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CHAPTER 1

INTRODUCTION

The main theme of this work is motivated by the following twaservations:

Observation 1.0.1.There exists a systefiin}=>_;, which is complete in4(T), with the property

that for each n, f(x) > Ofor a.e. x€ T.

Namely, it is well known that taking characteristic functsoof the dyadic subintervals of
T = [0, 1] provides one such example.
0]
We shall refer to a system with the property that each funasoa.e. non-negative, as a

positive system.

Observation 1.0.2. There does not exist an O.N.B.f,}*_; for L?(T) which is a positive

system.

Proof.

Suppose that there does exist such a system. Thenz#an,

/ ffmdx =0,

but since thef,, are non-negative a.e., and do not have norm zero, we mudtidertbat fom

m, u(supg fn) Nsupf fm)) = 0, whereu denotes Lebesgue measure. To obtain a contradiction
to completeness of the system, simply choose &sesup f1), whereu(G) = %u(su pPA 1)),

and considegg. This is a non-zero function which cannot be expressedrimg®f our O.N.B.,

contradicting completeness. O



Not only may one ask what happens for systems that lie “betivibvese observations, but
the question can also be extended to general sga{&y. The chart below summarizes the

results contained in this dissertation:

Table 1.1: Summary of Results

Positive System Type LP(T) Existence
Unconditional Schauder Basis | 1< p < No
Monotone Basis l<p<o No
Unconditional Quasibasis 1<p<w No
Conditional Quasibasis 1<p<w Yes
Conditional Pseudobasis 1<p<w Yes

Exact System with Exact Dual System. < p < o Yes

Exact System 1<p<w Yes
Hamel Basis O<p<Lo Yes
Frame p=2 No
Orthonormal Basis p=2 No
Riesz Basis p=2 No

In Chaptef 2, we attempt to provide, within reason, all neagsdefinitions, and notations
used throughout this work, as well as an explicit definitibthe Rademacher, Walsh, and Haar
systems ofT. There, we also inform the reader of some necessary baakgifaats regarding
spaces in which these systems are complete, or are basegafaple.

Chaptel B is split into relevant subsections, addressirigustypes of generalized bases. In
Sectior 3.1, we relate the generalized notion of perpetatityito monotone bases, and use this

to show that positive monotone bases do not exisFiiT) for 1 < p < c. In Sectiod 3.2, we rely



heavily upon Khinchine’s Inequalities for the Rademaclysteam, as well as stability results for

unconditional bases. Khinchine’s inequalities help ualdi&h more general inequalities, which
we may apply to our work with other systems, including unébodal bases, Riesz bases, and
frames.

Sectior 3.4 contains, in some sense, the most “difficult” geweral results in this work, in
which we show that the collection of dyadic characterisiiocdtions forms a positive conditional
quasibasis for the spack8(T), for 1 < p < o, as well as the fact that any quasibasis of dyadic
step functions with positive coefficients must be condiidn LP(T) for 1 < p < . The other
main tool we develop in this section is a stability theorem daasibases, which aids us in
demonstrating the non-existence of positive unconditiqnasibases.

In Sectiori 3.6, the proof of the existence of positive Hanasls for 0< p < « is extremely
different in flavor than the rest of the work, making use ofiZet.emma.

Chaptel 4 contains some proofs of basic properties of thelVéaistem, and some properties
of windowed Walsh systems with deletions. There, we showettistence of positive exact
systems with positive dual systems fd¥(T), where 1< p < . We also give a positive exact
system inL(T).

In Chaptef b, Sectidn 5.1 contains results of the transiatf@ompleteness and minimality
to product systems. Following, in Sectionl5.2, we prove lsimesults to those in Chapter 4,
but for the product Walsh system definedh

In Chaptef 6, our results are not immediately related to tisétipe system question. How-
ever, results regarding windowed exponential system&%are related in flavor to the explo-
rations of the windowed Walsh system in Chapier 4.

As a final note for completeness, we address the issue of ditimoral pseudobases. Though
explicit details are not provided in either paper, it is glad by Kazarian and Zink in[1] that the

work of Ul'yanov in [2], demonstrates the existence of anamditional positive pseudobasis



for LP(T), specifically, the Schauder system.



2.1

CHAPTER 2

PRELIMINARIES AND NOTATIONS

Notations

Generally when we write= as opposed te-, we are defining an equality of two items

for the first time.

In the following ut(A) will denote the Lebesgue measure of the 8et, RY, whered will

be given in context.
The notatiorA will denote the closure of a se4,

Given a Banach spack, X* will represent the dual space of all bounded linear funetion

als onX.

Givenxin a Banach spac&, and some € X*, (x,a) will usually be written in place of
a(x). This is in an attempt to avoid confusion between writag), meaning thah is a

constant, depending o) anda(x) interpreted as a functional, evaluatedat
It will be understood thal = [0, 1], and thafl? = [0,1] x [0, 1], in what follows.

For f € LP(E), g € LYE), with £ + ¢ = 1, we understand that

<f,g>=/EfG-

Where confusion is possible, we denote the zero elemdrit bj [O].



e We will usesupp f) to denote the support df- that is, set ok for which f(x) # 0.

e Given a sequencéxn}y_;, in a vector space, spéfxn}n_,) will denote the set of all

finite linear combinations of elements {®y},_;.
Definition 2.1.1 (Positive System)We shall say that a sequenéé,},_; C LP is a positive
system, if eacH, is almost everywhere non-negative.

Definition 2.1.2(Dyadic Characteristic Function)n the following, we will use the notation:

XN () = XN (12N (1),
and refer toxk N as a dyadic characteristic function.
Definition 2.1.3(Dyadic Step Function)Lettingc; € R or C, we call a function of the form

M

D(t) = _ZCiXm,Ni (t),

&
a dyadic step function, or a dyadic simple function.

Definition 2.1.4 (Dyadic Characteristic Function in Two-Dimension§ye define the two di-

mensional dyadic characteristic function as follows:

XikMm%Y) = XjmX) Xkm(Y)-



2.2 Generalized Bases

Definition 2.2.1(Basis for a Banach SpacelVe say tha{x,},,_; is a basis for a Banach space,

X if for all x € X, there exist unique scalaag(x), such that
o N
X=9 an(X)Xn := lim an(X)Xn.
3 @00 = fim 5 a9

It follows from the uniqueness of the scalars in the basisasgntation, that these constants
define linear functionals oK, and that there is only one such sequence of linear fundsona

satisfying the above expression. This merits the follovde{jnition:

Definition 2.2.2 (Sequence of Coefficient Functional§}iven a basisx,};,_, for a Banach
spaceX, where thea,(x) are as in Definition 2.2]11, we say that the sequence of lingetion-

als{an};_; is the sequence of coefficient functionals associated Wwelsequencéx},_;.

Definition 2.2.3 (Schauder Basis)Given a basigxn},,_, for a Banach spaceX, we say that
{xn}n-q1 is @ Schauder basis fof if the coefficient functionals associated wifh,},;_, are

continuous.

It is a well established fact that every basis for a Banackesma Schauder basis. See, for

example Theorem 4.13 in,/[3].

Definition 2.2.4 (Pseudobasis)Let {xn}»_; be a system in a Banach spaee, If for each

x € X, there exists a sequence of scalds}_;, such that:

X = Z CnXn,
n=1
we say thaf{xn},,_; is a pseudobasis.

Note that uniqueness of the scalars is not required hereyasiin the definition of basis.



Definition 2.2.5(Quasibasis)Let {xn}_; be a sequence in a Banach spacelf there exists

a dual sequence, or dual systefa, }y_; € X*, such that for alk € X:

then we say thafx,},_; is a quasibasis.

Note that uniqueness of the dual system is not required, posipon to Schauder bases,

which have a unique dual system.

Definition 2.2.6 (Partial Sum Operators) et {xn};_; be a basis for a Banach spaég,with
associated coefficient functiondla,},,_;. We define the partial sum operato8y, associated

with {X,},_; as follows:

Notice that it follows immediately from the continuity oféla, that each partial sum oper-
ator is also continuous, and in fa8y is continuous for eacN if and only if a, is continuous

for eachn, [3].

Definition 2.2.7 (Basis Constant)If {xn}_; is a basis for a Banach spacg, we call¢” =

sup ||Sv|| the basis constant ¢ka}p_;.

It can be shown that £ € = sup ||Sv|| < , [3]. The finiteness of this supremum follows

from the Uniform Boundedness Principle.

Definition 2.2.8(Monotone Basis)A basis{xn}_; with basis constan% = 1, is said to be a

monotone basis.

Definition 2.2.9 (Unconditional Convergence) et {x,},;_, be a sequence in a Banach space,



X. We say that
2 %
n=1
is unconditionally convergent if

>

a(n)

converges for every permutatiar(n) of N. Alternatively, we may use the notatighcn Xg n)-

Definition 2.2.10(Unconditional Basis)Let {x,},_, be a basis for a Banach spaie,We say

that{x,}_, is an unconditional basis fot if for eachx € X, the series

00

X="% an(X)Xn,

n=1
converges unconditionally.

Note for an unconditionally convergent serfg&_; chX, in a Banach space, given some
permutationo(n) of N, S7_; CaXn = > o(n) CnXn. For a proof of this fact, see Corollary 3.11 in,

3.

Definition 2.2.11(Unconditional Quasibasis).et {x,}_; be a quasibasis for a Banach space,
X. We say that{xn};;_; is an unconditional quasibasis fof if there exists a dual system

{an}n_1 € X*, such that for eack € X, the series

X =
n

(X, @n) Xn,
=1

converges unconditionally.

Definition 2.2.12(Frame) LetH be a Hilbert space. We say that a sequefigé,y_; is a frame

for H if there exist constant&, B > 0, such that for alf € H:



- 2
AlfIZ< S I(F, f) 2 <B|If|I2.
n=1
Definition 2.2.13 (Topological Isomorphism)Let X, andY be normed linear spaces. Then
T : X —Y is atopological isomorphism, T is a bijection, and botfi andT ~! are continouous.

Definition 2.2.14(Riesz Basis)Let {xn};,_; be a sequence in a Hilbert spaeke, Then{x,};_;
is a Riesz basis if it is equivalent to some orthonormal basig >, for H, that s, if there exists

a topological isomorphism : H — H, such thafl (x,) = e, for alln € N.

Definition 2.2.15(Hamel Basis) LetV be a vector space. We say tHaj} } < is a Hamel basis

for V if:

1. V is equal to the finite linear span ¢k} ye.

2. {Xy}yen is finitely linearly independent.

Definition 2.2.16(Perpendicularity) Let X be a Banach space. We say tfias perpendicular

to g, and writef | g, if for all scalarsA,

Fll <1f+Adgll

We note that we have taken this generalized notion from W4 will later give an example
that it is not true in general thdt | g = g L f. We specifically give a counterexample to

this fact forL*(T), in Lemma3.15 .

Definition 2.2.17 (Adjoint). Given Banach space¥ andY, and a bounded linear operator,

T : X =Y, the unique operator,* : Y* — X*, which is a bounded linear operator, and satisfies:

VXe X, VW EY*, <T)(,W> = <X7T*W>7

is called the adjoint oT .

10



That this definition makes sense follows from Exercise BP,Additionally,

T =T

which is a consequence of the Hahn-Banach Theorem, see pa[$3.6

2.3 Complete and Minimal Systems

Definition 2.3.1 (Complete System)A sequencex = {Xn}»_; in a Banach spac« is said to

be complete iEparix) = X.

Note that complete systems and pseudobases are not equivatiens. Each pseudobasis is
a complete system, but the converse is not true. We referample 1.29 in,[[B]. Heil considers
the Banach spac€,[a, b], of continuous functions on the compact interffigab|, under the norm
[ ]| := suRejap [ f(t)[. Continuous functions can be approximated by polynomiatteu the
sup norm, and so are in the closure of the finite linear spaneo$ét of polynomials. However,

not everyf € C|a,b| has a power series which convergegatp|.

Definition 2.3.2 (Minimal System) A system{xn};,_; in a Banach spaceX, is said to be

minimal if for all me N,

Xm & SPaf{Xn}nzm.

Definition 2.3.3(Biorthogonal System)Given a systemx = {x,},_, in a Banach spac¥, we
say that{an};y_; € X* is a biorthogonal system tq if (Xn,@m) = dmn, Wheredmn =0if n# m,
andomnp=1ifm=n.

Definition 2.3.4(Exact System)A system{x,},_, in a Banach spac, is an exact system if

it is both complete and minimal.

The following lemmas give equivalent statements to conepless, minimality, and exact-

ness, which we will use freely in this work. While proofs ottfollowing facts are given in,

11



[3], either explicitly, or as exercises, they are import@ambugh to merit their inclusion here.

Lemma 2.3.5(Equivalent Notion to Completeness system{x, }_, in a Banach space, X is

complete if and only if, given‘>e X*, if (x,,x*) = 0for all n € N, then X = 0.

Proof.
First suppose th&x,},;_; is complete inX. Letx* € X*, and suppose thak,,x*) = 0 for

all ne N. Because&* is linear, givery = z]’zlcjxnj € spaf{Xn}pn_1,

J J
{y,X*) = <Z Canj,X*> =5¢ (Xn;,X") =0.
=1 j=1

Givenx € X, x € spaf{xn},_;, and so there is a sequenpg}y_; C spaf{xn}y_;, cOnverg-
ing tox. Sincex* is continuous, andyy,x") = 0 for allk € N, it must be that lim_,. (Y, X*) =
(limy_00 Yk, X*) = (X,X*) = 0, hencex* = 0.

Suppose that " € X*, and(xn,x*) =0, for alln € N, thenx* = 0. Proving by contradiction,
suppose thafx,}n_; is not complete, so tha@par{x,},_, # X. Therefore, there exists some
Xo € X, wherexg ¢ Spaf{x»},_;. By the Hahn-Banach theorem, there exists sgfreX*, such
that(xo,y*) = 1, and for allx € Sparf{xn};_1, (X,y*) = 0. But then, in particularx,,y*) = 0 for
all n € N. By hypothesis, it must be thgt = 0, contradicting the fact thdkp,y) = 1. Hence,
{Xn}p_1 must be complete iX.

O

Lemma 2.3.6(Equivalent Notion to Biorthogonality)Let {xn};_; be a sequence in a Banach

space, X. Thefix,}r»_, is minimal if and only if it has a biorthogonal systefan}p_, C X*.

Proof.
First suppose thgtx,}_; is minimal. Fixxy, € {Xn}n_;. Then by definition of minimalx,,
is not in the closed subspatm:)—ar{xn}ﬁ:l’n#no. Employing the Hahn-Banach theorem, there

exists someay, € X*, such that{xny,an,) = 1, and for allx € spaf{xn}y_1 nn,s (X.8ng) = 0.

12



Hence, the sequencfan},,_;, of elements oK* found in this way form a biorthogonal system

to {Xn}p_1.

Now suppose thafx,},_, has a biorthogonal systefan}; ; € X*. Fix np € N. Let

<) .
Y € spaf{Xn}y_1 nzn,» SO fOr some constants;;:

J J
(Y,@n,) = < > ijnj7an0> = > Ci (Xnj>@n) =0,
= =

since eachn; € N\ {no}, for j =1,---,J. Hencean, = 0 on spafixn}}_; ., - Becausey, is
continuous, it follows thaty, a,) = 0 for ally € Spar{Xn}y_1 zn,- Since(Xny, any) = 1, it must
be the case then thal, ¢ Spa{Xn}}_  n,» @nd s0{Xn}7_; is minimal.

U

Lemma 2.3.7(Equivalent Notion to Exactness)et {x,},_, be a sequence in a Banach space,

X. Then{xn}n_4 is exact if and only if it has a unique biorthogonal systgan} ;> ; C X*.

Proof.

First, suppose thaftx,}_; is exact. Ther{xn}>_; is complete and minimal. By Lemma
[2.3.6,{xn}_4 has a biorthogonal systedan};»_; C X*. Suppose thafbn}_, C X* is another
biorthogonal system. It is clear thag, = by on spafxs},;_4, for all me N. Now, lety €
X. Since{xn}p_; is completey € spa{x};_;. Hence, there exists a sequer{gg}}_; C

span{Xn}n_1, CONverging toy. But then:

and soam(y) = bm(y). Hence,am = bm onsparf{x,},_; = X. Since this holds for alin € N,
{an}n_1 = {bn}n_;, and the biorthogonal system must be unique.

Now suppose thaixn};_; has a unique biorthogonal system. In order to show{kat, ;

13



is exact, since{xn}n_, is minimal, it remains to show completenessXin Proving by con-
tradiction, suppose thaixn},_; is not complete inX. Then there is somg € X, where
y ¢ spaf{xn},_q1. Sincespan{xn}n_, is a closed subspace ¥f of whichy is not an element,
by the Hahn-Banach theorem, there is sa®eX* such that(y,a) = 1, and(x,a) = 0 for all
X € Spaf{Xn}n_q. Letby, =an+afor ne N, noting thatb, € X*. Note also that, # a, + a,

and that givem,m < N:

(Xn, bm) = (Xn,8m) + (Xn,@) = dmn+0= dmn.

But then{bn}}_, is a biorthogonal system tx,},;_;, not equal to{an},_;, contradicting
the uniqueness of the biorthogonal system. Thus, it mudtdtgx,}>_, is complete.

0]

It is interesting to note that given a Schauder ba3jgor a Banach space, the sequence
of associated coefficient functionals forms a biorthog@egjuence foB, since by definition,
the coefficient functionals of a Schauder basis are bouné#hce, every Schauder basis is
minimal. Clearly, a Schauder basis is complete, and so we tieat every Schauder basis is an
exact system.

To clarify the necessity of the discussion of exact systewes,note that one might be
tempted to conjecture that an exact system whose dual systso exact must be a Schauder
basis. In fact, this is not the case, even in the particulaitg situation of Hilbert spaces,
which are reflexive. We provide one such counterexampleabdbnjecture, as presented in
[5] and [3]. Leten(x) := €™, Note that{en}nez is a Schauder basis fo?(T), since it is an

orthonormal basis.

Theorem 2.3.8.The sequencexen(X) nez nzo is NOt a Schauder basis, but it is an exact system

in L2(T),with biorthogonal sequencén}nez.no := {e“—*l , Which is also exact in

X }neZ,n;«éO
L2(T).

14



Proof.

First we demonstrate that € L?(T), for n # O:

. 1
= |
0

using integration by parts, and simple substitution,

e2ninx -1
X

2 19_
dx:/ 2 2c025{277nx)d)g
0 X

21 gj
:4nn/ Smlfu)du< o, (2.1)
0

Hence g € L2(T). Computing fom,me Z\ {0}:

(Xen,&m) = (€n,Em) — (en,1) = dm,

which demonstrates the biorthogonality {@ }ncz nz0, and thus the minimality of both sys-
tems, since we are working Ic?(T).

