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Chapter 0

Introduction

Traditionally, computability questions of word and conjugacy problems in groups, along with
the groups isomorphism problem, are considered as some of the most important properties and
questions in combinatorial and geometric group theory. For a given finitely generated group G =
(X),

given word W € X* represents the trivial element in G or not. Here and later, whenever a set, say

X| < oo, the word problem is an algorithmic problem of deciding whether any arbitrarily

X, is a set of group generators, by X* we denote the set of all words in the alphabet X u X 1.
Otherwise, if X is merely a (finite) set, then X* means the set of all finite words composed by
letters from X.

The conjugacy problem considers on input an arbitrary pair (U, V) € X* x X* and decides
whether U is conjugate to V' in G or not. If for the word problem in G such a decision algorithm
exists, then it is said that the word problem (briefly, WP) is decidable in G. Analogously, if there is
an decision algorithm for the conjugacy problem (briefly, CP) in G, then it is said that the conjugacy
problem is decidable in G.

Observe that, since the triviality of an element of G is equivalent to the fact that it is conjugate
to the trivial element of (G, decidability of the conjugacy problem in GG implies decidability of the
word problem. Another obvious observation is that the decidability of WP and CP do not depend
on the choice of the finite generating set.

Word and conjugacy problems in groups first were introduced by Max Dehn in 1911. A bit
later, in 1912, Max Dehn described algorithms for word and conjugacy problems for surface groups
(i.e. fundamental groups of two dimensional manifolds) for surfaces of genus g > 2. The algo-
rithm described by him for the word problem is one of the most important word problem solving
algorithms. It is one of the most important word problem solving algorithms not only because of
its simplicity and good time complexity behavior or, say, because of its historical importance, but
also because, based on generalizations of underlying properties of surface groups, this algorithm

was generalized to a much broader class of groups, called hyperbolic groups (or, word hyperbolic



groups). The notion of hyperbolic groups was first introduced by Gromov in his seminal paper
[2R]. In fact, it is well-known that hyperbolic groups are essentially the finitely presented groups on
which one can extend Dehn’s original algorithm for the word problem in surface groups. See, for
example, [28, &T].

To describe Dehn’s algorithm, let us consider any finitely presented group G with its finite
presentation

G =(X|R). (0.1)

Then the presentation (1) is said to be Dehn’s presentation if the following property holds: R is a
finite symmetric set of words (i.e. it is closed under operations of taking cyclic shifts and inverses
of words); for any freely cyclically reduced word W € X™*,if W =4 1 (i.e. W represents the trivial
element in G3), then there exists a word R = Ry Ry € R such that |R;| > |Rz|, and a cyclic shift
W' of W such that W’ = Wj Ry W5. (Throughout this text, by the symbol | - || I denote lengths of
words in a given alphabet. Another notation which I use in this work extensively is the following:
For G = (X ) suppose U,V € X*, then U = V means that the words U and V' represent the same
element from G.)

Note that if (1) is a Dehn’s presentation, then to check whether or not a cyclically reduced
word W e X* is trivial in G, one can simply consider all cyclic shifts of W and all relator words
from R in order to find the above mentioned cyclic shift VW’ and relator word R = Ry Ry. Then the
key observation is that W =¢ 1 if and only if Wy Ry 'Wa =g 1. But [W1R; 'Ws| < |W|. Thus
the word problem for W is reduced to the word problem for a strictly shorter word W1 Ry wy.
Next, in order to check whether or not W1 Ry 1W2 =g 1, in a similar way as for W, we can try
to reduce this question to the word problem for a shorter word. If at some point this shortening
procedure cannot be applied anymore, then it means that either we obtained an empty word, hence
we conclude W =g 1 or, otherwise, we conclude W #4 1. Also it is clear that this procedure
of shortening can be applied only finitely many times (bounded from above by ||WW|), hence the
process will eventually halt, giving us the wanted answer about triviality of W in G. Since this
procedure is based on the original algorithm of Dehn, following the established tradition, we call it
Dehn’s algorithm.

Note that there exist finitely presented groups with undecidable word problem. In fact, the



first examples of finitely presented groups with algorithmically undecidable word problem were
given by Novikov in 1955, see [A8] and independently by Boone in 1958, see [9]. These results
of Novikov and Boone are considered as one of the most important and classical results in the
algorithmic theory of groups. Another famous example is a construction by Kharlampovich (see
[B77]), where the first example of finitely presented solvable group with undecidable word problem
was constructed, answering a long standing open problem by Adian.

Speaking about word and conjugacy problems in finitely generated groups, there are several key

aspects one might consider. Below we mention some of them.

(a). Whether or not the WP (resp. CP) is decidable?
(b). If it is undecidable, what is the Turing degree of undecidability of the WP (resp. CP)?

(c). If it is decidable, what computational complexity classes does it belong to?

Note that for a given group, the answer to (a) reveals not only computational properties of the
group, but also its algebraic properties. This follows, for example, from a classical theorem of Boone
and Higman, [I4, 0], which says that a finitely generated group G has decidable word problem if
and only if G can be embedded in a simple subgroup of a finitely presented group. Moreover, after
the works of Gromov [29], Sapir, Birget, Rips [63], Birget, Olshanskii, Rips, Sapir [8], Olshanskii
[66], Grigorchuk, Ivanov [26], Bridson [IT] and others, it becomes apparent that the answer to (c)
may reveal information not only about the computational properties of the group, but also about its
topological and geometric properties. Therefore, in the light of modern developments in the theory
of groups, investigation of these questions is important from the perspective of computational, alge-
braic, topological and geometric points of view. Note that since for any two finite sets of generators
X and Y of a given group, the words in X* can be in linear time translated into corresponding
words in Y*, the answer to the above formulated questions (a), (b) and (c) is independent of finite
sets of group generators.

We would like to mention that even the question of existence of a lacunary hyperbolic group
with decidable word problem and undecidable conjugacy problem was still open. This question
was asked by Olshanskii, Osin and Sapir as Problem 7.5 in [57]. A positive answer to this question

follows from Theorems B and B of the current paper.



In this thesis we systematically study all the above mentioned aspects of word and conjugacy
problems in the class of so called lacunary hyperbolic groups, with a special emphasize on the ones
obtained via small cancellation techniques.

The formal definition of the class of lacunary hyperbolic groups (more briefly, LHG) was first
introduced by Olshanskii, Osin and Sapir in [57]. Intuitively, lacunary hyperbolic groups can be
thought of as the finitely generated but not necessarily finitely presented versions of word hyper-
bolic groups. In the next sections we will recall the mathematically rigorous definitions of both
hyperbolic and lacunary hyperbolic groups. But for this introductory part let us just add to the al-
ready mentioned that all lacunary hyperbolic groups are inductive limits of hyperbolic groups as it
is established in [57] and recalled in Lemma I8 of the current work.

Speaking about inductive limits of hyperbolic groups, here we would like to mention that many
such groups were constructed by using various generalized small cancellation techniques and many
of them possess various exotic group theoretical properties. For example, this way Olshanskii con-
structed Burnside groups of large exponents [51] and Tarski Monsters [49, 50]. See also Ivanov’s
proof of the Burnside’s problem for even exponents [35]. For a more complete exposition of these
constructions see also [63].

Following an already established tradition, we call the groups which possess exotic properties
and are obtained as inductive limits of hyperbolic groups via small cancellation techniques, monster
groups.

For the monster groups appearing, for example, in [53], in the currently existing literature there
are no known time complexity effective algorithms for the basic decision problems such as the word
and conjugacy problems. The methods developed in this work help us to construct monster groups
with effective word and conjugacy problems. See Theorems B and H.

In this thesis, besides the developed frameworks and tools, we prove sever theorems which
answer several natural questions about the nature of the word and conjugacy problems. Some of
these questions previously were formulated by other authors and were known to be open. In the

next chapter we describe our main results in more details.



Chapter 1

Main results

The main objective of this manuscript is twofold.

First, based on the small cancellation theory of Olshanskii (see [63]), we describe general con-
structions of lacunary hyperbolic groups under which the word and conjugacy problems can be
effectively reduced to much simpler problems.

Even more, we develop a general framework in Sections Z3-571 which provides with necessary
tools to understand the rich nature of the word and conjugacy problems in the class of LHG. In fact,
this framework will allow us to shed light on the rich nature of word and conjugacy problems in

LHG from several perspectives. More specifically:

1. From the perspective of computability, e.g. in Theorem [0 we formulate a necessary and suffi-
cient condition for decidability of WP. Also we develop necessary tools to construct lacunary

hyperbolic groups with decidable word problem and undecidable conjugacy problem;
2. From the perspective of computational complexity theory; and

3. From the perspective of interconnection of WP and CP in the class of LHG, both in terms of

computability and computational complexity.

Second, we use the developed framework to formulate the main theorems of this paper, that is
Theorems B, B, H and B. The first two theorems, in particular, show that versions of some of the most
prominent groups of the class of LHG can be constructed in such a way that they will have fast WP
and CP. The third theorem shows in particular that WP and CP are ‘almost’ completely independent
one of another in the class of lacunary hyperbolic groups, not only in terms of computability, but
also in terms of computational complexity.

Below we describe the content of the paper in more details.



Let us define the group G = (X), |X| < oo, as the inductive limit of the chain of group

epimorphisms
@1 a9
Gl—»Gg—»..., (11)

where «; : G; = G, 1 is the induced epimorphism from the identity map id : X — X foralli e N
and G; = (X | R;) is a finitely presented hyperbolic group.

Even though the original definition of lacunary hyperbolic groups involves the concept of
asymptotic cones, there exist equivalent and more algebraic definitions. In this work we employ

the following definition of lacunary hyperbolicity (see Lemma [[@ and Remark B).

Definition 1.1. A finitely genrated group G = (X is lacunary hyperbolic if and only if G is the
inductive limit of a chain of group epimorphisms of type (1) such that the hyperbolicity constant
of G; (relative to X) is little o of the radius of «;, where radius is defined as follows: For G = (X)
and a : G — @', the radius of « is the maximal radius of a ball in the Cayley graph I'(G, X)
centered at 1 such that all elements from that ball map to non-trivial elements in G’ except for 1.

The sequence of radiuses of () is the sequence of radiuses of epimorphisms «;.

Definition 1.2. We say that (ICT)) along with the group presentations G; = (X | R;) is a graded
recursive presentation of G by hyperbolic groups if the map i — R; is computable, i.e. the set

{(i,R;) | i € N} is recursive.
In Section 4 we prove the following theorems.

Theorem 1 (Theorem M0). Let G be an inductive limit of hyperbolic groups connected by epimor-
phisms. Then G has decidable word problem if and only if it has a graded recursive presentation by
hyperbolic groups and increasing sequence of radiuses over that presentation (i.e. the radiuses of

the epimorphisms are increasing).

Theorem 2 (Corollary B). A lacunary hyperbolic group has a decidable word problem if and only

if either G is a hyperbolic group or G is the direct limit of a sequence of d;-hyperbolic groups



G; = (Xi) (X is finite) and epimorphisms

le7Ye - (1.2)

where o;(X;) = X;11, such that

1. for all i, G; is a 0;-hyperbolic group, where (6;)°, is an increasing sequence of positive

integers,

2. the sequence (r;)° is strictly increasing, where r; is the radius for the epimorphism o :

Gi = Git1,

3. the sequence (%);‘il is strictly decreasing and converges to 0,

4. the groups G; have presentation G; = (X | R;) such that the map i — R; is computable (i.e.

the presentation G = (X | UR;) is a graded recursive presentation by hyperbolic groups).

Remark 1. Note that the conditions (1)-(3) in fact give a general characterization of arbitrary non-

hyperbolic lacunary hyperbolic groups.

One of the main object of investigation in this paper is the following type of chains of hyperbolic

groups satisfying some special conditions.

G2 mlae Bt (1.3)
If we denote a;; = ;11 o ;, then we always assume that «; is surjective for ¢ = 1,2,.... All the

groups in this chain are assumed to be hyperbolic. Let Gy = (X | R() be given with its initial finite

presentation, and let for all 7 € N,

H; = Gi_y+ F(Y)] < Si », (1.4)

where |Y;| < 0, Y; n B;i—1(Gi—1) = &, S; is a finite (symmetric) set of words from (X u Y;)* and



F(Y;) is the free group with basis Y;. Also
G, =H;/ < R; », (1.5)

where R; is a finite symmetric set of words from (X U Y;)* satisfying certain small cancellation
conditions.

The main group of our interest is the group G = (X)), | X| < o0, defined as the inductive limit

G = hm(GZ, Oéi).

In Section A we introduce the concepts of G- and H-conjugacies with respect to (IL3) for the group
G defined as follows: For u,v € X* we say that u is H-conjugate to v if there exists i € N such that
u is conjugate to v in H; but nevertheless « is not conjugate to v in G;_;. G-conjugacy is defined
analogously, namely, u is G-conjugate to v in G if either  is conjugate to v in G or there exists
1 € N such that  is conjugate to v in GG; but u is not conjugate to v in H;. Clearly, v is conjugate to
v in G if and only if either u is H-conjugate to v or G-conjugate to v in G. In the same section we
introduce a special small cancellation condition
C'(TM, (9:)%1, (pi),) which assures that the word and G-conjugacy problems for G can be
solved in polynomial time provided that the words R;, ¢ = 1,2,..., are polynomial time com-
putable. Here we would like to highlight that this condition does not tell us about the effectiveness
of the H-conjugacy problem. In fact, as the proof of Theorem B reveals, H-conjugacy problem in
general can have an arbitrary behavior not depending on the behavior of, say, G-conjugacy problem.
In Subsections 372 and we describe constructions of words which can be highly effec-
tively constructed, have appropriate small-cancellation properties, and they will serve in Sections
B2, and B4 as the main ingredient for defining the words R;, ¢ = 1,2,... for corresponding
constructions. It is worthwhile to mention here that Sections B2, B3 and 64 provide the proofs of
the main applications of the general framework, that is the proofs of Theorems B, B and B, and all the
proofs are constructive and based on a general scheme described in Section Bl. On its own turn, the
general scheme from Section Bl is based on the already mentioned general framework developed

mostly in Sections I3, I, B and B.



Concerning the groups H;, 7 = 1,2, ..., in the main applications in Sections B2, B3, B4, we
consider two main situations: First, when H; = G;_1 and ;1 = id and second, when H;-s are

obtained as HNN-extensions of G;_1.

Definition 1.3. Let f : N — N be a positive integer valued function, and let D be any decision
problem. Then we say that D can be solved in almost f(n) time, if for any ¢ > 0 the problem D
belongs to DTime (nf f(n)), or in other words, it belongs to (i, DTime(n*/* f(n)). If f(n) =
n, n € N, then we say that D is decidable in almost linear time (similarly we define almost quadratic

time, etc).

1.1 Main theorems

The next theorem shows that every non-elementary, torsion-free hyperbolic group has a non-
trivial verbally complete quotient with almost-linear time word problem and polynomial time con-
jugacy problem.

Recall that the group G’ = (X) is verbally complete if for any element g € G’ and for any non-
trivial element w from a countably generated free group F' = F'(y1, 4o, ...), the equation w = g
has a solution in G’, where the letters of w are regarded as the variables of the equation. In other

words, there exists a homomorphism h : ' — G’ such that h : w — g.

Theorem 3. Let GG be an arbitrary torsion-free, non-elementary hyperbolic group. Then there exists

a lacunary hyperbolic infinite torsion-free quotient G of G such that the following is true about G.

(i). G is a verbally complete group,

(ii). The word problem in G is decidable in almost quadratic time and the conjugacy problem in

G is decidable in polynomial time.

Note that part (i) of Theorem B appears in the work of Mikhajlovskii and Olshanskii, [44]. Also,
since verbally complete groups are divisible groups, Mikhajlovskii and Olshanskii’s work can be
regarded as a generalization of a result of Guba from 1987, [30], which answered a long standing

open question about the existence of finitely generated non-trivial divisible groups. To achieve the



result of Theorem B, we elaborate the original construction of Mikhajlovskii and Olshanskii and
combine it with the machinery developed in this paper.

One interesting corollary from Theorem B is that for the group G, there exists an algorithm such
that for all inputs w € F(y1,yo,...)\{1} and § € G, the algorithm finds a solution for the equation
w = §in G. Indeed, to solve the equation w = § in G, one can just check for all possible values of
variables 1, ¥z, . . ., whether w = § in G or not. Since the word problem in G is decidable and G

is verbally complete, this procedure will eventually halt.

Theorem 4. Let G be an arbitrary torsion-free, non-elementary hyperbolic group. Then there exists

a non-cyclic torsion-free lacunary hyperbolic quotient G of G such that the following is true about

G.

(i). Every proper subgroup of Gisan infinite cyclic group,

(ii). The word problem in G is decidable in almost quadratic time and the conjugacy problem in

G is decidable in polynomial time.

Note that the first example of an infinite non-cyclic group with the property of the part ()
appears in [49] and the exact statement of Theorem B without the part (i7) appears in [53].
Construction of G can be regarded as a more elaborated version of the corresponding result from

[65] combined with the machinery developed in this paper.

Let us also mention that from the method by which the groups G' and G are constructed it fol-
lows that for every torsion-free, non-elementary hyperbolic G, there are continuum many pairwise
non-isomorphic quotients of G satisfying the statements (i) of Theorems B and B, respectively.
However, the cardinality of groups satisfying all the conditions of Theorems B and B, respectively,

is Ng. (In fact, the cardinality of finitely generated groups with decidable word problem is Ng.)
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Definition 1.4 (Strong (many-one) reduction). Let £; < A} and Lo < A3, where A; and Aj
are finite alphabets. Then £; is strongly (many-one) reducible to £, if there exists a computable
function ¢ : A¥ — A% and a constant C' > 0 such that for any x € A} we have |¢(z)| 4, < C|z| 4,
and ¢(L1) = Lo, p(AT\L1) < A5\Lo. Moreover, if for some g : N — N and for all x € £; the
value of ¢(x) can be computed in time O(g(||x| 4,)), then we say that £; is strongly reducible to

Lo in time g(n).

Theorem 5. Let A be any finite alphabet, and let L = A* be any recursively enumerable subset
(i.e., re. language) of A*. Then there exists a lacunary hyperbolic group G such that the following

is true about G .

(I). The word problem in G is decidable in almost linear time.

(IL.i). The conjugacy problem in G can be strongly reduced to the decidability problem in L in

almost linear time;

(ILii). The decidability problem in L can be strongly reduced to the conjugacy problem in G in

linear time;

In particular, if the membership problem for L belongs to DTime(f(n)), then the conjugacy
problem in G is decidable in almost f(n) time, and if the conjugacy problem in G ;. belongs

to DTime(g(n)), then the membership problem in L also belongs to DTime(g(n)).

(1L.iii). For every fixed g9 € G, the problem of deciding if an arbitrary g € G is conjugate to g is

decidable in almost linear time.

The individual conjugacy problem in regard to a fixed element gy € G, shortly IC'P(gy), for any

input element g € G asks whether or not g is conjugate to go in G. Note that /C'P(1) coincides with
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the word problem in G. The statement (ILiii) of Theorem B says that for every go € G, ICP(go)
belongs to ()i, DTime (n“é).

Note that, in particular, Theorem B implies that there exist finitely generated groups with almost
linear time individual conjugacy problems and (uniform) conjugacy problem which belongs to one

of the following time complexity classes:
* NP-complete, co-NP-complete, PP-complete, PSpace-complete, etc; or

* belongs to DTime(f(n))\DTime(g(n)) where the time constructible functions f and g are

such that DTime( f(n))\DTime(g(n)) # & and f(n) > n'*< for some £ > 0; or

* the conjugacy problem is undecidable and has any given recursively enumerable Turing de-

gree of undecidability.

In particular, Theorem B extends the main results of Miasnikov and Schupp from [Z3].

In [IZ], Cannonito classified finitely generated groups with decidable word problem based on
the complexity of the word problem. As a measure of complexity the author considered Grzegorczyk
hierarchy. (For the details of the results and definition of Grzegorczyk hierarchy and its link to word
problem, we refer to [31] and [[I7].)

In the same paper [[I'7], the author mentions a question posed by Boone (see page 391, [1'7])

which was formulated as follows:

A very interesting problem suggested by W. W. Boone is the following: Do there exist
any f.g. groups with conjugacy problem £ -decidable, and word problem & B_-decidable

such that f < «?

This question was also touched in [39].

Parts (I) and (IT) of Theorem B imply the following stronger statement.

Corollary 1. For every o = 3, there exists a finitely generated (lacunary hyperbolic) group G with

E3-decidable word problem and £ -decidable conjugacy problem.

Remark 2. We would like to note that Corollary [ follows also from the main results of [43].
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In [57], the authors, Olshanskii, Osin and Sapir, asked about the existence of a lacunary hyper-
bolic group with decidable word problem but undecidable conjugacy problem. See Problem 7.5 in
[57]. Another immediate corollary from Theorem B, parts (1) and (I1.i7), answers this question in

positive.

Corollary 2. There exists a lacunary hyperbolic group with decidable word problem but undecid-

able conjugacy problem.

Proof. Indeed, take any recursively enumerable but not recursive set £. Then, according to Theorem

B, the group G has decidable word problem but undecidable conjugacy problem. 0

Theorem B provides a reasonably complete classification of the conjugacy problem in finitely gen-
erated groups in terms of time computational complexity for groups with decidable word problem
and for recursively presented groups with undecidable conjugacy problem - in terms of recursively
enumerable Turing degrees. It is worth mentioning that similar classifications were obtained for the
word problem, for example, by the following authors: By Cannonito [I'/] in terms of Grzegorczyk
hierarchy; by Valiev and Trakhtenbrot [6Y, B8] in terms of space complexity, by Stillwell [67] in
terms of time complexity. However, in spirit, probably the closest result to parts (/7.7) and (11.i)
of Theorem B is the following result of Birget-Olshanskii-Rips-Sapir from [K] stated for the word

problem in finitely presented groups and mentioned as “an important corollary” (see Corollary 1.1,

[8D.

There exists a finitely presented group with NP-complete word problem. Moreover,
for every language L < A* from some finite alphabet .4, there exists a finitely pre-
sented group G such that the nondeterministic time complexity of G is polynomially

equivalent to the nondeterministic time complexity of L.

The first examples of groups with decidable word problem and undecidable conjugacy problem
of arbitrary r.e. Turing degree for finitely generated groups were constructed by Miller [45], and
for finitely presented groups by Collins [20]. It was shown in [I0] that in Miller’s group from [45]

even though the conjugacy problem is undecidable, the individual conjugacy problems IC P(g) are
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solvable in polynomial time for all g from an exponentially generic subset of G. This and other

observations led Miasnikov and Schupp to formulate the following question in [Z3].

Question. Are there recursively presented groups G with solvable word problem such
that if the individual conjugacy problems are decidable on a computably enumerable

subset Y € G then'Y is negligible, or indeed exponentially negligible?

We answer this question in positive by showing the following much stronger existence result.

Theorem 6. There exist lacunary hyperbolic groups G = (X') with word problem decidable in
almost linear time and such that for g € G the individual conjugacy problem ICP(g) is decidable

ifand only if g = 1.

Remark 3. In fact, the group G, which is constructed in Section B3, is non-amenable, hence, by
Grigorchuk’s co-growth criterium of amenability, we have {w € X* | w =5 1} is exponentially

negligible.

In self-contained Chapter B, we answer a well-known question of Collins, asked in early 1970’s,
about the embeddability of torsion-free groups with decidable word problem into groups with de-

cidable conjugacy problem. Our main theorem of that chapter is the following.

Theorem 7 (Theorem ). There exists a finitely presented torsion-free group G with decidable

word problem such that G cannot be embedded into a group with decidable conjugacy problem.
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Chapter 2

Preliminaries

Let (X, d) be a geodesic metric space. Given a geodesic triangle ABC' in X’ with vertices A, B
and C, for any § > 0, ABC is called d-slim if each side of the triangle ABC is contained in the
d-neighborhood of the union of other two sides of ABC'.

For a given constant § > 0, X is called J-hyperbolic space, if all the geodesic triangles in X" are
d-slim. Throughout this text, when we consider a triangle with vertices A, B and C, we denote by
AB, BC, C'A the sides of the triangle joining the corresponding vertices. The same convention we
use also for other polygons.

Let G = (X) be a finitely generated group with a finite generating set X. Note that the Cayley
graph I'(G, X') possesses a natural geodesic metric, d¢;, called word metric. That is for any g, h € G,
da(g, h) is the length of a smallest word from X * representing the word g~ 'h € G. Moreover, since
each edge of a Cayley graph is isometric to the unit line, the metric dg can be extended to a geodesic
metric on any pair of points from I'(G, X ). By |g|¢ (or just by |g|x or |g|, depending on the context
and convenience) we denote the distance d(1, g). In the current work, whenever it does not lead to
ambiguities, instead of using the notation dg we will simply write d. Depending on the convenience
derived from the context, we will use sometimes instead of d¢, dx or simply d, if it does not lead
to ambiguities.

Note that, at the first glance, it would be more appropriate to use notations dx and | - | x instead
of dg and | - |g. However, this notation we use by purpose, because in many applications in this
paper, we interchangeably consider metrics on different Cayley graphs of groups with presentations
(X | R1yand (X | Ra), where Ry # R;.

The group G = (X) is called d-hyperbolic, if its Cayley graph I'(G, X) is d-hyperbolic. In
general, we say G is hyperbolic if the Cayley graph I'(G, X)) is §-hyperbolic for some ¢ > 0. Itis a
well-know fact that the property of hyperbolicity does not depend on the choice of finite generating

sets (see [28]). However, the hyperbolicity constant 4 may depend on the choice of the generating
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set. In this thesis, whenever we say that some group or space is d-hyperbolic, by default we assume

that J is a positive integer.

The following are well-known algorithmic properties of hyperbolic groups.

1.

The class of hyperbolic groups is exactly the class of finitely presented groups with Dehn

presentation. See [28] and also [4T].

. It was established by Epstein and Holt in [24] that given a hyperbolic group GG with finite

Dehn presentation, there exists an algorithm solving the conjugacy problem in G in linear

time.

. It was established by Papasoglu in [67] (see also [BI] for background) that there exists a

partial algorithm which detects hyperbolicity of finitely presented hyperbolic groups. In
other words, the set of finite presentations of hyperbolic groups is recursively enumerable.

See also [27].

. There exists an algorithm which computes a slimness constant § for any finite presentation of

a hyperbolic group. See, for example, [22].

. There exists an algorithm which for any input of finite presentation of a hyperbolic group

computes its Dehn presentation. It follows from [62] and [22].

Now consider a path p in (X, d) with a natural parametrization by length. The path p is called

(A, ¢)-quasi-geodesic for some A > 1 and ¢ > 0, if for any points p(s) and p(¢) on p, we have

|s —t| < Ad(p(s),p(t)) + c.
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Hereafter, whenever it is not stated otherwise, we assume that the quasi-geodesity constants A and
c are integers. We denote the origin of p with respect to this parametrization (i.e. the point p(0)) by

p— and the terminal point by p_ .

We say that a word W € X* is a geodesic word (in I'(G, X)), if the paths in I'(G, X') with label
W are geodesics, and we say that a word W € X* is cyclically geodesic if any cyclic shift of W is
a geodesic word in I'(G, X'). Analogously, for A > 1, ¢ > 0, we say W is (), ¢)-quasi-geodesic (in
I'(G, X)) if the corresponding paths in I'(G, X)) are (A, ¢)-quasi-geodesic. The length of the word
W we denote by |1V | and by |W| we denote the length of the shortest word representing the same
element as W in G. Clearly, W is a geodesic word if and only if |W| = |[W]|.

For any W’ € X* the notation W' ~.,,; W in G means that W' represents an element in G
conjugate to the element represented by W in G.

We say that V' € X* is a cyclically minimal representative of W if V' ~,,; W in G and V
has the smallest length among all such words. For V' satisfying this assumption, we also define
[Wle = |V]. If [W| = |W]|,, then we say that W is cyclically minimal. Clearly, if W is cyclically
minimal, then it is cyclically geodesic.

Now suppose that p is a path in I'(G, X). Then, as we said, we will denote its initial and
terminal points by p_ and p.., respectively. If A, B are some points on p, then by [A, B] we denote
the subpath ¢ of p between A and B such that ¢_ = A and ¢, = B. Also we denote the length of
p by ||p| and, context based, we denote the length of ¢ by |¢|| or by | [A, B]|. Since all the edges
in Cayley graphs are labeled by the letters of X U X !, any path p in T'(G, X) in fact is a labeled
path. We denote the label of p by lab(p).

Lemma 1 (Theorem III.1.7, [12]). Let p be a (A, c)-quasi-geodesic path in the Cayley graph
I'(G, X), where A\ = 1,¢ = 0 and G = (X)) is a hyperbolic group. Then there exists an effec-
tively calculable constant Ry . € N depending on \, c and G, such that the Hausdorff distance

between p and any geodesic path joining p_ to p, is bounded by R) ..
In this text, whenever we use the notation R ., we refer to the constant from Lemma [I.

Corollary 3. Let p and q be (A1, c1)- and (Ag, c2)-quasi-geodesic paths in I'(G, X) respectively.

Also let d(p—,q-) < L, d(p+,q+) < L for some constant L, then the Hausdorff distance between

17



p and q is bounded from above by L 4+ Ry, ¢, + R, ¢, + 20, where 0 is a hyperbolicity constant of
I'(G, X). Moreover, if we join p_ to q— and p4 to q by some geodesics, then we get a quadrangle
such that the distance from any point on p (or q) to the union of the other three sides is bounded
from above by Ry, ¢, + R, ¢, + 20. In case p and q are geodesics, this distance is bounded from

above by 26.

Proof. 1t follows from Lemma [ that it would be enough to prove the statement for the case when p
and g are geodesic paths and correspondingly Ry, ., = Ry, ., = 0.

Now assume that p and ¢ are geodesics. Let p_, ¢_ and p,, ¢ be joined by some geodesics f;
and fo, respectively. Also let e be a geodesic path joining g to p.

By the definition of hyperbolicity constant, for any point 0 € g, there exists 02 € e U f3 such
that d(o1, 02) < 6. Now, if 02 € fa, then since | f2| < L, the statement of the corollary follows for
o1 immediately. Otherwise, if o2 € e, the statement follows for 0; immediately from the observation
that dist(o2, f1 U p) < ¢ and || f1| < L. If o1 belongs to one of the other three sides, then we can

deal with that case analogously. O

Corollary 4. Let p and q be (A1, c1)- and (\a, c2)-quasi-geodesic paths in T'(G, X) respectively,
and let d(p—,q-) < L, d(p+,q+) < L for some constants \y = 1,¢c1 = 0, Ao = 1,¢c0 = 0,
L > 0. Then for any point o € p such that d(o,p_),d(o,p+) = L + Ry, ¢, + 20, we have

dist(0,q) < Ry, ¢, + Ray,co + 20, where § is the hyperbolicity constant of T'(G, X).

Proof. Let p_, q— and py, g, be joined by some geodesics f1 and fo, respectively. Also let p/, ¢’
be geodesic paths joining p_ to p4 and g to ¢4, respectively.

By Lemma [ there exists o1 € p’ such that d(o, 01) < R, ¢, Now, by Corollary B, dist(o1, fiu
faud') <26.

On the other hand, if dist (o1, f1) < 26, then dist(o, f1) < d(o0, 01)+dist(o1, f1) < Ry, +20.
Hence, by the triangle inequality, this would imply d(o,p_) < L + R . + 26, which is a contra-
diction. This contradiction implies that dist(o1, f1) > 2J. Similarly, we get that dist(o1, f2) > 20.
Therefore, dist(o1,q") < 24, and hence dist(o1, f1 U fo U ¢') < 2§ implies that dist(o1,q") < 26.

Therefore, since d(0, 01) < R), ., and the Hausdorff distance between ¢ and q is bounded from

above by R, ,, we get that dist(o, q) < Ry, ¢, + Rx,,c, + 20. O
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Given apathpand k > 0, A > 1,¢ > 0, we say that p is k-local (), ¢)-quasi-geodesic, if each
subpath of p, of length at most k, is (), ¢)-quasi-geodesic. In case A = 1, ¢ = 0, we say that p is

k-local geodesic.

Lemma 2 (Theorem III.H.1.13, [I2]). Let X be a §-hyperbolic geodesic space and p be a k-local
geodesic, where k > 8J. Then for every geodesic segment q joining p_ to p; we have:

(1) p is contained in the 26-neighborhood of q;

(2) q is contained in the 3d-neighborhood of p;

(3) pis a (\, ¢)-quasi-geodesic, where A = (k + 40)/(k — 49) and ¢ = 2.

The next lemma is a generalization of the previous one. It can be found in [B7].

Lemma 3 (See Theorem 25 in [B2]). Let X be a §-hyperbolic space. Then there exists an effectively
computable constant K = K(6, )\, ¢) € N such that for any k = K, if p is a k-local (A, ¢)-quasi-

geodesic path in X, then p is (KC, K)-quasi-geodesic.

For any metric space (X, d) and for any x, y, z € X’ the Gromov product of y and z at =, denoted

(y - 2) s, is defined by

(d(:n, y) +d(z, z) — d(y, z))

N | —

(Y- 2)z =

Lemma 4 (see Lemma 5, [36]). Let G = (X ) be a §-hyperbolic group. Let o = 140, oy = 12(av +
9), and a geodesic n-gon A1 Ay . .. Ay, withn > 3 satisfies the following conditions: d(A;_1, A;) >
ay fori = 2. ,n and (Ai—2 - Aj)a,_, < a fori = 3,..,n. Then the polygonal line p =
A1As u ... U A,_1Ay, is contained in the closed 2a-neighborhood of the side A,, A1 and the side
Ay Ay is contained in the closed 146-neighborhood of p. In addition, d(A1, A,) > 6(n—1)(a+9).

Lemma 5 (see Lemma 1.17, [89], also Lemma 8, [38]). Let g be an element of infinite order in a

hyperbolic group G and an equality xg*z= = g' holds in G, where x € G, | # 0. Then k = =+l.
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Lemma 6. Let G = (X ) be a d-hyperbolic group, and let W, V. T € X* be such that V is freely

cyclically reduced non-empty word and
W=¢T 'VT.

Suppose that for some k € Nand A\ > 1, ¢ = 0, V¥ is a (), ¢)-quasi-geodesic word. Then W* is a

(AW, @AIT| + ¢ + 2)|W||)-quasi-geodesic word.

Proof. First of all, note that for all [ > 0, we have
V] = VI < AVY +e,

hence

MV + e

<AV + e 2.1)
IV

I <

Now note that every subword of W¥ is of the form Wi W!'Ws, where [ > 0 and Wy, W are

(possibly empty) suffix and prefix of W respectively.
Now for W, W TV, we have

[WAW'Wa| < [Wa| + [W!] + [Wa| = W] + |[We| + [ W]
by @), < [Wil + [Wal + AV +¢)[W]
= Wil + [Wa| + ATW'T™! + o) |W|
< 2[W[ + AW + 20T + o) [W]
= AWIW' + 2|W [ + 2| T|[W] + | W]

= A|W[IW!| + @AIT| + ¢+ 2)|W].
Now, since Wi W!'W5 was chosen to be an arbitrary subword of W*, we conclude that W* is a
(AW, @A|T|| + ¢ + 2)|W]))-quasi-geodesic word. O

Lemma 7. Let G = (X ) be a §-hyperbolic group, and let V € X* be a cyclically minimal word
such that |V|| > «, where a = 12 - 156 = 18068. Then for each k € 7, V¥ is a (4, 25200)-quasi-
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geodesic word.

