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CHAPTER I

INTRODUCTION

The following dissertation presents an investigation of image segmentation with a

focus on the intracranial organs critical to radiation therapy of the brain. Almost all forms

of modern radiation therapy planning now rely on three dimensional imaging and subsequent

segmentation, or partitioning, of the the images into important anatomical regions. These

regions have traditionally been segmented manually and sometimes painstakingly on a slice-by-

slice basis by medical professionals, often radiation oncologists. Over the past decade algorithms

have been developed and quickly implemented clinically to segment some of these regions.

The scope of algorithm development and rapidity of clinical implementation have generally far

exceeded evaluative work to assess the potential impact of these algorithms.

A central theme of the three studies that comprise the bulk of this dissertation is

that of a behavioral focus. This perhaps requires some qualification as such terminology is

encountered more often in the social and cognitive than the physical sciences. Segmentation in

the context of radiation therapy has been a process of human perception. Even the automated

methods rely on atlases and models that are derived from initial conditions provided by humans.

As such this work has been motivated by the desire to characterize the impact of automatic

segmentation in the context of human decision making and interaction therewith.

In the remainder of this chapter, we introduce several concepts and operational def-

initions important to the research studies that follow. Chapter II presents a study assessing

the variability and accuracy of the automatic system and human raters de novo (from scratch),

chapter III gauges the impact of segmentation editing on quality and efficiency, and in chap-

ter IV we investigate the dosimetric implications of segmentation variability in the context of

inverse-optimized radiation therapy planning. These studies have taken place at the intersec-

tion of medical image processing, medical physics, and clinical radiation oncology. Throughout

this work we use graphical methods as a tool of relating key statistical information, though

when necessary we resort to more formal statistical tests. In chapter V, we discuss the main

conclusions and contributions of the present work and possible directions of future work.

The format is that of a collection of papers, of which the first two (Deeley et al., 2011,

2013) have been published in Physics in Medicine and Biology and the third is in preparation for

submission. A natural consequence of this format is a degree of overlap between the dissertation
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and individual paper (chapter) introductions, though the former develops the requisite topics

more broadly. For clarity I use the active voice where possible and for consistency with the

published work contained herein, generally employ the first person plural. Though this work

has been very much a personal odyssey, and while the design, methods, and conclusions are my

own, these have resulted from interaction with numerous colleagues and coauthors.

I.1 The reliance of modern radiation therapy on image segmentation

Approximately 41 percent of Americans born today as predicted by the National

Cancer Institute statistics review from 1975 to 2010 (Jemal et al., 2013), or nearly one in two

men and women, will be diagnosed with cancer during their lifetime, and nearly two-thirds of

these patients will receive radiation therapy. The use of radiation to treat disease has always

been driven by innovation, as evidenced by the reports of its clinical use coming by Freund

(Božica and Bojana, 2010) in 1896 to treat hairy nevi (moles) and rival claims to the first

treatment of cancer by Grubbe, Despeignes, Williams, and Voigt in 1897 (Hall, 1994), all

within two years of the discovery of x-rays by Roentgen. Soon thereafter came the discovery

of radioactivity by Becquerel and Marie and Pierre Curie, followed in the mid-century by the

translation of a physics research tool, the particle accelerator, into the medical linear accelerator

which today is used as the primary modality for treatment of cancer with radiation.

Radiation therapy of the late twentieth and early twenty-first century has been heav-

ily influenced by advances in two areas in particular: incorporation of medical imaging into

treatment planning and the ability to modulate the intensity of the radiation beam. The

availability of computed tomography (CT) images led to new treatment planning systems that

could use this vastly better geometric information as well as the inherent density information

to improve disease localization and dose calculation accuracy, leading to what is now known as

three-dimensional treatment planning (Aird and Conway, 2002; Driver et al., 2004). With the

incorporation of CT images initially and later magnetic resonance (MR) and positron emission

tomography (PET) and other physiological imaging, there existed a need to segment individual

anatomical volumes within the imaging space. These segmentations, also referred to as con-

tours, have become a vital component of all definitive radiation therapy. Their use is at least

two-fold: they provide for quantitative assessment of the dose distribution with regard to the

targeted areas as well as the normal tissues (also known as the organs-at-risk or critical struc-

tures), and they also can be used to generate treatment apertures conforming geometrically to

the targets while avoiding the the critical structures. It is the combination of the two uses that

come together in inverse-treatment planning, principally intensity-modulated radiation ther-

apy (IMRT), wherein plans are generated via optimization algorithms that accept as an inputs
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the target and critical organ segmentations along with a set of dosimetric goals and relative

priorities.

Nearly simultaneous to the broader incorporation of imaging, techniques for radiation

beam collimation, first binary and then multileaf (MLC), were being improved dramatically.

Whereas prior techniques required use of manually cast heavy metal alloys to shape the beam,

the binary collimators and MLCs could be motor-driven and electronically controlled and mon-

itored to produce dramatically more apertures than previously possible. It is the advances in

collimation along with the incorporation of imaging that spurred IMRT, and in turn, the need

for segmentation.

Other, even more recent developments are increasing segmentation workload. In the

past decade, linac-integrated kilo-voltage cone-beam CT (CBCT) (Jaffray et al., 1999, 2002)

and to a lesser extent conventional CT-on-rails (Cheng et al., 2003; Shiu et al., 2003), mega-

voltage tomographic imaging (Mosleh-Shirazi et al., 1998; Ford et al., 2002), and 3D ultrasound

(Bouchet et al., 2001; Tome et al., 2002; Molloy et al., 2011) have been become common place.

There is also much research on-going to integrate magnetic resonance imaging (Lagendijk et al.,

2008; Fallone et al., 2009) within linear accelerator platforms. This new imaging capability is

used both to guide the alignment of the patient for daily treatment and to provide information

about soft tissue changes over the treatment course. If a patient looses or gains weight, or

the tumor grows or shrinks, the treatment can be adapted accordingly (Hansen et al., 2006;

Ding et al., 2006; Schwartz and Dong, 2011; Gregoire et al., 2012; Jensen et al., 2012; Peroni

et al., 2012; Schwartz et al., 2013). Each of these emerging technologies produces volume

images that require segmentation if they are to be used in either the planning or re-planning

process. Though it is time- and labor-intensive, this has been done manually for the most part.

Some anatomical sites experience potentially important changes inter- and even intra-fraction.

For example, with the male pelvis the bladder, rectum, and prostate can change significantly

between and potentially during treatments (van Vulpen et al., 2008). If treatment adaptation

is to be extended to its logical end, that is, daily online adaptation, high quality automatic

segmentation must be a prerequisite.

I.2 Image registration

Image registration is the determination of a mapping between points in a view of an

object to corresponding points in another view of that object or a different object. In other

words, it is the process of aligning images so that corresponding features can be easily related

(Hanal et al., 2001). In the past 20 years image registration as a field of study has emerged

from a position of obscurity to be a major contributor to image processing research. In their

3



editorial on the rise of image registration, Pluim and Fitzpatrick (Pluim and Fitzpatrick, 2003)

found that yearly publications increased from 10 in 1985 to approximately 140 in 2002 (PubMed

search terms “image AND registration”). A current search produced 846 publications for the

year 2012. Likewise, those authors found 34 papers in 2002 for non-rigid registration, the

application of which is central to our segmentation methods, and a current search results in 191

papers published in 2012 alone. These increases have paralleled the rapid rise of new imaging

modalities and their integration into the clinical workflow.

The field of image registration can be parsed in terms of transformations and the image

properties conserved therewith. Two categories are “rigid” and “non-rigid” registrations; the

former category being singular and the latter extremely broad. Rigid registration has the

stringent requirement that when registering a reference to a target image, the transformation

applied conserves distance. That is, the spatial distance between points x and y in the reference

image must be preserved in the reference image transformed. Purely rigid transformations are

often too restricting, even for intra-subject registration between different modalities such as CT

to MR. Non-rigid methods come in many flavors as they include all transformations save rigid,

and the degree of conservation varies widely. The family of projective transformations, including

affine, scaling, and similarity, and rigid, preserve straightness of lines and planarity of surfaces.

In fact, rigid transformations are a special case of the affine class. Affine transformations

preserve collinearity (parallelness) of lines with 12 degrees of freedom: 3 for translation and 9

for rotation, scaling and and shearing. The rigid transformation restricts this to 6 degrees of

freedom allowing only translation and rotation.

I.2.1 The adaptive bases algorithm

The transformations central to this work are affine and curved (non-projective) non-

rigid. Our goal is to register a source image volume S(x) to a target (patient) volume T (x).

We initialize the non-rigid registration with a mutual information-based global and then local

affine registration. The local region of interest is determined by the global registration and a

predefined bounded region in the atlas images. There are a number of methods for registering

the volumes non-rigidly, as evidenced by the surge in non-rigid publications in recent years.

The adaptive bases algorithm (ABA) (Rohde et al., 2003) solves an optimization problem in

which the source image is best matched to the target image. This method was developed at

Vanderbilt and is expressed mathematically (for images in 3-D) as

arg max
x′

F (S(x′), T (x), x′)
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Figure I.1: Registration of source (atlas) and target (patient) MR images. Each row repre-
sents a different inter-subject registration set; source images in column (a) are transformed to
patient images in column (e). The results of registering (a) to (e) are contained in the inter-
vening columns; (b), (c), and (d) have been transformed non-rigidly using ABA with varying
elasticities, stiff, elastic and spatially varying (mixed), respectively. [Images courtesy of the
Vanderbilt Medical Image Processing lab/Natalie Zhaoying Han]
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where x′ = x + v(x) and F is an intensity-based similarity measure (normalized mutual

information (Studholme et al., 1999) in our case), x is a coordinate vector, and v(x) =

{vx(x), vy(x), vz(x)}, a deformation field that transforms image S(x). The deformation field

v(x) is the final result of the registration.

Several aspects of ABA are beneficial in venues such as ours where T (x) may contain

large pathological features not present in S(x). First, it reduces the complexity of the optimiza-

tion problem by using compactly supported radial basis functions (Wu, 1995) on an irregular

grid. Some other methods such as spline-based have typically modeled the deformation field

on a regularized, or spatially invariant, grid requiring a large number of elements. ABA ap-

proaches the problem by building the deformation field incrementally over a number of scales

and resolutions. Scale refers to the size of the basis functions used to model the transformation

and resolution refers to the resolution of the image. The process begins at low resolution with

perhaps only a few basis functions of large scale. As the algorithm moves from one level of

resolution and scale to another, the basis functions are first temporarily placed on a regular

grid. The areas of misregistration are then determined by computing the gradient of the cost

function. The idea is that if the gradient at a specific location is large, then the cost function

is not at a minimum and the registration of this region could be improved. A small gradient

indicates a local extremum in which case either the images are reasonably well registered or,

alternatively, they are not well registered but will most likely not benefit significantly from fur-

ther optimization. The final deformation field v(x) is a linear combination of a set of irregularly

spaced basis functions:

v(x) =
N∑
i=1

ciΦ(x− xi).

where ci is the coefficient of each basis function, Φ(x).

An issue shared among curved transformations is the preservation of topological cor-

rectness; that is, the absence of nonphysical tearing or folding of the source image. ABA

constrains the coefficients to a predetermined upper limit at each level of optimization that

forces the deformation to build in a topologically sensible way. Lastly, in situations such as

our patients with large brain tumors, a stiffness map may be specified in the atlas image to

allow a spatially varying degree of elasticity. We largely circumvent the need for this in tackling

segmentation of structures locally. That is, for our purposes, we do not need to apply ABA

globally. Figure I.1 presents the results of registering several non-pathologic source (atlas)

images to target (patient) images.
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I.3 Medical image segmentation

The objects on which measurements are made throughout this work are known as

segmentations. It is a concept encountered frequently in daily life and image processing research.

In its simplest form segmentation can be defined as a process of classification of an object into

categories reflective of intent. Image segmentation is a rich area of investigation extending far

beyond the medical applications considered in this work, to fields such as facial recognition,

remote sensing, studies of perception, and pattern analysis (Martin et al., 2001) to name a few.

Goshtasby (Goshtasby, 2005) suggests it may be the most studied area of image analysis.

In this work we consider image segmentation as the classification of 3D images via

voxel ownership into volumes of interest. These volumes of interest are commonly referred to

as “labels” in the image processing literature, but we will generally use the term “segmentation”.

A voxel may be marked as belonging wholly to a specific segmentation or not, or it may be given

a partial volume. In the former case, the segmentation is characterized via a binary classifier

such that each voxel is assigned {0, 1}, whereas a partial volume segmentation may contain

voxels of values on the continuous range [0, 1] (Crum et al., 2006).

In our work we consider only binary segmentations. We are concerned with segmen-

tation of the normal tissues of the brain, particularly the brainstem, optic chiasm, eyes and

optic nerves. These segmentations arise from two methods: manual segmentations produced by

human raters (physicians) and automatic segmentations from our computer algorithms. The

manual raters view fused CT and MR data in a clinical treatment planning system. Using a

mouse and various software tools available, through a series of mouse clicks or free-hand tracing

of the mouse, a smooth contour overlays the image. In our situation the human raters could not

form contours in arbitrary imaging planes; rather, only the native axial plane of the CT images

was available. The resulting contours are exported from the treatment planning system as a

series of ordered coordinate sets {xi, yi, slicen} representing closed contour loops in CT-space.

I.4 Challenges of and approaches to segmentation in the brain

Anatomical sites differ widely, which presents a challenge in designing accurate and

robust methods for segmentation. A primary consideration is whether the anatomy of interest

is defined explicitly or implicitly. Explicit anatomy is that which is well-defined by gross

structures. The bladder, for instance, is a very well-defined organ enclosed by a membrane

separating it from surround tissue. Other anatomy is defined implicitly, such as the lymph

nodes in the neck. While the nodes are individually defined, the chains of nodes are generally

defined for the purpose of radiation therapy as broad regions including intervening tissues,
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Figure I.2: Brainstem: medulla. MR imaging sections [top row], CT [middle row], and fused
image with several expert (green) and the automatic (purple) segmentations [bottom row]. The
sagittal MR image shows a tumor just anterior and superior, nearly abutting the brainstem.

blood vessels, and muscle. These situations pose different challenges for both human and

computer algorithms as borders are not always defined at an area of contrast either in vivo or

via imaging. The brain is a good area to begin such a study as ours because generally good

imaging is available and the anatomy of interest is often explicitly defined. That is not to

suggest the these structures, such as the chiasm, are always easily identified. In fact, there are

areas in the brain of which borders are not well-defined explicitly, imaging contrast is limited,

or both. With the following we will discuss the anatomy pertinent to this work as well as our

solutions to their segmentation.

I.4.1 Atlas-based segmentation of the brainstem and eyes

Brainstem

Deep within the brain surrounded by the cerebral hemispheres and the cerebellum lie

the structures that comprise the brainstem. It is composed of intermixing gray matter areas
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Figure I.3: Brainstem: pons. MR [top row], CT [middle row] and fusion [bottom row] images
showing the pons. The area of the cerebellar peduncles where experts tend to exhibit variability,
is show in the axial images [left column].

(nuclei) and white matter tracts which serve to connect the motor and sensory controls of the

brain to the rest of the body. Beginning inferiorly around the level of the foramen magnum,

the spinal cord transitions gradually into the medulla oblongata (figure I.2), which expands and

extends superiorly until reaching an area of transverse fibers known as the pons (figure I.3).

The pons connects the the cerebral hemispheres to their contralateral cerebellar hemispheres.

Centrally, it is separated from the cerebellum by the fourth ventricle. Above the pons lies the

midbrain (figure I.4), which is sloped such that the dorsal surface is longer than the ventral

surface. On the one hand, when viewed as a series of transverse slices from the cord moving

superior to the medulla and the pons, the brainstem begins as a well-contrasted organ on T1 MR

and less so in CT. On the other hand, it is a complex structure whose axis changes orientation

and is not contiguous in that one area does not flow directly into the next.

The T1 MR images in our work provide for universally better identification of brain-

stem boundaries than CT. However, there are several areas that present a challenge for seg-
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Figure I.4: Brainstem: midbrain. MR [top row], CT [middle row] and fusion [bottom row]
images showing the midbrain and cerebral peduncles. The area of the cerebral peduncle is is
shown anterior and right; the left peduncle has been invaded by a tumor [left column]. This
area presents a challenge for manual segmentation.
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mentation. There are bilateral regions of the posterior pons where the brainstem feeds into

the cerebellum at the cerebellar peduncles (figure I.3). The same transition occurs between the

cerebrum to the brainstem in the midbrain at the cerebral peduncles (figure I.4). These fiber

bundles enter the brainstem, becoming part of it before moving on to the cerebellum. Here

there is a lack of both imaging contrast and a well-defined explicit boundary. An analogy is that

of a tributary joining a main stem river. Its name changes as it joins the larger flow. Where

does the name change? Along a line perpendicular to the tributary where it meets the main

stem, or the line parallel to the main stem at their confluence? This may seem far removed

from brain anatomy, but the questions are sometimes not so different when a binary decision

is required. An even more obvious example is at the border of the brainstem and spinal cord.

Convention dictates the border occurs at the level of the foramen magnum, but there is no real

anatomical difference slightly superior and inferior of this landmark. Thus, human raters must

recall this implicit knowledge to mark the boundary at the landmark.

Our group at Vanderbilt developed an atlas-based registration driven approach to

segment the brainstem and eyes. It is discussed in more detail in section II.2.2. We begin with

a carefully defined consensus atlas from our group of raters. In short, we use a series of affine

transformations first globally, then locally, followed by local non-rigid registration using the

adaptive bases algorithm. We apply the combined transformations to the atlas delineations to

produce a segmentation of the structure of interest.

Eyes

The eye is a deceptively complex organ. It includes the lacrimal gland, cornea, iris,

conjuctiva, lens, blood supply, sclera, choroid and retina, to name a few of the major parts.

These structures reside in the cranial cavity of the orbit, which is articulated by a number of

bones. In radiation therapy we are most usually most concerned with damage to the retina

and the lens of the eye. The globe, or eye ball, consists of three layers from outer to inner:

the sclera, choroid, and retina. The sclera is composed of connective tissue and is continuous

anteriorly with the transparent cornea. The cornea has greater curvature than the sclera and

thus protrudes such that the globe is largest along the anteroposterior axis. The inner chamber

is filled with vitreous body, a gelatinous transparent mass which contrasts well in CT against

the outer layers. In standard radiation therapy rather than identify the retina, the entire globe

is usually delineated with the lens as a separate overlaying structure. Much of the posterior

hemisphere of the globe is easily identified by CT (I.5). Human experts, however, vary in their

delineations of the external surface of the globe: whether at the inner surface of the retina, on

the external surface of the sclera, or approximately between the two (choroid). These layers

are typically indistinguishable. The posterior hemisphere is surrounded by a large amount of
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orbital fat of lower attenuation (Weber and Sabates, 1996), separating it from muscle and bone.

Moving anterior, contrast diminishes as the superior, inferior, lateral, and medial rectus muscles

(of a more similar attenuation to the globe than the orbital fat) approach the sclero-corneal

interface. In our studies we also utilize thin section T1-weighted MR images, which can be well

suited to the same posterior aspects as seen in CT, but are especially challenged at the anterior

aspects of the globe as a result of both motion artifact and low signal intensity of the lens and

cornea.

I.4.2 Model-based segmentation of the optic chiasm and optic nerves

The optic nerve is a tract of brain connecting the eye (retina) to the visual cortex. The

retina exits the eye at the optic nerve head and takes a slightly sinuous path to exit the orbit

through the optic canal (Hollinshead, 1974). The left and right optic nerve meet and join to

form the optic chiasm, an X-shaped structure exterior to the pituitary stalk, and then continue

in the optic tracks to the mid brain. Unlike the other cranial nerves, the optic nerves are encased

in all three layers of meninges comprising the optic nerve sheath. The nerve itself is bathed in

a thin layer of CSF. The blood vessels of the retina and optic pathway are contained within

the nerve anteriorly and pierce the sheath posteriorly in the orbital space (Harnsberger et al.,

2006). For the purpose of radiation therapy the entire sheath is considered as the operative

structure.

A number of challenges exist in segmenting the nerves and chiasm. First, in practice

radiation oncologists typically segment the complex as three distinct structures: the right and

left optic nerves and the chiasm. Typically the optic nerve is operationally defined as the

portion from the nerve head, including the intraorbital segment and ending somewhere past

the bony canal distal to the chiasm. The chiasm is defined operationally as two segments

from the proximal end of each optic nerve, the intersection of these, and some short 5-10

mm length of optic tracts. This partitioning of a contiguous tubal structure, irrespective of

imaging limitations, may contribute to inter-rater variance, especially if raters segment the

structures individually without visualizing the other segments simultaneously. In other words,

this may lead to overlapping segments and group ambiguity at boundaries. Additionally, most

treatment planning systems until just recently, including the one utilized in our study, are not

well suited to segmentation of these tubular structures. These systems often offer the user

access to orthogonal planes of the 3D volume, and may even permit arbitrary planes, but

generally require contouring in the axial plane of the primary CT image. As the visual pathway

is somewhat sinuous in multiple planes it is typically contained in parts of several slices. This

may lead to slice discontinuities. There are also imaging challenges. First the pathway is thin
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Figure I.5: Eye and recti muscles. MR [top row], CT [middle row] and fusion [bottom row]
images showing the globle with views through the recti muscles. The area where the lateral rec-
tus, the lacrimal gland, and the globe meet presents a challenge for both manual and automatic
segmentation.
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and tubular (all edges are curved surfaces) and therefore susceptible to partial volume effects

in both MR and CT imaging. Second MR acquisition times result in motion artifact of the

intraorbital nerves as a result of unavoidable eye movement. Third, signal intensity of the

portions in or near the optic canal diminishes substantially in MR. CT resolves the intraorbital

segments well but contrast is lost moving posteriorly through the canal and not substantially

regained (I.6).

