

IMPROVED BUFFERLESS ROUTING VIA BALANCED PIPELINE STAGES

By

Jianshu Qian

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

August, 2013

Nashville, Tennessee

Approved:

Professor William H. Robinson

Professor Yuan Xue

i

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my advisor, Dr. William H. Robinson,

for his encouragement and guidance during the period while I pursued my Master’s

degree at Vanderbilt University. He is not only an advisor for my research, but also the

mentor for my life.

Also, I am deeply grateful to my committee member, Dr. Yuan Xue, for her support in

reviewing this thesis. I would like to thank all the members in the Security and Fault

Tolerance (SAF-T) Research Group for sharing their ideas and feedback with me since I

joined.

Last but not least, I must thank my parents. They encourage me so much that when I

meet difficulties, no matter how big they are, I never lose hope and at last I can overcome

them.

ii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ... i

TABLE OF CONTENTS .. ii

LIST OF FIGURES ... iv

LIST OF TABLES .. v

Chapter

I. INTRODUCTION... 1

 Network-on-Chip History ...1

 Motivation and Our Approach ..2

Thesis Organization ..4

II. BACKGROUND ... 5

 Network-on-Chip..5

 Virtual-Channel Router architecture ...9

 Bufferless Deflection Routing .. 10

 CHIPPER ... 11

 Injection .. 12

 Microarchitecture .. 12

 Ejection ... 14

 Golden Packet ... 15

 Field Programmable Gate Array (FPGA) ... 15

III. REDESIGN OF THE PERMUTATION STAGE ... 18

IV. RESULTS AND DISCUSSION ... 22

 Methodology ... 22

 Router’s Operating Frequency ... 23

 Area .. 24

 Power .. 25

 Latency.. 27

iii

V. SUMMARY AND FUTURE WORK ... 29

REFERENCES .. 30

APPENDIX……………………………………………………………………………………………….33

iv

LIST OF FIGURES

Figure 1 Examples of communication structures in Systems-on-Chip6

Figure 2 NoC topologies ...7

Figure 3 The typical VC router architecture ... 10

Figure 4 Two-stage permutation with four arbiters .. 13

Figure 5 FPGA design flow .. 17

Figure 6 4x4 mesh networks ... 17

Figure 7 Improved router structure.. 20

Figure 8 Timing path ... 23

Figure 9 Dynamic and Static power consumption for each router 26

Figure 10 Flit average latency ... 27

Figure 11 The latency information for each router .. 27

v

LIST OF TABLES

Table 1 Flit structure ..9

Table 2 Steering functions for two-stage permutation structure 13

Table 3 Data structure stored in two memory blocks ... 22

Table 4 Critical path for each stage observed by Quartus II ... 24

Table 5 Number of logic elements for each router ... 24

1

CHAPTER I

INTRODUCTION

I.A Network-on-Chip History

As very-large-scale integration (VLSI) technology advances, designers aim to build more

complex and robust computing systems in a single silicon chip [1]. With the rapid

increase of the number of components that appear on the chip, interconnect requirements

have also increased; in fact, interconnect becomes a strict limitation on performance [2].

In order to solve this problem, the packet–switched on-chip network has been proposed

[3]. The idea of a Network-on-Chip (NoC) borrows networking theory from the computer

networking domain and considers each intellectual property (IP) core as a single node. In

each node, a high-speed router connects with other routers of neighboring nodes [4].

At the heart of the on-chip network, the tradeoff between performance, area, and

power is significant [4]. In previous studies [5-7], the router architecture always contains

buffers on the input ports. The buffer scheme is used to store packets; these packets must

wait for the output resource due to contention with other packets [8]. These designs have

been widely adopted due to their improved performance [3]. However, the analysis of

different hardware implementations showed that the networks consisting of buffered

routers are expensive. In the TRIPS prototype processor [9], 75% of the NoC area is

filled with buffers; for the RAW microprocessor [10], 36% of chip power is consumed by

the on-chip network. Hence, the buffer space issue has been deeply discussed, and the

2

trend of design efforts has shifted. Some related studies [11-13] attempt to identify an

optimal buffer size to reduce the cost associated with the hardware.

