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Chapter 0

Introduction

Traditionally, computability questions of word and conjugacy problems in groups, along with

the groups isomorphism problem, are considered as some of the most important properties and

questions in combinatorial and geometric group theory. For a given finitely generated group G “

xXy, |X| ă 8, the word problem is an algorithmic problem of deciding whether any arbitrarily

given word W P X˚ represents the trivial element in G or not. Here and later, whenever a set, say

X , is a set of group generators, by X˚ we denote the set of all words in the alphabet X Y X´1.

Otherwise, if X is merely a (finite) set, then X˚ means the set of all finite words composed by

letters from X .

The conjugacy problem considers on input an arbitrary pair pU, V q P X˚ ˆ X˚ and decides

whether U is conjugate to V in G or not. If for the word problem in G such a decision algorithm

exists, then it is said that the word problem (briefly, WP) is decidable in G. Analogously, if there is

an decision algorithm for the conjugacy problem (briefly, CP) in G, then it is said that the conjugacy

problem is decidable in G.

Observe that, since the triviality of an element of G is equivalent to the fact that it is conjugate

to the trivial element of G, decidability of the conjugacy problem in G implies decidability of the

word problem. Another obvious observation is that the decidability of WP and CP do not depend

on the choice of the finite generating set.

Word and conjugacy problems in groups first were introduced by Max Dehn in 1911. A bit

later, in 1912, Max Dehn described algorithms for word and conjugacy problems for surface groups

(i.e. fundamental groups of two dimensional manifolds) for surfaces of genus g ě 2. The algo-

rithm described by him for the word problem is one of the most important word problem solving

algorithms. It is one of the most important word problem solving algorithms not only because of

its simplicity and good time complexity behavior or, say, because of its historical importance, but

also because, based on generalizations of underlying properties of surface groups, this algorithm

was generalized to a much broader class of groups, called hyperbolic groups (or, word hyperbolic
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groups). The notion of hyperbolic groups was first introduced by Gromov in his seminal paper

[28]. In fact, it is well-known that hyperbolic groups are essentially the finitely presented groups on

which one can extend Dehn’s original algorithm for the word problem in surface groups. See, for

example, [28, 41].

To describe Dehn’s algorithm, let us consider any finitely presented group G with its finite

presentation

G “ xX | Ry. (0.1)

Then the presentation (0.1) is said to be Dehn’s presentation if the following property holds: R is a

finite symmetric set of words (i.e. it is closed under operations of taking cyclic shifts and inverses

of words); for any freely cyclically reduced word W P X˚, if W “G 1 (i.e. W represents the trivial

element in G), then there exists a word R “ R1R2 P R such that }R1} ą }R2}, and a cyclic shift

W 1 of W such that W 1 “ W1R1W2. (Throughout this text, by the symbol } ¨ } I denote lengths of

words in a given alphabet. Another notation which I use in this work extensively is the following:

For G “ xXy suppose U, V P X˚, then U “G V means that the words U and V represent the same

element from G.)

Note that if (0.1) is a Dehn’s presentation, then to check whether or not a cyclically reduced

word W P X˚ is trivial in G, one can simply consider all cyclic shifts of W and all relator words

from R in order to find the above mentioned cyclic shift W 1 and relator word R “ R1R2. Then the

key observation is that W “G 1 if and only if W1R
´1
2 W2 “G 1. But }W1R

´1
2 W2} ă }W }. Thus

the word problem for W is reduced to the word problem for a strictly shorter word W1R
´1
2 W2.

Next, in order to check whether or not W1R
´1
2 W2 “G 1, in a similar way as for W , we can try

to reduce this question to the word problem for a shorter word. If at some point this shortening

procedure cannot be applied anymore, then it means that either we obtained an empty word, hence

we conclude W “G 1 or, otherwise, we conclude W ‰G 1. Also it is clear that this procedure

of shortening can be applied only finitely many times (bounded from above by }W }), hence the

process will eventually halt, giving us the wanted answer about triviality of W in G. Since this

procedure is based on the original algorithm of Dehn, following the established tradition, we call it

Dehn’s algorithm.

Note that there exist finitely presented groups with undecidable word problem. In fact, the
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first examples of finitely presented groups with algorithmically undecidable word problem were

given by Novikov in 1955, see [48] and independently by Boone in 1958, see [9]. These results

of Novikov and Boone are considered as one of the most important and classical results in the

algorithmic theory of groups. Another famous example is a construction by Kharlampovich (see

[37]), where the first example of finitely presented solvable group with undecidable word problem

was constructed, answering a long standing open problem by Adian.

Speaking about word and conjugacy problems in finitely generated groups, there are several key

aspects one might consider. Below we mention some of them.

(a). Whether or not the WP (resp. CP) is decidable?

(b). If it is undecidable, what is the Turing degree of undecidability of the WP (resp. CP)?

(c). If it is decidable, what computational complexity classes does it belong to?

Note that for a given group, the answer to (a) reveals not only computational properties of the

group, but also its algebraic properties. This follows, for example, from a classical theorem of Boone

and Higman, [14, 40], which says that a finitely generated group G has decidable word problem if

and only if G can be embedded in a simple subgroup of a finitely presented group. Moreover, after

the works of Gromov [29], Sapir, Birget, Rips [65], Birget, Olshanskii, Rips, Sapir [8], Olshanskii

[56], Grigorchuk, Ivanov [26], Bridson [11] and others, it becomes apparent that the answer to (c)

may reveal information not only about the computational properties of the group, but also about its

topological and geometric properties. Therefore, in the light of modern developments in the theory

of groups, investigation of these questions is important from the perspective of computational, alge-

braic, topological and geometric points of view. Note that since for any two finite sets of generators

X and Y of a given group, the words in X˚ can be in linear time translated into corresponding

words in Y ˚, the answer to the above formulated questions (a), (b) and (c) is independent of finite

sets of group generators.

We would like to mention that even the question of existence of a lacunary hyperbolic group

with decidable word problem and undecidable conjugacy problem was still open. This question

was asked by Olshanskii, Osin and Sapir as Problem 7.5 in [57]. A positive answer to this question

follows from Theorems 5 and 6 of the current paper.
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In this thesis we systematically study all the above mentioned aspects of word and conjugacy

problems in the class of so called lacunary hyperbolic groups, with a special emphasize on the ones

obtained via small cancellation techniques.

The formal definition of the class of lacunary hyperbolic groups (more briefly, LHG) was first

introduced by Olshanskii, Osin and Sapir in [57]. Intuitively, lacunary hyperbolic groups can be

thought of as the finitely generated but not necessarily finitely presented versions of word hyper-

bolic groups. In the next sections we will recall the mathematically rigorous definitions of both

hyperbolic and lacunary hyperbolic groups. But for this introductory part let us just add to the al-

ready mentioned that all lacunary hyperbolic groups are inductive limits of hyperbolic groups as it

is established in [57] and recalled in Lemma 16 of the current work.

Speaking about inductive limits of hyperbolic groups, here we would like to mention that many

such groups were constructed by using various generalized small cancellation techniques and many

of them possess various exotic group theoretical properties. For example, this way Olshanskii con-

structed Burnside groups of large exponents [51] and Tarski Monsters [49, 50]. See also Ivanov’s

proof of the Burnside’s problem for even exponents [35]. For a more complete exposition of these

constructions see also [53].

Following an already established tradition, we call the groups which possess exotic properties

and are obtained as inductive limits of hyperbolic groups via small cancellation techniques, monster

groups.

For the monster groups appearing, for example, in [53], in the currently existing literature there

are no known time complexity effective algorithms for the basic decision problems such as the word

and conjugacy problems. The methods developed in this work help us to construct monster groups

with effective word and conjugacy problems. See Theorems 3 and 4.

In this thesis, besides the developed frameworks and tools, we prove sever theorems which

answer several natural questions about the nature of the word and conjugacy problems. Some of

these questions previously were formulated by other authors and were known to be open. In the

next chapter we describe our main results in more details.
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Chapter 1

Main results

The main objective of this manuscript is twofold.

First, based on the small cancellation theory of Olshanskii (see [55]), we describe general con-

structions of lacunary hyperbolic groups under which the word and conjugacy problems can be

effectively reduced to much simpler problems.

Even more, we develop a general framework in Sections 2.5–5.1 which provides with necessary

tools to understand the rich nature of the word and conjugacy problems in the class of LHG. In fact,

this framework will allow us to shed light on the rich nature of word and conjugacy problems in

LHG from several perspectives. More specifically:

1. From the perspective of computability, e.g. in Theorem 10 we formulate a necessary and suffi-

cient condition for decidability of WP. Also we develop necessary tools to construct lacunary

hyperbolic groups with decidable word problem and undecidable conjugacy problem;

2. From the perspective of computational complexity theory; and

3. From the perspective of interconnection of WP and CP in the class of LHG, both in terms of

computability and computational complexity.

Second, we use the developed framework to formulate the main theorems of this paper, that is

Theorems 3, 4, 5 and 6. The first two theorems, in particular, show that versions of some of the most

prominent groups of the class of LHG can be constructed in such a way that they will have fast WP

and CP. The third theorem shows in particular that WP and CP are ‘almost’ completely independent

one of another in the class of lacunary hyperbolic groups, not only in terms of computability, but

also in terms of computational complexity.

Below we describe the content of the paper in more details.
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Let us define the group Ḡ “ xXy , |X| ă 8, as the inductive limit of the chain of group

epimorphisms

G1
α1↠ G2

α2↠ . . . , (1.1)

where αi : Gi ↠ Gi`1 is the induced epimorphism from the identity map id : X Ñ X for all i P N

and Gi “ xX | R̄iy is a finitely presented hyperbolic group.

Even though the original definition of lacunary hyperbolic groups involves the concept of

asymptotic cones, there exist equivalent and more algebraic definitions. In this work we employ

the following definition of lacunary hyperbolicity (see Lemma 16 and Remark 5).

Definition 1.1. A finitely genrated group Ḡ “ xXy is lacunary hyperbolic if and only if Ḡ is the

inductive limit of a chain of group epimorphisms of type (1.1) such that the hyperbolicity constant

of Gi (relative to X) is little o of the radius of αi, where radius is defined as follows: For G “ xXy

and α : G Ñ G1, the radius of α is the maximal radius of a ball in the Cayley graph ΓpG,Xq

centered at 1G such that all elements from that ball map to non-trivial elements in G1 except for 1G.

The sequence of radiuses of (1.1) is the sequence of radiuses of epimorphisms αi.

Definition 1.2. We say that (1.1) along with the group presentations Gi “ xX | R̄iy is a graded

recursive presentation of Ḡ by hyperbolic groups if the map i ÞÑ R̄i is computable, i.e. the set

tpi, R̄iq | i P Nu is recursive.

In Section 2.4 we prove the following theorems.

Theorem 1 (Theorem 10). Let Ḡ be an inductive limit of hyperbolic groups connected by epimor-

phisms. Then Ḡ has decidable word problem if and only if it has a graded recursive presentation by

hyperbolic groups and increasing sequence of radiuses over that presentation (i.e. the radiuses of

the epimorphisms are increasing).

Theorem 2 (Corollary 8). A lacunary hyperbolic group has a decidable word problem if and only

if either G is a hyperbolic group or G is the direct limit of a sequence of δi-hyperbolic groups
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Gi “ xXiy (Xi is finite) and epimorphisms

G1
α1↠ G2

α2↠ . . . , (1.2)

where αipXiq “ Xi`1, such that

1. for all i, Gi is a δi-hyperbolic group, where pδiq
8
i“1 is an increasing sequence of positive

integers,

2. the sequence priq
8
i“1 is strictly increasing, where ri is the radius for the epimorphism αi :

Gi Ñ Gi`1,

3. the sequence p δiri
q8
i“1 is strictly decreasing and converges to 0,

4. the groups Gi have presentation Gi “ xX | Riy such that the map i ÞÑ Ri is computable (i.e.

the presentation G “ xX | YRiy is a graded recursive presentation by hyperbolic groups).

Remark 1. Note that the conditions (1)-(3) in fact give a general characterization of arbitrary non-

hyperbolic lacunary hyperbolic groups.

One of the main object of investigation in this paper is the following type of chains of hyperbolic

groups satisfying some special conditions.

G0
β0
ãÑ H1

γ1↠ G1
β1
ãÑ H2

γ2↠ . . . . (1.3)

If we denote αi “ γi`1 ˝ βi, then we always assume that αi is surjective for i “ 1, 2, . . .. All the

groups in this chain are assumed to be hyperbolic. Let G0 “ xX | R0y be given with its initial finite

presentation, and let for all i P N,

Hi “ Gi´1 ˚ F pYiq{ ! Si ", (1.4)

where |Yi| ă 8, Yi Xβi´1pGi´1q “ H, Si is a finite (symmetric) set of words from pX YYiq
˚ and
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F pYiq is the free group with basis Yi. Also

Gi “ Hi{ ! Ri ", (1.5)

where Ri is a finite symmetric set of words from pX Y Yiq
˚ satisfying certain small cancellation

conditions.

The main group of our interest is the group Ḡ “ xXy, |X| ă 8, defined as the inductive limit

Ḡ “ lim
i

pGi, αiq.

In Section 4 we introduce the concepts of G- and H-conjugacies with respect to (1.3) for the group

Ḡ defined as follows: For u, v P X˚ we say that u is H-conjugate to v if there exists i P N such that

u is conjugate to v in Hi but nevertheless u is not conjugate to v in Gi´1. G-conjugacy is defined

analogously, namely, u is G-conjugate to v in Ḡ if either u is conjugate to v in G0 or there exists

i P N such that u is conjugate to v in Gi but u is not conjugate to v in Hi. Clearly, u is conjugate to

v in Ḡ if and only if either u is H-conjugate to v or G-conjugate to v in Ḡ. In the same section we

introduce a special small cancellation condition

C 1
`

T M, pgiq
8
i“1, pρiq

8
i“1

˘

which assures that the word and G-conjugacy problems for Ḡ can be

solved in polynomial time provided that the words Ri, i “ 1, 2, . . ., are polynomial time com-

putable. Here we would like to highlight that this condition does not tell us about the effectiveness

of the H-conjugacy problem. In fact, as the proof of Theorem 5 reveals, H-conjugacy problem in

general can have an arbitrary behavior not depending on the behavior of, say, G-conjugacy problem.

In Subsections 2.5.2 and 2.5.3 we describe constructions of words which can be highly effec-

tively constructed, have appropriate small-cancellation properties, and they will serve in Sections

5.2, 5.3 and 5.4 as the main ingredient for defining the words Ri, i “ 1, 2, . . . for corresponding

constructions. It is worthwhile to mention here that Sections 5.2, 5.3 and 5.4 provide the proofs of

the main applications of the general framework, that is the proofs of Theorems 3, 4 and 5, and all the

proofs are constructive and based on a general scheme described in Section 5.1. On its own turn, the

general scheme from Section 5.1 is based on the already mentioned general framework developed

mostly in Sections 2.5, 2.7, 3 and 4.
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Concerning the groups Hi, i “ 1, 2, . . ., in the main applications in Sections 5.2, 5.3, 5.4, we

consider two main situations: First, when Hi “ Gi´1 and βi´1 “ id and second, when Hi-s are

obtained as HNN-extensions of Gi´1.

Definition 1.3. Let f : N Ñ N be a positive integer valued function, and let D be any decision

problem. Then we say that D can be solved in almost fpnq time, if for any ε ą 0 the problem D

belongs to DTime
`

nεfpnq
˘

, or in other words, it belongs to
Ş8

k“1DTime
`

n1{kfpnq
˘

. If fpnq “

n, n P N, then we say that D is decidable in almost linear time (similarly we define almost quadratic

time, etc).

1.1 Main theorems

The next theorem shows that every non-elementary, torsion-free hyperbolic group has a non-

trivial verbally complete quotient with almost-linear time word problem and polynomial time con-

jugacy problem.

Recall that the group G1 “ xXy is verbally complete if for any element g P G1 and for any non-

trivial element w from a countably generated free group F “ F py1, y2, . . .q, the equation w “ g

has a solution in G1, where the letters of w are regarded as the variables of the equation. In other

words, there exists a homomorphism h : F Ñ G1 such that h : w ÞÑ g.

Theorem 3. Let G be an arbitrary torsion-free, non-elementary hyperbolic group. Then there exists

a lacunary hyperbolic infinite torsion-free quotient Ǧ of G such that the following is true about Ǧ.

(i). Ǧ is a verbally complete group,

(ii). The word problem in Ǧ is decidable in almost quadratic time and the conjugacy problem in

Ǧ is decidable in polynomial time.

Note that part piq of Theorem 3 appears in the work of Mikhajlovskii and Olshanskii, [44]. Also,

since verbally complete groups are divisible groups, Mikhajlovskii and Olshanskii’s work can be

regarded as a generalization of a result of Guba from 1987, [30], which answered a long standing

open question about the existence of finitely generated non-trivial divisible groups. To achieve the
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result of Theorem 3, we elaborate the original construction of Mikhajlovskii and Olshanskii and

combine it with the machinery developed in this paper.

One interesting corollary from Theorem 3 is that for the group Ǧ, there exists an algorithm such

that for all inputs w P F py1, y2, . . .qzt1u and ǧ P Ǧ, the algorithm finds a solution for the equation

w “ ǧ in Ǧ. Indeed, to solve the equation w “ ǧ in Ǧ, one can just check for all possible values of

variables y1, y2, . . ., whether w “ ǧ in Ǧ or not. Since the word problem in Ǧ is decidable and Ǧ

is verbally complete, this procedure will eventually halt.

Theorem 4. Let G be an arbitrary torsion-free, non-elementary hyperbolic group. Then there exists

a non-cyclic torsion-free lacunary hyperbolic quotient Ĝ of G such that the following is true about

Ĝ.

(i). Every proper subgroup of Ĝ is an infinite cyclic group,

(ii). The word problem in Ĝ is decidable in almost quadratic time and the conjugacy problem in

Ĝ is decidable in polynomial time.

Note that the first example of an infinite non-cyclic group with the property of the part piq

appears in [49] and the exact statement of Theorem 4 without the part piiq appears in [55].

Construction of Ĝ can be regarded as a more elaborated version of the corresponding result from

[55] combined with the machinery developed in this paper.

Let us also mention that from the method by which the groups Ǧ and Ĝ are constructed it fol-

lows that for every torsion-free, non-elementary hyperbolic G, there are continuum many pairwise

non-isomorphic quotients of G satisfying the statements (i) of Theorems 3 and 4, respectively.

However, the cardinality of groups satisfying all the conditions of Theorems 3 and 4, respectively,

is ℵ0. (In fact, the cardinality of finitely generated groups with decidable word problem is ℵ0.)
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Definition 1.4 (Strong (many-one) reduction). Let L1 Ď A˚
1 and L2 Ď A˚

2 , where A1 and A2

are finite alphabets. Then L1 is strongly (many-one) reducible to L2 if there exists a computable

function ϕ : A˚
1 Ñ A˚

2 and a constant C ą 0 such that for any x P A˚
1 we have }ϕpxq}A2 ď C}x}A1

and ϕpL1q “ L2, ϕpA˚
1zL1q Ď A˚

2zL2. Moreover, if for some g : N Ñ N and for all x P L1 the

value of ϕpxq can be computed in time Opgp}x}A1qq, then we say that L1 is strongly reducible to

L2 in time gpnq.

Theorem 5. Let A be any finite alphabet, and let L Ď A˚ be any recursively enumerable subset

(i.e., r.e. language) of A˚. Then there exists a lacunary hyperbolic group GL such that the following

is true about GL.

(I). The word problem in GL is decidable in almost linear time.

(II.i). The conjugacy problem in GL can be strongly reduced to the decidability problem in L in

almost linear time;

(II.ii). The decidability problem in L can be strongly reduced to the conjugacy problem in GL in

linear time;

In particular, if the membership problem for L belongs to DTimepfpnqq, then the conjugacy

problem in GL is decidable in almost fpnq time, and if the conjugacy problem in GL belongs

to DTimepgpnqq, then the membership problem in L also belongs to DTimepgpnqq.

(II.iii). For every fixed g0 P GL, the problem of deciding if an arbitrary g P GL is conjugate to g0 is

decidable in almost linear time.

The individual conjugacy problem in regard to a fixed element g0 P G, shortly ICP pg0q, for any

input element g P G asks whether or not g is conjugate to g0 in G. Note that ICP p1q coincides with
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the word problem in G. The statement (II.iii) of Theorem 5 says that for every g0 P G, ICP pg0q

belongs to
Ş8

k“1DTime
`

n1` 1
k

˘

.

Note that, in particular, Theorem 5 implies that there exist finitely generated groups with almost

linear time individual conjugacy problems and (uniform) conjugacy problem which belongs to one

of the following time complexity classes:

• NP-complete, co-NP-complete, PP-complete, PSpace-complete, etc; or

• belongs to DTimepfpnqqzDTimepgpnqq where the time constructible functions f and g are

such that DTimepfpnqqzDTimepgpnqq ‰ H and fpnq ą n1`ε for some ε ą 0; or

• the conjugacy problem is undecidable and has any given recursively enumerable Turing de-

gree of undecidability.

In particular, Theorem 5 extends the main results of Miasnikov and Schupp from [43].

In [17], Cannonito classified finitely generated groups with decidable word problem based on

the complexity of the word problem. As a measure of complexity the author considered Grzegorczyk

hierarchy. (For the details of the results and definition of Grzegorczyk hierarchy and its link to word

problem, we refer to [31] and [17].)

In the same paper [17], the author mentions a question posed by Boone (see page 391, [17])

which was formulated as follows:

A very interesting problem suggested by W. W. Boone is the following: Do there exist

any f.g. groups with conjugacy problem Eα
˚ -decidable, and word problem Eβ-decidable

such that β ă α?

This question was also touched in [39].

Parts (I) and (II) of Theorem 5 imply the following stronger statement.

Corollary 1. For every α ě 3, there exists a finitely generated (lacunary hyperbolic) group G̃ with

E3-decidable word problem and Eα
˚ -decidable conjugacy problem.

Remark 2. We would like to note that Corollary 1 follows also from the main results of [43].
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In [57], the authors, Olshanskii, Osin and Sapir, asked about the existence of a lacunary hyper-

bolic group with decidable word problem but undecidable conjugacy problem. See Problem 7.5 in

[57]. Another immediate corollary from Theorem 5, parts pIq and pII.iiq, answers this question in

positive.

Corollary 2. There exists a lacunary hyperbolic group with decidable word problem but undecid-

able conjugacy problem.

Proof. Indeed, take any recursively enumerable but not recursive set L. Then, according to Theorem

5, the group GL has decidable word problem but undecidable conjugacy problem.

Theorem 5 provides a reasonably complete classification of the conjugacy problem in finitely gen-

erated groups in terms of time computational complexity for groups with decidable word problem

and for recursively presented groups with undecidable conjugacy problem - in terms of recursively

enumerable Turing degrees. It is worth mentioning that similar classifications were obtained for the

word problem, for example, by the following authors: By Cannonito [17] in terms of Grzegorczyk

hierarchy; by Valiev and Trakhtenbrot [69, 68] in terms of space complexity, by Stillwell [67] in

terms of time complexity. However, in spirit, probably the closest result to parts pII.iq and pII.iiq

of Theorem 5 is the following result of Birget-Olshanskii-Rips-Sapir from [8] stated for the word

problem in finitely presented groups and mentioned as “an important corollary” (see Corollary 1.1,

[8]).

There exists a finitely presented group with NP-complete word problem. Moreover,

for every language L Ď A˚ from some finite alphabet A, there exists a finitely pre-

sented group G such that the nondeterministic time complexity of G is polynomially

equivalent to the nondeterministic time complexity of L.

The first examples of groups with decidable word problem and undecidable conjugacy problem

of arbitrary r.e. Turing degree for finitely generated groups were constructed by Miller [45], and

for finitely presented groups by Collins [20]. It was shown in [10] that in Miller’s group from [45]

even though the conjugacy problem is undecidable, the individual conjugacy problems ICP pgq are
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solvable in polynomial time for all g from an exponentially generic subset of G. This and other

observations led Miasnikov and Schupp to formulate the following question in [43].

Question. Are there recursively presented groups G with solvable word problem such

that if the individual conjugacy problems are decidable on a computably enumerable

subset Y Ď G then Y is negligible, or indeed exponentially negligible?

We answer this question in positive by showing the following much stronger existence result.

Theorem 6. There exist lacunary hyperbolic groups G̃ “ xXy with word problem decidable in

almost linear time and such that for g P G̃ the individual conjugacy problem ICP pgq is decidable

if and only if g “ 1.

Remark 3. In fact, the group G̃, which is constructed in Section 5.5, is non-amenable, hence, by

Grigorchuk’s co-growth criterium of amenability, we have tw P X˚ | w “G̃ 1u is exponentially

negligible.

In self-contained Chapter 6, we answer a well-known question of Collins, asked in early 1970’s,

about the embeddability of torsion-free groups with decidable word problem into groups with de-

cidable conjugacy problem. Our main theorem of that chapter is the following.

Theorem 7 (Theorem 17). There exists a finitely presented torsion-free group G with decidable

word problem such that G cannot be embedded into a group with decidable conjugacy problem.
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Chapter 2

Preliminaries

Let pX , dq be a geodesic metric space. Given a geodesic triangle ABC in X with vertices A, B

and C, for any δ ą 0, ABC is called δ-slim if each side of the triangle ABC is contained in the

δ-neighborhood of the union of other two sides of ABC.

For a given constant δ ą 0, X is called δ-hyperbolic space, if all the geodesic triangles in X are

δ-slim. Throughout this text, when we consider a triangle with vertices A, B and C, we denote by

AB, BC, CA the sides of the triangle joining the corresponding vertices. The same convention we

use also for other polygons.

Let G “ xXy be a finitely generated group with a finite generating set X . Note that the Cayley

graph ΓpG,Xq possesses a natural geodesic metric, dG, called word metric. That is for any g, h P G,

dGpg, hq is the length of a smallest word from X˚ representing the word g´1h P G. Moreover, since

each edge of a Cayley graph is isometric to the unit line, the metric dG can be extended to a geodesic

metric on any pair of points from ΓpG,Xq. By |g|G (or just by |g|X or |g|, depending on the context

and convenience) we denote the distance dGp1, gq. In the current work, whenever it does not lead to

ambiguities, instead of using the notation dG we will simply write d. Depending on the convenience

derived from the context, we will use sometimes instead of dG, dX or simply d, if it does not lead

to ambiguities.

Note that, at the first glance, it would be more appropriate to use notations dX and | ¨ |X instead

of dG and | ¨ |G. However, this notation we use by purpose, because in many applications in this

paper, we interchangeably consider metrics on different Cayley graphs of groups with presentations

xX | R1y and xX | R2y, where R1 ‰ R1.

The group G “ xXy is called δ-hyperbolic, if its Cayley graph ΓpG,Xq is δ-hyperbolic. In

general, we say G is hyperbolic if the Cayley graph ΓpG,Xq is δ-hyperbolic for some δ ě 0. It is a

well-know fact that the property of hyperbolicity does not depend on the choice of finite generating

sets (see [28]). However, the hyperbolicity constant δ may depend on the choice of the generating
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set. In this thesis, whenever we say that some group or space is δ-hyperbolic, by default we assume

that δ is a positive integer.

The following are well-known algorithmic properties of hyperbolic groups.

1. The class of hyperbolic groups is exactly the class of finitely presented groups with Dehn

presentation. See [28] and also [41].

2. It was established by Epstein and Holt in [24] that given a hyperbolic group G with finite

Dehn presentation, there exists an algorithm solving the conjugacy problem in G in linear

time.

3. It was established by Papasoglu in [62] (see also [61] for background) that there exists a

partial algorithm which detects hyperbolicity of finitely presented hyperbolic groups. In

other words, the set of finite presentations of hyperbolic groups is recursively enumerable.

See also [22].

4. There exists an algorithm which computes a slimness constant δ for any finite presentation of

a hyperbolic group. See, for example, [22].

5. There exists an algorithm which for any input of finite presentation of a hyperbolic group

computes its Dehn presentation. It follows from [62] and [22].

Now consider a path p in pX , dq with a natural parametrization by length. The path p is called

pλ, cq-quasi-geodesic for some λ ě 1 and c ě 0, if for any points ppsq and pptq on p, we have

|s ´ t| ď λdpppsq, pptqq ` c.
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Hereafter, whenever it is not stated otherwise, we assume that the quasi-geodesity constants λ and

c are integers. We denote the origin of p with respect to this parametrization (i.e. the point pp0q) by

p´ and the terminal point by p`.

We say that a word W P X˚ is a geodesic word (in ΓpG,Xq), if the paths in ΓpG,Xq with label

W are geodesics, and we say that a word W P X˚ is cyclically geodesic if any cyclic shift of W is

a geodesic word in ΓpG,Xq. Analogously, for λ ě 1, c ě 0, we say W is pλ, cq-quasi-geodesic (in

ΓpG,Xq) if the corresponding paths in ΓpG,Xq are pλ, cq-quasi-geodesic. The length of the word

W we denote by }W } and by |W | we denote the length of the shortest word representing the same

element as W in G. Clearly, W is a geodesic word if and only if }W } “ |W |.

For any W 1 P X˚ the notation W 1 „conj W in G means that W 1 represents an element in G

conjugate to the element represented by W in G.

We say that V P X˚ is a cyclically minimal representative of W if V „conj W in G and V

has the smallest length among all such words. For V satisfying this assumption, we also define

|W |c “ }V }. If }W } “ |W |c, then we say that W is cyclically minimal. Clearly, if W is cyclically

minimal, then it is cyclically geodesic.

Now suppose that p is a path in ΓpG,Xq. Then, as we said, we will denote its initial and

terminal points by p´ and p`, respectively. If A,B are some points on p, then by rA,Bs we denote

the subpath q of p between A and B such that q´ “ A and q` “ B. Also we denote the length of

p by }p} and, context based, we denote the length of q by }q} or by
›

›rA,Bs
›

›. Since all the edges

in Cayley graphs are labeled by the letters of X Y X´1, any path p in ΓpG,Xq in fact is a labeled

path. We denote the label of p by labppq.

Lemma 1 (Theorem III.1.7, [12]). Let p be a pλ, cq-quasi-geodesic path in the Cayley graph

ΓpG,Xq, where λ ě 1, c ě 0 and G “ xXy is a hyperbolic group. Then there exists an effec-

tively calculable constant Rλ,c P N depending on λ, c and G, such that the Hausdorff distance

between p and any geodesic path joining p´ to p` is bounded by Rλ,c.

In this text, whenever we use the notation Rλ,c, we refer to the constant from Lemma 1.

Corollary 3. Let p and q be pλ1, c1q- and pλ2, c2q-quasi-geodesic paths in ΓpG,Xq respectively.

Also let dpp´, q´q ď L, dpp`, q`q ď L for some constant L, then the Hausdorff distance between
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p and q is bounded from above by L ` Rλ1,c1 ` Rλ2,c2 ` 2δ, where δ is a hyperbolicity constant of

ΓpG,Xq. Moreover, if we join p´ to q´ and p` to q` by some geodesics, then we get a quadrangle

such that the distance from any point on p (or q) to the union of the other three sides is bounded

from above by Rλ1,c1 ` Rλ2,c2 ` 2δ. In case p and q are geodesics, this distance is bounded from

above by 2δ.

Proof. It follows from Lemma 1 that it would be enough to prove the statement for the case when p

and q are geodesic paths and correspondingly Rλ1,c1 “ Rλ2,c2 “ 0.

Now assume that p and q are geodesics. Let p´, q´ and p`, q` be joined by some geodesics f1

and f2, respectively. Also let e be a geodesic path joining q´ to p`.

By the definition of hyperbolicity constant, for any point o1 P q, there exists o2 P e Y f2 such

that dpo1, o2q ď δ. Now, if o2 P f2, then since }f2} ď L, the statement of the corollary follows for

o1 immediately. Otherwise, if o2 P e, the statement follows for o1 immediately from the observation

that distpo2, f1 Y pq ď δ and }f1} ď L. If o1 belongs to one of the other three sides, then we can

deal with that case analogously.

Corollary 4. Let p and q be pλ1, c1q- and pλ2, c2q-quasi-geodesic paths in ΓpG,Xq respectively,

and let dpp´, q´q ď L, dpp`, q`q ď L for some constants λ1 ě 1, c1 ě 0, λ2 ě 1, c2 ě 0,

L ě 0. Then for any point o P p such that dpo, p´q, dpo, p`q ě L ` Rλ1,c1 ` 2δ, we have

distpo, qq ď Rλ1,c1 ` Rλ2,c2 ` 2δ, where δ is the hyperbolicity constant of ΓpG,Xq.

Proof. Let p´, q´ and p`, q` be joined by some geodesics f1 and f2, respectively. Also let p1, q1

be geodesic paths joining p´ to p` and q´ to q`, respectively.

By Lemma 1 there exists o1 P p1 such that dpo, o1q ď Rλ1,c1 . Now, by Corollary 3, distpo1, f1Y

f2 Y q1q ď 2δ.

On the other hand, if distpo1, f1q ď 2δ, then distpo, f1q ď dpo, o1q`distpo1, f1q ď Rλ1,c1`2δ.

Hence, by the triangle inequality, this would imply dpo, p´q ď L ` Rλ,c ` 2δ, which is a contra-

diction. This contradiction implies that distpo1, f1q ą 2δ. Similarly, we get that distpo1, f2q ą 2δ.

Therefore, distpo1, q1q ď 2δ, and hence distpo1, f1 Y f2 Y q1q ď 2δ implies that distpo1, q1q ď 2δ.

Therefore, since dpo, o1q ď Rλ1,c1 and the Hausdorff distance between q1 and q is bounded from

above by Rλ2,c2 , we get that distpo, qq ď Rλ1,c1 ` Rλ2,c2 ` 2δ.
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Given a path p and k ě 0, λ ě 1, c ě 0, we say that p is k-local pλ, cq-quasi-geodesic, if each

subpath of p, of length at most k, is pλ, cq-quasi-geodesic. In case λ “ 1, c “ 0, we say that p is

k-local geodesic.

Lemma 2 (Theorem III.H.1.13, [12]). Let X be a δ-hyperbolic geodesic space and p be a k-local

geodesic, where k ą 8δ. Then for every geodesic segment q joining p´ to p` we have:

(1) p is contained in the 2δ-neighborhood of q;

(2) q is contained in the 3δ-neighborhood of p;

(3) p is a pλ, cq-quasi-geodesic, where λ “ pk ` 4δq{pk ´ 4δq and c “ 2δ.

The next lemma is a generalization of the previous one. It can be found in [32].

Lemma 3 (See Theorem 25 in [32]). Let X be a δ-hyperbolic space. Then there exists an effectively

computable constant K “ Kpδ, λ, cq P N such that for any k ě K, if p is a k-local pλ, cq-quasi-

geodesic path in X , then p is pK,Kq-quasi-geodesic.

For any metric space pX , dq and for any x, y, z P X the Gromov product of y and z at x, denoted

py ¨ zqx, is defined by

py ¨ zqx “
1

2

`

dpx, yq ` dpx, zq ´ dpy, zq
˘

.

Lemma 4 (see Lemma 5, [36]). Let G “ xXy be a δ-hyperbolic group. Let α ě 14δ, α1 ě 12pα`

δq, and a geodesic n-gon A1A2 . . . An with n ě 3 satisfies the following conditions: dpAi´1, Aiq ą

α1 for i “ 2, ..., n and pAi´2 ¨ AiqAi´1 ď α for i “ 3, ..., n. Then the polygonal line p “

A1A2 Y . . . Y An´1An is contained in the closed 2α-neighborhood of the side AnA1 and the side

AnA1 is contained in the closed 14δ-neighborhood of p. In addition, dpA1, Anq ą 6pn´1qpα`δq.

Lemma 5 (see Lemma 1.17, [55], also Lemma 8, [36]). Let g be an element of infinite order in a

hyperbolic group G and an equality xgkx´1 “ gl holds in G, where x P G, l ‰ 0. Then k “ ˘l.
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Lemma 6. Let G “ xXy be a δ-hyperbolic group, and let W,V, T P X˚ be such that V is freely

cyclically reduced non-empty word and

W “G T´1V T.

Suppose that for some k P N and λ ě 1, c ě 0, V k is a pλ, cq-quasi-geodesic word. Then W k is a
`

λ}W }, p2λ}T } ` c ` 2q}W }
˘

-quasi-geodesic word.

Proof. First of all, note that for all l ě 0, we have

l}V } “ }V l} ď λ|V l| ` c,

hence

l ď
λ|V l| ` c

}V }
ď λ|V l| ` c. (2.1)

Now note that every subword of W k is of the form W1W
lW2, where l ě 0 and W1, W2 are

(possibly empty) suffix and prefix of W respectively.

Now for W1W
lW2 we have

}W1W
lW2} ď }W1} ` }W l} ` }W2} “ }W1} ` }W2} ` l}W }

by (2.1), ď }W1} ` }W2} ` pλ|V l| ` cq}W }

“ }W1} ` }W2} ` pλ|TW lT´1| ` cq}W }

ď 2}W } ` pλ|W l| ` 2λ}T } ` cq}W }

“ λ}W }|W l| ` 2}W } ` 2λ}T }}W } ` c}W }

“ λ}W }|W l| ` p2λ}T } ` c ` 2q}W }.

Now, since W1W
lW2 was chosen to be an arbitrary subword of W k, we conclude that W k is a

`

λ}W }, p2λ}T } ` c ` 2q}W }
˘

-quasi-geodesic word.

Lemma 7. Let G “ xXy be a δ-hyperbolic group, and let V P X˚ be a cyclically minimal word

such that }V } ě α, where α “ 12 ¨ 15δ “ 180δ. Then for each k P Z, V k is a p4, 2520δq-quasi-
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geodesic word.

Proof. Without loss of generality let us assume that k P N. We want to show that V k is p4, 2520δq-

quasi-geodesic for any cyclically minimal word V P X˚ such that }V } ě α.

For that reason, let us decompose V as

V “ V1V2 . . . Vs,

where s “

Y

}V }

α

]

and α ď }Vi} ă 2α for i “ 1, . . . , s. Then, since V is cyclically minimal and the

word VsV1 along with the words V1V2, . . . , Vs´1Vs are subwords of (a cyclic shift of) V , we get

|V1| ` |Vs| ´ |VsV1| “ }V1} ` }Vs} ´ }VsV1} “ 0

and

|Vi| ` |Vi`1| ´ |ViVi`1| “ }Vi} ` }Vi`1} ´ }ViVi`1} “ 0, for i “ 1, . . . , s ´ 1.

The last equations suggest that we can apply Lemma 4 on subwords of V k to conclude that for any

subword V 1 of V k such that }V 1} ě 3α, which is indeed of the form

V 1 “ U1Vi1 . . . VitU2,

where U1 and U2 are suffix and prefix of words from tV1, . . . , Vsu, we have

|V 1| ě |Vi1 . . . Vit | ´ }U1} ´ }U2} ą 6pt ´ 1q15δ ´ 2α “ 90δt ´ 450δ. (2.2)

(Lemma 4 was used to obtain |Vi1 . . . Vit | ą 6pt ´ 1q15δ).

On the other hand

}V 1} ă pt ` 2q2α “ pt ` 2q360δ “ p360δt ´ 1800δq ` 1800δ ` 720δ

by (2.2), ď 4|V 1| ` 2520δ.
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Therefore, since V 1 is an arbitrary subword of V k of length ě 3α, we conclude that V k is a

p4, 2520δq-quasi-geodesic word. (2.3)

Lemma 8. Let G “ xXy be a δ-hyperbolic group, where X is symmetric (i.e. X “ X´1), and let

W P X˚ be a geodesic word representing an element of G of infinite order. Then for every k P Z,

the word W k is pλW , cW q-quasi-geodesic in the Cayley graph ΓpG,Xq, where λW and cW are

given by the formulas

λW “ 4|X|α}W }, (2.4)

and

cW “ 5|X|2α}W }2 (2.5)

where α “ 180δ. Moreover, if W is cyclically minimal, then W k is p4α|X|α, 5α2|X|2αq-quasi-

geodesic.

