. 

Fig. 13 shows the dependence of open loop gain with supply voltage (Vsup) obtained 

from the SPICE model of LM124. Avol increases linearly with both (Vindiff) and Vsup, hence 

the form of pre-rad basis function is:   

      Avol (pre-rad) = [(18550Vsup + 638500) - 10
10

 Vindiff ]                         (8) 

From Fig. 14 we see that the open loop gain follows the trend observed with GBW.  This 

can be modeled using a log function, hence the form of the TID basis function is: 

                      Avol (TID) = 837088.97 [1- 0.11653 Log (1+ 2000000TID)]                            (9) 

The final form of open loop gain is obtained as:  
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                                          Avol = [Avol (pre-rad)] [1 + Avol (TID)]                                             (10) 

From the equation (9) we can see that when the value of TID is equal to 0 then we get the open loop gain 

of the pre-rad case.  

From Figs. 13 and 14 we can see that the behavioral model corresponds well with the 

initial SPICE electrical model (less than 1% maximum error) and accurately predicts the TID 

degradation of the open loop gain to 5% maximum error. The percentage error method is used 

for the error calculations since we are measuring the accuracy of the behavioral model with 

respect to a known quantity (value from the SPICE model.) 

Fig. 13. Pre-rad dependence of Avol with supply 

voltage for SPICE and behavioral model. 

Fig. 14. Dependence of Avol with TID and for 

SPICE and behavioral model. 

 

4.3 Input Offset Voltage 

The device mismatches present in the differential amplifier present in the input stage of 

the LM124 primarily causes the input offset voltage [41]. Even when both the inputs to the 
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disparity in the device parameters. The Vo is called the output dc offset voltage. If we divide Vo 

by the differential gain of the op amp, Ad, we obtain the quantity known as the input offset 

voltage. 

                                         Voff = Vo / Ad                                                           (11) 

Input offset voltage can be defined as the dc voltage that needs to be applied between the 

input terminals to cause 0V at the output. The op amp is connected in open loop configuration as 

shown in fig. 15. A dc sweep is done on the input voltage and the input voltage at which the 

output reaches 0V is determined as the offset voltage. 

 

  

Fig. 15. To measure input offset voltage of op amp. 

Voffset is dependent on Vsup and the data obtained from the SPICE model of LM124 

shows non-linear increase of offset voltage with Vsup. This dependence is best modeled by a 

quadratic function. Fig. 16 compares the offset voltage obtained from the SPICE model with the 

behavioral model. 

Voff (pre-rad) = -9.107E-9Vsup
2 
+ 1.706E-6Vsup + 5.561E-4                                       (12) 
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Fig. 17 shows the dependence of Offset voltage with TID. The offset voltage increases with TID until 

about 150 krad (SiO2) and then decreases to changes its polarity from positive to negative around. 

Combination of cubic equation with log function is used to model this. 

Voff (TID) = 57E-6 [1+0.12E-3TID
3
 + 0.025TID

2
 - 0.85TID + 11.2 Log (1+TID)]   (13) 

The final form of offset voltage is obtained by as:  

                                          Voff = [Voff (pre-rad)] [1 + Voff (TID)]                                             (14) 

Fig. 16. Pre-rad dependence of Voff with supply 

voltage for SPICE and behavioral model. 

Fig. 17. Dependence of Voff with TID and for SPICE 

and behavioral model. 

 

4.4 Input Bias/Offset current 

Theoretically, the input impedance is infinite; therefore, there should not be any input 

current into the op amp. However, there do exist, small input currents, of the order microamperes 

down to picoamperes. The average of these two currents (currents flowing through the input 
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op amp which can affect the output. Generally, the lower the input bias current, the smaller the 

imbalance will be. Op amps using BJTs generally have a higher input bias current than the FETs. 

Both input currents should be equal to obtain zero output voltage. However, this is 

impossible; there will be an input offset current to maintain the output at zero volts. In other 

words, to set the output to zero volts, one input requires more current than the other. This may 

range from picoamperes to microamperes. 