Finally, the extreme idea - entirely bufferless routing - has been proposed in

BLESS [14] and improved by CHIPPER [15]. Bufferless routing is borrowed from

network theory and has been called “hot potato” routing. Because the networks have no

buffer to store the packets, each packet has to keep moving through the network until it

reaches its destination [14]. When two packets contend for the output resource, one

packet has to deflect, which causes it moves further away from its destination [14]. The

key for performance in bufferless routing is minimizing the deflection rate. In CHIPPER,

the results show that bufferless routing saves 169% for area [16] and averages 54.9% less

power consumption compared to the buffered networks in Chip Multiprocessors (CMP)

[15]. However, when the networks have a high injection rate of packets, the conventional

buffered network has a greater performance [17].

I.B Motivation and Research Approach

In the ideal case, the bufferless router should produce a deflection rate as small as

possible. A smaller deflection rate means that the network has lower average packet

latency [17]. CHIPPER has a two-cycle router pipeline structure, and the permutation

structure in the second stage of CHIPPER is used to allocate the output resource [15].

With an investigation of the permutation, it was observed that the permutation cannot

meet the requirement of minimizing the deflection rate (i.e., some packets are deflected

unnecessarily). This feature also indirectly increases the total power consumption. In

order to reduce the average packet latency, an improved design is proposed for CHIPPER

3

without changing the router’s speed. The original permutation in the second stage is

replaced with a new permutation. The critical path in the new second stage is a little

longer than the previous second stage, but maintains the original speed of CHIPPER; the

original architecture of CHIPPER used a two-stage pipeline structure where the first stage

was significantly longer. Thus the router’s frequency was determined by the first stage.

This new design uses the available slack time within CHIPPER’s operating frequency,

and the delay of the second stage is still less than the first stage. Moreover, according to

the observation in minBD [16], CHIPPER with two ejection port increases the average

performance by 3.7% over the original CHIPPER. Hence in this research, dual-ejection

CHIPPER is considered as baseline for comparison.

In the hardware implementation, the use of a field-programmable gate array

(FPGA) is reasonable. FPGAs are a way to build and verify complex systems with high

integration levels. Various logic elements, memory blocks and I/O allow us to design the

on-chip network rapidly [18]. In this research, the FPGA provides the capability to

determine the maximum frequency from the critical path. It also offers a platform

allowing us to build the on-chip network in order to measure the average packet delay.

This thesis describes the experience in designing a real-time mesh topology network with

the new bufferless router and compares the results between dual-ejection CHIPPER and

the improved router design. The results show that the improved router structure reduces

the deflection rate significantly, and reduces up to 16.2% average latency than the Dual-

ejection CHIPPER. The operating frequency for both designs is the same.

4

I.C Thesis Organization

The rest of the thesis is organized as follows. Section II provides the necessary

background on NoC, traditional buffered router, baseline CHIPPER, and the FPGA

design flow. Section III presents the improved router structure. Section IV discusses the

evaluation methodology and results. Section V summarizes this thesis and discusses the

future work.

5

CHAPTER II

BACKGROUND

This chapter introduces the basic ideas of NoC, traditional buffered router and bufferless

deflection routing, outline the CHIPPER structure briefly, and describe the design flow

when we use an FPGA board to build the 4x4 mesh network.

II.A Network-on-Chip

“The chip is the network [19].” This idea proposed by Radu Marculescu and Paul

Bogdan points out the direction of on-chip interconnection. Previous studies [1, 20, 21]

have expounded that many industrial tasks can be solved by a System-on-Chip (SoC)

platform and many industrial products that implement this method appear in the market,

especially in the CMP domain. SoC integrates all components of a system into a small

single chip, and it can consist of microcontrollers, microprocessors, DSPs, memory

blocks, and I/O. As VLSI technology advances and demand for performance increases,

the designer desires to add more IP cores onto a single chip. However, significant

limitations have arisen as we continue to implement traditional interconnects.

In Figure 1, it shows three kinds of on-chip interconnect structure for a mobile

phone [22]. The bus topology and the point-to-point (p2p) topology have their own

strengthes and weaknesses. Both of them have well-understood concepts and

comprehensive research experience. These strengthes reduce the production period

efficiently. In a simple mobile phone system, implementing a bus or p2p interconnect is

reasonable. However, as more IP cores are connected on the single chip, they become the

6

limitation for communication. As more units are added to busses, because of the parastic

capacitance, the power consumption for each communication event grows as well.

Moreover, shared busses create contention and hierachal busses result in complexity [22].

For the p2p structure, the number of wires has an exponential increase as the designer

adds more IP cores on a chip. It results in both a routing problem and a die area problem.