Proof. Without loss of generality let us assume that k& € N. We want to show that V¥ is (4, 25200)-
quasi-geodesic for any cyclically minimal word V' € X* such that |V > «.

For that reason, let us decompose V' as

V=W...V,

14

where s = [TJ and o < |V;| < 2acfori =1,...,s. Then, since V is cyclically minimal and the

word V; V) along with the words V1 V5, ..., V5_1V; are subwords of (a cyclic shift of) V', we get
Vil + (Vo] = VsVl = [l + V] = [VsVa =0

and

Vil + [Vigr| = [ViViga| = [Vill + Viesa | = [ViViga | = 0, fori = 1,... ;s — 1.

The last equations suggest that we can apply Lemma B on subwords of V* to conclude that for any

subword V' of V¥ such that | V| > 3c, which is indeed of the form
V= UiV, ... V,Us,
where Uy and Uy are suffix and prefix of words from {V1, ..., V;}, we have
V| = Vi, ... Vi, | = UL = |Us|| > 6(¢ — 1)156 — 2a = 905t — 4506. (2.2)

(Lemma B was used to obtain |V;, ... V;,| > 6(t — 1)159).

On the other hand

IV'|| < (t +2)2a = (¢ + 2)3608 = (3605t — 18008) + 18008 + 7200

by (I2), < 4|V’| + 25200.
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Therefore, since V” is an arbitrary subword of V* of length > 3, we conclude that V¥ is a

(4,25200)-quasi-geodesic word. (2.3)

O]

Lemma 8. Let G = (X)) be a §-hyperbolic group, where X is symmetric (i.e. X = X 1), and let
W € X* be a geodesic word representing an element of G of infinite order. Then for every k € Z,
the word W* is (A\w, ey )-quasi-geodesic in the Cayley graph T'(G, X), where Ay and cyy are

given by the formulas

Aw = 4| X[ W, 24

and

ew = 5| X 2| W (2.5

where o = 1808. Moreover; if W is cyclically minimal, then W* is (4a|X|®, 50| X |>*)-quasi-

geodesic.

Proof. First, let us show that there exists an integer 1 < m < |X | such that [IW"|, > « (recall that
we assume X = X ~1). Indeed, assume that there is no such m. Then, by the pigeonhole principle,
there exist 1 < my < mo < |[X|[*and V € X*, T}, Ty € X*, such that [V | < a, |V = [W™|.

and

W™ = Ty T, W™ =¢ Ty 'V

But this means that W™ and W2 are conjugate in GG, which on its own turn, by Lemma B, implies
that m; = +£mso. A contradiction.

Thus there exists 1 < m < | X|* such that

W™ = TWVT, (2.6)
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where T,V € X*, |[V|| = |[W™|. and

VIl > a. (2.7)

Note that the equation V|| = |W™|. implies that V' is cyclically geodesic. Also, without loss of
generality assume that 7" has the smallest length among all the words T satisfying the equation (Z-f)
for some V with |V = [W™|..

Let us assume that W™ =g U for some geodesic word U € X*. Let us consider a geodesic
quadrangle ABCD in I'(G, X)) such that lab(AB) = lab(DC) = T, lab(AD) = V and
lab(BC) = W™, i.e. the boundary of ABC D corresponds to the equation W™ =g T~V T,

The first observation is that |T~!| = |T|| = dist(B, AD) (= dist(C, AD)). Indeed, if there
exists a point O € AD such that d(B,0O) < |T||, then there exists a path joining B to O, whose
label is a word () such that | Q|| < |T'||. Now, if we denote lab(AO) = V1, lab(O, D) = Vs, we get

B

Wm = U =g Q(VoV1)Q ™. See Figure 1. But because of the minimality assumption on ||T'

the inequality ||Q| < ||| leads to a contradiction. Thus the first observation is proved.

Wm

\ p (lab(p)=U)
\
\
r
T . Q
\
\
Vi \ V2
A 0 v D
Figure 2.1

The second observation is that for any point O; € AD such that d(A, O1),d(O1, D) > 46 (note
that such a point exists, because |V| > «), we have dist(O1,p) < 24, where p is the path joining
B to C with the label U. To show this, first notice that dist(O1, ABuUpu CD) < 2§ (see Corollary
B). Also, because of the minimality assumption on ||T'|, we get d(B,O1) = d(B, A). Now suppose
that there is a point O2 € AB such that d(O1, O2) < 26. Then, since d(B,01) > d(B, A), we get

d(B, A) = d(B,05) + d(0s, A) < d(B,01) < d(B, 03) + d(0s,01).
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Therefore, d(O2, A) < d(O2,01) < 2§ and as a consequence, by the triangle inequality, we get
d(A,01) < d(A,O2) + d(O2,071) < 46. But since d(A, O1) > 40, we obtain a contradiction.
The last contradiction implies that dist(O1, AB) > 2J. The same way we get dist(O1,CD) >
2). Therefore, the inequality dist(O1, AB u p U CD) < 26 implies that dist(O1,p) < 26, and
consequently, since the length of p is bounded from above by ||[W™|, we get that d(O;, B) <

|W™| 4 26. Therefore, from the minimality assumption on | 7|, we get
1T < [X]* W] + 26. (2.8)

Now, since W™ = T-1VT and V| > «, it follows immediately from Lemmas B, @ and the
inequality (ZR) that for all k € Z, W*™ is a (4|W™|, (2| X|*|W| + 85 + 25205 + 2)[W™|)-
quasi-geodesic word. Also, taken into the account the fact that W* is a subword of W*™ and the

inequalities m < |X|® and 25200 + 2 < | X |%|W |, we conclude that W is a
(41X |*|W |, 5| X |>*|W||?)-quasi-geodesic. (2.9)

Finally, since for cyclically minimal words V' satisfying ||V/| > «, we showed that V* is
(4,25206)-quasi-geodesic, by taking |W| = « in (Z9), we get that for every cyclically minimal
V e X*, regardless their lengths, V¥ is (4a| X |, 50| X|?*)-quasi-geodesic. O

2.1 Isoperimetric functions of hyperbolic groups

Let G be a group with a finite presentation G = (X | r1,...,7). A function f : N — N is called
an isoperimetric function for G (w.r.t. the given presentation), if for every reduced word W € X*

such that W =g 1, W can be presented as

n

W = H wirtlut

Ji 1t
i=1

where n < f(|W|). The minimal among the isoperimetric functions is traditionally called the
Dehn function of the given presentation. If n is the minimal number for which such a decomposition

exists, then n is called the area of W and denoted n = Area(W'). Another, equivalent definition
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of the isoperimetric function is the following: let p be a closed path in I'(G, X), then p can be
tessellated by at most f(|p|) labeled discs whose labels belong to {ri"*, ... 7"

It is a well known fact that a group is hyperbolic if and only if it has a finite presentation with
linear (equivalently, subquadratic) isoperimetric function. See for example [I2, 54]. Moreover, if

G = (X)) is 6-hyperbolic and F = {U € X* | |U| < 165 + 1, U =¢ 1}, then G can be given by

the following presentation
G=(X|F), (2.10)

and for this presentation, for all reduced words W e« F >», we have Area(W) < n. Let us call
this presentation the (X, d)-full presentation of G with respect to X and 0. If from the context it is
clear what are X and ¢, then we will just call it the full presentation of G.

An important observatoin about full-presentations follows from Lemma B. Namely, the
full presentations (ZI0) is in fact Dehn presentations. It follows from Lemma P and from the
observation that in the Cayley graph I'(G, X) the only (86 + 1)-local geodesic loop is the loop with

length 0, i.e. a point. For more details see [I?] or Proposition .

For a given presentation G = (X | R) of a hyperbolic group, let f(n) < An for some constant
A > 0. Then we call A an isoperimetry coefficient (w.r.t. G = (X | R)).
Proposition 1. (7). For any Dehn presentation G = (X | R) the isoperimetry coefficient is equal
to 1.

(2). If G is §-hyperbolic, then the full presentation G = (X | F) is a Dehn presentation.

Proof. (1). Let G = (X | R) be a Dehn presentation and let p be a loop in I'(G, X). Then, since
G = (X | R) is a Dehn presentation, p contains a subpath ¢ such that for another path ¢’ we have
lg| > |l¢’| and lab(¢~'q") € R. Then ¢ '¢' can be filled with one cell from R. Based on this
observation, it is clear that there is a van Kampen diagram over G = (X | R) with boundary p and
number of cells not exceeding p. Hence the first part of the proposition is proved.

(2). Indeed, let p be a closed path in I'(G, X') with its ends on 1. Then, by Lemma D, there exists a
closed 86 + 1-local geodesic path g with its ends on 1 such that pg can be tesselated by at most ||p||

cells with labels from F.
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On the other hand, again by Lemma B, ¢ is (3, 26)-quasi-geodesic. Now, since ¢ is a closed
8d-local geodesic, we get that either ¢ has 0 length, or |¢| > 8. But since ¢ is (3,20)-quasi-
geodesic, the last inequality cannot happen. Hence ¢ has length 0. This means that the loop p can

be tessellated by at most |p|| cells with labels from F. Thus the proposition is proved. O

It is well-known that a finitely presentable group is hyperbolic if and only if with respect to any
finite presentation the Dehn function of the group is linear. See, for example, [Z8, 54, 5]. The next
lemma tells that if with respect to some finite presentation (X | r1, 79, ..., 1) of a hyperbolic group
G, an isoperimetric coefficient A is given, then one can effectively find § > 0 such that G will be

0-hyperbolic with respect to the generating set X.

Lemma 9 (See [41], [8]). Suppose G is a hyperbolic group given with a finite presentation G =
(X | r1,72,... 7). Also suppose that f : N — N is an isoperimetric function with respect to this
presentation such that f(n) < An for some positive integer A. Then G is f(A, M)-hyperbolic with
respect to the generating set X, where M = max{|r1|, ..., |r;|} and f : N> — N is a computable

function independent of G.

2.2 Elementary subgroups of hyperbolic groups

A group is called elementary if it has a cyclic subgroup of finite index. It is a well know fact that
in a hyperbolic group each element g of infinite order is contained in a unique maximal elementary
subgroup, usually denoted by E(g), see for example [53].

By the lemmas 1.16 and 1.17 of [83], for a hyperbolic group G and for any g € G of infinite

order, the following holds:

E(g) ={zed| zg "zt = ¢g*" for some n € N}

and

E(g) = {x € G| zg*z! = ¢ for some k, € Z\{0} }.
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Also we need the following definitions:

E (g9) ={xeq| zg"z ™t = ¢~ for some n € N},

Et(9) ={zx e G |zg"x" = g" for some n € N}.

Note that the equivalence of the two descriptions of F(g) given above, follows from Lemma B.

Since, as it is well-known, in every torsion-free hyperbolic group G each elementary subgroup
is cyclic, it follows that for all ¢ € G\{1} , the subgroup E(g) is of the form {go), where g is a
power of go and E(go) = {go)-

For any U € X*, we denote by F(U) the group E(g), where g € G and U =¢ g. Similarly, we
define E*(U). For V € X*, we say that V € E(U), if forsome h € G,V =g hand h € E(U).
Definition 2.1 (The root elements). If G = (X) is a torsion-free hyperbolic group, then for a
word U € X* we say that U represents a root element in G, if U =¢ go and E(go) = {go)-
Correspondingly, if F(go) = {go), then gy is called root element.

If for some g € G, E(g) = {go), then g is called a root of g. (Note that each element g € G\{1}

has two different roots, go and g, L)y

Lemma 10 (See Lemma 2.1 in [53]). Let G = (X ) be a §-hyperbolic group, X be symmetric, and
let U,V € X* be geodesic words with respect to I'(G, X). Let A = 1 and ¢ > 0 be constants
such that U* and V* are (X, ¢)-quasi-geodesic words w.r.t. T'(G,X) for all k € 7. (According
to Lemma B8, such (\,c) always exist.) Let T\, To € X* be arbitrary elements in G. Denote
L = max{|T1|,|T2|}. Then, there exists a computable function f : N> — N independent of G

such that for any integer m satisfying the inequality
m = f(IX],6,A, ¢, [V]),

either

U]l
L=
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or the equation
U™y =g V"
implies that T\UT{, Ty *UTy € E(V). Moreover, if U =g V, then Ty, Ty € E(U)(= E(V)).

More precisely, Ty, Th € ET(U) forn > 0and Ty, To € E~(U) for n < 0.

For the purpose of completeness we present a proof of Lemma [0 in Appendix.
Also, for the reason of convenience, for the constants mentioned in Lemma [0 we introduce the

following notations

_ _ vl
v=ovU) = 12\ (2.11)
and, assuming that the values of | X|, J, A, ¢, | V| are already known, we denote
M = MU, V) = f(IX],6,\¢,[V]). (2.12)

Lemma 11 (See Theorem 2 and Theorem 3 in [21]). Let G = (X)) be a torsion-free 6-hyperbolic
group given with its (X, §)-full-presentation. Then there exists an algorithm such that for any input
U e X* it finds a word V- € X* such that E(U) = (V'), i.e. there exists an algorithm computing

roots of the elements of G.

Corollary 5. There exists an algorithm which for any input hyperbolic group G = (X | R) given
by a finite presentation and for any input word U € X ™ finds V € X™* such that V represents a root

element of U in G.

Proof. The set of finite group presentations for hyperbolic groups is recursively enumerable (Pa-
pasoglu [62]) and there is an algorithm which finds a thinness constant § for any input finitely
presented hyperbolic group G = (X | R) (see, for example, [22]) and moreover, with respect to
this constant one can find the (X, ¢)-full-presentation of G. Combination of these observations with

Lemma [ implies Corollary B. O
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2.3 HNN-extensions of (hyperbolic) groups

Let G = (X | R) is a finitely generated group and A, B < G are some isomorphic subgroups of
G, and ¢ : A — B is a group isomorphism between A and B. Then the HNN-extension of G with
respect to ¢ : A — B is defined as HG = (X U {t} | R,t lat = ¢(a) Ya € A). Note that in this
text, since mostly from the context it will be clear what is ¢ , for the HNN-extension Hf we will
use the notation H' = H = (G, t | t"' At = B).

We are mostly interested in the case when A = {(a), B = (b) are infinite cyclic groups. For this
case by the notation H = (G, t | t“'at = b) we denote the HNN-extension HS, where ¢ : A — B
is induced by the map ¢ : a — b.

Let us consider the product

u = gottgit? ...t gy, (2.13)

where for 0 < i < n, g; € G and for 1 < j < n, ¢; € {#1}. We say that this decomposition
corresponds to the sequence (go, t, 1,1, ..., t", g, ) and we say that a decomposition is a cyclic
shift of (Z13) if it corresponds to a cyclic shift of the sequence (¢!, g1,t2, ..., t“*, gngo)-

Also the decomposition from (Z13) is said to be t-reduced if for 0 < ¢ < n, we have g; € G
and no subproduct of the form ¢t ~'at, a € A or of the form tbt~!, b € B, appears in (ZI3). And it
is said to be cyclically t-reduced if all cyclic shifts of the product (Z13) are t-reduced.

The word
w = uptTut? .. . t"u, € (X U {t}H)*

is called reduced word with respect to the HNN-extension H, if u; € X* for 0 < i < n and the
corresponding sequence (ug, t!, ..., t, uy) is t-reduced. Analogously, w is said to be cyclically
reduced with respect to the HNN-extension H if all cyclic shifts of (¢*,uy ..., up—1,t, uyug) are

t-reduced. Also we define 6 as
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and for h € H, define
O(h) = min{f(w) |we (X U {t})*,w =g h}.

An element u € H(f is said to be cyclically t-reduced if its t-reduced decomposition is in
fact cyclically ¢t-reduced. Again, this is a well-defined definition. Also every element u € Hg is

conjugate to a cyclically ¢-reduced element v’ which we call ¢-cyclic-reduction of u. See [40].

The next lemma is a very well-known and in literature sometimes is called Britton’s Lemma.
Lemma 12 (Britton’s Lemma). Let w € (X U {t})* be a reduced word with respect to the HNN-

extension H = (Gt | t 1At = B) and (w) > 0, then w #py 1.

Then next lemma is a well-known fact as well and in literature is usually called Collins’ Lemma.

See, for example, [477, 5]

Lemma 13 (Collins’ Lemma). Let
w = ugt™ut® ... uyt*"

and

v = vgtﬁovltﬁl .. .vmtﬁm

be cyclically reduced words with respect to the HNN-extension H such that u;,v; € X* and oy, B; €

Z. If uw and v are conjugate in HG = (Gt | t"1 At = B), then one of the following holds:
e u, v are words in X* which are conjugate in G,

* There is a finite chain of words in G

/ ! ! /
U = W, Wy, W1, Wy, W2,y -y Wi, Wk, Wi 1 =V

such that w; = gzbil(wg), as group elements, w,, w; represent elements from A U B, and for

. _ 3 . . / . .
eachi =0,...,k, w; is conjugate to w;__, in G,
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* O(u),0(v) > 0 and p = q, and u is conjugate in H to some cyclic shift of v by an element

from A U B.

Corollary 6. Let H = (X U{t} | R,t tat = ¢(a) Ya € A) be an HNN-extension of G = (X | R),
and suppose g1 € G is not a proper power of any element in G. Then the image of g1 in H (which
we again denote by g1) is a proper power in H if and only if there exists k = 2 and g2 € G such

that g1 ~ conj glzC in H.

Proof. Let for some u € X*, u = g1, and w € (X U {t})* such that v =g w* for some k > 2.
Now let w’ € (X U {t})* be a t-cyclic reduction of w. Then for some T € (X U {t})*, we have
w = Tw'T~!. Also note that for any k > 2, (w)" is also t-cyclically reduced. Therefore, by
Lemma 3, it must be that w’ € X*, namely w’ represents an element in H which is an image of an
element from G.

The inverse statement of the corollary is obvious. O

Lemma 14. Let H = (G U {t} | t"'at = b) be an HNN-extension of G = (X ) where a,b € G are
elements of infinite order which are not proper powers. Then, for any go € G, if go is not a proper

power in G, then its image in H is also not a proper power.

Proof. Assume that for some u € X*, u =g go and also assume that there exists a word w €
(X V) {t})* such that u =g w” for some k > 2. Then, by Corollary B, there exists a word
Te(Xu {t})>X< and a word w’ € X* such that u =g T~ (w')*T. If T does not contain %!, then
clearly we get a contradiction to the fact that u is not a proper power in G. Therefore, it must be

tT1. Assume that w’ and T are chosen

that 6(7") > 1, i.e. its t-reduced decompositions contains
such that ||| is minimal for all possible such triples (u, w’, T).

Since Tu T~ (w')* =g 1, the word Tu~'T~!(w’)¥ must contain a subword of the form
tevt—¢, where for some € Z, v =¢ a' ife = —1 or v =¢ V' if e = 1. Moreover, v is of the form

1

viuT vy ! where v; € X* is a suffix of 7'. But this contradicts the minimality assumption of 7".

O]

Lemma 15. Let H = (G u {t} | t lugt = wvo) be an HNN-extension of G = {(X), where
ug,vo € X*. Suppose that u,v € X such that u ~conj v in H. Then, either u ~con; v in G or u

and v commensurate with at least one of ug and vy in G.
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Proof. 1t follows immediately from Theorem 2 in [&7]. ]

The following theorem can be found in [24] (it can be also regarded as a corollary from the

combination theorem of Bestvina and Feighn, [T3]).

Theorem 8. Let G be a hyperbolic group with isomorphic infinite elementary subgroups A and B,
and let ¢ be an isomorphism from A to B. Then the HNN-extension H = (G,t | tlat = ¢(a),a €
A) of G with associated subgroups A and B is hyperbolic if and only if the following two conditions
hold:

1. either A or B is a maximal elementary subgroup of G,
2. forall g € G the subgroup gAg—' N B is finite.

Remark 4. In this work we need Theorem B in case when G is a torsion-free hyperbolic group.
Note that in case G is a torsion free hyperbolic group, the subgroups A and B, being maximal
elementary subgroups, are cyclic. Therefore, in this case, the second condition in the statement of

Theorem B can be replaced with this: for all g € G, the subgroup gAg~! N B is trivial.

2.4 Lacunary hyperbolic groups

Let G = (X), |X| < . Letd = (d;)2, be an unbounded sequence of positive con-
stants, called scaling constants, and let £ = (z;);2; be any fixed sequence of points from
I'(G, X), called observation points. Then the ultralimit of the sequence of spaces with basepoints
(I'(G, X), d/d;, z;) with respect to some non-principal ultrafilter w over N is called the asymptotic
cone of G = (X with respect to d and w, where d is the word metric over I'(G, X). It is denoted
by Con®(G, d). The term asymptotic cone was first introduced by Gromov in [27]. Since, in this
paper, we do not work with asymptotic cones, for more detailed definitions we refer to [277, 57].

As it was discovered by Gromov (see, for example, [2Y, 28]) many basic algebraic properties
of groups can be translated into geometric or topological ones via studying asymptotic cones of
Cayley graphs of groups. For example, hyperbolicity of a group is equivalent to the fact that all the
asymptotic cones of the group are R-trees. Moreover, as it is shown by Kapovich and Kleiner (see

[87]), if for a finitely presented group at least one of the asymptotic cones is an R-tree, then the

group is hyperbolic. However, if the group is not finitely presentable, then this statement is not true

32



anymore. In fact, lacunary hyperbolic groups are defined to be the groups which have at least one

asymptotic cone that is an R-tree, see [57].

Definition 2.2 (Lacunary hyperbolic groups). A finitely presented group G is lacunary hyperbolic

if for some unbounded sequence d = (d;) ; of scaling constants, Con® (G, d) is an R-tree.

Let o : G — G’ be a homomorphism, G = (X ). As it is mentioned in the introductory Section
M, the radius of « is the maximal radius of a ball in the Cayley graph I'(G, X) centered at 1 such
that all elements from that ball map to non-trivial elements in G’ except for 1¢.

The next lemma is essentially Theorem 1.1 from [57].

Lemma 16 (Theorem 1.1, [57]). A finitely generated group G is lacunary hyperbolic if and only if G

is the direct limit of a sequence of ;-hyperbolic groups G; = (X;) (X, is finite) and epimorphisms
GG E . (2.14)

where o;(X;) = X;y1, and the hyperbolicity constant 6; of G; (relative to X;) is little o of the

radius of ;.

Remark 5. Note that in Part (3) of Lemma I8, for almost all indices i, | X;| = | X;+1|, therefore we
can identify X; with X;;1 by z = a;(z) for z € X; and regard «; as the identity map from X; to

Xit1.

Corollary 7. A finitely generated group G is lacunary hyperbolic if and only if either G is a hyper-
bolic group or G is the direct limit of a sequence of 0.-hyperbolic groups H; = (X;) (X is finite)

and epimorphisms
B
mim 2 (2.15)

where B;(X;) = X;11, such that

1. for all i, H; is a §,-hyperbolic group, where (0})7°, is an increasing sequence of positive

integers,

2. the sequence (r;);° is strictly increasing, where r; is the radius for the epimorphism [3; :

H; — H; 4,
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84 . . .
3. the sequence (+):, is strictly decreasing and converges to 0.
1

Proof. First of all, notice that for any fixed ¢ and X the number of J-hyperbolic groups generated
by X is finite. Therefore, there exists an increasing subsequence (ij);?ozl such that for 5 < k,
ik

d;; < 0i,, where we borrow some of the notations from Lemma [8. Now define H. ]’ = Gj, and

ﬁ; = a;; ©...0q;,,,. Then, the sequence Hj —:1» H) —é» ... satisfies the conditions of Lemma I8,
because the radius of a composition of epimorphims is equal to the minimal of the radiuses of the
epimorphisms. Thus we can assume that the condition of (1) takes place. To obtain the properties
of parts (2) and (3), one can simply use the same ‘infiltration’ trick. Here, one needs just to notice

that the set of radiuses of the epimorphisms is an unbounded set of bounded integers if G is not

hyperbolic (this easily follows from the fact that hyperbolic groups are Hopfian).

2.4.1 The word problem in lacunary hyperbolic groups

Let G = (X) be a finitely presented group given as an inductive limit of the chain of epimor-

phims
S a, S (2.16)

where «; : G; — G;41 is the induced epimorphism from the identity map id : X — X, and for
i€ N, G; = (X | R;) is finitely presented.

Recall that G has a graded recursive presentation with respect to (Z-I8) if the function i — R;
is computable. In general, if G has a graded recursive presentation with respect to some sequence
of type (Z-IA) then we say that G has a graded recursive presentation. If, in addition, all the groups
G, © € N, are hyperbolic, then we say that the presentation is a graded recursive presentation by

hyperbolic groups.
Proposition 2. If the limit group G is lacunary hyperbolic and G; is hyperbolic for all i € N, then

either G is finitely presented, hence hyperbolic, or

limsup r; = o and lim sup 9; = o0,
1—00 1—>00
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where r; is the radius of o : G; - G;41 and §; is a hyperbolicity constant for G;.

Proof. Indeed, if G is finitely presented, then starting from some i € N, for all j > 4, the normal
closure of R;j41 in G; coincides with the normal closure of R;.1 in G;. Therefore, G coincides
with G 11, hence is hyperbolic.

Now let us assume that G is lacunary hyperbolic, but it is not hyperbolic. Then, since G is not
finitely presented for each N > 0 there is n € N and R € R,, such that there is no U € X* such
that |U|| < N and R =¢,,_, U. Therefore, limsup,_,,, 7; = o0 and by the statement (3) of Lemma

6, also lim sup;_, ., d; = o0. O]

In particular, from Lemma [ it follows that for infinitely presented lacunary hyperbolic groups

all supradius functions are unbounded.

For the proof of the next theorem we need the following definition from [6], which is a slight

generalization of the standard notion of the Dehn’s presentation.

Definition 2.3 (See Definition 1 in [f]). For 5 < a < 1, the group G = (X | R) given with a finite

1
2
presentation, where R is symmetric, is said to be a-Dehn presented, if for any freely cyclically
reduced word W € X* representing the trivial element of G, for some cyclic shift W’ of W, W’

contains a subword u, such that u is a prefix of some word R € R and |u| > «|R)|.

It is a well-known fact that hyperbolic groups admit c-Dehn presentations for all % <a<l
See, for example, [28, 8, B].
It was shown by Arzhantseva in [B] that the property that a finite presentation of a group is an

a-Dehn presentation for some % < a < 1 can be detected algorithmically as it is stated below.

Theorem 9 (See [B]). There exists an algorithm determining whether or not a finite presentation of

a group is an a-Dehn presentation for some % <a<ll

Note that if G = (X | R) = (X | R') and R < R/, then the presentation G = (X | R) is
a a-Dehn presentation implies that the presentation (X | R’) is a a-Dehn presentation too. Also,
as we already mentioned in preliminaries, if G = (X | R) is a finite presentation for a hyperbolic

group, then there is an algorithm which constructs a Dehn presentation for G.
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Theorem 10. Let G be an inductive limit of hyperbolic groups connected by epimorphisms. Then
G has decidable word problem if and only if it is either hyperbolic or it has a graded recursive

presentation by hyperbolic groups with strictly increasing corresponding radiuses.

Proof. First, let us show that if G has a decidable word problem, then G possesses the mentioned
properties.

Indeed, let G = (X), | X| < c0. Forn € N, let us define S,, = {W € X* | W =5 1,|W] <
n}. Since the word problem in G is decidable, we get that the sets Sy, So, . .. are algorithmically
constructible - one just needs to check for each W e X*, |[IW| < n, if W =5 1 or not, in order to
construct S,,.

We are going to define a sequence S;, < S), & ... such that each S}, is the minimal set
containing the set S, and the group G; := (X | S;LZ> is hyperbolic. In particular, we get n; <
ne < ...

Suppose that the set 87’” D §,, is already constructed. Let j be the minimal index such that
Sy, & Sj.- Then, define n;j11 = jand S, 2 Sy, ., as the minimal set such that the presentation

(X | 8}, ) is an a-Dehn presentation for 2 < a < 1. The existence of such Sy, follows from

i+1
the basic properties of hyperbolicity and the assumption that G is an inductive limit of hyperbolic
groups. The set S{lH , can be found algorithmically because of Theorem 8.

Now, clearly, G is a direct limit of G i Gs ..., where o; : G; — G,y is the induced

homomorphism of the identity map id : X — X. On the other hand, since S,,, € S, & S c

n; + SMit1
S’

i WE get that the radius r; of «; satisfies n; < r; < n;11. In particular, ry <79 < ....

Thus the first part of the theorem is proved.

Now assume that G is the inductive limit of
Gy Gy —> ..., 2.17)

where for i € N, the groups G; = (X | R;) are hyperbolic groups, the corresponding sequence on
radiuses in increasing, and G = (X | U®|R;) be a graded recursive presentation. Then, clearly,
forany W e X*, W =5 1if and only if W =g, 1. Therefore, since the groups G'1, Go, . .. have

decidable word problem, we get that G had decidable word problem as well.
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Thus the theorem is proved. O

Remark 6. Note that the proof of Theorem [0 does not give any idea about complexity of the
word problem in lacunary hyperbolic groups. Hence we need to obtain more detailed structure of
presentations of classes of lacunary hyperbolic groups in order to describe efficient word problem
solving algorithms on them. Description of subclasses of LHG with effective word (and conjugacy)

problems is one of the primary goals in the next sections.

Corollary 8. A lacunary hyperbolic group has a decidable word problem if and only if either G is
a hyperbolic group or G is the direct limit of a sequence of 6;-hyperbolic groups G; = (X;) (X is

finite) and epimorphisms

al a2

Gl—»GQ—»..., (218)

where o;(X;) = X1, such that

1. for all i, G; is a 0;-hyperbolic group, where (6;)°, is an increasing sequence of positive

integers,

2. the sequence (r;)° is strictly increasing, where r; is the radius for the epimorphism o :

Gi — Git,
3. the sequence (%)(f:l is strictly decreasing and converges to 0,

4. the groups G; have presentation G; = (X | R;) such that the map i — R; is computable (i.e.

the presentation G = (X | UR;) is a graded recursive presentation by hyperbolic groups).

Proof. The proof is similar to the proof of Corollary I when combined with Theorem [. O

2.5 Small cancellation conditions

In this section we are going to recall some small cancellation concepts for hyperbolic groups
introduced in [59] and then describe a class of special words which possess small cancellation
conditions.

Let G = (X) be a finitely generated group, and let R be a symmetric set of words from X*. A

subword U of a word R € R is called an e-piece for € > 0 if there exists a word R’ € R such that
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1. R=UV,R =U'V'forsome V,U', V' € X*;
2. U =¢YUZforsomeY, Z € X* where |[Y|,|Z] <€
3. YRY ! #¢ R

It is said that the system R satisfies the C(), ¢, €, i, p)-condition for some A > 1, ¢ = 0,e = 0,

w>0,p>0,if

(1.1) |R|| = pforany R e R;

(1.2) any word R € R is (), ¢)-quasi-geodesic;

(1.3) for any e-piece of any word R € R, the inequalities |U |, |U’|| < p|/R| hold.
Now suppose that for a word ? € R we have

2.1) R=UVU'V' forsome U,V,U’, V' € X*;

(2.2) U' = YU*'Z in the group G for some words Y, Z € X* where |V

Z| <€

s

then the word U is called an €'-piece of the word R. If R satisfies the C'(\, ¢, €, 11, p)-condition and,
in addition, for all R € R, the above described decomposition of R implies |U|, |U’|| < w| R| then,

like in [53], we say that R satisfies the C’(\, ¢, €, u, p)-condition .

2.5.1 Auxiliary parameters, lowest parameter principle (LPP) and the main conventions

In the context of the definition of the small cancellation condition C'(\, ¢, €, i1, p) the parameters
d, A, ¢, €, u, p were introduced. In this paper, whenever we mention the small-cancellation condition
C(\ ¢, €, 1, p), we assume that the parameters 6, \, ¢, €, , p satisfy some relations. More specif-
ically, € depends on A and c; p depends on A, c and €; and p depends on A, ¢, e and p (see, for
instance, Lemma [ for an example where the condition C'(\, ¢, €, y, p) is involved).

Based on a similar concept introduced in [53] (see §15 in [63]), we introduce the notation >
between parameters defined as follows: if aq, g, ... are some parameters, then oy > as > ...
means that the value of «; is being chosen after the parameters a,...q;—1 were chosen. In
other words, the parameters oy, ...a;_;1 are independent of «;, but a; depends on the values of

ai,...,;—1. If a and § are some parameters such that & > [ then we say that « is a higher
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parameter (correspondingly, /3 is a lower parameter), alternatively, we say that « has higher priority

with respect to 8 and (8 has lower priority with respect to a.

Convention 1. Throughout this text we will deal with statements involving parameters A, ¢, €, i, p
and their indexed versions \;, ¢;, €;, i;, p; for ¢ € N. For all these parameters we assume that
A > ¢ > € > u > p. Analogously, A\; > ¢; > €; > p; > p;. Also we assume that parameters with
lower indexes are higher with respect to >.

We also will deal with parameters d;, d;. For them we assume p; > d; and 0] > A1, pi—1 > 0} >

N fori=23,....

Convention 2. Throughout this text, for parameters &, \, ¢, e, ', p and their indexed versions
iy Ciy €4y [y ! pi when we say that some parameter, say c, is large enough we mean that there
is a finite number of parameters of higher priority, say 3i,..., 8%, and a computable function
foaB,. B - N* — N such that o can be chosen to have any value greater than f(B1y--, Br)-
For example, if for p; “large enough” means p; > \;u;, then we think of ¢ to be an arbitrary index

from N.

Definition 2.4 (The standard parameters). The parameters J, A, ¢, €, i, p and the indexed parameters

i, 5;, i, Cis €54 Wiy Pi» Which are intensively used in this paper, we call the standard parameters.

Definition 2.5 (Sparse enough standard parameters). We will say that the sequence of standard
parameters (6§, iy Ciy €iy [y Piy 0i)72 1S sparse enough if for each parameter o;,, where ig is the

index of the parameter, we assume that

Gy > fioitsein (Qirs - -5 iy ), (2.19)

where o, ..., q;, are parameters of higher priority with indices ¢1,...,4, ¢ = —1if o, €
{p1, 2, ...} and ¢ = 1 otherwise, and f;; i, ;. is a computable function such that f;; ;, _; =

fio+tir+t,....in+t forallt = 0, and the map ig — fi4,.....;, 1S computable as well.

Convention 3 (Lowest parameter principle (LPP)). In order many results of the current paper to

hold (for example, Theorems [4, B, etc.), we require from the standard parameters to be sparse
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enough. Therefore, whenever we mention some relation of the form (Z19) involving the standard
parameters, for example, € > Ad+core; > u;p; + c (the last one is equivalent to ,ul._l > (e;—c)™h),

then we say that this relation holds by lower parameter principle — simply, by LPP.

2.5.2  Words with small cancellation conditions

Hereafter, if it is not stated otherwise, we assume that G = (X') is a non-trivial, non-elementary,
torsion free d-hyperbolic group for some § > 0.