The CT and MR images complement one another in resolving the optic pathway,

though both remain challenged in the areas surrounded by bone. The atlas-based methods we

have used on the eyes and brainstem have proved ineffective for the visual pathway (D’Haese

et al., 2003; Isambert et al., 2008).

To this end, others in our group at Vanderbilt (Noble and Dawant, 2011) have devel-

oped a model-based method that incorporates both CT and MR and localized the left and right

visual pathways as contiguous tubular structures and computes the chiasm as their intersec-

tion. This has the advantage of producing non-overlapping structures, and it avoids the most

challenging task of explicitly finding the optic chiasm. This approach combines the techniques

of optical path finding commonly used in image-guided surgical intervention with model-based

methods that incorporate a priori information about the area of interest.

Figure I.8 presents 3D renderings of the eye, optic nerve, chiasm and brainstem for a

patient from our de novo study presented in I. The automatic segmentations are presented in

the upper left; the rendering to the right is from a high performing expert on the patient in

question. The bottom rendering is from a low performing expert. Note the spurious segment of

optic nerve and the gap between the nerve end and chiasm. Also note that this rater appears to

have segmented the optic nerve at the level of the pituitary (we leave the other expert chiasm

in place as a reference).

I.5 Evaluative framework

A primary goal of this work is to determine the clinical acceptability of the automatic

segmentation methods we have developed. As noted in the opening pages of this dissertation,

we approach this from a behavioral perspective by measuring the output from a group of experts

in clinically realistic situations. One distinction between our work and the relatively few other

works (Chao et al., 2007; Stapleford et al., 2010) that have employed multiple raters in a

radiotherapy setting is a focus on the individual as well as the group. We consider the automatic

system as a potential surrogate to the physicians, and to do that well we need to understand

the performance of individuals as well as the whole group. Stylistically the framework is of an

inter-rater reliability, or more precisely a method-comparison study (Ludbrook, 2002; Bland

14



Figure I.6: Optic nerve. The right intraorbital optic nerve is shown in MR [top row], CT
[middle row], and fused [bottom row] images. Expert segmentations are presented in green and
the automatic in purple.
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Figure I.7: Optic chiasm. The optic chiasm is shown in MR [top row], CT [middle row] and
fused [bottom row] images. The expert contours are shown in pink while the automatic is
purple.
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Figure I.8: Three-dimensional rendering of segmentations. The automatic segmentations are
shown in the upper left. The orbital bony anatomy has been included to illustrate the path
of the nerve. The upper right presents the segmentations from one of the higher performing
experts for this patient. The lower rendering is from a lower performing expert for this patient.
Note the extra segment of optic nerve behind the transparent inferior aspect of the globe. The
chiasm from the other expert has been kept in this panel to illustrate the superior/inferior
disagreement. Note also the brainstem is truncated compared to the others.
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and Altman, 1999). No assumptions are made other than by virtue of their expert status,

the physicians’ segmentations are representations of that which would be used clinically to

develop treatment plans. We have made efforts to ensure a clinically realistic environment for

data gathering, as further described in chapter I. However, a potential pitfall that tempers our

inferences slightly is that the experts may not produce segmentations representative of the whole

population of professionals who undertake such tasks. Our experts are comprised of three senior

attending oncologists and an attending radiologist (P1-P4), and four senior radiation oncology

residents (J1-J4) from a single institution. This work is motivated by the following observations.

First, evaluative studies should reflect both the native form of the segmentations and

their interaction along the path to and final impact on the end-use.

Second, medical image segmentation is a problem plagued by lack of a well-defined

ground truth. The ground truth is the truest representation of the object of interest possible and

may also be known as the gold or reference standard. We were aware of this problem in early

design, and in fact, the use of multiple raters arose from this concern. However, in recent years

methods for ground truth estimation from a cohort of experts have been developed. There is

merit in pursuing both lines of investigation: comparisons between individuals and comparisons

with ground truth estimates. The former is used primarily to gauge variability and the latter

accuracy. We calculated ground truths via two methods, using the simulateneous truth and

performance level estimation (STAPLE) algorithm (Warfield et al., 2004) and our own novel

implementation of the concept of probability maps. The STAPLE algorithm uses expectation-

maximization to provide a probabilistic estimate of the underlying ground truth and is designed

to be robust to outliers within the input segmentation group. We as well as others (Biancardi

et al., 2010) have noted, however, that STAPLE may by overly influenced by volumetrically

larger segmentations within the input cohort. To combat this we developed an additional

method. This was spurred by the work of Meyer and colleagues (Meyer et al., 2006) in an

evaluation of lung nodule annotation by radiologists. They summed radiologist segmentations

and normalized to the number of raters to produce what they termed probability maps (p-maps),

noting that the median of the p-maps appeared to be a good segmentation of the lesions. We

calculated a ground truth from the p-maps using the mean after Gaussian smoothing. This

is similar to voting rule, but rather than threshold the p-maps at a predetermined level, we

use the mean. By doing so, the threshold changes as the rater-decision making model changes;

in other words, raters rate differently in different situations such as the brainstem versus the

chiasm. Using a statistic such as the mean adjusts for the change. The methods and rationale

of ground truth estimation are further discussed in section II.2.3.

Third, assessments should be multidimensional. Segmentations are not easily quantifi-
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able via a single summary measure such as, for example, serum levels of a drug might be. They

are a much higher level data structure, more similar to measuring the molecular distribution of

a drug over the entire body. In geometric comparisons we use several complementary metrics

which are cross-study compatible. We calculate volume (we refer to this as nominal volume to

disambiguate from the other uses of the term) as a stand-alone summary measure. The Dice

similarity coefficient (DSC) (Dice, 1945) measures spatial overlap between two segmentations

normalized to their mean volume. It is derived as a special case of the kappa statistic (Cohen,

1968), a statistical measure of inter-rater agreement, as worked out by Zijdenbos and colleagues

(Zijdenbos et al., 1994). DSC offers the advantages of a simple means of pairwise comparison,

size and location sensitivity, and a finite range [0,1]. What level of DSC constitutes satisfactory

agreement is unclear, both statistically and from a segmentation standpoint. Our work is gen-

erally invariant to this as it is clear that higher DSC represents better agreement, and we are

more interested in comparisons of distributions than absolute agreement. The quality of DSC

as a measure of similarity, however, is likely not universal over different types of structures. It is

less sensitive to differences for structures such as the brainstem where there is a relatively large

volume of agreement compared to small though potentially important regions of disagreement.

This underscores the need for more than a single metric. Lastly, we use distance-based metrics

to gauge differences between edges. Distance-based metrics are generally directional, that is,

the distance A → B does not equal A ← B. Often the bidirectional mean is used. We calculate

in only one direction, however, as we are most concerned specifically with edge difference in this

direction (from ground truth to test segmentation). A drawback of this is that a segmentation

may have several slices entirely missing and yet return very small distance errors. We overcome

this with what information is provided by nominal volume and DSC. This yields important

information about the quality at edges where raters in fact decided to delineate as opposed to

where they decided not to delineate. From this information we can calculate what we term the

true positive rate at a specified distance. The true positive rate is simply the proportion of

contour points falling within a shell of specified thickness about the ground truth estimate. For

example, a rater with a high true positive rate but low DSC and small volume may focus on

specific areas of a structure with high accuracy while completely omitting another area of the

structure.

I.6 Goals and contributions of the work

For automated segmentation methods to be clinically useful, they need to improve

efficiency and at minimum maintain variability and accuracy compared to clinicians. In other

words, the system must serve as a robust surrogate to the human actors. The primary goal of
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this work is to determine whether our automated system for segmentation of intracranial organs

at risk satisfies these requirements. We do so via a multi-rater behavioral study that seeks to 1)

assess geometrically the automated segmentations in the context of inter-expert variability and

accuracy de novo, 2) gauge the impact of segmentation editing, and 3) measure the sensitivity

of the end-use, that is, radiation dosimetry, to segmentation differences. In doing so we gain

insight not only into the quality and utility of the automated methods but also new information

regarding the accuracy and variability of experts and impacts thereof on dosimetric outcome.

A secondary goal of this work is to develop a tool for future investigation. We aim to

develop a framework that can be applied to other anatomical sites, specifically within radiation

therapy. Our framework utilizes a combination of multiple complementary metrics both on the

native segmentations and at their end-use, a behavioral approach with multiple expert raters,

and a novel method of ground truth estimation from the cohort of experts.
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CHAPTER II

CHARACTERIZATION OF SEGMENTATION VARIANCE
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Abstract
The purpose of this work was to characterize expert variation in segmentation of intracranial
structures pertinent to radiation therapy, and to assess a registration-driven atlas-based seg-
mentation algorithm in that context. Eight experts were recruited to segment the brainstem,
optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-
occupying tumors. Performance variability was assessed through three geometric measures:
volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground
truth segmentations were calculated via the simultaneous truth and performance level esti-
mation (STAPLE) algorithm and a novel application of probability maps. The experts and
automatic system were found to generate structures of similar volume, though the experts ex-
hibited higher variation with respect to tubular structures. No difference was found between
the mean Dice coefficient (DSC) of the automatic and expert delineations as a group at a 5%
significance level over all cases and organs. The larger structures of the brainstem and eyes
exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were
lower, approximately 0.4-0.5. Similarly low DSC have been reported previously without the
context of several experts and patient volumes. This study, however, provides evidence that
experts are similarly challenged. The average maximum distances (maximum inside, maximum
outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system
to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank
of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic
system ranked second of the nine raters. This work underscores the need for large scale studies
utilizing statistically robust numbers of patients and experts in evaluating quality of automatic
algorithms.
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II.1 Introduction

Three-dimensional imaging advances have revolutionized the treatment planning pro-

cess in external beam radiation therapy. They provide physical information by which to cal-

culate dose and specify external geometry, and as highly conformal treatments have become

prevalent, they provide increasingly important information regarding patient anatomy both

diseased and at risk. As a result image segmentation has become a central part and often rate

limiting step in the planning process. Radiation oncologists must make judgments incorporat-

ing implicit and explicit anatomic, histologic and physiologic information in the presence of

varying image quality to partition an image volume into normal and diseased tissue. This is a

time consuming process that must occur before designing fields or calculating dose and thus can

be a significant contributor to the overall efficiency of the process. The need for segmentation

is only expected to increase in the future as additional conformal and adaptive techniques are

implemented (Mell et al., 2003, 2005).

Until recently segmentation of all but the simplest structures was accomplished man-

ually. Of late, however, a number of semi- and fully-automated methods have been developed

to segment normal tissues in a radiotherapy clinical context (Gorthi et al., 2009; Malsch et al.,

2006; Lu et al., 2004, 2006; Xie et al., 2008; Reed et al., 2008; Zhang et al., 2007; Pasquier

et al., 2007; Isambert et al., 2008). Evaluation of these methods has been a persistent challenge

as medical image segmentation unfortunately lacks a known ground truth, or gold standard, in

its real world application. Phantoms provide an easily identifiable ground truth but are an un-

realistic surrogate for patient imaging. The same can be said for synthetic images and cadaver

sections. As noted by Warfield et al., the accuracy of a reference standard and the degree to

which it reflects the clinical concerns are often inversely related. Accordingly, a single manual

rater provides realistic data but can suffer from intra- and inter-rater variance. Recognizing the

need for a useful reference standard, Warfield and colleagues introduced a method known as

the simultaneous truth and performance level estimation (STAPLE) algorithm (Warfield et al.,

2004) to simulate a ground truth from a cohort of manual segmentations.

In addition to the absence of a known ground truth, evaluation methods have also

lacked consensus as to comparison metrics. The choice of comparison metrics is quite impor-

tant, as each yields different information and must be considered in the appropriate context.

Generally, these measures fall into one of two categories: volume-based or distance-based. Mea-

surement of nominal segmentation volume is a simple measure that does not require a reference

standard for calculation, which makes it computationally inexpensive and allows for easy cross-

study comparison with minimal background information. Spatial overlap measures such as the

Dice similarity coefficient (DSC) (Dice, 1945) and related Jaccard coefficient (Jaccard, 1908)
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have been most broadly adopted in the literature in recent years. While these yield a good

sense of volume overlap of two segmentations, they provide little in terms of the scale of mis-

match (Crum et al., 2006). Specificity and sensitivity are also commonly applied. Specificity,

however, is plagued by its dependence on the number of true negatives; that is, the number

of voxels in the image space not contained within the segmentation. This value may change

quite considerably between studies simply as a function of image or region of interest size. A

weakness of volume, DSC, and specificity and sensitivity, is that they are fairly insensitive to

edge differences when those differences have a small impact on overall volume. For example,

two segmentations with large total volume may show a high degree of spatial overlap while

exhibiting clinically relevant differences at their edges. Distance measures, however, such as

the Hausdorf and Euclidean, or surface normal, distances offer yet another means of compar-

ison by providing information regarding the differences in edges of two segmentations. The

distance calculations generally result in a vector of distances that may be summarized as mean

or median, or may be used in further statistical analyses. Thus, our experience has been that

a combination of several volume and distance measures is required to gain a deep perspective

of the dataset.

Our work is motivated by the observation that medical image segmentation is inher-

ently a problem lacking a known ground truth. Accordingly, clinical evaluation studies should

be behavioural in nature, employing a number of raters and patient volumes such as to provide

good statistical power in the targeted clinical context. We designed a study to quantify varia-

tion amongst physicians in segmenting organs at risk in the brain and to assess our automated

system in this context. Several other multiple observer studies have focused on evaluating

automatic or semi-automatic systems within the brain (Bondiau et al., 2005; Isambert et al.,

2008; Babalola et al., 2009) and head and neck (Chao et al., 2008; Stapleford et al., 2010),

but we know of no other study as comprehensive in terms of patient numbers, expert raters,

and organs segmented. In addition, to be as clinically relevant as possible, we chose to con-

duct the study on volumes with large space-occupying lesions. We chose this anatomical site

for the wealth of matched computed tomography (CT) and magnetic resonance (MR) imag-

ing available, the clinical relevance to intensity-modulated radiation therapy (IMRT), as well

the ubiquity in physician training in intracranial anatomy. We tested the hypothesis that the

automatic system would produce segmentations that could serve as surrogates to the manual

physician segmentations. An ancillary goal of this work was to collect a large and statistically

robust dataset, which is useful for evaluating not only our algorithms but also those being de-

veloped by other groups. The recent release of several commercial radiotherapy segmentation

systems underscores the need for a strong multi-rater data set for evaluation.

24



II.2 Methods

II.2.1 Study design

We selected 20 patients that had been previously treated in our department with IMRT

for high grade gliomas. We chose difficult cases with large space-occupying tumors, often close

to the critical structures, which would present a challenge for the non-rigid registration-based

segmentation algorithm we use as well as yield pertinent dosimetry for the next phase of analysis.

The mean gross tumor volume (GTV) and clinical tumor volumes (CTV) were 49 and 199 cm3,

respectively. As a point of reference, these volumes roughly translate into a mean spherical

equivalent of 4 and 7 cm in diameter. Each patient underwent stereotactic biopsy for which

high resolution T1 MRs were acquired under 1.5T (N=10) or 3T (N=10) magnetic fields and

reconstructed into image volumes of voxel size approximately 1x1x1.2 mm3. A helical CT of

dimensions approximately 0.6-0.7 mm in the axial plane and either 2 mm (N=14) or 3 mm

(N=6) in slice thickness was acquired for treatment planning.

Eight physicians were enlisted in this study as expert raters: 4 junior physicians (J1-J4)

and 4 senior physicians (P1-P4). The senior physicians were comprised of 3 radiation oncologists

and a diagnostic radiologist, while the junior physicians were PGY5 radiation oncology resi-

dents. Before initiating the study, we reviewed images and our atlas delineations with them as a

group to set general anatomical guidelines. One important guideline reiterated throughout the

process was to set the inferior border of the brainstem at the foramen magnum, as the brainstem

lacks a physical boundary with the the spinal cord. Another concern was where the brainstem

meets the cerebellum in the lower pons. Here there is no significant contrasted boundary, so

we developed an implicit rule whereby the experts should begin the contour anteriorly at the

basilar sulcus of the pons, extend laterally to include the middle cerebellar peduncles, and

continue posteriorly and medially toward the median sulcus of the fourth ventricle making an

angle of approximately 45 degrees to the anterior-posterior axis.

The patient volumes were anonymized and loaded into a commercial treatment plan-

ning system (Eclipse version 8.5, Varian Medical Systems, Palo Alto, CA). This workstation

was identical to the clinical systems in our department while reserved for research only. Com-

puted tomography and MR images were registered within the planning system and fused. Each

physician was given the opportunity to change window and level settings to his liking and re-

ceived instructions to use all imaging information available to them to the point at which each

felt confident delineating a critical structure. They were asked to delineate the brainstem, optic

chiasm, optic nerves, and eyes. An in-house graphical user interface was constructed to inform

the physicians where they stood in the task queue and to provide a mechanism to record time.
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The timing mechanism allowed the rater to pause momentarily or leave the system entirely and

return later. Each rater was blinded to the work of the others. The delineations were collected

over approximately one year.

Each physician was given all of the tools afforded by the clinical treatment planning

system for contouring. A “paintbrush” tool produces an opaque segmentation as the expert

traces out the structure. A “pencil” tool is similar without producing the opacity and can be

used in a continuous or stepwise mode. There was also an “eraser” tool and the ability to

stretch and deform contours after delineating. Three orthogonal views were present on screen

at all times, though only axial were available for contouring. This is a limitation of the clinical

software. We advised the experts to use the same tools they would use clinically and with which

each was comfortable. We also advised them to inspect the final product of their work before

completely the task. Lastly, above all we instructed the experts to perform these tasks in the

context of real world clinical relevance.

The final result of each contouring session was a set of points in DICOMRT standard

format that were stored at sub-voxel resolution.

II.2.2 Automatic segmentation

Two methods were utilized for the automatic segmentations in this study. The first

method utilizes atlas-based registration (Crum et al., 2004) to segment the eyes and the brain-

stem, while the second method utilizes a general technique we have developed for the segmen-

tation of tubular organs, which we call the atlas-navigated optimal medial axis and deformable

model algorithm (NOMAD) (Noble et al., 2008; Noble and Dawant, 2009).

We first manually delineated the brainstem and the eyes in an atlas image. Then,

a global affine registration was computed and used to register the atlas image (panel II.1a,

bottom row) onto the target image (panel II.1a, top row) that we want to segment. A predefined

bounding box around each organ is extracted from both the atlas and target image after the

global affine registration (panel II.1b). Another affine registration is performed locally between

the extracted boxes of the atlas and target images, again resulting in a transformation that is

used to project the atlas onto the target image. This second affine registration is performed to

limit the registration on a local area within the image. The size of the boxes is determined by

the size and shape of the organ of interest within the atlas image, with an arbitrary amount of

padding to aid in the local affine registration. This registration utilizes the normalized mutual

information (NMI) (Studholme et al., 1999) as the similarity measure. Lastly, local non-rigid

registration is then performed between the results of the local affine registration and the atlas

image. The manual contours drawn on the atlas are then projected onto the target image
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utilizing the deformation fields that were the result of the three registrations (panel II.1c).

The non-rigid registration approach is an algorithm we termed the adaptive bases

algorithm (ABA) (Rohde et al., 2003). This algorithm uses normalized mutual information

(Studholme et al., 1999) as the similarity measure and models the deformation field that reg-

isters the two images as a linear combination of radial basis functions (Wu, 1995) with finite

support.

Both the forward and the backward transformations are computed simultaneously, and

the transformations are constrained to be inverses of each other using the method proposed by

Burr (Burr, 1981). Although this cannot be proven analytically, experience has shown that the

inverse consistency error (Christensen and Johnson, 2001) achieved with this approach is below

the voxels’ dimension. In our experience, enforcing inverse consistency improves the smoothness

and regularity of the transformations.

In this work, we segment the optic nerves by applying the NOMAD algorithm. The

NOMAD algorithm first computes the medial axis of the structure as the optimal path with

respect to a cost function based on image and shape features. The medial axis is then expanded

into the full structure using a level-set algorithm. Unlike other methods (Feng et al., 2004; Yim

et al., 2001), NOMAD uses a statistical model and image registration to provide the above

segmentation framework with a priori, spatially varying intensity and shape information, thus

accounting for unique local structure features. The statistical models were trained on volumes

not included in this study.

In order to compensate for the lack and changing contrast of the structures, we take

advantage of both the CT and MRI to build the models used by the algorithm. To ensure that

the intensity information will consist of the best possible contrast, we rely solely on the CT

in the region of the optic nerves, and solely on the MR in the region of the optic tracts and

chiasm. The model consists of the set of points that compose the center line of the structure

and their associated expected values for intensity and shape features extracted from the rigidly

aligned MRs and CTs. Once the models are built, new sets of images can be segmented.