In order to solve these problems, the NoC structure has been proposed. NoC appiles a

networking method, and the IP core implements the on-chip communication by a router

just like how the terminal works in the real world. Unlike busses and p2p, it is the first

time that the networking method is involoved in the digital system design, and compared

to networking, the digital system design focuses on the distinct parameters. Designers are

not only concern about latency, but also care about power consumption and area. Hence,

NoC is still considered as an immature area and maintains rapid growth.

Figure 1 Examples of communication structures in Systems-on-Chip. a) traditional bus-

based communication,b) dedicated point-to-point links, c) a chip area network. [22]

As the designer implements an on-chip network, the network is characterized by:

(1) topology, (2) routing, (3) flow control, and (4) router structure.

7

Usually, we consider the IP core and its corresponding router as one node, and the

distribution of nodes is specified by topology. Fortunately, networking engineers have

designed various topologies, such as Mesh, Torus, Octagon, and Butterfly Fat Tree (BFT)

[23]. Figure 2 shows the different topologies. The most popular topology in NoC is mesh,

and in this thesis, we consider it as our default topology.

Figure 2 NoC topologies. (a) Mesh, (b) Torus, (c) Octagon, (d) BFT. [23]

8

Routing determines the path between the initial node and the destination.

Traditional routing is deterministic and use minimal routing. The path for each packet has

been decided before being sent into the network, and their path is absolutely minimal.

The node position is described using a coordinate system. For example, suppose a packet

whose start position and destination are neither in the same row nor in the same column.

The X-Y rule is considered as the most common routing rule in NoC. It determines that a

packet goes through x-axis first after being sent into network, until its current position is

in the same column with the destination. Then it will go through the y-axis until it

reaches its destination. The X-Y rule has been acknowledged by every router in the

network, and that promises all packets in the network have minimal path. However, since

the path for each packet is unchangable, for each node, it is highly probable that more

than one packet will contend in the same direction. In this case, in order to store the rival

packet, adding buffers on the input port has been proposed in router architecture. The

buffered router structure is disscussed further in Section II.B. An opposite routing method

is adaptive routing. The path for each packet is highly based on the real-time traffic in the

network. If the conjestion happens in a part of network, then the packet would take a

detour. The advantage of this method is that the buffer structure is unnecessary. However,

the minimial path cannot be guaranteed. Bufferless deflection routing is a kind of

adaptive routing, which is disscussed in Section II.C.

Flow control determines the basic unit in the network, the link carrying capacity,

and the buffer capacity if necessary. A complete packet that traverses the network is

unrealistic since the size of packet is not uniform. A packet is typically divided into a

couple of flits, and the flit is the basic unit in the network. The size of the flit determines

9

the carrying capacity for a link and the buffer size. Table 1 illustrates the basic flit

structure, where each flit consists of the Information, Destination address, and Unique ID.

Table 1 Flit structure

In a simple router, the essential components are inputs, outputs, and a switch. A

typical router has five inputs/outputs: four that connect with neighbor routers and one that

connects with the local IP core. The switch is used to allocate the output resources. As for

other components, it highly based on what kind of routing is selected. Section II.B

discusses a type of buffered router structure, while Section II.C and Section II.D discuss a

type of bufferless router structure.

II.B Virtual-Channel Router Architecture

The Virtual-Channel (VC) router is a popular structure in the NoC that applies

deterministic and minimal routing. Even through there are a lot of various structures that

are derived from the VC router structure, the base structure adds buffers at each input

port. Figure 3 shows the base VC router structure. In this case, four VCs at each input

port are buffered in first-in-first-out (FIFO) queues. In order to acquire the states in

neighboring routers, the router communicates with its neighbor routers all the time. If all

the VCs in one input port are full, then its corresponding neighbor would stop

transferring flits to that input until there is an empty VC in that input port. This

communicated operation is controlled by an Arbitration Unit (AU). The crossbar is a

Information Destination Address Unique ID

10

switch that allocates flits to its desired output. Because of the extra VCs allocation and

router communication, the operation time in a buffered router is considered longer than in

a bufferless router. As an example in [24], it states that the maximum clock frequency

for non-pipeline VC router structure is 72.37 MHz calculated with an FPGA.

Figure 3 The typical VC router architecture

II.C Bufferless Deflection Routing

As the number of cores on a chip increase, the power consumption by a buffered network

cannot be ignored. In this context, Baran proposed the concept of deflection routing [25],

11

and the first implementation for an on-chip network is BLESS [14]. Compared to the

typical virtual channel buffered network, eliminating buffers can save significant die area

and power [15]. It was considered as an alternative scheme for buffered routing.

