
I

BROADCAST AND MULTICAST ROUTING IN AD-HOC NETWORKS WITH

PREDETERMINED CLUSTERING

By

Anand S Kashyap

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

August, 2010

Nashville, Tennessee

Approved:

Professor Gabor Karsai

Professor Yuan Xue

II

Dedicated to my beloved parents

Mrs. Vijayalakshmi S Kashyap and

 Mr. Srikrishnan S Kashyap.

III

ACKNOWLEDGEMENTS

 I would like to thank my advisor, Dr. Gabor Karsai, for his support, guidance and for

providing a great wealth of knowledge during my tenure at the Vanderbilt University in the past

two years. I would also like to thank Mr. Himanshu Neema for his help in working with the

OMNeT++ network simulator. I am grateful to Dr. Yuan Xue for her insightful comments and

direction in this field of research. I also appreciate all my friends and fellow graduate students

for all their help and support.

 I consider myself extremely fortunate for having a wonderful family. My brother, Dr.

Avinash Kashyap, has been a great source of motivation and inspiration throughout my life. I am

grateful to my father, Mr. Srikrishnan Kashyap, and mother Mrs. Vijayalakshmi Srikrishnan, for

what I am today.

 Finally I would like to express my deepest gratitude to the almighty that helps me find

peace within myself.

IV

TABLE OF CONTENTS

 Page

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES ...v

Chapter

I. INTRODUCTION ..1

 Background ...1

 Motivation ...5

II. RELATED WORK ...7

III. BROADCAST AND MULTICAST ALGORITHM ...12

 Cluster-head Declaration ...13

 Establishing Routing Infrastructure ...13

IV. THE SIMULATION ENVIRONMENT (OMNeT++) ..17

 Other Modules ..20

V. PROTOCOL IMPLEMENTATION IN OMNeT++ ...21

 Messages ..22

 Routing Protocol Implementation ..25

 Source-Sink Application ..29

VI. SIMULATION AND RESULTS ...31

Experiment I...31

Experiment II ...43

Experiment III ..47

REFERENCES ..54

V

LIST OF FIGURES

Figure Page

I. Wireless Host ..18

II. Experiment I Node Layout ...32

III. Node10 Transmitting Cluster-head Declaration Message33

IV. Node4 Transmitting Gateway Declaration Message ...33

V. Node10 Transmits Cluster Connection Message ...34

VI. Node2 sending Node Forward Data Message ...35

VII. Node9 Transmits Cluster-head Forward Data Message to Nodes 36

VIII. Node4 Transmits Gateway Forward Data Message to Node1036

IX. Cluster-head to Gateway Forward Data Message ...37

X. Gateway Forward Data Message from Node8 ...38

XI. Node7 Transmitting Cluster-head Forward Data Message39

XII. Data Messages Forwarded by Cluster-heads..40

XIII. Gateway Forward Data Messages ..41

XIV. Data Messages Sent and Received...42

XV. Experiment II Clusters ..44

XVI. Start of Simulation ..44

XVII. Simulation at Time 50 s ..45

XVIII. End of Simulation ..45

XVIV. Experiment III Node Layout ..48

XIX. Comparison between Routing Algorithms ...49

1

CHAPTER I

INTRODUCTION

Background

 A mobile ad-hoc network (MANET) is a self-configuring network of mobile devices

connected by wireless links. MANETs are a kind of wireless ad hoc networks that usually have a

routable networking environment on top of a Link Layer. Each device or node in a MANET is

free to move independently in any direction, and will therefore change its links to other devices

frequently. Each node must forward traffic unrelated to its own use, and therefore be a router.

The primary challenge in building a MANET is equipping each device to continuously maintain

the information required to properly route traffic [9].

 An ad-hoc routing protocol is a convention, or standard, that controls how nodes decide

which way to route packets between computing devices in a mobile ad-hoc network [9]. Efficient

routing mechanisms in MANETs are a subject of long and deep research. Numerous algorithms

have been invented in the past that have been become foundations for MANET routing.

 Initially, two popular approaches for designing routing protocols were the pro-active or

table-driven routing and the reactive or on-demand routing.

The first approach maintains fresh lists of destinations and their routes by periodically

distributing routing tables throughout the network. Some common examples of pro-active

routing protocols are Ad-hoc Wireless Distribution Service (AWDS) [13], Distributed Bellman-

Ford Routing Protocol (DBF) [14], Direction forward routing (DFR) [15], Cluster-head Gateway

Switching Routing (CGSR) [16], Destination Sequenced Distance Vector Routing (DSDV) [17],

Hierarchical State Routing (HSR) [18], Linked Cluster Architecture (LCA) [19], Optimized Link

2

State Routing (OLSR) [20] and Mobile Mesh Routing Protocol [21]. The main disadvantages of

such algorithms are the respective amount of data needed for maintenance and the slow reaction

on restructuring and failures.

The reactive on-demand protocols find a route on demand by flooding the network with

Route Request packets. Some popular examples of this kind are Multirate Ad-hoc On-demand

Distance Vector Routing Protocol [22], Reliable Ad-hoc On-demand Distance Vector Routing

Protocol [23], Admission Control enabled On demand Routing (ACOR) [24], Ad-hoc On-

demand Multipath Distance Vector [25], Caching and Multipath routing (CHAMP) [26] and

Dynamic MANET On-demand Routing (DYMO) [27]. But these protocols also suffer from

disadvantages such as high latency time in finding routes and excessive flooding that can lead to

network clogging.

Researchers are trying to overcome these disadvantages and have tried to devise smarter

algorithms that use the best of both the approaches. This has resulted in a proliferation of several

alternate approaches towards developing routing algorithms. Some of these methods are given

below:

i. Flow oriented routing: Protocols of this type find routes by following present flows.

One option is to unicast consecutively when forwarding data while promoting a new

link. Disadvantages of these algorithms are that it takes a long time to explore new

routes without their prior knowledge and may refer to tentative existing traffic to

compensate for missing knowledge on routes. e.g.: Inter-zone Routing

Protocol/reactive part of the ZRP (IERP) [28].

3

ii. Adaptive or Situation aware routing: These protocols try to combine the advantages

of both proactive and reactive routing. The routing is initially established with some

proactively prospected routes and then proceeds to update routes by some method of

reactive flooding. Some disadvantages of such algorithms are that the initial

determination of routes depends on number of nodes initially activated and the

reaction to traffic depends on gradient of traffic flow. e.g.: Temporally-ordered

routing algorithm routing protocol (TORA) [29].

iii. Hybrid routing: Commonly referred to as balanced-hybrid routing, it is a combination

of distance-vector routing, which works by sharing its knowledge of the entire

network with its neighbors and link-state routing which works by having the routers

tell every router on the network about its closest neighbors. Hybrid routing protocols

use distance-vectors for more accurate metrics to determine the best paths to

destination networks, and report routing information only when there is a change in

the topology of the network. Hybrid routing allows for rapid convergence but requires

less processing power and memory as compared to link-state routing.

e.g.: Enhanced Interior Gateway Routing Protocol (EIGRP) [12].

iv. Hierarchical routing: In these protocols, the choice of proactive and reactive routing

depends on the hierarchic levels where the nodes reside. The routing is initially

established with some proactively prospected routes and then serves the demand from

additionally activated nodes through reactive flooding on the lower levels. The choice

of one or the other method requires proper attribution at respective levels. These

algorithms also suffer from certain disadvantages such as high dependence on depth

of nesting and addressing scheme, reaction to traffic demand depends on meshing

4

parameters, dependence on quality of administration and addressing scheme and

adverse effects caused by rapid changes in topology. e.g.: Distributed Dynamic

Routing Algorithm (DDR) [30].

v. Geographic routing protocols: These protocols acknowledge the influence of

physical distances and distribution of nodes to areas as significant to network

performance. Efficiency in such protocols depends on balancing geographic

distribution versus occurrence of traffic and these protocols often struggle to maintain

the balance. Moreover, under overloaded conditions, performance may get affected

with high loads, thwarting the negligence of distance [31].

vi. Power-aware routing protocols: Energy required to transmit a signal is

approximately proportional to d
α
, where d is the distance and α >= 2 is the attenuation

factor or path loss exponent, which depends on the transmission medium. When α = 2

(optimal case), transmitting a signal half the distance requires one fourth of the

energy and if there is a node in the middle willing to spend another fourth of its

energy for the second half, data would be transmitted for half of the energy than

through a direct transmission (inverse square law of physics). These algorithms use

this concept for routing messages thereby saving power in individual nodes. Some

drawbacks of these algorithms are that they tend to induce a minor delay for each

transmission [32].

