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CHAPTER I 

 

INTRODUCTION 

 

microRNAs (miRNAs) are a family of 22-25 nucleotide endogenous non-coding 

RNAs that regulate gene expression in a sequence-specific manner. Typically, miRNAs 

down regulate target genes by recognizing and recruiting protein complexes to 3' 

untranslated regions (3'UTR) followed by either translation repression or degradation. 

Studies in vertebrates have revealed indispensable functions for miRNAs in various 

developmental and physiological events. Understanding the biology of miRNAs will not 

only increase our basic knowledge of development and disease, but also help to develop 

novel therapeutic approaches.  

 

Identification of miRNAs 

To date, the miRNA registry (www.mirbase.org) contains 174 C. elegans miRNAs, 

157 D. melanogaster miRNAs, 360 D. rerio miRNAs, 721 H. sapiens miRNAs and 190 

A. thaliana miRNAs. It has been estimated that miRNAs comprise 2-3% of the total 

number of genes in humans (Kim and Nam 2006). Three approaches have been used to 

the identify miRNA genes: forward genetic screens, direct cloning, and bioinformatic 

predictions. 

The founding members of miRNAs were identified by forward genetic screens. lin-4 

and let-7 were discovered in screens for developmental timing defects in C. elegans (Lee, 

Feinbaum et al. 1993; Wightman, Ha et al. 1993; Reinhart, Slack et al. 2000). lin-4 turns 
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out to be worm specific but let-7 homologs exist from worms to flies and humans. The 

other two miRNAs identified using genetic screens are bantam in Drosophila and Lsy-6 

in worms (Brennecke, Hipfner et al. 2003; Johnston and Hobert 2003). Because miRNAs 

are small (22nt), identification through mutagenic screens is rare.  

Large-scale miRNA identification was achieved by directional cloning (Ambros and 

Lee 2004; Chen, Manninga et al. 2005). All cloned small RNA sequences are subject to 

the following criteria before classification as a miRNA (Ambros, Bartel et al. 2003). 

First, the candidate sequence should be present in the arm of a hairpin structure, usually 

~80nt in animals. Second, the candidate sequence should be phylogenetically conserved 

in closely related species. Lastly, stable accumulation of the candidate sequence should 

be confirmed by northern blotting. Such strategies have worked well to identify highly 

expressed miRNAs but not those expressed at low levels or in specific cell types. Next 

generation sequencing has now provided the sensitivity to detect very low abundance 

miRNAs (Creighton, Benham et al.; Ansorge 2009). 

The third approach is based on bioinformatic prediction and has served as a good 

alternative to direct cloning. Many miRNA identification algorithms have been 

developed to look for novel miRNA candidates and are primarily based on phylogenetic 

conservation and the structural characteristics of miRNA precursors (Lai, Tomancak et 

al. 2003; Lim, Lau et al. 2003; Bentwich, Avniel et al. 2005; Berezikov, Guryev et al. 

2005; Nam, Shin et al. 2005).  The combination of high throughput sequencing 

techniques and the refinement of bioinformatic prediction algorithms has dramatically 

increased the numbers of identified miRNAs although not all have been experimentally 
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verified (Jagadeeswaran, Zheng et al.; Bar, Wyman et al. 2008; Burnside, Ouyang et al. 

2008; Friedlander, Chen et al. 2008; Rathjen, Pais et al. 2009). 

 

Genomic organization of miRNAs 

Roughly 50% of genes encoding mammalian miRNAs are found in close proximity in 

the genome to other miRNA genes. These clustered miRNA genes are often transcribed 

as polycistronic transcription units. The remaining 50% of miRNAs are monocistronic 

(Olena and Patton; Griffiths-Jones, Saini et al. 2008; Thatcher, Bond et al. 2008; Kim, 

Han et al. 2009). miRNAs within one cluster can belong to different families (meaning 

they have distinct 5’ends) and have distinct mRNA targets. Interestingly, proteins in the 

same interaction networks are often regulated by miRNAs from the same cluster (Yuan, 

Liu et al. 2009). 

In humans, around 50% of all miRNA genes are in intergenic regions of the genome, 

while the other half are located within defined transcription units, including the intronic 

regions of protein coding genes (20%), the exonic regions of protein coding genes (5%), 

the intronic regions of non-coding genes (20%), and the exonic regions of non-coding 

genes (5%) (Griffiths-Jones, Saini et al. 2008; Kim, Han et al. 2009). Around 2% can be 

both intronic and exonic, depending on alternative splicing of the host gene. The exact 

percentage for each category may vary between species (Olena and Patton; Thatcher, 

Bond et al. 2008). 

 

Biogenesis and regulation of miRNAs 
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Figure 1. miRNA biogenesis.  
miRNAs are typically transcribed by RNA polymerase II, processed by Drosha and Dicer 
and incorporated into RNA Induced Silencing Complex (RISC) for consequent cellular 
function. By Olena et al. 2009. 
 

Transcription of pri-miRNA 

The majority of miRNAs are transcribed by RNA polymerase II as either 

polycistronic or monocistronic transcription units (Lee, Jeon et al. 2002; Cai, Hagedorn et 

al. 2004; Lee, Kim et al. 2004). Primary miRNA transcripts (pri-miRNAs) originate as 
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long transcripts in which one or more hairpin structures with ~33bp stem regions and 

terminal loops are embedded (Bartel 2004). These pri-miRNAs are capped and 

polyadenylated and can be as long as several kilobases (Cai, Hagedorn et al. 2004). Only 

a few miRNA genes are transcribed by RNA polymerase III, such as those that associate 

with Alu repeats (Borchert, Lanier et al. 2006; Ozsolak, Poling et al. 2008). 

A genome wide study using a strategy combining nucleosome-positioning patterns 

with ChIP-chip screens for promoter signatures identified transcription initiation regions 

for 175 miRNAs in human cell lines (Ozsolak, Poling et al. 2008). One-third of intronic 

miRNA genes have transcription initiation regions independent from their host genes. 

The promoters of RNA Polymerase II transcribed miRNA genes are generally similar to 

that of protein coding genes. Consistent with this, many miRNAs are subject to 

regulation by known transcription factors.  For example, the miR-17-92 cluster is directly 

regulated by the transcription factors cMyc and E2Fs (O'Donnell, Wentzel et al. 2005; 

Sylvestre, De Guire et al. 2007; Woods, Thomson et al. 2007), while Myogenin and 

MyoD1 (myoblast determination1) induce the transcription of miR-1 and miR-133 during 

myogenesis (Chen, Mandel et al. 2006; Rao, Kumar et al. 2006). Epigenetic control, such 

as DNA methylation, also contributes to the regulation of miRNA expression (Saito, 

Liang et al. 2006; Brueckner, Stresemann et al. 2007; Bueno, Perez de Castro et al. 2008; 

Lujambio, Calin et al. 2008).  

 

Editing of pri-miRNA 

Many pri-miRNAs (~16% in humans) are subject to A-to-I (adenosine to inosine) 

RNA editing mediated by ADARs (adenosine deaminases acting on RNA) (Luciano, 
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Mirsky et al. 2004; Blow, Grocock et al. 2006; Yang, Chendrimada et al. 2006; 

Kawahara, Megraw et al. 2008). This process alters the base pairing and structural 

properties of the transcripts, thereby post-trancriptionally regulating the processing and 

target recognition of a given miRNA (Scadden 2005; Yang, Chendrimada et al. 2006; 

Kawahara, Zinshteyn et al. 2007; Kawahara, Zinshteyn et al. 2007; Kawahara, Megraw et 

al. 2008).  

 

Release of pre-miRNA 

Hairpin structures embedded within pri-miRNA transcripts are recognized and 

excised by the microprocessor complex in the nucleus (Lee, Ahn et al. 2003). The RNase 

III-like enzyme Drosha and double-stranded RNA (dsRNA) binding protein DGCR8 

(DiGeorge syndrome critical region gene 8, also known as Pasha (partner of Drosha) in 

D. melanogaster and C. elegans) are components of the microprocessor complex (Denli, 

Tops et al. 2004; Gregory, Yan et al. 2004; Han, Lee et al. 2004; Landthaler, Yalcin et al. 

2004) (Fig. 2A). The double-stranded stem and two single-stranded flanking regions 

upstream and downstream of the hairpin structure are crucial for DGCR8 binding and 

Drosha cleavage (Zeng and Cullen 2003; Zeng and Cullen 2005; Han, Lee et al. 2006). 

DGCR8 binds to the base of pri-miRNAs and acts as a molecular ruler to determine the 

precise cleavage site for Drosha (Fig. 2D). The two RNase domains of Drosha 

endonucleolytically cleave the 5’ and 3’ arms of the hairpin 11 bases away from the 

single-stranded RNA/double-stranded RNA junction (Zeng and Cullen 2005; Han, Lee et 

al. 2006). The released hairpin structure is typically ~65-70nt with a monophosphate 

group at the 5’ end and a dinucleotide overhang at the 3’ end, referred to as a precursor 
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miRNA (pre-miRNA) (Lee, Jeon et al. 2002; Basyuk, Suavet et al. 2003; Lee, Ahn et al. 

2003; Zeng and Cullen 2003). For intronic generated miRNAs, this process occurs 

concomitant with trancription and splicing (Kim and Kim 2007; Morlando, Ballarino et 

al. 2008; Pawlicki and Steitz 2008). pri-miRNA processing and RNA splicing do not 

seem to interfere with each other. For exonic generated miRNAs, processing of the pri-

miRNA can destabilize the host transcript (Han, Pedersen et al. 2009). 

 

 

Figure 2. miRNA machinery.  
A-C. Schematic representation of the domain structure of human Drosha, Dicer and AGO 
proteins. D. Schematic representation of the cleavage sites in pre-miRNAs by Drosha and 
Dicer. 
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In mammals, flies and worms, a group of miRNAs that bypass Drosha cleavage have 

been discovered. Hairpin-shaped pre-miRNAs are formed from debranching of the lariat-

shaped introns, which are then directly released from host transcripts by the splicing 

machinery (Berezikov, Chung et al. 2007; Okamura, Hagen et al. 2007; Ruby, Jan et al. 

2007). These miRNAs, referred to as mirtrons, have a similar biogenesis once they reach 

the cytoplasm. 

Post-transcriptional processing of pri-miRNAs by the microprocessor complex is 

subject to regulation in a miRNA-specific manner. During stem cell differentiation, the 

levels of pri-let-7 remain constant, while the levels of mature let-7 increase. One of the 

mechanisms responsible for post-transcriptional suppression of let-7 in undifferentiated 

cells is through direct binding of Lin-28 to the loop region of the pri-let-7 hairpin, which 

blocks microprocessor cleavage (Newman, Thomson et al. 2008; Piskounova, 

Viswanathan et al. 2008; Viswanathan, Daley et al. 2008). The levels of mature miR-21 

are induced in response to Bone Morphogenetic Protein (BMP) signaling without an 

increase in transcription. The SMAD proteins, downstream effectors of BMP signaling, 

interact with Drosha and the RNA helicase DDX5 (p68) and enhance Drosha-mediated 

processing (Davis, Hilyard et al. 2008). Moreover, Drosha cleaves hairpin structures in 

the 5’ UTR and the coding region of dgcr8 mRNA, leading to down-regulation of 

DGCR8. DGCR8 in turn stabilizes Drosha through direct protein-protein interaction, 

resulting a negative feedback loop between the two components of the microprocessor 

(Yeom, Lee et al. 2006; Han, Pedersen et al. 2009). 
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Export of pre-miRNA 

Pre-miRNAs are first generated in the nucleus and then exported into the cytoplasm 

by Exportin-5 (EXP5) in a Ran-GTP dependant manner (Yi, Qin et al. 2003). EXP5 

belongs to the nuclear transport receptor family and export pre-miRNA as well as some 

tRNAs (Calado, Treichel et al. 2002). Cargos recognized by EXP5 contain >14bp dsRNA 

stems and 1-8nt overhangs at the 3’ termini (Lund, Guttinger et al. 2004; Zeng and 

Cullen 2004). This step is usually the rate-limiting step of miRNA biosynthesis, as 

saturation of EXP5 is lethal (Grimm, Streetz et al. 2006). The nuclear export step can also 

be regulated in a miRNA-specific manner. The pre-miRNAs of human miR-31, miR-128, 

miR-105 are all retained in the nucleus instead of being processed into mature miRNAs in 

certain cell types (Lee, Baek et al. 2008). 

 

Creation of mature miRNA 

In the cytoplasm, the other end (opposite to Drosha cleavage) of the mature miRNA 

is defined by endonucleolytic cleavage by another RNase III enzyme, Dicer, yielding a 

22-25nt duplex with a 5’ phosphate group and 3’ 2nt overhang on each strand (Bernstein 

2001; Grishok, Pasquinelli et al. 2001; Hutvagner, McLachlan et al. 2001; Ketting, 

Fischer et al. 2001; Knight 2001). This process seems to be ATP independent in 

mammals but is ATP dependent in flies (Nykanen, Haley et al. 2001; Provost, Dishart et 

al. 2002; Zhang, Kolb et al. 2002; Ma, MacRae et al. 2008). Dicer is highly conserved 

throughout species and contains an amino-terminal DEXH/H-box domain, a DUF283 

domain (with unknown function), a PAZ domain, two RNase III domains in tandem 

arrangement, and a single dsRNA-binding domain (Fig. 2B). Crystal structures reveal 



 10  

that the PAZ domain holds the 3’ overhang of the pre-miRNA while the RNase III 

domains are responsible for the hydrolysis of both strands of the stem (Lingel, Simon et 

al. 2003; Song, Liu et al. 2003; Yan 2003). The connector sequence between the PAZ 

domain and the RNase III acts as a molecular ruler to position the hydrolytic site 

(MacRae, Zhou et al. 2006; MacRae, Zhou et al. 2007) (Fig. 2D). The amino-terminal 

DEXH/H-box domain is thought to exhibit an auto-inhibitory role on the catalytic activity 

of Dicer. Removal of the domain increases the cleavage rate. The dsRNA-binding protein 

TRBP (Tar RNA binding protein) binds to Dicer in this region and can release the 

inhibition through conformational changes (Haase, Jaskiewicz et al. 2005; Ma, MacRae 

et al. 2008).  

The second cleavage step in the miRNA biosynthesis is also subject to regulation. As 

mentioned above, post-transcriptional processing of let-7 in stem cells is regulated by 

Lin-28. Besides inhibiting the activity of the microprocessor, Lin-28 also prevents pre-

let-7 from being diced in the cytoplasm by inducing polyuridylation at its 3’ end via a 

terminal uridylyl transferase (TUTase) (Heo, Joo et al. 2008; Rybak, Fuchs et al. 2008; 

Heo, Joo et al. 2009). The polyuridylated pre-let-7 is then subject to degradation by an 

unknown pathway. Interestingly, Dicer is down regulated by let-7, creating a negative 

feedback loop (Forman, Legesse-Miller et al. 2008). Lin28 and let-7 form a double 

negative feedback loop during neural stem cell commitment (Rybak, Fuchs et al. 2008). 

 

Loading of guide strands into RISC 

Once the mature miRNA duplex is created, one strand of the duplex is loaded into a 

multi-protein complex (RNA induced silencing complex, RISC) for subsequent target 
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selection and silencing (Schwarz 2003; Chendrimada, Gregory et al. 2005; Gregory, 

Chendrimada et al. 2005; Preall and Sontheimer 2005; MacRae, Ma et al. 2008). This 

strand is called the guide strand (miRNA), while the other strand is called the passenger 

strand (miRNA*), which usually undergoes degradation. There are cases where both 

strands can mediate subsequent gene silencing. The determination of guide/passenger 

strand is believed to depend on the thermodynamic stability of the base pairing at the 

ends of the duplex. The strand whose 5’ end displays less stability will become the guide 

strand (Khvorova, Reynolds et al. 2003). Two strands of mature miRNA get separated 

through a yet unknown mechanism. It is still unknown whether a helicase-mediated 

unwinding step occurs during this process. On one hand, multiple helicases have been 

found to complex with RISC (Tomari, Matranga et al. 2004; Meister, Landthaler et al. 

2005; Chu and Rana 2006; Robb and Rana 2007; Salzman, Shubert-Coleman et al. 2007). 

On the other hand, RISC loading and reconstitution experiments in vitro in the absence of 

ATP suggest that helicases are not generally required (Gregory, Chendrimada et al. 2005; 

Maniataki and Mourelatos 2005; MacRae, Ma et al. 2008). 

RISC is the final miRNA effector machinery that directs miRNA:mRNA interaction 

and targets repression. The key component of the RISC is one or more Argonaute (AGO) 

proteins (Hutvagner and Zamore 2002; Pillai, Artus et al. 2004; Eulalio, Huntzinger et al. 

2008; Filipowicz, Bhattacharyya et al. 2008). AGO proteins contain three characteristic 

domains: PAZ, MID, and PIWI (Cerutti, Mian et al. 2000) (Fig. 2C). The PAZ domain, 

which is also present in Dicer, holds the 3’ end of the mature miRNA (Lingel, Simon et 

al. 2003; Song, Liu et al. 2003; Yan 2003), while the MID domain and PIWI domain 

anchors the 5’ end of the mature miRNA (Ma, Yuan et al. 2005; Parker, Roe et al. 2005). 
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The PIWI domain is similar in structure to RNase H, an endonuclease that cuts the RNA 

strand of an RNA-DNA hybrid (Ma, Yuan et al. 2005). The PIWI domains of some AGO 

proteins maintain cleavage activity, so called slicer activity (Parker, Roe et al. 2004; 

Song, Smith et al. 2004; Nowotny, Gaidamakov et al. 2005). There are 2 AGO proteins in 

Drosophila, 4 in humans and potentially 4 in zebrafish (Hutvagner and Simard 2008). 

Both of the fly AGO proteins possess slicer activity, while only AGO2 in human does so 

(Liu, Carmell et al. 2004; Meister, Landthaler et al. 2004; Forstemann, Horwich et al. 

2007). Three key residues are critical for slicer activity of human AGO2 protein: an Asp-

Asp-His motif (Rivas, Tolia et al. 2005). Mutations in the motif abolish cleavage activity 

(Liu, Carmell et al. 2004). AGO proteins that do not possess slicer activity induce 

translational repression and/or mRNA decay with the help of many other proteins within 

the RISC.  

An interesting question is how many kinds of RISCs are there? In Drosophila, at least 

two distinct RISCs exist: miRNP and siRNP. In flies, miRNAs are preferentially loaded 

onto AGO1 (miRNP) with the help of DCR-1 (Dicer-1) and LOQS (Loquacious, a 

double-stranded RNA binding protein), while siRNAs are preferentially loaded onto 

AGO2 (siRNP) with the help of DCR-2 and R2D2 (a double-stranded RNA binding 

protein) (Liu 2003; Tomari, Du et al. 2004; Jiang, Ye et al. 2005; Matranga, Tomari et al. 

2005; Saito, Ishizuka et al. 2005; Liu, Jiang et al. 2006; Forstemann, Horwich et al. 2007; 

Tomari, Du et al. 2007). It is not clear whether similar sorting mechanisms exist in higher 

organisms (Azuma-Mukai, Oguri et al. 2008). It is still possible that different AGO 

proteins preferentially interact with different protein partners, comprising distinct RISCs. 

Also, it is possible that RISC represents a pool of dynamic protein complexes with 
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different components in specific cell types or physiological conditions. It is also unknown 

how many RISCs (either different or identical to each other) can associate with a single 

target mRNA simultaneously. 

AGO proteins also seem to play a positive role in maintaining miRNA abundance 

(Diederichs and Haber 2007; O'Carroll, Mecklenbrauker et al. 2007; Diederichs, Jung et 

al. 2008). The activity and stability of AGO proteins are post-translationally regulated by 

phosphorylation or hydroxylation (Qi, Ongusaha et al. 2008; Zeng, Sankala et al. 2008). 