Proof. First, let us show that there exists an integer 1 ď m ď |X|α such that |Wm|c ą α (recall that

we assume X “ X´1). Indeed, assume that there is no such m. Then, by the pigeonhole principle,

there exist 1 ď m1 ă m2 ď |X|α and V P X˚, T1, T2 P X˚, such that }V } ď α, }V } “ |Wm|c

and

Wm1 “G T´1
1 V T1, W

m2 “G T´1
2 V T2.

But this means that Wm1 and Wm2 are conjugate in G, which on its own turn, by Lemma 5, implies

that m1 “ ˘m2. A contradiction.

Thus there exists 1 ď m ď |X|α such that

Wm “G T´1V T, (2.6)
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where T, V P X˚, }V } “ |Wm|c and

}V } ą α. (2.7)

Note that the equation }V } “ |Wm|c implies that V is cyclically geodesic. Also, without loss of

generality assume that T has the smallest length among all the words T satisfying the equation (2.6)

for some V with }V } “ |Wm|c.

Let us assume that Wm “G U for some geodesic word U P X˚. Let us consider a geodesic

quadrangle ABCD in ΓpG,Xq such that labpABq “ labpDCq “ T , labpADq “ V and

labpBCq “ Wm, i.e. the boundary of ABCD corresponds to the equation Wm “G T´1V T .

The first observation is that }T´1} “ }T } “ distpB,ADq p“ distpC,ADqq. Indeed, if there

exists a point O P AD such that dpB,Oq ă }T }, then there exists a path joining B to O, whose

label is a word Q such that }Q} ă }T }. Now, if we denote labpAOq “ V1, labpO,Dq “ V2, we get

Wm “G U “G QpV2V1qQ´1. See Figure 2.1. But because of the minimality assumption on }T },

the inequality }Q} ă }T } leads to a contradiction. Thus the first observation is proved.

B

A

C

D

Wm

(lab(p)=U)

V

T Q T

O

V 1 V 2

p

Figure 2.1

The second observation is that for any point O1 P AD such that dpA,O1q, dpO1, Dq ą 4δ (note

that such a point exists, because }V } ą α), we have distpO1, pq ď 2δ, where p is the path joining

B to C with the label U . To show this, first notice that distpO1, ABYpYCDq ď 2δ (see Corollary

3). Also, because of the minimality assumption on }T }, we get dpB,O1q ě dpB,Aq. Now suppose

that there is a point O2 P AB such that dpO1, O2q ď 2δ. Then, since dpB,O1q ě dpB,Aq, we get

dpB,Aq “ dpB,O2q ` dpO2, Aq ď dpB,O1q ď dpB,O2q ` dpO2, O1q.
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Therefore, dpO2, Aq ď dpO2, O1q ď 2δ and as a consequence, by the triangle inequality, we get

dpA,O1q ď dpA,O2q ` dpO2, O1q ď 4δ. But since dpA,O1q ą 4δ, we obtain a contradiction.

The last contradiction implies that distpO1, ABq ą 2δ. The same way we get distpO1, CDq ą

2δ. Therefore, the inequality distpO1, AB Y p Y CDq ď 2δ implies that distpO1, pq ď 2δ, and

consequently, since the length of p is bounded from above by }Wm}, we get that dpO1, Bq ď

}Wm} ` 2δ. Therefore, from the minimality assumption on }T }, we get

}T } ď |X|α}W } ` 2δ. (2.8)

Now, since Wm “ T´1V T and |V | ą α, it follows immediately from Lemmas 6, 7 and the

inequality (2.8) that for all k P Z, W km is a
`

4}Wm}, p2|X|α}W } ` 8δ ` 2520δ ` 2q}Wm}
˘

-

quasi-geodesic word. Also, taken into the account the fact that W k is a subword of W km and the

inequalities m ď |X|α and 2520δ ` 2 ď |X|α}W }, we conclude that W k is a

p4|X|α}W }, 5|X|2α}W }2q-quasi-geodesic. (2.9)

Finally, since for cyclically minimal words V satisfying }V } ą α, we showed that V k is

p4, 2520δq-quasi-geodesic, by taking }W } “ α in (2.9), we get that for every cyclically minimal

V P X˚, regardless their lengths, V k is p4α|X|α, 5α2|X|2αq-quasi-geodesic.

2.1 Isoperimetric functions of hyperbolic groups

Let G be a group with a finite presentation G “ xX | r1, . . . , rky. A function f : N Ñ N is called

an isoperimetric function for G (w.r.t. the given presentation), if for every reduced word W P X˚

such that W “G 1, W can be presented as

W “

n
ź

i“1

uir
˘1
ji

u´1
i

where n ď fp}W }q. The minimal among the isoperimetric functions is traditionally called the

Dehn function of the given presentation. If n is the minimal number for which such a decomposition

exists, then n is called the area of W and denoted n “ AreapW q. Another, equivalent definition
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of the isoperimetric function is the following: let p be a closed path in ΓpG,Xq, then p can be

tessellated by at most fp}p}q labeled discs whose labels belong to tr˘1
1 , . . . , r˘1

k u.

It is a well known fact that a group is hyperbolic if and only if it has a finite presentation with

linear (equivalently, subquadratic) isoperimetric function. See for example [12, 54]. Moreover, if

G “ xXy is δ-hyperbolic and F “ tU P X˚ | }U} ď 16δ ` 1, U “G 1u, then G can be given by

the following presentation

G “ xX | Fy, (2.10)

and for this presentation, for all reduced words W P! F ", we have AreapW q ď n. Let us call

this presentation the pX, δq-full presentation of G with respect to X and δ. If from the context it is

clear what are X and δ, then we will just call it the full presentation of G.

An important observatoin about full-presentations follows from Lemma 2. Namely, the

full presentations (2.10) is in fact Dehn presentations. It follows from Lemma 2 and from the

observation that in the Cayley graph ΓpG,Xq the only p8δ ` 1q-local geodesic loop is the loop with

length 0, i.e. a point. For more details see [12] or Proposition 1.

For a given presentation G “ xX | Ry of a hyperbolic group, let fpnq ď An for some constant

A ą 0. Then we call A an isoperimetry coefficient (w.r.t. G “ xX | Ry).

Proposition 1. (1). For any Dehn presentation G “ xX | Ry the isoperimetry coefficient is equal

to 1.

(2). If G is δ-hyperbolic, then the full presentation G “ xX | Fy is a Dehn presentation.

Proof. (1). Let G “ xX | Ry be a Dehn presentation and let p be a loop in ΓpG,Xq. Then, since

G “ xX | Ry is a Dehn presentation, p contains a subpath q such that for another path q1 we have

}q} ą }q1} and labpq´1q1q P R. Then q´1q1 can be filled with one cell from R. Based on this

observation, it is clear that there is a van Kampen diagram over G “ xX | Ry with boundary p and

number of cells not exceeding p. Hence the first part of the proposition is proved.

(2). Indeed, let p be a closed path in ΓpG,Xq with its ends on 1. Then, by Lemma 2, there exists a

closed 8δ ` 1-local geodesic path q with its ends on 1 such that pq can be tesselated by at most }p}

cells with labels from F .
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On the other hand, again by Lemma 2, q is p3, 2δq-quasi-geodesic. Now, since q is a closed

8δ-local geodesic, we get that either q has 0 length, or }q} ě 8δ. But since q is p3, 2δq-quasi-

geodesic, the last inequality cannot happen. Hence q has length 0. This means that the loop p can

be tessellated by at most }p} cells with labels from F . Thus the proposition is proved.

It is well-known that a finitely presentable group is hyperbolic if and only if with respect to any

finite presentation the Dehn function of the group is linear. See, for example, [28, 54, 5]. The next

lemma tells that if with respect to some finite presentation xX | r1, r2, . . . , rly of a hyperbolic group

G, an isoperimetric coefficient A is given, then one can effectively find δ ą 0 such that G will be

δ-hyperbolic with respect to the generating set X .

Lemma 9 (See [41], [5]). Suppose G is a hyperbolic group given with a finite presentation G “

xX | r1, r2, . . . , rly. Also suppose that f : N Ñ N is an isoperimetric function with respect to this

presentation such that fpnq ď An for some positive integer A. Then G is f̃pA,Mq-hyperbolic with

respect to the generating set X , where M “ maxt}r1}, . . . , }rl}u and f̃ : N2 Ñ N is a computable

function independent of G.

2.2 Elementary subgroups of hyperbolic groups

A group is called elementary if it has a cyclic subgroup of finite index. It is a well know fact that

in a hyperbolic group each element g of infinite order is contained in a unique maximal elementary

subgroup, usually denoted by Epgq, see for example [55].

By the lemmas 1.16 and 1.17 of [55], for a hyperbolic group G and for any g P G of infinite

order, the following holds:

Epgq “ tx P G | xgnx´1 “ g˘n for some n P Nu

and

Epgq “ tx P G | xgkx´1 “ gl for some k, l P Zzt0u u.
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Also we need the following definitions:

E´pgq “ tx P G | xgnx´1 “ g´n for some n P Nu,

E`pgq “ tx P G | xgnx´1 “ gn for some n P Nu.

Note that the equivalence of the two descriptions of Epgq given above, follows from Lemma 5.

Since, as it is well-known, in every torsion-free hyperbolic group G each elementary subgroup

is cyclic, it follows that for all g P Gzt1u , the subgroup Epgq is of the form xg0y, where g is a

power of g0 and Epg0q “ xg0y.

For any U P X˚, we denote by EpUq the group Epgq, where g P G and U “G g. Similarly, we

define E˘pUq. For V P X˚, we say that V P EpUq, if for some h P G, V “G h and h P EpUq.

Definition 2.1 (The root elements). If G “ xXy is a torsion-free hyperbolic group, then for a

word U P X˚ we say that U represents a root element in G, if U “G g0 and Epg0q “ xg0y.

Correspondingly, if Epg0q “ xg0y, then g0 is called root element.

If for some g P G, Epgq “ xg0y, then g0 is called a root of g. (Note that each element g P Gzt1u

has two different roots, g0 and g´1
0 .)

Lemma 10 (See Lemma 2.1 in [55]). Let G “ xXy be a δ-hyperbolic group, X be symmetric, and

let U, V P X˚ be geodesic words with respect to ΓpG,Xq. Let λ ě 1 and c ě 0 be constants

such that Uk and V k are pλ, cq-quasi-geodesic words w.r.t. ΓpG,Xq for all k P Z. (According

to Lemma 8, such pλ, cq always exist.) Let T1, T2 P X˚ be arbitrary elements in G. Denote

L “ maxt}T1}, }T2}u. Then, there exists a computable function f : N5 Ñ N independent of G

such that for any integer m satisfying the inequality

m ě fp|X|, δ, λ, c, }V }q,

either

L ą
}U}

12λ
m,
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or the equation

T1U
mT2 “G V n

implies that T1UT´1
1 , T´1

2 UT2 P EpV q. Moreover, if U “G V , then T1, T2 P EpUqp“ EpV qq.

More precisely, T1, T2 P E`pUq for n ą 0 and T1, T2 P E´pUq for n ď 0.

For the purpose of completeness we present a proof of Lemma 10 in Appendix.

Also, for the reason of convenience, for the constants mentioned in Lemma 10 we introduce the

following notations

υ “ υpUq “
}U}

12λ
. (2.11)

and, assuming that the values of |X|, δ, λ, c, }V } are already known, we denote

M “ MpU, V q “ fp|X|, δ, λ, c, }V }q. (2.12)

Lemma 11 (See Theorem 2 and Theorem 3 in [41]). Let G “ xXy be a torsion-free δ-hyperbolic

group given with its pX, δq-full-presentation. Then there exists an algorithm such that for any input

U P X˚ it finds a word V P X˚ such that EpUq “ xV y, i.e. there exists an algorithm computing

roots of the elements of G.

Corollary 5. There exists an algorithm which for any input hyperbolic group G “ xX | Ry given

by a finite presentation and for any input word U P X˚ finds V P X˚ such that V represents a root

element of U in G.

Proof. The set of finite group presentations for hyperbolic groups is recursively enumerable (Pa-

pasoglu [62]) and there is an algorithm which finds a thinness constant δ for any input finitely

presented hyperbolic group G “ xX | Ry (see, for example, [22]) and moreover, with respect to

this constant one can find the pX, δq-full-presentation of G. Combination of these observations with

Lemma 11 implies Corollary 5.
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2.3 HNN-extensions of (hyperbolic) groups

Let G “ xX | Ry is a finitely generated group and A,B ď G are some isomorphic subgroups of

G, and ϕ : A Ñ B is a group isomorphism between A and B. Then the HNN-extension of G with

respect to ϕ : A Ñ B is defined as HG
ϕ “ xX Y ttu | R, t´1at “ ϕpaq @a P Ay. Note that in this

text, since mostly from the context it will be clear what is ϕ , for the HNN-extension HG
ϕ we will

use the notation HG
ϕ “ H “ xG, t | t´1At “ By.

We are mostly interested in the case when A “ xay, B “ xby are infinite cyclic groups. For this

case by the notation H “ xG, t | t´1at “ by we denote the HNN-extension HG
ϕ , where ϕ : A Ñ B

is induced by the map ϕ : a ÞÑ b.

Let us consider the product

u “ g0t
ϵ1g1t

ϵ2 . . . tϵngn, (2.13)

where for 0 ď i ď n, gi P G and for 1 ď j ď n, ϵj P t˘1u. We say that this decomposition

corresponds to the sequence pg0, t
ϵ1 , g1, t

ϵ2 , . . . , tϵn , gnq and we say that a decomposition is a cyclic

shift of (2.13) if it corresponds to a cyclic shift of the sequence ptϵ1 , g1, t
ϵ2 , . . . , tϵn , gng0q.

Also the decomposition from (2.13) is said to be t-reduced if for 0 ď i ď n, we have gi P G

and no subproduct of the form t´1at, a P A or of the form tbt´1, b P B, appears in (2.13). And it

is said to be cyclically t-reduced if all cyclic shifts of the product (2.13) are t-reduced.

The word

w “ u0t
ϵ1u1t

ϵ2 . . . tϵnun P pX Y ttuq˚

is called reduced word with respect to the HNN-extension H , if ui P X˚ for 0 ď i ď n and the

corresponding sequence pu0, t
ϵ1 , . . . , tϵn , unq is t-reduced. Analogously, w is said to be cyclically

reduced with respect to the HNN-extension H if all cyclic shifts of ptϵ1 , u1 . . . , un´1, t
ϵn , unu0q are

t-reduced. Also we define θ as

θpwq “ n
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and for h P H , define

θphq “ mintθpwq | w P pX Y ttuq˚, w “H hu.

An element u P HG
ϕ is said to be cyclically t-reduced if its t-reduced decomposition is in

fact cyclically t-reduced. Again, this is a well-defined definition. Also every element u P HG
ϕ is

conjugate to a cyclically t-reduced element u1 which we call t-cyclic-reduction of u. See [40].

The next lemma is a very well-known and in literature sometimes is called Britton’s Lemma.

Lemma 12 (Britton’s Lemma). Let w P pX Y ttuq˚ be a reduced word with respect to the HNN-

extension H “ xG, t | t´1At “ By and θpwq ą 0, then w ‰H 1.

Then next lemma is a well-known fact as well and in literature is usually called Collins’ Lemma.

See, for example, [47, 25]

Lemma 13 (Collins’ Lemma). Let

u “ u0t
α0u1t

α1 . . . unt
αn

and

v “ v0t
β0v1t

β1 . . . vmtβm

be cyclically reduced words with respect to the HNN-extension H such that ui, vj P X˚ and αi, βj P

Z. If u and v are conjugate in HG
ϕ “ xG, t | t´1At “ By, then one of the following holds:

• u, v are words in X˚ which are conjugate in G;

• There is a finite chain of words in G

u “ w0, w
1
1, w1, w

1
2, w2, ..., w

1
k, wk, w

1
k`1 “ v

such that wi “ ϕ˘1pw1
iq, as group elements, w1

i, wi represent elements from A Y B, and for

each i “ 0, . . . , k, wi is conjugate to w1
i`1 in G;
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• θpuq, θpvq ą 0 and p “ q, and u is conjugate in H to some cyclic shift of v by an element

from A Y B.

Corollary 6. Let H “ xXYttu | R, t´1at “ ϕpaq @a P Ay be an HNN-extension of G “ xX | Ry,

and suppose g1 P G is not a proper power of any element in G. Then the image of g1 in H (which

we again denote by g1) is a proper power in H if and only if there exists k ě 2 and g2 P G such

that g1 „conj g
k
2 in H .

Proof. Let for some u P X˚, u “G g1, and w P
`

X Y ttu
˘˚ such that u “H wk for some k ě 2.

Now let w1 P
`

X Y ttu
˘˚ be a t-cyclic reduction of w. Then for some T P

`

X Y ttu
˘˚, we have

w “ Tw1T´1. Also note that for any k ě 2, pw1qk is also t-cyclically reduced. Therefore, by

Lemma 13, it must be that w1 P X˚, namely w1 represents an element in H which is an image of an

element from G.

The inverse statement of the corollary is obvious.

Lemma 14. Let H “ xG Y ttu | t´1at “ by be an HNN-extension of G “ xXy where a, b P G are

elements of infinite order which are not proper powers. Then, for any g0 P G, if g0 is not a proper

power in G, then its image in H is also not a proper power.

Proof. Assume that for some u P X˚, u “G g0 and also assume that there exists a word w P

`

X Y ttu
˘˚ such that u “H wk for some k ě 2. Then, by Corollary 6, there exists a word

T P
`

X Y ttu
˘˚ and a word w1 P X˚ such that u “H T´1pw1qkT . If T does not contain t˘1, then

clearly we get a contradiction to the fact that u is not a proper power in G. Therefore, it must be

that θpT q ě 1, i.e. its t-reduced decompositions contains t˘1. Assume that w1 and T are chosen

such that }T } is minimal for all possible such triples pu,w1, T q.

Since Tu´1T´1pw1qk “H 1, the word Tu´1T´1pw1qk must contain a subword of the form

tϵvt´ϵ, where for some l P Z, v “G al if ϵ “ ´1 or v “G bl if ϵ “ 1. Moreover, v is of the form

v1u
´1v´1

1 , where v1 P X˚ is a suffix of T . But this contradicts the minimality assumption of T .

Lemma 15. Let H “ xG Y ttu | t´1u0t “ v0y be an HNN-extension of G “ xXy, where

u0, v0 P X˚. Suppose that u, v P X˚ such that u „conj v in H . Then, either u „conj v in G or u

and v commensurate with at least one of u0 and v0 in G.
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Proof. It follows immediately from Theorem 2 in [47].

The following theorem can be found in [44] (it can be also regarded as a corollary from the

combination theorem of Bestvina and Feighn, [13]).

Theorem 8. Let G be a hyperbolic group with isomorphic infinite elementary subgroups A and B,

and let ϕ be an isomorphism from A to B. Then the HNN-extension H “ xG, t | t´1at “ ϕpaq, a P

Ay of G with associated subgroups A and B is hyperbolic if and only if the following two conditions

hold:

1. either A or B is a maximal elementary subgroup of G;

2. for all g P G the subgroup gAg´1 X B is finite.

Remark 4. In this work we need Theorem 8 in case when G is a torsion-free hyperbolic group.

Note that in case G is a torsion free hyperbolic group, the subgroups A and B, being maximal

elementary subgroups, are cyclic. Therefore, in this case, the second condition in the statement of

Theorem 8 can be replaced with this: for all g P G, the subgroup gAg´1 X B is trivial.

2.4 Lacunary hyperbolic groups

Let G “ xXy, |X| ă 8. Let d̄ “ pdiq
8
i“1 be an unbounded sequence of positive con-

stants, called scaling constants, and let x̄ “ pxiq
8
i“1 be any fixed sequence of points from

ΓpG,Xq, called observation points. Then the ultralimit of the sequence of spaces with basepoints

pΓpG,Xq, d{di, xiq with respect to some non-principal ultrafilter ω over N is called the asymptotic

cone of G “ xXy with respect to d̄ and ω, where d is the word metric over ΓpG,Xq. It is denoted

by ConωpG, d̄q. The term asymptotic cone was first introduced by Gromov in [27]. Since, in this

paper, we do not work with asymptotic cones, for more detailed definitions we refer to [27, 57].

As it was discovered by Gromov (see, for example, [29, 28]) many basic algebraic properties

of groups can be translated into geometric or topological ones via studying asymptotic cones of

Cayley graphs of groups. For example, hyperbolicity of a group is equivalent to the fact that all the

asymptotic cones of the group are R-trees. Moreover, as it is shown by Kapovich and Kleiner (see

[57]), if for a finitely presented group at least one of the asymptotic cones is an R-tree, then the

group is hyperbolic. However, if the group is not finitely presentable, then this statement is not true
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anymore. In fact, lacunary hyperbolic groups are defined to be the groups which have at least one

asymptotic cone that is an R-tree, see [57].

Definition 2.2 (Lacunary hyperbolic groups). A finitely presented group G is lacunary hyperbolic

if for some unbounded sequence d̄ “ pdiq
8
i“1 of scaling constants, ConωpG, d̄q is an R-tree.

Let α : G Ñ G1 be a homomorphism, G “ xXy. As it is mentioned in the introductory Section

1, the radius of α is the maximal radius of a ball in the Cayley graph ΓpG,Xq centered at 1G such

that all elements from that ball map to non-trivial elements in G1 except for 1G.

The next lemma is essentially Theorem 1.1 from [57].

Lemma 16 (Theorem 1.1, [57]). A finitely generated group G is lacunary hyperbolic if and only if G

is the direct limit of a sequence of δi-hyperbolic groups Gi “ xXiy (Xi is finite) and epimorphisms

G1
α1↠ G2

α2↠ . . . , (2.14)

where αipXiq “ Xi`1, and the hyperbolicity constant δi of Gi (relative to Xi) is little o of the

radius of αi.

Remark 5. Note that in Part (3) of Lemma 16, for almost all indices i, |Xi| “ |Xi`1|, therefore we

can identify Xi with Xi`1 by x “ αipxq for x P Xi and regard αi as the identity map from Xi to

Xi`1.

Corollary 7. A finitely generated group G is lacunary hyperbolic if and only if either G is a hyper-

bolic group or G is the direct limit of a sequence of δ1
i-hyperbolic groups Hi “ xXiy (Xi is finite)

and epimorphisms

H1

β1↠ H2

β2↠ . . . , (2.15)

where βipXiq “ Xi`1, such that

1. for all i, Hi is a δ1
i-hyperbolic group, where pδ1

iq
8
i“1 is an increasing sequence of positive

integers,

2. the sequence priq
8
i“1 is strictly increasing, where ri is the radius for the epimorphism βi :

Hi Ñ Hi`1,
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3. the sequence p
δ1
i
ri

q8
i“1 is strictly decreasing and converges to 0.

Proof. First of all, notice that for any fixed δ and X the number of δ-hyperbolic groups generated

by X is finite. Therefore, there exists an increasing subsequence pijq
8
j“1 such that for j ă k,

δij ă δik , where we borrow some of the notations from Lemma 16. Now define H 1
j “ Gji and

β1
j “ αij ˝ . . . ˝ αij`1 . Then, the sequence H 1

1

β1
1↠ H 1

2

β1
2↠ . . . satisfies the conditions of Lemma 16,

because the radius of a composition of epimorphims is equal to the minimal of the radiuses of the

epimorphisms. Thus we can assume that the condition of (1) takes place. To obtain the properties

of parts (2) and (3), one can simply use the same ‘infiltration’ trick. Here, one needs just to notice

that the set of radiuses of the epimorphisms is an unbounded set of bounded integers if G is not

hyperbolic (this easily follows from the fact that hyperbolic groups are Hopfian).

2.4.1 The word problem in lacunary hyperbolic groups

Let Ḡ “ xXy be a finitely presented group given as an inductive limit of the chain of epimor-

phims

G1
α1↠ G2

α2↠ . . . (2.16)

where αi : Gi ↠ Gi`1 is the induced epimorphism from the identity map id : X Ñ X , and for

i P N, Gi “ xX | Riy is finitely presented.

Recall that Ḡ has a graded recursive presentation with respect to (2.16) if the function i ÞÑ Ri

is computable. In general, if Ḡ has a graded recursive presentation with respect to some sequence

of type (2.16) then we say that Ḡ has a graded recursive presentation. If, in addition, all the groups

Gi, i P N, are hyperbolic, then we say that the presentation is a graded recursive presentation by

hyperbolic groups.

Proposition 2. If the limit group Ḡ is lacunary hyperbolic and Gi is hyperbolic for all i P N, then

either Ḡ is finitely presented, hence hyperbolic, or

lim sup
iÑ8

ri “ 8 and lim sup
iÑ8

δi “ 8,
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where ri is the radius of α : Gi ↠ Gi`1 and δi is a hyperbolicity constant for Gi.

Proof. Indeed, if Ḡ is finitely presented, then starting from some i P N, for all j ą i, the normal

closure of Rj`1 in Gi coincides with the normal closure of Ri`1 in Gi. Therefore, Ḡ coincides

with Gi`1, hence is hyperbolic.

Now let us assume that Ḡ is lacunary hyperbolic, but it is not hyperbolic. Then, since Ḡ is not

finitely presented for each N ą 0 there is n P N and R P Rn such that there is no U P X˚ such

that }U} ă N and R “Gn´1 U . Therefore, lim supiÑ8 ri “ 8 and by the statement p3q of Lemma

16, also lim supiÑ8 δi “ 8.

In particular, from Lemma 2 it follows that for infinitely presented lacunary hyperbolic groups

all supradius functions are unbounded.

For the proof of the next theorem we need the following definition from [6], which is a slight

generalization of the standard notion of the Dehn’s presentation.

Definition 2.3 (See Definition 1 in [6]). For 1
2 ď α ă 1, the group G “ xX | Ry given with a finite

presentation, where R is symmetric, is said to be α-Dehn presented, if for any freely cyclically

reduced word W P X˚ representing the trivial element of G, for some cyclic shift W 1 of W , W 1

contains a subword u, such that u is a prefix of some word R P R and }u} ą α}R}.

It is a well-known fact that hyperbolic groups admit α-Dehn presentations for all 1
2 ď α ă 1.

See, for example, [28, 5, 6].

It was shown by Arzhantseva in [6] that the property that a finite presentation of a group is an

α-Dehn presentation for some 3
4 ď α ă 1 can be detected algorithmically as it is stated below.

Theorem 9 (See [6]). There exists an algorithm determining whether or not a finite presentation of

a group is an α-Dehn presentation for some 3
4 ď α ă 1.

Note that if G “ xX | Ry “ xX | R1y and R Ď R1, then the presentation G “ xX | Ry is

a α-Dehn presentation implies that the presentation xX | R1y is a α-Dehn presentation too. Also,

as we already mentioned in preliminaries, if G “ xX | Ry is a finite presentation for a hyperbolic

group, then there is an algorithm which constructs a Dehn presentation for G.
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Theorem 10. Let Ḡ be an inductive limit of hyperbolic groups connected by epimorphisms. Then

Ḡ has decidable word problem if and only if it is either hyperbolic or it has a graded recursive

presentation by hyperbolic groups with strictly increasing corresponding radiuses.

Proof. First, let us show that if Ḡ has a decidable word problem, then Ḡ possesses the mentioned

properties.

Indeed, let Ḡ “ xXy, |X| ă 8. For n P N, let us define Sn “ tW P X˚ | W “Ḡ 1, }W } ď

nu. Since the word problem in Ḡ is decidable, we get that the sets S1,S2, . . . are algorithmically

constructible - one just needs to check for each W P X˚, }W } ď n, if W “Ḡ 1 or not, in order to

construct Sn.

We are going to define a sequence S 1
n1

Ĺ S 1
n2

Ĺ . . . such that each S 1
ni

is the minimal set

containing the set Sni and the group Gi :“ xX | S 1
ni

y is hyperbolic. In particular, we get n1 ă

n2 ă . . ..

Suppose that the set S 1
ni

Ě Sni is already constructed. Let j be the minimal index such that

S 1
ni

Ĺ Sj . Then, define ni`1 “ j and S 1
ni`1

Ě Sni`1 as the minimal set such that the presentation

xX | S 1
ni`1

y is an α-Dehn presentation for 3
4 ď α ă 1. The existence of such S 1

ni`1
follows from

the basic properties of hyperbolicity and the assumption that Ḡ is an inductive limit of hyperbolic

groups. The set S 1
ni`1

can be found algorithmically because of Theorem 9.

Now, clearly, Ḡ is a direct limit of G1
α1↠ G2 . . ., where αi : Gi Ñ Gi`1 is the induced

homomorphism of the identity map id : X Ñ X . On the other hand, since Sni Ď S 1
ni

Ĺ Sni`1 Ď

S 1
ni`1

, we get that the radius ri of αi satisfies ni ă ri ă ni`1. In particular, r1 ă r2 ă . . ..

Thus the first part of the theorem is proved.

Now assume that Ḡ is the inductive limit of

G1
α1↠ G2

α2↠ . . . , (2.17)

where for i P N, the groups Gi “ xX | Riy are hyperbolic groups, the corresponding sequence on

radiuses in increasing, and Ḡ “ xX | Y8
i“1Riy be a graded recursive presentation. Then, clearly,

for any W P X˚, W “Ḡ 1 if and only if W “Gn 1. Therefore, since the groups G1, G2, . . . have

decidable word problem, we get that Ḡ had decidable word problem as well.
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Thus the theorem is proved.

Remark 6. Note that the proof of Theorem 10 does not give any idea about complexity of the

word problem in lacunary hyperbolic groups. Hence we need to obtain more detailed structure of

presentations of classes of lacunary hyperbolic groups in order to describe efficient word problem

solving algorithms on them. Description of subclasses of LHG with effective word (and conjugacy)

problems is one of the primary goals in the next sections.

Corollary 8. A lacunary hyperbolic group has a decidable word problem if and only if either G is

a hyperbolic group or G is the direct limit of a sequence of δi-hyperbolic groups Gi “ xXiy (Xi is

finite) and epimorphisms

G1
α1↠ G2

α2↠ . . . , (2.18)

where αipXiq “ Xi`1, such that

1. for all i, Gi is a δi-hyperbolic group, where pδiq
8
i“1 is an increasing sequence of positive

integers,

2. the sequence priq
8
i“1 is strictly increasing, where ri is the radius for the epimorphism αi :

Gi Ñ Gi`1,

3. the sequence p δiri
q8
i“1 is strictly decreasing and converges to 0,

4. the groups Gi have presentation Gi “ xX | Riy such that the map i ÞÑ Ri is computable (i.e.

the presentation G “ xX | YRiy is a graded recursive presentation by hyperbolic groups).

Proof. The proof is similar to the proof of Corollary 7 when combined with Theorem 10.

2.5 Small cancellation conditions

In this section we are going to recall some small cancellation concepts for hyperbolic groups

introduced in [55] and then describe a class of special words which possess small cancellation

conditions.

Let G “ xXy be a finitely generated group, and let R be a symmetric set of words from X˚. A

subword U of a word R P R is called an ϵ-piece for ϵ ě 0 if there exists a word R1 P R such that
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1. R ” UV , R1 ” U 1V 1 for some V,U 1, V 1 P X˚;

2. U 1 “G Y UZ for some Y, Z P X˚ where }Y }, }Z} ď ϵ;

3. Y RY ´1 ‰G R1.

It is said that the system R satisfies the Cpλ, c, ϵ, µ, ρq-condition for some λ ě 1, c ě 0,ϵ ě 0,

µ ą 0, ρ ą 0, if

(1.1) }R} ě ρ for any R P R;

(1.2) any word R P R is pλ, cq-quasi-geodesic;

(1.3) for any ϵ-piece of any word R P R, the inequalities }U}, }U 1} ă µ}R} hold.

Now suppose that for a word R P R we have

(2.1) R “ UV U 1V 1 for some U, V, U 1, V 1 P X˚;

(2.2) U 1 “ Y U˘1Z in the group G for some words Y, Z P X˚ where }Y }, }Z} ď ϵ;

then the word U is called an ϵ1-piece of the word R. If R satisfies the Cpλ, c, ϵ, µ, ρq-condition and,

in addition, for all R P R, the above described decomposition of R implies }U}, }U 1} ă µ}R} then,

like in [55], we say that R satisfies the C 1pλ, c, ϵ, µ, ρq-condition .

2.5.1 Auxiliary parameters, lowest parameter principle (LPP) and the main conventions

In the context of the definition of the small cancellation condition Cpλ, c, ϵ, µ, ρq the parameters

δ, λ, c, ϵ, µ, ρ were introduced. In this paper, whenever we mention the small-cancellation condition

Cpλ, c, ϵ, µ, ρq, we assume that the parameters δ, λ, c, ϵ, µ, ρ satisfy some relations. More specif-

ically, ϵ depends on λ and c; µ depends on λ, c and ϵ; and ρ depends on λ, c, ϵ and µ (see, for

instance, Lemma 19 for an example where the condition Cpλ, c, ϵ, µ, ρq is involved).

Based on a similar concept introduced in [53] (see §15 in [53]), we introduce the notation ą

between parameters defined as follows: if α1, α2, . . . are some parameters, then α1 ą α2 ą . . .

means that the value of αi is being chosen after the parameters α1, . . . αi´1 were chosen. In

other words, the parameters α1, . . . αi´1 are independent of αi, but αi depends on the values of

α1, . . . , αi´1. If α and β are some parameters such that α ą β then we say that α is a higher
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parameter (correspondingly, β is a lower parameter), alternatively, we say that α has higher priority

with respect to β and β has lower priority with respect to α.

Convention 1. Throughout this text we will deal with statements involving parameters λ, c, ϵ, µ, ρ

and their indexed versions λi, ci, ϵi, µi, ρi for i P N. For all these parameters we assume that

λ ą c ą ϵ ą µ ą ρ. Analogously, λi ą ci ą ϵi ą µi ą ρi. Also we assume that parameters with

lower indexes are higher with respect to ą.

We also will deal with parameters δi, δ1
i. For them we assume ρi ą δi and δ1

1 ą λ1, ρi´1 ą δ1
i ą

λi for i “ 2, 3, . . ..

Convention 2. Throughout this text, for parameters δ, λ, c, ϵ, µ´1, ρ and their indexed versions

λi, ci, ϵi, µ
´1
i , ρi when we say that some parameter, say α, is large enough we mean that there

is a finite number of parameters of higher priority, say β1, . . . , βk, and a computable function

fα,β1,...,βk
: Nk Ñ N such that α can be chosen to have any value greater than fpβ1, . . . , βkq.

For example, if for ρi ”large enough” means ρi ą λiµi, then we think of i to be an arbitrary index

from N.

Definition 2.4 (The standard parameters). The parameters δ, λ, c, ϵ, µ, ρ and the indexed parameters

δi, δ
1
i, λi, ci, ϵi, µi, ρi, which are intensively used in this paper, we call the standard parameters.

Definition 2.5 (Sparse enough standard parameters). We will say that the sequence of standard

parameters pδ1
i, λi, ci, ϵi, µi, ρi, δiq

8
i“1 is sparse enough if for each parameter αi0 , where i0 is the

index of the parameter, we assume that

αι
i0 ą fi0,i1,...,ikpαi1 , . . . , αikq, (2.19)

where αi1 , . . . , αik are parameters of higher priority with indices i1, . . . , ik, ι “ ´1 if αi0 P

tµ1, µ2, . . .u and ι “ 1 otherwise, and fi0,i1,...,ik is a computable function such that fi0,i1,...,ik “

fi0`t,i1`t,...,ik`t for all t ě 0, and the map i0 ÞÑ fi0,i1,...,ik is computable as well.

Convention 3 (Lowest parameter principle (LPP)). In order many results of the current paper to

hold (for example, Theorems 14, 5, etc.), we require from the standard parameters to be sparse
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enough. Therefore, whenever we mention some relation of the form (2.19) involving the standard

parameters, for example, ϵ ą λδ`c or ϵi ą µiρi`c (the last one is equivalent to µ´1
i ą pϵi´cq´1),

then we say that this relation holds by lower parameter principle – simply, by LPP.

2.5.2 Words with small cancellation conditions

Hereafter, if it is not stated otherwise, we assume that G “ xXy is a non-trivial, non-elementary,

torsion free δ-hyperbolic group for some δ ą 0.

Let us consider a set R consisting of words of the form

Ri “ ziU
mi,1V Umi,2V Umi,3 . . . V Umi,ji , i “ 1, 2, . . . , k (2.20)

and their cyclic shifts, where k P N, U, V, z1, . . . , zk P X˚ are geodesic words, U, V ‰G

1, and mi,t P N for 1 ď i ď k, 1 ď t ď ji. Denote Z “ tz1, . . . , zku, L “

maxt}U}, }V }, }z1}, . . . , }zk}u.

Let λ̃, c̃ P N be such that Un is pλ̃, c̃q-quasi-geodesic in ΓpG,Xq for all n P Z. Note that the

existence of λ̃ and c̃ follows from (8). Moreover, given the δ-hyperbolic group G “ xXy and the

word U , one can find such a pair pλ̃, c̃q algorithmically.

Now let m “ mintmi,t | 1 ď i ď k and 1 ď t ď jiu, mi “ maxtmi,t | 1 ď t ď jiu for

1 ď i ď k. Then the following holds.

Lemma 17 (Compare with Lemma 2.3 in [55]). For the set of words R suppose that V R EpUq,

zi R EpUq for 1 ď i ď k. Then there exist constants λ “ c “ K̃ P N, computably depending

on G, U , V and Z, such that the words of the system (2.20) are pλ, cq-quasi-geodesic in ΓpG,Xq,

provided that m ě K̃.

Proof. We will show that λ, c and K̃ can be effectively computed by the following formulas

λ “ c “ K̃ “ K
`

24λ̃, p2M̄ ` 2qL
˘

(2.21)

where Kp q is defined as in Lemma 3, L “ maxt}U}, }V }, }z1}, . . . , }zk}u and

M̄ “ max
␣

24λ̃ ` c̃, MpU, V1q | V1 P
␣

V ˘1, z˘1
1 , . . . , z˘1

k

((
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where Mpq is given by the formula (2.12).

First, we will show that all the paths in ΓpG,Xq with labels of the form

W1U
a1V b

1 U
a2W2, (2.22)

where W1 and W2 are subwords of some words from
␣

U˘1, V ˘1, z˘1
1 , . . . , z˘1

k

(

, V1 P

␣

V ˘1, z˘1
1 , . . . , z˘1

k

(

and b P t0,˘1u, are
´

24λ̃, p2M̄ ` 2qL
¯

-quasi-geodesic.

For that let us fix an arbitrary such path q, with labpqq “ W1U
a1V b

1 U
a2W2. Note that since

all the subwords of labpqq are also of the form (2.22), to show that q is
´

24λ̃, p2M̄ ` 2qL
¯

-quasi-

geodesic, it is enough to show that

}W1U
a1V b

1 U
a2W2} ď 24λ|W1U

a1V b
1 U

a2W2| ` p2M ` 2qL.

To this end we will separately consider three cases:

1. when b ‰ 0 and maxta1, a2u ă M̄;

2. when b ‰ 0 and maxta1, a2u ě M̄; and

3. when b “ 0.

Case 1. If b ‰ 0 and maxta1, a2u ă M̄, then

}W1U
a1V b

1 U
a2W2} ď}W1} ` a1}U} ` }V1} ` a2}U} ` }W2}

ď}W1} ` }V1} ` }W2} ` p2M̄ ´ 1q}U} ď p2M̄ ` 2qL.

Case 2. If b ‰ 0 and maxta1, a2u ě M̄, then, by Lemma 10, either |Ua1V b
1 U

a2 | ě υmaxta1, a2u

or V1 P EpUq, where υ “ }U}{12λ̃.

Since, by our assumptions, V1 R EpUq, we get that |Ua1V b
1 U

a2 | ě υmaxta1, a2u. Therefore,

|W1U
a1V b

1 U
a2W2| ě |Ua1V b

1 U
a2 | ´ |W1| ´ |W2|

ě υmaxta1, a2u ´ 2L.