To show completeness ¢ken }nez.nzo, let f € L?(T), and suppose thdke,, f) = 0 for all
ne Z\ {0}. Then O= (xe&,, f) = (en,xf), wherexf € L?(T), sincex is bounded orl. These
inner products are the Fourier coefficientsxdéf and saxf = ¢, for some constant, But then,

f = ¢ € L%(T), and soc = 0. Hence,f = 0. Therefore the systefxen}nez nzo is complete,
and we have shown that it is exact.

We now show tha{é, }nez.no is complete. Suppose thiak L%(T), and (&, h) = 0 for all
ne Z,n# 0. Defineh(x) := h(x)- 21, and note thalt(x) € L2(T), since by Holder's inequality:

[t axe ||h2||1H(elT‘1)2 m (elx—l)z

heL— 2
X
where the infinity norm is finite, sinc@;—l has a finite limit asx — 0, and is continuous else-
leri»Ofl

X

1

= [[hliZ

b

00

where orl'. Defininggp :=

= 0, we have thatgo, h) = 0.

15



Computing, fome Z,

(o) = (2o ) (2L ) (g ) (E ) =

Since all the Fourier coefficients bfare zeroh = 0, which yieldsh = 0. Hence, the system
{&n}nez.nro is complete, and since it is minimal, it is also exact.
It remains to demonstrate théixe, }nex nso iS Not a Schauder basis. To do so, we first

._l .
examine the value dfé,||3 for n > 0. Notice that forj = 1,2--- ,n, fzzg((j[ﬁ) SN §u> 0, and

in fact there, 2% > 0. Also, f;’;(jj } MU 4u < 0, and in fact thereX™ < 0. Finally, it is
2

easy to see that fgr> 1:

/2"(1%)
2m(j—1)
Therefore, we can see that the integrﬁgn Si”—u(”)du are strictly increasing witm, and so,

using2.1,

21 qj
lim &, = lim <4nn/0 Mdu) — o 2.2)

n—oo u
since the norms have the value given aboveid (2.1). Howthesgriginal systemixen }nez no
is bounded above in norm. Wef&en }ncz no to be a Schauder Basis for some ordering, then
it would have a finite basis constaff, and the biorthogonal system would act as the system
of coefficient functionals. But then, letting, denote partial sums, where we now index our

sequences by, for g € L?(T), andn > 2:

(9, 8n) Xen = Sig— Sh-10,
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and so

(9, &) | [Ixenll2 = || (9, &) &nll2 < [|Shll + [|Sh-19]| < 2779 2.

Forn=1:

(9,61)| xe1 = 10,

and so

(g, €0)[[[xerll2 = [Sw9l] < 2%/ g2

Since||xe||2 = 2 for all n, this implies that for alky in our system:

(9, &n)| < 6%|g|2.

But this yields thaie; must be uniformly bounded in norm, which contradi¢ts(2.Bence,
we can see by a similar argument, it must be fha# }ncz nzo i not a Schauder basis for any

ordering.

2.4 The Rademacher System

Definition 2.4.1(Rademacher Systempefine the Rademacher systeffR,};»_, onT by:

R(t) := Sign(sin(2"tt)),

where we takeign(0) = 0.

An alternative way to define the Rademacher System is asmello
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Forn=0:

Forne N, andk € N with 1 < k < 2" 1;

(

1, te (FR %)

Ra(t) = -1, te (&1,

0, te{hlo<j<2

\

2.5 The Walsh System

Definition 2.5.1(The Walsh System)We define the Walsh systerfwi }y_; on T in-terms of

the Rademacher system as follows:

Fork=1,2 ---, we define:

Wic+1(X) 1= Ry +1(X) - Rnp2(X) -+ - Roy 41(X),
wherek =2" +2% ...+ 2™ andn; >np, > --->n, > 0.

Notice that the entire Rademacher system itself is contiease subset of the Walsh system,
and it is easy to show that both systems are orthonormalragste%(T), see for instancel, [6].
Singer shows completeness of the Walsh system forpl< o, using a dimension argument,
through the expression of Walsh functions as finite lineanlmoations of Haar functions, which

are complete in those spaces - see pages 399, and 405 im [@drticular, the Walsh system
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is a complete, orthonormal system liA(T), and so it is an O.N.B. there. Finally, Lemma
4.1.2 gives an explicit way that we may write dyadic chandstie functions in terms finitely
many Walsh functions. For some further interesting propgxf the Walsh system, and Walsh
product system off2, beyond the scope of what is necessary in this work, see $tarice[[7],

[8], [9], and [10].

2.6 The Haar System

We define the Haar System as follows:

Definition 2.6.1(The Haar System)Fork=0,1,---,andj =1,2,---, 2K, define:

k e 2j—2 2j—-1
22, if §]k+_1 <t< §]k+_l
k . i— i
hej) =9 -22 it <t< g -

0, elsewhere o0, 1]

Forn =1, define:

hi(t) =1

Now, forn=2X+ j, wherek=0,1,---,andj = 1,2,---, 2%, define thent" Haar function to be:

hn(t) :=hy j(t). Hence, we denote the Haar system{by}_;.

An intuitive proof of the fact that the Haar system forms ai®&sr 1 < p < « (and in fact
that it is a monotone basis there) is given on page 168 in, TBlough we will not need its
unconditionality, it is a well established fact tHa{(t) is an unconditional Schauder basis for
LP(T) for 1 < p < o, [6]. Alternatively, that the Haar system is a monotone $&si LP(T),

1 < p < o, implies that it is an unconditional basis there, by the wairbor and Odell, who

19



show that monotone bases must be unconditional bases ipabeswith 1< p < o, [11].
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CHAPTER 3

GENERALIZED BASES

3.1 Positive Monotone Bases and Perpendicularity

In this section, we first show in Lemnia 3.11.1 that there is anvedent, and perhaps more
intuitive condition, to monotonicity for a basis, which isotivated by Exercise 5.1.1 in,|[3],
though the perpendicularity portion is not contained thé&waditionally we demonstrate a gen-
eralized version of perpendicularity between certain elets of a monotone basis. The result
following will demonstrate that non-negative a.e. perpeuldr elements must be a.e. disjointly
supported. Finally, using these results, a similar methdtat in Observation 1.0.2, will show

that there cannot exist a positive, monotone basi&fOt'), 1 < p < co.

Lemma 3.1.1(An Equivalent Condition to Monotonicity)Let the systenfx,},_, be a basis
in a Banach Space X. Thefixn}y_; is a monotone basis for X if and only if giverexX,
and N< M, ISy(X)|| < [|Su(X)||. Moreover, if{xn}n_; is monotone, for nn € N, with m< n,

Xm L Xn.

Proof.

First suppose thdtxn}»_; is @ monotone basis fot, that is, let sug ||Sv|| = 1. Then:

ISV = [1Sn(Su+2 I < ISl [1Sn+2 ()T < - [Su+2 (9],

where we have used the uniqueness of the coefficient furadsiomyieldSy (X) = Sy(Sy+1(X))-

The result clearly follows, then, for al,M € N, with N < M.
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Now, suppose that the bagi, };_; has the property that givere X, andN <M, ||Sy(X)|| <
1S (X)||. Then:

Aim SO < lim [ Se(x) —x][ =+ [|x]] = [[x]]-

Since the sequendg|Sy(X)|| 11 iS @ monotone, increasing sequence of numbers, it must
hold that for allN, ||Sy(X)|| < [|X||- So||Sy|| < 1forallN e N. Now, ||S;(X1)|| = ||1- 1] = ||Xa]|,
using the uniqueness of coefficients, and sq§i§x || = 1. Hence, by definition{x,}_; is a
monotone basis.

It remains to show the perpendicularity property for monetbases. Lah < n, andy :=
S ko1 (& m+A & n)Xc. Hence Sy(y) = Xm, andSh(y) = Xm+AX. Therefore||xm|| = [|Sn(y)|| <
1Sh(Y)|| = [|Xm+ AXql|. Hence, by definitionym L X,

O

Lemma 3.1.2.Let f,ge LP(T), 1 < p < o, and suppose that non-zero functionsg 0 a.e.

inT. Thenif fL g,

p(suppf) Nsuppg)) =0.

Proof.
Without loss of generality, suppose thgt|| = 1, and||g|| = 1. Suppose by contradiction

thatu(suppfnsuppg > 0. Now, define

1
T():= [ 11+2g =1 +Agl @Y

We will contradictf L g, by showing thall has positive derivative &t = 0.
Consider a sequencgin};r_; With 0 < |Ap| < 1, and so that eithex, > 0 for alln, orA, <0

for all n, and limy_,« Ay = 0. Directly computing the right or left hand derivativeDfat O:
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lim
n— oo An n— oo An n— o0

TA) =T _ . Jolf+AgP—folf[P_ . /1|f+Ang|p—|f|p
0 An '

Define:

A= {x||Aalg > T >0, and|f +Angl® > | [P},

Bn = {X||Anlg> f >0, and|f +Ang|P < |f|P},

and

noting thate, = A, UBy. Also, let
C={x|f=00rg=0}, D={x|f <0org< 0},

and

Gh={X]|0<|Anlg< f}. (3.2)

Define:

gy AP P
n

(3.3)

We first determine a bounding function f@y(x), wherex € A, which does not depend upon
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w:‘\fmng\p—mp _ |F+AnglP— [P
An ‘An‘
p
< % < 2P|AaP TGP < 2PgP € LY(T). (34)
n

We now find a bounding function fam(x), wherex € By, which does not depend upon

An |An|
p PgP
< HI% 1An0% o 2y, (35)
Al =

Specifically, forx € Ep, gh(X) < 2PgP(x), by (3.4) and[(3]5). Itis easy to see tggtm lin0E,) =0,
since theE, decrease to a set of measure zero, and all have finite measure.

Hence by the Lebesgue dominated convergence theorem:

p_ p
Iim/ Rl il L T VI
n—w g, An n—w Jg,
_ i PlglP _
— [ lim 2°lg/°xe, =0 (36)
ForxeC,
f 4 AnglP— |F|P )
Al [T p-tige < g L)

and so by the Lebesgue dominated convergence theorem:

i — i pP—114(P —
im [ @ [ lim nq? Hgl? =0 (37)

n—oo
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Sincep (D) = 0, itis clear thatfy ¢, = 0 for all n, and so

lim /th —o. (3.8)

n— o0

Now, we find arL}(T) bound for all theghxg, on

G=JGn, (3.9)
n=0

which does not depend upon

First note that for Xy < 1:

[pl [pl
P_q— _ Tl _q AW [P k-1
f1eyP=11= @eyp-1< @y P15 (Pyot-ys (P

[pl
<y ([E) < |yj2l®. (3.10)

Similarly, for—1 <y < 0:

[pl
[L4yP -2 =1- (@eyP<1-@ey® = 3 (17

[pl
w3 (') < e (3.11)

k=1

Employing (3.10) and (3.11) for afil, andx € G

Ang(X)
f(x)

= 2IP1£ ()P g (x)[An].

[1£00 +Ang(x)|? = [T (x)|P| = | £ (x)|”

p
14 20y

Ang(X)

< 2Pl £ (x)|P
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Then, for alln, andx € G, recalling thatg, has the form given ir.(313):

(X)X, < 2/P f(x)P1g(x) xG-

Itis also the case that 2 f (x)P~1g(x)xs € LY(T) by Holder’s inequality.

Therefore, by the Lebesgue dominated convergence theorem:

pm o= tm. [ o, = [ im o,
1
=/0 pg f|P1xc = p/Ggfp‘1<°°, (3.12)

where we have used the fact that lim, @, is the derivative with respect to, atA = 0, of the

function|f + A g|P, as well as the non-negativity &f Thus for either the left-hand or right-hand

limit, combining [3.7),[(3.B),[(316), and (3.12) :

1 p__ p 1
T’(O):Iim/ [T+ Ang” — 1] :Iim/ &
0

N—co An n—w Jo

= Iim/ %+Iim/%+lim/%+llm

n—o JE n—o JC n—-00 n—-00

0410404+ p/Ggfpl < Pl 18 Hlgllp < e,

by Holder’s inequality. Hencd,’(0) = p /o gfP~L. Notice thatG = sup f)Nsupgg), by how
G and G are defined in[(3]12) and (3.9), respectively. We supp@sé&s) > 0, which implies

thatT’(0) > 0, using the non-negativity df andg in the following:
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T’(O)zp/gf“:p/ gfP~1>0.
G supg f)Nsupgg)

Hence, there is somi) < 0 such that:

T(Ao) = || +Aogllp <T(0) = || fI5,

which, takingp!" roots yields a contradiction to perpendicularity. Henaaiitst be that:

p(supg f)nsuppg)) =0.
[

Corollary 3.1.3. Let f,g € LP(T), for 1 < p < o, and suppose that,fi > 0a.e. If f | g, then
gl f.

Proof.
In Lemmal3.1.2 we showed that havifigg > 0 a.e., andf L g resulted inu(supgf)n
supdg)) = 0. It follows immediately from this fact thag | f.
0]

Theorem 3.1.4(Non-Existence of Positive Monotone Base){ fn},_, is a basis for [P(T)

with 1 < p < o, and for all n, f, > 0 a.e. onT, then{ f,};_; is not monotone.

Proof.

By way of contradiction, assume théf,}_; is monotone, and lef,, and f,, be two
basis elements, where > n;. Then by Lemma 3.111f,, L f,,. Hence, by Lemma 3.1.2,
p(sup fn,) Nsupf fn,)) = 0. But then the supports of all basis elements must be pairwis
disjoint, except possibly on sets of measure zero. To olataiantradiction now, choose one

basis elementf,,, and letEg C sup( fn,) be a set withu(Eg) = %u(supp{ fny))- NOw, Xg, is a

27



non-zero function, which is clearly outsigpar f,},_;, contradicting the fact thgtf,};,_; is
a basis folLP(T).
U
The following lemma demonstrates an important differenetviben perpendicularity in
LP(T) for p=1 and 1< p < . In particular, the example given demonstrates thatg in
LY(T)implies neither thap(supd f) Nsuprg)) = 0, nor thatg L f, in contrast to X p < oo,

motivating the exclusion of the case pf= 1 from the above arguments.

Lemma 3.1.5. There exist functions, § € LY(T), with f,g>0a.e. and fL g, butg/t f, and

so thatu(supg f) Nsupgg)) > O.

Proof.

Letf = X[o,%]’ andg = X[%J]' We first demonstrate thdt | g:

1 1 1
||f+}\gH1:/081+/12\1+)\\+/1 AL (3.13)
8 2

ForA > —1:

ForA < —1:

1 3 1 1 1
— 1A= TA>ZHI>C = .
B =g+5(A-D+5A25+52 5=l

Now we demonstrate thgt ) f:

LetA = —1.
8 1 5 7
Af :/81 /1:— .
lotAtl= "1+ 1= <loli=g
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Lastly, u(sup f) Nsupgg)) = 3 > 0.

3.2 Unconditional Bases, and the Rademacher system

In this section, we introduce some well known propertiesrafanditional bases which will be
used in the following section. See [3] for proofs of theoremmsch are omitted in this section.
Khinchine’s Inequalities for the Rademacher system provaetparticularly useful tools in this
section.

Khinchine’s Inequalities:

For each 1< p < o there exist constants,, K, > 0 such that for everi € N, and real

scalarsey, - - -, CN,

R N\ 2
Kp (Z cﬁ) < <Kp (Z cﬁ) : (3.14)
n=1 Lp(']r) n=1

Note, that we only use that the inequality in the followingahem is implied by a sequence

N

CnRn
1

n=

being an unconditional basis, though we state the equigalfar the sake of completeness.

Theorem 3.2.1.Let {xn};_, be a complete sequence in a Banach space, X, suchthaix
for every ne N. Then{x,}_; is an unconditional basis for a Banach space, X, if and only if

there exists C> 1 (independent ofiba;, and N) such that ifon| < |c,| forn=1,--- N, then:

<C

N
Z CnXn
n=1

N
Z PnXn
n=1

Proof. Refer to Theorem 6.7 inl_[3].
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Lemma 3.2.2.Given fe LP(T), 1 < p < o,

lim /OlfRN:O.

N— 0

Proof.
We first consider the case thakKlp < «. Lete > 0. Since the set of dyadic step functions

is dense irLP(T), take:

M
D)= 3 bty 1)

sothat|f —D||p < €. LetNg =max{Ny|n=1,--- ,M}. FixN > No+1. Thenfom=1,--- M,

1
| iz 2 (ORg(0)dt =0,

This follows from how the Rademacher system is defined, infixefn [2.4.1, sinceRg(t) is
—1 on exactly half of the measure @2, (k,+1)27™], and+1 on the other half of its

measure, becaudé> Nyp+1 > N, + 1. Thus:

lDt ~tdt—Mb ' g(t)dt=0
Jy PORSOE= 5 b [ Rt)ct=0.

Now, forN=0,1,---:

0

/01 f(t)RN(t)dt' <

/01f(t)RN(t)dt—/lD(t)RN(t)dt'+

/OlD(t)RN(t)dt'

[ (10 - R+

/OlD(t)RN(t)dt‘ §/01|f(t)—D(t)|dt+'/OlD(t)RN(t)dt‘
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(3.15)

<10 - D+ | | D)

where we have employed thiat[, 1) < [| - [|Lp(T) for 1 < p < o, which follows usingu(T) =1,

and Holder’s inequality.

So, using[(3.15),

limsup
N— 0

/‘f d4<n() |b+hm‘/‘D d4—5+0

and sincee > 0 is arbitrary, we must have that Ilry( fRy(t)dt=
For thep = « case, note that singg(T) = 1 (more generally, sinc& does not contain sets
of arbitrarily large measure),”(T) C L(T). Hence, the result must hold also for= .
0]
The following theorem provides two inequalities that mustinlated by at least one func-
tion in the dual space dfP(T), 1 < p < o, beginning with any positive system. This is a
particularly useful tool in obtaining a contradiction teetbxistence of positive frames, positive

Riesz bases, and positive unconditional bases.

Theorem 3.2.3.

Letl< p<o, 2+31 =1 and let{ fn}7_ be a sequence in?(T) with the property that
fn > 0a.e. onT. Then for all systemégn},_, of measurable functions, and constadts:
J,K < oo, there exists some real-valued=H_9(T) such that the following inequality does not

hold:

L/ 3\
Ilhllq < ( J <;|<h,fn>|2|gn<t>|2> dt) <K[hilq (3.16)

Proof.
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Let{fn}n_, be asequence iP(T), 1 < p < oo, with f, > 0 a.e. o for all n. If eachg is
equivalent to zero, it is clear that the lower inequalityiislated for anyd > 0, andh € L9(T),
which is non-zero. Suppose then by contradiction, {lig},_, is a sequence of measurable
functions, not all equivalent to the zero function, suclt thare exist constants€Q J,K < o,
for which (3.16) holds for all real-valugue L9(T).