Let us consider a set R consisting of words of the form
R; = z,U™ VU™V U™ L VU 4 =1,2,...k (2.20)

and their cyclic shifts, where k¥ € N, U,V z1,...,2z € X* are geodesic words, U,V #¢g
1, and mjy € Nforl < i < k, 1 < t < j;. Denote Z = {z,...,2}, L =
max{ U], V], |z, ., |z}

Let ), € N be such that U™ is (), &)-quasi-geodesic in I'(G, X) for all n € Z. Note that the
existence of \ and ¢ follows from (8). Moreover, given the d-hyperbolic group G = (X) and the
word U, one can find such a pair (), &) algorithmically.

Now let m = min{m;; | 1 < i < kand 1 < ¢ < j;}, m; = max{m;; | 1 <t < j;} for

1 < ¢ < k. Then the following holds.

Lemma 17 (Compare with Lemma 2.3 in [53]). For the set of words R suppose that V ¢ E(U),
zi ¢ E(U) for 1 < i < k. Then there exist constants A\ = ¢ = K € N, computably depending
on G, U, V and Z, such that the words of the system (Z20) are (A, ¢)-quasi-geodesic in T'(G, X),

provided that m > K.

Proof. We will show that ), ¢ and K can be effectively computed by the following formulas

A=c=K =K(24\,(2M +2)L) (2.21)
where K( ) is defined as in Lemma B, L = max{|U|, V|, ||z1], - -, |l2%]} and

M = max{245\ +¢, MUV | Vi€ {Vﬂ,z;_rlv-~-72kil}}
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where M() is given by the formula (ZZ12).

First, we will show that all the paths in I'(G, X') with labels of the form
WU VLU W, (2.22)

where W37 and W, are subwords of some words from {Uil, VEL zf—Ll, - ,z,;—'rl}, Vi e
{Vil, zf—rl, e z,:—rl} and b € {0, +1}, are (245\, (2M + 2)L> -quasi-geodesic.

For that let us fix an arbitrary such path ¢, with lab(q) = WUV U*Ws,. Note that since
all the subwords of lab(q) are also of the form (ZZ22), to show that ¢ is (245\, (2M + 2)L) -quasi-

geodesic, it is enough to show that
(WU VPU2 W, | < 24N WU VLU Wa| + (2M + 2) L.

To this end we will separately consider three cases:
1. when b # 0 and max{ay,as} < M;

2. when b # 0 and max{ay,as} > M; and

3. when b = 0.

Case 1. If b # 0 and max{a1,az} < M, then

[WAUVPUWa| <|Will + a1 U] + [Vi] + a2| U] + [We|

<IWal + Il + W] + @M - DU < (2M + 2)L.

Case 2. If b # 0 and max{ay,as} > M, then, by Lemma [T, either | VlbU@] > vmax{ay, az}
or V; € E(U), where v = |U]/12).

Since, by our assumptions, V; ¢ FE(U), we get that [U*1 VU | > v max{ay, as}. Therefore,

(WAUSVLURW,| = UM VUS| — (Wi — Wy
(2.23)
> vmax{ay,as} — 2L.
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On the other hand,

[WAUVPURWa| < Wil + a1 U] + [Vi] + a2| U] + W2

< 2max{ay, a2}|U|| + 3L
_ 2<\W1Ua1V1bUa2W2\ +2L

by (I3), <

>U+3L
v

< 2NWLUN VU2 Wy + (48X + 1)L

< 24NWLUM VLU Wy 4 (2M + 2)L.
Case 3. If b = 0, then since U2 is a (X, ¢)-quasi-geodesic word, we get

[WAUSVPUWs|| = [WAU 2 Wa | < [UH2] + Wi + W2
SMNUDT®2| 4 ¢+ 2L < AW U T2 Wy| + 2L) + ¢ + 2L

< 2AA\|WA U2 Wy| + (2M + 2)L.

Formula (ZZT7) implies that 2(A 4+ 1)L + & < (2M + 2)L, hence the last inequality is true.

Now, let p be a path in I'(G, X') whose label corresponds to a word from R. Since K < m, all
the subpaths of p of the lengths bounded from above by K are of the form (Z-22). Therefore, p is
K-local (245\, (2M + 2)L> -quasi-geodesic. Therefore, taken into account the formula for K from
(CZT) and the inequality m > K, by Lemma B, p is (K K )-quasi-geodesic.

O

Assume that in the system (Z20), forall 1 < 4,7 < kand1 <t < j;, 1 <t' < jy,myp # myp
if (4,t) # (¢, t).

Recall that in Lemma [ we required
V¢ EWU)and z ¢ E(U) forl <i<k. (2.24)

Let us introduce the following notations: For a given ¢ > 0, ¢¢ = € + 2L, ¢ = € +

i(ZR,\ﬁ + 182 + %) for 1 < ¢ < 5, where R) . is defined as in Lemma [ and, as before,
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L = max{|U|,|V|,|lz1],-- -, 2]}. Let K be defined by the formula (ZZI) and A = ¢ = K.

Now, with respect to the given constants € = 0, u > 0, p > 0 assume that

|R| = p, forall R e R, (2.25)

m> K, (2.26)

hence, by Lemma [[4, the words from R are (), ¢)-quasi-geodesics in I'(G, X). Next, we require

the following.

pl| Bil| = 6L(m; + 1) (2.27)

and

m:= — (2.28)

where v = v(U) is defined by formula (Z-TT).

Lemma 18. Using the setting of the previous lemma and assuming that the above described condi-
tions take place, let us consider the system of words R given by (20). Let A\, c be defined by the
formulas (ZZZ01). Then, if for the given constants € = 0, u > 0, p > 0, the conditions (23), (I28),
(X2 and (I2R) are satisfied, then the system R satisfies the C'(\, ¢, €, 11, p)-condition.

Moreover, if two words R1, Ry € R are not equal up to cyclic shifts, then there are no sub-
words Uy and Uy of Ry and Ro, respectively, such that |Uy| > p||Ry| and for some T1, T € X*,
IT2], [ T2 < e and

T, YU Ty =g Us.

Proof. First of all, let us assume that the constants € = 0, u > 0, p > 0 are already given.

Assume by contradiction that there exist two different words from R, W; and W5, which have
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common e-pieces. Suppose that W} and Ws are cyclic shifts of the words
U™ ygme2y s L VU™
and
2y U™ VU™ 2 VU™ s VU

or of their inverses, for some 1 < 7,7 < k.

Existence of a common e-piece for the words W; and Wy implies that there is a rectangle
ABCD in T'(G, X) such that the labels of AD and BC are prefixes of W and W5 with length at
least p||W7 | and pl|Wa|, respectively, and AB, C'D are geodesics with length at most €.

Let us call vertices on AD and BC' phase vertices if they are either origin or endpoint of a
subpath with label U*1, VL, 2! or 2.

Note that after making AB and C'D longer by at most 2y, we can ensure that A, B, C'and D are
phase vertices. Hereafter, let us assume that the length of AB and C'D are bounded by € + 2L = ¢
and the vertices A, B, C and D are phase vertices.

We will call a subpath of AD or BC special if it is labeled by V/, z; or z;. If a special segment
on AD or BC is between other special segments then we call this special segment inner, otherwise,
we call it boundary special segment. Note that for any point O € AD (or O € BC), there is a phase
vertex O" € AD (or, correspondingly, O’ € BC), such that |[0,0]| < L/2.

Before proceeding further, let us state and prove the following auxiliary claims.

Claim 1. For the rectangle ABCD let us consider any inner special segment P; P, on one
of the sides AD or BC. For concreteness let us assume that P; P, belongs to AD. Then
for any phase vertex Q1 € BC, if d(P;,Q1) < es, then either lab(P1Q1) € E(g) in G or
lab(P,@1) € E(g) in G, where by lab(P;Q1) and lab(P2(Q)1) we mean the labels of any paths

joining P to @1 and P; to D1, respectively.

Proof. Let P3P, and Ps Py be the closest to Py P special segments on AD such that Py P; is be-

tween P3Py and Ps Py (their existence follows from the assumption that P P> is an inner special
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segment). Let Q)1 € BC be a fixed phase vertex such that d( Py, Q1) < €3, and let Q4 be the closest

to Py phase vertex on B(Q). See Figure 2.

B Q. R R Q, Rs Re Qs C
A P, P, P, P> S5 Ps Ps D
Figure 2.2

Since d(P1,Q1),d(A, B) < e3, by Corollary B, we get dist(Py, BQ1) < e3 + 2Ry, + 20.
Therefore, d(Py, Q4) < €3 + 2Ry + 20 + % = ¢4.

There are two possibilities which we are going to discuss separately: either lab(Q4Q1) is a
power of U or (Q4()1 contains a special segment.

In case lab(Q4Q1) is a power of U, since lab(PyP;) = U for & > m > M and
d(Pyg,Q4),d(P1,Q1) < €4 < vm (the last inequality follows from (ZZX)), by Lemma [0, the

equality

lab(P4Q4)lab(Q4Q1)lab(QlPl)lab(P1P4) =G 1

implies that lab(P; Q1) € E(U). Thus we are done with this case.

Now let us consider the case when ()4()1 contains a special segment. Let ()5 be a phase vertex
on Q1 C closest to P;. By Corollary B, we again get d(Ps, Q5) < e4. Again, if lab(Q1Q5) is a
power of U, then, similarly to the previous case, by Lemma [0, lab(P2Q1) € E(g) in G. Thus we
are left only with the case when both 4Q)1 and ()1 ()5 contain special segments. Let us consider
this case in more details.

Let R1Ro and R3 R, be the closest to ()1 special segments on (Q4Q)1 and ()1Q)5, respectively.
See Figure I72. Since lab(R2R3) has a form U2, where |£3| > m, at least one of lab(R2@Q1) and
lab(Q1R3) is of the form U, where |£3] > m/2 > M. Without loss of generality, assume that

lab(QR3) = U for |¢3] = m/2. Then, let S3 be a phase vertex on Py Ps closest to R3. Then, by
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Corollary B, d(R3, Q3) < €5. Therefore, since by (Z2Z8), vm > 2¢5, by Lemma [0, the equality

lab(Png)lab(Qle)lab(Rgsg)lab(Sng) =G 1

implies that lab(Q1P,) € E(U).

Claim 2. If A1 Ay, A3A4 and A5 Ag are three consecutive inner special segments belonging either

to AD orto BC, then A3A, is a special segment on AD n BC.

Proof. Firstly, without loss of generality let us assume that A; As, A3 A4 and A5 Ag belong to AD.
Let B3 be the closest to A3 phase vertex on BC, Bs be the closest to A, phase vertex on BB3 and

Bs be the closest to A phase vertex on B3C'. See Figure 3.

B B, G G B, Cs G Bs c
A ""A1 A> D, As; A, Ds; As A-e-l D
Figure 2.3

We will consider the case when B3 By contains special segment(s) and the case when it does not
contain any special segment separetely.

First let us consider the case when Bs Bs contains special segment(s). Let CyCs be the closest
to B3 special segment on By B3 and C3C) be the closest to By special segment on B3 Bs5. In case
B> B3 does not contain any special segments, we take Co = Bs.

Correspondingly, let D2 be the closest to C', phase vertex on A2 A3 and D3 be the closest to
(5 phase vertex on A4 As. Then, by Corollary B, d(As, B3) < €1, d(As, B2),d(As, Bs) < €2, and
hence d(Cs, D2),d(C3, D3) < e3. Therefore, by Claim 1, one word from each pair (lab(C1D2),
lab(C2D2)); (lab(A3Bs), lab(A4, B3)) and (lab(Ds, C3), lab(Ds, Cy)) belongs to E(U).

Note that if [ab(D3C4) € E(U), then it cannot be so that lab(A4Bs) € E(U), because otherwise
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it would imply that lab(C3Cy) € E(U) as well, which is not true by our assumptions (see the
condition (ZZ24)). Therefore, in case lab(D3Cy) € E(U), it must be that lab(A3B3) € E(U).
But, since lab(A3C3),lab(A4Cy) € E(U) in that case, by condition (ZZ24), it would mean that
d(As,C3) = d(A4,Cy) = 0 or, in other words, A3 A4 coincides with C5C}.

Now, if lab(D3C3) € E(U), then lab(A4B3) € E(U). Therefore, because of the condition
(23), lab(C2 D) cannot belong to E(U). Finally, in case Co = Bz, by Claim 1, this would
mean that lab(A;By) € E(U), which is impossible because of the condition (Z2d). Otherwise,
again by Claim 1, lab(C1D3) € E(g) in G. Therefore, by the condition (IZ24)), since in this case
lab(A3Ch) € E(U) and lab(A4Cy) € E(U), we would get A3 = Cy and Ay = Cs.

Now let us turn to the case when B3 By does not contain a special segment. In this case, by
applying Lemma [ to the boundary label of the rectangle A4 B3BsAs we get that lab(A4Bs) and
lab( A5 Bs) belong to E(U). Then, by repeating previous arguments, we obtain that lab(D2C1) €
E(U) and consequently Az = C and Ay = C5. Thus Claim 2 is proved. O

Inequality (ZZX1) assures us that on AD one can find six consecutive special segments A; As,

A3A4, A5A6, A7A8, A9A10 and A11A12. By Claim 2, A5A6, A7A8 belong to AD n BC. See

Figure 4.
B C
"~ p2 -
. As As A7 As .
-7 P, Teal
A D
Figure 2.4

As it is shown in Figure D74, let us denote the subpaths of AD and BC restricted between Ag
and A7 by p1 and po, respectively. Since AsAg and Ay Ag are consecutive special segments, the
label of p; is a power of U. Now, assuming that p, contains a special segment, just like it was
done in the proof of Claim 2, we can show that that special segment must also belong to p;, which
is impossible since p; does not contain any special segments. Therefore, it must be that po also
does not contain any special segments. In other words, the label of ps is a power of U as well.

This means that the label of the closed path pgpl_1 is also a power of U. But since U represents an
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element g € G of infinite order, this can happen if and only if the label of pgpfl is the empty word,
i.e., when ps coincides with pj.

Now, since forall 1 < ¢ < j;, 1 <t/ < jir, miy # my g if (i,8) # (', 1), the last observation
implies that, in fact, i = ¢’ and W is a cyclic shift of 5. Moreover, we get that either lab(BA) is
a suffix of lab(AAs) or lab(AAs) is a suffix of lab(BA). This means that either lab(AB) is equal
to a prefix of W7 in G or lab(BA) is equal to a prefix of W5 in G but this is impossible, because it

contradicts condition (3) in the definition of e-pieces.

Now it follows from (Z29) and Lemma [ that R satisfies the small cancellation condition

C/(Av C, € [, p)

2.5.3 A special subclass of small cancellation words

Using the already established setting of Subsection 2372, let us define the positive integer m1 1
as the smallest positive integer satisfying all the constraints put on it in Subsection Z37.

Now let us assume that in the set of words R we have that m1 ; is defined as above and for all
1<i<k,mi1=2"tmyq,ji =mi1—landforall 1 <t <j;, miy=mi1+ (t—1).

If all these equations are satisfied, then we denote the system of words R by
R = R(Z, U, V,0,\,c, €, 1, p). (2.29)

where Z is the ordered set {z1 < 2o < ... < zx}.

Note that the set of words R defined this way satisfies all the conditions prescribed for Lemmas
[ and [R. A little bit less obvious among this conditions seems to be condition (ZZX1). Let us show
that condition (Z22Z17) holds as well.

Indeed, the length of each word R; from R(Z LU V0, N ¢, e, p) is not smaller than m; 1 +
(mig+ 1)+ ...+ 2mip — 1) > mzl and m; = 2m; 1 — 1. Therefore, for each 1 < i < k&,
p|Ri| = pm7,. Now we have ul|R;| = pm7, = 12Lm;; = 6L(m; + 1). Note that the last

inequality follows from the property A2.

Thus, by Lemma [ and Lemma IR, the set of words R(Z U V0, M ¢, €, 1, p) satisfies the
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small cancellation condition C’(\, ¢, €, p, p).

Let f : N — N be a linear time computable function. Then for all n € N, define

nR={ReR||R| < f(n)}.

Assuming that Z, U, V., 6, A, ¢, €, i, p are already computed, from the structure of (Z29), it is not
hard to see that the set ,, R can be computed in time bounded from above by Af(n), where A > 0

does not depend on the parameters of ,,/R. Thus we get the following property.

Property 1. , R can be computed in time bounded from above by Af(n), where A is a positive

constant not depending on Z,U,V, 5, \, ¢, €, i1, p.

For the applications, let us introduce the following convention:

R(@7U7 V) 57)‘76767/117 /0) = @ (230)

2.5.4 Planar diagrams over hyperbolic groups and van Kampen’s lemma

Let H = (X | O), where | X| < c0. A map is a finite, planar connected 2-complex. A diagram
A over X is a map whose edges e are labeled by letters lab(e) € X*! such that lab(e)~! =
lab(e™!). The label of a path p = e1...e, in A is, by definition, the word lab(e1) .. .lab(e,). A
diagram over X is called a diagram over the group H = (X | O) if the label of the boundary path
of every cell of A is a cyclic shift of some relator from O.

A van Kampen lemma states that a word W € X™* represents the identity of the group H if and
only if there is a simply connected diagram A over H = (X | O) such that the boundary label
of A is W. Hence, for a given W € X* we call such a A van Kampen’s diagram with label W
over H = (X | O). In this paper we only use simply connected diagrams. Therefore, hereafter by
diagrams we will mean simply connected diagrams.

Note that for any diagram A over H = (X | O), A can be naturally projected into the Cayley
graph I'(H, X) such that all the labels are preserved. Moreover, if we fix arbitrary vertex o1 of A

and arbitrary vertex oo of I'(H, X), then the projection which maps o0 to o is defined uniquely.
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We denote this projection by Projg2(A). Since in the applications of the current paper, we do not
need to specify o and o9, we will simply use the notation Proj(A). This projection allows us to
consider word metric on A, by simply considering the word metric on the projection of A.

Let G be a quotient of H. When considering group G we will partition the defining relators into
two sets. The first set O will consist of all relators (not only defining) of H with a fixed generating

set X. The second set, R, will be some symmetrized set of additional relators. We shall write

G=(X|OUR)=(H|R). 2.31)

Using the terminology of [53] we call the cells of a diagram with boundary labels from O (from
R) 0-cells (R-cells). Diagram is called reduced if it contains minimal number of R-cells among all
diagrams with the same boundary label.

Now consider a simple closed path w = p1qip2ge in a diagram A over G, such that ¢; and ¢
are subpaths of boundary cycles of R-cells IT; and Ily, and |p1 |, [|p2]| < € for a fixed constant e.
Assuming that the subdiagram I'" of A bounded by w has no hole and no R-cell and II; # Ilo,
following Olshanskii, we call I" a e-contiguity (or simply, contiguity) subdiagram of II; and Il,.
The same term will be used if 1I; = Il and I' contains no holes.

In case ¢ instead of being a subpath of Il is a subpath of of a connected path ¢ on 0A, T’
is called outer e-contiguity subdiagram (from II; to dA or to g). The notation (11, T, II) (or
o(111,T, q)) = p1qi1p2g2 will define the partition of the contour w of I'. The above subpaths ¢; and
g2 are called the contiguity arcs while p; and ps are called the side arcs of the contiguity subdiagram
.

Hereafter we will denote by J1I the loop in I'(G, X') with the label equal to the label of II. By
|TI|| we denote the length of the boundary label of a cell II. The ratio ||q;|/|II1] for a contiguity
subdiagram of a cell II; to a cell Il (or to a section q), is called the contiguity degree of II; to Il
via I (or of I1; to ). It is denoted (II;, I', I1) (or (II1,T', ¢)). For a matter of convenience, instead
of the notation (I1y,T", ¢) we will simply use the notation ¢JI if it does not lead to ambiguities.

If for a contiguity subdiagram I' € M, pflqlpgqg_ L= or, g2 belongs to 0A, then g5 is called

outer contiguity arc, and correspondingly q; is called inner contiguity arc. Whenever it is not
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mentioned otherwise, hereafter we will denote the outer arc of I' by ¢r and the inner arc by gr.

Also let us denote p; = pr and py = pf..

2.5.5 Quotients of hyperbolic groups by normal closures of words with small cancellation condi-

tions

Hereafter, if A is a diagram over the quotient G = H/ « R >, then by saying that the boundary
0A of A is a (A, ¢)-quasi-geodesic t-gon, we mean that JA is partitioned into ¢ connected pieces

such that they are (), ¢)-quasi-geodesic in I'(H, X).

Lemma 19 (see Lemma 4.6 in [67] and Lemma 6.6 in [85]). For appropriately chosen parameters
based on the lowest parameter principle with respect to the order \ > ¢ > € > pu > p, if the
presentation G = H/ < R > satisfies the C(\,c, €, u, p)-condition, then for any reduced disk
diagram A over the presentation G = H/ < R » whose boundary is a (), ¢)-quasi-geodesic t-gon
for 1 < t < 12 and which contains an R-cell, there exists an R-cell 11 in A and disjoint outer

e-contiguity subdiagrams 'y, . .., Ty of Il to different sides of the (), ¢)-q.g. t-gon 0A, such that

t

D IALT, Gr,) > 1— 23p. (2.32)
=1

Moreover, the quotient G = H/ « R >» is 4L-hyperbolic, where L = max{|R| | R € R}.

Remark. Note that, in fact, in Lemma I3 some of the subdiagrams I'y,...,I";, say I';, may not
exist, in which case we would call I'; empty contiguity subdiagram and take (II,I'1,¢r,) = O.
The important thing is that, according to Lemma [Y, some of I'y, ..., I'; are not empty, so that the

inequality (Z232) holds.

Lemma 20 (Lemma 7.2, [55]). Let H = (X ) by a non-elementary hyperbolic group. Let G be a
group with a presentation (I31) such that R satisfies the C' (), ¢, €, u, p)-condition for appropri-
ately chosen parameters X\ > ¢ > € > u > p. Then G is non-cyclic, each R € R represents an
element of infinite order in H, and a word W € X™ has a finite order in G if and only if W is

conjugate in G to an element having finite order in H.
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Remark 7. Note that if H is a non-elementary torsion-free hyperbolic group, then Lemma

implies that (G is also a non-elementary torsion-free hyperbolic group.

Definition 2.6 (Essential cells and contiguity subdiagrams). Let 1I be an R-cell in a reduced van

Kampen diagram A with (), ¢)-quasi-geodesic ¢-gon boundary for 1 < ¢ < 12, and let II be

connected to the sides of the t-gon A by disjoint outer e-contiguity subdiagrams I'y, ..., I'; such
that
¢
> (LT, 4r,) > 1 — 234 (2.33)
i=1
Then we call II an essential cell, and the contiguity subdiagrams I'y, ..., I'; — essential contiguity
subdiagrams.

2.5.6 Auxiliary definitions and lemmas

In this subsection we discuss some auxiliary lemmas and definitions for G = H/ <« R >,
where H = (X is hyperbolic and R satisfies the C'(\, ¢, €, i, p)-condition. Also, 0 < n <1 < ¢

are some constants.

Definition 2.7 ((¢g,n)-arcs and (eg,n)-words). Wy € X™ is an (ep,n)-word (associated with a
word R € R) with respect to the quotient G = H/ « R >, if there exist words T1,T» € X*,

IT1], |T2| < €o and a word R € R such that R = UV, |U|| = n||R|| and
Wo =g T, UTs.

A subpath p’ of a path p from I'(G, X) is called (eg,n)-arc (or (€p,n7)-subpath) if its label is a

(€0, m)-word.

Lemma 21. Suppose that W € X* contains a (g, n)-subword associated with some word R € R.

Then

n

Proof. Follows from the definition of the (e, 7)-subwords and the fact that the word from R are

(A, ¢)-quasi-geodesics in I'( H, X'). We just need to apply the triangle inequality. O
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Lemma 22. Let us consider the quotient G = H/ < R », where H = (X ) and R satisfies the
C(A, ¢, €, , p)-condition. Then for any constants €y = 0 and K > 0, if p is small enough and p is
large enough, then there is no (X, ¢)-quasi-geodesic path in T'(G, X ) containing an (eg, 1 — KA\p)-

arc.

Proof. All the metric notations which we use in this proof are in Cayley graph I'(G, X).

First of all, assume that 0 < p < % so that we have 0 < 1 — KAp < 1.

Now assume that there exists a (A, ¢)-quasi-geodesic path p in I'(H, X') which contains an
(€0, 1 — K Ap)-arc p’. Then, by definition, there exist words 71,75 € X*, |T1|, |T2] < €0 and a

word R € R, suchthat R = UV, |U|| = (1 — KAu)|R| and
lab(p') =g T, 'UTs.

Then, combining the last equation with the triangle inequality and with the inequality |U| > (1 —

KAp)| Rl we get

_ (L= KMR| ¢ _

'] = 3 2¢0. (2.34)
On the other hand, by the triangle inequality, we have
P < 260 + V] < 2e0 + (1 = (1 = KAw))|R| = 2¢0 + KM R (2.35)

Finally, note that, since | R| = p, if p is large enough, then the system of inequalities (Z34) and

(I33) is not consistent, which contradicts the existence of p’ ]

Definition 2.8 (Truncated diagrams). If a van Kampen diagram A over G = H/ « R >» has a

rectangular boundary A = ABC'D such that the following conditions hold
1. [A, D] and [ B, C] are (A, ¢)-quasi-geodesics in I'(G, X),
2. [A, B] and [ D, C] are geodesic,
3. dg(A, B) = distq(A, [B,C)), da(D,C) = distq(D,[B, C]),

then A is called a truncated diagram.
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Lemma 23. Suppose that A is a reduced diagram over G = H/ « R » such that A = ABCD,

A is truncated and the following holds:
dc(A, D) = ML + ||[A, B]| + |[D, C]| + 2¢) + <, (2.36)

where L = max{||R| | R € R}.
Suppose that A contains an essential R-cell 11 connected to [A, B), [B,C], [C, D] and [ D, A]
by essential e-contiguity subdiagrams 1", U'a, I's and Ty, respectively. Then, if the standard param-

eters are large enough, we have
(i) either I'y or I's is empty;
(i) (IL,T,[A, B]) + (IL,I'y, [B,C]) + (IL,I's, [B,C]) < 1 — 26y, and
(iii) (II, Ty, [A, D]) > p.

Proof. First of all, if both I'; and I's are not empty, then the distance between [A, B] and [D, C1] is
bounded by 2¢ + |II|| < 2¢+ L. Therefore, since [A, D] is (A, ¢)-quasi-geodesic in I'(G, X), by the
triangle inequality, we have dc (A, D) < A(|[A4, B]| + |[D, C]| + 2¢ + L) + ¢, which contradicts
the condition (I38) in the statement of the lemma. Therefore, without loss of generality we can
assume that I'5 is empty.

Now let us prove that
(Harlv [A7 B]) + (H>F27 [B7 C]) <1l- 26#

For that let us denote k; = (II,T'1,[A, B]) and k2 = (II,T'9,[B, C]), and by contradiction, as-
sume that k1 + kg = 1 — 26u. Then, since dg(A, B) = distq(A,[B,C]), we get dg(A, B) <

da(A, (¢r,)+ ), and consequently,
da((Gr,)—, B) < da((qr,) - (ry)+) <26+ (1 — k1 — k)| < 2¢ + 2601  (2.37)

See Figure 3. Since 011 is (), ¢)-quasi-geodesic, we also have

plf —e

2 < [r,| < do((dr,)-, B). (2.38)
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Combining (Z37) and (Z38), we get x| 11| < A(de + 26u|II]|) + ¢ <P LPP 27)\u|1I|, and
consequently, we get k1 < 27Apu. Therefore, ko > 1 — 26 — 27 A > 1 — 53\, or in other words,
dgr, is a (e, 1 — 53\p)-arc, by Lemma P2, but for large enough p this is impossible, because [ B, C]

is (A, ¢)-quasi-geodesic.

B Ar. (Gr), c
L
o
Gr, 4T, n
| T |

Figure 2.5

O

Finally, since the system of contiguity diagrams I';, ¢ = 1,2, 3,4, is essential and I'3 is empty,

we get that (I, Ty, [A, D]) = 1 — 23u — (k1 + K2) > 3u > p.

Lemma 24. Suppose that R satisfies C' (), ¢, €, i, p)-condition and p is large enough. Suppose that
R e R and U,V are disjoint subwords from R such that for some words Ty, To € X*, |T1||, | T2| <
2eand Ty 'UTy =g VEL

Then [U|, |V < 2u[ R].

Proof. The statement follows from the definition of the small cancellation condition C’(\, ¢, €, p, p)

(see properties (2.1) and (2.2) in the definition of C’(\, ¢, €, i, p)) and Corollary @. [

2.6 Van Kampen diagrams over HNN-extensions

Let G = (X | R) be a group presentation. Let S be a subset of X. Then an S-band B is a

sequence of cells I1y,...,IT,, in a van Kampen diagram such that

* Each two consecutive cells in this sequence have a common edge labeled by a letter from S
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* Each cell II;, i = 1,...,n, has exactly two S-edges (i.e. edges labeled by a letter from .5)

having opposite orientations.

We call the sides of an S-band with labels from S ends of the band, and the sides of the S-band

which are separated by the ends sides of the S-band.

The concept of bands naturally occurs when one considers HNN-extensions of groups as fol-
lows.

Let H = (X,t |t 1At = B), where A, B < G = (X | R) are isomorphic subgroups by some
isomorphism ¢ : A — B. Then, from van Kampen’s lemma it follows that for each W € (X u {t})*

such that W =7 1, there exists a disc diagram (=van Kampen diagram) A over the presentation
H=(XuU{t}|Ru{t atg(a)™ [ae A}) (2.39)

such that lab(0A) = W and A is reduced, in the sense that it contains minimal number of ¢-bands
among all van Kampen diagrams with boundary label W. A well-known fact is that either A does
not contain ¢-bands (which implies that W € X* and W =4 1) or all the ¢-bands of A have their

edges with label t£!

on the boundary dA of A. For more details see, for example, [47, b4].
Analogously, if H is obtained from G by multiple HNN-extensions with respect to isomorphic

subgroups ¢1 : Ay — B1, ..., ¢, : Ay, — By, namely,
H = <X v {tlv . atn} | Ry {ti_laitiqbi(ai)_l ‘ I<i< n,a; € A’L}>a

Then for each 1 < ¢ < n, either W does not contain letters from {t;—rl} or in A all ¢;-bands have
their ends on A and moreover, every edge of dA with a label from {¢;"'} is connected with a

t;-band to another edge on 0A with the same label.
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2.7 Slender conjugacy diagrams and their geometry
2.7.1 Slender conjugacy diagrams over hyperbolic groups

Let H = (X | O0), |O| < w0, |X| < o0, be a non-cyclic d-hyperbolic group with respect to
I'(G, X) for some ¢ € N.

We call a disk diagram A with quadrilateral boundary ABCD, a (U, V')-conjugacy diagram
over (X | O)if lab(AB) = lab(DC) and lab(BC) = U, lab(AD) = V.

We say that A is a slender (U, V')-conjugacy diagram over (X | O), if AB has minimal length
among all (U, V')-conjugacy diagrams over (X | O). Also we say A is a cyclically slender (U, V)-
conjugacy diagram over (X | O)ifitisa (U’, V')-conjugacy diagram for some cyclic shifts U’ and

V' of U and V, respectively, and in addition,

llab(AB)| =
min{|lab(A'B")| | Y(U’,V')-conj. diagram A’ with 0A" = A'B'C'D’,

where U’ and V" are, respectively, cyclic shifts of U and V'}.

For arbitrary points O € AB and O' € DC, let us call them mirroring points if lab(AO) =
lab(DO").

Lemma 25. If (U, V)-conjugacy diagram A has two different pairs of mirroring points (O, O})
and (Og, 0%) such that in Proj(A), Oy is joined to O} by a path py and Oy is joined to O by a

path py such that lab(py) = lab(p2), then A is not slender.

Proof. Indeed, if the statement of Lemma I3 holds, then we can remove the subdiagram in A
bounded between Oy, Oz, 05 and O} and obtain a new diagram A’ with 0A" = A’B'C'D’, where
A'B' is shorter than AB. This procedure is depicted in Figure ICf. Since the boundary label of
the newly obtained diagram A’ represents the trivial element of G, by van Kampen’s lemma, there
exists a disk diagram over (X | O) with boundary of A’. Since lab(A’B’) = lab(D'C"), then, in
fact, the new disk diagram is a (U, V')-conjugacy diagram over (X | O) as well. Finally, since the

length of A’ B’ is strictly shorter than the length of AB, by definition, A is not a slender diagram.
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Figure 2.6: The left diagram is Proj(A), lab(p1) = lab(pz). The right diagram is A’, which is
obtained after making a surgery on A to remove the colored subdiagram.

Based on Lemma 3 and Corollary B, it is not hard to see that the following is true.

Lemma 26. Let U,V € X™ be cyclically (X, c)-geodesic words such that U ~on; V in H. Suppose
that A is a slender (U, V')-conjugcy diagram with the standard boundary ABCD. Then |AB| =
IDC| < 7(|X|,d,\, ¢), where T : N* — N is a computable function independent of H. In other
words, there exist cyclic shifts U', V' € X* of U and V, respectively, and a word T € X* such that

IT| < 7(1X],6,\,¢) and U’ =g T~*V'T.
In fact, Lemma 8 is a slight variation of Lemma 10 in [41] and Proposition 3 in [4].

Definition 2.9 ((Cyclically) minimal conjugacy diagrams over HNN-extensions). Let H = (X u
{t} | t LAt = B) be an HNN-extension of a group G' = (X | R). Suppose that U,V € (X u {t})*
are such that U ~,,; V in H. Let A be a (U, V')-conjugacy diagram over the presentation H =
(X U{t} | Ru {ttatg(a)™" | a € A}) such that it contains minimal number of ¢-bands among
all (U, V')-conjugacy diagrams. Then we call A minimal (U, V')-conjugacy diagram over the HNN-
extension H = (X U {t} | t 1At = B).

If Aisa (U’, V')-conjugacy diagram for some cyclic shifts U" and V' of U and V, respectively,
and if A contains minimal number of ¢-bands among all such diagrams, then we say that A is a
cyclically minimal (U, V' )-conjugacy diagram over the HNN-extension H = (X u {t} | t 1At =
B).

Lemma 27 (About the conjugacy diagrams over HNN-extensions). (i). Let A be a cyclically min-

imal (U, V')-conjugacy diagram over the presentation (239) such that 0A = ABCD, lab(AB) =
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lab(DC), and lab(AD) and lab(BC') are cyclic shifts of U and V' for U,V € (X v {t})*, respec-
tively. Then either A does not contain t-bands joining AB to DC or if there exists such a band with
its ends e; € AB and es € DC, then (e1)+ and (e2) 4 are mirroring pair of points.

(ii). Let A be a minimal (U,V)-conjugacy diagram over the presentation (Z39) such that
0A = ABCD, lab(AB) = lab(DC), and U,V € X* (ie. U and V do not contain letters
from {tX1}). Then either A does not contain t-bands joining AB to DC or if there exists such a

band with its ends e1 € AB and e3 € DC, then (e1)+ and (e3)+ are a mirroring pair of points.