In the BLESS and CHIPPER networks, each packet splits its resource into several

flits, and the flit as the basic unit moves through the network independently [16]. As a flit

injects into the network, it has to keep moving and cannot stop until it has been ejected

from the network. The Unique ID field is necessary because the flit travels through the

network independently, and the deflection is unpredictable; flits from the same packet do

not arrive at the destination in order. The Unique ID is used to sort flits at the local node;

when a packet has completely arrived, the node will send it to the processor. Then the

network must provide buffer space at the exit of each node in order to reassemble the

packet.

The deflection algorithm is very simple. In the ideal case, if two flits arrive at the

router at the same cycle and their desired output is not the same, then they will move away

from this router towards their desired output. However, if two flits contend for the same

output, then one flit will win and the other flit has to move away from this router towards

a free output.

II.D CHIPPER

CHIPPER was an improved design that was derived from BLESS. Compared to BLESS,

CHIPPER provided a more reasonable permutation structure and packet reassembly. In

the following content, the basic principles of CHIPPER are described.

12

II.D.1 Injection

The injection port is the entrance that allows the flit into the network. However, the

bufferless router cannot guarantee that every fresh flit would be injected into the network

immediately. Injection was only permitted when the inputs have a free slot. Therefore, a

buffer space in the injection port is necessary. The buffer is used to hold the fresh flit

when the injection requirement was not met.

II.D.2 Microarchitecture

The baseline CHIPPER implements a two-stage router pipeline structure. The first stage

is a computation stage. In this stage, the function is not only ejecting and injecting flit,

but also computing the desired output based on the destination address. The desired

output is based on: (1) analysis of the X-Y routing and (2) comparisons of the destination

address with the local address. Because the router is bufferless, after the computation

stage, the flit is stored in the register and waits for the permutation stage [15].

The permutation stage is the key for bufferless deflection routing. It decides the

deflection rate directly. The permutation architecture of CHIPPER is shown in Figure 4;

it contains 2x2 arbiters, and the function of each arbiter makes the decision of swapping

two flits or not. The steering functions for permutation are given in Table 2 (Rules in

Arbiter column) for North (N), South (S), East (E), and West (W) directions.

13

Figure 4 Two-stage permutation with four arbiters [15]

Table 2 Steering functions for two-stage permutation structure [15]

Input Rules in Arbiter Output

Flit (desired

direction)

Stage 1

(Arbiter1 and

Arbiter 2)

Stage 2

(Arbiter3 and

Arbiter4)

Permutated

Input

Output

Direction

Flit 1(E)

Flit 2(N)

N, S: output 0

E,W: output 1

N, E: output 0

S, W: output1

Flit 2(N)

Flit 3(S)

N

S

Flit 3(S)

Flit 4(W)

N, S: output 0

E,W: output 1

E, N: output 0

W, S: output1

Flit 1(E)

Flit 4(W)

E

W

N

S

E

W

Stage 1 Stage 2

Output 1

Output 0

For each arbiter

14

In Table 2, Flit 1 (requires East direction) and Flit 2 (requires North direction)

enter into Arbiter 1 (Figure 4, top left); based on the rules, the arbiter decides that these

two flits should swap. Flit 3 (requires South direction) and Flit 4 (requires West direction)

enter Arbiter 2 (Figure 4, bottom left); Arbiter 2 decides that they do not swap. After Flit

1 and Flit 3 have been swapped in the middle between the two stages, Flit 2 and Flit 3

enter into Arbiter 3 (Figure 4, top right), Flit 1 and Flit 4 enter into the Arbiter 4 (Figure 4,

bottom right), and the arbiters decide the next routing assignments. Finally, the four flits

get to their desired directions. Compared to the earlier BLESS design, the two-stage

permutation structure implements the parallel arbiter scheme in both stages, which

divides the critical path efficiently [15]. Even though the result shows that the

performance of CHIPPER is lower than BLESS, since the critical path of CHIPPER is

reduced by 29.1% over BLESS, that guarantees CHIPPER is better than BLESS [15].

II.D.3 Ejection

The ejection port is the exit that sends the flit out of the network. As previously

discussed, in order to maintain the packet’s correctness, the network must provide a

reassembly buffer at each node.

The analysis of the minimally buffered deflection routing (MinBD) shows that in

up to 8.5% of all cycles, two flits reach the destination router in the same cycle [16]. In

this case, if the design only supports ejecting a single flit per cycle, then it will produce

one unnecessary deflection. In order to reduce the deflection rate, we implement a dual-

ejection design in both CHIPPER and our improved router. That means these two

15

schemes could eject two local flits in a single cycle. The result shows CHIPPER with two

ejection increases average performance by 3.7% over the original CHIPPER [16].

