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ABSTRACT

Machine learning has become ubiquitous in the modern world, varying from enter-

prise applications to personal use cases and from image annotation and text recognition to

speech captioning and machine translation. Its capabilities in inferring patterns from data

have found great success in the domains of prediction and decision making, including in se-

curity sensitive applications, such as intrusion detection, virus detection, biometric identity

recognition, and spam filtering. However, strengths of such learning systems of traditional

machine learning are based on the distributional stationarity assumption, and can become

their vulnerabilities when there are adversarial manipulations during the training process

(poisoning attack) or the testing process (evasion attack). Considering the fact that the

traditional learning strategies are potentially vulnerable to security faults, there is a need

for machine learning techniques that are secure against sophisticated adversaries in order

to fill the gap between the distributional stationarity assumption and deliberate adversar-

ial manipulations. These techniques will be referred to as secure learning throughout this

thesis.

To conduct systematic research for this secure learning problem, my study is based on

three components. First, I model different kinds of attacks against the learning systems by

evaluating the adversaries capabilities, goals and cost models. Second, I study the secure

learning algorithms that counter any targeted malicious attacks by considering the specific

goals of the learners and their resource and capability limitations theoretically. Concretely,

I model the interactions between the defender (learning system) and attackers as different

forms of games. Based on the game theoretic analysis, I evaluate the utilities and con-

straints for both participants, as well as optimize the secure learning system with respect

to adversarial responses. Third, I design and implement practical algorithms to efficiently

defend against multi-adversarial attack strategies.

My thesis focuses on examining and answering theoretical questions about the limits

xxii



of classifier evasion (evasion attack), adversarial contamination (poisoning attack) and pri-

vacy preserving problem in adversarial environments, as well as how to design practical

resilient learning algorithms for a wide range of applications, including spam filters, mal-

ware detection, network intrusion detection, recommendation systems, etc. In my study, I

tailor my approaches for building scalable machine learning systems, which are demanded

by modern big data applications.
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Chapter 1

INTRODUCTION

1.1 Motivation

The success of machine learning has led to its widespread use as an efficient tool in

a wide variety of domains, from natural language processing, face detection, and hand-

writing recognition, to trading agent design [1, 2, 3]. As mentioned by Mitchell, learning

approaches are particularly well-suited to domains where either the application is too com-

plex to be designed manually, or needs to dynamically evolve. Many of the challenges

faced in modern enterprise systems meet these criteria and stand to benefit from intelligent

learning algorithms that are able to infer hidden patterns in large complicated datasets,

adapt to new behaviors, and provide statistical soundness to decision-making processes.

Indeed, learning components have been proposed for tasks such as performance modeling

[4, 5], enterprise-level network fault diagnosis [6, 7], and spam detection [8]. Machine

learning has great utility when applied in security, networking, and large-scale systems

as an intelligent tool for data analysis and autonomic decision making. It has also made

significant inroads into security applications, such as fraud detection, computer intrusion

detection, web search, and comparison shopping [9, 10, 11, 12]. For example, Google

uses machine learning to identify websites engaged in Phishing [13]. Zozzle uses machine

learning to identify malicious JavaScript programs [14], and Spam is typically identified

using machine learning [15].

However, every coin has two sides. The strengths of machine learning approaches are

their adaptability and ability to learn patterns that can be used for prediction or decision

making. However, the learning systems can potentially be subverted by adversarial manip-

ulations, which exposes applications that use machine learning techniques to a new class
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of security vulnerabilities. For instance, the learning process can be susceptible to attacks

that can cause the learner to disrupt the system it was intended to improve. With growing

financial incentives of cyber-crime, more and more sophisticated adversaries are making

efforts to conduct attacks against learners to disrupt the operations of or otherwise damage

enterprise systems. An intelligent adversary can alter his approach based on knowledge

of the learner’s shortcomings or mislead it by cleverly crafting data to corrupt or deceive

the learning process. For example, spammers have regularly adapted their ideal messages

to thwart or evade spam detectors. In this way, malicious users can subvert the learning

process to disrupt a service or perhaps even compromise an entire learning system.

The primary flaw in learning systems lies in the assumptions made about the learner’s

data that the training and test data comes from a natural or well-behaved distribution that

remains stationary over time. However, such assumptions are perilous in the adversar-

ial environments, where a patient adversary has a motive and the capability to alter the

data used by the learner for training or prediction. Therefore, the learning systems can be

compromised by an intelligent adversary for their own gains and makes the learning and

adaptability properties of the original system into potential liabilities rather than benefits. In

my research I analyze what are the strategies used by the adversaries, their utility and cost

models, as well as the alternative defense methods that can bolster the system’s resilience

to an adversary. I consider several potential adversarial strategies posed to a learning sys-

tem. One threat is that an attacker can exploit the adaptive nature of a machine learning

system to modify the training process and cause it to fail. Here, the failures consists of

causing the learning system to produce classification errors: if it misidentifies a hostile in-

stance as benign (false negative), then the hostile instance is erroneously permitted through

the security barrier; if it misidentifies a benign instance as hostile (false positive), then a

permissible instance is erroneously rejected and normal user activity is interrupted. If the

system’s performance sufficiently degrades, users will lose confidence in the system and

abandon it or its failures may significantly compromise the integrity and availability of the
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system. By looking into what techniques a patient adversary can use to mislead or evade a

learning system and how system designers would assess the vulnerability of their system to

vigilantly incorporate trustworthy learning methods, it is possible to design robust learning

algorithms that are resilient to the contaminated training process. The other threat is that

an attacker can exploit the vulnerabilities of the learning system by probing or other offline

analysis to modify the test data; therefore evade or cause the learning system to produce

unreliable predictions. Of particular interest in my research work would be analyzing the

adversarial strategies and designing corresponding robust learning algorithms, as well as

applying them to evaluate the real-world systems.

Developing robust learning is not only of interest in its own right, but also especially

important for security practitioners. To effectively apply machine learning as a general tool

for reliable decision-making and prediction in computer systems, it is necessary to investi-

gate how these learning systems perform under adversarial conditions. Without an in-depth

understanding of the performance of these algorithms in an adversarial setting, the systems

will not be trusted and may even cause serious financial loss [? ? ]. Therefore secure learn-

ing is of great importance in this big data era, the goal for which is to construct a learning

algorithm that performs well under a realistic adversarial setting. Of course, whether an

algorithm’s performance is acceptable is a highly subjective judgment that depends both

on the constraints placed on the adversary and on the job the algorithm is tasked with per-

forming. Based on the fundamental concerns: the relevant security criteria to evaluate the

security of a learner in a particular adversarial environment, and how to design or select the

robust machine learning techniques satisfying the security requirements in a given problem

domain, my research aims to design adversary aware learning algorithms that can take po-

tential attacks into account during learning and try to provide systematic ways to evaluate

the learning systems.
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1.2 Research Challenges

Threat Model with Uncertainty and Diversity To proactively design the robust se-

cure learning algorithms, one needs to identify potential vulnerabilities of machine learning

algorithms during learning and classification; devise appropriate attacks that correspond to

the identified threats and evaluate their impact on the targeted systems; and design counter-

measures to improve the security of machine learning algorithms against the considered at-

tacks. However, it is hard to predict and analyze the novel attacks appearing everyday based

on their uncertain strategies and diverse malicious purposes. Although game theoretic ap-

proaches seem to be promising, understanding whether and to what extent the resulting

attacker’s strategies are well-representative of realistic and practical scenarios still remains

an open issue [16, 17]. The main reason is that adversarial classification is not a game

with well-defined rules such as board games (e.g. chess), and therefore, the real attacker’s

objective may not even correspond to a proper payoff function. It may therefore be useful

to verify, on the contrary, in a reactive manner. So knowledge about whether real attackers

behave as hypothesized, and how to build threat models from the observed manipulations

on real attacks is important. Another issue is that most formulations, such as Nash and

repeated games, do not account for limited knowledge of the attacker’s objective function

explicitly, which may reflect in turn the limited attacker’s knowledge about the classifier.

Even when the limited knowledge is taken into account, such as the Bayesian game [18],

the uncertainty on the payoff function is simply modeled with a prior distribution over its

parameters, therefore the payoff function is still essentially know. Therefore, how to design

the secure learning algorithm which can consider the uncertainty and diversity of the real

world adversarial models, as well as reflect the limited knowledges of both the learning sys-

tem and adversaries to avoid over-estimation therefore retaining system accuracy remains

major challenge.

Unlimited Repetition Considering the nature of sophisticated adversaries, the interac-

tions between the learning systems and the adversaries can form a repeated game which

4



will never end. Therefore, how to terminate the optimization process and make decisions

based on the designed stopping criteria, such as the adversarial cost estimation and tradeoff

between accuracy and robustness for the learning system, form an obstacle for the secure

learning problem.

Scalability Another challenge for the secure learning development is the scalability

of the training procedure on large datasets. To capture the diverse adversarial strategies,

the robust learning process with invariance is essentially a minmax approach in which

the learning algorithm is modified to minimize the maximum loss based on the worst-

case manipulations of the attack samples [19]. However, solving such minmax problems

with large datasets based on a large number of constraints, each of which models a kind

of adversarial strategy, is computationally challenging and requires advanced scalable or

parallel computation techniques.

Real World Data It is difficult to collect the updated real attacked datasets for the ad-

versarial learning. For instance, the spam data or network intrusion data published nowa-

days is either out of date or failing to contain real world attacks. Therefore, the simulated

attacks should be carefully designed and the adversarial estimation error should also be

injected to ensure the robustness of the designed algorithm.

Proactive vs. Reactive Strategies Based on the challenges mentioned above, a thor-

ough proactive security evaluation, considering all possible attacks, may be infeasible, and

designing the corresponding countermeasures may be even more difficult [20, 21]. There-

fore, how to combine the proactive with reactive defense strategies together to build the

robust learning system by forecasting the novel attacks as well as updating the defense

methods based on the adversarial feedback form another challenge.

Balance between Security/Privacy vs. Utility One nature strategy to enhance security

is to inject randomness to form the non-deterministic system, and therefore decrease the

probability of adversarial success. In cryptography, good random numbers are fundamen-

tal to almost all secure computer systems. Without them, everything from Second World
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War ciphers like Lorenz to the SSL the browser uses to secure web traffic are in serious

trouble. Similarly, in data privacy protection system, for example, assigning random ID

to users is often applied to preserve personal information. However, such randomness can

also harm the utility of learning systems by decrease their prediction efficiency and ac-

curacy. Thus, how to control the amount of randomness injected and how to select proper

randomness with respect to specific tasks to minimize the system utility loss lead to another

big challenge.

1.3 Overview of Thesis

The remainder of this thesis is organized as below. In the following Chapter 2, I present

the motivations, background knowledge and related materials for secure learning. Chap-

ter 3- 7 focus on the adversary model analysis and provide robust defensive strategies to

demonstrate the feasibility and value of the secure learning systems against evasion at-

tacks from different perspectives. I first show and study a real world problem, singleton

malware detection, in Chapter 3. Then I provide theoretical analysis as well as derive the

robust learning algorithms considering various attack strategies by modeling the interac-

tion between learner and attacker as games in Chapter 4 and 8. Besides the mathematical

modeling strategy, I then present the human subject based study for deriving attack mod-

els from the real collected adversarial data in Chapter 6. To generalize the robust learning

strategy against evasion attacks, Chapter 7 provides an efficient robust learning framework

to take different adversary strategies into account based on any learning algorithms. Chap-

ter 9 starts to study poisoning attacks. In this chapter I take the recommendation system as

an example to analyze how the adversaries derive poisoning instances to contaminate the

training data while still mimicking the normal users’ behavior patterns. Finally, I study the

application of secure learning on privacy settings in Chapter 10. This chapter focuses on

the theoretic analysis for attack models in privacy preserving data publishing model. I pro-

vide a iterative data sanitization algorithm to balance the data utility and privacy to protect

6



data privacy. Conclusions and future work for this thesis are then discussed in Chapter 11.
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Part I Robust learning against evasion attacks
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Chapter 2

A REAL WORLD CASE: LARGE-SCALE IDENTIFICATION OF MALICIOUS

SINGLETON FILES

The study of this chapter is based on a real-world dataset of billions of program binary

files that appeared on 100 million computers over the course of 12 months, discovering that

94% of these files were present on a single machine. Motivated by this practical malware

detection problem, we looked into the secure learning problem by taking the adversarial

strategies into account. Though malware polymorphism is one cause for such large number

of singleton files, additional factors also contribute to polymorphism, given that the ratio of

benign to malicious singleton files is 80:1. The huge number of benign singletons makes

it challenging to reliably identify the minority of malicious singletons. Here we present a

large-scale study of the properties, characteristics, and distribution of benign and malicious

singleton files. We leverage the insights from this study to build a classifier based purely on

static features to identify 92% of the remaining malicious singletons at a 1.4% percent false

positive rate, despite heavy use of obfuscation and packing techniques by most malicious

singleton files that we make no attempt to de-obfuscate. Finally, we demonstrate robust-

ness of our classifier to important classes of automated evasion attacks and emphasize the

necessity for secure learning.

2.1 Overview

Despite continual evolution in the attacks used by malicious actors, labeling software

files as benign or malicious remains a key computer security task, with nearly 1 million

malicious files being detected per day [88]. Modern anti-virus vendors deploy a suite of

techniques that together label software as benign or malicious, each analyzing the software
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from a different perspective. Some of the most reliable techniques label files by combining

the context provided by multiple instances of the file. For example, Polonium judges a

file based on the hygiene of the machines on which it appears [89], while Aesop labels a

file by inferring its software-package relationships to known good or bad files, based on

file co-occurrence data [90]. These detection technologies are unable to protect customers

from early instances of a file because they require the context from multiple instances to

label malware reliably, only protecting customers from later instances of the file. Thus, the

hardest instance of a malware file to label is its first, and regrettably, the first instance is also

the last in most cases, as most malware samples appear on a single machine. In 2015 around

89% of all program binary files (such as executable files with .EXE and .DLL extensions

on Windows computers) reported through Norton’s Community Watch program existed on

only one machine, a rate that has increased from 81% since 2012. To make matters worse,

real-time protection must label files that have been seen only once even though they may

eventually appear on many other machines, putting the effective percentage of unique files

at any given time at 94%.

I present the first large-scale study of singleton files and identify novel techniques to

label such files as benign or malicious based on their contents and context. We define

a singleton file as any file that appears on exactly 1 machine. I consider two files to be

distinct when a cryptographic hash taken over their contents (such as SHA-256) yields a

different result, meaning that two files that differ by a single bit are considered distinct even

though they may be functionally equivalent.

Due to the fact that malware is often polymorphic, many malicious files are among these

singletons. However, singleton executable files do not trend towards being malicious; in

fact the opposite is true: the ratio of benign to malicious singleton files is 80 to 1, resulting

in a skewed dataset. This ratio gives low prevalence malware a large set of files to hide

amongst and it makes effective classification models difficult to train, as most machine

learning models require relatively balanced data sets for effective training. We study the
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root causes behind the large numbers of benign singleton files in Section 3.3.2 and study

malicious singletons in Section 3.3.3. We study the properties of machines that are prolific

sources of benign singleton files in Section 3.4.1. I filter obviously benign singletons by

profiling the prominent categories of benign singleton files that appear on such systems

(Section 3.4.2). I present the full machine learning pipeline and the features I use to classify

these samples in Section 3.4.3. I present experimental results in Section 3.5.

Since the phenomenon of malicious singleton files was largely driven by the arms race

between security vendors and malicious adversaries in the first place, it is important that

we analyze robustness of our model against evasion attacks, and I do so in Section 3.5.3.

We form the interactions between and adversary and our malware detection system as a

Stackelberg game [91] and simulate evasion attacks on real singleton files to demonstrate

that our proposed pipeline performs robustly against attacker interference.

Figure 3.1 illustrates the malicious target in the learning framework, where attackers

try to generate the data distribution closing to the original training data while satisfying the

preferred malicious properties.

Figure 2.1: Illustration for polymorphic singleton malware attack strategy
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2.2 Related work

The problem of detecting malicious files has been studied extensively. Particularly rel-

evant is work that is designed to deal with low-prevalence malware. This prior art includes

work designed to reverse the effect of packing-based obfuscation tools by either statically

decompressing or decrypting the malicious payload [92], or simply executing the program

until it has unrolled its malicious payload into main memory [93]. At this point, traditional

anti-virus signatures may be applied [94], and clustering may serve to identify new mali-

cious samples based on their similarity to known malicious samples [95, 96]. By contrast,

we make no effort to undo obfuscation attempts, which are frequently evidence of mali-

cious intent. Whereas these researchers have focused on the causes behind low-prevalence

malware, we augment this by providing the first detailed study of benign singleton files.

We leverage our study of the distribution, causes, and naming conventions of singleton

files to distinguish between benign and malicious instances, adding a broad collection of

static properties of these files to buttress our approach against adversarial mimicry attacks.

Researchers have also dealt with obfuscation by ignoring the program binary file alto-

gether and instead classifying the malware based on dynamic traces of file and process [97]

or network-based activity [98]. Dynamic approaches are typically used a last resort when

static analysis attempts such as ours are unsuccessful, as they typically have the draw-

backs of either allowing the machine to be infected before a post-mortem detection can

be effected, or must be run at considerable cost in an instrumented sandbox, in which the

suspected file’s behavior on the targeted machine can be difficult to replicate.

The importance of an adversarially robust approach to malicious singleton detection is

evident, given that the high volume of singleton malware is largely the byproduct of adap-

tations to anti-virus technology. Researchers have formalized the notion of evasion attacks

on classifiers through game theoretic modeling and analysis [44, 99]. In one of the earliest

such efforts, Dalve et al. [44] play out the first two steps of best response dynamics in this

game. Bruckner et al. [100] examine single-shot prediction games, where the utility func-

12



tions of learner and adversary are not necessarily antagonistic, and propose algorithms to

find the equilibrium. Later an alternative Stackelberg game model is suggested, in which

the learner (leader) first sets the algorithm parameters, and the attacker (follower) would

best respond by optimizing its utility [84]. In all of the prior work, there has been a dis-

connect between the learner-attacker game models and real world dataset validation. We

bridge this gap by considering a very general adversarial learning framework based on an

evaluation of a real, large-scale dataset.

2.3 Singleton Files in the Wild

To address the paucity of information about singleton files, I focus on their causes,

distribution patterns, and internal structure. We describe the predominant reasons for which

software creators produce benign and malicious singleton files. For benign singletons, we

identify the software packages that are the strongest predictors of the presence of benign

singleton files on a machine. For malicious software, many singletons are produced from

a relatively much smaller base of malware families. Thus, to better understand the nature

of the polymorphism that is present in practice across a large body of singleton malware,

we study the static properties of malicious singleton files across all malware families and

within individual families.

2.3.1 Dataset Description

In the interest of performing a reproducible study, we perform the following study over

data that is voluntarily contributed by members of the Norton Community Watch program,

which consists of metadata about the binary files on their computers and an identifier of

the machines on which they appear. Symantec shares a representative portion of this

anonymized dataset with external researchers through its WINE program [101]. We use

an extended window of time from 2012 through 2015 to generate high-level statistics about

singleton data, and refer to this dataset as D0. We also use an 8-month window of data from
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2014 for a more in depth analysis of the properties of singleton files and machines on which

they appear, we call this D1. A portion of the files in D1 is labeled with high-confidence

benign or malicious labels. We form dataset D2 by selecting a subset of the previous data

that consists of labeled singleton files, and for which the file itself is available, allowing us

to extract additional static features from the files that we describe in Section 3.4.3. This

dataset comprises 200,000 malicious and 16 million benign singleton files, and is the basis

of the experimental evaluation of Section 3.5.

2.3.2 Benign Singleton Files

The abundance of benign singletons may be surprising given that there are not obvious

benefits to distributing legitimate software as singleton files. Of course, some software is

rare simply because it attracts few users, as in the case of software on a build machine that

performs daily regression tests. However, there are also less obvious, but no less significant

reasons behind the large numbers of singleton files, including the following:

1. The .NET Framework seeks to enable localized performance optimizations by distribut-

ing software in Microsoft Intermediate Language code so it can be compiled into native

executable code by the .NET framework on the machine where it will execute, in a way

that is specific to the machine’s architecture. This is evident in practice, as .NET pro-

duces executables that are unique in most cases. Its widespread use makes it the largest

driver of benign singleton files in our data.

2. Many classes of binary rewriting tools take a program binary file as input, producing

a modified version as output, typically to insert additional functionality. For instance,

tools such as Themida and Armadillo add resistance to tampering and reverse engineer-

ing, frequently to protect intellectual property and preserve revenue streams, as in the

example of freemium games that require payment to unlock in-game features and vir-

tual currency. Other examples of binary rewriting tools include the RunAsAdmin tool

referenced in Table 3.1, which modifies executables so that administrative privileges are
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required to run them.

3. In many cases, software embeds product serial numbers or license keys in its files, re-

sulting in a different hash-based identifier for otherwise identical files.

4. Singleton files can be generated by software that produces executable files in scenarios

where other file formats are more typically used. For instance, Microsoft’s Active Server

Pages framework generates at least one DLL for every ASP webpage that references

.NET code. Another example is ActiveCode’s Building Information Modeling software

that creates project files as executables rather than as data files. It is not uncommon for

these frameworks to generate thousands of singleton binaries on a single machine.

5. Interrupted or partial downloads can result in files that appear to be singletons, even

though they are really prefixes of a larger more complete file. If the entire file is available

for inspection, this can be checked, but our dataset includes metadata for many files that

have not been physically collected.

In Figure 3.2 we show the most common substring used in benign singleton filenames

as extracted from dataset D1, many of which hint at the above factors. In particular, the

most-observed filename pattern is “app-web-”, which is seen in DLL files supporting web-

pages created by ASP Web Applications. These files are often singletons because they are

compiled from .NET code.

Using a subset of the data from dataset D0, we demonstrated in Figure 3.3 that sin-

gleton files are not uniformly distributed across systems. The figure shows the number

of machines that possess specific counts of singleton and non-singleton files. Figure 3.4

is another way to view the same data, showing that almost 40% of machines have few

or no singleton files and more than 94% of the systems have fewer than 100 singletons.

Thus, the majority of singleton files come from the heavy tail of the distribution repre-

senting relatively few systems. Note that this data is from a specific period in time, and

so machines with low numbers of non-singleton files indicate machines that experienced

minimal changes/updates during the period when data was collected.
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Figure 2.2: Percent of singleton files containing a specific substring.

To help us work towards a solution that could identify benign singletons as such, we

seek to better understand the machines on which they are most likely to exist. To this

end, we used dataset D1 to identify the software packages that are most indicative of the

presence or absence of benign singletons on a computer. To identify software packages

that could be responsible for the creation of singletons, we turn to the clustering approach

proposed by Tamersoy et al. [90], which identifies software packages indirectly by cluster-

ing software files that are nearly always installed together on a machine, or not at all (see

Section 3.4.1 for more details). Henceforth, we refer to these clusters as software pack-

ages. Once files are so clustered, we proceed by identifying the software packages that

are most indicative of the presence of absence of singletons on a machine. Let S denote a

specific software package (cluster). We identified a set of 10 million machines from D1,

each of which contains at least 10 benign singleton files, which we denote by H (for Has-

Singletons). Likewise, we identified 10 million machines from D1 with no singleton files,

which we denote by N, for NoSingletons. We identify the predictiveness of each software

package S by counting its number of occurrences in each H and N, and use these counts to

compute the odds ratios (OR) of a machine containing singletons given S, OR(S) = H/N.

Intuitively, the higher OR(S) is for a particular software package S, the more likely it is
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Figure 2.3: Number of machines with a specific number of singleton/non-singleton files.
Based on data sampled from D0

Have singleton: Control set OR Representative Filename Software Name

13770:1 Appvux.dll Microsoft App-V
11792:1 Soapsuds.ni.exe SoapSuds Tool for XML Web Services
110501:2 Blpsmarthost.exe SmartClient
36515:2 gtpo3d host.dll Google Talk Plugin
13868:1 Runasadmin.exe Microsoft RunAsAdmin Tool
8511:1 Microsoft.office.tools.ni.dll Visual Studio

... ... ...
1:1702 Policy.exe ???
1:4392 vdiagentmonitor.exe Citrix VDI-in-a-Box

Table 2.1: Software packages that are most predictive of presence/absense of benign sin-
gleton files. For succinctness, we represent each software package by its most prevalent
filename.

that this (benign) package generates many singletons. An OR(S) ratio that is close to 1 is

indicative of a software package that is equally likely to appear on machines that do and do

not contain singletons, and therefore probably does not generate singletons itself. On the

other hand, an OR(S) that is significantly lower than 1 indicates that machines on which S

is installed are tightly controlled or special-use systems unlikely to contain singleton files.

Table 3.1 shows software packages that are strong predictors for the presence (or ab-

sence) of benign singletons on a machine. Software packages that correlate with increased

numbers of singletons include compiler-related tools (Visual Studio, SoapSuds, Smart-

Client), tools that wrap or modify executables (RunAsAdmin, App-V), and software pack-
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Figure 2.4: Percent of machines that report more than X singleton and non-singleton files.
Based on data sampled from D0.

ages that include numerous signed singletons (Google Talk Plugin). Interestingly, there are

also many software packages that correlate strongly with an absence of singletons on the

system. These are indicative of tightly controlled or minimalist special-purpose systems.

Our ability to identify software packages that lead to presence/absence of many benign

singleton files is a critical step towards developing a method for classifying malicious vs.

benign singletons. In particular, as described in Section 3.4, it enables us to prune a large

fraction of files as benign before applying machine learning methods, dramatically reducing

the false positive rate.

2.3.3 Malicious Singleton Files

Malware files skew heavily towards low-prevalence files, and towards singleton files in

particular. Using D0 we can see that this trend has increased in recent years: 75% of known

malware files were singletons in 2012, and the rate increased to 86% by 2015. There are

readily apparent reasons why malware files skew towards low-prevalence files, including

the following:
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1. Avoiding signature-based detection: Users typically want to prevent malware from run-

ning on their systems, and blocking a single high-prevalence file is much easier than

blocking large numbers of distinct yet functionally equivalent files. Polymorphism is

a widespread technique for producing many functionally equivalent program binaries,

which aims to reduce the effectiveness of traditional Anti-Virus signatures over portions

of the file.

2. Resistance to reverse engineering and tampering: Many malware authors pack, obfus-

cate or encrypt their binaries, often with the assistance of third-party tools that are in-

expensive or free. Polymorphism is often a welcome byproduct of these techniques,

though it is not necessarily the primary objective.

3. Malware attribution resistance: The ease with which malware authors can create many

functionally equivalent malware files makes the problem of attributing a malicious file

to its author much harder than it would be if the same file was used in all instances.

For the same reason, polymorphism makes it difficult for security researchers to assess

a malware family’s reach. Modularity also allows for specific components to be used as

needed, without unnecessarily exposing the binary to detection.

Despite the widespread availability and use of tools that can inexpensively apply poly-

morphism and obfuscation to malware binaries, the security industry has developed effec-

tive techniques to counter these. Much of the polymorphism seen in malware binaries is

superficially applied by post-compilation binary obfuscation tools that “pack” the original

contents of the malware file (by compressing or encrypting the code), and add layers of

additional obfuscation-related code [102]. There are some obfuscation tools that are far

more complex than this, but most of them are used almost exclusively by either malicious

or by benign software authors. Techniques used by the anti-virus industry to combat these

obfuscations are discussed at the end of this section.

To provide additional insight into the nature of malware polymorphism, we study the

use of polymorphism by 800 malware families that were observed in the wild in our D1
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dataset. Overall, we found that 31% of these families are distributed exclusively as single-

tons, accounting for over 80% of all singleton malware files, while 60% of families rely

exclusively on non-singletons. There is a subtle difference here, that by volume, the 60%

of families account for many detections since they are higher prevalence, while the 80% of

singletons account for a lower percent of all detections even though there are more of them,

since they only occur on a single system.

To identify malware families that exhibit a high degree of polymorphism, we extracted

about 200 static features from files belonging each malware family. Our features include

most fields in the Portable Executable file header of Windows Executable files (such as file

size, number of sections, etc.), as well as entropy statistics taken from individual binary

sections, and information about dynamically linked external libraries and functions that are

listed in the file’s Import Table. For each malware family, we calculate variability scores

as the average variance of our static features for the files belonging to that family. The

families with the highest variability scores are:

• Adware.Bookedspace

• Backdoor.Pcclient

• Spyware.EmailSpy

• Tro jan.Usuge!gen3

• W32.Neshuta

• W32.Pilleuz

• W32.Svich

• W32.Tu1ik

These malware families vary greatly in form, function, and scale, though they do share

properties that help account for their high variance. In particular, all of these families are

modular, infecting machines with multiple functionally different files that are of similar

prevalence and have dramatically different characteristics. In all cases, there is at least an

order of magnitude difference in file size between the largest and smallest binary. Further-
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more, all samples apply binary packing techniques sporadically rather than in all instances.

Backdoor.Pcclient is a Remote Access Trojan and the lowest prevalence family that

has high variance in the static features. Polymorphism is not evident in this family; its

elevated variance is a reflection of a modular design, multiple releases of some of those

modules, and large differences from one module to another. By contrast, W32.Pilleuz is a

very prevalent worm family, but its Visual Basic executables achieve high variance through

extensive obfuscation and highly variable file sizes, which add to the worm’s modularity

and occasional use of packing. W32.Neshuta is particularly interesting in that it infects all

.exe and .com files on the machines that it compromises, resulting in many detected unique

executables of differing sizes, in addition to its own modular and polymorphic code.

API Purpose API Function
Anti-Analysis IsDebuggerPresent

GetCommandLineW
GetCurrentProcessId
GetTickCount
Sleep
TerminateProcess

Unpack Malware Payload GetProcAddress
GetModuleHandleW
GetModuleFileNameW

Load/Modify Library Code CreateFileMappingA
CreateFileMappingW
MapViewO f File
SetFilePointer
LockResource

Propagation GetTempPathW
CopyFileA
CreateFileW
WriteFile

Table 2.2: Categories of Windows API functions that are disproportionately used by mal-
ware

The Windows API functions imported by malware files provide interesting insights into

their behavior, and are useful as static features, because they are reasonably adversarially

resistant. Though malware authors can easily add imports for API functions that they do
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not need, removing APIs is significantly harder, as these may be needed to compromise

the system (e.g., CreateRemoteThread). The only inexpensive way in which a malware

file can hide its use of API functions from static analysis is to use a binary packing tool

so that its Import Table is not unpacked until runtime, when it is used to dynamically

link to Windows API functions. However, this technique completely alters the file’s static

profile and introduces the static fingerprint of the obfuscation tool, offering an indication

that the file is probably malicious. In addition, as discussed at the end of this section, these

obfuscations can be reversed by anti-virus vendors.

Table 3.2 lists the API functions that are most disproportionately used by malware, cate-

gorized by the purpose for which malware authors typically use them. Many of these APIs

support analysis resistance, either by detecting an analysis environment, hiding behavior

from analysis, or by actively resist against analysis. Most other APIs that are indicative of

malware have to do with linking or loading to additional code at runtime, typically because

the malware payload is packed, but also for more nefarious purposes, such as malicious

code injection and propagation.

Anti-Virus Industry Response to Obfuscation

The anti-virus industry has sought to adapt to malware’s widespread use of obfuscation

tools by applying static and dynamic techniques to largely reverse the packing process in

a way that preserves many of the benefits of static analysis. In particular, these techniques

allow malicious code to be extracted, along with the contents of the Import Address Table,

which contains the addresses of functions imported from external dynamically linked li-

braries. Unpacking techniques include the “X-Ray” technique, which may be used to crack

weak encryption schemes or recognize the use of a particular compression algorithm and

reverse its effects [92]. Most unpacking techniques, however, have a dynamic component

and can be broadly classified into emulators and secure sandboxes. Emulators do not allow

the malicious files to execute natively on the machine or to execute real system calls or
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Windows API calls, but provide a reasonably good approximation of a native environment

nonetheless. They are frequently deployed on client machines so that any suspicious file

can be emulated long enough to allow unpacking to occur, after which the program’s mali-

cious payload can be extracted from memory and the de-obfuscated code can be recovered

and analyzed. Offline analysis of suspicious program binaries typically uses a near-native

instrumented environment where the malware program can be executed and its dynamically

unpacked malicious payload can be extracted [93]. Though there are more elaborate obfus-

cation schemes that can make executable files difficult to unpack with the aforementioned

techniques, these are either not widely deployed (e.g., because they are custom-built for

the malware family) or are used predominantly by benign or malicious software, but not

both. Thus, effective benign vs. malicious determinations can be made even in these cases,

because the obfuscation toolkits leave a recognizable fingerprint.

Though the effectiveness of the above de-obfuscation techniques is open to debate, in

our methodology here, we make the deliberate choice to use no de-obfuscation techniques

at all in our attempts to classify singleton files. We demonstrate that malware classifica-

tion based purely on static features can be successful, even in the face of extensive poly-

morphism, by good and bad files alike. The success we achieve demonstrates that the

obfuscation techniques that are widely used by malware are themselves recognizable, and

appreciably different from the kinds of polymorphism that are common in benign files. We

expect that the classification accuracy of our methodology would improve when applied to

files that have been de-obfuscated, given that other researchers have found this to be the

case [95].

2.4 Learning for Labeling Singletons

Most prior efforts for identifying malicious files have either relied on the context in

which multiple instances of the file appear (e.g., Polonium [89] and Aesop [90] systems)

or have relied exclusively on static or dynamic features derived from the file itself (e.g.,
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MutantX-S [95]). The context that is available for a singleton file is necessarily limited,

making the aforementioned context-dependent techniques not applicable. Making matters

worse is the fact that the ratio of benign to malicious singleton files is nearly 80:1, which

has the effect of multiplying the false positive rate of a malware detector by a factor of 80,

and presents a significant class imbalance problem that makes effective classifier training

difficult.

To address the lack of context for singleton files and the preponderance of benign sin-

gleton files, we leverage insights gleaned from our empirical observations about singleton

files in the wild. In particular, as discussed in Section 3.3.2, a handful of software packages

generate the lion’s share of benign singletons, while other packages correlate with their ab-

sence. Furthermore, the toolchains that generate benign singletons in large numbers imbue

them with distinctive static properties that make them easy to label with high confidence.

We use these insights to develop a pipeline that filters benign singleton files with high con-

fidence, yielding a more balanced dataset of suspicious files. We extract static features

from the remaining suspect files and apply supervised learning to classify them as benign

or malicious.

Figure 3.5 presents a diagram of our pipeline. We take as input a pair ( f ,m), where

f is a file and m is the machine on which it resides. The first step of the pipeline, which

we call machine profiling, determines whether m is likely to host many benign singleton

files. The second step is file profiling, in which we label obviously benign files, primarily

from many-singleton machines, by determining that they closely match the benign files

that are common on such systems. The final step, classification, uses a supervised clas-

sification algorithm (we explore the use of Support Vector Machines [103] and Recursive

Neural Networks [104]) to render a final judgment on the remaining files. We proceed by

describing each of our pipeline’s components in detail.
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Figure 2.5: Pipeline of the singleton classification system.

2.4.1 Machine profiling

Machine profiling operationalizes the following insight gleaned from our empirical ob-

servations: since the distribution of benign singletons is highly non-uniform, singleton

classification will benefit from identifying machines that are likely to host many benign

singletons. As discussed in Section 3.3.2, the software packages present on a machine are

highly predictive of the presence or absence of benign singletons.

The first challenge we face is that of automatically identifying software packages from

telemetry about installations of individual program binary files. In mapping individual

files to software packages, we wish to proceed in an automated way that is inclusive of rare

software that is not available to be publicly downloaded. Our approach adopts the clustering

portion of the Aesop system described by Tamersoy et al. [90], in which they leverage

a dataset consisting of tuples of file and machine identifiers, each of which indicates the

presence of file f on machine m. Specifically, let F be a set of (high-prevalence) files (in the
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training data). For each file f ∈ F , let M( f ) be the set of machines on which f appears. As

Aesop did, we use locality sensitive hashing [105] to efficiently and approximately group

files whose M( f ) sets display low Jaccard distance to one another. The Jaccard distance

between two sets X and Y is defined as: J(X ,Y ) = 1− X∩Y
X∪Y , and we define the distance

between two files f and f ′ in terms of Jaccard distance as d( f , f ′) = J(M( f ),M( f ′)).

We tune locality sensitive hashing to cluster files with high probability when the Jaccard

distance between the files is less than 0.2, and to cluster them very rarely otherwise. We

obtain a collection of clusters C , such that each cluster C ∈ C , serves as an approximation

of a software package, since C represents a collection of files that are usually installed

together on a machine or not at all.

We proceed by identifying the approximate software packages that are the best pre-

dictors for the presence of singleton files. We formulate this task as a machine learning

problem. We define a feature vector for each machine m that encodes the set of software

packages that exist on m. Specifically, given n clusters (software packages), we create a

corresponding binary feature vector sm of length n, where sm j = 1 iff cluster j is present on

machine m. Next, we append a label lm to our feature vector such that we have {sm, lm} for

each machine, with feature vectors sm corresponding to machines and labels lm ∈ {H,N}

representing whether the associated machine has benign singletons (label H) or has no sin-

gletons (label N). With this dataset in hand, we are able to train a simple, interpretable

classifier to predict lm to good effect. Had we used individual files as predictors, we would

have to choose a machine learning algorithm that behaves well in the presence of strongly

correlated features, but software package identification dramatically reduces feature corre-

lation. Thus, we select Naive Bayes as our classifier g(s), which performs well and gives

us significant insight into the software packages that are the best indicators of the presence

or absence of benign singleton files, as reported in Table 3.1. Our classifier takes as input

a feature vector s that represents the software packages on a given machine, and outputs

a prediction as to whether or not the machine has benign singletons. To achieve a bal-
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anced dataset, we randomly selected 2,000,000 uninfected machines, half of which contain

singletons and half of which do not.

