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CHAPTER I 

 

INTRODUCTION 

 

I.A Network-on-Chip History 

 

As very-large-scale integration (VLSI) technology advances, designers aim to build more 

complex and robust computing systems in a single silicon chip [1]. With the rapid 

increase of the number of components that appear on the chip, interconnect requirements 

have also increased; in fact, interconnect becomes a strict limitation on performance [2]. 

In order to solve this problem, the packet–switched on-chip network has been proposed 

[3]. The idea of a Network-on-Chip (NoC) borrows networking theory from the computer 

networking domain and considers each intellectual property (IP) core as a single node. In 

each node, a high-speed router connects with other routers of neighboring nodes [4]. 

At the heart of the on-chip network, the tradeoff between performance, area, and 

power is significant [4]. In previous studies [5-7], the router architecture always contains 

buffers on the input ports. The buffer scheme is used to store packets; these packets must 

wait for the output resource due to contention with other packets [8]. These designs have 

been widely adopted due to their improved performance [3]. However, the analysis of 

different hardware implementations showed that the networks consisting of buffered 

routers are expensive. In the TRIPS prototype processor [9], 75% of the NoC area is 

filled with buffers; for the RAW microprocessor [10], 36% of chip power is consumed by 

the on-chip network. Hence, the buffer space issue has been deeply discussed, and the 
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trend of design efforts has shifted. Some related studies [11-13] attempt to identify an 

optimal buffer size to reduce the cost associated with the hardware.  

Finally, the extreme idea - entirely bufferless routing - has been proposed in 

BLESS [14] and improved by CHIPPER [15]. Bufferless routing is borrowed from 

network theory and has been called “hot potato” routing. Because the networks have no 

buffer to store the packets, each packet has to keep moving through the network until it 

reaches its destination [14]. When two packets contend for the output resource, one 

packet has to deflect, which causes it moves further away from its destination [14]. The 

key for performance in bufferless routing is minimizing the deflection rate. In CHIPPER, 

the results show that bufferless routing saves 169% for area [16] and averages 54.9% less 

power consumption compared to the buffered networks in Chip Multiprocessors (CMP) 

[15]. However, when the networks have a high injection rate of packets, the conventional 

buffered network has a greater performance [17]. 

 

I.B Motivation and Research Approach  

 

In the ideal case, the bufferless router should produce a deflection rate as small as 

possible. A smaller deflection rate means that the network has lower average packet 

latency [17]. CHIPPER has a two-cycle router pipeline structure, and the permutation 

structure in the second stage of CHIPPER is used to allocate the output resource [15]. 

With an investigation of the permutation, it was observed that the permutation cannot 

meet the requirement of minimizing the deflection rate (i.e., some packets are deflected 

unnecessarily). This feature also indirectly increases the total power consumption. In 

order to reduce the average packet latency, an improved design is proposed for CHIPPER 
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without changing the router’s speed. The original permutation in the second stage is 

replaced with a new permutation. The critical path in the new second stage is a little 

longer than the previous second stage, but maintains the original speed of CHIPPER; the 

original architecture of CHIPPER used a two-stage pipeline structure where the first stage 

was significantly longer. Thus the router’s frequency was determined by the first stage. 

This new design uses the available slack time within CHIPPER’s operating frequency, 

and the delay of the second stage is still less than the first stage. Moreover, according to 

the observation in minBD [16], CHIPPER with two ejection port increases the average 

performance by 3.7% over the original CHIPPER. Hence in this research, dual-ejection 

CHIPPER is considered as baseline for comparison. 

In the hardware implementation, the use of a field-programmable gate array 

(FPGA) is reasonable. FPGAs are a way to build and verify complex systems with high 

integration levels. Various logic elements, memory blocks and I/O allow us to design the 

on-chip network rapidly [18]. In this research, the FPGA provides the capability to 

determine the maximum frequency from the critical path. It also offers a platform 

allowing us to build the on-chip network in order to measure the average packet delay. 

This thesis describes the experience in designing a real-time mesh topology network with 

the new bufferless router and compares the results between dual-ejection CHIPPER and 

the improved router design. The results show that the improved router structure reduces 

the deflection rate significantly, and reduces up to 16.2% average latency than the Dual-

ejection CHIPPER. The operating frequency for both designs is the same.   
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I.C Thesis Organization 

 

The rest of the thesis is organized as follows. Section II provides the necessary 

background on NoC, traditional buffered router, baseline CHIPPER, and the FPGA 

design flow. Section III presents the improved router structure. Section IV discusses the 

evaluation methodology and results. Section V summarizes this thesis and discusses the 

future work.      
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CHAPTER II 

 

BACKGROUND 

 

This chapter introduces the basic ideas of NoC, traditional buffered router and bufferless 

deflection routing, outline the CHIPPER structure briefly, and describe the design flow 

when we use an FPGA board to build the 4x4 mesh network.  

 

II.A Network-on-Chip 

 

“The chip is the network [19].” This idea proposed by Radu Marculescu and Paul 

Bogdan points out the direction of on-chip interconnection. Previous studies [1, 20, 21] 

have expounded that many industrial tasks can be solved by a System-on-Chip (SoC) 

platform and many industrial products that implement this method appear in the market, 

especially in the CMP domain. SoC integrates all components of a system into a small 

single chip, and it can consist of microcontrollers, microprocessors, DSPs, memory 

blocks, and I/O. As VLSI technology advances and demand for performance increases, 

the designer desires to add more IP cores onto a single chip. However, significant 

limitations have arisen as we continue to implement traditional interconnects.  

In Figure 1, it shows three kinds of on-chip interconnect structure for a mobile 

phone [22].  The bus topology and the point-to-point (p2p) topology have their own 

strengthes and weaknesses. Both of them have well-understood concepts and 

comprehensive research experience. These strengthes reduce the production period 

efficiently. In a simple mobile phone system, implementing a bus or p2p interconnect is 

reasonable. However, as more IP cores are connected on the single chip, they become the 
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limitation for communication. As more units are added to busses, because of the parastic 

capacitance, the power consumption for each communication event grows as well. 

Moreover, shared busses create contention and hierachal busses result in complexity [22].  

For the p2p structure, the number of wires has an exponential increase as the designer 

adds more IP cores on a chip. It results in both a routing problem and a die area problem. 

In order to solve these problems, the NoC structure has been proposed. NoC appiles a 

networking method, and the IP core implements the on-chip communication by a router 

just like how the terminal works in the real world. Unlike busses and p2p, it is the first 

time that the networking method is involoved in the digital system design, and compared 

to networking, the digital system design focuses on the distinct parameters. Designers are 

not only concern about latency, but also care about power consumption and area. Hence, 

NoC is still considered as an immature area and maintains rapid growth.  