 

Degradation of miRNA 

Very few studies have addressed the degradation of miRNA. It is generally believed 

that once incorporated into RISC, mature miRNAs are quite stable (>14hr), as indicated 

by the long persistence of most miRNAs after depletion of Drosha or Dicer (Lee, Ahn et 

al. 2003; Gregory, Yan et al. 2004; Hwang, Wentzel et al. 2007). However some 

miRNAs seem to have a much shorter lifetime, for example miR-29b (Hwang, Wentzel et 

al. 2007). Moreover, the enrichment of guide strands but not passenger strands in the 

cytoplasm clearly indicates an unknown mechanism that quickly and selectively turns 

over these small RNAs. Several exonucleases have been suggested to be responsible for 

miRNA/siRNA degradation. The 3’ 5’ exonuclease ERI1 degrades siRNAs in C. 

elegans (Kennedy 2004). A family of exoribonucleases that degrade miRNAs (named 

SDN, small RNA degrading nuclease) have been identified in A. thaliana (Ramachandran 

and Chen 2008). Consistent with this, loss of bases at either end of the miRNA has been 

frequently observed (Katoh, Sakaguchi et al. 2009)(Wei and Patton manuscript in 

preparation).  
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In plants, miRNAs are sometime methylated, resulting in increased half-life (Li, Yang 

et al. 2005). Addition or deletion of 1-2nt at either end of mature miRNAs is often 

observed, and 3’ ends tend to be more variable than 5’ ends (Azuma-Mukai, Oguri et al. 

2008; Seitz, Ghildiyal et al. 2008). Heterogeneity in the 5’ end may be due to imprecise 

or alternative processing by Drosha and Dicer (Wu, Ye et al. 2009), whereas 3’ termini 

often contain untemplated U or A residues, as a result of terminal uridyl/adenyl 

transferases activity (Katoh, Sakaguchi et al. 2009) (Wei and Patton manuscript in 

preparation). These modifications may play a role in miRNA stability (Chen, Sinha et al. 

2000; Li, Yang et al. 2005; Heo, Joo et al. 2008; Katoh, Sakaguchi et al. 2009).  

 

Mechanism of miRNA function 

It is generally believed that miRNAs down-regulate translation by binding to the 

3’UTR of their targets, although there are a few studies suggesting that miRNAs can 

target other regions including coding regions, 5’ UTRs, and promoter regions (Rhoades, 

Reinhart et al. 2002; Jopling, Yi et al. 2005; Duursma, Kedde et al. 2008; Forman, 

Legesse-Miller et al. 2008; Henke, Goergen et al. 2008; Jopling, Schutz et al. 2008; Lal, 

Kim et al. 2008; Orom, Nielsen et al. 2008; Tay, Zhang et al. 2008; Voinnet 2009).  

Mostly, binding inhibits translation but there are also a limited number of reports that 

suggest translational activation or even transcriptional activation (Bao, Lye et al. 2004; 

Vasudevan and Steitz 2007; Vasudevan, Tong et al. 2007; Henke, Goergen et al. 2008; 

Jopling, Schutz et al. 2008; Kim, Saetrom et al. 2008; Orom, Nielsen et al. 2008; Place, 

Li et al. 2008). For the majority of miRNAs, near perfect complementarity between the 

miRNA and its targets directs endonucleolytic cleavage, whereas partial complementarity 



 15  

inhibits translation which may or may not be accompanied by mRNA destabilization 

(Hutvagner and Zamore 2002; Zeng, Wagner et al. 2002; Aukerman and Sakai 2003; 

Zeng, Yi et al. 2003; Chen 2004). mRNA cleavage is the most common consequence of 

miRNA-induced silencing in plants (Llave, Xie et al. 2002; Kasschau, Xie et al. 2003; 

Tang, Reinhart et al. 2003; Xie, Kasschau et al. 2003), whereas translation inhibition is 

the dominant outcome in animals (Yekta, Shih et al. 2004; Hornstein, Mansfield et al. 

2005; Filipowicz, Bhattacharyya et al. 2008). 

The mechanism underlying miRNA-mediated post-transcriptional silencing in 

animals has been intensively studied and hotly debated. Several models have been 

proposed: 1) translational repression at the initiation step, 2) translational repression post-

initiation, and 3) mRNA destabilization (Filipowicz, Bhattacharyya et al. 2008; 

Chekulaeva and Filipowicz 2009).  

 

Translational repression at the initiation step 

This model is supported by the fact that miRNA-mediated silencing is m7G-cap 

dependent. The translation of mRNAs containing an IRES (internal ribosome entry site) 

or a non-functional ApppN-cap was not subject to repression by miRNAs (Humphreys, 

Westman et al. 2005; Pillai, Bhattacharyya et al. 2005; Mathonnet, Fabian et al. 2007; 

Thermann and Hentze 2007; Wakiyama, Takimoto et al. 2007). Tethering AGO2 to the 

3’UTR of luciferase reporters repressed their translation in the presence of a m7G-cap but 

not an IRES (Kiriakidou, Tan et al. 2007).  Polysome gradient analysis in mammalian 

cells also provides strong evidence for this model. Reporter mRNAs that contain multiple 

artificial let-7 binding sites were found to shift toward the top of the gradient in the 
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presence of endogenous let-7, indicating reduced ribosome loading (Pillai, Bhattacharyya 

et al. 2005). Similarly, in human hepatoma cells, starvation-induced release of cat1 

mRNA from miR-122-mediated repression was accompanied by more efficient 

association of cat1 mRNA with polysomes (Bhattacharyya, Habermacher et al. 2006).  

How do miRNAs inhibit translation initiation? One model suggests that miRNPs 

repress translation initiation by competing with eIF4E for cap-recognition (Kiriakidou, 

Tan et al. 2007; Mathonnet, Fabian et al. 2007). A motif within the MID domain of AGO 

proteins exhibits high sequence similarity to the cap-binding domain of eIF4E, an 

essential translation initiation factor. Human AGO2 binds to m7GTP Sepharose in vitro 

and the interaction can be competed by m7GpppG but not by unmethylated GpppG. 

Substitution of two crucial phenylalanine residues by valines abrogated the m7GTP 

binding capacity and silencing activity without affecting its interaction with miRNA or 

catalytic activity.  

A different model proposes that miRNPs repress translation initiation by preventing 

the assembly of 80S ribosomes via recruitment of eIF6 (Chendrimada, Finn et al. 2007). 

Human RISC can be co-immunoprecipitated with proteins of the 60S ribosome subunit 

and eIF6, a ribosome inhibitory protein known to prevent joining of the 60S subunit with 

the 40S subunit. Depletion of eIF6 abrogated silencing of reporter mRNAs by let-7 in 

human cell lines and the repression of LIN-14 and LIN-28 by lin-4 in C. elegans.  

The third model suggests that miRNPs repress translation initiation by preventing 

mRNA circularization (Wakiyama, Takimoto et al. 2007). This is based on the 

observation that both the m7G-cap and the polyA tail of mRNAs are necessary but not 

sufficient for silencing (Humphreys, Westman et al. 2005; Wang, Love et al. 2006; 
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Wakiyama, Takimoto et al. 2007). It is therefore possible that miRNPs prevent the 

formation of closed mRNA loops by some unknown mechanism, such as promoting 

deadenylation (see below). 

 

Post-initiation repression 

Inhibition of translation initiation is unlikely to be the only mechanism by which 

miRNAs regulate their targets. The observation that both repressed mRNAs and miRNAs 

sediment with polyribosomes strongly argues that repression occurs post-initiation (Olsen 

and Ambros 1999; Seggerson, Tang et al. 2002; Kim, Krichevsky et al. 2004; Nelson, 

Hatzigeorgiou et al. 2004; Maroney, Yu et al. 2006; Nottrott, Simard et al. 2006; 

Petersen, Bordeleau et al. 2006; Vasudevan and Steitz 2007). The seemingly conflicting 

conclusions from the ribosome sedimentation experiments may reflect differences in 

experimental design or different interpretation of results. Also, since the repression of 

mRNA targets by miRNAs is partial, co-sedimentation of miRNPs or target mRNAs with 

polysomes does not preclude the possibility of repression at the initiation step 

(Filipowicz, Bhattacharyya et al. 2008). Post-initiation repression is also supported by the 

finding that IRES-dependent translation of reporter mRNAs was sensitive to miRNA-

mediated silencing (Petersen, Bordeleau et al. 2006; Lytle, Yario et al. 2007). Translation 

repression was observed by tethering human AGO2 to the 3’UTR of IRES-driven 

reporters (opposite to the observation from Kiriakidou et al. 2007) (Lytle, Yario et al. 

2007). Notably, the experimental conclusions regarding whether IRES-dependent 

translation is subject to miRNA regulation are again controversial. Lytle et al (2007) 
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proposed that the conflicting results from different labs may be due to different 

transfection methods (Lytle, Yario et al. 2007).  

What step do miRNPs target after initiation? Petersen et al (2006) hypothesize that 

miRNAs repress translation by causing ribosome drop-off during translation elongation. 

They found that when translation initiation was blocked with hippuristanol (an eIF4A 

inhibitor), reporter mRNAs shifted away from polyribosome regions more rapidly in the 

presence of miRNA mimics, indicating ribosomes on repressed mRNAs disassociated 

more rapidly than those on active mRNAs (Petersen, Bordeleau et al. 2006).  

Nottrott et al (2006) suggested another hypothesis, proposing that miRNAs repress 

translation by promoting nascent polypeptide degradation. In their study, a Myc antibody 

was used to immunoprecipitate nascent polypeptides of Myc-tagged luciferase reporters 

from Hela cell extracts. Reporter mRNAs were not detected in the presence of target 

3’UTRs. Unfortunately, this hypothesis is based on negative results and neither the 

degradation pathway nor the specific proteases responsible have been identified (Nottrott, 

Simard et al. 2006). 

 

mRNA destabilization 

At the beginning, miRNA-mediated gene silencing was characterized by a reduction 

in protein production without any decrease in RNA levels (Humphreys, Westman et al. 

2005; Behm-Ansmant, Rehwinkel et al. 2006; Eulalio, Rehwinkel et al. 2007; Mathonnet, 

Fabian et al. 2007; Thermann and Hentze 2007). However, it is now known that miRNAs 

can also lead to a reduction in mRNA levels (Bagga, Bracht et al. 2005; Jing, Huang et al. 

2005; Krutzfeldt, Rajewsky et al. 2005; Lim, Lau et al. 2005; Wu and Belasco 2005; 
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Behm-Ansmant, Rehwinkel et al. 2006; Esau, Davis et al. 2006; Schmitter, Filkowski et 

al. 2006). The decrease in transcript abundance is, importantly, not due to the slicer 

activity of AGO proteins, but due to accelerated mRNA decay (Behm-Ansmant, 

Rehwinkel et al. 2006; Giraldez, Mishima et al. 2006; Wu, Fan et al. 2006). Eukaryotic 

mRNA decay most often starts with shortening or removal of polyA tails (deadenylation), 

followed by removal of m7G-caps (decapping) and then degradation from both ends by 

exonucleases (Coller and Parker 2004). mRNA decay, at least the later steps, are believed 

to occur in compartmentalized cytoplasmic foci called P-bodies (processing body) or 

GW-bodies (Eystathioy, Chan et al. 2002). Consistent with this, decapping enzymes 

DCP1, DCP2 and the 5’->3’ exonuclease XRN1 have been localized to P-bodies (Sheth 

and Parker 2003). In P-bodies, mRNAs are sequestered from the active translation 

machinery and can be effectively targeted by these enzymes. However, under certain 

circumstances, mRNAs in P-bodies can re-enter the translation cycle instead of 

undergoing subsequent turnover (Brengues, Teixeira et al. 2005; Bhattacharyya, 

Habermacher et al. 2006).  

Consistent with the idea that miRNAs induce mRNA decay, AGO proteins, miRNAs 

and their targets have been found to be enriched in P-bodies (Liu, Valencia-Sanchez et al. 

2005; Pillai, Bhattacharyya et al. 2005; Bhattacharyya, Habermacher et al. 2006). In 

addition, depletion of P-body components DCP1, DCP2, GW182, and RCK/P54 

(decapping activator, Dhh1 in yeast) impairs miRNA function (Jakymiw, Lian et al. 

2005; Liu, Valencia-Sanchez et al. 2005; Meister, Landthaler et al. 2005; Rehwinkel, 

Behm-Ansmant et al. 2005; Barbee, Estes et al. 2006; Behm-Ansmant, Rehwinkel et al. 

2006; Chu and Rana 2006; Eulalio, Rehwinkel et al. 2007; Eulalio, Helms et al. 2009; 
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Eulalio, Tritschler et al. 2009). Current evidence in both Drosophila and human cells 

agrees with the model that GW182 is recruited to mRNAs by AGO proteins though direct 

interaction between the N-terminal domain of GW182 and the PIWI domain of AGO 

proteins (Jakymiw, Lian et al. 2005; Behm-Ansmant, Rehwinkel et al. 2006; Till, 

Lejeune et al. 2007; Eulalio, Huntzinger et al. 2008). Target mRNAs are then subject to 

degradation by deadenylase, decapping enzymes, and exonucleases in the P-body (Liu, 

Rivas et al. 2005). Interestingly, accelerated deadenylation impairs mRNA 

circularization, which can affect translation efficiency. Thus, this model, together with 

the translation initiation model, supports the idea that miRNPs target two ends of 

mRNAs: the cap and polyA tail. 

One hotly debated question is whether miRNA-dependent mRNA decay is a cause or 

consequence of translational repression. Some evidence suggests that mRNA decay does 

not require translational repression. miRNA-dependent mRNA deadenylation is intact 

when active translation is blocked by cycloheximide or by a start site morpholino 

(Giraldez, Mishima et al. 2006; Eulalio, Rehwinkel et al. 2007; Wakiyama, Takimoto et 

al. 2007). Also, reporters with either strong stem-loop structures in their 5’UTRs or with 

Appp-caps exhibit impaired translation but undergo miRNA-dependent deadenylation 

(Mishima, Giraldez et al. 2006; Wu, Fan et al. 2006; Wakiyama, Takimoto et al. 2007; 

Eulalio, Helms et al. 2009). There is also evidence that translational repression does not 

require mRNA decay. Reporters without polyA tails can be translationally repressed by 

miRNAs (Pillai, Bhattacharyya et al. 2005; Wu, Fan et al. 2006; Eulalio, Huntzinger et al. 

2008; Eulalio, Helms et al. 2009). Also genome-wide profiling studies suggest that many 

miRNA targets are silenced at the protein level yet their transcript levels remain mostly 



 21  

unchanged (Baek, Villen et al. 2008; Selbach, Schwanhausser et al. 2008). Therefore, it 

seems that miRNA-dependent mRNA decay and translational repression may be two 

independent effects of miRNPs. 

 

Regulation of miRNA-mediated post-transcriptional silencing 

Under certain conditions, miRNA-mediated silencing can be reversed or blocked 

(Tomari, Du et al. 2004; Ashraf, McLoon et al. 2006; Schratt, Tuebing et al. 2006; 

Huang, Liang et al. 2007). Bhattacharyya et al found that miR-122-mediated repression of 

CAT1 (cationic amino acid transporter1) can be alleviated in human cell lines as a result 

of starvation or other types of cell stress. Derepression is accompanied by the release of 

cat1 mRNA from P-bodies and recruitment to polyribosomes. This process is mediated 

by the HuR protein, which translocates from the nucleus to the cytoplasm upon stress and 

binds to the AU-rich-element in the 3’UTR of cat1 (Bhattacharyya, Habermacher et al. 

2006). In zebrafish, the expression of nanos is post-transcriptionally restricted to PGCs 

(primordial germ cells) through multiple mechanisms including miRNA-induced 

silencing in somatic cells. Kedde et al (2007) provided evidence that Dnd1 (Dead end 1), 

an evolutionarily conserved RNA-binding protein essential for germ cell survival and 

migration both in zebrafish and in mouse (Weidinger, Stebler et al. 2003; Youngren, 

Coveney et al. 2005), protects nanos from miRNA repression by binding to uridine-rich 

regions in the 3’UTR (Mishima, Giraldez et al. 2006; Kedde, Strasser et al. 2007). In 

contrast to factors alleviating miRNA function, TRIM32 and NHL-2 have been suggested 

to physically interact with RISC components and enhance miRNA silencing in mouse 

and worm respectively (Hammell, Lubin et al. 2009; Schwamborn, Berezikov et al. 
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2009). In Drosophila, the ARE (AU-rich element) binding protein TTP (tristetraprolin) 

associates with the AGO protein and assists in the ARE-mediated mRNA degradation by 

miR-16 (Jing, Huang et al. 2005).  Taken together, the crosstalk of miRNPs with RNA 

binding proteins on the 3’UTR as well as other factors in the cytoplasm is important for 

modulating miRNA function in a cell-specific manner. 

 

Target identification of miRNAs 

In order to fully understand the biological and physiological function of miRNAs, the 

downstream targets of miRNAs need to be identified. It has been estimated that 

mammalian miRNAs can regulate up to 30% of protein coding genes (John, Enright et al. 

2004; Lewis, Burge et al. 2005; Xie, Lu et al. 2005). What are the targets for each 

miRNA? How is interaction specificity achieved? Efforts towards answering these 

questions are ongoing. To date, there are two strategies for target identification: 1) 

bioinformatic approaches followed by experimental validation and 2) direct experimental 

approaches. 

 

Computational target prediction 

miRNA targets can be easily identified in plants where complementarity is perfect but 

this process is difficult in animals because of imperfect complementarity (Rhoades, 

Reinhart et al. 2002; Chen, Li et al. 2004; Mallory, Reinhart et al. 2004; Guo, Xie et al. 

2005). Many prediction algorithms have been created to try to identify miRNA targets. 

Popular algorithms include TargetScan (Lewis, Shih et al. 2003; Grimson, Farh et al. 

2007; Ruby, Stark et al. 2007; Friedman, Farh et al. 2009), Pictar (Krek, Grun et al. 2005; 
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Lall, Grun et al. 2006) and Miranda (John, Enright et al. 2004). Although these 

algorithms are helpful for target prediction, serious flaws exist. Typically, hundreds to 

thousands of targets are predicted, not all of which are true.  Bona fide targets are not 

always identified by these algorithms. Worse, predicted targets from different algorithms 

often do not overlap.  These problems are due to a lack of knowledge regarding rules for 

functional miRNA:mRNA interaction.  For current algorithms, combinations of the 

following criteria are used to predict targets.  1) The “seed rule”, perfect Watson-Crick 

base paring between the “seed” region (2-7nt from the 5’ end) of the miRNA and its 

target. 2) Thermodynamic stability of miRNA:mRNA duplex. 3) Evolutionary 

conservation of the predicted miRNA recognition element (MRE). 4) Number of MREs 

within the 3’UTR. 

The seed rule is currently the fundamental criterium for most algorithms. It was first 

proposed by Lewis et al (2003) in their attempt to systematically predict mammalian 

miRNA targets using bioinformatic approaches (Lewis, Shih et al. 2003). The seed region 

is the only continuous region of the miRNA that captures more evolutionarily conserved 

target sites than expected by chance. Also, perfect seed pairing seems to remarkably 

reduce the number of false positive predictions. Further, mutagenesis studies support the 

notion that base pairing at the 5’ end of miRNA is more important for target recognition, 

as compared to 3’ end (Doench and Sharp 2004; Mallory, Reinhart et al. 2004; 

Brennecke, Stark et al. 2005). Lastly, large-scale transcriptomics and proteomics studies 

following miRNA overexpression or depletion also detected enrichment of seed pairings 

in target mRNAs (Lim, Lau et al. 2005; Baek, Villen et al. 2008; Selbach, Schwanhausser 

et al. 2008).  
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Nevertheless, considerable evidence exists to also argue that the seed pairing is either 

not required or not sufficient for miRNA:mRNA interaction (Doench and Sharp 2004; 

Brennecke, Stark et al. 2005; Didiano and Hobert 2006; Hon and Zhang 2007; Kertesz, 

Iovino et al. 2007; Nielsen, Shomron et al. 2007). Other features within 3’UTRs in 

addition to the seed pairing have been demonstrated as important determinants including 

accessibility of the MRE, position of the MRE related to the stop codon, and local AU 

rich elements (Didiano and Hobert 2006; Hon and Zhang 2007; Kertesz, Iovino et al. 