Proof. The lemma is an easy consequence of Collins’ Lemma. O

2.7.2 Cyclically slender conjugacy diagrams over quotient groups with small cancellation condi-

tions

Definition 2.10 ((cyclically) (), ¢, €, n)-reduced words). Fore > 0,0 < n < 1, a cyclically reduced
word W e X* is called (), ¢, €,n)-reduced over the quotient G = H/ « R » if W is (), ¢)-quasi-
geodesic in I'(H, X') and moreover, W does not contain a (e, 7)-subword. And it is called cyclically

(A, ¢, €, m)-reduced, if all cyclic shifts of W are (), ¢, €, n)-reduced.

For the next lemma, let H = (X) be a §-hyperbolic group with respect to the generating set X,
andlet G = H/ « R »= (H | R), where R is a finite symmetric set of words satisfying the small

cancellation condition C’(\, ¢, €, 11, p) for appropriately chosen parameters A > ¢ > € > p > p.

Lemma 28. Let U,V € X* be cyclically (A, c,e,1 — 121 \p)-reduced words. Then for any reduced
cyclically slender (U, V')-conjugacy diagram A with 0A = ABCD, assuming that A contains an
R-cell, we get that /A contains an essential R-cell 11 which is connected to AB, BC, CD and DA

by contiguity subdiagrams I'1, I's, I's and Ty, respectively, and the following hold

1. Ty and 'y are non-empty;
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2. (IL,T, BC) + (IL, T4, DA) > 1 — 121\y; and
3. (II,T1,AB) and (I1,T'3, CD) are either empty or smaller than 49\ p.
Proof. Proof of Lemma IR is given in Appendix (see Subsection B117). O

Definition 2.11. If A is a cyclically slender (U, V')-conjugacy diagram over the quotient G = (H |
R), then we say that A is a (U, V')-conjugacy H-diagram if G does not contain an R-cell, otherwise,

we say that A is a (U, V')-conjugacy G-diagram.

Convention 4. In the rest of the text for the quotient G = H/ « R » we assume that the parameters
A, ¢, €, i, p are chosen so that 1 > 1 — 122\ > 0 and no (), ¢)-quasi-geodesic path in I'(G, X)
contains an (e, 1 — 122\p)-arc (with respect to G = H/ < R »). Note that these assumptions can

be made without loss of generality because of Lemma 2.

2.7.3 An application of Lemma

Lemma 8 together with Lemma P4 implies the following.

Lemma 29. Let H = (X ) be a torsion-free non-elementary hyperbolic group and G = H/ < R >

satisfies the C' (X, ¢, €, u, p)-condition for sparse enough parameters \ > ¢ > € > | > p.

(i) Forany U € X* and k € N such that U is a cyclically minimal word in T'(G, X), U* does

not contain a (e,1 — 122 p)-subword with respect to the quotient G = H/ < R ».

(ii) Suppose that U, W € X* are such that U =g WF for some k > 2 and

pp —c
U
) < #2

— 2e. (2.40)

Then U =y W*. In particular, if U ¢ E(W) in G, then U ¢ E(W) in H.

Proof. (i). Let U be as in the statement of the lemma. By contradiction, assume that U contains a

(6,1 —122\p)-subword V.
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For sparse enough standard parameters \, c, i, p, by Lemma B, U is a (), ¢)-quasi-geodesic
word in T'(G, X). Then, since by the assumption U is cyclically minimal in F(G , X ), by Conven-

tion A, we get that V' is not a subword of a cyclic shift of U. This means that V' is of the form

lab(dFQ) = (U/)nQv

where U’ is a cyclic shift of U, n > 1, and @ is a prefix of U’.
By the definition of (e, 1 — 122\p)-subwords, in the Cayley graph I'(G, X)), there exist paths p
and ¢ such that lab(p) is a subword of a word R from R, lab(q) = U¥ and d(p_,q_),d(ps,qy+) < e.
Note that, by Corollary B, the Hausdorff distance between p and ¢ is bounded from above by

€+ 2R\, +20 <bYLPP 9¢.

Now let us separately consider the cases when n = 1 and when n > 1.

Case 1:(n = 1). In this case, let us partition ¢ = ¢1¢2q3, where lab(q1) = lab(qs) = Q.
Let us also partition p = pipops such that (p;)+ and (p2)+ are the closest points on pr,
correspondingly to (¢1)+ and to (g2)+. Since lab(q1) = lab(qs) and dyaus(p,q) < 2€, from
Lemma P4 it follows that |p1 |, [ps]| < 2u|R|| < wA||R|. Then, combining this with (Z42), we
get that [[p1pa|| > 1 — 23\p. But, since |U’| = |p1p2| and U’ is a geodesic word in T'(G, X), by

Convention B, we get a contradiction. Thus we are done with the case n = 1.

Case 2:(n > 1). In this case, again we partition ¢ into three parts ¢ = g¢igoq3 such that
lab(q1) = lab(qs) and lab(qe) is a suffix of U’. Then, since lab(q) = (U')"Q and n > 2, we get
that | ¢1] = |lgs| > %[ g[, hence ||g| < 3]g1]. Also just like we showed in case n = 1, by Lemma
4, in this case ||q1, |g3]| < 2u|R| as well. Therefore, |¢| < 6u|R|. Butif p and p are chosen
sparse enough, then the last inequality, combined with |R| > p, contradicts the assumption that

lab(q) contains a (€, 1 — 122\p1)-subword associated with R.

(ii). Suppose that U and W are as in the statement of the lemma and we have U =g W*

for some k£ > 2. Also, by contradiction, assume that U #p Wk,
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Let U' € X* be a cyclically (), c¢,e,1 — 121Ap)-reduced word such that U' ~,,; U in G
(clearly such a word exists). Then there exists a word W’ € X* such that U’ =g (W)

Now, let W” € X* be a cyclically minimal representative of W’ with respect to GG. This
means that there exists 7 € X* such that W/ =g TW”T~! and W” has minimal length among
all such words. In particular, this means that U’ =g T(W”)*T—! and W is cyclically geodesic
in F(G, X ) Note that, since G is a quotient of H, we get that W” is also cyclically geodesic in
I'(H, X). Therefore, if A and c are large enough, then by Lemma B, (W” )k is cyclically (), ¢)-
quasi-geodesic in I'(H, X).

Since W” is conjugate to W’ in G and U’ =g (W')¥, there exists a (U’, (W")*)-conjugacy
diagram over G. Hence there exists a cyclically slender (U’, (W”)*)-conjugacy diagram over G.
Let A be such a diagram. As before, let us denote 0A = ABCD, where lab(BC'),lab(AD)
are cyclic shifts of (W”)* and U’, respectively, and lab(AB) = lab(DC) are geodesic words in
I'(G,X).

Since U’ is cyclically (), ¢)-quasi-geodesic in I'(H, X ), by Lemma [, A contains an essential
R-cell, II. Let I'y, I', I's and I'4 be essential e-contiguity subdiagrams connecting I1 to AB, BC,
CD and DA, respectively. Since we chose A to be cyclically slender, by Lemma I8, I'; and I'y are
non-empty and

(II,Ty, BC) + (I, Ty, DA) > 1 — 121 \p. 2.41)

Also, by (Z20), using triangle inequalities and the fact that JI1 is (), ¢)-quasi-geodesic, we get
ldr,) < (JU] + 2€) X + ¢ <™ @40 1,

Therefore,

(I, Ty, DA) < ’%) _—

Combining this with (Z41), we get
(II,T9, BC) > (1 = 121A\p) — pu > 1 — 122\ p. (2.42)

Since lab(BC) = (W")* and W” is cyclically minimal in T'(G, X), by Part (i) of the current
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lemma, we get a contradiction.
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Chapter 3

Algorithms

This section is dedicated to the description of the core algorithms needed for the further exposi-
tion.

Convention: In this section, for our purposes, it will be convenient to consider any word W € X*
as a labeled circle o such that its label is equal to W when we read it in the clockwise direction
starting from some point on it. We denote the length of o by |o|.

Throughout this subsection we are interested in words up to their cyclic shifts. Taken this into
account, for a labeled circle o, we will say that lab(c) = W if its label is equal to W if we read it in
the clockwise direction starting from some point on it. For the circle o we introduce the following
quasi-metrics, 'd and d: for any points A, B € o, Z(A, B) is the length of the arc connecting A
to B in the clockwise direction and d (4, B) = |o| — d (A, B). Also, for ¢ > 0, we say that B is
in e-neighborhood of A (denoted B € N (A)) if either U(A, B) <eor (E(A, B) <e

Oriented arc on ¢ which, in a clockwise direction, starts at A and ends at B we denote by

[A, B]. The length of the label of [A, B] we denote by | [A, B]|.

In the further exposition, we will regards R-cells defined in Section I3, as labeled circles.
Therefore, all the notations on circles are applicable for R-cells.
Also, throughout this section H = (X | F), | X| < o0, is a -hyperbolic group with respect to

the generating set X given with its (X, §)-full-presentation.

3.1 A few auxiliary algorithms

Below we are going to describe a few auxiliary algorithms which will be used to construct

effective algorithms for word and conjugacy problems in the limit groups over chains of type (I3).

Algorithm QuasiGeodesic—Smoothing. Let us assume that o is a labeled circle with a label
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from X*, and let Ay,..., Ax be points on o such that the labels of the arcs [A1, As], [A2, As],
...[Ak, A1] are (89 + 1)-local geodesics in I'(H, X'). Then we call the points A1, ..., Ax (A, ¢)-
break-points of o.

Below we describe an algorithm which on input receives o along with the break points
Aj, ..., Ak and outputs another labeled circle o’ such that lab(c”) is (8 + 1)-local geodesic in
I'(H,X) and lab(c") ~conj lab(o) in H.

First, suppose that lab(c) = Wy =g ho, and suppose that the break points Aj, ..., Ax are

recorded in a list which may change after each step of the following described procedure.

Step 1. Choose a break point A on the circle o and search for a pair of points B, B’ € Ngs,1 such
that H(B, B') = 80 + 1 but [ B, B'] is not a geodesic arc (i.e. lab([ B, B']) is not a geodesic word).

If such a pair is found, then go to Step 1.1, otherwise, go to Step 1.2.

Step 1.1. If [B, B’] is not a geodesic arc, then replace the arc [B, B’] of o with a shorter
arc whose label represents the same element of H. As a result, we obtain a new labeled circle
whose label represents an element of H conjugate to hg. Also, add the points B, B’ to the list of
the break points and remove the break points which are not on the newly obtained circle from the

current list of break points.

Step 1.2. If such points B, B are not found, then remove A from the list of break points.

Step 2. Repeat the procedure of Step 1 for the next break point until there is no break point

left in the list.

Step 3. If there is no break point left, then return the current circle.

Clearly the procedure described in Step 1 and Step 2 will eventually halt, since after each call
of Step 1 either the newly obtained circle gets shorter (Step 1.1.) or the number of break point in

the list decreases. Also, it is clear that the newly obtained labeled circle ¢’ is such that lab(o”) is
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89 + 1-local geodesic and lab(o) ~con; lab(c’) in H.

The following observation will be used for the main algorithm.
Observation 8.0. Suppose that the Ay, ..., Ax € o are enumerated in the clockwise direction and
[A1, Ak ] is marked with some number, say, with 0. Suppose also that after replacing an arc of the
current circle with a new arc on Step 1.1, we mark the edges of the new arc with the label 0. If o’ is
the returned labeled circle of QuasiGeodesic-Smoothing algorithm, then, clearly, the edges

of ¢’ which are marked with 0 compose a connected arc.

Now, suppose that |o| — |o’| = d, d > 0. Then, note that Step 1 was called during this
procedure not more than d times, and since after Step 1.1 the number of break points in the list
increases at most by 1, while after Step 1.2 it decreases by 1, we get that Step 1.2. was called during
this procedure at most K + d times. Therefore, Step 1 was called during this procedure at most
d+ (K + d) = K + 2d times. Consequently, the total time required for this procedure is bounded

from above by

fs(0, [ X)(K +d), (3.1

where fs : N — N is a computable function depending only on § and | X|. After summarizing, we

get to the following lemma.

Lemma 30. Forinput o, A1,..., Ak € o if the output of the algorithm
QuasiGeodesic—-Smoothing is shorter than o by d, then the time which
QuasiGeodesic-Smoothing spent before halting is bounded from above by fs(d,|X|)(K +

d), where fg : N — N is a computable function depending only on 6 and | X |.

As we already mentioned the procedure of Steps 1 and 2 ends up with a cyclically 8§ + 1-local
geodesic word. However, as it is apparent from Lemma B, for large enough constants A, ¢, 8§ + 1-
local geodesiceness implies cyclically (), ¢)-quasi-geodesicness. Therefore, since our primary
interest in this procedure is about obtaining cyclically (), ¢)-quasi-geodesic word conjugate to W
in H, we name this algorithm QuasiGeodesic-Smoothing (with respect to the input o and

Al,...,AKEO').
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Also, note that if we consider all the points on o as break points, then the (A, ¢)-smoothing
algorithm becomes the well-known algorithm for finding (89 + 1)-local geodesic word conjugate
to the given word (see, for example, [I7]). In case all the points on ¢ are regarded as break points

then we call this algorithm ()\;, ¢;)-cyclic—reduction.

Algorithm ShortLex. (Shapiro’s Algorithm on ShortLex normal forms). As in [24], for a

given element g € H, we define the ShortLexy normal form of g with respect to X as lexico-
graphically the least word W’ € X* such that W’ =y ¢. Analogously, for W € X*, we denote
W' = ShortLexy (W) if W' is lexicographically the least word in X* such that W =g W'.
According to Shapiro’s theorem described in [24], there is a linear-time algorithm which for any
input W e X* finds W' = ShortLexy(W). Moreover, as it follows from the proof of the theorem

in [24], the time complexity of this procedure is bounded from above by

fsu(1X1, 6)[W, 3.2)

where fs1, is a computable function independent of H and W. We name this algorithm simply

ShortLex.

3.2 The main algorithm

((A\,¢,e,m)-cyclic—reduction.)
As above, let H = (X)) be a d-hyperbolic group with (X, d)-full presentation H = (X | F).
Let G = H/ « R », where R is a finite set of words satisfying the small cancellation condition

1

C'(\, ¢, €, u, p) for large enough standard parameters A > ¢ > € > pu~ - > p. Note that, as it

follows from 9, the group G is a non-elementary hyperbolic group.

Let 0 < 1 < 1 be a fixed rational constant such that

2n —3/2 > 3X(1 —n). (3.3)
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In this subsection, our goal is to describe an algorithm (see (A, ¢,€,1)-cyclic-reduction
algorithm below) which for an input word W € X* (inputed as a labeled circle), outputs a word
W' e X* such that W ~on; W' in G and W' is cyclically (A, ¢, €, )-reduced in I'(G, X). More-
over, if W and all its cyclic shifts do not contain (€, n)-subwords, then W' ~ oy W’ in H. The
algorithm will be universal in the sense that it does not depend on the choice of H and G. We also
would like to note that the main technical difficulties for this algorithm are connected with making

it as fast as possible.

Lemma 31. Suppose that W € X* is (), ¢)-quasi-geodesic word in H and W' is a geodesic word

in H such that W =g W'. If W contains an (e, n)-subword, then W' contains a (2¢, n)-subword.

Observation 8.1. As it follows from Lemma [, if a cyclic shift of a word W € X* contains an
(€,m)-subword, then this subword must be associated with a word from R whose length is bounded

from above by

w. This boservation leads us to the following definition.

Define

A 2
R {Rer||r| < M2

where n. = |W/|, and let C(,R) be an upper bound of time required for constructing a set of
representatives of ,, R up to cyclic shift.

Let us denote
L, =max{|R| | R€ ,R}and [, = min{|R|| | R€ ,R} 3.4

and

Ly, = [A(nLy + 2¢) + ¢|

The following simple key observation is the main motivation for considering L,,.
Observation 8.2. Suppose that Ay, ..., As € o are such that H(Ai, Aitq) < L, forl <i< sand

U(AS7 A1) < Ly,. Then, if o contains an (e, n)-arc, there exists a point A; € {Ay,..., A} such
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that the L,,-neighborhood of A; contains an (e, n)-arc.

Let kn = #{ wR/ ~cycic shifts }» Where ~cyciic shifis is the equivalence relation for

def

cyclic shifts. Now let ,R = {Ri,...,Rr,} = »R be a set of representatives of the set

nR/ ~eyclic shifts.
Next, let us partition the elements from nﬁ in the following way: partition the words R; €, R,
i=1,...,k,, in the form

R, =UU?...U,

where | 15] 1 < s; < [ | U7 | = [(1 = n)| Ri

|.forj=1,...,s;—1,and | (1 — n)|R;|] <
17 < 2] (1 = )R]l

Now let us define
WR = {UF L UL UITRUI I US| (6, )1 < < by 1< < 5}
U{ﬁll d;f UZQUZB e UZSZ_l} U{[A]ZS'L déf UleZQ . UZSl—Q}

: . foos
and also, by using the convention U & U, define

R = {UITUT | (1,5), 1 < i < ko, 1< <51}, 3:3)

Then we have

(20— D)|R;| < U} < (3n— 1| R,
‘ ‘ (3.6)
21— n)|Ri| < U707 < 3(1 — )| Ry

One of the motivations for considering the sets , R’ and ,R” is revealed in the following proposi-

tion.

Proposition 3. Ler W € X™* be a word containing a (€, n)-subword V. Suppose n = |W|. Then V

contains a subword V' of the form
V' =y E{'U'E,,
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where U' € ,R' and E1,E5 € X*,

E1|, || E2| < 2e. Hence V' is a (2¢,3n — 2)-subword of W.

Proof. By definition and Observation 8.1, there exist 71,75 € X*, |T1|,[|T2| < eand R € ,R

such that for some subword U of R, |[U| = n|R| and
V=g T, 'UTs.

Let R = UU. Then, since |U| < (1—n)|R|, there exists a word U7 U7 such that U is a subword

of Uij _1Ul-j . But this means that ﬁf is a subword of U. Therefore, by the inequality ¢ > PP
2R) . + 26 and by Corollary B, we get that there exists a subword V' of V and E;, E> € X*,
|E1|, | Ba| < 2, such that V! =5 E['U’FEs. Finally, since we have \\Uf\| > |R|| — 3|(1 —

| R|] = (3n — 2)||R]|, we get that V" is a (2¢, 3n — 2)-subword of W.

Now let us define

Eo(nR') = {ShortLex(Ty UM Ty) | (4,§),1 <i < kn, 1 <J < si,

Tl,TQ € X*, ”T1H, HTQH < 36}.

Lemma 32. The sum of the lengths of the words from Ey( ,R') is bounded from above by

feo (IX|, €,m) Lykn, where fg, : N — N is a computable function depending only on |X|, e and

n.

Proof. Indeed, first of all note that

1
#E( R gkn[}xﬁe.
Therefore,
1
S W] < 07 Lo+ 6#E( nR) < (7L + 6e>kn[} X5
WeEo( nR') 2(1—mn)
0o\ n
1
< (' + 6¢ []X6€Lnkn.
(n ) 20— 1) | X]
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Now define fg, (|X],¢,1) = (0 + Ge) [ml_nﬂ RO =

The main motivation for considering the set £y( ,R') is observed in the following proposition.

Proposition 4. Suppose that W € X* is a (A, ¢)-quasi-geodesic word in I'(H, X) containing an
(€,m)-subword and |W|| < n. Then the word W' = ShortLex (W) contains a subword from
Eo( nR') which is also a (3e,n)-subword.

Proof. First of all, note that, by Proposition B, W contains a (2¢, 7’ )-subword, say, V.

Let us consider a bigon in I'(H, X) with boundary pg—! such that lab(p) = W and lab(q) =
W’. Also, let p; be a subpath on p such that lab(p;) = V. By Corollary B, the Hausdorff distance
between p and ¢ is bounded from above by 20 + R) .. Therefore, since € > 20 + R) ., we get
that there is a subpath ¢; on ¢ such that d((p1)—, (¢1)-),d((p1)+,(q1)+) < €, which implies that
lab(q1) is a (3¢,n’)-subword of W"'.

Now, since all subword of a word in ShortLex form are also in ShortLex form, combining with

Observation 8.1, we get that lab(q1) € Ey( ,R'). O

Now let us describe the (), ¢, €,n)-cyclic—reduction algorithm.

3.2.0.1 Description of (\, c,e,7)-cyclic-reduction

Input/Output. As an input the algorithm receives a labeled circle o with lab(W) € X* and out-

puts a word W' such that W’ ~,,; Win G and W is cyclically (X, ¢, €, n)-reduced. Let | W] = n.
Step 0. Compute Wy such that Wy is cyclically 85 + 1-local geodesic (hence, Wy is (A, c¢)-

quasi-geodesic in I'(H, X)) and Wy ~¢on; W in H.

Let o be a labeled circle such that lab(og) = W.
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Step 1. If |og| = 2L,, then partition o by points Aj, As,...,A; € o such that

U(Ai,AiH) = L, forl <i< sand U(AS,Al) < L,. Then s = [H}j—OHJ + 1.

m

Otherwise, if ||og| < 2L, take A; € oy arbitrarily and define Ay € oy as the opposite to A; point
on oy in the sense that d (A1, A) = d (A, A;) + 1.

Include the elements A1, Ao, ..., A, in a list of special points which we simply call L.ist.
Let us save the value of oy in a special variable o’ which is by itself a labeled circle.

Now for all elements A € List do the procedure of Step 2 as follows.
Step2. If ||o/| < 2L,, then consider the points By,Bs € o' such that B; = B, and
d(By,A) = d(A,By) + 1 (thus By is the opposite vertex point of A on o). Otherwise,
if |0’ = 2Ly, choose By, By € ¢’ such that d (By, A) = d (A, By) = Ly,. Then go to Step 2.1 as
follows.

Step 2.1. Compute Wy def ShortLex(lab| By, Bz]) and go to Step 2.2.

Step 2.2. Search for a subword from &( ,R’) in Wy using Aho-Corasick’s string search al-

gorithm. (A formal description of Step 2.2 via pseudo-code is given in Algorithm [I).

If such a subword is not found, then conclude that [ B;, By| does not contain a (e, 7)-subword

and go to Step 2.2.1 as follows, otherwise go to Step 2.2.2.

Step 2.2.1. Remove A from List. Then, if List is not empty, choose another point from

List and return to Step 2 with the chosen point as the input. Otherwise, return lab(c”) and halt.

Step 2.2.2. Suppose that W4 contains a subword from &y( ,R’) of the form

ShortLem(TfIUijTg). Then,

1. In W4 replace the subword ShortLex (1] 1(73 Ty) with the word T3 1Uij _1Uij T5. Denote
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the new word by W/,

2. Compute W/ s hortLex(W',) and replace the arc [ By, Ba] of o’ with a new arc [ B}, Bj]
such that lab([ By, B]) = W1,

3. Change the value of ¢’ by prescribing to it the newly obtained labeled circle,

4. Add the points B and B} to List,

5. If the point A was the i-th point which was checked in Step 2, then mark the arc [ B}, BS] of

o' with 1,

6. Go to Step 2.2.3 as follows.

Step 2.2.3. Apply the QuasiGeodesic-Smoothing algorithm with inputs lab(c”), B, B} and
then mark all the newly obtained edges during the process of running
QuasiGeodesic-Smoothing(lab(c’), By, BS) with i. Save the newly obtained labeled circle

again in the variable o”.

Step 2.2.4. Suppose that the new labeled circle o/, obtained after Steps 2.2.2 and 2.2.3, has
an arc marked with ¢ which is bounded between some points O, O’ € ¢’ (the fact that the edges
marked with ¢ form an arc follows from Observation 8.0). Then partition the arc [O, O’] with the
points O1,...,0; € [O,0'] such that O1 = O, O3 = O’ and for 1 < i < t, 7(0¢,O¢+1) = L,
and H(Ot_l, O) < L,.

Add the points Oy, ..., Oy to List and then choose another point from List and go to Step 2

with the chosen point as the input.
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Figure 3.1: Graphical explanation of Steps 2-2.2.4 of (A, ¢, €,)—cyclic-reduction algorithm
in case when the result of search in Step 2.2 is positive. In the figure W4 is the ShortLex for of the
label of the arc [ By, Bz] which gets replaced with a shorter arc labeled with label Wi as in Step
2.2.2.

Below we give a more formal description of Step 2.2 based on Aho-Corasick’s famous algorithm

(see [3] for the description of the algorithm) for multiple string search.

Algorithm 1 Searching for (3¢, n’)-arcs

1: Input: W e X* E( ,R'). {W is given in its ShortLexy form.}

2: Output: An (3¢,7n’)-subword of W if such a subword exists and 0 otherwise.

Apply Aho-Corasick’s string searching algorithm to find all subwords of W from &y( ,R')
{For the description of Aho-Corasick’s algorithmic see [3].}

if at least one such subword is found then

return one of the found subwords {By definition, this subword will be a (3¢, 1)-subword. }

b

glgereturn 0

3.2.0.2 Time complexity of (), ¢, ¢,7)-cyclic-reduction

First, we will estimate the time that (A, ¢, €,7)-cyclic-reduction algorithm spends on
Step 2. To this end suppose 01,09, ...,0 are the circles which Step 2 outputs in cases when it
changes the input circle (i.e. when on Step 2.2 algorithm finds a subword from &y( ,R')). According
to Step 2.2.2 (5), this means that for each 1 < 7 < s, 0; contains an arc whose edges are marked by

1 and o; does not contain edges marked with ¢ + 1. Let us denote this arc by ¢; and suppose that g;
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replaced an arc p; of o;_1.

Note that on Step 2.2.2 the algorithm replaces an arc [ By, B2] with an arc [ B}, B}]. For sparse
enough standard parameters A, ¢, €, u, p we have |[ B, B}]| < ||[B1, Bz]|. Therefore, after each run
of Steps 2-2.2.2 either the number of elements in List is decreasing or the newly obtained circle
is shorter, hence the algorithm eventually halts. On the other hand, it follows from Observation 8.2
and Proposition B that the output circle of (A, ¢,e,n)-cyclic-reduction does not contain an
(e,m)-arc.

I[B1. B3]l

Lemma 33. BB S Ao < 1, where Ag = Ao(A, ¢, €,m, %) is a constant depending only on

L’VL
A, ¢, €, and ™

Proof. Indeed, direct computations show

e o
I[B1, Bol| < |[Br, Ba| — 1T U To| + |17 U7 U7 I

- 2n—1 i
<weuse(3.6) 2L, — w}w + 12¢ + 3(1 - 77)HR”LH

(27— 3/2 + 3A(L — )| Ri| _
)

<OYLPP oF by33) of

! /!
Therefore, we get that H{gigﬂ H is of the forms described in the statement of the lemma. O

Lemma 34. For each 1 < i < s, Hg’“ < A < 1, where A = A()\c, 6,7],%—") is a constant
7 n

depending only on \, c, €, and %’

Proof. gq; is obtained from p; after replacing arcs of p; after applying Step 2.2.2. (5) and replacing
arcs of lengths 89 + 1 with shorter arcs after applying Step 2.2.3. Therefore, taken into account

Lemma B3, A can be taken as A = min{Ao, 85/(80 + 1)}, where Ag is defined as in LemmaB3. [J
Corollary 9. 37, i < 257

Proof. Indeed, since by Lemma B4, ¢g;, 1 < 7 < s are obtained by replacing an arc p; of o;_1 of

lengths at least ||g;| /A, we get that

S
II<An+A’n+...=
i;qzl n n - A
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Lemma 35. During the run of (A, c,€,m)-cyclic—-reduction algorithm, the total number of

points added to List (See Steps 1, 2.2.2 (5) and 2.2.4) is bounded from above by

2
(1 - A)En

Hence Step 2 of (A c,e,n)-cyclic—reduction algorithm is being called not more than

2
(1—A)Ln,

n times for input of lengths n.

Proof. Tt follows directly from the description of (A, ¢, €,7)-cyclic-reduction algorithm and

Corollary B. O

Corollary 10. On Step 2.1 in summary —- spends time bounded from above by
(X, e e, p,m, k)nt™, where fi : N — N is a computable function depending only on &
and | X

, k is the number of elements in 'R up to cyclic shifts, and v = 0 if k = 1, otherwise v = 1.

Proof. 1t follows directly from Lemma B3 and from the time complexity properties of the
ShortLex algorithm. See (B2).

O

Corollary 11. On Step 2.2 in summary the algorithm spends time bounded from above by
Fo(|X|, A\ e, €, p,m, k)™, where fo : N” — N is a computable function depending only on &

and | X |, k is the number of elements in R up to cyclic shifts, and v = 0 if k = 1, otherwise v = 1.

Proof. Indeed, it follows from Lemma BY and from the time complexity properties of Aho-

Corasick’s string search algorithm. See [3]. O

Corollary 12. On Steps 2.2.1-2.2.4 in summary the algorithm spends time bounded from above by
[UX], A ¢ €, 1,m, k)nttY, where f3 : NT — N is a computable function depending only on & and
| X

, k is the number of elements in 'R up to cyclic shifts, and v = 0 if k = 1, otherwise v = 1.

Proof. Indeed, in terms of time complexity, the hardest part among the Steps 2.2.1-2.2.4 is Step
2.2.3, and taken this into account, the claim of the corollary follows immediately from Lemma

B0. O
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Lemma 36. Suppose that the above define set ,R' is already computed. Then there exists a com-
putable function ¥ : Q7 — N such that if the constants \, c, e, u~ ', p are fixed and large enough,

then for any word W € X*,

W|| = n, a cyclic (X, ¢, €,m)-reduction of W can be computed in time
bounded from above by
T(|1X], A\, e, €, g, k)T (3.7)

where k is the number of elements in R up to cyclic shifts, and v = 0 if k = 1, otherwise v = 1.

Proof. Indeed, it directly follows from Corollaries IR, IT and I4. O]
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Chapter 4

A subclass of lacunary hyperbolic groups with effectively decidable word problem and

G-conjugacy problem

In this section we describe a subclass of lacunary hyperbolic groups for which there is a fast
algorithm solving the word problem. As it will be shown in corresponding sections, the groups

which are described in Theorems B, Bl and B are constructed so that they belong to that subclass.

4.1 Small cancellation conditions in chains of hyperbolic groups

Let us consider the chain of hyperbolic groups (I3), that is

GoBmia s, 4.1
where a; = ;4.1 0 B; is surjective for ¢ = 1,2, .... All the groups in this chain are hyperbolic.

Suppose that for all ¢ > 0, G; is d; hyperbolic and for all j > 1, H; is 5; hyperbolic, where
i, 5; € N. Also suppose Gy = (X | Ry) is given with its initial symmetric finite presentation and

forallz e N

Hi=Gi_1+F(Y;)) «S8; >, 4.2)

where |Y;| < o0, Y; n Bi—1(Gi—1) = & and S, is a finite symmetric set of words from (X U Y;)*,

and

G, =H;/ <« R; », 4.3)

where R; is a finite symmetric set of words from (X U Y;)* as well.

Let us denote the sequences (X)), (ci)i2q, (€i)i21, (1i)2q, (Pi)i21 by A, ¢, € p, p, re-
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spectively.

Definition 4.1 (Small cancellation conditions C’ (X, ¢, €, p1, p) and C” (A, ¢, €, 1, p) ). We say that
the chain (B1) satisfies (alternatively, based on the context, we may say G = lim; (G}, ;) satisfies)

the

C’' (X, ¢, €, 1, p)-condition

of small cancellation, if

(a) The set R; satisfies the C’(\;, ¢;, €, 11, pi)-condition with respect to H; = (X | J U§:1Yj>;

(b) The following sequences are computable:

(Y,-)f‘;l, (Rz’);’io’ (Si)?ozl and

(5i)?;0a ((%);').;17 (/\i)ioil7 (Ci>£1a(€i)f:1a (:U’i)zqilv (Pz)?&

4.4)

That is there exists an algorithm which on input ¢ > 1 returns

(Y3, Riy Si, 03, 62, Ny Cis €6 iy i)

If, in addition, the following condition is satisfied, then in the notations we replace C’(\, ¢, €, ., p)

with C"(\, ¢, €, p, p).

(d) For each pair (4,7), 0 < i < j, and each R; € R;, R; € R;, there are no subwords U; and
U; of R; and R, respectively, such that ||U;| > p;| R;| and there exist vy, v2 € (X U Y;)*,

[vi], [lv2| < €, such that viU;uoU; =g, 1.

Definition 4.2 (Rank of contiguity subdiagrams). We say that a diagram over () is a ¢;-contiguity
subdiagram of rank ¢ if the diagram can be regarded as a ¢;-contiguity subdiagram over the quotient

G; = H;/ < R; ».

79



4.2 An auxiliary theorem

Now let G = (H | R) be fixed and suppose R satisfies the C’(\, ¢, €, i1, p) small cancellation

condition. Let n = 1 — 23u. Then the following theorem holds.

Theorem 11. Using the above described setting, suppose that X\ > ¢ > € > p~' > p are large
enough. Then there exists a computable function ¥ : Q% — Q such that for any given W € X*, the
checking W =g 1 can be done in time bounded from above by

a¥U(|X|,\ ¢, e, p, k)ntt? 4.5)

where n = |W

, k is the number of elements in R up to cyclic shifts, and ¢ = 0 when k = 1 and

e=1whenk > 1.

Proof. First of all, notice that if p are large enough then the restrictions put on 1 and 7’ in the
beginning of Subsection B are satisfied if n is defined as n = 1 — 23 .

For the given word W € X*, let o be a labeled circle such that lab(c) = W. Let o’ be the
output of the (A, ¢, €, n)-cyclic-reduction algorithm, and let lab(c’) = W' for W' € X*. We claim
that W' is empty if and only if W = 1.

First of all, since W’ ~,,; W in G, the emptiness of W’ would imply that W =¢ 1. Now let
us prove the opposite. Suppose that W’ is not empty. Then W’ s 1, because W’ is 8§ + 1-local
geodesic word in I'(H, X)) and the only 8§ + 1-geodesic word in I'(H, X') which represents the
trivial element of H is the empty word.

On the other hand, since W is a (A, ¢)-quasi-geodesic word in I'(H, X'), by Lemma I3, the
equation W' =g 1 would imply that W’ contains a (¢,1 — 23u)-subword. But since W' is an
output of the (A, ¢, €, n)-cyclic-reduction algorithm, this cannot happen. A contradiction. Therefore,
it must be that W' is empty if and only if W = 1.

Now the complexity formula in the statement of the lemma directly follows from Lemma B8.

O]
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Remark 8. In the settings of the current subsection, for any word W € X*, W =4 1 if and only
if the (A, ¢, €, n)-cyclic-reduction algorithm returns the empty word for input W, as it was shown in

the proof of Theorem [l

4.3 The definition of the subclass

Definition 4.3 (S P-relation). Let H = (X), |X| < o0, be a d-hyperbolic group, where § is a
given positive integer. We say that the 5-tuple of positive number (\, ¢, €, u, p) satisfies the standard

parameters relation, or briefly S P-relation with respect to (H, ¢) if the following holds.