II.2.3 Calculation of simulated ground truths

We calculated two simulated ground truths for comparison to individual raters (P1-J4)

and our automatically generated segmentations, A1.

First, we used the STAPLE algorithm (Warfield et al., 2004) to calculate a consen-

sus estimate from the physician segmentations. The STAPLE algorithm uses expectation-

maximization to provide a probabilistic estimate of the underlying ground truth. It is designed

to be robust to outliers within the input segmentation group. A second simulated ground truth
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(a) (b)

(c)

Figure II.1: Atlas-based segmentation process for the brainstem and eyes. Panel (a): Orthog-
onal slices of a patient (top row) with a large right sided lesion and the atlas (bottom row)
before registration. Panel (b): Volumes are then globally, affinely registered, and a bounded
atlas region (white box) is projected onto the patient. Panel (c): Local affine and local non-
rigid registration are performed on the bounded region where the top row represents the final
product of the patient brainstem deformed to the atlas. The green contour drawn on the atlas
and fused with the final registration result for the patient demonstrates the correspondence
that has been achieved between the two images.
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was calculated through the creation of probability maps, termed p-maps (Meyer et al., 2006). A

separate probability map was created for each rater across critical organ structures and patients

to remove potential bias explicitly. The p-maps were created by summing the binary masks

of each rater for a particular organ, omitting the rater for which the p-map will be used in

comparison. For example, the p-map for rater P1 would be formed by summing the 7 binary

masks of raters P2-J4. The 3D array is then normalized to the number of raters included and

smoothed using a 3x3 pixel Gaussian kernel applied in-plane with a standard deviation of 0.65

pixel width. The smoothing increases correlation between adjacent voxels, but it also improves

the validity of later statistical tests that rely on assumptions of normality. We chose the filter

parameters heuristically as a balance between reduction in gross quantization and an increase

in spatial correlation between voxels. Additionally, we removed rater P2 from the p-maps, as

an initial statistical analysis showed this rater produced several outliers within the complete

dataset. The ground truth estimate was then created by thresholding the p-map at a desired

level to form a binary mask. The choice of threshold level presents a challenge in using p-maps

for ground truth estimation. A common interpretation is to choose a static, fixed value. For

example, 0.5 would represent majority vote in which at least half of the raters agree. We chose

to threshold at the mean value of the distributions, thus yielding a threshold specific to each

p-map. That is, each voxel with a value greater than or equal to the mean of that p-map

was included in the ground truth segmentation. While the mechanics of p-map creation and

thresholding are identical for a static level, our method recognizes that rater consensus may

vary considerably between structure and even between cases within structure. Another way to

think about this is that the level of spatial independence within p-maps, an assumption violated

for both STAPLE and p-map methods, varies over structures and cases. Choosing a static level

such as simple majority vote, 0.5, assumes that value to be most representative of the group

preferences over all structures and cases. However, in calculating a measure of central tendency

we treat each scored voxel as a sampling distribution, and we take the mean of these sampling

distributions as an appropriate level of consensus, thereby adjusting the level in response to the

nature of the data.

We chose the STAPLE method as it is designed to produce a probabilistic ground truth

estimate robust to deviations in rater performance. Use of STAPLE has become prevalent in

segmentation evaluation work, and thus its inclusion herein should facilitate comparison with

current and future work. While STAPLE was easily applicable to our imaging data, we also

calculated the p-map-derived ground truth for its computational simplicity and the statistical

value of the p-maps in future studies. We will refer to these simulated ground truths as STAPLE

and PMAPmean.
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II.2.4 Comparison metrics

The data obtained in this study are most basically three-dimensional coordinate sets.

To make judgments and draw conclusions about these data, we compare them using several

metrics sensitive to different aspects of geometry. For this study we calculated two volumetric

measures and one distance measure: volume, Dice similarity coefficient, and Euclidean distance

from a simulated ground truth. The volume is calculated quite straightforwardly as the sum

of the voxels contained within the binary mask of a segmentation multiplied by the voxel

dimensions, which in our case were in CT space. The Dice similarity coefficient (DSC) has

been used broadly in the field of segmentation as a measure of spatial overlap (Dice, 1945;

Jaccard, 1908; Zijdenbos et al., 1994). The volumetric DSC is defined in equation II.1 as the

intersection of two masks normalized to their mean volume, where A and B are the masks and

N is an operator yielding the number of voxels.

DSC(A,B) =
N(A

⋂
B)

1
2(N(A) +N(B))

(II.1)

Its range is [0,1] where zero indicates no overlap and 1 indicates exact overlap. Mea-

sures such as volume and DSC can be insensitive to differences in edges if these differences lead

to an overall small volumetric effect in relation to the total volume. The relative sensitivity of

DSC to edge differences is a function of shape, or more explicity the number of edge voxels in

comparison to the number of inner voxels. For example, DSC will be more sensitive to edge

variation in thin tubular structures such as the optic chaism and nerves than in the brainstem

and eyes, where the majority of voxels are not at the edges. Edge variation, however, could be

quite important in a radiotherapy inverse planning context.

To gain information about differences at the edges of segmentations, we used the three-

dimensional coordinates obtained from individual physician and automatic segmentations. We

used these points to sample a distance map. The Euclidean distance map, or transform, is a

pregenerated 3D array in which each voxel contains the value of the straight-line, or surface-

normal, distance to the nearest non-zero voxel. We used PMAPmean as the source from which

to calculate the distance maps. To determine the distribution of distances for an individual

segmentation, the appropriate distance map was sampled at the contour points of the segmen-

tation. This method yields a distance from each point drawn by a physician or the automatic

system to the simulated ground truth. The distances were signed such that a rater’s contour

point lying inside the boundary of the ground truth was scored negative and outside scored

positive. There are several ways to utilize distances. Often only the absolute distance from the

ground truth is considered where direction is unimportant. In the context of radiotherapy we
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feel it is important to know whether a rater segments consistently small or consistently large

as compared to the ground truth estimate. From this signed distribution of distances one can

then do a number of things. We chose to generate boxplots of the distributions to get a sense of

overall variability and understanding of whether there were instances of systematically positive

or negative distances. We further used the absolute values of these distances to calculate true

positive rates as a gauge of overall quality of segmentation.

It is important to recognize that this calculation provides information about where

a rater made the decision to segment. It says nothing about where the rater decided to not

segment. For example, we can imagine a simulated ground truth that extends for several axial

slices of a CT image. A rater in question may draw an exact match to the simulated ground

truth but on one slice only. The resulting distance distribution for this rater would be a vector

of zeros, indicating that in every place the rater made a decision to draw a line, that decision

was correct. The distance distribution says nothing regarding the failure of the rater to segment

the other slices.

We chose two volume based measures coupled with the distance measure to provide

more complete information about how segmentations differ. Alone each measure has a weakness.

Volume and DSC tend to integrate edge differences that are small relative to the overall size of

the segmentation. Meanwhile, the distance measure captures information only in the context

of edges that were drawn, ignoring areas that a rater opted not to segment.

II.3 Results

Figures II.2 and II.3 present manual and automatic segmentations from a subject

chosen randomly from the 20 patients used in this study. The eight physician-segmentations

for the brainstem, chiasm, eyes, and optic nerves, can be seen in multiple colours, while the

automatically generated segmentations are purple for each structure. The tumor volume is

shown in red on the coronal slice. Figure II.3 similarly presents axial contours of the brainstem

and eyes, illustrating the variation that can be seen qualitatively between experts. We found this

area of the brainstem at the cerebellar peduncles to be a consistent source of variation amongst

the experts. The results we present here are an attempt to quantify the variation geometrically

such that we can make judgments about the expert and automatic segmentations, as well as

the interaction of the two.

We calculated several quantitative measures to make comparisons between segmen-

tations: volume, Dice similarity coefficient (DSC) and Euclidean distance from a simulated

ground truth. Figures II.4–II.7 use the boxplot to represent the results of these calculations.

The boxplot presents the range of the distribution with a thin vertical line through the box.
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Figure II.2: A randomly chosen patient from the 20 cases used in this study. Eight physician
raters segmented the brainstem, optic chiasm, eyes, and optic nerves using a fused CT/MR
image set. The automatically generated segmentations are shown in purple. The large red
contour in the right parietal is the gross tumor volume.
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Figure II.3: Axial slice showing an area of high physician variability within the brainstem. In
this area of the cerebellar peduncles there is little anatomical contrast, such that the physicians
rely primarily on implicit knowledge. The automatic contour is represented in purple.
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Figure II.4: Volume [cm3] for the automatic (A1), senior physician (P1-P4), junior physician
(J1-J4), and simulated ground truth, STAPLE (S) and PMAPmean (P) segmentations. The
horizontal line through each box indicates the median of the volume distribution while the
rectangular box represents the interquartile range. Small dots are outliers for the distribution.
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Dots above and below this line represent statistical outliers, or values outside 1.5 times the

interquartile range. The thicker vertical line, the box, is bounded by the 25th and 75th per-

centiles of the distribution, and the median is shown via a short horizontal line. In these plots

the automatic results are represented in the far left column labeled A1 on the abscissa, followed

by the senior physicians, P1-P4, and the junior physicians, J1-J4. In addition, when appropriate

the two simulated ground truths are included and labeled S and P for STAPLE and PMAPmean,

respectively.

II.3.1 Volume

Figure II.4 plots the volume distributions of the automatic, expert, and simulated

ground truth segmentations for each of the six organs investigated. First, we note that physi-

cian P2 segmented smaller structures than the others except in the case of the optic chiasm.

The brainstem as segmented by P2 was on average 40% smaller than the other physicians’ seg-

mentations with twice the coefficient of variation, 24%. The mean volumes [and 95% confidence

intervals] across all physician segmentations were 25.88 [25.08, 26.70], 0.66 [0.60, 0.74], 8.5 [8.20,

8.73], 8.69 [8.40, 8.96], 0.88 [0.81, 0.94], and 0.87 [0.82, 0.92] cm3 for the brainstem, optic chi-

asm, left and right eyes, and left and right optic nerves, while the automatic volumes were 23.99

[22.82, 24.87], 0.41 [0.39, 0.45], 9.00 [8.53, 9.42], 9.26 [8.65, 9.71], 0.64 [0.61, 0.68], and 0.63

[0.61, 0.67] cm3, respectively. The junior physicians as a group segmented larger structures than

the senior physicians as a group. Although there were small differences in volume significant

at the 5% level between the automatic structures and the physicians as a group, this difference

disappears at an individual level. That is, the distribution of the automatic volumes falls within

the variation of the individual physicians. It is clear, however, for the smaller tubular structures

of the optic nerves and chiasm, the automatic structures were closer in volume to the smallest of

physician segmentations. Additionally, the coefficient of variation of the automatic structures,

11-16%, was consistent across all organ structures. The individual physicians produced similar

variation to the automatic system for the brainstem and eyes. For tubular structures, however,

the physicians displayed more variation than the automatic segmentations, with coefficients of

variation over the 20 patient cases ranging from 21-93% of mean structure volume.

Volumes for the two simulated ground truth segmentations were also calculated and

can be seen in Figure II.4. STAPLE consistently produced segmentations with larger volumes

than the p-map derived method.
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II.3.2 Dice similarity coefficient

The Dice similarity coefficient (DSC), a measure of volumetric overlap, was calcu-

lated and plotted in Figures II.5 and II.6. Each boxplot contains several columns representing

distributions of non-redundant pairwise DSC comparisons for each of the raters. Figure II.5 as-

sesses inter-rater performance and variance. In the first column, A1, represents the distribution

of DSC between automatic segmentations and individual physician segmentations. Columns

P1-J4 represent inter-physician comparisons: P1-P4 senior and J1-J4 junior physicians. Each

distribution in these columns represents pair-wise comparisons of the expert in question to each

of the other experts. The automatic segmentations are included only in the first column. In

this way we are able to gauge automatic performance in the context of all experts as well as

inter-expert performance. Table II.1 provides the mean DSC and 95% confidence intervals.

The distributions of DSC are often skewed and depart from assumptions of normality required

for statistical inference. To avoid making assumptions of the underlying population or trans-

forming the data (Zou et al., 2004), confidence intervals were calculated via bias corrected

and accelerated bootstrap (Davison and Hinkley, 1997) with 1000 replicates, about the mean

DSC for each distribution plotted in figure II.5. In individual comparisons only P2 produced

segmentations with mean DSC different from the other physicians and the automatic system.

Additionally, we calculated the same statistic grouping the experts as a single group and as two

groups representing senior and junior physicians. At the 5% significance level across all raters,

cases, and organs, no difference exists between the mean DSC of the automatic segmentations

and the physicians as a single group. The junior physicians and A1 performed better than the

senior at the 5% level, but the magnitude of the difference was small.

Figure II.6 plots Dice coefficients against two ground truth estimations. The first two

left most columns represent the distribution of Dice for the automatic segmentations compared

to STAPLE and PMAPmean, respectively. The same is plotted for the physician group in

columns three and four. Lastly, the fifth column compares the two ground truth estimations.

First, we note a high degree of overlap between STAPLE and PMAPmean. Generally, the

physician segmentations had a slightly higher spatial overlap with the ground truths than

did the automatic system. However, the automatic system was more consistent, with smaller

standard deviations and fewer outliers.

Figures II.5 and II.6 make essentially three types of comparisons: automatic-physician,

physician-physician, and automatic- and physician-simulated ground truth. Another valuable

comparison is that of individual groups to the simulated ground truths. For some structures,

there was a small but significant (p<0.05) difference between senior and junior physicians. This

difference was almost entirely a result of P2 as a member of the senior group. Looking across
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Figure II.5: Dice similarity coefficients across the 20 patients per structure to assess inter-
rater performance and variance. Columns P1-J4 plot inter-physician comparisons: P1-P4 senior
and J1-J4 junior physicians. Each distribution in these columns is comprised of pair-wise
comparisons of the expert in question to each of the other experts. The automatic segmentations
are included only in the first column.
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Figure II.6: Dice similarity coefficients for each rater group with respect to the simulated ground
truths. The first two columns from the left compare A1 to STAPLE (S) and PMAPmean (P),
followed by comparison with the physician group, followed by comparison between S and P in
the far right column.
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Figure II.7: Distance (mm) distributions from rater segmentations to PMAPmean. Positive
distances indicate a contour point lying outside the ground truth segmentation while negative
distances indicate a contour point lying within the ground truth.

all the structures, the automatic segmentations produced a mean DSC against the simulated

ground truths of 0.71 compared to 0.76 for the physicians. When decomposed into structures,

again the biggest challenge was presented by the tubular chiasm and nerves, for both physicians

and the automatic system. Whereas the mean for the brainstem and eyes was typically greater

than 0.8, the chiasm and nerves were approximately 0.4 and 0.5, respectively. The tubular

structures also had standard deviations on average over twice that of the brainstem and eyes.

II.3.3 Euclidean distance

Euclidean, or surface normal, distances were calculated in 3D between the segmenta-

tions and PMAPmean. Signed distance maps for PMAPmean were pregenerated using an imple-

mentation of the algorithm proposed by Maurer et al. (Maurer et al., 2003) and then evaluated

at the contour points of the automatic and physician segmentations. In Figure II.7 the distances
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are signed to differentiate a contour point lying inside from a point outside PMAPmean. Table

II.2 provides the minimum (furthest inside), mean, and maximum (furthest outside) distances

for each structure averaged over the 20 patients. When the distance distribution is decomposed

by structure, all raters had a mean distance between 0 and +2 mm except for P2’s segmentation

of the chiasm, which on average was 3 mm from the simulated ground truth. The average max-

imum distances (inside and outside) across the 20 cases ranged from -4.3 to +5.4 mm (inside

and outside) for the automatic segmentations. The same for individual physicians ranged from

-5.8 to +10.8, and when physicians are considered as a group, -3.9 to +7.5 mm.

Figure II.8 plots the proportion of contour points that fall within 2 mm of the simulated

ground truth as a function of rater and structure. This value can be thought of as the true

positive rate, whereby any contour point drawn within a 2 mm shell of the simulated ground

truth scores positive. The abscissa is partitioned by rater and structure, the ordinate is the 2

mm true positive rate, and the whiskers represent the 95% confidence interval on the proportion.

This plot shows a broader variation amongst the physicians than within the automatic system.

When we rank true positive rates, a senior physician, P3, ranked the best overall and was the

most consistent. The automatic system was second only to P3 in terms of overall false positive

rate and consistency.

II.3.4 Time

Segmentation time was recorded for each physician and is presented in Table II.3. The

average physician time-to-segment was 14.5 minutes with a standard deviation of 6.2 minutes.

These times include only the task of segmenting the organs and explicitly exclude all time

required to open the software or make adjustments before delineation began.

II.4 Discussion

In this work we desired to evaluate our automated segmentations in a real-world clin-

ical study, to test the hypothesis that automatically segmented structures could serve as a

surrogate to manual delineations. Accordingly, we designed a large study and chose a cohort of

20 challenging patient cases containing large space-occupying tumors, which are generally chal-

lenging for registration algorithms (Dawant et al., 2002; Bach Cuadra et al., 2004; Bach Caudra

et al., 2006). To our knowledge no other clinically evaluative study of this scale has presented

data on segmentation under these circumstances. In the absence of a well-defined or well-suited

ground truth, Warfield (Warfield et al., 2004) and Meyer (Meyer et al., 2006) have presented

alternatives. The Simultaneous truth and performance level estimation (STAPLE) algorithm
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Figure II.8: True positive rate of contour points drawn within a 2 mm shell around the simulated
ground truth. The abscissa is partitioned by rater and structure, the ordinate is the 2 mm true
positive rate, and the whiskers represent the 95% confidence interval on the proportion.
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Table II.3: Mean and standard deviation of segmentation times for the physician raters.

Time [minutes]

Mean std

P1 9.6 2.5
P2 14.1 4.5
P3 19.8 3.4
P4 21.1 6.2
J1 18.8 3.3
J2 14.8 4.4
J3 6.6 1.4
J4 11.1 3.0
All experts 14.5 6.2

produces a simulated ground truth from a cohort of expert delineations and can be compared

directly with the automatic segmentations. STAPLE is a complex algorithm that has been

shown to yield quality estimates of ground truth. However, early in our investigation we noted

qualitatively that STAPLE could be influenced disproportionately by volumetrically larger seg-

mentations within a group. Biancardi and colleagues (Biancardi et al., 2010) have noted a

similar phenomenon. To provide an additional basis of comparison, we simulated a second

ground truth using the computationally simple concept of probability maps, which is analogous

to the idea of voting rule. We chose to threshold the probability maps at a variable level, the

non-zero mean of each probability distribution, to form the mask. Previously, Biancardi chose to

threshold at fixed levels such as 0.5 or 0.75, which tended to produce consistently large or small

estimates, respectively. Thresholding the p-maps at a static, predetermined level is problematic

for two reasons. First, determination of a threshold level presents a challenge. A reasonable first

choice is 50% as it is the threshold for majority vote. However, with a statistically small number

of raters of unknown individual variance, 50% may not be reliable depending on whether false

positives or false negatives are more important. This suggests that a threshold appropriate for

one cohort of experts may not be appropriate for another cohort. Likewise, the same logic ap-

plies to different organ types. We believe our results show that consensus among experts is quite

dependent on organ structure. In a large structure such as the brainstem we found significant

areas over which 100% of the experts agreed, but in the optic chaism and nerves such agreement

was far rarer. Second, this method does not address the concern of spatial homogeneity. Both

STAPLE and probability maps assume spatial independence of voxels. The STAPLE algorithm

attempts to overcome deviations from this assumption through either incorporation of a priori

information or using a Markov random field model. In our method we recognize that adjacent

voxels are correlated, and in fact we increase that correlation through Gaussian smoothing. The
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smoothing, however, helps achieve an approximately normal distribution of p-map values from

which we calculate the mean probability as a threshold. Therefore, the appropriate threshold

level will be unique to each cohort of expert segmentations and each structure. The end result

shows that STAPLE and the probability map method produced ground truths of a high degree

of spatial overlap (figure II.6). However, while a full investigation of STAPLE was beyond the

scope of this work, we did find that STAPLE produced volumetrically larger segmentations

than the pmap method (figure II.4).

In this work we used three principal metrics to characterize and compare segmenta-

tions: volume, the Dice similarity coefficient, and Euclidean distance calculated from a simu-

lated ground truth. These measures offer several advantages. Volume is quite simple to calculate

and stands alone, requiring no direct comparison to or use of a reference standard. The Dice

similarity coefficient (DSC) is likely the most ubiquitous of metrics used in present literature.

The Euclidean distances are particularly useful in the radiation therapy context, as their unit

has implications to dose distributions and are well understood by the community. Volume,

DSC, and Euclidean distance are invariant to image or mask size in terms of calculation, and

thus do not suffer some of the pitfalls of specificity. A major goal of this work has been to

provide a resource for others in algorithm assessment.

Each of the geometric measures showed the automatic segmentations to fall within the

variation of the expert group, shown visually in boxplots (figures II.4–II.7). Generally, there

were few statistical differences between the automatic system and the ground truth estima-

tions or the physicians as a group and the ground truth estimations, which were evaluated via

bootstrapping 95% confidence intervals. The automatic system produced less variance than the

physicians as a group over all the organs, and the magnitude of variance was more consistent

across organs than within the physician group. This can be seen in figure II.8, the 2 mm true

positive rates.