(2.23)
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On the other hand,

}W1U
a1V b

1 U
a2W2} ď }W1} ` a1}U} ` }V1} ` a2}U} ` }W2}

ď 2maxta1, a2u}U} ` 3L

by (2.23), ď 2

ˆ

|W1U
a1V b

1 U
a2W2| ` 2L

υ

˙

}U} ` 3L

ď 24λ̃|W1U
a1V b

1 U
a2W2| ` p48λ̃ ` 1qL

ď 24λ̃|W1U
a1V b

1 U
a2W2| ` p2M̄ ` 2qL.

Case 3. If b “ 0, then since Ua1`a2 is a pλ̃, c̃q-quasi-geodesic word, we get

}W1U
a1V b

1 U
a2W2} “ }W1U

a1`a2W2} ď }Ua1`a2} ` }W1} ` }W2}

ď λ|Ua1`a2 | ` c ` 2L ă λp|W1U
a1`a2W2| ` 2Lq ` c ` 2L

ă 24λ|W1U
a1`a2W2| ` p2M̄ ` 2qL.

Formula (2.12) implies that 2pλ̃ ` 1qL ` c̃ ă p2M̄ ` 2qL, hence the last inequality is true.

Now, let p be a path in ΓpG,Xq whose label corresponds to a word from R. Since K̃ ď m, all

the subpaths of p of the lengths bounded from above by K̃ are of the form (2.22). Therefore, p is

K̃-local
´

24λ̃, p2M̄` 2qL
¯

-quasi-geodesic. Therefore, taken into account the formula for K̃ from

(2.21) and the inequality m ě K̃, by Lemma 3, p is pK̃, K̃q-quasi-geodesic.

Assume that in the system (2.20), for all 1 ď i, i1 ď k and 1 ď t ď ji, 1 ď t1 ď ji1 , mi,t ‰ mi1,t1

if pi, tq ‰ pi1, t1q.

Recall that in Lemma 17 we required

V R EpUq and zi R EpUq for 1 ď i ď k. (2.24)

Let us introduce the following notations: For a given ϵ ą 0, ϵ0 “ ϵ ` 2L, ϵi “ ϵ0 `

i
`

2Rλ,c ` 182δ ` L
2

˘

for 1 ď i ď 5, where Rλ,c is defined as in Lemma 1 and, as before,
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L “ maxt}U}, }V }, }z1}, . . . , }zk}u. Let K̃ be defined by the formula (2.21) and λ “ c “ K̃.

Now, with respect to the given constants ϵ ě 0, µ ą 0, ρ ą 0 assume that

}R} ě ρ, for all R P R, (2.25)

m ě K̃, (2.26)

hence, by Lemma 17, the words from R are pλ, cq-quasi-geodesics in ΓpG,Xq. Next, we require

the following.

µ}Ri} ě 6Lpmi ` 1q (2.27)

and

m ě
2ϵ5
υ

(2.28)

where υ “ υpUq is defined by formula (2.11).

Lemma 18. Using the setting of the previous lemma and assuming that the above described condi-

tions take place, let us consider the system of words R given by (2.20). Let λ, c be defined by the

formulas (2.21). Then, if for the given constants ϵ ě 0, µ ą 0, ρ ą 0, the conditions (2.25), (2.26),

(2.27) and (2.28) are satisfied, then the system R satisfies the C 1pλ, c, ϵ, µ, ρq-condition.

Moreover, if two words R1, R2 P R are not equal up to cyclic shifts, then there are no sub-

words U1 and U2 of R1 and R2, respectively, such that }U1} ě µ}R1} and for some T1, T2 P X˚,

}T1}, }T2} ď ϵ and

T´1
1 U1T2 “G U2.

Proof. First of all, let us assume that the constants ϵ ě 0, µ ą 0, ρ ą 0 are already given.

Assume by contradiction that there exist two different words from R, W1 and W2, which have
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common ϵ-pieces. Suppose that W1 and W2 are cyclic shifts of the words

ziU
mi,1V Umi,2V Umi,3 . . . V Umi,ji

and

zi1Umi1,1V Umi1,2V Umi1,3 . . . V U
mi1,j

i1

or of their inverses, for some 1 ď i, i1 ď k.

Existence of a common ϵ-piece for the words W1 and W2 implies that there is a rectangle

ABCD in ΓpG,Xq such that the labels of AD and BC are prefixes of W1 and W2 with length at

least µ}W1} and µ}W2}, respectively, and AB, CD are geodesics with length at most ϵ.

Let us call vertices on AD and BC phase vertices if they are either origin or endpoint of a

subpath with label U˘1, V ˘1, z˘1
i or z˘1

i1 .

Note that after making AB and CD longer by at most 2y, we can ensure that A, B, C and D are

phase vertices. Hereafter, let us assume that the length of AB and CD are bounded by ϵ` 2L “ ϵ0

and the vertices A,B,C and D are phase vertices.

We will call a subpath of AD or BC special if it is labeled by V , zi or zi1 . If a special segment

on AD or BC is between other special segments then we call this special segment inner, otherwise,

we call it boundary special segment. Note that for any point O P AD (or O P BC), there is a phase

vertex O1 P AD (or, correspondingly, O1 P BC), such that
›

›rO,O1s
›

› ď L{2.

Before proceeding further, let us state and prove the following auxiliary claims.

Claim 1. For the rectangle ABCD let us consider any inner special segment P1P2 on one

of the sides AD or BC. For concreteness let us assume that P1P2 belongs to AD. Then

for any phase vertex Q1 P BC, if dpP1, Q1q ď ϵ3, then either labpP1Q1q P Epgq in G or

labpP2Q1q P Epgq in G, where by labpP1Q1q and labpP2Q1q we mean the labels of any paths

joining P1 to Q1 and P2 to Q1, respectively.

Proof. Let P3P4 and P5P6 be the closest to P1P2 special segments on AD such that P1P2 is be-

tween P3P4 and P5P6 (their existence follows from the assumption that P1P2 is an inner special
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segment). Let Q1 P BC be a fixed phase vertex such that dpP1, Q1q ď ϵ3, and let Q4 be the closest

to P4 phase vertex on BQ1. See Figure 2.2.

A

B C

DP P

QQ QR R

S P P

R R

P P43

4 1 2 1 3 4 5

5 6321

Figure 2.2

Since dpP1, Q1q, dpA,Bq ď ϵ3, by Corollary 3, we get distpP4, BQ1q ď ϵ3 ` 2Rλ,c ` 2δ.

Therefore, dpP4, Q4q ď ϵ3 ` 2Rλ,c ` 2δ ` L
2 “ ϵ4.

There are two possibilities which we are going to discuss separately: either labpQ4Q1q is a

power of U or Q4Q1 contains a special segment.

In case labpQ4Q1q is a power of U , since labpP4P1q “ U ξ1 for ξ1 ě m ě M and

dpP4, Q4q, dpP1, Q1q ď ϵ4 ď υm (the last inequality follows from (2.28)), by Lemma 10, the

equality

labpP4Q4qlabpQ4Q1qlabpQ1P1qlabpP1P4q “G 1

implies that labpP1Q1q P EpUq. Thus we are done with this case.

Now let us consider the case when Q4Q1 contains a special segment. Let Q5 be a phase vertex

on Q1C closest to P5. By Corollary 3, we again get dpP5, Q5q ď ϵ4. Again, if labpQ1Q5q is a

power of U , then, similarly to the previous case, by Lemma 10, labpP2Q1q P Epgq in G. Thus we

are left only with the case when both Q4Q1 and Q1Q5 contain special segments. Let us consider

this case in more details.

Let R1R2 and R3R4 be the closest to Q1 special segments on Q4Q1 and Q1Q5, respectively.

See Figure 2.2. Since labpR2R3q has a form U ξ2 , where |ξ2| ě m, at least one of labpR2Q1q and

labpQ1R3q is of the form U ξ3 , where |ξ3| ě m{2 ě M. Without loss of generality, assume that

labpQ1R3q “ U ξ3 for |ξ3| ě m{2. Then, let S3 be a phase vertex on P1P5 closest to R3. Then, by
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Corollary 3, dpR3, Q3q ď ϵ5. Therefore, since by (2.28), υm ě 2ϵ5, by Lemma 10, the equality

labpP2Q1qlabpQ1R3qlabpR3S3qlabpS3P2q “G 1

implies that labpQ1P2q P EpUq.

Claim 2. If A1A2, A3A4 and A5A6 are three consecutive inner special segments belonging either

to AD or to BC, then A3A4 is a special segment on AD X BC.

Proof. Firstly, without loss of generality let us assume that A1A2, A3A4 and A5A6 belong to AD.

Let B3 be the closest to A3 phase vertex on BC, B2 be the closest to A2 phase vertex on BB3 and

B5 be the closest to A5 phase vertex on B3C. See Figure 2.3.
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We will consider the case when B3B5 contains special segment(s) and the case when it does not

contain any special segment separetely.

First let us consider the case when B3B5 contains special segment(s). Let C1C2 be the closest

to B3 special segment on B2B3 and C3C4 be the closest to B3 special segment on B3B5. In case

B2B3 does not contain any special segments, we take C2 “ B2.

Correspondingly, let D2 be the closest to C2 phase vertex on A2A3 and D3 be the closest to

C3 phase vertex on A4A5. Then, by Corollary 3, dpA3, B3q ď ϵ1, dpA2, B2q, dpA5, B5q ď ϵ2, and

hence dpC2, D2q, dpC3, D3q ď ϵ3. Therefore, by Claim 1, one word from each pair plabpC1D2q,

labpC2D2qq; plabpA3B3q, labpA4, B3qq and plabpD3, C3q, labpD3, C4qq belongs to EpUq.

Note that if labpD3C4q P EpUq, then it cannot be so that labpA4B3q P EpUq, because otherwise
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it would imply that labpC3C4q P EpUq as well, which is not true by our assumptions (see the

condition (2.24)). Therefore, in case labpD3C4q P EpUq, it must be that labpA3B3q P EpUq.

But, since labpA3C3q, labpA4C4q P EpUq in that case, by condition (2.24), it would mean that

dpA3, C3q “ dpA4, C4q “ 0 or, in other words, A3A4 coincides with C3C4.

Now, if labpD3C3q P EpUq, then labpA4B3q P EpUq. Therefore, because of the condition

(2.24), labpC2D2q cannot belong to EpUq. Finally, in case C2 “ B2, by Claim 1, this would

mean that labpA1B2q P EpUq, which is impossible because of the condition (2.24). Otherwise,

again by Claim 1, labpC1D2q P Epgq in G. Therefore, by the condition (2.24), since in this case

labpA3C1q P EpUq and labpA4C4q P EpUq, we would get A3 “ C1 and A4 “ C2.

Now let us turn to the case when B3B5 does not contain a special segment. In this case, by

applying Lemma 10 to the boundary label of the rectangle A4B3B5A5 we get that labpA4B3q and

labpA5B5q belong to EpUq. Then, by repeating previous arguments, we obtain that labpD2C1q P

EpUq and consequently A3 “ C1 and A4 “ C2. Thus Claim 2 is proved.

Inequality (2.27) assures us that on AD one can find six consecutive special segments A1A2,

A3A4, A5A6, A7A8, A9A10 and A11A12. By Claim 2, A5A6, A7A8 belong to AD X BC. See

Figure 2.4.
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Figure 2.4

As it is shown in Figure 2.4, let us denote the subpaths of AD and BC restricted between A6

and A7 by p1 and p2, respectively. Since A5A6 and A7A8 are consecutive special segments, the

label of p1 is a power of U . Now, assuming that p2 contains a special segment, just like it was

done in the proof of Claim 2, we can show that that special segment must also belong to p1, which

is impossible since p1 does not contain any special segments. Therefore, it must be that p2 also

does not contain any special segments. In other words, the label of p2 is a power of U as well.

This means that the label of the closed path p2p
´1
1 is also a power of U . But since U represents an
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element g P G of infinite order, this can happen if and only if the label of p2p´1
1 is the empty word,

i.e., when p2 coincides with p1.

Now, since for all 1 ď t ď ji, 1 ď t1 ď ji1 , mi,t ‰ mi1,t1 if pi, tq ‰ pi1, t1q, the last observation

implies that, in fact, i “ i1 and W1 is a cyclic shift of W2. Moreover, we get that either labpBAq is

a suffix of labpAA5q or labpAA5q is a suffix of labpBAq. This means that either labpABq is equal

to a prefix of W1 in G or labpBAq is equal to a prefix of W2 in G; but this is impossible, because it

contradicts condition (3) in the definition of ϵ-pieces.

Now it follows from (2.25) and Lemma 17 that R satisfies the small cancellation condition

C 1pλ, c, ϵ, µ, ρq.

2.5.3 A special subclass of small cancellation words

Using the already established setting of Subsection 2.5.2, let us define the positive integer m1,1

as the smallest positive integer satisfying all the constraints put on it in Subsection 2.5.2.

Now let us assume that in the set of words R we have that m1,1 is defined as above and for all

1 ď i ď k, mi,1 “ 2i´1m1,1, ji “ mi,1 ´ 1 and for all 1 ď t ď ji, mi,t “ mi,1 ` pt ´ 1q.

If all these equations are satisfied, then we denote the system of words R by

R “ R
`

Z, U, V, δ, λ, c, ϵ, µ, ρ
˘

. (2.29)

where Z is the ordered set tz1 ă z2 ă . . . ă zku.

Note that the set of words R defined this way satisfies all the conditions prescribed for Lemmas

17 and 18. A little bit less obvious among this conditions seems to be condition (2.27). Let us show

that condition (2.27) holds as well.

Indeed, the length of each word Ri from R
`

Z, U, V, δ, λ, c, ϵ, µ, ρ
˘

is not smaller than mi,1 `

pmi,1 ` 1q ` . . . ` p2mi,1 ´ 1q ą m2
i,1 and mi “ 2mi,1 ´ 1. Therefore, for each 1 ď i ď k,

µ}Ri} ě µm2
i,1. Now we have µ}Ri} ě µm2

i,1 ě 12Lmi,1 “ 6Lpmi ` 1q. Note that the last

inequality follows from the property A2.

Thus, by Lemma 17 and Lemma 18, the set of words R
`

Z, U, V, δ, λ, c, ϵ, µ, ρ
˘

satisfies the
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small cancellation condition C 1pλ, c, ϵ, µ, ρq.

Let f : N Ñ N be a linear time computable function. Then for all n P N, define

nR “
␣

R P R | }R} ď fpnq
(

.

Assuming that Z, U, V, δ, λ, c, ϵ, µ, ρ are already computed, from the structure of (2.29), it is not

hard to see that the set nR can be computed in time bounded from above by Afpnq, where A ą 0

does not depend on the parameters of nR. Thus we get the following property.

Property 1. nR can be computed in time bounded from above by Afpnq, where A is a positive

constant not depending on Z, U, V, δ, λ, c, ϵ, µ, ρ.

For the applications, let us introduce the following convention:

R
`

H, U, V, δ, λ, c, ϵ, µ, ρ
˘

“ H. (2.30)

2.5.4 Planar diagrams over hyperbolic groups and van Kampen’s lemma

Let H “ xX | Oy, where |X| ă 8. A map is a finite, planar connected 2-complex. A diagram

∆ over X is a map whose edges e are labeled by letters labpeq P X˘1 such that labpeq´1 “

labpe´1q. The label of a path p “ e1 . . . en in ∆ is, by definition, the word labpe1q . . . labpenq. A

diagram over X is called a diagram over the group H “ xX | Oy if the label of the boundary path

of every cell of ∆ is a cyclic shift of some relator from O.

A van Kampen lemma states that a word W P X˚ represents the identity of the group H if and

only if there is a simply connected diagram ∆ over H “ xX | Oy such that the boundary label

of ∆ is W . Hence, for a given W P X˚ we call such a ∆ van Kampen’s diagram with label W

over H “ xX | Oy. In this paper we only use simply connected diagrams. Therefore, hereafter by

diagrams we will mean simply connected diagrams.

Note that for any diagram ∆ over H “ xX | Oy, ∆ can be naturally projected into the Cayley

graph ΓpH,Xq such that all the labels are preserved. Moreover, if we fix arbitrary vertex o1 of ∆

and arbitrary vertex o2 of ΓpH,Xq, then the projection which maps o1 to o2 is defined uniquely.
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We denote this projection by Projo2o1 p∆q. Since in the applications of the current paper, we do not

need to specify o1 and o2, we will simply use the notation Projp∆q. This projection allows us to

consider word metric on ∆, by simply considering the word metric on the projection of ∆.

Let G be a quotient of H . When considering group G we will partition the defining relators into

two sets. The first set O will consist of all relators (not only defining) of H with a fixed generating

set X . The second set, R, will be some symmetrized set of additional relators. We shall write

G “ xX | O Y Ry “ xH | Ry. (2.31)

Using the terminology of [55] we call the cells of a diagram with boundary labels from O (from

R) 0-cells (R-cells). Diagram is called reduced if it contains minimal number of R-cells among all

diagrams with the same boundary label.

Now consider a simple closed path w “ p1q1p2q2 in a diagram ∆ over G, such that q1 and q2

are subpaths of boundary cycles of R-cells Π1 and Π2, and }p1}, }p2} ď ϵ for a fixed constant ϵ.

Assuming that the subdiagram Γ of ∆ bounded by w has no hole and no R-cell and Π1 ‰ Π2,

following Olshanskii, we call Γ a ϵ-contiguity (or simply, contiguity) subdiagram of Π1 and Π2.

The same term will be used if Π1 “ Π2 and Γ contains no holes.

In case q2 instead of being a subpath of Π2 is a subpath of of a connected path q on B∆, Γ

is called outer ϵ-contiguity subdiagram (from Π1 to B∆ or to q). The notation BpΠ1,Γ,Π2q (or

BpΠ1,Γ, qq) “ p1q1p2q2 will define the partition of the contour w of Γ. The above subpaths q1 and

q2 are called the contiguity arcs while p1 and p2 are called the side arcs of the contiguity subdiagram

Γ.

Hereafter we will denote by BΠ the loop in ΓpG,Xq with the label equal to the label of Π. By

}Π} we denote the length of the boundary label of a cell Π. The ratio }q1}{}Π1} for a contiguity

subdiagram of a cell Π1 to a cell Π2 (or to a section q), is called the contiguity degree of Π1 to Π2

via Γ (or of Π1 to q). It is denoted pΠ1,Γ,Π2q (or pΠ1,Γ, qq). For a matter of convenience, instead

of the notation pΠ1,Γ, qq we will simply use the notation BΓ if it does not lead to ambiguities.

If for a contiguity subdiagram Γ P M, p´1
1 q1p2q

´1
2 “ BΓ, q2 belongs to B∆, then q2 is called

outer contiguity arc, and correspondingly q1 is called inner contiguity arc. Whenever it is not
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mentioned otherwise, hereafter we will denote the outer arc of Γ by q̂Γ and the inner arc by q̌Γ.

Also let us denote p1 “ pΓ and p2 “ p1
Γ.

2.5.5 Quotients of hyperbolic groups by normal closures of words with small cancellation condi-

tions

Hereafter, if ∆ is a diagram over the quotient G “ H{ ! R ", then by saying that the boundary

B∆ of ∆ is a pλ, cq-quasi-geodesic t-gon, we mean that B∆ is partitioned into t connected pieces

such that they are pλ, cq-quasi-geodesic in ΓpH,Xq.

Lemma 19 (see Lemma 4.6 in [57] and Lemma 6.6 in [55]). For appropriately chosen parameters

based on the lowest parameter principle with respect to the order λ ą c ą ϵ ą µ ą ρ, if the

presentation G “ H{ ! R " satisfies the Cpλ, c, ϵ, µ, ρq-condition, then for any reduced disk

diagram ∆ over the presentation G “ H{ ! R " whose boundary is a pλ, cq-quasi-geodesic t-gon

for 1 ď t ď 12 and which contains an R-cell, there exists an R-cell Π in ∆ and disjoint outer

ϵ-contiguity subdiagrams Γ1, . . . ,Γt of Π to different sides of the pλ, cq-q.g. t-gon B∆, such that

t
ÿ

i“1

pΠ,Γi, q̂Γiq ą 1 ´ 23µ. (2.32)

Moreover, the quotient G “ H{ ! R " is 4L-hyperbolic, where L “ maxt}R} | R P Ru.

Remark. Note that, in fact, in Lemma 19 some of the subdiagrams Γ1, . . . ,Γt, say Γ1, may not

exist, in which case we would call Γ1 empty contiguity subdiagram and take pΠ,Γ1, q̂Γ1q “ 0.

The important thing is that, according to Lemma 19, some of Γ1, . . . ,Γt are not empty, so that the

inequality (2.32) holds.

Lemma 20 (Lemma 7.2, [55]). Let H “ xXy by a non-elementary hyperbolic group. Let G be a

group with a presentation (2.31) such that R satisfies the C 1pλ, c, ϵ, µ, ρq-condition for appropri-

ately chosen parameters λ ą c ą ϵ ą µ ą ρ. Then G is non-cyclic, each R P R represents an

element of infinite order in H , and a word W P X˚ has a finite order in G if and only if W is

conjugate in G to an element having finite order in H .
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Remark 7. Note that if H is a non-elementary torsion-free hyperbolic group, then Lemma 20

implies that G is also a non-elementary torsion-free hyperbolic group.

Definition 2.6 (Essential cells and contiguity subdiagrams). Let Π be an R-cell in a reduced van

Kampen diagram ∆ with pλ, cq-quasi-geodesic t-gon boundary for 1 ď t ď 12, and let Π be

connected to the sides of the t-gon B∆ by disjoint outer ϵ-contiguity subdiagrams Γ1, . . . , Γt such

that

t
ÿ

i“1

pΠ,Γi, q̂Γiq ą 1 ´ 23µ. (2.33)

Then we call Π an essential cell, and the contiguity subdiagrams Γ1, . . . ,Γt – essential contiguity

subdiagrams.

2.5.6 Auxiliary definitions and lemmas

In this subsection we discuss some auxiliary lemmas and definitions for G “ H{ ! R ",

where H “ xXy is hyperbolic and R satisfies the Cpλ, c, ϵ, µ, ρq-condition. Also, 0 ď η ď 1 ď ϵ0

are some constants.

Definition 2.7 (pϵ0, ηq-arcs and pϵ0, ηq-words). W0 P X˚ is an pϵ0, ηq-word (associated with a

word R P R) with respect to the quotient G “ H{ ! R ", if there exist words T1, T2 P X˚,

}T1}, }T2} ď ϵ0 and a word R P R such that R “ UV , }U} ě η}R} and

W0 “H T´1
1 UT2.

A subpath p1 of a path p from ΓpG,Xq is called pϵ0, ηq-arc (or pϵ0, ηq-subpath) if its label is a

pϵ0, ηq-word.

Lemma 21. Suppose that W P X˚ contains a pϵ0, ηq-subword associated with some word R P R.

Then

}R} ď
λp}W } ` 2ϵ0q ` cq

η
.

Proof. Follows from the definition of the pϵ0, ηq-subwords and the fact that the word from R are

pλ, cq-quasi-geodesics in ΓpH,Xq. We just need to apply the triangle inequality.
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Lemma 22. Let us consider the quotient G “ H{ ! R ", where H “ xXy and R satisfies the

Cpλ, c, ϵ, µ, ρq-condition. Then for any constants ϵ0 ě 0 and K ą 0, if µ is small enough and ρ is

large enough, then there is no pλ, cq-quasi-geodesic path in ΓpG,Xq containing an pϵ0, 1´Kλµq-

arc.

Proof. All the metric notations which we use in this proof are in Cayley graph ΓpG,Xq.

First of all, assume that 0 ă µ ă 1
Kλ so that we have 0 ă 1 ´ Kλµ ă 1.

Now assume that there exists a pλ, cq-quasi-geodesic path p in ΓpH,Xq which contains an

pϵ0, 1 ´ Kλµq-arc p1. Then, by definition, there exist words T1, T2 P X˚, }T1}, }T2} ď ϵ0 and a

word R P R, such that R “ UV , }U} ě p1 ´ Kλµq}R} and

labpp1q “H T´1
1 UT2.

Then, combining the last equation with the triangle inequality and with the inequality }U} ě p1 ´

Kλµq}R}, we get

|p1| ě
p1 ´ Kλµq}R} ´ c

λ
´ 2ϵ0. (2.34)

On the other hand, by the triangle inequality, we have

|p1| ď 2ϵ0 ` }V } ď 2ϵ0 ` p1 ´ p1 ´ Kλµqq}R} “ 2ϵ0 ` Kλµ}R}. (2.35)

Finally, note that, since }R} ě ρ, if ρ is large enough, then the system of inequalities (2.34) and

(2.35) is not consistent, which contradicts the existence of p1

Definition 2.8 (Truncated diagrams). If a van Kampen diagram ∆ over G “ H{ ! R " has a

rectangular boundary B∆ “ ABCD such that the following conditions hold

1. rA,Ds and rB,Cs are pλ, cq-quasi-geodesics in ΓpG,Xq,

2. rA,Bs and rD,Cs are geodesic,

3. dGpA,Bq “ distGpA, rB,Csq, dGpD,Cq “ distGpD, rB,Csq,

then ∆ is called a truncated diagram.
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Lemma 23. Suppose that ∆ is a reduced diagram over G “ H{ ! R " such that B∆ “ ABCD,

∆ is truncated and the following holds:

dGpA,Dq ě λ
`

L `
›

›rA,Bs
›

› `
›

›rD,Cs
›

› ` 2ϵ
˘

` c, (2.36)

where L “ maxt}R} | R P Ru.

Suppose that ∆ contains an essential R-cell Π connected to rA,Bs, rB,Cs, rC,Ds and rD,As

by essential ϵ-contiguity subdiagrams Γ1, Γ2, Γ3 and Γ4, respectively. Then, if the standard param-

eters are large enough, we have

(i) either Γ1 or Γ3 is empty;

(ii) pΠ,Γ1, rA,Bsq ` pΠ,Γ2, rB,Csq ` pΠ,Γ3, rB,Csq ď 1 ´ 26µ; and

(iii) pΠ,Γ4, rA,Dsq ą µ.

Proof. First of all, if both Γ1 and Γ3 are not empty, then the distance between rA,Bs and rD,Cs is

bounded by 2ϵ`}Π} ď 2ϵ`L. Therefore, since rA,Ds is pλ, cq-quasi-geodesic in ΓpG,Xq, by the

triangle inequality, we have dGpA,Dq ď λ
`›

›rA,Bs
›

› `
›

›rD,Cs
›

› ` 2ϵ ` L
˘

` c, which contradicts

the condition (2.36) in the statement of the lemma. Therefore, without loss of generality we can

assume that Γ3 is empty.

Now let us prove that

pΠ,Γ1, rA,Bsq ` pΠ,Γ2, rB,Csq ă 1 ´ 26µ.

For that let us denote κ1 “ pΠ,Γ1, rA,Bsq and κ2 “ pΠ,Γ2, rB,Csq, and by contradiction, as-

sume that κ1 ` κ2 ě 1 ´ 26µ. Then, since dGpA,Bq “ distGpA, rB,Csq, we get dGpA,Bq ď

dGpA, pq̂Γ2q`q, and consequently,

dG
`

pq̂Γ1q´, B
˘

ď dG
`

pq̂Γ1q´, pq̂Γ2q`

˘

ď 2ϵ ` p1 ´ κ1 ´ κ2q}Π} ă 2ϵ ` 26µ}Π}. (2.37)

See Figure 2.5. Since BΠ is pλ, cq-quasi-geodesic, we also have

κ1}Π} ´ c

λ
´ 2ϵ ď }q̂Γ1} ď dGppq̂Γ1q´, Bq. (2.38)
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Combining (2.37) and (2.38), we get κ1}Π} ď λp4ϵ ` 26µ}Π}q ` c ăby LPP 27λµ}Π}, and

consequently, we get κ1 ă 27λµ. Therefore, κ2 ą 1´ 26µ´ 27λµ ą 1´ 53λµ, or in other words,

q̂Γ2 is a pϵ, 1 ´ 53λµq-arc, by Lemma 22, but for large enough ρ this is impossible, because rB,Cs

is pλ, cq-quasi-geodesic.
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Figure 2.5

Finally, since the system of contiguity diagrams Γi, i “ 1, 2, 3, 4, is essential and Γ3 is empty,

we get that pΠ,Γ4, rA,Dsq ě 1 ´ 23µ ´ pκ1 ` κ2q ą 3µ ą µ.

Lemma 24. Suppose that R satisfies C 1pλ, c, ϵ, µ, ρq-condition and ρ is large enough. Suppose that

R P R and U, V are disjoint subwords from R such that for some words T1, T2 P X˚, }T1}, }T2} ď

2ϵ and T´1
1 UT2 “H V ˘1.

Then }U}, }V } ď 2µ}R}.

Proof. The statement follows from the definition of the small cancellation condition C 1pλ, c, ϵ, µ, ρq

(see properties (2.1) and (2.2) in the definition of C 1pλ, c, ϵ, µ, ρq) and Corollary 4.

2.6 Van Kampen diagrams over HNN-extensions

Let G “ xX | Ry be a group presentation. Let S be a subset of X . Then an S-band B is a

sequence of cells Π1,...,Πn in a van Kampen diagram such that

• Each two consecutive cells in this sequence have a common edge labeled by a letter from S;
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• Each cell Πi, i “ 1, ..., n, has exactly two S-edges (i.e. edges labeled by a letter from S)

having opposite orientations.

We call the sides of an S-band with labels from S ends of the band, and the sides of the S-band

which are separated by the ends sides of the S-band.

The concept of bands naturally occurs when one considers HNN-extensions of groups as fol-

lows.

Let H “ xX, t | t´1At “ By, where A,B ď G “ xX | Ry are isomorphic subgroups by some

isomorphism ϕ : A Ñ B. Then, from van Kampen’s lemma it follows that for each W P pXYttuq˚

such that W “H 1, there exists a disc diagram (=van Kampen diagram) ∆ over the presentation

H “
@

X Y ttu | R Y tt´1atϕpaq´1 | a P Au
D

(2.39)

such that labpB∆q “ W and ∆ is reduced, in the sense that it contains minimal number of t-bands

among all van Kampen diagrams with boundary label W . A well-known fact is that either ∆ does

not contain t-bands (which implies that W P X˚ and W “G 1) or all the t-bands of ∆ have their

edges with label t˘1 on the boundary B∆ of ∆. For more details see, for example, [47, 64].

Analogously, if H is obtained from G by multiple HNN-extensions with respect to isomorphic

subgroups ϕ1 : A1 Ñ B1, . . . , ϕn : An Ñ Bn, namely,

H “
@

X Y tt1, . . . , tnu | R Y tt´1
i aitiϕipaiq

´1 | 1 ď i ď n, ai P Aiu
D

,

Then for each 1 ď i ď n, either W does not contain letters from tt˘1
i u or in ∆ all ti-bands have

their ends on B∆ and moreover, every edge of B∆ with a label from tt˘1
i u is connected with a

ti-band to another edge on B∆ with the same label.
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2.7 Slender conjugacy diagrams and their geometry

2.7.1 Slender conjugacy diagrams over hyperbolic groups

Let H “ xX | Oy, |O| ă 8, |X| ă 8, be a non-cyclic δ-hyperbolic group with respect to

ΓpG,Xq for some δ P N.

We call a disk diagram ∆ with quadrilateral boundary ABCD, a pU, V q-conjugacy diagram

over xX | Oy if labpABq “ labpDCq and labpBCq “ U , labpADq “ V .

We say that ∆ is a slender pU, V q-conjugacy diagram over xX | Oy, if AB has minimal length

among all pU, V q-conjugacy diagrams over xX | Oy. Also we say ∆ is a cyclically slender pU, V q-

conjugacy diagram over xX | Oy if it is a pU 1, V 1q-conjugacy diagram for some cyclic shifts U 1 and

V 1 of U and V , respectively, and in addition,

}labpABq} “

mint}labpA1B1q} | @pU 1, V 1q-conj. diagram ∆1 with B∆1 “ A1B1C 1D1,

where U 1 and V 1 are, respectively, cyclic shifts of U and V u.

For arbitrary points O P AB and O1 P DC, let us call them mirroring points if labpAOq “

labpDO1q.

Lemma 25. If pU, V q-conjugacy diagram ∆ has two different pairs of mirroring points pO1, O
1
1q

and pO2, O
1
2q such that in Projp∆q, O1 is joined to O1

1 by a path p1 and O2 is joined to O1
2 by a

path p2 such that labpp1q ” labpp2q, then ∆ is not slender.

Proof. Indeed, if the statement of Lemma 25 holds, then we can remove the subdiagram in ∆

bounded between O1, O2, O
1
2 and O1

1 and obtain a new diagram ∆1 with B∆1 “ A1B1C 1D1, where

A1B1 is shorter than AB. This procedure is depicted in Figure 2.6. Since the boundary label of

the newly obtained diagram ∆1 represents the trivial element of G, by van Kampen’s lemma, there

exists a disk diagram over xX | Oy with boundary of ∆1. Since labpA1B1q “ labpD1C 1q, then, in

fact, the new disk diagram is a pU, V q-conjugacy diagram over xX | Oy as well. Finally, since the

length of A1B1 is strictly shorter than the length of AB, by definition, ∆ is not a slender diagram.
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Figure 2.6: The left diagram is Projp∆q, labpp1q “ labpp2q. The right diagram is ∆1, which is
obtained after making a surgery on ∆ to remove the colored subdiagram.

Based on Lemma 25 and Corollary 4, it is not hard to see that the following is true.

Lemma 26. Let U, V P X˚ be cyclically pλ, cq-geodesic words such that U „conj V in H . Suppose

that ∆ is a slender pU, V q-conjugcy diagram with the standard boundary ABCD. Then }AB} “

}DC} ď τp|X|, δ, λ, cq, where τ : N4 Ñ N is a computable function independent of H . In other

words, there exist cyclic shifts U 1, V 1 P X˚ of U and V , respectively, and a word T P X˚ such that

}T } ď τp|X|, δ, λ, cq and U 1 “H T´1V 1T .

In fact, Lemma 26 is a slight variation of Lemma 10 in [41] and Proposition 3 in [4].

Definition 2.9 ((Cyclically) minimal conjugacy diagrams over HNN-extensions). Let H “ xX Y

ttu | t´1At “ By be an HNN-extension of a group G “ xX | Ry. Suppose that U, V P pX Y ttuq˚

are such that U „conj V in H . Let ∆ be a pU, V q-conjugacy diagram over the presentation H “

@

X Y ttu | R Y tt´1atϕpaq´1 | a P Au
D

such that it contains minimal number of t-bands among

all pU, V q-conjugacy diagrams. Then we call ∆ minimal pU, V q-conjugacy diagram over the HNN-

extension H “ xX Y ttu | t´1At “ By.

If ∆ is a pU 1, V 1q-conjugacy diagram for some cyclic shifts U 1 and V 1 of U and V , respectively,

and if ∆ contains minimal number of t-bands among all such diagrams, then we say that ∆ is a

cyclically minimal pU, V q-conjugacy diagram over the HNN-extension H “ xX Y ttu | t´1At “

By.

Lemma 27 (About the conjugacy diagrams over HNN-extensions). (i). Let ∆ be a cyclically min-

imal pU, V q-conjugacy diagram over the presentation (2.39) such that B∆ “ ABCD, labpABq “
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labpDCq, and labpADq and labpBCq are cyclic shifts of U and V for U, V P pX Y ttuq˚, respec-

tively. Then either ∆ does not contain t-bands joining AB to DC or if there exists such a band with

its ends e1 P AB and e2 P DC, then pe1q` and pe2q` are mirroring pair of points.

(ii). Let ∆ be a minimal pU, V q-conjugacy diagram over the presentation (2.39) such that

B∆ “ ABCD, labpABq “ labpDCq, and U, V P X˚ (i.e. U and V do not contain letters

from tt˘1u). Then either ∆ does not contain t-bands joining AB to DC or if there exists such a

band with its ends e1 P AB and e2 P DC, then pe1q` and pe2q` are a mirroring pair of points.

Proof. The lemma is an easy consequence of Collins’ Lemma.

2.7.2 Cyclically slender conjugacy diagrams over quotient groups with small cancellation condi-

tions

Definition 2.10 ((cyclically) pλ, c, ϵ, ηq-reduced words). For ϵ ą 0, 0 ă η ď 1, a cyclically reduced

word W P X˚ is called pλ, c, ϵ, ηq-reduced over the quotient G “ H{ ! R " if W is pλ, cq-quasi-

geodesic in ΓpH,Xq and moreover, W does not contain a pϵ, ηq-subword. And it is called cyclically

pλ, c, ϵ, ηq-reduced, if all cyclic shifts of W are pλ, c, ϵ, ηq-reduced.

For the next lemma, let H “ xXy be a δ-hyperbolic group with respect to the generating set X ,

and let G “ H{ ! R "“ xH | Ry, where R is a finite symmetric set of words satisfying the small

cancellation condition C 1pλ, c, ϵ, µ, ρq for appropriately chosen parameters λ ą c ą ϵ ą µ ą ρ.

Lemma 28. Let U, V P X˚ be cyclically pλ, c, ϵ, 1´ 121λµq-reduced words. Then for any reduced

cyclically slender pU, V q-conjugacy diagram ∆ with B∆ “ ABCD, assuming that ∆ contains an

R-cell, we get that ∆ contains an essential R-cell Π which is connected to AB, BC, CD and DA

by contiguity subdiagrams Γ1, Γ2, Γ3 and Γ4, respectively, and the following hold

1. Γ2 and Γ4 are non-empty;
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2. pΠ,Γ2, BCq ` pΠ,Γ4, DAq ě 1 ´ 121λµ; and

3. pΠ,Γ1, ABq and pΠ,Γ3, CDq are either empty or smaller than 49λµ.

Proof. Proof of Lemma 28 is given in Appendix (see Subsection A.0.2).

Definition 2.11. If ∆ is a cyclically slender pU, V q-conjugacy diagram over the quotient G “ xH |

Ry, then we say that ∆ is a pU, V q-conjugacy H-diagram if G does not contain an R-cell, otherwise,

we say that ∆ is a pU, V q-conjugacy G-diagram.

Convention 4. In the rest of the text for the quotient G “ H{ ! R " we assume that the parameters

λ, c, ϵ, µ, ρ are chosen so that 1 ą 1 ´ 122λµ ą 0 and no pλ, cq-quasi-geodesic path in ΓpG,Xq

contains an pϵ, 1 ´ 122λµq-arc (with respect to G “ H{ ! R "). Note that these assumptions can

be made without loss of generality because of Lemma 22.

2.7.3 An application of Lemma 28

Lemma 28 together with Lemma 24 implies the following.

Lemma 29. Let H “ xXy be a torsion-free non-elementary hyperbolic group and G “ H{ ! R "

satisfies the C 1pλ, c, ϵ, µ, ρq-condition for sparse enough parameters λ ą c ą ϵ ą µ ą ρ.

(i) For any U P X˚ and k P N such that U is a cyclically minimal word in ΓpG,Xq, Uk does

not contain a pϵ, 1 ´ 122λµq-subword with respect to the quotient G “ H{ ! R ".

(ii) Suppose that U,W P X˚ are such that U “G W k for some k ě 2 and

}U} ă
µρ ´ c

λ
´ 2ϵ. (2.40)

Then U “H W k. In particular, if U R EpW q in G, then U R EpW q in H .

Proof. (i). Let U be as in the statement of the lemma. By contradiction, assume that U contains a

pϵ, 1 ´ 122λµq-subword V .
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For sparse enough standard parameters λ, c, µ, ρ, by Lemma 8, Uk is a pλ, cq-quasi-geodesic

word in ΓpG,Xq. Then, since by the assumption U is cyclically minimal in Γ
`

G,X
˘

, by Conven-

tion 4, we get that V is not a subword of a cyclic shift of U . This means that V is of the form

labpq̂Γ2q “ pU 1qnQ,

where U 1 is a cyclic shift of U , n ě 1, and Q is a prefix of U 1.