As before, lefRy denote theN™ Rademacher function, as given in Definitlon 214.1, which
is real-valued, and note thBfy € L9(T).

Now, for allN > 0, employing the a.e. non-negativity of thg and the fact thaRy = 1, it

is easy to see that:

(R, ) ? < | (Ro, fn)|* (3.17)

Applying (3.16), and noting thaf is independent oN:

q 1
1 o) 2 a
0<JJRNq<(/O <§|<RN,fn>|2|gn<t>|2> dt) <K|Rulq=K <. (3.18)

Employing [3.1V), for alN > 0, andt € T:

<g| (Rn, fn) | |On(t) ) (Z)| (Ro, fn) | |On(t |2> eLl(P]D,

by the upper bound in (3.18).
By the Lebesgue Dominated Convergence Theorem, formaiiggu3.18):

L= 3\
0<J< lim ( J (n;|<RN,fn>|2|gn<t>|2> dt)
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1 ; oo 2 2 % !
= ( J (ngnmn;uRN,fm |gn<t>|> dt) . (3.19)

Now, definedy(n)(t) := [(Rn, fn>\2\gn(t)\2, and®dy(t) := {Pn(n)(t) oo
Using (3.17):
[N () [ 2 < [|Po(t) |2 < oo,

for a.e.t, since

1Po(®)I72 = (%\ Ro, )| |gn(t |2> e LY(T).

Then, for a.et, by the Lebesgue dominated convergence theorem for series:

. (%) 9 > 00 . 5 2
im, 3 R ) Flon(®) = 5 fim (R o) gn(t)* =0

by Lemmd3.2P.
Returning to[(3.19), then:

0<J< (/01 (Nngnmi<RN,fn>zgn<t>z>2dt>

= [{ 3 fim R ) Plento)? o) o
- 0 n;N%OO s In gn -

which is a contradiction. Hence there must not exist a sy$if;_,, and constants & J,K <

o, where [(3.16) holds for all real-valued functiohss L9(T).
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Before we use Theorem 3.2.3 to assist us in showing the nisteage of non-negative a.e.

frames, and unconditional bases, we require a few lemmas.

Lemma 3.2.4. Let {x,}»_, be an unconditional basis of real-valued functions iNT) for
1 < p < . Then there exists some X0, such that for all real scalars{bn},_; for which

> m_1 bnXn converges in B(T):

< (/1<§bﬁxﬁ(t)>2dt)p<K
p 0 n=1

Let Ry(y) denote then™ Rademacher function, as given in Definitlon 214.1. Usingch+te

K -1 Z ann Z ann
n=1 n=1

p
Proof.

nique of Heil from Lemma 3.26 in [3], for a.g.€ T, employing Khinchine’s Inequalities given

in (3.14), which we may do since thxg are real-valued:

g p

1 N 5 5 Y 1l N
/()(n;bnxn(t)> dtSkp/O nZlbnxn(t)Rn(y) pdt
L P 1 ,1| N p
=57 [ )| 2, bra®Ra)| dydt=igP [ 113 boatRay) didy  (320)

by Tonelli’'s theorem since the integrand is non-negatiVg].[
Now, letting f(t) := 71 bnXa(t), and fy(t) := 3 _1 Ra(Y)bnXa(t), note that by Theorem
[3.2.1, there exists some constént 1 such that:

1Sy fyllp < ClISnf|p, since|Ri(y)bi| < |bi| for everyy € T. Hence:

B 1 B 1 CP
B20 =k [ lIsfylBdy< P [ CPlSuTlIBdy= g Su B

Thus, employing the monotone convergence theorem,
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NIo

1 0 LZ) 1 N
/ (zbﬁxﬁt> dt:Iim/ (zbﬁxﬁ(t)> dt
0 \n=1 N=®Jo \ iz

p
CP CP CP| &
< lim 25 P~ If|[P= = ,
Taking p" roots yields:
1
/ (z bﬁx%(t)) at| < ls el 3.21)
0 n—=1 n=1
For the lower inequality we omit some steps, since we proesdzefore:
1 N ?p 1| N p
/ S 022(1) | dt>KyP [ || S bra(®Ra(y)| dt
0 \n=1 0 ||n=1 o
1 1| N P 1
_ Kpp/ / dtdy= Kpp/ ISu fy || Bdly: (3.22)
0 Jo |G 0

In this case|bi| < |R(y)b;| for a.e.y € T. Hence, by Theorein 3.2.1, for ayc T, ||y f|| <

C||Svfy||, whereC is as above so:

1 1
> f||bdy.
@23 > en [ 1 oy

Arguing as before:

1/ = B\
2.2
> :
J (n;bnxna)) dt CKp z l (3.23)
TakingK to be the maximum ofK andk% yields the result.
0]
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The following lemma is given as an exerciselin [3]. We use lsintéchniques to those used
in Heil’'s proof that given a basis in a reflexive Banach spXcehe dual system forms a basis

for X*.

Lemma 3.2.5.Given an unconditional basis, },_; in a reflexive Banach space, X, the asso-

ciated system of coefficient functiongés, },_; is an unconditional basis for X

Proof.

Since{xn},_4 is a basis in a reflexive Banach spaXethe associated system of coefficient
functionals,{an},_; is a basis foiX*, see Corollary 5.22 in| [3], . Lex(n) = {ny,ny,---} be a
permutation oN. It suffices to show thaftan, }‘J?°:1 is a basis foiX* as well, using the unigueness
property of coefficients of bases. Foe X, andx* € X*, definerm(x)(x*) := x*(X) = (x,x"),
where this denotes the point-evaluation operator, whidghasstandard embedding &f into
X**, and note thafr(x) € X**. Then: (an,, (X)) = (Xn;,@n) = Sn.n;» and SO{ TT(Xn, ) P is

a biorthogonal sequence {anj}‘j”:l. Forx* € X*, define the partial sum operator:

J
=2 ()

We use the fact thaftay, }7_; is a basis foiX* if and only if it is exact and su|Ty[| < o, see
[3], Theorem 5.12 (e). Exactness{ay, }7_, follows from the biorthogonality of (X, ) } 75,
and the fact that the system is complete, sifag},,_; is complete. Now, we demonstrate
sup || T3] < 0. Forx e X, andx* € X*, and lettingS; denote the™" partial sum operator for

{Xn; }{21, ands; denote the adjoint operator &, as given in Definition 2.2.17:

) = 9002) = 5 (i ) = 5 e
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X,

J
i=

J
<xn,-,X*>an,-> = <X, > <X*,7T(Xn,-)>an,-> = (%, TH(x")).
1 =1
Hence,T; = Sj, and so|| Ty|| = [|Sj|| = [|Ss]|- Since{xn, } 11 is also a basis foX due to the
unconditionality of{xn}n_1, sup ||Ss|| < . Hence, sup||T;|| < «, which concludes the proof.

O

Theorem 3.2.6(Non-Existence of Positive Unconditional BaseH) { fn};_; is a basis for
LP(T) with 1 < p < , and for all n, f, > 0 a.e. onT, then{f,}_; is not an unconditional

basis.

Proof.
Let {gn}f_1 € LY(T), wheres + % = 1, denote the dual system {dn};_;. Note that by
Lemmal3.2.6{gn}nr_; is an unconditional basis fdt9(T). Let h e L9(T) be a real-valued

function, so:

[oe]

h(t) = Z (h, fn) On,

=
where each coefficienth, f,), is real-valued, since bothand f, are.
In order to apply Lemma_3.2.4, to tH@n},,_;, we must show that eadl is real-valued.

This follows readily from the following, using the fact thiie f,, are real-valued:

1= (000 = [t = [ tRelon) i [ famign) = [ toRetgn),

and form # n:

0= (fm,gn) = /01 fmOn = /01 fmRe(gn) —i /01 fmlm(gn) = /01 fmRe(gn).

Hence, for alme N, (fm, Im(gn)) = 0. Since{ fr}nen is complete, it must be thain(gn) € [O].
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Then by Lemma3.214, there exists sokhe- 0, such that:

1/ = o\
Ko< | ( S Ih, fn>\2\gn|2> dt] <K|hlq.
0 \n=1
But this yields a contradiction according to Theofem 3.8i8¢eh was an arbitrary real-valued
function inL%(T). Hence { fo}_; cannot be a positive unconditional basis f&T).
0]
It is interesting to note that Dor and Odell have shown thatfe p < «, every monotone

basis is an unconditional basis, [11]. Hence, we could obitee non-existence of a positive
monotone basis for & p < », also as a corollary to Theordm 3.2.6, though we have earlier

proved that result independently in Theorlem 3.1.4.

3.3 Riesz Bases and Frames

Corollary 3.3.1 (Non-Existence of Positive Riesz Base$here does not exist a positive Riesz

basis for 12(T).

Proof.

By Theorem 7.11 in,[3], every Riesz basis 10%(T) must be an unconditional basis for
L?(T). Hence, it follows directly from Theorein 3.2.6, that thesmiot be a positive Riesz
basis for?(T).

O

Theorem 3.3.2(Non-Existence of Positive Framesljhere does not exist a framgf, },_, for

L2(T) with the property that for all n, §> 0 a.e. onT.

Proof.
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Consider the systenfg;}7_; C L2(T) wheregj(t) =1 onT. Then, for all real-valued
h e L2(T):

i [(h, fn>|2:/01 i\(h, ) 2]gj (t) P it

1

By the definition of frame, then there exist constaitB > 0 such that:

1 o
2
AlIE< [ 1 )/ ]g;(t) dt < B3
n=1

Taking square roots:

1

1 12 > 2\’ 1
Adnl< [ 10 i Ploit)dt | <82l
n=1

for allh e L?(T), where 0< A, B < . More specifically, this holds for all real-valued functin

h € L?(T). This contradicts Theorem 3.2.3.

3.4 Quasibases and Conditional Pseudobases

In this section, some basic properties of quasibases willldraonstrated, with the goal of
addressing the existence question for positive conditjana positive unconditional quasibases
in LP(T).

In Theoren 3.4)8, we demonstrate that the set of dyadic cteistic functions forms a
positive conditional quasibasis foP(T), 1 < p < o, regardless of the dual system. The proof
of the conditionality of the quasibasis of dyadic charaster functions uses techniques em-
ployed by Kazarian and Zink in_[1], where they consider thbgler system. The proof of
Theoren{3.4.70 shares many techniques with Theorem 3.dvé\er it requires more cum-
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bersome notation, due to the more general nature of the cgsep functions which we deal
with there. Finally, we prove both a stability theorem foagibases, and a stability theorem for
unconditional quasibases.

In summary, to show non-existence of positive unconditiguasibases, we approximate
the elements of a supposed general positive unconditiazaiasis with dyadic step functions
with positive coefficients. Applying the stability theorefior unconditional quasibases, we
obtain a contradiction to the conclusion of Theofem 3.4 @ctvsays that any such quasibasis
of dyadic step functions must be conditional.

Note that since each positive unconditional Schauder hasi positive unconditional
Quasibasis in its space, the non-existence of positivendittonal quasibases ibP(T) for
1 < p < =« yields that there can be no positive unconditional Schabdeis there either.
Up to this point, we only explicitly demonstrated the nonsence of positive, unconditional
Schauder bases It (T) for 1 < p < « - the quasibasis result extends non-existence of positive
unconditional Schauder basesge= 1. Though it is a well-known fact that there cannot exist
any unconditional Schauder basis fok(T), it is interesting to note that we have shown non-

existence of positive unconditional Schauder bases, gmtgnt of this result.

Definition 3.4.1(Partial Sums for Quasibases$)et {x,},_; be a quasibasis for a Banach space,

X, with some dual systely = {an};;_; € X*. Then, we define the partial sum operator:

N
Kx) = Zl<x’a”>xn'

We will use the notatior§y(x) = \(x), where there is no ambiguity regarding which dual

system we are using to expard

Lemma 3.4.2(An Equivalent Notion to Being a Quasibasikgt X be a Banach space, and sup-
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pose that{xn};;_; € X, and let{an};;_; € X*. Then{xn};_; is a quasibasis fospar{xn},_;)
if and only ifsup ||Sv|| < e, where the § are restricted tospar{{xn},_;), and partial sums

are taken with respect to the dual system under consideragiod for all ne N, it holds that
lim [[Sy(Xn) —Xn[| = O.
N—00

Proof.

First suppose thafxn};;_; is a quasibasis fapar{{xn},_;) with a dual system{an};_;.
Letting x € Spar{{xn}r_1), {Sv(X)}{_; is a convergent sequence, and hence is bounded. That
is, supy [SN(X)|| < o, for all x € span({x.}_,). Hence, by the uniform boundedness princi-
ple [3], it follows that suR [|Su|| < e, where theSy are restricted t@pan({x.}i_;). By the
definition of quasibasis, sincg € spar{{xn}>_,), it holds that lim_c ||Su(Xa) — %a|| = O for
neN.

To prove the other implication suppose tRat= sup, ||Sy|| < o, and for alln € N, it holds
that limn_e [[Su(Xn) —Xn|| = 0. Let x € Spar{{xn}_;), and lete > 0. Then there exists a non-

zeroy = M ; CnX, such that:

Ix=yll <

2(1+C)

Now, chooseN large enough so that for ath=1,2,--- ,M:

£
2M maxn_1.... m{|Cm|}

1S (Xm) —Xml| <

Therefore:

1S (0 =X < lIx=yll +1ly = Si W + 1S () =S K
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< [x=yll+ +lISulllx=yll

M M
> CXn— Sy (Z Cnxn>
n=1 n=1

M
< (A+C) [x=yl[+ ZlHCn(Xn—SQ(Xn))H

M

Z max {|Cm|} S (%n) —xnll <&.

I\JIM

Hence, forx € spar{xn}=_,),

lim [Su(9 —x] =0,

and so{xn};_, is a quasibasis f@par{{x,},_1)-

O

Definition 3.4.3. Let X be a Banach space with a quasibagis},,_;, and some associated set
of coefficient functional®\ := {as};_,, and letF C N be finite. Define the following partial

sum functional:

F(X) = EP (X, @n) Xn,

and define\*(x) := sup: ||SF(X) |-

Definition 3.4.4. Let X be a Banach space with a quasibagis};,_,, and some associated set
of coefficient functional®#\ := {an};_;, and letF C N be finite. Also let§" := {en};_;, be a

sequence, wherg, € {—1,0,1}. Define the following partial sum functional:

Sg\,@ﬁ(x) = Z: €n <X7 an> Xn,

ne
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and define\2 (x) := sug: ¢ Hség(x)

), and/A% = sup: ¢ ||Se.4||.

Lemma 3.4.5.Let X be a Banach space, and suppose fxa};;_; is an unconditional qua-
sibasis with an associated sequence of coefficient furalioh= {a,},,_;, for which, for all
x e X, Y1 (X an) X, converges unconditionally. As defined previous)(x) < o for each

xeX.

Proof.
This follows directly from Theorem 3.15 in,|[3].
O

Lemma 3.4.6.Let X be a Banach space, and suppose fxat;_; is an unconditional qua-
sibasis with an associated sequence of coefficient furadioh= {an};_;, for which for all
X € X, 31 (X, an) X, converges unconditionally, and 16t = {&,},_;, whereg, € {-1,0,1}.

As defined previousIp\2 (x) < . Moreover:

= s | <o
Fell

Proof.

LetF C N be finite, and defin€ ™ := {ne F |&, > 0} andF~ := {ne€ F | &, < 0}. Then:

Hﬁg(x)‘: Z:Sn@(,an))(n": (Xan) X — <x,an>an
ne nekF+ nekF—
<Y el +|| S (xan) x| < 2A8(X) <o,
nekF+ nekF-

by Lemmd3.415. Hencé\ (x) < «.
Now, since for eactx € X, A%(x) = SURE ¢ H$g(x) H < oo, the uniform boundedness prin-

ciple, [3], yields that:

43



= st | <
Fell
U

Theorem 3.4.7.Let{fn}_, be a real-valued basis forA(T), 1 < p < o, with dual system
{gn}no1 CLY(T), and 5 + ¢ = 1. Let A = {x| fa(x) > O}, Bn = {x| fn(x) < 0}, and define
an(t) :=|fn(t)|xa,(t), and y(t) ;= | fn(t)|xB,(t). Then, the systel{rfn};’f:l = {ay,b,---,a,bj,---}
is a quasibasis for &(T) with dual system{gn}_; := {91, —01,92, —02, -~ ,0j,—0j,--- } in
LA(T).
Proof.

Notice thata; (t) — bj(t) = fj(t).

Lettingh € LP(T):

h(t) = % (h,gj) fj(t) = % (h,g;) (aj(t) —bj(t)) = % ((hg;)aj(t) + (h,—g;) bj (1)),

=1 =1 =1

reindexing, formally,

=3 (h.Gn) fo, (3.24)
n=1

where it remains to show that this sum converges after rginde
Considering partial sumsN_, (h, §p) fa of (3:22) there are two possibilities. Whéhis

even,fy = by, and:

2

<h7 GH> f~n =

1 ]

(h.gj) fj(0).

Mz

n

If N is odd, thenfy = an_1, ;, and:
2
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Before proceeding, we compute the following limit:

1im [1¢h,gn) awll, < Jim (110, gn) awllp + 1, ~an) bull)

= lim [[(h,gn) an -+ (h, ~gn) bl = lim [[(h,gw) (an —b) [ = lim |¢h.gn) full, =0,

where we have employed the disjointness of the suppors @hdby, and we have used the
fact that the partial sums Cz‘j”:l (h, gj> f; form a Cauchy sequence to yield convergence to 0.
Let € > 0, and takeN large enough that for aM > N, whereM is even,

M
2

h— z <h7gj> fj

=1

M

h— n; (h,Gn) fn (3.25)

<$
27

p

p

and large enough so thatM > N, andM is odd,

(o s)angsaf, < 3

If M > N+1is odd, then:

M M—1 .
e LLIL [ I AL T P

If M > N is even, we refer td (3.25).
Thus,h=3S> ;(h,dn) f,, and so{ay,by,---,aj,bj, - } is a quasibasis dfP(T) with dual

SyStem{gL _917 e 7gj7 _g] 5" } in LQ(T)
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0]

We note that while the following proof demonstrates thetexise of a positive conditional
guasibasis, it is not the first theorem to do so.[lIn [1], usinglar methods to those demon-
strated here, the existence of a positive conditional ¢paass is shown. Specifically, Kazar-
ian and Zink show that the Schauder (or Faber-Schaude®mysthich is a positive system,
is a quasibasis which is conditional ford p < . In their proof, Kazarian and Zink note
that the proof of non-existence of any unconditional Scleadmhsis forL'(T) can be modi-
fied to demonstrate non-existence of any unconditionalifasis forL(T), though they do
not provide details of this proof. Here we provide a prooflod non-existence of a positive

unconditional quasibasis it (T), independent of the more general result claimedlin [1].