2007). Even evolutionary conservation in target prediction is not always foolproof, as 

many non-conserved sites have been identified (Lee, Feinbaum et al. 1993; Reinhart, 

Slack et al. 2000).  Thus, specific rules that would enable rapid identification all known 

functional targets have not been devised, making it a big challenge for target prediction in 

animals.  

 

Experimental target identification 

While reporter constructs can be used to validate individual targets, several 

approaches have been taken to try to experimentally identify miRNA targets on a 

genome-wide scale. Lim et al (2005) combined mRNA arrays with miRNA gain-of-

function experiments and identified hundreds of genes whose expression was altered by 

miR-1 or miR-124 overexpression in cell culture (Lim, Lau et al. 2005). Similarly, 

Mishima et al (2009) identified a large number of potential targets for miR-1 and miR-

133 during zebrafish muscle development by comparing the muscle cell transcriptome 

before and after miRNA depletion (Mishima, Abreu-Goodger et al. 2009). One 

disadvantage of this approach is that the levels of mRNA transcripts are determined 
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rather than protein levels. Although miRNAs can induce mRNA destabilization, 

transcript levels of many bona fide targets may not be significantly altered. Baek et al 

(2008) and Selbach et al (2008) overcame this problem by directly measuring protein 

expression levels using quantitative mass spectrometry before and after alteration of 

miRNAs, leading to identification of more accurate mRNA target pools (Baek, Villen et 

al. 2008; Selbach, Schwanhausser et al. 2008). 

In addition to mRNA profiling, biochemical purification of RISC has recently been 

developed as a miRNA target identification approach (Landthaler, Gaidatzis et al. 2008; 

Chi, Zang et al. 2009). Since both miRNAs and their targets associate with AGO proteins 

simultaneously, miRNA:mRNA duplexes were retrieved by isolating native AGO protein 

via crosslinking and immunoprecipitation (CLIP). The sequences of both the miRNAs 

and their targets were then determined via high throughput sequencing or microarray 

analysis.  

 

Biological function of miRNAs 

 

miRNA function during zebrafish development 

Depletion of both maternal and zygotic Dicer results in arrest of zebrafish 

embryogenesis at 5 days post-fertilization. Although dorsal-ventral, anterior-posterior 

axes and major patterning of the embryos are not affected, severe morphogenesis defects 

in gastrulation, somitogenesis, heart, and brain development were observed.  These 

observations suggest essential regulatory function of miRNAs during early zebrafish 

morphogenesis (Giraldez, Cinalli et al. 2005).   
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One of the better characterized miRNAs that function during development is the miR-

430 family which is expressed at the onset of zygotic transcription and facilitates 

destabilization and clearance of maternal transcripts (Giraldez, Mishima et al. 2006). 

Also, miR-430 can regulate signaling pathways during early zebrafish development. Choi 

et al (2007) identified both the Nodal-related ligand Squint (sqt) and its antagonists 

Lefty1 and 2 as targets of miR-430. By suppressing both Nodal agonists and antagonists 

simultaneously, miR-430 reduces the absolute expression levels of both and balances 

their relative levels in order to precisely regulate Nodal signaling (Choi, Giraldez et al. 

2007).  

miRNAs have been frequently identified as regulators of tissue or organ 

differentiation during later stages of development. Two muscle-specific miRNAs miR-1 

and miR-133 were found to control actin organization during zebrafish sarcomere 

assembly (Mishima, Abreu-Goodger et al. 2009). miR-214 specifies muscle cell types by 

modulating Hedgehog signaling (Flynt, Li et al. 2007), miR-9 regulates formation and 

function of midbrain-hindbrain boundary by targeting Fgf signaling (Leucht, Stigloher et 

al. 2008), miR-145 directs gut smooth muscle differentiation by targeting Gata6 (Zeng, 

Carter et al. 2009), and miR-375 is thought to regulate the morphology of the pancreatic 

islet (Kloosterman, Lagendijk et al. 2007).  

Finally, due to the ability to induce rapid changes at the protein level, miRNAs are 

good candidates for regulators of stress responses (Bhattacharyya, Habermacher et al. 

2006). miR-200a and b are expressed in ionocytes and involved in osmoregulation by 

modulating Nherf1, which is required for apical trafficking of ion transporters (Flynt, 

Thatcher et al. 2009). 
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miRNAs as tumor suppressors 

miR-15a and miR-16-1 were identified as tumor suppressors during attempts to clone 

defective genes at region 13q14.3, a chromosomal region frequently depleted in B cell 

chronic lymphocytic leukemia (CLL) (Calin, Dumitru et al. 2002). Loss of miR-15a and 

miR-16 was observed in ~70% of CLLs, consistent with up regulation of BCL-2, a well-

known antiapoptotic gene which is a target of miR-15a/16 (Cimmino, Calin et al. 2005). 

Ectopic expression of miR-16 suppresses cell growth and induces apoptosis in human 

cancer cell lines (Cimmino, Calin et al. 2005; Linsley, Schelter et al. 2007). let-7 family 

is another miRNA tumor suppressor. Many members of the let-7 family are located in 

chromosomal regions that are lost in various types of tumors (Calin, Liu et al. 2004; 

Iorio, Ferracin et al. 2005; Johnson, Grosshans et al. 2005; Yanaihara, Caplen et al. 

2006). Many oncogenes are targets of the let-7 family, such as Ras, HMGA2 (high 

mobility group AT-hook 2) and c-Myc. Ectopic expression of let-7 in human cancer cell 

lines inhibits cell cycle progression and induces apoptosis (Akao, Nakagawa et al. 2006; 

Lee and Dutta 2007; Sampson, Rong et al. 2007). 

 

miRNAs as oncogenes 

The miR-17-92 cluster is located within a chromosomal region that is frequently 

amplified in various lymphomas and solid tumors (Ota, Tagawa et al. 2004; Volinia, 

Calin et al. 2006; Venturini, Battmer et al. 2007). This cluster of miRNAs is directly 

activated by c-Myc and E2Fs and inhibits apoptosis and cell cycle arrest by silencing 

tumor suppressors including Pten, p21 and Bim (O'Donnell, Wentzel et al. 2005; 
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Petrocca, Visone et al. 2008; Ventura, Young et al. 2008; Xiao, Srinivasan et al. 2008).  

The non-coding RNA BIC (B cell integration cluster) had been known as an oncogene 

long before it was identified as the primary transcript of miR-155 (pri-miR-155) (Tam, 

Hughes et al. 2002; Metzler, Wilda et al. 2004; Kluiver, Poppema et al. 2005). miR-155 is 

highly expressed in many types of leukemias and solid tumors (Metzler, Wilda et al. 

2004; Calin, Ferracin et al. 2005; Kluiver, Poppema et al. 2005; Volinia, Calin et al. 

2006; Garzon, Volinia et al. 2008). In mouse, B-cell-specific overexpression of miR-155 

causes B cell malignancy (Costinean, Zanesi et al. 2006). Interestingly, studies in 

knockout mice revealed that the proto-oncogene miR-155 is required for normal function 

of mammalian immune system (Rodriguez, Vigorito et al. 2007; Thai, Calado et al. 

2007). 

 

miRNAs and tumor invasion and metastasis 

Most cancer related miRNAs regulate the cell cycle, proliferation, and apoptosis. 

Very few miRNAs have been shown to function in tumor invasion and metastasis. miR-

10 was shown to promote migration and invasion of breast cancer cells. miR-10 is up-

regulated in metastatic breast cancer cells by the transcription factor Twist and down-

regulates HOXD10 (homeobox D10), a suppressor of the pro-metastatic gene RHOC. 

Enforced expression of miR-10 in non-metastatic breast cancer cells induces cell invasion 

and metastasis. In contrast, inhibition of miR-10 abolishes Twist-induced cell migration 

and metastasis (Ma, Teruya-Feldstein et al. 2007). miR-21 was found to function in both 

tumor growth and metastasis by targeting TPM1 (tropomyosin 1), PDCD4 (programmed 

cell death 4) and maspin (Zhu, Wu et al. 2008). Two other miRNAs miR-373 and miR-
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520 were identified as regulators of tumor invasion during a miRNA screen for 

stimulators of breast cancer cell migration (Huang, Gumireddy et al. 2008). 

 

miRNAs as tumor diagnostic and prognostic tools 

miRNA profiling has been found to be highly informative for distinguishing the tissue 

origin of tumor samples. Systematic miRNA expression analyses suggested that signature 

profiles from only a modest number of miRNAs could accurately cluster cancer samples 

based on their tissue origin (Lu, Getz et al. 2005; Volinia, Calin et al. 2006). This may 

allow improvement in cancer diagnosis by resolving one of the most demanding issues – 

determining the origin of metastatic cancers of unknown primary origin (Rosenfeld, 

Aharonov et al. 2008). miRNA profiling can also be used to predict the outcome or 

survival ratio of diverse cancers (Takamizawa, Konishi et al. 2004; Calin, Ferracin et al. 

2005; Murakami, Yasuda et al. 2006; Roldo, Missiaglia et al. 2006; Bloomston, Frankel 

et al. 2007; Garzon, Volinia et al. 2008; Marcucci, Radmacher et al. 2008; Schetter, 

Leung et al. 2008).  
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Abstract 

microRNAs (miRNAs) regulate gene expression by inhibiting translation of target 

mRNAs through pairing with microRNA recognition elements (MREs), usually in 3’ 

UTRs.  Because pairing is imperfect, identification of bona fide mRNA targets presents a 

challenge.  Most target recognition algorithms strongly emphasize pairing between 

nucleotides 2-8 of the miRNA (the “seed” sequence) and the mRNA but adjacent 

sequences and the local context of the 3’ UTR also affect targeting.  Here, we show that 

dispatched 2 is a target of miR-214.  In zebrafish, dispatched 2 is expressed in the 

telencephalon and ventral hindbrain and is essential for normal zebrafish development.  

Regulation of dispatched 2 by miR-214 is via pairing with three, non-canonical, weak 

MREs.  By comparing the repression capacity of GFP reporters containing different 

dispatched 2 sequences, we found that a combination of weak sites, which lack canonical 

seed pairing, can effectively target an mRNA for silencing.  This finding underscores the 

challenge that prediction algorithms face and emphasizes the need to experimentally 

validate predicted MREs.  
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Introduction 

microRNAs (miRNAs) are highly conserved non-coding RNAs that post-

transcriptionally regulate gene expression, usually by inhibiting translation (Ambros 

2003; Bartel 2004; He and Hannon 2004).  Mature miRNAs are generated from long 

endogenous primary transcripts by the RNAse III enzymes, Drosha and Dicer resulting in 

~22nt double stranded RNAs (Hutvagner, McLachlan et al. 2001; Lee, Jeon et al. 2002; 

Lee, Ahn et al. 2003; Cai, Hagedorn et al. 2004).  One strand of the duplex gets 

assembled into the RNA-induced silencing complex (RISC) coincident with target 

identification and pairing (Khvorova, Reynolds et al. 2003; Schwarz 2003).  RISC 

identifies target mRNAs based on complementarity between the miRNA and mostly 

3’UTR mRNA sequences resulting in translational repression or, in cases where the 

pairing is perfect, degradation of the mRNA (Valencia-Sanchez, Liu et al. 2006).  It has 

been suggested that 30%-50% of human genes are regulated by miRNAs since a single 

miRNA can target multiple mRNAs and a given mRNA may be regulated by multiple 

miRNAs (Lewis, Burge et al. 2005; Lim, Lau et al. 2005; Xie, Lu et al. 2005). 

miRNAs play essential roles in development, physiology, and disease processes 

(Alvarez-Garcia and Miska 2005; Wienholds and Plasterk 2005).  Consistent with this, 

most miRNAs are expressed in a development-, tissue-, or cell type-specific manner 

(Wienholds, Kloosterman et al. 2005; Kloosterman, Wienholds et al. 2006).  Direct 

cloning and genomic analyses suggest the presence of hundreds of miRNAs in higher 

eukaryotic genomes but only a small number have been fully characterized (Lee and 

Ambros 2001; Lagos-Quintana, Rauhut et al. 2002; Lagos-Quintana, Rauhut et al. 2003).  
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Besides identifying the full complement of miRNAs, a major problem in functional 

studies is the identification of the complete range of target mRNAs.  Bioinformatic 

approaches to identify miRNA targets have been very effective in plants where 

complementarity between miRNAs and their target mRNAs is usually perfect (Rhoades, 

Reinhart et al. 2002).  In contrast, pairing in higher eukaryotes is typically imperfect with 

numerous gaps, mismatches, and G:U base pairs (Lewis, Shih et al. 2003).  

Computational and experimental evidence led to the “seed rule” where base pairing 

between nucleotides 2-8 of the miRNA (the seed sequence) and its target mRNA is 

crucial (Lewis, Shih et al. 2003; Kloosterman, Wienholds et al. 2004; Brennecke, Stark et 

al. 2005; Wang, Love et al. 2006).  While the “seed rule” has been useful, there are many 

instances where gene silencing is observed despite multiple gaps and mismatches in the 

seed region (Doench and Sharp 2004; Brennecke, Stark et al. 2005; Flynt, Li et al. 2007).  

Additional work has shown that other features in the 3’UTR beyond seed pairing can 

affect silencing (Brennecke, Stark et al. 2005; Didiano and Hobert 2006; Grimson, Farh 

et al. 2007; Hon and Zhang 2007; Nielsen, Shomron et al. 2007).  Hence, a better 

understanding of the exact requirements for miRNA recognition is needed to facilitate 

predictive algorithms, functional characterization studies, and to better design siRNAs in 

order to reduce potential off-target effects. 

Previously, we showed that miR-214 functions to modulate the Hedgehog (Hh) 

pathway during zebrafish somitogenesis (Flynt, Li et al. 2007).  Regulation of Hh 

signaling by miR-214 is primarily through targeting of Suppressor of Fused (sufu).  Here, 

we show that miR-214 also targets dispatched homolog 2 (disp2).  Interestingly, for both 

sufu and disp2, we identified three possible miRNA recognition elements (MREs) but 
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none of these sites contain a perfect seed match for miR-214.  Our results suggest that 

weak sites which by themselves are capable of only minimal silencing, can combine to 

effectively reduce gene expression to levels comparable to that observed in the presence 

of perfectly complementary sites. 

 

Materials and methods 

 

Microinjection 

Fertilized one-cell zebrafish embryos were injected with 1nl volumes at the following 

concentrations: 2µg/µl of miR-214, 4µg/µl of disp2MO (5’-

TGGACCCGCTTTCCATGCTGGAGTA-3’), 100ng/µl of in vitro transcribed, capped 

disp2 mRNA, 50ng/µl of in vitro transcribed, capped GFP reporter mRNAs. 

 

Target protectors 

Target protectors were named and designed as described (Choi, Giraldez et al. 2007).  

Disp2TPmir214.1 (5’-CTTGGTTGTGTAAAAGAACAGGCAC-3’), disp2TPmir214.2 

(5’-ATGTATTCATGTGTAGAACAGTTAT-3’), disp2TPmir214.3 (5’-

AGGTATTATTTACCACAACATGCGA-3’) were injected into zebrafish embryos 

separately or in combination with 1nl at 1µg/µl concentrations. 

 

Molecular cloning 

The disp2 (NM_212434 .1) 3’UTR was amplified by RT-PCR using a forward primer 

(5’-AGAATTCAATGGAAAGCGGGTCCATTTCC-3’) and a reverse primer (5’-
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GGTCTAGACCACAACATGCGATAGAATGTAT-3’).  The resulting DNA was cloned 

downstream of the GFP ORF in the pCS2+ vector (Rupp, Snider et al. 1994).  Deletion 

mutants were created by reverse PCR (Coolidge and Patton 1995) using the following 

primers.  All clones were verified by DNA sequencing.   

Reverse primer for Δ3: 5’-GGTCTAGAGGGTTCAAATGTCATATTGCAGT-3’ 

D1 forward primer: 5’-TTACACAACCAAGCCATGAGT-3’ 

D1 reverse primer: 5-TTGTACATTTGCAGTTCAAGG-3’ 

D2 forward primer: 5’-ATGAATACATTCTATCGCATG-3’ 

D2 reverse primer: 5’-ACGTTTAGAGTAAAATAACTG-3’ 

D3 forward primer: 5’-TACCTTTTCAAACTTGATTTG-3’ 

D3 reverse primer: 5’- TCATGTGTAGAACAGTTATAG-3’. 

 

Immunoblotting 

Proteins were extracted from deyolked 1 day post fertilization (dpf) embryos in lysis 

buffer (25mM HEPES, pH 7.5, 5mM MgCl2, 300mM NaCl, 1mM EDTA, 0.2mM 

EGTA, 1Mm DTT, 10% glycerol, 1.0% Triton X-100 and 1mM PMSF).  20µg of total 

protein were then separated on 10% SDS-polyacrylamide gels and transferred to PVDF-

plus membranes.  Rabbit polyclonal antibodies against GFP (Torrey Pines Biolabs) and 

α-tubulin (Abcam) were used at concentrations of 1:1000 and 1:500, respectively.  HRP 

conjugated secondary antibodies against rabbit (GE Healthcare) were then used for 

visualization with ECL.  For quantification, GFP levels were normalized to a-tubulin 

control levels after which the ratio of GFP in the presence of miR-214 was determined 

compared to that in the absence of miR-214. 
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Immunohistochemistry 

Immunostaining was as described (Flynt, Li et al. 2007).  Rabbit polyclonal antibodies 

against Prox1 (Abcam) and 4D9 mouse monoclonal antibodies against Engrailed were 

used at concentrations of 1:1000 and 1:100, respectively.  Secondary antibodies against 

rabbit or mouse IgG were Cy3 or Cy2 conjugated (Jackson ImmunoResearch) and were 

used at 1:1000 and 1:500, respectively.  Embryos were mounted in 50% glycerol and 

imaged as described (Flynt, Li et al. 2007).  

 

Results 

 

Disp2 is a target of miR-214 

Previous studies have shown that the expression of miR-214 in zebrafish starts from 

the 6-somite stage, suggesting an important role for this miRNA during early zebrafish 

development (Wienholds, Kloosterman et al. 2005; Flynt, Li et al. 2007; Thatcher, Flynt 

et al. 2007).  Over-expression of miR-214 in zebrafish results in embryos consistently 

exhibiting a ventrally curved body axis at 48 hours post fertilization (hpf)(Fig. 3B).  A 

similar curling down phenotype was previously observed in embryos injected with three 

different antisense morpholino oligonucleotides directed against disp2 (Nakano, Kim et 

al. 2004)(data not shown) (Fig. 3C).  Interestingly, we found three possible MREs in the 

3’ UTR of disp2 (Fig. 3D).  None of the three sites contain perfect matches to the seed 

regions (nucleotides 2-7) but since we previously showed that miR-214 targets sufu 
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without perfect seed pairing (Flynt, Li et al. 2007), we sought to determine whether miR-

214 could also target disp2. 