Looking at individuals and groups within the larger physician group provides some

trends. Junior physicians tend to segment volumetrically larger than their senior physician

counterparts. We postulate this could result from a tendency to avoid risk of anatomically

missing a portion of organ, while the more experienced physicians may be more confident in

delineating a tighter border. We did not find, however, any evidence of reduced variance or

higher spatial overlap in the senior physician group. In fact, one senior physician, P2, was

found to be different from the other physicians on all measures. A portion of this variance

can be explained through the 2 mm true positive rates in figure II.8. The 2 mm true positive

rate for P2 is low for most structures but ranks fifth of nine for the brainstem, which was

grossly different as measured by volume and DSC. Upon closer inspection we found that for
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the brainstem this rater was inconsistent when marking inferior and superior extent of the

organ, often not extending the slices as far in either direction as the rest of the group. This

underscores the importance of choosing complementary metrics, as each examines a different

aspect of geometry.

This work is not the first to evaluate automatic segmentation in the context radiation

therapy organs at risk in the brain. Direct comparisons to other work are often compromised by

the choice of metrics and differences in data acquisition. Bondiau and colleagues (Bondiau et al.,

2005) investigated atlas-based segmentation of the brainstem using MR images of 6 patients

and 7 experts. Here we compare their observations to (our observations). Inter-expert volumes

varied from 16.70 to 41.26 (8.82 to 35.89) cm3 across all cases. The mean expert delineations

varied from 20.58 to 27.67 (19.66 to 29.15) cm3, and the automatic delineations varied from

17.75 to 24.54 (17.47 to 28.28) cm3 as a function of patient. Isambert (Isambert et al., 2008)

also segmented the brainstem, optic chiasm, optic nerves and eyes, for 11 patients against a

single reference standard jointly delineated by a radiation oncologist and neurosurgeon. They

concluded that automatic segmentation was well suited for organs greater than approximately

7 cm3, as they measured DSC above 0.8 for the eyes and chiasm, and concluded the small

structures (DSC approximately 0.4) should be manually delineated by an expert. We noted a

similarly low DSC for the chiasm in our study, though our optic nerves showed higher agreement

of approximately 0.6 with respect to simulated ground truths. Though indeed spatial overlap

is lower amongst the small tubular structures, we found that these structures are equally a

challenge for the experts. In fact, in our study the automatically generated structures exceed

the experts in some respects such as consistency, or robustness. This is seen in the variance

of Dice index distribution (figure II.6) of the automatic against the simulated ground truths,

which is smaller than the physicians. The automatic system also scored near the top of the

expert group with respect to the 2 mm true positve rates plotted in figure II.8. Lastly, one

must also consider the large variation in manual delineations for the optic nerves and chiasm

reduces the accuracy of the ground truth produced with these contours.

II.4.1 Limitations and future work

We are undertaking a comprehensive clinical evaluation of our fully automatic segmen-

tation system. Our experimental design is motivated by the following three observations. First,

medical image segmentation is inherently a problem lacking a known ground truth. Accordingly,

clinical evaluation studies should be behavioural in nature. Such a study requires a number

of raters and patient volumes such as to provide good statistical power in the targeted clinical

context. Second, realistically, the segmentation product of any automated system will require
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review and most likely modification by a qualified professional. Evaluation should characterize

the impact of the modification process on efficiency, individual and group rater variance, and

accuracy. Third, in the radiotherapy context organ segmentations are an important variable in

a complex process culminating in the delivery of radiation dose to a patient. Traditional ap-

proaches to evaluation focus on the geometric properties of the resultant segmentations. While

these are certainly the first and an important part of any evaluation, much value exists in

understanding the impact of an automated system with respect to dosimetry.

There were several complementary goals in this work. The first was to evaluate our

automatic segmentation methods in the brain on clinically relevant organs at risk. To our

knowledge, this study is the largest and most robust that has been offered to date for such

organs, specifically in the presence of large space-occupying brain lesions. Second, we hope

that this work will provide a framework and a basis for comparison to others implementing

similar algorithms. We emphasize the importance of using multiple complementary and easily

reproducible metrics, as well as experimental designs that recognize the behavioural nature of

human medical image segmentation.

Lastly, there are several limitations to the current study. First, we evaluate only

our own algorithm for automatic segmentation. There are now scores of segmentation methods

based on a seemingly equal number of algorithms and body sites. It is difficult to make compar-

isons to other algorithms without making those comparisons directly within the same dataset.

Second, we implemented this investigation at only a single site with physicians who have often

trained and work together, and accordingly, may be systematically biased in their understating

of anatomy or manual delineation in general. This is in part a result of time and logistics as

these studies are time intensive and costly. We spent over a year collecting the manual segmen-

tations for this analysis. Third, we have made considerable effort to characterize inter-physician

variance but have not evaluated intra-physician variance, which could be important in parsing

variance into real differences and randomness. Lastly, we have presented what we believe to be

thorough though initial assessment of automatic segmentation within the context of radiation

therapy. As these segmentations will undoubtedly be reviewed and modified by physicians in

clinical practice, it is important to understand the impact of such a process on the workflow,

consistency, and accuracy of segmentation as well as the final planned dose distribution.

47



CHAPTER III

IMPACT OF EDITING ON SEGMENTATION VARIANCE

AND ACCURACY
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Abstract
Image segmentation has become a vital and often rate limiting step in modern radiotherapy
treatment planning. In recent years the pace and breadth of algorithm development, and even
commercial ventures, have far outpaced evaluative studies. In this work we build upon our
previous evaluation of a registration driven segmentation algorithm in the context of 8 expert
raters and 20 patients who underwent radiotherapy for large space-occupying tumors in the
brain. In this work we tested four hypotheses concerning the impact of segmentation editing in
a randomized single-blinded study. We tested these hypotheses on the normal structures of the
brainstem, optic chiasm, eyes and optic nerves using the Dice similarity coefficient, volume, and
signed Euclidean distance error to evaluate the impact of modification on inter-rater variance
and accuracy. Accuracy analyses relied on two simulated ground truth estimation methods:
STAPLE and a novel implementation of probability maps. The experts were presented with
automatic, their own, and their peers’ segmentations from our previous study for modification.
We found, independent of source, modification reduced inter-rater variance while maintaining
or improving accuracy and improving efficiency with at least 60% reduction in contouring time.
In areas where raters performed poorly contouring from scratch, modification of the automatic
segmentations reduced the prevalence of total anatomical miss from approximately 16% to 8%
of the total slices contained within the ground truth estimations. These findings suggest that
contour modification could be useful for consensus building such as in developing delineation
standards, and that both automated methods and even perhaps less sophisticated atlases could
improve efficiency, inter-rater variance, and accuracy.
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III.1 Introduction

Image segmentation is a vital step in most radiotherapy planning today. It describes

a process that partitions imaging studies into discrete geometric information that can be used

to plan and evaluate radiation treatment. The information usually consists of coordinate point

sets or binary masks in the reference frame of the imaging study. Since the integration of x-ray

computed tomography (CT) in treatment planning systems, segmentation of images has been

used to optimize dose distributions by providing dose volume information of both targets and

organs at risk. This is of particular importance in inversely planned therapy, such as intensity

modulated radiation therapy (IMRT) and volumetric modulated arc therapy, and in situations

such as stereotactic radiosurgery and other ablative methods that require high doses over a

short time scale. Traditionally, images have been segmented manually in a time-consuming

process that must occur before designing treatment fields or calculating dose. Our experience

and that of others (Das et al., 2009) has been that segmentation is the rate-determining step

in the treatment planning process.

In recent years a number of algorithms for automatic or semi-automatic segmentation

have emerged, and quickly following several clinical systems have been marketed both within

and as stand-alone to treatment planning systems. In the context of radiation therapy the vast

majority of scholarly activity has involved algorithm development, and these algorithms have

been quickly adapted to clinical systems with a relative lack of information regarding overall

impact.

A potential explanation for the lack of evaluation studies involves the nature of seg-

mentation itself. This is a problem lacking a known ground truth for comparison. Organ

delineation in the human body requires decisions drawing from an aggregation of both explicit

and implicit anatomic and physiologic information. Phantom studies, synthetic datasets and

cadaver sections offer a more controlled but less realistic environment and hence are not well

suited for gauging clinical impact. Several authors have shown previously that using a single

expert rater as a gold standard is unreliable (Chao et al., 2007; Stapleford et al., 2010; Dee-

ley et al., 2011). Isambert (Isambert et al., 2008) after noting low correlation with a single

expert segmentation concluded that perhaps automatic segmentation was not well suited for

small tubular structures such as the optic nerves and chiasm. Our previous study showed rela-

tively low similarity between the automatic and expert segmentations as well. However, in the

context of several experts, we found that the automatic system performed no worse than the

experts. That is, the inter-rater variance amongst the experts was similar to the automatic-

expert variance, indicating not that automatic systems are inadequate but that these structures

are inherently difficult to segment.
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Several methods (Warfield et al., 2004; Kittler et al., 1998; Meyer et al., 2006; Asman

and Landman, 2012; Windridge and Kittler, 2003; Jacobs, 1995) have been proposed for esti-

mating ground truth through a combination of expert segmentations. The method put forth

by Warfield and colleagues, termed simultaneous truth and performance level estimation (STA-

PLE), is designed to incorporate truth priors and rater performance priors and be robust to

outliers. However, truth priors are rarely known, and incorporating rater priors is problematic

in clinical studies as relative rater quality generally cannot be anticipated accurately. In prior

work we found that STAPLE tended to be influenced disproportionately by larger segmenta-

tions within the expert cohort. Biancardi (Biancardi et al., 2010) noted a similar phenomenon.

This may be a byproduct of STAPLE depending heavily on a sometimes inaccurate truth esti-

mate in the absence of a truth prior (Zhu et al., 2008). In our prior and current work, we rely

on both STAPLE and another method, the computationally simple idea of probability maps

(p-maps) (Meyer et al., 2006; Deeley et al., 2011), similar to voting rule (Kittler et al., 1998).

Often the p-maps are thresholded at a predetermined level such as 0.50, where half of the raters

agree. Recognizing that rater consensus may well be a function of organ type and location, we

allow a moving threshold as determined by the p-map mean over the range (0,1] to be the best

“vote” level for the ground truth.

Another persistent problem in the design of evaluation studies is the choice of com-

parison metrics. A number of volume and distance-based metrics have been used. Nominal

volume (we use this terminology to disambiguate the use of volume from other meanings such

as a three dimensional set of images or contours) is a useful measure that does not require

pairwise calculation and is easily compared across separate studies. However, its value is that

of a summary statistic. Two segmentations of different shape and location may have the same

volume. Measures of spatial overlap such as the Dice (Dice, 1945) similarity coefficient and the

Jaccard coefficient (Jaccard, 1908) provide pairwise comparison incorporating general shape

and location information and are intuitive, but they do not provide information about whether

differences are a result of over- or under-segmentation (Crum et al., 2006; Popovic et al., 2007).

Additionally, volume and overlap measures by nature deemphasize central-peripheral (Meyer

et al., 2006), or edge, deviations when they are small in comparison to overall volume. Dis-

tance measures, such as the Hausdorff and Euclidean distances, fill the gap by adding detailed

information about edges.

We believe evaluation studies should be behavioural in nature, bringing together clini-

cally relevant disease sites and imaging studies as well as enough raters and cases to provide ro-

bust statistical analysis. In our previous study we collected manual segmentations from a group

of eight expert raters over 20 challenging cases. The experts delineated the brainstem, optic
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chiasm, eyes, and optic nerves in the presence of large space-occupying lesions. We also used

our algorithms to segment these organs automatically for each case. We tested the hypothesis

that the automatic system would produce segmentations that could serve as surrogates to the

manual physician segmentations, and we evaluated inter-rater variance and accuracy through

simulated ground truths using STAPLE and our own application of the concept of thresholded

probability maps. The results of this study, to which we will refer as the de novo study, have

been published previously (Deeley et al., 2011). In summary, we found that differences in raters

could be large and that at least one rater was often markedly different from the group. We

also found that the automatic system performed well against the group of experts and, indeed,

could serve as a surrogate.

Realistically, we contend that no automated system will completely replace expert

segmentations in radiation therapy planning in the near future. However, automatic segmenta-

tion will and indeed already is offering a starting point to clinicians. From this starting point

the clinicians will have to make judgments about the quality of the initial segmentations and

make edits accordingly. Our de novo study provided information about expert delineation when

starting from a blank slate but did not evaluate editing of pre-existing delineations. Building

on the work of Chao (Chao et al., 2007) and Stapleford (Stapleford et al., 2010) in the present

work we have undertaken a single-blind, randomized study presenting the same eight raters

from the de novo study contours for editing. We tested four general hypotheses. First, editing

the automatically generated contours (A1) reduces inter-rater variance. Second, editing A1

either increases or maintains accuracy. Third, editing A1 salvages the results of low perform-

ing raters in the de novo study. In other words, raters who were low performers will produce

better performing contours when they use A1 as a starting point. Fourth, contour editing in

general (independent of segmentation source) reduces inter-rater variation while maintaining or

improving accuracy. Much of the methodology in terms of ground truth estimation and metrics

was covered at depth in our prior work. Our attempt here is to refer the reader to the prior

work as much as possible while maintaining clarity.

III.2 Methods

III.2.1 Study design

In this study we utilized imaging volumes from the same 20 patients used in our de

novo segmentation study, as well as the same eight expert raters. Extensive descriptions of

those imaging volumes, raters, delineation guidelines, and technical considerations are given in

that work (Deeley et al., 2011).
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The 20 patients had been previously treated at the Vanderbilt-Ingram Cancer Center

with intensity-modulated radiation therapy (IMRT) for high-grade gliomas. Their cases were

specifically chosen for the presence of large space occupying lesions often in close proximity

to intracranial organs at risk, a situation that has both high clinical relevance (Amelio et al.,

2010) and presents a challenge for automatic segmentation (Dawant et al., 2002). The images

were x-ray computed tomography (CT) of 2 or 3 mm slice thickness and 1.5/3 T T1 magnetic

resonance (MR) volumes of approximately 1 mm3. These are typical of patients undergoing

stereotactic brain biopsy. The raters were classified as senior (P1-P4, three attending radiation

oncologists and one diagnostic radiologist) and junior (J1-J4, four radiation oncology residents

in their final year of training).

In the first portion of our evaluation study the raters were asked to delineate brain-

stem, optic chiasm, eyes and optic nerves for the 20 cases utilizing fused CT/MR imaging

within a clinical system. As they were given no starting point other than delineation guidelines

and anatomical definitions, we refer to this as the de novo, or “from scratch” study. These

delineations were acquired over a period of approximately one year.

Several months after concluding the de novo study, we initiated an editing study

with the same raters. In this second round of contouring we presented the experts with fully

completed contours for the brainstem, optic chiasm, eyes, and optic nerves from three sources:

the automatic contours (A1), their own contours (self), and contours delineated by their peers

(peer) in the de novo study. In total each expert edited 60 complete sets of segmentations,

three per patient. These 60 tasks were randomized and single-blind, in that the raters did

not know the origin of the segmentations. In fact, to avoid presumptive guessing, we told the

raters only that they would be presented segmentations for editing. We made no mention of

the potential sources of segmentations, though it is likely some of them assumed the source to

be the automatically generated contours. Though it was beyond the scope of this work to test,

we anticipated that this time interval would be sufficient to avoid potential effects of memory

on the raters’ interpretations. Additionally, if effects were to exist within the current study as

a result of revisiting each patient three times, these would be randomly distributed over the

patients and segmentation sources.

An in-house graphical user interface was developed to present a task queue and to

record editing times. The design was such that each rater was presented with each of the 20

automatic segmentation sets once, each of their own previous segmentations at least once and

sometimes twice per patient, and their peers’ segmentations from the de novo study. We will

refer to these groups as “A1”, “self”, and “peer”, respectively. The selection of which peer to

edit was also randomized and balanced such that each rater edited each peer two to three times
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over the course of the tasks. The editing was done using a research version of the treatment

planning system (Eclipse 8.5, Varian Medical Systems, Palo Alto, CA) identical to the clinical

system. Details of this system were included in our previous work (Deeley et al., 2011). We did

not specify to the experts which tools to use for editing. Several options were available such

as using a paintbrush tool to take away or add to an existing contour, deleting a contour and

redrawing from scratch, and moving the contours as a whole. We did not collect data on tools

utilized, though generally most experts appeared to prefer the paintbrush method for making

edits.

III.2.2 Automatic segmentation

The automatic segmentations presented for editing were the same generated in the de

novo study. In summary, we segmented the organs at risk using two methods. An atlas-based,

registration-driven method was used to segment the brainstem and eyes. It involves a global

affine registration of the atlas to target, followed by automatic extraction of a predefined bound-

ing box from both target and atlas. A second, now local, affine registration is performed on the

bounded region, resulting in a transformation projecting the atlas to the target. Normalized

mutual information (NMI) (Studholme et al., 1999) is used as the similarity measure. A local

non-rigid registration is performed between the results of the local affine registration and the

atlas. Lastly, the deformation fields resulting from the three registrations are used to project

contours from the atlas to the target (patient) image.

The second method, used to segment the optic chiasm and nerves, is a technique we

have developed for the segmentation of tubular structures, termed the atlas-navigated optimal

medial axis and deformable model algorithm (NOMAD) (Noble and Dawant, 2011). NOMAD

first computes the medial axis of the structure as the optimal path with respect to a cost

function relative to image and shape features, and then expands using a level-set algorithm to

the final structure. The statistical model employed in NOMAD was trained on image volumes

outside those used in this study.

The non-rigid transformations used in our segmentation framework are provided by

the adaptive bases algorithm (ABA) we have developed (Rohde et al., 2003). It utilizes NMI

and models the deformation field registering the atlas and target as a linear combination of

radial basis functions (Wu, 1995) with finite support.
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Figure III.1: Ground truth estimation. The upper left panel displays the area of an optic nerve
for patient 12 on an axial CT slice. The dotted contour is the automatic segmentation after
editing by rater P3. The upper right panel plots the p-map used to estimate a ground truth
for comparison against P3 and consists of his peers’ segmentations. The contour overlaying
the p-map is the unedited automatic result. The ground truth estimated by thresholding the
p-map at the non-zero mean is shown at lower left, and the STAPLE estimation for the same
slice at lower right.
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III.2.3 Ground truth estimation

To gauge accuracy we calculated ground truth estimations via two methods: the si-

multaneous truth and performance level estimation (STAPLE) algorithm (Warfield et al., 2004)

and through dynamically thresholded probability maps (p-maps) (Meyer et al., 2006). We cal-

culated STAPLE and the p-map derived ground truths in the same manner described previously

(Deeley et al., 2011). In that study we found the two methods produced ground truths esti-

mates with a high degree of overlap as measured by DSC, even for the small tubular structures.

However, much of the impetus to use two independent estimates arose from a qualitative obser-

vation that STAPLE could be influenced disproportionately by under-segmenting individuals.

We also noted that though spatial overlap between the two methods was consistently high,

STAPLE also consistently under-segmented compared to the p-map method. For the purposes

of this work we define under-segmented structures as those that are volumetrically larger than

a reference structure.

STAPLE is designed to be robust to bias (Warfield et al., 2004), so we applied it as

has been commonly done in other work (Stapleford et al., 2010) to create a single ground truth

per patient from a cohort of experts. With the p-map method we removed bias explicitly and

thus calculated a different ground truth mask for each rater in a leave-one-out process. That is,

the p-map derived ground truth for rater P1, for example, is generated from the p-map which

excludes his own segmentations. We also eliminated all segmentations delineated by rater P2

from the pool as evidence from the de novo study showed this rater was often different from

the rest of the group. The p-maps are calculated as

p−mapi,j,k =

[
1

6

(
8∑

n=1

(Ei,n,k)− Ei,2,k − Ei,j,k

)]
×Kσ (III.1)

where i, j, and k, represent the patient case, rater, and structure, respectively; j = 2 indicates

the rater P2; E represents the binary mask; K is a Gaussian kernel of 3x3 pixels applied to each

slice of the mask with standard deviation σ = 0.65 pixel width. A full discussion of method

and rationale for thresholding the p-maps can be found in our prior work (Deeley et al., 2011).

The de novo and editing studies resulted in a combined 32 sets of manual segmen-

tations for each patient (in total, 640 structure sets and 3840 individual organ structures): 8

de novo (P1-P4, J1-J4), and on average, 8 edited automatic (A′
1), 9 edited self (self), and 7

edited-peers (peer). From these we calculated ground truth estimations to provide a basis for

accuracy assessment and calculation of distance maps (discussed in section 2.4.2). Figure III.1

illustrates a p-map for an optic nerve with a single physician contour as well as the correspond-
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ing Pmapmean and STAPLE ground truth estimations. An important choice had to be made as

to which of the segmentations cohorts to draw from in these calculations. One could envision

using all of the manual de novo, the manual-edited, those groups combined, or individual sets

of manual-edited segmentations (e.g., edited-peers). We chose to base all analyses in this study

on the class derived from the edited-peers group, the rationale for which we discuss in section

4.

III.2.4 Metrics for comparison

Volume-based metrics

We calculated two volumetric measures in this study: nominal volume and Dice simi-

larity coefficient. Nominal volume is calculated as

Volume = |Ej,j,k| × vi (III.2)

where the binary mask E for patient i, rater j, structure k, is summed over its voxels of

volume v. Volume provides a summary statistic about the gross size of segmentations and

can be compared readily to results from other studies utilizing different datasets as there is no

dependence on ground truth estimation, group variance, or image dimensionality.