Theorem 3.4.8(Existence of Positive Conditional Quasibasé@®)e set of dyadic characteristic

functions is a quasibasis fo’(T) for 1 < p < e, that is not unconditional.

Proof.

We start with the Haar systerfhn};_;, as given in Definition 2.611, and recall that the Haar
system forms a basis faP(T), 1 < p < o, [13].

Let f € LP(T). Then:

8

i f,hn) hn(t) (f,hn) (Chan(t) — Cabn(t)),
n=1 n=1

where for thent" Haar functionhiy(t) = hj k(t), withn> 2,

an(t) = Xrzj-2 2-11(1), bn(t) = X121 25 7, (3.26)

andc, = 25, Forn= 1,hy(t) =1, and so we take
ay(t) =1, by(t) =0, (3.27)
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andc; = 1. Sincea, andby, are as in the statement of Theorem 3.4.7, in relation to ther Ha
basis forLP(T), 1 < p < o, the following ordering of the scaled dyadic characterifinctions
onT is a quasibasis fdtP(T) with 1 < p < o, {c1a1,€1b1,- - -, Chdn, Cnbn, - - - } = {Xn }r_; @nd

has a dual system defined by, —hy,--- by, —hp,--- }. Itis easy to see that the system
C:= {a17b17‘“ ,an,bm"‘},
is also a quasibasis, this time with dual system,

{cih1, —c1hy, - -+, Cahn, —Cohn, - - }.

For simplicity in the following, we removb;, since itis 0, and we are left with

{a17a27b27a37b37”'} = {Xn}?IO:JJ (328)

as our quasibasis.

Proving by contradiction, suppose that= {xn};_; is an unconditional quasibasis for
LP(T), and letG = {gn};_, be some corresponding dual system.f{T), where% —i-é =1,
and so that it holds for eache LP(T) that the following expression converges unconditionally

to f in LP norm:

o 1
f= Z (f,on)%n, Where <f,gn>:/0 fg,dt.
n=1

WhereR, denotes the™ Rademacher function, as given in Definition 214.1, let

1
Ck = /O RaOkdt = (Rn, k) » (3.29)
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so that for alln:

Ro= Y e (3.30)
k=1

where the sum convergesia in LP(T), and convergence is unconditional by assumption.

Fixn> 0, and let

i1 i -
I] = {177%} ’ Where] € {17 72n}' (331)

Note that on such an interva®,; “oscillates” once, since its period 12% and so is 1 on half
of the measure of the interval, ard. on the other half.

Recall that the supports of the are dyadic intervals of the forrﬂ}—ml, 2m , since they are
each somey, or by as given in[(3.26), ol (3.27). Now, if< 21— 1, then it is easy to see
that p(supx)) > 5. This follows from the fact that there afgf_,2 = 2"*1 — 1 of thex;
with support intervals of length greater than or equag%t,oand from the fact that the measures
of the supports of the are non-increasing with respectitoHence fori < 2"t —1, by the

construction of the, eitherx;(t) = 1 onlj, orx = 0 onl;. Let
Aj = {ili <21 -1, andx = 1 onl;j}. (3.32)

Then for a.et € 1, using [3.3D):

00 2n+1 1
Cp k(1) = Rapa(t) Z () = Rpa(t) — Y gt (3.33)
k=2m+1 KEA
Now, let

Aj={i>2""11|suppx) Clj}. (3.34)

Note that ifi > 2""1 — 1 andi ¢ Aj, thensuppx)N1j = 0. Therefore, for a.et € I;, using
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(3.33):

00

Ruit) = 5 g™t =Y " xt)= Y "), (3.35)
ke k=2n+1 kel

Hence, for a.et € |, by (3.35):

> e x(t) > (3.36)

kel

> o ()

kel

— ‘Rnﬂ(t)— Y @t

ke

Now we will obtain a lower bound on the following integral, wieljf denotes the half df

on whichRy;1 =1, andljf’ denotes the half dfi on whichRy;1 = —1:

dt+ dt. (3.37)

olt:/I

!
J

-y cptt

—1— Z CEJrl
keA;|

ke

"
Il

/’Rn+1(t)— Y ot
lj KEA]

We must consider a few cases.zlite,\j CQ“ > lonlj:

([3:3]):@ (—1+ > 14 > cQ“) > u(ly).

keA| ke

If 1> Yyen cott > —1onl;:

I.
@y - H0 (1— >t cﬂ”) > (i),
keA| keA|
If —1> Fien, G only:
(crer PRGN UL SR SR SRR T
= > o > o u(lj)
KEA] KEA]
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Hence, it holds that

dt > p(l;). (3.38)

/ iRnH et

Thus, employing(3.35), and (3138):

/ > \cﬂ“\xk(t)dtz/ Y ()| dt
ljkGA] lj kel

n+l 1
= Rora(t) = > dt> u(lj) = 5.

Then using[(3.35), and the fact that tlrpeare disjoint dyadic intervals defined (n(3131):

h

Tl x(tdt = Z/ &L (1)t

K=2n+1 ]k 2n+1

2N 2N 1
= Al t)dt> § = =
30,3 | puvez 3

In summary:

c ] X (t)dt > 1, 3.39
/Ok;l\k () (3.39)

for alln € N.

Now, letg : _S|gn(c”+1) andé := {&}y_,. Define,
SPGNEE Z & I ( (3.40)

Using the non-negativity of thg, we can see that the partial sug&l \cﬂ“} Xk increase with

Ntoyp 4 }cﬂ*l} X pointwise. Hence, the Monotone Convergence Theorem yields
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z skcn+1

1 o
A 3 16 Pt = fim, / z vt =fim [

l

p
dt) = lim S8 5 (Rec1)llp

N
£k X (1)

_ 1
< lim /
N—oo \ Jo

< lim H$ HHR,,+1||p</\G 1< o,

k=1

by Lemmd 3.4)6 and Holder’s inequality.

Hence:

1 (o]
/ > |cp ™ X(t)dt < oo, (3.41)
0 k=1
from which it follows readily that given ang > 0, we can find somsl large enough that

00

% o %
k=Rrr1

Now, letn(0) = 1, and using[(3.39), choosa(1) > n(0) so that,

/0

Sincegk € LY(T) with 1 < g < o, Lemmd3.2R yields that lim, ‘cﬂ(‘ = |(Rj,q)| = 0. Using
this and [(3.4R2), we may find sonm¢l) > m(1) satisfying :

L3

k=2n(1

<e. (3.42)
1

1 om(1)

k=2n(0)+1

ck( )H‘ X (t)dt <
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and

()+1‘ 1| no+1

<23

Cy

Cx

Y

for all k € Ag := {k\ 2N(O)+1 < | < pM(1).

CE(O)H’ > O}.
Similarly to the previous step, usirig (3139) there existasm(2) € N, wherem(2) > n(1),

such that

1 2om(2) 2
dt> =
‘ 23

/0 k=2n(1)+1

and using 3.42, there exists som®) € N, wheren(2) > m(2), such that:

1 0 1
/ Z +l’ Xkdt < 55
0 k=2n(2)+1 2
1 0 1

1)+1
k=2n(2)+1
n2)+1] _ 1] no)+1

for all k € Ag = {k| oN(0)+1 < < pm(1)

CE(O)“’ > O}, and

1 1
24
cﬂ(l)ﬂ} > O}.

We proceed inductively in this way, constructing sequefoé$) 7o, and{m(j)}{’_, such

Cy Cx

)

n( )+1‘

n( )+1’

for all k € Aq 1= {k\ 2N+ < | < M),

that:

1=n(0) < m(1) < n(L) <m(2) <---m(j) <n(j) <---
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and for everyj € N:

1 om(]j
/ S | 1‘xkdtzg, (3.43)
0 o 3
1 o 1
)+1
C Xedt < —, (3.44)
/o ) 2,1(2”1 K ) 2i+4
forall¢=0,1,---,], and
j+1)+1 1 | ni+1
ck( ) ‘ < 5773 ck() , (3.45)

forall¢=0,1,---,j,andk e A, := {k\2”<4>+1 < k < 2mit+1)

CE(E)”‘ > 0}.

Now, consider the seri€g;_; %Rn(j)ﬂ. Applying Khinchine’s inequality from(3.14), there

is a positive constang, depending only upop, such that for alM,N € N, whereM < N:

C(j%wjlzf

Hence, lettingM,N — o, we see the sequence of partial sum§§5i1 7Rn(j)+1 Is Cauchy in

LP(T), and so it must be the case that for sofne LP(T):

8

1
T (f,0K) X, (3.46)
1

=3 5%

where equality is irLP(T), and the second series converges unconditionalbyPifT) by as-

k

sumption.

Notice that:
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1
‘(f,gk> _.ZITCE(I)H

' f = d ' f = d
/O i;iRn(l)+l gy dt _/0 2 Ragi)+1 | G¢|dt,
applying Holder’s inequality,
L1
< f_.zki_Rn(i)-i—l 19Kkl -
= P
Letting j go to infinity, we see that fronl (3.46):
. L1 . L1
lim (. — 3 i—CE(')H < limlif=2 TRaira|| l19dlq=0.
i=1 i=1
P
Hence, for eack:
(.90 = i.}cﬂ“)“, (3.47)
4
That is:
f— % (i.—lcﬂ‘)“) X¢. (3.48)
==
Therefore, for allk € Aj = {k|2”(j)+1 <k<2mi+D and cﬂ(ml‘ > 0}, and for every
j > 4, using [(3.417):
(00| = zli—lcﬂ“)“ > Tl ‘;%cﬂ(”“
i= i)
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> Lo+ - Lo+ _ )+ _jfl 1 nty+a| _ 1 niy+1
—j k ;i k i1k Zi i k i k
i#] i= i=]+1
1 n(j)+l‘ 12t n(i)+1 11 njy+1
>Zlc -5 |F — L : (3.49)
j k i; i k L i 2|+2 k

where the last inequality follows from the constructionhétﬂ(i)“. More specifically,[(3.45)

says :
n(i)+1 n((i—1)+1)+1 no+1] 1 | e+
&= e < g | = g
forallke Ay, and?/=0,---,i—1. Since whemn> j+1,i — 1> j, the inequality certainly holds
for ¢ =j.
Hence,
1| n(j)+1 jl’l n(i)+1 ‘1 n(j)+1 1
> —|C - —|=C -
(@—J k ’ i; i K j k |—J+12|+2
1| n(j)+1 21 ni+1] L ap+alle 1 7| a1 12t n(i)+1
> _ Z B Z = _ Z
=7 1% ’i;ick (% 22,7 " 8jl% ‘;ik
Summarizing,
7 n(j)+1 it 1 n(i)+1
(F,00)] > = | )— S+ (3.50)
J =R

Then for all j > 4, and employing the positivity of the,, the definition ofA; in (3.45), and
B50) :
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1 2m(j+l) ] 11
(S S

1 7 1
f, dt>/ f, dt>—_/ )+
(F.aglxdt= = 5 (. 0)Ixc >8] okz

keA €A

h

k=2n(i)+1

! /1 2m<z c (‘)H’x dt / c ”‘x dt
= a4 Kk kUt — Kk k
8J on()) Zi 0 keA
7 1 om(j+ ) i— 11 1 om(j+1)
8_j/0 Z CE(])H‘Xkdt— / N H‘Xkdt
k=2n(

k2n

i - 7 d1a
n(l)+1‘ dt> - 5 2T
= 121 / 2 At g 2 g

by (3.44),

7 12*1 7 j-1_ 7 1j-1_ 11
> o Ty b > 1T o 51
= 12] 8j2i;i —12j] 8j2 —12j 8] | — 24 (3:51)

Now, define the sequenée:= {&};_; as follows:

sign((f,g¢)) if2"+Hl <k<2mi+D j=0,1,.--;
0, otherwise;

and define

w  om(i+D)

Z (f, 00 % % > {90 x(). (3.52)
k=1 J=0k=2n(j)+1

+1‘Xkdt

Employing the Monotone Convergence Theorem as earliecedimex, are non-negative, as

well as Holder’s inequality:
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o 2m j+1) 1 J  om(j+1)
Ifellp > ||fg||1—/ (Falx(tydt= [ lim (F g (et

k= 2n 0 7% [Sop—om)+1

1 om(j+1) 1 J om(j+1)
> [ fim (1,99 [x(t)dt = lim | It 9ol
0 Je JZ4k_2”<i>+1 Jz4k 2+
J /1 om(j+1) J 11
\(f,gk>\xk(t)dt2 lim ) ——dt=oo.

Z 0 k=2n(])+ ‘]~>0012424J

However, it is also true, using (3/52), and employing the btone Convergence Theorem

with partial sums as denoted in Definition 314.4, and Lerhndza3.

o J
ellp= Z (f,axt)|| = szék“?gk))(k(t) =
— lim |SFe (1) lp < lim || SFe || 171, <AE Tl <e

which is a contradiction. Thus, it must be that the systeqt,’_; is not an unconditional

quasibasis foL.P(T), since{gx}y_, was an arbitrary associated dual system. O

Corollary 3.4.9 (Existence of Positive Conditional Pseudobas@#$)ere exists a positive con-

ditional pseudobasis forf(T), wherel < p < .

Proof.
This follows immediately from Theorem 3.4.8 since the dgatharacteristic functions as
constructed there must also form a conditional pseudofsnise they form a conditional qua-

sibasis.
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We will use similar techniques to those used in Thedrem Bod#Bove the following result.

Theorem 3.4.10.Let{xn}»_; := {a1,a2,bp,a3,bs, - ,aj,bj, - }, where a(t) :x[zj,z 2,»,1] (1),

KFT 2 e T
bn(t) = X[ZH 2j ] for n> 2, as given in[(3.26), andia= 1, as in [3.27). Moreover suppose
oK+ 10 Jk+T

that {¢h(t)}y_; is a quasibasis in B(T), with 1 < p < «, where for each re N, there is a
sequence of non-negative constamzf‘,}'j\'gl, where N depends upon n, such thg} # 0, and

@(t) can be written as:

Nn
@m(t) = vix(t),
=1
then{g},_; is not an unconditional quasibasis.

Proof.

First, we demonstrate that we may make further assumptegerding the expression of
¢h(t) in terms of thex;(t). By the ordering of the;, the lengths of the supports of thg(t)
are non-increasing with respect jo Consideringg;, the support ok, (t) has the minimum
length of all the supports ofj, j = 1,---,Ng, say,supfxy,(t)) = [‘2%1, %] Now, subdivide
0,1] into intervals of the form[iz%ll,ziw], i=1,---,24. Now, letk; := ¢1, and notice that
@ (t) is constant and non-negative on each interval of this forimceSthere are'2 — 1 dyadic
sub-intervals 0f0, 1] of length strictly greater thag};, we see that we may in fact write:

2k1+l_1

@)= j:zzkl dixj(t),

for the appropriate non-negative constadfs,

Continuing in this fashion, we defing, analogously to how we definel, and we let
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kn = max{kn—1+1,¢n}, so that the sequend&,},,_, is strictly increasing, and:

2kn+l_g

@(t) = | _sz dix; (t). (3.53)

Notice that the indices over which any two sums of the forni3ib8), representingy(t) and
@n(t), wheren #£ m, respectively, are non-overlapping. In the following argants in this proof,
we will assume thagy(t) has the form in[(3.53).

Let G = {gn(t)}r_; C LYT) be some dual system fapm};_;, Where% +%] = 1. Proving
by contradiction, suppose that for eatk LP(T) the following expression converges uncondi-

tionally to f in LP norm:

[oe]

1
f= 3 (f.o0@. where (f.gy)= [ fodt
n=1

WhereR, denotes the Rademacher function, let

1
Ck = /0 Rngidt = (Rn, k) , (3.54)

sothatforalln=0,1,---:

8

Ri= % o (3.55)
K=1

where the sum converges®y in LP(T), and convergence is unconditional by assumption.

Fix n, and let,
a-1 o
wherea € {1,---,2%}. Note that on such an interva®_, 1 “oscillates” once, and so is 1 on

half of the measure of the interval, ardl on the other half. Recall that the sequekges

a strictly increasing sequence, and so by our representgiven in [3.58) for theg,, for all
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m=1,---,n, g(t) is constant on dyadic intervals of the folip - moreover, eack;, where
j=2km ... 2kntl_ 1 js constant on dyadic intervals of the fotg) form=1,--- ,n. Let
Mg :={M1l<m<n, andg,>0o0nlg}, (3.57)

and

Na = {{|METq, 2m < ¢ <211 andx, >0 onlg}. (3.58)

Then for a.e.t € |4, using the non-negativity of the, and the fact that they andx; are

constant on, in the range in the summation below, and equatibns{3.58)(&b5):

® n n Xl
S 1) =Rgualt) X g (t) = Reat) - 3 ( iy dlxg( ))
J

=1 Bi

—

=Rsa(t) = Y (crnn“ s d£“>, (3.59)

LENG
fora.et elg.

Now, letAy = {i > n|u(supd@) Nlq) # 0}. Therefore, for a.et € |4, using [3.59):

Ret1(t) = 3 € 1ai(t) = Rea(t) - > agtt y dpn

mel o Ee/\a

;M:,

[ee]

c'j‘”“qoj =3 c'j‘”“goj (t). (3.60)
1 i

i<

Hence, for a.et € I, by (3.59), and(3.60):
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[oe]

> e

j:n+1

2| 3 a0 -

n
Re+1(t) g (t)
‘ A

je%, ’Cii(nﬂ‘ ot

= ’Rkn+1(t)— Z aett Y dpl. (3.61)

LENG

Now we will obtain a lower bound on the following integral, edel, denotes the half of

la, from (3.56), on whichR 1 = 1, andl denotes the half df, on whichRy, 1 = —

dt (3.62)

1) — Ckn+1 gm
() meZa m Z 4

LENg

dt+ dt

|- Z oty dp
mel o

~1- Z oty df
la (ER meT o =

We must consider a few cases Jlcr, ckot Zpe/\a d">1onlg:

la

u(la) Kn-+1 m kn-+1 m
8.62 = —1+ C d"+1+ C d)" | > u(la).
2 mGZa " le a ‘ mEZa " 5;0 ! :

If1 >3 mer, Gty en, dM > —1 onlg:

p(la)
362 = 2"' (1—mgacm+1€;ad2“+1+m;acm+1€;adg“>zu(m.