 

Figure 1 Examples of communication structures in Systems-on-Chip. a) traditional bus-

based communication,b) dedicated point-to-point links, c) a chip area network. [22] 

 

As the designer implements an on-chip network, the network is characterized by: 

(1) topology, (2) routing, (3) flow control, and (4) router structure.  
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Usually, we consider the IP core and its corresponding router as one node, and the 

distribution of nodes is specified by topology. Fortunately, networking engineers have 

designed various topologies, such as Mesh, Torus, Octagon, and Butterfly Fat Tree (BFT) 

[23]. Figure 2 shows the different topologies. The most popular topology in NoC is mesh, 

and in this thesis, we consider it as our default topology.  

  

Figure 2  NoC topologies. (a) Mesh, (b) Torus, (c) Octagon, (d) BFT. [23] 
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Routing determines the path between the initial node and the destination. 

Traditional routing is deterministic and use minimal routing. The path for each packet has 

been decided before being sent into the network, and their path is absolutely minimal. 

The node position is described using a coordinate system. For example, suppose a packet 

whose start position and destination are neither in the same row nor in the same column. 

The X-Y rule is considered as the most common routing rule in NoC. It determines that a 

packet goes through x-axis first after being sent into network, until its current position is 

in the same column with the destination. Then it will go through the y-axis until it 

reaches its destination. The X-Y rule has been acknowledged by every router in the 

network, and that promises all packets in the network have minimal path. However, since 

the path for each packet is unchangable, for each node, it is highly probable that more 

than one packet will contend in the same direction. In this case, in order to store the rival 

packet, adding buffers on the input port has been proposed in router architecture. The 

buffered router structure is disscussed further in Section II.B. An opposite routing method 

is adaptive routing. The path for each packet is highly based on the real-time traffic in the 

network. If the conjestion happens in a part of network, then the packet would take a 

detour. The advantage of this method is that the buffer structure is unnecessary. However, 

the minimial path cannot be guaranteed. Bufferless deflection routing is a kind of 

adaptive routing, which is disscussed in Section II.C. 

Flow control determines the basic unit in the network, the link carrying capacity, 

and the buffer capacity if necessary. A complete packet that traverses the network is 

unrealistic since the size of packet is not uniform. A packet is typically divided into a 

couple of flits, and the flit is the basic unit in the network. The size of the flit determines 
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the carrying capacity for a link and the buffer size. Table 1 illustrates the basic flit 

structure, where each flit consists of the Information, Destination address, and Unique ID. 

Table 1 Flit structure 

 

In a simple router, the essential components are inputs, outputs, and a switch. A 

typical router has five inputs/outputs: four that connect with neighbor routers and one that 

connects with the local IP core. The switch is used to allocate the output resources. As for 

other components, it highly based on what kind of routing is selected. Section II.B 

discusses a type of buffered router structure, while Section II.C and Section II.D discuss a 

type of bufferless router structure. 

 

II.B Virtual-Channel Router Architecture 

 

The Virtual-Channel (VC) router is a popular structure in the NoC that applies 

deterministic and minimal routing. Even through there are a lot of various structures that 

are derived from the VC router structure, the base structure adds buffers at each input 

port. Figure 3 shows the base VC router structure. In this case, four VCs at each input 

port are buffered in first-in-first-out (FIFO) queues. In order to acquire the states in 

neighboring routers, the router communicates with its neighbor routers all the time. If all 

the VCs in one input port are full, then its corresponding neighbor would stop 

transferring flits to that input until there is an empty VC in that input port. This 

communicated operation is controlled by an Arbitration Unit (AU). The crossbar is a 

Information Destination Address Unique ID 
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switch that allocates flits to its desired output. Because of the extra VCs allocation and 

router communication, the operation time in a buffered router is considered longer than in 

a bufferless router.  As an example in [24], it states that the maximum clock frequency 

for non-pipeline VC router structure is 72.37 MHz calculated with an FPGA. 

 

Figure 3 The typical VC router architecture 

 

II.C Bufferless Deflection Routing 

 

As the number of cores on a chip increase, the power consumption by a buffered network 

cannot be ignored. In this context, Baran proposed the concept of deflection routing [25], 
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and the first implementation for an on-chip network is BLESS [14]. Compared to the 

typical virtual channel buffered network, eliminating buffers can save significant die area 

and power [15]. It was considered as an alternative scheme for buffered routing. 

In the BLESS and CHIPPER networks, each packet splits its resource into several 

flits, and the flit as the basic unit moves through the network independently [16]. As a flit 

injects into the network, it has to keep moving and cannot stop until it has been ejected 

from the network. The Unique ID field is necessary because the flit travels through the 

network independently, and the deflection is unpredictable; flits from the same packet do 

not arrive at the destination in order. The Unique ID is used to sort flits at the local node; 

when a packet has completely arrived, the node will send it to the processor. Then the 

network must provide buffer space at the exit of each node in order to reassemble the 

packet.  

The deflection algorithm is very simple. In the ideal case, if two flits arrive at the 

router at the same cycle and their desired output is not the same, then they will move away 

from this router towards their desired output. However, if two flits contend for the same 

output, then one flit will win and the other flit has to move away from this router towards 

a free output. 

 

II.D CHIPPER 

 

CHIPPER was an improved design that was derived from BLESS. Compared to BLESS, 

CHIPPER provided a more reasonable permutation structure and packet reassembly. In 

the following content, the basic principles of CHIPPER are described. 
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II.D.1 Injection 

 

The injection port is the entrance that allows the flit into the network. However, the 

bufferless router cannot guarantee that every fresh flit would be injected into the network 

immediately. Injection was only permitted when the inputs have a free slot. Therefore, a 

buffer space in the injection port is necessary. The buffer is used to hold the fresh flit 

when the injection requirement was not met. 

 

II.D.2 Microarchitecture 

 

The baseline CHIPPER implements a two-stage router pipeline structure. The first stage 

is a computation stage. In this stage, the function is not only ejecting and injecting flit, 

but also computing the desired output based on the destination address. The desired 

output is based on: (1) analysis of the X-Y routing and (2) comparisons of the destination 

address with the local address. Because the router is bufferless, after the computation 

stage, the flit is stored in the register and waits for the permutation stage [15].  