Other routing algorithm classes include Multicast routing protocols and Geographical multicast

routing protocols which are used for specific applications depending on the routing needs and the

topology of the networks.

5

Motivation

 An obvious conclusion that can be derived from the above algorithms and techniques is

that there is no single routing technique that can be applied generically across all applications

and MANET systems. All the algorithms have drawbacks which are inherent to the techniques

that these algorithms have adopted. It would be thus be prudent to design algorithms by

considering several influencing parameters. Some of the factors that govern routing designs are;

a) Size and density of the network (number of nodes)

b) Node mobility

c) Type of application

This work aims to design an efficient routing algorithm for MANETs by considering all

the above factors. The goal is to design a routing mechanism for effectively routing broadcast

and multicast messages across the network. The design is applicable to systems where nodes are

clustered into loose groups. Each cluster has a leader called the cluster-head which coordinates a

lot of the message passing activity. In the proposed system these clusters are predefined and the

cluster-heads are predetermined. In situations where a leader has to be picked dynamically, one

can use „leader-election‟ algorithms to do so (though this will lead to performance degradation).

A typical real world system that emulates this kind of network is a system with groups of

emergency vehicles moving towards a common destination or large military contingents moving

towards a target area. The use of such restricted premise allows us to create a customized highly

efficient routing mechanism. Moreover, by solving a problem of smaller magnitude allows us to

extend the work further in future to larger more complex MANET systems. As stated earlier, the

primary goal of this work is to devise an efficient but customized routing technique for a certain

kind of application, rather than trying to determine a generic routing technique that can be

6

applied across all application domains. We have also seen from the earlier examples that any

effort to devise a universal routing technique has always had its disadvantages related to one or

many aspects of its designing technique.

 The rest of the Thesis is organized into the following chapters. Chapter 2 contains related

work which discusses other clustered routing techniques. Chapter 3 introduces the reader to the

author‟s work. It explains the initial setup, routing mechanism and provides other related

information. Chapter 4 discusses the simulation environment and some of its features in detail.

OMNeT++ is the simulation engine used in this work [10]. The associated INET library has

provided some useful implementations of network entities that have made the work of the author

easier. The INET Framework contains models for several Internet protocols: UDP, TCP, SCTP,

IP, IPv6, Ethernet, PPP, IEEE 802.11, MPLS, OSPF, and several other protocols [11]. INET has

also been discussed in detail in Chapter 4. Chapter 5 is about implementation details and how the

system was constructed. It explains the various modules developed for this work and how the

system was setup for the purpose of simulation. Chapter 6 discusses some results that were

obtained from the simulations. We gauge the algorithm‟s effectiveness from the results we

obtain. In Chapter 7 we make some conclusions about this work and also discuss about possible

future work in this area.

7

CHAPTER II

RELATED WORK

 Utilizing node topology for devising smart routing techniques has been in use for several

years. Especially using the clustered positions of MANET nodes to group them into virtual

groups (clusters) for easy coordination has been in vogue in the recent past. Routing techniques

discussed in this section utilize the cluster based approach for routing messages in an ad-hoc

network. It provides the reader with a good background about cluster based routing and enables

the reader to easily relate to the author‟s work.

 Before delving deep into the various clustering approaches, we define two terms relevant

to this approach: cluster-head and gateway. A cluster-head is a node which coordinates the

routing of messages within a cluster. A gateway is node on the border of two (or more) clusters

belonging to both clusters, aiding in the routing of messages across the clusters they are

connecting. They act as bridges between these clusters.

 In [2], an ad-hoc network is logically represented as a set of clusters. The cluster-heads

form a d-hop dominating set. (In a d-hop dominating set each node is at most d hops from a

cluster-head). These cluster-heads form a virtual backbone and maybe used to route packets in

their cluster. The authors present a heuristic to form d-clusters in a wireless ad-hoc network. The

clusters are formed by diffusing node identities along the wireless links. When the heuristic

terminates, a node either becomes a cluster-head or is at most d hops away from its cluster-head.

The value d is parameter to the heuristic and the heuristic can be run at regular intervals or when

the network configuration changes. The heuristic re-elects cluster-heads every time thus reducing

the overhead of transition from old cluster-head to new cluster-head. Cluster-head responsibility

8

is also evenly distributed among all the nodes in the cluster making the heuristic fair and stable.

The authors perform experiments to show their approach is better than the LCA approach and

degree based approach.

 In [1], the authors propose an efficient passive clustering technique which does not

employ control packets to collect topological information in ad-hoc networks. Repeated election

and re-election of cluster-heads and gateways are avoided. Here the routing algorithm is initiated

when a node wants to transmit a message. The source node assumes the role of a cluster head.

Two nodes that contend to become the cluster-head resolve the conflict through the least id

method as each node is assigned a unique id. Gateways are chosen by taking into account the

history of competitions a node underwent while deciding its status. The authors call this gateway

selection mechanism Intelligent Gateway selection Heuristic.

 Authors of [4] propose a routing technique through dynamic group construction. In this

called routing groups. A routing group communicates with other routing groups via the boundary

mobile hosts acting as forwarding hosts. In a routing group the mobile hosts are divided, by

means of the dominating values, into two groups – one positive cluster and several non-positive

clusters. The nodes in the positive cluster maintain the topology information of the routing

group. Under such a construction environment, intra-group routing performs unicasting and gets

multiple paths, while inter-group routing performs on group level by propagating route requests

to the boundary clusters, which are called bridge clusters. The authors have claimed that this

scheme massively reduces message complexity and also provides more efficient infrastructure

updates.

9

 In [3], the authors propose a Scenario-based Clustering distributed algorithm (SCAM) in

which a distributed algorithm based on (k, r) dominating set is used for the selection of cluster-

heads and gateway nodes where k is the minimum number of cluster-heads per node in the

network and r is the maximum number of hops between the node and the cluster-head. The

quality of the cluster-head is calculated based on various metrics, which include connectivity,

stability and residual battery power. The algorithm periodically calculates the quality of all

dominating nodes and if it goes below a threshold level, it resigns the job as cluster-head and

sends this message to all other member nodes. Since these nodes have k dominating nodes within

r hop distance, it can choose the best qualified node as its cluster-head. The technique tries to

maintain stable clusters with fewer messages.

 Another interesting technique proposed in [5] uses mobility patterns to form clusters of

variable diameters. This algorithm is also a d-hop clustering algorithm. The authors introduce

metrics such as variation of estimated distance between nodes over time and estimated mean

distance for cluster, in order to measure the stability of the cluster. The stability of the cluster

will determine its size. Nodes with similar moving patterns are grouped into one cluster. The

authors conclude stating that this technique can be used to provide an underlying hierarchical

routing structure to address the scalability of routing protocols in large MANETs.

 In [6], the authors propose a clustering technique based on mobility prediction. The

algorithm is a weighted clustering technique based on an on-demand distributed clustering

algorithm. The cluster-heads periodically sends information about is position and speed in Hello

messages. Nodes store this information in prediction lists. Using information from these

prediction lists nodes decide whether to stay in the current cluster or not. If the node predicts that

its cluster-head is at a distance farther than the transmission it tries to join another cluster if it can

10

find one, otherwise it stays in the same cluster. The non-cluster-head nodes use the most recent

information from the prediction lists to predict their cluster-head position and speed. The authors

simulate their algorithm to show that their algorithm performs better than the underlying

weighted clustering algorithm in terms of updates to the dominating set, handover of nodes

between clusters and average number of clusters in a dominant set.