2.4.2 File profiling

Given a classifier g(m) that determines whether a machine m is expected to host be-

nign many singletons, the next step in our pipeline—file profiling—uses this information

to identify files that can be confidently labeled benign. The result is both a more balanced

dataset that makes our pipeline’s classifier easier to train, as well as a high-confidence

labeling technique that reduces classifier’s false positive rate. The main intuition behind

our proposed file profiling method is that benign singleton files bear the marks of the spe-

cific benign software packages that generate them. Of course, different software generates

singletons with dramatically different file structures and file-naming conventions. Conse-

quently, we seek to identify prototypical benign singletons by clustering them based on

their static properties, and filter benign files that closely match these prototypes. Since

the information we have about the software installed on any given machine is typically in-

complete, we filter benign files that closely match benign-file prototypes on all machines,

but require much closer matches on machines where benign singletons are not expected.

This point is operationalized below through the use of a less aggressive filtering threshold

for machines m labeled as N (no benign singletons) than for machines labeled H (having

benign singletons).

The full path, filename, and size of singleton files are the primary static attributes that

we use in our file profiling study. We had little choice in this case because large collections

of labeled benign singleton files that security companies share with external researchers

are extremely hard to come by, and are limited in the telemetry they provide. In the inter-

est of conducting a reproducible experiment, we limit ourselves to the metadata attributes

provided for files in Dataset D1 (see Section 3.3.1) that Symantec shares with external re-

searchers through its WINE program [101]. Though D1 gives us a representative dataset
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of singleton files, it also limits us to a small collection of metadata attributes about files,

of which the path, filename, and size are the most useful attributes. In modest defense

of the use of filename and path as a feature, though it is true that a malicious adversary

can trivially modify the malware’s filename (and the path, to a lesser extent), the malware

author would frequently have to do so at the cost of losing the social engineering benefit

of choosing a filename that entices the user to install the malware. We note that security

vendors could readily remediate the limitations of our file profiling study by adding more

adversarially resistant static features to a file profiling model, as they have the flexibility to

collect additional telemetry for singleton files.

We proceed by developing techniques to maximize the discriminative value of the path

and filename. We seek to leverage the observation that a handful of root causes create a

significant majority of benign singletons, and these origins are often strongly evident in

the filename and path of benign singletons. Although malware files display significantly

more diversity in their choice of filenames, these filenames typically bear the marks of

social engineering, and their paths are frequently reflective of the vector by which they

managed to install themselves on the machine, or are demonstrative of attempts to hide

from scrutiny. Accordingly, we engineer features from filenames and paths such that they

are capable of capturing the naming conventions used by benign singletons. Given a file

f , we divide its filename into words using chunking techniques. Specifically, we identify

separate words within each file name that are demarcated by whitespace or punctuation, and

separate words based on CamelCase capitalization transitions, and so on. Subsequently,

we represent the filename and path components in a “bag of words” feature representation

that is physically represented as a binary vector, where the existence of a word in the

filename or path corresponds to a 1 in the associated feature, and a 0 indicates that the

word is not a part of its name. In addition, we capture the relative frequencies of the

words that appear in filenames by measuring the term frequency (TF) of each word. Term

frequency is then used as a part of weighted Jaccard distance measure used to cluster files,
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as described below. More formally, let T ⊆ Rn represent the feature space of the singleton

files, with n the number of features. Each singleton file f can be represented by a feature

vector t, which is the dot product of a binary bag of words vector w and the normalized

term frequency vector q corresponding to each word, t = w · q, where t j is the jth feature

value. Note that we exclude words that appear extremely frequently, such as exe, dll, setup,

as stop words, to prevent the feature vector t from becoming dominated by these. For

any two files f1 and f2, the weighted Jaccard distance between them is then calculated as

J( f1, f2) = 1− ∑k min( f1k, f2k)

∑k max( f1k, f2k)
.

We use the weighted Jaccard distance to cluster benign singleton files in the training

data using the scalable NN Descent algorithm [106] implemented on Spark [107], which

efficiently approximates K-Nearest Neighbors and produces clusters C of of highly similar

files.1 We gain further efficiency and efficacy gains by choosing a bag of words represen-

tation over edit distance when making filename comparisons. This approach also has the

benefit of producing an understandable model that identifies the most frequent filename

patterns present in benign singleton files, such as those highlighted in Figure 3.2.

The final step in the file profiling process is to use the clusters derived above to filter

benign files that align closely with the profile of benign singletons. To this end, for each

benign singleton cluster c∈C, we compute the cluster mean c̄= 1
|c| ∑

t j∈c
t j. For a given file f ,

we then find the cluster ; let c∗ whose mean c̄ is least distant from f , where distance is again

measured based on weighted Jaccard distance: J(c̄, f ). Then, if file f resides on a machine

m that is expected to have singletons (that is, g(m) = H as defined in Section 3.4.1), we

filter it as benign iff J(c∗, f )≤ θH ; otherwise, it is filtered iff J(c∗, f )≤ θN , where θH and

θN are the corresponding filtering thresholds.

We select different θ values for the training and final versions of our pipeline. For

training, our primary goal is to reduce the 80:1 benign to malicious class imbalance ratio

so that we can train an effective classifier, whereas for testing, our goal is to achieve a high

1Note that this clustering of files is entirely distinct from the clustering of files in machine profiling, where
non-singleton files are clustered based on machines that they appear on.
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true positive rate while minimizing false positives. For purposes of creating a balanced

training set, we select θN = 0.1 and θH = 0.3, which filters 91.8% of benign singletons,

resulting in a more manageable 9:1 class imbalance ratio, at the cost of 7% of malware

samples being thrown out of our training set. However this does not affect the performance

of our model adversely, since during testing we can be less aggressive with the thresholds

and pass more files to the classifier. In practice, we found values around θN = 0.07 and

θH = 0.13 result in the best performance over the test data.

2.4.3 Malicious singleton detection

Having filtered out a large portion of predicted benign file instances, we are left with

a residual data set of benign and malicious files that we classify using supervised-learning

techniques. Though the filtering of benign files by the previous stages of our pipeline pro-

vide better class balance, we found that significant improvements in classification accuracy

result when the residual data set is augmented by including 3 benign files that we sample

randomly from each cluster C generated in the file profiling step. Doing so improves the

classifier by adding additional benign files that are representative of the overall popula-

tion of benign singleton files. We trained multiple classification algorithms with different

strengths to determine which would be most effective at singleton classification.

Feature engineering is also key to the performance of our classifiers. Whereas machine

and file profiling were designed for a backend system where a global view of the distribu-

tion of benign and malicious singleton files is available, here we design a classifier that we

can deploy on client machines, based entirely on the static features of the file. Hence, we

assume direct access to the files themselves and can build rich feature sets over the files,

so long as they are not expensive to compute. This is in contrast to the telemetry used for

machine and file profiling, for which network bandwidth constraints and privacy concerns

limited the telemetry that could be collected. As mentioned in Section 3.3.3, we make no

attempt to reverse the effects of obfuscation attempts employed by malware, finding that
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the use of the obfuscation techniques themselves provides strong discriminative power that

helps us to disambiguate between benign and malicious singletons.

Features

The features used by our learning algorithms to classify singleton program binary files

fall into four categories.

1. The first category of features corresponds to features of file name and path. For these we

used the same file name and path bag-of-words feature representation here as in the file

profiling step of Section 3.4.2. To reduce the number of features included in our model,

we applied a chi-squared feature selection to choose the most discriminative features

[108].

2. The second category of features are derived from the header information of the exe-

cutable file. We include all fields in the headers that are common to most windows

executable files that exhibit some variability (some header fields never change). These

header fields include the MS-DOS Stub, Signature, the COFF File Header, and the Op-

tional Header (which is optional but nearly always present) [109].

3. We derive features from the Section Table found in the file’s header, which describes

each section of the binary, and also compute the entropy of each of the file’s sections as

features.

4. Our third category of features is derived from the external libraries that are dynamically

linked to the program binary file. To determine which libraries the file links to, we

create a feature for each of the most popular Windows library files (primarily Windows

API libraries) that represents the number of functions imported from the library. We

also create binary features for the individual functions in common Windows libraries

that are most commonly used by malware. These take a value of 1 when the function is

imported and 0 otherwise.

In all, category 1’s bag of words features for filename and path consist of 300 features,

while category 2,3, and 4 features together comprise close to 1000 features.
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Classification

We apply two learning models, a Recurrent Neural Network (RNN) [110] and a Sup-

port Vector Machine with a radial basis function as its kernel [111], and compare their

performance and ability to withstand adversarial manipulation in Section 3.5. The RNN

model is particularly suited for textual data, so we train it solely using file names and

path information as features. Given the sequential properties of the file name text, RNNs

aim to make use of the dependency relationship among characters to classify malicious

vsḃenign singletons. The goal of the character-level learning model is to predict the next

character in a sequence and thereby classify the entire sequence based on the character

distribution. Here, given a training sequence of characters (a1,a2, ...,am), the RNN model

uses the sequence of its output vectors (o1,o2, ...,om) to obtain a sequence of distributions

P(ak+1|a≤k) = so f tmax(ok), where the softmax distribution is defined by

P(so f tmax(ok) = j) = exp(ok
( j))/∑

k
exp(ok

(l)). (2.1)

The learning model’s objective is to maximize the total log likelihood of the training se-

quence, which implies that the RNN learns a probability distribution over the character

sequences used in a full path + filename. Then based on the benign and malicious character

distribution patterns, the RNN model learns to classify the malicious singletons from the

benign based on our balanced training data.

For the SVM model, we apply the text chunking technique described in Section 3.4.2,

and use the bag-of-words representation as described above, concatenated with static and

API-based features, where relevant. While numerous other classification algorithms could

be used here, our purpose of exploring RNN and SVM specifically is to contrast an ap-

proach specifically designed for text data (making use of filename and path information

exclusively) with a general-purpose learning algorithm that is known to perform well in

malware classification settings [112].
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Putting Everything Together

The high-level algorithm for the entire training pipeline is shown in Algorithm 1.

Algorithm 1 Train({Str,Ztr,Mtr,Ytr}):
1: g = machineProfiling({Str,Ztr,Mtr,Ytr})
2: (D,θH ,θN ,C) = fileProfiling({Str,Ztr,Mtr,Ytr},g)
3: h = learnClassifier(D)
4: return g,h,θH ,θN ,C

The input to this algorithm is a collection of tuples {si,zi,mi,yi} ∈ {S,Z,M,Y} describ-

ing file instances on machines, which are partitioned into training (tr) and testing (te) for

the pipeline. Each file instance is represented by si, the 256-bit digest of a SHA-2 hash

over its contents and the size zi of the file in bytes. The machine is represented by a unique

machine identifier mi, and each instance of the file receives a label yi, which designates a

file as benign, malicious, or unknown. Machine profiling processes the file-instance data

to identify singleton files (those for which only one instance exists) from more prevalent

software that it groups into packages and uses to predict the presence or absence of sin-

gletons. The end result of training the pipeline includes the two classifiers: g classifies

machines into H (has benign singletons) and N (no benign singletons), while h classifies

files as malicious or benign, trained based on the selected representative data D. Additional

by-products include, the clusters of benign files C and the thresholds θH and θN that de-

termine how aggressively files projected to be benign are filtered before the classifier h is

applied.

Our test-time inputs include a set of singleton files that we withheld from training and

our model parameters, and it returns simply whether or not to label f as benign or mali-

cious. The specifics of the associated testing process, which use of our training pipeline,

are given in Algorithm 2.
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Algorithm 2 Predict({Ste,Mte}, g,h,θH ,θN ,C):

1: l = g(Mte) : label the machine as H or N
2: c∗ = argminc∈C J(Ste,c) { find closest cluster center to Ste }
3: if J(Ste,c)≤ θl then
4: return B {“benign” if Ste is close to a benign cluster center }
5: end if
6: return h(Ste) { otherwise, apply the classifier}

2.5 Experimental Evaluations

We conduct experiments on a large real-world dataset, dataset D2 as described in Sec-

tion 3.3.1, to evaluate the proposed pipeline as well as analyze the robustness of learning

system. As mentioned above, in implementing and deploying such a system in practice, we

face a series of tradeoffs. The first is how much information about each file we should be

collecting. On the one hand, more information will likely improve learning performance.

On the other hand, collecting and analyzing data at such scale can become extremely ex-

pensive, both financially and computationally. Moreover, collection of detailed data about

files on end-user machines can become a substantial privacy issue. For all of these reasons,

very little information is traditionally collected about files on end-user systems, largely

consisting of file name and an anonymized path, as well as file hashes and machines they

reside on. For a subset of files, deeper information is available, including static features as

well as API calls, as discussed above. However, these involve a significant cost: for exam-

ple, extracting API calls requires static analysis. Our experiments are therefore designed to

assess how much value these additional features have in classification, and whether or not

it is truly worthwhile to be collecting them at the scale necessary for practical deployment.

Our evaluation applies Machine Profiling (MP), File Profiling (FP), an RNN based on only

file name features, a SVM based on file name features, a SVM based on both file name

and the static features (SVMS), and a SVM based on file name, static features, and API

function features (SVMSF).
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2.5.1 Baseline Evaluation

Our first efficacy study demonstrates the benefit provided by our machine learning

pipeline as compared to two natural baselines. Our first baseline applies machine and

file profiling, ranking all examples based on their similarity to benign files, and identifying

the samples that are furthest from benign cluster centers as malicious. Our second baseline

is our best-performing classifier trained over our entire feature set (SVMSF), but trained

without the benefit of an initial machine/file profiling step, which reduces the ratio of be-

nign to malicious files from an 80:1 ratio to a 9:1 ratio. This baseline is similar to prior

work in malware classification based on static features [95]. As seen in Figure 3.6, our

full pipeline demonstrates clear improvement over the two baselines, with a significantly

higher AUC score. The spot on the curve with the maximal F0.5 score achieves a 92.1%

true positive rate at a 1.4% false positive rate, a dramatic improvement over applying FP

or SVMSF on its own. Different locations on the ROC curve are achieved by selecting

increasing values for θN and θH . The maximal F0.5 score is achieved with θH = 0.13 and

θN = 0.07.

Though uninformed downsampling of benign files may reasonably be suggested as an

alternative means to reduce the class imbalance and achieve better classification results with

SVMSF, our attempts to do so resulted in classifiers that perform worse than the SVMSF

classifier of Figure 3.6. The reason for this is likely that downsampling decimates small

clusters of benign files, resulting in a model that represents benign singletons only by its

most massively populated clusters. Our pipeline can be thought of as providing an informed

downsampling of benign files that reduces massively populated clusters of benign files to a

few prototypes, allowing the SVM to train a model that represents the full gamut of benign

singletons with the additional benefit of doing so over a more balanced dataset.
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Figure 2.6: ROC-curve comparison of the pipeline performance with the two baselines: no
machine/file profiling, and only machine/file profiling.

2.5.2 Evaluating Performance of the Classification Step

To assess the relative importance of the three classes of features (text, static, and API)

used by our model, we analyze the relative performance of just the last classification step of

four models on the dataset produced by MP and FP filtering: 1) RNN (using text features

only), 2) SVM (using text features only), 3) SVM with both text and static features, and 4)

SVM with text, static, and API features.

To highlight the performance differences between these classifiers, we evaluate them

over a test set of singletons from which obviously benign singletons have been pre-filtered

by file profiling (for this reason this figure does not reflect the overall performance of our

pipeline as reported in Figure 3.6). Our first observation is that RNN outperforms SVM

when only textual features are used, which is not surprising, given that RNN’s are partic-

ularly well suited to text data. Second, our model’s performance drops when training over

filename and anonymized path plus static features, which demonstrates the high discrimi-

native value of the filename and anonymized path relative to features derived from header

information in the executable. However, these static features do offer value when we ac-

36



Figure 2.7: Comparisons for models with different features without attacker.

count for the potential for adversarial manipulation, as discussed in Section 3.5.3. Third,

the value of features based on imported API functions is evident in the performance of the

SVMSF model compared to all other models, particularly when we choose a threshold that

limits the false positive rate, as security vendors are prone to do: The precision and recall

scores that produce a maximal F0.5 score for SVMSF are 83% recall at a 1% false positive

rate, as compared to 76% recall at a 5% false positive rate for RNN, which is this model’s

closest competitor on an Area Under the Curve (AUC) basis. Note that the performance of

the full pipeline is better than either of these classifiers alone (see Figure 3.6), because many

of the benign files that are causing the FPs are labeled correctly using the machine and file

profiling steps. Finally, our adversarial evaluation of these classifiers (Section 3.5.3) offers

additional justification for incorporating static and imported function-based features into

our model.

We evaluated the run-time required to train each step of our pipeline, including Ma-

chine Profiling (MP), File Profiling (FP), and the selected classifier, which is one of the

following: RNN, SVM (based on only file name), SVMS, and SVMSF. The run-time of

each step, when performed on a single powerful machine, is illustrated in Figure 3.8. Train-

ing Machine Profiling and File Profiling is fairly expensive, However, these two steps can
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be done offline, and updated incrementally as new data arrives. Training the SVM classi-

fiers is inexpensive, whereas training the RNN takes on the order of three hours with GPU

acceleration. Though we do not believe that this is a cause for concern, the inferior per-

formance of the RNN as compared to SVMSF makes it less appealing for inclusion in the

final version of our pipeline. We do not include test-time performance evaluation since the

cost to test a single file is negligible for all stages of the pipeline.

Figure 2.8: Comparisons of the runtime of different components within the pipeline.

2.5.3 Adversarial Evaluation

Though the evaluation of our classifiers, presented in Figure 3.7 is fairly typical for a

malware classification tool, it is not necessarily indicative of the long-term performance of

a classifier once it has been massively deployed in the wild. In particular, what is miss-

ing is an evaluation of the ability of our classifier to withstand the inevitable attempts of

malware authors to respond to its deployment by modifying their malicious singleton files

to mimic benign file patterns in order to evade detection. Whereas researchers have tra-

ditionally discussed an algorithm’s robustness to evasion based on subjective arguments

about the strength or weakness of individual features, the now well-developed body of re-

search on adversarial machine learning provides more rigorous methods for evaluating the
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adversarial robustness of a machine learning method [44, 45], and provides guidelines for

developing more adversarially robust learning techniques [113, 114].

We proceed by providing an evaluation of our model’s adversarial robustness. The

adversarial resistance of a classifier evaluation presupposes a given classifier, h, that outputs

for a given feature vector x, a label h(x) ∈ {−1,+1}, where in our case, −1 represents a

benign prediction and +1 represents a malicious prediction. Given h, the adversary is

modeled as aiming to minimize the cost of evasion,

x∗ = arg min
x′|h(x′)=−1

c(x,x′),

where c(x,x′) is the cost of using a malicious instance x′ in place of x to evade h (by ensuring

that h(x′) = −1, that is, that the malicious file will be classified as benign). The optimal

evasion is represented by x∗. Because this model always results in a successful evasion, no

matter its cost, we follow a more realistic model presented by Li and Vorobeychik [115],

where the evasion only occurs when its cost is within a fixed adversarial budget B, thus:

c(x,x∗)≤ B. Similarly, we mainly focus on the binary features here and prioritize the ones

that have the most distinguished values for malicious and benign to modify, focusing the

adversaries budget on the features that will be most useful for them to modify under the

assumption that they known how to mimic benign software. In effect, we assume that the

adversary will evade detection only if the gains from doing so outweigh the costs. The

budget represents the percentage of the total number of features that the attacker is able to

modify. A natural measure of the evasion cost c(x,x′) is the weighted l1 distance between

x and x′: c(x,x′) = ∑i ai‖xi− x′i‖. The choices of weights can be difficult to determine in

a principled way, although some features will clearly be easier for an adversary to modify

than others. We use ai = 1 for all features i below as a starting point. As we will see, this

already provides us with substantial evidence that a classifier using solely filename-based

features is extremely exploitable by an adversary, without even accounting for the fact that
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such features are also easier to modify for malware authors than, say, the functions they

import from the Windows API and other libraries.

Figure 2.9: Comparisons for models with attacker budget as 5.

Figure 2.10: Comparisons for models with attacker budget as 10.

We now perform a comparison of the same classifier and feature combinations pre-

sented in Section 3.5.2, but we now evaluate these classifiers using evasion attacks, as

shown in Figures 3.9 and 3.10 with budgets B = 5% and B = 10%, respectively. These fig-

ures highlight a significant trend: whereas the RNN’s performance was previously rather

close to that of the SVM with filename, static, and imported function features, the former
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has displays poor adversarial resistance, while the latter is far more robust. The RNN’s

AUC drops to 0.857 under pressure from a weaker attacker, and to 0.78 when pressured

by a stronger one, whereas the AUC for the SVM with the largest feature set only drops to

0.92 under a smaller adversarial budget, and to 0.88 with a larger one). The SVM based

only on filename features performed even worse than the RNN. Interestingly, while adding

static features (and not imported function features) to the SVM degrades its adversary-

free performance, the classifier performs considerably better than the RNN and SVM with

filename features, in the presence of an adversary.

In summary, our experimental results point consistently to the use of a Support Vector

Machine with features derived from the filename, path, static properties of the file, and

imported functions, as the model that performs the best, even against an active adversary.

Thus, the best version of our overall pipeline leverages this support vector machine as its

classifier, achieving the overall performance results shown in Figure 3.6.

2.6 Summary of Contributions

We analyzed a large dataset to extract insights about the properties and distribution of

singleton program binary files and their relationships to non-singleton software. We lever-

age the context in which singletons appear to filter benign files from our dataset, allowing

us to train a model over a more balanced set of positive and negative examples. We build

a classifier and feature set over the static contents of the file to effectively label benign and

malicious singletons, in a way that is adversarial robust. Together, these components of our

pipeline classify singletons much more effectively than either a context or a content-based

approach can do on its own.

In summary, this study has the following contributions:

1. provide the first detailed discussion of the role that benign polymorphism plays in mak-

ing singleton file classification a challenging problem.

2. identify root causes of benign polymorphism and leverage these to develop a method
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for filtering the most “obvious” benign files prior to applying malware classification

methods.

3. develop an algorithm that classifies 92% of malicious singletons as such, at a 1.4% false

positive rate. We do so purely on the basis of static file properties, despite extensive

obfuscation in most malware files, which we make no attempt to reverse.

4. explore the adversarial robustness of multiple classification models to an important class

of automated evasion/mimicry attacks, demonstrating the robustness of a performant set

of features derived from static file properties.
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Chapter 3

EVASION ATTACKS IN ADVERSARIAL ENVIRONMENTS

Motivated by the real-world adversarial security problems such as spam and malware

detection, in this chapter we will look into some of the fundamental questions for secure

learning, including the attack model, defensive strategies, as well as the interactions be-

tween the defender (learner) and adversaries. The core challenge in this class of applica-

tions is that adversaries are not static data generators, but make a deliberate effort to evade

the classifiers deployed to detect them. We investigate both the problem of modeling the ob-

jectives of such adversaries, as well as the algorithmic problem of accounting for rational,

objective-driven adversaries. In particular, we demonstrate severe shortcomings of feature

reduction in adversarial settings using several natural adversarial objective functions, an

observation that is particularly pronounced when the adversary is able to substitute across

similar features (for example, replace words with synonyms or replace letters in words).

By exploring the properties and effects of evasion attacks in adversarial environments, we

motivate the following work to develop robust learning algorithms against such evasion

behaviors.

3.1 Overview

The success of machine learning has led to its widespread use as a workhorse in a wide

variety of domains, from text and language recognition to trading agent design. It has

also made significant inroads into security applications, such as fraud detection, computer

intrusion detection, web search, and comparison shopping [9, 10, 11, 12]. The use of

machine (classification) learning in security settings has especially piqued the interest of

the research community in recent years because traditional learning algorithms are highly
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susceptible to a number of attacks [25, 116, 117, 118, 119]. The class of attacks that is of

interest to us are evasion attacks, in which an intelligent adversary attempts to adjust their

behavior so as to evade a classifier that is expressly designed to detect it [25, 45].

Machine learning has been an especially important tool for filtering spam and phishing

email, which we treat henceforth as our canonical motivating domain. To date, there has

been extensive research investigating spam and phish detection strategies using machine

learning, most without considering adversarial modification [120, 121, 122]. Failing to

consider an adversary, however, exposes spam and phishing detection systems to evasion

attacks. Typically, the predicament of adversarial evasion is dealt with by repeatedly re-

learning the classifier. This is a weak solution, however, since evasion tends to be rather

quick, and re-learning is a costly task, since it requires one to label a large number of

instances (in crowdsourced labeling, one also exposes the system to deliberate corruption

of the training data). Therefore, several efforts have focused on proactive approaches of

modeling the learner and adversary as players in a game in which the learner chooses

a classifier or a learning algorithm, and the attacker modifies either the training or test

data [44, 123, 124, 125, 45, 84, 126].

Spam and phish detection, like many classification domains, tends to suffer from the

curse of dimensionality [121]. Feature reduction is therefore standard practice, either ex-

plicitly, by pruning features which lack sufficient discriminating power, implicitly, by using

regularization, or both [127]. One of our key novel insights is that in adversarial tasks, fea-

ture selection can open the door for the adversary to evade the classification system. This

metaphorical door is open particularly widely in cases where feature cross-substitution

is viable. By feature cross-substitution, we mean that the adversary can accomplish es-

sentially the same end by using one feature in place of another. Consider, for example,

a typical spam detection system using a “bag-of-words” feature vector. Words which in

training data are highly indicative of spam can easily be substituted for by an adversary

using synonyms or through substituting characters within a word (such replacing an “o”
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with a “0”). We support our insight through extensive experiments, exhibiting potential

perils of traditional means for feature selection.

3.2 Preliminaries

The Learner Let X ⊆ Rn be the feature space, with n the number of features. For a

feature vector x ∈ X , we let xi denote the ith feature. Suppose that the training set (x,y)

is comprised of feature vectors x ∈ X generated according to some unknown distribution

x ∼ D , with y ∈ {−1,+1} the corresponding binary labels, where the meaning of −1 is

that the instance x is benign, while +1 indicates a malicious instance. The learner’s task

is to learn a classifier g : X → {−1,+1} to label instances as malicious or benign, using a

training data set of labeled instances {(x1,y1), . . . ,(xm,ym)}.

The Adversary We suppose that every instance x ∼ D corresponds to a fixed label

y ∈ {−1,+1}, where a label of +1 indicates that this instance x was generated by an ad-

versary. In the context of a threat model, therefore, we take this malicious x to be an

expression of revealed preferences of the adversary: that is, x is an “ideal” instance that the

adversary would generate if it were not marked as malicious (e.g., filtered) by the classi-

fier. The core question is then what alternative instance, x′ ∈ X , will be generated by the

adversary. Clearly, x′ would need to evade the classifier g, i.e., g(x′) = −1. However, this

cannot be a sufficient condition: after all, the adversary is trying to accomplish some goal.

This is where the ideal instance, which we denote xA comes in: we suppose that the ideal

instance achieves the goal and consequently the adversary strives to limit deviations from it

according to a cost function c(x′,xA). Therefore, the adversary aims to solve the following

optimization problem:

min
x′∈X :g(x′)=−1

c(x′,xA). (3.1)

There is, however, an additional caveat: the adversary typically only has query access to

g(x), and queries are costly (they correspond to actual batches of emails being sent out,
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for example). Thus, we assume that the adversary has a fixed query budget, Bq. Addition-

ally, we assume that the adversary also has a cost budget, Bc so that if the solution to the

optimization problem (4.1) found after making Bq queries falls above the cost budget, the

adversary will use the ideal instance xA as x′, since deviations fail to satisfy the adversary’s

main goals.

The Game The game between the learner and the adversary proceeds as follows:

1. The learner uses training data to choose a classifier g(x).

2. Each adversary corresponding to malicious feature vectors x uses a query-based al-

gorithm to (approximately) solve the optimization problem (4.1) subject to the query

and cost budget constraints.

3. The defender’s “test” error is measured using a new data set in which every malicious

x ∈ X is replaced with a corresponding x′ computed by the adversary in step 2.

Figure 3.1: Genearl idea of feature cross-substitution attacks

3.3 Modeling Feature Cross-Substitution

Distance-Based Cost Functions In one of the first attempts at modeling adversaries

in classification settings, Lowd and Meek [45] proposed a natural l1 distance-based cost
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function which penalizes for deviations from the ideal feature vector xA:

c(x′,xA) = ∑
i

ai|x′i− xA
i |, (3.2)

where ai is a relative importance of feature i to the adversary. All follow-up work in the

adversarial classification domain has used either this cost function, or variations of distance,

such as lp norms [25, 116, 119, 128].

Feature Cross-Substitution Attacks While distance-based cost functions seem em-

inently natural models of adversarial objective, they miss an important phenomenon of

feature cross-substitution. In spam or phishing, this phenomenon is most obvious when

an adversary substitutes words for their synonyms or substitutes similar-looking letters in

words. As an example, consider Figure 4.2 (left), where some features can naturally be

Figure 3.2: Left: illustration of feature substitution attacks. Right: comparison between
distance-based and equivalence-based cost functions.

substituted for others without significantly changing the original content. These words can

contain features with the similar meaning or effect (e.g. money and cash) or differ in only

a few letters (e.g clearance and claerance). The impact is that the adversary can achieve a

much lower cost of transforming an ideal instance xA using similarity-based feature substi-

tutions than simple distance would admit.

To model feature cross-substitution attacks, we introduce for each feature i an equiva-

lence class of features, Fi, which includes all admissible substitutions (e.g., k-letter word

modifications, synonyms, etc), and generalize the Lowd and Meek cost function to account
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for such cross-feature equivalence:

c(x′,xA) = ∑
i

min
j∈Fi|xA

j⊕x′j=1
ai|x′j− xA

i |, (3.3)

where xA
j ⊕ x′j = 1 ensures that we do not “double-count” the same substitution. Figure

4.2 (right) shows the cost comparison between the Lowd and Meek and equivalence-based

cost functions under letter substitution attacks. The key observation is that the equivalence-

based cost function significantly reduces attack costs compared to the distance-based cost

function, with the difference increasing in the size of the equivalence class. The practical

import of this observation is that the adversary will far more frequently come under cost

budget when he is able to use such substitution attacks. Failure to capture this phenomenon

therefore results in a threat model that significantly underestimates the adversary’s ability

to evade a classifier.

3.4 The Perils of Feature Reduction in Adversarial Classification

Feature reduction is one of the fundamental tasks in machine learning aimed at con-

trolling overfitting. The insight behind feature reduction in traditional machine learning is

that there are two sources of classification error: bias, or the inherent limitation in expres-

siveness of the hypothesis class, and variance, or inability of a classifier to make accurate

generalizations because of overfitting the training data. We now observe that in adversarial

classification, there is a crucial third source of generalization error, introduced by adver-

sarial evasion. Our main contribution in this section is to document the tradeoff between

feature reduction and the ability of the adversary to evade the classifier and thereby intro-

duce this third kind of generalization error. In addition, we show the important role that

feature cross-substitution can play in this phenomenon.

To quantify the perils of feature reduction in adversarial classification, we first train

each classifier using a different number of features n. In order to draw a uniform com-
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parison across learning algorithms and cost functions, we used an algorithm-independent

means to select a subset of features given a fixed feature budget n. Specifically, we select

the set of features in each case based on a score function score(i) = |FR−1(i)−FR+1(i)|,

where FRC(i) represents the frequency that a feature i appears in instances x in class

C ∈ {−1,+1}. We then sort all the features i according to score and select a subset of

n highest ranked features. Finally, we simulate an adversary as running an algorithm which

is a generalization of the one proposed by Lowd and Meek [45] to support our proposed

equivalence-based cost function (see the supplement Section 2 for details).

In our evaluation we consider three data sets: Enron email data [129], Ling-spam data

[130], and internet advertisement dataset from the UCI repository [131]. The Enron data

set was divided into training set of 3172 and a test set of 2000 emails in each of 5 folds of

cross-validation, with an equal number of spam and non-spam instances [129]. A total of

3000 features were chosen for the complete feature pool, and we sub-selected between 5

and 1000 of these features for our experiments. The Ling-spam data set was divided into

1158 instances for training and 289 for test in cross-validation and contains 1000 features

from which between 5 and 500 were sub-selected for the experiments. Finally, the UCI data

set was divided into 476 training and 119 test instances in five-fold cross validation, with

four times as many advertisement as non-advertisement instances. This data set contains

200 features, of which between 5 and 200 were chosen. For each data set, we compared the

effect of adversarial evasion on the performance of four classification algorithms: Naive

Bayes, SVM with linear and rbf kernels, and neural network classifiers.

The results are documented in Figure 4.3. To understand the results, we can consider

the lowest (purple) lines in all plots, which show cross-validation error as a function of the

number of features used, as the baseline comparison. In most cases, there is an “optimal”

number of features, i.e., the point at which the cross-validation error rate reaches a mini-

mum, and we can presume that traditional machine learning methods will strive to select

the number of used features near this point. The first key observation is that whether the
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1(a) 1(b) 1(c) 1(d)

2(a) 2(b) 2(c) 2(d)

3(a) 3(b) 3(c) 3(d)

Figure 3.3: Effect of adversarial evasion on feature reduction strategies. (a)-(d) determin-
istic Naive Bayes classifier, SVM with linear kernel, SVM with rbf kernel, and Neural
network, respectively. 1-3 correspond to Enron, Ling-spam, and UCI data sets. Top sets of
figures in each case correspond to distance-based and bottom figures are equivalence-based
cost functions. For equivalence-based cost functions equivalence classes are formed using
max-2-letter substitutions.
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adversary uses the distance- or equivalence-based cost functions, there tends to be a shift

of this “optimal” point to the right: the learner should be using more features when facing a

threat of adversarial evasion, despite the potential risk of overfitting. The second observa-

tion is that when a significant amount of malicious traffic is present (as in the experiments

based on Enron data), evasion can account for a dominant portion of the test error, shifting

the error up significantly. Third, feature cross-substitution attacks often exhibit distinctly

more power, significantly elevating test error, particularly when the cost budget is suffi-

ciently high. This impact is particularly stark as we increase the size of the equivalence

class (as documented in the supplement Section 1).

3.5 Summary of Contributions

In this chapter we offer two solutions against the evasion attacks in adversarial classi-

fication. The first is highly heuristic, using meta-features constructed using feature equiv-

alence classes for classification. The second is a principled and general Stackelberg game

multi-adversary model (SMA), solved using mixed-integer linear programming. We use

experiments to demonstrate that the first solution often outperforms state-of-the-art adver-

sarial classification methods, while SMA is significantly better than all alternatives in all

evaluated cases. We also show that SMA in fact implicitly makes a tradeoff between fea-

ture reduction and adversarial evasion, with more features used in the context of stronger

adversaries.

In summary, the contributions are:

1. A comprehensive defensive strategy analysis for evasion attacks,

2. a heuristic class-based learning approach (Section 5.2), and

3. a bi-level optimization framework and solution methods that make a principled trade-

off between feature selection and adversarial evasion (Section 5.3).
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Chapter 4

STACKELBERG GAME MULTI-ADVERSARY DEFENSIVE MODEL

To defend the evasion attacks introduced before, in this chapter we offer a simple heuris-

tic method for making learning more robust to feature cross-substitution attacks. We then

present a more general approach based on mixed-integer linear programming with con-

straint generation, which implicitly trades off overfitting and feature selection in an ad-

versarial setting using a sparse regularizer along with an evasion model. This approach is

the first method for combining an adversarial classification algorithm with a very general

class of models of adversarial classifier evasion. We will also show that our algorithmic

approach significantly outperforms state-of-the-art alternatives.

4.1 Overview

Aiming to defend the evasion attacks, especially the feature-substitute attacking strat-

egy, we propose several defensive strategies in this chapter to handle the classification

problem in the adversarial environments. The first proposed solution to the problem of fea-

ture reduction in adversarial classification is equivalence-based learning, or constructing

features based on feature equivalence classes, rather than the underlying feature space. We

show that this heuristic approach does, indeed, significantly improve resilience of classi-

fiers to adversarial evasion. Our second proposed solution is more principled, and takes the

form of a general bi-level mixed integer linear program to solve a Stackelberg game model

of interactions between a learner and a collection of adversaries whose objectives are in-

ferred from training data. The baseline formulation is quite intractable, and we offer two

techniques for making it tractable: first, we cluster adversarial objectives, and second, we

use constraint generation to iteratively converge upon a locally optimal solution. The prin-
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cipal merits of our proposed bi-level optimization approach over the state of the art are: a)

it is able to capture a very general class of adversary models, including the model proposed

by Lowd and Meek [45], as well as our own which enables feature cross-substitution; in

contrast, state-of-the-art approaches are specifically tailored to their highly restrictive threat

models; and b) it makes an implicit tradeoff between feature selection through the use of

sparse (l1) regularization and adversarial evasion (through the adversary model), thereby

solving the problem of adversarial feature selection. The general model of this problem is

illustrated in Figure 4.1.

4.2 Equivalence-Based Classification

Having documented the problems associated with feature reduction in adversarial clas-

sification, we now offer a simple heuristic solution: equivalence-based classification (EBC).

The idea behind EBC is that instead of using underlying features for learning and classifi-

cation, we use equivalence classes in their place.1 Specifically, we partition features into

equivalence classes. Then, for each equivalence class, we create a corresponding meta-

feature to be used in learning. For example, if the underlying features are binary and

indicating a presence of a particular word in an email, the equivalence-class meta-feature

would be an indicator that some member of the class is present in the email. As another

example, when features represent frequencies of word occurrences, meta-features could

represent aggregate frequencies of features in the corresponding equivalence class.