The permutation stage is the key for bufferless deflection routing. It decides the 

deflection rate directly. The permutation architecture of CHIPPER is shown in Figure 4; 

it contains 2x2 arbiters, and the function of each arbiter makes the decision of swapping 

two flits or not. The steering functions for permutation are given in Table 2 (Rules in 

Arbiter column) for North (N), South (S), East (E), and West (W) directions.   
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Figure 4  Two-stage permutation with four arbiters [15] 

 

 

Table 2  Steering functions for two-stage permutation structure [15] 

 

 

Input Rules in Arbiter Output 

Flit (desired 

direction) 

Stage 1 

(Arbiter1 and  

Arbiter 2) 

Stage 2 

(Arbiter3 and 

Arbiter4) 

Permutated 

Input 

Output 

Direction 

Flit 1(E) 

 

Flit 2(N) 

N, S: output 0 

 

E,W: output 1 

N, E: output 0 

 

S, W: output1 

Flit 2(N) 

 

Flit 3(S) 

N 

 

S 

Flit 3(S) 

 

Flit 4(W) 

N, S: output 0 

 

E,W: output 1 

E, N: output 0 

 

W, S: output1 

Flit 1(E) 

 

Flit 4(W) 

E 

 

W 

 

N

S

E

W

Stage 1 Stage 2

Output 1

Output 0

For each arbiter
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In Table 2, Flit 1 (requires East direction) and Flit 2 (requires North direction) 

enter into Arbiter 1 (Figure 4, top left); based on the rules, the arbiter decides that these 

two flits should swap. Flit 3 (requires South direction) and Flit 4 (requires West direction) 

enter Arbiter 2 (Figure 4, bottom left); Arbiter 2 decides that they do not swap. After Flit 

1 and Flit 3 have been swapped in the middle between the two stages, Flit 2 and Flit 3 

enter into Arbiter 3 (Figure 4, top right), Flit 1 and Flit 4 enter into the Arbiter 4 (Figure 4, 

bottom right), and the arbiters decide the next routing assignments. Finally, the four flits 

get to their desired directions. Compared to the earlier BLESS design, the two-stage 

permutation structure implements the parallel arbiter scheme in both stages, which 

divides the critical path efficiently [15]. Even though the result shows that the 

performance of CHIPPER is lower than BLESS, since the critical path of CHIPPER is 

reduced by 29.1% over BLESS, that guarantees CHIPPER is better than BLESS [15]. 

 

II.D.3 Ejection 

 

The ejection port is the exit that sends the flit out of the network. As previously 

discussed, in order to maintain the packet’s correctness, the network must provide a 

reassembly buffer at each node. 

The analysis of the minimally buffered deflection routing (MinBD) shows that in 

up to 8.5% of all cycles, two flits reach the destination router in the same cycle [16]. In 

this case, if the design only supports ejecting a single flit per cycle, then it will produce 

one unnecessary deflection. In order to reduce the deflection rate, we implement a dual-

ejection design in both CHIPPER and our improved router. That means these two 
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schemes could eject two local flits in a single cycle. The result shows CHIPPER with two 

ejection increases average performance by 3.7% over the original CHIPPER [16]. 

 

II.D.4 Golden Packet 

 

The golden packet idea is used as an inexpensive strategy for priority to guarantee against 

the livelock problem. Livelock is a common problem that occurs in bufferless deflection 

routing networks. When a flit injects into the network, the deflection behavior is 

unpredictable. If the deflection happens, then the flit can move further away from its 

destination. In the worst case, an unlucky flit will be deflected forever and never reach its 

destination. Moreover, the livelock problem will cause the reassembly buffer to overflow 

at the destination node. It is because other flits that belong to the same packet have to 

wait for the missing flit. 

In CHIPPER, to avoid the livelock problem, the network selects a single packet 

and sets this packet as the Golden priority. For a period time, the priority of this packet is 

above all other packets globally. All routers in the network have this knowledge. The 

period must ensure that all flits belonging to the golden packet reach their destination. In 

the every permutation, this prioritization rule was added into every arbiter. If a golden flit 

is the input, then it will win over any non-golden flits. This implementation guarantees 

the golden packet will not be deflected except if both flits belong to the golden packet. 

 

II.D.5 Field Programmable Gate Array (FPGA) 

 

In this section, the FPGA design flow is introduced. An FPGA is a good way to verify a 

digital system’s design before silicon manufacturing. It is an integrated circuit that 
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contains programmable logic elements with reconfigurable interconnections. Users 

configure the logic elements to perform various functions. Modern FPGAs also support 

memory block and IP cores. These features offer users a rapid design process [26].  

In this thesis, the Altera FPGA DE2-115 board (with a Cyclone IV EP4CE115F29 

FPGA) [27] is used to perform the investigation on CHIPPER and build a 4x4 mesh 

topology network with the bufferless routers. This FPGA board contains approximately 

115,000 logic elements and 138M memory blocks [27]. The network was developed with 

the VHDL language; simulation and synthesis of the design use the Electronic Design 

Automation (EDA) tool Quartus II [28], and the function was verified at the gate level 

with ModelSim [29]. The design flow is shown in Figure 5 [30]. Power consumption and 

critical path information are produced by the PowerPlay function and the TimeQuest 

function in Quartus II. Quartus II also provides a function called In-System Memory 

Content Editor. It is an easy way to observe the content that has been stored in the 

memory block [28]. 

In order to evaluate the average latency, SRAM is used in each node to build two 

memory blocks. The SRAM is not included in the analysis of the critical path. One 

memory block is used to connect with the injection port and store the injection flits; the 

other one is used to connect with the two ejection ports and records the flits and the time 

they were ejected from the local node. Figure 6 shows the 4x4 mesh topology network as 

well as the components contained in each node. 
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Figure 5  FPGA design flow [30] 

 

 

 

Figure 6  4x4 mesh networks 
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CHAPTER III 

 

REDESIGN OF THE PERMUTATION STAGE 

 

During the investigation for CHIPPER, it was observed that the critical path between the 

computation stage and the permutation stage is unbalanced. Because the router is a two-

stage pipelined architecture and the permutation stage is faster than the computation 

stage, it gives the opportunity to improve the architecture. Moreover, the permutation in 

CHIPPER cannot meet the ideal case; some unnecessary deflections of flits occur in 

CHIPPER. For example, assume four flits enter into the router, and their desired 

directions are N, S, E, and W, respectively. Meanwhile, the outputs have the same order 

with their desired directions. In the ideal case, the flits can move through the router with 

their desired directions. However, in CHIPPER, two flits must be deflected in this 

situation. Because the critical path in the permutation stage is shorter than the critical 

path in the computation stage, there is timing slack to improve the permutation so long as 

the critical path is not longer than computation stage. 