 A self-organizing approach to MANET clustering was proposed in [8]. The paper tries to

overcome rapid power depletion in mobile nodes caused to the large number of messages being

passed. The algorithm uses route messages of a proactive routing protocol for keeping track of

nodes in the cluster thus minimizing explicit message passing for cluster maintenance. Moreover

the cluster-head in this protocol only acts an identifying label for that cluster. It does not perform

any cluster maintenance or hierarchical routing and thus does not become a bottleneck in the

cluster functioning. The algorithm boasts of low latency in the cluster formation phase and it also

elects gateways during this phase thus avoiding the need to have a separate phase for gateway

discovery thereby reducing the transmission overheads. The proposed algorithm cannot re-elect

cluster-heads and the authors have deemed it as “work in progress”.

 Almost all of the previously discussed algorithms use a single quality measure to

distinguish the capabilities of the nodes in the selection of cluster-heads and in the formation of

clusters. A single measure bounds the efficiency of the selection process and degrades network

performance. Paper [7] discusses a scalable clustering approach that can generate customizable

clustering techniques with as many quality measures as needed. The quality measure used for

cluster-head selection is a weighted sum of a number of quality measures such as throughput,

degree of connectivity and energy level. This allows the algorithm to choose the best cluster-

11

head in every cluster. The authors also show empirical results that their clustering algorithm

experiences significant improvements in network performance.

 This is not an exhaustive list of all clustering algorithms but simply a list of work that is

closely related to the work presented in this thesis. As we can observe from the above

algorithms, there is no universal clustering algorithm that can be applied across all application

domains. Most of them try to address key issues pertaining to ad-hoc network routing but it is

hard to determine the best among all the ones given above. The cluster routing technique

proposed in this paper is simply an addition to the above list algorithms that is suitable to given

application domain customized to work efficiently under specific conditions. The proposed

algorithm minimizes the number of messages generated during the initialization phase by

avoiding a leader-election phase. This is achieved by arbitrarily choosing leaders or cluster-heads

beforehand. The author of this work does not claim that the algorithm will be most appropriate

for all MANET applications but can be modified minimally in certain aspects to work efficiently

for other MANET applications.

12

CHAPTER III

BROADCAST AND MULTICAST ALGORITHM

 This work primarily focuses on ad-hoc network systems that aim to communicate in

groups rather than among individual nodes. Some examples of this kind of systems are clusters

of emergency vehicles, army contingents converging on a target area, robot groups used in

reconnaissance and several others.

 The initial setup of the system has the following steps:

i) Nodes grouped together in clusters, with all nodes within a given cluster at a single

hop distance from the node acting as the cluster-head. (This can be extended to multi-

hop networks, which will be explained in the later sections.)

ii) A predetermined cluster-head node. The cluster-head selection could be implemented

as an elective process but that would negate the advantage of this algorithm. The aim

is to design a simple yet efficient ad-hoc routing system which can establish the

routing infrastructure with minimal number of messages. In most ad-hoc routing

algorithms, the cluster-head election consumes the most number of control messages.

One may question the rationale of not electing a cluster-head in this algorithm but

rather selecting it because that may not resemble a real network system with clusters.

A closer look at the applications we have targeted would provide us insight into the

rationale for selecting a predetermined cluster. Most of these application systems

have a leader node in each of the clusters which can be assigned the role of cluster-

head at the beginning of the operation. This work uses this to its advantage and avoids

cluster-head election at the beginning.

13

Cluster-head Declaration

Though the cluster-head is predetermined at the beginning all the nodes in the cluster would need

to know which node is the cluster-head. Moreover, in adverse physical conditions the role of the

cluster-head will have to be taken over if the actual cluster-head cannot perform the role

anymore. (The node may die, lose power rapidly, move out of transmission range etc.) In order

to manage all the above mentioned situations, a separate cluster-head declaration message is

used. Additionally, these messages also serve as “heart-beat” messages for gateway nodes for

them to determine if they still belong to a particular cluster.

Establishing Routing Infrastructure

 The following steps will explain how the routing is carried out by the proposed

algorithm.

1. The cluster-heads send cluster declaration messages to all the nodes within its cluster.

2. Each non-cluster node (which is at a 1-hop distance), upon receiving this message,

will set its cluster-head to this node which sent the cluster-head declaration message.

Nodes which are at more than 1-hop distance from a cluster-head cannot receive these

messages and remain unassociated with any cluster. Once they move closer (1-hop) to

any of these cluster-heads they can receive these messages and immediately form a

part of that corresponding cluster.

3. Nodes that receive cluster-head declaration messages from more than one cluster-

head declare themselves gateway nodes for the respective clusters. By being

gateways, these nodes act as bridge points through which the two clusters can

communicate. A gateway node can bridge more than two clusters. It maintains the list

of clusters it links.

14

4. Each gateway node sends its list of cluster-heads to all the cluster-heads in its cluster

list. This allows each cluster-head to know which nodes are the gateways and what

clusters they connect to.

5. The cluster-heads update their gateway list upon receiving the messages from their

gateways and send cluster connection messages to each of their gateways. Using

these messages, the gateways can update their cluster list with additional clusters

information. This allows the gateways to connect to other clusters indirectly through a

set of cluster-heads and gateways.

Thus each cluster-head and gateway has a list of nodes through which messages

can be routed.

The nodes run a UDP application which requires exchange of messages among

them. The UDP application simply broadcasts or multicasts messages. In this work,

broadcasting is defined as the transmission of a message from one node to all nodes

in the network.

6. When a non-cluster-head node produces a message for broadcasting, it forwards it to

its cluster-head. The cluster-head processes that message and forwards it to all nodes

in the cluster.

7. When a gateway node receives a message from any of its cluster-heads for

broadcasting it forwards it to all its other cluster-heads if it has not received the same

message previously.

8. Cluster-heads on receiving broadcast messages from gateways forwards it to all the

nodes in its cluster if it has not received the same message previously.

15

A multicast message is defined as a message produced by a node that is intended

to only a certain set of nodes (i.e. to a certain cluster).

9. When the application in a node produces a multicast message, it contains the message

data and a destination cluster id. It forwards this to its cluster-head which in turn

forwards it to all the nodes in the cluster.

10. When gateways receive multicast messages they process the message and read the

destination cluster id. If the destination cluster id is found in its list of clusters it

forwards the message, else does not forward it to any cluster in its list.

Thus all broadcast and multicast messages can be routed to the appropriate

clusters easily.

Due to the highly dynamic nature of ad-hoc networks, gateways can lose

connectivity with any of their clusters. In order to check this, the gateways use the

cluster-head declaration messages sent by the cluster-heads at periodic intervals.

11. When a gateway does not receive cluster-head declaration messages from any of its

cluster-heads within a certain timeout period, it sends out gateway_change messages

to all the cluster-heads to inform them that this node will not serve as gateway for that

cluster from which it did not receive cluster-head declaration message for the last

timeout period.

The timeout period we use should be sufficiently larger than the period of the

cluster-head declaration messages interval to account for the loss-high nature of the

UDP protocol.

12. When the cluster-heads receive the gateway_change message they delete the gateway

from their list of gateways for that corresponding cluster. This allows them to send

16

cluster connection messages to any new gateway which may bridge this cluster with

the other disconnected cluster.

Thus the routing tables and lists are always maintained up-to-date and it is ensured

that the messages are never routed through stale routes.

The implementation of this routing technique was done on the OMNeT++ discrete

event simulator, details of which are presented in the next section. The exact

implementation details and data structures used will be explained in chapter 5

following the introduction to the OMNeT++ simulator.

17

CHAPTER IV

THE SIMULATION ENVIRONMENT (OMNeT++)

 OMNeT++ is a discrete event simulation environment. Its primary application area is the

simulation of communication networks, but because of its generic and flexible architecture, is

successfully used in other areas like the simulation of complex IT systems, queuing networks or

hardware architectures as well [10].

OMNeT++ provides component architecture for models. Components (modules) are

programmed in C++ and then assembled into larger components and models using a high-level

language (NED). Reusability of models comes for free. OMNeT++ has extensive GUI support,

and due to its modular architecture, the simulation kernel (and models) can be embedded easily

into applications [10].

Although OMNeT++ is not a network simulator itself, it is currently gaining widespread

popularity as a network simulation platform in the scientific community as well as in industrial

settings, and building up a large user community [10].

This project uses OMNeT++ 4.0 for its simulations. In addition to OMNeT++, for the

purpose of developing the various modules this work has also used the INET framework. The

INET Framework is an open-source communication networks simulation package for the

OMNeT++ simulation environment. The INET Framework contains models for several Internet

protocols: UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, IEEE 802.11, MPLS, OSPF, and several

other protocols [11].