 

 

Figure 3.  Curling Down Phenotypes in Zebrafish Embryos. 
(A-C) Over-expression of miR-214 results in ventrally curved embryos at 2 days post 
fertilization (dpf), a phenotype that mimics the effect of injection of antisense morpholino 
oligonucleotides against dispatched homolog 2 (disp2MO).  A wild type, uninjected 
embryo at 2 dpf is shown in A (UIC).  (D) The 3’ UTR of disp2 contains three predicted 
microRNA recognition elements (MREs) for miR-214. 
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To test whether disp2 is targeted by miR-214, we created reporter constructs in which 

the entire disp2 3’UTR, or portions thereof, was cloned downstream of the coding region 

of GFP (Fig. 4A).  As a control, we also created a construct in which two perfect MREs 

for miR-214 were placed downstream of the GFP coding region (Fig. 4A).  To assay 

silencing, synthetic mRNAs derived from these reporters were injected into single cell 

zebrafish embryos in the presence or absence of exogenous miR-214 and fluorescence 

levels in live embryos were determined at 24hpf (Fig. 4B-K).  As expected, the presence 

of two perfect MREs for miR-214 led to efficient silencing of GFP in the presence of 

miR-214 (Fig. 4F,G).  Decreased fluorescence was also observed when the entire 3’ UTR 

from disp2 was inserted downstream of GFP (Fig. 4D,E).  Deletion of the downstream 

half of the 3’UTR (Δ3) did not affect silencing, consistent with the fact the none of the 

three predicted MREs are located in this region (Fig. 4H,I).  In contrast, deletion of the 

upstream portion, which contains all three predicted MREs (D5), abolished silencing 

(Fig. 4J,K).   
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Figure 4. disp2 is Targeted by miR-214.  
(A) GFP reporters were constructed that contain the indicated 3’ UTR sequences from 
disp2 (C, D3, D5), a synthetic 3’ UTR that contains two perfect pairing sites for miR-214 
(2MRE), or the normal GFP 3’UTR sequence (GFP).  The predicted MREs for miR-214 
are indicated by the colored rectangles.  (B-K) mRNAs derived from the reporters in A 
were injected into single cell embryos in the presence or absence of co-injection of miR-
214.  Fluorescence was examined at 1 dpf in living embryos.  (L, M) Western blots of 
lysates from embryos injected as in B-K were performed with antibodies against GFP and 
the levels of GFP were quantitated as described in the methods.  Relative GFP levels (+/- 
sem) were plotted with asterisks representing significant decreases between the control 
GFP construct and the indicated constructs.  Significance was analyzed using Student’s T 
test (p<0.001 for constructs 2MRE and C, p<0.01 for construct D3; n>3). (N) mRNAs 
encoding the complete disp2 3’ UTR fused to GFP were injected in the presence and 
absence of miR-20.  Embryo lysates were prepared, and GFP levels were examined by 
western blot as above.  (O-R) Single cell embryos were injected as indicated in the 
presence or absence of antisense morpholino oligonucleotides against miR-214 (214MO).  
Fluorescence was examined at 1 dpf.  (S,T) Western blots of embryo lysates were 
performed and quantitated as above.  Relative GFP levels (+/- sem) were plotted with 
asterisks representing significant decreases between the GFP reporter alone and the 
indicated co-injections.  Significance was analyzed using Student’s T test (p<0.001, n>3). 
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To analyze silencing from the entire population of injected embryos, lysates were 

prepared from embryos injected as above and western blots were performed with 

antibodies against GFP (Fig. 4L,M).  The presence of either the entire 3’ UTR (construct 

C) or the downstream half (Δ3) led to a reduction of GFP levels by approximately 60% in 

the presence of miR-214, similar to that observed when the 3’ UTR contained 2 perfect 

MREs (2MRE).  As above, no silencing was observed upon deletion of the region 

containing the predicted MREs (D5) nor was silencing observed when the 3’ UTR was 

derived from the GFP vector (GFP).  As a specificity control, we also co-injected an 

unrelated miRNA (miR-20) with the C construct.  No silencing of GFP was observed 

(Fig. 4N).  Lastly, we injected antisense morpholino oligonucleotides against miR-214 

(214MO) to determine whether inhibition of endogenous levels of miR-214 during early 

zebrafish development would inhibit silencing of the GFP reporter.  As shown (Fig. 4N-

R), inhibition of endogenous levels of miR-214 led to increased GFP levels.  Together, 

the fluorescence assays and western blots demonstrate that disp2 is targeted by miR-214 

and are consistent with silencing mediated by the three predicted MREs. 

 

Genetic Interaction Between miR-214 and Disp2 

Injection of zebrafish embryos with any of three different antisense morpholino 

oligonucleotides against disp2 (disp2MO) results in embryos displaying a downward 

curvature of the tail at 48 hpf (Nakano, Kim et al. 2004)(Fig. 5E)(data not shown).  If 

miR-214 targets disp2, overexpression of miR-214 in zebrafish embryos should 

recapitulate the curling down phenotype.  As shown in Fig. 5, over 80% of miR-214 
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injected embryos displayed the curling down phenotype.  Interestingly, the percent of 

embryos displaying the curling down phenotype was nearly identical between injection of 

miR-214 and a morpholino against the translation start site for disp2 (disp2MO).  If the 

effect of excess miR-214 is specific, co-injection of disp2 mRNA should be able to 

suppress the overexpression phenotype.  As shown in Fig. 5C,F, there was a significant 

decrease in the fraction of ventrally curved embryos when both miR-214 and disp2 

mRNA were co-injected (from 84% to 55%).  Since most miRNAs target multiple 

mRNAs, it is likely that miR-214 can still silence other mRNAs such that partial 

phenotypic rescue is the expected result.  These results strongly suggest genetic 

interaction between miR-214 and disp2 and further demonstrate that disp2 is indeed a 

target of miR-214.   
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Figure 5. Rescue of the Curling Down Phenotype by miR-214.  
Single cell zebrafish embryos, either uninjected (UIC; A) or injected with miR-214 RNA 
(B), antisense morpholino oligonucleotides against disp2 (disp2MO; E), disp2 mRNA (D), 
or a combination of miR-214 and disp2 (C) were allowed to develop for 48 hrs before 
examination and quantitation (F) of the fraction exhibiting a curling down phenotype.  
The number of embryos exhibiting the curling down phenotype for miR-214 and disp2 
co-injection compared to miR-214 injection alone was analyzed using Student’s T test 
(p<0.01, n>3). 
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In early zebrafish embryos, disp2 is expressed primarily in the central nervous 

system with highest expression in the telencephalon and ventral hindbrain (Nakano, Kim 

et al. 2004).  While disp1 and disp2 are closely related, no Hh signaling defects have 

been observed with loss of disp2 as compared to loss of disp1 (Nakano, Kim et al. 2004).  

However, loss of disp2 leads to loss of the neural marker transcription factor Prox1 in the 

hindbrain at 24 hpf (H.R. Kim, Y. Nakano, and P.W. Ingham, personal 

communication)(Fig. 6E).  If miR-214 targets disp2, overexpression of miR-214 should 

also block prox1 expression in the hindbrain at 24 hpf.  To test this, we marked the 

hindbrain midbrain boundary by immunostaining with CY2 tagged antibodies against 

Engrailed (green) and co-stained to detect Prox1 expression in the hindbrain.  As shown 

in Fig. 6, a significant decrease (more than 50%) in the number of Prox1 positive 

hindbrain neurons (red) was observed in embryos injected with miR-214 at 24 hpf (Fig. 

6B,F), similar to the decrease observed in the disp2 morphants (Fig. 6E,F).  Significantly, 

the decreased numbers of Prox 1 nuclei caused by injection of miR-214 could be rescued 

by co-injection of disp2 mRNAs (Fig. 6C,F).  These data are consistent with regulation of 

disp2 by miR-214 during early zebrafish development. 
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Figure 6. Genetic Interaction Between disp2 and miR-214.  
Whole mount immunostaining of zebrafish embryos was performed using antibodies 
against the neural marker Prox1 (red) and the midbrain hindbrain boundary marker 
Engrailed (green).  Embryos were positioned dorsal to the top, anterior to the left.  Single 
cell embryos were either uninjected (UIC; A) or injected with miR-214 (B), the 
combination of miR-214 and disp2 mRNA (C), disp2 mRNA (D), or disp2MO (E).  The 
relative number of Prox1 positive cells in the hindbrain compared to that in UIC was 
graphed in F.  Significant differences were observed between UIC and miR-214 injected 
embryos (p<0.001), between UIC and disp2MO injected embryos (p<0.001) and between 
embryos injected with miR-214 alone and co-injected with miR-214 and disp2 mRNA 
(p<0.05) by Student’s T test.  In all cases, n>3. 
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Regulation of disp2 by miR-214 requires multiple weak MREs 

Based on the above results as well as previously published work (Flynt, Li et al. 

2007), we have shown that miR-214 targets both disp2 and sufu.  Both genes contain 3 

predicted MREs but none of these elements obey the seed rule for miRNA:mRNA 

pairing (Lewis, Shih et al. 2003; Kloosterman, Wienholds et al. 2004; Brennecke, Stark et 

al. 2005; Wang, Love et al. 2006).  One possibility is that multiple weak MREs can act 

combinatorially to enable efficient silencing similar to the effect of one or more perfect 

MREs.  We therefore sought to determine whether multiple weak MREs are required for 

silencing disp2.  For this, six GFP reporter constructs (Fig. 7A) were created by deletion 

of one or more of the three disp2 MREs.  RNA was prepared from each of the resulting 

constructs, injected into zebrafish embryos, and analyzed for fluorescence in living 

embryos (data not shown).  Western blots were also performed on embryo lysates in the 

presence and absence of miR-214 (Fig. 7).  As in Fig. 4, co-injection of miR-214 led to an 

almost 60% decrease in GFP levels when the 3’ UTR contained all 3 weak disp2 MREs 

(Fig. 7B,C).  When only 2 MREs were present, silencing of GFP was roughly equivalent 

to that observed with all 3 sites, regardless of the combination (Fig. 7 D1, D2, D3).  In 

contrast, single sites were mostly incapable of effective gene silencing although relatively 

small decreases were consistently observed, especially for MRE3 (Fig. 7 D12).  The 

results from Figures 4 and 7 demonstrate that the combination of three weak MREs are as 

effective in mediating silencing as 2 perfect MREs followed closely by the presence of 

two weak sites which are far more effective than a single weak MRE.   Thus, weak MREs 

can act combinatorially to silence gene expression. 
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Figure 7.  Deletion Analysis of disp2 MRE Function. 
(A) As in Figure 4, GFP reporters were constructed that contain the indicated 3’ UTR 
sequences.  (B, C) mRNAs derived from the reporters in A were injected into single cell 
embryos in the presence or absence of co-injection of miR-214.  Western blots of embryo 
lysates were performed with antibodies against GFP and the level of GFP was quantitated 
as above.  Relative GFP levels are shown (+/- sem) with asterisks representing significant 
differences between the control GFP levels and the indicated constructs as follows: 
p<0.001 for constructs C and D1, p<0.01 for constructs D2 and D3, p<0.05 for construct 
D12 by Student’s T test, n>3. 
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To further validate the role of each of the three weak MREs, we would ideally like to 

create point mutations that abolish MRE function.  However, the results thus far illustrate 

that the precise requirements for any particular base are apparently quite flexible.  Thus, 

to selectively silence one or more of the three MREs, we chose to utilize antisense 

morpholino target protectors designed to hybridize to MREs and block the ability of 

miRNAs to effect silencing (Choi, Giraldez et al. 2007).  Three target protectors were 

designed complementary to portions of each of the three MREs in the 3’UTR of disp2 

(TP1, TP2, TP3).  First, we co-injected all three target protectors with the C construct and 

miR-214.  The presence of the three target protectors impaired silencing in the presence 

of miR-214 (Fig. 8A-F).  Co-injection of all three target protectors was not quite as 

efficient at blocking silencing as was co-injection of antisense morpholino 

oligonucleotides against miR-214 (see Fig. 4) but there was still a significant increase in 

GFP levels.  Next, we co-injected single and pairwise combinations of target protectors 

(Fig. 8G,H).  As shown, each individual target protector was able to inhibit silencing 

from 20-40% whereas pairwise combinations varied from a 20% increase in GFP levels 

to complete rescue in the presence of target protectors 1-2.  Taken together, efficient 

silencing of disp2 3’UTR by miR-214 requires contribution from multiple weak MREs.  

Although none of the three MREs contain perfect seed sequences, the three weak MREs 

can act combinatorially to silence gene expression.  
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Figure 8. Combinatorial Action of Weak MREs. 
mRNAs encoding GFP reporters containing the complete disp2 3’UTR sequence were 
injected into zebrafish embryos along with target protectors against the three disp2 MREs 
(TP1,2,3) in the presence or absence of exogenous miR-214.  Single cell embryos injected 
with all three target protectors were injected and examined for fluorescence at 1 dpf (A-
D).  Western blots of embryo lysates isolated from embryos injected either with all three 
target protectors or combinations thereof were performed with antibodies against GFP 
(E,G).  Relative GFP levels were quantitated as above and values plotted (+/- sem) with 
asterisks representing significant decreases between the GFP reporter alone and the 
indicated co-injections (F,H).  Significance was analyzed using Student’s T test (p<0.001 
for construct C and miR-214 co-injection, p<0.05 for construct C, miR-214, TP1 co-
injection and construct C, miR-214, TP2,3 co-injection, n>3). 
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Discussion 

 

Dispatched Homolog 2 is a target of miR-214 

Here, we provide several lines of evidence that support the hypothesis that disp2 is a 

target of miR-214.  First, using GFP reporters in zebrafish embryos, we were able to show 

that silencing by miR-214 requires the presence of the disp2 3’ UTR.  Second, 

overexpression of miR-214 produced a curling down phenotype similar to that observed 

in disp2 morphants.  Third, interference with disp2 function led to the loss of the Prox1 

positive nuclei in the hindbrain at 24 hpf and overexpression of miR-214 phenocopied.  

Importantly, the loss of Prox1 nuclei by injection of miR-214 could be rescued by co-

injection of disp2 mRNA.  Similarly, the curling down phenotype could be partially 

suppressed by co-injection of disp2 mRNA.  Finally, consistent with regulation by miR-

214, disp2 is expressed in the neural tube at 1 dpf whereas miR-214 is not (Nakano, Kim 

et al. 2004; Flynt, Li et al. 2007).  These data are entirely consistent with regulation of 

disp2 by miR-214. 

One limitation of the above results is that the exact function of Dispatched 2 remains 

to be determined.  Despite the fact that it is very similar to Dispatched 1, loss of 

Dispatched 2 does not lead to detectable Hh signaling defects (Nakano, Kim et al. 2004).  

Thus, while curling down of zebrafish embryos is generally indicative of Hh defects, this 

is not thought to be the case for Dispatched 2.  Complete understanding of the 

significance of miR-214 regulation of disp2 will await further functional analyses of 

Dispatched 2. 
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Combinatorial Silencing 

Many computational and experimental approaches have been used to formulate 

general rules that allow accurate identification of miRNA targets.  Previous studies, as 

well as the results reported here, suggest that base pairing between the “seed” region 

(residues 2-8 from the 5’end) of the miRNA and the mRNA target is the most readily 

identifiable determinant for predicting and establishing specificity.  However, perfect 

seed pairing is not necessarily sufficient for repression.  The degree of repression can also 

be influenced by adjacent AU rich sequences, the distance between MREs and stop 

codons, and accessibility of the 3’ UTR (Didiano and Hobert 2006; Grimson, Farh et al. 

2007; Hon and Zhang 2007; Kertesz, Iovino et al. 2007; Nielsen, Shomron et al. 2007).  

Our results demonstrate that even sites that violate the pairing rules above can still serve 

to mediate silencing provided the presence of multiple weak sites.  This finding further 

challenges prediction algorithms by increasing the number of sites that serve as bona fide 

targets.  

We previously showed that targeting of sufu by miR-214 is via three weak MREs and 

we extend that observation here to show that disp2 is similarly regulated through the 

cooperative action of three weak MREs.  For all three disp2 sites, there are gaps and G:U 

base pairs within the seed region and the pairing with the 3’ end of miR-214 is even 

weaker.  Individually, these sites are not effective targets but, surprisingly, in 

combination, can lead to silencing as effective as perfect sites.  A different observation 

was made previously in an invertebrate model system (Brennecke, Stark et al. 2005) 

where multiple weak sites were not found to act combinatorially, concluding that weak 

sites, which by themselves cannot mediate silencing, do not do so in combination.  This 
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suggests that the rules for miRNA-mRNA recognition are not absolute and that the 

mechanisms of silencing may be slightly different between species.  Based on our study, 

an additive model does not accurately reflect silencing and instead, a synergistic model 

most closely approximates the combined effects of multiple weak MREs.  
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Abstract 

microRNAs (miRNAs) are a family of 21-23 nucleotide endogenous non-coding 

RNAs that post-transcriptionally regulate gene expression in a sequence-specific manner.  

Typically, miRNAs down regulate target genes by recognizing and recruiting protein 

complexes to 3'UTRs followed by either translation repression or mRNA degradation.  

miR-92 is a well studied oncogene in mammalian systems.  Here, using zebrafish as a 

model system, we uncovered a novel tissue-inductive role for miR-92 during early 

vertebrate development.  Overexpression resulted in reduced endoderm formation during 

gastrulation with consequent cardia and viscera bifida.  In contrast, depletion of miR-92 

increased endoderm formation which led to abnormal Kupffer's vesicle development and 

left-right patterning defects.  Using target prediction algorithms and reporter constructs, 

we show that gata5 is a target of miR-92.  Alteration of gata5 levels reciprocally mirrored 

the effects of gain- and loss-of-function of miR-92.  Moreover, genetic epistasis 

experiments showed that miR-92-mediated defects could be substantially suppressed by 

modulating gata5 levels.  We propose that miR-92 is a critical regulator of endoderm 

formation and left-right asymmetry during early zebrafish development and provide the 

first evidence for a regulatory function for gata5 in the formation of Kupffer’s vesicle 

and left-right patterning. 
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Introduction 

 

The miR-92 family 

The miR-92 family includes miR-92a, miR-92b and miR-25. These miRNAs share 

identical “seed” sequences (nucleotides 2-8 from the 5’ end of the mature miRNA) and 

similar sequences in the middle and 3’ portion of each mature miRNA. Members of the 

same family have overlapping functions by targeting similar mRNAs (Xu and Wong 

2008; Yuan, Liu et al. 2009).  From zebrafish to human, the genomic organization of the 

miR-92 family is fairly conserved. Members of the miR-92 family are encoded in clusters 

with other miRNA families, transcribed first as polycistronic RNAs and then processed 

into individual miRNAs. In human, two miR-92a loci, one miR-92b locus, and one miR-

25 locus exist. miR-92a-1 is encoded in a cluster with miR-17, miR-18a, miR-19a, miR-

20a and miR-19b-1 on chromosome 13, region 13q32 (known as the miR-17-92 cluster). 

miR-92a-2 is encoded in a cluster with miR-106a, miR-18b, miR-20b, miR-19b-2 and 

miR-363 on the X chromosome, region q26.2 (miR-106a-363 cluster). miR-92b is 

encoded alone. miR-25 is encoded in a cluster with miR-106b and miR-93 in the 13th 

intron of the protein coding gene MCM7 on chromosome 7 (miR-106b-25 cluster). (Fig. 

9) 
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Figure 9. miR-92 family. 
A) Sequence alignment of the miR-92 family. B) Genomic organization of the miR-92 
family in humans. miRNAs in identical colors belong to the same family. Adapted from 
Petrocca et al. 2008. 

 

Several lines of evidence suggest that the miR-17-92 cluster functions as an 

oncogene. First, amplification of the human miR-17-92 cluster is frequently observed in 

hematopoietic malignancies and solid tumors (Ota, Tagawa et al. 2004; Volinia, Calin et 

al. 2006; Petrocca, Visone et al. 2008). Second, both loci encoding the miR-17-92 and 

miR-106a-363 clusters are common insertion sites in multiple types of retrovirally 

induced murine leukemias (Joosten, Vankan-Berkhoudt et al. 2002; Lund, Turner et al. 