4.3 Stackelberg Game Multi-Adversary Model

The proposed equivalence-based classification method is a highly heuristic solution to

the issue of adversarial feature reduction. We now offer a more principled and general ap-

proach to adversarial classification based on the game model described above. Formally,

1We assume throughout that equivalence classes are pre-defined. The question of learning these from data
is left for future work.
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we aim to compute a Stackelberg equilibrium of the game in which the learner moves first

by choosing a linear classifier g(x) = wT x and all the attackers simultaneously and inde-

pendently respond to g by choosing x′ according to a query-based algorithm optimizing the

cost function c(x′,xA) subject to query and cost budget constraints. Consequently, we term

this approach Stackelberg game multi-adversary model (SMA). The optimization problem

for the learner then takes the following form:

min
w

α ∑
j|y j=−1

l(−wT x j)+(1−α) ∑
j|y j=1

l(wT F(x j;w))+λ ||w||1, (4.1)

where l(·) is the hinge loss function and α ∈ [0,1] trades off between the importance of false

positives and false negatives. Note the addition of l1 regularizer to make an explicit trade-

off between overfitting and resilience to adversarial evasion. Here, F(x j;w) generically

captures the adversarial decision model. In our setting, the adversary uses a query-based

algorithm (which is an extension of the algorithm proposed by Lowd and Meek [45]) to

approximately minimize cost c(x′,x j) over x′ : wT x′ ≤ 0, subject to budget constraints on

cost and the number of queries. In order to solve the optimization problem (5.1) we now

describe how to formulate it as a (very large) mixed-integer linear program (MILP), and

then propose several heuristic methods for making it tractable. Since adversaries here cor-

respond to feature vectors x j which are malicious (and which we interpret as the “ideal”

instances xA of these adversaries), we henceforth refer to a given adversary by the index j.

The first step is to observe that the hinge loss function and ‖w‖1 can both be easily

linearized using standard methods. We therefore focus on the more challenging task of

expressing the adversarial decision in response to a classification choice w as a collection

of linear constraints.

To begin, let X̄ be the set of all feature vectors that an adversary can compute using

a fixed query budget (this is just a conceptual tool; we will not need to know this set in

practice, as shown below). The adversary’s optimization problem can then be described as
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computing

z j = argmin
x′∈X̄ |wT x′≤0

c(x′,x j)

when the minimum is below the cost budget, and setting z j = x j otherwise. Now define an

auxiliary matrix T in which each column corresponds to a particular attack feature vector

x′, which we index using variables a; thus Tia corresponds to the value of feature i in attack

feature vector with index a. Define another auxiliary binary matrix L where La j = 1 iff the

strategy a satisfies the budget constraint for the attacker j. Next, define a matrix c where ca j

is the cost of the strategy a to adversary j (computed using an arbitrary cost function; we

can use either the distance- or equivalence-based cost functions, for example). Finally, let

za j be a binary variable that selects exactly one feature vector a for the adversary j. First,

we must have a constraint that za j = 1 for exactly one strategy a: ∑a za j = 1 ∀ j. Now,

suppose that the strategy a that is selected is the best available option for the attacker j; it

may be below the cost budget, in which case this is the strategy used by the adversary, or

above budget, in which case x j is used. We can calculate the resulting value of wT F(x j;w)

using e j = ∑a za jwT (La jTa+(1−La j)x j). This expression introduces bilinear terms za jwT ,

but since za j are binary these terms can be linearized using McCormick inequalities [132].

To ensure that z ja selects the strategy which minimizes cost among all feasible options,

we introduce constraints ∑a za jca j ≤ ca′ j +M(1− ra′), where M is a large constant and ra′

is an indicator variable which is 1 iff wT Ta′ ≤ 0 (that is, if a′ is classified as benign); the

corresponding term ensures that the constraint is non-trivial only for a′ which are classi-

fied benign. Finally, we calculate ra for all a using constraints (1− 2ra)wT Ta ≤ 0. While

this constraint again introduces bilinear terms, these can be linearized as well since ra are

binary. The full MILP formulation is shown as below.

As is, the resulting MILP is intractable for two reasons: first, the best response must

be computed (using a set of constraints above) for each adversary j, of which there could

be many, and second, we need a set of constraints for each feasible attack action (feature

vector) x ∈ X̄ (which we index by a). We tackle the first problem by clustering the “ideal”
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attack vectors x j into a set of 100 clusters and using the mean of each cluster as xA for the

representative attacker. This dramatically reduces the number of adversaries and, therefore,

the size of the problem. To tackle the second problem we use constraint generation to iter-

atively add strategies a into the above program by executing the Lowd and Meek algorithm

in each iteration in response to the classifier w computed in previous iteration. In com-

bination, these techniques allow us to scale the proposed optimization method to realistic

problem instances. The MILP to compute solution to (5.1) is shown as below.

min
w,z,r

α ∑
i|yi=0

Di +(1−α) ∑
i|yi=1

Si +λ ∑
j

K j

s.t. : ∀a, i, j : zi(a),r(a) ∈ {0,1}

∑
a

zi(a) = 1

∀i : ei = ∑
a

mi(a)(LaiTa +(1−Lai)xi)

∀a, i, j :−Mzi(a)≤ mi j(a)≤Mzi(a)

∀a, i, j : w j−M(1− zi(a))≤ mi j(a)≤ w j +M(1− zi(a))

∀a : ∑
j

w jTa j ≤ 2∑
j

Ta jya j

∀a, j :−Mra ≤ ya j ≤Mra

∀a, j : w j−M(1− ra)≤ ya j ≤ w j +M(1− ra)

∀i : Di = max(0,1−wT xi)

∀i : Si = max(0,1+ ei)

∀ j : K j = max(w j,−w j)

The full SMA iterative algorithm using clustering and constraint generation is shown

in Algorithm 3. The matrices L and C in the MILP can be pre-computed using the matrix

of strategies and corresponding indices T in each iteration, as well as the cost budget Bc.
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computeAttack() is the attacker’s best response as in Algorithm 4.

Algorithm 3 SMA(X)
T =randStrats() // initial set of attacks

X ′← cluster(X)

w0←MILP(X ′,T )

w← w0

while T changes do

for xA ∈ X ′spam do

t =computeAttack(xA,w)

T ← T ∪ t

end for

w←MILP(X ′,T )

end while

return w

Here the algorithm 4 makes use of specific query budget and call the query algorithm

to iteratively generate attack strategies based on both the query and cost budget.

Algorithm 4 computeAttack(xA,w)
Get matrix T

Generate matrix C, L based on T,Bc

Randomly select x− from Xham

Bq← Q

t← FindBooleanIMAC(xA,x−,w,Bq)

return t
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4.4 Experiments

In this section we investigate the effectiveness of the two proposed methods: the equivalence-

based classification heuristic (EBC) and the Stackelberg game multi-adversary model (SMA)

solved using mixed-integer linear programming. As in Section 4.4, we consider three data

sets: the Enron data, Ling-spam data, and UCI data. We draw a comparison to three base-

lines: 1) “traditional” machine learning algorithms (we report the results for SVM; com-

parisons to Naive Bayes and Neural Network classifiers are provided in the section 5.4, 2)

Stackelberg prediction game (SPG) algorithm with linear loss [84], and 3) SPG with logis-

tic loss [84]. Both (2) and (3) are state-of-the-art alternative methods developed specifically

for adversarial classification problems.

General evaluation of SMA Our first set of results, shown in Figure 5.1, is a perfor-

mance comparison of our proposed methods to the three baselines, evaluated with respect

to an adversary striving to evade the classifier, subject to query and cost budget constraints.

In the case of the Enron data, we can see, remarkably, that the equivalence-based classi-

(a) (b) (c)

Figure 4.1: Comparison of EBC and SMA approaches to baseline alternatives on Enron
data (a), Ling-spam data (b), and UCI data(c). Top: Bc = 5,Bq = 5. Bottom: Bc = 20,Bq =
10.
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fier often significantly outperforms both SPG with linear and logistic loss. On the other

hand, the performance of EBC is relatively poor on Ling-spam data, although observe that

even the traditional SVM classifier has a reasonably low error rate in this case. While the

performance of EBC is clearly data-dependent, SMA (purple lines in Figure 5.1) exhibits

dramatic performance improvement compared to alternatives in all instances.

Figure 5.2 (left) looks deeper at the nature of SMA solution vectors w. Specifically,

we consider how the adversary’s strength, as measured by the query budget, affects the

sparsity of solutions as measured by ‖w‖0. We can see a clear trend: as the adversary’s

budget increases, solutions become less sparse. This is to be expected in the context of our

investigation of the impact that adversarial evasion has on feature reduction (Section 4.4):

SMA automatically accounts for the tradeoff between resilience to adversarial evasion and

regularization.

Figure 4.2: Left: ‖w‖0 of the SMA solution. Middle: SMA error rates, and Right: SMA
running time, as a function of the number of clusters used. Top: results based on Enron
data. Middle: results based on Ling data. Bottom: results based on UCI data.
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Figure 5.2 (middle, right) considers the impact of the number of clusters used in solving

the SMA problem on running time and error. The key observation is that with relatively

few (80-100) clusters we can achieve near-optimal performance, with significant savings in

running time.

Cost function influence Furthermore, we exhibit the comparison results to evaluate the

effectiveness of the two proposed methods: the equivalence-based classification heuristic

(EBC) and the Stackelberg game multi-adversary model (SMA) solved using mixed-integer

linear programming. The evaluation is based on both the distance-based and equivalence-

based cost functions.

We employ three datasets: the Enron data, Ling-spam data, and UCI data. Each column

in Figure 5.3 to Figure 5.8 corresponds to a specific dataset. Figure 5.3 to Figure 5.5

show the comparison results for the Stackelberg prediction game (SPG) with linear loss,

SPG with logistic loss, the two proposed methods, and each of the baseline classifier: Naive

Bayes, SVM, and Neural Network respectively, based on equivalence-based cost function.

Figure 5.6 to Figure 5.8 reveal the similar comparison results for the two SPG state-of-

the-art alternatives and the proposed methods with each baseline classifier based on the

distance-based cost function. Various cost (5, 10, 20) and query (5, 10) budget constraints

are applied to simulate the adversarial evasion.

From Figure 5.3 to Figure 5.8, it is obvious that SMA outperforms other alternatives

in all situations subject to various combinations of cost and query budget constraints based

on different datasets. The performance of EBC is relatively data-dependent but still show

resilience to the adversarial feature cross-substitution attacks compared with the traditional

baseline classifiers. The comparison results also suggest that given higher cost and query

budget, the adversary received stronger ability to perform feature cross-substitution attacks

and therefore elevate the test error for the traditional classifiers, which fail to taken adver-

sarial attacks into account. Furthermore, even having considered the adversarial settings

for classification tasks, the test error rate of all classifiers based on the distance-based cost
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function is still higher than the corresponding one based on the equivalence-based cost

function. This implies that under estimate the adversary ability would lead to bad per-

formance for classifiers. However, as SMA model can apply more robust cost function

(equivalence-based cost function) to evaluate the adversary strategies accordingly during

training, the test error of SMA is able to keep relatively stable for different attacked data,

which highly increases the classifier robustness.

Comparison based on different equivalence class sizes

To demonstrate the impact of feature cross-substitution attacks, we show comparisons

for NB, SVM with linear kernel, SVM with rbf kernel and Neural Network classifiers based

on the baseline Distance-based 5.9 (a) and the Equivalence-based 5.9 (b)-(d) cost function

with Enron data. For the equivalence-based cost function, we applied max-2,3,4-letter

substitution respectively to form equivalence classes with increasing sizes. From the com-

parison results in Figure 5.9, it is obvious that the feature cross-substitution attacks elevate

the test error on a large scale, and such attack gains more power when the equivalence class

size increases.

Error injection evaluation To test the robustness of the proposed learning algorithm,

we inject estimation errors for the defender to evaluate the learning results. We first allow

the attacker to use the cost budget of 20 and query budgets as 3 and 30, respectively, while

assume the defender incorrectly thought the adversarial cost is 5, 10, and 20 (no error).

We also random flip the 10% of the elements within the L matrix of defender to simulate

other unknown source of attacks to evaluate the robustness. When performing the attacks,

we allow the adversary to attack the data in two ways: random and ranked. In the random

attack, the adversary random chooses features to flip the sign until he meets the cost and

query budgets. While in the ranked attack, the adversaries are more powerful and can have

access to the feature score derived by the defender and attack the features from the highest

score. In all kinds of attacks, the results stay robust without significant variants, which

demonstrate the robustness of SMA in adversarial environments.
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(a) (b) (c)

Figure 4.3: Comparison of EBC and SMA approaches to the baseline classifier Naive Bayes
and SPG alternatives based on Equivalence-based cost function for (a) Enron data, (b)Ling-
spam data, and (c) UCI data. Row 1: Bc = 5,Bq = 5, Row 2: Bc = 10,Bq = 5, Row 3: Bc =
20,Bq = 5, Row 4: Bc = 5,Bq = 10, Row 5: Bc = 10,Bq = 10, Row 6: Bc = 20,Bq = 10.
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(a) (b) (c)

Figure 4.4: Comparison of EBC and SMA approaches to the baseline classifier SVM and
SPG alternatives based on Equivalence-based cost function for (a) Enron data, (b)Ling-
spam data, and (c) UCI data. Row 1: Bc = 5,Bq = 5, Row 2: Bc = 10,Bq = 5, Row 3: Bc =
20,Bq = 5, Row 4: Bc = 5,Bq = 10, Row 5: Bc = 10,Bq = 10, Row 6: Bc = 20,Bq = 10.
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(a) (b) (c)

Figure 4.5: Comparison of EBC and SMA approaches to the baseline classifier Neural
Network and SPG alternatives based on Equivalence-based cost function for (a) Enron data,
(b)Ling-spam data, and (c) UCI data. Row 1: Bc = 5,Bq = 5, Row 2: Bc = 10,Bq = 5,
Row 3: Bc = 20,Bq = 5, Row 4: Bc = 5,Bq = 10, Row 5: Bc = 10,Bq = 10, Row 6:
Bc = 20,Bq = 10.

64



(a) (b) (c)

Figure 4.6: Comparison of EBC and SMA approaches to the baseline classifier Naive Bayes
and SPG alternatives based on Distance-based cost function for (a) Enron data, (b)Ling-
spam data, and (c) UCI data. Row 1: Bc = 5,Bq = 5, Row 2: Bc = 10,Bq = 5, Row 3: Bc =
20,Bq = 5, Row 4: Bc = 5,Bq = 10, Row 5: Bc = 10,Bq = 10, Row 6: Bc = 20,Bq = 10.
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(a) (b) (c)

Figure 4.7: Comparison of EBC and SMA approaches to the baseline classifier SVM and
SPG alternatives based on Distance-based cost function for (a) Enron data, (b)Ling-spam
data, and (c) UCI data. Row 1: Bc = 5,Bq = 5, Row 2: Bc = 10,Bq = 5, Row 3: Bc =
20,Bq = 5, Row 4: Bc = 5,Bq = 10, Row 5: Bc = 10,Bq = 10, Row 6: Bc = 20,Bq = 10.
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(a) (b) (c)

Figure 4.8: Comparison of EBC and SMA approaches to the baseline classifier Neural
Network and SPG alternatives based on Distance-based cost function for (a) Enron data,
(b)Ling-spam data, and (c) UCI data. Row 1: Bc = 5,Bq = 5, Row 2: Bc = 10,Bq = 5,
Row 3: Bc = 20,Bq = 5, Row 4: Bc = 5,Bq = 10, Row 5: Bc = 10,Bq = 10, Row 6:
Bc = 20,Bq = 10.
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(a) (b) (c) (d)

Figure 4.9: Impacts of different equivalence class sizes for (a) Distance-based cost function,
(b) Equivalence-based cost function with max-2-letter substitution, (c) Equivalence-based
cost function with max-3-letter substitution, (d) Equivalence-based cost function with max-
4-letter substitution.

Figure 4.10: Estimation error injection for random feature attack (first line) and ranked
features (second line).
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4.5 Summary of Contributions

This chapter investigated two phenomena in the context of adversarial classification

settings: classifier evasion and feature reduction, exhibiting strong tension between these.

The tension is surprising: feature/dimensionality reduction is a hallmark of practical ma-

chine learning, and, indeed, is generally viewed as increasing classifier robustness. Our

insight, however, is that feature selection will typically provide more room for the intelli-

gent adversary to choose features not used in classification, but providing a near-equivalent

alternative to their “ideal” attacks which would otherwise be detected. Terming this idea

feature cross-substitution (i.e., the ability of the adversary to effectively use different fea-

tures to achieve the same goal), we offer extensive experimental evidence that aggressive

feature reduction does, indeed, weaken classification efficacy in adversarial settings.

In summary, the contributions are:

1. Explore the evasion attacks in adversarial environments,

2. a new adversarial evasion model that explicitly accounts for the ability to cross-

substitute features (Section 4.3),

3. an experimental demonstration of the perils of traditional feature selection (Sec-

tion 4.4).
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Chapter 5

BEHAVIORAL EXPERIMENTS IN ADVERSARIAL SPAM FILTER EVASION

Previous research in adversarial machine learning all models the threat model math-

ematically without being able to derive the adversaries behavior patterns from the real

dataset. In this chapter we start to conduct the human subject experiments aiming to simu-

late the attacker behavior from the real collected data and therefore model the threat model

in a more practical way. The science of human decision making has seen much attention

across a broad array of disciplines, but human decisions in complex adversarial settings

such as cyber security are not well understood. In particular, here we study a particular

decision problem of wide importance in cyber security: modification of an email message,

such as a spam of phishing email, in order to evade a spam filter. Despite the obvious

importance of understanding adversarial evasion of email filters, driven by the enormous

social cost of spam and phishing attacks, ours is the first behavioral investigation into this

problem. Within the analysis, we designed a human subject experiment in which subjects

were presented with an “ideal” email instance, which they could modify in order to bypass

a filter designed through supervised classification methods. One of our key findings is that

adding a slight amount of noise to the filter significantly reduces the effectiveness of sub-

jects to evade it. In addition to the analysis of experimental data, we use it to develop a

model of human learning behavior in the context of our task. We found that our compu-

tational model is able to reliably replicate the experimental findings, suggesting that it can

be used for future computational investigations into adversarial behavior, as well as in the

design of email filtering algorithms that are robust to adversarial evasion.
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5.1 Overview

Email has come to be a mainstay of our daily lives. According to a 2012 McKinsey

report people spend on average 28% of workday activities using email. Nie et al. have

suggested that an average email user loses 10 working days each year dealing with such

emails [133], and most estimates have placed worldwide cost of spam to over 10 billion

dollars [134].

Decades of research have yielded numerous methods for designing spam filters making

use of knowledge engineering [135] and machine (typically, classification) learning [136,

137], with the latter having become the prominent paradigm [138]. In simple terms, the

machine learning approach works by collecting many labeled instances of emails, where

labels correspond to bad (spam) and normal (non-spam, sometimes called ham) emails.

Emails themselves are represented quantitatively as feature vectors, with features often

corresponding to presence or absence of specific indicator words or phrases, and a classifi-

cation algorithm, such as Naive Bayes or Support Vector Machine [139] is run on the data

to obtain a classifier which, given an arbitrary email instance (coded into features) outputs

a decision whether this instance is spam or ham. For a given labeled data set, machine

learning algorithms have come to be extremely good at detecting spam. The problem is

that spammers have themselves become quite sophisticated in the techniques of filter eva-

sion, or manipulating the spam email templates to bypass common filtering techniques. A

typical approach in the field is a cat-and-mouse game in which a classifier is re-trained on

new data at regular intervals, and spammers routinely change behavior in response [138].

Clearly, a more proactive approach is called for, and a literature emerged with a focus on

modeling and algorithmic assessment of the classifier (filter) evasion problem as well as

associated proactive learning algorithm design [44, 45, 114, 43, 113] In these highly styl-

ized models, a spammer is typically viewed as aiming to minimize the number of edits to

an “ideal” spam email template (for example, because modifications to the ideal instance

adversely affect the associated response rate), subject to a hard constraint that the email
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evades the filter. While much progress has been made in considering an explicit model of

spammer evasion, the central limitation of all of this literature is that the models are not

grounded in actual spammer behavior.

To address this limitation, we present the first human subject study of adversarial eva-

sion of a classification-based spam filter. In our experiments, 265 human subjects, recruited

using Amazon Mechanical Turk, each faced a task of editing an initial spam or phishing

email template in order to achieve two objectives: first, bypass a filter, and second, remain

close to the original. Our treatments were explicitly designed to investigate two hypothe-

ses. The first hypothesis was that adding a small amount of noise to filtering decisions

significantly reduces the subjects’ ability to evade it. While prior work exists investigating

the design of optimal randomization schemes in adversarial settings [140, 141], including

work involving human subjects (e.g., [142]), ours is the first to investigate how randomiza-

tion affects decision efficacy, and is also the first to consider randomization in experimental

investigation of spam filter evasion. The second hypothesis was that measuring distance to

the original in a way that does not penalize the subjects for making word substitutions, such

as using synonyms, will significantly improve their performance. We find strong support

for the first hypothesis, whereas, somewhat surprisingly, the support for the second hypoth-

esis is mixed. In particular, we observe that randomized filtering significantly reduces the

ability of subjects to evade, largely because it significantly increases the fraction of times

that participants’ submissions were filtered by the system. An additional finding of great

practical importance is that increasing the fraction of words in an original email that are in-

cluded as features in the classifier (filter) also increases the difficulty of the associated task.

One of the core guiding principles in applied machine learning is that one should keep the

number of features used as small as possible. Our finding, in contrast, suggests that when

faced with an adversarial classification problem, such as spam filtering, limiting the num-

ber of features can actually make the evasion problem easier. In addition, we observed that

female participants tend to perform better at the evasion task than males.
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Besides our collection of experimental findings, we also endeavored to develop a syn-

thetic model of evasion behavior calibrated using the experimental data. We demonstrate

that our model effectively predicts both individual-level behavior, as well as aggregate ex-

perimental quantities, allowing us to successfully replicate the experimental findings in

simulation. The developed model can thus be utilized in follow-up development of proac-

tive spam filtering methods that explicitly account for human evasion behavior. The general

structure of this human subject based experiments for cost evaluation is shown in Figure 6.1

Figure 5.1: Genearl idea of human subject experiments on cost function evaluation

5.2 Preliminaries

Before we can properly describe and motivate the experimental setup, we begin by

considering in the abstract the problem of adversarial classifier evasion, which has been

previously studied in several forms from a computational standpoint [39, 45, 114, 43].

Spam and phishing email filtering is a special case: when machine learning is used to filter

spam emails, the spammer changes the email structure (template) in order to evade the filter

to ensure successful delivery of the email. The crucial challenge is that evasion alone is not

sufficient: one needs to ensure that the original purpose of the email is still fulfilled. Next,

we describe how this tradeoff can be quantified.

An instance of interest, such as an email (which may or may not be spam) is represented

as a vector of binary features, x= {x1, . . . ,xn}. The corresponding label is encoded as either

+1, signifying a malicious instance (spam, for example), or −1, signifying a normal or
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benign instance (a regular email). In using machine learning for spam/phishing detection,

we start with a training data set of instances {(xi,yi)} where xi are the feature vectors and

yi are the corresponding labels, and train a classifier, g(x), which predicts a label for an

arbitrary feature vector (email) x. Many techniques have been proposed for this problem.

For our purposes, we used a Naive Bayes classifier, and used 500 features (words) that had

the highest (R)elative (F)requency in spam / non-spam emails respectively. The relative

frequency for each word i is defined as |RF−1(i)−RF+1(i)|, where RFC(i) is the relative

frequency that word i appears in instances x in class C. We used TREC data to train the

classifier with the average accuracy of ∼91% in five-fold cross-validation.

Given a classifier, g(x), adversarial evasion is commonly modeled as (an adversary)

choosing another feature vector x′ (for example, a modified spam email template) which

is classified as benign and is as close to the original instance x as possible [45, 128, 43].

Formally, let c(x,x′) be a cost function representing the loss sustained by the adversary from

choosing x′ instead of x. The adversary is solving the following optimization problem:

min
x′|g(x′)=−1

c(x,x′).

The simplest way to measure this cost is by using a norm, commonly, l1. We define this

cost function as:

S1 : c(x,x′) = ∑
i
|xi− xi

′|.

In recent work, this cost function has been criticized on the grounds that it penalizes for

substitutions among equivalent features (for example, synonyms or 1-letter substitutions in

words) [43]. This work proposed an alternative cost function defined as follows:

S2 : c(x,x′) = ∑
i

min
j∈Fi|x j ′⊕x j=1

|x j− xi
′|,

where xi denotes the ith feature within the instance x; Fi is the equivalence class (i.e., the set
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of equivalent features) for a feature xi; and ⊕ represents the exclusive or here to guarantee

the features are substituted instead of only being deleted. In our experiments we defined

the equivalence class of a word to be its synonyms (evaluated using the semantic dictionary

WordNet [143]) and 1- and 2-character substitutions.

5.3 Experiment Design

Since we intend to study adversarial evasion of spam filters which use classification

learning, our ideal source of subjects is spammers or phishers. It is clearly infeasible to

obtain enough subjects from this population for an experiment. As a proxy, we use hu-

man subjects recruited using Amazon Mechanical Turk, a popular crowd-sourcing plat-

form that is commonly utilized by behavioral science researchers to recruit and pay human

subjects [144]. While not ideal, there is now substantial evidence that results from the ex-

periments using Amazon Mechanical Turk are often indistinguishable from those found in

physical laboratories [145, 146]. To collect data, we built a Rails application and ran it on

the Amazon Web Services EC2, while storing data on Amazon Web Services RDS. In all,

we recruited 265 participants for the study who have jointly completed 482 tasks (described

below).

After signing up for the experiment, each participant received a simple and brief En-

glish language test (see the Supplement for details). Passing this test qualified them for

participation in the experiment. At this point, subjects were invited to read the tutorial

describing the experimental setup (see the Supplement for details). A participant was ran-

domly assigned two tasks (corresponding to experimental treatments). Each task entailed a

sequence of 20 submissions of manipulated instances of an “ideal” email by the subjects.1

For each submission the subjects saw an interface similar to the one shown in Figure 6.2.

Each task/treatment included three randomly generated pieces:

1. An “ideal” email instance, visible to the subjects,

1The first five submissions were “trials” and were not used towards calculating the final score.
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Figure 5.2: Example interface. The left window is the original or “ideal” email. The right
window is a free text form for the submission. Once the participant has written the new
email (which may involve copying and pasting portions of the original on the left), they
click “Submit” to submit it to the system for scoring. In this case, the prior submission by-
passed the filter, receiving a score of 57. The participant can make at most 20 submissions.
In this example, the participant has made 10 submissions thus far, with 10 more remaining.

2. a classifier filtering submissions, not visible to the subjects, and

3. a scoring function, not visible to the subjects.

An “ideal” email instance corresponds in the evasion model above to the ideal feature vector

x; in order to maximize their score, the subjects had to craft an email which was close to

this ideal. Ideal instances for the experiments were chosen from 10 pre-selected spam and

phishing emails (see the Supplement for details). The actual classifier used in each task was

fixed to the model described above. What we varied was whether or not noise was added to

a classification output g(x) for a given instance (submission) x. Specifically, in the “noise”

treatment the output of the classifier was flipped with 10% probability. The baseline (no

noise) treatment, on the other hand, used the classifier as is for all submissions. Finally, the

scoring function was chosen uniformly at random between S1 and S2 described above. The

subjects were not initially told the specifics of the classifier (nor whether or not it included
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noise) or of the scoring function (they could request this information after the experiment).

After each submission, a participant received immediate feedback about whether or not

the submission was filtered (filtered submissions received zero score), and, if it was not

filtered, the score of their last submission, as well as their current best score. For a given

submission e, if the cost function (randomly chosen for that task) evaluated to c, the score

was calculated as r(e) = 100× e−1.5c. The best score obtained over all 20 submissions,

rmax, was used to determine their payment. Specifically, payment for a task was in the

range $1−$5, with the actual payment computed as $1+0.04× rmax.

Because individual tasks elicited highly divergent performance by the subjects, our

reported results use normalized scores, S(t, i) = 90 r(t)−low(i)
high(i)−low(i) + 10, where high(i) and

low(i) represents the highest and lowest score among all submissions for task i, respec-

tively.

5.4 Results

5.4.1 Randomization makes evasion more difficult

Since we randomly assigned subjects to randomized vs. non-randomized classifier

treatments, we are able to definitively establish the impact that adding a small amount of

noise to the filter has on the ability of subjects to evade it. Table 6.1 supports the hypothesis

that adding noise to a filter reduces the effectiveness of human subjects to evade it.

Category S1 S2 Overall Average
Noise-Free Filter 24.02 30.06 26.87

Noisy Filter 19.98 20.58 20.29

Table 5.1: Average subject scores for the two scoring functions in the noise-free and noisy
filter treatments.

In particular, the overall average for the noise-free filter is over 30% higher than when

noise is added. This result is statistically significant (p < 0.01). Moreover, the result

remains significant for the two scoring functions individually. In addition, we find that the
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scoring function S2 which does not penalize for substitutions tends to yield higher scores

for the subjects. This effect is substantial (25% improvement in average normalized score)

and significant (p < 0.01) in the noise-free filter treatments. Surprisingly, the effect is quite

small (3%) and not statistically significant when noise is present. Next we delve deeper in

the details of participant behavior to try to shed some light on these results.

The most natural hypothesis into why randomization has a significant impact on the

ability to evade the filter is that it makes the task of learning how the filter operates signif-

icantly more challenging. The subject behavior bears this out: 77% of submissions were

filtered in the noise-free environment, compared to 82% when noise was present (the com-

parison is significant with p < 0.01). Expanding this result by submission (Figure 6.3), we

can observe that not only does the noise-free environment appear to promote much faster

learning of how to evade a classifier by the subjects, but the relative difference appears

to increase with experience (even as there is clear indication of learning to evade in both

cases). Interestingly, we did not observe a similar pattern when it came to scores received

Figure 5.3: Fraction of submissions that were filtered in the noise-free setting (the blue
lower line) and when noise was randomly added to filter output (the red higher line).

on non-filtered submissions (filtered submissions, of course, received a score of zero) or in

time taken to make a decisions: in both cases, differences were not significant between the

noise-free and noisy settings, and there was no clear long-term trend. Thus, for example,

there was little evidence that scores earned on non-filtered submissions improved with ex-

perience (see the Supplement for details). Similarly, while the first few submissions took
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longer than others on average, thereafter the overall trend with experience was minimal (see

the Supplement for details). To sum up, it appears that the reduced ability to successfully

evade the classifier was the primary effect of randomization on evasion performance.

To further investigate the source of the difficulty that participants faced in the evasion

task under randomization, we consider a simple logistic regression model in which the

output is the probability that a submission is filtered in the noisy setting. In this model

we consider four variables: a binary indicator whether or not a previous submission was

flipped (due to noise), the number of prior submission that were flipped, the submission

number (higher number indicates a later submission and thereby indicates greater experi-

ence), and feature density (fraction of the words in the “ideal” email that are features in the

classification-based email filter). The results are shown in Table 6.2. Here x1 is a binary

Coefficient Std Error z p-value
x1 3.11 0.15 21 < 0.01
x2 0.38 0.025 15 < 0.01
x3 -0.39 0.021 -18 < 0.01
x4 7.85 1.11 7.1 < 0.01

constant -1.53 0.33 -4.7 < 0.01

Table 5.2: Results of the logistic regression model for the probability of a filtered submis-
sion.

indicator whether or not a previous submission was flipped (due to noise). x2 is the number

of prior submission that were flipped. x3 is the submission number. x4 is the feature density

(fraction of the words in the “ideal” email that are features in the classification-based email

filter). While all coefficients are highly significant, of particular interest are the first two:

whether the prior submission was flipped, and the number of previously flipped submis-

sions. The former increases log-odds by 3.11, or increasing the odds ratio (probability of

failed evasion divided by probability of success) by more than 20. Thus, it is quite clear

that adding a noise to a particular submission results in a substantial short-term impact on

the ability to evade a classifier. In addition, there is a significant longer-term impact: each

flip increases the odds ratio of failure to success for any subsequent submission by ∼1.5.
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Next, we turn to the issue of the impact that a substitution-aware scoring function (S2)

has on performance by considering two micro-level manipulations that participants per-

formed to the “ideal” email as well as subsequent submissions: word additions and dele-

tions. We first look at how these evolved over time.

Figure 6.4 shows that the first several submissions exhibit considerable manipulation,

but after the third submission, the numbers of both additions and deletions remains rela-

tively stable, with slightly fewer words added than deleted in each submission except the

first few.

Figure 5.4: Additions and deletions of words to prior submission over time (i.e., over a
sequence of submissions). The number of additions is the lower light blue bar, and the
heavy blue line represents additions as a fraction of total number of words in the prior
submission. The number of deletions is the purple bar at the top, and the dashed green line
corresponds to the deletions as a fraction of words in the prior submission.

Overall, we found the number of additions to be higher than deletions (p < 0.01). We

can also observe that additions comprise a significant fraction of the previous submission,

in many cases over 40% of the content. In contrast, the fraction of words deleted was

typically around 20%. (The rest of the content is, of course, unchanged from the previous

submission). Taking the deletions and additions together, we next compare the total number

of edits for the noise-free and noisy filter settings. When no noise is added to the filter,

the subjects made, on average, nearly 48 edits per submission. In contrast, when noise

was present, this number dropped to 45.86 (the difference is significant with p < 0.01):

somewhat surprisingly, this indicates that the participants were engaged is slightly less
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exploration in the noisy-filter treatments, accounting to some extent for the fact that they

had significantly more trouble evading the filter in this setting. Moreover, we found that the

total fraction of edits which involved substitutions was significantly higher in the noise-free

treatment (0.52 vs. 0.47; p< 0.01). Again, this points to significantly increased activity and

engagement by the subjects in the noise-free treatment (and, perhaps, less confusion about

how to effectively manipulate the template). In addition, this helps explain the surprising

result that the difference between S2 and S1 treatments was much smaller when noise was

present: the substitution-aware scoring function S2 will reward subjects especially for using

substitutions in their manipulations, and these were far more prominent under the noise-free

treatment.

While substitutions clearly played an important role in subject behavior under all treat-

ments, the composition was somewhat surprising: synonyms accounted for less than 3% of

all edits, as compared to character substitutions, which amounted to over 45% of edits. Al-

though some of the character substitutions may have been incidental, rather than deliberate

(many words are only a few characters apart), many were clearly deliberate; for example,

over 22% of 2-character substitutions cannot be found in the dictionary, suggesting that

subjects deliberately misspelled words to evade the classifier.

5.4.2 Positive feedback improves engagement in the task

Next we investigate the extent to which receiving a positive feedback on prior submis-

sion impacts human subject performance. We quantify feedback as the difference between

the score for prior submission r(ei+1) and the score received for the immediately preced-

ing submission r(ei). We say that feedback is positive when this difference is positive

(r(ei+1)−r(ei)> 0), and it is negative when this difference is negative (r(ei+1)−r(ei)< 0).

When these scores are both zero, we say that feedback is null, whereas when they are both

equal and positive (r(ei+1) = r(ei) > 0), we call it equal. We find that receiving positive

feedback on prior submission leads subjects to spend more time on the following submis-
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sion (p < 0.01; see Figure 6.5 (a)), and obtain a higher score. In contrast, receiving null or

equal feedback leads to less time spent on the following submission. This observation is

quite surprising: one would think that particularly null feedback (corresponding to several

filtered submissions in a row) would cause the subjects to spend more time contemplating

a better evasion strategy, but we see the opposite. Interestingly, our findings are consistent

with Mason and Watts [147]. Briefly, Mason and Watts consider a problem of explor-

ing a complex landscape in human subject experiments on a network, where participants

could observe what their network neighbors have found. One of their key findings is that

when a subject’s neighbors find good solutions, the subject engages in significantly more

exploration of the landscape. Taken together, their findings and ours suggest that positive

feedback serves as an important psychological motivator of engagement in a task, which in

turn improves performance.

5.4.3 Feature reduction makes adversarial evasion easier

There was significant variability among the 10 tasks (original “ideal” emails) in terms

of apparent difficulty of evasion. To understand the source of this variability, we consider

the relationship between feature density, or the fraction of words in the ideal instance which

are used as features in the classifier (filter), and average as well as maximum score for the

task.

Figure 6.5 shows that higher feature density leads to a lower score, appearing to make

evasion more difficult for the subjects. Table 6.2, which features a logistic regression model

of the probability that a submission is filtered, offers stronger evidence: the coefficient

corresponding to feature density is again high and significant (and with submission-level

granularity we now have much more data to justify this conclusion): it seems clear that

increasing feature density makes adversarial evasion far more challenging.

The observation that increased feature density increases difficulty of evasion has impor-

tant ramifications for the use of machine learning tools in spam/phish filtering tasks specif-
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Figure 5.5: The relationship between maximum and average score for each task and the
feature density of the corresponding “ideal” email. Feature density is the fraction of words
in the ideal email that correspond to features in the classifier (filter).

ically, and intrusion detection more generally. One of the most important “best practice”

principles in applied machine learning is feature reduction, or limiting the total number

of features used, for example, through the use of regularization or other means of feature

selection [139]. Clearly, when we reduce the size of the feature set used for filtering, we

also reduce feature coverage of spam instances, that is, we reduce feature density. Our

observation here suggests, therefore, that feature reduction can make adversarial evasion

easier.