II.D.4 Golden Packet

The golden packet idea is used as an inexpensive strategy for priority to guarantee against

the livelock problem. Livelock is a common problem that occurs in bufferless deflection

routing networks. When a flit injects into the network, the deflection behavior is

unpredictable. If the deflection happens, then the flit can move further away from its

destination. In the worst case, an unlucky flit will be deflected forever and never reach its

destination. Moreover, the livelock problem will cause the reassembly buffer to overflow

at the destination node. It is because other flits that belong to the same packet have to

wait for the missing flit.

In CHIPPER, to avoid the livelock problem, the network selects a single packet

and sets this packet as the Golden priority. For a period time, the priority of this packet is

above all other packets globally. All routers in the network have this knowledge. The

period must ensure that all flits belonging to the golden packet reach their destination. In

the every permutation, this prioritization rule was added into every arbiter. If a golden flit

is the input, then it will win over any non-golden flits. This implementation guarantees

the golden packet will not be deflected except if both flits belong to the golden packet.

II.D.5 Field Programmable Gate Array (FPGA)

In this section, the FPGA design flow is introduced. An FPGA is a good way to verify a

digital system’s design before silicon manufacturing. It is an integrated circuit that

16

contains programmable logic elements with reconfigurable interconnections. Users

configure the logic elements to perform various functions. Modern FPGAs also support

memory block and IP cores. These features offer users a rapid design process [26].

In this thesis, the Altera FPGA DE2-115 board (with a Cyclone IV EP4CE115F29

FPGA) [27] is used to perform the investigation on CHIPPER and build a 4x4 mesh

topology network with the bufferless routers. This FPGA board contains approximately

115,000 logic elements and 138M memory blocks [27]. The network was developed with

the VHDL language; simulation and synthesis of the design use the Electronic Design

Automation (EDA) tool Quartus II [28], and the function was verified at the gate level

with ModelSim [29]. The design flow is shown in Figure 5 [30]. Power consumption and

critical path information are produced by the PowerPlay function and the TimeQuest

function in Quartus II. Quartus II also provides a function called In-System Memory

Content Editor. It is an easy way to observe the content that has been stored in the

memory block [28].

In order to evaluate the average latency, SRAM is used in each node to build two

memory blocks. The SRAM is not included in the analysis of the critical path. One

memory block is used to connect with the injection port and store the injection flits; the

other one is used to connect with the two ejection ports and records the flits and the time

they were ejected from the local node. Figure 6 shows the 4x4 mesh topology network as

well as the components contained in each node.

17

Figure 5 FPGA design flow [30]

Figure 6 4x4 mesh networks

18

CHAPTER III

REDESIGN OF THE PERMUTATION STAGE

During the investigation for CHIPPER, it was observed that the critical path between the

computation stage and the permutation stage is unbalanced. Because the router is a two-

stage pipelined architecture and the permutation stage is faster than the computation

stage, it gives the opportunity to improve the architecture. Moreover, the permutation in

CHIPPER cannot meet the ideal case; some unnecessary deflections of flits occur in

CHIPPER. For example, assume four flits enter into the router, and their desired

directions are N, S, E, and W, respectively. Meanwhile, the outputs have the same order

with their desired directions. In the ideal case, the flits can move through the router with

their desired directions. However, in CHIPPER, two flits must be deflected in this

situation. Because the critical path in the permutation stage is shorter than the critical

path in the computation stage, there is timing slack to improve the permutation so long as

the critical path is not longer than computation stage.

It was decided to keep the 2x2 arbiter scheme and modify their rules to achieve

the idea to improve the design. Moreover, an extra component is added following the 2x2

arbiter. The extra component, which is called Final Chance, will increase the critical path

in the permutation stage. The critical path in the new permutation stage is nearly equal to

the critical path in the computation stage. The improved design is shown in Figure7, and

the critical path information is discussed further in Section IV.2.