By the definition of pϵ, 1 ´ 122λµq-subwords, in the Cayley graph ΓpG,Xq, there exist paths p

and q such that labppq is a subword of a word R from R, labpqq “ Uk and dpp´, q´q, dpp`, q`q ď ϵ.

Note that, by Corollary 3, the Hausdorff distance between p and q is bounded from above by

ϵ ` 2Rλ,c ` 2δ ăby LPP 2ϵ.

Now let us separately consider the cases when n “ 1 and when n ą 1.

Case 1:(n “ 1). In this case, let us partition q “ q1q2q3, where labpq1q “ labpq3q “ Q.

Let us also partition p “ p1p2p3 such that pp1q` and pp2q` are the closest points on pΓ2

correspondingly to pq1q` and to pq2q`. Since labpq1q “ labpq3q and dHauspp, qq ă 2ϵ, from

Lemma 24 it follows that }p1}, }p3} ď 2µ}R} ă µλ}R}. Then, combining this with (2.42), we

get that }p1p2} ą 1 ´ 23λµ. But, since }U 1} “
›

›p1p2
›

› and U 1 is a geodesic word in Γ
`

G,X
˘

, by

Convention 4, we get a contradiction. Thus we are done with the case n “ 1.

Case 2:(n ą 1). In this case, again we partition q into three parts q “ q1q2q3 such that

labpq1q “ labpq3q and labpq2q is a suffix of U 1. Then, since labpqq “ pU 1qnQ and n ě 2, we get

that }q1} “ }q3} ą 1
3}q2}, hence }q} ă 3}q1}. Also just like we showed in case n “ 1, by Lemma

24, in this case }q1}, }q3} ď 2µ}R} as well. Therefore, }q} ă 6µ}R}. But if ρ and µ are chosen

sparse enough, then the last inequality, combined with }R} ě ρ, contradicts the assumption that

labpqq contains a pϵ, 1 ´ 122λµq-subword associated with R.

(ii). Suppose that U and W are as in the statement of the lemma and we have U “G W k

for some k ě 2. Also, by contradiction, assume that U ‰H W k.
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Let U 1 P X˚ be a cyclically pλ, c, ϵ, 1 ´ 121λµq-reduced word such that U 1 „conj U in G

(clearly such a word exists). Then there exists a word W 1 P X˚ such that U 1 “G pW 1qk.

Now, let W 2 P X˚ be a cyclically minimal representative of W 1 with respect to G. This

means that there exists T P X˚ such that W 1 “G TW 2T´1 and W 2 has minimal length among

all such words. In particular, this means that U 1 “G T pW 2qkT´1 and W 2 is cyclically geodesic

in Γ
`

G,X
˘

. Note that, since G is a quotient of H , we get that W 2 is also cyclically geodesic in

Γ
`

H,X
˘

. Therefore, if λ and c are large enough, then by Lemma 8, pW 2qk is cyclically pλ, cq-

quasi-geodesic in Γ
`

H,X
˘

.

Since W 2 is conjugate to W 1 in G and U 1 “G pW 1qk, there exists a pU 1, pW 2qkq-conjugacy

diagram over G. Hence there exists a cyclically slender pU 1, pW 2qkq-conjugacy diagram over G.

Let ∆ be such a diagram. As before, let us denote B∆ “ ABCD, where labpBCq, labpADq

are cyclic shifts of pW 2qk and U 1, respectively, and labpABq “ labpDCq are geodesic words in

Γ
`

G,X
˘

.

Since U 1 is cyclically pλ, cq-quasi-geodesic in ΓpH,Xq, by Lemma 19, ∆ contains an essential

R-cell, Π. Let Γ1, Γ2, Γ3 and Γ4 be essential ϵ-contiguity subdiagrams connecting Π to AB, BC,

CD and DA, respectively. Since we chose ∆ to be cyclically slender, by Lemma 28, Γ2 and Γ4 are

non-empty and

pΠ,Γ2, BCq ` pΠ,Γ4, DAq ě 1 ´ 121λµ. (2.41)

Also, by (2.40), using triangle inequalities and the fact that BΠ is pλ, cq-quasi-geodesic, we get

}q̌Γ4} ď
`

}U} ` 2ϵ
˘

λ ` c ďby (2.40) µρ.

Therefore,

pΠ,Γ4, DAq ă
µρ

ρ
“ µ.

Combining this with (2.41), we get

pΠ,Γ2, BCq ą p1 ´ 121λµq ´ µ ą 1 ´ 122λµ. (2.42)

Since labpBCq “ pW 2qk and W 2 is cyclically minimal in ΓpG,Xq, by Part (i) of the current
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lemma, we get a contradiction.
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Chapter 3

Algorithms

This section is dedicated to the description of the core algorithms needed for the further exposi-

tion.

Convention: In this section, for our purposes, it will be convenient to consider any word W P X˚

as a labeled circle σ such that its label is equal to W when we read it in the clockwise direction

starting from some point on it. We denote the length of σ by }σ}.

Throughout this subsection we are interested in words up to their cyclic shifts. Taken this into

account, for a labeled circle σ, we will say that labpσq “ W if its label is equal to W if we read it in

the clockwise direction starting from some point on it. For the circle σ we introduce the following

quasi-metrics,
ÝÑ
d and

ÐÝ
d : for any points A,B P σ,

ÝÑ
d pA,Bq is the length of the arc connecting A

to B in the clockwise direction and
ÐÝ
d pA,Bq “ }σ} ´

ÝÑ
d pA,Bq. Also, for ε ą 0, we say that B is

in ε-neighborhood of A (denoted B P NεpAq) if either
ÝÑ
d pA,Bq ď ϵ or

ÐÝ
d pA,Bq ď ϵ.

Oriented arc on σ which, in a clockwise direction, starts at A and ends at B we denote by

rA,Bs. The length of the label of rA,Bs we denote by
›

›rA,Bs
›

›.

In the further exposition, we will regards R-cells defined in Section 2.5, as labeled circles.

Therefore, all the notations on circles are applicable for R-cells.

Also, throughout this section H “ xX | Fy, |X| ă 8, is a δ-hyperbolic group with respect to

the generating set X given with its pX, δq-full-presentation.

3.1 A few auxiliary algorithms

Below we are going to describe a few auxiliary algorithms which will be used to construct

effective algorithms for word and conjugacy problems in the limit groups over chains of type (1.3).

Algorithm QuasiGeodesic-Smoothing. Let us assume that σ is a labeled circle with a label

64



from X˚, and let A1, . . . , AK be points on σ such that the labels of the arcs rA1, A2s, rA2, A3s,

. . . rAK , A1s are p8δ ` 1q-local geodesics in ΓpH,Xq. Then we call the points A1, . . . , AK pλ, cq-

break-points of σ.

Below we describe an algorithm which on input receives σ along with the break points

A1, . . . , AK and outputs another labeled circle σ1 such that labpσ1q is p8δ ` 1q-local geodesic in

ΓpH,Xq and labpσ1q „conj labpσq in H .

First, suppose that labpσq “ W0 “H h0, and suppose that the break points A1, . . . , AK are

recorded in a list which may change after each step of the following described procedure.

Step 1. Choose a break point A on the circle σ and search for a pair of points B,B1 P N8δ`1 such

that
ÝÑ
d pB,B1q “ 8δ ` 1 but rB,B1s is not a geodesic arc (i.e. labprB,B1sq is not a geodesic word).

If such a pair is found, then go to Step 1.1, otherwise, go to Step 1.2.

Step 1.1. If rB,B1s is not a geodesic arc, then replace the arc rB,B1s of σ with a shorter

arc whose label represents the same element of H . As a result, we obtain a new labeled circle

whose label represents an element of H conjugate to h0. Also, add the points B,B1 to the list of

the break points and remove the break points which are not on the newly obtained circle from the

current list of break points.

Step 1.2. If such points B,B1 are not found, then remove A from the list of break points.

Step 2. Repeat the procedure of Step 1 for the next break point until there is no break point

left in the list.

Step 3. If there is no break point left, then return the current circle.

Clearly the procedure described in Step 1 and Step 2 will eventually halt, since after each call

of Step 1 either the newly obtained circle gets shorter (Step 1.1.) or the number of break point in

the list decreases. Also, it is clear that the newly obtained labeled circle σ1 is such that labpσ1q is
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8δ ` 1-local geodesic and labpσq „conj labpσ
1q in H .

The following observation will be used for the main algorithm.

Observation 8.0. Suppose that the A1, . . . , AK P σ are enumerated in the clockwise direction and

rA1, AKs is marked with some number, say, with 0. Suppose also that after replacing an arc of the

current circle with a new arc on Step 1.1, we mark the edges of the new arc with the label 0. If σ1 is

the returned labeled circle of QuasiGeodesic-Smoothing algorithm, then, clearly, the edges

of σ1 which are marked with 0 compose a connected arc.

Now, suppose that }σ} ´ }σ1} “ d, d ě 0. Then, note that Step 1 was called during this

procedure not more than d times, and since after Step 1.1 the number of break points in the list

increases at most by 1, while after Step 1.2 it decreases by 1, we get that Step 1.2. was called during

this procedure at most K ` d times. Therefore, Step 1 was called during this procedure at most

d ` pK ` dq “ K ` 2d times. Consequently, the total time required for this procedure is bounded

from above by

fSpδ, |X|qpK ` dq, (3.1)

where fS : N Ñ N is a computable function depending only on δ and |X|. After summarizing, we

get to the following lemma.

Lemma 30. For input σ, A1, . . . , AK P σ if the output of the algorithm

QuasiGeodesic-Smoothing is shorter than σ by d, then the time which

QuasiGeodesic-Smoothing spent before halting is bounded from above by fSpδ, |X|qpK `

dq, where fS : N Ñ N is a computable function depending only on δ and |X|.

As we already mentioned the procedure of Steps 1 and 2 ends up with a cyclically 8δ ` 1-local

geodesic word. However, as it is apparent from Lemma 2, for large enough constants λ, c, 8δ ` 1-

local geodesiceness implies cyclically pλ, cq-quasi-geodesicness. Therefore, since our primary

interest in this procedure is about obtaining cyclically pλ, cq-quasi-geodesic word conjugate to W0

in H , we name this algorithm QuasiGeodesic-Smoothing (with respect to the input σ and

A1, . . . , AK P σ).
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Also, note that if we consider all the points on σ as break points, then the pλ, cq-smoothing

algorithm becomes the well-known algorithm for finding p8δ ` 1q-local geodesic word conjugate

to the given word (see, for example, [12]). In case all the points on σ are regarded as break points

then we call this algorithm pλi, ciq-cyclic-reduction.

Algorithm ShortLex. (Shapiro’s Algorithm on ShortLex normal forms). As in [24], for a

given element g P H , we define the ShortLexH normal form of g with respect to X as lexico-

graphically the least word W 1 P X˚ such that W 1 “H g. Analogously, for W P X˚, we denote

W 1 “ ShortLexHpW q if W 1 is lexicographically the least word in X˚ such that W “H W 1.

According to Shapiro’s theorem described in [24], there is a linear-time algorithm which for any

input W P X˚ finds W 1 “ ShortLexHpW q. Moreover, as it follows from the proof of the theorem

in [24], the time complexity of this procedure is bounded from above by

fSLp|X|, δq}W }, (3.2)

where fSL is a computable function independent of H and W . We name this algorithm simply

ShortLex.

3.2 The main algorithm

(pλ, c, ϵ, ηq-cyclic-reduction.)

As above, let H “ xXy be a δ-hyperbolic group with pX, δq-full presentation H “ xX | Fy.

Let G “ H{ ! R ", where R is a finite set of words satisfying the small cancellation condition

C 1pλ, c, ϵ, µ, ρq for large enough standard parameters λ ą c ą ϵ ą µ´1 ą ρ. Note that, as it

follows from 19, the group G is a non-elementary hyperbolic group.

Let 0 ă η ă 1 be a fixed rational constant such that

2η ´ 3{2 ą 3λp1 ´ ηq. (3.3)
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In this subsection, our goal is to describe an algorithm (see pλ, c, ϵ, ηq-cyclic-reduction

algorithm below) which for an input word W P X˚ (inputed as a labeled circle), outputs a word

W 1 P X˚ such that W „conj W
1 in G and W 1 is cyclically pλ, c, ϵ, ηq-reduced in ΓpG,Xq. More-

over, if W and all its cyclic shifts do not contain pϵ, ηq-subwords, then W „conj W 1 in H . The

algorithm will be universal in the sense that it does not depend on the choice of H and G. We also

would like to note that the main technical difficulties for this algorithm are connected with making

it as fast as possible.

Lemma 31. Suppose that W P X˚ is pλ, cq-quasi-geodesic word in H and W 1 is a geodesic word

in H such that W “H W 1. If W contains an pϵ, ηq-subword, then W 1 contains a p2ϵ, ηq-subword.

Observation 8.1. As it follows from Lemma 21, if a cyclic shift of a word W P X˚ contains an

pϵ, ηq-subword, then this subword must be associated with a word from R whose length is bounded

from above by λp}W }`2ϵq`c
η . This boservation leads us to the following definition.

Define

nR “

"

R P R | }R} ď
λp}W } ` 2ϵq ` c

η

*

where n “ }W }, and let CpnRq be an upper bound of time required for constructing a set of

representatives of nR up to cyclic shift.

Let us denote

Ln “ maxt}R} | R P nRu and ln “ mint}R} | R P nRu (3.4)

and

L̃n “ rλpηLn ` 2ϵq ` cs

The following simple key observation is the main motivation for considering L̃n.

Observation 8.2. Suppose that A1, . . . , As P σ are such that
ÝÑ
d pAi, Ai`1q ď L̃n for 1 ď i ă s and

ÝÑ
d pAs, A1q ď L̃n. Then, if σ contains an pϵ, ηq-arc, there exists a point Ai P tA1, . . . , Asu such
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that the L̃n-neighborhood of Ai contains an pϵ, ηq-arc.

Let kn “ #
␣

nR{ „cyclic shifts

(

, where „cyclic shifts is the equivalence relation for

cyclic shifts. Now let nR̃
def
“ tR1, . . . , Rknu Ă nR be a set of representatives of the set

nR{ „cyclic shifts.

Next, let us partition the elements from nR̃ in the following way: partition the words Ri Pn R̃,

i “ 1, . . . , kn, in the form

Ri “ U1
i U

2
i . . . U

si
i ,

where
X

1
1´η

\

´1 ă si ď
P

1
1´η

T

, }U j
i } “

X

p1 ´ ηq}Ri}
\

, for j “ 1, . . . , si´1, and
X

p1 ´ ηq}Ri}
\

ď

}U si
i } ă 2

X

p1 ´ ηq}Ri}
\

.

Now let us define

nR1 “
␣

Û j
i

def
“ U1

i . . . U
j´2
i U j`1

i U j`2
i . . . U si

i | pi, jq, 1 ď i ď kn, 1 ă j ă si
(

ď

tÛ1
i

def
“ U2

i U
3
i . . . U

si´1
i u

ď

tÛ si
i

def
“ U1

i U
2
i . . . U

si´2
i u

and also, by using the convention U0
i

def
“ U si

i , define

nR2 “ tU j´1
i U j

i | pi, jq, 1 ď i ď kn, 1 ď j ď siu. (3.5)

Then we have

p2η ´ 1q}Ri} ď Û j
i ď p3η ´ 1q}Ri},

2p1 ´ ηq}Ri} ď }U j´1
i U j

i } ď 3p1 ´ ηq}Ri}.

(3.6)

One of the motivations for considering the sets nR1 and nR2 is revealed in the following proposi-

tion.

Proposition 3. Let W P X˚ be a word containing a pϵ, ηq-subword V . Suppose n “ }W }. Then V

contains a subword V 1 of the form

V 1 “H E´1
1 U 1E2,
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where U 1 P nR1 and E1, E2 P X˚, }E1}, }E2} ď 2ϵ. Hence V 1 is a p2ϵ, 3η ´ 2q-subword of W .

Proof. By definition and Observation 8.1, there exist T1, T2 P X˚, }T1}, }T2} ď ϵ and R P nR

such that for some subword U of R, }U} ě η}R} and

V “H T´1
1 UT2.

Let R “ UŪ . Then, since }Ū} ď p1´ηq}R}, there exists a word U j´1
i U j

i such that Ū is a subword

of U j´1
i U j

i . But this means that Û j
i is a subword of U . Therefore, by the inequality ϵ ąby LPP

2Rλ,c ` 2δ and by Corollary 3, we get that there exists a subword V 1 of V and E1, E2 P X˚,

}E1}, }E2} ď 2ϵ, such that V 1 “H E´1
1 U 1E2. Finally, since we have }Û j

i } ą }R} ´ 3tp1 ´

ηq}R}u ě p3η ´ 2q}R}, we get that V 1 is a p2ϵ, 3η ´ 2q-subword of W .

Now let us define

E0p nR1q “ tShortLexpT´1
1 Û j

i T2q | pi, jq, 1 ď i ď kn, 1 ď j ď si,

T1, T2 P X˚, }T1}, }T2} ď 3ϵu.

Lemma 32. The sum of the lengths of the words from E0p nR1q is bounded from above by

fE0p|X|, ϵ, ηqLnkn, where fE0 : N Ñ N is a computable function depending only on |X|, ϵ and

η.

Proof. Indeed, first of all note that

#E0p nR1q ď kn

R

1

2p1 ´ ηq

V

|X|6ϵ.

Therefore,

ÿ

WPE0p nR1q

}W } ď pη1Ln ` 6ϵq#E0p nR1q ď pη1Ln ` 6ϵqkn

R

1

2p1 ´ ηq

V

|X|6ϵ

ă pη1 ` 6ϵq

R

1

2p1 ´ ηq

V

|X|6ϵLnkn.
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Now define fE0p|X|, ϵ, ηq “ pη1 ` 6ϵq

R

1
2p1´ηq

V

|X|6ϵ.

The main motivation for considering the set E0p nR1q is observed in the following proposition.

Proposition 4. Suppose that W P X˚ is a pλ, cq-quasi-geodesic word in ΓpH,Xq containing an

pϵ, ηq-subword and }W } ď n. Then the word W 1 “ ShortLexHpW q contains a subword from

E0p nR1q which is also a p3ϵ, η1q-subword.

Proof. First of all, note that, by Proposition 3, W contains a p2ϵ, η1q-subword, say, V .

Let us consider a bigon in ΓpH,Xq with boundary pq´1 such that labppq “ W and labpqq “

W 1. Also, let p1 be a subpath on p such that labpp1q “ V . By Corollary 3, the Hausdorff distance

between p and q is bounded from above by 2δ ` Rλ,c. Therefore, since ϵ ą 2δ ` Rλ,c, we get

that there is a subpath q1 on q such that dppp1q´, pq1q´q, dppp1q`, pq1q`q ă ϵ, which implies that

labpq1q is a p3ϵ, η1q-subword of W 1.

Now, since all subword of a word in ShortLex form are also in ShortLex form, combining with

Observation 8.1, we get that labpq1q P E0p nR1q.

Now let us describe the pλ, c, ϵ, ηq-cyclic-reduction algorithm.

3.2.0.1 Description of pλ, c, ϵ, ηq-cyclic-reduction

Input/Output. As an input the algorithm receives a labeled circle σ with labpW q P X˚ and out-

puts a word W 1 such that W 1 „conj W in G and W 1 is cyclically pλ, c, ϵ, ηq-reduced. Let }W } “ n.

Step 0. Compute W0 such that W0 is cyclically 8δ ` 1-local geodesic (hence, W0 is pλ, cq-

quasi-geodesic in ΓpH,Xq) and W0 „conj W in H .

Let σ0 be a labeled circle such that labpσ0q “ W0.
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Step 1. If }σ0} ě 2L̃n, then partition σ0 by points A1, A2, . . . , As P σ0 such that
ÝÑ
d pAi, Ai`1q “ L̃n for 1 ď i ă s and

ÝÑ
d pAs, A1q ď L̃n. Then s “ t

}σ0}

L̃m
u ` 1.

Otherwise, if }σ0} ď 2L̃n take A1 P σ0 arbitrarily and define A2 P σ0 as the opposite to A1 point

on σ0 in the sense that
ÝÑ
d pA1, Aq “

ÝÑ
d pA,A1q ˘ 1.

Include the elements A1, A2, . . . , As in a list of special points which we simply call List.

Let us save the value of σ0 in a special variable σ1 which is by itself a labeled circle.

Now for all elements A P List do the procedure of Step 2 as follows.

Step 2. If }σ1} ă 2L̃n, then consider the points B1, B2 P σ1 such that B1 “ B2 and
ÝÑ
d pB1, Aq “

ÝÑ
d pA,B1q ˘ 1 (thus B1 is the opposite vertex point of A on σ1). Otherwise,

if }σ1} ě 2L̃n choose B1, B2 P σ1 such that
ÝÑ
d pB1, Aq “

ÝÑ
d pA,B2q “ L̃n. Then go to Step 2.1 as

follows.

Step 2.1. Compute WA
def
“ ShortLexplabrB1, B2sq and go to Step 2.2.

Step 2.2. Search for a subword from E0p nR1q in WA using Aho-Corasick’s string search al-

gorithm. (A formal description of Step 2.2 via pseudo-code is given in Algorithm 1).

If such a subword is not found, then conclude that rB1, B2s does not contain a pϵ, ηq-subword

and go to Step 2.2.1 as follows, otherwise go to Step 2.2.2.

Step 2.2.1. Remove A from List. Then, if List is not empty, choose another point from

List and return to Step 2 with the chosen point as the input. Otherwise, return labpσ1q and halt.

Step 2.2.2. Suppose that WA contains a subword from E0p nR1q of the form

ShortLexpT´1
1 Û j

i T2q. Then,

1. In WA replace the subword ShortLexpT´1
1 Û j

i T2q with the word T´1
1 U j´1

i U j
i T2. Denote
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the new word by W 1
A,

2. Compute W 2
A

def
“ ShortLexpW 1

Aq and replace the arc rB1, B2s of σ1 with a new arc rB1
1, B

1
2s

such that labprB1
1, B

1
2sq “ W 2

A,

3. Change the value of σ1 by prescribing to it the newly obtained labeled circle,

4. Add the points B1
1 and B1

2 to List,

5. If the point A was the i-th point which was checked in Step 2, then mark the arc rB1
1, B

1
2s of

σ1 with i,

6. Go to Step 2.2.3 as follows.

Step 2.2.3. Apply the QuasiGeodesic-Smoothing algorithm with inputs labpσ1q, B1
1, B

1
2 and

then mark all the newly obtained edges during the process of running

QuasiGeodesic-Smoothingplabpσ1q, B1
1, B

1
2q with i. Save the newly obtained labeled circle

again in the variable σ1.

Step 2.2.4. Suppose that the new labeled circle σ1, obtained after Steps 2.2.2 and 2.2.3, has

an arc marked with i which is bounded between some points O,O1 P σ1 (the fact that the edges

marked with i form an arc follows from Observation 8.0). Then partition the arc rO,O1s with the

points O1, . . . , Ot P rO,O1s such that O1 “ O, O2 “ O1 and for 1 ď i ă t,
ÝÑ
d pOi, Oi`1q “ L̃n

and
ÝÑ
d pOt´1, Otq ď L̃n.

Add the points O1, . . . , Ot to List and then choose another point from List and go to Step 2

with the chosen point as the input.
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Figure 3.1: Graphical explanation of Steps 2-2.2.4 of pλ, c, ϵ, ηq-cyclic-reduction algorithm
in case when the result of search in Step 2.2 is positive. In the figure WA is the ShortLex for of the
label of the arc rB1, B2s which gets replaced with a shorter arc labeled with label W 2

A as in Step
2.2.2.

Below we give a more formal description of Step 2.2 based on Aho-Corasick’s famous algorithm

(see [3] for the description of the algorithm) for multiple string search.

Algorithm 1 Searching for p3ϵ, η1q-arcs

1: Input: W P X˚, E0p nR1q. {W is given in its ShortLexH form.}
2: Output: An p3ϵ, η1q-subword of W if such a subword exists and 0 otherwise.
3: Apply Aho-Corasick’s string searching algorithm to find all subwords of W from E0p nR1q

{For the description of Aho-Corasick’s algorithmic see [3].}
3: if at least one such subword is found then
4: return one of the found subwords {By definition, this subword will be a p3ϵ, η1q-subword. }
5:

5: elsereturn 0
=0

3.2.0.2 Time complexity of pλ, c, ϵ, ηq-cyclic-reduction

First, we will estimate the time that pλ, c, ϵ, ηq-cyclic-reduction algorithm spends on

Step 2. To this end suppose σ1, σ2, . . . , σs are the circles which Step 2 outputs in cases when it

changes the input circle (i.e. when on Step 2.2 algorithm finds a subword from E0p nR1q). According

to Step 2.2.2 (5), this means that for each 1 ď i ď s, σi contains an arc whose edges are marked by

i and σi does not contain edges marked with i ` 1. Let us denote this arc by qi and suppose that qi
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replaced an arc pi of σi´1.

Note that on Step 2.2.2 the algorithm replaces an arc rB1, B2s with an arc rB1
1, B

1
2s. For sparse

enough standard parameters λ, c, ϵ, µ, ρ we have }rB1
1, B

1
2s} ă }rB1, B2s}. Therefore, after each run

of Steps 2-2.2.2 either the number of elements in List is decreasing or the newly obtained circle

is shorter, hence the algorithm eventually halts. On the other hand, it follows from Observation 8.2

and Proposition 4 that the output circle of pλ, c, ϵ, ηq-cyclic-reduction does not contain an

pϵ, ηq-arc.

Lemma 33. }rB1
1,B

1
2s}

}rB1,B2s}
ď Λ0 ă 1, where Λ0 “ Λ0pλ, c, ϵ, η, Ln

ln
q is a constant depending only on

λ, c, ϵ, η and Ln
ln

.

Proof. Indeed, direct computations show

}rB1
1, B

1
2s} ď }rB1, B2s} ´ |T´1

1 Û j
i T2| ` }T´1

1 U j´1
i U j

i T2}

ďwe use (3.6) 2L̃n ´
p2η ´ 1q}Ri}

λ
` 12ϵ ` 3p1 ´ ηq}Ri}

ďby LPP 2L̃n ´
p2η ´ 3{2 ` 3λp1 ´ ηqq}Ri}

λ
ăby (3.3) 2L̃n.

Therefore, we get that }rB1
1,B

1
2s}

}rB1,B2s}
is of the forms described in the statement of the lemma.

Lemma 34. For each 1 ď i ď s, }qi}
}pi}

ď Λ ă 1, where Λ “ Λpλ, c, ϵ, η, Ln
ln

q is a constant

depending only on λ, c, ϵ, η and Ln
ln

.

Proof. qi is obtained from pi after replacing arcs of pi after applying Step 2.2.2. (5) and replacing

arcs of lengths 8δ ` 1 with shorter arcs after applying Step 2.2.3. Therefore, taken into account

Lemma 33, Λ can be taken as Λ “ mintΛ0, 8δ{p8δ`1qu, where Λ0 is defined as in Lemma 33.

Corollary 9.
řs

i“1 }qi} ď Λ
1´Λn.

Proof. Indeed, since by Lemma 34, qi, 1 ď i ď s are obtained by replacing an arc pi of σi´1 of

lengths at least }qi}{Λ, we get that

s
ÿ

i“1

}qi} ď Λn ` Λ2n ` . . . “
Λ

1 ´ Λ
n.
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Lemma 35. During the run of pλ, c, ϵ, ηq-cyclic-reduction algorithm, the total number of

points added to List (See Steps 1, 2.2.2 (5) and 2.2.4) is bounded from above by

2

p1 ´ ΛqL̃n

n.

Hence Step 2 of pλ, c, ϵ, ηq-cyclic-reduction algorithm is being called not more than

2
p1´ΛqL̃n

n times for input of lengths n.

Proof. It follows directly from the description of pλ, c, ϵ, ηq-cyclic-reduction algorithm and

Corollary 9.

Corollary 10. On Step 2.1 in summary —- spends time bounded from above by

f1p|X|, λ, c, ϵ, µ, η, kqn1`υ, where f1 : N7 Ñ N is a computable function depending only on δ

and |X|, k is the number of elements in R up to cyclic shifts, and υ “ 0 if k “ 1, otherwise υ “ 1.

Proof. It follows directly from Lemma 35 and from the time complexity properties of the

ShortLex algorithm. See (3.2).

Corollary 11. On Step 2.2 in summary the algorithm spends time bounded from above by

f2p|X|, λ, c, ϵ, µ, η, kqn1`υ, where f2 : N7 Ñ N is a computable function depending only on δ

and |X|, k is the number of elements in R up to cyclic shifts, and υ “ 0 if k “ 1, otherwise υ “ 1.

Proof. Indeed, it follows from Lemma 35 and from the time complexity properties of Aho-

Corasick’s string search algorithm. See [3].

Corollary 12. On Steps 2.2.1-2.2.4 in summary the algorithm spends time bounded from above by

f3p|X|, λ, c, ϵ, µ, η, kqn1`υ, where f3 : N7 Ñ N is a computable function depending only on δ and

|X|, k is the number of elements in R up to cyclic shifts, and υ “ 0 if k “ 1, otherwise υ “ 1.

Proof. Indeed, in terms of time complexity, the hardest part among the Steps 2.2.1-2.2.4 is Step

2.2.3, and taken this into account, the claim of the corollary follows immediately from Lemma

30.
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Lemma 36. Suppose that the above define set nR1 is already computed. Then there exists a com-

putable function Ψ : Q7 Ñ N such that if the constants λ, c, ϵ, µ´1, ρ are fixed and large enough,

then for any word W P X˚, }W } “ n, a cyclic pλ, c, ϵ, ηq-reduction of W can be computed in time

bounded from above by

Ψp|X|, λ, c, ϵ, µ, η, kqn1`υ (3.7)

where k is the number of elements in R up to cyclic shifts, and υ “ 0 if k “ 1, otherwise υ “ 1.

Proof. Indeed, it directly follows from Corollaries 18, 11 and 17.
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Chapter 4

A subclass of lacunary hyperbolic groups with effectively decidable word problem and

G-conjugacy problem

In this section we describe a subclass of lacunary hyperbolic groups for which there is a fast

algorithm solving the word problem. As it will be shown in corresponding sections, the groups

which are described in Theorems 3, 4 and 5 are constructed so that they belong to that subclass.

4.1 Small cancellation conditions in chains of hyperbolic groups

Let us consider the chain of hyperbolic groups (1.3), that is

G0
β0
ãÑ H1

γ1↠ G1
β1
ãÑ H2

γ2↠ . . . , (4.1)

where αi “ γi`1 ˝ βi is surjective for i “ 1, 2, . . .. All the groups in this chain are hyperbolic.

Suppose that for all i ě 0, Gi is δi hyperbolic and for all j ě 1, Hi is δ1
j hyperbolic, where

δi, δ
1
j P N. Also suppose G0 “ xX | R0y is given with its initial symmetric finite presentation and

for all i P N

Hi “ Gi´1 ˚ F pYiq{ ! Si ", (4.2)

where |Yi| ă 8, Yi X βi´1pGi´1q “ H and Si is a finite symmetric set of words from pX Y Yiq
˚,

and

Gi “ Hi{ ! Ri ", (4.3)

where Ri is a finite symmetric set of words from pX Y Yiq
˚ as well.

Let us denote the sequences pλiq
8
i“1, pciq

8
i“1, pϵiq

8
i“1, pµiq

8
i“1, pρiq

8
i“1 by λ, c, ϵ, µ, ρ, re-
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spectively.

Definition 4.1 (Small cancellation conditions C 1
`

λ, c, ϵ, µ, ρ
˘

and C2
`

λ, c, ϵ, µ, ρ
˘˘

. We say that

the chain (4.1) satisfies (alternatively, based on the context, we may say Ḡ “ limipGi, αiq satisfies)

the

C 1
`

λ, c, ϵ, µ, ρ
˘

-condition

of small cancellation, if

(a) The set Ri satisfies the C 1pλi, ci, ϵi, µi, ρiq-condition with respect to Hi “ xX
Ť

Yi
j“1Yjy;

(b) The following sequences are computable:

pYiq
8
i“1, pRiq

8
i“0, pSiq

8
i“1 and

pδiq
8
i“0, pδ1

iq
8
i“1, pλiq

8
i“1, pciq

8
i“1,pϵiq

8
i“1, pµiq

8
i“1, pρiq

8
i“1.

(4.4)

That is there exists an algorithm which on input i ě 1 returns

pYi,Ri,Si, δi, δ
1
i, λi, ci, ϵi, µi, ρiq.

If, in addition, the following condition is satisfied, then in the notations we replace C 1pλ, c, ϵ, µ, ρq

with C2pλ, c, ϵ, µ, ρq.

(d) For each pair pi, jq, 0 ă i ă j, and each Ri P Ri, Rj P Rj , there are no subwords Ui and

Uj of Ri and Rj , respectively, such that }Ui} ě µi}Ri} and there exist v1, v2 P pX Y Yiq
˚,

}v1}, }v2} ď ϵi, such that v1Uiv2Uj “Hi 1.

Definition 4.2 (Rank of contiguity subdiagrams). We say that a diagram over (4.1) is a ϵi-contiguity

subdiagram of rank i if the diagram can be regarded as a ϵi-contiguity subdiagram over the quotient

Gi “ Hi{ ! Ri ".
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4.2 An auxiliary theorem

Now let G “ xH | Ry be fixed and suppose R satisfies the C 1pλ, c, ϵ, µ, ρq small cancellation

condition. Let η “ 1 ´ 23µ. Then the following theorem holds.

Theorem 11. Using the above described setting, suppose that λ ą c ą ϵ ą µ´1 ą ρ are large

enough. Then there exists a computable function Ψ : Q6 Ñ Q such that for any given W P X˚, the

checking W “G 1 can be done in time bounded from above by

aΨp|X|, λ, c, ϵ, µ, kqn1`υ (4.5)

where n “ }W }, k is the number of elements in R up to cyclic shifts, and ε “ 0 when k “ 1 and

ε “ 1 when k ą 1.

Proof. First of all, notice that if ρ are large enough then the restrictions put on η and η1 in the

beginning of Subsection 3.2 are satisfied if η is defined as η “ 1 ´ 23µ.

For the given word W P X˚, let σ be a labeled circle such that labpσq “ W . Let σ1 be the

output of the pλ, c, ϵ, ηq-cyclic-reduction algorithm, and let labpσ1q “ W 1 for W 1 P X˚. We claim

that W 1 is empty if and only if W “G 1.

First of all, since W 1 „conj W in G, the emptiness of W 1 would imply that W “G 1. Now let

us prove the opposite. Suppose that W 1 is not empty. Then W 1 ‰H 1, because W 1 is 8δ ` 1-local

geodesic word in ΓpH,Xq and the only 8δ ` 1-geodesic word in ΓpH,Xq which represents the

trivial element of H is the empty word.

On the other hand, since W 1 is a pλ, cq-quasi-geodesic word in ΓpH,Xq, by Lemma 19, the

equation W 1 “G 1 would imply that W 1 contains a pϵ, 1 ´ 23µq-subword. But since W 1 is an

output of the pλ, c, ϵ, ηq-cyclic-reduction algorithm, this cannot happen. A contradiction. Therefore,

it must be that W 1 is empty if and only if W “G 1.

Now the complexity formula in the statement of the lemma directly follows from Lemma 36.
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Remark 8. In the settings of the current subsection, for any word W P X˚, W “G 1 if and only

if the pλ, c, ϵ, ηq-cyclic-reduction algorithm returns the empty word for input W , as it was shown in

the proof of Theorem 11.

4.3 The definition of the subclass

Definition 4.3 (SP -relation). Let H “ xXy, |X| ă 8, be a δ-hyperbolic group, where δ is a

given positive integer. We say that the 5-tuple of positive number pλ, c, ϵ, µ, ρq satisfies the standard

parameters relation, or briefly SP -relation with respect to pH, δq if the following holds.

1. λ, c, ϵ, µ, ρ with respect to pH, δq satisfy all the restrictions and relations put on λ, c, ϵ, µ, ρ

for all the lemmas and theorems above (see Section 2.5),

2. λ, c, ϵ, 1{µ, ρ P N, and

3. if we define η “ 1 ´ 121λµ and η1 “ 3η ´ 2, then η and η1 satisfy all the restrictions put on

η and η1 in the beginning of Subsection 3.2.

Let us return to the chain of hyperbolic groups given by (1.3) in the introduction. That is the

chain of hyperbolic group homomorphisms:

G0
β0
ãÑ H1

γ1↠ G1
β1
ãÑ H2

γ2↠ . . . , (4.6)

where αi “ γi`1 ˝ βi is surjective for i “ 1, 2, . . .. Recall that in Subsection 4.1 we described

additional settings for this chain. Namely, for all integers i, i ě 0, Gi is δi hyperbolic and for all

j ě 1, Hi is δ1
j hyperbolic with respect to the generating set X Y Ȳi, where Ȳi “ Yi

j“1Yj and

δi, δ
1
j P N. Also we suppose G0 “ xX | R0y is given with its initial symmetric finite presentation

and for all i P N,

Hi “ Gi´1 ˚ F pYiq{ ! Si ", (4.7)

where |Yi| ă 8, Yi X βi´1pGi´1q “ H and Si is a finite symmetric set of words from pX Y Yiq
˚,
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and

Gi “ Hi{ ! Ri ", (4.8)

where Ri is a finite symmetric set of words from pX Y Yiq
˚. Then

Ḡ
def
“ lim

i
pGi, αiq.

In addition, we suppose that the fixed sequences pλiq
8
i“1, pciq

8
i“1, pϵiq

8
i“1, p1{µiq

8
i“1, pρiq

8
i“1 of posi-

tive integers are such that the chain (4.6) satisfies the small cancellation condition C 1
`

λ, c, ϵ, µ, ρ
˘

.

Even more, hereafter we will assume that for all i ě 1, the 5-tuple pλi, ci, ϵi, 1 ´ 121λiµiq satisfies

the SP -relation described in Definition 4.3.

Also suppose that the sequences

pYiq
8
i“1, pRiq

8
i“0, pSiq

8
i“1 and

pδiq
8
i“0, pδ1

iq
8
i“1, pλiq

8
i“1, pciq

8
i“1,pϵiq

8
i“1, pµiq

8
i“1, pρiq

8
i“1

(4.9)

are computable sequences of integers, i.e. there exists an algorithm which on input i ě 1 returns

pYi,Ri,Si, δi, δ
1
i, λi, ci, ϵi, µi, ρiq.

Let us assume that Ψ : Q7 Ñ Q is a fixed computable function satisfying the conditions

defined in Theorem 11 (see expression (4.5)). Let us denote Ψi “ Ψp|X Y Ȳi|, λi, ci, ϵi, µi, kiq,

where ki is the cardinality of Ri up to cyclic shifts of its elements.

Let g1, g2, . . . : R` Ñ R` be a sequence of increasing functions such that for all i P N, g´1
i |N

is integer valued and computable and

gi “ opgjq whenever i ą j.

For all i P N, let fρ̄ : N Ñ N be a fixed computable function such that for ρ̄i “ fρ̄piq the 5-tuple
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pλi, ci, ϵi, µi, ρ̄iq satisfies the SP -relation, and in addition,

ρ̄i ě
λipg

´1
i pΨiq ` 2ϵiq ` ci

1 ´ 23µi
. (4.10)

Clearly, since i ÞÑ
λipg

´1
i pΨiq`2ϵiq`ci

1´23µi
is computable, such functions fρ̄ do exist.

Hereafter, by lowest parameter principle, we will always assume that ρi ě ρ̄i for all i P N.

Let us define ξ, ξ̄ : N Ñ N as follows

ξ̄piq “
p1 ´ 23µiqρ̄i ´ ci

λi
´ 2ϵi and ξpiq “

p1 ´ 23µiqρi ´ ci
λi

´ 2ϵi.