5.4.4 Synthetic model of human evasion behavior

One of our motivations for engaging in human subject evasion experiments was to

develop and calibrate a synthetic model of evasion dynamics. We propose the following

composite model of behavior:

1. For each feature predict (independently of other features) whether its value is changed,

and

2. For each feature word which is predicted to be deleted, predict whether it is substi-

tuted for (we assume that substitutions are chosen outside of the feature vector).
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For task (1) we develop n independent dynamical models, one corresponding to each binary

feature of the classifier, to predict the evolution of the feature vector with the sequence of

individual submissions using a Support Vector Machine (SVM) [139]. Features used for

this prediction task were taken from a combination of features for the previous two submis-

sions, demographics, as well as feedback, including previous score and whether or not the

prior submissions were filtered. For task (2) we developed an independent SVM model for

each deleted word predicting occurrence of a substitution. Our models were able to recover

underlying behavior with high accuracy in cross-validation (average accuracy was over

97%). However, this in itself is an insufficient criterion for our purposes: a useful dynamic

model of behavior should also successfully replicate the experimental findings described

earlier, both qualitatively and quantitatively. To exhibit that the model successfully does

Category S1 S2 Overall Average
Noise-Free Filter 28.63 31.61 29.94

Noisy Filter 20.51 21.08 20.75

Table 5.3: Predicted average subject scores for the two scoring functions in the noise-free
and noisy filter treatments.

so, Table 6.3 shows the predicted results of our 2x2 treatment (noise-free vs. noisy filter,

S1 vs. S2 scoring). Comparison to Table 6.1 suggests that the results of the synthetic model

closely mirror actual observations of subject behavior in the experiment. In addition, we

compare in Figure 6.6 predicted and actual average normalized scores by submission for

randomized (noise-free) and non-randomized filters. The predicted and observed average

scores match rather closely (nearly perfect correlation and small mean-squared error), and

the expected gap between randomized and non-randomized is clearly visible in simulated

behavior just as it is in real.

5.5 Summary of Contributions

Machine learning algorithms have come to be used widely in settings which involve

inherently adversarial interactions. One of the most important such settings is spam and
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Figure 5.6: Comparison between experimentally observed scores and those based on the
synthetic model of behavior as a function of the submission sequence for noisy and noise-
free settings.

phishing email filtering, where evasion has been an important and well documented con-

sideration [138, 148]. Our results offer both qualitative practical guidance for the design

of robust email filtering systems based on machine learning methods, and explore human

behavior in the context of adversarial interaction with a machine learning system. In partic-

ular, we can offer several practical pieces of advice: first, filtering systems should embed a

small amount of noise in order to increase the level of difficulty for spammers and phishers

in designing templates to evade these systems; and second, special care must be taken in

training classifiers for such systems to not be overly aggressive in removing “unnecessary”

features.

From the perspective of individual behavior, our findings reinforce a surprising finding

due to Mason and Watts [147] that observation of good outcomes (we call this positive

feedback) increases individual engagement in the task. Indeed, Mason and Watts contextu-

alized this finding entirely in a social network setting, whereas our results suggest that this

phenomenon is more fundamental.

Finally, our results have significant bearing on the substantial literature preoccupied

with designing high-quality randomization schemes in security [140, 141, 142, 149] and

machine learning [114, 113]. In much of this work, randomization schemes are developed

under the assumption that the adversary is fully rational. Our experiments demonstrate that
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randomization takes on additional importance with a human adversary. In particular, the

introduction of noise appears to significantly hamper the ability of the subjects to learn

how to evade the classification-based filter. Moreover, the effect of noise is not merely

short-term (immediately following the noisy feedback) but has a significant lasting impact

on performance well after the perturbation had been introduced.
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Chapter 6

ITERATIVE SECURE LEARNING IN ADVERSARIAL ENVIRONMENTS

A number of custom methods have been developed for both adversarial evasion attacks

and robust learning. Previous work has taken into account the adversarial strategies from

various perspectives. Beyond these theoretical and empirical analysis, in this chapter we

unify these work and apply a general practical framework to enhance the robustness of any

classifier with respect to any general adversaries, as well as offer the theoretic utility bound

for the learner.

Therefore here I introduce the first systematic and general-purpose retraining frame-

work which can: a) boost robustness of an arbitrary learning algorithm, and b) incorporate

a broad class of adversarial models. We show that, under natural conditions, the retraining

framework minimizes an upper bound on optimal adversarial risk, and show how to extend

this result to account for approximations of evasion attacks. We also offer a very general

adversarial evasion model and algorithmic framework based on coordinate greedy local

search. This is the first such general framework which can be applied for both continuous

and discrete-valued feature spaces.

6.1 Overview

Machine learning has been used ubiquitously for a wide variety of security tasks, such

as intrusion detection, malware detection, spam filtering, and web search [9, 11, 150, 151,

152]. Traditional machine learning systems, however, do not account for adversarial ma-

nipulation. For example, in spam detection, spammers commonly change spam email text

to evade filtering. As a consequence, there have been a series of efforts to both model adver-

sarial manipulation of learning, such as evasion and data poisoning attacks [45, 153, 154],
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as well as detecting such attacks [11, 123] or enhancing robustness of learning algorithms

to these [43, 155, 156, 33, 84, 157]. One of the most general of these, due to Li and

Vorobeychik [43], admits evasion attacks modeled through a broad class of optimization

problems, giving rise to a Stackelberg game, in which the learner minimizes an adversar-

ial risk function which accounts for optimal attacks on the learner. The main limitation

of this approach, however, is scalability: it can solve instances with only 10-30 features.

Indeed, most approaches to date also offer solutions that build on specific learning mod-

els or algorithms. For example, specific evasion attacks have been developed for linear

or convex-inducing classifiers [45, 153, 154], as well as neural networks for continuous

feature spaces [21]. Similarly, robust algorithms have typically involved non-trivial mod-

ifications of underlying learning algorithms, and either assume a specific attack model or

modify a specific algorithm. The more general algorithms that admit a wide array of attack

models, on the other hand, have poor scalability.

We propose a very general retraining framework, RAD, which can boost evasion ro-

bustness of arbitrary learning algorithms using arbitrary evasion attack models. Our first

result is to show that RAD minimizes an upper bound on optimal adversarial risk; whereas

the latter is in general intractable to compute, RAD itself is extremely scalable in practice.

We develop RAD for a more specific, but very broad class of adversarial models, offering a

theoretical connection to adversarial risk minimization even when the adversarial model is

only approximate. In the process, we offer a simple and very general class of local search

algorithms for approximating evasion attacks, which are experimentally quite effective.

Perhaps the most appealing aspect of the proposed approach is that it requires no modifi-

cation of learning algorithms: rather, it can wrap any learning algorithm “out-of-the-box”.

Our work connects to, and systematizes, several previous approaches which used training

with adversarial examples to either evaluate robustness of learning algorithms, or enhance

learning robustness. For example, Goodfellow et al. [158] Kantchelian et al. [159] make

use of adversarial examples. In the former case, however, these were essentially randomly
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chosen. The latter offered an iterative retraining approach more in the spirit of RAD, but did

not systematically develop or analyze it. Teo et al. [156] do not make an explicit connec-

tion to retraining, but suggest equivalence between their general invariance-based approach

using column generation and retraining. However, the two are not equivalent, and Teo et

al. did not study their relationship formally.

We illustrate the applicability and efficiency of our method on both spam filtering and

handwritten digit recognition tasks, where evasion attacks are extremely salient [129, 160].

Figure 7.1 represents how this general retraining framework stays robust and which com-

ponents within the learning framework it protects.

Figure 6.1: General robust retraining framework

6.2 Learning and Evasion Attacks

Let X ⊆ Rn be the feature space, with n the number of features. For a feature vector

xi ∈ X , we let xi j denote the jth feature. Suppose that the training set (xi,yi) is comprised of

feature vectors xi ∈ X generated according to some unknown distribution xi ∼ F , with yi ∈

{−1,+1} the corresponding binary labels, where−1 means the instance xi is benign, while

+1 indicates a malicious instance. The learner aims to learn a classifier with parameters

β , gβ : X → {−1,+1}, to label instances as malicious or benign, using a training data set

of labeled instance D = {(x1,y1), ...,(xm,ym)}. Let Ibad be the subset of datapoints i with

yi =+1. We assume that gβ (x) = sgn( fβ (x)) for some real-valued function fβ (x).
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Traditionally, machine learning algorithms rely on minimizing regularized empirical

risk over training data:

min
β

L (β )≡∑
i

l(gβ (xi),yi)+α‖β‖p, (6.1)

where l(ŷ,y) is the loss associated with predicting ŷ when true classification is y. An impor-

tant issue in adversarial settings is that instances classified as malicious (in our convention,

corresponding to gβ (x) =+1) are associated with malicious agents who subsequently mod-

ify such instances in order to evade the classifier (and be classified as benign). Suppose that

adversarial evasion behavior is captured by an oracle, O(β ,x), which returns, for a given

parameter vector β and original feature vector (in the training data) x, an alternative feature

vector x′. Since the adversary modifies malicious instances according to this oracle, the

resulting effective risk for the defender is no longer captured by Equation 7.1, but must

account for adversarial response. Consequently, the defender would seek to minimize the

following adversarial risk (on training data):

min
β

LA(β ;O) = ∑
i:yi=−1

l(gβ (xi),−1)

+ ∑
i:yi=+1

l(gβ (O(β ,xi),+1)+α‖β‖p
p. (6.2)

The adversarial risk function in Equation 7.2 is extremely general: we make, at the moment,

no assumptions on the nature of the attacker oracle, O . This oracle may capture evasion

attack models based on minimizing evasion cost [45, 43, 21], or based on actual attacker

evasion behavior obtained from experimental data [161].

6.3 Adversarial Learning through Retraining

A number of approaches have been proposed for making learning algorithms more

robust to adversarial evasion attacks [44, 43, 155, 156, 84]. However, these approaches
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typically suffer from three limitations: 1) they usually assume specific attack models, 2)

they require substantial modifications of learning algorithms, and 3) they commonly suffer

from significant scalability limitations. For example, a recent, general, adversarial learning

algorithm proposed by Li and Vorobeychik [43] makes use of constraint generation, but

does not scale beyond 10-30 features.

Recently, retraining with adversarial data has been proposed as a means to increase

robustness of learning [158, 159, 156].1 However, to date such approaches have not been

systematic.

We present a new algorithm, RAD, for retraining with adversarial data (Algorithm 5)

which systematizes some of the prior insights, and enables us to provide a formal connec-

tion between retraining with adversarial data, and adversarial risk minimization in the sense

of Equation 7.2. The RAD algorithm is quite general, and it is not difficult to see that, as

Algorithm 5 RAD: Retraining with ADversarial Examples
1: Input: training data X
2: X̄ ← X
3: Ni← /0 ∀ i ∈ Ibad
4: repeat
5: new← /0
6: for i ∈ Ibad do
7: x′ = O(β ,xi)
8: if x′ /∈ Ni then
9: new← new∪ x′

10: end if
11: Ni← Ni∪ x′

12: end for
13: β ← Retrain(X̄ ∪i Ni)
14: until new = /0
15: Output: Parameter vector β

described so far, it may never terminate if we include continuous features. However, as the

following result attests, it is guaranteed to terminate if the range of O is a finite set.

Proposition 6.3.1. Suppose that the range of O is finite. Then RAD will terminate after a
1Indeed, neither Teo et al. [156] nor Kantchelian et al. [159] focus on retraining as a main contribution,

but observe its effectiveness.
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finite number of iterations.

Proof. Suppose Algorithm 5 does not terminate after iteration k. Then new 6= /0, and there

is some x /∈X which is added to the dataset. Since the range of O is finite, there must

be some iteration where there is no x that can be added which is not already in X . Thus,

new = /0 in that iteration, and the algorithm terminates.

A special case of this proposition is that the algorithm will always terminate if the

feature space X is finite. In practice, to ensure that the algorithm always terminates, we

can also impose a strict iteration limit, or check convergence (in terms of how much the

parameter vector β changes in successive iterations). In the remainder of the content,

however, we assume that there is no fixed iteration limit or convergence check. Instead, we

consider what happens if the algorithm does terminate. In particular, define the regularized

empirical risk in the last iteration of RAD as:

L R
N (β ,O) = ∑

i∈D∪N
l(gβ (xi),yi)+α||β ||pp, (6.3)

where a set N = ∪iNi of data points has been added by the algorithm (we omit its depen-

dence on O to simplify notation). We now characterize the relationship between L R
N (β ,O)

and L ∗
A (O) = minβ LA(β ,O).

Proposition 6.3.2. L ∗
A (O)≤L R

N (β ,O) for all β ,O .
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Proof. Let β̄ ∈ argminβ L R
N (β ,O). Consequently, for any β ,

L R
N (β ,O)≥L R

N (β̄ ,O)

= ∑
i:yi=−1

l(g
β̄
(xi),−1)+

∑
i:yi=+1

∑
j∈Ni∪xi

l(g
β̄
(xi),+1)+α||β̄ ||pp

≥ ∑
i:yi=−1

l(g
β̄
(xi),−1)+

∑
i:yi=+1

l(g
β̄
(O(β̄ ,xi)),+1)+α||β̄ ||pp

≥min
β

LA(β ;O) = L ∗
A (O),

where the second inequality follows because in the last iteration of the algorithm, new = /0

(since it must terminate after this iteration), which means that O(β ,xi) ∈ Ni for all i ∈

Ibad .

In words, retraining, systematized in the RAD algorithm, effectively minimizes an upper

bound on optimal adversarial risk. This offers a conceptual explanation for the previously

observed effectiveness of such algorithms in boosting robustness of learning to adversarial

evasion. Formally, however, the result above is extremely limited for several reasons. First,

for many adversarial models in prior literature, adversarial evasion is NP-Hard. While

some effective approaches exist to compute optimal evasion for specific learning algo-

rithms [159], this is not true in general. Although approximation algorithms for these mod-

els exist, using them as oracles in RAD is problematic, since actual attackers may compute

better solutions, and Proposition 7.3.2 no longer applies. Second, we assume that O returns

a unique result, but when evasion is modeled as optimization, optima need not be unique.

Third, there do not exist effective general-purpose adversarial evasion algorithms the use

of which in RAD would allow reasonable theoretical guarantees. Below, we investigate an

important and very general class of adversarial evasion models and associated algorithms
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which allow us to obtain practically meaningful guarantees for RAD.

6.4 Modeling Attackers

6.4.1 Evasion Attack as Optimization

In prior literature, evasion attacks have almost universally been modeled as optimization

problems in which attackers balance the objective of evading the classifier (by changing the

label from +1 to −1) and the cost of such evasion [45, 43]. Our approach is in the same

spirit, but is formally somewhat distinct. In particular, we assume that the adversary has

the following two competing objectives: 1) appear as benign as possible to the classifier,

and 2) minimize modification cost. Moreover, we assume that the attacker obtains no value

from a modification to the original feature vector if the result is still classified as malicious.

To formalize, consider an attacker who in the original training data uses a feature vector xi

(i ∈ Ibad)). The adversary i is solving the following optimization problem:

min
x∈X

min{0, f (x)}+ c(x,xi). (6.4)

As is typical in related literature, we assume that c(x,xi)≥ 0, c(x,xi) = 0 iff x = xi, and c is

strictly increasing in ‖x−xi‖2 and strictly convex in x. Because Problem 7.4 is non-convex,

we instead minimize an upper bound:

min
x

Q(x)≡ f (x)+ c(x,xi). (6.5)

In addition, if f (xi) < 0, we return xi before solving Problem 7.5. If Problem 7.5 returns

an optimal solution x∗ with f (x∗) ≥ 0, we return xi; otherwise, return x∗. Problem 7.5

has two advantages. First, if f (x) is convex and x real-valued, this is a (strictly) convex

optimization problem, has a unique solution, and we can solve it in polynomial time. An

important special case is when f (x) = wT x. The second one we formalize in the following
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lemma.

Lemma 6.4.1. Suppose x∗ is the optimal solution to Problem 7.4, xi is suboptimal, and

f (x∗) < 0. Let x̄ be the optimal solution to Problem 7.5. Then f (x̄)+ c(x̄,xi) = f (x∗)+

c(x∗,xi), and f (x̄)< 0.

Proof. If f (x∗) < 0, then min{0, f (x∗)}+ c(x∗,xi) = f (x∗)+ c(x∗,xi). By optimality of

x̄, f (x̄)+ c(x̄,xi) ≤ f (x∗)+ c(x∗,xi). Since xi is suboptimal in Problem 7.4 and c strictly

positive in all other cases, f (x∗)+c(x∗,xi)< min{0, f (xi)}+c(xi,xi) = 0. By optimality of

x∗, f (x∗)+ c(x∗,xi) ≤ min{0, f (x̄)}+ c(x̄,xi) ≤ f (x̄)+ c(x̄,xi), which implies that f (x̄)+

c(x̄,xi) = f (x∗)+c(x∗,xi). Consequently, f (x̄)+c(x̄,xi)< 0, and, therefore, f (x̄)< 0.

The following corollary then follows by uniqueness of optimal solutions for strictly

convex objective functions over a real vector space.

Corollary 6.4.1. If f (x) is convex and x continuous, x∗ is the optimal solution to Prob-

lem 7.4, x̄ is the optimal solution to Problem 7.5, and f (x∗)< 0, then x̄ = x∗.

A direct consequence of this corollary is that when we use Problem 7.5 to approximate

Problem 7.4 and this approximation is convex, we always return either the optimal evasion,

or xi if no cost-effective evasion is possible. An oracle O constructed on this basis will

therefore return a unique solution, and supports the theoretical characterization of RAD

above.

The results above are encouraging, but many learning problems do not feature a con-

vex f (x), or a continuous feature space. Next, we consider several general algorithms for

adversarial evasion.

6.4.2 Coordinate Greedy

We propose a very general local search framework, CoordinateGreedy (CG) (Algo-

rithm 6 for approximating optimal attacker evasion. The high-level idea is to iteratively
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Algorithm 6 CoordinateGreedy(CG): O(β ,x)

1: Input: Parameter vector β , malicious instance x
2: Set k← 0 and let x0← x
3: repeat
4: Randomly choose index ik ∈ {1,2, ...,n}
5: xk+1←GreedyImprove(ik)
6: k← k+1
7: until lnQ(xk)

lnQ(xk−1)
≤ ε

8: if f (xk)≥ 0 then
9: xk← x

10: end if
11: Output: Adversarially optimal instance xk.

choose a feature, and greedily update this feature to incrementally improve the attacker’s

utility (as defined by Problem 7.5). In general, this algorithm will only converge to a lo-

cally optimal solution. We therefore propose a version with random restarts: run CG from

L random starting points in feature space. As long as a global optimum has a basin of

attraction with positive Lebesgue measure, or the feature space is finite, this process will

asymptotically converge to a globally optimal solution as we increase the number of ran-

dom restarts. Thus, as we increase the number of random restarts, we expect to increase

the frequency that we actual return the global optimum. Let pL denote the probability that

the oracle based on coordinate greedy with L random restarts returns a suboptimal solution

to Problem 7.5. The next result generalizes the bound on RAD to allow for this, restricting

however that the risk function which we bound from above uses the 0/1 loss. Let L ∗
A,01(O)

correspond to the total adversarial risk in Equation 7.2, where the loss function l(gβ (x),y)

is the 0/1 loss. Suppose that OL uses coordinate greedy with L random restarts.

Proposition 6.4.2. Let B = |Ibad|.

L ∗
A,01(O)≤L R

N (β ,OL)+δ (p)
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with probability at least 1− p, where

δ (p) = B

pL +

√
log2 p−8Bpl log p− log p

2B

 ,

and L R
N (β ,OL) uses any loss function l(gβ (x),y) which is an upper bound on the 0/1 loss.

Proof. Let β̄ ∈ argminβ L R
N (β ,OL). Consequently, for any β ,

L ∗
A,01(OL) = min

β

LA,01(β ;OL)

≤ ∑
i:yi=−1

l01(gβ̄
(xi),−1)+

∑
i:yi=+1

l01(gβ̄
(O(β̄ ,xi)),+1)+α||β̄ ||pp.

Now,

∑
i:yi=+1

l01(gβ̄
(O(β̄ ,xi)),+1)≤

∑
i:yi=+1

l01(gβ̄
(OL(β̄ ,xi)),+1)+δ (p)

with probability at least 1− p, where δ (p) = BpL +

√
log2 p−8Bpl log p−log p

2 , by the Chernoff

bound, and Lemma 7.4.1, which assures that an optimal solution to Problem 7.5 can only

over-estimate mistakes. Moreover,

∑
i:yi=+1

l01(gβ̄
(OL(β̄ ,xi)),+1)≤

∑
i:yi=+1

∑
j∈Ni

l(g
β̄
(OL(β̄ ,xi)),+1),

since OL(β̄ ,xi) ∈ Ni for all i by construction, and l is an upper bound on l01. Putting

everything together, we get the desired result.
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(a) (b)

Figure 6.2: The convergence of pL based on different number of starting points for (a)
Binary, (b) Continuous feature space.

Figure 7.2 demonstrates that pL→ 0 quite rapidly for an array of learning algorithms,

and for either discrete or continuous features, as we increase the number of restarts L. Con-

sequently, in practice retraining with coordinate greedy nearly minimizes an upper bound

on minimal adversarial risk using a 0/1 loss with relatively few restarts of the approximate

attacker oracle.

6.4.2.1 Continuous Feature Space

For continuous feature space, we assume that both f (x) and c(x, ·) are differentiable in

x, and propose using the coordinate descent algorithm, which is a special case of coordinate

greedy, where the GreedyImprove step is:

xk+1← xk− τkeik
∂Q(xk)

∂xk
ik

,

where τk is the step size and eik the direction of ikth coordinate. Henceforth, let the origial

adversarial instance xi be given; we then simplify cost function to be only a function of

x, denoted c(x). If the function f (x) is convex and differentiable, our coordinate descent

based algorithm 6 can always find the global optima which is the attacker best response

x∗ [162], and Proposition 7.3.2 applies, by Corollary 7.4.1. If f (x) is not convex, then

coordinate descent will only converge to a local optimum.
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Now, ∂Q(xk)

∂xk
ik

= ∂ f (xk)

∂xk
ik

+ ∂c(xk)

∂xk
ik

. Fixing a coordinate j = ik, we derive the partial derivative

of f (x) with respect to coordinate j for several common learning algorithms, and derive the

derivative of c(x) for several natural cost functions.

6.4.2.1.1 Kernel SVM Consider a general Kernel SVM decision function, for which

f (x) = ∑i aiyiK(xi,x), where xi,yi are the support training data points, ai the associated

dual SVM parameters, and K(·, ·) a kernel function. Then, ∂ f (x)
∂x j

= ∑i aiyi
∂K(xi,x)

∂x j
. For a

linear Kernel, ∂K(xi,x)
∂x j

= xi j . For a polynomial Kernal, ∂K(xi,x)
∂x j

= d(c+ xi · x)d−1xi j . For an

RBF Kernel, ∂K(xi,x)
∂x j

= 1
σ2 K(xi,x)(xi j − x j).

6.4.2.1.2 Logistic Regression Given a logistic regression model, with f (x) = (1 +

e−wT x)−1. Then, ∂ f (x)
∂x j

= w j f (x)(1− f (x)).

6.4.2.1.3 Neural Network For the neural network with sigmoid function as the activa-

tion function, if there are three hidden layers,

g(x) = (1+ e−h3(x))−1,

h3(x) =
d3

∑
t=1

w3tδ3t(x)+b3,

δ3t(x) = (1+ e−h2t(x))−1,

h2t(x) =
d2

∑
j=1

w2 jδ2 j(x)+b2,

δ2 j(x) = (1+ e−h1 j(x))−1,

h1 j(x) =
d1

∑
p=1

w1 pδ1 p(x)+b1,

δ1 p(x) = (1+ e−h0 p(x))−1,

h0 p(x) =
n

∑
l=1

w1lxl +b0,
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Therefore we have

∂ f (x)
∂x j

= g(x)(1−g(x))
d3

∑
t=1

w j3 tδ j3 t(1−δ j3 t)

d2

∑
k=1

w j2kδ j2 j(1−δ j2k)
d1

∑
p=1

w j1 pδ j1 p(1−δ j1 p)w j0 i.

(6.6)

6.4.2.1.4 Quadratic Cost A simple and natural cost function is a quadratic (l2) cost,

c(x,xi) =
λ

2 ‖x− xi‖2
2. In this case, ∂c(x)

∂x j
= λ (x j− xi j).

6.4.2.1.5 Exponential Cost Below, we make use of an exponential cost, which is also

quite natural: options become exponentially less desirable to an attacker as they are more

distant from their ideal attack. We use the following cost function:

c(x,xi) = exp

(
λ (∑

j
(x j− xi j)

2 +1)1/2

)
.

Then,
∂c(x)
∂x j

=
λc(x,xi)(x j− xi j)

(∑ j(x j− xi j)2 +1)1/2 .

6.4.3 Discrete Feature Space

In the case of discrete feature space, GreedyImprove step of CG can simply enumerate

all options for feature j, and choose the one most improving the objective.
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6.4.4 Attacks as Constrained Optimization

A variation on the attack models above is when the attacker is solving the following

constrained optimization problem:

min
x

min{0, f (x)} (6.7a)

s.t. : c(x,xi)≤ B (6.7b)

for some cost budget constraint B. While this problem is, again, non-convex, we can instead

minimize the convex upper bound, f (x), as before, if we assume that f (x) is convex. In this

case, if the feature space is continuous, the problem can be solved optimally using standard

convex optimization methods [163]. If the feature space is binary and f (x) is linear or

convex-inducing, algorithms proposed by Lowd and Meek [45] and Nelson et al. [154].

6.5 Multi-class classification

Discussion so far dealt entirely with binary classification. We now observe that extend-

ing it to multi-class problems is quite direct. Specifically, while previously the attacker

aimed to make an instance classified as +1 (malicious) into a benign instance (−1), for

a general label set Y , we can define a malicious set M ⊂ Y and a target set T ⊂ Y , with

M∩T = /0, where every entity represented by a feature vector x with a label y ∈M aims to

transform x so that its label is changed to T . In this setting, let g(x) = argmaxy∈Y f (x,y).

We can then use the following empirical risk function:

∑
i:yi /∈M

l(gβ (xi),yi)+ ∑
i:yi∈M

l(gβ (O(β ,xi)),yi)+λ ||β ||p, (6.8)
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where O aims to transform instances xi so that gβ (O(β ,xi)) ∈ T . The relaxed version of

the adversarial problem can then be generalized to

min
x,y∈T
− f (x,y)+ c(x,xi).

For a finite target set T , this problem is equivalent to taking the best solution of a finite

collection of problems identical to Problem 7.5.

6.6 Results

The results above suggest that the proposed systematic retraining algorithm is likely

to be effective at increasing resilience to adversarial evasion. We now offer an extensive

experimental evaluation of this. Throughout, we make use of the exponential cost model

for the attacker described above, where λ is a parameter which determines the relative

importance of the cost term. In particular, a high λ implies a higher penalty for changing

the malicious feature vector, and, consequently, weaker attacks. Additionally, we simulated

attacks using Problem 7.5 formulation.

6.6.1 Comparison to Optimal

The first comparison we draw is to a recent algorithm, SMA, which minimizes l1-

regularized adversarial risk function (7.2) using the hinge loss function. Specifically, SMA

formulates the problem as a large mixed-integer linear program which it solves using con-

straint generation [43]. The main limitation of SMA is scalability. Because retraining

methods use out-of-the-box learning tools, it is considerably more scalable.
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(a) (b)

Figure 6.3: Comparison between RAD and SMA based on the Enron dataset with 30 bi-
nary features. (a) The F1 score of different algorithms corresponding to various λ ; (b) the
average runtime for each algorithm.

We compared SMA and RAD (with the same adversarial model) using Enron data [129]

since SMA was also developed for the constrained-optimization attacks (Problem (7.7)). As

Figure 7.3(a) demonstrates, retraining solutions of RAD are nearly as good as SMA, particu-

larly for a non-trivial adversarial cost sensitive λ . In contrast, a baseline implementation of

SVM is significantly more fragile to evasion attacks. However, the runtime comparison for

these algorithms in figure 7.3(b) shows that RAD is much more efficient than SMA due to

its neat retraining solution. In addition, Figure 7.3(a) also reveals a surprising phenomenon

observed by Kantchelian et al. [159] as well: performance actually improves based on cer-

tain adversarial cost sensitivity compared with adversary-free case where high λ value is

applied. What this shows is that adding certain adversarial instances actually improves

classification robustness to non-adversarial data as well, likely because it makes the learner

significantly more robust to noise in the data.

Below, we evaluate the effectiveness of retraining in significantly boosting robustness

of learning to evasion.
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(a) (b) (c) (d)

Figure 6.4: Performance of baseline (adv-) and RAD (rob-) as a function of cost sensitiv-
ity λ for Enron (top) and MNIST (bottom) datasets with continuous features testing on
adversarial instances. (a) logistic regression, (b) SVM, (c) 1-layer NN, (d) 3-layer NN.

(a) (b) (c) (d)

Figure 6.5: Performance of baseline (adv-) and RAD (rob-) as a function of cost sensitivity
λ for MNIST dataset with continuous features testing on non-adversarial instances. (a)
logistic regression, (b) SVM, (c) 1-layer NN, (d) 3-layer NN.

6.6.2 Continuous Feature Space

In this section we use the Enron dataset [129] and MNIST [160] dataset to evaluate

the robustness of three common algorithms in their standard implementation, and in RAD:

logistic regression, SVM (using a linear kernel), and a neural network (NN) with 1 and 3

hidden layers. In Enron data, features correspond to relative word frequencies. 2000 fea-

tures were used for the Enron and 784 for MNIST datasets. Throughout, we use precision,

recall, and accuracy as metrics.

Figure 7.4(a) shows the performance of logistic regression, with and without retraining,

on Enron and MNIST. The increased robustness of RAD is immediately evident: perfor-
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Figure 6.6: Example modification of digit images (MNIST data) as λ decreases (left-to-
right) for logistic regression, SVM, 1-layer NN, and 3-layer NN (rows 1-4 respectively).

mance of RAD is essentially independent of λ on all three measures, and substantially

exceeds baseline algorithm performance for small λ . Interestingly, we observe that the

baseline algorithms are significantly more fragile to evasion attacks on Enron data compard

to MNIST: benign and malicious classes seem far easier to separate on the latter than the

former. This qualitative comparison between the Enron and MNIST datasets is consistent

for other classification methods as well (SVM, NN). These results also illustrate that the

neural-network classifiers, in their baseline implementation, are significantly more robust to

evasion attacks than the (generalized) linear classifiers (logistic regression and SVM): even

with a relatively small attack cost attacks become ineffective relatively quickly, and the dif-

ferences between the performance on Enron and MNIST data are far smaller. Throughout,

however, RAD significantly improves robustness to evasion, maintaining extremely high

accuracy, precision, and recall essentially independently of λ , dataset, and algorithm used.

In order to explore whether RAD would sacrifice accuracy when no adversary is present,

Figure 7.5 shows the performance of the baseline algorithms and RAD on a test dataset sans

evasions. Surprisingly, RAD is never significantly worse, and in some cases better than non-

adversarial baselines: adding malicious instances appears to increase overall generalization

ability. This is also consistent with the observation by Kantchelian et al. [159].

In Figure 7.6 we visualize the relative vulnerability of the different classifiers, as well

as effectiveness of our general-purpose evasion methods based on coordinate greedy. Each
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(a) (b) (c) (d)

Figure 6.7: Performance of baseline (adv-) and RAD (rob-) implementations of (a) Naive
Bayes, (b) logistic regression, (c) SVM, and (d) 3-layer NN, using binary features testing
on adversarial instances.

row corresponds to a classifier, and moving right within a row represents decreasing λ

(allowing attacks to make more substantial modifications to the image in an effort to evade

correct classification). We can observe that NN classifiers require more substantial changes

to the images to evade, ultimately making these entirely unlike the original. In contrast,

logistic regression is quite vulnerable: the digit remains largely recognizable even after

evasion attacks.

6.6.3 Discrete Feature Space

Considering now data sets with binary features, we use the Enron data with a bag-of-

words feature representation, for a total of 2000 features. We compare Naive Bayes (NB),

logistic regression, SVM, and a 3-layer neural network (results for 1-layer NN are similar).

Our comparison involves both the baseline, and RAD implementations of these, using the

same metrics as above.

Figure 7.7 confirms the effectiveness of RAD: every algorithm is substantially more

robust to evasion with retraining, compared to baseline implementation. Most of the al-

gorithms can obtain extremely high accuracy on this data with the bag-of-words feature

representation. However, a 3-layer neural network is now less robust than the other algo-

rithms, unlike in the experiments with continuous features. Indeed, Goodfellow et al. [158]

similarly observe the relative fragility of NN to evasion attacks.
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6.6.4 Multi-class Classification

To evaluate the effectiveness of RAD, and resilience of baseline algorithms, in multi-

class classification settings, we use the MNIST dataset and aim to correctly identify digits

based on their images. Our comparison involves SVM and 3-layer neural network (re-

sults for NN-1 are similar). We use M = {1,4} as the malicious class (that is, instances

corresponding to digits 1 and 4 are malicious), and T = {2,7} is the set of benign labels

(what malicious instances wish to be classified as). The results, shown in Figure 7.8 are

Figure 6.8: Performance of baseline (adv-) and RAD (rob-) implementations of (a)multi-
class SVM and (b) multi-class 3-layer NN, using MNIST dataset testing on adversarial
instances.

largely consistent with our previous observations: both SVM and 3-layer NN perform well

when retrained with RAD, with near-perfect accuracy despite adversarial evasion attempts.

Moreover, RAD significantly boosts robustness to evasion, particularly when λ is small

(adversary who is not very sensitive to evasion costs). Figure 7.9 offers a visual demon-

Figure 6.9: Visualization of modification attacks with decreasing the cost sensitivity pa-
rameter λ (from left to right), to change 1 to the set {2,7}. The rows correspond to SVM
and 3-layer NN, respectively.

stration of the relative effectiveness of attacks on the baseline implementation of SVM and

1- and 3-layer neural networks. Here, we can observe that a significant change is required
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to evade the linear SVM, with the digit having to nearly resemble a 2 after modification. In

contrast, significantly less noise is added to the neural network in effecting evasion.

6.6.5 Oracles based on Human Evasion Behavior

Our final set of experiments evaluate RAD just for the SVM classifier in the context of

human evasion behavior in human subject experiments. The data for this evaluation was

obtained from the human subject experiment by Ke et al. [161] in which subjects were

tasked with the goal of evading an SVM-based spam filter, manipulating 10 spam/phishing

email instances in the process. In these experiments, Ke et al. used machine learning

to develop a model of human subject evasion behavior. We now adopt this model as the

evasion oracle, O , injected in our RAD retraining framework, executing the synthetic model

for 0-10 iterations to obtain evasion examples.

Figure 7.10(a) shows the recall results for the dataset of 10 malicious emails (the classi-

fiers are trained on Enron data, but evaluated on these 10 emails, including evasion attacks).

Figure 7.10(b) shows the classifier performance for the enron dataset by applying the syn-

thetic adversarial model as the oracle for both evasion modification and RAD. We can make

(a) (b)

Figure 6.10: RAD (rob-) and baseline SVM (adv-) performance based on human subject
behavior data over 20 queries, (a) using experimental data with actual human subject ex-
periment submissions, (b) using Enron data and a synthetic model of human evader.

two high-level observations. First, notice that human adversaries appear significantly less

powerful in evading the classifier than the automated optimization-based attacks we pre-

viously considered. This is a testament to both the effectiveness of our general-purpose
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adversarial evaluation approach, and the likelihood that such automated attacks likely sig-

nificantly overestimate adversarial evasion risk in many settings. Nevertheless, we can

observe that the synthetic model used in RAD leads to a significantly more robust classifier.

Moreover, as our evaluation used actual evasions, while the synthetic model was used only

in training the classifier as a part of RAD, this experiment suggests that the synthetic model

can be relatively effective in modeling behavior of human adversaries. Figure 7.10(b) per-

forms a more systematic study using the synthetic model of adversarial behavior on the

Enron dataset. The findings are consistent with those only considering the 10 spam in-

stances: retraining significantly boosts robustness to evasion, with classifier effectiveness

essentially independent of the number of queries made by the oracle.

6.7 Summary of Contributions

Here we provide a general-purpose systematic retraining algorithm against evasion at-

tacks of classifiers for arbitrary oracle-based evasion models. We first demonstrated that

this algorithm effectively minimizes an upper bound on optimal adversarial risk, which is

typically extremely difficult to compute (indeed, no approach exists for minimizing adver-

sarial loss for an arbitrary evasion oracle). Experimentally, we showed that the performance

of our retraining approach is nearly indistinguishable from optimal, whereas scalability is

dramatically improved: indeed, with RAD, we are able to easily scale the approach to thou-

sands of features, whereas a state-of-the-art adversarial risk optimization method can only

scale to 15-30 features. We generalize our results to show that a probabilistic upper bound

on minimal adversarial loss can be obtained even when the oracle is computed approxi-

mately by leveraging random restarts, and an empirical evaluation which confirms that the

resulting bound relaxation is tight in practice.

We also offer a general-purpose framework for optimization-based oracles using varia-

tions of coordinate greedy algorithm on both discrete and continuous feature spaces. Our

experiments demonstrate that our adversarial oracle approach is extremely effective in cor-
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rupting the baseline learning algorithms. On the other hand, extensive experiments also

show that the use of our retraining methods significantly boosts robustness of algorithms

to evasion. Indeed, retrained algorithms become nearly insensitive to adversarial evasion

attacks, at the same time maintaining extremely good learning performance on data over-

all. Perhaps the most significant strength of the proposed approach is that it can make use

of arbitrary learning algorithms essentially “out-of-the-box”, and effectively and quickly

boost their robustness, in contrast to most prior adversarial learning methods which were

algorithm-specific.

In summary, the contributions of this general robust framework are as following:

1. RAD, a novel systematic framework for adversarial retraining,

2. analysis of the relationship between RAD and optimal empirical adversarial risk,

3. extension of the analysis to account for approximate adversarial evasion, within a

specific broad class of adversarial models,

4. extensive experimental evaluation of RAD and the adversarial evasion model.
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Chapter 7

SCALABLE OPTIMIZATION OF RANDOMIZED OPERATIONAL DECISIONS

Besides the optimal robust learning algorithm based on certain attack model, it is de-

manded to apply different learning algorithms to corresponding problems instead of solving

an universal optimization problem. Therefore, in this chapter we study a more general way

towards secure learning by taking the output of any probabilistic learning algorithm and

applying the optimization approach to provide more robust solutions against different ad-

versarial strategies. The literature on adversarial machine learning aims to develop learning

algorithms which are robust to such adversarial evasion, but exhibits two significant limita-

tions: a) failure to account for operational constraints and b) a restriction that decisions are

deterministic. To overcome these limitations, here we will introduce a conceptual separa-

tion between learning, used to infer attacker preferences, and operational decisions, which

account for adversarial evasion, enforce operational constraints, and naturally admit ran-

domization. Our approach gives rise to an intractably large linear program. To overcome

scalability limitations, we introduce a novel method for estimating a compact parity basis

representation for the operational decision function. Additionally, we develop an iterative

constraint generation approach which embeds adversary’s best response calculation, to ar-

rive at a scalable algorithm for computing near-optimal randomized operational decisions.