19

Algorithm 1. Improved permutation steering algorithm

Improved permutation

Since the order for flits maybe change, we describe

them with flits in position 1, 2, 3 and 4 from top to

bottom, and the corresponding desired directions are

d1, d2, d3, d4

Assuming the output direction is N, S, E, and W

If one input slot is empty, the desired direction is 0

Arbiter 1 if (d1 == N or S) or (d2 == E or W)

 do none

 else

 do swap

Arbiter 2 if (d3 == N or S) or (d4 == E or W)

 do none

 else

 do swap

swap flits that are in position 1 and 2

Arbiter 3 if (d1 == N) or (d2 == S)

 do none

 else

 do swap

Arbiter 4 if (d3 == E) or (d4 == W)

 do none

 else

 do swap

Final Chance

 If (d1 != N)

 if (d3!=E and d1! =0 and d3!=0)

 do swap flits that are in position 1 and 3

 else if (d4!=W and d1!=0 and d4!=0)

 do swap flits that are in position 1 and 4

 else if (d2 != S)

 if (d3!=E and d2! =0 and d3!=0)

 do swap flits that are in position 2 and 3

 else if (d4!=W and d2!=0 and d4!=0)

 do swap flits that are in position 2 and 4

20

Figure 7 Improved router structure

Because the rules for golden packet are easy to understand, we do not include

them in Algorithm 1. The rules described in Algorithm 1 only demonstrate normal cases.

The Final chance component give flits a last chance to swap. It is assumed that the order

of the outputs is N, S, E, and W. The function for the first two arbiters is to move flits

that desire N or S to the Arbiter 3 and to move flits that desire E or W to the Arbiter 4.

Next, based on the rules, Arbiter 3 and Arbiter 4 decide to swap them or not. They

guarantee at least one flit will win its desired output. Finally, inputs move through to the

Final Chance step. This step only affects the flits that will be deflected. The two flits that

will be deflected swap with each other. The previous example is used to demonstrate this

permutation. Assume that the desired directions of four flits are N, S, E and W from top

to bottom, and the output order is N, S, E, and W. Within the 2x2 arbiter structure, Flit 2

and Flit 3 have changed their order and the order for desired directions has

21

simultaneously changed to N, E, S, and W. The router discovers that Flit 2 and Flit 3 will

be deflected, and then the router gives them a final chance to swap with each other. The

final result order is N, S, E, and W, and no deflection happens in this case.

When the function of permutation is analyzed, we implement probability theory

and consider the inputs as a combination. The desired direction for each input has five

possibilities: N, S, E, W, and if the input is empty, we assume the desired direction is 0.

Because each router has four inputs, there are 625 combinations. The improved router

improves 145 combinations. If the extreme case is considered (i.e., no input is empty, as

would occur when the network has a high injection rate), then the improved combination

number is 94 over 256 (i.e., the maximum number of combinations).

22

CHAPTER IV

RESULTS AND DISCUSSION

In this thesis, the goal is to improve CHIPPER and to implement the new algorithm with

an FPGA board. A 4x4 mesh topology network was implemented to test the design. The

improved router was compared to a dual-ejection CHIPPER using two metrics: average

latency and hardware cost (i.e., area and power). Both results were produced by the

FPGA and Quartus II.

IV.A Methodology

To evaluate the average latency, we collect the uniform input set from simulator NS-3.

NS-3 is a discrete-event network simulator that is used to evaluate Internet systems [31].

The data are pre-loaded into the memory block that is connected with an injection port in

each node. The basic flit is 32 bits. It consists of 10 bits for the Unique ID, 4 bits for the

destination address and 16 bits for the resource. As a flit moves away from the network,

the Unique ID and the time it arrives in the destination are recorded in another memory

block.

Table 3 Data structure stored in two memory blocks

16 bits Resource 4 bits Address 10 bits Unique ID

10 bits Time Info. 4 bits Address 10 its Unique ID

23

IV.B Router’s Operating Frequency

First, we study the impact of our changes on the operating frequency of the router.

TimeQuest is the function for analyzing timing. It determines the reliable conditions

during which the integrated circuits can be operated properly.

Figure 8 Timing path

In Figure 8, it illustrates the timing path in a simple circuit. The TimeQuest

requires the design to produce a timing netlist. Next, based on the timing netlist, the

TimeQuest decides the data required times, data arrival times, and clock arrival times and

detects possible timing violations. Moreover, it determines the timing relationships that

must be met for the design. After these operations, the TimeQuest determines a longest

time path in the circuit. In order to operate properly, the clock frequency is determined by

the longest timing path in the circuit, called the critical path. Using this function on

Quartus II, we observe the critical path. Table 4 shows the critical path for each stage and

the maximum clock frequency for each router.