2002; Mikkers, Allen et al. 2002; Suzuki, Shen et al. 2002; Wang, Wang et al. 2006; Cui, 

Li et al. 2007; Landais, Landry et al. 2007). Third, in a mouse B-cell lymphoma model, 

enforced overexpression of the miR-17-92 cluster significantly accelerated disease onset 

and progression (He, Thomson et al. 2005). Transcriptional activation of miR-17-92 

cluster is directly regulated by cMyc and E2F3, both of which are oncogenic transcription 

factors (O'Donnell, Wentzel et al. 2005; Sylvestre, De Guire et al. 2007; Woods, 

Thomson et al. 2007). Similarly, the miR-106b-25 cluster and its host gene MCM7 are 

up-regulated by E2F1 in gastric cancer (Petrocca, Visone et al. 2008). 
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Multiple important downstream targets of the miR-17-92/miR-106b-25 clusters have 

been identified that contribute to their tumorigenic function. miR-17 and miR-20a target 

the transcription factor E2F1 and attenuate E2F1-induced apoptosis (O'Donnell, Wentzel 

et al. 2005). E2F1 is a critical cell cycle regulator that promotes the G1-S transition in 

mammalian cells (Bracken, Ciro et al. 2004).  When its expression exceeds a threshold, 

E2F1 also generates an apoptotic signal (Lazzerini Denchi and Helin 2005).  By 

contributing to a feedback loop including cMyc, E2F1, and E2F3, the miR-17-92 cluster 

shifts the balance away from the pro-apoptotic E2F1 and toward the proliferative E2F3 

network (Woods, Thomson et al. 2007). Other studies suggest that miR-17, miR-20a, 

miR-106b and miR-93 promote cell cycle progression and suppress TGFβ-dependent cell 

cycle arrest and apoptosis by targeting p21/CDKN1A (Ivanovska, Ball et al. 2008; 

Petrocca, Visone et al. 2008). The other downstream effector of TGFβ signaling, the 

proapoptoic gene Bim/BCL2L11 is also targeted by miR-92 and miR-25 (Koralov, Muljo 

et al. 2008; Petrocca, Visone et al. 2008; Ventura, Young et al. 2008; Xiao, Srinivasan et 

al. 2008). Likewise, the tumor suppressor Pten is targeted by miR-17 and miR-19 in 

lymphocytes. Lastly, down-regulation of anti-angiogenic TSP1 (thrombospondin-1) and 

CTGF (connective tissue growth factor) by miR-19 and miR-18, respectively, appears to 

contribute to cMyc-induced tumor angiogenesis (Dews, Homayouni et al. 2006). 

As compared to the tumorigenic role revealed by intensive studies in fully 

differentiated cells, especially cancer cell lines, the physiological function of these 

miRNAs during development is poorly understood. Ventura et al (2008) generated 

targeted deletions in mice and found that mice deficient for the miR-17-92 cluster are 

postnatal lethal with severe cardiac and lung defects. Also, the development of both fetal 
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and adult B-cells is impaired upon loss of miR-17-92, which may be due to increased 

Bim-mediated apoptosis in early B cell progenitors. No obvious abnormalities were 

observed in miR-106b-25 or miR-106a-363 deficient mice, which may indicate functional 

redundancy of these loci. However, miR-106b-25 and miR-17-92 double knockout and 

triple knockout mice die much earlier and exhibit much more severe defects than their 

single knockout counterparts (Ventura, Young et al. 2008). miR-17, miR-20a and miR-

106a participate in monocytic differentiation and maturation by targeting the 

transcription factor Acute Myeloid Leukaemia-1 (AML1) (Fontana, Pelosi et al. 2007). 

Depletion of Dicer results in a block of pro- to pre- B cell transition, accompanied by up-

regulation of target genes of the miR-17-92 cluster, including Bim (Koralov, Muljo et al. 

2008). Overexpression of miR-17-92 cluster in mouse lymphocytes leads to 

lymphoproliferative disease, autoimmunity and death (Xiao, Srinivasan et al. 2008). 

 

Overview of zebrafish development 

Zebrafish provide a powerful model system for developmental studies in vertebrates. 

Advantages include high fecundity, external and rapid development, transparent embryos, 

and the ability to carry our forward genetic screens, chemical screens, reverse genetics, 

and simple experimental manipulation.  

The development of zebrafish within the first 3 days post-fertilization (dpf) can be 

conceptually divided into zygote (0-0.75h), cleavage (0.75-2.25h), blastula (2.25-5.25h), 

gastrula (5.25-10h), segmentation (10-24h), pharyngula (24-48h), and hatching periods 

(48-72h) (Kimmel, Ballard et al. 1995). [Fig. 10] 
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Figure 10. Diagram of early zebrafish development.  
BD, blastodisc. AP, animal pole. VP, vegetal pole. EVL, enveloping layer. YSL, yolk 
syncytial layer. Blue, green and red arrows in panel (t) show epiboly, convergence and 
extension cell movement. Red arrowhead in panel (v) indicates tail bud. Green arrowhead 
in panel (w), somites. Black arrowhead in panel (x), brain. Adapted from Webb et al. 
2007 (Webb and Miller 2007). 

 

The zebrafish zygote is about 1mm in diameter, composed of a clear blastodisc which 

gives rise to the entire future animal and a yolk which provides nutrition for the embryo 

for the first 5 days. A membranous chorion surrounds and protects the entire embryo 

during the first 2 days.  

The blastodisc first undergoes a series of vertical cell divisions. The first horizontal 

cleavage occurs at the sixth cycle and results in a top layer of cells referred to as the 
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enveloping layer (EVL) and a bottom layer of cells referred to as the deep cell layer. 

During the development that follows, the EVL remains as a flattened monolayer and 

eventually becomes the protective outer surface of the animal called the periderm, an 

extra-embryonic cell layer that is sloughed off during later development. The deep cells 

that are buried underneath the EVL will form the entire embryo proper. 

The embryo is referred to as a blastula when multiple cell cleavages result in a group 

of ball-like cells sitting atop the yolk. Three important events occur during the blastula 

stage: the mid-blastula transition (MBT), formation of the yolk syncytial layer (YSL), 

and the start of epiboly (Kimmel, Ballard et al. 1995). At the tenth cell cycle, cell cycle 

lengthening marks the onset of the mid-blastula transition, which is accompanied by the 

loss of cell division synchrony and the beginning of zygotic transcription. Also, during 

the tenth cell cycle, the most marginal tier of blastomeres collapse and release their 

cellular components (cytoplasm and nucleus) into the adjoining cytoplasm of the yolk. 

This release gives rise to the YSL, a transient structure throughout embryogenesis which 

is originally a marginal ring around the blastomere and then quickly spreads underneath 

the blastodisc. The YSL mediates interactions between the deep cell layer and the yolk by 

lying between and separating the two. Because of this, the YSL, although not directly 

contributing to any part of the embryo, plays a critical role during early development in 

nutrient transport, epiboly, and the induction and patterning of the endoderm and 

mesoderm (see below).  During the late blastula stage, the blastodisc starts thinning and 

spreading over the yolk. This vegetal cell movement is called epiboly and persists 

throughout the gastrula stage until the entire yolk is enveloped by the embryo. 
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As soon as blastoderm covers 50% of the yolk surface (50% epiboly), a second 

important cell movement starts – internalization, which marks the onset of gastrulation. 

Internalization is the movement of deep cells at the blastoderm margin folding inward 

and back upon themselves. As a result of internalization, two primary germ layers are 

formed in the deep cells, the outer epiblast and the inner hypoblast. Hypoblast cells give 

rise to future mesoderm and endoderm, while cells that remain in the epiblast by the end 

of gastrulation will become ectoderm. In addition to epiboly and internalization 

movements, deep cells in the gastrula stage undergo a third important movement – 

convergence and extension. Convergence is the movement of deep cells towards the 

future dorsal side of the embryo. Extension is the elongation and rearrangement of deep 

cells along the anterior-posterior axis. As a result of these rapid, highly coordinated 

movements (epiboly, internalization and convergence and extension), three germ layers, 

the dorsal-ventral and the anterior-posterior axes are established by the end of 

gastrulation. 

Gastrulation is followed by segmentation where embryos form somites, which give 

rise to the myotome and sclerotome. Also, left-right axis specification occurs and 

organogenesis begins. By 24 hours post-fertilization (hpf), zebrafish embryos develop a 

heart and circulation begins. By 48hpf, the embryos hatch and start voluntary activities. 

 

Endoderm formation in zebrafish 

In zebrafish, endoderm gives rise to the gastrointestinal tract, liver, pancreas, 

pharyngeal pouches, gill clefts, thymus, thyroid, parathyroid and parts of the inner ear.  

Fate mapping experiments have shown that endoderm and mesoderm share common 
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progenitors (mesoendoderm), which are located within the marginal region next to the 

yolk during the early blastula stage (Warga and Nusslein-Volhard 1999). At the late 

blastula stage, these bipotential progenitors acquire a more restricted fate. Most 

endodermal progenitors are found no more than two cell layers away from the blastoderm 

margin, whereas mesodermal progenitors can be located up to 8 cell layers away. 

Coincident with internalization, internalized endodermal cells start to express the 

endoderm marker sox17 and can be morphologically distinguished from mesodermal 

cells. Endoderm initially forms a discontinuous monolayer between the mesoderm and 

the YSL, and eventually coalesces at the midline to form a rod-like structure during 

segmentation. 

Nodal signaling is both required and sufficient for mesoendoderm specification (Zorn 

and Wells 2007). Nodal-related genes belong to the activin-type subfamily of the 

Transforming Growth Factor β (TGFβ) family. In zebrafish, there are three nodal-related 

genes: Cyclops (Cyc), Squint (Sqt) and Southpaw (Spaw). Cyc and Sqt are involved in 

endoderm formation and Spaw is expressed later and has a role in left-right asymmetry 

(Schier 2003). Nodal proteins are first secreted as dimerized pre-pro-proteins that are 

activated by the kexin family of proprotein convertases [Fig. 11]. Active Nodal ligands 

bind to heteromeric transmembrane receptors with the help of an EGF-CFC co-receptor 

(One eyed pinhead in zebrafish), leading to phosphorylation of the cytosolic protein 

Smad2 (Gritsman, Zhang et al. 1999; Tremblay, Hoodless et al. 2000; Yeo and Whitman 

2001). Phosphorylated Smad2 then translocates into the nucleus and directly regulates 

target gene expression by forming transcriptional protein complexes with other 

transcription factors. The spatial, temporal, and strength of Nodal signaling can be 
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modulated at multiple levels (Schier 2003). Importantly, Nodal signaling is activated by 

Nodal ligands themselves and is antagonized by one of its targets, Lefty. Formation of a 

proper Nodal signaling gradient is critical for endoderm specification. In zebrafish, 

expression of the Nodal-related ligands Cyclops (Cyc) and Squint (Sqt) are induced by 

maternal signals from the YSL. Cells located closer to the YSL receive higher levels of 

Nodal and differentiate as endoderm, whereas cells further away from the blastula margin 

receive lower levels of Nodal and differentiate as mesoderm (Schier, Neuhauss et al. 

1997; Rodaway, Takeda et al. 1999).  
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Figure 11. Nodal signaling pathway.  
Active Nodal ligand binds to transmembrane receptors and consequent phosphorylation 
of cytosolic protein Smad2 directly activate transcription of downstream target genes. 
Adapted from Schier et al. 2003 and Zorn et al. 2007. 

 

Expression of the endodermal marker sox17 is activated by Casanova (Cas, Sox32) in 

a cell autonomous manner (Alexander, Rothenberg et al. 1999) [Fig. 12]. The induction 

of sox17 by Cas also requires Oct4, a maternally and ubiquitously distributed POU 

domain transcription factor also known as Pou2 or Pou5f1 (Lunde, Belting et al. 2004; 

Reim, Mizoguchi et al. 2004). cas is activated transcriptionally by a protein complex that 

consists of Bon (Bonnie and clyde), Gata5 (Gata related protein 5) and a T-box gene 

Eomes (Eomesodermin). Both bon and gata5 are direct downstream targets of Nodal 

signaling, whereas eomes is expressed maternally. Consistent with their hierarchy in the 

cascade, bon, gata5, cas and sox17 transcripts are present in overlapping regions of the 

embryo. bon is found in a broad band (about 8 cell diameters) next to YSL; gata5 is 

present within a 5 cell-diameter band; cas and sox17 are restricted to the two cell layer 

adjacent to the margin.  
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Figure 12. Simplified signaling cascade during endoderm formation. 
The expression of endodermal maker sox17 is induced by Nodal signaling. 

 

Heart development in zebrafish 

The primitive vertebrate heart consists of an outer epithelial layer (epicardium or 

pericardium), a middle muscular layer (myocardium) and an inner endothelial layer 

(endocardium), all of which originate from progenitors located bilaterally within the 

lateral plate mesoderm (LPM) (Stainier 2001; Serluca 2008). Cell lineage studies indicate 

that heart progenitors are located throughout the ventral and lateral regions of the embryo 

just before gastrulation. After involution, they migrate from the lateral edges of the 

embryo towards the midline where they coalesce to form a linear heart tube. This simple 

linear heart tube then undergoes complex changes leading to the formation of a fully 

developed heart with multiple chambers and valves.  

Differentiation and migration of cardiac progenitors are independent events. 

Differentiation of myocardial precursors is marked by expression of homeobox 

transcription factors that belong to the NK2 family, such as tinman in Drosophila and 
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nkx2.5 in vertebrates (Bodmer, Jan et al. 1990; Komuro and Izumo 1993; Lints, Parsons 

et al. 1993; Tonissen, Drysdale et al. 1994; Evans, Yan et al. 1995; Schultheiss, Xydas et 

al. 1995; Chen and Fishman 1996; Lee, Xu et al. 1996). In zebrafish, nkx2.5 expression in 

myocardial precursors is regulated by Gata5, Fgf8, Bmp2b (Bone morphogenetic protein 

2b (TGFβ superfamily)) and Oep (one-eyed pinhead, a member of the EGF-CFC family 

that functions as a co-receptor for Nodal signaling) (Dale, Howes et al. 1992; Jones, 

Lyons et al. 1992; Kishimoto, Lee et al. 1997; Erter, Solnica-Krezel et al. 1998; Feldman, 

Gates et al. 1998; Rebagliati, Toyama et al. 1998; Osada and Wright 1999; Reiter, 

Alexander et al. 1999; Reiter, Kikuchi et al. 2001).  

Migration of heart precursors is critical for heart morphogenesis. Disruption of 

cardiac migration progress leads to the formation of two separate hearts, a condition 

known as cardia bifida. Several mutants have been identified that cause cardia bifida in 

zebrafish and can be grouped into 3 categories (Chen, Haffter et al. 1996; Stainier, 

Fouquet et al. 1996). In the first category, cardia bifida is accompanied by the absence or 

severe disruption of endoderm formation, underscoring the developmental link between 

endoderm formation and heart morphogenesis (Jacobson and Sater 1988; Gannon and 

Bader 1995; Nascone and Mercola 1995). This group includes the mutants faust (fau; 

Gata5) (Reiter, Alexander et al. 1999), casanova (cas; Cas/Sox32) (Alexander, 

Rothenberg et al. 1999), bonnie and clyde (bon; Bon) (Kikuchi, Trinh et al. 2000) and 

one-eyed pinhead (oep; Oep) (Schier, Neuhauss et al. 1997). In the second category, 

cardiac bifida is accompanied by defects in myocardial differentiation. This group 

includes the mutants faust (fau; Gata5), hands off (han; Hand2) (Yelon, Ticho et al. 2000) 

and one-eyed pinhead (oep; Oep). In the third category, cardiac bifida seems to be 
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secondary to impaired cell-extracelluar interaction with effects on myocardial migration 

(Matsui, Raya et al. 2007). This group includes the mutants miles apart (mil; 

S1P2/sphingosine-1-phosphate receptor-2) (Kupperman, An et al. 2000), ko157 (Spns2) 

(Kawahara, Nishi et al. 2009), two-of-heart (toh; Spinster-like) (Alexander, Stainier et al. 

1998) and natter (nat; Fibronectin 1) (Trinh and Stainier 2004).  

 

Gut and liver development in zebrafish 

The zebrafish alimentary canal and associated digestive organs are endodermally 

derived (Zorn and Wells 2007). Endodermal progenitors are located along the blastoderm 

margin before gastrulation and then undergo internalization, convergence and extension 

movements to form a sparse and uniform monolayer by the end of gastrulation (Warga 

and Nusslein-Volhard 1999). During somitogenesis, endodermal cells converge dorsally 

and medially and transform from a sheet-like layer to a solid multicellular rod at the 

midline by 24hpf. These cells become polarized and subsequently form a lumen, 

transforming the endodermal rod to the endodermal tube (Horne-Badovinac, Lin et al. 

2001). This tube gives rise to the gut through a series of steps (Roberts 2000) and also 

produces signals for the proper development of accessory organs, including the liver 

(Roberts 2000). 

Viscera bifida, a condition where digestive organs (liver, pancreas) are duplicated 

along the midline, can be caused by defects in endoderm fusion during segmentation 

stages. Viscera bifida has been reported upon loss of a variety of genes, including Gata5 

(Reiter, Alexander et al. 1999), Vegfc (vascular endothelial growth factor C)  (Ober, 

Olofsson et al. 2004), Cxcl12b (a chemokine), Cxcr4a (a chemokine receptor) (Nair and 
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Schilling 2008), Sdc2 (syndecan2) (Arrington and Yost 2009), Mtx1 (Sakaguchi, Kikuchi 

et al. 2006), aPKCλ (Horne-Badovinac, Lin et al. 2001), Spt (Spade tail, a transcription 

factor) (Biemar, Argenton et al. 2001) and Kny (knypek, a glypican) (Biemar, Argenton 

et al. 2001). These studies together suggest that viscera bifida seems to be secondary to 

defects in endoderm formation or endoderm/mesoderm migration. Interestingly, genes 

implicated in cardia or viscera bifida do not completely overlap.   

 

Left-right determination in zebrafish 

The position of organs and the direction of looping appear to be evolutionally 

conserved in vertebrates. Defects in left-right asymmetry often couple with disease. The 

normal disposition of internal organs is called situs solitus. Situs inversus totalis (or 

Kartagener’s syndrome) refers to a situation where the positions of all internal organs are 

completely reversed. This is the only type of L/R asymmetry defect that does not cause 

major effects on health and is often under-detected. In contrast, other L/R asymmetry 

defects that fail to either properly specify L/R axes or coordinate asymmetric 

development of multiple organs can have grave consequences, such as isomerism 

(symmetrical organ morphology, for example, asplenia or polysplenia) or heterotaxia 

(partial organ reversal, for example dextrocardia) (Capdevila, Vogan et al. 2000; Mercola 

and Levin 2001; Fliegauf, Benzing et al. 2007). 

The left-right axis of the embryo is determined after the establishment of dorsal-

ventral (D-V) and anterior-posterior (A-P) axes and is a result of cascades of 

asymmetrically expressed genes (Raya and Izpisua Belmonte 2006). The process of left-

right determination can be conceptually divided into three continuous steps: 1) breaking 
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of initial symmetry, 2) stabilization and propagation of L/R asymmetry signals in the 

lateral plate mesoderm (LPM) and 3) induction of asymmetric morphology of internal 

organs. Although there is not a unique and universal model regarding how the 

asymmetric signals are initiated, the later steps of L/R patterning are quite conserved 

from zebrafish to chick and mouse. 