7.1 Overview

Success of machine learning across a variety of domains has naturally led to its adop-

tion as a tool in security settings, including intrusion detection, biometric identity recog-

nition, and spam filtering. Unlike traditional uses of machine learning, however, these

domains involve an adversary, who is likely to adapt to the use of such techniques, po-
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tentially reducing their effectiveness. Of particular interest in many such application do-

mains is adversarial classification, or the task of determining whether a given input (email,

system access, user behavior) is benign or “normal”, or malicious (a phishing email or

a system compromise). In such settings, we start with a training data set of labeled in-

stances {(x1,y1), . . . ,(xm,ym)}, where xi are feature vectors (e.g., whether or not specific

spam/phish indicators are present in an email) and yi are labels, which we can code as 0 cor-

responding to benign and 1 to malicious instances. This data set is used to train a classifier,

h, that would presumably predict whether an arbitrary unseen instance x is malicious. The

phenomenon of adversarial evasion puts a damper on this seemingly clean solution: if an

adversary wishes, say, to send an email with features x, but h(x) classifies it as malicious,

an intelligent attacker would attempt to choose another email, corresponding to x′, which

would be classified as benign, and achieve the same, or nearly the same, ends.

The literature on adversarial machine learning tackles the problem of adversarial eva-

sion in two ways: first, by trying to understand its feasibility and effectiveness [44, 164,

115, 165, 128], and second, by attempting to design machine learning algorithms which

account for, and are robust to, evasion [44, 115, 85, 166, 84, 148, 167].

Past literature on algorithm design for adversarial classification suffers from two im-

portant limitations. First, previous approaches make no attempt to account for resource

constraints involved in operationalizing the algorithms: in particular, it is the false posi-

tives, rather than false negatives, which are critical to adoption of intrusion detection sys-

tems, in large part because overabundance of “alerts” makes such a system operationally

unusable [168]. Second, there is, to date, no principled way of embedding randomization

into adversarial classification, even though stochasticity in defense is often highly effective

in security [140, 169, 170]. Indeed, the use of randomization in adversarial classification

has previously been suggested [171], but the proposed approach is ad hoc, simply adding

“random noise” to the classifier output.

We address both of these limitations by rethinking the conceptual model of adversarial
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classification. Specifically, we separate the task of learning, which uses training data to

predict attack preferences, and the task of operational decisions, which uses the resulting

predictor, together with an evasion model, in computing optimal randomized operational

policy that explicitly abides by operational constraints. The intuition for this separation

is that the training data can be interpreted as revealed preferences of the attackers, in the

sense that the attacks captured by it can be viewed as “ideal” attack vectors at that point

in time. As an indirect consequence, our model enables one to use off-the-shelf machine

learning packages, allowing progress in machine learning and adversarial decision making

to be decoupled. On the technical side, we present a natural generalization of a commonly

used evasion model (see, e.g., [165]) to randomized classification settings. We show that

computing an optimal evasion is NP-Hard, but also exhibit an optimal branch-and-bound

search method and two polynomial-time approximation algorithms, one with worst-case

performance guarantees, and both shown to be “near-optimal” in experiments. On the op-

erational side, we introduce a linear programming (LP) formulation for computing optimal

randomized classification. While the baseline LP involves an exponential number of vari-

ables and constraints, we propose a collection of techniques which make use of a Fourier

representation of Boolean functions [172], as well as constraint generation, to arrive at

scalable approximation. The general structure of this work is shown as in Figure 8.1.

Figure 7.1: General idea of dynamic operational decisions
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7.2 Model

We consider the adversarial binary classification problem over an input space X , where

each input feature vector x ∈X can be categorized (labeled) as benign or malicious. The

defender D , collects a data set of labeled instances, I = {(x1,y1), . . . ,(xm,ym)}, which we

assume to accurately represent the current distribution of input instances and correspond-

ing categories. D then applies an algorithm of choice, such as Naive Bayes, to obtain

a probabilistic classifier which assigns to an arbitrary input x vector a probability p(x)

that it is generated by a malicious actor assuming such an actor does not change their

behavior. In traditional applications, one would then use a threshold, θ , and classify an

instance x as malicious if p(x)≥ θ , and benign otherwise. This decision (and the choice of

the threshold) are often motivated by overall tolerance for false positives, as well as opera-

tional considerations, for example, to ensure that the number of alerts does not exceed what

can reasonably be inspected by security professionals. To consider operational decisions

in general, as well as allow for randomization, we introduce a function q(x, p(·)) ∈ [0,1]

which prescribes a possibly randomized operational decision (e.g., the probability of filter-

ing an email or manually investigating an observed network access pattern) for an instance

x given a prediction p(x). To simplify notation, we simply use q(x) where p(·) is clear

from context. Throughout, we assume that features are binary, a common case in adversar-

ial classification settings (e.g., features could correspond to specific words or phrases being

present in email, or specific sequences of system calls executed).

We model adversarial classification as a Stackelberg game between a defender and a

population of attackers. In this game, the defender D moves first, choosing q(·). Next, the

attackers learn q(·) (for example, through probing), and each attacker subsequently chooses

an input vector x (e.g., a phishing email) to maximize their expected return (a combination

of bypassing defensive countermeasures and achieving a desired outcome). Our assumption

that the operational policy q(·) is known to attackers reflects threats that have significant

time and/or resources to probe and respond to defensive measures, a feature characteristic
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of advanced cyber criminals [173].

Attacker Model

We interpret the data set I and the resulting predictions p(x), as representing revealed

preferences of a sample of attackers, that is, their preference for input vectors x. Our

rationale is that if an attacker preferred some other input x′, this attacker would have chosen

x′ instead of x in I . Consequently, p(x) can be interpreted as an “ideal” attack, if only it

were to succeed in bypassing defensive measures. If q(x) is sufficiently close to 1, x is

likely to fail, and the attacker will have an incentive to evade by choosing another instance

x′. When decisions q(x) are deterministic, a common approach in related literature is to

assume that the attacker will find x′ which is closest to x (in some distance metric, such

as l1 norm) of all alternatives classified as benign [174, 165, 166, 84, 148]. We now offer

a natural generalization of this model to account for randomized q(x). Specifically, if the

attacker with a preference for x chooses an alternative attack vector x′, we model his utility

from successfully bypassing defenses as V (x)Q(x,x′), where Q(x,x′)= e−δ ||x−x′||, with || · ||

a norm (we use Hamming distance), V (x) the value of the attack, and δ the importance of

being close to the preferred x. The full utility function of an attacker with preference x for

choosing another input x′ when the defense strategy is q is then

µ(x,x′;q) =V (x)Q(x,x′)(1−q(x′)), (7.1)

since 1−q(·) is the probability that the attacker successfully bypasses the defensive action.

While the above attacker model admits considerable generality, we assume that attack-

ers fall into two classes: adaptive, as described above, and static, corresponding to the

limiting case of δ → ∞. Let vt(x;q) be the value function of an attacker with type t and

preference for x, when the defender chooses a policy q. vt(x;q) represents the maximum

utility that the attacker with type t can achieve given q. For a static attacker, the value func-

tion is vS(x;q) =V (x)(1−q(x)), that is, a static attacker always uses his preferred input x,
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and receives his corresponding value for it whenever the defender does not take action upon

observing x. For an adaptive attacker, the value function is vA(x;q) = maxx′ µ(x,x′;q), that

is, the maximum utility that the attacker obtains from using an arbitrary input x′. Finally,

let PA be the probability that an arbitrary malicious input was generated by an adaptive

adversary; the probability that the adversary was static is then PS = 1−PA.

Defender Model

A natural goal for the defender is to maximize expected value of benign traffic that is

classified as benign, less the expected losses due to attacks that successfully bypass the

operator. To formalize, we assume that the defender gains a positive value G(x) from a

benign input x only if it is not inspected. In the case of email traffic, this is certainly

sensible if our action is to filter a suspected email. More generally, inspection can be a

lengthy process, in which case we can interpret G(x) as the value of time lost if x is, in

fact, benign, but is carefully screened before it can have its beneficial impact. We define

the defender’s utility function UD(q, p) as follows:

UD(q, p) = Ex [(1 −q(x))G(x)(1− p(x))−

p(x)(PSvS(x;q)+PAvA(x;q))] .

To interpret the defender’s utility function, let us first rewrite it for a special case when

V (x) = G(x) = 1 and PS = 1, reducing the utility function to Ex[(1− q(x))(1− p(x))−

p(x)(1−q(x))]. Since p(x) is constant, this is equivalent to minimizing

Ex[q(x)(1− p(x))+ p(x)(1−q(x))],

which is just the expected misclassification error.

The final aspect of our model is a resource constraint on the defender. Sommer and

Paxson [168] identify the cost of false positives and the gap between the output of machine

learning algorithms and its use in operational decisions as two of the crucial gaps that pre-
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vent widespread use of machine learning in network intrusion detection. In our framework,

G(x) quantifies the loss of value due to false positives. We handle the hard constraint on

defensive resources by introducing a budget constraint that our solution inspects at most a

fraction c of events, on average.

Model Analysis A natural sanity check that our formulation is reasonable is that the

solution corresponds to intuition when there is no budget constraint or adaptive adversary.

We now show that in this case, the policy q(x) which uses a simple threshold on p(x) (as

commonly done) is, in fact optimal.

Proposition 7.2.1. Suppose that PA = 0 and c = 1 (i.e., no budget constraint). Then the

optimal policy is

q(~x) =


1 if p(~x)≥ G(~x)

G(~x)+V (~x)

0 o.w.

Proof. Since we consider only static adversaries and there is no budget constraint, the

objective becomes

max
~q

∑
~x∈X

[(1−q(~x))G(~x)(1− p(~x))− p(~x)vS(~x)] ,

and the only remaining constraint is that q(~x) ∈ [0,1] for all ~x. Since now the objective

function is entirely decoupled for each ~x, we can optimize each q(~x) in isolation for each

~x ∈ X . Rewriting, maximizing the objective for a given ~x is equivalent to minimizing

q(~x)[G(~x)− p(~x)(G(~x)+V (~x))]. Whenever the right multiplicand is negative, the quantity

is minimized when q(~x) = 1, and when it is positive, the quantity is minimized when q(~x) =

0. Since p(~x) ≥ G(~x)
G(~x)+V (~x) implies that the right multiplicand is negative (more accurately,

non-positive), the result follows.

While traditional approaches threshold an odds ratio (or log-odds) rather than the prob-

ability p(x), the two are, in fact equivalent. To see this, let us consider the generalized

(cost-sensitive) threshold on odds ratio used by the Dalvi et al. [174] model. In their no-
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tation, UC (+,+), UC (+,−), UC (−,+), and UC (−,−) denote the utility of the defender

(classifier) when he correctly identifies a malicious input, incorrectly identifies a benign

input, incorrectly identifies a malicious input, and correctly identifies a benign input, re-

spectively. In our setting, we have UC (+,+)= 0 (i.e., no loss), UC (+,−) = 0 (and capture

the costs of false positives as operational constraints instead), UC (−,+) = −V (x), and

UC (−,−) = G(x) (note that we augment the utility functions to depend on input vector x).

The odds-ratio test used by Dalvi et al. therefore checks

p(x)
1− p(x)

≥ UC (−,−)−UC (+,−)
UC (+,+)−UC (−,+)

=
G(x)
V (x)

. (7.2)

and it is easy to verify that inequality 8.2 is equivalent to the threshold test in Proposi-

tion 8.2.1.

Consider now a more general setting where PA = 0, but now with a budget constraint. In

this context, we now show that the optimal policy is to first set q(x) = 0 for all x with p(x)

below the threshold described in Proposition 8.2.1, then rank the remainder in descending

order of p(x), and assign q(x) = 1 in this order until the budget is exhausted.

Proposition 7.2.2. Suppose that PA = 0. Then the optimal policy is to let q(x) = 0 for all x

with

p(x)<
G(x)

G(x)+V (x)
.

Rank the remaining x in descending order of p(x) and set q(x) = 1 until the budget is

exhausted, leaving the remaining budget to the next instance x, and setting q(x) = 0 for the

rest.

Proof. The LP can be rewritten so as to minimize

∑
~x

q(~x)[G(~x)− p(~x)(G(~x)+V (~x))]

subject to the budget constraint. By the same argument as above, whenever p(~x) is below

the threshold, the optimal q(~x) = 0. Removing the corresponding~x from the objective, we

118



obtain a special knapsack problem in which the above greedy solution is optimal, since the

coefficient on the budget constraint is 1.

In a nutshell, Proposition 8.2.2 suggests that whenever the budget constraint binds,

we should simply inspect the highest priority items. Therefore, randomization becomes

important only when there is an adversary actively responding to our inspection efforts.

7.3 Optimal Randomized Operational Use of Classification

Given the Stackelberg game model of strategic interactions between a defender armed

with a classifier, and an attacker attempting to evade it we now develop an algorithmic ap-

proach for solving it. We begin by using a sample average approximation of the defender’s

utility function UD (e.g., using instances in the training data), denoting it ÛD . Using ÛD as

the objective, we can maximize it using the following linear program (LP):

max
q

ÛD(q, p) (7.3a)

s.t. : 0≤ q(x)≤ 1 ∀ x ∈X (7.3b)

vA(x;q)≥ µ(x,x′;q) ∀ x,x′ ∈X (7.3c)

vS(x;q) =V (x)(1−q(x)) ∀ x ∈X (7.3d)

Ex[q(x)]≤ c, (7.3e)

where constraint 8.3c computes the attacker’s best response (optimal evasion of q).

Scaling Up

The linear program 8.3 is not a practical solution approach for two reasons: a) q(x)

must be defined over the entire feature space X , and b) the set of constraints is quadratic

in |X |. Since with n features |X |= 2n, this LP is a non-starter.

Our first step towards addressing the scalability issue is to represent q(x) using a set of

normalised basis functions, {φ j(x)}, where q(x) = ∑
j

α jφ j(x). This allows us to focus on

optimizing α j, a potentially tractable proposition if the set of basis functions is small. With
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this representation, the LP now takes the following form (to simplify exposition below, we

assume that PA = 1; generalization is direct):

min
α≥0

∑
j

α jE[G(x)φ j(x)(1− p(x))]+E[V (x)p(x)Q(x,α)] (7.4a)

s.t : Q(x,α)≥ e−δ ||x−x′||(1−∑
i

α jφ j(x′)) ∀x,x′ ∈X (7.4b)

∑
j

α jE[φ j(x)]≤ c (7.4c)

∑
j

α j ≤ 1. (7.4d)

While we can reduce the number of variables in the optimization problem using a basis

representation φ , we still retain the intractably large set of inequalities which compute the

attacker’s best response. To address this issue, suppose that we have an oracle O(x;q)

which can efficiently compute a best response x′ to a strategy q for an attacker with an

ideal attack x. Armed with this oracle, we propose a constraint generation aproach, termed

Adaptive Adversary based Scalable classification (AAS), to iteratively compute an (ap-

proximately) optimal operational decision function q (Algorithm 7 below).

Algorithm 7 AAS(X)
φ =ConstructBasis()
X̄ ← X
q←MASTER(X̄ )
while true do

for x ∈ Xbad do
x′ = O(x;q)
X̄ ← X̄ ∪ x′

end for
if All x′ ∈ X̄ then
{If no new x′ generated}
return q

end if
q←MASTER(X̄ )

end while

The input to the AAS algorithm (Algorithm 7) is the feature matrix X in the training
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data, with Xbad denoting this feature matrix restricted to “bad” (malicious) instances. At

the core of Algorithm 7 is the MASTER linear program which computes an attacker’s

(approximate) best response using the modified LP 8.4, but using only a small subset of

all feature vectors as alternative attacks, which we denote by X̄ . The algorithm begins

with X̄ initialized to only include feature vectors in the training data X . The first step is to

compute an optimal solution, q, with adversarial evasion restricted to X . Then, iteratively,

we compute each attacker’s best response x′ to the current solution, q, adding it to X̄

(the preferences of each attacker are parameterized by the attacks they executed in the

original training data), rerun the MASTER linear program to recompute q, and repeat.

The process is terminated when we cannot generate any new constraints (i.e., the available

constraints already include best responses for all attackers). The following result is a direct

consequence of a) finiteness of feature space, and b) the fact that at termination the attacker

is playing an actual best response to the computed strategy q.

Theorem 7.3.1. The AAS algorithm computes an optimal solution q given a fixed basis φ

in finite time.

The approach described so far in principle addresses the scalability issues, but leaves

two key questions unanswered: 1) how do we construct the basis φ , a problem which

is of critical importance to good quality approximation (the ConstructBasis() function in

Algorithm 7), and 2) how do we compute the attacker’s best response to q, represented

above by an oracle O(x,q). We tackle these in turn.

Basis Construction

Our basis representation relies on harmonic (Fourier) analysis of Boolean functions [172,

175]. In particular, it is known that every Boolean function f : {0,1}n→R can be uniquely

represented as f (x) = ∑S∈BS
f̂SχS(x), where χS(x) = (−1)ST x is a parity function on a given

basis S ∈ {0,1}n, BS is the set containing all the bais S, and the corresponding Fourier coef-

ficients can be computed as f̂S =Ex[ f (x)χS(x)] [176, 175]. Our goal will be to approximate

q(x) using a Fourier basis. Our core task is to compute a set of basis functions to be sub-
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sequently used in optimizing q(x). The first step is to uniformly randomly select K feature

vectors ~xk. Then use a traditional learning algorithm, say Naive Bayes, to obtain the p(x)

vector and solve the linear program 8.3 to compute q(x) restricted to these. We can now

use the same set of feature vectors to approximate a Fourier coefficient of this q(x) for an

arbitrary basis S as t = 1
m

m
∑

i=1
q(xi)χS(xi). We can use this expression to compute a basis set

S with the largest Fourier coefficient using the following integer linear program:

max
S

1
K

K

∑
k=1

q(xk)rk
S (7.5a)

s.t. : ST xk = 2yk +hk (7.5b)

rk
S = 1−2hk (7.5c)

yk ∈ Z,hk ∈ {0,1},S ∈ {0,1}n (7.5d)

Our basis generation algorithm solves this program iteratively, each time adding a con-

straint that rules out a previously generated basis, until the optimal solution is zero. Each

basis is optimized within limited time and then we collect the set of optimized basis func-

tions BS that are corresponding to the largest Fourier coefficients. To consider the largest

negative Fourier coefficients, we simply change Program 8.5 to be minimization. We found,

however, that negative Fourier coefficients were rare in our problem instances.

Computing Adversary’s Best Response

The constraint generation algorithm AAS described above presumes the existance of

an oracle O(x;q) which computes (or approximates) an optimal evasion of q (we call this

a best response to q) for an attacker that would prefer to use a feature vector x. We now ad-

dress this problem in detail. Note that since V (x) is fixed in the attacker’s evasion problem

(because x is fixed), it can be ignored.

We begin by addressing the computational complexity of computing an optimal eva-

sion. Informally, given an arbitrary set of bases φ and the adversary’s preference feature

vector x, the attacker wishes to modify as few features as possible to obtain a binary vector

x′ that minimizes q(x′). To make the analysis cleaner, we compute the bases φ j as mapping
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to {0,1}, where φ j(x) = 1
2(χS j(x)+1). A formal decision problem faced by the attacker is

whether there exist a feature vector x′ satisfying the following constraints:

∑
j

α jφ j(x′)≤ λ (7.6a)

‖x− x′‖ ≤ k, (7.6b)

where λ and k are fixed given thresholds. This problem, which we call EVASION, can be

shown to be computationally hard by reducing it from 3DM.

Theorem 7.3.2. EVASION is NP-complete.

Proof. This adversary evasion problem is in NP, as we can non-deterministically pick a≤ k

features and verify if q(~x′)≤ λ .

We prove that the problem is NP-hard via a reduction from 3-dimensinal matching

(3DM). For an arbitrary instance of 3DM, W , Y , and Z are finite, disjoint sets with the

same number of d elements. T is a subset of W ×Y ×Z, which means T consists of triples

(w,y,z) such that w ∈W,y ∈ Y , and z ∈ Z. M ⊆ T (|M| = d) is a 3-dimensional matching

if for any two distinct triples (w1,y1,z1) ∈M and (w2,y2,z2) ∈M, w1 6= w2, y1 6= y2, and

z1 6= z2.

Each triple (wi,yi,zi) ∈ T corresponds to one feature, which controls a set of basis

(swi,sd+yi,s2d+zi). There are n = |T | features and m = |W |+ |Y |+ |Z|= 3d basises, which

forms the basis matrix as the figure 8.2 below. Each elements within the matrix b ji = 1

denotes that the jth basis is controlled by the ith feature; otherwise 0. As each feature

controls exactly one basis from each part, we have for any feature i(1 ≤ i ≤ n) and basis

j(1≤ j ≤ m),
d
∑
j=1

b ji = 1,
2d
∑

d+1
b ji = 1,

3d
∑

2d+1
b ji = 1, (d = 1

3m). Let k = d, λ = q(x)−3d/D,

(D ≥ 3d), ∆ = q(~x)− q(~x′). If q(x′) ≤ λ , we have ∆ = q(~x)− q(x~x′) ≥ 3d/D. Let α1 =

α2 = ... = αm = 1
2D , and x is a vector with all 0. Therefore φ j(x) = α j(−1)s jx = 1

2D for

1 ≤ j ≤ m. Consequentially, let xl ′ denotes the modified instance x′, which only differs

in feature l with x. If bhl = 1, the corresponding basis function would flip the sigh, thus
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φh(xl ′) = αl(−1)shxl ′
=− 1

2D . Suppose there are J bases that have been flipped the sign,

∆ =q(~x)−q(~x′) =
m

∑
j=1

α j(−1)s jx−
m

∑
j=1

α j(−1)s jx′

=

(
∑
j∈J

α j(−1)s jx + ∑
j∈S\J

α j(−1)s jx

)
−(

∑
j∈J

α j(−1)s jx′+ ∑
j∈S\J

α j(−1)s jx′
)
.

As ∑
j∈S\J

α j(−1)s jx = ∑
j∈S\J

α j(−1)s jx′ , ∆ = 1
2D |J|−(− 1

2D)|J|=
|J|
D , which means the decre-

ment of q(x) equals to the number of basises that would flip the sign divided by D. It is easy

to see how this construction can be accomplished in polynomial time. Therefore, suppose

Figure 7.2: Illustration for the problem construction

there are a ≤ k features that can be modified in x to satisfy that q(~x′) ≤ λ . It follows that

∆ = q(~x)− q(~x′) ≥ 3d/D. Additionally, as each feature only control 3 basises, the total

number of basis that would flip the sign is ∆ = q(~x)− q(~x′) ≤ 3a/D ≤ 3k/D = 3d/D. It

derives that ∆ = 3d/D, which means there is no overlap between selected basis. Accord-

ingly, subset M (|M|= d) is chosen and each triple (wi,yi,zi) ∈M corresponds to the set of

controlled basises by feature i. Therefore the total number of elements within the selected

subsets in M satisfies |W |+ |Y |+ |Z| = ∆ ·D = 3d. So any two selected distinct triples

(w1,y1,z1) ∈M and (w2,y2,z2) ∈M, w1 6= w2, y1 6= y2, and z1 6= z2. This means if there is

a solution for the adversary evasion problem, there exists a 3-dimensional matching.

Conversely, suppose M is a 3DM. The d selected exclusive triples correspond to k = d
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specific feature, each of which controls 3 basis. As all the triples are non-overlapped, there

are 3d different responding basises that would flip the sign, which means q(~x′)= q(~x)−∆=

q(~x)−3d/D = λ . Therefore, the adversary evasion problem can be solved if and only if a

3DM exists.

Since adversarial evasion is NP-Hard, it is natural to develop an approximation algo-

rithm to solve the following derived optimization problem:

min
x′

∑
j

α jφ j(x′) (7.7a)

s.t. : ||x− x′|| ≤ k (7.7b)

Define ∆(x′) = q(x)−q(x′) = ∑ j α j(φ j(x)−φ j(x′)), so that our objective can equivalently

be stated as maximizing ∆(x′) so that at most k features in x are modified. Let ∆∗ be the

optimal solution to this problem. We present Algorithm 9 to compute x′ which yields a

provably near-optimal solution.

Algorithm 8 ApproxEvasion(F,q,k,ε)

n← |F |
D0←{( /0,0)} {tuple di = ( f eaSet,value) ∈ D}
G = GenFeaGroup(F,S)
l← 0
for i← 1 to |G| do

for j← 1 to |gi| do
l← l +1 {merge two tuple-lists by di.value}
Dl ←MergeTuple(Dl−1,AddFea(Dl−1, fi j,k))

end for
Dl ← Trim(Dl,ε/2n)
remove elements from Dl that dl.value > q(x)

end for
let d∗ correspond to the maximum d.value in Dn
return d∗

Theorem 7.3.3. Suppose that the number of inputs in any basis is bounded by a constant c.

Then ApproxEvasion (Algorithm 9) computes a solution x′ to problem 8.7 which achieves

∆̂≥ ∆∗

1+ε
, where ∆̂ = ∆(x′) in time poly(n, 1

ε
,2c).
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Proof. The operations of Trim and removing from Dl every member that is greater than

q(~x) maintain the property that every element of Dl meets our decreasing requirement. For

every element di in Di that the corresponding retrieved value is at most q(x), there exists

an element dk ∈ Di such that Retrieve(di)
(1+ε/2n)i ≤ Retrieve(dk)≤ Retrieve(di). This must hold for

the optimal ∆∗, therefore there exists an element d ∈Dn that ∆∗

(1+ε/2n)n ≤ Retrieve(d)≤ ∆∗.

Thus ∆∗

Retrieve(d) ≤ (1+ ε

2n)
n. As this inequality must also hold for ∆̂, ∆∗

∆̂
≤ (1+ ε

2n)
n. Since

lim
n→∞

(1+ ε/2n)n = eε/2 and d
dn(1+ ε/2n)n > 0, the function (1+ ε/2n)n increases with n

and we have (1+ ε/2n)n ≤ eε/2 ≤ 1+ ε/2+(ε/2)2 ≤ 1+ ε .

Therefore, ∆̂≥ ∆∗

1+ε
.

Next we show that it is a polynomial-time approximation scheme based on a restric-

tive feature group size c, which is the maximum size of each feature group obtained from

Algorithm 10. To analyze the run time, we need to derive the bound on the length of Di.

After trimming between groups of features, successive elements d and d′ of Di must have

the relationship d′/d > 1+ ε/2n. That is, they must differ by a factor of at least 1+ ε/2n.

Each list, therefore, constraints the value 0, possibly value δ > 0, which is a small number

less than the minimal α value, and up to blog1+ε/2n
q(x)

δ
c. Therefore we can derive that the

number of elements in each list Di is at most

2c
(

log1+ε/2n
q(x)

δ
+2
)
= 2c

(
ln q(x)

δ

ln(1+ ε/2n)
+2

)
(7.8)

≤2c

(
2n(1+ ε/2n) ln q(x)

δ

ε
+2

)
(7.9)

<2c

(
3n ln q(x)

δ

ε
+2

)
. (7.10)

Therefore, this bound of the list length is polynomial in the size of the input n when c ≤

log2 n. Since the running time of ApproxAdversaryEvasion is polynomial in the lengths of

the Di, we conclude that there is a polynomial-time approximation scheme (O(n ·2c)) with
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respect to the restricted feature group size as c (c≤ log2 n).

Algorithm 9 returns the approximate solution of maximum ∆ to obtain a minimal q(~x′)

by modifying less or equal to k features.

Algorithm 9 ApproxAdversaryEvasion(F,q(~x),ε,k)

n← |F |
D0←{( /0,0)} {tuple di = ( f eaSet,value) ∈ D}
G = GenFeaGroup(F,S)
l← 0
for i← 1 to |G| do

for j← 1 to |gi| do
l← l +1 {merge two tuple-lists by di.value}
Dl ←MergeTuple(Dl−1,AddFea(Dl−1, fi j,k))

end for
Dl ← Trim(Dl,ε/2n)
remove elements from Dl that dl.value > q(~x)

end for
let d∗ correspond to the maximum d.value in Dn
return d∗

As the length of Di can be 2i, which makes the merge algorithm take exponential time,

here we employ the Algorithm 12 to trim the list length. The idea is that if some combi-

Algorithm 10 GenFeaGroup(F,S)

G← /0
n← |F |
m← |S|
for j← 1 to m do

for i← 1 to n do
g j← /0
if s ji = 1 then

g j← g j∪ fi
end if

end for
G← G∪g j

end for
G← Dis jointSet(G){convert G to disjoint-sets}
return G

nation of features make the decrease of q(~x) similar, then only one combination should be
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kept. This means that with a trimming parameter δ , for any element di removed from Di,

there is an element d j that approximates di, that is,
Retrieve(di)

1+δ
≤ Retrieve(d j)≤ Retrieve(di).

However, this Trim action can only be done for features that have no common basises to

avoid missing qualified feature combination. Therefore, Algorithm 10 is applied to group

the features that need to be added as a whole before Trim; and algorithm 11 helps to form

different feature combinations and guarantee only less or equal to k features are considered.

Algorithm 11 AddFea(D, f ,k)

m← |D|
D′← /0
for i← 1 to m do

if size(i.set ∪ f )≤ k then
t ′i .set← ti.set ∪ f
t ′i .value← Retrieve(t ′i .set)
insert t ′i into ordered D′ by t ′i .value

end if
end for
return D′

Algorithm 12 Trim(D,ε)

m← |D|
D′← d1
last← d1.value
for i← 2 to m do

if di.value > last · (1+ ε) then
append di onto the end of D′

last← di.value
end if

end for
return D′

Finally, for each feature combination we would use the algorithm 13 to obtain the cor-

responding value based on the chosen bases. Our goal is to find the feature combination

that reduce the most from q(~x) by flipping fewer features, which means the strategy x′ can

have a higher chance to pass the classifier after less modification on the original “ideal”

instance x.
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Algorithm 13 Retrieve(d)

w← /0
for fi ∈ d do

w← w⊕w fi {w fi is basis set controled by fi}
end for
v← ∑

s j∈w
−2αx j {αx j is the actual value in x}

return v

While the complete algorithm and proof are in the extended version, below we offer

some intuition. The key issue in Algorithm 9 is that the length of Di can be 2i, making the

merge algorithm take exponential time. To fix this, we employ a Trim function to shorten

the list length. The idea is that if some combinations of features have similar effect on

q(x), only one combination is considered. This means that with a trimming parameter δ ,

for any element di removed from Di, there is an element d j that approximates di, that is,
Retrieve(di)

1+δ
≤ Retrieve(d j) ≤ Retrieve(di). Notice that the Trim action can only be done

for features that have no common bases to avoid missing qualified feature combination.

Therefore, GenFeaGroup algorithm is applied to group the features that need to be added as

a whole before Trim. AddFea algorithm then helps to form different feature combinations

and guarantees that at most k features are considered.

In addition to the approximation algorithm above, we consider two others: an optimal

branch-and-bound search with worst-case exponential running time, and a greedy heuristic

(Greedy). In the branch-and-bound scheme, we search in the space of feature changes to

x. At any node with height l, we have thereby changed l features in x, and the utility of

the attacker in this subtree is therefore bounded above by e−δ l (since 1−q(x′) ≤ 1). This

bound is used in pruning much of the search tree once a good solution using relatively few

modifications is found. In the greedy heuristic, we start with x and iteratively flip features

one at a time, flipping a feature that yields the greatest decrease in q(x′) each time.

We used TREC spam corpora to experimentally compare the three approaches to com-
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Figure 7.3: Comparision of expected adversary utility (left) and algorithm runtime (right),
for the three adversrial evasion algorithms. Top: δ = 1, ε = 0.01. Bottom: δ = 3, ε = 0.01

puting adversarial evasion: the ApproxEvasion algorithm,1 branch-and-bound, and greedy

heuristic. The results, shown in Figure 8.3, suggest (somewhat surprisingly) that the simple

greedy heuristic offers a good balance between running time and quality: it is faster, usu-

ally quite significantly, than branch-and-bound, and loses less in solution quality than the

approximation algorithm. Consequently, our implementation of AAS features the evasion

oracle O which runs the greedy heuristic.

7.4 Experiments

To evaluate the efficacy of the proposed AAS algorithm for approximating optimal

randomized operational decisions in adversarial classification settings, we compare the op-

timized utility of defender with the state of the art. The results below use 100 features, with

additional results (using 500 features over the same domain) presented in the appendix.

1Whie ApproxEvasion cannot be used directly, it can be adapted using a linear search in the space of
thresholds k along with the same bound as used in branch-and-bound to truncate the search.
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In the experiments, we use the TREC spam corpora from 2005-2008.2 First, we evalu-

ate the performance of AAS as a spam filtering task to compare the classification accuracy

with the state of the art alternatives [122, 84]. In this first set of experiments, which are used

to test robustness to naturally observed spam evolution, we apply a fold of TREC 2005 data

as training and evaluate and test on the test fold for the TREC 2005 and 2006-2008 corpora

(in other words, we train on “current” data, and observe performance on “future” data). We

compare our approach against using a static classifier it is based upon, where the pair of

the form {C,AAS(C)}, consists of a static classifier C which is used to learn p(x) for our

model, and AAS(C) corresponding to our AAS algorithm that utilizes C. Here we use the

normalized utility as UD = 1− w|X+|+|X−|
w|XT N |+|XT P| , where |XT N | is the number of true negatives,

while |XT P| the number of true positives. |X−|= ∑x y(x)(1−q(x)) represents the expected

number of false negatives, while |X+| = ∑x(1− y(x))q(x) the expected number of false

positives; w = G
V .

Figure 8.4 shows that when the budget constraint is tight, our approach significantly

outperforms the baselines. From Figure 8.5 it can also be observed how the cost of adver-

sary matters. When we fix G(x) = 1 and vary V (x) =V (keeping it constant for all x), our

approach still consistently outperforms alternatives.

In the next set of experiments, we simulated a counterfactual of sophisticated evasion

attacks, deployed according to our model, drawing the same comparisons as above, but

now treating each year in the TREC data as distinct (in other words, we consider each

year as “current”, and then simulate an evasion attack independently for each year). From

Figure 8.6 and 8.7 we can see that our proposed method significantly outperforms the al-

ternatives on different datasets across both alternative budget constraints and value models.

It is, of course, not surprising that our proposed approach outperforms alternative meth-

ods in terms of the objective it tries to optimize. A natural question, however, is whether

this approach is robust to errors which would be inevitable in its practical deployment. To

2Our choice of TREC corpora for this evaluation is due primarily to its longitudinal nature, which is key
for a subset of our experiments.
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(a) (b)

(c) (d)

Figure 7.4: Comparison of normalized utility on TREC data, trained on year 2005, and
tested on years 2005-2008. Our method is labeled as AAS(·), where the parameter is the
classifier that serves to provide p(x). The following parameters are used: δ = 1, V (x) =
G(x) = 1, PA = 1 (a) c=0.1; (b) c=0.3; (c) c=0.5; (d) c=0.9.

evaluate the robustness of our algorithm, we introduce errors into our attacker model. First,

we introduce an error ϕ = 0.2 into the attacker model, so that δ̂ = δ +ϕ , where δ̂ is the

“observed” and δ the actual model parameter. Figure 8.8 and 8.9 show that our approach

still outperforms the state of the art alternatives even when harmed by very substantial

inaccuracy in the model parameter estimates.

Next, we consider robustness to a qualitative rather than quantitative error in adversarial

model. To simulate this, we solve our model as before, but evaluate the solutions q(x) by

assuming an adversary’s utility model actually decays polynomially as

Qpoly(x,x′) =
1

1+δ‖x− x′‖
.

The results, shown in Figure 8.10, demonstrate that our model is robust even when the
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(a) (b)

(c) (d)

Figure 7.5: Comparison of normalized utility on TREC data, trained on year 2005, and
tested on years 2005-2008. Our method is labeled as AAS(·), where the parameter is the
classifier that serves to provide p(x). The following parameters are used: δ = 1, G(x) = 1,
PA = 1 (a) V (x) = 2, c=0.1; (b) V (x) = 10, c=0.1; (c) V (x) = 2, c=0.3; (d) V (x) = 10, c=0.3.

(a) (b)

Figure 7.6: Comparison of the expected utility assuming PA = 1, V (x) = G(x) = 1; (a)
c = 0.1; (b) c = 0.3.

assumption about the adversary utility model is fundamentally incorrect.
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(a) (b)

Figure 7.7: Comparison of the expected utility assuming PA = 1; (a) V (x) = 2; (b) V (x) =
10. c = 0.3.

(a) (b)

Figure 7.8: Comparison of the expected utility assuming PA = 1, introducing parameter
error with 0.2 for δ ; (a) c = 0.1; (b) c = 0.3.

(a) (b)

Figure 7.9: Comparison of the expected utility assuming PA = 1, introducing parameter
error with 0.2 for δ ; (a) V (x) = 2; (b) V (x) = 10. c = 0.3.
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(a) (b)

Figure 7.10: Comparison of the expected utility assuming PA = 1, introducting adversarial
model error; (a) c = 0.1; (b) c = 0.3.