1. A ¢, €, p, p with respect to (H, ) satisfy all the restrictions and relations put on \, ¢, €, p, p

for all the lemmas and theorems above (see Section Z3),
2. A\ ¢, 6,1/u,pe N, and

3. if we definen = 1 — 121\p and n/ = 3n — 2, then 1) and 7’ satisfy all the restrictions put on

n and 7 in the beginning of Subsection B2

Let us return to the chain of hyperbolic groups given by (I3) in the introduction. That is the

chain of hyperbolic group homomorphisms:

GoBmia i, (4.6)
where a; = ~;41 o B; is surjective for ¢ = 1,2,.... Recall that in Subsection BTl we described

additional settings for this chain. Namely, for all integers i, ¢ > 0, G; is J; hyperbolic and for all
j = 1, H; is & hyperbolic with respect to the generating set X U Y;, where ¥; = U’_,Yj and

0, 5; € N. Also we suppose Gy = (X | Ry) is given with its initial symmetric finite presentation

and forall 7 € N,
H;=Gi1+*F(Y;) <S8 >, 4.7

where |Y;| < 00, Y; n 5;-1(G;—1) = & and §; is a finite symmetric set of words from (X U Y;)*,
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and
G, =H;/ < R; », 4.8)

where R; is a finite symmetric set of words from (X U Y;)*. Then

In addition, we suppose that the fixed sequences (X;)72 1, (¢i)72,, (€)1, (1/1:)724, (pi)72, of posi-
tive integers are such that the chain (Z-8) satisfies the small cancellation condition C” ()\, C, €, 4, p).
Even more, hereafter we will assume that for all 7 > 1, the 5-tuple (\;, ¢;, €;, 1 — 121\ ;) satisfies
the S P-relation described in Definition E73.

Also suppose that the sequences

(Yi)zﬁh (Ri)ioim (Si)(i)il and

(5i)30:07 (51/')30:17 ()\z‘)?ozla (Ci)zqih(ei);'ila (Ni);'ih (Pi)?czl

4.9

are computable sequences of integers, i.e. there exists an algorithm which on input ¢ > 1 returns

(Y3, Ri, Si, 035 01, N,y Cis €6 iy Pi)-

Let us assume that ¥ : Q7 — Q is a fixed computable function satisfying the conditions
defined in Theorem [T (see expression (E3)). Let us denote ¥; = U (|X U Y;|, \i, ci, €5, i, ki),

where k; is the cardinality of R; up to cyclic shifts of its elements.

Let g1, g2, ... : Ry — R, be a sequence of increasing functions such that for all i € N, g, ! N

is integer valued and computable and
gi = o(g;) whenever i > j.

Foralli e N, let f; : N — N be a fixed computable function such that for p; = f5(4) the 5-tuple
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(N, ci, €, 13, pi) satisfies the S P-relation, and in addition,

_— /\Z(gz_l(\llz) + 262‘) + ¢;

i = 4.1
1— 23y, (4.10)

Ai(ggl(\lli)+2ei)+ci
1-23p;

Clearly, since 7 — is computable, such functions f; do exist.

Hereafter, by lowest parameter principle, we will always assume that p; > p; for all i € N.

Let us define ¢, € : N — N as follows

- 1—23u;)p;s — ¢ 1—23u)p;i — ¢
£(i) = . Hi)Pi G g e(i) = | Pi)pi Gy
)\i )\z‘
Note that, in this notations, (B-10) immediately implies
9i(£(i)) = W;for i =1,2,.... 4.11)

Lemma 37. Let W € X* and W =5 1, but W #¢, 1. Suppose i > 1 is such that W =g, 1, but

W #q, , 1(i.e. i is the minimum index such that W =g, 1). Then
W > &().

Proof. First, note that, since the map 3; : G;—1 — H; is an embedding, the relation W #¢, , 1
implies that W #p, 1.

Now let W’ € (X U Y;)* be the (), ¢;)-cyclic-reduction of W over I'( H;, X U Y;). Then, since
W ~conj W'in H; and W #p, 1, we get that W’ #p, 1. Therefore, if A is a reduced disk diagram
over GG; with the boundary label W’ then, by Lemma 9, A contains an R ;-cell II connected to 0A
by a €;-contiguity subdiagram I" such that (I, I, 0A) > 1 — 23u; > n;. Therefore, by the triangle

inequality, we have

2 larf =i

) nipi — Ci
W =W = |qr] = o Mipi — G

— 2 >
1 )\Z

—26i>w —26i=£(i).

i Ai
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Remark 9. Note that, since £(i) > £(i), in the setting of Lemma B7, Lemma B2 implies |[W| >

£(i).

Definition 4.4 (i-th level data). For any fixed ¢ € N, the below described list of data we call the i-th

level data for the chain (E-6).

1. The slimness constant &, € N of I'(H;, X U Y;), where recall that Y; = ué-:le;

2. The (X U Y;, 8)-full-presentation H; = (X U Y; | F;) of H;;

1

3. The constants 0;_1, 0}, \;, ¢, €, i, Pis
4. £(i).

Note that, since the sequences (E9) are computable by our assumption, there exists an algorithm
which computes the i-the level data, i.e. there exists a (deterministic) Turing machine 7 M which,
for the input 7 € N, outputs the -th level data. Indeed, the computability of the data from parts (1),
(2) and (4) of Definition B4 is straightforward.

Let 7. M be a fixed deterministic Turing machine which, for all inputs ¢ > 1, computes the i-th
level data for the presentation (E8) of G. Suppose that ¢ : N — N is a recursive function, such that
fori € N, ¢(i) is the number of steps 7. M makes after input i before it halts. Let ® : N — N be a
function defined as ®(i) = Z§:1 ¢(i), fori e N.

LetZ : N — N be the integer valued function such that
O(Z(n)) <n<®(Z(n)+1).

In other words, if we run 7 M consecutively for inputs i = 1, 2, . . ., then after the n-th step Z(n)-th

level data will be computed but Z(n) + 1-th level data will not.

Now for ¢, n € N, in analogy with the set (B3), let us define

i 2¢; i
nRiZ{R|ReRi,HR|< (nt2) +c }

1-— 23,[14
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The motivation behind the definition of ,R; is that if a word W € X*, |[W| = n, is not trivial in
H; but is trivial in G;, then W must be trivial also in the group H;/ <, R; ». This follows from
Lemma 9.

Since, by our assumptions, the sequences (EY) are computable, the sets ,/R; are computable
too, i.e. there exists an algorithm which for input (n, ) returns ,R;. LetC : N x N — N be a
(time-constructible) function such that, for some fixed Turing machine computing the words ,R;,

C(n, 1) is the time the machine spends after the input (7, 7) before it halts. Define
Com, = max{C(n,j) | 1< j <.

The main theorem of this section is the following.

Theorem 12. If the standard parameters are sparse enough, the word problem in G can be solved
in time

@) (CnRI(n) + gk (n)nlJrv) ,

where k € N is any positive integer, n is the length of the input word from X* and v = 0 if for all

but finitely many © = 1, 'R; contains one word up to cyclic shifts, otherwise, v = 1.

Proof. For a given word W € X*, first of all, without loss of generality assume that || = £(1)

and W #¢, 1. Now, to check whether W =4 1 or not, we can apply the following procedure:

S-1. Run the Turing machine 7 M consecutively for inputs £ = 1,2,... and stop after exactly
|| steps. Suppose that, as a result, the ig-th level data is constructed, but the (ig + 1)-st

level data is not constructed, i.e. ig = Z(|W]);
S-2. Find the maximum integer index i from the interval [1, o] such that £(iy) < |[W|;
S-3. Construct the set ,R;,, where n = |W|[;

S-4. Run the (\;,, ¢y, €, 1 — 121\, i, )—cyclic-reduction algorithm with input circle o
such that lab(c) = W. Note that, in order to run this algorithm, we need the i;-th level data

and the set , R, .
Note that if W =4 1, then there is minimum jo > 1 (recall that we assumed W #¢, 1) such that

85



W =g, 1.

Claim. jo < 1ig.

Proof of the claim. First of all, we have ®(ip) < |[W| < ®(ip + 1). We have

. bydef (1 —23150)050 — 2Njo€io — € ,
f(]0> y de J0 J(;\. J0~J0 Jo >byLPP ‘I)(jo)-
J0

Therefore, since by Lemma B7 we have |[W| > £(jo), we get [|[W| > ®(jy). On the other hand,
since |W| < ®(ip + 1) and ® is an increasing function, from the last inequality we get ig + 1 > jo.

Therefore, 79 = jo. The claim is proved. J

Since, by the above claim, jo < i, and by Remark B, 77(jo) < |W], in view of the way i; was
defined, we get that jo < 7. Therefore, the equality W =¢, 1 implies W =g, 1. Thus W =4 1
if and only if W =¢, 1, hence on step S-4 the (Aiy s Ciy » €iy 5 Wiy )-cyclic-reduction algorithm returns
empty word for input W (see Remark R).

Now we are in a position to show that the time complexity estimations in the statement of the
theorem, in fact, are true. For that reason, first, notice that on steps S-1 and S-3 the procedure
spends [W| + Crn = O(Cry, + n'*g;,(n)) time. Next, since iy < |W| and since before the
step S-2 the i-th level data already was constructed for 7 = 1,2,...,79, we get that on step S-2
the procedure spends O(||W||) time. Finally, on step S-4, by Theorem [, the procedure spends
a¥(|X U Y|, Ny, ciys €6y iy ki )n'T0 = Wy n'T time, where a is a constant not depending
on G and k;, is the number of elements in R;, up to cyclic shifts. Since |[W| > £(i1) and g;, is
increasing, by (BT1) we get a¥;, n't¥ = O(g;, (n)n'™). Thus we confirmed the estimations in
the statement of the lemma.

O]

Remark 10. Note that in Theorem [, we did not put any restrictions on the relators S;,¢ = 1,2, .. .,
other then that they are recursively enumerable and make the groups H; = G;—1 * F(Y;)/ « §; »
hyperbolic. However, when instead of the word problem we consider conjugacy problem in G,
an analogue to the statement of Theorem 2 no longer holds unless the sets S; possess additional

properties. In fact, the group G, constructed in the proof of Theorem B, has the structural properties
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of the group G from Theorem 2 but, nevertheless, the conjugacy problem is undecidable in it
whenever the underlying set £ is not recursive.
However, if we restrict ourselves from the conjugacy problem to the so called G-conjugacy

problem, then the analogue of Theorem 02 holds as it is shown in Theorem I4.

Remark 11. Note that in the proof of Theorem I we, in particular, showed that the construction
of the Z(n)-th level data and the implementation of the (\;,, ¢;,, €i,, 7, )-cyclic-reduction

algorithm, whenever ,R;, is not empty, can be done in time O(C, =, + gr(n)n'*").

Theorem 13. If the standard parameters are sparse enough, then the group G from Theorem I2 is

lacunary hyperbolic.
Proof. First of all, the group G is an inductive limit of groups G, i € N, all of which are hyperbolic.
More precisely, G is the inductive limit of the following sequence

ap o
Gog— Gy —> ...

An immediate corollary of Lemma B is that, for all ¢ € N, the radius of «; : G; — G;+1, which

we denote by r;, satisfies the following inequality

by def (1 — 23/4i41)pit1 — Cis1
Ait1

(i+1)

— 261‘_;,_1 <.

Combining the last inequality with the inequality £(i + 1) < §;®(i + 1), we get 0;P(i + 1) < ;.

Therefore,
. Ky 1
lim ~* < lim ———— = lim ———— =0
Sy i 50+ 1)  iw®G+1)
hence, by Lemma [, this means that G is lacunary hyperbolic. O
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4.4 G- and H- conjugacy problems in G. Effectiveness of the G-conjugacy problem in G

The main goal of this subsection is to define the G-conjugacy problem for sequences of type
(I8) (see Definition B26) and then show that the G-conjugacy problem is effectively solvable when

the sequences (\;, ¢;, €, i, pi);~, are sparse enough (see Theorem [4).

Let G be the group defined in Subsection which also carries all the properties described

there.

Definition 4.5 (G- and H-conjugates). Let U,V € X*. Then we say that U is G-conjugate to V' in
G if either U ~conj V in G or there exists 7 € N such that U ~.o,; V in G; but U .0, V in H;.
Analogously, if there exists 7 € N such that U ~o,; V in H;, but U %05 V in G;_1, then we

say that U is H-conjugate to V in G.

Definition 4.6 (G- and H-conjugacy problems). For the presentation (6) of G the G-conjugacy
problem asks whether there is an algorithm which for any pair of input words U, V' € X, decides

whether U is G-conjugate to V' in G or not. H-conjugacy problem is defined analogously.

Let us define ( : N — N as

1 — 121N 05) pi — 2¢;
() = U 2udpi =2y,

Lemma 38. Suppose that the standard parameters are sparse enough, and U,V € X* are such that

U is G-conjugate to V in G. Then there exists i € N such that (i) < |U| + |V

CA<Z(UI+[V])
and U ~ conj VinG;, but U % conj V in H;.

Proof. If U ~¢on; V in G then the statement is obvious. Now, without loss of generality assume
that U #conj V in Go. Then there exists aminimal ¢ € N such that U ~cop; Vin G, but U #copn; V
in H;. Suppose that U’, V' € X* are the (\;, ¢;)-cyclic-reductions of U and V/, respectively.

First, let us show that ((i) < |U| + ||V|. For that purpose, let us separately consider two

different cases. The first case is when at least one of U’, V’, say U’, is not cyclically (\;, ¢;, €;,1 —
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121\;p;)-reduced. The second case is when both U’ and V” are cyclically (\;, ¢;, €;, 1 — 121\ 115)-

reduced.

For the first case, by definition, some cyclic shift U” of U’ contains a (¢;, 1 —121\;u;)-subword.

Therefore, by definition and by the triangle inequality,

(1 —121N\;pu4)p; — ¢
Ai

Ul + VI = v = L — 26> ((i). (4.12)

Now let us consider the second case, i.e. when both U’ and V' are (\;, ¢;, €;, 1 — 121\ 1;)-
reduced. In this case, there exists a reduced cyclically slender (U’, V’)-conjugacy diagram A over
Gi = H;/ <« R; » which contains an R;-cell. Let 0A = ABCD and lab(BC) = U”,lab(AD) =
V", where U” and V" are some cyclic shifts of U’ and V', respectively. Then, by Lemma IR, there

exists an essential R;-cell II in A connected to AB, BC, CD and DA by I'1, 'y, I's and 'y,

respectively, such that
1. T'y and I'y are non-empty;
2. (I,T9, BC) + (II,Ty, DA) = 1 — 121 \;u13; and

Therefore,

11+ V= 1T+ 1V = 1071+ V7] = ldrs | + llde,]

1. T, dp, ) |II] — ¢ IL, Ty, 4r,) |11 — ¢
(O Tear)IU =iy (L Pa )0 =, @.13)
A Ai
R L ]
i 1

The conclusion from (ET12) and (B13) is that if ¢ € N, U ~¢on; V in Gy, but U 0, V in H;, then

U+ 1V = <)
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Now let us show thati < Z(|U| + |[V]).
From the definition of Z(|U| + V) it follows that ®(Z(|U]| + |V]) + 1) > |U| + |V
Therefore, from the last two inequalities we get

(51_1@(1—(“[]” + HVH) + 1) + 4\€e; + 2¢; = . SbyLPP 51_1@(71) + 4)\€e; + 2¢;
1-— 121)\1/11 pi = 1— 121)\“[1,2 ’

which implies that Z(|U|| 4 |V||) = 4. Thus the lemma is proved.

An obvious corollary from Lemma B8 is the following lemma.
Lemma 39. If U %conj V in Gz(n), but U ~conj V in G, then U is H-conjugate to V in G.

Theorem 14. [f the standard parameters are sparse enough and the function f(n) o CnRI(n) is

bounded by a polynomial, then the G-conjugacy problem in G is solvable in polynomial time.

Proof. For any given words U,V € X*, by definition, U being G-conjugate to V in G means that
either U ~opnj V in G or there exists 7 = 1 such that U ~cop; V in G; but U #copn; V in H;. If it
is so, then, by Lemma BY, i < Z(n), where n = |U|| + ||V].

From what we said, it becomes apparent that in order to show that U is G-conjugate to V in G

it is enough to check if U ~on; V in G and if it is not, then for each 1 < i < Z(n) check whether
* U %#conj Vin H;, and
e U ~conj V in Gl

Now without loss of generality let us assume that U %..,; V in Gy.

Let U, V' € (X U Y;)* be cyclically (\;, ¢;)-quasi-quasi geodesic word obtained by applying
the (\;, ¢;)-cyclic-reduction algorithm on U and V, respectively. Then, since U’ and V' are
conjugate to U and V' in H; respectively, we get that U ~o,; V in H; if and only if U’ ~conj %4
in H;.

To check whether U’ ~o,; V' in H;, by Lemma I8, it is enough to check for all 3-tuples

(T,U", V"), where T,U", V" € (X v Y;)*, U", V" are some cyclic shifts of U, V and |T| <

90



(X1, 4

77

i, ¢;) (where T is defined as in Lemma [8) the equality

T7'U'T =, V", (4.14)

Clearly, since for large enough standard parameters, the word problem in (' is decidable in polyno-
mial time, then for large enough values of p; this checking can be done in polynomial time.

Now, assuming that U #..,; V in H; is already verified, in order to check whether U ~o,; V'
in G;, we can apply (), ¢, e,m)-cyclic-reduction algorithm for n = 1 — 121\;u; to find
cyclic (A, ¢, €, 1 — 121\;u;)-reductions U’ and V' of U and V, respectively, and then check
whether U’ ~,,; V' in H; or in G;. Without loss of generality assume that U’ #,,; V' in H;,
then, by Lemma 8, there exist 71,75, W € (X u Y;)* such that |11, | 72| < 2¢;, W is a subword

ofaword R € ,R; of length |[W| < A;u;, and

(W)U (MW Ty) =g, V" (4.15)

for some cyclic shifts U”, V" of U’ and V", respectively. Therefore, in order to check whether
U ~conj V' in Gy, it is enough to check equality (B13) for all mentioned collection of words
(Ty, To, W,U" ,V"). Clearly, this checking can be done in polynomial time, provided that the stan-

dard parameters are sparse enough and f(n) = C, », (n) 18 bounded by a polynomial.

4.4.1 The condition C'(TM, (¢:)7 1, (pi) 1)

Definition 4.7. If for fixed sequence (g;);2;, fixed function f5 : N — N and fixed Turing machine
T M (all are defined is Subsection E73), elements of the sequence (p;);2 ; are large enough so that

Theorem [2 and Theorem [ hold, then we say that the presentation (B-8) of G satisfies the condition

Cl (TM7 (gi)zqil? (pl);}il) :

Property 2. As it follows from the proof of Theorems [[2A and [, there exist a linear time computable

function f, : N® — N such that in order Theorem I2 and Theorem [A to hold it is enough to require
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pi = fp(6;7 )‘i)ci) €y i, @(z))for alli € N.
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Chapter 5

Proof of Theorems B, @, 8 and B

5.1 The general scheme for group constructions of Sections 872, B3, 54 and B3

The proofs of Theorems B, B, B and B, given in Sections 672, 53, 54 and B, respectively,
are constructive and the corresponding groups constructed in these sections are inductive limits of

presentations of type (&) satisfying the condition
c’ (TM7 (gi)(i)ih (Pi)?&)
for g;(n) = ni. Moreover, the presentation
GoBmia i, (5.1)

for the corresponding constructions is such that if the group G; = (X)/ « R; » is already
constructed, then the group H; = G;—1 = F(Y;)/ « S; > is defined uniformly, in the sense
that the definition of H; does not depend on specific values of . The standard parameters
(8i—1,0%, Ni, i, €, iy pi)32, are different in the corresponding constructions only in terms of their
“sparseness”’, however, since we are not interested in their specific values, we will not go into the
details of defining them, instead we will assume that they are sparse enough.

The groups G;, i = 1,2, ... in all those constructions will be defined uniformly as G; = H;/ «

R; », where
Ri = ’R'(ZHUZ’VYM(S'Zv )\iaciaeb)uiapi)v (52)

according to the definition (ZZ2Z9) in Subsection 33, Also Z; is a set of elements of H; with a

“natural” order such that u}zlYi c Z; and (N, ¢, €, i, p;) are sparse enough so that Lemma 8

guarantees that R; satisfies the small-cancellation condition C’(\;, ¢;, €;, p;, p;) and the chain (&T)
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satisfies the condition C’(TM, (:), (pi){2;) for gi(n) = ni for some fixed Turing machine
T M computing the i-th level data for (5T). Note that we will note specify the details about 7 M in
the constructions of Sections B2, B3 and 54 since what we need is actually the only fact that such
a Turing machine 7 M indeed exists.

As a conclusion of what is said in this section, in Sections B2, and B4 we will only specify

description of the following:
* Go;
e How does H; relate to G;_1;
¢ Precise definitions of Z;, U; and V; from (B2).

Theorem 15. The groups constructed according to the above described scheme have word problem
decidable in almost linear time when for all i € N, R; contains one element up to cyclic shift, and in
almost quadratic time otherwise. Also, the G-conjugacy problem with respect to () is polynomial

time decidable.

Proof. For sparse enough standard parameters, for all large enough n € N, n is much larger than

max{\;, €, ¢;, (1 — 23u;) "'} where i = Z(n), hence the function

n —

Az(n) (n + 267(n)) + %)W (5.3)

1 —23pzn)
can be computed in time O(n). Therefore, the first statement of the theorem follows directly from

Property [ and Theorem [ and the second statement follows from Property Il and Theorem [4. [

5.2 Proof of Theorem B

In this section we are going to show that for any given non-elementary, torsion-free d&g-
hyperbolic group G, there exists a lacunary hyperbolic quotient of G, denoted by G, which satis-
fies the conditions of Theorem 3.

Our approach is constructive and will be based on the scheme described in Section Bl First of

all, this means that G will be constructed as an inductive limit of a chain of hyperbolic groups of
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type (B6), that is
72
Go H1H>G1°—>H2H->.... (54)

In our construction below we will inductively show that the groups H; and G;, ¢ = 1,... are
non-elementary torsion-free hyperbolic groups. In this section, the limit of (54) we denote by G.

Let the finite symmetric set X = {931 ,:c2 ,...,zE1} be a generating set of Gy such that

9 ”0
['(Gyo, X) is 6-hyperbolic for some § € N. Let us denote X~ = {z7, 25, ..., z, ) and Xt =
{:Ul ,x2 e no} Also let us order X in the following natural way: x; 1< :Cj_l <z} < x}

if i < j, and the elements of X~ precede the elements of X, i.e., for all 7,5 € N, 33;1 < xj.
Hereafter whenever we consider an indexed alphabet X', the order of the set (X’)*! will be defined
just like it was done for X = X~ u X,

Let us consider the free group F; = F(Y') of infinite rank, where Y = {y1,ys,...} and let us
introduce an order on the set of reduced words from F' in the following natural way: for reduced
words u,v € F, we define u > v if either |u| = ||v| and u > v lexicographically (here we regard
words as vectors of letters from Y *1) or |u|| > |v|. In the analogous way, we order elements of the
free group Fy = F(X). For areduced word u € F'(Y'), we say that u is a dense word, if there exists
1 € N such that u contains at least one letter from each of the following sets {yf—rl}, {yz 1} and
does not contain any other letters.

Finally, let us introduce a partial linear order on the set £y x F5 in the following way: let u, u’
be reduced words in F; = F(X)\{1} and v, v’ be dense words in F, = F(Y)\{1}, then we define

(u,v) < (u/,0") if either |u| + |v|| < o' + [|v'] or
|u| + o] = ||| + ||| and u < o'.

Denote the i element of the set F; x I with respect to this partial order by (u;, v;). The reason
for considering only the dense words from F5> (and also the partial order) is that for dense words,
balls of finite radius with respect to the word metric have finite volume and hence, by the introduced
partial order, we will be able to effectively enumerate all the aforementioned pairs (u, v) € Fy X Fj.

(Also note that the map i — (u;,v;) is not bijective). As it will be clear from what is discussed
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below, this is important for the construction of machines 7'M and T'M,. Without loss of generality

we assume that x; and x5 are different elements of infinite order in G.

5.2.0.1 Definition of H;,, (i > 0) for G

Suppose that the non-elementary torsion-free d;-hyperbolic group G; is already constructed. Let
(ui+1,v+1) € F1 x Fy be a pair of dense word as defined above.
Case 1. (uj+1 =g, 1). In this case define H; 1 = Gj;
Case 2. (ui+1 #g; 1). In this case let us define n;41 to be the least positive integer such that
Vit+1 € F'(y1, ..., Yn;,, ) (and consequently, vi11 ¢ F(y1,...,Yn,,,—1)). Note that the existence of
n;+1 follows from the fact that v;,; is dense by definition.
Let us define G = G; = F(y1,...,Yn;,,). By Corollary B, there exists a Turing machine which
for input (Gj, 045 ujt1,vi41) outputs the pairs (u; k) and (v}, ,,1), where u}, ,vi,; € (X U

{1, Ynin })* k1 € Noare such that uiy1 = (uj,,)* and vig1 =g (vf,,)" and wj,y,0f

represent root elements of u;, 1 and v;11 in G} (i.e. E(uir1) = (uj, ;) and E(viy1) = (vj, ) in
G;). We will use the standard notation v;+1 = vi+1(Y1, - - -, Yn, +1) to emphasize that v; 1 is formed
by the letters (or, in the context of diophantine equations, by variables) y1, ..., Yn, ;-

Let (z;4+1) be an infinite cyclic group disjoint from G. Define the group HZ-OJr1 as an HNN-

extension of GG; as follows.
HY =Gy # iy tiv | G ul o tivn = 241).
Now define H as an HNN-extension of H as follows.
Hivy = (HY = F(Y1, .o Ynisy ), Sivd | S50 18141 = 2040) (5.5

Finally, define Y;+1 = {yl, ey ym+1} U {Zi+1} o {ti+1} \ {Si+1}.

Proposition 5. The group H;. 1 is a torsion-free non-elementary hyperbolic group and the identity

map id : X — X induces an embedding of G; into H; .
Proof. First of all, if H;;1 = G; then the statement follow from the inductive assumption that G;
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is a torsion-free non-elementary hyperbolic group.

Now assume that H;_; is defined by (B3). Then, since (u;, ;) is a maximal elementary sub-
group of G; * (211 and since for all g € G; * (z;11) we have g~ {u}, 1 >g N (zip1)y = {1}, by
Theorem B, H ZQH is a hyperbolic group.

Now, since (v}, ;) is a maximal elementary subgroup in F'(y1,...,Yn,,,), we get that (v} ;) is
a maximal elementary subgroup in HY,  #F (y1, ..., Yn,,,) andforallh € HY, ; «F(y1,...,Yn,,, )
we have h™1(v_ | Yh n (z;41) = {1}. Therefore, by Theorem B, H;1 is a hyperbolic group.

The fact that H;, 1 is torsion free follows from the fact that GG; is torsion free and from Lemma
4.

The part of the statement that the identity map id : X — X induces an embedding of G; into
H; 1 follows from the basic properties of HNN-extensions. See [&0].

Finally, since H;,1 contains an isomorphic copy of G; and G; is non-elementary, it follows that

H, 1 is non-elementary as well. L]
+
S‘+1t_1 8'+1t_1

oy . 3 i K3 i .

Proposition 6. The equation v 1(y; ™, ... Yn,s1 7)) = wig1 holds in Hiy . In other words,
—1 —1

Sit+1t; Sit+1t; . . . . .

Y=y Yniy " Upier IS a solution to the diophantine equation
Vit 1 (Y15 -+ s Yniyy) = Uit

in HZ'+1.

Proof. Indeed, first of all, the relations ¢, " u}_ 1 t;11 = 2!, and s} v/, 2F | imply that

1 k-1 Ik [N 1 —1
(tiUisitivn)” =t quisitivn = 241 = (251)" = (5;1108i41)l = S5 1Vit18i41

-1
- - Si+1t; .
Therefore, ti+131+117)z‘+13i+1ti+11 =v;,; "' = w1 Now, since
—1 —1 —1
Sititiyy Si+1ti 4 Si+1l;4
i+1 = Uz+1(y1 y oy Ynip )7
—1 —1
t that sl sirtbiin lution of the diophanti ti

we get that y; — vy, ooy Unier 7 Ynon is a solution of the diophantine equation
Vig1 (Y155 Yngyy) = Ui ]
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Proposition 7. If xo ¢ E(x1) in G, then x5 ¢ E(x1) in Hiy1. Also, forally € Yiy1, y ¢ E(x1) in
Hiy.

Proof. This fact immediately follows from Lemma [4. O
Proposition 8. Let U,V € X* be such that U ~con; V in Hiy1. Then U ~conj V in Gi.

Proof. Suppose that U #.o,; V in G;. Then we want to show that U #.,,; V in H.

By contradiction let us assume that U ~,,; V in H;;q. Then there exists a minimal (U, V')-
conjugacy diagram A over the HNN-extension H;; with boundary ABCD, lab(AD) = V,
lab(BC) = U. Note that since U #con; V in G;, A must contain at least one t;41- Or s;;1-

band which has its ends on different sides of ABC'D. Also, since U and V' do not contain edges

1 4+l
i+10 Yi+1

with labels from {s , it must be that all these bands are horizontal, i.e., have their ends on
AB and DC.

Next, we will show that A cannot contain horizontal bands. By contradiction let us assume that
it contains horizontal bands.

First, suppose that A contains more than one horizontal bands. In this case, let us choose edges
e1,e2 € AB and €/, ¢}, € CD such that they have labels from {sﬁl,tﬁl} and e and ey are
connected by horizontal bands to €} and €}, respectively. Additionally, without loss of generality

let us assume that there is no horizontal band between these two bands. See Figure B11.

B U C
(&), (eh).
e e?

(&) (e).
(&), (€2)
e, e
(&) (e3)
A \Y D

Figure 5.1: A with the two horizontal bands, depicted as grey areas.

Note that then (e;)_, (e})— and (e2):+, (e4); are pairs of mirroring point, respec-
tively. Therefore, the subdiagram of A bounded between (e2)y, (e1)—, (€})— and ()4

is a <lab([(el)_,(e’l)_]),lab([(eg)+,(e’2)+])>-conjugacy diagram over G’. In particular,
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lab([(e1)—, (¢})—]) and lab([(e2)+, (€5)+]) are conjugate in G}. Now, since lab([(e1)—, (¢})_])
and lab([(e2)+, (€5)+]) are (free) powers of elements from {u;, ,,v;,,2zi+1}, it follows that, in
fact, they must be freely equal. This means that lab([(e1)+, (¢})+]) and lab([(e2)—, (¢5)—]) are
also freely equal. But, since ((e1)+,(e})+) and ((e2)—, (¢5)—) are pairs of mirroring points on
0A, by Lemma D3, this contradicts the assumption that A is chosen to be slender. Therefore, A
cannot contain two horizontal bands, hence, since by our assumptions it contains at least one hori-
zontal {siﬁll, till }-band, it means that the number of such bands is exactly one.

Now suppose that A contains only one horizontal band and that only horizontal band of A
has its ends on edges e; and €}, i.e. in Figure B just neglect the bottom band. Since one of
lab([(e1)—, (€¢})—]) and lab([(€})+, (¢} )+]) belongs to Y;* ;, without loss of generality assume that
lab([(e1)+, (€})+]) € Y;*,. Then, since lab([ B, (e1)+]) = lab([C, (€})+]), we get that u_, | ~conj
lab([(e1)+, (¢})+]) in G}, which is impossible, since G} = G; = F(Yi41) and u},; € X*. A

contradiction.

5.2.0.2 Definition of G;,; (i = 0) for G

Assuming that the torsion-free non-elementary hyperbolic group H;; is already defined, G4

we define as

!
Giy1 = Hit1/ < R(Yig1, 21,02, 01y 15 Aig 15 Cin 1, €615 i1, Pie1) > -

Note that, if x; ¢ E(x2) in Gj, then, by Propositiond, z; ¢ E(x2) in H;;1, hence for sparse enough

standard parameters 5§+1, Ait1s Cit1s €it1, Mit1, Pi+1, the set of words

!
Rit1 = R(Yig1, 21,22, 011, Nit1, Cig 1, €1, it 1, Pit1)

satisfies the small-cancellation condition C'(\; 41, ¢i41, €i4+1, fi+1, Pi+1)- Therefore,
1. By Lemma PO, GG;; 1 will be non-elementary torsion-free hyperbolic group;

2. By Lemma P9, z; is not a proper power in GG; ;1. Therefore, since G;1 is a torsion-free

hyperbolic group, we get x1 ¢ E(z2) in G;41. Thus, by inductive hypothesis, G; 1 is well-
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defined non-elementary torsion-free hyperbolic group.

5.2.1 Main properties of G

Note that since the groups G; are torsion-free non-elementary hyperbolic groups, the group G is
torsion-free infinite lacunary hyperbolic group (recall that we assume that the standard parameters
are sparse enough).

From Proposition B if follows that G is verbally complete.

From Theorem [3, it follows that for sparse enough standard parameters the word problem in G
is decidable in almost linear time and the conjugacy problem is decidable in polynomial time.

Thus Theorem B is proved.

5.3 Proof of Theorem &

Let Go = (X), X = {z1,29,...,z,}, be a torsion-free non-elementary d-hyperbolic group
with respect to X. Without loss of generality we assume that E(z;) n E(z;) = {1} if i # j and
that 1, ..., x, are root elements (i.e. F(x;) = (x;) for 1 < i < n).

Let X be linearly ordered such that z; ! < xj_l

< x; < xjif1 < j. We denote the set of reduced
non-empty words of X* by F’(X). Let us enumerate the set F'(X) as F'(X) = {wi,ws,...}
where for ¢ < j, w; < w; according to the lexicographical order induced from the order on X.

Then clearly w; = x1, wy = 3. Now, based on this order of F’(X) let us lexicographically order

the set F/(X) x F'(X)\{(w,w) | w e F'(X)} and enumerate it according to that order. Let
FI(X) x FIXO\{(w,w) | we F(X)} = {(u1,01), (ug,v2) .},

where for i < j, we have (u;, v;) < (uj,vj).
As it was mentioned in Section B, in this section we are going to construct the group G from
Theorem B which will be a direct limit of a chain of non-elementary torsion-free hyperbolic groups

of the form (E8), that is

GBS bms. . (5.6)
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In this section we define H; = G;_1 for all ¢ € N and the map 3;_1 : G;—1 — H; is the identity
map.

Now let us describe how G is obtained from G;_; for ¢ € N. For that purpose by induction let
us assume that G;_; is a non-elementary torsion-free hyperbolic group (below we will show that for
G the same property holds as well). Then, there exists smallest index j; > 4 such that vj, ¢ E(u;,)
in G;_1, and the set

Z; ¥ {we X |z ¢ B(u;,)}

is non-empty. By Corollary B, (u;,,v;,) and Z; can be found algorithmically.
Now define

Gi = Gi—l/ < R(Zi7ujiaUjiv(%?)\iacia&ivuhpi) > .

Note that by Lemma [, if the standard parameters d;, \;, ¢;, €, i1;, p; are sparse enough, then the

set of words

def /
Ri = R(ZZ7 Ug;y Vs s 5@'7 Aisy Ci €4, Hi, Pz)

satisfies the small-cancellation condition C(\;, ¢;, €;, i, pi). Also note that, by the definition of
Gi, Gi = (uj,,vj,)-
Lemma 40. The following are true about G;.

1. Gj is a torsion-free non-elementary hyperbolic group;
2. Either v; € E(u;) in G; or {ui, vy = G;.
3. Foreachx € X, E(z) = (x) in G; (we assume that for G;_1 this is already shown,).

Proof. Part (1) of the statement follows from Lemma 0.