The Dice similarity coefficient (DSC) is a spatial overlap measure that can be calcu-

lated generally via

DSC =
|EA ∩ EB|

1
2 (|EA|+ |EB|)

(III.3)

where EA and EB denote any two mask volumes of the same dimensionality. Its range is [0,1],

where zero signifies no overlap and 1 signifies exact overlap. The DSC can be calculated as an

integrative measure over the volume segmentations or on a slice-by-slice basis. In this study we

calculated DSC on volumetric basis to measure inter-rater variance, and assess accuracy, while

the slice-by-slice implementation was used only in gauging amount of editing.

Distance-based metrics

Distance-based metrics complement the volume-based metrics by providing informa-

tion about differences between segmentations at their edges, independent of object shape. There

are a number of methods for calculating generalized distance measures; a discussion toward a

generic evaluation of image segmentation using the concept of distance is provided by Cardoso

(Cardoso and Corte-Real, 2005). In this work we were concerned with the end-use of segmen-

tations in radiation treatment, an environment well-suited to Euclidean distances, sometimes
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known as ordinary or surface normal distances.

Signed three-dimensional Euclidean distance maps were pre-calculated from the Pmapmean

simulated ground truths. Each voxel in the distance map contains the Euclidean distance be-

tween that voxel and the nearest edge voxel of the ground truth. Distance distributions were

formed for individual rater segmentations by sampling the appropriate distance map with con-

tour points for the segmentation in question. Contour points lying inside the boundary of the

ground truth were signed negative and those lying outside signed positive. The distributions

were used to calculate average min, mean, and max distances across the patients, raters, and

structures.

Additionally, we calculated a quantity which we term the true positive rate. It is the

fraction of total contour points falling within a shell of a specified distance from the edge of the

simulated ground truth, Pmapmean. We chose ± 2 mm as a relevant distance for selection of the

shell. It is on the order of the slice thickness, and while one would want to minimize uncertainty

from segmentation as much as possible, 2 mm is on the order of the overall geometric accuracy

of most linear accelerators.

Several aspects of this implementation are noteworthy. First, as the distances are

signed, we avoided summary statistics without also examining the distribution, as measures

of central tendency could be washed out by positive and negative variations. Second, as the

distance distributions are calculated in one direction only, from rater segmentation to ground

truth, each distribution contains information regarding exclusively where a rater segmented,

but not where a rater elected not to segment. In that sense, a rater could delineate one

slice of a multi-slice structure and have a distance distribution of zeroes. In the absence of

complementary volume-based measures, this would be a weakness. Lastly, as the distances are

calculated from ground truths, they do not provide a direct pair-wise comparison of the same

flavour as DSC, and hence they are less valuable in determining inter-rater variance than DSC

and nominal volume.

Time-to-edit

Time is an important factor in the process of treatment planning, which can be a

complex multi-step workflow with a number of checkpoints requiring input from several pro-

fessionals. In this study we measured the time required by physicians to modify pre-generated

segmentations, as discussed in previous sections. This was accomplished via an in-house task

queue and timing program. To be as clinically realistic as possible, the software alerted the

expert to the current task in need of attention and allowed for pausing and restarting. The

experts were instructed not to run the timer during administrative tasks such as opening and
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closing patients.

III.2.5 Analytical framework

We use the measures discussed herein in combination to test the hypotheses laid out

in section 1. One tool that we use repeatedly to present the reader with a visual summary

of the data is the boxplot (Tukey, 1977). Each boxplot divides the distribution into quartiles

q1-q4, where the inter-quartile range q3-q1 is represented by a vertical rectangular box, and

vertical lines, also known as whiskers, extend past the box to represent the statistical range of

the distribution; outliers are shown as dots plotted individually that fall beyond 150 percent of

the inter-quartile range. The median of the distribution is shown as a red horizontal line within

the box. In cases where the distribution satisfies conditions for normality, notches, were used

to provide information about significance in differences at the median. In these plots notches

were represented via triangles, whose centers delimit the edges of the 95% confidence interval

about the median.

Some distributions, such as that of DSC, are not normally distributed, and in such

cases we have calculated measures of central tendency and 95% confidence intervals via bias

corrected and accelerated bootstrapping with 1000 replicates (Davison and Hinkley, 1997).

Others have achieved normality by transformation of the data, such as by using the logit

function (Zou et al., 2004).

III.3 Results

III.3.1 Assessing editing efficiency

One aim of introducing automation into the segmentation process is to improve effi-

ciency. We measured two variables to gauge efficiency: time to edit pre-generated contours and

amount of editing required for a satisfactory end product. All measures of quality being held

equal, one would choose a process that minimizes both of these factors. In our previous study

we found that the experts required a mean time of approximately 14.5 minutes (total range

4.5-31 minutes, individual means 6.5-21 minutes; N = 107 contouring sessions as times were

not collected for first six patients and on occasion raters forgot to start the timer) to segment

the brainstem, chiasm, eyes, and optic nerves utilizing fused CT/MR, though individuals var-

ied widely. Editing required considerably less time than contouring from scratch. Panel (a) of

figure III.2 plots the distribution of times across all raters for the de novo (P1-J4) and editing

(P′
1-J

′
4) studies for the group of tasks in which the raters edited A1, the pre-generated automatic

segmentations produced by our algorithm. Editing of A1 reduced mean time to final product
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Figure III.2: Time Analysis. Panel (a) plots the distribution of times across all raters for the de
novo (P1-J4) and editing (P′

1-J
′
4) studies for the group of tasks in which the raters edited A1,

the pre-generated automatic segmentations. Panel (b) compares the distributions across the
three sources for editing: automatic (A1), self, peer. In all each rater completed 60 randomized
tasks over the course of the editing study. Panel (c) plots the time to modify as a function of
task to evaluate whether there was a learning effect.
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Figure III.3: Plot of volumetric Dice coefficient as a function of source for editing: A1, self and
peers. Each distribution consists of the pairwise comparisons between the de novo and edited
segmentations for each of the eight raters. For example, P1 de novo is compared via DSC to P1

from each of the editing sources to gauge the similarity (or, equivalently, amount of editing).

to 5.9 ([5.5, 6.4] 95% confidence interval) minutes, as did editing of their own (self) contours to

4.3 [4.0, 4.7] minutes, and those of their peers to 5.5 [4.9, 6.1] minutes. Panel (b) compares the

distributions across the three sources for editing: automatic (A1), self, peer. We found there

was a significant (α = 0.05) though small reduction in time when raters were presented with

their own contours segmented in the previous study as compared to those of the automatic

system or their peers. As this was a task-oriented study conducted over approximately a year,

we wondered if there would be an effect of learning or even potentially fatigue on time to mod-

ify. We randomized the tasks over the patient population to avoid confounding case difficulty

with experience and found that taken as a group (panel (c)) there was no learning effect. We

similarly found there was no influence of task number on accuracy as measured by DSC against

the ground truth estimations.

To keep the study as clinically relevant as possible and the timing procedure valid,
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Table III.1: The range of DSC [0,1] is divided into four categories to gauge amount of editing
as a function of structure and source: major [0,0.7), moderate [0.7,0.9), minor [0.9,1), and no
[1,1] editing. Each cell contains the fraction of slices via 2D DSC calculation that fell within a
given range.

Brainstem Chiasm Eyes Nerves

A1 self peers A1 self peers A1 self peers A1 self peers

none 0.28 0.43 0.32 0.15 0.29 0.17 0.37 0.59 0.43 0.26 0.44 0.37
minor 0.42 0.41 0.44 0.10 0.13 0.11 0.40 0.24 0.29 0.13 0.14 0.16
moderate 0.21 0.10 0.14 0.14 0.15 0.12 0.15 0.11 0.19 0.25 0.17 0.18
major 0.09 0.06 0.09 0.62 0.43 0.60 0.08 0.06 0.09 0.37 0.25 0.29

we did not ask raters to comment directly on the quality of the contours presented (Stapleford

et al., 2010). Rather we gauged acceptability using the Dice coefficient in a pairwise calculation

between the pre- and post-editing masks, both by slice and volumetrically. For example, a DSC

of 1.0 indicates unequivocally that the initial segmentation matches the final segmentation.

As the similarity between pre- and post-editing segmentations increases, DSC increases as a

function of the overlap relative to volume or area of the segmentations, indicating smaller

changes were made. The results of the volumetric calculation are shown in figure III.3, where

distributions of DSC are plotted as a function of source for editing and structure. Most edits

to the brainstem and the eyes resulted in a less than 10% change in spatial overlap, whereas

the chiasm and nerves required more extensive editing across all sources. Mirroring the data

concerning time, there was a small preference of raters for their own contours compared to the

automatic and those of their peers. To evaluate the amount of editing by slice, we divided the

range of DSC, [0,1], in Table III.1 into four categories: major [0,0.7), moderate [0.7,0.9), minor

[0.9,1), and no [1,1] editing. Here there was a clear preference of raters for their own contours,

of which they made no edits to 43%, 29%, 59% and 44% of the contours for brainstem, chiasm,

eyes, and optic nerves. The chiasm and nerves underwent substantial heavy editing regardless

of the original source: A1, self, or peers.

Figure III.4 contains four panels of orthogonal MR cross-sections comparing (a) the

de novo, (b) A1-edited, (c) self-edited, and (d) peer-edited groups. In this example the de novo

contours display the most variance. The unedited A1 contours are included in red in panel (a).

We also note the erroneously contoured internal carotid arteries as part of the optic chiasm

shown with red arrows in the coronal (upper right) section of panel (a). Editing of A1 reduced

inter-rater variability the most and eliminated the inclusion of the internal carotids for all but

one rater.
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(a) (b)

(c) (d)

Figure III.4: Orthogonal views comparing group results from (a) de novo, (b) A1-edited, (c)
self-edited, (d) peer-edited. The red arrows in the upper right (coronal section) of panel (a)
point to the internal carotid arteries, which were often erroneously included as part of the
optic chiasm in the de novo study as well as self- and peer-edited groups. In panel (a) the red
contours are those of the A1 while the other colors represent manual expert segmentations.
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Figure III.5: Plots the distribution of volumetric Dice coefficients for the editing of the auto-
matic (A1) over all structures and raters providing a sense of inter-rater variance from de novo
study versus the editing study. Columns A1, P1-J4 plot the distributions of non-redundant
pairwise DSC from the de novo study. Primed columns, P′

1-J
′
4, denote the editing study re-

sults.
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III.3.2 Evidence regarding hypothesis: Editing of automatic segmentations (A1) reduces inter-

rater variance

Each of the physician raters was presented complete sets of automatic segmentations

(A1) for each of the 20 patients as discussed in section 2.1. This process was blinded and

randomized along with the presentation of self and peer segmentations. Figure III.5 plots the

distribution of volumetric Dice coefficients over all structures and raters providing a sense of

inter-rater variance from de novo study versus the editing study. Columns A1, P1-J4 plot the

distributions of non-redundant pairwise DSC from the de novo study. Primed columns, P′
1-J

′
4,

denote the editing study results. These distributions relate inter-rater variance in two key ways.

The first is simply the DSC statistic itself, which can be summarized via the mean or median.

The red horizontal lines in the boxplot represent the median. The means and corresponding

95% confidence intervals and standard deviations were calculated via bootstrapping and are

presented in Tables III.3 and III.4. In figure III.5 it is clear that across all structures and raters

the median DSC increased with editing of the automatic contours. The gains were largest for

the chiasm and nerves, though even after editing agreement was still less than seen with the

brainstem and eyes. The mean inter-rater DSC treating all raters as a single group increased

from 0.83 (de novo) to 0.92 for the brainstem, 0.39 to 0.57 for the chiasm, 0.83 to 0.93 for eyes,

and 0.49 to 0.73 for the optic nerves when the raters were presented with automatic contours

for editing. The second way DSC relates inter-rater variance is through the spread of these

distributions, which decreased as a result of editing such that there was both a reduction in

outliers and standard deviation.

Similar to figure III.5 nominal volume is plotted in figure III.6, and the corresponding

mean, confidence interval, and standard deviation, are present in table III.5 for all raters as a

group and as a function of source: unedited A1, de novo, as well as edited A1, self and peer

groups. Editing of A1 resulted in reduction in inter-quartile range as well as the coefficient of

variation over all the raters as a group and across each of the structures.

III.3.3 Evidence regarding hypothesis: Editing of automatic segmentations (A1) maintains or

improves accuracy

To assess accuracy, we compared rater segmentations to ground truth estimations via

the Dice coefficient. Figure III.7 plots the distributions of pair-wise DSC of STAPLE and

Pmapmean ground truth estimations against automatic and rater segmentation distributions.

Each subplot can be divided into two: the four left columns (A/S,. . . ,E/S) plot the segmenta-

tions against the STAPLE-derived ground truth, while the right side columns (A/P,. . . ,E/P)

65



10

15

20

25

30

35

A1 P1 P1’ P2 P2’ P3 P3’ P4 P4’ J1 J1’ J2 J2’ J3 J3’ J4 J4’

Brainstem

V
o

lu
m

e 
[c

m
3
]

0

0.5

1

1.5

2

A1 P1 P1’ P2 P2’ P3 P3’ P4 P4’ J1 J1’ J2 J2’ J3 J3’ J4 J4’

Chiasm

V
o

lu
m

e 
[c

m
3
]

3

4

5

6

7

8

9

10

11

12

13

A1 P1 P1’ P2 P2’ P3 P3’ P4 P4’ J1 J1’ J2 J2’ J3 J3’ J4 J4’

Eyes

V
o

lu
m

e 
[c

m
3
]

0.5

1

1.5

2

2.5

A1 P1 P1’ P2 P2’ P3 P3’ P4 P4’ J1 J1’ J2 J2’ J3 J3’ J4 J4’

Nerves

V
o

lu
m

e 
[c

m
3
]

Figure III.6: Plots the distribution of nominal volume as a function of structure and rater and
segmentation class: unedited automatic (A1), de novo (columns P1-J4) and edited-A1 (P′

1-J
′
4).
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Figure III.7: Plots the distributions of pair-wise DSC of STAPLE and Pmap mean ground
truth estimations against automatic and rater segmentation distributions. Each subplot can
be divided into two: the four left columns (A/S,. . . ,E/S) plot the segmentations against the
STAPLE-derived ground truth, while the right side columns (A/P,. . . ,E/P) plot the segmenta-
tions against the Pmapmean ground truth. Columns A/,. . . ,E/ represent the DSC distributions
for the unedited automatic segmentations, unedited de novo segmentations, edited automatic
segmentations, edited self, and edited peers, respectively.

Table III.2: Assessing accuracy of 5 classes of segmentations: unedited automatic (A1), de novo,
and editing groups M(A1), M(self), and M(peers), via DSC against the ground truth estimates.

Brainstem Chiasm Eyes Nerves

Source Mean Mean CI Mean Mean CI Mean Mean CI Mean Mean CI

A1 0.87 0.86 0.88 0.47 0.43 0.50 0.88 0.88 0.89 0.59 0.57 0.61
de novo 0.87 0.86 0.88 0.45 0.43 0.47 0.88 0.87 0.88 0.63 0.61 0.64

mod(A1) 0.89 0.89 0.90 0.55 0.53 0.56 0.90 0.89 0.90 0.66 0.65 0.67
mod(self) 0.88 0.88 0.89 0.53 0.51 0.55 0.89 0.89 0.90 0.66 0.65 0.67
mod(peers) 0.90 0.90 0.91 0.59 0.57 0.61 0.90 0.90 0.91 0.70 0.69 0.71

plot the segmentations against the Pmapmean ground truth. Columns A/,. . . ,E/ represent the

DSC distributions for the unedited automatic segmentations, unedited de novo segmentations,

edited automatic segmentations, edited self, and edited peers, respectively.

Figure III.7 provides evidence that accuracy compared to unedited A1 and de novo

segmentations is at minimum maintained by editing, and this was consistent against both

STAPLE and Pmapmean ground truth estimates. However, the small tubular structures of the

chiasm and nerves benefited the most from editing. The mean[95% CI] of Dice comparison

against the ground truths for the chiasm increased from 0.47 [0.43,0.5] and 0.45 [0.43,0.47] for

A1 and de novo to 0.55 [0.53,0.56], 0.53 [0.51,0.55], and 0.59 [0.57,0.61] for edited-automatic,

-self, and -peer, respectively. These mean DSC and 95% confidence intervals can be found in

table III.2.

A complementary gauge of accuracy to DSC is the Euclidean, or surface normal,

distance from the ground truth estimate to the test segmentation. Figure III.8 plots the signed

distances, where positive indicates a point outside and negative a point inside the ground truth,

Pmapmean. The columns from left to right represent the distribution of distance error for the

unedited A1, de novo (columns P1,. . . , J4) and edited A1 for individual raters (columns P′
1,. . . ,

J′4). Blue dashed lines indicate a distance error of ± 2 mm. These distributions comprise

hundreds of thousands of contour points, and there are a number of outliers. To improve

clarity we have plotted them over fixed range from -5 mm to +10 mm denoted by the lower
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Figure III.8: Plots the signed distance errors, where positive indicates a point outside and
negative a point inside the ground truth. The columns from left to right represent unedited A1,
de novo (columns P1,. . . , J4) and edited A1 by raters (columns P′

1,. . . , J′4). Inner dashed lines
indicate a distance error of ± 2 mm. To improve clarity we plot are over fixed range from -5
mm to +10 mm denoted by the lower and upper bounded dashed lines. If outliers occur beyond
these bounds, they are shown in lower and upper bands for which the density is proportional
to the number of outliers.
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and upper bounding dashed lines. If outliers occur beyond these bounds, they are shown in

lower and upper bands for which the density is proportional to the number of outliers. The

number of data points comprising each column of each subfigure (of figure III.8) varies as a

function of the size of the structure drawn from one rater to the next. In so much as they are

comprised of the same number of whole structure distance calculations (20 for each column),

relative comparisons of outliers are valid. However, absolute comparisons of outlier density

between structures are invalid, as the brainstem, for instance, has vastly more contour points

than the chiasm, nerves or eyes. There were generally only small changes in median distance

error between the de novo and edited-automatic segmentations, though the number of outliers

was reduced in the edited distributions for most cases.

III.3.4 Evidence regarding hypothesis: Editing of automatic segmentations (A1) salvages the

results of low performing raters

In our previous study we noted that one rater in particular often produced segmen-

tations different from the rest of the group. For this reason the rater in question was not

included in the ground truth estimation. We hypothesized whether editing of the automatic

segmentations would salvage the rater’s performance. We use salvage to describe the process of

preventing a negative result, such as “radiation was able to salvage the failed surgery”. Looking

to figures III.5 and III.6 we can see in situations where P2 had a distribution markedly different

from the group, and these deviations have been corrected by editing of A1. The mean volumet-

ric DSC for rater P2 against the other experts increased from 0.69 to 0.91 (brainstem), 0.25 to

0.56 (chiasm), 0.75 to 0.93 (eyes), and 0.403 to 0.72 (nerves) through editing of the automatic

segmentations.

We expect all raters on occasion to produce segmentations of low accuracy. These

could be entire segmentations, such as mistaking the pituitary for the optic chiasm, or individual

areas such as a single slice or series of slices omitted as part of the inferior brainstem. To this

end we compared areas of low quality (slice DSC < 0.5) in the de novo study to the same

areas post-editing of the automatic contours. First, we found the frequency of total miss, or

omission of a slice, higher (16%) than the frequency of present but low quality contours (3.4%).

The unedited A1 produced fewer (12%) total misses but more low quality slices (8%) than the

experts. As a result of editing of the automatic contours, the median DSC of the low quality

slices increased from 0, which was skewed heavily by total misses, to a minimum of 0.5 for each

of the raters. This reduced the total miss frequency by half, though the overall accuracy in

these areas remained challenged. The mean DSC after editing for slices that were total misses

(DSC = 0) in the de novo study improved to 0.45. Similarly for slices that contained contours
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Figure III.9: Plots the distributions of volumetric DSC across each class of segmentation:
unedited automatic (A1), de novo, and the editing groups M(A1), M(self), and M(peers).

but of low quality (DSC in range (0, 0.5)), the post-editing mean DSC increased from 0.34 to

0.52.

While it is clear that areas of poor performance de novo remained a challenge for

raters during editing, the situation was improved as can be seen by the increase in both mean

and median DSC and the avoidance of approximately half of total misses. Interestingly, P2, the

lowest performing rater de novo, saw the most dramatic improvement, from a median DSC of

0 to 0.68, the highest of the rater group, after editing of the automatic segmentations.

III.3.5 Evidence regarding hypothesis: Contour editing reduces inter-rater variation while

maintaining or improving accuracy irrespective of the source segmentation

Thus far the results have focused on the performance of the automatic system in the

context of editing compared to the experts’ de novo segmentations and the unedited auto-

matic segmentations. As outlined in section 2.1, we also asked the physicians in a blinded and

randomized experiment to modify their own segmentations and those of their peers.