Fig. 19 shows the circuit used to measure the input bias and offset currents. The current 

flowing into the input differential amplifiers when the output voltage is 0V is noted as Ib- and 

Ib+. The input bias current (Ibias) and input offset current (Ioffset) are calculated as follows: 

                                               Ibias = (Ib+ + Ib-) / 2                                              (15) 

                                                  Ioffset = Ib+ -  Ib-                                                   (16) 

                    

Fig. 18. To measure input bias/offset currents 

Fig. 19 shows the dependence of Ibias with supply voltage (Vsup) obtained from the SPICE model of 

LM124. Ioffset was measured to be fairly constant with Vsup. Ibias increases linearly with Vsup, hence the 

form of pre-rad basis function is as given in (17):   



46 

 

      Ibias (pre-rad) = (-0.1982E-9 Vsup - 0.12E-7)                       (17) 

                    Ioffset (pre-rad) = 8.4E-11                                      (18) 

Fig. 20 shows the dependence of Ibias with TID. Ibias increases with TID and then saturates around 180 

Krad (SiO2). This is modeled using a logarithmic function 

                             Ibias (TID) = 282E-11 [1+ 209.678 Log (1+ 0.099TID)]                   (19) 

The final form of offset voltage is obtained by combining (17) and (19):  

                                          Ibias = [Ibias (pre-rad)] [1 + Ibias (TID)]                                (20) 

 

Fig. 19. Pre-rad dependence of Ibias with supply 

voltage for SPICE and behavioral model. 

Fig. 20. Dependence of Ibias with TID and for SPICE 

and behavioral model. 

 

4.5 Maximum Output Voltage Swing (VOM): 
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is zero. In an ideal op amp the output voltage can swing between Vdd and Vee when operating 

with dual power supply (with supplies Vdd and Vee) configuration and between 0V to Vdd in 

single power supply (of Vdd).  However, the output voltage swing is limited by the output 

impedance of the amplifier, the saturation voltage of the output transistors and the power supply 

voltages.  

The data obtained from the SPICE model of LM124 shows that the offset of Vsat from 

Vsup is relatively constant with Vsup. The positive saturation voltage is about 1.35 V below Vdd 

and negative saturation voltage is 0.65 V above Vee 

                                      Vmax (pre-rad) = Vdd – 1.4                                                 (21) 

                                                        Vmin (pre-rad) = Vee + 0.7                                                     (22) 

     VOM  (pre-rad) = Vmax (pre-rad) - Vmin (pre-rad)                               (23) 

Fig.21 shows the dependence of VOM with TID. It stays relatively constant at low TID 

levels and falls of steeply at higher TID levels. This behavior could be modeled by using either a 

log function or a polynomial function. For the sake of simplicity and hence better speed of 

simulation, the quadratic function is chosen. 

            Vmax (TID) = 4.35 (1- 18E-4TID
2
 + 665E-4TID)                  (24) 

                                 Vmin (TID) = -3.65 (1- 16E-4TID
2
 + 665E-4TID)                           (25) 

              VOM  (TID) = Vmax (TID) - Vmin (TID)                                        (26) 

The final form of the maximum output voltage equation is written by combining (23) and (26) 

                            VOM  = [ VOM  (pre-rad)] [1 +  VOM  (TID)]                                (27) 
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Fig. 21. Dependence of output range (VOM) with TID and for SPICE and behavioral model. 

 

4.6 Slew Rate Limiting 

Slew rate is the maximum rate of change of the op amp output voltage and can be stated thus 

Slew rate = maximum change in output voltage   =    ∆Vout (max) 

                        Change in time                                 ∆t 

The slew rate of LM124 from the SPICE model is determined to be around 0.5 V/µs which 

means that the output voltage can change a maximum of 0.5V in 1 µs. Capacitance limits this 

slewing ability and the output voltage will be delayed from the input voltage. Most often, the 

frequency compensation capacitor (Mille capacitor CC ) causes the slew rate limiting in an op 

amp. at high frequencies or high rates of signal change, slew-rate limiting becomes more 

pronounced. Slew-rate limiting is a large-signal performance parameter. Slew rate is usually 

specified at unity gain. Op amps with higher slew rates have wider bandwidths. 