For part (2) simply notice that, by our definition of j; if j; > i then u; € E(v;) in G;, otherwise
if j; = i then v; ¢ E(u;) in G; and G; = {uy, v;).

For Part (3), first, note that it immediately follows from Lemma P9 that x is not a proper power
in G;. Therefore, since by Part (1) of the current lemma, G; is a torsion-free abelian group, we get

that E'(z) = (x). O

Proposition 9. The group G, which is defined as inductive limit of (G4)2,, satisfies the statement

of Theorem B. That is
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(i). Every proper subgroup of G isan infinite cyclic group, while G is not cyclic;

(ii). The word problem in G is decidable in almost quadratic time and the conjugacy problem in

G is decidable in polynomial time.

Proof. (1). First of all, notice that G is not cyclic, because otherwise, for some ¢ € N, GG; would be

cyclic, which is impossible, since GG1, Ga, . . . are non-elementary hyperbolic groups by Lemma B0

Now, by contradiction let us assume that G contains a proper non-cyclic subgroup K. Then,
since K is a proper subgroup, by part (2) of Lemma B0, K is abelian (even more, each finitely
generated subgroup of K is cyclic). Let us fix any non-trivial element x € K. Then in each of
the groups G; the centralizer of = coincides with E(x), hence it is cyclic. This means that in
the inductive limit G the centralizer of z is again cyclic. Therefore, since K is contained in the
centralizer of x, K is cyclic as well. A contradiction.

(i1). Second part of Proposition follows from Theorem 3. As for conjugacy problem, let us
notice that two elements of G are conjugate if and only if they are G-conjugate, hence Theorem I3

implies that conjugacy problem in G is polynomial.

Thus Theorem B is proved.

5.4 Proof of Theorem B

Let A be any finite alphabet, and let £ < A* be any recursively enumerable subset of A*.

For the two generated free group F'(z1,x2), let us denote by F'* (z1, x2) the set of words from
F(x1,z2) which do not contain the letters = ' and 25 .

Let us also fix a bijective map Ag : A* — F* (1, x2) such that Ag and A ! are computable in
linear time. Construction of such a map can be easily achieved through a standard binary encoding
of the set A*.

Let us define Gy = F* Fy F3, where Fy = F(z1,z2,23), Fo = F(y1,y2,y3), F3 = F(21, 22)

are free groups with freely generating sets Xo = {z1, 2,3}, Yo = {y1,v2,y3} and Zy = {z1, 22},

102



respectively. For the convenience in the further exposition, let us also introduce the following
notations: GO,l = I, G072 = F5 and G073 = Fj3.
Lets : F} — F5 be the isomorphism between F7 and F5 induced by the map x1 — y1, T2 — yo,

T3 — y3.

Define A : £ — X§ x Y as follows: Forall w € L,
Aw) = (Ao(w)zs, s(Ao(w))ys)-
Clearly, A in an injection. Let
A(L) = {(u1,v1), (uz,v2),...},

where the enumeration is with respect to some fixed Turing machine M, which for input 7 € N

outputs (u;, v;). Note that such an enumeration exists since £ is recursively enumerable.

As it was mentioned in Section B, in this section we are going to construct the group Gz from
Theorem B which will be a direct limit of a chain of non-elementary torsion-free hyperbolic groups

of the form (E8), that is
GoBmLae,Bms. . (5.7)
. def
More specifically, Go = F(X), where
def
X = XouYyu Zy = {w1,72,73,Y1,Y2, Y3, 21, 22}

5.4.0.1 Definition of H; ., (i > 0) for G

Assuming that G; is already constructed we define H;,; as an HNN-extension of GG;. More
precisely,

Hiy1 = (Gitip1 | wit1 =t vie1tivn). (5.8)
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Then, clearly the identity map id : X — X induces an embedding 3; : G; — H;y;. Define

Yirr = {tis1}-

!

We will show by induction that for all i > 0, H;{1 is a torsion-free, non-elementary 9;_ ;-

hyperbolic group (for some d;, ; € N such that the map i + 1 — §;_ | is computable) with respect

to the generating sets X U {¢t;4y1}and X U {t1,...,ti11}.

5.4.0.2 Definition of G; 1 (i = 0) for G,

Suppose that H; 1 is already constructed and it is non-elementary, torsion-free d; , ;-hyperbolic

with respect to the generating set X U {t1,...,¢;} for 5; +1 € N. Then, we define G;11 as follows

Gist © Hivt) < R({tis1}, 21, 22, 00410 Aisd, Cin 1, €61, i1, Pie1) >,
where A\j11 > ciy1 > €41 > [i+1 > pi+1 are sparse enough standard parameters. Denote
Riv1 = R({tiﬂ},zl,zg,52’-+1,)\i+1,ci+1,ei+1,,uz~+1,pi+1), and let R;+1 € R;+1 be any fixed
representative of R;11 (i.e. R;+1 is the set of cyclic shifts of R;1).
Note that G; 11 is generated by the image of X (which we denote by X too) under the natural
homomorphism from G; to G;4+; induced by the identity map id : X — X. We will show by
induction that for all ¢ > 0, G+ is a torsion-free, non-elementary 9;1-hyperbolic group (for some

d;+1 € N such that the map ¢ + 1 — ;1 is computable) with respect to the generating set X .

For the further exposition let us define the concept of fruncated contiguity diagrams as follows:
In a van Kampen diagram A over G; = H;/ « R; » which contains an essential cell IT and an
outer contiguity diagram I" connecting an arc ¢r of II to an arc gr of 0A, we say that I is truncated
if pr and pf. are the shortest paths in Proj(A) joining, respectively, (¢r)— and (¢r)+ to 0A.

Note that truncated contiguity diagrams are truncated diagrams according to Definition IZX.
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5.4.0.3 Main properties of the chain (E7)

(a;).

(by).

().

(o).

(d).

(€).

(f3).

Let W e (Xo u Yy u Zp)* and for some i > 1, W =g, W', where W’ is a geodesic
word in F(Hi,Xo uYyu Zyu {tz}) Then W' does not contain the letter t;jl, ie.
W'e (XouYou Zy)*. Also, if W € X} U Y| is a freely reduced word, then W is geodesic
in T(H;, Xo u Yo U Zo U {t:});

There is no ¢;-contiguity subdiagram I' of rank ¢ such that lab(¢gr) € X u Yy and
|gr|l = il R;||. Moreover, if gr does not contain an edge labeled by ¢!, then it is enough to

require |[Gr|| = ps | Rs|/2;

If a truncated e;-contiguity subdiagram I' of rank ¢ is such that ¢r is geodesic in

T(H;, XouYou Zo U {th, ..., t;}) and |Gr| = pi|Ri, then Area(T") = 0

If w e X§ uY] is areduced word, then it is a geodesic word in F(Gi, XouYyu Zyu {tz})
Moreover, if for some word v € (Xo u Yy u Zp U {t})*, u is geodesic in
F(Gi,XO uYyu Zyu {t,}) and v =g, w, then v = w (i.e. wu is freely equal to

w);

If U € X§ v Yy is areduced word which is not a proper power of another word from Gy,

then it represents an element in GG; which is not a proper power of another element from G;;

Gi1nGig = {1};

Assuming that GG;_1 is a non-elementary torsion-free §;_i-hyperbolic group with respect
to the generating set Xg U Yy U Zy, we have that H; is a non-elementary torsion-free 5;—
hyperbolic group with respect to the generating set X U {¢1,...,t;}, where ¢} is some (com-

putable) positive integer. Also, the group G; is non-elementary, torsion-free hyperbolic group.
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Clearly this properties are true for 7 = 0. Next, based on induction on ¢ we will prove that they

are true for every .

5.4.0.4 Proof of the properties (a;.1)-(f;11).

Lemma 41. Assuming that the statements (a;)-(f;) are true, the following properties hold.

(ajy1).

(biy1).

Gy

Let W € (Xo u Yo u Zy)* and for some i > 1, W =g, W', where W' is a geodesic

i+1

word in I’(HiH, XouYyu Zyu {ti+1}). Then W' does not contain the letter t;—;ll, ie.

W'e (XouYyu Zy)*. Also, if W € X 0 Yy is a freely reduced word, then W is geodesic

inT(Hiy1,XouYou Zou {tis1});

There is no €;11-contiguity subdiagram I" of rank i + 1 such that lab(¢r) € X§ v Yy and

+1

ERr then it is

lgr| = pis1l|Rix1l. Moreover, if Gr does not contain an edge labeled by t

enough to require |qr| > pri+1|Riva]/2;

If a truncated € 1-contiguity diagram T of rank i + 1 is such that ||Gp| = pit1|Ri+1

, then

Area(I') = 0;

(ciy1) If w € X§ U Yy is a reduced word, then it is a geodesic word in F(GiH,XO v Yy u

(dit1).

(€it1)-

Zy v {ti+]_}>. Moreover, if for some word w € (Xo U Yo U Zy U {tit1})*, u is geodesic in

I‘(GiH,Xo uYyu Zyu {ti+1}) and u =g, , w, then uw = w (i.e. u is freely equal to w);

IfU € X5 v Yy is a reduced word which is not a proper power of another word G\, then it

represents an element in G;1 which is not a proper power of another element from G 1,

Git1,1 N Gig12 = {1},
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(fi+1). Assuming that G; is a non-elementary torsion-free §;-hyperbolic group with respect to the
generating set Xo U Yy U Zo, we have that Hi 1 is a non-elementary torsion-free 0, -
hyperbolic group with respect to the generating set X U {t1,...,ti11}, where &, is some
(computable) positive integer. Also, the group G;11 is non-elementary, torsion-free hyper-

bolic group.

Proof. Based on the inductive assumption we will prove Lemma BT using the following scheme:
the inductive hypothesis = (ajz1) = (biy1) = (bi,1), (cit1) = (dix1) =

(eit1) = (fi+1)-

@i11). IfW =g, W and W is a geodesic word in I'(Hjy1,Xo U Yo U Zo U {ti+1}),

1

then there is a minimal van Kampen diagram A over H;.; such that 0A = pq~ ", where

lab(p) = W and lab(q) = W".

£L hence A contains

If W’ contains a letter from ¢:-! i1

i+1- then g contains an edge with label from ¢

t;—;ll (or equivalently, p does not contain edges

a t;+1-band. Therefore, since W does not contain
with labels from till) we get that the ¢;,1-bands of A must start and end on ¢. Let us consider
edges e and €’ on ¢ such that they are connected by a t;1-band and between them there is no other
edge labeled by tﬁrll. Let us denote the sides of this ¢;1-band which are not on ¢ by ¢; and ¢ as

in Figure B2. Note that since in the definition (BR) of H;;; the words u;+; and v;1; are freely

cyclically reduced and |u;11| = |vit1], we get |q1]| = |g2]. Let us also denote by ¢’ the subpath
of g between e and (e’)_ as in Figure B72.

By our assumptions, there is no edge on ¢’ labeled by tirll. Therefore, since lab(q2(¢') 1) does

+1
i+1°

not contain edges with labels from ¢ we get that the subdiagram of A with the boundary g2 (q’) !
is a diagram over G; (see Figure B2). Therefore, since by our assumptions ¢’, as a subpath of the
geodesic path ¢, is geodesic in I'( H;, Xo u Yo u Zg U {t;+1}), it is also geodesic in I'(G;, Xou Yp U
Zy). Also, since by the statement of (c;), g2 is geodesic in I'(G;, Xo u Yy U Zp) too, we get that
g2l = |lq’|- Also, since |q1| = |g2|, we get ||g1| = ||¢’|. Therefore, if we replace the subpath eq’e’
of ¢ with g1, then g will be shortened by 2. The last observation contradicts the assumption that g is

+1

geodesic in I‘(HZ»H, XouYyu Zyu {ti+1}). Therefore, it must be that W’ does not contain titts

ie. W'e (X() U )/0 U ZQ)*.

107



q1
/;\
e q’ e’ q

Figure 5.2: A: lab(p) = W, lab(q) = W, lab(e) € {t;:}. lab(e) € {tF}}.

Now let us turn to the last statement of part (a; ;). Namely, if W e X7 u Y, then W is
geodesic in I'(H;+1, Xo v Yo U Zp U {ti11}).

Suppose that W' € (X u Yy U Zg U {t;+1})* is a geodesic word in T'(H;41, Xo U Yo U Zy U
{tit1}) such that W' =g, W. Then, by the first part of (a;;1), W’ does not contain t;—ill, which
implies that W’ =g, W. By inductive hypothesis (more precisely, by (c;)), since W € X u Y,
we get that W is geodesic in I'(G;, Xo U Yy U Zp). Therefore, W =g, W' implies |[W| = |[W/||
and since W' is geodesic in T'(H;+1,Xo U Yo U Zg U {t;+1}), we get that W is geodesic in

F(HZ‘+1, X() U }/0 o Z() U {ti+1}) as well.

(b;+1). Suppose I' is a contiguity subdiagram satisfying the conditions described in the
statement of (b;41), which, in particular, means that lab(¢r) € X v Yj .

First of all, let us notice that since lab(gr) € X§ v Y, by (a;+1) we get that ¢r is geodesic in
I'(Hit1,Xo U Yo U Zo U {tit1}).

Now, let oT' = ABCD, where AB = pr, BC = {r, DC = p. and AD = gr. Without loss of
generality assume that | AB|| + ||DC/ is minimal among all contiguity subdiagrams satisfying the
conditions stated in (b;11).

Now we are going to show that I' does not contain any ¢;1-bands with both ends on AB U
BC v CD. For that purpose, let us notice that since by definition AB and DC' are geodesics, there
is no t;41-band with both ends on AB or on DC'. Also, since BC' does not contain an edge with a
label from {tir1 }, there is no ;4 1-band which ends on BC'. Also, since AB and DC are geodesics,

i+1

there is no t;1-band with both of its ends on AB or on DC' (the impossibility of such scenario is
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explained in the proof of part (a;+1)). Thus the only possible way for a ¢;1-band to have both of its
ends on AB U BC u CD is when one end is on AB and the other one is on DC.

Now assume that there are edges e and e’ on AB and DC, respectively, such that their labels belong
to {tzifl} and they are connected by a t;1-band. Suppose e belongs to [A, e | and ¢’ belongs to
[D, € ]. Then denote B’ = e_ and C' = ¢’_. See Figure B3. Then, since the labels of sides of
ti+1-bands belong to X or Y, we get that the subdiagram AB’C’D is another ¢;-contiguity
subdiagram which satisfies all the conditions put on I" in (b;11). But since |AB’| + |DC'|| <
|AB| + ||DC, this contradicts the minimality assumption on |AB| + | DC|. Therefore, there is

no t;,1-band with both of its ends on AB u BC u CD.

o)
3

Y

PrA A Pr
o
c
=

r

B/

>
a0y
O

Figure 5.3

Now let us consider the cases when I' contains a t; . 1-band with one of its ends on AD and the
other one on AB u DC' and when it does not contain any #;1-band.
From the structure of the words from R it follows that these words contain exactly one letter

from tﬁll. Therefore, since lab(AD) is a subword of some word from R;;1, we get that AD

contains maximum one edge with a label from {tirll} Hence in I there is no ¢;1-band with both
of its ends on AD. Thus the only possible ¢;;1-band in I starts on AD and ends on AB u DC as
it is depicted in Figure B4.

Below we discuss in more details the only two possible cases: Case 1 — when ¢r does not
contain an edge with a label from {t;ﬁll} and respectively I' does not contain a ¢;1-band, and Case
2 — when ¢r contains exactly one edge with label from {tlifl}

Case 1. (gr does not contain an edge with a label from {till}). In this case, clearly there
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is no t;;1-band in I which starts on AD and ends on AB u DC. Therefore, I does not contain
any t;11-band and lab(dI') € (Xo U Yo U Zp)*. Now, since the boundary of I" does not contain

t

an edge with label ¢;;,

clearly, for some 0 < j < 4, I' is a diagram over G;. Let us assume that
j is chosen to be minimal (since Gy = F} * Fb * F3, j cannot be 0). Then, clearly there exists a
reduced diagram over the quotient G; = H;/ « R; » with the boundary ¢I'. Therefore, let us
regard I as a reduced diagram over G; = H;/ « R; ». From Lemma [8 and from the structure of
the words _J,, Ry, it follows that there is no R j-cell Il in I' connected to [A, D] by a €;-contiguity
subdiagram I such that (IIo, T'o, [A, D]) > p;.

Let us choose B',C’ € [B,C] such that d(A,B’) = dist(A,[B,C]) and d(D,C") =

dist(D,[B,C]) in I'(Hj,(Xo v Yo u Zy U {t;})*. Let [A,B’] and [D,C"] be geodesics in
I'(Hj, (Xo u Yy u Zp u {t;})* joining A to B’ and D to C’, respectively. Note that, since
lab([A, B]),lab([B, B']) € (XouYyu Zy)*, by the property (a;), lab([A, B']) € (XouYou Zp)*.
The same way we get lab([D,C’]) € (Xo u Yy U Zy)*. Therefore, from the minimality as-
sumption on |[4, B]| + [[C, D]|(= lpr| + Ipf]) it follows that |[4, B]| = |[A, B]| and
I[D,C]| = |[D,C"]|, which means that we can simply assume that B = B’ and C' = C". Conse-
quently, combining this observation with Lemma I3 (note that since | Gr| = pi+1|Ri+1]/2, by LPP,
we can assume that |Gp| = \i+1(2€;41 + 2€; + 24p;| R;|) + ¢i+1, so that Lemma D3 can be applied)
and with the observation that there is no R;-cell Il in I' connected to [A, D] by a e;-contiguity
subdiagram I'y such that (IIy,I'g, [A, D]) > p;, we conclude that I" does not contain an R ;-cell.
Therefore, I is a diagram over H; = (X u {¢;}). But since JI" does not contain an edge with a label
from {t;—rl}, we conclude that, in fact, I" is a diagram over Gj_1, which contradicts the minimality
assumption on j. Since I' cannot be a diagram over Gy, we conclude that such a I' does not exist.
Thus Case 1 is proved.
Case 2. (gr contains exactly one edge with label from {t,ﬁll ). In this case, there exists exactly one
t;+1-band joining AD to AB or to DC. Without loss of generality let us assume that there is an
edge e on AD and an edge ¢’ on DC labeled by t;—:ll such that they are connected by a ¢;1-band.
Let us denote the side [e, e’+] of this ¢;11-band by ¢2. Also let us denote the diagram between g2,
gr and p[ by I'". See Figure B4.

+1

Then, since 01" does not contain an edge with label ¢;-"; , from Case 1 it follows that H [e4, D] H <

wit1||Rit1]/2. Otherwise, since I" is €;41-contiguity subdiagram as well and 0I"” does not contain
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edges labeled by tiijl, its existence is impossible as it is shown in Case 1.

Therefore, since |AD| >  pit1|Rit1], for the point D” € AD such that
|AD"|| = [pi+1|Ri+1]/2], we get that D" is between A and e_, i.e., AD” does not contain
an edge with label tz‘i+11’ and by Corollary B, we get that there is a point C” € BC such that
d(D",C") < 2Ry, ciny + 200, <®LPP ¢, 1. This means that the ¢;-contiguity subdiagram
ABC" D" satisfies all the conditions put on I, and since AD"” does not contain an edge with label

t;-;ll, we already showed that this cannot happen. See Figure B4 for visual description.

B CII Er C

? >
PrA | A Pr

| e
|
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>

A D” a D

r

+1

Figure 5.4: The case when ¢r contains an edge e with a label from 7", joined by a ¢; 1-band to pr..

(bl ;). Suppose that I" is a truncated €;1-contiguity subdiagram satisfying the conditions from the
statement of (b} ;). Now let I' = ABCD, where AB = pr, BC = gr, DC = pp and AD = p
as it was in in (b;+1) (see Figure B4).

Assume that I contains ¢;-bands with both ends on JI" for some 1 < i’ < i + 1. By (b;11),
there is no t;-band in I" with both of its ends on AB U DC. Also, since lab(gr) is a subword of a
word R; € R;, we get that it can contain maximum one end of ¢-bands, where ¢t € {t1,...,t;+1}
(more precisely, it must be that t = ¢;,1).

First, let us assume that there is no ¢, 1-band with one of its ends on AD = §r. Then all ¢-bands
of I" have their ends on AB U BC u DC, and no band has its sides on the same edge. Let e; and
eo be edges on AB and DC, respectively, such that they are ends of some ¢-bands and [A, A’] and
[D, D'] do not contain ends of ¢-bands, where A’ = (e1)_ and D" = (ez)_. Let €], e, € BC be

the other ends of these bands, respectively. Denote B’ = (¢})_ and D" = (e2)_. Also denote the
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subdiagram AA’B’C'D’'D by I". See Figure B3.

B e Gr [ C
B’ - c’
e , S
A’ I D’
A A, D
Figure 5.5

Since I'" does not contain ¢-bands, it is either a diagram over G or I' contains an R j-cell for
some 1 < j < 7. Let us consider these two cases separately.
Case 1. If the first case holds, then, since G| is a free group, we get Area(I') = 0, in which case,
since lab([A, B']),lab([D’,C"]) € X§ v Y and lab([A, D]) € Z§, we getthat A, D € [B’, ("],
but this contradicts the assumption that I' is truncated.
Case 2. Now assume that I contains an R j-cell for some 1 < j < ¢ and j is chosen to be maximal.
Then, since the sides [A, A'], [A’, B'], [B’,C’], [C", D], [D’, D] and [A, D] of I are (\;, ¢;)-
quasi-geodesic in I'(H;, Xo v Yy u Zy U {t1,...,t;}), by Lemma [9, we get that I/ contains
an essential R;-cell II, connected to [A, A’], [4’, B], [B',C’], [C’",D'], |D’, D] and [A, D] by

essential €;-contiguity subdiagrams I'y, I'p, I'3, I'4, I's and I's, respectively. See Figure B.8.
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Figure 5.6

Since |AD| = pit1pi+1, for sparse enough standard parameters we get that at least one of I';

and I's must be empty, because, otherwise, by the triangle inequality it would be that

IAD| = piv1pi+1 = 2€i41 + 2¢; + |1

which we can assume to be wrong by LPP.
Therefore, without loss of generality we can assume that I'5 is empty. Now, from Lemma I8
it follows that (II, I'g, [4, D]) < pj. Also, because of the fact that lab([A’, B']), lab([D’,C"]) €

X§ v Yy, by (bi+1), we get that

(H>F27 [Ala Bl])? (H’F47 [Cla D/]) < Pj-

Therefore, we get

(H7P17 [A7 Al]) + (H7 F37 [B/7C/]) >1- 26/)]7

which is impossible because of Lemma 3. Thus we showed that Area(I') = 0 when ¢r does not
contain an edge which is an end of a ¢-band for ¢t € {¢1,...,¢;+1}. The case when ¢r contains such
an edge can be treated in a similar way.

(c;+1). Now let us turn to the part (c;+1) of the statement. By contradiction assume that there exists
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areduced word w € X which is not geodesic in F(GiH, XouYyu Zgu {ti+1}). Without loss of
generality we can assume that w is the shortest one among such words. Then, since w is not geodesic

inT(Git1,Xo U Yy U Zy U {tis1}), there exists a word w’ € (Xo U Yy U Zo U {ti+1})" which is

geodesic in I'(Giq1, XouYou Zg U {ti41}) and [o'|| < |w] and v’ =¢;,,, w. Since w™'w’ =¢

i+1 i+1
1, there exists a reduced diagram A over (G;,1 with the boundary label w™lw’. Let us denote
0A = pq, where lab(p) = w', lab(g) = w. By (¢;), w is geodesic in I'(G;, Xo v Yo U Zo U {t;}),
hence the inequality |w’| < ||w]| implies w’ ¢ (Xo u Yo U Zp)*, i.e. w’ contains a letter from

ftz!

11 In particular, this means that w #¢g, w'.

On the other hand, since w’ is geodesic in I'(G4.1, Xo U Yo U Zo U {ti41}), there is no ¢;,-band
in A which starts and ends on p (otherwise, we will obtain a contradiction as in the proof of part

+1

(a;+1)). Also, since w does not contain any letter from {¢;7";

}, by (a;4+1) it follows that A does not

contain t;41-bands at all. Therefore, w #p,

/ . /- o ’
.., w', because, since w #g, w', if w =g, , w’ then A

would contain a t;1-band. Therefore, A contains an R; 1-cell.

Let w = wgz, where x € Xy. Denote the subword of ¢ with the label wg by ¢gg and the one
with the label x by ¢;. Since we chose w to be of minimal length with the mentioned properties,
it must be that wy is a geodesic word in F(GHl,XO uYyu Zyu {ti+1})- Therefore, 0A is a
geodesic triangle in F(Gi+1, XouYyu Zgu {ti+1}) with geodesic sides p, gg and ¢;. Therefore,
by Lemma [[9, A contains an essential R;1-cell II connected to p, go and ¢; by a system of essential

€i+1-contiguity subdiagrams I'y, I'y and I's, respectively. See Figure 5.

9o

SR
T

Figure 5.7: A : lab(qoq1) = w, lab(p) = w'.

From (b;1) it follows that (IT, T2, qo) < pi+1 and (II,T'3, 1) < pti+1. Therefore, (I1, 'y, p) >
(1= 23pi+1) — 2pi+1 = 1 — 254;41. Butsince p is geodesic in I'(Gi41, Xo U Yo U Zg U {ti+1}),

by Lemma 2, for sparse enough standard parameters, this is impossible. A contradiction.
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(d;+1). Let U € X be a reduced word which is not a proper power of any other word from Gj.
Without loss of generality assume that U is a freely cyclically reduced word. By contradiction let

us assume that for some k > 2 and W € (Xo u Yy U Zg U {tis1})*, U =¢,., WF. First of all, it

i+1
directly follows from Lemma [4 and from the inductive hypothesis (i.e. by the statement (d;)) that
U is not a proper power in H; 1.

Now, let W' € (Xo uYyu Zgu {ti+1})* be a cyclically minimal representative of W in G 1.
This means that there exists T € (XO uYyu Zyu {757;+1})* such that W =g, | TW'T~! and W’
has minimal length among such words. In particular, this means that U =¢,,, T(W')*T~1, and
W' is cyclically geodesic in F(GiH, XouYyu Zyu {ti-i-l})- Note that, since G;41 is a quotient of
H;1, we get that W is cyclically geodesic in I'(H; 41, Xo U Yo U Zg U {t;+1}) as well. Therefore,
by Lemma B and by LPP, (W’)¥ is cyclically (Ai41, ¢i+1)-quasi-geodesic in I'(H;41, Xo U Yo U
Zy v {ti+l})-

Since W' is conjugate to W in G4 and U =¢,,, W¥, there exists a (U, (W')*)-conjugacy

i1
diagram over ;. Hence there exists a cyclically slender (U, (W’)*)-conjugacy diagram over G;.
Let A be such a diagram. As before, let us denote 0A = ABCD, where lab(BC),lab(AD)
are cyclic shifts of (1W’)* and U, respectively, and lab(AB) = lab(DC') are geodesic words in
T (G'H-l; XouYou Zou{tiy1 }) Note that by (c; 1), U is also cyclically geodesic in T’ (Hi+1, Xou
Yo u Zy v {ti+1}). Therefore, by Lemma I3, A contains an essential R;1-cell, II. Let I'y,
I'y, I's and 'y be essential ¢;,1-contiguity subdiagrams connecting Il to AB, BC, C'D and DA,
respectively. Since we chose A to be cyclically slender, by Lemma I8, I's and I'y are non-empty

and

(H,FQ, BC) + (H,F4, DA) =1 =121 1541 (5.9

Also, by statement (b;+1) and (c;41) of the current lemma and by LPP, since lab(dr,) € X, it
follows that

(H, F4, DA) < Mi+1-
Combining this with (89), we get
(H, FQ, BC) > (1 — 121)\i+1ui+1) — Wiyl > 1— 122)\”1;%“. (510)
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Therefore, since W is cyclically geodesic in F(GHl, XouYyu Zygu {ti+1}), by LPP and by
Lemma 22, we get that lab(dr,) is not a subword of a cyclic shift of W’. This means that lab(gr, )

is of the form

lab(érz) = (W”)nQ7

where W” is a cyclic shift of W/, n > 1, and Q is a prefix of W”.
Let us separately consider the cases when n = 1 and when n > 1.
Before that, let us notice that by Corollary B, the Hausdorff distance between §r, and ¢r, is

bounded from above by €;11 + 2R) + 201 <YIPP 9¢, 1.

i+1,Cit1
Case 1. (n = 1). For this case, let us partition ¢r, = §1G2qs, where lab(¢1) = lab(gs) = Q. Let
us also partition ¢r, = G¢1d2g3 such that (¢1)+ and (¢2)4+ are the closest to (G1)+ and to (g2)+
points on §r,, respectively. Since lab(¢1) = lab(gs), from the observation right above Case 1 and
from Lemma P4, it follows that |¢1 ], [¢s]| < 2ui+1|II]| < mi+1Aix1[/II]. Then combining this
with (E10), we get that || g1z > (1 — 23Ai11pi+1)|1T]. But, since [W”| = | g1z and W” is a
geodesic word in F(Gi+1, XouYyu Zpu {ti+1}), this is impossible for sparse enough standard

parameters. Thus we are done with Case 1.

Case 2. (n > 1). For this case, again we partition ¢r, into three parts ¢r, = ¢1G2§3 such
that lab(G1) = lab(gs) and lab(§2) is a suffix of W”. Then, since lab(¢r,) = (W")"Q and n > 2,
we get that 1| = |g3]| > 3]da]. hence |dr,| < 3||gi|. Also, just like we showed in case n = 1,
by Lemma [, in this case also ||G1 |, |G| < 2p+1|II||. Therefore, ||Gr,|| < 6p;+1/II||. But, since
by LPP 1 — 122);1/ti+1 > 64441, we get a contradiction with (510). The case when U € Y can

be dealt in the same way. Thus we are done with this case as well.

(e;+1). By contradiction, let us assume that for some non-trivial reduced words U e X,
V e Yy we have U =g,,, V. Then there exists a reduced van Kampen diagram A such that

+1

0N = q1q2_1 and lab(q1) = U, lab(qe) = V. Since U and V' do not contain letters from {t;7

and U #¢, V, by (e;) we have that A contains an R;1-cell. Therefore, since by (c;j4+1) U and V'
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are geodesic word in F(H,url, Xou Yy u Zyu {ti+1}), by Lemma [9, A contains an essential
Rit1-cell, II. Let us assume that II is connected to ¢; and g2 by €;41-contiguity subdiagrams I';
and Iy, respectively. Then we have (I, 'y, ¢1) + (I, T'2, g2) = 1 — 23 ;1. But, on the other hand,

by (b;+1) we have that (II, "1, q1) + (I, I'2, ¢2) < 2u+1. But since by LPP we can assume

2pi1 < 1 —23p4,

we get a contradiction.

(f;+1). The fact that H; is a hyperbolic group follows from Theorem B and parts (d;11) and

(e;4.1) of the current lemma. O
Corollary 13. Suppose U € X* is a (N, ¢;, €5, 1 — 122\ p;)-cyclic-reduced word for i = Z(|U]),
and U =g, V for someV € X§ 0 Y. ThenU € X§ v Y}

Proof. This directly follows from properties (a;),(b;) and Lemma I9. ]
5.4.1 The conjugacy problem in G

Lemma 42. [fU € Xj\{1}, V € Y;"\{1}, then U is not G-conjugate to V in G .

Proof. This follows immediately from Lemma P8 and properties (b;), (c;). O

Definition 5.1 (A-pairs of words). We say that a pair of words (U, V) € X* x X™* is a A-pair if
either U is a cyclic shift of V' or for some k € N,[ € Z, U is a cyclic shift of “2 and V is a cyclic

shift of vi; or vice versa (i.e. V' is a cyclic shift of ui; and U is a cyclic shift of ”i;)-

Note that the A-pair relation is an equivalence relation.
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Lemma 43. Two cyclically reduced non-empty words U,V € X* U Y™ are conjugate one to each
other in G if and only if (U, V') is a A-pair. Moreover, if U is not a cyclic shift of V, then U is not

G-conjugate to V in G .

Proof. Assume that U and V freely reduced words which are conjugate in G. The case when
U is a cyclic shift of V is trivial. Therefore, without loss of generality assume that U is not a
cyclic shift of V. Then, by the definition of Gy, it is clear that U and V' are not conjugate in Gj.
Therefore, there exists a minimal index ¢ > 1 such that U and V are conjugate in (G;. This means
that there exists a minimal cyclically slender (U, V')-conjugacy diagram A of rank 4. If i = 0 then
the statement of the lemma follows from basic properties of free groups. Suppose that U,V are
chosen so that the corresponding index ¢ € N is minimal. Now, let us assume that ¢ > 1 and apply

induction on <.

As usual, let us denote the boundary dA of A by ABCD. Let U' = lab(BC) and

V' = lab(AD), where U’ and V' are some cyclic shifts of U and V/, respectively.

Claim 1. U is not G-conjugate to V in G .

Proof of the claim. Indeed, assume that U is G-conjugate to V' in G. Then, since by the property
(ci), U and V are geodesic words in I'(H;, X U {t1,...,t;}), according to Lemma I, we get that at
least one of U’ and V'’ must contain a (¢;, (1 — 121\;4;)/2)-subword, which contradicts to property

(by). O

By Claim 1, we get that A is a slender (U, V')-conjugacy diagram over H;. Therefore, since we
chose the index 7 to be minimal, A contains ¢;-bands. Since lab(AB) and lab(DC') do not contain
letters from {¢'}, we get that the ¢;-bands of A must be horizontal, i.e. their ends belong to [A, B]
and [D, C1.

Now let us choose an edge e; on the side AB such that lab(e;) € {t'} and lab([(e1)+, B])

+1
ti

does not contain ¢;--. From the basic properties of HNN-extensions, it it follows that there exists

an edge €} on DC such that lab(e;) € {t'} and e; is connected to €} by a t;-band. Moreover,

lab([(e1)+, B]) = lab([(€})+, C1]).
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Let us denote the side of the ¢;-band connecting (e1)4+ to (€})+ by p;1 and the side connecting

(e1)— to (e})— by ¢i. See Figure BR. Then lab(p;) belongs to either X or Y. Denote U” =

lab(py).

B U’ C
A P; lab(p,)=U"
(&) (&)
e e,1
(e 2 (el)
P,
| e - - - = = +
e, €
y - - — — - — - - - - ﬂz ————————— 4
A V' D

Figure 5.8: The cyclically slender (U, V')-conjugacy diagram A. Below it is shown that the second
t;-band, joining ey to €}, actually, cannot exist.

Let us denote by A’ the (U’, U”)-conjugacy subdiagram of A which is bounded between (e1) 4,
B, C and (e1)’,. See Figure B8. Since A’ does not contain R;-cells and ¢;-bands, we conclude
that it is a (U’, U”)-conjugacy diagram of rank j where 0 < j < 4, hence U’ is conjugate to U” in
G ;. On the other hand, since U ”€ X* or Y* and since i was chosen to be minimal, by inductive
argument on 7 we conclude that either U” is a cyclic shift of U’ (hence also of U) or U’ is a cyclic
shift of lab(q1) (this means that (U, lab(p;)) is a A-pair).