It was decided to keep the 2x2 arbiter scheme and modify their rules to achieve 

the idea to improve the design. Moreover, an extra component is added following the 2x2 

arbiter. The extra component, which is called Final Chance, will increase the critical path 

in the permutation stage. The critical path in the new permutation stage is nearly equal to 

the critical path in the computation stage. The improved design is shown in Figure7, and 

the critical path information is discussed further in Section IV.2.  
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Algorithm 1. Improved permutation steering algorithm 

Improved permutation 

Since the order for flits maybe change, we describe 

them with flits in position 1, 2, 3 and 4 from top to 

bottom, and the corresponding desired directions are 

d1, d2, d3, d4 

Assuming the output direction is N, S, E, and W 

If one input slot is empty, the desired direction is 0 

Arbiter 1 if (d1 == N or S) or (d2 == E or W)  

       do   none 

                else          

      do    swap 

Arbiter 2 if (d3 == N or S) or (d4 == E or W)  

      do   none 

                else          

      do    swap 

swap flits that are in position 1 and 2   

Arbiter 3 if (d1 == N) or (d2 == S)  

                        do   none 

                 else 

           do   swap  

Arbiter 4 if (d3 == E) or (d4 == W)  

                        do   none 

                 else 

            do   swap  

Final Chance 

 If (d1 != N)  

    if (d3!=E and d1! =0 and d3!=0) 

       do swap flits that are in position 1 and 3 

     else if (d4!=W and d1!=0 and d4!=0) 

        do swap flits that are in position 1 and 4 

 else if (d2 != S)  

     if (d3!=E and d2! =0 and d3!=0) 

        do swap flits that are in position 2 and 3 

     else if (d4!=W and d2!=0 and d4!=0) 

        do swap flits that are in position 2 and 4 
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Figure 7  Improved router structure 

 

Because the rules for golden packet are easy to understand, we do not include 

them in Algorithm 1. The rules described in Algorithm 1 only demonstrate normal cases. 

The Final chance component give flits a last chance to swap. It is assumed that the order 

of the outputs is N, S, E, and W. The function for the first two arbiters is to move flits 

that desire N or S to the Arbiter 3 and to move flits that desire E or W to the Arbiter 4. 

Next, based on the rules, Arbiter 3 and Arbiter 4 decide to swap them or not. They 

guarantee at least one flit will win its desired output. Finally, inputs move through to the 

Final Chance step. This step only affects the flits that will be deflected. The two flits that 

will be deflected swap with each other. The previous example is used to demonstrate this 

permutation. Assume that the desired directions of four flits are N, S, E and W from top 

to bottom, and the output order is N, S, E, and W. Within the 2x2 arbiter structure, Flit 2 

and Flit 3 have changed their order and the order for desired directions has 
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simultaneously changed to N, E, S, and W. The router discovers that Flit 2 and Flit 3 will 

be deflected, and then the router gives them a final chance to swap with each other. The 

final result order is N, S, E, and W, and no deflection happens in this case. 

When the function of permutation is analyzed, we implement probability theory 

and consider the inputs as a combination. The desired direction for each input has five 

possibilities: N, S, E, W, and if the input is empty, we assume the desired direction is 0. 

Because each router has four inputs, there are 625 combinations. The improved router 

improves 145 combinations. If the extreme case is considered (i.e., no input is empty, as 

would occur when the network has a high injection rate), then the improved combination 

number is 94 over 256 (i.e., the maximum number of combinations). 
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CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

In this thesis, the goal is to improve CHIPPER and to implement the new algorithm with 

an FPGA board. A 4x4 mesh topology network was implemented to test the design. The 

improved router was compared to a dual-ejection CHIPPER using two metrics: average 

latency and hardware cost (i.e., area and power). Both results were produced by the 

FPGA and Quartus II. 

 

IV.A Methodology 

 

To evaluate the average latency, we collect the uniform input set from simulator NS-3. 

NS-3 is a discrete-event network simulator that is used to evaluate Internet systems [31]. 

The data are pre-loaded into the memory block that is connected with an injection port in 

each node. The basic flit is 32 bits. It consists of 10 bits for the Unique ID, 4 bits for the 

destination address and 16 bits for the resource. As a flit moves away from the network, 

the Unique ID and the time it arrives in the destination are recorded in another memory 

block. 

Table 3  Data structure stored in two memory blocks 

 

16 bits Resource 4 bits Address 10 bits Unique ID 

10 bits Time Info. 4 bits Address 10 its Unique ID 
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IV.B Router’s Operating Frequency 

 

First, we study the impact of our changes on the operating frequency of the router. 

TimeQuest is the function for analyzing timing. It determines the reliable conditions 

during which the integrated circuits can be operated properly.  

 

Figure 8 Timing path  

In Figure 8, it illustrates the timing path in a simple circuit. The TimeQuest 

requires the design to produce a timing netlist.  Next, based on the timing netlist, the 

TimeQuest decides the data required times, data arrival times, and clock arrival times and 

detects possible timing violations. Moreover, it determines the timing relationships that 

must be met for the design. After these operations, the TimeQuest determines a longest 

time path in the circuit. In order to operate properly, the clock frequency is determined by 

the longest timing path in the circuit, called the critical path. Using this function on 

Quartus II, we observe the critical path. Table 4 shows the critical path for each stage and 

the maximum clock frequency for each router. 
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 Table 4  Critical path for each stage observed by Quartus II 

 

Dual-ejection 

CHIPPER 
Improved Router 

First 

stage 

Second 

stage 

First 

stage 
Second stage 

Critical Path 3.22 ns 2.34 ns 3.22 ns 3.20 ns 

Maximum Clock 

Frequency 
310.6 MHz 310.6 MHz 

 

From the table, we find the critical path in the improved second stage increased 

by 36.8% over the original second stage, but the improved second stage is more balanced 

with the critical path of the first stage. The maximum clock frequency is determined by 

the longest critical path in each router. Because the critical path for the first stage is 3.22 

ns in each router, the maximum clock frequency for both designs is 310.6 MHz. So, our 

improved router has the same speed as the Dual-ejection CHIPPER. 

 

IV.C Area 

 

Table 5  Number of logic elements for each router 

 Dual-ejection CHIPPER Improved Router 

Logic Element 529 645 

 

Next, Table 5 shows the area impact with the number of logic element used by the 

Cyclone IV FPGA on the DE2-115 board. It displays the number of logic elements for 

each router. The increased router area (22%) from Dual-ejection CHIPPER to the 
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improved router is due to adding the Final Chance component in the second stage. Since 

the CHIPPER has a significant saving in area (169%) compared to the conventional 

buffered router (4 virtual channels (VCs), 4 flits per VC) [16],  the increased area in the 

improved router still provides significant savings when compared to buffered routing. 