18

The INET framework also provides a set of predefined modules that can be configured to

operate as network entities such as routers, hosts, switches and so on. The framework provides

mobile hosts which are optimally configured to function as wireless nodes in our simulation. The

architecture of these wireless nodes can be seen in the following screenshot.

Figure I: Wireless Host

Each wireless host has one external interface, namely, the WLAN interface card. From

the diagram above we can observe how packets get routed from the bottom layers to the

application layers on top through the network and transport layers (UDP).

The mobility module is responsible for node movement across the field of simulation

(Area within which the simulation occurs). The INET framework provides various mobility

models which the simulator uses to simulate the movement of nodes on the field of simulation

19

and computes the connectivity between these nodes dynamically during the simulation. Based on

the movement of these nodes and their connectivity the network protocols must be able to handle

the message passing across these nodes dynamically. This allows users to assess the performance

of these protocols under various for a constantly changing node topology. For the purpose of

simulation we use the BonnMotionMobility and CircleMobility provided in the INET

framework. Nodes with CircleMobility simply move in circles around a fixed center point.

Nodes with BonnMotionMobility simply trace the path provided by an external file. The file

contains x and y coordinates with corresponding time instances. When the simulation clock

reaches a particular time the node will be positioned on the corresponding x and y coordinate.

During simulation, over a period of time, the node will trace the path provided by the coordinates

in this file.

Other modules such as routingTable and interfaceTable are specific to message routing.

The interfaceTable contains information about the various interfaces used in the host. In this case

we use only the WLAN card. The routing table contains IP addresses of the various nodes in the

network with which this node can communicate.

The algorithm is implemented as an application on the UDP layer. The data application

module is also a UDP application. (Any application that uses the UDP protocol for sending

messages across nodes is termed as a UDP application). The two modules exchange messages

between each other through the AppIn and the AppOut gates. When the data application module

wants to broadcast or multicast a message it sends it to the routing module through the AppOut

gate which is received by the routing application through the AppIn gate. When the routing

module receives an external message for processing it passes it to the data application module

20

through the AppOut gate which is then received by the data application module through the

AppIn gate.

Other Modules

a) Channel Control: The channel control module is not a real network entity but a module

that is required by the simulator to manage other network entities. Channel Control has

exactly one instance in every network model that contains wireless or mobile nodes. This

module is informed of the location and movement if nodes and determines which nodes

are within communication and interference distance. This information is then used by the

radio interfaces of nodes during transmissions. Thus the channel control contains all

information regarding the node mobility and other network information. It acts as the

single backbone through which the simulation event information gets exchanged [11].

b) Flat Network Configurator: This module is essential in configuring IP addresses and

routing tables for a network in which all hosts and routers have the same network address

and will only differ in the host part. This module is not connected to any other module

and each model should contain only one instance of it. The module will run only once, at

the beginning of the simulation to assign all IP addresses, discover the topology of the

network to calculate shortest paths and it will add routes corresponding to the shortest

paths to the routing table when the model uses some predefined MANET routing. In

order to establish the network topology the module picks all modules that are nodes and

builds a graphs from their connections and then runs Dijkstra‟s shortest path algorithm

for that graph.

21

CHAPTER V

PROTOCOL IMPLEMENTATION IN OMNeT++

 OMNeT++ and the INET framework provide large library network modules that can be

used for building our own network applications. The MANET routing is implemented usually on

the network layer of the OSI network stack. But due to certain advantages and ease of

implementation, the prototype of the proposed routing scheme is implemented on the application

layer as a UDP application. No other MANET protocols are used on the underlying network

layer to aid in the operation of this routing scheme.

 As mentioned, the routing scheme is implemented as a UDP application. This application

will be run on every node in the network which is going to participate in the routing. In addition

to this application, another simple Source-Sink UDP application is run on these nodes which

simply produces and consumes packets, simulating a very simple UDP application. When the

simple application wants to broadcast or multicast a message, it sends it to the routing

application which then routes it to the other nodes appropriately. When the routing application

receives a data message, it validates the message before sending it to the simple application for

processing, essentially simulating the behavior of a MANET protocol. Usually MANET routing

protocols are implemented on the network layer. Here the proposed MANET routing protocol is

implemented as a UDP application for demonstration purposes only.

 In the first sub-section a detailed explanation of the types of messages used in the routing

protocol is given. The next sub-section the clustering algorithm implementation is discussed

followed a small sub-section which provides details about the simple UDP application.

22

Messages

There are six kinds of messages used in the protocol and one message used by the simple

UDP application.

1. ClusterHdDecMsg: This is the cluster-head declaration message sent out to all adjacent

nodes from the respective cluster-heads. These messages contain two data elements, the

IP address of the cluster-head and the cluster id of the respective cluster. This allows all

the nodes to know which cluster they belong to and what is the IP address of their

respective cluster-heads. A node can establish itself as a gateway if it receives this

message from more than one cluster-head and it can also determine to what clusters it is

connected to.

2. GtwyDecMsg: This is the gateway declaration message sent out by all gateway nodes to

their respective cluster-heads. This allows the cluster-heads to know which nodes in the

cluster are gateways and to what clusters they are connected to. The message has three

data elements. One contains the module id of the gateway, another contains the IP

address of the gateway and the third is a list of clusters the gateway is connected to. A

gateway can be uniquely identified using these data elements and helps in the easy

routing of messages to these gateways.

3. GtwyChngMsg: This is the gateway change notification message sent by a gateway node

to those cluster-heads to which they are connected when they get disconnected from one

of the clusters it was connected to earlier. For example, if a gateway node is connected to

three clusters I, II and III and gets disconnected from cluster I, it sends the gateway

change message to the other two clusters notifying them of this change. Upon receiving

this message the cluster-heads remove this node from their gateway lists to indicate that

23

this node cannot be used as a gateway anymore to connect to cluster I. This message has

two data elements, the IP address of the gateway node and the cluster ID of the cluster

from which it was disconnected.

4. ClusConnMsg: This is the cluster connection message. Upon receiving the Gateway

declaration message, the cluster-head sends this message to the corresponding gateway.

This message has the IP address of the cluster-head and the list of gateways and their

connecting clusters. This is useful to the gateway because it helps the gateway in

deciding whether this cluster-head can indirectly connect to another cluster. This allows

the protocol to route messages through multiple clusters and indirectly reaching the

destination cluster.

5. DataMessage: This is a simple message used in the simple UDP Source-Sink application.

This message has two data elements. The first being the actual message which is nothing

but a simple string of characters. The other one element is flag which indicates whether

the message is for broadcasting or multicasting. Being a simple application the message

is also of simple nature. The application and the associated messages can be made

arbitrarily complex for real systems. This application is intended to simply demonstrate

the underlying protocol.

6. ClusterHeadWrapper: When a cluster-head receives a data message that needs to be

forwarded, it un-wraps the message from the outer wrapper, processes the message and

wraps the message with some additional control information before forwarding it. This

wrapped data message is called the ClusterHeadWrapper message. Nodes on receiving

this message handle it appropriately and decide whether to process the wrapped data

message or not. The control information as part of this message includes the cluster id,

24

destination cluster id (useful for multicast messages), the IP address of the cluster-head,

the id of the node which initially produced the message and the message count of the

message produced by that node. Separate message counts are maintained by the nodes for

the broadcast and multicast messages. The message is then either cast as a

“clusterhead_forward_data_message”, if the message is processed by the cluster-head

and then forwarded or as a "clusterhead_to_gateway_forward_data_message” if the

message is simply forwarded by the cluster-head to the gateways en-route to its

destination (without the cluster-head processing the message, i.e., in case of multicast

messages).

7. Wrapper: It is similar to the ClusterHeadWrapper but used by non cluster-head nodes.

The control information include the IP address of the node, the destination cluster id, the

id of the node which initially produced the message and the message count for that kind

of message produced by that node. The wrapper messages themselves have two minor

variations. These are the wrapper messages forwarded by the non-gateway nodes and the

wrapper messages forwarded by the gateway nodes. Depending on the origin of the

wrapper messages the cluster-head handles them differently but the two variants have

identical structures and related control information. They are distinguished by the names

provided to these wrapper messages.