Fig. 22 shows the circuit used to measure the slew rate. The ratio of dV/dT is the slew rate of the op amp. 
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   Fig. 22. To measure slew rate of the op amp  

Fig. 23 shows the dependence of slew rate with supply voltage (Vsup) obtained from the SPICE model of 

LM124. It increases linearly with Vsup, hence the form of pre-rad basis function is:   

                      Slew rate (pre-rad) = (5632Vsup + 130000)                                 (28) 

Fig.24 shows the dependence of slew limit with TID. It decreases exponentially with the TID and hence a 

exponential functions is chosen to model it. 

                       Slew rate (TID) = ) (e 200000 )4TID-3.089E+(-0.066TID 2

                              (29) 

The final form of the maximum output voltage equation is written by combining (28) and (29) 

                            Slew rate = [Slew rate (pre-rad)] × [1 + Slew rate (TID)]                            (30)                              
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Fig. 23. Dependence of slew rate with supply 

voltage for SPICE and behavioral model. 

Fig. 24. Dependence of slew rate with TID and for 

SPICE and behavioral model. 

 

4.7 Miller Pole 

Op amps generally have at least two poles associated with them. In a feedback 

configuration, an unfortunate consequence of this is that at some critical frequency, the phase of 

the amplifier's output equals -180° compared to the phase of its input signal. The amplifier will 

oscillate if it has a gain greater than or equal to 1 at this critical frequency. This is because of two 

reasons: 

• The feedback is implemented through the use of an inverting input that adds an additional  

-180° to the output phase making the total phase shift -360°  

• The gain is sufficient to induce oscillation (gain ≥1). 

Hence the 2 main conditions for an op amp to oscillate at the frequency at which its open loop gain equals 

its closed loop gain if, at that frequency, 

• The open loop gain of the amplifier is ≥ 1 and 
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• The difference between the phase of the open loop signal and phase response of the network 

creating the closed loop output = -180°.  

One technique used to avoid such a situation is to use Miller capacitance CC to introduce 

a new pole at sufficiently low frequency. From the SPICE netlist of the LM124 it is observed 

that there is a Miller compensation capacitor CC of 7 pF connected in the negative-feedback path 

of the second stage. The effect of CC on the frequency response of LM124 was simulated and it 

was observed that the dominant pole was located at around 3 Hz. Since CC and GBW are related 

to each other, modeling the GBW implements CC in the behavioral model. 

 

The following behaviors are not dependent on supply voltages and hence are modeled as constants. 

 

4.8 Second Pole 

Apart from the dominant, low frequency pole introduced by the Miller capacitance, there 

are other non-dominant high frequency poles due to the parasitic capacitance in the op amp 

circuit.   It is important to model these to preserve the important high frequency behaviors. Also, 

it has to be noted that it is not available in the data sheets provided by the vendor and hence has 

to be determined from the op amp.  

Frequency analysis on the SPICE model showed that the op amp had two poles at high 

frequencies around 6 MHz and 14 GHz. Since op amps are almost never used at high frequencies 

such as GHz, only the pole at 6 MHz is modeled. 
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4.9 Input impedance 

Ideally, the input impedance Zin of an op amp should be infinite, but in practice it is 

about 1MΩ or more. The higher the input impedance the better the op amp would perform. This 

input capacitance of an op amp may become important at higher frequencies. Typically the 

capacitance is less than 5 pF. 

                 

 

Fig. 25. To measure input impedance 

 

Input impedance is constant with supply voltage but changes with frequency. The input 

impedance of the behavioral model represents the frequency dependant impedances seen by the 

differential mode input signal and the common mode input signal.  These are two separate impedances, 

the differential mode input impedance and the common mode input impedance and is implemented using 

RC ladder networks.  From the frequency analysis of the circuit in   fig. 25, the number and location of 

poles and zeroes is determined from the SPICE model. RC network is constructed to match the number 

and location of poles and zeroes. This RC network is used to model the input impedance of the op amp. 