If _1>Zmeracm ZFG/\ d onlg:

u(la) kn+1 m kn-+1 m
862 = 1- C d"—1— C d" | > u(la).
2 meZa " fz ! mZ " gez/\a ‘ !

eNg cl o

61



Hence, it holds thaf3.62) > u(l¢). Thus, employing(3.60):

dt

/Iajega‘c‘;nJrl‘(Pj(t)dtZ/la

kn+1
ci" (t)
je%a :

1
dt=> pla) = -

R1(t) — Z aett S dp
mel o lENg

la

Then using that thi, from (3.56) are disjoint, and (3.50):

j=n+1 d=1"la j=n+1
2kn 20 4
kn+1 _
> /l Z Ci ‘Q"J(t)dtz 2_—1
a=1""'a jeAq4 =1

That is:

)c'-‘““) @ (t)dt> 1, (3.63)

foreachn=1,2,---.
Now, let ) :=sign(c/™*), and& := {gj}%_;. Define,S§ ,(Re 1) = T )L 667 gy (1)
o1

Using the positivity of thep;, we can see that the partial surzibl‘él ‘c ‘ @; increase withN

to 35, )c‘j(”“‘ @; pointwise. Hence, the Monotone Convergence Theorem yields

dt

N

1
> & ai(t)
=

1 » 1 N 1
knt+1| — i kn+1| T
/ j;}cj @@= lim [ j;\c,- awdt=im [

1
N p P
3 &cf o) dt) = I 155+ (Res)
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; G
< lim ||| IRl <AZ 1< o,

by Lemmd3.4J6, and Holder’s inequality. Hence,

/01 ji)c'j‘”“) @ (t)dt < oo, (3.64)

It follows readily that given ang > 0, we can find sombl large enough that

< E. (3.65)
1

i—%ﬂ )Cij(nﬂ) 7

We now letn(0) = ki, and say than(0) = k(o (i.e. setr(0) = 1). Using [3.68), choose
m(1) >r(0) +1 so that,

N

]:

=, 3
Mz

Sincegy € LY(T) with 1 < q < oo, Lemmd3.2.R yields that lig,

n
Cj

— ‘<Rn,gj>‘ =0, for each
j. Using this, and(3.65) we may find1), andr(1), wherer (1) > m(1), n(1) € {kq}i‘”:r(o)ﬂ,
andn(1) := k;(y), so that:

1 o 1
/ S CT(O)“‘ ¢ (t)dt < o,
0 j=rM+1
and
n)+1] _ 1| no)+1
i ‘ <G ,
forall j € Ag:= {j Ir(0)+1<j<m(1), and c?(o)ﬂ’ > O}.

In a similar fashion to the previous step, usihg (8.63) theists somen(2) € N, where

m(2) >r(1) +1, such that
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m(2)
c?(l)H‘ @dt > g,

h

j=r

=M

+1

and there exist(2), andn(2), wherer(2) > m(2), andn(2) {kn}‘r’f:r(l)ﬂ, and we say that

N(2) == k;(2), such that:

C.

n(0)+1}
i )

n2+1| 1
< 5

c?(o)ﬂ‘ > O}, and

for all | er:{j\r(O)Jrlgjgm(l), and

n(1)+1) ,

Cj

n(2)+1 1
“ \ <

c?(l)“‘ > O}. We proceed inductively in this

forall j € Ay := {j Ir(1)+1<j<m(2), and

way, constructing sequences(i) }i> o, {n(i) }iZq, and{m(i) };~.;, wheren(i) = k;, such that:

1=r(0)<m(l) <r(l)<m(2) <---m(i) <r(i)<---,

ki=n(1)<n2)<---<n(i)<---

and for everyi € N:

1 .
/ s Cr-'(')H‘(pjdtzg, (3.66)
o 2 |Ci 3
j=r()+1



1
/O » ‘gojdt< ] (3.67)

j_r(|+1)+1

forall ¢=0,1,---,i, and
n(i+1)+1 n(¢)+1
c] ‘< 573 Cj ), (3.68)
. . ) . . 0H+1

forall¢=0,1,---,i,andj € Ay := {j Ir()+1<j<m(l+1), ) >O}

Now, consider the serigs;’_ %Rn(j)ﬂ. Applying Khinchine’s inequality, froni(3.14), there

is a positive constang, depending only upop, such that for aIM,N € N, whereM < N:

C(i%wjlzf

Hence, lettingl, N — o, we see that the sequence of partial sumzj’bjl %Rn(j)u is Cauchy,

and so it must be the case that for sofme LP(T):

1 (o]
T +l - z <fvgk> (18 (369)
k=0

where equality is irLP(T), and the second series converges unconditionallby®ifT) by as-
sumption.

Now, note that:

‘/ kadt— —/ Rn(iy+10kdt

1
</

dt

L1
(f _i;TRn(i)+l> Ok

65



applying Holder’s inequality,

f— Z Rn(i)+ ||9k||q
Letting j go to infinity, and applying(3.69):
) i1 n(i)+1 ) i1
_N = < -5 ZR.: =0.
lim \(f.9) i;iCk < lim /¥ i;iRn(l)—i—l p”ngq 0
Hence, for eachk € N,
< L nii+1
(f,a)=> ~¢ " (3.70)
i;' “

Therefore, for alk € A, and for everyj > 4 using [3.7D):

e 1 niy+1| o 1| n(j)+1 1 ngi)+1
|<f7gk>| = C Z = |C - —C
i; “ i ) ai
>_} Cn(j)+l‘_ } Cn(i)+l‘ :_} Cn(])+l‘ jl‘_} n(i)+1 } n(i)+1
S R S B A LR R R
1 j)+1 — n(j)+1
> - , (3.71)
] ‘ i= 1 Z—i— 2|+2 k

where the last inequality follows from the construction Imécﬂ(i)ﬂ. More specifically from

3.68):

1| _ | n(i-2)+D) 1 | no+1] 1 | e+
& = e <zl =g
forall ke Ay, and?¢ =0,---,i—1. Since when > j+1,i—1> j, this inequality certainly

holds whery = j. So,
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1y nra] L nie| |2 ag)ea 1
jl ‘ izi i “ I—J+12|+2
1 niyea| <L nier| |1 gl 1
> = - —|= i
=7 1% ‘ 2 |7 % 1322
_ 7 Cn(j)+1‘_j_1 :_Lcn(i)+1
8j k iZi i k
In summary, for alk € A;:
(i) 7 Cn(j)+1’ _jil }Cn(l)+1
= g 1 i; i
Then for allj > 4, employing the positivity of thes,, and [(3.68):
1 m(j+1) 1
f. dt>/ £ @t
b2 (tedlad= 15 iif.0dla
J
7/ =11 1
— @dt — / ck @dt
~8jJo keZA ) Z\ keA ‘
’ /1 MY iy (i)+1
= o7 ck @dt — / ck @t
8] Jo Gy ’ Z\ KER, ’
7 1 mi+1) 1 1 m(j+1) o
> —./ ck @dt — / @dt
81 Jo \ ’ Z\ 0 ‘
I 11/ © 7 111
> @t > -,
12] 0 - (J)+1 ‘ 12j Z j 2i+3

where we have usefd (3167),
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7 1121 7 j-1_ 7 1j-1_ 11
> >

> - 5 o> .
= 12] 8j2i;i_12j 8j2 —12) 8] | — 24

Now, define the sequenée:= {&},_, as follows:

sign((f,g0) ifr(j)+1<k<m(j+1),j=0,1,-;

0, otherwise;
and define
00 5 o m(j+1)
fe(t) .= > &(f, g0 a(t) = % > (g0l adlt). (3.73)
k=0 i=0k=r(J)

Employing the Monotone Convergence Theorem as earliezgdimeq, are non-negative,

as well as Holder's inequality:

1 o m1+1) J 1+1
Itelo=lfel= [ 3 5 (el = [ fm3 3 ltedlawd
k=r(
1 m+D 13 m(+)
> [Cimy S [(fadladi=lm [ S ((f.g0l gt
0 7% ZarP1 = 4k— r(j)+1

J 1 m(j+1)
= lim /
Ie 124 0 k—(zj) 1
by (3.51). However, it is also true, using (3.73), and emipigythe Monotone Convergence

u
24

:OO,

J
(1,901 &) fim 5

Theorem with partial sums denoted as in Definifion 3.4.4,lzadm& 3.4.5:

[oe]

% k(f, oK) o

J

J[on; k(F, 0 &

J

% k(f, 0k &

Ifellp=
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= lim |IFe(F)llp < im |ISFe]| 1111, < AE )1, < e

which is a contradiction. Thus, it must be that the systgg}, ; is not an unconditional
quasibasis fotP(T).

O

Theorem 3.4.11(Stability of Quasibases) et {x,}_; be a quasibasis for a Banach space, X,
with dual systerdan},_, in X*. Letl > € > 0. Suppose thafyn},_; is a system in X with the

property that,

£
Vil € 5
HX| yl” — 2|+]_Hal||

Then{y; }{* ; is also a quasibasis in X.
Proof.

Formally, define

[ee]

S(X) = _Zi<x,eu> (% —¥i)-

We show first that this sum converges, by demonstrating tigedequence of partial sums is

Cauchy. SupposH > M:

N

ZM ) (X —¥i)

N

ZA X, a)| ||xi — Vil

(X, &) (% —¥i)

N M1
< ZA [X]11ag][ 1% — yill < ||><||€ZN PRk
n= 1=

which goes to 0 abl,M — co.

EMZ

Z ) (X —Yi)
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Using a similar computation, we show ttfits bounded:

N
_N—>|

limw;<x,aa>(>q ~¥i)

00

ISO9 = ;(x,aO(Xa—yi)

‘ . (3.74)

Since the partial sums convergeS),

N
_I|m Z —Vi) <I|m Z\\X&H\Xl vill
=1
N
< lim a; x|
N%“iz [1X[] ||2'+1||a|| || |

Therefore||S|| < 1.

Now, defineT (x) := (I — S)(X) = x— §(x). Note thatT is invertible, and has bounded
inverse, sincgl S|| < 1, by exercise 2.40 in|, [3]. We now show that- S)(x) = 21 (X, &) V.

First note that the sequence of partial sum§ 8f; (x,a;)y; is Cauchy, and hence the series

converges, since:

N N
;ﬂ (X, @n) Yn ;A (X, @n) Xn

where both of the sums are from Cauchy sequences of partied flom S(x), and the repre-

N

%(X,arﬁ (% —Yn)|| +

n=

Y

sentations ok with respect to the quasibadis };* ;, respectively.

Now, consider the following:

- §1<x,an>yn—<l -5

00

ixan Z(Xanxn+z X,8n) (Xn —Yn) ||,
n=1 =1

using the fact that the second and third sums converge,

70



8

n=1

N N
(X,@n) yn + lim ( > Xan)xa+ ) (X,an>(xn—yn)>H
n=1

- |3 by m (n§1<x an>y> ' 3 (ka3 (e =0
Hence,
T(x) = 5 (X an) Yn.
n=1
Givenx € X:
x=T(T1(x) = _2<T1(X)7ai>)’i = _2@@ (T~ a) vi. (3.75)

Let {bi}>, = {(T"1)*&},. SinceT1is bounded, andT~|| = ||(T1)*|, it follows that
(T~YH*a € X*. Hence, we can sek (3]75) yields tHst}> , is a quasibasis with dual system
{oi}p, X

0]
Theorem 3.4.12Stability of Unconditional Quasibased)et {x,},,_; be an unconditional qua-
sibasis for a Banach space, X, with dual sysfemy;,_; C X*, in terms of which expansions of
elements of X are unconditional. Let> € > 0. Suppose thafyn},;_; is a systemin X with the
property that,

=l < s
nE E
Then{y; }{* ; is an unconditional quasibasis in X.

Proof.
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Let S(X) := Sp_1(X,@n) Xn—Yn), andT(x) = (I —S)(X) = S _1 (X,@n) ¥n, as in Theorem
[3.4.11, which then yields thatyn},_; is a quasibasis with a dual system X1, given by

{(T~YH*an}®_;. It remains to show that,

. n21<x’ (T_l)* an>yn’

converges unconditionally. Let(n) := {i(1),i(2),-- -} be some permutation &f.

Then, computing the norm of the difference betw&grandSy for N > M:

N

ZM X (T H*aim) Vi)

n=

N

Zﬂ % (T aim) (i) = Yin))

n=

< +

N
n;ﬂ <T71<X)7 ai(n)> (Xi(n) _yi(n))

N
+ n;v‘ (TH%), 8i(n) ) %i(n)

A N
= ngv\ HT*l(X)H Hai(n)H Hxi(n) —Yi(n)H + n;v\ <T71(X)7ai(n)>xi(n)

N 1 N
< HT <X)H gn;/i 2i(n)+1 + n;A <T (X)7a|(n)>x|(n) .

Taking the limit asN,M — o of both sides of the previous inequality, and using the udcon

tionality of {xn};_1:

M — 00

Hence, the sequence of partial sums of
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2< >>yu<>

is Cauchy, and so it must also converge. Though it is not redudb show thafy;};* ; is an
unconditional quasibasis, note that convergencg, tegardless of the permutatian(n), is
shown in Corollary 3.11 of[ [3]. Henclyi}” ; is an unconditional quasibasis.

O

Theorem 3.4.13(Non-Existence of Positive Unconditional Quasibas@$)ere does not exist a

positive unconditional quasibasis foP(T), wherel < p < co.

Proof.

Proving by contradiction, suppose thigh}r_; is a positive unconditional quasibasis for
LP(T), where 1< p < o, with some dual systerfan},_; C LY(T), in terms of which expan-
sions of elements oX are unconditional, and Whe%i‘—i—%] = 1. Lete > 0. Since the dyadic
characteristic functions are completelify(T), for eachn € N, there exists a dyadic step func-

tion x” and strictly positive constantyi:jn such that

Z Vlnxl < 2n+1||an||

Then, by Theorer@lﬂ]{z?ﬁl yfx?}oo . is also an unconditional quasibasis. Noting that
n=
y}" > 0, we may apply Theorem 3.4110 to yield that

Nn @
> VX
=1 n=1

must be a conditional quasibasis. Hence, we have obtaimeddsired contradiction, and it

must be tha{yn},,_, is a conditional quasibasis.
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Corollary 3.4.14 (Non-Existence of Positive Unconditional Bases f(T)). There does not

exist a positive unconditional basis fot(T).

Proof.
This follows directly from Theorem 3.4.113, since any pesitinconditional Schauder basis

is a positive unconditional quasibasis for the same space.

3.5 Hamel Bases

Theorem 3.5.1.Let L be a linear space of functions: £ — F, whereF = C or R, with the

property that given any real-valuedd L, the functions defined by:

00 = f(x) iff(x)>0
0 if f(x) <0

0 if f(x)>0
f_(x):= )
—f(x) iff(x)<O

are bothin L. Note that in this case~ f + (—f_). Suppose also that given a complex valued,
f € L, where f=g+ih, both g, and h arein L.
Then, there exists a Hamel Basis M for L, such that eachM has the property that

f(x) > 0Oforallx € E.

Proof.
Let P be the family of all finitely linearly independent subsetd p€ach of which contains
only functions that are non-negative. Cleafys non-empty, since @ P. Consider the partial

ordering onP given by subset inclusion. We will first show that every chaintotally ordered
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non-empty subset d&?, has an upper bound, with the goal of applying Zorn’s Lemmatt@in
a maximal element iR, [14].

Let B be a chain irP. Let B be the union of the sets B. Clearly,B C L, and eachf € Bis
non-negative. We must show tHais finitely linearly independent. LQtfn}wzl C B. For each
n=1,---,N, there is some s@&, € B such thatf, € B,. SinceB is well ordered, there is some
no, where 1< ng < N, such thaB, C By, foralln=1,--- ,N. Hence{ fn}r’\,‘:1 C By, and so
{fn}w:l is a linearly independent set, sinBg € B. Hence B is finitely linearly independent,
and soB € P.

Because every chain Phas an upper bound i, we may apply Zorn’s lemma to obtain a
maximal elementM, in P, [14] . SinceM € P, M is finitely linearly independent.

We now show thaM spand.. Let f € L, and suppose thdix) > 0 forallxc E. If MU{f}
were finitely linearly independent, the maximality ldf would be contradicted. Hencé,can
be written as a finite linear combination of elementdvbf Now, letg be an arbitrary element
of L. Theng= RgQg)+ —RgQg)- +ilm(g)+ —ilm(g)_, whereRgg)+,Rgg)_,Im(g)+, and
Im(g)_ are all non-negative. But then by what was argued earliehisgaragraph, it must
be thatRegg)+,ReQg)—,Im(g)+, andIm(g)_ are finite linear combinations of elementsMf
Therefore,g must be expressible as a finite linear combination of elesnefl. Hence,M

forms a Hamel Basis fdr whose elements are non-negative. O

Corollary 3.5.2 (Existence of Positive Hamel Basegjhere exists a Hamel basis foP(E),
0 < p < o, where E=RY or T9, where de N, with the property that each element of the basis

is pointwise a.e. non-negative.

Proof.
This follows from Theorern 3.5.1, sint®(E) is a linear space, and givéne LP(E), where
0< p< o, itisthe case thaRg f) € LP(E), Im(f) € LP(E), and for any real-valued, f. , and

f_, as defined in Theorem3.5.1, are both.HE). O
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CHAPTER 4

THE WINDOWED WALSH SYSTEM

4.1 Properties of The Walsh System

First, we establish some basic background properties &Mish system, as given in Definition

25.1.

Lemma4.1.1.V ke {0,1,---,2N -1}, xkn € {sparfwy) : 1 < n < 2N}. Moreover,

2N
XkN() = (XkN> W) Win(X),
m=1

for all x € [0,1]\ {4 |k=0,1,---,2N}.

Proof.

Letk € {0,1,---,2Y — 1}, and recall thasupfxxn) = [k2~N, (k+1)27N]. To determine
{XkN,Wm), wherem > 2N, it suffices to consider the behavior wf, on [k2~N, (k+ 1)2~N].
Suppose than—1=2" 2% 4 ...+ 2™ wheren; > n, > --- > n, > 0. Then by how it is
defined,sign(wmn(x)) changes exactly once ¢k2 ", (k+ 1)2-™], at its midpoint. Savm(X) is
1 on half of the interval[k2—", (k+1)2-™], and—1 on the other half. Sincen—1> 2N —1,
we know that[k2=N, (k4 1)2-N] is a non-overlapping union of an even number of intervals
of the form[k2~™, (k4 1)2~™], leading us to conclude thaiy(X) is 1 on exactly half of the
measure ofk2™N, (k+1)27N], and—1 on the other half of the measure. HenGa,n, Wm) =0
for m> 2V, Since the Walsh system is an orthonormal basid f¢f’) (see explanation given

with Definition[Z.5.1):
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0 2N
Xkn(X) = Zl<xk,N,Wm>wm(X) = Zl<xk,N,wm>wm(X),

where the only for which the equality may not hold are in the s{:&kﬂk =0,1,---2V}.