Each of these messages serves a purpose in the routing operation. The routing procedure

is discussed in the following sub-section.

25

Routing Protocol Implementation

In the OMNeT++ paradigm, all modules are implemented by first describing a network

descriptor file (NED) followed by the corresponding C++ classes. These NED files contain all

relevant parameters for that application and are primarily used for easily interfacing the

application with the user. The parameters are read by the corresponding C++ implementation of

these modules. In order to build a network with this application, a user will simply need to

import the appropriate NED files into the larger application and set the parameters for all the sub

applications appropriately. Upon importing the sub applications, the user creates an ini file called

the omnet.ini file and initializes the parameter values of all the sub applications in that file. The

simulation is triggered by running this omnet.ini file.

The implementation of this routing scheme is separate into two phases, namely, the

initialization phase and the operational phase. In the initialization phase the network is setup. In

the operational phase the routing infrastructure (routes) is established and messages from the

application are routed to other parts of the network.

i) Initialization: This phase initializes all the nodes and network elements. Each

node is assigned a unique ID which is used later for identifying the nodes. All the

parameters for this application are read from the omnet.ini file in this phase and

the respective variables are initialized. Each node maintains the number broadcast

and multicast messages it has transmitted so far. These are initialized to 0. In the

initialization phase the cluster-head of each cluster is determined by reading the

parameter used to set this node status as a cluster-head. If a node is initialized as a

cluster-head then the cluster count variable is incremented. This is used to

26

determine the number of clusters in the scenario and to assign a unique cluster ID

to each cluster.

If the node is a cluster-head it schedules its first cluster-head declaration message

to be broadcasted. Since the simulator is simply a discrete event system simulator,

all the events occur in a sequence. Hence the scheduling this message even at time

zero does not produce a message until all the nodes have been initialized because

the message has been scheduled in the discrete event queue after all the

initialization. But the first cluster-head declaration message is broadcasted at time

zero. (This time is the logical simulation time and not the real time.)

The scheduling of the cluster-head declaration messages in the nodes marks the

end of the initialization phase. The transmission of the first cluster-head

declaration message marks the beginning of the operational phase which is

discussed next.

ii) Operation: As mentioned earlier, the first cluster-head declaration message

transmitted marks the operational phase of this implementation. This occurs at

logical time zero. When the non cluster-head nodes receive this message they add

the cluster-head to their list of cluster-heads. Each cluster-head schedules a new

cluster-head declaration at regular intervals. The interval is obtained from the

update interval parameter set by the user. The default value for this parameter is 2

seconds.

When a node has more than one cluster-head in its list it transmits the gateway

declaration message to all the clusters in its list. The structure of the gateway

27

declaration message was declared earlier. Cluster-heads update their list of

gateways. This allows cluster-heads route messages to far off clusters. The

gateways also check at regular intervals if they are still connected to all the

clusters in their cluster list. This interval is once again obtained from a parameter

whose default value is set to 5 seconds. When the gateways find that a cluster-

head declaration message was not received from one of the cluster-heads from

their list within that five second interval they decide that they are not connected to

that cluster anymore and transmit gateway change messages to all the remaining

clusters in the their list. Hence the users have to ensure that the interval to send

cluster-head declaration messages is small compared to the time interval defined

to check the reception of the last cluster-head declaration message in the gateways

to avoid hasty transmission of gateway change messages. Due to the inherently

loss prone nature of the UDP protocol all the messages may not be received by

the recipients and the users would need to ensure that there is a sufficiently large

time-out period. The values should not be fixed because all networks do not have

the same performance. Highly unreliable networks should have a larger timeout

period compared to networks that are much more efficient in routing UDP

packets.

When the cluster-heads receive a gateway declaration message from a gateway

they send the cluster_connection message to that gateway. This message allows

the gateway to know what other clusters are connected to this cluster. The

gateways can then use this cluster to indirectly route messages to other clusters.

28

Cluster-heads on receiving a gateway_change message remove the gateway‟s

entry from the list for the cluster to which it was connected earlier. The cluster-

heads now wait for the next available gateway for that cluster before they resume

routing messages to the disconnected cluster.

The simple Source-Sink application produces data messages that need to be

transmitted to other nodes in the network. The routing application receives the

data messages from the Source-Sink application and wraps them with additional

control information. When the originating node is a cluster-head the wrapped

messages are called cluster-head wrapper messages else they are simply called

wrapper messages. The control information in these messages is different and

serves a different purpose in each case.

If the originating node is a cluster-head it forwards the message to all the nodes in

its cluster. If the node is a non cluster-head node, it forwards the wrapped data

message only to its cluster-head (cluster-heads if the node is a gateway).

Upon receiving the wrapped data message the nodes process the message. If the

node is a gateway, it reads the control information and decides whether to process

the data message. The decision is taken based on whether the message was

already received earlier. If the message is a new message, the data section is

processed. Otherwise the message is simply discarded. Being a gateway it also

determines if the message needs to be forwarded to other clusters in its list. If the

message to be forwarded is a multicast message with the destination cluster not in

the gateway‟s list, the gateway does not forward the message.

29

If a cluster-head receives a wrapped message, it reads the control information to

determine if the message is to be processed. If the message is new and destined

for it (in case of multicast messages), it either processes the message and forwards

it to all the nodes in its cluster or simply discards it.

Thus depending on whether the message is a new message and if it is meant for broadcast

or multicast the nodes forward the message appropriately. The next section discusses the

implementation of the simple Source-Sink UDP application.

Source-Sink Application

 The Source-Sink application is a simple UDP application that is run on every

node on the network to demonstrate the operation of the proposed protocol. The nodes‟

application produces data messages at some interval determined by a parameter. The

application also has another parameter that defines whether the node wants to broadcast

its messages or multicast them. For the sake of simplicity this is fixed at the beginning of

the experiment and cannot be changed during the experiment. Thus if a node is defined a

broadcast node it always broadcasts messages and if the node is a multicast node it

always multicasts its messages to a cluster. The destination cluster for multicasting is not

fixed and the node can choose any cluster it wants to multicast the message to. The

application forwards the data messages to the routing application which wraps them

before forwarding to all the nodes in its cluster. When the routing application receives a

wrapped data message, it removes the control information and forwards only the enclosed

data message to the Source-Sink application.

30

On receiving a data message, the application prints its contents and deletes the message.

The application also contains data structures to keep track of the number of messages sent

and received by the node. These are used recording statistics which can be plotted at the

end of the experiment to analyze various performance parameters.

31

CHAPTER VI

SIMULATION AND RESULTS

 To demonstrate the working of the routing operation and its effectiveness, this chapter

will describe three simple experiments and the related data that were collected from these

experiments. The experiments are simple in nature so as to clearly demonstrate how the routing

operation is carried out. The experiments have been designed to demonstrate all the aspects of

this protocol but at a scaled down level. Larger or highly complex experiments can be performed

using a similar methodology. The protocol itself has been customized to suit the OMNeT++

environment and uses a lot of its built-in libraries. Hence any experimentation has to be carried

on this platform for the protocol to work “out of the box”.

Experiment I

 In the first experiment we have a playground with ten nodes. The nodes are separated into

three clusters. The cluster-heads of these three clusters are node7, node9 and node10. The

clusters overlap in such a way that they share some nodes between them. Such nodes

automatically take up the role of the gateways between these clusters. The gateway nodes for

these clusters are node4 and node8. Node2 which lies in cluster2 sends multicast messages at

seven second intervals. The cluster to which the multicast message is sent is decided at run time

by a random cluster ID generating function. The following screenshot shows the layout of the

nodes on the playground. The circles encompass nodes that lie within a particular cluster. Nodes

lying within the overlapping regions are the gateways.

32

Figure II: Experiment I Node Layout

 The cluster numbers are assigned automatically to these clusters during the initialization

phase.

 The following screenshots show the sequence of steps involved in establishing the

routing infrastructure and the routing of data messages through these routes in the MANET.

Each red dot in these screenshots represents a message packet being transferred from the source

to a destination. The circles surrounding each node is the broadcast range corresponding to that

node.

Note: Message broadcasts from a node are represented as multiple individual messages

transmitted to each adjacent node. This is specific to OMNeT++’s method of visualization and

readers should not confuse this with the actual message transfers that occur in the system.