 

IV.D Power 

 

The Powerplay Power Analysis Tool is the function used to simulate the power 

consumption within the Quartus II software. There are a lot of factors affect the results. 

The most obvious factor for power consumption is the device resource usage. It is 

apparent that a design with more logic elements (LEs), multiplier elements, and memory 

blocks would consume more power. The FPGA device is another factor for power 

consumption. Many device parameters can affect the power consumption. Manufacturing 

process is an instance. Process impacts static power consumption primarily since sub-

threshold leakage current varies exponentially with changes in transistor threshold 

voltage [28]. But the impact for dynamic power is trivial. To avoid the false comparative 

result, we must clarify the FPGA device before we compare the power consumption. 

Environmental condition also impacts the power. A higher junction temperature caused 

higher static power consumption. In order to guarantee the circuit works properly, we 

always implement a fan system or a water cooling system to lower the temperature in 

reality. In the Powerplay Power Analysis Tool, it provides the cooling solution as well. 

The device thermal power and cooling solution result in the junction temperature 

remaining within the specified range [28]. The final significant factor in estimating power 

consumption is the input behaviors. In each logic element, its transition is a change from 
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1 to 0, or 0 to 1. Dynamic power increases linearly with the transition rate as you change 

the state frequently for logic elements.  

In our experiments, the supply voltage is 1.2 V, the process technology is 90nm, 

the router clock frequency is 300 MHz, and ambient temperature is 25 °C. In Figure 9, 

the x-axis indicates the number of inputs per router. The result shows that the change in 

static power consumption is not significant. The average dynamic power consumption 

increased by 15% from CHIPPER to the improved router. 

 

 

 

 

 

 

    

            

Figure 9  Dynamic and Static power consumption for each router 
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IV.E Latency 

 

Figure 10  Flit average latency 

 

  

Figure 11  The latency information for each router 
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Latency is a measure of time delay experienced in the system. In the NoC system, time 

latency is defined as the time from the flit starts to require the local input until the flit 

reaches the destination node. Figure 10 shows the average latency for injected flits. The 

impact of changing the permutation structure is illustrated when the injection rate is high. 

Up to 16.2% of average latency has been decreased when the injection rate is 0.4 flits per 

cycle per node. Figure 11 shows the latency distribution information. It depicts the 

latency through their quartiles. The improved router reduces the variance in the latency as 

well as the maximum (i.e., worst-case) delay observed in our experiments. 
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CHAPTER V 

 

SUMMARY AND FUTURE WORK 

 

This thesis presents  an improved bufferless router architecture based on the CHIPPER 

design. The improved bufferless router implements a new permutation component that 

balances the pipeline stages and reduces the average latency of flits. The design operates 

at the same clock frequency as the Dual-ejection CHIPPER. By adding the Final Chance 

module and modifying the rules for permutation, the deflection rate has been reduced, 

and the result shows the average latency was reduced effectively.  Since CHIPPER saves 

area and power significantly when compared to buffered routers, the increased area and 

power in the improved router still compare favorably to buffered routers. Thus, the 

improved bufferless router is an effective compromise between a conventional buffered 

router and CHIPPER. 

The future work in this area involves on two enhancements. One is that we plan to 

implement our improved bufferless router in more topologies and test their performance 

with multiple benchmarks. The other enhancement we plan is to measure the maximum 

clock frequency with advanced CMOS manufacturing process and make sure our 

balanced design can work on different CMOS manufacturing processes as well. 
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APPENDIX 

Implement improved bufferless router using VHDL   

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.pkg_IBR_NOC.all; 

----------------------------------------------------The computation stage-----------------------------------------------

--- 

---------The functions are inject/eject flits and compute the desired direction of flits------------ 

entity first_stage is  

port( 

 local_address : in  data_address_type; 

 data_in_address   : in   data_address_array(DATA_DIR_NUM-1 downto 0); 

 ID_in   : in   ID_array(DATA_DIR_NUM-1 downto 0); 

 inject_data_address : in  data_address_type; 

 inject_ID : in ID_type; 

 inject_port_req: in   std_logic; 

 data_out_address   : out   data_address_array(DATA_DIR_NUM-1 downto 0); 

 data_ejection : out  ID_array(EJECTION_PORT_NUM-1 downto 0); 

 ID_out   : out   ID_array(DATA_DIR_NUM-1 downto 0); 

 data_direction   : out   data_direction_array(DATA_DIR_NUM-1 downto 0); 

 req : buffer std_logic:='0'; 

 clk : in std_logic; 

   reset : in std_logic 

 ); 

 end first_stage; 

architecture behavioral of first_stage is 

signal temp_data_address_1, temp_data_address_2, temp_data_address_3 : 

data_address_array(DATA_DIR_NUM-1 downto 0);  

signal temp_ID_1, temp_ID_2, temp_ID_3 : ID_array(DATA_DIR_NUM-1 downto 0); 

begin  

eject_port : process(clk,reset) 

begin 

-----------------Initialization------------------ 

 if reset='1' then 

  temp_ID_1 <= (others =>(others => '0')); 

  temp_data_address_1 <= (others =>(others => '0')); 

  data_ejection(1) <= (OTHERS=>'0'); 

----------------First ejection port----------------- 
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 elsif clk'event and clk ='1' then  

  if data_in_address(3) = local_address and ID_in(3)/= empty then  

   data_ejection(1) <= ID_in(3); 

   temp_data_address_1(3) <= (others => '0'); 

   temp_ID_1(3) <= (others => '0'); 

   temp_data_address_1(2 downto 0) <= data_in_address(2 downto 0); 

   temp_ID_1(2 downto 0) <= ID_in(2 downto 0); 

  elsif data_in_address(2) = local_address and ID_in(2)/= empty then 

   data_ejection(1) <= ID_in(2); 

   temp_data_address_1(2) <= (others => '0'); 

   temp_ID_1(2) <= (others => '0'); 

   temp_data_address_1(3)<= data_in_address(3); 

   temp_ID_1(3) <= ID_in(3); 

   temp_data_address_1(1)<= data_in_address(1); 

   temp_ID_1(1) <= ID_in(1); 

   temp_data_address_1(0)<= data_in_address(0); 

   temp_ID_1(0) <= ID_in(0); 

  elsif data_in_address(1) = local_address and ID_in(1)/= empty then 

   data_ejection(1) <= ID_in(1); 

   temp_data_address_1(1) <= (others => '0'); 

   temp_ID_1(1) <= (others => '0'); 

   temp_data_address_1(3) <= data_in_address(3); 

   temp_ID_1(3) <= ID_in(3); 

   temp_data_address_1(2)<= data_in_address(2); 

   temp_ID_1(2) <= ID_in(2); 

   temp_data_address_1(0)<= data_in_address(0); 

   temp_ID_1(0) <= ID_in(0); 

  elsif data_in_address(0) = local_address and ID_in(0)/= empty then 

   data_ejection(1) <= ID_in(0); 

   temp_data_address_1(0) <= (others => '0'); 

   temp_ID_1(0) <= (others => '0'); 

   temp_data_address_1(3 downto 1) <= data_in_address(3 downto 1); 

   temp_ID_1(3 downto 1) <= ID_in(3 downto 1); 

  else  

   temp_ID_1 <= ID_in; 

   temp_data_address_1 <= data_in_address; 

  end if; 

 end if; 

end process; 