 

Breaking of initial symmetry 

At the very beginning of embryonic development, the two sides of the embryo are 

indistinguishable. Initial symmetry is broken in a process that is not yet completely 

understood. Evidence suggests that leftward “nodal flow” is indispensable for and 

probably initiates the symmetry breaking in both mouse and zebrafish. Nodal flow is 

generated by ciliary movement in the “node”, a transient embryonic structure that is 

conserved throughout vertebrates (Hensen’s Node in bird, Spemann’s organizer in 

Xenopus and Kupffer’s Vesicle in teleost fish) (Essner, Vogan et al. 2002; Nonaka, 

Yoshiba et al. 2005). Studies in mouse indicate that the leftward nodal flow is sensed by 

the left side of the node, inducing left-sided intracellular Ca2+ release and asymmetric 

expression of downstream genes only on the left side of the embryos (Nonaka, Tanaka et 

al. 1998; McGrath, Somlo et al. 2003; Tabin and Vogan 2003; Tanaka, Okada et al. 2005; 

Fliegauf, Benzing et al. 2007). In zebrafish, the structure equivalent to the mouse node is 

called “Kupffer’s vesicle” (KV). Both the formation and function of the KV are required 

for proper left-right patterning. The KV is derived from dorsal forerunner cells (DFCs), 

which derive from ingression of dorsal surface epithelial (DSE) cells at the dorsal 

blastoderm margin between the sphere and 50% epiboly stages (prior to gastrulation) 
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(Oteiza, Koppen et al. 2008) (Fig. 13). This process is under the control of Nodal 

signaling. Reduced Nodal signaling decreases DFC number, while enhanced Nodal 

signaling increases DFC number, leading to ectopic KV formation (Choi, Giraldez et al. 

2007; Oteiza, Koppen et al. 2008). During early gastrulation, DFCs migrate at the leading 

edge of the blastoderm margin towards the vegetal pole by attaching to dorsal marginal 

enveloping layer (EVL) cells. At the end of gastrulation, DFCs dissociate from dorsal 

marginal EVL cells and rearrange into rosette-like cell clusters (Oteiza, Koppen et al. 

2008). During early somitogenesis, DFC clusters fuse into a single rosette structure and 

subsequently undergo a series of maturation steps, including mesenchymal to epithelial 

transition (MET), apical membrane clustering, formation and expansion of the KV 

lumen, and ciliogeneis (Amack, Wang et al. 2007). The KV reaches maturaty at the 6-

somite stage, represented by a spherical structure with a fluid-filled interior lumen and 

monocilia on the lumen apical surface. During late somitogenesis, the KV collapses and 

DFCs incorporate into notochord, somites, and tail mesenchyme. Defects in KV 

morphogenesis impair L/R determination (Amack and Yost 2004; Amack, Wang et al. 

2007; Kreiling, Balantac et al. 2008; Schneider, Houston et al. 2008). 
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Figure 13. Ingression of dorsal forerunner cells.  
Dorsal forerunner cells (DFC), the progenitors of Kupffer’s vesicle, are derived from 
ingression of dorsal surface epithelial (DSE) cells. Adapted from Oteiza et al. 2008. 
 

 

Cilia distribution and positioning and ciliary motility are essential for KV function 

and generation of leftward nodal flow. In zebrafish, more cilia are found on the anterior-

dorsal surface of the KV as compared to the posterior-ventral surface, protruding towards 

the KV lumen (Kreiling, Williams et al. 2007; Okabe, Xu et al. 2008). As in mice, 

zebrafish cilia tilt posteriorly (Cartwright, Piro et al. 2004; Kramer-Zucker, Olale et al. 

2005; Okabe, Xu et al. 2008; Supatto, Fraser et al. 2008). Such distribution and 

positioning of cilia ensures the generation of a net leftward flow instead of a vortex in the 

KV lumen as a result of the clockwise rotation of cilia. Mice or zebrafish lacking primary 

cilia or ciliary motility have randomized L/R patterning (Nonaka, Tanaka et al. 1998; 
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Marszalek, Ruiz-Lozano et al. 1999; Okada, Nonaka et al. 1999; Supp, Brueckner et al. 

1999; Takeda, Yonekawa et al. 1999; Murcia, Richards et al. 2000). In zebrafish, Fgf 

signaling and downstream effectors Foxj1, Rfx2, Ier2 and Fibp1 regulate general 

ciliogenesis (Stubbs, Oishi et al. 2008; Yu, Ng et al. 2008; Hong and Dawid 2009; 

Neugebauer, Amack et al. 2009; Yamauchi, Miyakawa et al. 2009). Intracellular calcium 

levels and soluble inositol phosphates also have important functions in ciliary motility 

(Sarmah, Latimer et al. 2005; Sarmah, Winfrey et al. 2007; Shu, Huang et al. 2007). 

 

Propagation and reinforcement of asymmetric signals 

In all vertebrates, the transient and subtle asymmetric signals generated by the initial 

symmetry breaking events need to be converted into robust asymmetric expression of 

Nodal signaling in the left lateral plate mesoderm (LPM). Nodal is a determinant for 

leftness (possibly by inducing expression of pitx2, as discussed below). Bilateral LPM 

expression of nodal leads to left isomerism (Meno, Shimono et al. 1998) whereas, lack of 

nodal expression leads to right isomerism (Oh and Li 1997; Gaio, Schweickert et al. 

1999; Yan, Gritsman et al. 1999). 

Transferring of asymmetric signals from the KV to the LPM in zebrafish is not well 

understood but evidence suggests a mechanism similar to the “self-enhancement and 

lateral-inhibition” model in mice (Nakamura, Mine et al. 2006). In mice, Nodal positively 

regulates itself, as well as Lefty1 and 2, whereas both Lefty1 and 2 antagonize Nodal, 

thus creating a negative feedback loop (Raya and Izpisua Belmonte 2006) (Fig. 14). 

Nodal flow initially generates a small difference in Nodal expression levels between the 

left and right side of node. Leftward diffusion of Nodal signals to the LPM is enhanced 
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by Nodal itself while rightward diffusion is blocked by Lefty1 expression in the midline 

(Brennan, Norris et al. 2002; Saijoh, Oki et al. 2003; Saijoh, Oki et al. 2005).  

 

 

Figure 14. Propagation and reinforcement of Nodal signaling in the left LPM in 
mouse.  
Nodal signaling is enhanced by itself and antagonized by Lefty. Adapted from (Hamada, 
Meno et al. 2002). 

 

In zebrafish, the nodal-related ligand southpaw (spaw) is expressed bilaterally in the 

region peripheral to KV at the 4-6-somite stage (Long, Ahmad et al. 2003), in good 

agreement with the self-enhancement and lateral-inhibition model, Starting from the 10-
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12-somite stage, spaw is present in the LPM, first bilaterally in the posterior region of the 

embryos, and then asymmetrically on the left as it expands anteriorly.  

 

Asymmetric morphogenesis of internal organs 

The final step of L/R patterning is the interpretation of asymmetric signaling by 

individual organ primordia, resulting in morphological or positional asymmetry of 

individual organs. Pitx2, a bicoid-type homeobox transcription factor is the major 

downstream effector of Nodal signaling and responsible for translating Nodal signaling to 

organ-specific morphogenesis (Logan, Pagan-Westphal et al. 1998; Piedra, Icardo et al. 

1998; Ryan, Blumberg et al. 1998; Yoshioka, Meno et al. 1998; Campione, Steinbeisser 

et al. 1999; Shiratori, Sakuma et al. 2001). The involvement of Pitx2 in lateral 

development is conserved in all vertebrates (Campione, Steinbeisser et al. 1999; Patel, 

Isaac et al. 1999; Bisgrove and Yost 2001). Consistent with its function, pitx2 is present 

in the left LPM shortly after nodal expression and persists much longer in many organ 

promordia in an asymmetric pattern (Logan, Pagan-Westphal et al. 1998; Piedra, Icardo 

et al. 1998; Ryan, Blumberg et al. 1998; St Amand, Ra et al. 1998; Yoshioka, Meno et al. 

1998). The exact pathways downstream of Pitx2 that are required for asymmetric 

morphogenesis are organ-specific (Schilling, Concordet et al. 1999; Bisgrove, Essner et 

al. 2000).  

 

Midline barrier 

A midline barrier, which may be physical as well as molecular in nature, is required 

to separate left from right once asymmetric signals are established. Vertebrates with 
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impaired midline structures, such as the floor plate and notochord, display randomized 

L/R patterning or discordance in positioning among different organs (heterotaxia) (Danos 

and Yost 1996; Lohr, Danos et al. 1997; Bisgrove, Essner et al. 2000; Chin, Tsang et al. 

2000; Liang, Etheridge et al. 2000). At the molecular level, Lefty1 (Antivin in Xenopus) 

has been suggested to function as a midline barrier to prevent left-sided Nodal signaling 

from crossing the midline (Long, Ahmad et al. 2003; Wang and Yost 2008). Embryos 

lacking Lefty1 develop normal floor plate and notochord but bilaterally expressed nodal 

signaling and isomerism (Meno, Shimono et al. 1998).  

 

Gata5 

Members of the GATA family are transcription factors that bind to the consensus 

DNA sequence (A/T) GATA (A/G) (Evans, Reitman et al. 1988). They contain one or 

two zinc-finger DNA-binding domains (Patient and McGhee 2002). Six Gata members 

have been identified in vertebrates and can be categorized into two groups based on 

sequence similarity and expression patterns (Reiter, Alexander et al. 1999; Heicklen-

Klein, McReynolds et al. 2005). Gata1/2/3 function in hematopoiesis, whereas Gata4/5/6 

regulate development of endoderm and numerous endoderm and mesoderm derived 

organs. Members within each group possess redundant but distinctive expression patterns 

and functions (Heicklen-Klein, McReynolds et al. 2005). 

Interestingly, in addition to regulating differentiation of endoderm and internal 

organs, Gata4-6 have also been implicated in cancer progression. Gata4 and Gata5 have 

been suggested to act as tumor suppressors, whereas Gata6 seems to have oncogenic 

properties (Capo-chichi, Roland et al. 2003; Shureiqi, Zuo et al. 2007; Kwei, Bashyam et 
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al. 2008).  Hypermethylation of Gata4 and Gata5 promoter regions has been reported in 

human lung, colorectal, gastric and esophageal squamous cancer cell lines, accompanied 

with reduced Gata4/5 expression. (Akiyama, Watkins et al. 2003; Guo, Akiyama et al. 

2004; Hellebrekers, Lentjes et al. 2009).   

 

In this study, we showed that miR-92 regulates endoderm specification and formation 

of Kupffer’s vesicle, with effects on left-right patterning in zebrafish. Gata5 is a target of 

miR-92. Alteration of Gata5 can partially rescue miR-92 gain- and loss-of-function 

defects. Our results reveal a novel and essential role of miR-92 during early vertebrate 

development. 

 

Materials and methods 

 

Zebrafish lines and maintenance 

Wild-type AB and sox17:gfp (Sakaguchi, Kikuchi et al. 2006) lines of zebrafish were 

used.  Embryos were grown at 28oC in egg water and staged according to morphology 

(Kimmel, Ballard et al. 1995) and age (hours post-fertilization). 

 

Microinjection 

Zebrafish embryos were injected at the one cell stage with miRNAs, morpholinos, or 

mRNA reporters.  miR-92a, miR-92b, and control miRNAs were prepared by annealing 

single-stranded RNAs synthesized by IDT:   

miR-92a sense: 5’-UAUUGCACUUGUCCCGGCCUGUUU-3’ 
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miR-92a antisense: 5’-ACAGGCCGGGACAAGUGCAAUAUU-3’ 

miR-92b sense: 5’-UAUUGCACUCGUCCCGGCCUCCUU-3’ 

miR-92b antisense: 5’-GGAGGCCGGGACGAGUGCAAUAUU-3’ 

ctrl mRNA sense: 5’-CUCUAGGUUAAACUCCUGGUU-3’ 

ctrl miRNA antisense: 5’-UUGAGAUCCAAUUUGAGGACC-3.  

Annealing was performed by mixing equal amounts of sense and antisense strands, 

heating to 65oC for 5 min., and gradually cooling to room temperature.  Annealed 

duplexes were aliquoted and stored at -80C.  Unless otherwise indicated, 0.5ng of miR-

92a and b were injected.  Control miRNAs were injected at 1ng per embryo.   

All morpholinos were obtained from Gene Tools LLC with the following sequences: 

MO92a1: 5’-ACAGGCCGGGACAAGTGCAATA-3’ 

MO92a2: 5’-CACACAGCATTGCTACCAATCCCAA-3’  

MO92a2’: 5’-CACAGAGCATTGCGGCCGATCCCAA-3’ 

MO92b1: 5’-GGAGGCCGGGACGAGTGCAATA-3’ 

MO92b2: 5’-TGAACAACACTGCACAACATCCCAC-3’ 

Unless otherwise indicated, 1ng of MO92a1 and MO92b1 were injected per embryo and 

referred to as MO1; 3ng of MO92a2, MO92a2’ and MO92b2 were injected per embryo 

and referred to as MO2.  Standard control morpholinos (GeneTools) were injected at 

10ng per embryo.  1pmol of a gata5 translation blocker morpholino (5’-

AAGATAAAGCCAGGCTCGAATACAT-3’) were injected per embryo (Holtzinger and 

Evans 2007).  In vitro transcribed, capped GFP reporter mRNAs and gata5 mRNAs were 

injected at 25pg and 20pg per embryo, respectively.  
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Dorsal forerunner cell injections were performed as described (Amack and Yost 2004).  

For delivery of miR-92 into DFCs, embryos were injected with 1ng of miR-92 a and b 

mixture at 3hpf. 

 

Molecular cloning 

The gata5 (NM_131235.2) 3’UTR was amplified by RT-PCR using a forward primer 

(5’-CCACCGAATTCTGATCCGAGACC-3’) and a reverse primer (5’-

GGAGGCTCGAGAAACGATATAATTCC-3’).  The resulting cDNA was cloned 

downstream of the GFP open reading frame in the pCS2+ vector (Rupp, Snider et al. 

1994).  Deletion of both MREs was created by reverse PCR (Coolidge and Patton 1995) 

using the following primers: gata5 D1F, 5'-TCCACCAAAAATATGGTGGATG-3'; 

gata5 D1R, 5'-ACATCATAGATATGCCACCATAAATCA-3'; gata5 D2F, 5'-

GACCCGCGCCGCTT-3'; gata5 D2R, 5'-GGAATACAATACAACATTGACAGAGTC-

3'.  All clones were verified by DNA sequencing.   

 

In situ hybridization 

Embryos were fixed in 4% paraformaldehyde (PFA)/1xPBS.  Digoxygenin-labeled RNA 

probes were synthesized using a Roche DIG RNA labeling kit.  cDNA templates included 

foxa3 (Field, Ober et al. 2003), cmlc2 (Yelon, Horne et al. 1999), sox17 (Amack and Yost 

2004), ntl (Schulte-Merker, Hammerschmidt et al. 1994), lrdr (Essner, Amack et al. 

2005), foxj1 (Neugebauer, Amack et al. 2009), fgf8 (Yamauchi, Miyakawa et al. 2009).  

Whole-mount in situ hybridization was performed as described (Thisse and Thisse 2008).   
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Embryos were mounted in 100% glycerol and images were obtained using a Zeiss 

Axiophot camera. 

 

Northern blotting 

Total RNA from zebrafish embryos was separated on 12% acrylamide gels and 

electroblotted to positively charged nylon membranes.  DNA oligonucleotides 

complementary to miR-92 were labeled with α-32P-dATP using Starfire labeling kits 

(IDTDNA).  Hybridizations were carried out in 7% SDS and 0.2M NaPO4, pH7.2 for 

16hr followed by washes in 2XSSPE-0.1%SDS. 

 

qRT-PCR 

Total RNA from embryos at 90% epiboly was isolated using TRI reagent (Molecular 

Research Center, Inc).  cDNAs were prepared from 20 ng of total RNAs and quantitative 

PCR was performed using the Power SYBR Green PCR Master Mix (Applied 

Biosystems) on an iCycler iQ Multicolor machine (Bio-Rad).  Primer sequences were 5'-

GGTGTGGGCGAAAGATGAGC-3' (forward) and 5'-CTCGTAGACGTTCGGCCTCC-

3' (reverse).  The annealing temperature was 60oC. 

 

Immunoblotting 

Proteins were extracted from deyolked 1dpf embryos in lysis buffer (25mM HEPES, pH 

7.5, 5mM MgCl2, 300mM NaCl, 1mM EDTA, 0.2mM EGTA, 1Mm DTT, 10% glycerol, 

1.0% Triton X-100 and 1mM PMSF).  20µg of total protein were then separated on 10% 

SDS-polyacrylamide gels and transferred to PVDF-plus membranes.  Rabbit polyclonal 
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antibodies against GFP (Torrey Pines Biolabs) and α-tubulin (Abcam) were used at 

concentrations of 1:1000 and 1:500, respectively.  Anti-rabbit HRP conjugated secondary 

antibodies (GE Healthcare) were then used for visualization with ECL.  For 

quantification, GFP levels were normalized to a-tubulin control levels after which the 

ratio of GFP in the presence of miR-92 was determined compared to that in the absence 

of miR-92. 

 

Immunohistochemistry 

Embryos were fixed in 4% paraformaldehyde (PFA)/1xPBS, permeabilized in 0.5% 

Triton X-100/1xPBS for 1hr., followed by incubation in blocking buffer (5% donkey 

serum, 5mg/ml BSA, 1%DMSO, 0.1% Tween-20 in 1xPBS) at room temperature for 

2hrs.  Mouse polyclonal antibodies against acetylated tubulin (Sigma) were diluted to 

1:800.  Cy3 conjugated secondary antibodies against mouse IgG (Jackson 

ImmunoResearch) were used at 1:100 dilution.  Embryos were mounted in GVA mount 

(Invitrogen).  Samples were imaged on a Zeiss LSM 510META confocal microscope. 

 

Results 

 

Overexpression of miR-92 results in partial viscera and cardia bifida 

To characterize the function of miR-92 during early vertebrate development, we 

performed both gain- and loss-of-function experiments.  miR-92 is among the earliest 

expressed miRNAs detected during zebrafish development following analysis by deep 

sequencing (Wei and Patton, manuscript in preparation).  It localizes to the developing 
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gut, liver and heart by 2-3 days post-fertilization (dpf) (Wienholds, Kloosterman et al. 

2005).  Gain-of-function experiments were performed by injecting miR-92 into zebrafish 

embryos at the one-cell stage followed by assessment of the effects on gut and liver 

tissues by in situ hybridization with the pan-endodermal marker foxa3 (forkhead box a3) 

(Reiter, Alexander et al. 1999).  In non-injected controls (NIC), foxa3 localized to the 

developing gut tube, liver and pancreas primordia at 50 hours post-fertilization (hpf) with 

liver on the left and pancreas on the right side of midline (Fig. 15A,B).  Strikingly, miR-

92 injection caused over 70% of the embryos to display aberrant foxa3 localization, 

showing a bifurcated gut tube with duplication of liver primordia (Fig. 15A,B).  A similar 

phenotype was previously observed and referred to as viscera bifida (Nair and Schilling 

2008).  For the remaining embryos, 20% showed localization of foxa3 along the midline, 

indicating a lack of gut looping, and another 3% had undetectable levels of foxa3, 

suggesting possible defects in endodermal specification.   
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Figure 15. miR-92 Gain-of-Function. 
Gain-of-function experiments were performed by injection of single cell embryos with 
miR-92 followed by localization of specific markers, as indicated. 
(A) Localization of foxa3 in wild type embryos and those injected with miR-92 at 50hpf. 
All views are dorsal with anterior to the top.  Pictures show representative embryos with 
liver primordia localized to either the left (L), right (R), midline (M), or bilateral (B) 
positions.  
(B) Percentages of left (L), right (R), midline (M), or bilateral (B) localization of foxa3 in 
non-injected control (NIC) (n=188), miR-92 injected (n=37) and control miRNA injected 
embryos (n=90).  In rare cases, no expression of foxa3 was detected (absent; A).  
(C) Localizion of cmlc2 in wild type and embryos injected with miR-92 at 30hpf. All 
views are dorsal with anterior to the top. Pictures show representative embryos with 
cardiac primordia localized to the left (L), right (R), midline (M), or bilateral (B).  
(D) Percentages of left (L), right (R), midline (M), and bilateral (B) localization of cmcl2 
in non-injected controls (NIC) (n=103), miR-92 injected (n=98), and control miRNA 
injected embryos (n=53).  
(E-H) Localization of sox17-positive cells in wild type embryos and miR-92 
overexpressing embryos at 90% epiboly. (E,G) Dorsal views with anterior to the top. 
(F,H) Lateral views with dorsal to the right of pictures.  
(I) Numbers of sox17-positive cells in NIC (n=16) and miR-92 injected embryos (n=11). 
Error bars represent SEM. Asterisk represents statistical significance determined by 
Student’s t-test, p<0.01. 
 