33

Figure III: Node10 Transmitting Cluster-head Declaration Message

 Figure III is the first step in the infrastructure establishment where the cluster-heads

transmit the cluster-head declaration messages to the other nodes to announce their leadership. In

all our experiments the cluster-head declaration message is sent at five second intervals.

 The cluster-heads try to transmit these messages to all the nodes on the field but only the

nodes within its transmission range can receive these messages.

Figure IV: Node4 Transmitting Gateway Declaration Message

34

 Figure IV shows node4 transmitting gateway declaration messages to all its cluster-heads

in response to receiving cluster-head declaration messages from them. This is because node4 has

received cluster-head declaration messages from more than one cluster-head and as result has

assumed the role of gateway. This information, along with the cluster-heads it is connected to, is

sent as gateway declaration message to all its cluster-heads.

 As soon as it transmits this information to the cluster-heads it sets timer for each of the

clusters it is connected to. This is to check if it receives the next cluster-head declaration

message in time. This helps the gateway to decide it is still connected to a particular cluster.

Figure V: Node10 Transmits Cluster Connection Message

 Cluster connection messages are sent by cluster-heads to all the gateways in cluster if the

cluster is connected to more than one cluster through its gateways. These messages are used by

gateways to establish multicast routes. This enables them to know which cluster-head to forward

a message to in order to reach the destination cluster.

35

 The cluster connection messages are the last set of control messages for route

establishment. When gateways change positions and get disconnected from clusters they send

gateway change messages. But this occurs after the initial routing infrastructure establishment

and gateways transmit them only in cases of disconnection from their clusters.

Figure VI: Node2 sending Node Forward Data Message

 Here node2 sends the first data message which is a multicast message. It simply forwards

it to its cluster-head which in this case is node9.

 Multicast messages in our routing algorithm are read both by the source cluster and the

destination cluster. Thus cluster 2 being the source cluster, node9 forwards it to all the nodes in

this cluster. Node9 also reads this message. This multicast message is directed to cluster 1 which

is headed by node7.

36

Figure VII: Node9 Transmits Cluster-head Forward Data Message to Nodes

 After node9 reads the multicast message from node2 it forwards it to all the nodes in its

cluster. Gateways in this cluster will then re-packet this message with different control

information and forward it to appropriate cluster-heads.

Figure VIII: Node4 Transmits Gateway Forward Data Message to Node10

37

 The multicast message from node2 is destined for cluster 1. Node4 being a gateway

forwards it to node10 to be forwarded to the destination. We must note that node4 has two

cluster-heads in its list. But it forwards it only to node10 as only node10 can forward it to the

correct destination. This is because in node4‟s list the destination route to cluster1 points to

node10 and hence it forwards the packet only to node10.

Figure IX: Cluster-head to Gateway Forward Data Message

 When a cluster-head receives a message and the cluster is not the intended recipient and

it has received the message merely for forwarding purposes, the cluster-head simply forwards

this message to its gateways without processing the message. Such a forwarded message from

the cluster-head is called Cluster-head to gateway forward data message. When the gateways

receive this message they forward it to the appropriate cluster-head if it is available in their list.

Gateways do not process (read the contents) the message. They only read the control

information. Here node10 forwards the message to gateway node8 to be forwarded to cluster 1.

38

 Node8 receives this message and forwards it to node7 which heads cluster 1. Node7 reads

the control information and understands that the message is meant for its cluster and broadcasts

to all nodes in its cluster.

Figure X: Gateway Forward Data Message from Node8

 Figure X shows gateway node8 sending the message it received from node10 to node7

which is the destination cluster.

Note: Node8 does not read contents of cluster-head to gateway forward data message because

node8 cannot be sure if it belongs to the destination cluster. Only after node7 retransmits this

message to all the nodes in its cluster can node8 read the contents of this message. Thus any

gateway does not read contents of cluster-head to gateway forward data message but can read

the contents of cluster-head forward data message.

39

Figure XI: Node7 Transmitting Cluster-head Forward Data Message

 Finally node7 forwards this data message to all nodes in its cluster after it reads the

control information from the gateway forward data message from node8. Thus all nodes in

cluster 1 (destination cluster) receive the destination message. At this point node8 can also

process the data message as it is part of the destination cluster.

 Thus all nodes in cluster 2 (source cluster) and cluster 1 (destination cluster) receive the

data message from node2. Node2 does not receive this message back from its cluster-head as the

cluster-head is aware of the sender and does not transmit the message back to node2 avoiding

redundant messages in the system.

 The steps above show the flow of messages from the source cluster to the destination

cluster. After establishing the routing infrastructure the nodes were able to determine the route of

a message to the destination cluster. The number of messages required to establish the routes is

minimal and the routes are refreshed at regular intervals without flooding the network with too

40

many messages. From these figures we can also observe that the established routes were indeed

correct and the messages were processed only by nodes of those clusters which were the

intended recipients of these messages.

 The following plots show the pattern of message transmission during the simulation.

Figure XII: Data Messages Forwarded by Cluster-heads

 The green line shows the messages forwarded by node9 (source cluster-head), the red line

represents messages forwarded made by node10, the blue line corresponds to node7 and the

yellow line at the bottom represents messages forwarded by node7 as an intermediate cluster.

 The simulation was carried out for 50 logical seconds. With node2 transmitting every

seven seconds we have seven transmissions of data message.

 From the graph it quite evident that for transmissions 1, 4 and 7 the destination cluster

was cluster 2 itself and the messages were not forwarded to any other cluster. Cluster 3 is the

41

destination cluster for the second and fifth transmissions and cluster 1 is the destination for the

third and sixth transmissions.

 From the yellow line at the bottom of the chart, we can observe that node10 has simply

acted as a forwarding node for the third and sixth transmissions (it does not process the data

messages for these transmissions). The yellow line shows the two cluster-head to gateway

forward data messages transmitted at around the 21
st
 second and 42

nd
 second.

 This plot validates the correctness of this routing technique and shows how the algorithm

can forward the data messages to correct destination even with a complex layout of nodes.

Figure XIII: Gateway Forward Data Messages

 Figure XIII shows the number of data messages forwarded by the gateways node4 and

node8. Node4 being the only gateway to cluster 2 (source cluster) it forwards all messages to

external clusters if the destination cluster is different from source cluster. Since cluster 1 and

cluster 3 were destination clusters for two data messages each, node4 forwards all these

42

messages to the other clusters. With node8 being the only gateway for cluster 1 and cluster 1

being the destination cluster for only two data messages, it forwards only two of these data

messages. The corresponding forwarding times also confirm that the gateways forwarded the

data messages to the destination clusters at the intended times.

Figure XIV: Data Messages Sent and Received

 This graph plots the times at which data packets were sent by the simple UDP application

in node2 and received by the simple UDP application in other nodes. Node2 transmits data

messages every seven seconds starting from the seventh second. Node9 receives the message

from node2 processes it and retransmits it to node4. Since this takes place fairly quickly the

times of node2, node9 and node4 are overlapping. The small white box in the screenshot shows

the individual times for these nodes. Node7 and node10 receive two messages each, the reason

being discussed earlier. Node8 being a gateway between cluster 3 and cluster 1, belongs to both

43

these clusters and hence receives data messages intended for both cluster 3 and cluster 1 and thus

received four messages.

 This experiment clearly illustrates the effectiveness of the protocol in routing messages

across nodes in the MANET. The protocol is able to route messages without any considerable

delay. Moreover, when the nodes are stationary, the protocol is able to achieve a 100 percent

success rate in routing messages. We could also observe that all messages reached the intended

destinations correctly and the protocol also ensured that the messages were never read by nodes

in those clusters that were not the intended recipients.

Experiment II

 Experiment II is another simple experiment that demonstrates the use of gateway change

messages. Gateway change messages are sent by gateway nodes to cluster-heads when they get

disconnected from one of the clusters they were already connected to. The decision to send a

gateway change message is taken when the gateway does not receive any cluster-head

declaration messages within a predefined timeout period.

 In this experiment there are six nodes divided into 3 clusters. Three nodes are cluster-

heads and are stationary. The other 3 nodes simply circle their respective cluster-heads. When

these nodes reach a region where the transmission ranges of two cluster-heads overlap they

become gateways and when they leave these regions they send gateway change messages

indicating they are not gateways anymore.