7.5 Summary of Contributions

This work presented a general approach for computing optimal randomized decisions

in adversarial classification settings. We solve the resulting intractably large problem by

applying a finite set of basis functions and using constraint generation which leverages

high-quality approximation of optimal adversarial classifier evasion. The proposed method

outperforms than the state of the art alternatives on several metrics, is robust to errors (in-

cluding qualitative mistakes in modeling assumptions) and its advantages are more apparent

when operational decisions are costly. Moreover, by conceptually separating the problem

of prediction (of adversary’s preferences) and optimal operational decisions, the approach

can both make use of off-the-shelf machine learning techniques, and naturally embed ran-

domization. While the use of machine learning in adversarial settings, such as network

intrusion detection, is still quite limited, our approach may pave the way for bridging the

gap between algorithmic advances and operational deployment of such systems.

In all, the contributions are as listed following: 1) a general framework for optimizing

operational decisions based on machine learning predictions; 2) a linear programming for-

mulation to compute optimal randomized operational decisions under budget constraints;

3) an approach for scalable parity-basis approximation of operational decision function; 4)
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a model of attacker evasion and methods approaches for approximating optimal evasion;

and 5) an extensive evaluation of our approach, which we show to significantly outperform

the state of the art.
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Part II Data manipulation analysis
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Chapter 8

DATA POISONING ATTACKS FOR FACTORIZATION BASED COLLABORATIVE

FILETERING

In addition to the evasion attacks we studied in the previous chapters, in this chapter

we start to consider another kind of attack, poisoning attacks. By poisoning the training

data, the adversaries can mislead the trained learning systems and cause harmful results.

Therefore here we study how the poisoning attack compromises the learner for a particular

application, recommendation system. Recommendation and collaborative filtering systems

are important in nowadays information and e-commerce applications. As these systems

are becoming increasingly popular in industry, their outputs could affect business deci-

sion making and hence there is always incentive for an adversarial party to compromise

the availability or integrity of such systems. Therefore here we consider a data poisoning

attacking model where an attacker is capable of injecting “malicious” data into a recom-

mendation system. We discuss how can an attacker generate malicious data so as to maxi-

mize his/her malicious objectives, while at the same time mimic normal users’ behaviors to

avoid being detected. Efficient solutions are presented for two popular factorization based

collaborative filtering algorithms: the alternative minimization formulation and the nuclear

norm minimization method. Finally, we test the effectiveness of our proposed algorithms

on real-world dataset and discuss potential defensive strategies.

8.1 Overview

Recommendation systems are prevalent in the era of world wide web and big data.

Some typical applications include recommendation systems for movies, books, restaurants,

and hotels. At a higher level, making recommendations involves automatically fitering each
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user’s preferences of items based on the user as well as other users’ known preferences of

a small portion of items in the database. In machine learning such problems are usually

referred to as collaborative filtering or matrix completion, where the known users’ pref-

erence are abstracted into an incomplete user-by-item matrix, and the goal is to complete

the matrix and subsequently make new item recommendations for each user. Existing

approaches in the literature include nearest-neighbor methods, where a user’s (item’s) pref-

erence is determined by other users (items) with similar profiles [177], and factorization-

based methods where the incomplete preference matrix is assumed to be approximately

low-rank [178, 179].

As recommendation systems play an ever increasing role in current information and

e-commerce systems, they are susceptible to an enormous risk of being maliciously at-

tacked. One particular form of attacks is called data poisoning, in which a malicious party

creates dummy (malicious) users in a recommendation system with carefully chosen item

preferences (i.e., data) such that the effectiveness or credibility of the system is maximally

tampered with. For example, an attacker might attempt to make recommendations that are

as different as possible from those that would otherwise be made by the recommendation

system. In another, more subtle, example, the attacker is associated with the producer of a

specific movie or product, who may wish to increase or decrease the popularity of a certain

item. In both cases, the credibility of a recommendation system is harmed by the malicious

activities, which could lead to significant ecomonic loss as well. Due to the open nature of

recommendation systems and their reliance on user-specified judgments for building pro-

files, various forms of attacks are possible and have been discussed, such as the random

attack and random product push/nuke attack [180, 181]. However, these attacks are not

formally analyzed and cannot be optimized according to specific collaborative filtering al-

gorithms. As it is not difficult for attackers to determine the defender’s filtering algorithm

or even its parameters settings, this can lead one to under-estimate the attacker’s ability and

result in substantial loss.
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Here we provide a systematic approach to compute near-optimal data poisoning attacks

for factorization-based collaborative filtering/recommendation models. We focus on two

most popular algorithms: alternating minimization [182] and nuclear norm minimization

[179]. Our main contributions are as follows:

Comprehensive characterization of attacker utilities: We characterize several at-

tacker utilities, which include availability attacks, where prediction error is increased, and

integrity attacks, where item-specific objectives are considered. Optimal attack strategies

for all utilities can be computed under a unified optimization framework.

Novel gradient computations: Building upon existing gradient-based data poisoning

frameworks [183, 184, 185], we develop novel methods for gradient computation based on

first-order KKT conditions for two widely used algorithms: alternating minimization [182]

and nuclear norm minimization [178]. The resulting derivations are highly non-trivial; in

addition, to our knowledge this work is the first to give systematic data poisoning attacks

for problems involving non-smooth nuclear norm type objectives.

Mimicking normal user behaviors: For data poisoning attacks, most prior work fo-

cuses on maximizing attacker’s utility. A less investigated problem is how to synthesize

malicious data points that are hard for a defender to detect. This work provides a novel

technique based on stochastic gradient Langevin dynamics optimization [186] to produce

malicious users that mimic normal user behaviors in order to avoid detection. The illustra-

tion of such poisoning attack is shown in Figure 9.1.

Figure 8.1: Illustration for poisoning attack within learning systems

140



8.2 Related Work

There has been extensive prior research concerning the security of machine learning

algorithms [44, 45, 43, 155]. Much of this line of work is dedicated to methods that deal

with evasion attacks, where the attacker can only manipulate the testing data. Few research

is done along the direction of data poisoning attacks, where the attacker is only allowed to

manipulate or inject malicious data in order to break the targeted learning systems. Such

poisoning attacks may lead to great loss, especially in health-care and biomedicine domains

where the consequences of poisoning attacks could be life-threatening and may cause dis-

trust [187].

Biggio et al. pioneered the research of optimizing malicious data-driven attacks for

kernel-based learning algorithms such as SVM [188]. The key optimization technique is to

approximately compute implicit gradients of the solution of an optimization problem based

on first-order KKT conditions. Similar techniques were later generalized to optimize data

poisoning attacks for several other important learning algorithms, such as Lasso regression

[183], topic modeling [184] and autoregressive models [189]. The reader may refer to [185]

for a general algorithmic framework of the abovementioned methods.

In terms of collaborative filtering/matrix completion, there is another line of estab-

lished research that focuses on robust matrix completion, in which a small portion of el-

ements or rows in the underlying low-rank matrix is assumed to be arbitrarily perturbed

[190, 191, 192, 193]. Typically an exact low-rank “signal matrix” is assumed for recov-

ery purposes, which never holds true in practice. In addition, robust matrix completion is

usually accopmlished by solving a mixed-norm convex optimization problem. Such pro-

cedures require significant amounts of computation and are hard to scale to large data sets.

Also, it is unclear what types of outliers perturb the matrix completion solution the most

and how much such perturbation is possible without additional defending strategies. One

exception is [194] in which the stability of alternating minimization solutions was analyzed

with respect to malicious data manipulations. However, [194] assumes the global optimal
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solution of alternating minimization can ba obtained, which is rarely true in practice. Fi-

nally, [195] analyzed adversarial learning of item-based collaborative filtering systems,

which fundementally differ from decomposition based methods considered in this work.

8.3 Preliminaries

We first set up the collaborative filtering/matrix completion problem and give an overview

of existing low-rank factorization based approaches. Let M ∈ Rm×n be a data matrix con-

sisting of m rows and n columns. Each row represents a user and each column represents

an item, for example, movies in Netflix or commodities for Amazon. Mi j for i ∈ [m] and

j∈ [n] would then correspond to the rating the ith user gives for the jth item. Typically, only

a very small portion of M is observed, as each user only rates few items in the database.

We use Ω = {(i, j) : Mi j is observed} to denote all observable entries in M and assume

that |Ω| � mn. We also use Ωi ⊆ [n] and Ω′j ⊆ [m] for columns (rows) that are observable

at the ith row ( jth column). The goal of collaborative filtering (also referred to as matrix

completion in the statistical learning literature [178]) is then to recover the complete matrix

M from few observations MΩ.

The matrix completion problem is in general ill-posed as it is impossible to complete an

arbitrary matrix with partial observations. As a result, additional assumptions are imposed

on the underlying data matrix M . One standard assumption is that M is very close to an

m×n rank-k matrix with k�min(m,n). Under such assumptions, the complete matrix M

can be recovered by solving the following optimization problem:

min
X∈Rm×n

‖RΩ(M −X)‖2
F , s.t. rank(X)≤ k, (8.1)

where ‖A‖2
F = ∑i, jA

2
i j denotes the squared Frobenious norm of matrix A and [RΩ(A)]i j

equals Ai j if (i, j) ∈Ω and 0 otherwise. Unfortunately, the feasible set in Eq. (9.1) is non-

convex, making the optimimzation problem difficult to solve. There has been an extensive
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prior literature on approximately solving Eq. (9.1) and/or its surrogates that lead to two

standard approaches: alternating minimization and nuclear norm minimization. For the

first approach, one considers the following problem:

min
U∈Rm×k,V ∈Rn×k

{
‖RΩ(M −UV >)‖2

F +2λU‖U‖2
F +2λV‖V ‖2

F
}
. (8.2)

Eq. (9.2) is equivalent to Eq. (9.1) when λU = λV = 0. In practice people usually set both

regularization parameters λU and λV to be small positive constants in order to avoid large

entries in the completed matrix and also improve convergence. Since Eq. (9.2) is bi-convex

in U and V , an alternating minimization procedure can be applied. Alternatively, one

solves a nuclear-norm minimization problem

min
X∈Rm×n

‖RΩ(M −X)‖2
F +2λ‖X‖∗, (8.3)

where λ > 0 is a regularization parameter and ‖X‖∗ = ∑
rank(X)
i=1 |σi(X)| is the nuclear

norm of X , which acts as a convex surrogate of the rank function. Eq. (9.3) is a convex

optimization function and can be solved using an iterative singular value thresholding algo-

rithm [179]. It can be shown that both methods in Eq. (9.2) and (9.3) provably approximate

the true underlying data matrix M under certain conditions [182, 178].

8.4 The Attack Model

In this section we describe the data poisoning attacking model considered in this study.

We assume that the attacker has access to all observable matrix entries MΩ and has full

knowledge of the collaborative filtering algorithm used as well as the way all algorithm

parameters (e.g., the regularization parameter λ in Eq. (9.3)) are set. For a data matrix

consisting of m users and n items, the attacker is capable of adding αm malicious users to

the training data matrix, and each malicious user is allowed to report his/her preference on
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at most B items with each preference bounded in the range [−Λ,Λ]. Here α � 1, B� n

and Λ < ∞ are budget parameters in the attacking model.

Before proceeding to describe the attacker’s goals, we first define a few notations for the

ease of presentation. We use M ∈Rm×n to denote the original data matrix and M̃ ∈Rm′×n

to denote the data matrix of all m′ = αm malicious users. Let Ω̃ be the set of non-zero

entries in M̃ and Ω̃i ⊆ [n] be all items that the ith malicious user rated. According to our

attack models, |Ω̃i| ≤ B for every i ∈ {1, · · · ,m′} and ‖M̃‖max = max |M̃i j| ≤ Λ.

Let Θλ (M̃ ;M) be the optimal solution computed jointly on the original and poisoned

data matrices (M̃ ;M) using regularization parameters λ . For example, Eq. (9.2) becomes

Θλ (M̃ ;M) = argmin
U ,Ũ ,V

‖RΩ(M −UV >)‖2
F +‖R

Ω̃
(M̃ − ŨV >)‖2

F

+2λU(‖U‖2
F +‖Ũ‖2

F)+2λV‖V ‖2
F (8.4)

where the resuling Θ consists of low-rank latent factors U ,Ũ for normal and malicious

users as well as V for items. Simiarly, for the nuclear norm minimization formulation in

Eq. (9.3), we have

Θλ (M̃ ;M) = argmin
X,X̃

‖RΩ(M −X)‖2
F + ‖R

Ω̃
(M̃ − X̃)‖2

F + 2λ‖(X;X̃)‖∗, (8.5)

where Θ = (X,X̃).

Let M̂(Θ) be the matrix estimated from learnt model Θ. For example, for Eq. (9.4)

we have M̂(Θ) =UV > and for Eq. (9.5) we have M̂(Θ) =X . The goal of the attacker

is then to find optimal malicious users M̃ ∗ such that

M̃ ∗ ∈ argmax
M̃∈MR(M̂(Θλ (M̃ ;M)),M). (8.6)

Here M= {M̃ ∈Rm′×n : |Ω̃i| ≤ B,‖M̃‖max≤Λ} is the set of all feasible poisoning attacks
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discussed earlier in this section and R(M̂ ,M) denotes the attacker’s utility for diverting

the collaborative filtering algorithm to predict M̂ on an original data set M , with the help

of few malicious users M̃ . Below we list several typical attacker utilities: Availability
attack the attacker wants to maximize the error of the collaborative filtering system, and

eventually render the system useless. Suppose M is the prediction of the collaborative

filtering system without data poisoning attacks. 1 The utility function is then defined as the

total amount of perturbation of predictions between M and M̂ (predictions after poisoning

attacks) on unseen entries ΩC:

Rav(M̂ ,M) = ‖RΩC(M̂ −M)‖2
F . (8.7)

Integrity attack in this model the attacker wants to boost (or reduce) the popularity of

a (subset) of items. Suppose J0 ⊆ [n] is the subset of items the attacker is interested in and

w : J0→ R is a pre-specified weight vector by the attacker. The utility function is

Rin
J0,w(M̂ ,M) =

m

∑
i=1

∑
j∈J0

w( j)M̂i j. (8.8)

Hybrid attack a hybrid loss function can also be defined:

Rhybrid
J0,w,µ(M̂ ,M) = µ1Rav

J0,w(M̂ ,M)+µ2Rin(M̂ ,M), (8.9)

where µ = (µ1,µ2) are coefficients that trade off the availability and integrity attack objec-

tives. In addition, µ1 could be negative, which models the case when the attacker wants to

leave a “light trace”: the attacker wants to make his item more popular while making the

other recommendations of the system less perturbed to avoid detection.

1Note that when the collaborative filtering algorithm and its parameters are set, M is a function of ob-
served entries RΩ(M).

145



8.5 Computing Optimal Attack Strategies

We describe practical algorithms to solve the optimization problem in Eq. (9.6) for

optimal attack strategy M̃ ∗ that maximizes attacker’s utility. We first consider the alternat-

ing minimization formulation in Eq. (9.4) and derive a projective gradient ascent method

that solves for the corresponding optimal attack strategy. Similar derivations are then ex-

tended to the nuclear norm minimization formulation in Eq. (9.5). Finally, we discuss how

to design malicious users that mimic normal users’ behaviors in order to avoid potential

detection from the defender side.

8.5.1 Attacking Alternating Minimization

We use the projective gradient ascent (PGA) method for solving the optimization prob-

lem in Eq. (9.6) with respect to the alternating minimization formulation in Eq. (9.4): in

iteration t we update M̃ (t) as follows:

M̃ (t+1) = ProjM
(
M̃ (t)+ st ·∇M̃

R(M̂ ,M)
)
, (8.10)

where ProjM(·) is the projection operator onto the feasible region M and st is the step size in

iteration t. Note that the estimated matrix M̂ depends on the model Θλ (M̃ ;M) learnt on

the joint data matrix, which further depends on the malicious users M̃ . Since the constraint

set M is highly non-convex, we generate B items uniformly at random for each malicious

user to rate. The ProjM(·) operator then reduces to projecting each malicious users’ rating

vector onto an `∞ ball of diameter Λ, which can be easily evaluated by truncating all entries

in M̃ at the level of ±Λ.

We next show how to (approximately) compute ∇
M̃

R(M̂ ,M). This is challenging be-

cause one of the arguments in the loss function involves an implicit optimization problem.
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We first apply chain rule to arrive at

∇
M̃

R(M̂ ,M) = ∇
M̃

Θλ (M̃ ;M)∇ΘR(M̂ ,M). (8.11)

The second gradient (with respect to Θ) is easy to evaluate, as all loss functions mentioned

in the previous section are smooth and differentiable. Detailed derivation of ∇ΘR(M̂ ,M)

is deferred to Appendix. On the other hand, the first gradient term term is much harder

to evaluate because Θλ (·) is an optimization procedure. Inspired by [183, 184, 185], we

exploit the KKT conditions of the optimization problem Θλ (·) to approximately compute

∇
M̃

Θλ (M̃ ;M). More specifically, the optimal solution Θ = (U ,Ũ ,V ) of Eq. (9.4)

satisfy

λUui = ∑
j∈Ωi

(Mi j−u>i v j)v j;

λU ũi = ∑
j∈Ω̃i

(M̃i j− ũ>i v j)v j;

λVv j = ∑
i∈Ω′j

(Mi j−u>i v j)ui + ∑
i∈Ω̃′j

(M̃i j− ũ>i v j)ũi,

where ui, ũi are the ith rows (of dimension k) in U or Ũ and v j is the jth row (also of

dimension k) in V . Subsequently, {ui, ũi,v j} can be expressed as functions of the original

and malicious data matrices M and M̃ . Using the fact that (a>x)a = (aa>)x and M

does not change with M̃ , we obtain

∂ui(M̃)

∂M̃i j
= 0;

∂ ũi(M̃)

∂M̃i j
=
(

λUIk +Σ
(i)
U

)−1
v j;

∂v j(M̃)

∂M̃i j
=
(

λVIk +Σ
( j)
V

)−1
ui.

Here Σ
(i)
U and Σ

( j)
V are defined as
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Algorithm 14 Optimizing M̃ via PGA
1: Input: Original partially observed m×n data matrix M , algorithm regularization pa-

rameter λ , attack budget parameters α , B and Λ, attacker’s utility function R, step size
{st}∞

t=1.
2: Initialization: random M̃ (0) ∈M with both ratings and rated items uniformly sampled

at random; t = 0.
3: while M̃ (t) does not converge do
4: Compute the optimal solution Θλ (M̃

(t);M).
5: Compute gradient ∇

M̃
R(M̂ ,M) using Eq. (9.10).

6: Update: M̃ (t+1) = ProjM(M̃ (t)+ st∇M̃
R).

7: t← t +1.
8: end while
9: Output: m′×n malicious matrix M̃ (t).

Σ
(i)
U = ∑

j∈Ωi∪Ω̃i

v jv
>
j , Σ

( j)
V = ∑

i∈Ω′j∪Ω̃′j

uiu
>
i . (8.12)

A framework of the proposed optimization algorithm is described in Algorithm 14.

8.5.2 Attacking Nuclear Norm Minimization

We extend the projective gradient ascent algorithm in Sec. 9.5.1 to compute optimal

attack strategies for the nuclear norm minimization formulation in Eq. (9.5). Since the

objective in Eq. (9.5) is convex, the global optimal solution Θ = (X,X̃) can be obtained

by conventional convex optimization procedures such as proximal gradient descent (a.k.a.

singular value thresholding [179] for nuclear norm minimization). In addition, the resulting

estimation (X;X̃) is low rank due to the nuclear norm penalty [178]. Suppose (X;X̃) has

rank ρ ≤ min(m,n). We use Θ′ = (U ,Ũ ,V ,Σ) as an alternative characterization of the

learnt model with reduced number of parameters. Here X = UΣV > and X̃ = ŨΣV >

are singular value decompositions of X and X̃; that is, U ∈Rm×ρ , Ũ ∈Rm′×ρ , V ∈Rn×ρ

have orthornormal columns and Σ = diag(σ1, · · · ,σρ) is a non-negative diagonal matrix.

To compute the gradient ∇
M̃

R(M̂ ,M), we again apply the chain rule to decompose
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the gradient into two parts:

∇
M̃

R(M̂ ,M) = ∇
M̃

Θ′
λ
(M̃ ;M)∇Θ′R(M̂ ,M). (8.13)

Similar to Eq. (9.11), the second gradient term ∇Θ′R(M̂ ,M) is relatively easier to evalu-

ate. Its derivation details are deferred to the Appendix. In the remainder of this section we

shall focus on the computation of the first gradient term, which involves partial derivatives

of Θ′ = (U ,Ũ ,V ,Σ) with respect to malicious users M̃ .

We begin with the KKT condition at the optimal solution Θ′ of Eq. (9.5). Unlike the

alternating minimization formulation, the nuclear norm function ‖ · ‖∗ is not everywhere

differentiable. As a result, the KKT condition relates the subdifferential of the nuclear

norm function ∂‖ · ‖∗ as

R
Ω,Ω̃

(
[M ;M̃ ]− [X;X̃]

)
∈ λ∂‖[X;X̃]‖∗. (8.14)

Here [X;X̃] is the concatenated (m+m′)×n matrix of X and X̃ . The subdifferential of

the nuclear norm function ∂‖ · ‖∗ is also known [178]:

∂‖X‖∗ =
{
UV >+W : U>W =WV = 0,‖W ‖2 ≤ 1

}
,

where X = UΣV > is the singular value decomposition of X . Suppose {ui},{ũi} and

{v j} are rows of U ,Ũ ,V and W = {wi j}. We can then re-formulate the KKT condition

Eq. (9.14) as follows:

∀(i, j) ∈Ω, Mi j = u>i (Σ+λIρ)v j +λwi j;

∀(i, j) ∈ Ω̃, M̃i j = ũ>i (Σ+λIρ)v j +λ w̃i j.

We are now ready to derive ∇
M̃

Θ = ∇
M̃

(u, ũ,v,σ).
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Evaluation of ∇
M̃

ui Because ui does not depend on M̃ , we have ∇
M̃

ui = 0.

Evaluation of ∇
M̃

ũi Let Ω̃i be all (i, j) pairs such that (i, j) ∈ Ω̃. Suppose we are

computing the gradient of ũi with respect to M̃i`, where ` can be either in or not in Ω̃i.

Define Ω̃`
i = Ω̃i∪{`} be the extended set of observations and denote r = |Ω̃`

i | as the size

of the extended observation set. Define M̃i = (M̃i j) j∈Ω̃`
i
∈ Rr, w̃i = (w̃i j) j∈Ω̃`

i
∈ Rr and

V `
i = (v j) j∈Ω̃`

i
∈ Rρ×r. By KKT condition,

[(
Σ+λIρ

)
V `

i

]>
ũi = M̃i−λw̃i. (8.15)

The above linear system can be either over-determined or under-determined, depending

on the relationship between ρ and r. When the system is under-determined (e.g., r <

ρ), the solution to Eq. (9.15) is not unique and could be instable if the matrix Ai =[(
Σ+λIρ

)
V `

i
]> is ill-conditioned. On the other hand, when the system is over-determined

(e.g., r > ρ) an exact solution ũi may not exist. To force unique solutions in full generality,

we compute ũi by solving the following Ridge-regularized system:

min
ũi
‖M̃i−λw̃i−Aiũi‖2

2 +2τ‖ũi‖2
2,

where τ > 0 is a smoothing parameter. Subsequently,

ũi ≈ (A>i Ai + τIρ)
−1A>i (M̃i−λw̃i);

∂ ũi

∂M̃i`
≈ (A>i Ai + τIρ)

−1(Σ+λIρ)v`.

Evaluation of ∇
M̃

v j This part is similar to the gradient of ũi. Suppose we are com-

puting ∂v j/∂M̃` j. Define Ω̄`
j = Ω′j ∪ Ω̃′j ∪{`} to be the extended set of all i such that

(i, j) ∈Ω∪ Ω̃. Let r = |Ω̄`
j| be the size of the extended set. We then have

[
(Ū `

i )
>(Σ+λIρ)

]
v j = M̃ ′

j−λw̃′j,
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Algorithm 15 Optimizing M̃ via SGLD
1: Input: Original partially observed m×n data matrix M , algorithm regularization pa-

rameter λ , attack budget parameters α , B and Λ, attacker’s utility function R, step size
{st}∞

t=1, tuning parameter β , number of SGLD iterations T .
2: Prior setup: compute ξ j =

1
m ∑

m
i=1Mi j and σ2

j =
1
m ∑

m
i=1 (Mi j−ξ j)

2 for every j ∈ [n].
3: Initialization: sample M̃

(0)
i j ∼N (ξ j,σ

2
j ) for i ∈ [m′] and j ∈ [n].

4: for t = 0 to T do
5: Compute the optimal solution Θλ (M̃

(t);M).
6: Compute gradient ∇

M̃
R(M̂ ,M) using Eq. (9.10).

7: Update M̃ (t+1) according to Eq. (9.18).
8: end for
9: Projection: find M̃ ∗ ∈ argmin

M̃∈M ‖M̃ −M̃ (t)‖2
F . Details in the main text.

10: Output: m′×n malicious matrix M̃ ∗.

where Ū `
i is a ρ×r matrix consisting of all ui or ũi for i∈ Ω̄`

j as its columns. On the right-

hand side, we have M̃ ′
j = (M̃i j)i∈Ω̄`

j
and w̃′j = (wi j)i∈Ω̄`

j
. Let B j = (Ū `

i )
>(Σ+λIρ) ∈

Rr×ρ and τ > 0 be a smoothing parameter. We then have

∂v j

∂M̃` j
≈ (B>j B j + τIρ)

−1(Σ+λIρ)ũ`.

Evaluation of ∇
M̃

σk By KKT condition we have

M̃i j = ũikv jk ·σk + c,

where c is a constant that does not depend on σk. Subsequently, we get

∂σk

∂M̃i j
=

1
ũikv jk

.

8.5.3 Mimicing Normal User Behaviors

In previous sections we initialize the malicious matrix M̃ by letting each malicious user

label B items uniformly at random. This helps diversify the ratings and rated items of each

malicious user to avoid being trivially detected by a simple defender. Nevertheless, using
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such attack strategies the malicious users could still be relatively easily identified, because

normal users generally do not rate items uniformly at random. For example, there are

certain movies that are significantly more popular than the other movies or vice versa. As a

result, malicious users that pick rated movies uniformly at random can be easily identified

by running a t-test against a known database consisting of only normal users, as we shown

in the experimental section.

To alleviate the above-mentioned issues, in this section we propose an alternative ap-

proach to compute data poisoning attacks such that the resulting malicious users M̃ mimics

normal users M to avoid potential detection from the defender side, while still achieving

reasonably large utility R(M̂ ,M) for the attacker. We use a Bayesian formulation to take

both data poisoning and detection avoidance objectives into consideration. The prior dis-

tribution p0(M̃) captures normal users’ behaviors and is defined as a multivariate normal

distribution

p0(M̃) =
m′

∏
i=1

n

∏
j=1

N (M̃i j;ξ j,σ
2
j ),

where ξ j and σ2
j are mean and variance parameters for the rating of the jth item provided

by normal users. In practice both parameters can be estimated using normal user matrix

M as ξ j =
1
m ∑

m
i=1Mi j and σ2 = 1

m ∑
m
i=1 (Mi j−ξ j)

2. On the other hand, the likelihood

p(M |M̃) is defined as

p(M |M̃) =
1
Z

exp
(

β ·R(M̂ ,M)
)
, (8.16)

where R(M̂ ,M) = R(M̂(Θλ (M̃ ;M)),M) is one of the attcker utility functions defined

in Sec. 3.3, Z is a normalization constant and β > 0 is a tuning parameter that trades off

attack performance and detection avoidance. A small β value shifts the posterior of M̃

toward its prior, which makes the resulting attack strategy less effective but harder to detect

and vice versa.

Given both prior and likelihood functions, an effective detection-avoiding attack strat-
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egy M̃ can be obtained by sampling from its posterior distribution:

p(M̃ |M) = p0(M̃)p(M |M̃)/p(M)

∝ exp

(
−

m′

∑
i=1

n

∑
j=1

(M̃i j−ξ j)
2

2σ2
j

+βR(M̂ ,M)

)
. (8.17)

Posterior sampling of Eq. (9.17) is clearly intractable, due to the implicit and compli-

cated dependency of the estimated matrix M̂ on the malicious data M̃ , that is, M̂ =

M̂(Θλ (M̃ ;M))). To circumvent this problem, we apply Stochastic Gradient Langevin

Dynamics (SGLD, [186]) to approximately sample M̃ from its posterior distribution in

Eq. (9.17). More specfically, the SGLD algorithm iteratively computes a sequence of pos-

terior samples {M̃ (t)}t≥0 and at iteration t the new sample M̃ (t+1) is computed as

M̃ (t+1) = M̃ (t)+
st

2

(
∇
M̃

log p(M̃ |M)
)
+εt , (8.18)

where {st}t≥0 are step sizes and εt ∼N (0,stI) are independent Gaussian noises injected

at each SGLD iteration. The gradient ∇
M̃

log p(M̃ |M) can be computed as

∇
M̃

log p(M̃ |M) =−(M̃ −Ξ)Σ−1 +β∇
M̃

R(M̂ ,M),

where Σ = diag(σ2
1 , · · · ,σ2

n ) and Ξ is an m′× n matrix with Ξi j = ξ j for i ∈ [m′] and

j ∈ [n]. The other gradient ∇
M̃

R(M̂ ,M) can be computed using the same procedure

listed in previous sections 9.5.1 and 9.5.2. Finally, the sampled malicious matrix M̃ (t)

is projected back onto the feasible set M by selecting B items per user with the largest

absolute rating and truncating ratings to the level of {±Λ}. A high-level description of the

proposed method is given in Algorithm 15.
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(a) (b)

(c) (d)

Figure 8.2: P values and RMSE/Averge ratings for alternating minimization with different
β values; (a) µ1 = 1,µ2 = 0, (b) µ1 = 1,µ2 =−1, (c) µ1 = 0,µ2 = 1, (d) µ1 =−1,µ2 = 1.

(a) (b)

Figure 8.3: RMSE for alternating minimization with different percentage of malicious pro-
files; (a) µ1 = 1,µ2 = 0, (b) µ1 = 1,µ2 =−1.

8.6 Results

To evaluate the effectiveness of our proposed poisoning attack strategy, we use the pub-

licly available MovieLens dataset which contains 20 millions ratings and 465,000 tag ap-

plications applied to 27,000 movies by 138,000 users [196]. We test data poisoning attacks

on both alternating minimization based and nuclear norm minimization based collabora-

tive filtering systems. All ratings are integer valued between one (most disliked) and five

(most liked). We shift the rating range to [−2,2] for computation convenience. To avoid

the “cold-start” problem, we consider users who have rated at least 20 movies. Two met-
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(a) (b)

Figure 8.4: Average ratings of certain items using alternating minimization; (a) µ1 =
0,µ2 = 1, (b) µ1 =−1,µ2 = 1.

(a) (b)

(c) (d)

Figure 8.5: P values and RMSE/Averge ratings for nuclear norm minimization with
different β values; (a) µ1 = 1,µ2 = 0, (b) µ1 = 1,µ2 = −1, (c) µ1 = 0,µ2 = 1, (d)
µ1 =−1,µ2 = 1.

rics: root mean square error (RMSE) for the predicted unseen entries 2 and average rating

for specific items, are employed to measure the relative performance of the systems before

and after data poisoning attacks. Values of these metrics are plotted against percentage of

malicious profiles of the total number of normal profiles in the system.

We first analyze the tradeoff between attack performance and detection avoidance,

which is controled by the β parameter in Eq. (9.16). This serves as guidence of how β

should be set in later experiments. We use paired t-test to compare the distributions of

rated items between normal and malicious users. Figure 9.2 plots P-values and RMSE/Av-

2defined as RMSE =
√

∑(i, j)∈ΩC (M i j−M̂i j)2/|ΩC|, where M is the prediction of model trained on
clean data RΩ(M) only (i.e., without data poisoning attacks).
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(a) (b)

Figure 8.6: RMSE for nuclear norm minimization with different percentage of malicious
profiles; (a) µ1 = 1,µ2 = 0, (b) µ1 = 1,µ2 =−1.

(a) (b)

Figure 8.7: Average ratings of certain items using nuclear norm miminization; (a) µ1 =
0,µ2 = 1, (b) µ1 =−1,µ2 = 1.

erage ratings against different values of β . When B = 25 (recall that B is the maximum

number of items a malicious user is allowed to rate), with the increase of β , the P-value

decreases while both RMSE and average per-item ratings increase. To strive for a good

tradeoff, we set β = 0.6 at which the P-value stablizes around 0.7 and the poisoning attack

performance is not much sacrificed.

We employ attack models specified in Eq. (9.9), where the utility parameter µ1 and

µ2 balance two different malicious goals (availability and integrity) an attacker wishes

to achieve. For the integrity utility Rin
J0,w, the J0 set contains only one item j0 selected

randomly from all items whose average predicted ratings are around 0.8. The weight w j0

is set as w j0 = 2. Figure 9.3 plots the RMSE after data poisoning attacks. When µ1 = 1,

µ2 = 0, the attacker is interested in increasing the RMSE of the collaborative filtering

system and hence reducing the system’s availability. On the other hand, when µ1 = 1,

µ2 = −1 the attacker wishes to increase RMSE while at the same time keeping the rating
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of specific items ( j0) as low as possible for certain malicious purposes. 3 Figure 9.3

shows that when the attackers consider to both objectives (µ1 = 1,µ2 = −1), the RMSE

after poisoning is slightly lower than that if only availability is targeted (µ1 = 1,µ2 =

0). In addition, the projective gradient ascent (PGA) strategy generates the largest RMSE

score compared with the other methods. However, PGA requires malicious users to rate

each item uniformly at random, which might expose the malicious profiles to an informed

defender. More specifically, the paired t-test on those malicious profiles produced by PGA

rejects the null hypothesis that the items rated by the attacker strategies are the same as

those obtained from normal users (p < 0.05). In contrast, the stochastic gradient langevin

dynamics (SGLD) method leads to slightly worse attacker utility but generates malicious

users that are hard to distinguish from the normal users (for example, the paired t-test leads

to inconclusive P values (larger than 0.7) with β = 0.6. Finally, both PGA and SGLD result

in higher attacker utility compared to uniform attacks, where both ratings and rated items

are sampled uniformly at random for malicious profiles.

Apart from the RMSE scores, we also plot ratings of specific items against percent-

age of malicious profiles in Figure 9.4. We consider two additional attack utility settings:

µ1 = 0,µ2 = 1, in which the attacker wishes to push the ratings of some particular items

(specified in w and J0 of Rin) as high as possible; and µ1 =−1,µ2 = 1, where the attacker

also wants to leave a “light trace” by reducing the impact on the entire system resulted

from malicious activities. Figure 9.4 shows that targeted attackes (both PGA and SGLD)

are indeed more effective in terms of manipulating ratings of specific items for integrity

attacks.

We also plot RMSE/Average ratings against malicious user percentage in Figure 9.5,

9.6 and 9.7 for the nuclear norm minimization formulation under similar settings. Because

nuclear norm mininmization is more computationally expensive than alternating minimiza-

tion, we uniformly select a random subset of Movielens that consists of 1000 users and

3Due to space limits, average ratings for the setting µ1 = 1,µ2 =−1 are plotted in Appendix.
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1700 movies (items) in our experiments. To set penalty and smoothness parameters λ and

τ , we sub-sample 100 users and 150 movies uniformly at random and tune these parameters

so that the RMSE is minimized on the small subsampled data set. The parameters are set

as λ = 0.1 and τ = 0.01 through this procedure. The “detection-avoidance” parameter β is

again set to 0.6 according to the plots of P values and RMSE depicted in Figure 9.5. In gen-

eral, we observe similar behavior of both RMSE/Average ratings under different attakcing

models µ1,µ2 as in previous figures (9.2, 9.3 and 9.4) for alternating minimization.

8.7 Summary of Contributions

The poisoning attack presented in this work is the first step toward the security analysis

of collaborative filters against poisoning attacks. Our ultimate goal is to come up with pos-

sible defensive strategies based on the careful analysis of adversarial behaviors. Since the

poisoning data is optimized based on the attacker’s malicious objectives, the correlations

among features within a feature vector may change to appear different with the normal in-

stances. Therefore, tracking and detecting deviations in the feature correlations and other

different accuracy metrics can be one potential defense. For example, the defender can

periodically construct a model using the training dataset, evaluate its accuracy on the man-

ually selected validation dataset, and raise an alarm in case of any suspicious change in

the accuracy metrics. These metrics can be the number of correctly classified instances, or

the Kappa statistic, which measures relative improvement over random predictors. Addi-

tionally, defender can also apply the combinational models or sampling strategies, such as

bagging, to reduce the influence of the poisoning data during training if the poisoning data

can be viewed as a particular category of outliers to counter the poisoning attacks.
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Chapter 9

HIDING SENSITIVE DATA IN PLAIN SIGHT: ITERTIVE CLASSIFICATION FOR

SANITIZING LARGE-SCALE DATASETS

Another anchor of secure learning is to protect data privacy, where adversaries can

undermine the integrity of the learner and therefore compromise the privacy preserving

systems. In this chapter we discuss the potential attacks targeting on data privacy and pro-

vide a flexible solution to balance the data privacy and utility for data publishing. The data

deluge enabled by the widespread use of information technology, and the sensitive infor-

mation such data often contains, present a dilemma: sharing the data can lead to significant

new discoveries, but may also leak sensitive information. Such concerns are salient in the

context of electronic medical records, clinical trial data, classified data, social media data,

and many other domains. When dealing with unstructured data, such as text, sanitizing

it to remove sensitive information is challenging at scale, since sensitive content, such as

patient names, is not usually labeled as such. A natural approach is to add sensitivity labels

to a small subset of entities (e.g., words), use classification learning to predict labels on

the residual data, remove predicted sensitive information, and release the remainder. How-

ever, using an imperfect classifier will inevitably lead one to leak sensitive information.