Note that, in this notations, (4.10) immediately implies

gi
`

ξ̄piq
˘

ě Ψi for i “ 1, 2, . . . . (4.11)

Lemma 37. Let W P X˚ and W “Ḡ 1, but W ‰G0 1. Suppose i ě 1 is such that W “Gi 1, but

W ‰Gi´1 1 (i.e. i is the minimum index such that W “Gi 1). Then

}W } ą ξpiq.

Proof. First, note that, since the map βi : Gi´1 Ñ Hi is an embedding, the relation W ‰Gi´1 1

implies that W ‰Hi 1.

Now let W 1 P pX YYiq
˚ be the pλi, ciq-cyclic-reduction of W over ΓpHi, X YYiq. Then, since

W „conj W
1 in Hi and W ‰Hi 1, we get that W 1 ‰Hi 1. Therefore, if ∆ is a reduced disk diagram

over Gi with the boundary label W 1 then, by Lemma 19, ∆ contains an Ri-cell Π connected to B∆

by a ϵi-contiguity subdiagram Γ such that pΠ,Γ, B∆q ą 1 ´ 23µi ą ηi. Therefore, by the triangle

inequality, we have

}W } ě }W 1} ě }q̂Γ} ě
}q̌Γ} ´ ci

λi
´ 2ϵi ą

ηi}Π} ´ ci
λi

´ 2ϵi ě
ηiρi ´ ci

λi
´ 2ϵi “ ξpiq.
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Remark 9. Note that, since ξpiq ě ξ̄piq, in the setting of Lemma 37, Lemma 37 implies }W } ą

ξ̄piq.

Definition 4.4 (i-th level data). For any fixed i P N, the below described list of data we call the i-th

level data for the chain (4.6).

1. The slimness constant δ1
i P N of ΓpHi, X Y Ȳiq, where recall that Ȳi “ Yi

j“1Yj ;

2. The pX Y Ȳi, δ
1
iq-full-presentation Hi “ xX Y Ȳi | Fiy of Hi;

3. The constants δi´1, δ1
i, λi, ci, ϵi, µi, ρ̄i;

4. ξ̄piq.

Note that, since the sequences (4.9) are computable by our assumption, there exists an algorithm

which computes the i-the level data, i.e. there exists a (deterministic) Turing machine T M which,

for the input i P N, outputs the i-th level data. Indeed, the computability of the data from parts (1),

(2) and (4) of Definition 4.4 is straightforward.

Let T M be a fixed deterministic Turing machine which, for all inputs i ě 1, computes the i-th

level data for the presentation (4.6) of Ḡ. Suppose that ϕ : N Ñ N is a recursive function, such that

for i P N, ϕpiq is the number of steps T M makes after input i before it halts. Let Φ : N Ñ N be a

function defined as Φpiq “
ři

j“1 ϕpiq, for i P N.

Let I : N Ñ N be the integer valued function such that

ΦpIpnqq ď n ă ΦpIpnq ` 1q.

In other words, if we run T M consecutively for inputs i “ 1, 2, . . ., then after the n-th step Ipnq-th

level data will be computed but Ipnq ` 1-th level data will not.

Now for i, n P N, in analogy with the set (3.5), let us define

nRi “

"

R | R P Ri, }R} ď
λipn ` 2ϵiq ` ci

1 ´ 23µi

*

.
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The motivation behind the definition of nRi is that if a word W P X˚, }W } “ n, is not trivial in

Hi but is trivial in Gi, then W must be trivial also in the group Hi{ !n Ri ". This follows from

Lemma 19.

Since, by our assumptions, the sequences (4.9) are computable, the sets nRi are computable

too, i.e. there exists an algorithm which for input pn, iq returns nRi. Let C : N ˆ N Ñ N be a

(time-constructible) function such that, for some fixed Turing machine computing the words nRi,

Cpn, iq is the time the machine spends after the input pn, iq before it halts. Define

CnRi “ maxtCpn, jq | 1 ď j ď iu.

The main theorem of this section is the following.

Theorem 12. If the standard parameters are sparse enough, the word problem in Ḡ can be solved

in time

O
`

CnRIpnq
` gkpnqn1`υ

˘

,

where k P N is any positive integer, n is the length of the input word from X˚ and υ “ 0 if for all

but finitely many i ě 1, Ri contains one word up to cyclic shifts, otherwise, υ “ 1.

Proof. For a given word W P X˚, first of all, without loss of generality assume that }W } ě ξp1q

and W ‰G0 1. Now, to check whether W “Ḡ 1 or not, we can apply the following procedure:

S-1. Run the Turing machine T M consecutively for inputs k “ 1, 2, . . . and stop after exactly

}W } steps. Suppose that, as a result, the i0-th level data is constructed, but the pi0 ` 1q-st

level data is not constructed, i.e. i0 “ Ip}W }q;

S-2. Find the maximum integer index i1 from the interval r1, i0s such that ξ̄pi1q ď }W };

S-3. Construct the set nRi1 , where n “ }W };

S-4. Run the pλi1 , ci1 , ϵi1 , 1 ´ 121λi1µi1q-cyclic-reduction algorithm with input circle σ

such that labpσq “ W . Note that, in order to run this algorithm, we need the i1-th level data

and the set nRi1 .

Note that if W “Ḡ 1, then there is minimum j0 ě 1 (recall that we assumed W ‰G0 1) such that
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W “Gj0
1.

Claim. j0 ď i0.

Proof of the claim. First of all, we have Φpi0q ď }W } ă Φpi0 ` 1q. We have

ξpj0q
by def

“
p1 ´ 23µj0qρj0 ´ 2λj0ϵj0 ´ cj0

λj0

ěbyLPP Φpj0q.

Therefore, since by Lemma 37 we have }W } ą ξpj0q, we get }W } ą Φpj0q. On the other hand,

since }W } ă Φpi0 ` 1q and Φ is an increasing function, from the last inequality we get i0 ` 1 ą j0.

Therefore, i0 ě j0. The claim is proved.

Since, by the above claim, j0 ă i0, and by Remark 9, η̄pj0q ă }W }, in view of the way i1 was

defined, we get that j0 ď i1. Therefore, the equality W “Gj0
1 implies W “Gi1

1. Thus W “Ḡ 1

if and only if W “Gi1
1, hence on step S-4 the pλi1 , ci1 , ϵi1 , ηi1q-cyclic-reduction algorithm returns

empty word for input W (see Remark 8).

Now we are in a position to show that the time complexity estimations in the statement of the

theorem, in fact, are true. For that reason, first, notice that on steps S-1 and S-3 the procedure

spends }W } ` CRn
m

“ O
`

CRn
m

` n1`υgj0pnq
˘

time. Next, since i0 ă }W } and since before the

step S-2 the i-th level data already was constructed for i “ 1, 2, . . . , i0, we get that on step S-2

the procedure spends Op}W }q time. Finally, on step S-4, by Theorem 11, the procedure spends

aΨ
`

|X Y Yi1 |, λi1 , ci1 , ϵi1 , µi1 , ki1
˘

n1`υ “ aΨi1n
1`υ time, where a is a constant not depending

on Ḡ and ki1 is the number of elements in Ri1 up to cyclic shifts. Since }W } ą ξ̄pi1q and gi1 is

increasing, by (4.11) we get aΨi1n
1`υ “ O

`

gi1pnqn1`υ
˘

. Thus we confirmed the estimations in

the statement of the lemma.

Remark 10. Note that in Theorem 12, we did not put any restrictions on the relators Si, i “ 1, 2, . . .,

other then that they are recursively enumerable and make the groups Hi “ Gi´1 ˚ F pYiq{ ! Si "

hyperbolic. However, when instead of the word problem we consider conjugacy problem in Ḡ,

an analogue to the statement of Theorem 12 no longer holds unless the sets Si possess additional

properties. In fact, the group GL, constructed in the proof of Theorem 5, has the structural properties
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of the group Ḡ from Theorem 12 but, nevertheless, the conjugacy problem is undecidable in it

whenever the underlying set L is not recursive.

However, if we restrict ourselves from the conjugacy problem to the so called G-conjugacy

problem, then the analogue of Theorem 12 holds as it is shown in Theorem 14.

Remark 11. Note that in the proof of Theorem 12 we, in particular, showed that the construction

of the Ipnq-th level data and the implementation of the pλi1 , ci1 , ϵi1 , ηi1q-cyclic-reduction

algorithm, whenever nRi1 is not empty, can be done in time O
`

CnRIpnq
` gkpnqn1`υ

˘

.

Theorem 13. If the standard parameters are sparse enough, then the group Ḡ from Theorem 12 is

lacunary hyperbolic.

Proof. First of all, the group Ḡ is an inductive limit of groups Gi, i P N, all of which are hyperbolic.

More precisely, Ḡ is the inductive limit of the following sequence

G0
α0↠ G1

α1↠ . . . .

An immediate corollary of Lemma 37 is that, for all i P N, the radius of αi : Gi Ñ Gi`1, which

we denote by ri, satisfies the following inequality

ξpi ` 1q
by def

“
p1 ´ 23µi`1qρi`1 ´ ci`1

λi`1
´ 2ϵi`1 ă ri.

Combining the last inequality with the inequality ξpi ` 1q ď δiΦpi ` 1q, we get δiΦpi ` 1q ă ri.

Therefore,

lim
iÑ8

δi
ri

ď lim
iÑ8

δi
δiΦpi ` 1q

“ lim
iÑ8

1

Φpi ` 1q
“ 0,

hence, by Lemma 16, this means that Ḡ is lacunary hyperbolic.
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4.4 G- and H- conjugacy problems in Ḡ. Effectiveness of the G-conjugacy problem in Ḡ

The main goal of this subsection is to define the G-conjugacy problem for sequences of type

(4.6) (see Definition 4.6) and then show that the G-conjugacy problem is effectively solvable when

the sequences pλi, ci, ϵi, µi, ρiq
8
i“1 are sparse enough (see Theorem 14).

Let Ḡ be the group defined in Subsection 4.3 which also carries all the properties described

there.

Definition 4.5 (G- and H-conjugates). Let U, V P X˚. Then we say that U is G-conjugate to V in

Ḡ if either U „conj V in G0 or there exists i P N such that U „conj V in Gi but U ȷconj V in Hi.

Analogously, if there exists i P N such that U „conj V in Hi, but U ȷconj V in Gi´1, then we

say that U is H-conjugate to V in Ḡ.

Definition 4.6 (G- and H-conjugacy problems). For the presentation (4.6) of Ḡ the G-conjugacy

problem asks whether there is an algorithm which for any pair of input words U, V P X˚, decides

whether U is G-conjugate to V in Ḡ or not. H-conjugacy problem is defined analogously.

Let us define ζ : N Ñ N as

ζpiq “
p1 ´ 121λiµiqρi ´ 2ci

λi
´ 4ϵi.

Lemma 38. Suppose that the standard parameters are sparse enough, and U, V P X˚ are such that

U is G-conjugate to V in Ḡ. Then there exists i P N such that ζpiq ď }U}`}V }, i ď Ip}U}`}V }q

and U „conj V in Gi, but U ȷconj V in Hi.

Proof. If U „conj V in G0 then the statement is obvious. Now, without loss of generality assume

that U ȷconj V in G0. Then there exists a minimal i P N such that U „conj V in Gi, but U ȷconj V

in Hi. Suppose that U 1, V 1 P X˚ are the pλi, ciq-cyclic-reductions of U and V , respectively.

First, let us show that ζpiq ď }U} ` }V }. For that purpose, let us separately consider two

different cases. The first case is when at least one of U 1, V 1, say U 1, is not cyclically pλi, ci, ϵi, 1 ´
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121λiµiq-reduced. The second case is when both U 1 and V 1 are cyclically pλi, ci, ϵi, 1 ´ 121λiµiq-

reduced.

For the first case, by definition, some cyclic shift U2 of U 1 contains a pϵi, 1´121λiµiq-subword.

Therefore, by definition and by the triangle inequality,

}U} ` }V } ě }U2} ě
p1 ´ 121λiµiqρi ´ ci

λi
´ 2ϵi ą ζpiq. (4.12)

Now let us consider the second case, i.e. when both U 1 and V 1 are pλi, ci, ϵi, 1 ´ 121λiµiq-

reduced. In this case, there exists a reduced cyclically slender pU 1, V 1q-conjugacy diagram ∆ over

Gi “ Hi{ ! Ri " which contains an Ri-cell. Let B∆ “ ABCD and labpBCq “ U2, labpADq “

V 2, where U2 and V 2 are some cyclic shifts of U 1 and V 1, respectively. Then, by Lemma 28, there

exists an essential Ri-cell Π in ∆ connected to AB, BC, CD and DA by Γ1, Γ2, Γ3 and Γ4,

respectively, such that

1. Γ2 and Γ4 are non-empty;

2. pΠ,Γ2, BCq ` pΠ,Γ4, DAq ě 1 ´ 121λiµi; and

Therefore,

}U} ` }V } ě }U 1} ` }V 1} “ }U2} ` }V 2} ě }q̂Γ2} ` }q̂Γ4}

ě

˜

pΠ,Γ2, q̂Γ2q}Π} ´ ci
λi

´ 2ϵi

¸

`

˜

pΠ,Γ4, q̂Γ4q}Π} ´ ci
λi

´ 2ϵi

¸

ě
p1 ´ 121λiµiq}Π} ´ 2ci

λi
´ 4ϵi ě

p1 ´ 121λiµiqρi ´ 2ci
λi

´ 4ϵi “ ζpiq.

(4.13)

The conclusion from (4.12) and (4.13) is that if i P N, U „conj V in Gi, but U ȷconj V in Hi, then

}U} ` }V } ě ζpiq.
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Now let us show that i ď Ip}U} ` }V }q.

From the definition of Ip}U} ` }V }q it follows that ΦpIp}U} ` }V }q ` 1q ą }U} ` }V }.

Therefore, from the last two inequalities we get

δi´1ΦpIp}U} ` }V }q ` 1q ` 4λiϵi ` 2ci
1 ´ 121λiµi

ą ρi ěby LPP δi´1Φpiq ` 4λiϵi ` 2ci
1 ´ 121λiµi

,

which implies that Ip}U} ` }V }q ě i. Thus the lemma is proved.

An obvious corollary from Lemma 38 is the following lemma.

Lemma 39. If U ȷconj V in GIpnq, but U „conj V in Ḡ, then U is H-conjugate to V in Ḡ.

Theorem 14. If the standard parameters are sparse enough and the function fpnq
def
“ CnRIpnq

is

bounded by a polynomial, then the G-conjugacy problem in Ḡ is solvable in polynomial time.

Proof. For any given words U, V P X˚, by definition, U being G-conjugate to V in Ḡ means that

either U „conj V in G0 or there exists i ě 1 such that U „conj V in Gi but U ȷconj V in Hi. If it

is so, then, by Lemma 39, i ď Ipnq, where n “ }U} ` }V }.

From what we said, it becomes apparent that in order to show that U is G-conjugate to V in Ḡ

it is enough to check if U „conj V in G0 and if it is not, then for each 1 ď i ď Ipnq check whether

• U ȷconj V in Hi, and

• U „conj V in Gi.

Now without loss of generality let us assume that U ȷconj V in G0.

Let U 1, V 1 P pX Y Yiq
˚ be cyclically pλi, ciq-quasi-quasi geodesic word obtained by applying

the pλi, ciq-cyclic-reduction algorithm on U and V , respectively. Then, since U 1 and V 1 are

conjugate to U and V in Hi respectively, we get that U „conj V in Hi if and only if U 1 „conj V 1

in Hi.

To check whether U 1 „conj V 1 in Hi, by Lemma 26, it is enough to check for all 3-tuples

pT,U2, V 2q, where T,U2, V 2 P pX Y Yiq
˚, U2, V 2 are some cyclic shifts of U , V and }T } ď
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τp|X|, δ1
i, λi, ciq ( where τ is defined as in Lemma 26) the equality

T´1U2T “Hi V
2. (4.14)

Clearly, since for large enough standard parameters, the word problem in Ḡ is decidable in polyno-

mial time, then for large enough values of ρi this checking can be done in polynomial time.

Now, assuming that U ȷconj V in Hi is already verified, in order to check whether U „conj V

in Gi, we can apply pλ, c, ϵ, ηq-cyclic-reduction algorithm for η “ 1 ´ 121λiµi to find

cyclic pλi, ci, ϵi, 1 ´ 121λiµiq-reductions U 1 and V 1 of U and V , respectively, and then check

whether U 1 „conj V 1 in Hi or in Gi. Without loss of generality assume that U 1 ȷconj V 1 in Hi,

then, by Lemma 28, there exist T1, T2,W P pX Y Yiq
˚ such that }T1}, }T2} ď 2ϵi, W is a subword

of a word R P nRi of length }W } ď λiµi, and

pT1WT2q´1U2pT1WT2q “Gi V
2 (4.15)

for some cyclic shifts U2, V 2 of U 1 and V 1, respectively. Therefore, in order to check whether

U 1 „conj V 1 in Gi, it is enough to check equality (4.15) for all mentioned collection of words

pT1, T2,W,U2, V 2q. Clearly, this checking can be done in polynomial time, provided that the stan-

dard parameters are sparse enough and fpnq “ CnRIpnq
is bounded by a polynomial.

4.4.1 The condition C 1
`

T M, pgiq
8
i“1, pρiq

8
i“1

˘

Definition 4.7. If for fixed sequence pgiq
8
i“1, fixed function fρ̄ : N Ñ N and fixed Turing machine

T M (all are defined is Subsection 4.3), elements of the sequence pρiq
8
i“1 are large enough so that

Theorem 12 and Theorem 14 hold, then we say that the presentation (4.6) of Ḡ satisfies the condition

C 1
`

T M, pgiq
8
i“1, pρiq

8
i“1

˘

.

Property 2. As it follows from the proof of Theorems 12 and 14, there exist a linear time computable

function fρ : N6 Ñ N such that in order Theorem 12 and Theorem 14 to hold it is enough to require
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ρi ě fρpδ1
i, λi, ci, ϵi, µi,Φpiqq for all i P N.
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Chapter 5

Proof of Theorems 3, 4, 5 and 6

5.1 The general scheme for group constructions of Sections 5.2, 5.3, 5.4 and 5.5

The proofs of Theorems 3, 4, 5 and 6, given in Sections 5.2, 5.3, 5.4 and 5.5, respectively,

are constructive and the corresponding groups constructed in these sections are inductive limits of

presentations of type (4.6) satisfying the condition

C 1
`

T M, pgiq
8
i“1, pρiq

8
i“1

˘

for gipnq “ n
1
i . Moreover, the presentation

G0
β0
ãÑ H1

γ1↠ G1
β1
ãÑ H2

γ2↠ . . . , (5.1)

for the corresponding constructions is such that if the group Gi “ xXy{ ! Ri " is already

constructed, then the group Hi “ Gi´1 ˚ F pYiq{ ! Si " is defined uniformly, in the sense

that the definition of Hi does not depend on specific values of i. The standard parameters

pδi´1, δ
1
i, λi, ci, ϵi, µi, ρiq

8
i“1 are different in the corresponding constructions only in terms of their

“sparseness”, however, since we are not interested in their specific values, we will not go into the

details of defining them, instead we will assume that they are sparse enough.

The groups Gi, i “ 1, 2, . . . in all those constructions will be defined uniformly as Gi “ Hi{ !

Ri ", where

Ri “ R
`

Zi, Ui, Vi, δ
1
i, λi, ci, ϵi, µi, ρi

˘

, (5.2)

according to the definition (2.29) in Subsection 2.5.3. Also Zi is a set of elements of Hi with a

“natural” order such that Yi
j“1Yi Ď Zi and pλi, ci, ϵi, µi, ρiq are sparse enough so that Lemma 18

guarantees that Ri satisfies the small-cancellation condition C 1pλi, ci, ϵi, µi, ρiq and the chain (5.1)
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satisfies the condition C 1
`

T M, pgiq
8
i“1, pρiq

8
i“1

˘

for gipnq “ n
1
i for some fixed Turing machine

T M computing the i-th level data for (5.1). Note that we will note specify the details about T M in

the constructions of Sections 5.2, 5.3 and 5.4 since what we need is actually the only fact that such

a Turing machine T M indeed exists.

As a conclusion of what is said in this section, in Sections 5.2, 5.3 and 5.4 we will only specify

description of the following:

• G0;

• How does Hi relate to Gi´1;

• Precise definitions of Zi, Ui and Vi from (5.2).

Theorem 15. The groups constructed according to the above described scheme have word problem

decidable in almost linear time when for all i P N, Ri contains one element up to cyclic shift, and in

almost quadratic time otherwise. Also, the G-conjugacy problem with respect to (5.1) is polynomial

time decidable.

Proof. For sparse enough standard parameters, for all large enough n P N, n is much larger than

maxtλi, ϵi, ci, p1 ´ 23µiq
´1u where i “ Ipnq, hence the function

n ÞÑ

R

λIpnqpn ` 2ϵIpnqq ` cIpnq

1 ´ 23µIpnq

V

(5.3)

can be computed in time Opnq. Therefore, the first statement of the theorem follows directly from

Property 1 and Theorem 12 and the second statement follows from Property 1 and Theorem 14.

5.2 Proof of Theorem 3

In this section we are going to show that for any given non-elementary, torsion-free δ0-

hyperbolic group G0, there exists a lacunary hyperbolic quotient of G0, denoted by Ǧ, which satis-

fies the conditions of Theorem 3.

Our approach is constructive and will be based on the scheme described in Section 5.1. First of

all, this means that Ǧ will be constructed as an inductive limit of a chain of hyperbolic groups of
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type (4.6), that is

G0
β0
ãÑ H1

γ1↠ G1
β1
ãÑ H2

γ2↠ . . . . (5.4)

In our construction below we will inductively show that the groups Hi and Gi, i “ 1, . . . are

non-elementary torsion-free hyperbolic groups. In this section, the limit of (5.4) we denote by Ǧ.

Let the finite symmetric set X “ tx˘1
1 , x˘1

2 , . . . , x˘1
n0

u be a generating set of G0 such that

ΓpG0, Xq is δ-hyperbolic for some δ P N. Let us denote X´ “ tx´1
1 , x´1

2 , . . . , x´1
n0

u and X` “

tx`1
1 , x`1

2 , . . . , x`1
n0

u. Also let us order X in the following natural way: x´1
i ă x´1

j ă x1i ă x1j

if i ă j, and the elements of X´ precede the elements of X`, i.e., for all i, j P N, x´1
i ă xj .

Hereafter whenever we consider an indexed alphabet X 1, the order of the set pX 1q˘1 will be defined

just like it was done for X “ X´ Y X`.

Let us consider the free group F1 “ F pY q of infinite rank, where Y “ ty1, y2, . . .u and let us

introduce an order on the set of reduced words from F in the following natural way: for reduced

words u, v P F , we define u ą v if either }u} “ }v} and u ą v lexicographically (here we regard

words as vectors of letters from Y ˘1) or }u} ą }v}. In the analogous way, we order elements of the

free group F2 “ F pXq. For a reduced word u P F pY q, we say that u is a dense word, if there exists

i P N such that u contains at least one letter from each of the following sets ty˘1
1 u, . . . , ty˘1

i u and

does not contain any other letters.

Finally, let us introduce a partial linear order on the set F1 ˆ F2 in the following way: let u, u1

be reduced words in F1 “ F pXqzt1u and v, v1 be dense words in F2 “ F pY qzt1u, then we define

pu, vq ă pu1, v1q if either }u} ` }v} ă }u1} ` }v1} or

}u} ` }v} “ }u1} ` }v1} and u ă u1.

Denote the ith element of the set F1 ˆ F2 with respect to this partial order by pui, viq. The reason

for considering only the dense words from F2 (and also the partial order) is that for dense words,

balls of finite radius with respect to the word metric have finite volume and hence, by the introduced

partial order, we will be able to effectively enumerate all the aforementioned pairs pu, vq P F1 ˆF2.

(Also note that the map i ÞÑ pui, viq is not bijective). As it will be clear from what is discussed
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below, this is important for the construction of machines TM1 and TM2. Without loss of generality

we assume that x1 and x2 are different elements of infinite order in G0.

5.2.0.1 Definition of Hi`1 (i ě 0) for Ǧ

Suppose that the non-elementary torsion-free δi-hyperbolic group Gi is already constructed. Let

pui`1, vi`1q P F1 ˆ F2 be a pair of dense word as defined above.

Case 1. (ui`1 “Gi 1). In this case define Hi`1 “ Gi;

Case 2. (ui`1 ‰Gi 1). In this case let us define ni`1 to be the least positive integer such that

vi`1 P F py1, . . . , yni`1q (and consequently, vi`1 R F py1, . . . , yni`1´1q). Note that the existence of

ni`1 follows from the fact that vi`1 is dense by definition.

Let us define G1
i “ Gi ˚ F py1, . . . , yni`1q. By Corollary 5, there exists a Turing machine which

for input pGi, δi;ui`1, vi`1q outputs the pairs pu1
i`1, kq and pv1

i`1, lq, where u1
i`1, v

1
i`1 P pX Y

tpy1, . . . , yni`1uq˚, k, l P N are such that ui`1 “G1
i

pu1
i`1qk and vi`1 “G1

i
pv1

i`1ql and u1
i`1, v

1
i`1

represent root elements of ui`1 and vi`1 in G1
i (i.e. Epui`1q “ xu1

i`1y and Epvi`1q “ xv1
i`1y in

G1
i). We will use the standard notation vi`1 “ vi`1py1, . . . , yni`1q to emphasize that vi`1 is formed

by the letters (or, in the context of diophantine equations, by variables) y1, . . . , yni`1 .

Let xzi`1y be an infinite cyclic group disjoint from G1
i. Define the group H0

i`1 as an HNN-

extension of Gi as follows.

H0
i`1 “ xGi ˚ xzi`1y, ti`1 | t´1

i`1u
1
i`1ti`1 “ zli`1y.

Now define H as an HNN-extension of H0 as follows.

Hi`1 “ xH0
i`1 ˚ F py1, . . . , yni`1q, si`1 | s´1

i`1v
1
i`1si`1 “ zki`1y. (5.5)

Finally, define Yi`1 “ ty1, . . . , yni`1u Y tzi`1u Y tti`1u Y tsi`1u.

Proposition 5. The group Hi`1 is a torsion-free non-elementary hyperbolic group and the identity

map id : X Ñ X induces an embedding of Gi into Hi`1.

Proof. First of all, if Hi`1 “ Gi then the statement follow from the inductive assumption that Gi
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is a torsion-free non-elementary hyperbolic group.

Now assume that Hi`1 is defined by (5.5). Then, since xu1
i`1y is a maximal elementary sub-

group of Gi ˚ xzi`1y and since for all g P Gi ˚ xzi`1y we have g´1xu1
i`1yg X xzi`1y “ t1u, by

Theorem 8, H0
i`1 is a hyperbolic group.

Now, since xv1
i`1y is a maximal elementary subgroup in F py1, . . . , yni`1q, we get that xv1

i`1y is

a maximal elementary subgroup in H0
i`1˚F py1, . . . , yni`1q and for all h P H0

i`1˚F py1, . . . , yni`1q,

we have h´1xv1
i`1yh X xzi`1y “ t1u. Therefore, by Theorem 8, Hi`1 is a hyperbolic group.

The fact that Hi`1 is torsion free follows from the fact that Gi is torsion free and from Lemma

14.

The part of the statement that the identity map id : X Ñ X induces an embedding of Gi into

Hi`1 follows from the basic properties of HNN-extensions. See [40].

Finally, since Hi`1 contains an isomorphic copy of Gi and Gi is non-elementary, it follows that

Hi`1 is non-elementary as well.

Proposition 6. The equation vi`1py
si`1t

´1
i`1

1 , . . . , y
si`1t

´1
i`1

ni`1 q “ ui`1 holds in Hi`1. In other words,

y1 ÞÑ y
si`1t

´1
i`1

1 , . . . , yni`1 ÞÑ y
si`1t

´1
i`1

ni`1 is a solution to the diophantine equation

vi`1py1, . . . , yni`1q “ ui`1

in Hi`1.

Proof. Indeed, first of all, the relations t´1
i`1u

1
i`1ti`1 “ zli`1 and s´1

i`1v
1
i`1z

k
i`1 imply that

pt´1
i`1u

1
i`1ti`1qk “ t´1

i`1ui`1ti`1 “ zlki`1 “ pzki`1ql “ ps´1
i`1vsi`1ql “ s´1

i`1vi`1si`1.

Therefore, ti`1s
´1
i`1vi`1si`1t

´1
i`1 “ v

si`1t
´1
i`1

i`1 “ ui`1. Now, since

v
si`1t

´1
i`1

i`1 “ vi`1py
si`1t

´1
i`1

1 , . . . , y
si`1t

´1
i`1

ni`1 q,

we get that y1 ÞÑ y
si`1t

´1
i`1

1 , . . . , yni`1 ÞÑ y
si`1t

´1
i`1

ni`1 is a solution of the diophantine equation

vi`1py1, . . . , yni`1q “ ui`1.
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Proposition 7. If x2 R Epx1q in G, then x2 R Epx1q in Hi`1. Also, for all y P Yi`1, y R Epx1q in

Hi`1.

Proof. This fact immediately follows from Lemma 14.

Proposition 8. Let U, V P X˚ be such that U „conj V in Hi`1. Then U „conj V in Gi.

Proof. Suppose that U ȷconj V in Gi. Then we want to show that U ȷconj V in H .

By contradiction let us assume that U „conj V in Hi`1. Then there exists a minimal pU, V q-

conjugacy diagram ∆ over the HNN-extension Hi`1 with boundary ABCD, labpADq “ V ,

labpBCq “ U . Note that since U ȷconj V in Gi, ∆ must contain at least one ti`1- or si`1-

band which has its ends on different sides of ABCD. Also, since U and V do not contain edges

with labels from ts˘1
i`1, t

˘1
i`1u, it must be that all these bands are horizontal, i.e., have their ends on

AB and DC.

Next, we will show that ∆ cannot contain horizontal bands. By contradiction let us assume that

it contains horizontal bands.

First, suppose that ∆ contains more than one horizontal bands. In this case, let us choose edges

e1, e2 P AB and e1
1, e

1
2 P CD such that they have labels from ts˘1

i`1, t
˘1
i`1u and e1 and e2 are

connected by horizontal bands to e1
1 and e1

2, respectively. Additionally, without loss of generality

let us assume that there is no horizontal band between these two bands. See Figure 5.1.

B

A

C

D

U

V

e1 e’1
(e )1   +

(e )1   -

(e’ )1   +

(e’ )1   -

e2 e’2
(e )2   +

(e )2   -

(e’ )2   +

(e’ )2   -

Figure 5.1: ∆ with the two horizontal bands, depicted as grey areas.

Note that then pe1q´, pe1
1q´ and pe2q`, pe1

2q` are pairs of mirroring point, respec-

tively. Therefore, the subdiagram of ∆ bounded between pe2q`, pe1q´, pe1
1q´ and pe1

2q`

is a
´

lab
`

rpe1q´, pe1
1q´s

˘

, lab
`

rpe2q`, pe1
2q`s

˘

¯

-conjugacy diagram over G1
i. In particular,
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lab
`

rpe1q´, pe1
1q´s

˘

and lab
`

rpe2q`, pe1
2q`s

˘

are conjugate in G1
i. Now, since labprpe1q´, pe1

1q´sq

and labprpe2q`, pe1
2q`sq are (free) powers of elements from tu1

i`1, v
1
i`1, zi`1u, it follows that, in

fact, they must be freely equal. This means that labprpe1q`, pe1
1q`sq and labprpe2q´, pe1

2q´sq are

also freely equal. But, since
`

pe1q`, pe1
1q`

˘

and
`

pe2q´, pe1
2q´

˘

are pairs of mirroring points on

B∆, by Lemma 25, this contradicts the assumption that ∆ is chosen to be slender. Therefore, ∆

cannot contain two horizontal bands, hence, since by our assumptions it contains at least one hori-

zontal ts˘1
i`1, t

˘1
i`1u-band, it means that the number of such bands is exactly one.

Now suppose that ∆ contains only one horizontal band and that only horizontal band of ∆

has its ends on edges e1 and e1
1, i.e. in Figure 5.1 just neglect the bottom band. Since one of

lab
`

rpe1q´, pe1
1q´s

˘

and lab
`

rpe1
1q`, pe1

1q`s
˘

belongs to Y ˚
i`1, without loss of generality assume that

lab
`

rpe1q`, pe1
1q`s

˘

P Y ˚
i`1. Then, since labprB, pe1q`sq ” labprC, pe1

1q`sq, we get that u1
i`1 „conj

lab
`

rpe1q`, pe1
1q`s

˘

in G1
i, which is impossible, since G1

i “ Gi ˚ F pYi`1q and u1
i`1 P X˚. A

contradiction.

5.2.0.2 Definition of Gi`1 (i ě 0) for Ǧ

Assuming that the torsion-free non-elementary hyperbolic group Hi`1 is already defined, Gi`1

we define as

Gi`1 “ Hi`1{ ! R
`

Yi`1, x1, x2, δ
1
i`1, λi`1, ci`1, ϵi`1, µi`1, ρi`1

˘

" .

Note that, if x1 R Epx2q in Gi, then, by Proposition 7, x1 R Epx2q in Hi`1, hence for sparse enough

standard parameters δ1
i`1, λi`1, ci`1, ϵi`1, µi`1, ρi`1, the set of words

Ri`1 “ R
`

Yi`1, x1, x2, δ
1
i`1, λi`1, ci`1, ϵi`1, µi`1, ρi`1

˘

satisfies the small-cancellation condition C 1pλi`1, ci`1, ϵi`1, µi`1, ρi`1q. Therefore,

1. By Lemma 20, Gi`1 will be non-elementary torsion-free hyperbolic group;

2. By Lemma 29, x1 is not a proper power in Gi`1. Therefore, since Gi`1 is a torsion-free

hyperbolic group, we get x1 R Epx2q in Gi`1. Thus, by inductive hypothesis, Gi`1 is well-
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defined non-elementary torsion-free hyperbolic group.

5.2.1 Main properties of Ǧ

Note that since the groups Gi are torsion-free non-elementary hyperbolic groups, the group Ǧ is

torsion-free infinite lacunary hyperbolic group (recall that we assume that the standard parameters

are sparse enough).

From Proposition 6 if follows that Ǧ is verbally complete.

From Theorem 15, it follows that for sparse enough standard parameters the word problem in Ǧ

is decidable in almost linear time and the conjugacy problem is decidable in polynomial time.

Thus Theorem 3 is proved.

5.3 Proof of Theorem 4

Let G0 “ xXy, X “ tx1, x2, . . . , xnu, be a torsion-free non-elementary δ-hyperbolic group

with respect to X . Without loss of generality we assume that Epxiq X Epxjq “ t1u if i ‰ j and

that x1, . . . , xn are root elements (i.e. Epxiq “ xxiy for 1 ď i ď n).

Let X be linearly ordered such that x´1
i ă x´1

j ă xi ă xj if i ă j. We denote the set of reduced

non-empty words of X˚ by F 1pXq. Let us enumerate the set F 1pXq as F 1pXq “ tw1, w2, . . .u

where for i ă j, wi ă wj according to the lexicographical order induced from the order on X .

Then clearly w1 “ x1, w2 “ x2. Now, based on this order of F 1pXq let us lexicographically order

the set F 1pXq ˆ F 1pXqztpw,wq | w P F 1pXqu and enumerate it according to that order. Let

F 1pXq ˆ F 1pXqztpw,wq | w P F 1pXqu “ tpu1, v1q, pu2, v2q . . .u,

where for i ă j, we have pui, viq ă puj , vjq.

As it was mentioned in Section 5.1, in this section we are going to construct the group Ĝ from

Theorem 4 which will be a direct limit of a chain of non-elementary torsion-free hyperbolic groups

of the form (4.6), that is

G0
β0
ãÑ H1

γ1↠ G1
β1
ãÑ H2

γ2↠ . . . . (5.6)
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In this section we define Hi “ Gi´1 for all i P N and the map βi´1 : Gi´1 Ñ Hi is the identity

map.

Now let us describe how Gi is obtained from Gi´1 for i P N. For that purpose by induction let

us assume that Gi´1 is a non-elementary torsion-free hyperbolic group (below we will show that for

Gi the same property holds as well). Then, there exists smallest index ji ě i such that vji R Epujiq

in Gi´1, and the set

Zi
def
“ tx P X | x R Epujiqu

is non-empty. By Corollary 5, puji , vjiq and Zi can be found algorithmically.

Now define

Gi “ Gi´1{ ! R
`

Zi, uji , vji , δ
1
i, λi, ci, ϵi, µi, ρi

˘

" .

Note that by Lemma 18, if the standard parameters δ1
i, λi, ci, ϵi, µi, ρi are sparse enough, then the

set of words

Ri
def
“ R

`

Zi, uji , vji , δ
1
i, λi, ci, ϵi, µi, ρi

˘

satisfies the small-cancellation condition C 1pλi, ci, ϵi, µi, ρiq. Also note that, by the definition of

Gi, Gi “ xuji , vjiy.

Lemma 40. The following are true about Gi.

1. Gi is a torsion-free non-elementary hyperbolic group;

2. Either vi P Epuiq in Gi or xui, viy “ Gi.

3. For each x P X , Epxq “ xxy in Gi (we assume that for Gi´1 this is already shown).

Proof. Part (1) of the statement follows from Lemma 20.

For part (2) simply notice that, by our definition of ji if ji ą i then ui P Epviq in Gi, otherwise

if ji “ i then vi R Epuiq in Gi and Gi “ xui, viy.

For Part (3), first, note that it immediately follows from Lemma 29 that x is not a proper power

in Gi. Therefore, since by Part (1) of the current lemma, Gi is a torsion-free abelian group, we get

that Epxq “ xxy.

Proposition 9. The group Ĝ, which is defined as inductive limit of pGiq
8
i“1, satisfies the statement

of Theorem 4. That is

101



(i). Every proper subgroup of Ĝ is an infinite cyclic group, while Ĝ is not cyclic;

(ii). The word problem in Ĝ is decidable in almost quadratic time and the conjugacy problem in

Ĝ is decidable in polynomial time.

Proof. (i). First of all, notice that Ĝ is not cyclic, because otherwise, for some i P N, Gi would be

cyclic, which is impossible, since G1, G2, . . . are non-elementary hyperbolic groups by Lemma 40

.

Now, by contradiction let us assume that Ĝ contains a proper non-cyclic subgroup K. Then,

since K is a proper subgroup, by part (2) of Lemma 40, K is abelian (even more, each finitely

generated subgroup of K is cyclic). Let us fix any non-trivial element x P K. Then in each of

the groups Gi the centralizer of x coincides with Epxq, hence it is cyclic. This means that in

the inductive limit Ĝ the centralizer of x is again cyclic. Therefore, since K is contained in the

centralizer of x, K is cyclic as well. A contradiction.

(ii). Second part of Proposition follows from Theorem 15. As for conjugacy problem, let us

notice that two elements of Ĝ are conjugate if and only if they are G-conjugate, hence Theorem 15

implies that conjugacy problem in Ĝ is polynomial.

Thus Theorem 4 is proved.

5.4 Proof of Theorem 5

Let A be any finite alphabet, and let L Ď A˚ be any recursively enumerable subset of A˚.

For the two generated free group F px1, x2q, let us denote by F`px1, x2q the set of words from

F px1, x2q which do not contain the letters x´1
1 and x´1

2 .

Let us also fix a bijective map Λ0 : A˚ Ñ F`px1, x2q such that Λ0 and Λ´1
0 are computable in

linear time. Construction of such a map can be easily achieved through a standard binary encoding

of the set A˚.

Let us define G0 “ F1˚F2˚F3, where F1 “ F px1, x2, x3q, F2 “ F py1, y2, y3q, F3 “ F pz1, z2q

are free groups with freely generating sets X0 “ tx1, x2, x3u, Y0 “ ty1, y2, y3u and Z0 “ tz1, z2u,
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respectively. For the convenience in the further exposition, let us also introduce the following

notations: G0,1 “ F1, G0,2 “ F2 and G0,3 “ F3.

Let ς : F1 Ñ F2 be the isomorphism between F1 and F2 induced by the map x1 ÞÑ y1, x2 ÞÑ y2,

x3 ÞÑ y3.