The developing heart is also enriched for miR-92 and its development depends 

indirectly on the proper establishment of endodermal fates.  Thus we also tested the 

effects of miR-92 overexpression on heart development by examining the localization of 

the cardiac marker cmlc2 (cardiac myosin light chain 2) (Reiter, Alexander et al. 1999).  

In NICs, cmlc2 localized to cardiac primordia on the left side of the embryo at 30hpf, as 

expected (Fig. 15C,D).  In contrast, injection of miR-92 caused over 85% of the embryos 

to display bilateral cmlc2 expression indicating failure of heart fusion, referred to as 

cardia bifida {Reiter, 2001 #16240;Reiter, 1999 #16226;Holtzinger, 2007 

#16559;Stainier, 1996 #22913}.  The remaining 15% of embryos showed cmlc2 along the 

midline, indicating an inability of the heart tube to undergo normal looping.  The 

specificity of these the gain-of-function experiments was supported by the absence of 
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defects caused by injection of unrelated and control miRNAs on foxa3 or cmlc2 

expression (Fig. 15B,D).  Also, the effects of miR-92 were dose dependent (Table 1). 

 
Table 1. Dose dependent effects of miR-92 gain-of-function.  
(A) Percentages of left (L), right (R), midline (M), bilateral (B) localization of foxa3 in 
non-injected controls (NIC), miR-92 injected, and control miRNA injected embryos. 
Occasionally, no foxa3 was detected (absent, A). 
(B) Percentages of left (L), right (R), midline (M) and bilateral (B) localization of cmlc2 
in non-injected controls (NIC), miR-92 injected, and control miRNA injected embryos. N 
represents number of total embryos analyzed in each condition. 

 
 

Overexpression of miR-92 results in a reduction of endoderm 

Viscera and cardia bifida result from the failure to coalesce the relevant 

mesendodermal organ progenitors at the midline during the segmentation stages and may 

be secondary to a variety of earlier defects in endoderm or mesoderm formation (Schier, 

Neuhauss et al. 1997; Alexander, Rothenberg et al. 1999; Reiter, Alexander et al. 1999; 

Kikuchi, Trinh et al. 2000; Reiter, Kikuchi et al. 2001; Ober, Olofsson et al. 2004; Nair 

and Schilling 2008).  To address this issue, we examined the effects of miR-92 gain-of-

function on the expression of genes that act early in the specification and determination 

of endoderm and mesoderm.  No significant defects were detected in mesoderm 
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formation with or without miR-92 injection, as indicated by the normal expression pattern 

of ntl (Fig. 16I-P).  In contrast, miR-92 injection caused a clear and dramatic decrease in 

the number of early endoderm-specified cells, as indicated by decreased numbers of 

sox17- and sox32-(casanova) positive cells at the end of gastrulation (Fig. 15E-I and 

Supplemental Fig. 16A-H).  This suggests a selective impairment in the formation of 

endodermal cells with no effect on the formation of the mesodermal germ layer. 
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Figure 16.  Expression of casanova and no tail transcripts in wild type, miR-92 gain-
of-function, and miR-92 loss-of-function embryos.  
(A,C,E,G,I-L) Dorsal views with anterior to the top.  (B,D,F,H,M-P) Lateral views with 
embryonic dorsal to the right of pictures.  cas expression is down-regulated by miR-92 
gain-of-function and up-regulated by miR-92 loss-of-function.  ntl expression is not 
significantly altered by mis-regulation of miR-92. 
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Depletion of miR-92 results in aberrant left-right patterning of internal organs 

We next performed loss-of-function experiments using antisense morpholinos to 

block miR-92 activity during early development (Fig. 17,18).  In NICs, the localization of 

foxa3 to the developing liver was primarily on the left side at 50hpf (Fig. 19A).  

However, injection of morpholinos against miR-92 resulted in 20-40% of the embryos 

displaying abnormal left-right localization of foxa3 in the developing liver.  Similarly, 

40% of the morphants showed localization of cmcl2 to either the right or the middle, 

compared to normal left sided heart patterning in NICs (Fig. 19B).  Thus, loss of miR-92 

resulted in a significant incidence of aberrant left-right patterning.   
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Figure 17. Morpholino design.  
MO1 is a mixture of two morpholinos that target mature miR-92a and b.  MO2 is a 
mixture of three morpholinos that target the loop regions of pre-miR-92a and b. 
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Figure 18. Knockdown of miR-92.   
Northern blot of miR-92 levels in the absence or presence of combinations of 
morpholinos targeting miR-92. 
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Figure 19. miR-92 loss-of-function. 
Loss-of-function experiments were performed by injection of antisense morpholinos 
against miR-92 into single cell embryos followed by localization of markers, as indicated. 
(A) Percentages of left (L), right (R) and midline (M) localized foxa3 in non-injected 
controls (NIC) (n=188), MO1 injected (n=55), MO2 injected (n=15), MO1+2 injected 
(n=126), and control MO injected embryos (n=56).  
(B) Percentages of left (L), right (R) and midline (M) localized cmcl2 in non-injected 
controls (NIC) (n=103), MO1 injected (n=102), MO2 injected (n=97), MO1+2 injected 
(n=62), and control MO injected embryos (n=53).  
(C-F) Confocal z-stack images of Kupffer’s vesicle in NICs, MO1 injected (MO1), MO2 
injected embryos (MO2) and miR-92 morphants co-injected with miR-92 RNA into the 
dorsal forerunner cells (Rescue) at the10-somite stage using a sox17:gfp (green) 
transgenic line which labels KV cells green.  Motile cilia were identified by 
immunohistochemistry with antibodies against acetylated tubulin (red).  
(G) GFP-positive KV cells were counted and cilia length measured in the indicated 
embryos.  Error bars represent SEM.  Asterisks represent statistical significance as 
determined by Student’s t-test, p<0.01 for KV cell number between miR-92 morphants 
and NICs, p<0.05 for cilia length and p<0.05 for KV cell number between miR-92 
morphants and rescue embryos.  
(H-K) Localization of sox17-positive cells in wild type embryos and miR-92 morphants at 
90% epiboly.  (H,J) Dorsal views with anterior to the top. (I,K) Lateral views with dorsal 
to the right of pictures.  
(L) Numbers of sox17-positive cells in NICs (n=16) and miR-92 morphants (n=13). Error 
bars represent SEM. Asterisk represents statistical significance determined by Student’s 
t-test, p<0.01. 
 

Several lines of evidence suggest that the observed left-right asymmetry defects are 

specific to depletion of miR-92.  First, two independent morpholinos (MO1 and MO2) 

yielded identical dose dependent results (Fig. 19A,B).  Second, synergistic and similar 

effects were observed upon co-injection of both morpholinos at much lower doses 

compared to individual injections.  Third, the defects were dose dependent (Table 2).  

Fourth, injection of control MOs did not affect left-right localization of either marker 

(Fig. 19A,B). 
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Table 2. Dose dependent effects of miR-92 loss-of-function.  
Percentages of left (L), right (R) and midline (M) localized foxa3 in non-injected controls 
(NIC), MO injected, and control MO injected embryos. N represents number of total 
embryos analyzed in each condition. 

 

 

Depletion of miR-92 alters Kupffer’s vesicle function 

Specification of left-right patterning is highly regulated and propagated through 

several stages of embryogenesis in a complex genetically controlled program (Hamada, 

Meno et al. 2002; Raya and Izpisua Belmonte 2006; Bakkers, Verhoeven et al. 2009). In 

zebrafish, motile cilia in Kupffer’s vesicle (KV) appear to be critical for left-right 

asymmetry, analogous to their counterparts in the node in amniotes (Amack and Yost 

2004; Amack, Wang et al. 2007).  Evidence gathered from both zebrafish and mouse 

embryos suggests a strong connection between node/vesicle structures and proper left-

right patterning, especially the flow generating function of primary cilia (Nonaka, Tanaka 

et al. 1998; Marszalek, Ruiz-Lozano et al. 1999; Okada, Nonaka et al. 1999; Supp, 

Brueckner et al. 1999; Takeda, Yonekawa et al. 1999; Murcia, Richards et al. 2000; 

Amack and Yost 2004; Amack, Wang et al. 2007; Kreiling, Balantac et al. 2008; 

Schneider, Houston et al. 2008).  We therefore tested for KV defects in the miR-92 
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morphants.  To visualize the KV, we used a sox17:gfp transgenic line to label KV cells 

with GFP.  Immediately obvious was a substantial reduction of cell numbers within KV 

in the miR-92 morphants (Fig. 19C-E,G).  To evaluate further the structural deficits in 

KV function in the miR-92 morphants, we examined the number and length of monocilia 

within KV by performing immunohistochemistry using antibodies against acetylated 

tubulin (Essner, Amack et al. 2005).  A significant reduction in cilia number was 

observed and a modest but significant decrease in length was also observed in miR-92 

morphants (Fig. 20, Fig. 19G).  These results suggest that miR-92 is required for the 

proper development of KV and cilia within KV.   

To ensure that the KV defects were specific to loss of miR-92, we performed rescue 

experiments in which exogenous miR-92 was expressed in dorsal forerunner cells 

(Amack and Yost 2004).  Dorsal forerunner cells are the progenitor cells that form KV 

and if loss of miR-92 from these cells is responsible for the observed defects, we should 

be able to rescue the defects by targeted miR-92 gain-of-function experiments in the 

dorsal forerunner cells of morphant embryos.  As shown in Fig. 19F-G, specific 

restoration of miR-92 expression in dorsal forerunner cells was able to partially but 

significantly rescue KV size in morphant embryos.  This indicates that the observed KV 

defects are specific to miR-92 depletion in dorsal forerunner cells. 
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Figure 20. Kupffer’s vesicle cilia number is reduced in miR-92 morphants and gata5 
gain-of-function embryos.  
(A) KV cilia were counted in NICs, MO1 injected and MO2 injected embryos.   
(B) KV cilia were counted in NICs and gata5 RNA injected embryos.  Error bars 
represent SEM.  Asterisks represent statistical significance as determined by Student’s t-
test, p<0.01. 
 

Depletion of miR-92 results in increased endoderm 

Normal KV development from dorsal forerunner cells requires both endodermal and 

mesodermal signals, in addition to genes involved in general ciliogenesis (Alexander, 

Rothenberg et al. 1999; Amack and Yost 2004; Amack, Wang et al. 2007; Oteiza, 

Koppen et al. 2008; Neugebauer, Amack et al. 2009).  We therefore examined the 

expression and localization of markers involved in both general ciliogenesis and the 

formation of endoderm and mesoderm.  No significant defects in general ciliogenesis or 

mesoderm formation were detected, as indicated by normal expression of lrdr, foxj1, fgf8 

and ntl, as well as the normal development of motile cilia in the pronephros and inner ear 

(Fig. 16, 21).  In contrast, loss of miR-92 caused a dramatic increase in the number of 

sox17-positive endodermal cells and these cells were much more spread out at the end of 

gastrulation, indicating defects in endoderm formation (Fig. 19H-L).  Consistent with 
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increased cell number, there was an overall 1.6-fold increase in sox17 mRNAs in the 

miR-92 morphants, as detected by quantitative RT-PCR.  This increase could be 

suppressed by co-injection of miR-92 (Fig. 22).  Taken together, these results suggest that 

miR-92 is required for proper endoderm specification and for the development of 

structures critical for controlling later fundamental aspects of organogenesis and overall 

body patterning. 
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Figure 21. Ciliogenesis is not disrupted in miR-92 morphants.  
(A-B) Expression of lrdr in wild type and MO injected embryos at 90% epiboly.  
(C-D) Expression of foxj1 in wild type and MO injected embryos at 100% epiboly.  
(E-F) Expression of fgf8 in wild type and MO injected embryos at the 6-somite stage.  
(G-J) Motile cilia in the inner ear are intact in wild type embryos, miR-92 gain-of-
function, and miR-92 loss-of-function embryos at 1dpf.  
(K-N) Motile cilia in the pronephros are intact in wild type embryos, miR-92 gain-of-
function, and miR-92 loss-of-function embryos at 1dpf. Red, cilia staining using 
antibodies against acetylated tubulin. Blue, SYTO59 staining of nuclei. 
 

 

Figure 22. Quantitation of sox17 expression.  
Real time RT/PCR was performed on RNA isolated from whole embryos at 90% epiboly 
using primers complementary to sox17.  A 1.6-fold increase in sox17 levels was observed 
in miR-92 morphants, but not in embryos injected with control morpholino. Co-injection 
of miR-92 rescued this increase. Error bars represent SEM. Asterisks represent statistical 
significance between injected embryos and NICs as determined by Student’s t-test, 
p<0.01, n>3. 
 

gata5 is a target of miR-92 

Online target prediction algorithms were used to search for potential targets of miR-

92.  Zinc finger transcription factor Gata-binding protein 5 (Gata5) was identified as a 

potential target containing two potential miRNA recognition elements (MREs) in its 
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3’UTR (Fig. 23A).  Gata5 is a critical regulator of vertebrate endoderm development as 

overexpression of Gata5 results in an increase in endodermal cell numbers while reduced 

Gata5 expression causes in a reduction in endodermal cell numbers (Reiter, Alexander et 

al. 1999; Reiter, Kikuchi et al. 2001).  Hence, gata5 is a compelling miR-92 target in the 

process of endoderm development. 
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Figure 23. gata5 is a target of miR-92.  
(A) Schematic of GFP reporter fused to the 3’ UTR of gata5. Base pairing between miR-
92 and two MREs is shown.  
(B-G) Single cell embryos were injected with mRNAs encoding GFP reporters and 
fluorescence was monitored at 1dpf.  Embyros were injected with reporters containing 
either the full-length gata5 3’UTR (full) or a construct in which both MREs were deleted 
(D12).   
(H) Western blot of lysates from embryos injected as above were performed with 
antibodies against GFP or α-tubulin as a loading control.  
(I) Quantification of relative GFP expression. Error bars represent SEM. Asterisk 
represents statistical significance between indicated injection and control embryos as 
determined by Student’s t-test, p<0.01, n>3. 
 

To determine if gata5 is a bona fide target of miR-92, we analyzed the interaction 

between the gata5 3’UTR and miR-92 using GFP reporter assays.  The full-length gata5 

3’UTR and a deletion construct lacking both MREs were cloned downstream of the GFP 

open reading frame.  RNA transcripts from these constructs were then injected into single 

cell zebrafish embryos in the presence or absence of miR-92.  The following day, GFP 

expression levels were monitored by fluorescence microscopy and by western blotting 

with antibodies against GFP.  In both assays, GFP levels were reduced by miR-92 co-

injection, dependent on the presence of intact miR-92 MREs (Fig. 23).  Importantly, co-

injection of miR-92 antisense morpholinos rescued expression of GFP in the presence of 

miR-92 (Fig. 23D,G-I).  Also, injection of a control siRNA had no effect on GFP levels 

(Fig. 23H).  These results suggest that gata5 is a bona fide target of miR-92. 

 

Regulation of gata5 by miR-92 during early zebrafish development  

The hypothesis that miR-92 targets gata5 is not only supported by the reporter assays 

but also by previous work that showed that altered levels of gata5 control endoderm 

formation, as monitored by changes in sox17 positive cell numbers (Reiter, Alexander et 
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al. 1999; Reiter, Kikuchi et al. 2001).  Also, loss of gata5 has been shown to cause cardia 

and viscera bifida (Reiter, Alexander et al. 1999; Reiter, Kikuchi et al. 2001).  However, 

no prior reports have implicated gata5 in KV defects or consequent left right asymmetry 

defects.  Thus, we sought to test directly whether miR-92 control of gata5 would induce 

KV defects and changes in body plan.  If gata5 is regulated by miR-92 during early 

zebrafish development, altered expression of Gata5 should reciprocally mirror the effects 

caused by gain and loss of miR-92 which then enables powerful genetic epistasis 

experiments to verify interaction between miR-92 and gata5. 

  First, we confirmed that knockdown of gata5 caused a reduction of sox17-positive 

cells at the end of gastrulation and that injection of gata5 mRNA caused an increase in 

sox17-positive cells (Fig. 24A-G)(Reiter, Alexander et al. 1999; Reiter, Kikuchi et al. 

2001).  Second, we confirmed that gata5 knockdown caused cardia and viscera bifida 

defects, as observed in Gata5 mutants (faust) and gata5 morphants (Reiter, Alexander et 

al. 1999; Reiter, Kikuchi et al. 2001; Holtzinger and Evans 2007)(Fig. 24L,M).  After 

confirming that our experimental system recapitulated earlier work, we then sought to 

test the effects of excess Gata5 expression on organogenesis and left-right patterning.  

Thus, we injected gata5 mRNA and determined the localization of foxa3 and cmcl2.  We 

found that 45% and 7% of embryos displayed altered left-right patterning of cardia and 

viscera primordia, respectively (Fig.24L,M).  These results show that the increase or 

reduction of endodermal cell numbers caused by raising or lowering Gata5 levels, 

together with the finding that increased and decreased levels of miR-92 have converse 

effects which can be offset by altered gata5 expression, support the idea that miR-
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92/gata5 regulatory interaction is involved in allocating correct endodermal cell numbers 

and maintaining proper left-right patterning. 
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Figure 24. gata5 effects on early zebrafish development. 
(A-F) Localization of sox17-positive cells in wild type embryos, gata5 gain-of-function, 
and gata5 loss-of-function embryos at 90% epiboly.  (A,C,E) Dorsal views with anterior 
to the top.  (B,D,F) Lateral views with dorsal to the right of pictures.  
(G) Numbers of sox17-positive cells in NICs (n=4), gata5 gain-of-function (n=7) and 
gata5 loss-of-function embryos (n=8). Error bars represent SEM. Asterisks represent 
statistical significance between injected embryos and NIC as determined by Student’s t-
test, p<0.01.  
(H,I) Confocal z-stack images of Kupffer’s vesicle in NIC and gata5 injected embryos at 
the 10-somite stage. KVs were labeled using a sox17:gfp (green) transgenic line, as 
above.  Motile cilia were labeled with antibodies against acetylated tubulin (red).  
(K) KV cell number was counted, as above.  Error bars represent SEM.  Asterisks 
represent statistical significance between NIC and gata5 gain-of-function as determined 
by Student’s t-test, p<0.01.  
(L) Percentages of left (L), right (R), midline (M), and bilateral (B) localized cmcl2 in 
non-injected controls (NIC) (n=49), gata5 gain-of-function (n=75), and gata5 loss-of-
function (n=84) embryos.  
(M) Percentages of left (L), right (R), midline (M) and bilateral (B) localized foxa3 in 
non-injected controls (NIC) (n=83), gata5 gain-of-function (n=142), and gata5 loss-of-
function (n=73) embryos. 
 

Because we discovered a link between miR-92 expression in dorsal forerunner cells 

and KV formation, it was important to determine if the Gata5-induced left-right 

asymmetry defects could be explained by defective KV formation.  Using the sox17:gfp 

transgenic line that allows visualization of KV formation, we found a dramatic reduction 

in KV cell number after Gata5 overexpression (Fig. 24H-K, Fig. 20). 