Now we are going to show that besides the considered ¢;-band, A does not contain any other
t;-band. Assume that this is not true. Then there exist edges e2 and €}, on AB and DC, respectively,
such that they have a label from {t;—rl }, and between e and e; (also between 6’2 and e’l, respectively)
there is no other edge with label from {t;ﬂ}. See Figure BR. Then it must be that ep is connected
to e}, by a t;-band. Correspondingly, define ps and g2 as we defined p; and ¢;. Then repeating the
above stated arguments we get that (lab(q1), lab(q1)) is a A-pair. The last observation implies that
either lab(p1) = lab(p2) or lab(p1) = lab(22), which is impossible by Lemma 3. Thus Lemma

is proved.

The next lemma is a stronger version of Lemma E3.
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Lemmad4. Let U € (Xou Yo u Zp)* andV € X§ O Y. Then U ~con; V in G if and only if
(U', V) is a A-pair, where U’ is any (\;, ¢;, €;, 1 — 122 ;u;)-cyclic reduction of U for i = Z(||U]|)).

Proof. Suppose that U ~¢on; V in Gz. Let us fix a (A, ¢;, €, 1 — 122);413)-cyclic reduction U’
of U. Then, clearly U’ ~con; V in Gz. Let us separately consider two cases: Case 1 — U’ is

G-conjugate to V in G, and Case 2 — U’ is H-conjugate to V in G .

Case 1. (U’ is G-conjugate to V in Gz). In case U ~copnj V in Go the statement of the
lemma is trivial. Now suppose that U +%.o,; V' in Gg. Then, by Lemma B, there exists an index
j€Nsuchthat j <iand U ~con; V in G but U .o, V in H;. Therefore, by Lemma IR, U’ and
V contain (e;, k1)- and (€5, K2)-arcs, respectively, such that k1 + ko = 1 — 122);;. Also, since
V e X§ u Yy, by property (b;), k2 < p;. Therefore, U’ contains a (¢, 1 — 122\ ;1;)-subword,
which contradicts to the fact that U’ is cyclically (A, ¢j, €5, 1 — 122\, 11;)-reduced. So we are done

with Case 1.

Case 2. (U’ is H-conjugate to V in G.). Then for some k € N, U’ ~(y,; V in Hy and
U’ #conj V in Gi_1, and consequently, there exists a slender (U’, V')-conjugacy diagram A over
Hy = (X u{t1,...,tx}) which contains at least one ¢;-band. Note that, since V' does not contain a
letter from {t,‘fl }, A must contain only horizontal ¢;-bands. Without loss of generality assume that
V e X u Yy is chosen so that A contains minimal number of horizontal ¢-bands, t € {t1,12,...}.
Therefore, by a standard inductive argument and by Lemma B3, we get that U’ and V' form a
A-pair with a label of a side of any (horizontal) ¢;-band from A, hence, since A-pair relation is an

equivalence relation, we get that (U’, V') is a A-pair. O

Lemma 45. Let U,V € (Xo u Yy U Zy)*. Suppose that U', V' € (X u {t1,...,t;})* are any
(N, ¢y €5, 1 — 122\ ;) -cyclic-reductions of U and V', respectively, where i = Z(|U|| + ||V'|). Then
U is H-conjugate to'V in G if and only if (U', V') is a A-pair and U’ is not a cyclic shift of V.

Proof. First of all, if (U, V') is a A-pair, then, clearly, U ~conj V in Gz. Moreover, by Lemma B3,
if U is not a cyclic shift of V, then U is not GG-conjugate to V', hence U is H-conjugate to V in G .
Now let us assume that U is H-conjugate to V' in G. Then there exists an index j € N such

that U is conjugate to V in Hj, but U is not conjugate to V' in GGj_1. This means that there exists
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a slender (U, V')-conjugacy diagram A over H; which contains a horizontal ¢;-band. Therefore, U
and V" are conjugate to conjugate words from X U Y. Hence, by Lemma B4 and by the fact that

A-pair relation is an equivalence relation, we get that (U’, V') is a A-pair. O

The next lemma is an obvious corollary from the structure of the words of A(A*) and definition of

A-pairs.

Lemma 46. The decision problem which for any pair of words U,V € (Xo v Yy U Zy)* asks
whether or not (U, V') is a A-pair can be strongly reduced to the membership problem for L < A*

in O(|U| + |V]) time.
The combination of Lemma B3 and Lemma B3 implies the following proposition.

Proposition 10. Suppose that U,V € (Xo U Yy u Zy)*. Then, U ~con; V if and only if exactly one
of the following holds.

1. U is G-conjugate to V in G,

2. (U, V") is a A-pair and U’ is not a cyclic shift of V', where U', V' € (Xou Yy u Zg U {t;})*

are (i, ¢i, €, 1 —122)\;;)-cyclic reductions of U and V., respectively, fori = Z(|U| + || V]).
Proof. This proposition directly follows from Lemma B3 and Lemma E3. O

Proposition 11. The membership problem for L < A* can be strongly reduced to the conjugacy
problem in G in linear time; and the H-conjugacy problem in G can be strongly reduced to the

membership problem for L < A* in almost linear time.

Proof. Indeed, it follows from the definition of A-pairs that for any w € A%, w € L if and only if
the pair of words A(w) is a A-pair. Therefore, since A(w) € Y;* x Z, by Lemma B3, w € £ if and
only if A(w) is a pair of words conjugate in G .

Now let us show the opposite side. For that let us consider a pair of words (U, V') € X* x X*.
Then one can find (\;, ¢;, €;, 1 — 122\, 11;)-cyclic-reductions U’ and V’ of U and V/, respectively,
in almost linear time, where i = Z(|U|| + |V|) (see Remark [T). Therefore, since by Lemma BE3

U’ is H-conjugate to V' in G if and only if (U’,V’) is a A-pair, by Lemma B8, the H-conjugacy
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problem in G, can be strongly reduced to the membership problem for £ < A* in almost linear

time. O

5.4.1.1 Geometry of slender G-conjugacy diagrams and time complexity of the GG-conjugacy

problem in G,

Lemma 47. Letfor some 1 € N, U, Ve (Xo U YO U ZO U {tl, ey tl})* be ()\Z, Ci, €4, 1-— 122)\@&@)-
cyclic-reduced words in F(Hi,Xo uYyu Zpu {ty,... ,ti}) and suppose U ~con; V' in G; but

U #conj V in H;. Then there exists a (U, V')-conjugacy diagram A over

G; = <X0 uYyu Zyu {tl,. . .,ti} | Rj,tJIthjvjl, 1<75< Z>

such that 0A = ABCD, lab(AD) = U, lab(BC) = V, lab(AB) = lab(DC) and for every cell
ITin A, 0l n AD, 0ll n BC # . Moreover, if 11 is an Rj-cell for some 1 < j < 1, then
|IL n AD||, |II n BC| = p;|11|. Also, if 11 is a cell with label of the form t;lujtjvjfl, then u; is

contained either in lab(Il n AD) or in lab(Pi n BC), and the same is true about v;

Proof. Let A be a reduced cyclically slender (U, V')-conjugacy diagram over G;. Let 07y =
AgByCy Dy be such that lab([Ag, Dy]) = U’ and lab([ By, Cy]) = V" for some cyclic shifts U’ and
V' of U and V, respectively. Then, by Lemma PR, there exists an R;-cell IT connected by non-empty
e;-conjugacy subdiagrams I" and TV to Ag Dy and ByCy such that (II, T, AgDy) + (IL, I, BoCy) >
1 — 121\;u;. Without loss of generality assume that I" and I are truncated. Now, since U’ and V'

are (A, ¢;, €;, 1 =122\ u;)-reduced, we get (I, T", AgDy), (I1, IV, BoCy) < 1—122\; ;. Therefore,
(I, T, AgDy), (IL, T, BoCo) > p;.
Hence, by property (b), we get that Area(T') = Area(I”) = 0.
W, W = pl R

Now the proof of Lemma B follows after applying some standard inductive arguments. O

Visually, Lemma &7 tells us that if for some i € N, U,V € (Xo u Yo U Zp U {t1,...,t;})* are
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(Nis ¢4, €, 1— 122X p1;)-cyclic-reduced words in T'(H;, Xo U Yo U Zo U {t1, ..., t;}) and U ~con; V
in G; but U #con; V in Hj, then there exists a (U, V')-conjugacy diagram A which looks like in
Figure B9, where by 11, ... II; we denoted the cells of A.

VI
M 1P Ms Mk

UI

Figure 5.9

Lemma 48. The G-conjugacy problem in G is decidable in almost linear time.

Proof. Indeed, in order to check for a given pair of words (U, V') € X* x X* whether or not U is
G-conjugate to V in G, one can first compute (\;, ¢;, €;, 1 — 122\, 11;)-cyclic-reductions U’ and V'’
of U and V, respectively, in almost linear time (see Remark [l), then check whether there exists a
(U',V')-conjugacy diagram satisfying the properties described in Lemma B7. Notice that the last
checking can be done in O(|U| + |V|) time. Therefore, the whole checking can be done in almost

linear time. O

5.4.1.2 Main properties of G

Combining Proposition [ with Lemma B8 one immediately gets the statements (//.7) and

(11.i7) of Theorem B.

Corollary 14. The membership problem for L < A* can be strongly reduced to the conjugacy
problem in G in linear time; and the conjugacy problem in G can be strongly reduced to the

membership problem for L < A* in almost linear time.
Another corollary is the following.
Corollary 15. The individual conjugacy problems in G, are decidable in almost linear time.

Proof. Let us fix an element g € G and let U € X* be a reduced word representing g. The key
observation is that since there are only finitely many words W such that (U, W) form a A-pair, it

can be checked in a fixed time whether or not (U, V') form a A-pair. Therefore, without loss of
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generality we can assume that (U, V’) do not form a A-pair. Hence, from Lemmas B3 and B3 it
follows that U ~con; V' in G if and only if U is G-conjugate to V' in Gz, which can be checked

in almost linear time according to Lemma 48.

5.5 Proof of Theorem A

In this section we are going to construct a lacunary hyperbolic group G which satisfies the

properties of Theorem B. G will be constructed as a direct limit of a chain
G mie St (5.11)

of non-elementary torsion-free hyperbolic groups of the form (B8) according to the scheme de-
scribed in Section Bl. More specifically, Gy = F(X), where X = {x1, z2}.

Let N = {ni,n9,...} < N be a fixed recursively enumerable but not recursive subset of
positive integers. Let us enumerate elements of G according to their lexicographical order as
Go = {1 = wg,u1,ug,...} and denote U = {uy,uz,...}. Let V = 1 U = {vy,vq,...} be a
disjoint union of copies of I/ with recursive enumeration such that before the next copy of a given
element u € U appears in V, all the elements preceding v already appeared in ) at least once.

Denote by P = {p1,pe, ...} the set of prime numbers indexed in correspondence with their

natural order.

5.5.0.1 Definition of H, | for G

Suppose that for ¢ > 0, G; is already constructed and it satisfies the following properties.
Al. G;is a non-elementary torsion-free d;-hyperbolic group for §; € N,
A2. Words of the form z7x2, n € Z, are not proper powers in Gj.

Below we show how to construct ;41 from G; which, in particular, preserves properties Al and

A2.
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Suppose that the set {0, , 0j,, . .., Uj, } of words from X * is such that its elements are not proper
powers in Gy, i.e. E(v;,) = (¥;,)in G; for 1 < k < i. Then define v;,,, as the element from
{vj,+1,Vj,+2, ...} of minimal index such that v;,,, does not represent the trivial element in G;.

Now define v, , as follows.

* If vj,,, commensurates with any element from {?;,,...,¥;,} in G, then define 0;,,, = 7j,,

where 1 < k < i is the smallest index such that v;,, , commensurates with ¥, in G;;

e Otherwise, if vj;,, , commensurates in G; with an element of the form x7x2, then define
Uj,,, = x7°2, where |ng| is the smallest positive number such that vj,,, commensurates in

G; with 27°x;
* Otherwise, if vj, , is not a proper power in G;, then define 0, , = vj,, 3

e Otherwise, if vj, , is a proper power in G, then define v;,, , to be a cyclically geodesic word

in I'(G;, X ) such that E(v;,, ) = {j,,,) in G;.

Define q; = p; and suppose that the set {¢1, ..., ¢;} of prime numbers is already defined such that

for1 < k,l <1, g = q; whenever 0;, = v;,. Then, define ¢;;1 € N as follows.
e If 95, , = v;, forsome 1 < k < ¢, then define ¢; 1 = gy

e Otherwise, define ¢; 1.1 = pj+1.

Define nj41 = ney1 € N, where s = #{1 < k < i | 0j, = 0;,,}. Now define ;4 =
Mi41
g, - o .
wl’“ x9. Define H; 1 as follows: If ;1 commensurates with ©;, , in G, then H; 1 = G,

otherwise H; 1 is an HNN-extension of GG;. More precisely,

Hi1 = (Gitiv1 | 6105, tiv1 = Wig1)- (5.12)

Lemma 49. H; . is non-elementary torsion-free 8, , -hyperbolic group for some ;| € N.
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Proof. Hyperbolicity of H;,; follows directly from the above mentioned assumption A2 when
combined with Theorem B, because by definition w; 1 does not commensurate with v, , .
The fact that H; 1 is non-elementary and torsion-free follows from the basic properties of HNN-

extensions, namely, by the fact that G; embeds in H;1; and by Lemma I4.

O
Lemma 50. The words {Vj,,...,0j,,,} and the words of the form x{*x2, m € Z, are not proper
powers in H; 1 (provided that this statement is true for G;).
Proof. Directly follows from Lemma [I4. 0

Lemma 51. tl‘+1 ¢ E(xl) o E(xg), 1 ¢ E(.CEQ) and T2 ¢ E(xl) in Hi+1-

Proof. Indeed, it follows from the basic properties of HNN-extensions and from the inductive as-

sumption that GG; is a non-elementary group. O

5.5.0.2 Definition of G,

!

Suppose that H; 1 is already constructed and it is a non-elementary torsion free J; , ;

-hyperbolic
group for 0;,; € N such that the map i + 1 — ¢;; is computable. Define G as follows: If

H; 1 = G;, then G;11 = G;, otherwise

Git1 = Hip1/ « R({tix1}, @1, @2, 0341, Nit1, Ci 1, €641, fhit1, Pig1) > - (5.13)

Denote R({ti+1}, 21, 2,0, 1, Xi+1, Cit1, €41, it1, Pit1) DY Rit1.

Lemma 52. For sparse enough standard parameters \i11, Cit1, €i+1, [bi+1, Pi+1, the group G4 1 is

torsion-free non-elementary 6; 1 1-hyperbolic for some ;11 € N.
Proof. Follows directly from Lemmas &1 and 0. 0
Lemma 53. For sparse enough standard parameters \i11, ci+1, words of the form x7'xo are cycli-

cally (Ni+1, ¢i+1)-quasi-geodesic in T'(H; 41, X U {tiy1}).
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Proof. Let x]" zoz|"* be an arbitrary subword of a cyclic shift of the word 7"z, where |m;| +
|ma| < |m/|. Then, since by LemmaB1l, x5 ¢ E(z1) in H;+1, by Lemma [0, either max{m;, ma} <

F(|z], 8iv1, Niyq, €51, 1) (f is defined as in Lemma BT) or

| xox " | 1, max{mi, ma} > | zox™? | — 1,

- 1 1
12)‘;4-1 24)‘;+ 1

where )\, | and ¢] , ; are such that for each n € Z, 2™ is (X} |, ¢}, ;)-quasi-geodesic in I'(H;41, X U
{ti+1}) (they can be computed according to Lemma ). Therefore, since x}" zox|"? was taken
arbitrarily, we get that "z is cyclically (2441, ¢;+1)-quasi-geodesic. Consequently, in order

Lemma B3 to be true, it is enough to require that ;1 > 24)\gJrl and ¢;11 > 1. ]

Lemma 54. For sparse enough standard parameters \;11,Ci+1,€i+1, li+1, Pi+1, N0 word of the

1 mi,mg € Z, has a (€i+1, Ni+1Mi+1)-subword with respect to the quotient

form (" zoz|"?)
Git1 = Hiz1/ €« Riz1 », and (i1, ¢iv1)-quasi-geodesic words in T'(Gi+1, X U {ti+1}) do not

contain (€41, 1 — 122X; 41 1i41)-subwords.

Proof. Indeed, the first statement follows from the fact that the words R, satisfy the small can-
cellation condition C"(\; 11, ¢i11, €41, li+1, Pi+1) (see conditions (2.1) and (2.2) in the definition

of C'(\, ¢, €, i1, p) condition). The second statement follows from Lemma 2. O

Lemma 55. For sparse enough standard parameters \i+1, Cit+1,€i+1, [hi+1, Pi+l, the words
{Vj,,..., 05, } and the words of the form x"xo are not proper powers in G; 1, provide that these

statements hold in H; .

Proof. The part about the words {7,,...,7;,,,} immediately follows from Lemma 9, because,
since the standard parameters are assumed to be sparse enough, in particular, we can assume that
pi+1 is sufficiently larger than max{|v;, |, ..., [|0; |} and then apply Lemma 9.

Now, by contradiction, assume that for some fixed m € N, the word z7"x3 is a proper power
in G;;+1. Then, there exists k > 1 and u € (X U {t;+1})* such that u is cyclically minimal in
I'(Git1, X U {tit1}) and

m k
L1 X2 ~conj U
in G;+1. By Lemma [, for sparse enough standard parameters \;;1, Ci11, €i+1, Mi+1> Pi+1, the

127



word u” is (Ai41, ¢;y1)-quasi-geodesic in T'(H; 41, X U {t;+1}). Therefore, since by Lemma B4,
any cyclic shift of z"x2 does not contain a (€1, fti+1Ai+1)-subwords with respect to the quotient
Giv1 = Hii1/ « Riy1 », by Lemma D8, we get that for some cyclic shift v’ of u, (uv/)* must
contain a (€41, 1 — 122\;411i41)-subword with respect to G;+1 = H;11/ < Riy+1 », which is

impossible because of Lemma 9. A contradiction.

O

5.5.1 Properties of G

Define
V= {01, 0jps - -}
and for all 7 € N, define
Vi = (b, € V| 0y, =y}
and
N, = {n e N |75 ~conj x(f?asg in é}
Lemma 56. For all i, m € N, words of the form v;, and x7"x2 are not proper powers in G.
Proof. Follows immediately from Lemmas B0 and BS. O

Lemma 57. Words of the form (z]"x2)™ and (x|"?x2)™, where mi,my € Z, 71,72 € {£1}, are

G-conjugate in G if and only if m1 = mg and T = 7.

Proof. If (x]"x2)™ and (z]"?x2)™ are conjugate in Gy, then clearly m; = mg and 71 = 7. Now

suppose that (27" 29)™ and (2]"2x2)™ are G-conjugate in G, but (27" 29)™ %eon; (2]222)™ in
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Go. Then there exists s € N such that (27" 22)™ ~con; (2]?22)™ in G, but (27" 22)™ *conj
(z]"*x2)™ in Hy. Since by Lemma B3, the words ("' z2)™ and (z7"?x2)™ are cyclically (A, ¢s)-
quasi-geodesic in I'(Hs, X U {ts}), and since by Lemma B4, cyclic shifts of (z]"'x2)™ and

(7™

x2)™ do not contain (eg, A\spus)-subwords with respect to the quotient Gs = H;/ < Rs »,
by Lemma PR, we get a contradiction, because Lemma tells us that in case (m’lmxg)“ ~ conj
(z]"x2)™ in G but (x7"22)™ *#eonj (x]2x2)™ in Hg, a cyclic shift of at least one of the
words (x]"z2)™ and (z]"?x2)™ contains a (1 — 121\s/1,)/2-subword with respect to the quotient

Gs = Hy/ « R », which contradicts to the assertion of Lemma B4.

O]

Lemma 58. Foralli,k e N, 7 € {£1}, 0;, is G-conjugate with (0;,)" in G if and only ifvj, = vj,

and T = 1.

Proof. If Uj; ~conj ¥, in Go, then clearly 0, = v;, and 7 = 1. In Gy the inverse is true as well.
Now assume that v;, is G-conjugate with @}k in G, but Vj; #conj @;k in GGy. Then there exists s € N
such that v, ~con; 17ka in G, but 05, #conj 6ka in H.

Without loss of generality assume that ¢ < k. By the definition of 0;, , ¥} _is not conjugate in

(;,—1 with any element from
{6]1 | 1<I<k, ’5; e ’Ejl},

hence s > k. However, by Lemma IR, if the standard parameters A, cs, €, 45, ps are sparse enough,

in particular, if p, is much larger than |7;, | and |9;, |, then it cannot happen that ¥, ~con; (0j,)7
in G, but f)ji % conj (ﬁjk)T in H,.

O]

Lemma 59. If for some i € N, n € Z, 7 € {%1}, &;, is G-conjugate to (x}x2)7 in G, then

Uy,

= (zfx2)".

Proof. Without loss of generality assume that i = min{k | 0; = 0;}.
If 9, ~conj (zTx2)” in Gy, then clearly 0;, = (2}x2)”. Now assume that ¥, is G-conjugate
with (z7z2)7 in G, but 0j, *conj (z722)” in Go. Then there exists s € N such that U, ~con;

(xV22)” in G but 0, %conj (xf2)” in H.
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If s < i, then by the definition of ¥j,, the fact that Uj, ~con; (2{22)” in G, implies that

0j, ~conj (xTx2)™ in Gy. A contradiction.

vy, = z?/xg for some n’ € Z. Therefore, by Lemma &1, :U’f’:m = (x]x2)”, which implies that

If s > i, then since by Lemma B4, any cyclic shift of the word (z]z2)” does not contain a

(€s, Asits)-subword with respect to the quotient G5 = H;/ « Rs », by Lemma IR, some cyclic

shift of the word ¥;, must contain (e, 1 — 122\,/15)-subwords with respect to the quotient G5 =

H;/ « Rs », which is impossible provided that the standard parameters A, cs, €, jis, ps are sparse

enough (in particular, if p, is much larger than |95, ).

Lemma 60. Let
wi,wy € {0, (2fw2)” | i€ Nyn€ Z, 7 € {£1}}
and w1 # wa such that w1 ~conj W in G. Then, for the group
/ 1 gt 1 o
HS = <X,t1,t2, e ,ts | tl vjltl = ZE11 T2y .« .,ts 'Ujsts = .’Els $2>,
there exists T € {t1,ta,...,ts}*™ such that

T YT = wsy in Hé,

where s is such that w1 ~con; w2 in Hg, but wi #conj w2 in Gs_1

O]

Proof. Suppose that wy # wo, then by Lemmas &7, and BY, the fact that w1 ~conj wo in é,

implies that w; is H-conjugate to ws in G. Therefore, there exists s € N such that wy ~copnj we in

Hg, but wi #conj wa in Gs_1. Therefore, by Collins” Lemma, there exists h € H such that

h™lwih = wy in Hy

such that 6(h) is minimal for all possible conjugators h. Moreover, by Britton’s lemma, 6(h) > 0,

where 0 is defined in Subsection 3.

We will prove the lemma by induction on (s, 6(h)), where we define (s1,6(h1)) < (s2,0(h2))

if either s; < sg or s1 = s9 and 8(hy) < 0(hs).
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If s = 1, then note that H_ coincides with H;, and the statement of the lemma follows from the
combination of Collins’ Lemma (see Lemma [3) with the fact that G| is a free group.

Now assume that s > 1 and for all smaller pairs (s’,0(h’)) the statement is true. Note that,
by Collins’ Lemma, there exist m € Z, hi,ho € H; such that hit;hy = h and, in particular,

O(h1),0(h2) < O(h), and either

W wihy =g, (5;,)™ and hy (2% 22)"™hy =1, we
or

hytwihy =, (ﬂfigs 22)™ and hy  (05,) " hy =m, wa.

Since by Lemma B8, the words w; and wy are not proper powers, we get that m € {£1}. Also,
note that since by Lemmas 57, B8 and B9, w1, (7;,)™ and wy, (ac({? “22)™ are not G-conjugate in
G, in case 6(h1) = 0, we get that either w; is conjugate to (0;,)™ in Hs_1 or wy is conjugate to
(m?gs x2)™ in H,_1. Analogous statement is true for the pairs (wo, (;,)™) and (ws, (m(f?sxg)m) if

0(hg) = 0. Therefore, the statement of the lemma follows from the inductive hypothesis. O

Lemma 61. Ler ¢ € N. Then for all but finitely many m € N, if the word $(ilml‘2 is conjugate with

(9,)7, € {x1}, in G, thenm e N and 7 = 1.

Proof. Assume that m € N is such that :U({i T2 ~conj Uj; in G and also without loss of generality
assume that m(fi x9 # Uj,. Then, because of Lemma B2, we get x({i x9 is H-conjugate with (0;,)7
in G. Therefore, there exists s € N such that x1" T2 ~conj (U5,)7 in Hg, but 21 T2 #conj (05,)7 in

Gs—1. Then, by Lemma B0, for the group

n

1 n
! —1~ q —1~ - q.s
H, = (X ti,ta, ..., ts | t] 05 t1 = 27" o,..., 1, V) ts = x]° z2),
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there exists 7' € {t1,ta,...,ts}* such that T is of the minimal length for which
T(5;)"T = 2™ 9 in H..

Now it is an easy exercise to see that 7 = 1 from the last inequality.

Claim 1. T does not contain subwords of the form tslt;;, where 1 < 51,89 < s.

Proof of Claim 1. By contradiction suppose that T' = Tltslt;; T5. Then, by Britton’s Lemma (see
Lemma Bf), the identities

T 15, T(xl )™ =g 1

and
’DjiT(x(f?L@)_lT_l =g 1
imply that
(Tltsl)flf)jiTltsl € <x({sl $2>
and

m _ _ Ts2
ts_legl‘lz l'Q(ts21T2) 1 € <l‘352 $2>

in H/, and on the other hand
(Tltsl)_lf)jiTltsl =H! tS_;TQJT% l’g(ts_QlTQ)_l.

Therefore, we get s; = sg and hence T' = H, T1T5, which contradicts the assumption that 7" was

chosen to be of minimal length. O

Claim 2. If | T|| > 2, then T is of the form T¢,}, for some 1 < so < s.

Proof of Claim 2. Indeed, if T' was of the form T3t,, for some 1 < sy < s, then by Britton’s
Lemma, the identity 9, T(x]* o)™ T~} =g 1 would imply that tsor ]’ zoty ! € (Uj,) in H,
which implies that tsox%’ a:gts_ol = v;,. However, the last identity contradicts the assumption that

|T| = 1 and T was chosen of minimal length. O
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Note that if |T'|| = 1, then the identity T_lfzjiT(x‘f;n:cQ)_l =g 1 can hold only for finitely
many values of m ¢ N. Hence without loss of generality, let us assume that |T'| > 2. Then, by

Claims 1 and 2, T is of the form 7' = ¢} .. . ¢!, where k > 2and 1 < s1,...,5 < s.

'FL51
Now, note that by Britton’s Lemma, for some n € N, t,, v, ts_ll = 0j,, and hence v;, = x?sl x9,
which implies that s; is defined uniquely. The same way so, ..., si are defined uniquely. Therefore,

if for some m; # m, we have

mi _
(’I’,)_I’L‘}ji’I’l(l‘({Z .TQ) 1 =H! 1
and |T'| = 1 also |7”| is minimal, then either 7" is a prefix of T or T is a prefix of 7" and 7" is
of the same form as 7. However, an application of Britton’s Lemma shows that this cannot happen.

Indeed, if without loss of generality we assume that |T”| > |T'||, then 7" = Tt; ! ... ts_k{rl. Then,

Sk+1
m

1
since T10;,T =g z] 29, we would have

mi

1 -1 4 —1 ~
t8k+111 UjJI%sk+1 = tsp Ty x2t3k+1 € <1Usk+1>
and also ¢; = ¢s,,,. However, from the definition of the elements g1, g2, ..., and from the last
m—1

identities, we get v;, = = Uj; and t,, Hx%’ :1:275;,3+ . =Hn Uj;. The last identity contradicts the
assumptions that | 77| > 2 and that 7" was chosen to be of minimal length.
Thus the lemma is proved.

O

Lemma 62. Let i € N and let ig be the smallest index such that v;, =g v;. Then, the set f/io is

infinite and the set N' \ Ny, = (NM\WNi,) U (Niy\N) is finite.

Proof. The first statement follows from the definitions of f/io and of the elements
{ﬁjlvﬁjza o}

As for the second statement, first of all, note that Lemmas B0, B3 and Bl imply that /\Nfio \N is
finite. Indeed, by Lemmas B0, B3 and B, words of the set {7;,, z]'z2} are not proper powers in G.
Therefore, ﬁjio commensurates with z7'xs if and only if 17]-2.0 ~conj T1T2 in G.

Also, since the set V;, is infinite, by the definition of the set {ni,n2...} < N we get

{fi1, 79 ...} = N. Therefore, N\, = &. Thus N A NV, is finite.
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O]

Lemma 63. Let i € N, m € Z\{0}. Let io be the smallest index such that vj, is conjugate to v,
in G. Then for all but finitely many positive integers n, (f)jz.o)"Z is conjugate to (x(iio xg)Tm in G,

where T € {£1}, ifand only if n € N and 7 = 1.

Proof. Indeed, suppose that (7, )™ is conjugate with (0;, )™ in G. Then, there exists s € N,
such that (9, )™ is conjugate with (m%o z2)"" in G,. Therefore, E((ﬁjio)m) is conjugate with

E((a:(f“ x2)™) in Gy. But since G is a torsion-free hyperbolic group and by Lemma B8, ¢, and

n n

7 ~ . . . q; .
x]" zo are not proper powers, we get that (0j,, is conjugate with {z;z2) in G5. Consequently,

Uj, is conjugate with (xzio xQ)T in G. Therefore, by Lemma B, for all but finitely many n, we get

neN.

The inverse statement follows immediately from Lemma B2. 0

Lemma 64. For any word w € X* representing a non-trivial element of G, there exists an element

v;, € V and m € Z such that u ~ conj 6;’: inG.

Proof. Indeed, by the definition of the words {;,,7j,, ...}, for each u € X*, there exists i € N
and v € X* such that u commensurates with 9, in G;. In other words, v~ tuv € E(%;,) in G;. But

since Gj is a torsion-free hyperbolic group and, by Lemma B, ¥, is not a proper power, we get that

1 1

wv € (¥j,y in G;. Therefore, for some m € Z, u ~con; o7 in

v uv € E(v;,) is equivalent to v
G.

O
Lemma 65. The word problem in G is decidable in almost linear time, however, for each g € G\{l},

the individual conjugacy problem IC P(g) is undecidable.

Proof. The decidability of the word problem in almost linear time follows from Theorem [3.

Now suppose that g # 1 in G. Then, by Lemma B4, there exist m € Z and minimal index
such that 07" is conjugate to g in G. Therefore, by Lemma B3, for all but finitely many n € N, the
question of whether or not (:vz’nxg)m is conjugate to g is equivalent to the question of whether or
not n € N. Therefore, since NV is not recursive, we get that the decision problem which for each
input n € N asks whether or not (17Zx)m is conjugate to g in G is undecidable. In particular, this

implies that IC P(g) is undecidable. O
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Chapter 6

The question of Collins

This chapter is dedicated to answering a question of Collins about the existence of finitely
presented torsion-free groups with decidable word problem that cannot be embedded into groups

with decidable conjugacy problem. We show that, in general, such groups exist.

6.1 Overview

As we know from the previous chapters, if the conjugacy problem is decidable for a finitely
generated group G, then the word problem is decidable as well. However, in general, the inverse is
far from being true (See Theorems B, B, or [26, 20, 45, &3]).

Groups on which the word and conjugacy problems have significantly different behavior at-
tracted the attention of group theorists for at least several decades. For example, if G is a finitely
generated group and H < G is a subgroup of finite index, then the word problem in G is decidable
if and only if it is decidable for H. However, it is shown by Goryaga-Kirkinskii, [33], and indepen-
dently by Collins-Miller, [21], that subgroups of index 2 of some specific finitely generated groups
have decidable (respectively, undecidable) conjugacy problem, while the groups themselves have
undecidable (respectively, decidable) conjugacy problem.

Another important type of questions about word and conjugacy problems in groups is the fol-
lowing: Is it true that every finitely generated group with decidable word problem (respectively,
conjugacy problem) embeds in a finitely presented group with decidable word problem (respec-
tively, conjugacy problem)? Both of these questions have positive answer. The answer for the word
problem is obtained by Clapham in 1967, [I8], based on the classical embedding theorem of Hig-
man (see [40]), while the analogous question for the conjugacy problem was a long-standing open
problem until it got positive answer in 2004 by a work of Olshanskii and Sapir. See [68] and also
[59].

In light of the aforementioned, a natural question about the connection of word and conjugacy

problems in groups is the following question, asked by Donald Collins in the early 1970s.
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Question 1. Can every torsion-free group with solvable word problem be embedded in

a group with solvable conjugacy problem?

This question appears in the 1976 edition of The Kourovka Notebook as Problem 5.21, [BX].
Probably, the first source where this problem was posed in a written form is [15]. For yet another

source, see [[Z].

It was mentioned by Collins in [B8] that due to an example by A. Macintyre, there exists a group
with torsions which cannot be embedded into a finitely generated group with decidable conjugacy
problem. However, the case for torsion-free groups remained open until now. Indeed, one of the
reasons why the torsion and torsion-free cases are different is based on the observation that conju-
gate elements in a group must have the same order, and since in a torsion-free group all non trivial
elements have the same (infinite) order, in case of torsion-free groups, one cannot make use of this
observation in order to answer Question 1.

In [R9], Olshanskii and Sapir showed the following theorem which gives a positive answer to

Question 1 under the stronger assumption of decidability of the power problem.

Theorem 16 (Olshanskii-Sapir, [89]). Every countable group with solvable power and order prob-
lems is embeddable into a 2-generated finitely presented group with solvable conjugacy and power

problems.

Note that as it is defined in [59], for a given group G the power problem is said to be decidable,
if there exists an algorithm which for any given pair (g, h) of elements from G decides whether
or not g is equal to some power of h in GG. The order problem is decidable in G if there exists an

algorithm which for each input g € G computes the order of g.

The main result of the current work is the negative answer to Question 1 in the general case.

Theorem 17. There exists a finitely presented torsion-free group G with decidable word problem

such that G cannot be embedded into a group with decidable conjugacy problem.

A remarkable theorem of Osin (see [B0]) says that every torsion-free countable group can be

embedded into a two generated group with exactly two conjugacy classes. In the context of this
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theorem, it is very natural to ask whether or not every torsion-free countable group with decidable
word problem (= computable group) can be embedded into a group with exactly two conjugacy
classes and with decidable word problem. A more relaxed version of this question would be whether
or not every torsion-free countable group with decidable word problem can be embedded in a finitely
generated recursively presented group with finitely many conjugacy classes.

It turns out that a direct consequence of Theorem [ gives negative answer to both of these
questions.

In fact, the decidability of the conjugacy problem for groups with exactly two conjugacy classes
is equivalent to the decidability of the word problem. Even more, as it is shown in a recent paper
of Miasnikov and Schupp [43], a finitely generated recursively presented group with finitely many
conjugacy classes has decidable conjugacy problem. Therefore, a direct corollary from Theorem 2

is the following.

Theorem 18. There exists a torsion-free finitely presented group with decidable word problem that
cannot be embedded into a finitely generated recursively presented group with finitely many conju-

gacy classes.