24

 Table 4 Critical path for each stage observed by Quartus II

Dual-ejection

CHIPPER
Improved Router

First

stage

Second

stage

First

stage
Second stage

Critical Path 3.22 ns 2.34 ns 3.22 ns 3.20 ns

Maximum Clock

Frequency
310.6 MHz 310.6 MHz

From the table, we find the critical path in the improved second stage increased

by 36.8% over the original second stage, but the improved second stage is more balanced

with the critical path of the first stage. The maximum clock frequency is determined by

the longest critical path in each router. Because the critical path for the first stage is 3.22

ns in each router, the maximum clock frequency for both designs is 310.6 MHz. So, our

improved router has the same speed as the Dual-ejection CHIPPER.

IV.C Area

Table 5 Number of logic elements for each router

 Dual-ejection CHIPPER Improved Router

Logic Element 529 645

Next, Table 5 shows the area impact with the number of logic element used by the

Cyclone IV FPGA on the DE2-115 board. It displays the number of logic elements for

each router. The increased router area (22%) from Dual-ejection CHIPPER to the

25

improved router is due to adding the Final Chance component in the second stage. Since

the CHIPPER has a significant saving in area (169%) compared to the conventional

buffered router (4 virtual channels (VCs), 4 flits per VC) [16], the increased area in the

improved router still provides significant savings when compared to buffered routing.

IV.D Power

The Powerplay Power Analysis Tool is the function used to simulate the power

consumption within the Quartus II software. There are a lot of factors affect the results.

The most obvious factor for power consumption is the device resource usage. It is

apparent that a design with more logic elements (LEs), multiplier elements, and memory

blocks would consume more power. The FPGA device is another factor for power

consumption. Many device parameters can affect the power consumption. Manufacturing

process is an instance. Process impacts static power consumption primarily since sub-

threshold leakage current varies exponentially with changes in transistor threshold

voltage [28]. But the impact for dynamic power is trivial. To avoid the false comparative

result, we must clarify the FPGA device before we compare the power consumption.

Environmental condition also impacts the power. A higher junction temperature caused

higher static power consumption. In order to guarantee the circuit works properly, we

always implement a fan system or a water cooling system to lower the temperature in

reality. In the Powerplay Power Analysis Tool, it provides the cooling solution as well.

The device thermal power and cooling solution result in the junction temperature

remaining within the specified range [28]. The final significant factor in estimating power

consumption is the input behaviors. In each logic element, its transition is a change from

26

1 to 0, or 0 to 1. Dynamic power increases linearly with the transition rate as you change

the state frequently for logic elements.

In our experiments, the supply voltage is 1.2 V, the process technology is 90nm,

the router clock frequency is 300 MHz, and ambient temperature is 25 °C. In Figure 9,

the x-axis indicates the number of inputs per router. The result shows that the change in

static power consumption is not significant. The average dynamic power consumption

increased by 15% from CHIPPER to the improved router.

Figure 9 Dynamic and Static power consumption for each router

27

IV.E Latency

Figure 10 Flit average latency

Figure 11 The latency information for each router

0

2

4

6

8

10

12

14

16

18

20

0.1 0.2 0.3 0.4

L
at

en
cy

 (
cy

cl
e)

Injection Rate

Average Latency

Dual-ejection CHIPPER

Optimized Router

0

20

40

60

80

100

120

140

160

180

0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4

L
at

en
cy

 (
cy

cl
e)

Injection Rate

Dual-ejection
CHIPPER

Improved
Router

Max Latency

3rd Quartile

Median

1st Quatile

Min Latency

28

Latency is a measure of time delay experienced in the system. In the NoC system, time

latency is defined as the time from the flit starts to require the local input until the flit

reaches the destination node. Figure 10 shows the average latency for injected flits. The

impact of changing the permutation structure is illustrated when the injection rate is high.

Up to 16.2% of average latency has been decreased when the injection rate is 0.4 flits per

cycle per node. Figure 11 shows the latency distribution information. It depicts the

latency through their quartiles. The improved router reduces the variance in the latency as

well as the maximum (i.e., worst-case) delay observed in our experiments.

29

CHAPTER V

SUMMARY AND FUTURE WORK

This thesis presents an improved bufferless router architecture based on the CHIPPER

design. The improved bufferless router implements a new permutation component that

balances the pipeline stages and reduces the average latency of flits. The design operates

at the same clock frequency as the Dual-ejection CHIPPER. By adding the Final Chance

module and modifying the rules for permutation, the deflection rate has been reduced,

and the result shows the average latency was reduced effectively. Since CHIPPER saves

area and power significantly when compared to buffered routers, the increased area and

power in the improved router still compare favorably to buffered routers. Thus, the

improved bufferless router is an effective compromise between a conventional buffered

router and CHIPPER.