 

miR-92-mediated defects can be partially suppressed by modulation of Gata5 

Genetic epistasis experiments were next performed to test the hypothesis that miR-92 

regulates gata5.  If miR-92 acts as a negative regulator of gata5, co-injection of gata5 

mRNA with miR-92 should suppress the miR-92 gain-of-function defects.  Likewise, 

blocking gata5 function should suppress the miR-92 loss-of-function defects.  As shown 

in Fig. 25, the reduction in the number of sox-17 positive cells caused by overexpression 
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of miR-92 could be suppressed by co-injection of gata5 RNA.  Similarly, co-injection of 

gata5 morpholinos with miR-92 morpholinos suppressed the increase in the sox17-

positive cells (Fig. 25A-F).  
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Figure 25. Epistatic interaction between miR-92 and gata5. 
(A-E) Localization of sox17-positive cells in wild type and injected embryos at 90% 
epiboly.  All views are lateral with dorsal to the right.  
(F) Numbers of sox17-positive cells in NICs (n=4), miR-92 gain-of-function (n=4), miR-
92 and gata5 co-injected (n=7), miR-92 loss-of-function (n=4) and miR-92 and gata5 co-
injected (n=7) embryos.  Error bars represent SEM. Asterisks represent statistical 
significance between injected embryos and NIC as determined by Student’s t-test, 
p<0.01.  
(G) Percentages of left (L), right (R), midline (M), and bilateral (B) localized cmlc2 in 
non-injected controls (NIC) (n=112), miR-92 gain-of-function (n=67), and miR-92 and 
gata5 co-injected (n=31) embryos.  
(H) Percentages of left (L), right (R), midline (M), and bilateral (B) localized cmlc2 in 
non-injected controls (NIC) (n=97), miR-92 loss-of-function (n=61), and miR-92 and 
gata5 morpholino injected (n=81) embryos. 
 

For cardiac morphogenesis, we observed a partial but significant rescue of cmlc2 

localization upon co-injection of both miR-92 and gata5 RNA resulting in a reduction of 

cardia bifida from 40% to 6% (Fig. 25G).  Similarly, blockage of gata5 function in miR-

92 morphants resulted in a significant suppression (from 40% to 10%) of the left-right 

patterning defects (Fig. 25H).  Thus, the effects of altered miR-92 levels can be partially 

suppressed by modulating gata5 levels.  These results strongly support the hypothesis 

that miR-92 regulates endoderm formation and left-right asymmetry by controlling gata5 

expression. 

 

Discussion 

Our data suggest a model in which miR-92 is a critical regulator of early zebrafish 

development by precisely controlling gata5 expression.  During the blastula and gastrula 

stages, excess miR-92 causes a reduction in endoderm and, at later stages, cardia/viscera 

bifida by repressing gata5 expression.  In contrast, reduced levels of miR-92 cause 

increased endoderm formation, defects in Kupffer’s vesicle development, and, at later 
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stages, abnormal left-right patterning of internal organs.  Together, we have uncovered a 

novel function for miR-92 in controlling endoderm formation and left-right asymmetry by 

modulating gata5. 

 

Function of miR-92 during early development 

The miR-92 family is among the earliest expressed miRNAs during zebrafish 

development beginning at the mid-blastula stage.  Only a limited number of miRNAs 

have been analyzed for their roles during these early stages when the germ layers develop 

and the body axes are patterned (Choi, Giraldez et al. 2007; Martello, Zacchigna et al. 

2007; Rosa, Spagnoli et al. 2009). The zebrafish miR-430 family is extraordinarily 

abundant at the mid-blastula transition to target maternal messages for decay (Giraldez, 

Mishima et al. 2006). In addition, zebrafish miR-430 and its Xenopus homolog, miR-427 

are known to dampen and balance both agonists and antagonists of nodal signaling (Choi, 

Giraldez et al. 2007; Rosa, Spagnoli et al. 2009). Loss of these miRNAs leads to an 

overall reduction of nodal signaling output with reduced endoderm formation. Also, miR-

15 and miR-16 restrict the size of the organizer in Xenopus by targeting the nodal 

receptor Acvr2a. These miRNAs are ventrally enriched by canonical wnt signaling and 

act as translators of wnt gradients to control nodal responsiveness along the dorsal-ventral 

axis (Martello, Zacchigna et al. 2007). Here, we have shown a novel role for miR-92 in 

early zebrafish development in the process of endoderm formation, Kupffer’s vesicle 

function, and left-right patterning via the control of gata5.  To our knowledge, this is the 

first time that a miRNA has been identified as regulator of endoderm formation, 

vertebrate left-right asymmetry, and KV development. 
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Regulation of gata5 by miR-92 

The precise regulation of Gata5 expression is not well understood.  During zebrafish 

endoderm formation, gata5 is transcriptionally up regulated by phosphorylated Smad2 

(Shivdasani 2002).  Hypermethylation of the Gata5 promoter region has also been 

reported in various human cancer cell lines, concomitant with down-regulation of gata5 

transcription (Akiyama, Watkins et al. 2003; Guo, Akiyama et al. 2004; Guo, House et al. 

2006; Hellebrekers, Lentjes et al. 2009).  Our results suggest that gata5 is subject to post-

transcriptional regulation by miR-92.  Three lines of evidence support this hypothesis.  1) 

miR-92 silenced GFP reporter expression dependent on an intact gata5 3’UTR (Fig. 23).  

2) The effects of gain- and loss-of-function experiments with gata5 are opposite to those 

observed with miR-92 (Fig. 24).  3) miR-92-induced defects could be substantially 

suppressed by changing concentrations of gata5 in epistasis experiments (Fig. 25). 

As a downstream effector of Nodal signaling and a regulator of endoderm 

specification, Gata5 needs to be precisely controlled, both temporally and spatially.  In 

zebrafish, gata5 mRNA is found within 5 cell diameters from the blastoderm margin at 

the onset of gastrulation and overlaps with definitive endodermal cells during gastrulation 

(Warga and Nusslein-Volhard 1999; Reiter, Kikuchi et al. 2001).  Either excess 

expression or depletion of Gata5 alters endodermal cell numbers at the end of 

gastrulation (Reiter, Kikuchi et al. 2001).  We hypothesize that miR-92 contributes to the 

establishment of proper gata5 expression patterns during the blastula and gastrula stages 

which guide differentiation and allocation of proper endodermal cell numbers during 

gastrulation.  
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Interestingly, the miR-17-92 cluster is up regulated in lung cancer cell lines whereas 

gata5 is down regulated (Guo, Akiyama et al. 2004; Volinia, Calin et al. 2006).  It is 

tempting to hypothesize that both transcriptional regulation via DNA methylation and 

post-transcriptional regulation via miR-92 contribute to the silencing of gata5 in lung 

cancer.  It will be interesting to determine if gata5 is a general target of miR-92 in other 

types of tumors. 

 

Misregulation of Gata5  

We observed a decrease in sox17-positive cell numbers upon miR-92 overexpression 

or gata5 knockdown (Fig. 15,24).  We also observed both cardia and viscera bifida in 

these embryos.  The mechanisms underlying both cardia and viscera bifida are not fully 

understood.  It will be interesting to elucidate how endoderm defects cause cardia/viscera 

bifida.  An increase in endoderm formation was observed upon miR-92 knockdown or 

gata5 overexpression (Fig. 19,24), but it is yet not clear whether endoderm cell numbers 

increase at the expense of reduced mesoderm cell numbers.  Endoderm and mesoderm 

share common progenitors; endodermal cells become specified from mesodermal cells as 

a result of stronger Nodal signaling (Schier, Neuhauss et al. 1997; Warga and Nusslein-

Volhard 1999).  Perhaps miR-92 regulation of gata5 affects endoderm versus mesoderm 

fate decisions or perhaps reflects control of overall cell numbers within the endodermal 

lineage.  

Examining the localization of cmlc2 and foxa3 surprisingly revealed left-right 

patterning defects in internal organs upon either loss of miR-92 or overexpression of 

gata5.  This is the first evidence, to our knowledge, for a regulatory function for gata5 on 
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left-right asymmetry and also the first to demonstrate defects in viscera morphogenesis 

upon gata5 overexpression.  Previously, overexpression of gata5 was found to cause 

expansion and ectopic development of cardiac tissue (Reiter, Alexander et al. 1999; 

Holtzinger and Evans 2007).  Here, we did not observe significant expansion of cmlc2 

expression and we did not observe ectopic localization except for on the right side or 

midline in both the gata5 gain-of-function and miR-92 loss-of-function experiments.  One 

possible explanation for the observed differences could be due to different dosages used 

for gata5 RNA injection in the two studies.   

The exact causes of the observed KV defects upon altered miR-92 and gata5 levels 

remain to be determined.  Development of Kupffer’s vesicle from dorsal forerunner cells 

(DFCs) is a complex procedure and is not fully understood (Oteiza, Koppen et al. 2008).  

Both cell autonomous and non-autonomous signals contribute to the induction, migration, 

proliferation and polarization of DFCs (Amack and Yost 2004; Amack, Wang et al. 2007; 

Choi, Giraldez et al. 2007; Oteiza, Koppen et al. 2008).  We observed impaired KV 

development upon miR-92 loss-of-function which could be suppressed by restoration of 

miR-92 expression specifically within DFCs of miR-92 morphants.  This suggests that the 

requirement for miR-92 during KV development is cell autonomous although other 

signaling or mechanisms cannot be excluded.  Previously, diminished KVs were found in 

embryos with decreased endodermal cell numbers (Alexander, Rothenberg et al. 1999).  

Here, both miR-92 loss-of-function and gata5 gain-of-function experiment resulted in an 

increase in endodermal cell numbers and smaller KVs, but it remains unclear at what 

stage of development the KV defects arise.  
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miR-92 targets 

One explanation for the partial suppression of miR-92 defects in epistasis experiments 

with gata5 is that gata5 is not likely the only target of miR-92.  Consistent with an 

oncogenic function for miR-92, many genes involved in cell cycle control, proliferation 

or apoptosis are predicted to be targets of miR-92.  During normal gastrulation 

movements, endodermal cell migrate dorsally in a characteristic pattern.  Besides an 

increase in endodermal cell number, depletion of miR-92 caused endodermal cells to 

spread out more during migration which may indicate additional defects in cell adhesion 

or migration.  This phenotype was not observed in gata5 overexpressing embryos 

suggesting that miR-92 may regulate genes involved in cell adhesion or migration.  If 

true, this might be another way in which miR-92 contributes to cancer by controlling cell 

migration and metastasis. 
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CHAPTER IV 

 

SUMMARY AND CONCLUSIONS 

 

The research presented in this dissertation demonstrates that weak MREs (miRNA 

recognition elements) can work synergistically for gene silencing. This advances our 

understanding towards the sequence requirement for miRNA:mRNA interaction and 

facilitates the construction of better rules for computational target prediction. We have 

also identified a novel regulatory function for miR-92 during endoderm formation, KV 

function, and left-right patterning. My data suggest a model in which miR-92 is a critical 

regulator of early zebrafish development by precisely controlling gata5 expression. 

During the blastula and gastrula stages, excess miR-92 leads to a reduction in endoderm 

and, at later stages, cardiac/viscera bifida by repressing gata5 expression. In contrast, 

reduced levels of miR-92 lead to increased endoderm, defects in Kupffer’s vesicle 

development and, at later stages, abnormal left-right patterning of internal organs by up-

regulation of gata5. Taken together, we have uncovered a novel function for miR-92 in 

controlling endoderm formation and left-right asymmetry by modulating gata5. 

This work demonstrates that miRNAs play important roles during early development 

contributing to the establishment of signals that are required for proper cell specification 

and differentiation.  
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Significance and Future Directions 

 

miRNA:mRNA interaction 

To date, it remains a challenge to computationally identify miRNA target in animals, 

largely due to the lack of reliable rules for target prediction. Current bioinformatic 

prediction algorithms rely heavily on the extensive seed pairing between miRNAs and 

their targets (Bartel 2009). Perfect seed pairing has been considered to be both required 

and sufficient for miRNA function (Kloosterman, Wienholds et al. 2004; Wang, Love et 

al. 2006; Easow, Teleman et al. 2007). However, our data provide evidence that perfect 

seed pairing is not necessary for miRNA:mRNA interaction. A combination of multiple 

weak sites can work synergistically and induce silencing as effectively as a single perfect 

site.  This finding is important because it indicates that current algorithms have probably 

underestimated a large number of bona fide targets by sticking to the seed rule. Indeed, in 

agreement with this possibility, experimental studies have often identified targets that 

violate the seed rule (Reinhart, Slack et al. 2000; Johnston and Hobert 2003; Flynt, Li et 

al. 2007; Stern-Ginossar, Elefant et al. 2007). Therefore, an update of current algorithms 

is clearly needed. The weight placed on seed pairing should be reduced and instead, other 

features in the 3’UTR, including multiple MREs, should be granted a much higher 

weight.  

Here, we showed that a single miRNA can efficiently down regulate gene expression 

by simultaneously targeting multiple MREs in the 3’UTR. Since a given 3’UTR usually 

contains potential MREs for different miRNAs, I hypothesize that different miRNAs can 
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also act synergistically on a single 3’UTR in a similar manner. How can multiple weak 

sites work synergistically? Perhaps transient and unstable recruitment of RISCs to the 

3’UTR may be guided by interactions between the miRNA and each weak MRE. When 

several weak MREs are present in the 3’UTR in tandem, it is possible that persistent and 

stable recruitment of RISCs to the 3’UTR can be achieved as a result of association-

dissociation dynamics, leading to comparable effects on gene silencing. In other words, 

small silencing signals from individual miRNA:MRE pairs can facilitate dynamic RISC 

recruitment, resulting in larger effects on gene silencing. This is promising because it 

suggests that instead of an “all or none” model, a synergistic model may be more precise 

for miRNA-mediated gene silencing. This mode of gene regulation allows more subtle 

control of gene expression instead of an “on or off” switch. It also allows the cell to 

precisely respond to different combinations of miRNAs. 

 

Regulation of protein coding genes by miRNAs 

It is known that protein production and activity can be regulated at multiple levels, 

such as transcription, mRNA localization, mRNA stability, protein modification and 

degradation. How does the cell choose one mechanism over another? Obviously, the 

answer is that all modes of regulation combine to properly regulate gene expression.  

Here, I have focused on another layer of gene regulation mediated by miRNAs.  One 

question is why regulate gene expression by miRNAs?  Why utilize miRNA regulation 

over other possible regulatory cascades? 

I have shown that Gata5 is post-transcriptionally down regulated by miR-92 during 

early zebrafish development. At the same time, Gata5 is transcriptionally induced by 
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nodal signaling (Schier 2003). Why is Gata5 regulated through distinct mechanisms? I 

speculate that Nodal signaling is required to turn on Gata5 expression, while miR-92 is 

required to fine tune its expression level and pattern. For proper endoderm formation, 

both Nodal signaling and downstream transcription factors need to be precisely 

controlled (Schier 2003). gata5, as a downstream effector of Nodal signaling, is 

expressed within 5 cell layers from the blastoderm margin. It is very likely that miR-92 

contributes to the establishment of the restricted expression pattern of gata5, by locating 

in adjacent domains. It is also possible that miR-92 regulates the absolute expression level 

of Gata5 by locating in the same expression domains.  

More generally speaking, my work, along with others, suggests that the advantages of 

miRNA-mediated regulation include partial, reversible and rapid silencing of targets. As 

seen in the GFP reporter assays, miRNAs seldom completely abolish protein production, 

but result in partial silencing. Also, it has been shown that in some circumstances the 

repression of targets can be released (Bhattacharyya, Habermacher et al. 2006; Mishima, 

Giraldez et al. 2006; Schratt, Tuebing et al. 2006). Finally, compared to transcriptional 

regulation, miRNA-mediated regulation can exhibit much more rapid effects on protein 

production through inhibiting translation. As a result, miRNAs can first, “tune” the levels 

of actively transcribed genes (Mishima, Abreu-Goodger et al. 2009; Shkumatava, Stark et 

al. 2009), second, sharpen gene expression domains (Leucht, Stigloher et al. 2008; 

Morton, Scherz et al. 2008; Woltering and Durston 2008; Zeng, Carter et al. 2009), and 

third, quickly modulate the cells response to extracellular signals (Choi, Giraldez et al. 

2007; Flynt, Li et al. 2007; Clouthier 2008; Eberhart, He et al. 2008; Flynt, Thatcher et al. 

2009). These features make miRNA-mediated silencing a very powerful mechanism for 
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regulation of gene expression, in addition to just cleaning up junk messages in the cell 

(Giraldez, Mishima et al. 2006). 

 

Formation of Kupffer’s vesicle 

Genetic pathways underlying KV morphogenesis have not been clearly elucidated, 

although the roles of Nodal signaling, Ntl, Tbx16, and intracellular calcium have been 

implicated in some studies (Amack and Yost 2004; Essner, Amack et al. 2005; Amack, 

Wang et al. 2007; Oteiza, Koppen et al. 2008; Schneider, Houston et al. 2008). Here, I 

uncovered two potential regulators of KV morphogenesis, miR-92 and Gata5.  Whether 

they function through direct or indirect means remains a question. 

I have shown that reductions in KV function are accompanied by an increase in 

endoderm formation upon altered miR-92 or Gata5 expression. It is, however, not clear 

whether reduced KV function is due to the increase in endoderm formation or due to 

altered Gata5 expression. Here, I propose two hypotheses. First, reduced KV function is 

secondary to increased endoderm through a mechanical mechanism. It is possible that an 

increase in endoderm results in a more crowed neighborhood around the DFCs/KV and 

more intensive cell-cell physical interactions, which may negatively affect ingression or 

migration of DFCs or enlargement of the KV lumen. Reduced KV function may therefore 

result from altered physical and/or mechanical pressure from surrounding cells. Second, 

reduced KV function may be an indirect effect of excess Gata5 which negatively affects 

Nodal signaling through a feedback loop. Nodal signaling positively regulates the number 

of DFCs in a non-cell-autonomous manner (Oteiza, Koppen et al. 2008). Some of its 

downstream effectors are known to enhance or antagonize signaling (Schier 2003). I 
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speculate that such a regulatory role may also be true for Gata5. Excess Gata5 expression 

may somehow down regulate Nodal signaling, resulting in reduced DFCs and at later 

stage, reduced KV. In this case, the KV morphogenesis defect is secondary to altered 

Gata5 expression in a non-cell-autonomous manner.  

 

Regulation of miRNAs 

I have shown that altered miR-92 expression causes defects in endoderm formation. 

This strongly argues that both temporal and spatial regulation of miR-92 expression is 

critical for proper specification of zebrafish endoderm. miR-92 is expressed beginning at 

the mid-blastula stage and persists through gastrulation, consistent with its regulatory 

function in endoderm formation. However the exact localization of miR-92 during these 

stages is unclear. One possibility is that miR-92 expression is either in overlapping 

domains with gata5 to dampen its absolute level or in neighboring domains to shape its 

expression boundaries. One interesting question is how the temporal and spatial 

expression of miR-92 is achieved. Transcriptional regulation may account for one of the 

mechanisms. Since miR-92 is transcriptionally regulated by c-Myc and E2Fs in 

mammalian cell lines (O'Donnell, Wentzel et al. 2005; Sylvestre, De Guire et al. 2007; 

Woods, Thomson et al. 2007), it will be interesting to know whether this is also true 

during early zebrafish development.  

miRNAs regulate a variety of biological and physiological events. Many miRNAs 

exhibit temporal- or spatial-specific expression patterns. Mis-regulation of miRNAs 

expression can cause severe consequences such as morphological defects and cancers 

(see chapter I). What regulates the regulators remains one of the most intriguing 
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questions in the miRNA field. It has been found that miRNAs can be regulated at 

multiple levels (see section I). Regulation of pri-miRNA transcription is relatively easy to 

study since miRNAs share similar promoters as protein coding genes (Ozsolak, Poling et 

al. 2008). In contrast, post-transcriptional regulation of miRNA is barely understood. 

Answers to these questions will be helpful to obtain better knowledge on miRNA 

function as well as specific biological or physiological events. 

 

Summary 

In closing, my studies have improved our knowledge about miRNAs focusing on two 

areas.  First, I have shown that multiple weak pairing elements can silence as efficiently 

as a single perfect site illustrating deficiencies in current prediction algorithms.  Second, 

my work also demonstrates that miRNA regulation is crucial for early vertebrate 

development.  
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