Define Λ : L Ñ X˚
0 ˆ Y ˚

0 as follows: For all ω P L,

Λpωq “ p Λ0pωqx3, ςpΛ0pωqqy3q.

Clearly, Λ in an injection. Let

ΛpLq “ tpu1, v1q, pu2, v2q, . . .u,

where the enumeration is with respect to some fixed Turing machine MΛ which for input i P N

outputs pui, viq. Note that such an enumeration exists since L is recursively enumerable.

As it was mentioned in Section 5.1, in this section we are going to construct the group GL from

Theorem 4 which will be a direct limit of a chain of non-elementary torsion-free hyperbolic groups

of the form (4.6), that is

G0
β0
ãÑ H1

γ1↠ G1
β1
ãÑ H2

γ2↠ . . . . (5.7)

More specifically, G0
def
“ F pXq, where

X
def
“ X0 Y Y0 Y Z0 “ tx1, x2, x3, y1, y2, y3, z1, z2u.

5.4.0.1 Definition of Hi`1 (i ě 0) for Ǧ

Assuming that Gi is already constructed we define Hi`1 as an HNN-extension of Gi. More

precisely,

Hi`1 “ xGi, ti`1 | ui`1 “ t´1
i`1vi`1ti`1y. (5.8)
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Then, clearly the identity map id : X Ñ X induces an embedding βi : Gi ãÑ Hi`1. Define

Yi`1 “ tti`1u.

We will show by induction that for all i ě 0, Hi`1 is a torsion-free, non-elementary δ1
i`1-

hyperbolic group (for some δ1
i`1 P N such that the map i ` 1 ÞÑ δ1

i`1 is computable) with respect

to the generating sets X Y tti`1u and X Y tt1, . . . , ti`1u.

5.4.0.2 Definition of Gi`1 (i ě 0) for GL

Suppose that Hi`1 is already constructed and it is non-elementary, torsion-free δ1
i`1-hyperbolic

with respect to the generating set X Y tt1, . . . , tiu for δ1
i`1 P N. Then, we define Gi`1 as follows

Gi`1
def
“ Hi`1{ ! R

`

tti`1u, z1, z2, δ
1
i`1, λi`1, ci`1, ϵi`1, µi`1, ρi`1

˘

",

where λi`1 ą ci`1 ą ϵi`1 ą µi`1 ą ρi`1 are sparse enough standard parameters. Denote

Ri`1 “ R
`

tti`1u, z1, z2, δ
1
i`1, λi`1, ci`1, ϵi`1, µi`1, ρi`1

˘

, and let Ri`1 P Ri`1 be any fixed

representative of Ri`1 (i.e. Ri`1 is the set of cyclic shifts of Ri`1).

Note that Gi`1 is generated by the image of X (which we denote by X too) under the natural

homomorphism from Gi to Gi`1 induced by the identity map id : X Ñ X . We will show by

induction that for all i ě 0, Gi`1 is a torsion-free, non-elementary δi`1-hyperbolic group (for some

δi`1 P N such that the map i ` 1 ÞÑ δi`1 is computable) with respect to the generating set X .

For the further exposition let us define the concept of truncated contiguity diagrams as follows:

In a van Kampen diagram ∆ over Gi “ Hi{ ! Ri " which contains an essential cell Π and an

outer contiguity diagram Γ connecting an arc q̌Γ of Π to an arc q̂Γ of B∆, we say that Γ is truncated

if pΓ and p1
Γ are the shortest paths in Projp∆q joining, respectively, pq̌Γq´ and pq̌Γq` to B∆.

Note that truncated contiguity diagrams are truncated diagrams according to Definition 2.8.
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5.4.0.3 Main properties of the chain (5.7)

(ai). Let W P pX0 Y Y0 Y Z0q˚ and for some i ě 1, W “Hi W 1, where W 1 is a geodesic

word in Γ
`

Hi, X0 Y Y0 Y Z0 Y ttiu
˘

. Then W 1 does not contain the letter t˘1
i , i.e.

W 1 P pX0 YY0 YZ0q˚. Also, if W P X˚
0 YY ˚

0 is a freely reduced word, then W is geodesic

in ΓpHi, X0 Y Y0 Y Z0 Y ttiuq;

(bi). There is no ϵi-contiguity subdiagram Γ of rank i such that labpq̂Γq P X˚
0 Y Y ˚

0 and

}q̌Γ} ě µi}Ri}. Moreover, if q̌Γ does not contain an edge labeled by t˘1
i , then it is enough to

require }q̌Γ} ě µi}Ri}{2;

(b1
i). If a truncated ϵi-contiguity subdiagram Γ of rank i is such that q̌Γ is geodesic in

Γ
`

Hi, X0 Y Y0 Y Z0 Y tt1, . . . , tiu
˘

and }q̌Γ} ě µi}Ri}, then AreapΓq “ 0;

(ci). If w P X˚
0 YY ˚

0 is a reduced word, then it is a geodesic word in Γ
`

Gi, X0 YY0 YZ0 Y ttiu
˘

.

Moreover, if for some word u P pX0 Y Y0 Y Z0 Y ttiuq˚, u is geodesic in

Γ
`

Gi, X0 Y Y0 Y Z0 Y ttiu
˘

and u “Gi w, then u ” w (i.e. u is freely equal to

w);

(di). If U P X˚
0 Y Y ˚

0 is a reduced word which is not a proper power of another word from G0,

then it represents an element in Gi which is not a proper power of another element from Gi;

(ei). Gi,1 X Gi,2 “ t1u;

(fi). Assuming that Gi´1 is a non-elementary torsion-free δi´1-hyperbolic group with respect

to the generating set X0 Y Y0 Y Z0, we have that Hi is a non-elementary torsion-free δ1
i-

hyperbolic group with respect to the generating set X Y tt1, . . . , tiu, where δ1
i is some (com-

putable) positive integer. Also, the group Gi is non-elementary, torsion-free hyperbolic group.
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Clearly this properties are true for i “ 0. Next, based on induction on i we will prove that they

are true for every i.

5.4.0.4 Proof of the properties (ai`1)-(fi`1).

Lemma 41. Assuming that the statements (ai)-(fi) are true, the following properties hold.

(ai`1). Let W P pX0 Y Y0 Y Z0q˚ and for some i ě 1, W “Hi`1 W 1, where W 1 is a geodesic

word in Γ
`

Hi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

. Then W 1 does not contain the letter t˘1
i`1, i.e.

W 1 P pX0 Y Y0 Y Z0q˚. Also, if W P X˚
0 Y Y ˚

0 is a freely reduced word, then W is geodesic

in ΓpHi`1, X0 Y Y0 Y Z0 Y tti`1uq;

(bi`1). There is no ϵi`1-contiguity subdiagram Γ of rank i ` 1 such that labpq̂Γq P X˚
0 Y Y ˚

0 and

}q̌Γ} ě µi`1}Ri`1}. Moreover, if q̌Γ does not contain an edge labeled by t˘1
i`1, then it is

enough to require }q̌Γ} ě µi`1}Ri`1}{2;

(b1
i`1). If a truncated ϵi`1-contiguity diagram Γ of rank i ` 1 is such that }q̌Γ} ě µi`1}Ri`1}, then

AreapΓq “ 0;

(ci`1). If w P X˚
0 Y Y ˚

0 is a reduced word, then it is a geodesic word in Γ
`

Gi`1, X0 Y Y0 Y

Z0 Y tti`1u
˘

. Moreover, if for some word u P pX0 Y Y0 Y Z0 Y tti`1uq˚, u is geodesic in

Γ
`

Gi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

and u “Gi`1 w, then u ” w (i.e. u is freely equal to w);

(di`1). If U P X˚
0 Y Y ˚

0 is a reduced word which is not a proper power of another word G0, then it

represents an element in Gi`1 which is not a proper power of another element from Gi`1;

(ei`1). Gi`1,1 X Gi`1,2 “ t1u;
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(fi`1). Assuming that Gi is a non-elementary torsion-free δi-hyperbolic group with respect to the

generating set X0 Y Y0 Y Z0, we have that Hi`1 is a non-elementary torsion-free δ1
i`1-

hyperbolic group with respect to the generating set X Y tt1, . . . , ti`1u, where δ1
i`1 is some

(computable) positive integer. Also, the group Gi`1 is non-elementary, torsion-free hyper-

bolic group.

Proof. Based on the inductive assumption we will prove Lemma 41 using the following scheme:

the inductive hypothesis ùñ pai`1q ùñ pbi`1q ùñ pb1
i`1q, pci`1q ùñ pdi`1q ùñ

pei`1q ùñ pfi`1q.

(ai`1). If W “Hi`1 W 1 and W 1 is a geodesic word in Γ
`

Hi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

,

then there is a minimal van Kampen diagram ∆ over Hi`1 such that B∆ “ pq´1, where

labppq “ W and labpqq “ W 1.

If W 1 contains a letter from t˘1
i`1, then q contains an edge with label from t˘1

i`1, hence ∆ contains

a ti`1-band. Therefore, since W does not contain t˘1
i`1 (or equivalently, p does not contain edges

with labels from t˘1
i`1) we get that the ti`1-bands of ∆ must start and end on q. Let us consider

edges e and e1 on q such that they are connected by a ti`1-band and between them there is no other

edge labeled by t˘1
i`1. Let us denote the sides of this ti`1-band which are not on q by q1 and q2 as

in Figure 5.2. Note that since in the definition (5.8) of Hi`1 the words ui`1 and vi`1 are freely

cyclically reduced and }ui`1} “ }vi`1}, we get }q1} “ }q2}. Let us also denote by q1 the subpath

of q between e` and pe1q´ as in Figure 5.2.

By our assumptions, there is no edge on q1 labeled by t˘1
i`1. Therefore, since labpq2pq1q´1q does

not contain edges with labels from t˘1
i`1, we get that the subdiagram of ∆ with the boundary q2pq1q´1

is a diagram over Gi (see Figure 5.2). Therefore, since by our assumptions q1, as a subpath of the

geodesic path q, is geodesic in ΓpHi, X0 YY0 YZ0 Ytti`1uq, it is also geodesic in ΓpGi, X0 YY0 Y

Z0q. Also, since by the statement of (ci), q2 is geodesic in ΓpGi, X0 Y Y0 Y Z0q too, we get that

}q2} “ }q1}. Also, since }q1} “ }q2}, we get }q1} “ }q1}. Therefore, if we replace the subpath eq1e1

of q with q1, then q will be shortened by 2. The last observation contradicts the assumption that q is

geodesic in Γ
`

Hi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

. Therefore, it must be that W 1 does not contain t˘1
i`1,

i.e. W 1 P pX0 Y Y0 Y Z0q˚.

107
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q

1

2

e e’

Figure 5.2: ∆: labppq “ W , labpqq “ W 1, labpeq P tt˘1
i`1u, labpeq P tt¯1

i`1u.

Now let us turn to the last statement of part (ai`1). Namely, if W P X˚
0 Y Y ˚

0 , then W is

geodesic in ΓpHi`1, X0 Y Y0 Y Z0 Y tti`1uq.

Suppose that W 1 P pX0 Y Y0 Y Z0 Y tti`1uq˚ is a geodesic word in ΓpHi`1, X0 Y Y0 Y Z0 Y

tti`1uq such that W 1 “Hi`1 W . Then, by the first part of (ai`1), W 1 does not contain t˘1
i`1, which

implies that W 1 “Gi W . By inductive hypothesis (more precisely, by (ci)), since W P X˚
0 Y Y ˚

0 ,

we get that W is geodesic in ΓpGi, X0 Y Y0 Y Z0q. Therefore, W “Gi W
1 implies }W } “ }W 1}

and since W 1 is geodesic in ΓpHi`1, X0 Y Y0 Y Z0 Y tti`1uq, we get that W is geodesic in

ΓpHi`1, X0 Y Y0 Y Z0 Y tti`1uq as well.

(bi`1). Suppose Γ is a contiguity subdiagram satisfying the conditions described in the

statement of (bi`1), which, in particular, means that labpq̂Γq P X˚
0 Y Y ˚

0 .

First of all, let us notice that since labpq̂Γq P X˚
0 Y Y ˚

0 , by (ai`1) we get that q̂Γ is geodesic in

Γ
`

Hi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

.

Now, let BΓ “ ABCD, where AB “ pΓ, BC “ q̂Γ, DC “ p1
Γ and AD “ q̌Γ. Without loss of

generality assume that }AB} ` }DC} is minimal among all contiguity subdiagrams satisfying the

conditions stated in (bi`1).

Now we are going to show that Γ does not contain any ti`1-bands with both ends on AB Y

BC Y CD. For that purpose, let us notice that since by definition AB and DC are geodesics, there

is no ti`1-band with both ends on AB or on DC. Also, since BC does not contain an edge with a

label from tt˘1
i`1u, there is no ti`1-band which ends on BC. Also, since AB and DC are geodesics,

there is no ti`1-band with both of its ends on AB or on DC (the impossibility of such scenario is
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explained in the proof of part (ai`1)). Thus the only possible way for a ti`1-band to have both of its

ends on AB Y BC Y CD is when one end is on AB and the other one is on DC.

Now assume that there are edges e and e1 on AB and DC, respectively, such that their labels belong

to tt˘1
i`1u and they are connected by a ti`1-band. Suppose e belongs to rA, e`s and e1 belongs to

rD, e1
`s. Then denote B1 “ e´ and C 1 “ e1

´. See Figure 5.3. Then, since the labels of sides of

ti`1-bands belong to X˚
0 or Y ˚

0 , we get that the subdiagram AB1C 1D is another ϵi`1-contiguity

subdiagram which satisfies all the conditions put on Γ in (bi`1). But since }AB1} ` }DC 1} ă

}AB} ` }DC}, this contradicts the minimality assumption on }AB} ` }DC}. Therefore, there is

no ti`1-band with both of its ends on AB Y BC Y CD.

A

B C

D

p p’Γ Γ

qΓ

qΓ

ˆ

̬

q2

Γ’
B’

C’
e

e’

Figure 5.3

Now let us consider the cases when Γ contains a ti`1-band with one of its ends on AD and the

other one on AB Y DC and when it does not contain any ti`1-band.

From the structure of the words from Ri`1 it follows that these words contain exactly one letter

from t˘1
i`1. Therefore, since labpADq is a subword of some word from Ri`1, we get that AD

contains maximum one edge with a label from tt˘1
i`1u. Hence in Γ there is no ti`1-band with both

of its ends on AD. Thus the only possible ti`1-band in Γ starts on AD and ends on AB Y DC as

it is depicted in Figure 5.4.

Below we discuss in more details the only two possible cases: Case 1 – when q̌Γ does not

contain an edge with a label from tt˘1
i`1u and respectively Γ does not contain a ti`1-band, and Case

2 – when q̌Γ contains exactly one edge with label from tt˘1
i`1u.

Case 1. (q̌Γ does not contain an edge with a label from tt˘1
i`1u). In this case, clearly there
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is no ti`1-band in Γ which starts on AD and ends on AB Y DC. Therefore, Γ does not contain

any ti`1-band and labpBΓq P pX0 Y Y0 Y Z0q˚. Now, since the boundary of Γ does not contain

an edge with label t˘1
i`1, clearly, for some 0 ă j ď i, Γ is a diagram over Gj . Let us assume that

j is chosen to be minimal (since G0 “ F1 ˚ F2 ˚ F3, j cannot be 0). Then, clearly there exists a

reduced diagram over the quotient Gj “ Hj{ ! Rj " with the boundary BΓ. Therefore, let us

regard Γ as a reduced diagram over Gj “ Hj{ ! Rj ". From Lemma 18 and from the structure of

the words
Ť

k Rk, it follows that there is no Rj-cell Π0 in Γ connected to rA,Ds by a ϵj-contiguity

subdiagram Γ0 such that pΠ0,Γ0, rA,Dsq ě ρj .

Let us choose B1, C 1 P rB,Cs such that dpA,B1q “ distpA, rB,Csq and dpD,C 1q “

distpD, rB,Csq in ΓpHj , pX0 Y Y0 Y Z0 Y ttjuq˚. Let rA,B1s and rD,C 1s be geodesics in

ΓpHj , pX0 Y Y0 Y Z0 Y ttjuq˚ joining A to B1 and D to C 1, respectively. Note that, since

labprA,Bsq, labprB,B1sq P pX0YY0YZ0q˚, by the property (aj), labprA,B1sq P pX0YY0YZ0q˚.

The same way we get labprD,C 1sq P pX0 Y Y0 Y Z0q˚. Therefore, from the minimality as-

sumption on }rA,Bs} ` }rC,Ds}p“ }pΓ} ` }p1
Γ}q it follows that }rA,Bs} “ }rA,B1s} and

}rD,Cs} “ }rD,C 1s}, which means that we can simply assume that B “ B1 and C “ C 1. Conse-

quently, combining this observation with Lemma 23 (note that since }q̌Γ} ě µi`1}Ri`1}{2, by LPP,

we can assume that }q̌Γ} ě λi`1p2ϵi`1 `2ϵi `24µi}Ri}q`ci`1, so that Lemma 23 can be applied)

and with the observation that there is no Rj-cell Π0 in Γ connected to rA,Ds by a ϵj-contiguity

subdiagram Γ0 such that pΠ0,Γ0, rA,Dsq ě ρj , we conclude that Γ does not contain an Rj-cell.

Therefore, Γ is a diagram over Hj “ xXYttjuy. But since BΓ does not contain an edge with a label

from tt˘1
j u, we conclude that, in fact, Γ is a diagram over Gj´1, which contradicts the minimality

assumption on j. Since Γ cannot be a diagram over G0, we conclude that such a Γ does not exist.

Thus Case 1 is proved.

Case 2. (q̌Γ contains exactly one edge with label from tt˘1
i`1u). In this case, there exists exactly one

ti`1-band joining AD to AB or to DC. Without loss of generality let us assume that there is an

edge e on AD and an edge e1 on DC labeled by t˘1
i`1 such that they are connected by a ti`1-band.

Let us denote the side re`, e
1
`s of this ti`1-band by q2. Also let us denote the diagram between q2,

q̌Γ and p1
Γ by Γ1. See Figure 5.4.

Then, since BΓ1 does not contain an edge with label t˘1
i`1, from Case 1 it follows that

›

›re`, Ds
›

› ă

µi`1}Ri`1}{2. Otherwise, since Γ1 is ϵi`1-contiguity subdiagram as well and BΓ1 does not contain
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edges labeled by t˘1
i`1, its existence is impossible as it is shown in Case 1.

Therefore, since }AD} ě µi`1}Ri`1}, for the point D2 P AD such that

}AD2} “ rµi`1}Ri`1}{2s, we get that D2 is between A and e´, i.e., AD2 does not contain

an edge with label t˘1
i`1, and by Corollary 3, we get that there is a point C2 P BC such that

dpD2, C2q ď 2Rλi`1,ci`1
` 2δ1

i`1 ďby LPP ϵi`1. This means that the ϵi`1-contiguity subdiagram

ABC2D2 satisfies all the conditions put on Γ, and since AD2 does not contain an edge with label

t˘1
i`1, we already showed that this cannot happen. See Figure 5.4 for visual description.

A

B C

DD’’

C’’

e

e’

p p’Γ Γ

qΓ

qΓ

ˆ

̬

q2

Γ’

Figure 5.4: The case when q̌Γ contains an edge e with a label from t˘1
i`1 joined by a ti`1-band to p1

Γ.

(b1
i`1). Suppose that Γ is a truncated ϵi`1-contiguity subdiagram satisfying the conditions from the

statement of (b1
i`1). Now let BΓ “ ABCD, where AB “ pΓ, BC “ q̂Γ, DC “ p1

Γ and AD “ q̌Γ

as it was in in (bi`1) (see Figure 5.4).

Assume that Γ contains ti1-bands with both ends on BΓ for some 1 ď i1 ď i ` 1. By (bi`1),

there is no tj-band in Γ with both of its ends on AB Y DC. Also, since labpq̌Γq is a subword of a

word Ri P Ri, we get that it can contain maximum one end of t-bands, where t P tt1, . . . , ti`1u

(more precisely, it must be that t “ ti`1).

First, let us assume that there is no ti`1-band with one of its ends on AD “ q̌Γ. Then all t-bands

of Γ have their ends on AB Y BC Y DC, and no band has its sides on the same edge. Let e1 and

e2 be edges on AB and DC, respectively, such that they are ends of some t-bands and rA,A1s and

rD,D1s do not contain ends of t-bands, where A1 “ pe1q´ and D1 “ pe2q´. Let e1
1, e

1
2 P BC be

the other ends of these bands, respectively. Denote B1 “ pe1
1q´ and D1 “ pe2q´. Also denote the
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subdiagram AA1B1C 1D1D by Γ1. See Figure 5.5.

A

B C

D

e’qΓˆ 2

e2

e’1

e1
D’A’

B’ C’

D’

qΓ
̬

Γ’

Figure 5.5

Since Γ1 does not contain t-bands, it is either a diagram over G0 or Γ1 contains an Rj-cell for

some 1 ď j ď i. Let us consider these two cases separately.

Case 1. If the first case holds, then, since G0 is a free group, we get AreapΓ1q “ 0, in which case,

since labprA1, B1sq, labprD1, C 1sq P X˚
0 Y Y ˚

0 and labprA,Dsq P Z˚
0 , we get that A,D P rB1, C 1s,

but this contradicts the assumption that Γ is truncated.

Case 2. Now assume that Γ1 contains an Rj-cell for some 1 ď j ď i and j is chosen to be maximal.

Then, since the sides rA,A1s, rA1, B1s, rB1, C 1s, rC 1, D1s, rD1, Ds and rA,Ds of Γ1 are pλj , cjq-

quasi-geodesic in ΓpHj , X0 Y Y0 Y Z0 Y tt1, . . . , tjuq, by Lemma 19, we get that Γ1 contains

an essential Rj-cell Π, connected to rA,A1s, rA1, B1s, rB1, C 1s, rC 1, D1s, rD1, Ds and rA,Ds by

essential ϵj-contiguity subdiagrams Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6, respectively. See Figure 5.6.

112



A

B C

D

e’2

e2

e’1

e1
D’A’

B’ C’

D’

6Г
1Г

2Г
3Г

4Г
�

Figure 5.6

Since }AD} ě µi`1ρi`1, for sparse enough standard parameters we get that at least one of Γ1

and Γ5 must be empty, because, otherwise, by the triangle inequality it would be that

}AD} ě µi`1ρi`1 ě 2ϵi`1 ` 2ϵj ` }Π},

which we can assume to be wrong by LPP.

Therefore, without loss of generality we can assume that Γ5 is empty. Now, from Lemma 18

it follows that pΠ,Γ6, rA,Dsq ď ρj . Also, because of the fact that labprA1, B1sq, labprD1, C 1sq P

X˚
0 Y Y ˚

0 , by (bi`1), we get that

pΠ,Γ2, rA1, B1sq, pΠ,Γ4, rC 1, D1sq ď ρj .

Therefore, we get

pΠ,Γ1, rA,A1sq ` pΠ,Γ3, rB1, C 1sq ą 1 ´ 26ρj ,

which is impossible because of Lemma 23. Thus we showed that AreapΓq “ 0 when q̌Γ does not

contain an edge which is an end of a t-band for t P tt1, . . . , ti`1u. The case when q̌Γ contains such

an edge can be treated in a similar way.

(ci`1). Now let us turn to the part (ci`1) of the statement. By contradiction assume that there exists
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a reduced word w P X˚
0 which is not geodesic in Γ

`

Gi`1, X0 YY0 YZ0 Y tti`1u
˘

. Without loss of

generality we can assume that w is the shortest one among such words. Then, since w is not geodesic

in Γ
`

Gi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

, there exists a word w1 P
`

X0 Y Y0 Y Z0 Y tti`1u
˘˚ which is

geodesic in Γ
`

Gi`1, X0YY0YZ0Ytti`1u
˘

and }w1} ă }w} and w1 “Gi`1 w. Since w´1w1 “Gi`1

1, there exists a reduced diagram ∆ over Gi`1 with the boundary label w´1w1. Let us denote

B∆ “ pq, where labppq “ w1, labpqq “ w. By (ci), w is geodesic in Γ
`

Gi, X0 Y Y0 Y Z0 Y ttiu
˘

,

hence the inequality }w1} ă }w} implies w1 R pX0 Y Y0 Y Z0q˚, i.e. w1 contains a letter from

tt˘1
i`1u. In particular, this means that w ‰Gi w

1.

On the other hand, since w1 is geodesic in Γ
`

Gi`1, X0YY0YZ0Ytti`1u
˘

, there is no ti`1-band

in ∆ which starts and ends on p (otherwise, we will obtain a contradiction as in the proof of part

(ai`1)). Also, since w does not contain any letter from tt˘1
i`1u, by (ai`1) it follows that ∆ does not

contain ti`1-bands at all. Therefore, w ‰Hi`1 w1, because, since w ‰Gi w
1, if w “Hi`1 w1 then ∆

would contain a ti`1-band. Therefore, ∆ contains an Ri`1-cell.

Let w “ w0x, where x P X0. Denote the subword of q with the label w0 by q0 and the one

with the label x by q1. Since we chose w to be of minimal length with the mentioned properties,

it must be that w0 is a geodesic word in Γ
`

Gi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

. Therefore, B∆ is a

geodesic triangle in Γ
`

Gi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

with geodesic sides p, q0 and q1. Therefore,

by Lemma 19, ∆ contains an essential Ri`1-cell Π connected to p, q0 and q1 by a system of essential

ϵi`1-contiguity subdiagrams Γ1, Γ2 and Γ3, respectively. See Figure 5.7.

�

2Г

Г
p

q 0

q 1

1

Figure 5.7: ∆ : labpq0q1q “ w, labppq “ w1.

From (bi`1) it follows that pΠ,Γ2, q0q ă µi`1 and pΠ,Γ3, q1q ă µi`1. Therefore, pΠ,Γ1, pq ą

p1 ´ 23µi`1q ´ 2µi`1 “ 1 ´ 25µi`1. But since p is geodesic in Γ
`

Gi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

,

by Lemma 22, for sparse enough standard parameters, this is impossible. A contradiction.
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(di`1). Let U P X˚
0 be a reduced word which is not a proper power of any other word from G0.

Without loss of generality assume that U is a freely cyclically reduced word. By contradiction let

us assume that for some k ě 2 and W P pX0 Y Y0 Y Z0 Y tti`1uq˚, U “Gi`1 W k. First of all, it

directly follows from Lemma 14 and from the inductive hypothesis (i.e. by the statement (di)) that

U is not a proper power in Hi`1.

Now, let W 1 P
`

X0 YY0 YZ0 Y tti`1u
˘˚ be a cyclically minimal representative of W in Gi`1.

This means that there exists T P
`

X0 Y Y0 Y Z0 Y tti`1u
˘˚ such that W “Gi`1 TW 1T´1 and W 1

has minimal length among such words. In particular, this means that U “Gi`1 T pW 1qkT´1, and

W 1 is cyclically geodesic in Γ
`

Gi`1, X0 YY0 YZ0 Y tti`1u
˘

. Note that, since Gi`1 is a quotient of

Hi`1, we get that W 1 is cyclically geodesic in Γ
`

Hi`1, X0 YY0 YZ0 Y tti`1u
˘

as well. Therefore,

by Lemma 8 and by LPP, pW 1qk is cyclically pλi`1, ci`1q-quasi-geodesic in Γ
`

Hi`1, X0 Y Y0 Y

Z0 Y tti`1u
˘

.

Since W 1 is conjugate to W in Gi`1 and U “Gi`1 W k, there exists a pU, pW 1qkq-conjugacy

diagram over Gi. Hence there exists a cyclically slender pU, pW 1qkq-conjugacy diagram over Gi.

Let ∆ be such a diagram. As before, let us denote B∆ “ ABCD, where labpBCq, labpADq

are cyclic shifts of pW 1qk and U , respectively, and labpABq “ labpDCq are geodesic words in

Γ
`

Gi`1, X0YY0YZ0Ytti`1u
˘

. Note that by (ci`1), U is also cyclically geodesic in Γ
`

Hi`1, X0Y

Y0 Y Z0 Y tti`1u
˘

. Therefore, by Lemma 19, ∆ contains an essential Ri`1-cell, Π. Let Γ1,

Γ2, Γ3 and Γ4 be essential ϵi`1-contiguity subdiagrams connecting Π to AB, BC, CD and DA,

respectively. Since we chose ∆ to be cyclically slender, by Lemma 28, Γ2 and Γ4 are non-empty

and

pΠ,Γ2, BCq ` pΠ,Γ4, DAq ě 1 ´ 121λi`1µi`1. (5.9)

Also, by statement (bi`1) and (ci`1) of the current lemma and by LPP, since labpq̂Γ4q P X˚
0 , it

follows that

pΠ,Γ4, DAq ă µi`1.

Combining this with (5.9), we get

pΠ,Γ2, BCq ą p1 ´ 121λi`1µi`1q ´ µi`1 ą 1 ´ 122λi`1µi`1. (5.10)
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Therefore, since W 1 is cyclically geodesic in Γ
`

Gi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

, by LPP and by

Lemma 22, we get that labpq̂Γ2q is not a subword of a cyclic shift of W 1. This means that labpq̂Γ2q

is of the form

labpq̂Γ2q “ pW 2qnQ,

where W 2 is a cyclic shift of W 1, n ě 1, and Q is a prefix of W 2.

Let us separately consider the cases when n “ 1 and when n ą 1.

Before that, let us notice that by Corollary 3, the Hausdorff distance between q̌Γ2 and q̂Γ2 is

bounded from above by ϵi`1 ` 2Rλi`1,ci`1
` 2δi`1 ăby LPP 2ϵi`1.

Case 1. (n “ 1). For this case, let us partition q̂Γ2 “ q̂1q̂2q̂3, where labpq̂1q “ labpq̂3q “ Q. Let

us also partition q̌Γ2 “ q̌1q̌2q̌3 such that pq̌1q` and pq̌2q` are the closest to pq̂1q` and to pq̂2q`

points on q̌Γ2 , respectively. Since labpq̂1q “ labpq̂3q, from the observation right above Case 1 and

from Lemma 24, it follows that }q̌1}, }q̌3} ď 2µi`1}Π} ă µi`1λi`1}Π}. Then combining this

with (5.10), we get that }q̌1q̌2} ą p1 ´ 23λi`1µi`1q}Π}. But, since }W 2} “
›

›q̌1q̌2
›

› and W 2 is a

geodesic word in Γ
`

Gi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

, this is impossible for sparse enough standard

parameters. Thus we are done with Case 1.

Case 2. (n ą 1). For this case, again we partition q̂Γ2 into three parts q̂Γ2 “ q̂1q̂2q̂3 such

that labpq̂1q “ labpq̂3q and labpq̂2q is a suffix of W 2. Then, since labpq̂Γ2q “ pW 2qnQ and n ě 2,

we get that }q̂1} “ }q̂3} ą 1
3}q̂2}, hence }q̂Γ2} ă 3}q̂1}. Also, just like we showed in case n “ 1,

by Lemma 24, in this case also }q̂1}, }q̂3} ď 2µi`1}Π}. Therefore, }q̂Γ2} ă 6µi`1}Π}. But, since

by LPP 1 ´ 122λi`1µi`1 ą 6µi`1, we get a contradiction with (5.10). The case when U P Y ˚
0 can

be dealt in the same way. Thus we are done with this case as well.

(ei`1). By contradiction, let us assume that for some non-trivial reduced words U P X˚
0 ,

V P Y ˚
0 we have U “Gi`1 V . Then there exists a reduced van Kampen diagram ∆ such that

B∆ “ q1q
´1
2 and labpq1q “ U , labpq2q “ V . Since U and V do not contain letters from tt˘1

i`1u

and U ‰Gi V , by (ei) we have that ∆ contains an Ri`1-cell. Therefore, since by (ci`1) U and V
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are geodesic word in Γ
`

Hi`1, X0 Y Y0 Y Z0 Y tti`1u
˘

, by Lemma 19, ∆ contains an essential

Ri`1-cell, Π. Let us assume that Π is connected to q1 and q2 by ϵi`1-contiguity subdiagrams Γ1

and Γ2, respectively. Then we have pΠ,Γ1, q1q ` pΠ,Γ2, q2q ě 1´ 23µi`1. But, on the other hand,

by (bi`1) we have that pΠ,Γ1, q1q ` pΠ,Γ2, q2q ă 2µi`1. But since by LPP we can assume

2µi`1 ă 1 ´ 23µi,

we get a contradiction.

(fi`1). The fact that Hi is a hyperbolic group follows from Theorem 8 and parts (di`1) and

(ei`1) of the current lemma.

Corollary 13. Suppose U P X˚ is a pλi, ci, ϵi, 1 ´ 122λiµiq-cyclic-reduced word for i “ Ip}U}q,

and U “GL V for some V P X˚
0 Y Y ˚

0 . Then U P X˚
0 Y Y ˚

0 .

Proof. This directly follows from properties (ai),(bi) and Lemma 19.

5.4.1 The conjugacy problem in GL

Lemma 42. If U P X˚
0 zt1u, V P Y ˚

0 zt1u, then U is not G-conjugate to V in GL.

Proof. This follows immediately from Lemma 26 and properties (bi), (ci).

Definition 5.1 (Λ-pairs of words). We say that a pair of words pU, V q P X˚ ˆ X˚ is a Λ-pair if

either U is a cyclic shift of V or for some k P N, l P Z, U is a cyclic shift of ulk and V is a cyclic

shift of vlk or vice versa (i.e. V is a cyclic shift of ulk and U is a cyclic shift of vlk).

Note that the Λ-pair relation is an equivalence relation.
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Lemma 43. Two cyclically reduced non-empty words U, V P X˚ Y Y ˚ are conjugate one to each

other in GL if and only if pU, V q is a Λ-pair. Moreover, if U is not a cyclic shift of V , then U is not

G-conjugate to V in GL.

Proof. Assume that U and V freely reduced words which are conjugate in GL. The case when

U is a cyclic shift of V is trivial. Therefore, without loss of generality assume that U is not a

cyclic shift of V . Then, by the definition of G0, it is clear that U and V are not conjugate in G0.

Therefore, there exists a minimal index i ě 1 such that U and V are conjugate in Gi. This means

that there exists a minimal cyclically slender pU, V q-conjugacy diagram ∆ of rank i. If i “ 0 then

the statement of the lemma follows from basic properties of free groups. Suppose that U, V are

chosen so that the corresponding index i P N is minimal. Now, let us assume that i ě 1 and apply

induction on i.

As usual, let us denote the boundary B∆ of ∆ by ABCD. Let U 1 “ labpBCq and

V 1 “ labpADq, where U 1 and V 1 are some cyclic shifts of U and V , respectively.

Claim 1. U is not G-conjugate to V in GL.

Proof of the claim. Indeed, assume that U is G-conjugate to V in GL. Then, since by the property

(ci), U and V are geodesic words in ΓpHi, XYtt1, . . . , tjuq, according to Lemma 28, we get that at

least one of U 1 and V 1 must contain a pϵi, p1´ 121λiµiq{2q-subword, which contradicts to property

(bi).

By Claim 1, we get that ∆ is a slender pU, V q-conjugacy diagram over Hi. Therefore, since we

chose the index i to be minimal, ∆ contains ti-bands. Since labpABq and labpDCq do not contain

letters from tt˘1
i u, we get that the ti-bands of ∆ must be horizontal, i.e. their ends belong to rA,Bs

and rD,Cs.

Now let us choose an edge e1 on the side AB such that labpe1q P tt˘1
i u and labprpe1q`, Bsq

does not contain t˘1
i . From the basic properties of HNN-extensions, it it follows that there exists

an edge e1
1 on DC such that labpe1q P tt˘1

i u and e1 is connected to e1
1 by a ti-band. Moreover,

labprpe1q`, Bsq “ labprpe1
1q`, Csq.
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Let us denote the side of the ti-band connecting pe1q` to pe1
1q` by p1 and the side connecting

pe1q´ to pe1
1q´ by q1. See Figure 5.8. Then labpp1q belongs to either X˚

0 or Y ˚
0 . Denote U2 “

labpp1q.

B

A

C

D

U’

V’

p1

q1

p2

q2
e2

e1 e’1

e’2

(e )1   +

(e )1   -

(e’ )1   +

(e’ )1   -

’∆ lab(     )=U’’ p1

Figure 5.8: The cyclically slender pU, V q-conjugacy diagram ∆. Below it is shown that the second
ti-band, joining e2 to e1

2, actually, cannot exist.

Let us denote by ∆1 the pU 1, U2q-conjugacy subdiagram of ∆ which is bounded between pe1q`,

B, C and pe1q1
`. See Figure 5.8. Since ∆1 does not contain Ri-cells and ti-bands, we conclude

that it is a pU 1, U2q-conjugacy diagram of rank j where 0 ď j ă i, hence U 1 is conjugate to U2 in

Gj . On the other hand, since U2 P X˚ or Y ˚ and since i was chosen to be minimal, by inductive

argument on i we conclude that either U2 is a cyclic shift of U 1 (hence also of U ) or U 1 is a cyclic

shift of labpq1q (this means that pU, labpp1qq is a Λ-pair).

Now we are going to show that besides the considered ti-band, ∆ does not contain any other

ti-band. Assume that this is not true. Then there exist edges e2 and e1
2 on AB and DC, respectively,

such that they have a label from tt˘1
i u, and between e2 and e1 (also between e1

2 and e1
1, respectively)

there is no other edge with label from tt˘1
i u. See Figure 5.8. Then it must be that e2 is connected

to e1
2 by a ti-band. Correspondingly, define p2 and q2 as we defined p1 and q1. Then repeating the

above stated arguments we get that
`

labpq1q, labpq1q
˘

is a Λ-pair. The last observation implies that

either labpp1q ” labpp2q or labpp1q ” labp22q, which is impossible by Lemma 25. Thus Lemma

43 is proved.

The next lemma is a stronger version of Lemma 43.
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Lemma 44. Let U P pX0 Y Y0 Y Z0q˚ and V P X˚
0 Y Y ˚

0 . Then U „conj V in GL if and only if

pU 1, V q is a Λ-pair, where U 1 is any pλi, ci, ϵi, 1 ´ 122λiµiq-cyclic reduction of U for i “ Ip}U}q.

Proof. Suppose that U „conj V in GL. Let us fix a pλi, ci, ϵi, 1 ´ 122λiµiq-cyclic reduction U 1

of U . Then, clearly U 1 „conj V in GL. Let us separately consider two cases: Case 1 – U 1 is

G-conjugate to V in GL, and Case 2 – U 1 is H-conjugate to V in GL.

Case 1. (U 1 is G-conjugate to V in GL). In case U „conj V in G0 the statement of the

lemma is trivial. Now suppose that U ȷconj V in G0. Then, by Lemma 38, there exists an index

j P N such that j ď i and U „conj V in Gj but U ȷconj V in Hj . Therefore, by Lemma 28, U 1 and

V contain pϵj , κ1q- and pϵj , κ2q-arcs, respectively, such that κ1 ` κ2 ě 1 ´ 122λjµj . Also, since

V P X˚
0 Y Y ˚

0 , by property (bj), κ2 ď ρj . Therefore, U 1 contains a pϵj , 1 ´ 122λjµjq-subword,

which contradicts to the fact that U 1 is cyclically pλj , cj , ϵj , 1´ 122λjµjq-reduced. So we are done

with Case 1.

Case 2. (U 1 is H-conjugate to V in GL). Then for some k P N, U 1 „conj V in Hk and

U 1 ȷconj V in Gk´1, and consequently, there exists a slender pU 1, V q-conjugacy diagram ∆ over

Hk “ xX Y tt1, . . . , tkuy which contains at least one tk-band. Note that, since V does not contain a

letter from tt˘1
k u, ∆ must contain only horizontal tk-bands. Without loss of generality assume that

V P X˚
0 Y Y ˚

0 is chosen so that ∆ contains minimal number of horizontal t-bands, t P tt1, t2, . . .u.