--------------------Second ejection port----------------- 

dual_ejection : process(reset, temp_ID_1, temp_data_address_1) 

begin  
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 if reset = '1' then data_ejection(0)<= (OTHERS=>'0'); 

  

   elsif temp_data_address_1(2) = local_address and ID_in(2)/= empty then 

   data_ejection(0) <= temp_ID_1(2); 

   temp_data_address_2(2) <= (others => '0'); 

   temp_ID_2(2) <= (others => '0'); 

   temp_data_address_2(3)<= temp_data_address_1(3); 

   temp_ID_2(3) <= temp_ID_1(3); 

   temp_data_address_2(1)<= temp_data_address_1(1); 

   temp_ID_2(1) <= temp_ID_1(1); 

   temp_data_address_2(0)<= temp_data_address_1(0); 

   temp_ID_2(0) <= temp_ID_1(0); 

  elsif temp_data_address_1(1) = local_address and ID_in(1)/= empty then 

   data_ejection(0) <= temp_ID_1(1); 

   temp_data_address_2(1) <= (others => '0'); 

   temp_ID_2(1) <= (others => '0'); 

   temp_data_address_2(3) <= temp_data_address_1(3); 

   temp_ID_2(3) <= temp_ID_1(3); 

   temp_data_address_2(2)<= temp_data_address_1(2); 

   temp_ID_2(2) <= temp_ID_1(2); 

   temp_data_address_2(0)<= temp_data_address_1(0); 

   temp_ID_2(0) <= temp_ID_1(0);  

  elsif temp_data_address_1(0) = local_address and ID_in(0)/= empty then 

   data_ejection(0) <= temp_ID_1(0); 

   temp_data_address_2(0) <= (others => '0'); 

   temp_ID_2(0) <= (others => '0'); 

   temp_data_address_2(3 downto 1) <= temp_data_address_1(3 downto 1); 

   temp_ID_2(3 downto 1) <= temp_ID_1(3 downto 1); 

  else  

   temp_ID_2 <= temp_ID_1; 

   temp_data_address_2 <= temp_data_address_1; 

  end if; 

end process; 

------------------------Injection port---------------------- 

injection : process(temp_ID_2, temp_data_address_2,req) 

begin 

if req = '0' then  

 if inject_port_req = '1' then  

  if temp_ID_2(3) = empty then 

   temp_data_address_3(3) <= inject_data_address;  

   temp_data_address_3(2 downto 0) <= temp_data_address_2(2 downto 0); 

   temp_ID_3(3) <= inject_ID; 
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   temp_ID_3(2 downto 0) <= temp_ID_2(2 downto 0); 

   req <= '1'; 

  elsif temp_ID_2(2) = empty then  

   temp_data_address_3(3) <= temp_data_address_2(3); 

   temp_data_address_3(2) <= inject_data_address;  

   temp_data_address_3(1 downto 0) <= temp_data_address_2(1 downto 0); 

   temp_ID_3(3) <= temp_ID_2(3); 

   temp_ID_3(2) <= inject_ID; 

   temp_ID_3(1 downto 0) <= temp_ID_2(1 downto 0); 

   req <= '1';  

  elsif temp_ID_2(1) = empty then  

   temp_data_address_3(3) <= temp_data_address_2(3); 

   temp_data_address_3(2) <= temp_data_address_2(2);  

   temp_data_address_3(1) <= inject_data_address; 

   temp_data_address_3(0) <= temp_data_address_2(0);  

   temp_ID_3(3) <= temp_ID_2(3); 

   temp_ID_3(2) <= temp_ID_2(2); 

   temp_ID_3(1) <= inject_ID; 

   temp_ID_3(0) <= temp_ID_2(0); 

   req <= '1';     

  elsif temp_ID_2(0) = empty then  

   temp_data_address_3(3 downto 1) <= temp_data_address_2(3 downto 1);  

   temp_data_address_3(0) <= inject_data_address; 

   temp_ID_3(3 downto 1) <= temp_ID_2(3 downto 1); 

   temp_ID_3(0) <= inject_ID; 

   req <= '1';    

  else  

   temp_data_address_3(3 downto 0) <= temp_data_address_2(3 downto 0);  

   temp_ID_3(3 downto 0) <= temp_ID_2(3 downto 0); 

  end if; 

 else  

   temp_data_address_3(3 downto 0) <= temp_data_address_2(3 downto 0);  

   temp_ID_3(3 downto 0) <= temp_ID_2(3 downto 0); 

 end if; 

else req <= '0'; 

end if; 

end process; 

-----------------Compute the desired direction---------------- 

direction : process(temp_ID_3, temp_data_address_3) 

begin 

  if temp_ID_3(3)=empty then data_direction(3) <= NONE; 
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  elsif temp_data_address_3(3)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) > 

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then 

   data_direction(3) <= SOUTH; 

elsif temp_data_address_3(3)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) < 

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then 

   data_direction(3) <= NORTH; 

elsif temp_data_address_3(3)(MESH_COLUMN_BI-1 downto 0) > 

local_address(MESH_COLUMN_BI-1 downto 0) then 

   data_direction(3) <= EAST; 

elsif temp_data_address_3(3)(MESH_COLUMN_BI-1 downto 0) < 

local_address(MESH_COLUMN_BI-1 downto 0) then 

   data_direction(3) <= WEST; 

  else  

     data_direction(3) <= WEST; 

  end if;   

  if temp_ID_3(2)=empty then data_direction(2) <= NONE; 

elsif temp_data_address_3(2)(MESH_COLUMN_BI-1 downto 0) >          

local_address(MESH_COLUMN_BI-1 downto 0) then 

   data_direction(2) <= EAST; 

elsif temp_data_address_3(2)(MESH_COLUMN_BI-1 downto 0) < 

local_address(MESH_COLUMN_BI-1 downto 0) then 

   data_direction(2) <= WEST; 

elsif temp_data_address_3(2)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) > 