Lemma4.1.2.
2N
XN (X) = Z <Xk7N,Wn>(Wn—Wm)
n=1,n#m

fork=1,2,---2Y -1, and me {1,---, 2N} .

Proof.

Using Lemma4.1]1, and the fact that forn < 2N, wh(x) = 1 forx € [0,2N]:

N N
XoN = Z <XO,N,Wn>Wn =2N Z Wh.
n=1 n=1

So:

2N
N
Wh = 2" Xo,N — Wm.
n=1,n#m

Using this fact, we compute for< k < 2N —1:

2N 2N

oN
Z <Xk,N,Wn>(Wn(X>—Wm(X>): Z <Xk,N7Wn>Wn—<Xk,N7 Z Wn>Wm

n=1,n#m n=1n#m n=1,n#m

2N
= Z <Xk7N7Wn>Wn — <Xk7N72NXO7N —Wm> Wm

n=1n#m
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2N
= 3 (kN W) Wa — (XicNs 2 XoN) Win + (XN Win) Wen.
n=1n#m

2N
= Z <Xk,N7Wn>Wn = XkN>
n=1

using Lemma4.1]1.
[

Lemma4.1.3.x; xm(X,y) can be written as a finite linear combination of functionshef torm:

Wi (X)W (Y) — Wa(X)Wh(Y),

whereab<2M and j=1,2,---,2M -1, k=1,2,--- ,2M — 1. Specifically:

M M
XikM&Y) =% % (XiM:Wp){Xkm;Wn)
n=1,n#b p=1,p#a

- ([Wp(X)Wn(y) — Wa(X)Wh(Y)] — [Wa(X)Wn(y) — Wa(X)Wh(Y)] — [Wp(X)Wb(y) — Wa(X)Wh(Y)]) -

Proof.

Employing Lemm&4.1]2, whereda,b<2M,j=1.2,..- 2M_1 anck=1,2,--- ,2M—1:

XikMm(%Y) = XjmX) - Xikm(Y),

oM oM
:< > <x,M,wp>(Wp(X)—wa<X))>< <xk,M,wn>(wn(y)—wb(y)>>
p=1p#a n=1n+b



oM oM
= 5 T (XimWe) (X W) (W (X) — Wa(X) (Wa(y) —Wb(Y)))
n=1n#b p=1p£a
oM oM

= XjM,Wp) { XkM,W
n:;¢bp:§)#a<‘ p) h)

- ([Wp(X)Wn(y) — Wa(X)Wh(Y)] — [Wa(X)Wn(y) —Wa(X)Wh(Y)] — [Wp(X)Wb(y) — Wa(X)Wh(Y)]) -

The idea for the main technique used the following lemmactvig a standard fact regard-
ing the Walsh system, comes partially from a proof of JosekDihough he has not formally

published an argument of this particular type.

Lemma 4.1.4.Let f € L1(T), and suppose that:

<Wn, f) — O,
foralln € N. Then fx) = 0for a.e. xe T.

Proof.
First, notice that we may reduce this to answering the que$tir real-valued functiond,,
since(wy, f) =0, implies thatw, Rg f)) = (wy, Im(f)) = 0. Hence, we make this simplifying

assumption. Now, define:

F(x) 1= /Oxf(t)dt.
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Then f*(x) is absolutely continuous and for axc T, (f*)'(x) = f(x), sincef € LY(T),

[12]. We will use induction to show thait*(x) = O for all x € T of the form 2LN wherek e

0,1,---,2N, andN =0,1,---. Fix N. Computing for the endpoints= 0, andx = 1:

£ (2%) — (0) :/Oof(t)dtzo,

and

F(1) = /01 £(t)dt = /01 F(t)wy(t)dt = (wy, f) = O,

Now, suppose that* () =0 forallk=0,1,--ky < 2¥ — 1. Computing, using Lemnia4.1.1:

2N 2N
(XioN, f) = < Zl<Xk°’N’W”> (Wn), f> = Zl<Xk°’N’W”> (W, f) =0. (4.1)

But also,
ko+1 ko+1 ko
[N ES e ekt (ko
<XkO,N,f>_/Ek% f(t)dt_/o F(t)dt /O f(t)dt = f < ~ ) i <2N).

Combining this with[Z11), yield$* (&) = f* () = 0. SinceN was arbitrary, we have
now shown thatf * is equal to zero for all dyadic rationals Th Sincef* is continuous, and
the dyadic rationals form a dense subseTpfve must then have thdt (x) =0 for all x € T.
Hence,(f*)’ (x) = 0 for all x € T. Sincef(x) = (f*)’ (x) a.e. inT, we have finally obtained the

result thatf (x) = 0 fora.ex € T.

4.2 The Windowed Walsh System and Positive Exact Systems
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Let{wn};_, denote the Walsh System as given in Definifion 2.5.1, whicm$oan orthonor-
mal basis folL?(T), as described directly following the aforementioned d&éini Recall that
the Walsh functions form a complete system i{T) for 1 < p < « as a result of Lemnia4.1.2,
by virtue of the fact that the dyadic characteristic funeti@re complete in those spaces.

Results in this section include the classification of windavhich yield a complete system
when windowing the Walsh System with one deleted elemedtsame properties of the set of
such window functions, as well as a demonstration of the det@pess, and thus uniqueness
of the biorthogonal system for the given windowed Walsh &ystvith one deletion. It appears
that Kazarian may have completed some similar related wofl%], which is presented in
Russian. Here we provide explicit and sometimes constrigtioofs of our results in particu-

lar cases.

In this section, leG := {x|g(x) = 0}.

Lemma 4.2.1.For any m=1,2,---, and g€ LP(T) \ {0} with 1 < p < oo, it is the case that
Wn(X)g(x) € LP(T).

Proof.

</01|Wn(x>g(x>|pdx)‘l) - (/01|9(X>|pdx)‘l) = [|9llLp(T) < co.

Lemma 4.2.2.If é €L9([a,1]) forall 0 <a<1,1<q< o, then for all mn € N, with m# n,
e )

Proof.
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We begin by noting thatv,(X) = Wm(x) = 1 a.e. on any intervgD, 2], if 2N > mand

2N > n. Hence, assuming2> m, n:

1 a 1
J o=
0 2-N

sinceé € L9([2=N,1]) by assumption.

Wn(X) — Wimn(X)
9(x)

qd q ' 1 d
x<2 / X< oo,
2-N [g(x)[

Wn(X) — Wmn(X)
[¢]

()

O

Lemma 4.2.3.Given1 < p,q < «, with 2+ ¢ =1, g€ LP(T)\ {0} and ; € L%([a,1]) for

all 0 <a<1, we have that for any ra N, {g(X)wn(X)}5_1 n..m has a biorthogonal system

{ Wn(X) —Wm(X) oo

T n-1nzm iN L(T). Thus, both sequences are minimal.

Proof.
First note that the systenfin(X)9(X) }fr_1 2m: and{%};’f:m#m are inLP(T) and
LY9(T) respectively, by Lemma4.2.1, and Lemima4.2.2 respecti#elyn # m:

(g0, "X 0Dy — [ g (M)

— /Olwn(x)zdx— /Olwn(x)wm(x)dx: 1-0=1,

where we have used the orthonormality of the Walsh system(i).

Fork # n, andn, k = m:

(w0900 L mC) ) — [ i) (ML) ) o

1 1
_ / Wi (X)Wic(X)dX / W (X)Win(x)dx = 0— 0 = 0,
0 0

again using the orthonormality of the Walsh system. Siryilar order to showtha{w

(&9
X) n=1,n#m

has biorthogonal systefg(X)Wn(X) } 1 nzm We note that:
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,wn<x>g<x>> ~ &en

for k # n, andn,k # m.

Theorem 4.2.4.The systemg(X)Wn(X) }_1 nzm IS cOMplete in B(T), 1 < p < oo, if and only
if g(x) € LP(T)\ {0}, 4(G) = 0, and ¢ LY(T), whereX + 1 = 1.

Proof.

First supposg(x) € LP(T)\ {0}, é ¢ L9(T), andu(G) =0, recalling thatG = {x| g(x) = 0}.
By way of contradiction, suppose th{agwn}‘r’f:m#m is not complete. Then there exists some
f(x) € LYT), || f||q # O, where(gwn, f) =0 for allne N, n# m. Sincef € LP(T), andg
L94(T), Holder’s inequality yields thatg € L1(T). Hence, it makes sense to wrifan, fg) = 0
for all n m, in light of Lemmd4. 14 .

Now, consider the functiofig — (Wm, fg) wm € LY(T). Computing fom # m:

(Wn, fg — (Wm, 1) Wm) = (Wn, fT) — (Wm, fT) (Wn, Wm) =0,

and,

<Wm7 fg_ <Wm7 fG> Wm> = <Wm7 fG> - <Wm7 fG> <Wm,Wm> = <Wm7 fG> - <Wm7 fG> = 07

by the orthonormality of the Walsh systemLiA(T).
Therefore,fg— (W, fg) wm € LY(T), and(wy, fg— (W, fg) wm) = 0 for alln € N. Apply-

ing Lemmd 4.1, we see thét) — (Wn, fg) Wy = 0 a.e. oril, and sofg = (W, fg) wy a.e. on
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Now, since]| f||q # 0, andu(G) = 0 yields|| fg||1 # O, it must be thatwm, fg) # 0, because

fg= (Wm, fg) Wm . Then for a.ex, % = f € LY(T), which implies:

_ <Wm7fG>Wm
Itle=—"5 —

o 19}

:00,
q q

since (W, fg) # 0. This contradictsf € LY(T). Hence the systenig(X)wn(X) ;-1 nzm IS
complete.

Now we assume that the syste{g(x)wn(x)};°:17n¢m is complete irLP(T), and assume first
by way of contradiction thag(x) ¢ LP(T)\ {0}. It is clear that ifg(x) = 0, that we obtain
a contradiction, since we only have functions equal to zeeo & the system. So we sup-
poseg(x) ¢ LP(T). But then||gwn||p = ||g]|p = », so the system is not ibP(T), which is a
contradiction as well.

Recall thatG := {x|g(x) = 0}, and suppose that(G) > 0. Thenxg ¢ [0], (that isxg is not
in the equivalence class of 0 il (T)), xg € LYT), and it is the case that for all=1,--- , oo,

n=#m,

<an7XG> = 07

contradicting the completeness{@(X)Wn(X) }r_; nzm in LP(T).
Itis left to show that we obtain a contradiction if we assuge)wn(X) }n_; . is complete

in LP(T), and3 € L9(T). In this case,

Wm(X)

a(x)

O<' < 00,

“lats

q q
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Also, foralln=1,--- joo,n£m,

<an,%> = <Wn,Wm> = 07

which contradicts the completeness of the system.

Lemma 4.2.5.The set, W of window function$xg for which {g(x)wn(X)}}_; ,, ., is complete

in LP(T), is not open, not closed, and not convex MT), for 1 < p < co.

Proof.

We first show that the set of window functions is not closed d eatisfy 3 + ¢ = 1. Take
fn(X) := xd, for n = 1,2,---. Then{fo}r_; CW, since{fn}y_; C LP(T), u({x\xg =0}) =0,
and;lg ¢ LA(T). Howeverxd — 0 in LP(T) by the Lebesgue dominated convergence theorem,
and 0¢ W. HenceW is not closed.

Now we show thaWV is not open. Letfr(X) =0 on[0,27"], and f,(x) =x on (27", 1] for
n=12,---. Thenf, ¢ W, because:({x|fn(x) = 0}) = 27" # 0. However,fy(Xx) — xin LP(T)
by the Lebesgue dominated convergence theoremxy and.

We demonstrate th&l is not convex: Note thate W, and—x € W. Let

G(t) :=tx+ (1—t)(—x), we see thaiG (3) =0, and O¢ W.

In the following theorem, to obtain completeness of thethimgonal system t¢gwh }nza,
notice that we strengthen the condition érirom being inL9([a,1]) for 0 < a < 1 to being

continuous on these intervals.
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Theorem 4.2.6.Let% be continuous offy, 1], forall 0 < y <1, me N, andu(G) = 0. Then
Wn(X)—Wa(x) | % i i
the systen{ G }n_lvn#a is complete in B(T) for 1 < q < co.

Proof.

For the proof, it suffices to show that dyadic characterigtnctions, xx N, With k # 0, can

be approximated by functions of the given system. &ix 0, andN € N, so we have fixed
[0,27N]. Define:

Ql=

£
EN = — .

SUBep2-n,1([T(X)])
By the continuity o% on [27N. 1], for somed > 0, for allxy,x; € [27N, 1] with [ —Xp| <

: ‘T}Q) — Wl@)‘ < &n. ChooseM < N large enough that2! < §, 2V > a, andM > N. Define:

(4.2)

Aim=[i2M, (j+1)27M],

Cjm = Sup g(x),
XEAj M

and notice thak; m(X) = Xa, u (X), and sinceu(G) = 0, ¢j m # 0. Using the continuity oé, we

find a bound for the following integral, whejje> 2V—N, so thatiiVr >

1 1
CjWXJ’M()Q - %XLM(X)

q

dx<egy [ ldx=¢gl2™™. (4.3)
Ajm

1

cim 9(x)

1 q
i o |
0 Ajm

Now we will show the approximation gfa n Wherea € N, anda < 2N —1 by functions in

our system. First, witM andN as above, defing:= {j € N|Aj m € Aqg N} Then the following
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equality holds:

XaN= > XjM- (4.4)
2

For eachj € J, by Lemmd 4.12x; m(X) is a linear combination of functions of the form
Wh(X) —Wa(X), wheren # a, since ! > a, and the definition o implies that eachj <2V —1.

Therefore:

for some constantd, andny # a, and som& € N.

Hence:

q
dx,

1
X—/
O

Xa.N(X) — % %XLM()Q

Ag N

q
Cj,m < GMm
jZCJMXlM X) %G(X)XLM(X)

since the support of the second sum is sinfyy, and the supports of thg v are disjoint,

q

——XjM(X
C]M

1
ij,M(X) g() dx—Z\cJM} /A,M

-5 e q/
Sl

q
S[ sup (\G(X)D] ZSS-ZM,
xe€[2-N. 1] IE
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sincej € Jimplies thatﬂ"vr > ﬂlq because > 1, and employind (4]3),

Mo €
< | sup ([IX¥)))| sxen2 " <oy <6,
xe[2-N 1] 2NN 2N

using (4.2).
]

Theorem 4.2.7.Let u denote Lebesgue measure, ahd-3 =1, 1 < p,q < . Letgx) €
LP(T)\ {0}, let Tlx) be continuous offy, 1] for all 0 < y <1, 5 ¢ L9(T), andu(G) = 0. Then
Wn (X) —Wa(X)

{9(X)Wn(X) oy nza @nd {T}m L are exact systems in°(T), and L9(T). More-
’ n=1,n#a

over, they are the unique biorthogonal systems to one-anoth

Proof.

The biorthogonality of the systems follows from Lemma 4.2The completeness of the

(0 —=wa(¥) | ©

00 Wn
systemg g(X)Wn(X) tn—1n+a and{ X }nan#a
from Theoreni 4.2]4 and Theorém 412.6, respectively. Theuamess of the two biorthogonal

in LP(T) andL9(T) respectively, follows

systems follows from Lemnia 2.3.7, since both systems aret.exa

O

Theorem 4.2.8(Existence of Positive Exact System with Exact Dual fot. p < «). There
exists an exact systefriy}_, C LY(T) for each q withl < ¢ < o, where for all k, >0 a.e.,

with an exact dual system.

Proof.
Suppos% + %, =1. Letg(x) = —(xé). It clear thatg € LP(T), % is continuous oy, 1] for
alo<y<1,and tha% ¢ L9(T). Then the system

{ Wn(X) — W (X) }m
- (Xa> n=2
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is exact, and has an exact dual system, as given by Théorewh. A\bte thatwv; (x) = 1, and
that for allx € T and alln= 2, - - -, we havew,(x) = +1, a.e. Hence:

Wn(X) —Wi(X) _ 1—wn(X) -0

— Y

—(x) Xi
forallxe T,andn=2,---.
0]
In the following theorem, where we take the original exacitegn to be inL'(T), notice
that we do not claim that the dual system is exact. In fact, axemo hope of finding an an
exact dual system, since it would need to be a complete sequieh™(T). No such sequence

can exist sinc&”(T) is not a separable space.

Theorem 4.2.9(Existence of Positve Exact Systems fd(T)). There exists a positive exact

system for &(T).

Proof.

Consider the systerif,}&_,, where fq(t) := wi(t) —wn(t). First, f, € LY(T), since the
Walsh system is a subset bf(T). Also, becausev (t) = 1 fort € T, andwy(t) takes on only
the values of 10, or —1, f,(t) > O for allt € T.

We now demonstrate thaf,}>_, is minimal by showing thafwn(t) }>_, is a biorthogonal

system. Note thafwn}p , € L®(T). Forn,me {2,3,---}, with n # m:

(fn, Wim) = (Wn — W1, Wm) = (Wn, Wm) — (W1, Wm) =0,

using the orthonormality of the Walsh systenL/{(T).
Forn=me {2,3,---}:

(fn, Wn) = (Wn — W1, Wn) = (Wh, Wn) — (W1, Wm) =1,
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again using the orthonormality of the Walsh systerh3(fT).
It remains to show thaf f,}*_, is complete inL(T). Letg e L*(T), and suppose that

(fn,g) =0forallne {2,3,---}. Thenforne {2,3,---}:

0= (fn,g) = (Wn,g) — (W1,0),

and soforalhe {2,3,---}:

(Wn,g) = (W1,0) . (4.5)

Now, becausg € L*(T) C L?(T), and the Walsh system is orthonormal, Plancherel’'s Equal-
ity gives, combined with (4]5), [3]:
> gl5= Y ltwn.0)* =Y [(wi, 0,
n=1 n=1
which is infinite unless 6= (wy,g). Hence,(w,,g) = O for all n € N. By the completeness of

the Walsh system ib?(T), we must havg = 0 a.e. orT. Hence{ fn}*_, is complete.

Since{ fn}_, is complete and minimal, it is exact.
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CHAPTER 5

PRODUCT SYSTEMS

5.1 Properties of Product Systems

Theorem 5.1.1.Let F := {fr}nen, and G:= {gm}men be systems in(T), 1 < p < o, not

containing[0]. Then F and G are complete irfP(T) if and only if Fo G is complete in B(T?),

where Fo G := {fn(x)gm(y)}(n,m)eNz'

Proof.