Their performance in these tasks is assessed in figures III.9-III.11 alongside the au-
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Figure III.10: Distance errors are plotted as a function of structure and segmentation class:
unedited automatic (A1), de novo, and edited A1, self and peer. The inner dashed lines are
drawn at ± 2 mm from the ground truth estimation. The plots are confined to a range -5 mm
to + 10 mm as shown by the outer dashed lines. If a distribution has outliers beyond this
range, they are plotted in the small bands at the periphery of the distributions. The density of
the outliers within the bands is proportional to the number of outliers beyond the plot range.
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Figure III.11: True positive rate is plotted as the fraction of contour points falling within a 2
mm shell of the ground truth across the 5 segmentation classes. The dashed line is drawn at
the level of the median for the unedited automatic (A1).
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tomatic and de novo results. The following nomenclature is used to distinguish the classes:

automatic-unedited (A1), expert-unedited (de novo), automatic-edited (M(A1)), experts mod-

ifying their own initial segmentations (M(self)), and the expert modifying their peers’ initial

segmentations (M(peer)).

Figure III.9 plots the distributions of volumetric Dice coefficient across each class

of segmentation, and tables III.3 and III.4 provide the mean, 95% confidence interval, and

standard deviation for the same. Inter-rater variation was reduced for all editing groups as seen

by both the increase in mean DSC and reduction in standard deviation. However, the best

results came through editing of the automatic segmentations, which was consistent across the

different structures. There was also a small but significant (α = 0.05) advantage to modifying

peers’ as opposed to one’s own segmentations.

Edits resulted in small differences in distance error, plotted in figure III.10, compared

to the unedited automatic and de novo segmentations in terms of median error and with regard

to the extent and number of outliers. [Note in figure III.10 when viewing the outliers shown

by dots in red at the extremes of distributions, the A1 (divided from the other groups by a

vertical line) distributions are a result of only 20 segmentations each, whereas the other groups

have approximately eight times the number of segmentations (one for each rater) in their

distributions. Therefore, a direct comparison of outlier prevalence between A1 and the others

is not possible visually.] In fact, in the cases of the optic chiasm and brainstem the unedited

automatic segmentations produced a median distance error closer to zero than either the de

novo physicians or the any of the edited segmentations. These boxplots, however, consider

the complete set of all contour points for a given rater or rater-group, which skews the results

towards patients with larger structures and raters who contoured larger structures. Weighting

each rater and case equally, we recalculated the mean (and 95% confidence interval), minimum

and maximum distance errors provided in table III.6. Across all classes of segmentations mean

distance errors were approximately equal to or less than 1 mm. Interestingly, the unedited

automatic performed well in comparison to the edited classes. This was especially true in terms

of maximum (signed positive) distance errors, which were smaller for all structures except the

eyes.

We also used the signed distance maps to calculate the true positive rate within a 2 mm

shell around the ground truth estimation. We found significant differences (α = 0.05) from the

unedited automatic and the de novo segmentations (figure III.11) only in the case of the optic

chiasm, where both the A1-unedited and all editing classes (A1-, self-, and peer-edited) had

higher true positive rate compared to the unedited de novo class. This advantage disappeared

when we narrowed the shell to 1 mm (not shown), such that there were no differences (α = 0.05)
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Figure III.12: Plots of DSC against the ground truth segmentations pre- and post-editing for
A1 (a) and P2 (b). Note P2 was not randomized to all peers in editing, thus the differences
between the raters in legends of (a) and (b).

amongst the five groups of unedited and edited segmentations.

Another question that arises which we can begin to answer is that of whether editing is

robust to segmentations of varying quality. We can do so by examining the correlation between

pre- and post-editing accuracy. Figure III.12 plots DSC against the ground truth estimates

pre- and post-editing for (a) A1 and (b) P2. We chose to single out P2 to illustrate this effect

as this rater generally produced the segmentations most different from the group in the de

novo study. A line with a slope of 1 is plotted through the origin; all points above the line

indicate an improvement in accuracy. We see in general that editing improves the accuracy,

which is supported by figure III.7 as well, and editing appears largely robust in areas of low

quality initially (low DSC de novo). In figure III.12 (b) we see that each time a peer edited the

contours of P2 the accuracy was improved, usually substantially, though they did not generally

attain a final accuracy as high as was achieved starting with higher accuracy segmentations.

III.4 Discussion

We have undertaken a large scale behavioural study to better understand performance

of automatic and manual segmentation in radiation therapy and the interaction of the two.

Previously (Deeley et al., 2011) we reported on automatic segmentation for brain organs at risk

in the presence of large space-occupying lesions, which challenge registration-based methods.
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That study characterized inter-rater variance and found that the automatic system generally

could serve as a surrogate to the physicians with potential gains in efficiency and accuracy within

the treatment planning process. The basis for our experimental framework is the observation

that segmentation should be evaluated in behavioural studies through 1) multi-dimensional

metric analysis, e.g., volumetric and distance-based methods, 2) sufficient numbers of raters

and patients chosen prospectively to ensure high power analyses, and 3) clinically realistic

design that recognizes end-use of the segmentations. Here we applied this framework using

the same physicians and patients in a single-blind editing study to test hypotheses concerning

the impact of manual-automatic system interaction (editing of the automatic) on inter-rater

variance and accuracy, the impact of manual-manual rater interaction (modifying their own

and peers’ segmentations), and whether the automatic system could salvage the performance

of low performing raters.

III.4.1 Comparison to previous studies

Previously Chao (Chao et al., 2007) reported results of an editing study using computer-

assisted delineation of head and neck structures. In this study, eight physicians manually con-

toured two head and neck cases and then edited contours produced from an atlas-based system.

They found editing reduced inter-rater variance with significance via nominal volume, Dice co-

efficient, and Euclidean distance disagreement. The authors proffered that computer-assisted

segmentation and contour editing may be useful to educate physicians from different training

backgrounds and to improve efficiency in the treatment planning process. We found this work

compelling in the design of our study, but it was limited in several ways. While our experience

would indicate the number of raters generally sufficient, the overall analysis is likely of low

power as the statistical analyses were performed on each of the two patients separately. It is

unlikely the results reported can be used to infer to a larger population. Additionally, there is

a fundamental difference from the study we have undertaken. In the Chao study, the partic-

ipants contoured from scratch and then immediately were presented with automatic contours

for editing. Furthermore, the raters viewed the atlas images at all times during editing. This

is certainly a valid design though has a markedly different emphasis than our own. One could

envision a single standard atlas for use by all radiation oncologists for every contouring task,

and one could extrapolate that this method may reduce variation within the population. Our

focus was in a different direction. At the outset of the study we discussed with the group of

experts general guidelines for delineation. We also chose a body site, the brain, where training

is more ubiquitous and expected variance lower. We suspect viewing of the atlas during editing

would additionally bias the raters in a clinically unrealistic way, as this is not standard practice.
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Stapleford and colleagues (Stapleford et al., 2010) also reported results of a segmenta-

tion and editing study involving the head and neck. They recruited five physicians to contour

bilateral lymph node regions for five patients and to edit automatically generated contours.

The data were analysed using five metrics: sensitivity, DSC, percent false positive, mean and

max surface distance error, and volume. These metrics yield complementary information about

the differences in segmentations. The use of percent false positive in place of specificity is

particularly useful, as specificity is dependent on the image size and thus not readily compa-

rable between studies. They found the automatic contours compared well to the manual, and

editing led to improved consistency. Interestingly the experts commented that only 32 percent

of contours were acceptable without editing, and the primary complaint was the automatic

segmentations were too large. However, when making edits, the cumulative changes only par-

tially recaptured the mean volume of the manual segmentations, leading one to wonder about

the bias introduced by the automatic segmentations. We found the opposite in our study of

brain structures. The automatic system consistently produced smaller segmentations than the

experts, but expert nominal volume was generally recaptured upon editing. In fact, we found

in general that editing produced a trend of increasing segmentation size, though the effect was

small (table III.2 and figure III.6).

There are some limitations to the methodology of the investigation by Stapleford and

colleagues. The authors used STAPLE to calculate two ground truth segmentations for all

pairwise comparisons: one from the cohort of manual segmentations and one from the cohort of

edited segmentations. The use of simulated ground truths to assess accuracy is desirable, but

their methodology rests the validity of almost all judgment on the quality of these estimations.

First, we find it non-ideal to create separate ground truth estimates to compare groups of seg-

mentations from the same imaging dataset. How can one infer with high confidence differences

between segmentations when the two groups are being compared to different ground truths

that were calculated from their respective groups? This requires a seemingly contradictory

assumption: both ground truth estimations, while different from each other, are fully accurate

ground truths, or at the very least have equal quality. If a systematic difference exists between

the groups, it may be missed. We believe a more appropriate assumption, though not ideal,

is to choose a single ground truth calculated from the most appropriate cohort for all compar-

isons. Second, basing variance analysis through intermediary comparison with simulated ground

truths will produce a perception of lower overall variance and increased correlation amongst the

group. We posit that the most accurate and transparent way to evaluate inter-rater variance is

through standalone metrics such as nominal volume or pairwise metrics on the unadulterated

segmentations.
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We found that editing of pre-generated segmentations both improved efficiency (re-

duced contouring time by at least 60%) and reduced inter-rater variance across all sources (A1,

self, peers), structures, patients, and physicians. Though we found, interestingly, that physi-

cians showed preference toward their own contours in terms of time and amount of editing,

variance was reduced more when they edited the automatic segmentations, regardless of struc-

ture. However, as Zou (Zou et al., 2004) suggests the problem can be restated as one in which

error is a function of bias and variance, or another way of stating it, as random and systematic

errors. Thus, one must be careful not to overstate the implications of observed variance. In our

study, each rater edited the same automatically generated structures such that the inter-rater

variance before editing was zero. When modifying their own or peers’ contours, the baseline

variance was carried from the de novo study.

To determine whether pre-generation of contours impacted the raters’ accuracy, we

employed two ground truth estimates. The STAPLE algorithm and our own approach with p-

maps as well as the rationale for using both estimates has been discussed previously (Warfield

et al., 2004; Deeley et al., 2011; Meyer et al., 2006; Biancardi et al., 2010). In general, ground

truth estimation is a difficult problem that is at least in part a function of size and quality of

the input cohort. As discussed in reference to the work by Stapleford and colleagues, choice of

ground truth cohort can be vital to the conclusions drawn from the analyses. We had several

distinct classes of segmentations (A1, de novo, A1-edited, self-edited, and peer-edited), each

with multiple cases, raters, and structures from which to choose a cohort for ground truth

estimation and subsequent accuracy analyses. The following considerations were made. First,

since all expert segmentations are valid clinically by virtue of the raters’ expertise and none of

the automatic segmentations would be deemed acceptable without oversight, we did not include

A1 as an input to the ground truth calculations. Second, it is also not valid to use A1-edited

for reasons already mentioned: there is no basis to know whether it will bias the raters toward

higher or lower accuracy. Third, heuristically, we reasoned that including either all physician

segmentations (de novo and edited) or just those edited would be non-ideal, as there could

be significant inter-class differences (increased variance) which would presumably lead to lower

quality estimates. With this in mind we chose to make all assessments against those calculated

from a single class, the peer-edited class. Prospectively we anticipated that this class of edits

would be the most likely to have reduced variance and similar or less bias compared to the de

novo class (used for ground truth creation in the previous study) and the self-edited class, and

this was born out in the data as can be seen in tables III.3 and III.4.

Testing against the ground truth estimates from the peer-edited class, we found that

accuracy was either maintained or improved in figure III.7 via editing. Accuracy of edited
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classes was similar to the unedited automatic and de novo classes, as seen by the 95% confidence

intervals of mean DSC in tables III.3 and III.4 for the brainstem and eyes, but editing improved

accuracy in the more challenging optic chiasm and nerves. The distance data paint a less clear

picture. Editing regardless of source reduced the number of outliers, but in terms of mean,

min, and max distance error there were only small differences from the A1 or de novo classes.

In fact, in the analysis of true positive rate within a 1 mm and 2 mm shell (figure III.11) of the

ground truth, only for the chiasm were results notable in that the unedited automatic as well

as all three editing classes had smaller distance errors than the physicians de novo.

The de novo study previously uncovered that in the group of eight experts one was

often an outlier and therefore removed from the ground truth cohort. We also found the source

of these differences, especially in the brainstem, was often failure to extend the organ as far

cranial-caudal as the group. It would be very useful clinically for automatic systems to correct

these errors, which we term total miss errors. Looking at every slice from the de novo study

against the ground truth estimates we isolated low quality contours, anything with a DSC < 0.5.

The prevalence of total miss over present-but-low-quality slices suggests that edges of structures

in the cranial-caudal plane are a challenge for manual raters. This is likely both a result of lack

of natural boundary (e.g., brainstem and spinal cord) and partial volume effects (e.g., chiasm,

nerves and eyes). Editing of A1 was generally successful at salvaging the total misses. The

improvement for present-but-low-quality slices was less remarkable and is likely a result of the

automatic system and the manual raters being generally challenged in areas of low contrast.

This study provides strong evidence that editing of pre-generated segmentations, in-

dependent of source, reduces inter-rater variance while maintaining or improving accuracy and

increasing efficiency. This suggests given a starting point, even if the starting points are differ-

ent, experts tend to converge. We postulate that raters focus on the task of segmentation dif-

ferently when modifying than when starting from a blank slate. The data showed, for instance,

though differences at the edges of contours (distance error) were not dramatically different from

the de novo study, raters focused more on capturing the entire extent and correct location of a

structure, suggesting a good starting place to develop delineation standards may be to propose

contours for editing to experts in the field. These results also lend evidence to the suggestions

made in prior work (Chao et al., 2007; Beyer et al., 2006) that automatic methods can help im-

prove consistency in radiation therapy treatment planning, especially situations wherein users

are less experienced. Finally, the two studies we have undertaken provide evidence that our

unedited automatic segmentations perform quite well, and after editing provide an even more

robust alternative to manual segmentation.
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III.4.2 Limitations and future work

There were several limitations in this work. First, we have attempted to extend an

experimental framework for segmentation analysis beyond what has been done previously using

a behavioural approach and statistically robust design. However, our study though large by

comparison to others is limited to a single institution that may have systematic bias. Addition-

ally, as this is an ongoing project extending the prior de novo study, we have not evaluated the

results of other algorithms or now commercially available systems. We have focused on only

one body site. Most of these choices were a function of resources, since behavioural studies

require prolonged time for longitudinal tasks (over 2 years to collect data in our case) and are

costly. Many more questions could be investigated with less global uncertainty if a framework

such as that we have proposed could be implemented on a multiple institution, body site, and

algorithm basis. This would also help to gain useful interaction about the users and the system

for contouring, such as which tools were utilized for contours or editing and whether those

choices impacted results.

Second, the choice of metrics is important. We believe multiple complementary and

cross-study compatible metrics such as the Dice coefficient, distance-based measures, and nom-

inal volume increase the value of the analyses. However, the metrics as used herein can only

characterize the data and describe differences in and relationships between groups or classes

of segmentations. A valuable analysis would involve an understanding of what are the sources

of these differences, such as has been done in prior work by Meyer (Meyer et al., 2006) and

Zou (Zou et al., 2004) using analysis of variance and multiple regression. We did not include

that analysis herein as the scope was already extensive. However, given sufficient categorical

understanding of the data, this could be done retrospectively. This type of analysis in a tar-

geted study with multiple different sources of varying quality would also help to further answer

questions about the interaction of source segmentation quality and the editing process.

Third, the end point of the segmentations in our context is radiation therapy treatment

plans, which was not considered herein. The ultimate impact of differences will manifest in dose

coverage of target volumes and normal tissues. Others have looked at dosimetric end points

(Weiss et al., 2008; Tsuji et al., 2010) but generally not in the context of a large scale study

with multiple raters. Nelms and colleagues (Nelms et al., 2012) conducted a “Plan Challenge”

evaluating the dosimetric impact of differences in normal tissue contouring in the head and

neck. However, only a single patient was analysed over 32 raters. Extending studies such as

these with more raters, patients, and anatomical sites would provide valuable information about

the impact of segmentation variance as well as help guide clinical users.

Lastly, the lack of a known ground truth is an ongoing challenge in segmentation
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evaluation. We have discussed the choice and importance as well as the pitfalls of ground truth

estimation. The wealth of data generated in the editing study presented a problem of choosing

a cohort of segmentations as inputs to the ground truth calculations. We reasoned that the

peer-editing group was the most desirable class to use for truth estimation, and it was applied

in all analyses for all groups. In post-hoc analysis we also looked at the impact had different

assumptions been made, namely using the other classes to compose the truth estimation. We

found that these assumptions did produce small differences, most notably when A1-edited was

used. The choice of A1-edited in ground truth composition resulted in higher accuracy for the

A1-edited class as compared to other classes, though the magnitude of accuracy in the other

groups did not change remarkably. This is likely a result of the reduced variance of the A1-edited

class compared to the other edited classes. It is also possible that the results we have presented

favor accuracy toward the peer-edited class at the expense of the other classes, including the

automatic and automatic-edited. However, it was determined this was a better choice than to

potentially bias accuracy toward the automatic system.
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Appendix

Table III.3: DSC for brainstem and chiasm, each rater modifying A1, self, and peers.

Rater Source Brainstem Chiasm

Mean Mean CI std Mean Mean CI std

P1 A1 0.927 0.922 0.931 0.029 0.612 0.586 0.644 0.172
self 0.863 0.851 0.872 0.066 0.468 0.437 0.498 0.190
peers 0.873 0.863 0.881 0.047 0.488 0.457 0.519 0.169

P2 A1 0.907 0.900 0.913 0.038 0.562 0.530 0.592 0.191
self 0.726 0.716 0.737 0.064 0.251 0.220 0.285 0.194
peers 0.867 0.859 0.874 0.038 0.402 0.364 0.439 0.198

P3 A1 0.926 0.922 0.931 0.027 0.562 0.523 0.597 0.218
self 0.864 0.855 0.874 0.059 0.396 0.364 0.427 0.186
peers 0.884 0.877 0.891 0.038 0.491 0.452 0.528 0.191

P4 A1 0.926 0.921 0.931 0.029 0.550 0.514 0.585 0.207
self 0.867 0.856 0.878 0.066 0.443 0.415 0.474 0.170
peers 0.886 0.879 0.892 0.036 0.506 0.470 0.537 0.180

J1 A1 0.916 0.910 0.920 0.032 0.539 0.513 0.560 0.144
self 0.855 0.842 0.866 0.075 0.444 0.417 0.472 0.172
peers 0.877 0.871 0.884 0.037 0.508 0.479 0.537 0.154

J2 A1 0.927 0.922 0.931 0.030 0.572 0.537 0.606 0.209
self 0.861 0.851 0.870 0.060 0.486 0.453 0.518 0.197
peers 0.882 0.875 0.889 0.036 0.484 0.450 0.521 0.182

J3 A1 0.910 0.904 0.915 0.030 0.524 0.497 0.548 0.153
self 0.842 0.830 0.852 0.066 0.471 0.443 0.502 0.176
peers 0.870 0.862 0.875 0.033 0.486 0.452 0.517 0.166

J4 A1 0.924 0.919 0.929 0.032 0.609 0.582 0.636 0.166
self 0.841 0.831 0.850 0.061 0.490 0.459 0.518 0.177
peers 0.872 0.863 0.880 0.044 0.518 0.483 0.550 0.168

Senior A1 0.922 0.919 0.924 0.032 0.572 0.554 0.590 0.200
self 0.830 0.822 0.837 0.088 0.389 0.371 0.406 0.204
peers 0.877 0.874 0.881 0.041 0.472 0.454 0.490 0.190

Junior A1 0.919 0.916 0.921 0.032 0.561 0.545 0.575 0.174
self 0.850 0.844 0.856 0.066 0.473 0.459 0.488 0.182
peers 0.875 0.872 0.879 0.038 0.499 0.483 0.515 0.169

All Phys A1 0.920 0.918 0.922 0.032 0.566 0.555 0.577 0.187
self 0.840 0.835 0.845 0.079 0.431 0.420 0.443 0.198
peers 0.876 0.874 0.879 0.039 0.486 0.473 0.497 0.180
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Table III.4: DSC for eyes and optic Nerves.