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then 

   data_direction(2) <= SOUTH; 

elsif temp_data_address_3(2)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) < 

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then 

   data_direction(2) <= NORTH; 

  else  

     data_direction(2) <= NORTH; 

  end if;   

  if temp_ID_3(1)=empty then data_direction(1) <= NONE; 

elsif temp_data_address_3(1)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) > 

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then 

  data_direction(1) <= SOUTH; 

elsif temp_data_address_3(1)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) < 

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then 

   data_direction(1) <= NORTH; 

elsif temp_data_address_3(1)(MESH_COLUMN_BI-1 downto 0) > 

local_address(MESH_COLUMN_BI-1 downto 0) then 

   data_direction(1) <= EAST; 

elsif temp_data_address_3(1)(MESH_COLUMN_BI-1 downto 0) < 

local_address(MESH_COLUMN_BI-1 downto 0) then 

   data_direction(1) <= WEST; 

  else  
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     data_direction(1) <= WEST; 

  end if;   

  if temp_ID_3(0)=empty then data_direction(0) <= NONE; 

elsif temp_data_address_3(0)(MESH_COLUMN_BI-1 downto 0) > 

local_address(MESH_COLUMN_BI-1 downto 0) then 

   data_direction(0) <= EAST; 

elsif temp_data_address_3(0)(MESH_COLUMN_BI-1 downto 0) < 

local_address(MESH_COLUMN_BI-1 downto 0) then 

   data_direction(0) <= WEST; 

elsif temp_data_address_3(0)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) > 

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then 

   data_direction(0) <= SOUTH; 

elsif temp_data_address_3(0)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) < 

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then 

   data_direction(0) <= NORTH; 

  else  

     data_direction(0) <= NORTH; 

  end if; 

end process; 

display_out :process(temp_data_address_3,temp_ID_3) 

begin 

  data_out_address <= temp_data_address_3; 

  ID_out <= temp_ID_3; 

end process; 

end behavioral; 

---------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------The permutation stage------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.pkg_IBR_NOC.all; 

 

entity deflection is  

 port( 

 data_in_address   : in   data_address_array(DATA_DIR_NUM-1 downto 0); 

 data_direction_in   : in   data_direction_array(DATA_DIR_NUM-1 downto 0); 

 ID_in   : in   ID_array(DATA_DIR_NUM-1 downto 0); 

  

 data_out_address: out   data_address_array(DATA_DIR_NUM-1 downto 0); 

 ID_out   : out   ID_array(DATA_DIR_NUM-1 downto 0); 

 data_direction_out   : out  data_direction_array(DATA_DIR_NUM-1 downto 0); 
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 clk : in std_logic; 

 

   reset : in std_logic 

 ); 

end deflection; 

 

architecture behavioral of deflection is 

signal temp_data_direction_2, temp_data_direction_3, temp_data_direction_4, temp_data_direction_5 : 

data_direction_array(DATA_DIR_NUM-1 downto 0); 

signal temp_data_address_2, temp_data_address_3, temp_data_address_4, temp_data_address_5 : 
data_address_array(DATA_DIR_NUM-1 downto 0); 

signal temp_ID_2, temp_ID_3, temp_ID_4, temp_ID_5 : ID_array(DATA_DIR_NUM-1 downto 0); 

begin 

 

stage_1 : process(clk,reset) 

begin 

--------------Initialization-------------------- 

 if reset = '1' then  

  temp_data_address_2 <= (others =>(others => '0')); 

  temp_data_direction_2 <= (others =>(others => '0')); 

  temp_ID_2 <= (others =>(others => '0'));  

--------------Top left arbiter------------------  

 elsif clk'event and clk ='1' then   

if (data_direction_in(3)=EAST or data_direction_in(3)=SOUTH) or 

(data_direction_in(2)=WEST or data_direction_in(2)=NORTH) 

  then 

  temp_data_direction_2(3 downto 2)<=data_direction_in(3 downto 2); 

  temp_data_address_2(3 downto 2) <= data_in_address(3 downto 2); 

  temp_ID_2(3 downto 2) <= ID_in(3 downto 2); 

  else  

  temp_data_direction_2(3)<=data_direction_in(2); 

  temp_data_direction_2(2)<=data_direction_in(3); 

  temp_data_address_2(3)<=data_in_address(2); 

  temp_data_address_2(2)<=data_in_address(3);  

    temp_ID_2(3)<=ID_in(2); 

  temp_ID_2(2)<=ID_in(3);  

  end if; 

--------------Bottom left arbiter------------------  

if (data_direction_in(1)=EAST or data_direction_in(1)=SOUTH) or 

(data_direction_in(0)=WEST or data_direction_in(0)=NORTH) 

  then 

  temp_data_direction_2(1 downto 0)<=data_direction_in(1 downto 0); 

  temp_data_address_2(1 downto 0)<=data_in_address(1 downto 0); 
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  temp_ID_2(1 downto 0)<=ID_in(1 downto 0); 

  else  

  temp_data_direction_2(1)<=data_direction_in(0); 

  temp_data_direction_2(0)<=data_direction_in(1); 

  temp_data_address_2(1)<=data_in_address(0); 

  temp_data_address_2(0)<=data_in_address(1); 

  temp_ID_2(1)<=ID_in(0); 

  temp_ID_2(0)<=ID_in(1); 

  end if; 

 end if; 

end process; 

--------------Middle swap------------------  

stage_swap: process(temp_data_direction_2,temp_data_address_2, temp_ID_2)   

begin  

  temp_data_direction_3(3) <= temp_data_direction_2(3); 

  temp_data_direction_3(2) <= temp_data_direction_2(1); 

  temp_data_direction_3(1) <= temp_data_direction_2(2); 

  temp_data_direction_3(0) <= temp_data_direction_2(0); 

  temp_data_address_3(3) <= temp_data_address_2(3); 

  temp_data_address_3(2) <= temp_data_address_2(1); 

  temp_data_address_3(1) <= temp_data_address_2(2); 

  temp_data_address_3(0) <= temp_data_address_2(0); 

  temp_ID_3(3) <= temp_ID_2(3); 

  temp_ID_3(2) <= temp_ID_2(1); 

  temp_ID_3(1) <= temp_ID_2(2); 

  temp_ID_3(0) <= temp_ID_2(0); 

end process; 