Proof. Just take the group G from Theorem 2. O

Remark 12. In fact, the mentioned result of Miasnikov and Schupp is true not only for finitely gen-
erated recursively presented groups, but for all recursively presented groups in general. Therefore,
Theorem IR stays true after dropping the assumption that the group in which the initial group is
embedded is finitely generated. (The exact definition of recursive presentations of groups is given

in the next section.)

6.2 Preliminaries

6.2.1 Groups with decidable word problem

Recall that a countable group G is said to have recursive presentation, if G can be presented as

G = (X | R) such that X and R are enumerable by some algorithm (i.e. Turing machine). See
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[34]. If in addition, there is an algorithm which for each pair of words (w,w’) from (X U X ~1)*
verifies whether or not w and w’ represent the same element of G, then the presentation G =
(X | R) is called computable and in case G possesses such a presentation, the group G itself is
called computable as well. Modulo some slight variances, the original definition of the concept of
computable groups is due to Rabin [63] and Mal’cev [47].

In case the group G is finitely generated (i.e. | X | < 00) computability property of G is the same
as saying that GG has decidable word problem. 1t is not hard to notice that decidability of the word
problem does not depend on the finite generating sets. From the computability perspective, the last
observation is one of the main advantages of finitely generated groups over countably generated
ones, because in case of finitely generated groups decidability of the word problem is an intrinsic
property of a group, rather than of its presentation.

However, in this paper, to keep the notations as uniform as possible, we say that G has decidable

word problem if it is given by a computable presentation.

Let G = {x1,x2,... | r1,72,...), Where {x1,x9,...} and {ri,r9,...} are recursive enumer-
ations of X and R, respectively. Then, the embedding constructions of [23] and [5Y] imply the

following theorem.

Theorem 19. If G = (x1,x9,... | T1,72,...) has decidable word problem, then there exists an

embedding ® : G — H of G into a two generated group H such that the following holds.

(1). The word problem is decidable in H;
(2). The map i — ®(x;) is computable;

(3). An element of H is of finite order if and only if it is conjugate to an image under ® of an

element of finite order in G.

6.2.2 HNN-extensions

In the proof of the existence of the group G from Theorem [ we use some group theoretical

constructions based on HNN-extensions. Therefore, in this subsection we would like to recall some
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well-known basic facts about HNN-extensions. The basics of the theory of HNN-extensions can
also be found in [40].
Suppose that A, B < H and ¢ : A — B is a group isomorphism from A to B. Then the

HNN-extension H' of H with respect to A and B (and ¢) and with stable letter t is defined as

H' = (H, t|t  at = ¢(a),a € A).

In the current text, the isomorphism ¢ will be clear from the context, hence we will simply use
the notation H' = (H,t | t At = B).

Clearly, every element i’ of H' can be decomposed as a product

n = hot hy ...t hy,, (6.1)

where ¢; € {£1},hje Hfor1 <i<n,0<j<n.
The decomposition (b1) is said to be in reduced form, if it does not contain subproduct of one
of the forms t~'g;t, gi € Aortgit ", gi € B,for1 <i < n.

Analogously, if H = (X ), then the word v’ € (X U X1 U {t*1})* given by

u = upttuit? .. tru,,

where €; € {1}, uj € (X UX ~1)*, is said to be a reduced word with respect to the HNN-extension
H' if the decomposition hot' hy ...t h,, is in reduced form, where h; corresponds to the word u;

in H.

The following well-known lemma is attributed to Britton in [20].
Lemma 66 (Britton’s Lemma). If the decomposition (B1) is reduced andn > 1, then h/ # 1in H'.

Lemma 67 (See Theorem 2.1 in [20]). Let H' = (H,t | t 1At = B) be an HNN-extension with

respect to isomorphic subgroups A and B. Then H embeds in H' by the maps h — h, h € H.

Lemma 68 (The Torsion Theorem for HNN-extensions. See Theorem 2.4 in [40]). Let H' = (H, 1 |

t~1 At = B) be an HNN-extension. Then every element of finite order in H' is a conjugate of an
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element of finite order in the base H. Thus H' has elements of finite order n if an only if H has

elements of order n.

6.3 Proof of Theorem [

In order to show the existence of G from Theorem [, first, we will construct a special countable
group G with decidable word problem, then G will be defined as a group in which G embeds in a

certain way.

Two disjoint sets of natural numbers S, So < N are called recursively inseparable if there is no
recursive set 7 < N such that S} € T and Sy < N\T'. The set T’ is called separating set. Clearly, if
two disjoint sets are recursively inseparable, then they cannot be recursive. Indeed, if, say, S; and
So are disjoint and, say, .51 is recursive, then as a recursive separating set one could simply take .51.
Nevertheless, it is a well-known fact that there exist disjoint recursively enumerable and recursively

inseparable sets. See, for example, [66].

Let us fix two disjoint recursively enumerable and recursively inseparable sets
N = {ny,ng,...} € Nand M = {my,ma,...} < N such that the maps i — n; and

i — m; are computable.

Now, for all n € N, define A,, as a torsion-free abelian additive group of rank two with basis
{amo, aml}, 1.e.

Ap = <an,0> @ <an,1>

and such that the groups A1, Ao, . .. are disjoint.

For all n € N, define the groups A,, as follows.

A, ifng NuM,
A, = Ap) € any =2ang>» ifn=neN,

Ap) < ap1 =3lano>» ifn=m;e M.
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For all n € N and m € {0, 1}, let us denote the images of a,, ,, under the natural homomor-

phisms A4,, — A, by n m.

Convention. In this text, whenever we deal with an additive group, say, A, with finite gen-
erating set, say, {ai,...,ax}, by {*a1,..., Tar}* we denote the set of formal finite sums of the
form w = )] \jaj,, where \; € Z and a;, € {a1,...,a;}, and we say that w is a word formed by
letters {+ay, ..., ay}. Note that this is the additive analogue of the central in combinatorial group
theory concept of words, where the alphabet composing the words is a set of group generators. This

is why the finite formal sums w = )’ A\;a;, we call words from {£ay,. .., tax}*.

Before moving forward, we prove the following important lemma.

Lemma 69. There exists an algorithm such that for each input n € N and w € {*an o, £an1}*, it

decides whether or not w represents the trivial element in the group A,.

Proof. Indeed, since An is abelian with generating set {Gy,dn,1}, each word w from

{£an.0, Fan1}* can be effectively transformed to a word of the form
w = )\Odn,O + )\16'1,”,1

which represents the same element in An as the initial word w, where \g, \; € Z.

Now, assuming that Ay # 0, \; # 0, in order w’ to represent the trivial element in An it must
be that n € N' U M, because otherwise, by definition, the group A,, is torsion-free abelian of rank
2 with basis {an,0, an1}-

In case n € N, by definition we have that an,1 = 2%an,0, where x is the index of 7 in N, ie.
n = ng.

Similarly, in case n € M, by definition we have that a,,1 = 3%a, 0, where x is the index of n
in M, ie. n=m,.

Now, if \g = 0 and \; = 0, then clearly w’ (hence also w) represents the trivial element in An.
Therefore, without loss of generality we can assume that at least one of A\ and A; is not 0. Then, if

we treat x as an unknown variable, depending on whether n = n, or n = m,, the equality w’ = 0
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would imply one of the following equations:

A+ A28 =0 (6.2)

or

Ao + \3% =0, (6.3)

respectively.

This observation suggests that in case A\g # 0 or A\; # 0, in order to verify whether or not
w' = 01in An, we can first try to find z satisfying (B2%) or (B3), and in case such an x does not exist,
conclude that w’ (hence, also w) does not represent the trivial element in An Otherwise, if x is the
root of the equation (B2, we can check whether or not n = n, (since N is recursively enumerable,
this checking can be done algorithmically). Similarly, if x is the root of the equation (B3), we can
check whether or not n = m,.

If as a result of this checking, we get n = n, (respectively, n = m,), then the conclusion will
be that w’ (hence, also w) represents the trivial element in An, otherwise, if n # n, (respectively,
n # mg), then the conclusion will be that w’ (hence, also w) does not represent the trivial element

in A4,

Now, for all n € N, define the group B,, as a torsion-free additive abelian group of rank 2, that

18

B, = <bn,0> S <bn71>

such that By, B, ...are disjoint.
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Now, for all n € N, define the groups B,, as follows.

i B, iftn¢g NuM,
B/ € by = 2%by0 » ifn=mn;e Norn=m; e M.

For all n € N, m € {0, 1}, let us denote the images of by, ,, under the natural homomorphism

By, — By, by by .

It follows from the definitions of A,, and B,, that for all n € N, these groups are infinite and

torsion free.

Lemma 70. There exists an algorithm such that for each input n € N and w € {ii)mo, +i)n71}*, it

decides whether or not w represents the trivial element in the group B,.
Proof. Follows from the repetition of arguments of the proof of Lemma B3Y. U

Lemma 71. The map a,o — i)n,O; ap,1 l')ml induces a group isomorphism between the groups

(an,0, Q1) = A, and <i)n70, Bn,1> =B, if and only if n € N\M.

Proof. Indeed, in case n € N, by definition, (a0, an1) = {ano)y and an1 = 2%y 0, where i is
the index of n in N. Also <l')n70, bn1> = <I.)n,0> and i)n,l = 2il.)n70. Therefore, in case n € N, the
map a0 — bn,O’ ap,1 — bn,l induces a group isomorphism between the groups {ay o, G 1) and
(bn,0s b, 1)-

In case n € N\(NV u M), the groups A,, and B,, are torsion-free and abelian of rank 2 with
generating sets {d.0,an,1} and {bn0,bn1}, respectively. Therefore, if n € N\(N U M), the
map ano — i)n,o, (p,1 i)n,l induces a group isomorphism between the groups {ay o, G, 1) and
<l')n70, bn1> as well.

Now suppose that n € M. Then, (i 0, an1) = {ano) and (by 0, bn.1> = {bno), however, by
definition, a, 1 = Sidn,o while bn,l = 21'1.)”70. Therefore, the map a, o — Bn70, an,1 — i)ml does

not induce a group isomorphism between the groups {ay, o, a1, and <l')n70, bn1> when n € M.

Now, let T' = F'(t1,ta,...) be a free group with countable free basis {1, t2,...}.

143



Denote the infinite free products Al * Al % ... and Bl * Bl * ... by *jleAn and *;‘leBn,

respectively. Then define

G = (x| Ap) % (+*_ By) * T/ « R >», (6.4)

n=1
where the set of defining relators R is defined as
R = {t;  an, ot; = bn,o | i € N}.

Define

and for all k € N, define G L as

Gro= (s Ap) = (4721 Bn) # F(ty, .. 1)/ < Ry »,

n
where the set of defining relators Ry, is defined as
Ri = {t; 'an,0ti = bn,0 | 1 < i < kY.

Then, clearly the group G is the direct limit of the sequence of group {Gk},;’ozo connected by
homomorphisms ¢, : G — Gk+1 such that ¢ are the homomorphisms induced by the identity
maps from {dn,o, an,1, i)mo, bn,l, ti|neNyjie{l,2,..., k:}} to themselfs for all k € N.

Let us denote
So={+anm, Tbym |neN, me{0,1}}
and for k € N,

Sk ={*anm, tbom, ti.. t7 |neN, me{0,1} }.
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Note that since the sets N/ and M are recursively enumerable, the groups G and G}, have
recursive presentations with respect to the generating sets Sy U {t1,to,...} and S, k € N U {0},

respectively.

Lemma 72. There exists an algorithm such that for each input w € S§ it decides whether or not
w=1in Go.

Moreover, there exists an algorithm such that for each input (w,1), w € S(’]" , 1 €N, it decides
whether or not w represents an element from <dm.70>, and in case it represents such an element, the
algorithm returns Ay, 0, A € Z, such that w = Aay, o in Go. Analogous statement remains true

when we replace ay,; o with by, o.

Proof. Indeed, these properties immediately follow from the basic properties of the direct products

of groups combined with Lemmas B9 and [70.

Lemma 73. Forall k € N U {0} and n € N, the following holds.

(i). The groups An and Bn embed into Gk under the maps induced by an m — anm and i)n,m —

bn,m form € {0, 1}, respectivley;

(ii). The group Gk+1 is an HNN-extension of the group Gy.. More precisely, Gk+1 = <Gk, tht1 |

-1 - ;
tk+1a"k+1,0tk+1 = bnk+170>'

Proof. Indeed, if k = 0, then (7) and (77) are obvious. Now, let us apply induction with respect to
k.

Suppose that for all 0 < [ < k, the statements of (i) and (i¢) are true. Then, since by the
inductive assumption, Gk is obtained from Gk—l as an HNN-extension with respect to the isomor-
phic subgroups {a, o) 2 <bnk,0>, by the basic properties of HNN-extensions (see Lemma B7), we
get that the statement of (¢) holds for Gk. Therefore, since the subgroups {an, ,0) < Gk and

<bnk 10 S G}, are isomorphic, and in the definition of Gk+1 the only defining relation which in-
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volves the letters t,ﬂl is the relation t,;ildnk 1,0tk = bnk 1,0, we get that the statement of (44)

holds as well. O

Corollary 16. If k < I, then the group G}, embeds into the group G, under the map induced by
Qnm = Gn,m, bnm — bnm forn € Nandm € {0,1}
and
>t b > e

Proof. Indeed, by Lemma [[3, the group G is obtained from the group Gr by (multiple) HNN-
extensions. Therefore, the statement follows from the basic properties of HNN-extensions, namely,
by Lemma B2

O

Corollary 17. The map a, o — i)m(), an1 i)n,l induces a group isomorphism between the

subgroups {an 0, Gn1) = A, and <l')n,0, I.)n’1> = B, ofG if and only if n € N\ M.

Proof. By Corollary I8, Go embeds in G by the map induced by a,o — ano, Gn,1 — Gn1,
i)mo — i)n,O’ bn71 — I')n,l for n € N. Therefore, the statement of the corollary follows from Lemma

(1. O

Definition 6.1 (Reduced words over ;). Let k € N. Then, for a given word w € S}, we say that w

is a reduced word over Sy if the following properties hold.

1

(0). w is freely reduced, i.e. w does not contain subwords of the form xx ™", x € S;

(1). Forall 1 < i < k, w does not contain subwords of the form ti_luti, where v € Sf is such

that u = Aay, o in GO for some A € Z;

(2). Forall 1 <1 < k, w does not contain subwords of the form twt;l, where v € & is such that

v = )\l;m,o in Gy for some \ € Z.
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Lemma 74. Forallk e N, ifw € S,;“\S,;"_l is a reduced word over S}}, thenw # 1in Gk Moreover,

w # u in Gy, for any word u € Sp_y.

Proof. Let us prove by induction on k. If k = 1, then the group Gy = <G0, t1 | tfl(znhotl = l.)n170>
is an HNN-extension of G with respect to the isomorphic subgroups {a,, o) < Gy and <i7n1,0> <
GO. Therefore, by Britton’s Lemma (see Lemma Bf), w # 1 in Gl provided that it is a reduced
word over S}

Also for any u € S, the word wu~?

is a reduced word with respect to the HNN-extension
Gl = <G0,t1 | tl_ldnhotl = 6,1170). Therefore, by Britton’s Lemma (see Lemma BA), wu =" # 1

in (G1 or, in other words, w # u in G.

Now assume that £ > 1 and w € §;\S}_; is a reduced word over S;. Also, suppose that the
statement of the lemma is true for all [ < k. Then, first of all, note that from the definition of the
reduced words over S it follows that if v is a subword of w such that v € S}, then v is a reduced
word over S ;. Consequently, by the inductive hypothesis, if t;lutk (or tkutgl) is a subword of
w such that u € S, and u represents an element from the image of Ank (or Bnk) in Gk, then
u € S;. However, this contradicts the assumption that w is a reduced word over Sj. Therefore,
since Gj, = <Gk,1,tk | t,;ldnhotk = l}nk,0> is an HNN-extension of G_; with respect to the
isomorphic subgroups {(a,, o) = Ank < Gj_p and (b, 0) = Bnk < G, we get that if w is
a reduced word over S}, then w is a reduced word over this HNN-extension. Hence, by Britton’s
Lemma, we get that w # 1 in Gk Similarly, for any © € Sj, again by Britton’s Lemma, we get that

wu~! # 1in Gk or, in other words, w # w in Gk ]

Lemma 75. There exists an algorithm such that for each input (k,w), k € N u {0}, w € S}, it

decides whether or not w = 1 in Gk.

Proof. Let (k,w) be a fixed input. Without loss of generality assume that w is a freely reduced
word in S}!.

If k = 0, then one can apply the word problem algorithm for the group Go = (8§). See Lemma
2.

Otherwise, if k& > 1, for each k1 < k such that w contains a letter from {tkl,t,;l}, do the

following: Find all subwords of w which are of one of the forms t,;llutkl or tklvt,;l, where u, v €

147



Sy and u = )\dnkpo, v = )\l.)nkpo in GO for some A\ € Z. (By Lemma [[2, subwords of these form
can be found algorithmically.) Then, if, say, a subword of the form t,;ll uty, is found, replace it with
)‘i)nkl 0. Thanks to the identity t;ll Ay, 0tk = )‘i’nkl .0, the newly obtained word is equal to w in
G} Then repeat this procedure on the newly obtained word until there is no more subwords of the
mentioned forms. Let w; be the word obtained as a result of this procedure. Then, by Lemma [74,
either wy € S or for some ko > 1, wy € SZ‘O\SZ‘O_I. Then, in the last case, by Lemma 74, w is
a reduced word over S,:‘jo. Also in the first case (i.e. when wy € §§), w1 = 11in Gk if and only if

wy = 11in Gy, hence by Lemma [[2, in this case, the identity w; = 1 can be checked algorithmically.

In the second case, by Lemma [74, w; # 1 in Gy.

Lemma 76. The word problem in G is decidable with respect to the presentation (B4).

Proof. Suppose that w is a finite word with letters from
Sk ={+anm, +bom, tit,.. t7 |neN, me{0,1}},

where k is some natural number. Also suppose that w represents the trivial element in G. Then,
since (3 is a direct limit of the groups {Gi}l‘?';l, there exists a minimal integer N > 0 such that w
represents the trivial element in Gn.

We claim that N < k. Indeed, if N > k, then since N was chosen as the minimal index such
that w = 1in Gy, we getw # 1lin G}.. However, by Corollary [, G}, embeds into Gy under the

map induces by
Qp,m = Qpm and £ — 1, ...t — tg, forn e N,m e {0, 1},

which implies that if w # 1 in Gp, then w # 1 in Gy. A contradiction.

Thus, if w € S represents the trivial element in G, then it represents the trivial element in Gr
as well. In other words, in order to check whether or not w represents the trivial element in G it
is enough to check its triviality in G}, Therefore, since for each w € S* one can algorithmically
find (the minimal) k& € N such that w € S}, the decidability of the word problem in G follows from

Lemma [3. O

148



Lemma 77. The group G is torsion-free.

Proof. First of all, notice that by the properties of the groups Ak, By, k € N, and by the basic
properties of direct products, the group G is torsion free.

Now, suppose that v € S* is such that it represents a torsion element of G. Then, since G is a
direct limit of the groups {Gz};‘il there exists k£ € N such that v € S} and u represents a torsion
element in G, as well. Since G}, is obtained from Gy by multiple HNN-extensions, then, by Lemma

BR, (7}, is a torsion free group. Therefore, u represents the trivial element in Graswellasin G. O

Now suppose that  : G — Gisan embedding of the group Gintoa finitely generated torsion-

free group G such that the maps

o1 (n,m) — ®(anm), ¢2: (n,m)— ®(by ), and g3 : n — D(t,),

where n € N, m € {0, 1},
are computable, and G has decidable word problem. Then the next lemma shows that the group G
has the desirable properties we were looking for.
Lemma 78. The group G cannot be embedded in a group with decidable conjugacy problem.

Proof. By contradiction, let us assume that G embeds in a group G which has decidable conjugacy
problem. Then, for the purpose of convenience, without loss of generality let us assume that Gisa

subgroup of the group G.

Below we show that the decidability of the conjugacy problem in G contradicts the assumption

that A/ and M are disjoint and recursively inseparable.
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Let us define C < N as
C = {neN| ®(ano) is conjugate to <I>(l')n,0) in G}.

Then, the decidability of the conjugacy problem in G implies that the set C is recursive, because,
since the group G has decidable conjugacy problem, and since by our assumptions, the above men-

tioned maps ¢1, ¢2 and ¢3 are computable, for any input n € N one can algorithmically verify

whether or not ®(a,, ) is conjugate to ®(by, ) in G.
Therefore, since for groups with decidable conjugacy problem one can algorithmically find
conjugator element for each pair of conjugate elements of the group, we also get that there exists a

computable map
f:C—G
such that for all n € C we have
F(n) 7' ®(dn,0) f (1) = ®(bno).

For n € C, let us denote

f(n)=gneqG.

Now let us define
A={neC|g, ' ®(an1)gn = ®(bn1)} S N.

Since the word problem in G is decidable, the sets C is recursive and the maps ® and f are com-

putable, we get that the set A is a recursive subset of N. Also since the following identities

. . . . 1. . )
ap; 1 = QZCLniﬂ, bni,l = Qani’() and ti Cthoti = bn%o, for i € N,
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hold in G, we get that in G the following identities hold

i

B(an,1) = P(ang0)2, ®(bns 1) = P(bny0)%
and

D(t;) " D (a1, 0)D(t;) = B(bn, 0) forall m; € N.

Therefore, we get that

N c A

On the other hand, Corollary 7 implies that for any n € M, the pairs of elements

(®(in,0), P(bno)) and (D(in,1), P(bn1))
cannot be conjugate in G by the same conjugator. Therefore, we get that

AnM=¢.

Thus we get that N' < A and A n M = ¢, which implies that A < N is a recursive separating

set for N and M, which contradicts the assumption that A/ and M are recursively inseparable.

Finally, the embedding @ : G — G with the prescribed properties exists, thanks to Theorem 9.

Therefore, the group G with the above mentioned properties exists. Also by a version of Higman’s

embedding theorem described by Aanderaa and Cohen in [0], the group G can be embedded into

a finitely presented group G with decidable word problem. By a recent result of Chiodo and Vyas,

[I6], the group G defined this way will also inherit the property of torsion-freeness from the group

Clearly, since G cannot be embedded into a group with decidable conjugacy problem, this prop-
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erty will be inherited by G. Thus Theorem 1 is proved.
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Appendix A

Appendix

A.0.1 Proof of Lemma M

LetU,V,Ty,T5, L, A\, c, m,n be defined as in the statement of Lemma [IT.
Let us assume that

L<M

< . Al
D (A.)

Then in the Cayley graph I'(G, X)) there exists a rectangle ABC'D such that lab(AB) = T1,
lab(BC) = U™, lab(CD) = T and lab(AD) = V™. Since the sides BC and AD are (), ¢)-quasi-
geodesic and |11, | 72| < L, by Corollary B, we get that the Hausdorff distance between BC' and
AD is bounded from above by L + 2R, . + 26. Moreover, by Corollary 8, for any point 0 € BC'
such that its distance from B and C'is more than L + R) .+ 2§, we have dist(o, AD) < 2R . +20.

Let us fix the points B, C’ € BC such that
lab(BB') = lab(C'C) = AL+ R +20)+e)/|Ul]+1 (A2)
Note that then d(B, B’),d(C,C") > L + Ry . + 26 and

2(2[(A(L + Ry + 20)) + ¢)/|U|[] + 1)

ANL | 4MRj. + 80 +2c AL "
< + ) +2 < 224 ‘X‘Q Aet20+ V]| A3
B ] B (&-3)
by (BE) gm + |X|2RA,C+26+HVH < 27m
b 3 3

Following Olshanskii, [53], we call a point on C'D a phase vertex, , say O, if lab(BO) is a power
of U. Correspondingly, we call a point on AD, say O’, a phase vertex, if lab(AQO'") is a power of V.
Since B’C’ is contained in the (2R . + 2§)-neighborhood of AD, for each phase vertex O € B'C’

there exists a phase vertex O’ € AD such that d(O,O0’) < 2Ry . + 2§ + |V/|. This follows from
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Lemma @ and from the simple observation that the set of phase vertices on AD is a |V |-net.

By (A7) and (A3) we get that the number of phase vertices on B'C’ is greater than
| X \QRM”‘S*HVH (recall that X is a symmetric set). Therefore, by the pigeonhole principle, there
exist at least two phase vertices O1, 02 € BC and two phase vertices O], 05 € AD such that
d(O1,01),d(02,0%) < 2Ry . +20+ ||V and lab(O10}) = lab(O204), where by lab(O,0/) and
lab(020}) we mean the labels of some geodesic paths joining O; to O} and O to O, respectively.

Denote @@ = lab(010]) = lab(O20%). Then we have that for some integers mg and ny,
QU™ Q =g V™. On the other hand, T} =g U™ QV™, where the integers my, n; are such
that lab(BO;) = U™ and lab(O} A) = V™. But this means that TlUmoTl_1 =g V™. Therefore,
since every element of a hyperbolic group is contained in a unique maximal elementary subgroup
(see [B3]), TWUT, Land V are contained in the same subgroup E (V). The same way 15U T, le
E(V).

In case U =g V, by the properties described in the beginning of Section 2, the fact that
TUT ' € E(V)(= E(U)) implies that T} € E(V)(= E(Ty)). The same way T € E(V)(=
E(U)). Also, since V™ is a label of a subpath of DA, as it follows from the above described, we
get that the sign of ng coincides with the sign of n. Therefore, T1,T> € E*(U) for n > 0 and

Ty,T, € E=(U) forn < 0.

A.0.2 Proof of Lemma

Since A is minimal and contains an R-cell, by Lemma [9, it must contain an essential R-cell.
Let us consider an essential R-cell IT in A, connected to AB, BC, C'D and DA by contiguity
subdiagrams I'1, I'o, I's and I'y, respectively. Then, in general, our diagram A looks like in Figure
AT, with a possibility that some of the contiguity subdiagrams I'y, I'9, I's and Ty, in fact, are empty

(i.e. do not exist).
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A Az DZ D

Figure A.1: lab(AB) = lab(DC') are geodesic words and lab(BC'), lab(AD) are cyclic shifts of
U and V, respectively.

Proof of Part (1) of Lemma 8.

First of all, by contradiction assume that at least one of I'y and I'y is empty. First we will
consider the case when just one of them is empty and then, separately, the case when both of them

are empty.

Case 1.1. (Exactly one of I's and T'y is empty).
For this case, without loss of generality assume that I'y is empty. Then our conjugacy diagram A
would look like in Figure B72.

B B,

P

Figure A.2: Iy is empty.
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Since lab(BC') = U is a cyclically (A, ¢, e, 1 — 121\ p)-reduced word, we get that
(IL T2, BC) < 1 — 121\ (A.4)
Therefore, since II is an essential cell, meaning that Zle (I1,T;, 0A) > 1 — 23, it must be that
(IL,Ty, AB) + (I, T3, CD) > (121X — 23)p > 98\ . (A.5)

In particular, at least one of I'; and I's is non-empty. In fact, we claim that neither one of I'y

and I's is empty.

Claim. Neither one of I'y and I's is empty.

Proof of the claim. First of all, without loss of generality assume that I'; is non-empty.
Now since A is a slender (U, V')-conjugacy diagram, it must be that d(A, B) < d(A, Cy). For
the next chain of inequalities, in case I's is empty, we will simply assume d(D}, C}) = 0. Thus we

have

d(A7 B) :d(A’ Al) + d(Ala B) < d(A’ Cl)
<d(A, Al) + Cl(Al, Cl)
<d(A, Ay) + d(Ay, AY)
(A.6)
consequently, since d( A, D}) + d(C%, C1) < 23u|1I|, we have

d(A, B) <d(A, A1) + € + d(D7, C3) + 23u|11] + €.

Therefore, d(A1, By) < d(A1, B) < d(D}, C%) + 23u|1I|| + 2e. Combining this with the inequality
LAY, Bi]| < A(d(A1, By) + 2€) + c, we get

143, Bl -«

3 —2e < d(Al,Bl) < d( /lvcé) + 23”HHH + 2e.
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Now, in case I's is empty, i.e. if d(D7, C%) = 0, we also have

|[AL, Bi]| = T — 2311 — |[B5, ]|
> (1= 23 )T — |[B5, C1|
> (1= 23u) [T — (1 — 1212u)[TT], by (&3) (A7)

= 98Au|II|

> A(4e + 23|11 + ¢, by LPP.

From (A7) it follows that d(A;, B1) = 23u|II| + 2¢. Therefore, d(A, B) > d(A, A1) +
d(A1, By) = d(A, A1) + € + 23u||II]| + €, but this contradicts (B-6). Therefore, in order not to have

contradictions, I's have to be non-empty. O

Note that

d(A1, D1) < d(Ay, A7) + d(Ay, DY) + d(Dy, Dy)

< 2e + 23p|11].

Therefore, since d(A, B) = d(D, C) and since by the property of cyclically slenderness, d(A, B) <
d(A,C),d(D,C) < d(D,B), we get

|d(B, A1) — d(C, D1)| < d(A1, D1) < 2€ + 23u[11|. (A8)

Also, since d(A, B) < d(A, Bs), we get

d(B1, B) < d(Bi, B2) < d(B1, B}) + d(B}, B}) + d(B), Ba) < 2¢ + 23|11 (A.9)

Analogously, we get

d(Cy,C) < d(Ca,C1) < 2e + 23|11 (A.10)
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After combining inequalities (A-R), (A9) and (AT0), we get that
|d(A1, By) — d(D1, Ca)| < 2(2¢ + 23| T]) = de + 46u[11].

Moreover, since lab(AB) = lab(DC'), we get that lab(A;B;) and lab(D1C52) have a common

subword of length at least max { | [A1, B ]

[D1,C1]|} — (4€ + 46|/11]|). We will show that this

is impossible.
Assume that it is possible. Then there exist O1, 02 € [A1, B1] such that lab(O102) is also a

subword of lab(D;C>) and
101,021 = max {[[As, Bull, [Py, 11} — (de + a6uTT)). A1

In light of (B3), without loss of generality we can assume that |[A], B{]| = 49Au||II|, which, by
(A1), implies that

[[01,02] | = 49Ap|T1|| — (4¢ + 464 T1]). (A.12)

Now note that, by Corollary B, there exist O}, O} € [A], B{] such that d(O1, 0}), d(O2, 0}) <

€ + Ry + 20 < 2e. Therefore, by the triangle inequality, we have

|01, 05]| = [[O1, 02]|| = 2(e + R + 26)
= 49\ p||TL]| — (4e + 464 TT]) — 2(2¢)

by (BT2) > 2u|I1|, by LPP.

The last inequality contradicts Lemma 4. Therefore, we got a contradiction, which means that we

are done with Case 1.1.

Illustration. For the sake of clarity of the above arguments, let us consider the following
diagram: let us consider a (U, V)-conjugacy-diagram A which is a copy of A with A = ABCD
and all points and subdiagrams inside have the same notations but with bar and let us attach this

diagram to 6 along the sides DC and AB. Let us denote the new diagram obtained this way by A’.
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See Figure A73.

C. C(=B) B d
I { \ I { T
G \ B, ﬁ B & \
G c G
n rs|r, n rs
D D. bifp——D
J = J
D(=A) )

Figure A.3: A’: in the figure depicted the case when O; = D; and Oy = Cj.

Case 1.2. (Both I'; and T'y are empty).
In this case the (U, V')-conjugacy diagram A looks like in Figure BA=4.

Figure A.4: I'y and I'y are empty.

The emptiness of I'y and I'y implies the following estimation of the lengths of arcs [ B}, C] and

[D, AL]: By, C4]||, [[Df, ALl < 23u|II|. Therefore, from the cyclically slenderness of A, it
follows that

< d(A, Ay) +d(Ay, A)) + d(A}, D)) + d(D}, Dy) + d(D;,C)

< 23u|II) + 2¢ + d(D1, C).
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Therefore, we get that d(A1,B) — d(D1,C) = d(D,D;) — d(A, A1) < 23p|II]. And
from the symmetric arguments, we obtain |d(A, A1) —d(D,D;)| < 23p|II|. Analogously,
|d(B, B1) — d(C,C2)| < 23u|II|. The rest is just a repetition of arguments of Case 1.

Thus the conclusion from Case 1 and Case 2 is that, in fact, I's and I'4 are non-empty.
At this point we already showed that I'; and I'y must be non-empty, i.e. we are done with the first

part of the lemma. Thus the part (1) of the lemma is proved.

Now we are in a position to show the parts (2) and (3).

Proof of Parts (2) and (3) of Lemma P8.

First of all, note that since IT is an essential cell, i.e. >, (I[,T;,0A) > 1 — 23y, part (2)
immediately follows from part (3). Therefore, it is enought= to prove the statement of part (3).

To that end, let us first consider the case when at least one of I'; and I's is empty. If both of I';
and I's are empty, then there is nothing to prove for part (3), and part (2) is also true in that case,
because II is an essential cell. Therefore, let us separately consider two cases: when exactly one of

I'y and I's is empty and when both of them are non-empty.

Case 2.1. (Exactly one of I'; and I''3 is empty).

Ci c
|
@
n
D;
-\
D

Figure A.5: I'3 is empty, but I'; is not.

For this case, without loos of generality let us assume that I'; is non-empty and I's is empty.
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See Figure B3. Then, since, by cyclic slenderness property, we have
d(D,C) < d(Ds,C1) < d(Ds, D) + d(D5, C}) + d(C}, C1) < 2¢ + 23|11

and d(A1,B1) < d(A,B) = d(D,(C), we get that d(A1, B1) < 2¢ + 23u|II|. But also, since
lab[ A}, B}] is a (), ¢)-quasi-geodesic word in I'(H, X ), we have that

|[AL, B1]| <Ad(A], BY) + ¢ < A(d(A1, By) + 2€) + ¢

<A(23p|II| + 2€) + ¢ < 29 u|II| by LPP.

Thus we are done in the case when at least one of I'; and I's is empty, i.e with Case 2.1.

Case 2.2. (Both I'; and I'3 are non-empty).
Since we already showed that I'; and I'y are non-empty, this case is equivalent of saying that all I';,
i =1,2, 3,4, are non-empty, that is the case depicted in Figure Al

For this case, by contradiction, assume that max{(II,T';, AB), (I, T's, CD)} > 49\p.

Now, since A is cyclically slender, we get that d(B, A) < d(B, Az). Therefore,
d(A1, A) < d(A1, Ap) < d(Ar, A4) + d(A}, Ay) + d(Ab, As) < 26 + 23uT1].

The same way we get that d(B, By),d(C,C2),d(D,D1) < 2e¢ + 23u|II||. Therefore, since
d(A,B) = d(D,C), we get that |d(A1, B1) — d(D1,C2)| < 2(2¢ + 23u|II|). Moreover, this
observation, combined with the fact that lab(AB) = lab(DC), implies that lab([ A1, B1]) and
lab([ D1, C2]) have a common subword of length at least max{||[A1, B1]|, |[D1,C2]|} — 2(2¢ +
23p[|TI] ). But this is exactly a situation which we discussed while dealing with Case 1.2. Moreover,
there we showed that this case is impossible if max{(II,I';, AB), (I, I's, CD)} > 49Ap, hence we
get a contradiction. This finishes the discussion of Case 2.2.

Thus part (3) of the lemma is proved too.
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