The following RC network in fig. 26 matches the input impedance of the SPICE model with less than 1% 
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percent error. The terminals Vi_nonInv and Vi_Inv are connected to the non-inverting and inverting 

terminal of the op amp 

   

 

Fig. 26. RC network to model input impedance 

 

4.10 Output Impedance: 

Ideally the output impedance of the op amp should be zero. In actuality, each op amp is 

different and its output impedance may range from 10 to several thousand ohms. The actual 

output impedance Zo of the op amp network is dependent on the loop gain of the op amp circuit. 

The op amp is usually connected in close loop configuration which means that the feedback 

resistor is in parallel to the output impedance. For most applications, the output is assumed to be 

zero and will function as a voltage source capable of providing current for a wide range of loads. 
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The output impedance of the op amp was measured to be around 12 Ω and increases linearly 

with supply voltage as seen from fig. 27. 

 

                                           

Fig. 27. Dependence of output impedance of op amp with supply voltage for SPICE and behavioral 

model. 
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CHAPTER V 

 

5 APPLICATION OF THE BEHAVIORAL MODEL 

 

To test the validity and the accuracy of the behavioral modeling technique, the VHDL-

AMS behavioral model for our LM124 op amp was used in the following circuits 

• As an error amplifier in the feedback loop of a series voltage regulator (Fig. 29).   

• As an inverting amplifier configuration in a Schmitt trigger relaxation oscillator 

 

5.1 Linear Voltage Regulator 

The linear voltage regulator is basic the building block of nearly every power supply used 

in electronics.   Every electronic circuit is designed to operate at some supply voltage, which is 

usually assumed to be constant. A voltage regulator provides this constant dc output voltage and 

contains circuitry that continuously holds the output voltage at the design value regardless of 

changes in load current or input voltage (this assumes that the load current and input voltage are 

within the specifies operating range for the part). 

The linear regulator operates by using a voltage-controlled current source to force a fixed 

voltage to appear at the regulator output terminal. Fig. 27 shows the functional diagram of the 

regulator circuit. The control circuitry must monitor (sense) the output voltage, and adjust the 

current source, as required by the load, to hold the output value at the desired value.  The design 

limit of the current source defines the maximum load current the regulator can source and still 

maintain regulation. 
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The output voltage is controlled using a feedback loop, which requires some type of 

compensation to assure loop stability. The behavioral model of the op amp developed was used 

as the sense/control device used for regulation operation. 

                  

Fig. 28. Linear voltage regulator functional diagram 

 

Fig. 29 shows the schematic of regulator circuit used. Basic operation of the linear 

regulator circuit is as follows. Transistor Q1 is the output series pass element while Q2 and Re 

control the base current of Q1. The current flowing out of the emitter of Q1 is controlled by Q2 

and the error amplifier. The current through R1 and R2 is negligible compared to the load current 

ILoad.  

The feedback loop which controls the output voltage is obtained by using R1 and R2 to 

sense the output voltage, and applying this sensed voltage to the inverting input of the voltage 

error amplifier. The non-inverting input is tied to a reference voltage of 2.5 V, which means the 

error amplifier will constantly adjust its output voltage (and the current through Q1) to force the 

voltages at its inputs to be equal. Note that the op amp is connected in a non-inverting 
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configuration with a gain of 2, causing the output voltage to be 5V. The feedback loop action 

continuously holds the regulated output at 5V regardless of changes in load current. 

 

Fig. 29. Schematic of linear regulator circuit 

 

It has been shown that the regulator output degrades significantly with TID due to the 

performance degradation of the LM124 [35].  Simulation results were compared to experimental 

observations from a linear regulator constructed using National Semiconductor LM-124 IC 

devices and discrete components, and tested at Vanderbilt University using an ARACOR 10keV 

X-ray source.   