--------------Top right arbiter------------------  

stage_2: process(temp_data_direction_3,temp_data_address_3, temp_ID_3)  

begin 

  if (temp_data_direction_3(3)=EAST or temp_data_direction_3(2)=SOUTH) 

  then  

  temp_data_direction_4(3 downto 2) <= temp_data_direction_3(3 downto 2); 

  temp_data_address_4(3 downto 2) <= temp_data_address_3(3 downto 2); 

  temp_ID_4(3 downto 2) <= temp_ID_3(3 downto 2); 

  else  

  temp_data_direction_4(3)<=temp_data_direction_3(2); 

  temp_data_direction_4(2)<=temp_data_direction_3(3); 

  temp_data_address_4(3)<=temp_data_address_3(2); 

  temp_data_address_4(2)<=temp_data_address_3(3); 

  temp_ID_4(3)<=temp_ID_3(2); 

  temp_ID_4(2)<=temp_ID_3(3); 
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  end if; 

 

--------------Bottom right arbiter------------------  

  if (temp_data_direction_3(1)=WEST or temp_data_direction_3(0)=NORTH) 

  then  

  temp_data_direction_4(1 downto 0) <= temp_data_direction_3(1 downto 0); 

  temp_data_address_4(1 downto 0) <= temp_data_address_3(1 downto 0); 

  temp_ID_4(1 downto 0) <= temp_ID_3(1 downto 0); 

  else  

  temp_data_direction_4(1)<=temp_data_direction_3(0); 

  temp_data_direction_4(0)<=temp_data_direction_3(1); 

  temp_data_address_4(1)<=temp_data_address_3(0); 

  temp_data_address_4(0)<=temp_data_address_3(1); 

  temp_ID_4(1)<=temp_ID_3(0); 

  temp_ID_4(0)<=temp_ID_3(1); 

  end if; 

end process; 

--------------Final chance component------------------  

stage_3 : process(temp_data_direction_4,temp_data_address_4,temp_ID_4) 

begin   

  if temp_data_direction_4(3) /= EAST   

  then  

if temp_data_direction_4(1) /= WEST and temp_data_direction_4(3) /= NONE 

and temp_data_direction_4(1) /= NONE then  

    temp_data_direction_5(3)<=temp_data_direction_4(1); 

    temp_data_direction_5(2)<=temp_data_direction_4(2); 

    temp_data_direction_5(1)<=temp_data_direction_4(3); 

    temp_data_direction_5(0)<=temp_data_direction_4(0); 

    temp_data_address_5(3)<=temp_data_address_4(1); 

    temp_data_address_5(2)<=temp_data_address_4(2); 

    temp_data_address_5(1)<=temp_data_address_4(3); 

    temp_data_address_5(0)<=temp_data_address_4(0); 

    temp_ID_5(3)<=temp_ID_4(1); 

    temp_ID_5(2)<=temp_ID_4(2); 

    temp_ID_5(1)<=temp_ID_4(3); 

    temp_ID_5(0)<=temp_ID_4(0);     

elsif temp_data_direction_4(0) /= NORTH and temp_data_direction_4(3) /= 

NONE and temp_data_direction_4(0) /= NONE then  

    temp_data_direction_5(3)<=temp_data_direction_4(0); 

    temp_data_direction_5(2)<=temp_data_direction_4(2); 

    temp_data_direction_5(1)<=temp_data_direction_4(1); 

    temp_data_direction_5(0)<=temp_data_direction_4(3); 
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    temp_data_address_5(3)<=temp_data_address_4(0); 

    temp_data_address_5(2)<=temp_data_address_4(2); 

    temp_data_address_5(1)<=temp_data_address_4(1); 

    temp_data_address_5(0)<=temp_data_address_4(3); 

    temp_ID_5(3)<=temp_ID_4(0); 

    temp_ID_5(2)<=temp_ID_4(2); 

    temp_ID_5(1)<=temp_ID_4(1); 

    temp_ID_5(0)<=temp_ID_4(3); 

   else  

    temp_data_direction_5<=temp_data_direction_4; 

    temp_data_address_5<=temp_data_address_4; 

    temp_ID_5<=temp_ID_4;     

   end if;  

  elsif temp_data_direction_4(2) /= SOUTH then  

if temp_data_direction_4(0) /= NORTH and temp_data_direction_4(2) /= 

NONE and temp_data_direction_4(0) /= NONE then  

    temp_data_direction_5(3)<=temp_data_direction_4(3); 

    temp_data_direction_5(2)<=temp_data_direction_4(0); 

    temp_data_direction_5(1)<=temp_data_direction_4(1); 

    temp_data_direction_5(0)<=temp_data_direction_4(2); 

    temp_data_address_5(3)<=temp_data_address_4(3); 

    temp_data_address_5(2)<=temp_data_address_4(0); 

    temp_data_address_5(1)<=temp_data_address_4(1); 

    temp_data_address_5(0)<=temp_data_address_4(2); 

    temp_ID_5(3)<=temp_ID_4(3); 

    temp_ID_5(2)<=temp_ID_4(0); 

    temp_ID_5(1)<=temp_ID_4(1); 

    temp_ID_5(0)<=temp_ID_4(2); 

elsif temp_data_direction_4(1) /= WEST and temp_data_direction_4(2) /= 
NONE and temp_data_direction_4(1) /= NONE then  

      temp_data_direction_5(3)<=temp_data_direction_4(3); 

    temp_data_direction_5(2)<=temp_data_direction_4(1); 

    temp_data_direction_5(1)<=temp_data_direction_4(2); 

    temp_data_direction_5(0)<=temp_data_direction_4(0); 

    temp_data_address_5(3)<=temp_data_address_4(3); 

    temp_data_address_5(2)<=temp_data_address_4(1); 

    temp_data_address_5(1)<=temp_data_address_4(2); 

    temp_data_address_5(0)<=temp_data_address_4(0); 

    temp_ID_5(3)<=temp_ID_4(3); 

    temp_ID_5(2)<=temp_ID_4(1); 

    temp_ID_5(1)<=temp_ID_4(2); 

    temp_ID_5(0)<=temp_ID_4(0); 
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   else  

    temp_data_direction_5<=temp_data_direction_4; 

    temp_data_address_5<=temp_data_address_4; 

    temp_ID_5<=temp_ID_4; 

   end if; 

  else 

  temp_data_direction_5<=temp_data_direction_4; 

  temp_data_address_5<=temp_data_address_4; 

  temp_ID_5<=temp_ID_4; 

  end if; 

end process; 

  data_out_address<=temp_data_address_5; 

  ID_out<=temp_ID_5; 

end behavioral; 