We model this problem as a game between a publisher who chooses a set of classifiers to

apply to data, releasing only predicted negatives, and an attacker who chooses a classifier

to prioritize a list of entities to inspect, subject to an inspection budget constraint. We show

that if the loss from attack success is high, all locally optimal publishing policies ensure

that the attacker’s classifier uncovers few true positives, and a high-budget attacker can do

little better than choosing entities uniformly at random. In addition, we exhibit a greedy

algorithm which will converge to such a local optimum within a linear number of iterations,

and analyze sample complexity of this algorithm. We also demonstrate the effectiveness at
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sanitizing data of our approach by extensive experimental results.

9.1 Overview

Vast quantities of personal health data are now collected in a wide variety of settings.

It is anticipated that such data can enable significant improvements in the quality of health

services provided to individuals and facilitate new discoveries for society. At the same

time, the data collected is often sensitive, and regulations, such as the Privacy Rule of

the Health Insurance Portability and Accountability Act of 1996 (when disclosing medical

records) [197] and the European Data Protection Directive [198] often recommend the

removal of identifying information. To accomplish such goals, the past several decades

have brought forth the development of numerous data protection models [199]. These

models invoke various principles, such as hiding individuals in a crowd (e.g., k-anonymity

[31]) or perturbing values to ensure that little can be inferred about an individual even with

arbitrary side information (e.g., ε-differential privacy [200]). All of these approaches are

predicated on the assumption that the publisher of the data knows where the identifiers are

from the outset. More specifically, they assume the data has an explicit representation, such

as a relational form [201], where the data has at most a small set of values per feature [202,

203, 204, 205].

However, it is increasingly the case that the data we generate lacks a formal relational

(or explicitly structured) representation. A clear example of this phenomenon is the sub-

stantial quantity of natural language text which is created in the clinical notes in medical

records [206]. To protect such data, there has been a significant amount of research into nat-

ural language processing (NLP) techniques to detect (and subsequently redact or substitute)

identifiers [207, 208, 209, 210]. As demonstrated through systematic reviews [62] and vari-

ous competitions [211, 212], the most scalable versions of such techniques are rooted in, or

rely heavily upon, machine learning methods, in which the publisher of the data annotates

instances of personal identifiers in the text, such as patient and doctor name, social security
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number, and a date of birth, and the machine attempts to learn a classifier (e.g., a grammar)

to predict where such identifiers reside in a much larger corpus. Unfortunately, no learned

classifier is perfect, and some sensitive information will invariably leak through to the data

recipient. This is clearly a problem if, for instance, the information leaked corresponds to

direct identifiers (e.g., personal name) or quasi-identifiers (e.g., ZIP codes or dates of birth)

which may be exploited in re-identification attacks, such as the re-identification of Thelma

Arnold in the search logs disclosed by AOL [213] or the Social Security Numbers in Jeb

Bush’s emails [214].

Rather than attempt to detect and redact every sensitive piece of information, our goal

is to guarantee that even if identifiers remain in the published data, the adversary cannot

easily find them. Fundamental to our approach is the acceptance of non-zero privacy risk,

which we view as unavoidable. This is consistent with most privacy regulation, such as

HIPAA, which allows expert determination that privacy “risk is very small” [197], and the

EU Data Protection Directive, which “does not require anonymisation to be completely

risk-free” [215]. Our starting point is a threat model within which an attacker uses pub-

lished data to first train a classifier to predict sensitive entities (based on a labeled subset of

the data), prioritizes inspection based on the predicted positives, and inspects (and verifies

the true sensitivity status of) B of these in a prioritized order. Here, B is the budget available

to inspect (or read) instances and true sentivie entities are those which have been correctly

labeled as sensitive (for example, true sensitive entities could include identifiers such as a

name, social security number, and address). An illustration of such a setting is depicted

in Figure 10.1. In this threat model, we consider an idealized adversary with several ele-

ments of omniscience. First, we assume that the adversary can always correctly assess the

true sensitivity for any manually inspected instance. Second, we assume that the adversary

computes an optimal classifier (that is, a classifier with maximum accuracy within a given

hypothesis class) with respect to published data.

We use this threat model to construct a game between a publisher, who 1) applies a
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Figure 9.1: An example of sensitive and non-sensitive instances that need to be distin-
guished via manual inspection.

collection of classifiers to an original data set, 2) prunes all the positives predicted by any

classifier, and 3) publishes the remainder, and an adversary acting according to our threat

model. We show that any locally optimal publishing strategy exhibits the following two

properties when the risk associated with exploited personal identifiers is high: a) an ad-

versary cannot learn a classifier with a high true positive count, and b) an adversary with

a large inspection budget cannot do much better than manually inspecting and confirming

instances chosen uniformly at random (i.e., the classifier adds little value). When these

conditions hold, we say that sensitive data is hiding in plain sight—even though it may be

leaked, it is difficult for a motivated adversary to discover. Moreover, we exhibit a greedy

publishing strategy which is guaranteed to converge to a local optimum (and consequently

guarantees the above two properties) in a linear (in the size of the data) number of iterations.

Our experiments on two distinct electronic health records data sets demonstrate the power

of our approach, showing that 1) the number of residual true positives is always quite small,

2) confirming that the attacker with a large budget cannot do much better than uniformly

randomly choosing entities to manually inspect, 3) demonstrating that most (> 93%) of

the original data is nevertheless published, and 4) showing that in practice the number of

required algorithm iterations (< 5) is a small fraction of the size of the data. Additional

experiments, involving two non-health-related datasets corroborate these findings, demon-

strating generalizability of this approach. Figure 10.2 illustrates the general attack strategy

on privacy from the perspective of secure learning.
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Figure 9.2: General idea of the exploratory privacy preserving attacks

9.2 Related Work

9.2.1 Approaches for Anonymizing Structured Data

There has been a substantial amount of research conducted in the field of privacy-

preserving data publishing (PPDP) over the past several decades [216, 199]. Much of this

work is dedicated to methods that transform well-structured (e.g., relational) data to adhere

to a certain criterion (or set of criterion), such as k-anonymization [31], l-diversity [56],

m-invariance [60], and ε-differential privacy [200], among a multitude of others. These

criteria attempt to offer guarantees about the ability of an attacker to either distinguish be-

tween different records in the data or make inferences tied to a specific individual. There is

now an extensive literature aiming to operationalize such PPDP criteria in practice through

the application of techniques such as generalization, suppression (or removal), and random-

ization (e.g., [66, 217, 218, 70, 71, 74]). All of these techniques, however, rely on a priori

knowledge of which features of the data are either themselves sensitive or can be linked

do sensitive attributes. This is a key distinction from our work: we aim to automatically

discover which entities in unstructured data are sensitive, as well as ensure (in a formal

sense) that whatever sensitive data remains cannot be easily unearthed by an adversary.
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9.2.2 Sanitizing Unstructure Data

In the context of privacy preservation for unstructured data, such as text, various ap-

proaches have been proposed for the automatic discovery of sensitive entities, such as

identifiers. The simplest of these rely on a large collection of rules, dictionaries, and

regular expressions (e.g., [219, 220]). [221] proposed an automated data sanitization al-

gorithm aimed at removing sensitive identifiers while inducing the least distortion to the

contents of documents. However, this algorithm assumes that sensitive entities, as well as

any possible related entities, have already been labeled. Similarly, [222] have developed

the t-plausibility algorithm to replace the known (labeled) sensitive identifiers within the

documents and guarantee that the sanitized document is associated with least t documents.

9.2.3 Machine Learning Methods for Sanitizing Unstructured Data

A key challenge in unstructured data that makes it qualitatively distinct from structured

is that even identifying (labeling) which entities are sensitive is non-trivial. For exam-

ple, while a structured portion of electronic medical records would generally have known

sensitive categories, such as a patient’s name, physician’s notes do not have such labels,

even though they may well refer to a patient’s name, date of birth, and other potentially

identifying information. While rule-based approaches, such as regular expressions, can

automatically identify some of the sensitive entities, they have to be manually tuned to

specific classes of data, and don’t generalize well. A natural idea, which has received con-

siderable traction in prior literature, is to use machine learning algorithms, trained on a

small portion of labeled data, to automatically identify sensitive entities. Numerous classi-

fication algorithms have been proposed for this purpose, including decision stumps [223],

support vector machines (SVM) [224], conditional random fields (CRFs) [207, 210, 225],

hybrid strategies that rely on rules and statistical learning models [226, 227] ensemble

methods [62]. Unfortunately, all of such PPDP algorithms fail to formally consider the
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adversarial model, which is crucial for the decision making of the data publisher.

Therefore, our approach builds on this literature, but is quite distinct from it in sev-

eral ways. First, we propose a novel explicit threat model for this problem, allowing us

to make formal guarantees about the vulnerability of the published data to adversarial re-

identification attempts. Second, we introduce a natural approach for sanitizing data that

uses machine learning in an iterative framework. Notably, this approach performs sig-

nificantly better than a standard application of CRFs, which is the leading approach for

text sanitization to date [228], but can actually make use of arbitrary machine learning

algorithms. Our work can be seen within the broader context of game theoretic mod-

eling of security and privacy [169, 229, 140, 230, 231], including a number of efforts

that use game theory to make machine learning algorithms robust in adversarial environ-

ments [232, 174, 233, 115, 113, 114]. In both of these genres of work, a central element is

an explicit formal threat (i.e., attacker) model, with the game theoretic analysis generally

focused on computing defensive privacy-preserving strategies. None of this work to date,

however, addresses the problem of PPDP of unstructured data with sensitive entities not

known a priori.

9.3 Model

Before delving into the technical details, we offer a brief high-level intuition behind

the main idea in this study. Suppose that a publisher uses a machine learning algorithm to

identify sensitive instances in a corpus, these instances are then redacted, and the residual

data is shared with an attacker. The latter, aspiring to uncover residual sensitive instances

(e.g., identifiers) can, similarly, train a learning algorithm to do so (using, for example,

a subset of published data that is manually labeled). Now, to be a bit crude, consider

two possibilities: first, the learning algorithm enables the attacker to uncover a non-trivial

amount of sensitive information, and second, the learning algorithm is relatively unhelpful

in doing so. In the latter case, the publisher can perhaps breath freely: few sensitive entities

165



can be identified by this attacker, and the risk of published data is low. The former case

is, of course, the problem. However, notice that, in principle, the publisher can try out

this attack in advance of publishing the data, to see whether it can in fact succeed in this

fashion. Moreover, if the attacker is projected to be sufficiently successful, the publisher

has a great deal to gain by redacting the sensitive entities an attacker would have found. Of

course, there is no need to stop at this point: the publisher can keep simulating attacks on

the published data, and redacting data labeled as sensitive, until these simulations suggest

that the risk is sufficiently low. This, indeed, is the main idea. However, many details are

clearly missing: for example, what does an attacker do after training the learning algorithm,

when, precisely, should the publisher stop, and what can we say about the privacy risk if

data is published in this manner, under this threat model? Next, we formalize this idea, and

offer precise answers to these and other relevant questions.

Table 10.1 summarizes all the notation used. Imagine that a publisher’s dataset consists

of a set of n entities (or words), X = {x1, . . . ,xn}, of which he will publish a subset P⊆ X .

The publisher may have an additional data set for training a classifier to predict whether

an entity x is sensitive. We let α denote the fraction of the original n entities that are sen-

sitive. A learning algorithm is designed to select a hypothesis that best supports the data.

Here we consider the hypothesis to be a function f mapping from the data space D to the

response space E ; i.e., f : D → E . Of course there are many such hypotheses. We assume

f belongs to a family of hypotheses H . Specifically, the response space E = {0,1} within

our problem indicates whether the entity x is sensitive (S, f (x) = 1) or non-sensitive (N,

f (x) = 0), and H represents a set of binary classifiers. A crucial assumption in our ap-

proach is that the hypothesis class H is known to the public, including the publisher and

attackers. This is a natural assumption, considering that state-of-the-art machine learning

algorithms are well known and typically have multiple high-quality open source implemen-

tations. Moreover, even as new approaches are developed for identifying sensitive entities

in unstructured (e.g., text) data, these approaches can be subsequently incorporated into
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Table 9.1: Table of Notations

n , number of total instances
H , hypothesis class of the publisher
H , the subset of classifiers chosen by

the publisher
S , sensitive instances
N , non-sensitive instances

TP(h,P) , number of true positives by h on P
TN(h,P) , number of true negatives by h on P
FP(h,P) , number of false positives by h on P
FN(h,P) , number of false negatives by h on P

TPA , number of true positives obtained
by attacker

TNA , number of true negatives obtained
by attacker

FPA , number of false positives obtained
by attacker

FNA , number of false negatives obtained
by attacker

TPD , number of true positives obtained
by defender

TND , number of true negatives obtained
by defender

FPD , number of false positives obtained
by defender

FND , number of false negatives obtained
by defender

α , percent of identifiers in data
hA , the attacker’s classifier

T (H) , loss function of data publisher for
H

our framework. Note that our assumption of common knowledge of H does not imply

that the publisher knows the actual function f used by the attacker (see threat model be-

low); the importance of this point is highlighted when we analyze finite sample bounds in

Section 10.5.

We use h to denote a classifier chosen from the hypothesis class H . For a classifier h

167



and a data set Y , we introduce the following notation:

• FP(h,Y ) = | ∪x∈Y {x ∈ N|h(x) = 1}|: the number of false positive instances of h on

Y ,

• TP(h,Y ) = |∪x∈Y {x ∈ P|h(x) = 1}|: the number of true positive instances of h on Y ,

• FN(h,Y ) = | ∪x∈Y {x ∈ P|h(x) = 0}|: the number of false negative instances of h on

Y , and

• TN(h,Y ) = | ∪x∈Y {x ∈ N|h(x) = 0}|: the number of true negative instances of h on

Y .

Clearly, if |Y |= m, FP(h,Y )+TP(h,Y )+FN(h,Y )+TN(h,Y ) = m ∀h ∈H . Finally, we

define FP(h, /0) = FN(h, /0) = TP(h, /0) = TN(h, /0)≡ 0.

9.3.1 Threat Model

Suppose that an adversary obtains the published data P ⊆ X . We assume that an ad-

versary has a fixed inspection budget, B, which can be thought of as manual inspection of

actual instances to verify whether or not they are sensitive (and, consequently, have value

to the adversary). If a sensitive instance is found, we assume that it is exploited by an

adversary, who gains L for every such instance, which is identical to the publisher’s loss.

Thus, when the attacker selects a set I ⊆ P of instances for inspection, such that |I| ≤ B, his

utility is

UA(I) = L|{sensitive instances ∈ I}|= L ∑
x∈I

S(x), (9.1)

where S(x) = 1 iff x is sensitive. A central aspect of the threat model is the specific way

that the attacker chooses the set I of instances to inspect. A simple baseline is to choose I

uniformly at random from P. We use UA to denote the utility that the attacker obtains when

using this simple baseline. Presumably, however, the attacker can do better by using a more
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sophisticated strategy. In particular, we suppose that a sophisticated attacker proceeds as

follows:

1. Choose a classifier

hA(P) ∈ arg min
h∈H

FP(h,P)+FN(h,P)
|P|

. (9.2)

In other words, the attacker chooses an optimal classifier from H in terms of accu-

racy. From the publisher’s perspective, this is a very pessimistic limit of an attacker

who uses a subset of P for training a standard classification algorithm, such as an

SVM.

2. Prioritize instances in P by ranking all x ∈ P with h∗(x) = 1 first, followed by those

with h∗(x) = 0. Within each class, the order is arbitrary.

3. Choose I in this ranked order until it contains B instances. In other words, first the

attacker will choose the predicted positives, followed by predicted negatives (if there

is any budget remaining).

We simply refer to hA where P is clear from context. We let U∗A denote the attacker’s

utility when using this more sophisticated learning-based strategy. A technical caveat is

that depending on the quality of the classifier, U∗A is not necessarily higher than UA; below,

we provide a sufficient condition for U∗A ≥UA.

As an illustration, let us return to Figure 10.1 which presents an example of the behavior

of an attacker given a published dataset containing sensitive and non-sensitive instances.

Assume the circled words are classified as positives by hA. Therefore, the attacker would

inspect these words and their surrounding context first. However, in this setting, some of

the words inspected are not sensitive instances (i.e., false positives; shown in dashed ovals).

For example, the first dashed “He” is a pronoun, while the solid circled “He” is actually

the name of a person. Therefore, if the attacker has sufficient budget to inspect all of the

169



circled instances, he would gain 3 units of utility (i.e., true positives, shown in solid ovals),

and waste 3 units of budget (again, in dashed ovals).

9.3.2 Data Publisher Model

To develop some intuition for our publisher model, let us first consider the typical ap-

proach for sanitizing data (we assume for now that the defender is able to learn an optimal

classifier; we relax this assumption below):

1. Learn a classifier

h̄ ∈ arg min
h∈H

FP(h,X)+FN(h,X)

|X |
. (9.3)

Let X1 = {x ∈ X |h̄(x) = 1} (i.e., X1 is the set of predicted positives).

2. Publish the data set P = X \X1.

Essentially all of the approaches in the literature assume this, or a similar, form. To apply

our threat model above, we consider two possibilities: a) the attacker’s classifier hA can

successfully identify residual sensitive instances, or b) the attacker’s classifier cannot detect

residual positives. If we are in situation (b), the publisher can view the sanitization as

a success. Situation (a), on the other hand, is clearly problematic, but it also suggests a

natural solution: the publisher can apply hA to residual data, remove the sensitive instances,

and only then publish the data. Indeed, this is where the symmetry between the publisher

and attacker, taking advantage of the common knowledge of H , is pivotal. Specifically,

the publisher can simulate anything that the attacker would do.

Moreover, there is no reason to stop at this point. In fact, the publisher should con-

tinue as long as the simulated classifier that would be used by the attacker is sufficiently

good. This observation also offers the key intuition for our results. Whenever the publisher

chooses to stop, the attacker’s ability to identify sensitive instances must inherently be rela-

tively weak. Of course, this will depend on the relative loss to the publisher from correctly

identified sensitive entities and the value of publishing data.
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Using the developed intuition, we model the publisher as selecting a finite set of classi-

fiers H ⊆H , where H = {h1,h2, ...,hD}. Figure 10.3 shows the process of generating and

publishing the data in Figure 10.1. After applying each classifier hi, the positive instances

are replaced with the fake tokens, such as “[NAME]” replacing an individual’s name.

Figure 9.3: The process for applying a set of classifiers H to data X .

Let X1(H) = ∪h∈H{x ∈ X |h(x) = 1}, that is, the set of all positives predicted by the

classifiers in H, and let P(H) = X \X1(H); we use P with no argument where H is clear

from context. The publisher’s approach is:

1. Choose a collection of classifiers H (we address this choice below).

2. Publish the data set P(H) = X \X1(H).

Let FN(H) be the number of false negatives of H in X , which we define as all residual

sensitive instances in P, and let FP(H) be the number of false positives in X , that is, all

predictive positives by any h ∈ H which are, in fact, not sensitive. It is immediate that

for any H, FN(H) ≤ αn (the number of false negatives is at most the total number of

sensitive entities in the original data) and TN(H)≤ (1−α)n (the number of true negatives

is at most the total number of non-sensitive entities). If we allow the attacker to have an

infinite budget, then every false negative will be exploited, resulting in the total loss of

L ·FN(H). In addition, each false positive costs the publisher a fixed amount C, which we

can interpret as the value of publishing the data. Thus, we define the (worst-case) total loss
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to the publisher from using a set of classifiers H as

T (H) = L ·FN(H)+C ·FP(H), (9.4)

where FN(H) = | ∩h∈H {x ∈ S|h(x) = 0}| and FP(H) = | ∪h∈H {x ∈ N|h(x) = 1}|, where

S,N represent the sensitive and non-sensitive instances, respectively. TN(H) and TP(H)

can be defined similarly.

9.3.3 Contextual Information and Inference Attacks

A significant amount of work in privacy and data sanitization deals with linkage attacks.

Of particular relevance to our purpose are correlations among words in documents which

enable an attacker to recover some sensitive information that has been removed [209].

Our methods can be extended directly to consider contextual information in two ways.

First, we can use previous methods to discover entities in training data correlated with

identifiers, and label these as identifiers as well. We can then apply our methods separately

for different categories of identifiers as well as derived (correlated) words and phrases to

remove both identifying information and any contextual data. Alternatively, we can first

apply our methods to learn a collection of classifiers predicting identifiers in test data, and

use association-based methods, such as [209], to remove additional contextual information

from the test data. Henceforth, we focus on the core problem of predicting identifiers.

9.4 A Greedy Algorithm for Automated Data Sanitization

Given a formal model, we can now present our iterative algorithm for automated data

sanitization, which we term GreedySanitize. Our algorithm (shown as Algorithm 16) is

simple to implement and involves iterating over the following steps: 1) compute a classifier

on training data, 2) remove all predicted positives from the training data, and 3) add this

classifier to the collection. The algorithm continues until a specified stopping condition is
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satisfied, at which point we publish only the predicted negatives, as above. It is important

Algorithm 16 GreedySanitize(Xt), Xt : training data.

H←{}, k← 0, h0← /0, D0← Xt ,
repeat

H← H ∪hk
k = k+1
hk←LearnClassifier(Dk−1)
Dk←RemovePredictedPositives(Dk−1,hk)

until T (H ∪hk)−T (H)≥ 0
return H

to emphasize that GreedySanitize is qualitatively different from typical ensemble learning

schemes in several ways. First, it is a crucial feature of the algorithm that a classifier

is re-trained in every iteration on data which includes only predicted negatives from all

prior iterations; this is entirely unlike the mechanics of any ensemble learning algorithm

we are aware of.1 Second, our algorithm removes the union of all predicted positives,

whereas ensemble learning typically applies a weighted voting scheme to predict positives;

our algorithm, therefore, is fundamentally more conservative when it comes to sensitive

entities in the data. Third, the stopping condition is uniquely tailored to the algorithm, and

is critical in enabling us to provide provable guarantees about privacy-related performance

of the algorithm.

Given the iterative nature of the algorithm, it is not obvious that it is always guaranteed

to terminate. The following theorem asserts that GreedySanitize will always terminate in a

linear number of iterations.

Theorem 9.4.1. Algorithm 16 terminates after at most |Xt | iterations.

Proof. Let TP(D), FP(D), TN(D), and FN(D) specifically refer to these quantities com-

puted on training data D. Suppose that there exists an iteration i such that TP(Di−1) = 0.

It is clear that Algorithm 16 will stop after this iteration. Now, suppose instead that

1Typical ensemble learning algorithms will either focus on mistakes made in prior iterations (boosting is
an example of this), take no note of performance by other members of the ensemble (e.g., bagging), or use a
fixed set of classifiers as inputs into a meta-classifier [234].
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TP(Di−1)≥ 1 in every iteration. In this case, in at most n iterations no data will remain, and

TP( /0) = 0 by definition. Consequently, either TP(Di−1) = 0 for i < n and the algorithm

will terminate, or the algorithm will stop when i = n.

9.5 Analysis of GreedySanitize

Our theoretical analysis of the proposed GreedySanitize algorithm focuses on two ques-

tions: first, what kinds of privacy guarantees does this algorithm offer, and second, how to

generalize the privacy guarantees to account for finite sample approximations inherent in

the algorithm. To address the first question, we abstract away the details of our algorithm

behind the veil of its stopping condition, which turns out to be the primary driver of our

results. This also allows us to state the privacy guarantees in much more general terms.

9.5.1 Analysis of Locally Optimal Publishing Policies

In this section we analyze the adversary’s ability to infer sensitive information from

published data if the defender’s choice of classifiers H to apply to original data satisfies the

following local optimality condition.

Definition 9.5.1. A set of classifiers H ⊆H is a local optimum if T (H ∪hA)−T (H)≥ 0.

In plain terms, a subset is a local optimum if the adversary’s optimal classifier hA (that

is, the attacker’s best classifier choice to apply to the published data), when added to this

subset, does not improve the publisher’s utility. Under a minor regularity condition that H

contains an identity (which can always be added), there is always a trivial local optimum

of not releasing any data. Notice that the local optimality condition is exactly the stopping

condition of GreedySanitize, which means that when the algorithm terminates, its output

set of hypotheses H is guaranteed to be a local optimum.

We now present a lemma that enables us to characterize all of the local optima.
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Lemma 9.5.1. For an arbitrary set of classifiers H ⊆H ,

1. FN(H) = FN(H ∪h)+TP(h,P(H)), and

2. FP(H ∪h) = FP(H)+FP(h,P(H)).

Proof. For result 1, define the set

F̃N(H) = ∩h̃∈H{x ∈ S|h̃(x) = 0}. (9.5)

Thus,

F̃N(H ∪h) = ∩h̃∈H{x ∈ S|h̃(x) = 0}∩{x ∈ S|h(x) = 0}. (9.6)

We can represent F̃N(H) as

F̃N(H) =(F̃N(H)∩{x ∈ S|h(x) = 0})

∪ (F̃N(H)∩{x ∈ S|h(x) = 1})

=F̃N(H ∪h)∪ (F̃N(H)∩{x ∈ S|h(x) = 1}).

(9.7)

Moreover, note that x ∈ F̃N(H) implies that x ∈ P(H), so that

F̃N(H) =F̃N(H ∪h)∪ (F̃N(H)

∩{x ∈ P(H)∩S|h(x) = 1})

=F̃N(H ∪h)∪ T̃P(h,P(H)),

(9.8)

where T̃P(h,P(H)) is the set of all true positives of h on P(H). Moreover, by definition

these two sets are non-overlapping, and thus

FN(H) = FN(H ∪h)∪TP(h,P(H)). (9.9)
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For result 2, define the set

F̃P(H) = ∪h̃∈H{x ∈ N|h̃(x) = 1}. (9.10)

Therefore,

F̃P(H ∪h) =∪h̃∈H {x ∈ N|h̃(x) = 1}∪{x ∈ N|h(x) = 1}

=F̃P(H)∪{x ∈ N|h(x) = 1}.
(9.11)

By definition, x ∈ N and x /∈ P(H) means that x ∈ F̃P(H). Thus,

F̃P(H ∪h) =F̃P(H)∪{x ∈ N∩P(H)|h(x) = 1}

=F̃P(H)∪ F̃P(h,P(H)).

(9.12)

Moreover, x ∈ F̃P(H) means that x /∈ P(X), so that these two subsets do not overlap, and

we thus obtain

FP(H ∪h) = FP(H)+FP(h,P(H)). (9.13)

We can now state the primary result, which characterizes all locally optimal solutions

H.

Theorem 9.5.1. H ⊆H is a local optimum if and only if either TP(hA,P)= 0 or FP(hA,P)
TP(hA,P)

≥
L
C .

Proof. By definition, H is a local optimum if and only if

L(FN(H ∪hA)−FN(H))+C(FP(H ∪hA)−FP(H))≥ 0. (9.14)

By Lemma 10.5.1, FN(H∪hA)−FN(H)=−TP(hA,P) and FP(H∪hA)−FP(H)=FP(hA,P),
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so that a local optimum is characterized by

C ·FP(hA,P)≥ L ·TP(hA,P). (9.15)

If TP(hA,P) = 0, this inequality clearly holds. Suppose that TP(hA,P)≥ 1. In that case, we

see by rearranging the expression that H is a local optimum if and only if FP(hA,P)
TP(hA,P)

≥ L
C .

Below, we simplify notation by defining FPA ≡ FP(hA,P), and defining FNA TPA, and

TNA similarly, with H becoming an implicit argument throughout. Now, observe that if

L/C > (1−α)n, the only locally optimal solutions have TPA = 0, because otherwise FPA
TPA
≤

(1−α)n < L/C.

As a direct consequence of Theorem 10.5.1, we can bound TPA in all locally optimal

solutions.

Theorem 9.5.2. For any locally optimal H ⊆H , TPA ≤ C
L (1−α)n.

Proof. If TPA = 0, the result is trivially true. Suppose TPA ≥ 1. Then, since FPA
TPA
≥ L

C , we

have TPA = TPA ≤ C
L FPA ≤ C

L TN(H)≤ C
L (1−α)n.

The upshot of Theorem 10.5.2 is that when C is small relative to L, any locally optimal

H will guarantee that the attacker cannot learn a classifier that correctly identifies more

than a few sensitive instances. This result also implies that an attacker with a small budget

B ≤ TPA +FPA (i.e., budget is exceeded by the total number of predicted positives) can

obtain very little utility from using the classifier in this case.

But what about attackers with a large budget, B≥ TPA+FPA? Clearly, when the budget

is sufficiently large, the attacker will identify all the residual sensitive information in the

data. However, we now show that even in this case an attacker can do little better than the

trivial baseline of choosing B instances to inspect in a uniformly at random manner. An

important technical consideration is that when TPA = 0, an adversary can actually improve

performance by prioritizing the negative predictions over the predicted positives (which
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yield no utility). In this case, an adversary will likely throw away the classifier altogether.

We therefore restrict our attention to the case when the attacker actually benefits from

prioritizing positives over negatives. The following lemma provides a sufficient condition

for this observation.

Lemma 9.5.2. Let B ≥ TPA +FPA. When TPATNA ≥ FPAFNA, prioritizing positive over

negative instances guarantees that U∗A ≥UA for the attacker.

Proof. If the attacker prioritizes negatives before positives, the attacker’s utility is

UA∗ = L ·
(

FNA +
TPA

TPA +FPA
(B−FNA−TNA)

)
, (9.16)

whereas the utility from the uniform random baseline is

UA = L · TPA +FNA

TPA +FPA +TNA +FNA
B. (9.17)

Thus, when TPATNA ≥ FPAFNA,

UA∗

UA
=

FPAFNA +TPAB−TPATNA

B

(
TPA +FPA +FNA +TNA

(TPA +FNA)(TPA +FPA)

)
=

(
FPAFNA−TPATNA

B
+TPA

)(
(TPA +FPA +FNA +TNA)

(TPA +FNA)(TPA +FPA)

)
≤
(

FPAFNA−TPATNA

T PA +FPA
+TPA

)(
(TPA +FPA +FNA +TNA)

(TPA +FNA)(TPA +FPA)

)
= 1+

(FPAFNA−TPATNA)(FNA +TNA)

(TPA +FPA)2(TPA +FNA)
≤ 1.

(9.18)

Since UA cannot be larger than both the utility from prioritizing positive prioritizing nega-

tive instances (being the average of these), the result follows.

Under the condition in Lemma 10.5.2, we can now prove a bound on the the amount

that the attacker can gain over the trivial baseline by using a classifier to prioritize instances,

or the ratio U∗A/UA.
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Theorem 9.5.3. Suppose that H is a local optimum, the attacker’s budget is B≥ TPA+FPA,

and TPATNA ≥ FPAFNA. Then

U∗A
UA
≤ (1−α)n+1

1+ L
C

. (9.19)

In order to prove this theorem, we need another building block, provided by the follow-

ing Lemma.

Lemma 9.5.3. Suppose that B ≥ TPA +FPA, TPATNA ≥ FPAFNA, and the attacker priori-

tizes positive instances. Then

UA∗

UA
≤ 1+

TPATNA−FPAFNA

(TPA +FPA)(TPA +FNA)
. (9.20)

Proof. Suppose that the attacker prioritizes positives before negatives. Then the attacker’s

utility is

UA∗ = L
(

TPA +
FNA

FNA +TNA
(B−TPA−FPA)

)
. (9.21)

Thus,
UA∗

UA
=

TPATNA +FNAB−FPAFNA

B

(
TPA +FPA +FNA +TNA

(TPA +FNA)(TNA +FNA)

)
=

(
TPATNA−FPAFNA

B
+FNA

)(
TPA +FPA +FNA +TNA

(TPA +FNA)(TNA +FNA)

)
≤
(

TPATNA−FPAFNA

T PA +FPA
+FNA

)(
TPA +FPA +FNA +TNA

(TPA +FNA)(TNA +FNA)

)
= 1+

TPATNA−FPAFNA

(TPA +FPA)(TPA +FNA)
.

(9.22)

Proof. of Theorem 10.5.3 Since TPATNA ≥ FPAFNA, the attacker will prioritize positive
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instances by Lemma 10.5.2. Therefore, by Lemma 10.5.3,

UA∗

UA
≤ 1+

TPATNA−FPAFNA

(TPA +FPA)(TPA +FNA)

= 1+
TNA− FPA

TPA
·FNA(

1+ FPA
TPA

)
(TPA +FNA)

≤ 1+
TNA− L

C ·FNA(
1+ L

C

)
(TPA +FNA)

≤ 1+
(1−α)n− L

C

1+ L
C

=
(1−α)n+1

1+ L
C

.

(9.23)

The upshot of Theorem 10.5.3 is that even when an attacker with a large budget cannot

do much better than uniformly selecting instances to inspect. As an example, consider

again Figure 10.1, which illustrates the result after the application of the set of classifiers

H. It can be seen that there are 26 instances in total, with a breakdown of 3 true positives,

6 false positives, 15 true negatives, and 2 false negatives. Now, if the attacker has a budget

of B = 20, UA∗
UA

=
3+(20−3−6) 2

2+15
20 3+2

26
≈ 1.11.

9.5.2 Finite Sample Bounds

Armed with the idealized generic analysis of locally optimal classifier subsets H, we

can generalize these results to account for finite sampling error. While the results in the pre-

vious section are applicable for arbitrary locally optimal subsets, our finite sample analysis

is specific to GreedySanitize.

Consider the point at which the publisher halts the greedy data sanitization Algo-

rithm 16 and publishes the data (after applying the resulting set of classifiers H to it).

If only a few training data points remain, the publisher’s decision would entail significant

risk because the error in estimating the relevant decision parameters will be quite high. As

such, in this case, no data should be published. We therefore consider the case when there
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is a non-trivial amount of training data remaining after Algorithm 16 terminates. As our

experiments below demonstrate, this is a reasonable assumption to invoke in practice. In

the following discussion, we denote the size of this residual training data m.2

Our point of departure is the standard learning-theoretic framework. To simplify the

presentation, we assume that the published data set is sufficiently large, so that the rele-

vant quantities (e.g., the number of true positives) are close to their expected values on

randomly chosen data sets of the same size. Now, let our hypothesis class H contain a set

of functions from a set X to {0,1}, and assume H has finite Vapnik-Chervonenkis dimen-

sion v≥ 1. Suppose that P is the data set remaining after Algorithm 16 terminates and the

resulting classifiers H are applied to the original data X . Let the classifier used in the last

iteration by Algorithm 16 be ĥA, which is only optimal on training data. In other words,

ĥA is the publisher’s approximation of the classifier hA that would subsequently be applied

by the attacker to P. Let F̂NA, F̂PA, T̂PA, T̂NA be the corresponding approximate counts of

false negatives, false positives, etc., applying ĥA to the training data, whereas FNA, FPA,

TPA, and TNA still denote the corresponding counts for the actual optimal classifier hA that

the attacker would use. The attacker’s corresponding utility, estimated using the training

data, is denoted by Û∗A , while the actual attacker utility is U∗A . The utility for the attacker

gained from the baseline policy is still UA.

We start by noting the well-known error bound connecting empirical and actual errors

in classification:

F̂PA + F̂NA

m
≤ FPA +FNA

m
+λ (δ ,m) (9.24)

with probability at least 1−δ , where

λ (δ ,m) =

(
41
m

(
v log

(
2em

v

)
+ log

(
4
δ

))) 1
2

.

2For simplicity, we assume that m is also the size of the residual test data that is ultimately released.
Generalization of the results below is relatively direct.
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For our purposes, however, this result is not sufficient. For example, there may be two

classifiers, h and h′ in H with a similar error, but with very different numbers of false

positives and false negatives. Thus, in order to bound the utility of the attacker, we need to

call upon several additional assumptions. Specifically, we make the following assumptions:

F̂PA ≤ pF̂NA, T̂PA ≥ qN̂A, FPA ≥ sFNA, and TPA ≤ rNA. Since the parameters p,q,s,r can

be arbitrary, these relationships are quite general. However, the results below are most

meaningful if these bounds are tight.

Lemma 9.5.4. Suppose that T̂PA ≥ 1 when Algorithm 16 terminates. Then,

FPA

TPA
≥

(
1

1+ 1
s

)(
(1+

1
p
) ·q · L

C
−λ (m,δ )

)
1
r

with probability at least 1−δ .

Proof. By Theorem 10.5.1, Algorithm 16 will terminate when F̂PA
T̂PA
≥ L

C . Using, Equa-

tion 10.24 and our assumptions, we have

(1+ 1
p)F̂PA

m
≤

(1+ 1
s )FPA

m
+λ (m,δ )

with probability at least 1−δ . Consequently, with probability at least 1−δ ,

(1+ 1
p)F̂PA

TPA · T̂PA
≤

(1+ 1
s )FPA

TPAT̂PA
+λ (m,δ )

m

T̂PATPA
,

and, consequently,

1+ 1
p

TPA
· L
C
≤

(1+ 1
s )FPA

TPAT̂PA
+λ (m,δ )

m

T̂PATPA
.
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Rearranging, we get

FPA

TPA
≥

(
1+ 1

p

)
L
C ·

1
TPA
−λ (m,δ ) · m

T̂PA
· 1

TPA(
1+ 1

s

)
· · · 1

T̂PA

=
1

1+ 1
s

(
L
C

(
1+

1
p

)
· T̂PA

m
· m

TPA
−λ (m,δ ) · NA

TPA

)

≥

(
1

1+ 1
s

)((
1+

1
p

)
T̂PA

m
L
C
−λ (m,δ )

)
m

TPA

≥

(
1

1+ 1
s

)((
1+

1
p

)
·q · L

C
−λ (m,δ )

)
1
r

Clearly, the bound in Lemma 10.5.4 is only meaningful when λ (m,δ ) ≤ (1+ 1
p)q

L
C ,

that is, for a sufficiently large sample m. Therefore, the results below assume this to be the

case.

Building on the result in Lemma 10.5.4, we can now extend the bounds on the attacker’s

success developed in Section 10.5.1 to account for finite sample error.