 During TID exposure, the regulator output was observed at various TID levels. Fig.30 

compares the results of the behavioral model predictions and the TID experiment. The regulator 

output voltage slowly decreased with increasing ionizing dose, from a pre-rad condition of 5V to 

about 4.8V at 210 krad (SiO2). Beyond 210 krad (SiO2), the output decreases steeply with 

increasing dose. At 225 krad (SiO2), the output voltage is reduced to 0V. As we can see from the 

figure, the behavioral model agrees well with the experimental results - the maximum deviation 



58 

 

was calculated as 4.4% (percentage error method used). Also note that even though the 

behavioral model TID dependence was characterized at supply voltages ±5V, the results shows 

that the model is able to match the response of the circuit at ±6V. This confirms that the scaling 

of macro behaviors with supply voltage have been well captured in the model. 

                                                

Fig. 30. Regulator output degradation due to TID radiation. The experimental results  

are from [40]. 

 

5.2 Schmitt Trigger Relaxation Oscillator 

Op amps can be wired to serve as signal generators capable of a variety of output 

waveforms. A simple op amp square-wave generator is shown in Fig. 31. Its output repetitively 

swings between positive saturation VOMAX and negative saturation -VOMIN, resulting in square 

waveform output. The time period of oscillation T of each cycle is determined by the time 

constant of the components R and C and by the voltage divider formed by Ra and Rb. 

This circuit operation can be analyzed as follows: 

At the instant the dc supply voltages, Vdd and –Vdd are applied, zero volts of initially 

uncharged capacitor is applied to the inverting input 1, that is, input 1 is grounded. At the same 
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instant, however, a small positive or negative voltage Vb appears across Rb, and this voltage is 

applied to the non-inverting input 2. Voltage Vb initially appears because a positive or negative 

offset voltage Voff exists, even if no differential input voltage is applied to inputs 1 and 2. Since 

the inverting input 1 is initially grounded through the uncharged capacitor C, all of the voltage 

Vb initially appears across the inputs 1 and 2. If we assume that the offset voltage is positive, 

then the voltage Vb at the non-inverting input 2 is also positive. This Vb is initially amplified by 

the op amp’s open loop gain, Avol and drives the output to its limit, VOMAX, that is, to positive 

saturation. The rise to VOMAX is at the slew rate of the op amp. The resistors Ra and Rb form a 

voltage divider, a fraction of the op amp’s output voltage is dropped across Rb. This voltage is 

given by λVOMAX, where λ = Rb/(Ra+Rb). 

With the op amp saturated, the capacitor charges through the resistor R. If the resistor R 

and C formed a simple RC circuit, the capacitor’s voltage Vc would eventually rise to VOMAX. In 

this case, however, the voltage Vc can rise to a value slightly more positive than λVOMAX. That 

is, as Vc becomes a little more positive than λVOMAX, the inverting input 1 becomes more 

positive than non-inverting input 2, driving the output to negative saturation -VOMIN. After the op 

amp’s output saturates at -VOMIN, a fraction of this is dropped across Rb. Thus input 2 becomes 

much more negative than input 1 and holds the op amp in negative saturation, at least for a while. 

The capacitor C now starts to discharge. Now when capacitor’s voltage Vc becomes a little more 

negative than –Vb, then the output is driven back to VOMAX to start another cycle. 
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Fig. 31. Schmitt Trigger Relaxation Oscillator 

To determine the time period of oscilation: 

When V1 reaches λVOMAX then the switch to -VOMIN occurs at the output. The capacitor 

that has charged to λCVOMAX begins to discharge. The general charging equation for a capacitor 

which already has an original charge is:  

                                     Q = CV [1-exp (-t/RC)] + Q0exp (-t/RC)                            (31) 

Here V = - VOMIN  and Q0 = λCVOMAX. Hence the equation becomes 

                          Q = -CVOMIN  [1-exp (-t/RC)] + λCVOMAX exp (-t/RC)                    (32) 