Therefore, by a standard inductive argument and by Lemma 43, we get that U 1 and V form a

Λ-pair with a label of a side of any (horizontal) tk-band from ∆, hence, since Λ-pair relation is an

equivalence relation, we get that pU 1, V q is a Λ-pair.

Lemma 45. Let U, V P pX0 Y Y0 Y Z0q˚. Suppose that U 1, V 1 P pX Y tt1, . . . , tjuq˚ are any

pλi, ci, ϵi, 1´ 122λiµiq-cyclic-reductions of U and V , respectively, where i “ Ip}U} ` }V }q. Then

U is H-conjugate to V in GL if and only if pU 1, V 1q is a Λ-pair and U 1 is not a cyclic shift of V 1.

Proof. First of all, if pU, V q is a Λ-pair, then, clearly, U „conj V in GL. Moreover, by Lemma 43,

if U is not a cyclic shift of V , then U is not G-conjugate to V , hence U is H-conjugate to V in GL.

Now let us assume that U is H-conjugate to V in GL. Then there exists an index j P N such

that U is conjugate to V in Hj , but U is not conjugate to V in Gj´1. This means that there exists
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a slender pU, V q-conjugacy diagram ∆ over Hj which contains a horizontal tj-band. Therefore, U

and V are conjugate to conjugate words from X˚
0 Y Y ˚

0 . Hence, by Lemma 44 and by the fact that

Λ-pair relation is an equivalence relation, we get that pU 1, V 1q is a Λ-pair.

The next lemma is an obvious corollary from the structure of the words of ΛpA˚q and definition of

Λ-pairs.

Lemma 46. The decision problem which for any pair of words U, V P pX0 Y Y0 Y Z0q˚ asks

whether or not pU, V q is a Λ-pair can be strongly reduced to the membership problem for L Ď A˚

in Op}U} ` }V }q time.

The combination of Lemma 43 and Lemma 45 implies the following proposition.

Proposition 10. Suppose that U, V P pX0 YY0 YZ0q˚. Then, U „conj V if and only if exactly one

of the following holds.

1. U is G-conjugate to V in GL;

2. pU 1, V 1q is a Λ-pair and U 1 is not a cyclic shift of V 1, where U 1, V 1 P pX0 YY0 YZ0 Y ttiuq˚

are pλi, ci, ϵi, 1´122λiµiq-cyclic reductions of U and V , respectively, for i “ Ip}U}`}V }q.

Proof. This proposition directly follows from Lemma 43 and Lemma 45.

Proposition 11. The membership problem for L Ď A˚ can be strongly reduced to the conjugacy

problem in GL in linear time; and the H-conjugacy problem in GL can be strongly reduced to the

membership problem for L Ď A˚ in almost linear time.

Proof. Indeed, it follows from the definition of Λ-pairs that for any ω P A˚, ω P L if and only if

the pair of words Λpωq is a Λ-pair. Therefore, since Λpωq P Y ˚
0 ˆ Z˚

0 , by Lemma 43, ω P L if and

only if Λpωq is a pair of words conjugate in GL.

Now let us show the opposite side. For that let us consider a pair of words pU, V q P X˚ ˆ X˚.

Then one can find pλi, ci, ϵi, 1 ´ 122λiµiq-cyclic-reductions U 1 and V 1 of U and V , respectively,

in almost linear time, where i “ Ip}U} ` }V }q (see Remark 11). Therefore, since by Lemma 45

U 1 is H-conjugate to V 1 in GL if and only if pU 1, V 1q is a Λ-pair, by Lemma 46, the H-conjugacy
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problem in GL can be strongly reduced to the membership problem for L Ď A˚ in almost linear

time.

5.4.1.1 Geometry of slender G-conjugacy diagrams and time complexity of the G-conjugacy

problem in GL

Lemma 47. Let for some i P N, U, V P pX0 YY0 YZ0 Y tt1, . . . , tiuq˚ be pλi, ci, ϵi, 1´ 122λiµiq-

cyclic-reduced words in Γ
`

Hi, X0 Y Y0 Y Z0 Y tt1, . . . , tiu
˘

and suppose U „conj V in Gi but

U ȷconj V in Hi. Then there exists a pU, V q-conjugacy diagram ∆ over

Gi “ xX0 Y Y0 Y Z0 Y tt1, . . . , tiu | Rj , t
´1
j ujtjv

´1
j , 1 ď j ď iy

such that B∆ “ ABCD, labpADq ” U , labpBCq ” V , labpABq ” labpDCq and for every cell

Π in ∆, BΠ X AD, BΠ X BC ‰ H. Moreover, if Π is an Rj-cell for some 1 ď j ď i, then

}Π X AD}, }Π X BC} ě ρj}Π}. Also, if Π is a cell with label of the form t´1
j ujtjv

´1
j , then uj is

contained either in labpΠ X ADq or in labpPi X BCq, and the same is true about vj

Proof. Let ∆0 be a reduced cyclically slender pU, V q-conjugacy diagram over Gi. Let B∆0 “

A0B0C0D0 be such that labprA0, D0sq “ U 1 and labprB0, C0sq “ V 1 for some cyclic shifts U 1 and

V 1 of U and V , respectively. Then, by Lemma 28, there exists an Ri-cell Π connected by non-empty

ϵi-conjugacy subdiagrams Γ and Γ1 to A0D0 and B0C0 such that pΠ,Γ, A0D0q ` pΠ,Γ1, B0C0q ě

1 ´ 121λiµi. Without loss of generality assume that Γ and Γ1 are truncated. Now, since U 1 and V 1

are pλi, ci, ϵi, 1´122λiµiq-reduced, we get pΠ,Γ, A0D0q, pΠ,Γ1, B0C0q ă 1´122λiµi. Therefore,

pΠ,Γ, A0D0q, pΠ,Γ1, B0C0q ą µi.

Hence, by property (b1
i), we get that AreapΓq “ AreapΓ1q “ 0.

}W }, }W 1} ě µ}R1
i}.

Now the proof of Lemma 47 follows after applying some standard inductive arguments.

Visually, Lemma 47 tells us that if for some i P N, U, V P pX0 Y Y0 Y Z0 Y tt1, . . . , tiuq˚ are
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pλi, ci, ϵi, 1´122λiµiq-cyclic-reduced words in Γ
`

Hi, X0YY0YZ0Ytt1, . . . , tiu
˘

and U „conj V

in Gi but U ȷconj V in Hi, then there exists a pU, V q-conjugacy diagram ∆ which looks like in

Figure 5.9, where by Π1, . . .Πk we denoted the cells of ∆.

�1 �2 �3 �k

   V’

   U’

Figure 5.9

Lemma 48. The G-conjugacy problem in GL is decidable in almost linear time.

Proof. Indeed, in order to check for a given pair of words pU, V q P X˚ ˆ X˚ whether or not U is

G-conjugate to V in GL, one can first compute pλi, ci, ϵi, 1´122λiµiq-cyclic-reductions U 1 and V 1

of U and V , respectively, in almost linear time (see Remark 11), then check whether there exists a

pU 1, V 1q-conjugacy diagram satisfying the properties described in Lemma 47. Notice that the last

checking can be done in Op}U} ` }V }q time. Therefore, the whole checking can be done in almost

linear time.

5.4.1.2 Main properties of GL

Combining Proposition 11 with Lemma 48 one immediately gets the statements pII.iq and

pII.iiq of Theorem 5.

Corollary 14. The membership problem for L Ď A˚ can be strongly reduced to the conjugacy

problem in GL in linear time; and the conjugacy problem in GL can be strongly reduced to the

membership problem for L Ď A˚ in almost linear time.

Another corollary is the following.

Corollary 15. The individual conjugacy problems in GL are decidable in almost linear time.

Proof. Let us fix an element g P GL and let U P X˚ be a reduced word representing g. The key

observation is that since there are only finitely many words W such that pU,W q form a Λ-pair, it

can be checked in a fixed time whether or not pU, V 1q form a Λ-pair. Therefore, without loss of
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generality we can assume that pU, V 1q do not form a Λ-pair. Hence, from Lemmas 43 and 45 it

follows that U „conj V
1 in GL if and only if U is G-conjugate to V 1 in GL, which can be checked

in almost linear time according to Lemma 48.

5.5 Proof of Theorem 6

In this section we are going to construct a lacunary hyperbolic group G̃ which satisfies the

properties of Theorem 6. G̃ will be constructed as a direct limit of a chain

G0
β0
ãÑ H1

γ1↠ G1
β1
ãÑ H2

γ2↠ . . . . (5.11)

of non-elementary torsion-free hyperbolic groups of the form (4.6) according to the scheme de-

scribed in Section 5.1. More specifically, G0
def
“ F pXq, where X “ tx1, x2u.

Let N “ tn1, n2, . . .u Ă N be a fixed recursively enumerable but not recursive subset of

positive integers. Let us enumerate elements of G0 according to their lexicographical order as

G0 “ t1 “ u0, u1, u2, . . .u and denote U “ tu1, u2, . . .u. Let V “ \8
i“1U “ tv1, v2, . . .u be a

disjoint union of copies of U with recursive enumeration such that before the next copy of a given

element u P U appears in V , all the elements preceding u already appeared in V at least once.

Denote by P “ tp1, p2, . . .u the set of prime numbers indexed in correspondence with their

natural order.

5.5.0.1 Definition of Hi`1 for G̃

Suppose that for i ě 0, Gi is already constructed and it satisfies the following properties.

A1. Gi is a non-elementary torsion-free δi-hyperbolic group for δi P N,

A2. Words of the form xn1x2, n P Z, are not proper powers in Gi.

Below we show how to construct Gi`1 from Gi which, in particular, preserves properties A1 and

A2.
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Suppose that the set tṽj1 , ṽj2 , . . . , ṽjiu of words from X˚ is such that its elements are not proper

powers in Gi, i.e. Epṽjkq “ xṽjky in Gi for 1 ď k ď i. Then define vji`1 as the element from

tvji`1, vji`2, . . .u of minimal index such that vji`1 does not represent the trivial element in Gi.

Now define ṽji`1 as follows.

• If vji`1 commensurates with any element from tṽj1 , . . . , ṽjiu in Gi, then define ṽji`1 ” ṽjk ,

where 1 ď k ď i is the smallest index such that vji`1 commensurates with ṽjk in Gi;

• Otherwise, if vji`1 commensurates in Gi with an element of the form xn1x2, then define

ṽji`1 ” xn0
1 x2, where |n0| is the smallest positive number such that vji`1 commensurates in

Gi with xn0
1 x2;

• Otherwise, if vji`1 is not a proper power in Gi, then define ṽji`1 ” vji`1 ;

• Otherwise, if vji`1 is a proper power in Gi, then define ṽji`1 to be a cyclically geodesic word

in ΓpGi, Xq such that Epvji`1q “ xṽji`1y in Gi.

Define q1 “ p1 and suppose that the set tq1, . . . , qiu of prime numbers is already defined such that

for 1 ď k, l ď i, qk “ ql whenever ṽjk ” ṽjl . Then, define qi`1 P N as follows.

• If ṽji`1 ” ṽjk for some 1 ď k ď i, then define qi`1 “ qk;

• Otherwise, define qi`1 “ pi`1.

Define ñi`1 “ ns`1 P N , where s “ #t1 ď k ď i | ṽjk ” ṽji`1u. Now define w̃i`1 “

x
q
ñi`1
i`1

1 x2. Define Hi`1 as follows: If w̃i`1 commensurates with ṽji`1 in Gi, then Hi`1 “ Gi,

otherwise Hi`1 is an HNN-extension of Gi. More precisely,

Hi`1 “ xGi, ti`1 | t´1
i`1ṽji`1ti`1 “ w̃i`1y. (5.12)

Lemma 49. Hi`1 is non-elementary torsion-free δ1
i`1-hyperbolic group for some δ1

i`1 P N.
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Proof. Hyperbolicity of Hi`1 follows directly from the above mentioned assumption A2 when

combined with Theorem 8, because by definition w̃i`1 does not commensurate with ṽji`1 .

The fact that Hi`1 is non-elementary and torsion-free follows from the basic properties of HNN-

extensions, namely, by the fact that Gi embeds in Hi`1 and by Lemma 14.

Lemma 50. The words tṽj1 , . . . , ṽji`1u and the words of the form xm1 x2, m P Z, are not proper

powers in Hi`1 (provided that this statement is true for Gi).

Proof. Directly follows from Lemma 14.

Lemma 51. ti`1 R Epx1q Y Epx2q, x1 R Epx2q and x2 R Epx1q in Hi`1.

Proof. Indeed, it follows from the basic properties of HNN-extensions and from the inductive as-

sumption that Gi is a non-elementary group.

5.5.0.2 Definition of Gi`1

Suppose that Hi`1 is already constructed and it is a non-elementary torsion free δ1
i`1-hyperbolic

group for δ1
i`1 P N such that the map i ` 1 ÞÑ δ1

i`1 is computable. Define Gi`1 as follows: If

Hi`1 “ Gi, then Gi`1 “ Gi, otherwise

Gi`1 “ Hi`1{ ! R
`

tti`1u, x1, x2, δ
1
i`1, λi`1, ci`1, ϵi`1, µi`1, ρi`1

˘

" . (5.13)

Denote R
`

tti`1u, x1, x2, δ
1
i`1, λi`1, ci`1, ϵi`1, µi`1, ρi`1

˘

by Ri`1.

Lemma 52. For sparse enough standard parameters λi`1, ci`1, ϵi`1, µi`1, ρi`1, the group Gi`1 is

torsion-free non-elementary δi`1-hyperbolic for some δi`1 P N.

Proof. Follows directly from Lemmas 51 and 20.

Lemma 53. For sparse enough standard parameters λi`1, ci`1, words of the form xm1 x2 are cycli-

cally pλi`1, ci`1q-quasi-geodesic in ΓpHi`1, X Y tti`1uq.
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Proof. Let xm1
1 x2x

m2
1 be an arbitrary subword of a cyclic shift of the word xm1 x2, where |m1| `

|m2| ď |m|. Then, since by Lemma 51, x2 R Epx1q in Hi`1, by Lemma 10, either maxtm1,m2u ă

fp|x|, δi`1, λ
1
i`1, c

1
i`1, 1q (f is defined as in Lemma 51) or

|xm1
1 x2x

m2
1 |Hi`1 ą

1

12λ1
i`1

maxtm1,m2u ą
1

24λ1
i`1

}xm1
1 x2x

m2
1 } ´ 1,

where λ1
i`1 and c1

i`1 are such that for each n P Z, xn is pλ1
i`1, c

1
i`1q-quasi-geodesic in ΓpHi`1, XY

tti`1uq (they can be computed according to Lemma 7). Therefore, since xm1
1 x2x

m2
1 was taken

arbitrarily, we get that xm1 x2 is cyclically p24λi`1, ci`1q-quasi-geodesic. Consequently, in order

Lemma 53 to be true, it is enough to require that λi`1 ě 24λ1
i`1 and ci`1 ě 1.

Lemma 54. For sparse enough standard parameters λi`1, ci`1, ϵi`1, µi`1, ρi`1, no word of the

form pxm1
1 x2x

m2
1 q˘1, m1,m2 P Z, has a pϵi`1, λi`1µi`1q-subword with respect to the quotient

Gi`1 “ Hi`1{ ! Ri`1 ", and pλi`1, ci`1q-quasi-geodesic words in ΓpGi`1, X Y tti`1uq do not

contain pϵi`1, 1 ´ 122λi`1µi`1q-subwords.

Proof. Indeed, the first statement follows from the fact that the words Ri`1 satisfy the small can-

cellation condition C 1pλi`1, ci`1, ϵi`1, µi`1, ρi`1q (see conditions (2.1) and (2.2) in the definition

of C 1pλ, c, ϵ, µ, ρq condition). The second statement follows from Lemma 22.

Lemma 55. For sparse enough standard parameters λi`1, ci`1, ϵi`1, µi`1, ρi`1, the words

tṽj1 , . . . , ṽji`1u and the words of the form xm1 x2 are not proper powers in Gi`1, provide that these

statements hold in Hi`1.

Proof. The part about the words tṽj1 , . . . , ṽji`1u immediately follows from Lemma 29, because,

since the standard parameters are assumed to be sparse enough, in particular, we can assume that

ρi`1 is sufficiently larger than maxt}ṽj1}, . . . , }ṽji}u and then apply Lemma 29.

Now, by contradiction, assume that for some fixed m P N, the word xm1 x2 is a proper power

in Gi`1. Then, there exists k ą 1 and u P pX Y tti`1uq˚ such that u is cyclically minimal in

ΓpGi`1, X Y tti`1uq and

xm1 x2 „conj u
k

in Gi`1. By Lemma 7, for sparse enough standard parameters λi`1, ci`1, ϵi`1, µi`1, ρi`1, the

127



word uk is pλi`1, ci`1q-quasi-geodesic in ΓpHi`1, X Y tti`1uq. Therefore, since by Lemma 54,

any cyclic shift of xm1 x2 does not contain a pϵi`1, µi`1λi`1q-subwords with respect to the quotient

Gi`1 “ Hi`1{ ! Ri`1 ", by Lemma 28, we get that for some cyclic shift u1 of u, pu1qk must

contain a pϵi`1, 1 ´ 122λi`1µi`1q-subword with respect to Gi`1 “ Hi`1{ ! Ri`1 ", which is

impossible because of Lemma 29. A contradiction.

5.5.1 Properties of G̃

Define

Ṽ “ tṽj1 , ṽj2 , . . .u

and for all i P N, define

Ṽi “ tṽjk P Ṽ | ṽjk ” ṽjiu

and

Ñi “ tn P N | ṽji „conj x
qni
1 x2 in G̃u.

Lemma 56. For all i,m P N, words of the form ṽji and xm1 x2 are not proper powers in G̃.

Proof. Follows immediately from Lemmas 50 and 55.

Lemma 57. Words of the form pxm1
1 x2qτ1 and pxm2

1 x2qτ2 , where m1,m2 P Z, τ1, τ2 P t˘1u, are

G-conjugate in G̃ if and only if m1 “ m2 and τ1 “ τ2.

Proof. If pxm1
1 x2qτ1 and pxm2

1 x2qτ2 are conjugate in G0, then clearly m1 “ m2 and τ1 “ τ2. Now

suppose that pxm1
1 x2qτ1 and pxm2

1 x2qτ2 are G-conjugate in G̃, but pxm1
1 x2qτ1 ȷconj pxm2

1 x2qτ2 in
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G0. Then there exists s P N such that pxm1
1 x2qτ1 „conj pxm2

1 x2qτ2 in Gs but pxm1
1 x2qτ1 ȷconj

pxm2
1 x2qτ2 in Hs. Since by Lemma 53, the words pxm1

1 x2qτ1 and pxm2
1 x2qτ2 are cyclically pλs, csq-

quasi-geodesic in ΓpHs, X Y ttsuq, and since by Lemma 54, cyclic shifts of pxm1
1 x2qτ1 and

pxm2
1 x2qτ2 do not contain pϵs, λsµsq-subwords with respect to the quotient Gs “ Hs{ ! Rs ",

by Lemma 28, we get a contradiction, because Lemma 28 tells us that in case pxm1
1 x2qτ1 „conj

pxm2
1 x2qτ2 in Gs but pxm1

1 x2qτ1 ȷconj pxm2
1 x2qτ2 in Hs, a cyclic shift of at least one of the

words pxm1
1 x2qτ1 and pxm2

1 x2qτ2 contains a p1 ´ 121λsµsq{2-subword with respect to the quotient

Gs “ Hs{ ! Rs ", which contradicts to the assertion of Lemma 54.

Lemma 58. For all i, k P N, τ P t˘1u, ṽji is G-conjugate with pṽjkqτ in G̃ if and only if ṽji ” ṽjk

and τ “ 1.

Proof. If ṽji „conj ṽτjk in G0, then clearly ṽji ” ṽjk and τ “ 1. In G0 the inverse is true as well.

Now assume that ṽji is G-conjugate with ṽτjk in G̃, but ṽji ȷconj ṽ
τ
jk

in G0. Then there exists s P N

such that ṽji „conj ṽ
τ
jk

in Gs, but ṽji ȷconj ṽ
τ
jk

in Hs.

Without loss of generality assume that i ď k. By the definition of ṽjk , ṽτjk is not conjugate in

Gk´1 with any element from

tṽjl | 1 ď l ă k, ṽτjk ı ṽjlu,

hence s ě k. However, by Lemma 28, if the standard parameters λs, cs, ϵs, µs, ρs are sparse enough,

in particular, if ρs is much larger than }ṽji} and }ṽjk}, then it cannot happen that ṽji „conj pṽjkqτ

in Gs but ṽji ȷconj pṽjkqτ in Hs.

Lemma 59. If for some i P N, n P Z, τ P t˘1u, ṽji is G-conjugate to pxn1x2qτ in G̃, then

ṽji ” pxn1x2qτ .

Proof. Without loss of generality assume that i “ mintk | ṽj ” ṽiu.

If ṽji „conj pxn1x2qτ in G0, then clearly ṽji ” pxn1x2qτ . Now assume that ṽji is G-conjugate

with pxn1x2qτ in G̃, but ṽji ȷconj pxn1x2qτ in G0. Then there exists s P N such that ṽji „conj

pxn1x2qτ in Gs but ṽji ȷconj pxn1x2qτ in Hs.
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If s ă i, then by the definition of ṽji , the fact that ṽji „conj pxn1x2qτ in Gs implies that

ṽji ” xn
1

1 x2 for some n1 P Z. Therefore, by Lemma 57, xn
1

1 x2 ” pxn1x2qτ , which implies that

ṽji „conj pxn1x2qτ in G0. A contradiction.

If s ě i, then since by Lemma 54, any cyclic shift of the word pxn1x2qτ does not contain a

pϵs, λsµsq-subword with respect to the quotient Gs “ Hs{ ! Rs ", by Lemma 28, some cyclic

shift of the word ṽji must contain pϵs, 1 ´ 122λsµsq-subwords with respect to the quotient Gs “

Hs{ ! Rs ", which is impossible provided that the standard parameters λs, cs, ϵs, µs, ρs are sparse

enough (in particular, if ρs is much larger than }ṽji}).

Lemma 60. Let

w1, w2 P
␣

ṽji , pxn1x2qτ | i P N, n P Z, τ P t˘1u
(

and w1 ı w2 such that w1 „conj w2 in G̃. Then, for the group

H 1
s “ xX, t1, t2, . . . , ts | t´1

1 ṽj1t1 “ x
q
ñ1
1
1 x2, . . . , t

´1
s ṽjsts “ xq

ñs
s
1 x2y,

there exists T P tt1, t2, . . . , tsu˚ such that

T´1w1T “ w2 in H 1
s,

where s is such that w1 „conj w2 in Hs, but w1 ȷconj w2 in Gs´1

Proof. Suppose that w1 ı w2, then by Lemmas 57, 58 and 59, the fact that w1 „conj w2 in G̃,

implies that w1 is H-conjugate to w2 in G̃. Therefore, there exists s P N such that w1 „conj w2 in

Hs, but w1 ȷconj w2 in Gs´1. Therefore, by Collins’ Lemma, there exists h P Hs such that

h´1w1h “ w2 in Hs

such that θphq is minimal for all possible conjugators h. Moreover, by Britton’s lemma, θphq ą 0,

where θ is defined in Subsection 2.3.

We will prove the lemma by induction on ps, θphqq, where we define ps1, θph1qq ă ps2, θph2qq

if either s1 ă s2 or s1 “ s2 and θph1q ă θph2q.
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If s “ 1, then note that H 1
s coincides with Hs, and the statement of the lemma follows from the

combination of Collins’ Lemma (see Lemma 13) with the fact that G0 is a free group.

Now assume that s ą 1 and for all smaller pairs ps1, θph1qq the statement is true. Note that,

by Collins’ Lemma, there exist m P Z, h1, h2 P Hs such that h1tsh2 “ h and, in particular,

θph1q, θph2q ă θphq, and either

h´1
1 w1h1 “Hs pṽjsqm and h´1

2 pxq
ñs
s
1 x2qmh2 “Hs w2

or

h´1
1 w1h1 “Hs pxq

ñs
s
1 x2qm and h´1

2 pṽjsqmh2 “Hs w2.

Since by Lemma 56, the words w1 and w2 are not proper powers, we get that m P t˘1u. Also,

note that since by Lemmas 57, 58 and 59, w1, pṽjsqm and w1, pxq
ñs
s
1 x2qm are not G-conjugate in

G̃, in case θph1q “ 0, we get that either w1 is conjugate to pṽjsqm in Hs´1 or w1 is conjugate to

pxq
ñs
s
1 x2qm in Hs´1. Analogous statement is true for the pairs pw2, pṽjsqmq and pw2, pxq

ñs
s
1 x2qmq if

θph2q “ 0. Therefore, the statement of the lemma follows from the inductive hypothesis.

Lemma 61. Let i P N. Then for all but finitely many m P N, if the word x
qmi
1 x2 is conjugate with

pṽjiq
τ , τ P t˘1u, in G̃, then m P N and τ “ 1.

Proof. Assume that m P N is such that xq
m
i
1 x2 „conj ṽji in G̃ and also without loss of generality

assume that xq
m
i
1 x2 ı ṽji . Then, because of Lemma 57, we get xq

m
i
1 x2 is H-conjugate with pṽjiq

τ

in G̃. Therefore, there exists s P N such that xq
m
i
1 x2 „conj pṽjiq

τ in Hs, but xq
m
i
1 x2 ȷconj pṽjiq

τ in

Gs´1. Then, by Lemma 60, for the group

H 1
s “ xX, t1, t2, . . . , ts | t´1

1 ṽj1t1 “ x
q
ñ1
1
1 x2, . . . , t

´1
s ṽjsts “ xq

ñs
s
1 x2y,
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there exists T P tt1, t2, . . . , tsu˚ such that T is of the minimal length for which

T´1pṽjiq
τT “ x

qmi
1 x2 in H 1

s.

Now it is an easy exercise to see that τ “ 1 from the last inequality.

Claim 1. T does not contain subwords of the form ts1t
´1
s2 , where 1 ď s1, s2 ď s.

Proof of Claim 1. By contradiction suppose that T “ T1ts1t
´1
s2 T2. Then, by Britton’s Lemma (see

Lemma 66), the identities

T´1ṽjiT px
qmi
1 x2q´1 “H 1

s
1

and

ṽjiT px
qmi
1 x2q´1T´1 “H 1

s
1

imply that

pT1ts1q´1ṽjiT1ts1 P xx
q
ñs1
s1
1 x2y

and

t´1
s2 T2x

qmi
1 x2pt´1

s2 T2q´1 P xx
q
ñs2
s2
1 x2y

in H 1
s, and on the other hand

pT1ts1q´1ṽjiT1ts1 “H 1
s
t´1
s2 T2x

qmi
1 x2pt´1

s2 T2q´1.

Therefore, we get s1 “ s2 and hence T “H 1
s
T1T2, which contradicts the assumption that T was

chosen to be of minimal length.

Claim 2. If }T } ě 2, then T is of the form T1t
´1
s0 , for some 1 ď s0 ď s.

Proof of Claim 2. Indeed, if T was of the form T1ts0 for some 1 ď s0 ď s, then by Britton’s

Lemma, the identity ṽjiT px
qmi
1 x2q´1T´1 “H 1

s
1 would imply that ts0x

qmi
1 x2t

´1
s0 P xṽjiy in H 1

s,

which implies that ts0x
qmi
1 x2t

´1
s0 “ ṽji . However, the last identity contradicts the assumption that

}T } ě 1 and T was chosen of minimal length.
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Note that if }T } “ 1, then the identity T´1ṽjiT px
qmi
1 x2q´1 “H 1

s
1 can hold only for finitely

many values of m R N . Hence without loss of generality, let us assume that }T } ą 2. Then, by

Claims 1 and 2, T is of the form T “ t´1
s1 . . . t´1

sk
, where k ě 2 and 1 ď s1, . . . , sk ď s.

Now, note that by Britton’s Lemma, for some n P N, ts1 ṽjnt
´1
s1 “ ṽji , and hence ṽji “ x

q
ñs1
s1
1 x2,

which implies that s1 is defined uniquely. The same way s2, . . . , sk are defined uniquely. Therefore,

if for some m1 ‰ m, we have

pT 1q´1ṽjiT
1px

q
m1
i
1 x2q´1 “H 1

s
1

and }T 1} ě 1 also }T 1} is minimal, then either T 1 is a prefix of T or T is a prefix of T 1 and T 1 is

of the same form as T . However, an application of Britton’s Lemma shows that this cannot happen.

Indeed, if without loss of generality we assume that }T 1} ą }T }, then T 1 “ Tt´1
sk`1

. . . t´1
sk`l

. Then,

since T´1ṽjiT “H 1
s
x
q
m1
i
1 x2, we would have

tsk`1
T´1ṽjiTt

´1
sk`1

“ tsk`1
x
q
m1
i
1 x2t

´1
sk`1

P xṽjsk`1
y

and also qi “ qsk`1
. However, from the definition of the elements q1, q2, . . . , and from the last

identities, we get ṽjsk`1
“ ṽji and tsk`1

x
qm´1
i
1 x2t

´1
sk`1

“H 1
s
ṽji . The last identity contradicts the

assumptions that }T 1} ě 2 and that T 1 was chosen to be of minimal length.

Thus the lemma is proved.

Lemma 62. Let i P N and let i0 be the smallest index such that ṽi0 “G̃ ṽi. Then, the set Ṽi0 is

infinite and the set N
a
Ñi0 “ pN zÑi0q Y pÑi0zN q is finite.

Proof. The first statement follows from the definitions of Ṽi0 and of the elements

tṽj1 , ṽj2 , . . .u.

As for the second statement, first of all, note that Lemmas 50, 55 and 61 imply that Ñi0zN is

finite. Indeed, by Lemmas 50, 55 and 61, words of the set tṽji , x
n
1x2u are not proper powers in G̃.

Therefore, ṽji0 commensurates with xn1x2 if and only if ṽji0 „conj x
n
1x2 in G̃.

Also, since the set Vi0 is infinite, by the definition of the set tñ1, ñ2 . . .u Ď N we get

tñ1, ñ2 . . .u “ N . Therefore, N zÑi0 “ H. Thus N
a

Ñi0 is finite.
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Lemma 63. Let i P N, m P Zzt0u. Let i0 be the smallest index such that ṽji0 is conjugate to ṽji

in G̃. Then for all but finitely many positive integers n, pṽji0 qm is conjugate to
`

x
qni0
1 x2

˘τm in G̃,

where τ P t˘1u, if and only if n P N and τ “ 1.

Proof. Indeed, suppose that pṽji0 qm is conjugate with pṽji0 qτm in G̃. Then, there exists s P N,

such that pṽji0 qm is conjugate with
`

x
qni0
1 x2

˘τm in Gs. Therefore, E
`

pṽji0 qm
˘

is conjugate with

E
``

x
qni0
1 x2

˘m˘ in Gs. But since Gs is a torsion-free hyperbolic group and by Lemma 56, ṽji0 and

x
qni
1 x2 are not proper powers, we get that xṽji0 y is conjugate with xx

qni0
1 x2y in Gs. Consequently,

ṽji0 is conjugate with
`

x
qni0
1 x2

˘τ in G̃. Therefore, by Lemma 61, for all but finitely many n, we get

n P N .

The inverse statement follows immediately from Lemma 62.

Lemma 64. For any word u P X˚ representing a non-trivial element of G̃, there exists an element

ṽji P Ṽ and m P Z such that u „conj ṽ
m
ji

in G̃.

Proof. Indeed, by the definition of the words tṽj1 , ṽj2 , . . .u, for each u P X˚, there exists i P N

and v P X˚ such that u commensurates with ṽji in Gi. In other words, v´1uv P Epṽjiq in Gi. But

since Gi is a torsion-free hyperbolic group and, by Lemma 56, ṽji is not a proper power, we get that

v´1uv P Epṽjiq is equivalent to v´1uv P xṽjiy in Gi. Therefore, for some m P Z, u „conj ṽmji in

G̃.

Lemma 65. The word problem in G̃ is decidable in almost linear time, however, for each g P G̃zt1u,

the individual conjugacy problem ICP pgq is undecidable.

Proof. The decidability of the word problem in almost linear time follows from Theorem 15.

Now suppose that g ‰ 1 in G̃. Then, by Lemma 64, there exist m P Z and minimal index i

such that ṽmji is conjugate to g in G̃. Therefore, by Lemma 63, for all but finitely many n P N, the

question of whether or not px
qni
1 x2qm is conjugate to g is equivalent to the question of whether or

not n P N . Therefore, since N is not recursive, we get that the decision problem which for each

input n P N asks whether or not pṽnjixqm is conjugate to g in G̃ is undecidable. In particular, this

implies that ICP pgq is undecidable.
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Chapter 6

The question of Collins

This chapter is dedicated to answering a question of Collins about the existence of finitely

presented torsion-free groups with decidable word problem that cannot be embedded into groups

with decidable conjugacy problem. We show that, in general, such groups exist.

6.1 Overview

As we know from the previous chapters, if the conjugacy problem is decidable for a finitely

generated group G, then the word problem is decidable as well. However, in general, the inverse is

far from being true (See Theorems 5, 6, or [46, 20, 45, 43]).

Groups on which the word and conjugacy problems have significantly different behavior at-

tracted the attention of group theorists for at least several decades. For example, if G is a finitely

generated group and H ď G is a subgroup of finite index, then the word problem in G is decidable

if and only if it is decidable for H . However, it is shown by Goryaga-Kirkinskii, [33], and indepen-

dently by Collins-Miller, [21], that subgroups of index 2 of some specific finitely generated groups

have decidable (respectively, undecidable) conjugacy problem, while the groups themselves have

undecidable (respectively, decidable) conjugacy problem.

Another important type of questions about word and conjugacy problems in groups is the fol-

lowing: Is it true that every finitely generated group with decidable word problem (respectively,

conjugacy problem) embeds in a finitely presented group with decidable word problem (respec-

tively, conjugacy problem)? Both of these questions have positive answer. The answer for the word

problem is obtained by Clapham in 1967, [18], based on the classical embedding theorem of Hig-

man (see [40]), while the analogous question for the conjugacy problem was a long-standing open

problem until it got positive answer in 2004 by a work of Olshanskii and Sapir. See [58] and also

[59].

In light of the aforementioned, a natural question about the connection of word and conjugacy

problems in groups is the following question, asked by Donald Collins in the early 1970s.
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Question 1. Can every torsion-free group with solvable word problem be embedded in

a group with solvable conjugacy problem?

This question appears in the 1976 edition of The Kourovka Notebook as Problem 5.21, [38].

Probably, the first source where this problem was posed in a written form is [15]. For yet another

source, see [7].

It was mentioned by Collins in [38] that due to an example by A. Macintyre, there exists a group

with torsions which cannot be embedded into a finitely generated group with decidable conjugacy

problem. However, the case for torsion-free groups remained open until now. Indeed, one of the

reasons why the torsion and torsion-free cases are different is based on the observation that conju-

gate elements in a group must have the same order, and since in a torsion-free group all non trivial

elements have the same (infinite) order, in case of torsion-free groups, one cannot make use of this

observation in order to answer Question 1.

In [59], Olshanskii and Sapir showed the following theorem which gives a positive answer to

Question 1 under the stronger assumption of decidability of the power problem.

Theorem 16 (Olshanskii-Sapir, [59]). Every countable group with solvable power and order prob-

lems is embeddable into a 2-generated finitely presented group with solvable conjugacy and power

problems.

Note that as it is defined in [59], for a given group G the power problem is said to be decidable,

if there exists an algorithm which for any given pair pg, hq of elements from G decides whether

or not g is equal to some power of h in G. The order problem is decidable in G if there exists an

algorithm which for each input g P G computes the order of g.

The main result of the current work is the negative answer to Question 1 in the general case.

Theorem 17. There exists a finitely presented torsion-free group G with decidable word problem

such that G cannot be embedded into a group with decidable conjugacy problem.

A remarkable theorem of Osin (see [60]) says that every torsion-free countable group can be

embedded into a two generated group with exactly two conjugacy classes. In the context of this
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theorem, it is very natural to ask whether or not every torsion-free countable group with decidable

word problem (= computable group) can be embedded into a group with exactly two conjugacy

classes and with decidable word problem. A more relaxed version of this question would be whether

or not every torsion-free countable group with decidable word problem can be embedded in a finitely

generated recursively presented group with finitely many conjugacy classes.

It turns out that a direct consequence of Theorem 17 gives negative answer to both of these

questions.

In fact, the decidability of the conjugacy problem for groups with exactly two conjugacy classes

is equivalent to the decidability of the word problem. Even more, as it is shown in a recent paper

of Miasnikov and Schupp [43], a finitely generated recursively presented group with finitely many

conjugacy classes has decidable conjugacy problem. Therefore, a direct corollary from Theorem 17

is the following.

Theorem 18. There exists a torsion-free finitely presented group with decidable word problem that

cannot be embedded into a finitely generated recursively presented group with finitely many conju-

gacy classes.

Proof. Just take the group G from Theorem 17.

Remark 12. In fact, the mentioned result of Miasnikov and Schupp is true not only for finitely gen-

erated recursively presented groups, but for all recursively presented groups in general. Therefore,

Theorem 18 stays true after dropping the assumption that the group in which the initial group is

embedded is finitely generated. (The exact definition of recursive presentations of groups is given

in the next section.)

6.2 Preliminaries

6.2.1 Groups with decidable word problem

Recall that a countable group G is said to have recursive presentation, if G can be presented as

G “ xX | Ry such that X and R are enumerable by some algorithm (i.e. Turing machine). See
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[34]. If in addition, there is an algorithm which for each pair of words pw,w1q from pX Y X´1q˚

verifies whether or not w and w1 represent the same element of G, then the presentation G “

xX | Ry is called computable and in case G possesses such a presentation, the group G itself is

called computable as well. Modulo some slight variances, the original definition of the concept of

computable groups is due to Rabin [63] and Mal’cev [42].

In case the group G is finitely generated (i.e. |X| ă 8) computability property of G is the same

as saying that G has decidable word problem. It is not hard to notice that decidability of the word

problem does not depend on the finite generating sets. From the computability perspective, the last

observation is one of the main advantages of finitely generated groups over countably generated

ones, because in case of finitely generated groups decidability of the word problem is an intrinsic

property of a group, rather than of its presentation.

However, in this paper, to keep the notations as uniform as possible, we say that G has decidable

word problem if it is given by a computable presentation.

Let G “ xx1, x2, . . . | r1, r2, . . .y, where tx1, x2, . . .u and tr1, r2, . . .u are recursive enumer-

ations of X and R, respectively. Then, the embedding constructions of [23] and [59] imply the

following theorem.

Theorem 19. If G “ xx1, x2, . . . | r1, r2, . . .y has decidable word problem, then there exists an

embedding Φ : G Ñ H of G into a two generated group H such that the following holds.

(1). The word problem is decidable in H;

(2). The map i ÞÑ Φpxiq is computable;

(3). An element of H is of finite order if and only if it is conjugate to an image under Φ of an

element of finite order in G.

6.2.2 HNN-extensions

In the proof of the existence of the group G from Theorem 17 we use some group theoretical

constructions based on HNN-extensions. Therefore, in this subsection we would like to recall some
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well-known basic facts about HNN-extensions. The basics of the theory of HNN-extensions can

also be found in [40].

Suppose that A,B ď H and ϕ : A Ñ B is a group isomorphism from A to B. Then the

HNN-extension H 1 of H with respect to A and B (and ϕ) and with stable letter t is defined as

H 1 “ xH, t | t´1at “ ϕpaq, a P Ay.

In the current text, the isomorphism ϕ will be clear from the context, hence we will simply use

the notation H 1 “ xH, t | t´1At “ By.

Clearly, every element h1 of H 1 can be decomposed as a product

h1 “ h0t
ϵ1h1 . . . t

ϵnhn, (6.1)

where ϵi P t˘1u, hj P H for 1 ď i ď n, 0 ď j ď n.

The decomposition (6.1) is said to be in reduced form, if it does not contain subproduct of one

of the forms t´1git, gi P A or tgit´1, gi P B, for 1 ď i ď n.