Let q be such that + % = 1. In the proof, we will usé| - ||, to denote boti.P(T), and
LP(T?) norms for conciseness, as context will allow the readerfteréntiate between the two
meanings. First, suppose thHab G is complete inLP(T?). We will show thatF is complete
in LP(T), and note that the argument f@ being complete follows analogously. Proving by
contradiction, letf € LY(T) be such thaf f||q # 0, and suppose thaf,, f) = 0 for alln € N.
Then,

(fa(9gm(y), F(X)X01(Y)) = //fn )am(y) F(x (X)X 0,2 (y)dxdy

/ dX/ gm 01] y fn, <gm7 01> 0

for all (m,n) € N2, Then, it must be the case thek(x) X(0,1 () |lq = O sinceF o G is complete

in LP(R?). Hence:
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0= (/01/01‘f(X)X[O,l](Y)‘qudY)(l] = </01|f(x)|qu>é (/Ol}x[ql](y)\qdy)‘l’ = flla

contradicting|| f||q # 0. Thus,F is complete. Similarly, we may prove th@tis complete.
Now, suppose thaE andG are complete ir,P(T). Let h(x,y) € LP(T?), and lete > 0.

We know that we may approximakgx,y) by products of characteristic functiong (X) xa(y),

whereA andB are dyadic intervals, so we choose a dyadic step functiohato t

l

SinceG is complete irLP(R), we can choosd.”g" so that:

I

We subsequently choosfé’) fl(n) (X) such that :

<&
3

N
h(X7y) - Z VnXIin (X)len (y)
n=1 p

&
3N [|yaxii, 9|,

Kn
NINEDY d&”)gﬁ”)(y)H <
k=1 p

&
PR |,

Vo, (X) — l;CI(n) fl(n) (X)

Noting that

KLZ q" " (X)> ' ( KZ a9 <y>>] € spariF o G),
k=1

=1

n=1

we compute:
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N Ln Kn
ren-|(8rn) (St

N

Kn
< |hxy - [vnxhn<x> > d&”)gﬁ”)<y>]
=1

n=1

p

N Kn N Ln Kn
3 [ynxhn<x> kzld&”gﬁ”)(y)] -3 [(;of’” f.<”><x>> - (kz 4"g” <y>>]

N Kn
Z Xy 09X (Y X0 - Y [VnXIin(X) S d.ﬁ”)gf(”)(y>]
n=1 = p
A R
+[Y [Z de g (Y) (VnXI,n Zq )]
n=1 | k=1 p
£ o < (M) ()
<3+ 2 Iwxi, Ol x5, v) = 3 dgc ()
n=1 k=1 p
S
1D A& W [voxiy, (X ZC.
n=1||k=1 p p
P £ [ g £
= YnXii, (X + de "9 (¥) =&
<5 2 o |2 4 N[z d80 o]
HenceF o G is complete irLP(T?). O
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Theorem 5.1.2.Let F := {fr}nen, and G:= {gm}men be systems in(T), 1 < p < e, not
containing[0]. Then F and G are minimal inA(T?) if and only if Fo G is minimal in LP(T?),

where we define B G := { fn(X)gm(Y) } (nm)enz-

Proof.

First suppose tha andG are minimal inLP(T). Then, there exist biorthogonal systems
F :={fa}nen, andG := {Gm}men to F andG in LY(T) respectively, wheré + 1 = 1. Consider
the systent o G := { fu(X)Gm(¥) } (nmyenz in LY(T?). We have:

. 1,1 -
(n9am(). Fi098c) = [ n00gm(y) T} (ely)cxly

1 1 _ 3 )
/0 fn(X)fj(X)dX/o am(Y)G(Y)dy = (fn, fj) (Gm, G) = Snm).(j .k

and soF o G has the biorthogonal systeffe G C L9(T?), and is thus minimal ih.P(T?).

Now suppose thaF o G is minimal in LP(T?), with dual systen{ﬁnvm(x,y)}(nym)eNz C
L9(T?). We prove by contradiction, assuming tifais not minimal (in the case that we suppose
G to not be minimal, the argument follows analogously). SiRée not minimal, it must be that

for somek, fy € Span{ fn}nsknen. Hence, for soméyn}yy_; € span fn}nsknen:
Iim || f—yal| =0.
DefiningHn(X,Y) := ¥n(X)gm(y), wherem € N, we compute:

i ([ [ oy - fk<x>gm<y>|pdxdy)%’

1

—im ([ on070y)” ([0 c019)
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~ il I~ ) =0

usinggm € LP(T). Hence, lim . Hn(X,y) = f(X)gm(y) in LP(T?).

Sincel—~|(k7m) (x,y) is continuous:

lim <Hn(x,y), H~(k7m) (X7y)> = <fk(x)gm(y)7 |:|(k7m) (X7 y)> = 1’

n—-oc0

by biorthogonality. Also:

lim <Hn(X, y), H(k,m) (X, y)> = r'\inoo <Yn(x>9m(y>a |:|(k,m) (X, Y)> =0,

n—oo

since eacly, is a finite linear combination ofi,, wheren £ k. This contracts the fact above that
we found this limit to be equal to 1. Hende must be minimal. A similar argument shows that

G must be minimal as well.

5.2 The Windowed Walsh Product System

Since the Walsh system is completelif{T), as described following Definition 2.5.1, The-
orem[5.L1 tells us that multiplying the Walsh system byffitseform {Wn(X)Wm(Y) }(n m)enz
results in a complete systemlif(T?), whereN? := {(m,n) | m,n € N}. In fact, the Walsh prod-
uct system forms a complete orthonormal system, and so isia toaL?(T?). Results given
here include the classification of windows which yield a ctetgosystem when windowing the
Walsh product system with one deletion, as well as a denatrstrof the complete, and thus
unique biorthogonal system for the Walsh product systern aiiie deletion. In this section, let

F=N2\{(a,b)}, and letG := {(x,y) | g(x,y) = O}.
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We first prove the two-dimensional analogy of Lenima 4.1.4.

Lemma 5.2.1.Let f € LY(T?), and suppose that:

(Wn(X)wm(y), f(x,y)) =0
for all (m,n) € N2, Then f(x,y) = Ofor a.e.(x,y) € T?.

Proof.
Let f(x,y) € L1(T?), and suppose thaw,(X)wm(y), f(x,y)) = 0 for all (n,m) € N°. Then
foryo € T\Y, whereY := {X ke {0,1,---,2V} N e N}:

0= <Wn(X)Wm<y0)7 f(X7 y0)> = <Wn<X), f(X, y0)> )

or

0 = (Wn(X)Wm(Yo), F(X,Y0)) = (—Wn(X), f(x,¥0))-

Note thatu(Y) =0, so that for a.eyg € T,

0= (Wn(x), f(X,y0)),

for eachn € N. Applying Lemmd4.14, we see thitx,yo) =0 fora.exe T, if yp e T\Y.
Now, letA = {(x,y) C T?| f(x,y) # 0} \ (T xY), and notice thaAuU (T'\Y) = {(x,y) €
T?| f(x,y) # 0}. We wish to show thagi(AU (T x Y)) = 0, where we understand thatmay

denote one or two-dimensional Lebesgue measure, depemgidmgcontext. Now:

HAU(T xY)) = //XAU('JI‘XY)dXdy: //XAdXdy+ //XTdeXdy

sinceA andT x Y are disjoint. By Fubini's theorem [12],

96



//XTdeXdy:/T</Y1dy) dx:/Tde:O.

Again, by Fubini’s Theorem:

1 1
/ / Xadxdy= /0 ( /0 xAdx) dy=0,

sincexa(x,y) = 0 for a.e.x given anyy € T. Hence u(AU(T xY)) =0.
Thereforef (x,y) = 0 for a.e.(x,y) € T?.

Lemma 5.2.2.For any (m,n) € N2, and gx,y) € LP(T?)\ {0}, Wn(X)Wm(y)g(X,y) € LP(T).

Proof.

<//|W” JWin(y Xy|dedy) (//ngylpdxdy) <o,

O

Lemma 5.2.3.Let1l < q < 0. If 1 € L9(T?2\ [0,y) x [0,y)) for all 0 < y < 1, then for all

(). (1. k) € N2, with (m.n)  (j. k), RGN0 € LA(2).

Proof.
Suppose that™is strictly larger than each ah,n, j,k. Then by how they are defined,
each ofwn, Wi, Wj, andw is equal to 1 a.e. ofi0,27N,]. Thus, a.e. of0,2N] x [0,27N],

Wi (X)Wm(Y) — wj (X)W (y) = 0. Hence:

Jk

Wi (X)Wm(y) —W; (X)Wk(y)

(%)

dxdy< oo.

qd q q 1 1 1 q
X <2/ /
Y= Jon Jon a(x.y)
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Lemma5.2.4.Let1 < p < co. The systenig(x,y)Wn(X)Wm(y) } (nmer, Where F=N?\{(a,b)},
is complete in B(T?) if and only if g x,y) € L9(T?)\ {0}, u(G) =0, andwly) ¢ L9(T?), where

1 1_
Tyi=1

Proof.

First suppose thaj(x,y) € LP(T?)\ {0}, u(G) =0, and thatg()%y)

(T?). By way of

contradiction to completeness fd(X,Y)Wn(X)Wm(Y) } nmyer, l€t f(X,y) € L9(T?), and||f||q #
0, and suppose thagy(X, y)Wn(X)Wm(Y), f(x,y)) = 0 for all (n,m) € F. Sincef € LP(T?), and

g€ LYT?), fge L1(T?). Hence, it makes sense to write:

(Wn(X)Wm(Y), f(X,y)a(%,y)) =

for all (n,m) # (a,b), in light of Lemmd5.21 .

Now consider the functioh(x,y) := f (x,Y)3(x,y) — (Wa(x)W(y). f (X Y)T(X,y)) Wa(X)Wp(y) €
L1(T?). Computing for(n,m) # (a,b), and using the orthonormality of the Walsh system:

(Wn(X)Wm(Y), T(X,Y)T(XY) — (Wa(X)Wb(Y), F(X,Y)T(X,Y)) Wa(X)Wh(Y))

= (W (X)Wm(y), F 6 Y)I(xY)) — (Wa(X)Wh(Y), F(X,¥)3(X,¥)) (Wn(X)Wn(y), Wa(X)Wh(y))

= 0— (Wa(X)Wp(Y), F(X,Y)(X,Y)) (Wn(X), Wa(X)) (Wm(Y), W (Y)) = O.

For (n,m) = (a,b):

(Wa(X)Wh(Y), T (X Y)T(X,Y) — (Wa(X)Wh(Y), f(X,Y)T(X,Y)) Wa(X)Wh(Y))
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= (Wa(X)W(y), f(%,y)3(%,y)) — (Wa(Xx)Wh(Y), f (X, Y)T(XY)) (Wa (X)W (), Wa(X)Ws(Y))

(Wa(X)Wh(Y), f (6 Y)T(XY)) — (Wa(X)Wh(Y), F(X,¥)T(X,¥)) (Wa(X), Wa(X)) (Wh(Y), Wb(Y))

= (Wa(X)Wp(Y), F(%,Y)T(%,Y)) — (Wa(X)Wh(Y), f (X, y)a(%,y))-1-1=0.

Then (wn(X)wm(y),h(x,y)) = 0 for all (n,m) € N2, and so by Lemma 4.1.4(x,y) = 0

(
for a.e. (Xy) € T2. Therefore, f(XyY)a(Xy) = (Wa(X)Wp(Y), (X, Y)T(X,Y)) Wa(X)Wy(y) for
e. (xy) € T2. It follows that since||f||q # 0, andu(G) = 0 yields || fg||; # 0, we have
y),

(Wa(X)Wh(Y), f(X,¥)3(x,y)) # 0. Then for a.e(x,y) € T?,
_ {(Wa(X)wh(y), f (X, Y)T(X,Y)) Wa(X)Wh(y)
oY) = g(x,y) ’
which yields,
[0l = | 2200 LB I | _ ), )
q

since|(Wa(X)Wp(Y), f(X,¥)g(x,y))| # 0. This contradicts (x,y) € L9(T?). Hence the system
{906 Y)Wn(X)Win(Y) } (n,m)cr is complete.
Now we assume that the systefg(X,y)Wn(X)Wm(Y) }nmyec iS complete inLP(T2), and

assume first by way of contradiction thg(i) ¢ LP(T?)\ {0}. Itis clear that ifg(x,y) = 0, that
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we obtain a contradiction, since we only have functions efpuzero a.e. in the system. So we
supposeg(x,y) ¢ LP(T?). But then||g(x,y)wn(x)Wm(y)[lp = [lg(x.y)[|p = «, so the system is
not inLP(T), which is a contradiction as well.

Now, suppose(G) # 0. Thenyg ¢ [0], and for all(n,m) € F,

(9(X,Y)Wn(X)Wm(Y), Xc) = 0,

contradicting the completeness{@{(x, y)Wn(X)Wm(Y) } (nm)eF -
Itis left to show that we obtain a contradiction if we assUgex,y)Wn(X)Wm(Y) } (inm)er IS

complete inLP(T?), and3 € L9(T?). In this case,

0< H Wa(;)(\)/(\/)b()’)

q:HG(lx) B

Also, for all (n,m) € F,

<g<x, Y Wen(X)Wn (Y). > — (A ()Wm(Y), Wa(OWo(Y)) = O,

since(m,n) # (a,b), by the orthonormality of the Walsh system, which contreglitie com-

pleteness of the system.

Lemma 5.2.5.Supposé < p < o, ands + ¢ = 1. Letgx,y) € LP(T?)\ {0}, u(G) =0, ﬁ €

L4(T?\ [0,y) x [0,y)) forall 0 < y < 1. Then{g(x, y)Wn(X)Wm(Y) } mn)cr has a biorthogonal

Wn (X)Wm(X) —Wa (X)Wh(Y)
system{ g(xy) } (mn)eF

in L9(T?). Thus, both sequences are minimal.

Proof.

That {g(X, Y)Wn(X)Wm(Y) } mner C LP(T?) follows from Lemmd5.2]2, and that
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{ W (X)Win (X) —Wa(X)Wh (y) }
90xy) (mn)eF

Computing:

C L9(T?) follows from Lemmd 5.2]3.

Wi (X)Wi(Y) — Wa(X)Wp(Y) >

(axyywn(xm ), o
y)

(o]

= (Wn(X)Wm(Y), Wj (X)W (Y) ) — (Wn(X)Wm(Y), Wa(X)Wb(Y)) = On.m).(j.k) + 0= Gnm).(jk)>

using the orthonormality of the Walsh system. TH@X, y)Wn(X)Wm(Y) }(mn)er is minimal.
Minimality of its biorthogonal system follows from the refieity of LP.

O

Lemma 5.2.6.Let1 < g < o, and gx,y) € L9(T?)\ {0}. Suppose th (iy) is continuous on

T2\ [0,y) x [0,y) for all 0 < y < 1. Then the syster{1W“(X)Wm(gzgga(x)wb(y) }( - is complete
; m,n)e

in L9(T?).
Proof.
For the proof, it suffices to show that functions of the foxim n, whose support does not
include (0,0), can be approximated by functions of the given system. ,Hisste > 0. Fix
1
N € N, and so we have fixel®,2~N) x [0,27N). Letey = el . Then

A4SURy y)er2\[02-N) 0.2~ (19(XY)])
for somed > 0, for all (xg,y1), (X,¥2) € T\ [0,27N) x [0,27N) with |(x3,y1) — (X2, y2)| < &,

|9(X1,Y¥1) — 9(X2,¥2)| < én. ChooseM € N large enough so that the distance between any two
points in

[127M (j+1)27M] x k2™M (k+1)2"M] is less thard, and so that®® > a, 2M > b, and
M > N. Define

AV c=[i27M (j+ D2 M x k2™, (k+1)27M],
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and
M= sup g(xy),
(x,y)eA’}{'k

and note that
Xikm(Xy) = XAM (x,y). We find a bound for the following integral, whelek € N, and

j>2MN k> 2N, so thatl, and-f > &

> 0,

q
dxdy

,\1,|X1k|v|( X,Y) — : >XjkM< Y)

//11‘2 M a(xy
3

Now we will show the approximation gf, g n by functions in our system, whem, 3 € N,

dxdy< en2~M. (5.1)

anda, B < 2N —1, noting that this gives us, 8 > 1.

First we see that the following equality holds sinde> N:

XaBN=D > XikM; (5.2)
kek e
where
J:={jla2N<j2Mand(j+1)2M< (a+1)27N},
and

K:={k|B2 N <k2Mand(k+1)2M < (B+1)27N}.

We compute the following approximation jg g n(X,Y) by functions in our system, noting
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that eachy; k m(x,Y) is a finite linear combination of functions of the form,

Wi (X)Win(Y) — Wa(X)Wh(Y),

by Lemma4.11, sinca,b < 2V, and since by definition af, (j +1)2M < (a+1)2 N <1
yields j < 2M — 1. Similarly for thek index,k < 2V — 1. Hence wheré¢n, m) +# (a,b) it must
be that,

;Zg XJkM ),

is a linear combination of functions in the system,

{Wn(X)Wm(Y) — Wa(X)Wp(y) } '
(mn)eF

g(x.y
Computing:
q
X (x,y) Xikm(Xy)| dxdy
// a,B,N k;(] g< Y) jkm(XY)
c'V' a
= X kM (X,Y) — — = XjkMm(X,Y)| dxdy
//013 kGKJ M 3 KEK |E g(X y) 3
since the support of the second sum is sin#ﬁlyﬁ,
q
= c ) X dxd
k;(] [N //M CMXjkM y)— e y)XjkM( Y) y
since the supports of th x v are disjoint,
q
S[ sup (lg(x,y)[) ] Z// dy
(xy)e[27N, 1] x[27N,1] KeK
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q
< sup (\g(x,y)|)] > ZSEZZM,
keK je

(x,y)€[2-N,1]x[2-N 1]

by (5.1),

q 21\ * 45—2M €
- sup (laxy)1) <—) glpM_ = ¢
(xy)e[2-N, 1] x[2-N,1] 2 N 22N

Theorem 5.2.7.Let gx,y) € LP(T?)\ {0}, let G(XL be continuous ofi?\ [0, y) x [0, ) for all

Y)
O<y<l], g(iy) ¢ L9(T?), andu(G) = 0. Then the syster{g)(x, Y)Wn (X)Wm(Y) } (mn)er @nd
{W“(X)Wm(y)"’"a(x)wb(y)} are both exact systems ifP(T?), and L9(T?), respectively.
a(xy) (mn)eF

Moreover, they are the unique biorthogonal systems to orckeer.