44

Figure XV: Experiment II Clusters

 The gateway nodes move in a counter-clockwise fashion at a speed of 10 m/s. In this

experiment node2 sends broadcast messages at seven second intervals. The experiment was

simulated for 100 logical seconds.

Figure XVI: Start of Simulation

45

Figure XVII: Simulation at Time 50 s

Figure XVIII: End of Simulation

 The screenshots above show the movement of nodes during the simulation.

 The introduction of node mobility complicates the system several folds. The UDP has a

high percentage of message losses and when nodes become mobile this percentage increases

rapidly.

 The predefined timeout period was increased to 7 seconds, i.e., the gateways wait for 7

seconds to get a cluster-head message before deciding whether or not to send a gateway change

46

message. Even with additional measures to ensure efficiency we do not obtain a 100 percent

success rate in this experiment.

 The results are summarized below:

a) Node2 sends 14 broadcast messages.

b) Node4 which is in the same cluster as node2 receives all the 14 messages.

c) Node6 which is a circulating gateway receives only 7 messages. Of these only 6 messages

are received by node5 which is the cluster-head of node6.

d) Node3 which is another circulating gateway receives only 5 messages of which only 3 reach

node1 which is the cluster-head of node3.

e) Node3 also gets disconnected from node1 for a short while even though it never goes out of

its transmission range.

 These results clearly indicate that the packet loss is very high due to mobility. When the

gateways come close to each other it could also cause packet collisions leading to losses.

Moreover node positions at different points of time play a major role in determining the

successful forwarding of messages. If nodes fall in “dead zones” for long periods of time

where they are outside the transmission range of all nodes except their cluster-heads it could

lead to several packets being lost.

 When the speed of these nodes was reduced to 5 m/s the results did not improve much

because the circulating nodes remained as non gateways for a longer time because they did

were outside overlapping transmission ranges. But the messages from the gateways to the

cluster-heads improved dramatically (100 percent success rate) because they remain

connected for a longer time.

47

 Moreover, the OMNeT++ simulation engine cannot always accurately simulate a real-

world system due to the discrete event nature of the simulation engine. This causes several

nodes to transmit messages at exactly the same logical time, creating a higher probability

for packet collisions leading to loss of messages.

 But such issues are highly common with any MANET protocol due to the inherent

shortcomings of UDP exacerbated by mobility. The aim here is not to completely overcome

all these shortcomings but to design a simple and efficient algorithm for broadcasts and

multicasts in MANETs by using as few control messages as possible to set up the routing

infrastructure. With the use of acknowledgment messages things can be improved

dramatically but that would only lead to a message explosion in the system and beat the

essence of what we intend to achieve. Users can incorporate some acknowledgment-like

system in their application if every message being transmitted is of utmost importance.

Experiment III

 The third experiment was performed to compare how the algorithm compared with

traditional MANET routing algorithms and with other clustering algorithms. In this experiment,

the field has a large number of nodes (26 nodes) divided into seven clusters. Some clusters are

disjoint from the field and move towards the main field of nodes and join one large connected set

of nodes. Thus the nodes are mobile for about 10 seconds after which they are stationary.

48

Figure XIX: Experiment III Node Layout

 The boxes and circles indicate the various clusters that were formed after the initial

motion of some of the nodes.

A graph was then plotted for the total number of control messages that were transmitted and

received for route setup. Here each set of message transmissions was considered one message, as

we cannot precisely implement broadcasting in OMNeT++. The actual number of packets

transmitted will be higher because the nodes try to transmit one packet for each adjacent node.

But since this is the case across all the protocols used for this experiment can be ignored.

 The total number of messages transmitted for the other protocols was calculated based on

their algorithm description. The comparison was made with OLSR which sends “hello”

messages, Topology Control messages and Host and Network Control messages as control

messages. The number of messages transmitted over a period of time was calculated.

Similarly, total number of control messages was calculated for other clustering algorithms (The

algorithm described in [1] was used as the sample algorithm). These numbers can be taken in

49

common for all the clustering algorithms as they have a similar methodology of execution during

the initial stages.

 Here we only compare the number of messages transmitted for the first 50 seconds of

simulation which has 10 seconds of mobility.

Figure XX: Comparison between Routing Algorithms

 We can observe from this plot that OLSR generates a lot of messages (~130 messages) in

the initial stages (first ten seconds) when the nodes are mobile.

 During this period, the other clustering techniques also generate a lot of messages (~75

messages) during the first 10 seconds. This is primarily because the nodes have to elect cluster-

heads and gateways. The election process is further complicated by the mobility of these nodes.

 The proposed algorithm produces far lesser number of messages (~35 messages) during

this period. The number of messages generated is consistently increasing for this technique but

the rate of increase is far lesser compared to the other algorithms.

 But after the nodes become stationary we find that number of control messages produced

by OLSR is gradually decreasing and the curve almost flattens towards the end the simulation.

50

 For the other clustering algorithms, the messages reduce but at a lesser rate. The rate of

control messages produced is almost equal to the number of messages produced by the proposed

algorithm (The two curves almost become parallel after the initial few seconds).

 The curve for the proposed routing algorithm increases steadily even during this period,

but the as mentioned earlier this increase is far slower in nature.

 The reason for the change in OLSR is because once the nodes are stationary the

established routes do not become stale too often. Hence the need to establish fresh routes does

not arise. But when the nodes are mobile the number of hello messages passed around increases

dramatically.

 For the other clustering algorithms, the initial burst of messages is inevitable because of

their in-built election strategy. The movement of nodes worsens the situation and hence the

number of messages they produce is almost same as that of OLSR. When the nodes become

stationary and routes become established they generate lesser number of messages.

 For the proposed algorithm, the cluster-head declaration messages are sent at regular

intervals irrespective of whether the nodes are mobile or stationary. When the nodes are mobile it

generates a few more gateway_change messages and hence there is a marginal increase in the

number of messages generated when the nodes are mobile.

 Critics will argue that over a long period of time the proposed algorithm will generate

more messages than the other algorithms but one must remember that this time frame will be

very large. Also, the curves for the other algorithms flatten mainly because the nodes become

stationary. If the nodes continue to be mobile they will continue to generate a large number of

messages.

51

 To improve this situation, the proposed algorithm can be configured in such a way that

the cluster-heads produce cluster-head declaration messages at longer intervals. This will

generate lesser gateway declaration messages as response and the number of messages generated

will reduce dramatically. This can adversely affect the gateway selection as cluster-heads may

choose gateways which are no longer connected to transmit their messages. This may cause lot

of message losses when the nodes are mobile. Thus a fine balance has to be achieved between

the transmission interval and the node mobility.

 As future work, the proposed algorithm can be optimized in such a way that it can

overcome the problem mentioned above. The cluster-head declaration message interval can be

increased when the nodes are stationary and the decreased when the nodes become mobile. Thus

when the nodes are mobile the cluster-heads send cluster-head declaration messages more often

thus keeping their gateway list as fresh as possible and when the nodes become stationary the

probability of a gateway disconnecting from a cluster is negligible and the cluster-head

declaration messages can be sent as infrequently as possible. The same logic can be used when

the nodes operate in adverse conditions where they have a higher probability of getting destroyed

or work with varying levels of battery power where they need to regulate their usage judiciously.

52

CHAPTER VII

CONCLUSION

 This work proposed a novel cluster routing technique for mobile ad-hoc network systems

exclusively for the transmission of broadcast and multicast messages. The routing technique

focuses on minimizing the number of control messages that are passed between nodes in order to

setup their routing tables by using some predefined clustering information. Cluster-heads are

predefined thus avoiding the need for excessive message passing to elect cluster-heads.

 This work also discusses other prominent work in this area, especially in field of cluster

routing algorithms. The routing technique and its implementation were discussed in detail and

simple experiments were performed to illustrate the actual operation of the algorithm in the

OMNeT++ discrete event simulator.

 The results of these experiments showed the effectiveness of this routing algorithm and

also some of its shortcomings which were common to most other MANET routing techniques.

Some improvements that can be made to the algorithm is the use of acknowledgement messages

for high priority data messages but this needs to be implemented taking into consideration the

criticality of the application and weighing it against the performance of the system.