Now when Q gets to -λCVOMIN another switch would occur. This time is half the time period of the square 

wave, so it is represented by T/2. At this time 

            - λCVOMIN = -CVOMIN  [1-exp (-T/2RC)] + λCVOMAX exp (-T/2RC)                      (33) 

Solving this equation for T gives 
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                                                 T = 2RC ln[(1+λ)/(1- λ)]                                               (34) 

Substituting R = 100 KΩ, C = 10 nF, Ra = 100 KΩ and Rb = 10 KΩ we get  

T = 3.65 × 10
-4

 s and fO = 2.74 KHz 

The circuit was constructed and simulated using the SPICE model and the behavioral 

model for pre-rad case and also at different TID levels with ±5V power supplies. The frequency 

of oscillation, fO decreases with increase in TID and the oscillation stops at around 190 Krad 

(SiO2). The behavioral model agrees well with the SPICE model with maximum error less than 

5.8%. Table 2 compares the frequency of oscillation of the 2 models. 

 

TID  

krad (SiO2) 

fO of SPICE Model 

fOSP (Hz) 

fO of Behavioral Model 

fOBM (Hz) 

%Error  

[(fOBM - fOSP)/fOSP]×100 

0 (Pre-rad ) 1834.86239 1785.71429 -2.75 

20 1402.52454 1379.31034 -1.68 

40 1016.26016 1000.00000 -1.62 

150 714.28571 675.67568 -5.71 

160 549.45055 526.31579 -4.39 

190 No Oscillation No Oscillation 0 

 

Table 2. Comparison of fO between SPICE and behavioral model 
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Fig. 32 shows the plot of fO versus TID for SPICE and behavioral model. We can see that the 

behavioral model matches well with the SPICE results. 

 

Fig. 32. Comparison of fO between SPICE and behavioral model 
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5.3 Simulation Speed and Accuracy 

Fig. 33 shows the square wave output of the SPICE and behavioral model. Both the 

simulation are run for 50 cycles. The SPICE simulation is run at default simulation error and 

the behavioral model is run at the maximum allowable simulation error, consistent with a 

good match to SPICE results. 

 

 

 

Fig. 33. Square wave output of SPICE and behavioral model. 

 

 

 

 

 



64 

 

Simulation parameter SPICE Model Behavioral Model 

Memory size allocated 419705 bytes 290023 bytes 

# of components 135 17 

# of nodes 111 9 

# of steps computed 22688 2441 

Simulation time 402s 7ms 5s 9ms 

 

Table 3. Comparison of simulation parameters for Schmitt trigger circuit for SPICE and behavioral model 

Table 3 describes the simulation details obtained from the simulator. We can see that the 

number of components and nodes for the same oscillator circuit is drastically reduced in the case 

of the behavioral model. Also the simulation ran faster in the case of behavioral model by a 

factor of 79X. 
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CHAPTER V 

 

6 CONCLUSION 

 

A behavioral model of the LM124 op-amp was developed which captures the total 

ionizing dose characteristics of important macro behaviors with a high degree of accuracy.  The 

maximum deviation of the behavioral model from a detailed, transistor-level SPICE model was 

6% over all the behaviors modeled.  The simulation of a voltage regulator circuit using this 

VHDL-AMS behavioral model for the LM124 op-amp resulted in accurate prediction of TID-

induced failure. The simulation of a Schmitt trigger relaxation oscillator circuit using the 

behavioral model shows that they are much faster than SPICE while still achieving good 

simulation accuracy. A factor of 79X increase in speed was obtained in the behavioral model 

when compared to the SPICE model. Also, a single continuous simulation could ideally cover 

the entire circuit response from normal electrical operation (pre-irradiation or pre-rad) to post-

irradiation performance at different exposure levels to assess system failure or to qualify 

radiation tolerance.  

This modeling technique demonstrates that if a rich data set is available from 

experiments, the resource-intensive construction of a transistor-level SPICE model can be 

bypassed.   In addition, the behavioral model can be used to capture the essential behaviors of the 

op amp within a larger system simulation, without carrying the computational overhead of a full 

transistor-level, SPICE-like model. 
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