Rater Source Eyes Nerves

Mean Mean CI std Mean Mean CI std

P1 A1 0.904 0.898 0.911 0.052 0.746 0.731 0.759 0.122
self 0.860 0.853 0.867 0.058 0.539 0.524 0.555 0.134
peers 0.881 0.873 0.887 0.051 0.603 0.585 0.621 0.128

P2 A1 0.932 0.926 0.937 0.045 0.718 0.703 0.736 0.142
self 0.810 0.805 0.816 0.046 0.469 0.456 0.483 0.123
peers 0.880 0.869 0.887 0.065 0.599 0.582 0.617 0.130

P3 A1 0.930 0.926 0.935 0.039 0.768 0.752 0.781 0.121
self 0.877 0.869 0.883 0.058 0.595 0.580 0.608 0.121
peers 0.887 0.876 0.894 0.065 0.609 0.583 0.632 0.167

P4 A1 0.915 0.910 0.919 0.039 0.760 0.746 0.774 0.121
self 0.873 0.866 0.879 0.056 0.610 0.595 0.624 0.121
peers 0.878 0.867 0.887 0.073 0.618 0.601 0.635 0.124

J1 A1 0.932 0.927 0.937 0.042 0.775 0.762 0.788 0.114
self 0.880 0.874 0.887 0.059 0.607 0.593 0.621 0.121
peers 0.878 0.869 0.885 0.058 0.611 0.590 0.632 0.158

J2 A1 0.918 0.912 0.923 0.042 0.733 0.721 0.746 0.107
self 0.874 0.866 0.880 0.057 0.607 0.592 0.618 0.113
peers 0.888 0.877 0.896 0.064 0.648 0.631 0.663 0.121

J3 A1 0.936 0.931 0.942 0.048 0.600 0.589 0.613 0.105
self 0.832 0.824 0.839 0.063 0.525 0.511 0.538 0.117
peers 0.823 0.805 0.839 0.121 0.574 0.559 0.591 0.117

J4 A1 0.928 0.923 0.934 0.050 0.761 0.746 0.776 0.131
self 0.868 0.862 0.874 0.052 0.515 0.499 0.529 0.122
peers 0.879 0.869 0.887 0.069 0.612 0.597 0.630 0.132

Senior A1 0.920 0.918 0.923 0.046 0.748 0.740 0.755 0.128
self 0.855 0.851 0.858 0.061 0.553 0.545 0.561 0.137
peers 0.881 0.877 0.885 0.064 0.608 0.597 0.616 0.138

Junior A1 0.929 0.926 0.931 0.046 0.717 0.710 0.726 0.134
self 0.864 0.860 0.867 0.061 0.563 0.556 0.571 0.126
peers 0.867 0.862 0.873 0.086 0.611 0.603 0.621 0.136

All Phys A1 0.925 0.923 0.926 0.046 0.733 0.727 0.738 0.132
self 0.859 0.857 0.862 0.061 0.558 0.553 0.563 0.132
peers 0.874 0.870 0.877 0.076 0.610 0.603 0.615 0.137
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Table III.5: Volume [cm3]. Mean, 95% confidence interval on the mean, and the coefficient
of variation of nominal volume for the unedited automatic (A1), de novo, and editing groups
M(A1), M(self), and M(peers).

Brainstem Chiasm

Source Mean Mean CI cov Mean Mean CI cov

A1 23.99 22.82 24.87 11.01 0.41 0.39 0.45 16.07

de novo 25.88 25.01 26.62 19.59 0.66 0.60 0.74 67.41

mod(A1) 25.84 25.33 26.31 12.55 0.56 0.52 0.61 48.30

mod(self) 26.76 25.98 27.42 18.51 0.67 0.62 0.73 59.04

mod(peers) 27.16 26.55 27.83 13.37 0.67 0.60 0.73 57.31

Eyes Optic Nerves

Source Mean Mean CI cov Mean Mean CI cov

A1 9.13 8.59 9.57 17.56 0.64 0.61 0.67 54.98

de novo 8.59 8.40 8.77 20.15 0.87 0.83 0.91 41.75

mod(A1) 9.39 9.25 9.52 12.78 0.89 0.85 0.92 35.16

mod(self) 8.88 8.71 9.03 17.13 0.95 0.91 0.98 38.22

mod(peers) 9.27 9.10 9.44 16.06 1.01 0.97 1.04 33.90
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Table III.6: Distance error [mm]. Presents the mean, confidence interval, minimum and max-
imum signed distance errors for the 5 classes of segmentations: unedited automatic (A1), de
novo, and edited A1, self and peer. These distances were determined weighting each rater and
patient equally, e.g., the maximum can be thought of as the maximum distance error averaged
over the 20 patients.

Brainstem Chiasm

Mean Mean CI Min Max Mean Mean CI Min Max

A1 0.18 0.02 0.35 -3.42 4.83 -0.08 -0.25 0.17 -2.02 2.00
de novo 0.72 0.60 0.82 -3.90 7.23 1.08 0.78 1.62 -1.90 5.07

mod(A1) 0.57 0.48 0.65 -3.61 6.38 0.04 -0.12 0.21 -2.28 3.58
mod(self) 0.85 0.73 0.96 -3.21 7.40 0.51 0.28 0.79 -2.16 4.54
mod(peers) 0.88 0.80 0.97 -3.01 7.37 0.31 0.09 0.54 -2.14 4.00

Eyes Optic Nerves

Mean Mean CI Min Max Mean Mean CI Min Max

A1 0.63 0.51 0.75 -2.59 3.75 -0.39 -0.50 -0.27 -2.59 2.38
de novo 0.32 0.17 0.46 -2.78 3.15 0.31 0.16 0.45 -2.89 3.21

mod(A1) 0.74 0.66 0.81 -2.31 3.54 0.79 0.73 0.85 -2.33 3.49
mod(self) 0.44 0.30 0.54 -2.36 3.19 0.42 0.28 0.54 -2.31 3.16
mod(peers) 0.68 0.56 0.77 -2.19 3.31 0.71 0.59 0.80 -2.21 3.43

84



CHAPTER IV

DOSIMETRIC IMPACT OF AUTOMATIC SEGMENTATION

IV.1 Introduction

Image segmentation is a vital component of modern radiotherapy treatment planning

and will become only more so with the increased use of inverse and adaptive planning methods

(Hansen et al., 2006; Ding et al., 2006; Schwartz and Dong, 2011; Gregoire et al., 2012; Jensen

et al., 2012; Peroni et al., 2012; Schwartz et al., 2013). Traditionally, segmentation has been

accomplished through manual human intervention, but in recent years algorithms have been

developed to segment the structures needed for treatment planning in several body sites such

as the pelvis, head and neck, and brain.

These algorithms have been incorporated clinically and in commercial products with

relatively few published reports focused on evaluation in a clinically realistic context (Chao

et al., 2007; Stapleford et al., 2010; Deeley et al., 2011, 2013). We have undertaken a multi-

rater behavioral study to gauge the impact of automatic segmentation as well as differences

amongst experts for intracranial organs at risk in the presence of large space-occupying lesions.

Our work is motivated by the observation that segmentation is an inherently noisy process

(Meyer et al., 2006) for which an individual rater may not serve as a robust reference standard.

Previously we reported results regarding the geometric quality of automatic segmentations in

the context of accuracy and variability of the experts for the brainstem, optic chiasm, eyes, and

optic nerves. We used three comparison metrics, nominal volume, Dice similarity coefficient

(DSC), and Euclidean distance, to test the hypothesis that there was no geometric difference

between the automatic and expert segmentations. We found that differences in raters could

be large, that at least one rater was often markedly different from the group, and that the

automatic system performed well in this context, though both the automatic and manual raters

were challenged considerably in the area of the small tubular structures: the optic chiasm and

nerves. We used two simulated ground truth methods to assess accuracy: the simulataneous

truth and performance level estimation (STAPLE) algorithm and a novel implementation of

probability map thresholding (Meyer et al., 2006; Deeley et al., 2011), similar to voting rule

(Kittler et al., 1998).

In a second study we tested hypotheses concerning the impact of segmentation editing

by experts, as this is likely how systems for segmentation will be used. We presented seg-
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mentations for editing to the same group of eight raters in a single-blind, randomized design.

The sources of the segmentations were 1) the automatic segmentations (A1), 2) their own seg-

mentations (self), and 3) their peers’ segmentations (peer) from the first (de novo) study. We

found that editing improved efficiency while reducing variation and maintaining or improving

accuracy, regardless of original segmentation source. That is, in a geometric sense, editing was

efficacious regardless of whether the experts edited A1, self, or peers. We also found that editing

generally improved accuracy in the areas where raters had performed poorly compared to the

group in the de novo study. Even when experts were presented the lowest quality results from

that study, editing generally salvaged the final segmentation result.

The ultimate test of segmentation acceptability is that of impact on the end-use. In

radiation therapy that corresponds to dosimetry. While large multi-rater studies for which we

advocate have been rare, recent work has begun to incorporate some of these aspects into studies

of impact on geometry, dosimetry, and the interaction of the two. This work has primarily been

focused in the area of head-and-neck cancer (Nelms et al., 2012) and in the context of adaptive

therapy (Tsuji et al., 2010; Voet et al., 2011), an area that would arguably benefit the most

from accurate and robust automatic segmentation. The design of clinically evaluative studies of

segmentation, whether dosimetric or not, should reflect the clinical variance that exists. These

can be separated into the variance resulting from differences in normal and pathologic patient

anatomy, imaging protocols, treament planning systems and planners, and physicians. The

resources needed for such exhaustive studies are enormous and scarce, which has limited both

the scope and likely the statistical power of prior studies. Nelms and colleagues (Nelms et al.,

2012) examined the dosimetric impact of manual contouring differences in a multi-institutional

study of 32 raters, but the scope was limited to a single patient and all comparisons were

made against an assumed ground truth from one institution. In another study by Tsuji and

colleagues (Tsuji et al., 2010), again only one rater was used as ground truth. Teguh (Teguh

et al., 2011), again in the head-and-neck, utilized a number of different raters over 12 patients,

some raters segmenting de novo and others editing automatic contours, such that impact of

inter-rater variance was unclear. In what appears to be a follow-up study to that of Teguh

and colleagues, Voet (Voet et al., 2011) examined the dosimetric impact over 9 patients with

2 editing raters. Yet another study (La Macchia et al., 2012) evaluated segmentation results

from three commercial systems over three body sites (head-and-neck, pleura, and pelvis) using

5 patients and 3 raters, though rater variance was not considered. We posit that while each

of these studies has added important information, study design has been such that strong

inferences cannot be made.

In this work, we retained the behavioral framework of our previous two studies to
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gauge the impact on inverse-planned intensity modulated radiation therapy (IMRT). We have

limited the study to the de novo segmentations as a worst-case scenario in terms of dosimetric

variability, as we have shown previously that editing reduces variation and improves or maintains

accuracy.

There were three main considerations in this study concerning the dosimetric impact

of segmentation differences. First, we tested whether target coverage was impacted by segmen-

tation differences. In our prior studies we find considerable inter-rater variability and overall

reduced accuracy for the small tubular structures of the optic chiasm and nerves. As this study

was comprised of large tumors often in close proximity to the normal tissues, it is plausible that

coverage could be compromised. Second, we tested the impact of using different segmentations

on dose to the ground truth simulated organs at risk. This is a departure from other studies

that have compared planned dose using a single manual rater as a reference standard (Nelms

et al., 2012; Voet et al., 2011). In so doing, we tested whether the automatic system or other

rater-derived plans deviated from the group in such a way to negatively impact normal tissue

toxicity. Third, we evaluated the multi-rater plans in terms of dose reported versus dose to

ground truth.

The rationale for measuring dose to the targets is simple. The goal is to treat the

targets while sparing the normal tissues. Since the target segmentations and all other variables

were held constant between raters, differences in target coverage can be attributed to differ-

ences in normal tissue segmentations. The rationale for our approach to evaluating impact via

the normal tissues is more complex. First, measuring and comparing doses to ground truth

estimates from the various rater-derived plans is a way of testing the impact of those raters’

segmentations on our best estimate of reality; that is, what is the true dose to a normal tissue

by a plan. Second, in a clinical situation the ground truth will not be known, and thus the dose

that is reported will be that as measured by the segmentation used in the optimization, the

raters’ own segmentation. We call the difference in the two the dose reporting discrepancy. The

first measurement is important in understanding potential toxicity. The second is important for

clinical decision making (e.g., a physician deciding whether to undertreat a tumor as a result of

the dose reported to a normal tissue) and in the broader perspective of evidence-based studies

of toxicity.

Lastly, while confined to critical organs in the brain, it is our hope that this work yields

useful information for other investigators and a framework for the design of future evaluative

studies, especially regarding head-and-neck lymph node region and organ at risk segmentation.
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IV.2 Materials and Methods

This study follows our previous de novo study (Deeley et al., 2011, 2013), in which

automatic segmentations (A1) were evaluated in the context of eight expert raters. Many

additional details can be found in that work. In short, eight raters (four senior, P1-P4, and

four junior, J1-J4) contoured the brainstem, optic chiasm, eyes, and optic nerves from scratch

over 20 patients who had been treated previously with IMRT for large space-occupying lesions

in the brain, mostly glioblastoma multiforme. This site was chosen as a benchmark site for the

ubiquity of physician training in cross-sectional anatomy as well as for the challenge presented by

the large lesions to registration-based segmentation algorithms. The number of study patients

was originally chosen to provide a power of 0.9 (β = 0.1) to detect a difference of 0.1 in Dice

coefficient while setting long term type I errors to 5% (α = 0.05). Dosimetric estimates were

not available to guide study design.

IV.2.1 Segmentation

Manual and automatic contouring was accomplished utilizing fused sets of x-ray com-

puted tomography (CT) (2 or 3 mm slice thickness) and magnetic resonance (T1-weighted, 1.5

or 3 T, approximately 1 mm3 voxels) images. Our atlas-based registration-driven segmentation

methods for the brainstem and eyes have been discussed at length in previous work (Rohde

et al., 2003; D’Haese et al., 2003; Deeley et al., 2011) as well as the atlas-navigated optimal

medial axis and deformable model algorithm (NOMAD) (Noble and Dawant, 2011) we use for

segmenting the optic chiasm and nerves.

IV.2.2 Treatment planning

The unedited automatic and manual contours from the de novo study were used to

generate inversely optimized IMRT plans (Philips Pinnacle v.9.0) in the current study. Planning

was dictated by the radiation therapy oncology group (RTOG) 0837 clinical protocol, which we

believe is well centered within the standard of care. Gross, clinical and planning target volumes

(GTV, CTV, and PTV) were contoured as per the protocol using T1 and T2 MR images, with

approximately 2 cm of expansion from GTV to CTV and an additional 3 mm of expasion from

CTV to PTV. GTV1 was defined from the post-operative T2 or FLAIR as enhancement plus

surgical cavity, while GTV2 was defined as the enhancement plus surgical cavity on post-op

contrasted T1 MR. PTV1 (mean volume 435, σ = 142 cm3) and PTV2 (mean volume 260,

σ = 102 cm3) were prescribed doses of 51 Gy (an increase of 5 Gy from the RTOG protocol)

and 60 Gy, respectively, in a single IMRT plan. In four of the cases as a result of edema or
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other factors making the PTVs very similar, only a single PTV was used with a prescription of

60 Gy.

Inverse optimization requires several inputs, of which target and normal tissue seg-

mentations is one type, and is subject to many variables in the process of producing a treatment

plan. As this study was focused on dosimetric differences as a result of normal tissue segmen-

tation, attempts were made to control other variables as tightly as possible while keeping the

overall process clinically realistic. For each patient, nine IMRT plans were inversely optimized,

one each for the expert rater (P1-J4) and automatic (A1) segmentation sets. A different rater

was randomized to each patient for initial optimization (excluding A1 and P2, who was often

different from the group geometrically). Using this rater’s structures, a planner chose five to

seven static gantry angles with energies of 6 or 10 MV (at most two beams of 10 MV) for

step-and-shoot IMRT and determined an optimization strategy of constraints and priorities.

After perhaps several rounds to determine a good set of parameters, the optimization routine

was reset and run for 75 iterations, with a maximum of 100 segments, 4 cm2 minimum segment

size, minimum 2 MU per segment, and a dose grid of 2.5 mm in each dimension. Then, for each

of the remaining 7 raters and A1 the trial was copied and rerun with the only change being

that of the normal tissue inputs. There was no human intervention within the optimization

after determination of adequate parameters using the first rater. Normal tissue tolerances for

planning purposes were those of RTOG 0837: maximum doses of 60 Gy to brainstem, 56 Gy

to optic chiasm, 55 Gy to optic nerves, and 50 Gy to eyes.

IV.2.3 Data analysis

Dose matrices were exported via DICOMRT, and dose to specific organ structures

was captured through convolution of each plan dose matrix with binary masks of the de novo,

ground truth, and target segmentations co-registered in CT-space. Dose volume histograms

were calculated as well as dosimetric figures of merit. Dose to the ground truth segmentations

was used to evaluate impact of segmentation differences to our best estimate of the true organs

at risk (the ground truths estimations). We also calculated the difference in figures of merit,

such as maximum dose, reported by a particular plan’s native segmentations and the same

as measured by the ground truth estimations to gauge what we term discrepancies in dose

reporting. Whereas the first method provides a best predictor of reality had a patient been

treated with the plan, the second method assesses how different the reality is from what was

planned.
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Dosimetric figures of merit

To evaluate relative quality of treatment plans, we calculated several dosimetric figures

of merit with general guidance from the quantitative evaluation of normal tissue effects in the

clinic (QUANTEC) recommendations (Mayo, Martel, Marks, Flickinger, Nam and Kirkpatrick,

2010; Mayo, Yorke and Merchant, 2010; Lawrence et al., 2010; Jackson et al., 2010). For each of

the 180 plans (9 per patient) mean, maximum, V45, V54, V59, V64, and D1mL were determined.

The volume doses are defined as the percent volume of a structure receiving the specified dose

(Gy), while the dose to 1 mL (D1mL) is defined as the minimum dose of the highest dosed 1

mL of a structure. On a DVH plotted for absolute volume, D1mL is the dose corresponding to

a volume of 1 mL.

We calculate figures of merit and their differences with the following. First, we declare

F (i, dosej , structk,l) as a figure of merit, F , for patient i ∈ {1, 20} on the dose distribution j,

which is the distribution produced by optimizing a plan on segmentations belonging to rater j.

Rater j ∈ {1, 9} represents A1 and experts P1-J4, respectively. To calculate the figure of merit,

we must also specify the measuring segmentation, that is, the segmentation used to assess the

distribution. We have segmentation types k ∈ {1, 6} for brainstem, chiasm, left and right eyes,

and nerves, and segmentation sources l ∈ {1, 11} representing A1, the 8 experts raters, and

the two ground truth estimates, respectively. We could in fact measure any dose distribution

via any rater, but in this study we have restricted the calculations to either l ∈ {10, 11}, the

ground truths, or j = l, in which case a distribution is measured via the segmentations used to

produce it. We calculate the figures of merit as

FGT (i, j, k) = mean F (i, dosej , structk,10:11) (IV.1)

as measured by the ground truths and as

Fself (i, j, k) = F (i, dosej , structk,j) (IV.2)

when one considers what would actually be reported by the structures used to generate the

plan. The difference in a figure of merit measured by the ground truths for a given rater from

that of his peers is calculated as

∆FGT (i, j, k) = FGT (i, j, k)− mean FGT (i, peers, k) (IV.3)

where peers indicates F is calculated for each of the rater j’s peers, excluding A1. We calculate
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the reporting discrepancies as

∆Freport(i, j, k) = Fself (i, j, k)− FGT (i, j, k) (IV.4)

or, the difference measured by self from the that measured by the ground truths.

Average dose-volume histograms

Before calculating dosimetric figures of merit, which are by definition data reduction

measures, there is some use in examining the dose distributions in total. Clinically, this is done

via qualitative examination of the isodose distributions and quantitatively through inspection

of the entire DVH. In our situation, we have 9 plans with 6 critical organs over 20 patients;

individual comparisons are too cumbersome over so many curves. To evaluate plans over all

rater-structure-patient combinations, we have generated average DVHs that weight each pa-

tient equally. These DVHs, relative in volume, may not be representative of any particular

patient DVH but should highlight any gross, systematic differences over all rater-structure

combinations.

Statistical inference

As most distributions were non-normal, non-parametric tests were used to test for

significance. We used Friedmans test (Friedman, 1937) on ranks first to look for family-wise

significance of differences between rater-derived plans (for each figure of merit), followed by

pair-wise comparisons via Wilcoxon signed-rank test where reasonable strength of evidence of

differences was found. If we were to make all pair-wise comparisons between raters there would

be 36 non-redundant comparisons for each family (each figure of merit). Rather than compare

individuals, we computed the mean of each individuals peers (this is equivalent to the last

term in equation IV.3), and made those comparisons. Since no rater was deemed a priori to

produce a superior dose distribution than the others, interpretation of any single comparison

would be ambiguous. We used a right-tailed signed-rank test as we were most interested in

plans that overdose the normal tissues compared to their peers. We did not correct for effects

of multiplicity on the family-wise type I error rate, as in this situation we did not want to

sacrifice power. We approached significance in this work from the Fisherian perspective, which

eschews long term error rates (e.g., α = 0.05, P < 0.05) in favor of interpreting P-values as

indices of evidence; an excellent discussion of such is provided by Lew (Lew, 2012).

As both an indication of the agreement of figures of merit amongst the raters and to

gauge whether use of their mean would be appropriate in tests of significance, we calculated
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Table IV.1: Doses to targets from the A1-derived plans in comparison to the range of the
physician-derived plans.

Plan Mean Dose [Gy] V95 [%] Min Dose [Gy] Max Dose[Gy]

CTV1 CTV2 CTV1 CTV2 CTV1 CTV2 CTV1 CTV2

A1 58.72 60.05 100.00 97.1 50.56 54.80 62.66 62.90
Lowest rater 58.70 60.03 99.99 97.1 49.74 54.39 62.54 62.68
Highest rater 58.74 60.06 100.00 97.2 50.57 54.94 62.82 63.02

intra-class correlation coefficients (ICC). The ICC can be thought of as the proportion of ob-

served variance that is true; that is, it separates rater-contributed (within-subject) variance

from patient (between-subject) variance. In rater reliability studies it is often used as evidence

of interchangeability of raters or as the validity in using the mean of a group of raters as an

outcome measure. As we expect the ICCs to be potentially overly optimistic, we chose a con-

servative one-way model (ICC(1,8), Shrout and Fleiss nomenclature (Shrout and Fleiss, 1979;

McGraw and Wong, 1996), which models random effects of subject (patient) and treats rater

effects as random error. Calculated ICCs ranged from 0.92 to 1.0, indicating high agreement

between the experts in relation to the variability between-patient. This adds validity to our

decision to compare raters against the mean of their peers rather than making many more

pairwise comparisons. However, it is noteworthy that ICC measures agreement rather than

variability (Haber et al., 2005) and we do not employ it to assess the latter.