 Currently each cluster-head contains only one gateway for each cluster it can

communicate with. Improvements can be made to allow multiple gateways between two clusters

to allow better load balancing between these gateway nodes. Since power is a major factor for

mobile ad-hoc nodes load balancing can improve the life of a node dramatically. Smart gateway

selection heuristics can be used to dynamically choose gateways that allow better load balancing.

53

 At this point communication between nodes within the same cluster is single hop, i.e.

nodes need to be located directly within the transmission range of cluster-heads. For very large

clusters with hundreds of nodes this may become infeasible. To address this issue, this algorithm

could be run on top of traditional MANET routing protocols such as AODV, OLSR or DYMO

where nodes within the same cluster can communicate in multiple hops but communication

between clusters will occur through the gateways proposed in this paper. This way we can

combine the best practices of both the techniques to obtain an optimized algorithm for MANET

routing.

 Assuming there are 100 nodes in the network with 10 clusters with each cluster

containing 10 nodes. Using OLSR directly on all the nodes the number of “hello” message

transmissions will become exponential with each node trying to communicate with each other.

Using clustering technique discussed here will be better but it would be hard for all the 10 nodes

in a cluster to be within a single hop distance from their cluster-heads. By using the clustering

technique on say OLSR we can reduce the number “hello” messages because each node in a

cluster will try to setup a lower level MANET within each cluster containing only 10 nodes.

Some of the nodes in the smaller MANET will be gateways and will pass on messages destined

for external clusters appropriately.

 Thus an effective and efficient MANET routing technique was proposed in this work that

uses the clustering approach for establishing a routing infrastructure. The technique is

customized to suit certain kinds of applications and may not be apt for all MANET systems but

overcomes the overhead of excessive message passing to establish the MANET routing

infrastructure.

54

REFERENCES

[1] T. Shivaprakash, C. Aravinda, A.P. Deepak, S. Kamal, H.L. Mahantesh, K.R. Venugopal,

L.M. Patnaik. Efficient Passive Clustering and Gateway Selection in MANETs.

University Visvesvaraya College of Engineering, Indian Institute of Science, Bangalore,

India.

[2] A.D. Amis, R. Prakash, T.H.P Vuong, D.T. Huynh. Max-Min D-Cluster Formation in

Wireless Ad Hoc Networks. Department of Computer Science, University of Texas at

Dallas, Richardson, Texas.

[3] V.S. Anitha, Dr. M.P. Sebastian. SCAM: Scenario-based Clustering Algorithm for

Mobile Ad Hoc Networks. Department of Computer Science, National Institute of

Technology, Kerala, India.

[4] Y.L. Chang, C.C. Hsu. Routing in Wireless/Mobile ad-hoc networks via Dynamic Group

Construction. Department of Computer Science and Information Engineering, National

University of Taiwan, Taipei 106, Taiwan.

[5] I. Inn ER, W.K.G. Seah. Mobility based d-Hop Clustering Algorithm for Mobile Ad Hoc

Networks. Institute of Infocomm Research and national University of Singapore,

Singapore.

[6] V. Bricard-Vieu, N. Mikou. Clustering Algorithm for MANETs based on mobility

prediction. 3
rd

 International Conference: Sciences of Electronic, Technologies of

Information and Telecommunications. March 2005. Tunisia.

 [7] A.M. Mahdy, J.S. Deogun, J. Wang. Towards Scalable Clustering of Infrastructured

Mobile Ad Hoc Networks. Computer Science and Engineering Department, University of

Nebraska, Lincoln, NE 68588.

[8] N. Chatterjee, A. Potluri, A. Negi. A Self-Organizing Approach to MANET Clustering.

Department of Computer and Information Sciences, University of Hyderabad, India.

[9] en.wikipedia.org/wiki/List_of_ad-hoc_routing_protocols

[10] www.omnetpp.org

[11] inet.omnetpp.org

[12] http://www.cisco.com/en/US/tech/tk365/technologies_white_paper09186a0080094cb7.shtml

[13] http://awds.berlios.de/

[14] D. P. Bertsekas and R. G. Gallager. Distributed Asynchronous Bellman-Ford Algorithm.

Data Networks, pg. 325-333. Prentice Hall, Engelwood Cliffs, 1987.

[15] Y. Z. Lee, M. Gerla, Jason Chen, Jiwei Chen, B. Zhou and A. Caruso. Ad Hoc & Sensor

Wireless Networks, Volume 2, Number 2, 2006.

55

[16] C. C. Chiang, H. K. Wu, W. Liu and M. Gerla. Routing in Clustered Multihop, Mobile

Wireless Networks with Fading Channel. IEEE Singapore International Conference on

Networks, SICON ’97, pg. 197-211, Singapore, 16-17, April 1997, IEEE.

[17] C. E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance Vector

(DSDV) for Mobile Computers. Proc. of the SIGCOMM 1994 Conference on

Communications Architectures, Protocols and Applications, Aug 1994, pg. 234-244.

[18] G. Pei, M. Gerla, X. Hong and C. C. Chiang. A Wireless Hierarchical Routing Protocol

with Group Mobility. IEEE WCNC ’99, New Orleans, USA, September 1999.

[19] M. Gerla and J.T. Tsai. Multicluster, Mobile, Multimedia Radio Network. ACM Wireless

Networks, VOL 1, No. 3, 1995, pg. 255-265.

[20] P. Jacquet, P. Muhlethaler, A. Qayyum, A. Laouiti and L. Viennot, T. Clausen. Optimized Link

State Routing Protocol. RFC 3626. http://www.olsr.org.

[21] K. Grace. Mobile Mesh Routing Protocol (MMRP).

http://www.mitre.org/work/tech_transfer/mobilemesh/

[22] R. Guimaraes and Ll. Cerda. Improving reactive routing on wireless Multirate ad-hoc

networks. In: Proceedings of 13
th

 European Wireless 2007.

[23] S. Khurana, N. Gupta and N. Aneja. Reliable Ad-hoc On-demand Distance Vector

Routing Protocol. International Conference on Networking, International Conference on

Systems and International Conference on Mobile Communications and Learning

Technologies (ICNICONSMCL'06).

[24] N. Kettaf, A. Abouaissa, T. Vudong and P. Lorenz. http://tools.ietf.org/html/draft-kettaf-

manet-acor.

[25] M. Marina and S. Das. On-demand Multipath Distance Vector Routing in Ad Hoc

Networks. Proceedings of the 2001 IEEE International Conference on Network Protocols

(ICNP), pg. 14-23, IEEE Computer Society Press, 2001.

[26] A. C. Valera, Winston K. G. Seah and S. V. Rao. Cooperative Packet Caching and

Shortest Multipath Routing in Mobile Ad hoc Networks. Proceedings of 22
nd

 Annual

Joint Conference of the IEEE Computer and Communications Societies (INFOCOM

2003), Mar 30- Apr 3, 2003.

[27] I. Chakeres and C. Perkins. Dynamic MANET On-demand Routing Protocol (DYMO),

Internet Draft, http://tools.ietf.org/html/draft-ietf-manet-dymo. RFC 4728.

[28] Z. J. Haas, M. R. Pearlman and P. Samar. The Interzone Routing Protocol (IERP) for Ad

Hoc Networks, Internet Draft, http://tools.ietf.org/html/draft-ietf-manet-zone-ierp.

[29] V. Park and S. Corson. Temporally-Ordered Routing Algorithm (TORA). Version 1

Functional Specification, Internet Draft, IETFMANET Working Group, June 2001.

56

[30] N. Nikaein, H. Labiod and C. Bonnet. Distributed Dynamic Routing Algorithm (DDR)

for Mobile Ad Hoc Networks. In proceedings of the MobiHOC 2000, First Annual

Workshop on Mobile Ad Hoc Networking & Computing.

[31] S. Ruhrup. Theory and Practice of Geographic Routing. Department of Computer Science,

University of Freiburg, Germany. Feb 2009.

[32] S. Singh, M. Woo and C.S. Raghavendra. Power-Aware Routing in Mobile Ad Hoc

Networks. Proceedings of the 4th annual ACM/IEEE international conference on Mobile

computing and networking. pg. 181-190. 1998.