Proof.

This is a corollary of Lemmds5.2[4,5.2.5, and 5.2.6,[and/2.3
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CHAPTER 6

THE WINDOWED EXPONENTIAL SYSTEM ONT?

In [5], Heil and Yoon discuss the relationship between catgriess and minimality of
windowed exponential systems of the fo{rg(x)ezmnx}nez\F C L%(T), whereF is a set of
varying finite cardinality. They show that the propertiestod system are greatly dependent
upon the cardinality of the sét, and the structure of the zeros of the window functigfx).

In particular, they consider specific window functions o formg(x) = xV. In light of these
results, itis natural to ask whether such questions cansweard for similar systems Irf(T?).
Here, the question is addressed for the systéxfi+yP)Pe2m (XT3 |\ /o ¢, with a, B, p >

0, where|F| = 1 - that is, for whicha, 8, and p is this windowed system complete and/or

minimal?

Lemma 6.0.8.Let F C Z?, |[F| = 1, and assume, 3, p > O.

(@) If min(ap,Bp) > 1, then the system

{(xT 4 yP)PUHIY o,

is complete in B(T?).

(b) If the system

{(xT+yP Pty o,

is complete, themax(ap,Bp) > 1.

Proof.
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To demonstrate (a) suppose that faip, Bp) > 1. Let f € L?(T?), and suppose that
<f, (xa +yﬁ)pe2m(jx+ky)> =0forall (j,k) € Z?, excepta,b). Since<f, (xa +yﬁ)pe2m(jx+ky)> =
<(x“ +y5)pf,e2m(jx+ky)>, this is simply the(j,k)!" Fourier coefficient off (x,y)(x? 4 y#)P,
which is inL2(T?) since(x” +y#)?P is bounded off'?. Thus:

FO6Y) (X7 4P )P = ey,

for some constard. Hence:

celmi(ax+by)
f = cL¥T?.
Computing:
Clen ax+by)

2
00>||f|||_211‘2 // xa+yl3 dXdy // x"!yﬂ dxdly

o 1 2 2
z/’/z i mme>/'/ M o ordrd 6
o Jo (racog(0)+rBsinf(6 (2rmin(a,B))2p

o = ___drde 6.1
22p/ /0 r2pmin(a,B)—1 rdo, (6.1)

where we have made a change to polar coordinates in the stindg

But sincef (x,y) € L?(T?), we must have then have that 0, or (6.1) will be infinite since
2pmin(a, B) — 1> 1. Hence f(x,y) = 0. Thus the systerfi(x” + y#)Pe?m (Xt} .\ /o ¢ is
complete.

Now we show (b), assuming that the system is complete. Weedg\contradiction, sup-

posing that magar p, Bp) < 1. Assume= = {(a,b)}, wherea,b € Z. Consider the function
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g2 (ax+by)

axy) = m-

We first show thag € L?(T?), converting to polar coordinates, and noting tty& continu-

ous forr > % so that the integral, over the remaining subset f is finite:

len ax+by)
(xa+yB)P

o 1
dxdy§/2/2 t rdrd@ + |
0 Jo (racog(6)+rBsinf(6))2p

oig= [ [

ENE
T

1 2 (2 1
/0 (racos"(e)+rl3$inB(6))ZDrdrd9+/g/o (racos“(e)+rBsinB(9>)2prdrd6+|

-

1 3 3 1
rdrd6+/ / . drdO+
(rdcod(0))2p z Jo (rBsinf(8))2p

Nl

gy

( )zpa//era 1drd9+< )ng// __drd0+1 < e,

since maxap,Bp) <lgivesdpa—1<1,and pp—-1< 1.

27t (ax+by)

We have shown tha(x,y) € L?(T?), and itis clear thatg(x,y)||  z(r2) = 599 ||z, #
0. However, for(j,k) # (a,b):
<g(x y), (X +yB)pezm Jx+ky> <eZm ax+by) len jx+ky)> 0.
Therefore{ (x* + yP)Pe? (Xt} |\ /2 ¢ is not complete. This is a contradiction.
0]

107



Lemma 6.0.9.Let F C Z?, |[F| = 1, and assume,3,p > 0. If maxap,Bp) < 2, then the
system{ (x + yP)Pe?m(ix+ky) }( Kezz\F is minimal in 1?(T?), and has a biorthogonal system,

Omn 2 g, Of the following form, where E {(a,b)}:
NS (mn)eZ2\F

g2 (mxtny) _ o2 (ax+by)
(X" +yP)P

Omn(X,y) =

Proof.
Without loss of generality, suppose nfeop, Bp) = a p. We will show that{gmm} mn)eZ2\F
is a biorthogonal system t(x* +yP)Pe?MXTk)} |\ /5 . First we demonstrate thgf, €

L2(T?), where(m,n) # (a,b):

eZm mxt-ny) _ eZm ax+by)
(x +yP)P

||gmnH|_2 T2) = dxdy

T (Mx+ny) _ 270 (axt-by) \ ( o= 271 (MX+ny) __ o—271 (ax+-by)
_ / / (€ e )(e e ) dx dy
0 .Jo

(X7 +yP)2P

12 _2cog2m((m—a)x+ (n—b)y))
_// (x7 +yP)2p e

112—2cog2n((m—a)x+ (n—b)y))

dxd
(7 +yP)2p ™

converting to polar coordinates, and choodtigR, < %

/ /Rl 1—cog2m|(m—a)rcog6) + (n—b)rsin()]) | .-
(r9 cos (0) +rBsinf(9))2p
Re| 1— cog2m[(m—a)rcog8) + (n—b)rsin(6)])
+ / / raCO§(9)+rBS|nB( ))Zp ‘fdrde—i—l, (62)

wherel is the integral over the remaining area B, which does not includ¢0,0) since
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R1,Ry; > 0. Since the integrand dfis continuous away from zero, and the integral is taken

over a compact sek,< . Now:

Ri|1—cog2mr [(m—a)cog 8)+ (n—b)sin(6)])
€2 = / / (r9 cos (0) +rBsinf(9))2p ‘rdrd@
Re|1—cog2mr [(m—a)cog 6) + (n—b)sin(0)])
+2/ / raco§(9)+rl3$|n’3( ))Zp ‘rdrd9+l. (6.3)

Let| =1(0) = [(m—a)cog6)+ (n—b)sin(6)] for 6 € [0,F]. Note that on[0,J], 1(6) is

continuous, so there is some<OM < o such that:

1(8) <M < oo, (6.4)
Substituting:
Ry 1—cogq2ml)
6.3 = 2// (7 00% (6) (PSP ()] rdrd
R 1-— cos(2nr|)
+2// ErrTiE Er e U] (6.5)

Note that for 0< 6 < 7, r% cos™(0) +rBsinf () >r@ <§>a and fory <6 < 7,
rco(6)+rBsinf(0) > P (‘?)ﬁ Hence:

2pa 1
65 < 2( )p I /R - szzfrl)‘drde
2 PR R Locos2m)| 6.6
+ fz // s |drd6 1. (6.6)

Our goal is to show that the sum of these integrals is finitemVélke a note that in the case that
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pB <1, wehave pB—-1<1,and so:

oy | Ard6 < oo,

(ﬂ)zpﬁ/ /Rz 1— czc;ls;(Zlnrl)‘dde<4< )Zpﬁ/ /Rz

We may argue similarly that pa < 1,

(2

Hence, it remains to show that in (6.6), the first integral métdi if pa > 1, and the second

1—coq2mrl)
2pa 1)

'drd9<oo.

integral is finite ifpB > 1. Considering the integrals simultaneously, weulet 27l , so that

(2

1—cog2mrl)
2pa 1)

'drd@

2\ % 2 2RIl | 1 — cog(u)
—2( 2 pa—2) it S
Z(ﬁ) /0 @2l /0 iz 3| U0
2 \ %P oog_2) [2RM |1 cogu)
SZ(@) /0 (271M) (2P >/0 a3 | duce. 6.7)

where we have used (6.4), and the fact thad 2- 2 > 0. Similarly,

()"

1—coq2mrl)
2p[3 1)

'drd@

1—coqu)

=) dude, (6.8)

2 \2PB .7 2mReM
<2( = / 27M)(2PB—2) /
B (fZ) g ™ 0

1

since Bp—2 > 0 also.

In (6.7), —2mRyM < u = 2rrl < 2rRyM, so limg,,ou = 0, regardless of the value &k
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Similarly, in (6.8), —2nRM < u = 2mrl < 2rRyoM, so limg,—.ou = 0, independent ob. It

is easy to show using Taylor series, that éosufficiently small,l‘lj‘g,?i‘? < @25,“,)3, and so,

choosingR; sufficiently small:

coqu)

W dudob < o0,

&2 gz(%) 2pa /O%(ZTIM)(ZW_Z) /027TR1M

since 2a — 3 < 1 by hypothesis. We argue analogously to show that (6.8)ite fim the case

thatpg > 1.

Thus, choosin@;, R, sufficiently small, we see that both (6.7) ahd [6.8) finitehie tespec-
tive cases of K pa < 2, and 1< pf < 2. Hence, we showed that in all casés,|(6.6) is finite.
Therefore, when mabap, Bp} < 2, gmn(X,y) € L%(T?). Itis clear that|gmn(X,y) [l 2(t2) # O.

Now we compute, first for fofj,k) ¢ {(a,b),(m,n)},

<gm,n(X,y), (X9 1 yB)Pe2mi( jx+ky)> _ <ezm'(mx+ny) _ g?rilaxtby) e2ri( jx+ky)> _0,

using the orthogonality of the double exponentials. fok) = (m,n),

<gm7n(x>, (X +yﬁ>pezm<mx+ny>> - <ezm(mx+ny> _ ezm(ax+by),eZTTi(mx+ny)> _1

using the orthonormality of the double exponentials. Hetﬁmsequencﬁgjvk}zz\F is biorthog-
onal to{ (x* +yP)Pe?Mxtk)1 1, ., proving that this sequence is minimal.

O

Theorem 6.0.10.Lef F C Z?, |F| = 1, and suppose, B, p > 0. If the systenq (x* -+yP ) Pe?i (Xt} 5,

is minimal in 12(T?), thenmin(a p, Bp) < 2.
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Proof.

We assume thgBp = min(ap, Bp) without loss of generality, and suppose by way of
contradiction thaiBp > 2. Since the system is minimal, there is a biorthogonal secpie
{0} k}z2F € L%(T?). We letF = {(a,b)}, wherea,b € Z.

Hence,
0= (" +yP)PEH gopy 1) = (MO, (@ 4 yP)Pazpi1),  (6.9)

for (j,k) € Z2\F, and(j,k) # (a,b+1). Now, Oap1(x +yP)P € L?(T?), since(x* +yP)P
is bounded orT? andda b1 € L2(T?). Hence, [(6.9) implies that thg, k) Fourier coefficients
of Gap1(X? +yP)P are zero, except for th@, b) and(a,b+ 1) terms. Thus for constantsand
d:

Oaps1 (X4 +yP)P = de2ri(@x(b+lly) | ceri(axtby)

Note also that,
<aa7b+1, (X0 4-yP )pe2m(ax+(b+1)y)> _ < a1 (X +yl3)p,e2m(ax+(b+1)y)> _1

forces thad = 1. Therefore:

27 (ax+(b+1)y) n ce?Ti(ax+by)

CCERYOL € L(T?).

Oab+1 =

We compute th&2 norm of Oa b1

‘eZTII ax+(b+1)y +C€2m ax+by)
[ —/ / o ) dxdy
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/ /11+\c\2+2Re(c)cos(2ny)dXd
N (xa +yP)2p ’

/ /Y 1+\c\2+2Re(c)cos(2ny)dXd
(xB +yB)2p y

/ /Y 1+\c\2+2Re(c)cos(2ny)dXd
(yB +yB)2p y

1 /1 1+ |c|?>+2Re(c) cog 2my)

2% Jg y2BD ydy

1 [11+|c|?>+2Rec)cog2my)
- / e dy. (6.10)

If 1+ |c|? # —2R€c), then this integral will be unbounded, sincB@— 1 > 3, and the
numerator is non-negative. So, assumge|t|> = —2Regc). Supposing that = v+ wi, where
V,w € R, we must have that® + 2v+ (1+w?) = 0. Applying the quadratic formula yields

v= —1+iw. Hencew = 0, andv = —1. Using this and the fact thap»—1 > 3:

©10 - 1 /Oll—cos(2ny)d> 1 /11—005(2"y)dy

T 22p-1 yZBp—l y= 22p-1 0 y3
1 [l1-coq2my) 1
-1 . 2y (6.11)

Since lim_,o % 212, choos& > 0 small enough thétw > m, wheremis some

finite, positive real number. Hence:

1 [91-cogq2ny) 1 m /01
€@1)=> 2291/0 VA 22P1/o y=e
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That s,

Oap+1||, = o, contradictingga ps 1 € L2(T?). Therefore, it must be that miap, Bp) <

2.

Corollary 6.0.11. Let F C Z?, |[F| = 1, and assumer, 8, p > 0. If
1< min(ap, Bp) and max(ap,Bp) < 2,

then the system,

{(x* +yﬁ)pezm(jx+ky)}(j7k)eZZ\Fa
is exact in I2(T?).

Proof.

This follows directly from Lemm&6.0.8 and Lemima 6]0.9.

Corollary 6.0.12. Let F C Z?, |[F| = 1, and assume, 3, p > 0. If the system

{x* +Yﬁ)p92m(jx+ky)}(j,k)ezz\p,

is exact in I2(T?), then:

1 <maxap,Bp) andmin(ap,Bp) < 2

Proof.
This follows directly from Lemm&6.0.8, and Lemma 6.0.10.
0]
We note to the reader, that the following proof is virtuathgntical to portions of the proof

of Theoreni 6.019.
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Theorem 6.0.13Let F C Z2, |F| > 2. If max(ap, Bp) < 2, then the systef(x” +yP)Pe?m (XK} 5

is not complete in £(T?).

Proof.

Let maxap, Bp) < 2, and suppose th&t= {(a,b), (m,n)}. Letg(x) = &~ ax?:i;;" )

We will demonstrate first thag € L2(T?):

eZm (ax+by) _ eZm (mx+ny) 2

loli3 = T3P

dxdy

// (eZm axtby) _ g2ri mx+ny))(e—2m(ax+by)_e—zm(mx+ny)>
- 0 JO

(x +yP)2p o
12— 2cog2mn((a—m)x+ (b—n)y))
_// (x@ +yB)2p bty
112 —2cog2m((a—m)x+ (b—n)y))
P dxdy (6.12)
converting to polar coordinates, and choostigR, < %:
//Rl 1—cog2m[(a—m)rcog8) + (b—n)rsin(6)]) rdrd 6
(r% cod (0) 4 rBsinf(0))2p
/ [ Ecosrita—mireod®) « bSO gy . (6.13)
(racod (8) +rBsinf(6))2p ’ .

wherel is the integral over the remaining area B, which does not includg0,0) since

R1,R; > 0. Since the integrand dfis continuous away from zero, and the integral is taken

over a compact sek,< . Now:

T

1—cogq2mr [(a—m)cog )+ (b—n)sin(8)]) drd©
(r9 cod () +rBsinf(9))2p
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1—cogq2mr [(a—m)cog6)+ (b—n)sin(8)])
(r cos’(8) +rBsinf(9))2p

2

Let| =1(0) = [(a—m)cog6) + (b—n)sin(8)] for 6 € [0,F]. Note that on[0, 7], 1(6) is

rdrd@ +1. (6.14)

continuous, so there is some<OM < o, such that

1(0)] <M < o, (6.15)
Substituting:
i R 1—cog2rm)
612 =2 / i / rdrd@
0 Jo |(r9cod(8)+rPsinf())2p
R
42 / / i 1 — cog2rm) rdrd6+1. (6.16)
(racod (8) +rBsinf(6))2p

Note that for 0< 8 < 7, r% co” () +rf sinf(8) > r¢ <§>a andfory <6< 7,r%cos(0)+
B
rBsinf(9) > rP <‘/7§> . Hence:

([516)<2< )2pa/ /R1 1— cz?oz(Ziwl)'drde
< )ng/ /Rzl Zzngl)‘drdwrl. (6.17)

Our goal is to show that the sum of these integrals is finiteVélke a note that in the case that

pa < 1, we have pa —1 < 1, and so:

(2

1—cog2mrl)
2pa 1)

'drd@
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2pa Ry
( ) // oy drd0 < .

We may argue similarly that ip3 < 1,

()L

Hence, it remains to show that in (6117), the first integrdirge if pa > 1, and the second

1-—cog2ml)

D drdf < .

integral is finite ifpB > 1. Considering the integrals simultaneously, weulet 27l , so that

()" [

1—cog2ml)
2pa 1)

‘drd@

2\ 2P 2 2nRulll |1 — cogu)
_ pa—2)
_2<f2) /O (2m1))" /0 1| AU
2\ % 2RM | 1 — cog(u)
<2 / 21M (2pcr—2)/ —————|dudf, 6.18
- (xﬁ) 0 (2mM) 0 |u|(2pPa—1) (6.18)

where we have used (6]15 ), and the fact that 2 2 > 0. Similarly,

()"

1—cog2ml)
2p[3 1)

'drd@

1—cogqu)

2 \2PB % 2mRoM
<2( = / oM (2PB~2) /
- <f2> g &™) 0

a

since Bp—2> 0 also.
In (6.18), —2nRM < u =2l < 2mRyM, so limg,_,ou = 0, regardless of the value 6
Similarly, in (6.19),—2nR,M < u = 2mrl <2nR,M, so limg,—,ou = 0, independent 08.

It is easy to show using Taylor series, that osufficiently small,l‘ “23‘?5‘1) < |lf|c2’§(a”,)3, and

so, choosingr; sufficiently small:
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coqu)

‘u‘(2P0*3)

©.18 <2 (%2) e /OZ(ZnM)(Zpaz) /Oanlm

since a — 3 < 1 by hypothesis. We argue analogously to show that6.19)ite fin the case

dudd < w,

thatpB > 1.
Thus, choosindry, R, sufficiently small, we see that both (6118) abd (6.19) finite¢he
respective cases ofd pa < 2, and 1< p8 < 2. Hence, we showed that in all casés, (6.16) is

finite. Therefore, when maw p, Bp) < 2,9(x,y) € L2(T?). Itis clear that|g(x,y)||» # 0. Also:
<g(x>, (X +yﬁ)pezm<jx+ky>> _ <ezm'(ax+by> _ g2ri(mxiny) 2ri(jxcik >> _o,

for (j,k) € Z%\ F. Thus, removing more than one element fro(r® +y#)Pe2m (Xt . ) -

results in an incomplete system.
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