IV.3 Results

IV.3.1 Impact on target coverage

We measured the impact of segmentation differences on target coverage via the mean

dose, V95 (volume to 95% of prescription dose), minimum dose, and maximum dose. We found

no clinically important differences in dose coverage as a result of utilizing different rater-derived

critical structures in the optimization. The mean doses to CTV1 and CTV2 over all patients

and expert-rater derived plans were 58.73 and 60.05 Gy, respectively, and the variation between

the lowest and highest of the 9 plans (using OARs from A1,P1-J4) was less than 10 cGy. Table

IV.1 compares the target doses as a result of A1-derived plans to the range of physician-derived

plans.
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Cumulative Dose Volume Histograms
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Figure IV.1: Average dose volume histograms over the 20 patients and 9 rater-derived plans.
The solid area denotes the mean minimum and maximum extent of DVHs from plans P1-J4
with the 95% CI about their mean in red. A1 is displayed as a solid black line.
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Cumulative Dose Volume Histograms
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Figure IV.2: Zoomed to the upper 25% of the dose ranges in figure IV.1
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Table IV.2: P-values from Friedman’s test for significance in differences between raters.

Mean Max V45 V54 V59 D1mL

Brainstem 0.005 0.004 0.049 0.157 < 0.001 <0.001
Chiasm 0.001 < 0.001 0.011 0.078
Left Eye 0.107 0.381
Right Eye 0.267 0.003
Left Nerve 0.004 < 0.001 0.014
Right Nerve 0.123 0.023 0.147

Table IV.3: P-values from Wilcoxon sign-rank test for significance in differences between raters
and the mean of their peers.

A1 P1 P2 P3 P4 J1 J2 J3 J4

Brainstem

Mean 0.433 0.955 0.001 0.652 0.552 0.996 0.652 0.981 0.106
Max 0.222 0.463 0.005 0.233 0.979 0.999 0.281 0.939 0.070
V45 0.552 0.975 0.012 0.880 0.942 0.966 0.729 0.448 0.058
V59 0.883 0.849 0.006 0.396 0.994 1.000 0.867 0.994 0.235
D1mL 0.180 0.848 0.001 0.552 0.820 0.999 0.086 0.998 0.171

Optic Chiasm

Mean 0.829 0.995 0.001 0.680 0.507 0.925 0.433 0.639 0.994
Max 0.027 0.778 <0.001 0.004 0.375 1.000 0.010 0.939 0.998
V45 0.926 0.999 0.012 0.416 0.160 0.681 0.618 0.120 0.897
V54 0.924 0.953 0.042 0.555 0.896 0.640 0.756 0.820 0.849

Right Eye

Max 0.996 0.200 0.652 0.887 0.999 0.778 0.680 0.004 0.581
Left Nerve

Mean 0.433 0.959 0.032 0.537 0.035 0.004 0.968 0.522 0.987
Max 0.200 0.999 0.004 0.981 0.120 0.005 0.865 0.743 0.778
V45 0.515 0.961 0.311 0.425 0.396 0.001 0.810 0.485 0.485

Right Nerve

Max 0.988 0.995 0.002 0.086 0.639 0.245 0.810 0.755 0.820
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IV.3.2 Impact of segmentation on plan quality as measured by dose to ground truth

We measured plan quality via the doses delivered to the ground truth segmentations.

These calculations provide our best estimate of true dose to the organs at risk from the A1

and expert-derived plans. The tabulated mean, 95% confidence interval on the mean, and the

coefficients of variation are presented in full as supplemental material (section IV.6). First,

we found the maximum dose delivered over all plan-patient-structure combinations was 61.6

Gy, which indicates immediately that the highest risk factor for brainstem injury, V64, was not

impacted by segmentation differences. We evaluated relative plan quality and variability by

calculating for each rater the differences from their peers. Figure IV.3 plots the distributions of

differences in maximum dose (IV.3) for each rater with the mean and 95% CI over all structures.

Figure IV.4 plots the same for V45, V54, V59, and D1mL for the brainstem. It can be clearly

seen that plans derived from A1 vary generally no more from the physician plans than the

physicians vary from their peers. The results of Friedman’s test for significance over the entire

group and the paired Wilcoxon sign-rank tests are provided in tables IV.2 and IV.3.

IV.3.3 Discrepancy in dose reporting

In the previous section, we characterized differences in plans through their impact on

the ground truth segmentation dosimetry. This analysis did not require direct use of the rater

segmentations; that is, we ignored the doses as delivered to structures that were actually used to

derive the plans. Here we evaluate the plans as a function of the difference in dose between the

rater segmentation (about which the plan was optimized) and the ground truth segmentations

(IV.4).

We found dose reporting discrepancies were commonplace and large within this study.

Across all patients, rater-derived plans, and structures, 60% of reported maximum doses differed

from the ground truth doses by greater than 0.5 Gy, 54% greater than 1 Gy, and 33% by greater

than 2 Gy. Table IV.4 provides the maximum under- and over-reported doses for A1, P2, and

the other physicians as a group. To evaluate both bias and variability as well as a relationship

to segmentation accuracy, in figure IV.5 we plotted the reporting differences against DSC over

A1, P2, and the other physicians as a group. Similar to what has been proposed by Bland

and Altman (Altman and Bland, 1983; Bland and Altman, 1986), we provided the limits of

agreement as the 95% confidence interval on the mean difference between A1 and the ground

truths. As suggested by Kelley (Kelley, 2005), we calculated both the parametric and the

bootstrap intervals, considering the parametric limits as a worst case scenario. One can see

that A1-derived plans compare favorably to the physicians. For simplicity we plotted physicians
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Figure IV.3: Difference in maximum dose from peers. Each black dot represents a difference in
maximum dose from the mean of the rater’s peers. The mean difference and 95% confidence
interval are displayed via the red horizontal line and encompassing box.
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Figure IV.4: Difference in volume dose metrics for the brainstem. The distributions, mean,
and 95% CI on the mean of differences in volume dose metrics are plotted. The unit [%] of the
y-axis in the Vxx plots is absolute difference in percent volume, not a percent error.
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Table IV.4: Discrepancies in dose reporting from the ground truth. Maximum under- and
over- reported doses in Gy are presented for A1, P2, and the other raters as a group. The last
row reports the rater associated the value from row three, “others”.

Brainstem Chiasm Eyes Nerves

Rater under over under over under over under over

A1 -8.24 +2.27 -12.30 +0.02 -2.33 +5.77 -5.21 +6.67
P2 -33.52 +0.61 -21.70 0.00 -13.36 +4.10 -36.08 +1.26
Others -6.17 +7.58 -20.08 +17.39 -16.78 +5.88 -27.01 +8.31
Identity P4 J1 P3 J1 J3 J2 J1 P1

P1, P3-J4 as a single group, and though we found some individual physicians performed as well

or better than A1, as a group they exhibit more variability. From both table IV.4 and figure

IV.5 we found P2 clearly results in plans with the most bias and variability in dose reporting,

typically under-reporting of dose to the normal tissues.

IV.4 Discussion

Understanding the impact of segmentation variability is important because segmen-

tations are a principal input to treatment plan optimization. Predicting the impact of seg-

mentation differences is challenging as they act in a complex process that also involves tumor

geometry, beam characteristics, and clinical dosimetric requirements. Likewise, interpreting

impact is also difficult as there is no omnibus measure of quality.

In terms of target coverage, we found the optimization algorithm was invariant to

differences in normal tissue segmentation. The differences in mean dose to the targets were less

than 10 cGy, and similarly for V95 differences were within tenths of a percent. The minimum

and maximum doses to the targets varied slightly more, but their range of variation over all

plans, including that of A1, was less than 2% of the prescription dose. We expected to find larger

differences in target coverage for several reasons. First, the tumors were large and sometimes

quite close to the normal tissues. Second, the dose grid and optimization parameters were chosen

so as not to be a limiting factor. Third, higher priority was given to sparing the normal tissues

than covering the targets. We postulate that the optimization simply was driven much more

strongly by target volume and proximity than by what were relatively small (in comparison to

target) volume differences in rater segmentations. Our study cannot address whether the same

would be found with other treatment planning systems. However, in so much as we believe our

planning process to be reflective of what is common, these results should be indicative of at

least the sizable population of users employing the same treatment planning system.
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Figure IV.5: Dose reporting differences against DSC. The differences between rater-reported
and ground truth reported maximum dose are plotted as a function of Dice coefficient. Three
groups are plotted A1 in black, P2 in pink, and the other experts in gray background. The mean
(solid gray line) and limits of agreement for A1 reporting differences with both a parametric
(gray dotted lines) and bootstrap (gray dashed lines) estimates.
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A distinction between our work and that of others is that we approach the problem

regarding normal tissues from two different yet important perspectives: dose to ground truth

and dose reporting discrepancies. Nelms and colleagues (Nelms et al., 2012) undertook a similar

study (single patient, 32 raters) with a narrower aim: to characterize dosimetric differences

that occur as a result solely of segmentation differences. This is equivalent to what we term

dose reporting discrepancy. That study, however, based all assessments of variability, both

geometric and dosimetric, on a singular reference standard (a single manual contour set). We

argue this is not an optimal approach. One cannot know whether the reference standard has

high or low quality. Even when the goal of the work is confined to characterizing variance,

the quality of the reference standard is quite important. If it is skewed toward one end or the

other of the spectrum, variability will look very different. Better alternatives are to examine the

distributions of pairwise comparisons between raters and/or to calculate a more optimal ground

truth from the cohort of segmentations available. In this work we used ground truth estimates,

which we have shown previously (Deeley et al., 2011) to produce higher group consensus than

using an individual as a standard. In so doing, we argue that rather than assessing variability

we can make the stronger statement that this study has assessed relative quality.

The 95% confidence intervals (tables in IV.6) were large, indicating that likely a much

larger patient sample size would be needed to yield good absolute estimates of the figures

of merit. However, the goal of the study was not to make inferences about the population

average maximum dose, for example. Rather, the goal was to compare plan quality. Using a

non-parametric test for group differences of matched samples, we found reasonable strength of

evidence (Friedman’s test, table IV.2) that differences did exist among the rater-derived plans

for several figures of merit. In subsequent positive pairwise comparisons between individuals

and the mean of their peers, we found the strongest evidence that P2 segmentations results in

plans with higher dose figures of merit. The only figure of merit-structure combination in which

the A1-derived plan differed was for the maximum dose to the chiasm. Three of the experts also

produced credible differences in this venue. Interestingly, in our de novo study we found A1,

P1, P3, and J3 scored best in a test of distance error on the chiasm; on average at least 80% of

the points they contoured lay within 2 mm of the ground truth. However, of those, A1 and P3

showed evidence of difference in maximum dose. The reason may be explained by the following.

For P1 and J3, distances errors tended to be positive (these raters erred on the side of more

conservative, outwardly larger though generally well-scaled contours), while those of A1 and

P3 were close to zero or negative (erred toward smaller, more central contours). P2 produced

chiasm contours that were inconsistent, sometimes missing the ground truth chiasm entirely.

The evidence of difference in A1 and P3 plans is likely a result of their tighter boundaries
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being less protective within the optimization. This underscores some of the complexity of the

potential relationships between segmentation quality and dosimetric output.

In contrast to the significance tests, the average DVHs and distribution of dose dif-

ference plots offer a sense of effect size. The DVHs show that on average there were very

small, likely clinically unimportant, differences in volume dose to the ground truths between

the plans. This with the target dose evidence is an indication that differences in the normal

tissues segmentations did not produce clinically meaningful differences, on average, in the treat-

ment plans. There were individual instances, however, that may have been clinically important,

with differences in maximum dose as high as 10 Gy more to the brainstem and chiasm than

delivered by the rest of the group. The automatic system resulted in plans that performed quite

well within the variation of the physician-derived plans.

There was much more variability in dose reporting than in the analysis of dose to

ground truth. We focused on discrepancies in maximum dose reporting as this is the most

commonly reported figure of merit for the structures in our study. These discrepancies are

important for several reasons. In the process of optimizing a plan, if the goals cannot be met, a

clinical decision will have to be made whether to spare the normal tissue or compromise tumor

coverage. When dose has been over-reported, unnecessary action may be taken that results in

suboptimal tumor dose. Likewise, an under-reporting plan may result in a decision to treat the

tumor more generously, thereby inadvertently overdosing the normal tissues. Dose reporting

could also have implications for evidence-based medicine as well. Clinical trials collect the

reported doses from enrolled patients and correlate with toxicity. Mayo and colleagues (Mayo,

Martel, Marks, Flickinger, Nam and Kirkpatrick, 2010; Mayo, Yorke and Merchant, 2010)

reviewed toxicity studies of the brainstem and optic pathway and found there little consensus. A

contributing factor may be high variability and often inaccurate reporting, especially concerning

maximum dose. Even for the small tubular structures, reporting of mean and volume doses

seems to be indicated; we found these figures of merit were more accurate and less variable

than maximum dose.

IV.4.1 Limitations and future work

This study was designed to test the impact of segmentation differences, principally

with respect to the feasibility of our automatic system, on plan quality. To the best of our

knowledge this is a step further than has been done previously. In doing so we employed 8

experts and 20 patients with challenging tumor geometry. However, our inferences are tempered

by the realization that there are additional potentially important variables not captured. We

cannot know whether our sample is representative of the population of patients with large brain
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tumors, physicians, or treatment planning procedures. As mentioned previously, alternate dose

optimization processes could be more less sensitive to segmentation differences than that which

we employed. The same can be said for dose prescription. We chose a treatment regimen similar

to a common clinical protocol, but the spectrum of protocols and institutional preferences is

broad. For instance, in a dose escalation study such that of Tsien and colleagues (Tsien et al.,

2009), figures of merit and potentially dose coverage may be more sensitive to differences in

segmentations than captured in our study.

IV.5 Conclusions

Our system for automatic segmentation resulted in IMRT treatment plans within the

range of those produced by expert physician segmentations as measured by dose to ground

truth through a number of figures of merit. Target dose coverage was robust to segmentation

differences, and average normal tissue DVHs were similar as measured by the ground truth

estimates. Measurement via the ground truth estimates provided our best guess as to the true

impact of differences. The variation in this analysis was muted compared to that of the dose

reporting discrepancies. We found reporting, especially of maximum dose, varied widely to

as much as 10-30 Gy and favored under-reporting. This could have implications in studies

of normal tissue toxicity that assume accurate reporting. Maximum dose, while the most

commonly employed figure of merit for the normal tissues of the brain, is more susceptible to

these variations than volume doses. Our results indicate one should report volume as well as

maximum doses for all critical structures.

IV.6 Supplemental Material
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CHAPTER V

DISCUSSION AND FUTURE DIRECTIONS OF RESEARCH

We have undertaken an investigation to characterize the impact and potential benefit

of automatic segmentation in the brain. The three studies presented in this dissertation have

shared a common framework of a multi-rater behavioral design. The following observations

motivated this design:

1. Segmentations are most basically geometric, but they are used in a complex process

resulting in a treatment plan and dose distribution to a patient. Evaluation should reflect

both the native form of the segmentation as well as end-use and any interactions in the

process, such as when a human rater reviews and edits the automatic segmentations.

2. Medical image segmentation is a problem lacking a well-defined ground truth. Studies uti-

lizing a single expert segmentation as a reference standard can be subject to considerable

bias.

3. Segmentations and the product of their end-use, dosimetry, are not objects that can

be well-captured by single tests or metrics. Each should be examined by a number of

complementary measures to reveal information that may be lost using single measures.

We employed these principles in the design of the studies comprising the main chapters

of this dissertation.

In chapter II we recruited 8 experts to segment de novo the brainstem, optic chiasm,

eyes, and optic nerves of 20 patients who had been previously treated for large brain tumors. We

tested our automatic segmentations within the context of the expert variability and accuracy.

To test accuracy we calculated ground truth estimates, one using a common approach and

another via a simple yet novel approach. We found that the automatic segmentations could

serve as a surrogate to the experts. We uncovered several areas in which experts are challenged,

particularly the visual pathway of the optic chiasm and nerves. Previous works not employing

our multi-rater design have concluded with dissatisfaction that perhaps automatic methods

are not well-suited for the segmentation of the visual pathway. Indeed, they are challenged,

but no more so than the experts. In this context, the benefit of automatic segmentation

is principally one of efficiency. Whereas the automatic system requires no user input, we

found the average expert required 15 minutes. The efficiency impact may be greater in the
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future, however. Other body sites require much more expert time (greater than an hour) for

segmentation, particularly in the head and neck. Additionally, if adaptive replanning becomes

the new paradigm, segmentation workload could increase substantially.

In chapter III we presented results of a study to test the interaction of the automatic

segmentations and the human experts. Even considering the results of the de novo study, it is

likely automatic segmentations will be reviewed by the end-user. In fact, even when humans

segment manually it is advisable that they review their own segmentations for correctness.

With this in mind we tested the interaction of the humans and automatic system through

editing. We were also interested in the effect of editing beyond the context of the automatic

system. Our hypothesis was that editing, regardless of source, may be beneficial to improve

the results of what is otherwise a noisy process when starting from a blank slate. To that end

we designed a single-blinded randomized set of tasks in which each rater was called to edit the

automatic contours, their own contours from the de novo study, and those of their peers. We

found that editing reduced inter-rater variability and at minimum maintained accuracy across

all sources. In areas where raters had performed poorly de novo, such as missing slices at the

superior and inferior borders of structures, editing A1 improved performance. This process

was even robust to using the lowest quality segmentations as a starting point. We found that

efficiency was still improved, as editing of automatic contours for a single patient required on

average 6 minutes. Thus, we conclude from this study that the automatic segmentations not

just improve efficiency, but they have the potential to reduce geometric inter-rater variability

without introducing unwanted bias. They could also prove useful as a learning tool. Rather

than be confined to traditional anatomical atlases, users may invoke the automatic system to

incorporate the knowledge-base in the atlases to the target patient as a starting point.

The last test is that of the end-use of segmentations. Chapter IV presented a study

to test the impact of segmentations differences on radiation therapy treatment plans and to

determine whether the automatic system resulted in plans within the variability of the experts-

derived plans. Once again, we found the automatic system performed well within the context

of the experts. First, we found target dose coverage was robust to all segmentation differences

across all patients and raters. Second, we measured the true impact of differences via the

ground truth estimates. Statistically significant differences were found, but the magnitude of

these difference was not clinically important on average. The only consistent differences across

patients and structures were a result of a single expert rater. Third, we found dose reporting

discrepancies were common and could be large and tended toward underdosing. This could

have important implications for clinical trials and toxicity studies and may explain some of the

variability noted between current studies. To our knowledge, this work is the first to separate
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true dose (to ground truth) from the concept of dose reporting. Previous work has measured

only the latter without distinguishing between the two perspectives.

Studies such as those undertaken in this work are long, costly, and require scarce

resources, but the framework and data gathered can be used for a number of future studies.

Algorithm validation studies. In our de novo study we developed a framework

and gathered rich data from several raters, but we did not test the system on other algorithms.

Many algorithms have been developed in recent years to segment the same normal tissues, and

perhaps as many as a dozen commercial vendors now offer automatic segmentation as part of

a treatment planning system or stand-alone platform. A web-based study to test and compare

these algorithms could be undertaken with relative ease now that the rater data and framework

exist.

Extension to other body sites. As noted, many algorithms and commercial sys-

tems are already being employed clinically. The anatomical site of most interest is the head and

neck, as many tissues must be segmented for IMRT planning, both normal and diseased, in a

process that often exceeds 1-2 hours. Our group has also begun developing methods to segment

the lymph nodes, thyroid, and parotid glands (Chen et al., 2010, 2012). We propose similar

studies to the ones presented in the present work but with a different method for data acquisi-

tion. In the previous studies we collected data via the clinical treatment planning systems in

a tedious process requiring much manual intervention to input and output the necessary data

structures. Future studies could employ web-based segmentation tools. This approach trades

clinical realism for feasibility and removes barriers to recruiting diverse raters from a number

of institutions. In parallel many algorithms could segment structures of interest. Both de novo

and editing studies could be implemented in this design. This would be a major contribution,

especially if an editing study could be accomplished, as prior evaluation work in the head and

neck has been exploratory, utilizing only a few raters and patients (Chao et al., 2007; Stapleford

et al., 2010).

Studies without matched sets. Fundamental to our previous studies was the

collection of data from all experts on the same subjects (patients). This design was motivated

by the observation that experts will disagree, and accordingly a single expert should not be used

as a reference standard. However, we have now characterized this variability in the brain. If

estimates can be had for the head and neck, it is conceivable that a study could be designed for

that site utilizing a number of independent samples (each with a single rater from the population

of available raters) as the reference standard. Some of these samples will be of low quality, but

with an estimate of how often that might happen, one could calculate the sample size needed to

provide sound statistics. As in the previous example, this design aims to achieve similar results
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to the previous studies with increased efficiency. Along these lines one could undertake a de

novo study using volumes that have been previously segmented for patient treatment, requiring

no new manual segmentation.
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