Theorem 9.5.4. When Algorithm 16 terminates,

TPA ≤ r
(

1+
1
s

)
(1−α)n

(1+ 1
p) ·q ·

L
C −λ (m,δ )

with probability at least 1−δ .

Proof. Since

FPA

TPA
=

TND−TNA

TPA

≥

(
1

1+ 1
s

)(
(1+

1
p
) ·q · L

C
−λ (m,δ )

)
1
r
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TPA ≤ r
(

1+
1
s

)(
1

(1+ 1
p) ·q ·

L
C −λ (m,δ )

)
(TND−TNA)

≤ r
(

1+
1
s

)(
1

(1+ 1
p) ·q ·

L
C −λ (m,δ )

)
·TN0

= r
(

1+
1
s

)
(1−α)n

(1+ 1
p) ·q ·

L
C −λ (m,δ )

.

Theorem 9.5.5. Suppose that TPATNA ≥ FPAFNA, and B≥ TPA +FPA. Then,

U∗A
UA
≤

((1−α)n+1)r(1+ 1
s )

r(1+ 1
s )+(1+ 1

p)q
L
C −λ (δ ,m)

with probability at least 1−δ .

Proof.

UA = L ·B · TPA +FNA

TPA +FPA +FNA +TNA
.

Based on the general adversarial model, the attacker can always choose the priority to guar-

antee UA∗ ≥UA according to Lemma 10.5.2. Therefore, when TPATNA ≥ FPAFNA, the at-

tacker prioritizes the positives than negatives, so UA∗ =L ·
(

TPA +
FNA

FNA+TNA
(B−TPA−FPA)

)
.
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Therefore we have

UA∗

UA
= 1+

TPATNA−FPAFNA

(TPA +FPA)(TPA +FNA)

= 1+
TNA− FPA

TPA
·FNA(

1+ FPA
TPA

)
(TPA +FNA)

≤ 1+
TNA− FPA

TPA

1+ FPA
TPA

≤ 1+
(1−α)nr(1+ 1

s )− ((1+ 1
p)q

L
C −λ (δ ,m))

r(1+ 1
s )+(1+ 1

p)q
L
C −λ (δ ,m)

=
((1−α)n+1)r(1+ 1

s )

r(1+ 1
s )+(1+ 1

p)q
L
C −λ (δ ,m)

.

9.6 Experiments

In this section, we assess the performance of GreedySanitize (GS) using two electronic

health record data sets to protect the personal sensitive identifiers (here we only consider

the individuals’ names): 1) publicly accessible medical records from the I2B2 corpus [211]

and 2) a private electronic medical records (EMR) dataset from the Vanderbilt University

Medical Center (VUMC). In addition, we evaluate the performance of our model on two

non-health-related data sets to assess its generalizability: 1) Enron email data and 2) news-

group data [235]. In both of these, we also treat individuals’ names as sensitive entities. The

following statistics provide some intuition into the size and complexity of these resources:

• i2b2: contains 386,736 words in 664 documents. 6853 words are labeled as sensitive

entities and involve synthetic names in place of actual patient identifiers.

• VUMC: contains 226,455 words in 600 documents, with 5154 labeled as sensitive.

Unlike the i2b2 corpus, these entities correspond to real patient identifiers.
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• Enron: contains 120,131 words in 761 emails, with 6084 names which we labeled as

sensitive.

• Newsgroup: contains 119,303 words in 597 documents, of which 3525 (names) are

sensitive.

We used three state-of-the-art learning algorithms for sensitive entity recognition: condi-

tional random fields (CRF), which consistently ranks as the best method for identifying

personal health information in electronic medical records [211, 207, 212], support vector

machine (SVM) [236], which makes use of the features of the word itself, part-of-speech

(POS), morphologic information, and the history class of previous features assigned by

the classifier; as well as a recently proposed ensemble method [62], which applies CRF to

classify first and then uses SVM to reduce the false positives. All these play a dual-role

in our experiments: they serve as a comparison baseline to prior art, as well as the core

learning algorithms in our own Algorithm 16 (GreedySanitize). In all the experiments, the

attacker first runs all three of these algorithms on the training holdout from published data,

and then chooses the best performing classifier. Our evaluation is based on four-fold cross-

validation, with GreedySanitize running on the training data and using the incidence of true

and false negatives on training data to determine when to stop.

9.6.1 Privacy Risk

When the budget of the attacker is small, our theoretical results provide an upper bound

on the expected number of identified instances. While this upper bound suggests that risk

becomes arbitrarily small when the associated loss is large, it is not tight. In Figure 10.4

we demonstrate that the number of identified instances (which is equivalent to the number

of true positives for the attacker’s classifier) typically becomes negligible even when L is

quite small relative to C. An interesting exception is the VUMC dataset, where the number

of identified instances remains relatively large until the loss from re-identification is quite
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(a) (b)

Figure 9.4: The number of residual true positive instances TPA (equivalently, identified
instances for an attacker with a small budget) after running GreedySanitize for the i2b2,
VUMC, Enron, and Newsgroup datasets. (a) GreedySanitize using CRF (dashed lines, or
baseline, correspond to standard application of CRF). (b) GreedySanitize using the best
classifier from {CRF, SVM, Ensemble} (dashed lines correspond to the baseline applica-
tion of the best classifier from this collection).

high.

To investigate privacy risk more generally, we now consider the expected number of

identified instances as a function of adversary’s budget (and normalized by the budget). To

make a meaningful comparison to the state of the art classification schemes, we apply them

in a cost sensitive manner, so that L becomes the cost of false negatives and C the cost

of false positives, just as in our model. Figure 10.5 compares the proposed GS algorithm

to the cost sensitive state-of-the-art CRF, SVM, and Ensemble algorithms using the same

values of L and C in GS and cost sensitive versions of the classifiers. We can see that for the

same values of L/C, the proposed GS algorithm is consistently competitive with, or better

than the best state-of-the-art cost sensitive alternatives in terms of privacy risk, except when

adversary’s budget is extremely low. However, with low budget, privacy risk is negligible

for sufficiently high L/C (Figure 10.4).
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(a) (b)

(c) (d)

Figure 9.5: The ratio of average sensitive identifiers found by the attacker and the adver-
sarial budget, while the publisher applies different classifiers with cost sensitive learning as
L/C = 5,10. (a)-(d) corresponds to the i2b2, VUMC, News, and Enron datasets.

9.6.2 Data Utility

Our next evaluation concerns whether we can still retain the data utility with such a high

privacy preserving requirement. This is something that motivates the presented approach

(as compared to simply suppressing all data), but that we did not explicitly consider in

the theoretical analysis. Intuitively, the proposed GreedySanitize algorithm should strike a

reasonable balance: it stops immediately after a local optimum is reached. In our model,

of course, there may be multiple local optima thereafter, but these would result in less data

being published. Here, we evaluate the data utility of the published data using the publish

ratio, which is defined as the proportion of the original number of entities in the published

data.
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(a) (b)

(c) (d)

Figure 9.6: Fraction of data published for different classifiers with cost sensitive learning.
(a)-(d) corresponds to the i2b2, VUMC, News, and Enron datasets.

Figure 10.6 compares GreedySanitize to cost-sensitive variants of the baseline algo-

rithms (CRF, SVM, and Ensemble). GreedySanitize preserves most of the data utility even

when L/C is high. Specifically, in both of the EMR datasets over 98% of the data is pub-

lished, even when L/C is quite high. The performance for the other two data sets is lower,

but still, over 93% of the data is ultimately published, even with large L/C ratios. In con-

trast, when the loss due to re-identification is moderate or high, cost-sensitive algorithms

essentially suppress most of the data, resulting in very low utility. GreedySanitize therefore

offers a far better balance between risk and utility than the state-of-the-art alternatives.

9.6.3 Impact of the Size of the Hypothesis Space

One important issue in applying GreedySanitize is that perhaps the attacker will make

use of a new algorithm that the publisher had not considered. We now explore this issue by
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considering the quality of decisions when the publisher uses a single classifier, or the best

of all three that we consider, at the core of GS.

(a) (b)

(c) (d)

Figure 9.7: The ratio of average sensitive identifiers found by the attacker and the adver-
sarial budget, while the publisher applies classifiers CRF, SVM, Ensemble, and Selection
which allows the publisher to choose a learner with highest accuracy from {CRF, SVM,
Ensemble} for GreedySanitize (L/C=5). (a)-(d) corresponds to the i2b2, VUMC, News,
and Enron datasets.

Figures 10.7 and 10.8 compare these four options (the three single-classifier options,

and the last, called “Selection”, where the most accurate of these three classifiers is chosen

in each iteration), evaluated when the adversary chooses the most accurate of these. The

overall observation is that while increasing the space of classifiers to choose from does

help, the difference is relatively small, so that significant underestimation of the attacker’s

strength appears unlikely to make much impact.
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(a) (b)

(c) (d)

Figure 9.8: The ratio of average sensitive identifiers found by the attacker and the adver-
sarial budget, while the publisher applies classifiers CRF, SVM, Ensemble, and Selection
which allows the publisher to choose a learner with highest accuracy from {CRF, SVM,
Ensemble} for GreedySanitize (L/C=10). (a)-(d) corresponds to the i2b2, VUMC, News,
and Enron datasets.

9.6.4 Number of Greedy Iterations

The final issue we consider is the number of iterations of GreedySanitize (and, con-

sequently, the number of classifiers it uses) for the different data sets. Figure 10.9 shows

that for all four datasets (and for the entire range of L/C that we consider) the average

number of iterations is less than 5. Our theoretical upper bound is, therefore, extremely

pessimistic. Indeed, for some datasets, such as the VUMC EMR dataset, the average num-

ber of iterations is just above 2 even when the loss from leaking sensitive information is

quite high.
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(a) (b)

(c) (d)

Figure 9.9: The number of iterations of GreedySanitize for i2b2, VUMC, Enron, and News-
group datasets (a)-(d) respectively, where publisher chooses CRF, SVM, Ensemble, and the
best algorithm from {CRF, SVM, Ensemble}, respectively.

9.7 Summary of Contributions

Based on the PPDP data sharing requirement for knowledge-based decision making

and data mining, how to guarantee the privacy preserving purpose as well as retain the data

utility has become a challenge during the data publishing process. If the data publisher

is too conservative, it will largely reduce the published data utility; if the data publisher

loosens the de-identification boundary, it would lead to high privacy leaking. Therefore,

we form the aggregate classifier framework to allow the data publisher iteratively find and

de-identify the sensitive identifiers based on his preference for the tradeoff between privacy

preserving and data utility.

Overall, the contributions are: 1) Provide the aggregate framework to perform de-

identification and theoretically prove that the attackers cannot gain more utility than that
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they uniformly randomly choose instances and its surrounding context to inspect, even they

trained an efficient classifier to help rank the instance inspection priority based on the per-

fect knowledge of the data publisher’s learning algorithms; 2) Propose the greedy algorithm

for selecting the near optimal sequence of classifiers for defender considering both of the

privacy preserving purpose and the data utility; 3) Provide the sample complexity anal-

ysis for the greedy algorithm and essentially offer the robust algorithm on the unknown

distribution of dataset; 4) Apply the proposed algorithm to various large datasets for evalu-

ation, therefore demonstrate not only the robustness but also the scalability of the proposed

algorithm.

193



Chapter 10

CONCLUSION AND FUTURE WORK

10.1 Contributions

The adversarial machine learning in security-sensitive domains is an important and

rapidly expanding sub-discipline that integrates machine learning, computer security, and

game theory. In this thesis, I aim to provide secure learning by analyzing the properties

and limitation for different attacks, as well as designing robust learning algorithms against

the real world sophisticated adversarial strategies.

To avoid security pitfalls, reasonable threat models must be developed first for poten-

tial adversaries and then accordingly design learning systems to meet the desired security

requirements. We explore the properties and possibilities of evasion attacks in Chapter 4

and the poisoning attacks in Chapter 9. The constraints of adversaries can come from the

knowledge about the learning algorithm itself, the number of training data that allowed to

be injected, and the cost of modifying data points for adversaries, etc. The important limi-

tation for learning systems is how to balance the trade-offs between a learner’s performance

on regular data and its resilience to attacks. Understanding these trade-offs is crucial not

only for security applications but also for understanding how learners behave in any non-

ideal settings. Therefore in this thesis I designed robust learning algorithms targeting on

specific kinds of attacks, as well as general robust defensive framework which can take any

learning algorithm and attack models in and output the robust learning results. Addition-

ally, we also take care of the scalability issue in Chapter 8 to process massive amounts of

data available for Internet-scale problems to realize the goal of secure learning for large

scale dataset. Besides, we have also considered the the data privacy issues within this the-

sis in adversarial environments to make current privacy preserving learning system more
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robust.

10.2 Future Work

Game theoretic models and analyses have demonstrated the ability to make intelligent

decisions for security challenges faced by learning systems. Therefore I plan to continu-

ously focus on both the theoretical analysis of more general threat models, and developing

practical systems to improve the system robustness against not only evasion but also poi-

soning attacks. I will also evaluate the uncertainty about threat models and develop more

realistic systems to preserve robustness, as well as optimize the resource allocation based

on real-world constraints, such as the fault tolerance level. In addition to expanding the ex-

pressiveness and usability of the robust adversarial learning approach, I am also interested

in generalizing the approach to other concerns, in particular domain-specific concerns in

social applications. All these techniques would be developed and integrated with cloud

computing infrastructure as one of my targets in order to realize the goal of secure learning

for big data.

10.2.1 Robust crowd sourcing mechanism design

Crowdsourcing has gained immense popularity. In machine learning applications, for

example, human workers are paid over crowdsourcing platforms such as Amazon Mechan-

ical Turk (AMT) for labeling data. In doing so, machine learning researchers can easily

obtain the ground truth for large datasets. Despite its flexibility and scalability, crowdsourc-

ing approaches main challenge is guaranteeing the quality of the collected data. Currently,

workers can get the same amount of payment even if they provide wrong labels either inten-

tionally or unintentionally. This problem will be amplified when collecting data for security

applications such as spam detection where adversarial workers might intentionally poison

the dataset. To address this challenge, we plan to design adaptive payment mechanisms to

incentivize workers to either answer correctly or point out other malicious/wrong answer-
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s/labels. To achieve this goal, we will model the interactions among different workers as

a game. By analyzing the equilibria of this game, we aim to induce lower error rates un-

der the proposed mechanism while introducing as small overhead on monetary expenditure

as possible. We also plan to conduct empirical evaluations based on AMT to validate the

design.

10.2.2 Secure classification against poisoning attacks based on robust matrix completion

Current robust learning algorithm implementations are designed for evasion attacks,

where adversaries try to manipulate their malicious inputs and evade detection. However,

from cheap ubiquitous computing, crowd-sourcing and data flow collection are employed

nowadays to do real time analysis for large scale collected datasets. Therefore, poisoning

attacks are easy to conduct and attackers have invested a large amount of effort to compro-

mise weak endpoints, such as sensors or network nodes to send fake information to mislead

the learning system. So I plan to study the poisoning attack to develop a robust learning

framework against poisoning attacks. I plan to consider the feature matrix as a combina-

tion of a low rank matrix and a sparse matrix with arbitrary errors. Therefore we can apply

the robust matrix completion technique to resume the most “benign” entries of the feature

matrix. Then train a classifier based on this recovered matrix to derive the error bound for

the final classification result. The advantage of this is that we do not need to make any

distribution assumption for the normal data and can tolerant arbitrarily large corruptions,

while current robust regression or classification algorithm all need to assume the normal

data is from sub-Gaussian distribution. I acquired a real-world dataset of web proxy logs

from RSA lab to classify the malicious domains against poisoning attacks by evaluating the

feature correlation before and after poisoned data are injected. I will first prove the optimal

injection strategy of the attacker, then develop the robust detection algorithm to detect as

well as remove the poisoning data points and retrain the system to enhance its robustness.
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10.2.3 Adversarial-aware learning in social networks

First I plan to enhance the privacy protection within social networks. There are sev-

eral work for differential privacy on recommendation systems using different algorithms

for matrix completion by adding gaussian noise. Joint differential privacy notion is also

introduced and it would be interesting to explore how to make different state-of-art matrix

completion algorithms differentially private. Currently, only the SGD method is made dif-

ferentially private, but there is no any theoretic guarantee since it is based on the SGLD. So

I plan to make ALS or other algorithms differentially private for recommendation systems,

and derive theoretic bounds for the utility, privacy and convergence since ALS and other

matrix completion algorithms themselves have good bound already.

Besides the privacy issue, social network can become a target for adversaries given the

fact that it can help propagate the influence through social medias. However, all current

models, including the linear threshold, independent cascade and decreasing evaluated, do

not take into account presence of an adversary in the social network. The attacker can

have malicious goals, such as to prevent diffusion of ideas that an opponent is trying to

promote; promote certain ideas to maximize his benefits; randomly perturb the diffusion

to decrease the reliability of the current network to further explore his malicious strategies.

For example, twitter may want to decrease the reliability of face book and gain more users

for twitter. Therefore, I plan to 1). Anomaly detection based the node or sub-network

connections; 2). Robustly recover the most trustful links based on external information

instead of simply the flow of each connection, since the adversary can manipulate the flow

for certain links.

Additionally, I also plan to apply Gibbs sampling to network structures to optimize the

network efficiency based on the designed cost function Based on a set of network structures

or we can even use deep learning to generate some network structures based on the existing

ones, we can run a Gibbs sampling to select the most suitable network for certain diffusion

purpose. This could be a general framework for designing efficient network structures. Or,
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given the existing nodes, we can sample the connections to make the network more efficient

in terms of the cost functions we designed, which can be made a personalized system.

10.2.4 Deep learning in adversarial environments

Current work for “adversarial examples” all generate adversarial noise for determinis-

tic deep networks. We have found that by adding random noise during learning, the deep

network will be more robust against sophisticated adversaries. However, it is unclear to

what extend such non-deterministic deep networks are robust; and whether there are ad-

versarial examples that could be generated for such non-deterministic learning process. I

plan to explore the adversarial ability to compromise the non-deterministic deep networks

or without full knowledge of the network structures. Therefore, more general attacks and

corresponding defensive strategies would be derived to meet the real world cases where the

deep network structure is unavailable.
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Appendix A

Appendix for chapter 5

A.1 Supplemental comparison results for 500 features

Here we test the AAS scheme with the same set up of simulations on the feature space of

500, and similar results shown as below have demonstrated the consistency and robustness

of our proposed approach.

(a) (b)

(c) (d)

Figure A.1: Comparison of normalized utility on TREC data, trained on year 2005, and
tested on years 2005-2008. Our method is labeled as AAS(·), where the parameter is the
classifier that serves to provide p(x). The following parameters are used: δ = 0.2,V (x) =
G(x) = 1, PA = 1 (a) c=0.1; (b) c=0.3; (c) c=0.5; (d) c=0.9.
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(a) (b)

Figure A.2: Comparison of the expected utility assuming PA = 1, V (x) = G(x) = 1; (a)
c = 0.1; (b) c = 0.3.

(a) (b)

(c) (d)

Figure A.3: Comparison of normalized utility on TREC data, trained on year 2005, and
tested on years 2005-2008. Our method is labeled as AAS(·), where the parameter is the
classifier that serves to provide p(x). The following parameters are used: δ = 0.2,G(x) = 1,
PA = 1 (a) V (x) = 2, c=0.1; (b) V (x) = 10, c=0.1; (c) V (x) = 2, c=0.3; (d) V (x) = 10, c=0.3.
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(a) (b)

Figure A.4: Comparison of the expected utility assuming PA = 1; (a) V (x) = 2; (b) V (x) =
10. c = 0.3.

(a) (b)

Figure A.5: Comparision of the expected utility assuming PA = 1, introducing parameter
error with 0.2 for δ ; (a) c = 0.1; (b) c = 0.3.

(a) (b)

Figure A.6: Comparison of the expected utility assuming PA = 1, introducing parameter
error with 0.2 for δ ; (a) V (x) = 2; (b) V (x) = 10. c = 0.3.
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(a) (b)

Figure A.7: Comparison of the expected utility assuming PA = 1, introducing adversarial
model error; (a) c = 0.1; (b) c = 0.3.
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Appendix B

Appendix for chapter 6

B.1 User Interface Details

B.1.1 English Test

We screened participants to ensure English language proficiency by using the online

English test http://www.easyenglish.com/index.asp. We took three ques-

tions from this test, shown in Figure B.1. To pass, the subjects had to answer two of these

correctly.

Figure B.1: English language test questions.

B.1.2 Consent Form

Prior to starting the experimental tasks, the subjects were asked to read a consent form

(Figure B.2) and indicate agreement to participate, as well as indicate that they were at least
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18 years old, but clicking the “Agree” button.

Figure B.2: The online consent form.

B.2 “Ideal” Email Templates

Each task involved a random assignment of one of 10 “ideal” email templates which the

subjects needed to subsequently modify (each of these was filtered by our classification-

based filter). In this section we present the text of all of these email instances (all are actual

spam/phishing emails). 4 of the 10 instances were spam emails, and the remaining 6 were

phishing emails.

B.2.1 Instance 1 (Spam)

Save 80% discount on drugs . . . save 80% on every order !

We are the number one online retailler for dozens of medications. Our customers save

80 cents out of every dollar, every time, compared to the industry price. Yes, that is less
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than quarter - price

We have all the products that our customers have asked for, including new superviagra

soft-tabs that work in just 15 minutes ! This is the next-generation of sexual improvement

wonder - drugs , far more effective than viagra - half a pill will last for 36 hours !

Get all the information on superviagra here : malicious url

Our keys to keeping customers satisfied are:

Easy ordering online Save 80% on regular price

We have massive stocks of drugs for same day dispatch Fast delivery straight to your

door with discrete packaging We are the biggest internet retailler with thousands of regular

customers

No consultation fee

No intimate questions or examinations

No appointment

No prior prescription needed

private and confidential service

Please come by our shop, see for yourself the massive range of products that we have

available. we do have the lowest price and huge stocks ready for same - day dispatch.

Two million customers can’t be wrong !

See our full range at malicious url

B.2.2 Instance 2 (Phishing Email)

Dear Sir / Madam:

Always looks forward for the high security of our clients. Some customers have been

receiving phishing emails claiming to be from barclays and advising them to follow a link

to what appear to be a barclays web site, where they are prompted to enter their personal

online banking details. Barclays is in no way involved with this email and the web site does

not belong to us.
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For your security, we updated our new ssl servers. Barclays is proud to annouce about

the new secure system, which will give our customers a better, fast and secure online bank-

ing service.

Due to the recent update of the servers, you are requested to update your account info

at the following link.

J.S. Smith. Security Advisor Barclays Bank PLC. Please do not reply to this e - mail

. mail sent to this address cannot be answered. For assistance , log in to your barclays

online bank account and choose the “ help ” link on any page.

B.2.3 Instance 3 (Phishing Email)

Because someone has reported your actions, your account will be deactivated. Maybe

you have written content that is abusive or uploaded a picture that can be insulting or

harmful to other users. You must confirm your account to stop the warning on your account.

To stop the suspension of your account, please click the link below: malicious url

Facebook Game Network Inc.

Phone: 650.543.4800 fax: 650.543.4801

B.2.4 Instance 4 (Spam)

Search Engine Position!

Be the very first listing in the top search engines immediately . Our company will now

place any business with a qualified website permanently at the top of the major search

engines guaranteed never to move: (E. google, yahoo!, msn, alta vista, etc.).

This promotion includes unlimited traffic and is not going to last long. if you are in-

terested in being guaranteed first position in the top search engines at a promotional fee,

please contact us promptly to find out if you qualify via email at searchl1@telefonica.net.pe.

It’s very important to include the url ( s ) if you are interested in promoting ! ! ! this is not

pay per click. Examples will be provided.
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P.S. This promotion is only valid in the usa and canada.

Sincerely ,

The Search Engine Placement Specialists.

If you wish to be removed from this list, please respond to the following email address

and type the word “remove” in your subject line: search6@speedy.com.pe

B.2.5 Instance 5 (Phishing Email)

Greetings,

After reviewing your LinkedIn profile, our company would like to present you a part-

time job offer as a finance officer in your region. This job does not require any previous

experience. Here is a list of tasks that our employee should accomplish:

1. Receive payment from our customers into your bank account

2. Keep your commission fee of 10% from the payment amount

3. Send the rest of the payment to one of our payment receivers in Europe via Moneygram

or Western Union.

For more details about this job offer, click here

After enrolling to our part-time job you will be contacted by one of our human resource

staff.

Thanks.

Karen Hoffman,

Human Resource Manager.

B.2.6 Instance 6 (Phishing Email)

Bank of America Online Banking

Message from Customer Service
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To stop the suspension of your account, please click the link below: http://www.facebook.com/account-

suspend/ A message from Customer Service is waiting in your Online Banking mailbox. If

you havent already read it:

Sign in to Online Banking at malicious url

Select Mail at the top of the page.

This alert relates to your Online Banking profile, rather than a particular account.

Want to confirm this email is from Bank of America? Sign in to Online Banking and

select Alerts History to verify this alert.

Want to get more alerts? Sign in to your online banking account at Bank of America

and within the Accounts Overview page select the “Alerts” tab.

Because email is not a secure form of communication, this email box is not equipped to

handle replies.

If you have any questions about your account or need assistance, please call the phone

number on your statement or go to Contact Us at www.bankofamerica.com.

B.2.7 Instance 7 (Spam)

Discover you made money while you were sleeping!

You must read this word for word ! Information that you may not receive again so

please take it seriously ! ! Would you like to . . . . receive thousands in cash daily?

If yes, go here now !

People are making real fortunes, no hype - no false predictions ! have unlimited cash

flow potential join an elite and growing group gain true financial independence You can

change your lifestyle ! and we can prove it ! !

Our generating leveraging system has been proven 100% effective. Totally duplicable

for anyone! The serious money is right here ! ! Do yourself a favor and take a close look

at this, you’ ll be thankful you did !

This is not sales, our private website will give you all the details. Go here to get them
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now !

If you received this by error or wish to be excused from our list, simply click here.

B.2.8 Instance 8 (Phishing Email)

Dear Customer,

You have received this email because we have strong reason to believe that your Amazon

account had been recently compromised. In order to prevent any fraudulent activity from

occurring we are required to open an investigation into this matter.

If your account is not confirmed, we reserve the right to terminate your Amazon sub-

scription. If you received this notice and you are not an authorized Amazon account holder,

please be aware that it is in violation of Amazon policy to present oneself as an Amazon

user. Such action may also be in violation of local, national, and/or international law.

Amazon is committed to assist law enforcement with any inquires related to attempts to

misappropriate personal information with the intent to commit fraud or theft. Information

will be provided at the request of law enforcement agencies to ensure that perpetrators are

prosecuted to the full extent of the law.

To confirm your identity with us click the link bellow: malicious url

We apologize in advance for any inconvenience this may cause you and we would like

to thank you for your cooperation as we review this matter.

B.2.9 Instance 9 (Phishing Email)

Dear Taxpayer,

I am sending this email to announce: After the last annual calculation of your fiscal

activity, we have determined that you are eligible to receive a tax return of: $273.48

In order for us to return the excess payment, you need to create a e-Refund account

after which the funds will be credited to your specified bank account.

Please click Get Started to claim your refund:
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B.2.10 Instance 10 (Spam)

Ink prices got you down?

Would you like to save up to 80 % on printer ,fax and copier supplies? On brands like

epson, canon, hewlett, packard, lexmark and more ! 100 % quality satisfaction guarantee

or your money back ! Free same day shipping on all us orders ! We’ll beat any price on

the internet - guaranteed ! * * Click here to order now ! or Call us toll - free at 1 - 800

- 758 - 8084 ! * Free shipping only on orders of $ 40 or more . * * We beat any online

retailer’s price by 5 % . * Call us with any other source advertising a lower price and once

we verify the price, we will beat it by 5 %! ( must be same manufacturer ) You are receiving

this special offer because you have provided permission to receive email communications

regarding special online promotions or offers . If you feel you have received this message

in error , or wish to be removed from our subscriber list , Click Here.

Thank you and we apologize for any inconvenience.

B.3 Additional Material about the Impact of Randomization

While randomization has a significant effect on the ability of subjects to evade email as

described in the main document, we found little evidence of impact on either score (of non-

filtered submissions) or time taken to submit. The score for tasks including randomization

and those which did not is shown as a function of submission sequence in Figure B.3. The

differences in the scores are not statistically significant, and there does not appear to be any

systematic difference or trend with experience (unlike the ability to evade the filter, which

demonstrates clear improvement over time).

Similarly, the differences in time spent on a submission are not statistically different

between randomized and noise-free settings (Figure B.4). Here, the initial few submissions

clearly took the longest, but thereafter the trend is quite weak (although submission time

does appear to decrease slightly with experience).
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Figure B.3: The scores of non-flipped submissions in the “noise” treatments compared to
the scores in the “noise-free” treatment, as a function of the submission sequence. There is
no clear difference between the two sets of treatments, or a clear trend.

B.4 Additional Details for the Synthetic Model of Human Evasion Behavior

As described in the main text, our synthetic model has two pieces: (1) the model to

predict, for each feature, whether or not it will be changed in the next submission, and (2)

if a feature is deleted, whether or not it is substituted for by another.

For model (1), a submission is modeled entirely as a feature vector x corresponding

to the features in our classifier (filter). We treat each feature in the submission vector x

as independent, and train n independent Support Vector Machine models with a radial ba-

sis function kernel [139], one for each submission feature (for features of the subsequent

submission we are trying to predict). For each of these, the predicted variable is a binary

indicator whether or not the corresponding feature is changed. Features of each of these n

models (as opposed to the predicted outputs themselves) include: a) feature vectors corre-

sponding to the two prior submissions (“ideal” email is used for this purpose for the first

two submissions), b) gender of the participant, c) participant education level, d) age of the

participant, e) English test score of the participant, and f) scores earned by the two prior

submissions (the submission is indicated to be filtered by the classifier when the score is

0).
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Figure B.4: Time spent on submissions in the “noise” and “noise-free” treatments as a
function of the submission sequence. There is little difference between the two treatments
(the difference is not significant), and only a weak trend (submission time is decreasing
with experience).

For model (2), we train a Support Vector Machine model for each deleted word to de-

termine whether or not it is substituted (again, a binary classification problem). We use the

same feature vector as for model (1), as well as two additional features, each correspond-

ing to a binary indicator whether or not a specific feature word was substituted in the two

prior submissions. For the first two submissions, these two features represent whether or

not the word is a “substituted word” based on the training data information. We define the

Substituted Ratio of a word as SR = Nsub
Ndel

, where Nsub and Ndel correspond to the number of

substitution and deletion times of the word within the training submissions, respectively.

If SR > 0.5, the feature word is considered as a “substituted word”, and the corresponding

feature value is 1; otherwise 0.

Figure B.5 shows accuracy as a function of the submission sequence (the overall accu-

racy was 97%). Figures B.6 and B.7 show average score as a function of the submission

sequence in the noise-free and noisy treatments, respectively, comparing the performance

for the two scoring functions, S1 and S2. In all, the evidence clearly indicates that our syn-

thetic model performs extremely well both in predicting individual behavior as well as in

synthetically replicating experimental observables.
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Figure B.5: The average cross-validation accuracy shows that the synthetic model is able
to predict the next submission vector based on the previous two submissions accurately.

Figure B.6: Comparison between experimentally observed scores and those based on the
synthetic model of behavior as a function of the submission sequence for S1 and S2 scoring
function treatments in the “noise free” setting.
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Figure B.7: Comparison between experimentally observed scores and those based on the
synthetic model of behavior as a function of the submission sequence for S1 and S2 scoring
function treatments when filter randomization was used.
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Appendix C

Appendix for chapter 7

C.1 Supplemental comparison results based on trimmed size of features

(a) (b) (c) (d)

Figure C.1: Performance of baseline (adv-) and RAD (rob-) as a function of cost sensitivity
λ for Enron (top) and MNIST (bottom) datasets with continuous features testing on adver-
sarial instances based on 1000 (Enron) and 627 (MNIST) features. (a) logistic regression,
(b) SVM, (c) 1-layer NN, (d) 3-layer NN.

(a) (b) (c) (d)

Figure C.2: Performance of baseline (adv-) and RAD (rob-) implementations of (a) Naive
Bayes, (b) logistic regression, (c) SVM, and (d) 3-layer NN, using binary features testing
on adversarial instances based on 1000 features.
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Appendix D

Appendix for chapter 8

D.1 Gradient optimization for attack strategies

We provide details on how to compute the “easy” gradient ∇
Θ̃

R(M̂ ,M), M̂ = M̂(Θ)

is the prediction based on the learnt model Θ. Applying the chain rule of differentiation

we get

∇ΘR(M̂ ,M) =
(

∇ΘM̂
)(

∇
M̂

R(M̂ ,M)
)
. (D.1)

We first focus on the second term ∇
M̂

R(M̂ ,M)). This is easy to compute because all ma-

licious utility functions R considered here are smooth and differentiable. More specifically,

the availability attack utility Rav and the integrity attack utility Rin admit the following

gradient computations:

∂Rav

∂M̂i j
= 2(M̂i j−M i j) · I[(i, j) /∈Ω];

∂Rin
J0,w

∂M̂i j
= w( j) · I[ j ∈ J0].

Here I[·] is the indicator function that equals one if the corresponding condition holds true

and zero otherwise. The gradient for the hybrid utility Rhybrid can then be expressed as a

linear combination of the gradients of Rav and Rin:

∇Rhybrid
µ,J0,w = µ1∇Rav +µ2∇Rin

J0,w.

We next turn to the computation of ∇ΘM̂ , which is model specific. Alternating mini-

mization and nuclear norm minimization are considered separately for this gradient:

Alternating minimization In alternating minimization the learnt model Θ is parame-
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terized by Θ=(U ,Ũ ,V ), where U ∈Rm×k, Ũ ∈Rm′×k and V ∈Rn×k. Since M̂ =UV >

for normal users, we have

∂M̂i j

∂U`t
= V jt · I[i = `],

∂M̂i j

∂V`t
=Uit · I[ j = `].

Nuclear norm minimization In nuclear norm minimization the learnt model Θ is pa-

rameterized by Θ = (U ,Ũ ,V ,Σ) where U ∈ Rm×k, Ũ ∈ Rm′×k, V ∈ Rn×k and Σ =

diag(σ1, · · · ,σk). The estimation M̂ for normal users is then expressed as M̂ =UΣV >.

As a result, we have

∂M̂i j

∂U`t
= σtV jt · I[i = `];

∂M̂i j

∂V`t
= σtUit · I[ j = `];

∂M̂i j

∂σt
= UitV jt .

D.2 Supplement results for adversarial decreasing rates

Here we plot ratings of specific items against percentage of malicious profiles by setting

µ2 =−1 to evaluate the performance of attacker reducing the popularity of the item, whose

original predicted average rating is 0.8. Figure D.1 and D.2 both show two settings of

µ1 = 0,µ2 = −1 and µ1 = −1,µ2 = −1 for alternating minimization and nuclear norm

minimization, respectively. For alternating minimization algorithm, when µ1 = 0,µ2 =−1,

the attacker tries to reduce the average rating for certain item without caring about the

availability error of the whole recommendation system. This way, the attacker has better

control of the item and can decrease the average rating of the item from 0.8 to around -

0.3. While, if µ1 = −1,µ2 = −1, the attacker want to reduce the popularity of the item

and at the same time reduce the availability error for the whole system to avoid detection;

therefore the attacker can only decrease the average rating of the item to about -0.1 under
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(a) (b)

Figure D.1: Average ratings of certain items using alternating minimization; (a) µ1 =
0,µ2 =−1, (b) µ1 =−1,µ2 =−1.

(a) (b)

Figure D.2: Average ratings of certain items using nuclear norm minimization; (a) µ1 =
0,µ2 =−1, (b) µ1 =−1,µ2 =−1.

this setting.We obtain the similar observations for the nuclear norm minimization.
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Appendix E

Appendix for chapter 9

Proof of Lemma 10.5.4. By Theorem 10.5.1, Algorithm 16 will terminate when F̂PA
T̂PA
≥ L

C .

Using, Equation 10.24 and our assumptions, we have

(1+ 1
p)F̂PA

m
≤

(1+ 1
s )FPA

m
+λ (m,δ )

with probability at least 1−δ . Consequently, with probability at least 1−δ ,

(1+ 1
p)F̂PA

TPA · T̂PA
≤

(1+ 1
s )FPA

TPAT̂PA
+λ (m,δ )

m

T̂PATPA
,

and, consequently,

1+ 1
p

TPA
· L
C
≤

(1+ 1
s )FPA

TPAT̂PA
+λ (m,δ )

m

T̂PATPA
.

Rearranging, we get

FPA

TPA
≥

(1+ 1
p)

L
C ·

1
TPA
−λ (m,δ ) · m

T̂PA
· 1

TPA

(1+ 1
s ) · ·

1
T̂PA

=
1

1+ 1
s

(
L
C
(1+

1
p
) · T̂PA

m
· m

TPA
−λ (m,δ ) · NA

TPA

)

≥

(
1

1+ 1
s

)(
(1+

1
p
)
T̂PA

m
L
C
−λ (m,δ )

)
m

TPA

≥

(
1

1+ 1
s

)(
(1+

1
p
) ·q · L

C
−λ (m,δ )

)
1
r
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[3] Réjean Plamondon and Sargur N Srihari. Online and off-line handwriting recog-

nition: a comprehensive survey. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 22(1):63–84, 2000.

[4] Peter Bodik, Armando Fox, Michael J Franklin, Michael I Jordan, and David A

Patterson. Characterizing, modeling, and generating workload spikes for stateful

services. In Proceedings of the 1st ACM symposium on Cloud computing, pages

241–252. ACM, 2010.

[5] Wei Xu, Peter Bodik, and David Patterson. A flexible architecture for statistical

learning and data mining from system log streams. Temporal Data Mining: Algo-

rithms, Theory and Applications, Brighton, UK, 2004.

[6] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer Chi-
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