Analogously, if H “ xXy, then the word u1 P pX Y X´1 Y tt˘1uq˚ given by

u1 “ u0t
ϵ1u1t

ϵ2 . . . tϵnun,

where ϵi P t˘1u, uj P pXYX´1q˚, is said to be a reduced word with respect to the HNN-extension

H 1 if the decomposition h0t
ϵ1h1 . . . t

ϵnhn is in reduced form, where hi corresponds to the word ui

in H .

The following well-known lemma is attributed to Britton in [40].

Lemma 66 (Britton’s Lemma). If the decomposition (6.1) is reduced and n ě 1, then h1 ‰ 1 in H 1.

Lemma 67 (See Theorem 2.1 in [40]). Let H 1 “ xH, t | t´1At “ By be an HNN-extension with

respect to isomorphic subgroups A and B. Then H embeds in H 1 by the maps h ÞÑ h, h P H .

Lemma 68 (The Torsion Theorem for HNN-extensions. See Theorem 2.4 in [40]). Let H 1 “ xH, t |

t´1At “ By be an HNN-extension. Then every element of finite order in H 1 is a conjugate of an
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element of finite order in the base H . Thus H 1 has elements of finite order n if an only if H has

elements of order n.

6.3 Proof of Theorem 17

In order to show the existence of G from Theorem 17, first, we will construct a special countable

group 9G with decidable word problem, then G will be defined as a group in which 9G embeds in a

certain way.

Two disjoint sets of natural numbers S1, S2 Ă N are called recursively inseparable if there is no

recursive set T Ă N such that S1 Ď T and S2 Ď NzT . The set T is called separating set. Clearly, if

two disjoint sets are recursively inseparable, then they cannot be recursive. Indeed, if, say, S1 and

S2 are disjoint and, say, S1 is recursive, then as a recursive separating set one could simply take S1.

Nevertheless, it is a well-known fact that there exist disjoint recursively enumerable and recursively

inseparable sets. See, for example, [66].

Let us fix two disjoint recursively enumerable and recursively inseparable sets

N “ tn1, n2, . . .u Ă N and M “ tm1,m2, . . .u Ă N such that the maps i ÞÑ ni and

i ÞÑ mi are computable.

Now, for all n P N, define An as a torsion-free abelian additive group of rank two with basis

tan,0, an,1u, i.e.

An “ xan,0y ‘ xan,1y

and such that the groups A1, A2, . . . are disjoint.

For all n P N, define the groups 9An as follows.

9An “

$

’

’

’

’

&

’

’

’

’

%

An if n R N Y M ,

An{ ! an,1 “ 2ian,0 " if n “ ni P N ,

An{ ! an,1 “ 3ian,0 " if n “ mi P M.

140



For all n P N and m P t0, 1u, let us denote the images of an,m under the natural homomor-

phisms An Ñ 9An by 9an,m.

Convention. In this text, whenever we deal with an additive group, say, A, with finite gen-

erating set, say, ta1, . . . , aku, by t˘a1, . . . ,˘aku˚ we denote the set of formal finite sums of the

form w “
ř

λiaji , where λi P Z and aji P ta1, . . . , aku, and we say that w is a word formed by

letters t˘a1, . . . ,˘aku. Note that this is the additive analogue of the central in combinatorial group

theory concept of words, where the alphabet composing the words is a set of group generators. This

is why the finite formal sums w “
ř

λiaji we call words from t˘a1, . . . ,˘aku˚.

Before moving forward, we prove the following important lemma.

Lemma 69. There exists an algorithm such that for each input n P N and w P t˘ 9an,0,˘ 9an,1u˚, it

decides whether or not w represents the trivial element in the group 9An.

Proof. Indeed, since 9An is abelian with generating set t 9an,0, 9an,1u, each word w from

t˘ 9an,0,˘ 9an,1u˚ can be effectively transformed to a word of the form

w1 “ λ0 9an,0 ` λ1 9an,1

which represents the same element in 9An as the initial word w, where λ0, λ1 P Z.

Now, assuming that λ0 ‰ 0, λ1 ‰ 0, in order w1 to represent the trivial element in 9An it must

be that n P N Y M, because otherwise, by definition, the group 9An is torsion-free abelian of rank

2 with basis t 9an,0, 9an,1u.

In case n P N , by definition we have that 9an,1 “ 2x 9an,0, where x is the index of n in N , i.e.

n “ nx.

Similarly, in case n P M, by definition we have that 9an,1 “ 3x 9an,0, where x is the index of n

in M, i.e. n “ mx.

Now, if λ0 “ 0 and λ1 “ 0, then clearly w1 (hence also w) represents the trivial element in 9An.

Therefore, without loss of generality we can assume that at least one of λ0 and λ1 is not 0. Then, if

we treat x as an unknown variable, depending on whether n “ nx or n “ mx, the equality w1 “ 0
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would imply one of the following equations:

λ0 ` λ12
x “ 0 (6.2)

or

λ0 ` λ13
x “ 0, (6.3)

respectively.

This observation suggests that in case λ0 ‰ 0 or λ1 ‰ 0, in order to verify whether or not

w1 “ 0 in 9An, we can first try to find x satisfying (6.2) or (6.3), and in case such an x does not exist,

conclude that w1 (hence, also w) does not represent the trivial element in 9An. Otherwise, if x is the

root of the equation (6.2), we can check whether or not n “ nx (since N is recursively enumerable,

this checking can be done algorithmically). Similarly, if x is the root of the equation (6.3), we can

check whether or not n “ mx.

If as a result of this checking, we get n “ nx (respectively, n “ mx), then the conclusion will

be that w1 (hence, also w) represents the trivial element in 9An, otherwise, if n ‰ nx (respectively,

n ‰ mx), then the conclusion will be that w1 (hence, also w) does not represent the trivial element

in 9An.

Now, for all n P N, define the group Bn as a torsion-free additive abelian group of rank 2, that

is

Bn “ xbn,0y ‘ xbn,1y

such that B1, B2, . . . are disjoint.
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Now, for all n P N, define the groups 9Bn as follows.

9Bn “

$

’

&

’

%

Bn if n R N Y M ,

Bn{ ! bn,1 “ 2ibn,0 " if n “ ni P N or n “ mi P M.

For all n P N, m P t0, 1u, let us denote the images of bn,m under the natural homomorphism

Bn Ñ 9Bn by 9bn,m.

It follows from the definitions of 9An and 9Bn that for all n P N, these groups are infinite and

torsion free.

Lemma 70. There exists an algorithm such that for each input n P N and w P t˘9bn,0,˘9bn,1u˚, it

decides whether or not w represents the trivial element in the group 9Bn.

Proof. Follows from the repetition of arguments of the proof of Lemma 69.

Lemma 71. The map 9an,0 ÞÑ 9bn,0, 9an,1 ÞÑ 9bn,1 induces a group isomorphism between the groups

x 9an,0, 9an,1y “ 9An and x9bn,0, 9bn,1y “ 9Bn if and only if n P NzM.

Proof. Indeed, in case n P N , by definition, x 9an,0, 9an,1y “ x 9an,0y and 9an,1 “ 2i 9an,0, where i is

the index of n in N . Also x9bn,0, 9bn,1y “ x9bn,0y and 9bn,1 “ 2i 9bn,0. Therefore, in case n P N , the

map 9an,0 ÞÑ 9bn,0, 9an,1 ÞÑ 9bn,1 induces a group isomorphism between the groups x 9an,0, 9an,1y and

x9bn,0, 9bn,1y.

In case n P NzpN Y Mq, the groups 9An and 9Bn are torsion-free and abelian of rank 2 with

generating sets t 9an,0, 9an,1u and t9bn,0, 9bn,1u, respectively. Therefore, if n P NzpN Y Mq, the

map 9an,0 ÞÑ 9bn,0, 9an,1 ÞÑ 9bn,1 induces a group isomorphism between the groups x 9an,0, 9an,1y and

x9bn,0, 9bn,1y as well.

Now suppose that n P M. Then, x 9an,0, 9an,1y “ x 9an,0y and x9bn,0, 9bn,1y “ x9bn,0y, however, by

definition, 9an,1 “ 3i 9an,0 while 9bn,1 “ 2i 9bn,0. Therefore, the map 9an,0 ÞÑ 9bn,0, 9an,1 ÞÑ 9bn,1 does

not induce a group isomorphism between the groups x 9an,0, 9an,1y and x9bn,0, 9bn,1y when n P M.

Now, let T “ F pt1, t2, . . .q be a free group with countable free basis tt1, t2, . . .u.
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Denote the infinite free products 9A1 ˚ 9A1 ˚ . . . and 9B1 ˚ 9B1 ˚ . . . by ˚8
n“1

9An and ˚8
n“1

9Bn,

respectively. Then define

9G “ p˚8
n“1

9Anq ˚ p˚8
n“1

9Bnq ˚ T { ! R ", (6.4)

where the set of defining relators R is defined as

R “
␣

t´1
i 9ani,0ti “ 9bni,0 | i P N

(

.

Define

9G0 “ p˚8
n“1

9Anq ˚ p˚8
n“1

9Bnq,

and for all k P N, define 9Gk as

9Gk “ p˚8
n“1

9Anq ˚ p˚8
n“1

9Bnq ˚ F pt1, . . . , tkq{ ! Rk ",

where the set of defining relators Rk is defined as

Rk “
␣

t´1
i 9ani,0ti “ 9bni,0 | 1 ď i ď k

(

.

Then, clearly the group 9G is the direct limit of the sequence of group t 9Gku8
k“0 connected by

homomorphisms ϵk : 9Gk Ñ 9Gk`1 such that ϵk are the homomorphisms induced by the identity

maps from
␣

9an,0, 9an,1, 9bn,0, 9bn,1, ti | n P N, i P t1, 2, . . . , ku
(

to themselfs for all k P N.

Let us denote

S0 “
␣

˘ 9an,m, ˘ 9bn,m | n P N, m P t0, 1u
(

and for k P N,

Sk “
␣

˘ 9an,m, ˘ 9bn,m, t˘1
1 , . . . , t˘1

k | n P N, m P t0, 1u
(

.
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Note that since the sets N and M are recursively enumerable, the groups 9G and 9Gk have

recursive presentations with respect to the generating sets S0 Y tt1, t2, . . .u and Sk, k P N Y t0u,

respectively.

Lemma 72. There exists an algorithm such that for each input w P S˚
0 it decides whether or not

w “ 1 in 9G0.

Moreover, there exists an algorithm such that for each input pw, iq, w P S˚
0 , i P N, it decides

whether or not w represents an element from x 9ani,0y, and in case it represents such an element, the

algorithm returns λ 9ani,0, λ P Z, such that w “ λ 9ani,0 in 9G0. Analogous statement remains true

when we replace 9ani,0 with 9bni,0.

Proof. Indeed, these properties immediately follow from the basic properties of the direct products

of groups combined with Lemmas 69 and 70.

Lemma 73. For all k P N Y t0u and n P N, the following holds.

(i). The groups 9An and 9Bn embed into 9Gk under the maps induced by 9an,m ÞÑ 9an,m and 9bn,m ÞÑ

9bn,m for m P t0, 1u, respectivley;

(ii). The group 9Gk`1 is an HNN-extension of the group 9Gk. More precisely, 9Gk`1 “ x 9Gk, tk`1 |

t´1
k`1 9ank`1,0tk`1 “ 9bnk`1,0y.

Proof. Indeed, if k “ 0, then piq and piiq are obvious. Now, let us apply induction with respect to

k.

Suppose that for all 0 ď l ă k, the statements of piq and piiq are true. Then, since by the

inductive assumption, 9Gk is obtained from 9Gk´1 as an HNN-extension with respect to the isomor-

phic subgroups x 9ank,0y ⋍ x9bnk,0y, by the basic properties of HNN-extensions (see Lemma 67), we

get that the statement of piq holds for 9Gk. Therefore, since the subgroups x 9ank`1,0y ď 9Gk and

x9bnk`1,0y ď 9Gk are isomorphic, and in the definition of 9Gk`1 the only defining relation which in-
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volves the letters t˘1
k`1 is the relation t´1

k`1 9ank`1,0tk`1 “ 9bnk`1,0, we get that the statement of piiq

holds as well.

Corollary 16. If k ă l, then the group 9Gk embeds into the group 9Gl under the map induced by

9an,m ÞÑ 9an,m, 9bn,m ÞÑ 9bn,m for n P N and m P t0, 1u

and

t1 ÞÑ t1, . . . , tk ÞÑ tk.

Proof. Indeed, by Lemma 73, the group 9Gl is obtained from the group 9Gk by (multiple) HNN-

extensions. Therefore, the statement follows from the basic properties of HNN-extensions, namely,

by Lemma 67.

Corollary 17. The map 9an,0 ÞÑ 9bn,0, 9an,1 ÞÑ 9bn,1 induces a group isomorphism between the

subgroups x 9an,0, 9an,1y “ 9An and x9bn,0, 9bn,1y “ 9Bn of 9G if and only if n P NzM.

Proof. By Corollary 16, 9G0 embeds in 9G by the map induced by 9an,0 ÞÑ 9an,0, 9an,1 ÞÑ 9an,1,

9bn,0 ÞÑ 9bn,0, 9bn,1 ÞÑ 9bn,1 for n P N. Therefore, the statement of the corollary follows from Lemma

71.

Definition 6.1 (Reduced words over S˚
k ). Let k P N. Then, for a given word w P S˚

k , we say that w

is a reduced word over S˚
k if the following properties hold.

(0). w is freely reduced, i.e. w does not contain subwords of the form xx´1, x P Sk;

(1). For all 1 ď i ď k, w does not contain subwords of the form t´1
i uti, where u P S˚

0 is such

that u “ λ 9ani,0 in 9G0 for some λ P Z;

(2). For all 1 ď i ď k, w does not contain subwords of the form tivt
´1
i , where v P S˚

0 is such that

v “ λ9bni,0 in 9G0 for some λ P Z.

146



Lemma 74. For all k P N, if w P S˚
k zS˚

k´1 is a reduced word over S˚
k , then w ‰ 1 in 9Gk. Moreover,

w ‰ u in 9Gk for any word u P S˚
k´1.

Proof. Let us prove by induction on k. If k “ 1, then the group 9G1 “ x 9G0, t1 | t´1
1 9an1,0t1 “ 9bn1,0y

is an HNN-extension of 9G0 with respect to the isomorphic subgroups x 9an1,0y ď 9G0 and x9bn1,0y ď

9G0. Therefore, by Britton’s Lemma (see Lemma 66), w ‰ 1 in 9G1 provided that it is a reduced

word over S˚
1 .

Also for any u P S˚
0 , the word wu´1 is a reduced word with respect to the HNN-extension

9G1 “ x 9G0, t1 | t´1
1 9an1,0t1 “ 9bn1,0y. Therefore, by Britton’s Lemma (see Lemma 66), wu´1 ‰ 1

in 9G1 or, in other words, w ‰ u in 9G1.

Now assume that k ą 1 and w P S˚
k zS˚

k´1 is a reduced word over S˚
k . Also, suppose that the

statement of the lemma is true for all l ă k. Then, first of all, note that from the definition of the

reduced words over S˚
k it follows that if v is a subword of w such that v P S˚

k´1, then v is a reduced

word over S˚
k´1. Consequently, by the inductive hypothesis, if t´1

k utk (or tkut´1
k ) is a subword of

w such that u P S˚
k´1 and u represents an element from the image of 9Ank

(or 9Bnk
) in 9Gk, then

u P S˚
0 . However, this contradicts the assumption that w is a reduced word over S˚

k . Therefore,

since 9Gk “ x 9Gk´1, tk | t´1
k 9ank,0tk “ 9bnk,0y is an HNN-extension of 9Gk´1 with respect to the

isomorphic subgroups xank,0y “ 9Ank
ď 9Gk´1 and xbnk,0y “ 9Bnk

ď 9Gk´1, we get that if w is

a reduced word over S˚
k , then w is a reduced word over this HNN-extension. Hence, by Britton’s

Lemma, we get that w ‰ 1 in 9Gk. Similarly, for any u P S˚
0 , again by Britton’s Lemma, we get that

wu´1 ‰ 1 in 9Gk or, in other words, w ‰ u in 9Gk.

Lemma 75. There exists an algorithm such that for each input pk,wq, k P N Y t0u, w P S˚
k , it

decides whether or not w “ 1 in 9Gk.

Proof. Let pk,wq be a fixed input. Without loss of generality assume that w is a freely reduced

word in S˚
k .

If k “ 0, then one can apply the word problem algorithm for the group 9G0 “ xS˚
0 y. See Lemma

72.

Otherwise, if k ě 1, for each k1 ď k such that w contains a letter from ttk1 , t
´1
k1

u, do the

following: Find all subwords of w which are of one of the forms t´1
k1

utk1 or tk1vt
´1
k1

, where u, v P
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S˚
0 and u “ λ 9ank1

,0, v “ λ9bnk1
,0 in 9G0 for some λ P Z. (By Lemma 72, subwords of these form

can be found algorithmically.) Then, if, say, a subword of the form t´1
k1

utk1 is found, replace it with

λ9bnk1
,0. Thanks to the identity t´1

k1
λ 9ank1

,0tk1 “ λ9bnk1
,0, the newly obtained word is equal to w in

9Gk. Then repeat this procedure on the newly obtained word until there is no more subwords of the

mentioned forms. Let w1 be the word obtained as a result of this procedure. Then, by Lemma 74,

either w1 P S˚
0 or for some k0 ě 1, w1 P S˚

k0
zS˚

k0´1. Then, in the last case, by Lemma 74, w1 is

a reduced word over S˚
k0

. Also in the first case (i.e. when w1 P S˚
0 ), w1 “ 1 in 9Gk if and only if

w1 “ 1 in 9G0, hence by Lemma 72, in this case, the identity w1 “ 1 can be checked algorithmically.

In the second case, by Lemma 74, w1 ‰ 1 in 9Gk.

Lemma 76. The word problem in 9G is decidable with respect to the presentation (6.4).

Proof. Suppose that w is a finite word with letters from

Sk “
␣

˘ 9an,m, ˘ 9bn,m, t˘1
1 , . . . , t˘1

k | n P N, m P t0, 1u
(

,

where k is some natural number. Also suppose that w represents the trivial element in 9G. Then,

since 9G is a direct limit of the groups t 9Giu
8
i“1, there exists a minimal integer N ě 0 such that w

represents the trivial element in 9GN .

We claim that N ď k. Indeed, if N ą k, then since N was chosen as the minimal index such

that w “ 1 in 9GN , we get w ‰ 1 in 9Gk. However, by Corollary 16, 9Gk embeds into 9GN under the

map induces by

9an,m ÞÑ 9an,m and t1 ÞÑ t1, . . . , tk ÞÑ tk, for n P N,m P t0, 1u,

which implies that if w ‰ 1 in 9Gk, then w ‰ 1 in 9GN . A contradiction.

Thus, if w P S˚
k represents the trivial element in 9G, then it represents the trivial element in 9Gk

as well. In other words, in order to check whether or not w represents the trivial element in 9G it

is enough to check its triviality in 9Gk. Therefore, since for each w P S˚ one can algorithmically

find (the minimal) k P N such that w P S˚
k , the decidability of the word problem in 9G follows from

Lemma 75.
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Lemma 77. The group 9G is torsion-free.

Proof. First of all, notice that by the properties of the groups 9Ak, 9Bk, k P N, and by the basic

properties of direct products, the group 9G0 is torsion free.

Now, suppose that u P S˚ is such that it represents a torsion element of 9G. Then, since 9G is a

direct limit of the groups t 9Giu
8
i“1, there exists k P N such that u P S˚

k and u represents a torsion

element in 9Gk as well. Since 9Gk is obtained from 9G0 by multiple HNN-extensions, then, by Lemma

68, 9Gk is a torsion free group. Therefore, u represents the trivial element in 9Gk as well as in 9G.

Now suppose that Φ : 9G ãÑ :G is an embedding of the group 9G into a finitely generated torsion-

free group :G such that the maps

ϕ1 : pn,mq ÞÑ Φp 9an,mq, ϕ2 : pn,mq ÞÑ Φp9bn,mq, and ϕ3 : n ÞÑ Φptnq,

where n P N,m P t0, 1u,

are computable, and :G has decidable word problem. Then the next lemma shows that the group :G

has the desirable properties we were looking for.

Lemma 78. The group :G cannot be embedded in a group with decidable conjugacy problem.

Proof. By contradiction, let us assume that :G embeds in a group Ḡ which has decidable conjugacy

problem. Then, for the purpose of convenience, without loss of generality let us assume that :G is a

subgroup of the group Ḡ.

Below we show that the decidability of the conjugacy problem in Ḡ contradicts the assumption

that N and M are disjoint and recursively inseparable.
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Let us define C Ď N as

C “
␣

n P N | Φp 9an,0q is conjugate to Φp9bn,0q in Ḡ
(

.

Then, the decidability of the conjugacy problem in Ḡ implies that the set C is recursive, because,

since the group Ḡ has decidable conjugacy problem, and since by our assumptions, the above men-

tioned maps ϕ1, ϕ2 and ϕ3 are computable, for any input n P N one can algorithmically verify

whether or not Φp 9an,0q is conjugate to Φp9bn,0q in Ḡ.

Therefore, since for groups with decidable conjugacy problem one can algorithmically find

conjugator element for each pair of conjugate elements of the group, we also get that there exists a

computable map

f : C Ñ Ḡ

such that for all n P C we have

fpnq´1Φp 9an,0qfpnq “ Φp9bn,0q.

For n P C, let us denote

fpnq “ gn P Ḡ.

Now let us define

A “
␣

n P C | g´1
n Φp 9an,1qgn “ Φp9bn,1q

(

Ď N.

Since the word problem in Ḡ is decidable, the sets C is recursive and the maps Φ and f are com-

putable, we get that the set A is a recursive subset of N. Also since the following identities

9ani,1 “ 2i 9ani,0,
9bni,1 “ 2i 9bni,0 and t´1

i 9ani,0ti “ 9bni,0, for i P N,
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hold in 9G, we get that in Ḡ the following identities hold

Φp 9ani,1q “ Φp 9ani,0q2
i
,Φp9bni,1q “ Φp9bni,0q2

i

and

Φptiq
´1Φp 9ani,0qΦptiq “ Φp9bni,0q for all ni P N .

Therefore, we get that

N Ď A.

On the other hand, Corollary 17 implies that for any n P M, the pairs of elements

`

Φp 9an,0q, Φp9bn,0q
˘

and
`

Φp 9an,1q, Φp9bn,1q
˘

cannot be conjugate in Ḡ by the same conjugator. Therefore, we get that

A X M “ H.

Thus we get that N Ď A and AXM “ H, which implies that A Ă N is a recursive separating

set for N and M, which contradicts the assumption that N and M are recursively inseparable.

Finally, the embedding Φ : 9G ãÑ :G with the prescribed properties exists, thanks to Theorem 19.

Therefore, the group :G with the above mentioned properties exists. Also by a version of Higman’s

embedding theorem described by Aanderaa and Cohen in [1], the group :G can be embedded into

a finitely presented group G with decidable word problem. By a recent result of Chiodo and Vyas,

[16], the group G defined this way will also inherit the property of torsion-freeness from the group

:G.

Clearly, since :G cannot be embedded into a group with decidable conjugacy problem, this prop-
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erty will be inherited by G. Thus Theorem 17 is proved.
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Appendix A

Appendix

A.0.1 Proof of Lemma 10

Let U, V, T1, T2, L, λ, c,m, n be defined as in the statement of Lemma 10.

Let us assume that

L ď
}U}

12λ
m. (A.1)

Then in the Cayley graph ΓpG,Xq there exists a rectangle ABCD such that labpABq “ T1,

labpBCq “ Um, labpCDq “ T2 and labpADq “ V n. Since the sides BC and AD are pλ, cq-quasi-

geodesic and }T1}, }T2} ď L, by Corollary 3, we get that the Hausdorff distance between BC and

AD is bounded from above by L ` 2Rλ,c ` 2δ. Moreover, by Corollary 4, for any point o P BC

such that its distance from B and C is more than L`Rλ,c`2δ, we have distpo,ADq ď 2Rλ,c`2δ.

Let us fix the points B1, C 1 P BC such that

labpBB1q “ labpC 1Cq “ U2tpλpL`Rλ,c`2δqq`cq{}U}u`1. (A.2)

Note that then dpB,B1q, dpC,C 1q ą L ` Rλ,c ` 2δ and

2
`

2tpλpL ` Rλ,c ` 2δqq ` cq{}U}u ` 1
˘

ď
4λL

}U}
`

4λRλ,c ` 8δ ` 2c

}U}
` 2 ă

4λL

}U}
` |X|2Rλ,c`2δ`}V }

by (A.1) , ď
m

3
` |X|2Rλ,c`2δ`}V } ď

2m

3
.

(A.3)

Following Olshanskii, [55], we call a point on CD a phase vertex, , say O, if labpBOq is a power

of U . Correspondingly, we call a point on AD, say O1, a phase vertex, if labpAO1q is a power of V .

Since B1C 1 is contained in the p2Rλ,c ` 2δq-neighborhood of AD, for each phase vertex O P B1C 1

there exists a phase vertex O1 P AD such that dpO,O1q ď 2Rλ,c ` 2δ ` }V }. This follows from
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Lemma 4 and from the simple observation that the set of phase vertices on AD is a }V }-net.

By (A.2) and (A.3) we get that the number of phase vertices on B1C 1 is greater than

|X|2Rλ,c`2δ`}V } (recall that X is a symmetric set). Therefore, by the pigeonhole principle, there

exist at least two phase vertices O1, O2 P BC and two phase vertices O1
1, O

1
2 P AD such that

dpO1, O
1
1q, dpO2, O

1
2q ď 2Rλ,c `2δ`}V } and labpO1O

1
1q ” labpO2O

1
2q, where by labpO1O

1
1q and

labpO2O
1
2q we mean the labels of some geodesic paths joining O1 to O1

1 and O2 to O1
2, respectively.

Denote Q “ labpO1O
1
1q “ labpO2O

1
2q. Then we have that for some integers m0 and n0,

Q´1Um0Q “G V n0 . On the other hand, T1 “G Um1QV n1 , where the integers m1, n1 are such

that labpBO1q “ Um1 and labpO1
1Aq “ V n1 . But this means that T1U

m0T´1
1 “G V n0 . Therefore,

since every element of a hyperbolic group is contained in a unique maximal elementary subgroup

(see [55]), T1UT´1
1 and V are contained in the same subgroup EpV q. The same way T2UT´1

2 P

EpV q.

In case U “G V , by the properties described in the beginning of Section 2.2, the fact that

T1UT´1
1 P EpV qp“ EpUqq implies that T1 P EpV qp“ EpT2qq. The same way T2 P EpV qp“

EpUqq. Also, since V n0 is a label of a subpath of DA, as it follows from the above described, we

get that the sign of n0 coincides with the sign of n. Therefore, T1, T2 P E`pUq for n ą 0 and

T1, T2 P E´pUq for n ď 0.

.

A.0.2 Proof of Lemma 28

Since ∆ is minimal and contains an R-cell, by Lemma 19, it must contain an essential R-cell.

Let us consider an essential R-cell Π in ∆, connected to AB, BC, CD and DA by contiguity

subdiagrams Γ1, Γ2, Γ3 and Γ4, respectively. Then, in general, our diagram ∆ looks like in Figure

A.1, with a possibility that some of the contiguity subdiagrams Γ1, Γ2, Γ3 and Γ4, in fact, are empty

(i.e. do not exist).
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B

A

C

D

2

4

1 3

A’1

B’1 C’2

D’1 D1

C2

C 1B 2

C’1B’2

D’2A’2

D2A2

A1

B1

�Г Г

Г

Г

Figure A.1: labpABq “ labpDCq are geodesic words and labpBCq, labpADq are cyclic shifts of
U and V , respectively.

Proof of Part (1) of Lemma 28.

First of all, by contradiction assume that at least one of Γ2 and Γ4 is empty. First we will

consider the case when just one of them is empty and then, separately, the case when both of them

are empty.

Case 1.1. (Exactly one of Γ2 and Γ4 is empty).

For this case, without loss of generality assume that Γ4 is empty. Then our conjugacy diagram ∆

would look like in Figure A.2.

B

A

C

D

2

1 3

A’1

B’1 C’2

D’1 D1

C2

C 1B 2

C’1B’2

A1

B1

�Г Г

Г

Figure A.2: Γ4 is empty.
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Since labpBCq “ U is a cyclically pλ, c, ϵ, 1 ´ 121λµq-reduced word, we get that

pΠ,Γ2, BCq ă 1 ´ 121λµ. (A.4)

Therefore, since Π is an essential cell, meaning that
ř4

i“1pΠ,Γi, B∆q ą 1 ´ 23µ, it must be that

pΠ,Γ1, ABq ` pΠ,Γ3, CDq ą p121λ ´ 23qµ ą 98λµ. (A.5)

In particular, at least one of Γ1 and Γ3 is non-empty. In fact, we claim that neither one of Γ1

and Γ3 is empty.

Claim. Neither one of Γ1 and Γ3 is empty.

Proof of the claim. First of all, without loss of generality assume that Γ1 is non-empty.

Now since ∆ is a slender pU, V q-conjugacy diagram, it must be that dpA,Bq ď dpA,C1q. For

the next chain of inequalities, in case Γ3 is empty, we will simply assume dpD1
1, C

1
2q “ 0. Thus we

have

dpA,Bq “dpA,A1q ` dpA1, Bq ď dpA,C1q

ďdpA,A1q ` dpA1, C1q

ďdpA,A1q ` dpA1, A
1
1q

` dpA1
1, D

1
1q ` dpD1

1, C
1
2q ` dpC 1

2, C
1
1q ` dpC 1

1, C1q,

consequently, since dpA1
1, D

1
1q ` dpC 1

2, C
1
1q ď 23µ}Π}, we have

dpA,Bq ďdpA,A1q ` ϵ ` dpD1
1, C

1
2q ` 23µ}Π} ` ϵ.

(A.6)

Therefore, dpA1, B1q ď dpA1, Bq ď dpD1
1, C

1
2q`23µ}Π}`2ϵ. Combining this with the inequality

›

›rA1
1, B

1
1s
›

› ď λpdpA1, B1q ` 2ϵq ` c, we get

›

›rA1
1, B

1
1s
›

› ´ c

λ
´ 2ϵ ď dpA1, B1q ď dpD1

1, C
1
2q ` 23µ}Π} ` 2ϵ.
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Now, in case Γ3 is empty, i.e. if dpD1
1, C

1
2q “ 0, we also have

›

›rA1
1, B

1
1s
›

› ě }Π} ´ 23µ}Π} ´
›

›rB1
2, C

1
1s
›

›

ą p1 ´ 23λµq}Π} ´
›

›rB1
2, C

1
1s
›

›

ą p1 ´ 23λµq}Π} ´ p1 ´ 121λµq}Π}, by (A.4)

“ 98λµ}Π}

ą λp4ϵ ` 23µ}Π}q ` c, by LPP.

(A.7)

From (A.7) it follows that dpA1, B1q ě 23µ}Π} ` 2ϵ. Therefore, dpA,Bq ě dpA,A1q `

dpA1, B1q ě dpA,A1q ` ϵ` 23µ}Π} ` ϵ, but this contradicts (A.6). Therefore, in order not to have

contradictions, Γ3 have to be non-empty.

Note that

dpA1, D1q ď dpA1, A
1
1q ` dpA1

1, D
1
1q ` dpD1

1, D1q

ď 2ϵ ` 23µ}Π}.

Therefore, since dpA,Bq “ dpD,Cq and since by the property of cyclically slenderness, dpA,Bq ď

dpA,Cq, dpD,Cq ď dpD,Bq, we get

ˇ

ˇdpB,A1q ´ dpC,D1q
ˇ

ˇ ď dpA1, D1q ď 2ϵ ` 23µ}Π}. (A.8)

Also, since dpA,Bq ď dpA,B2q, we get

dpB1, Bq ď dpB1, B2q ď dpB1, B
1
1q ` dpB1

1, B
1
2q ` dpB1

2, B2q ď 2ϵ ` 23µ}Π}. (A.9)

Analogously, we get

dpC2, Cq ď dpC2, C1q ď 2ϵ ` 23µ}Π}. (A.10)
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After combining inequalities (A.8), (A.9) and (A.10), we get that

|dpA1, B1q ´ dpD1, C2q| ď 2p2ϵ ` 23µ}Π}q “ 4ϵ ` 46µ}Π}.

Moreover, since labpABq “ labpDCq, we get that labpA1B1q and labpD1C2q have a common

subword of length at least max
␣›

›rA1, B1s
›

›,
›

›rD1, C1s
›

›

(

´ p4ϵ ` 46µ}Π}q. We will show that this

is impossible.

Assume that it is possible. Then there exist O1, O2 P rA1, B1s such that labpO1O2q is also a

subword of labpD1C2q and

›

›rO1, O2s
›

› ě max
␣›

›rA1, B1s
›

›,
›

›rD1, C1s
›

›

(

´ p4ϵ ` 46µ}Π}q. (A.11)

In light of (A.5), without loss of generality we can assume that
›

›rA1
1, B

1
1s
›

› ě 49λµ}Π}, which, by

(A.11), implies that

›

›rO1, O2s
›

› ě 49λµ}Π} ´ p4ϵ ` 46µ}Π}q. (A.12)

Now note that, by Corollary 3, there exist O1
1, O

1
2 P rA1

1, B
1
1s such that dpO1, O

1
1q, dpO2, O

1
2q ď

ϵ ` Rλ,c ` 2δ ď 2ϵ. Therefore, by the triangle inequality, we have

›

›rO1
1, O

1
2s
›

› ě
›

›rO1, O2s
›

› ´ 2pϵ ` Rλ,c ` 2δq

ě 49λµ}Π} ´ p4ϵ ` 46µ}Π}q ´ 2p2ϵq

by (A.12) ą 2µ}Π}, by LPP.

The last inequality contradicts Lemma 24. Therefore, we got a contradiction, which means that we

are done with Case 1.1.

Illustration. For the sake of clarity of the above arguments, let us consider the following

diagram: let us consider a pU, V q-conjugacy-diagram ∆̄ which is a copy of ∆ with ∆̄ “ ĀB̄C̄D̄

and all points and subdiagrams inside have the same notations but with ¯bar and let us attach this

diagram to δ along the sides DC and ĀB̄. Let us denote the new diagram obtained this way by ∆̄1.
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See Figure A.3.

B

A

C

D

D 1

C 2

A1

B 1

�

2

1 3Г Г

Г
B 2

B’2
B’1

A’1

C’2

D’1

C 1

C’1

(=B)

(=A)

C

D

D 1

C 2

A1

B 1

�

2

1 3Г Г

Г
B 2

B’2
B’1

A’1

C’2

D’1

C 1

C’1

-

-

- -

-

-

-
-

-

-

-

-

-
-

-

-

-

-

-

-

Figure A.3: ∆̄1: in the figure depicted the case when O1 “ D1 and O2 “ C2.

Case 1.2. (Both Γ2 and Γ4 are empty).

In this case the pU, V q-conjugacy diagram ∆ looks like in Figure A.4.

B

A

C

D

1 3

A’1

B’1 C’2

D’1 D1

C2

A1

B1

�Г Г

Figure A.4: Γ2 and Γ4 are empty.

The emptiness of Γ2 and Γ4 implies the following estimation of the lengths of arcs rB1
1, C

1
2s and

rD1
1, A

1
1s:

›

›rB1
1, C

1
2s
›

›,
›

›rD1
1, A

1
1s
›

› ď 23µ}Π}. Therefore, from the cyclically slenderness of ∆, it

follows that

dpA,Bq “ dpA,A1q ` dpA1, Bq ď dpA,Cq

ď dpA,A1q ` dpA1, A
1
1q ` dpA1

1, D
1
1q ` dpD1

1, D1q ` dpD1, Cq

ď 23µ}Π} ` 2ϵ ` dpD1, Cq.
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Therefore, we get that dpA1, Bq ´ dpD1, Cq “ dpD,D1q ´ dpA,A1q ď 23µ}Π}. And

from the symmetric arguments, we obtain |dpA,A1q ´ dpD,D1q| ď 23µ}Π}. Analogously,

|dpB,B1q ´ dpC,C2q| ď 23µ}Π}. The rest is just a repetition of arguments of Case 1.

Thus the conclusion from Case 1 and Case 2 is that, in fact, Γ2 and Γ4 are non-empty.

At this point we already showed that Γ1 and Γ4 must be non-empty, i.e. we are done with the first

part of the lemma. Thus the part (1) of the lemma is proved.

Now we are in a position to show the parts (2) and (3).

Proof of Parts (2) and (3) of Lemma 28.

First of all, note that since Π is an essential cell, i.e.
ř4

i“1pΠ,Γi, B∆q ą 1 ´ 23µ, part (2)

immediately follows from part (3). Therefore, it is enought= to prove the statement of part (3).

To that end, let us first consider the case when at least one of Γ1 and Γ3 is empty. If both of Γ1

and Γ3 are empty, then there is nothing to prove for part p3q, and part p2q is also true in that case,

because Π is an essential cell. Therefore, let us separately consider two cases: when exactly one of

Γ1 and Γ3 is empty and when both of them are non-empty.

Case 2.1. (Exactly one of Γ1 and Γ3 is empty).

B

A

C

D

2

4

1

A’1

B’1
C’1B’2

D’2A’2

D2

�Г

Г

Г

A 2

B 2 C 1

A 1

B 1

Figure A.5: Γ3 is empty, but Γ1 is not.

For this case, without loos of generality let us assume that Γ1 is non-empty and Γ3 is empty.
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See Figure A.5. Then, since, by cyclic slenderness property, we have

dpD,Cq ď dpD2, C1q ď dpD2, D
1
2q ` dpD1

2, C
1
1q ` dpC 1

1, C1q ď 2ϵ ` 23µ}Π}

and dpA1, B1q ď dpA,Bq “ dpD,Cq, we get that dpA1, B1q ď 2ϵ ` 23µ}Π}. But also, since

labrA1
1, B

1
1s is a pλ, cq-quasi-geodesic word in ΓpH,Xq, we have that

›

›rA1
1, B

1
1s
›

› ďλdpA1
1, B

1
1q ` c ď λpdpA1, B1q ` 2ϵq ` c

ďλp23µ}Π} ` 2ϵq ` c ă 29λµ}Π} by LPP.

Thus we are done in the case when at least one of Γ1 and Γ3 is empty, i.e with Case 2.1.

Case 2.2. (Both Γ1 and Γ3 are non-empty).

Since we already showed that Γ2 and Γ4 are non-empty, this case is equivalent of saying that all Γi,

i “ 1, 2, 3, 4, are non-empty, that is the case depicted in Figure A.1.

For this case, by contradiction, assume that maxtpΠ,Γ1, ABq, pΠ,Γ3, CDqu ą 49λµ.

Now, since ∆ is cyclically slender, we get that dpB,Aq ď dpB,A2q. Therefore,

dpA1, Aq ď dpA1, A2q ď dpA1, A
1
1q ` dpA1

1, A
1
2q ` dpA1

2, A2q ď 2ϵ ` 23µ}Π}.

The same way we get that dpB,B1q, dpC,C2q, dpD,D1q ď 2ϵ ` 23µ}Π}. Therefore, since

dpA,Bq “ dpD,Cq, we get that |dpA1, B1q ´ dpD1, C2q| ď 2p2ϵ ` 23µ}Π}q. Moreover, this

observation, combined with the fact that labpABq “ labpDCq, implies that labprA1, B1sq and

labprD1, C2sq have a common subword of length at least maxt}rA1, B1s}, }rD1, C2s}u ´ 2p2ϵ `

23µ}Π}q. But this is exactly a situation which we discussed while dealing with Case 1.2. Moreover,

there we showed that this case is impossible if maxtpΠ,Γ1, ABq, pΠ,Γ3, CDqu ą 49λµ, hence we

get a contradiction. This finishes the discussion of Case 2.2.

Thus part p3q of the lemma is proved too.

.
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