The future work in this area involves on two enhancements. One is that we plan to

implement our improved bufferless router in more topologies and test their performance

with multiple benchmarks. The other enhancement we plan is to measure the maximum

clock frequency with advanced CMOS manufacturing process and make sure our

balanced design can work on different CMOS manufacturing processes as well.

30

REFERENCES

[1] L. Benini and G. De Micheli, "Networks on chips: A new SoC paradigm,"

Computer, vol. 35, pp. 70-78, 2002.

[2] S. Pasricha and N. Dutt, On-chip communication architectures: system on chip

interconnect: Morgan Kaufmann, 2010.

[3] W. J. Dally and B. Towles, "Route packets, not wires: On-chip interconnection

networks," in Design Automation Conference, 2001. Proceedings, 2001, pp. 684-

689.

[4] W. J. Dally and B. P. Towles, Principles and practices of interconnection

networks: Morgan Kaufmann, 2004.

[5] T. Bjerregaard and J. Sparso, "Virtual channel designs for guaranteeing

bandwidth in asynchronous network-on-chip," in Norchip Conference, 2004.

Proceedings, 2004, pp. 269-272.

[6] N. Kavaldjiev, G. J. Smit, P. G. Jansen, and P. T. Wolkotte, "A Virtual Channel

Network-on-Chip for GT and BE traffic," in Emerging VLSI Technologies and

Architectures, 2006. IEEE Computer Society Annual Symposium on, 2006, p. 6

pp.

[7] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, "Virtual channels in networks

on chip: implementation and evaluation on hermes NoC," in Proceedings of the

18th annual symposium on Integrated circuits and system design, 2005, pp. 178-

183.

[8] W. J. Dally, "Virtual-channel flow control," Parallel and Distributed Systems,

IEEE Transactions on, vol. 3, pp. 194-205, 1992.

[9] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia, M.

Govindan, et al., "Distributed microarchitectural protocols in the TRIPS prototype

processor," in Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM

International Symposium on, 2006, pp. 480-491.

[10] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, et al.,

"The Raw microprocessor: A computational fabric for software circuits and

general-purpose programs," Micro, IEEE, vol. 22, pp. 25-35, 2002.

[11] M. Coenen, S. Murali, A. Radulescu, K. Goossens, and G. De Micheli, "A buffer-

sizing algorithm for networks on chip using TDMA and credit-based end-to-end

flow control," in Hardware/Software Codesign and System Synthesis, 2006.

31

CODES+ ISSS'06. Proceedings of the 4th International Conference, 2006, pp.

130-135.

[12] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, "Next generation on-chip

networks: what kind of congestion control do we need?," in Proceedings of the

9th ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, p. 12.

[13] M. Palesi, R. Holsmark, S. Kumar, and V. Catania, "A methodology for design of

application specific deadlock-free routing algorithms for NoC systems," in

Proceedings of the 4th international conference on Hardware/software codesign

and system synthesis, 2006, pp. 142-147.

[14] T. Moscibroda and O. Mutlu, "A case for bufferless routing in on-chip networks,"

in ACM SIGARCH Computer Architecture News, 2009, pp. 196-207.

[15] C. Fallin, C. Craik, and O. Mutlu, "CHIPPER: A low-complexity bufferless

deflection router," in High Performance Computer Architecture (HPCA), 2011

IEEE 17th International Symposium on, 2011, pp. 144-155.

[16] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and O. Mutlu,

"MinBD: Minimally-buffered deflection routing for energy-efficient

interconnect," in Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International

Symposium on, 2012, pp. 1-10.

[17] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis, "Evaluating

bufferless flow control for on-chip networks," in Proceedings of the 2010 Fourth

ACM/IEEE International Symposium on Networks-on-Chip, 2010, pp. 9-16.

[18] Z. Salcic and A. Smailagic, Digital systems design and prototyping: using field

programmable logic and hardware description languages: Kluwer Academic

Pub, 2000.

[19] R. Marculescu and P. Bogdan, "The chip is the network: Toward a science of

network-on-chip design," Foundations and Trends® in Electronic Design

Automation, vol. 2, pp. 371-461, 2007.

[20] P. Magarshack and P. G. Paulin, "System-on-chip beyond the nanometer wall," in

Design Automation Conference, 2003. Proceedings, 2003, pp. 419-424.

[21] M. Horowitz and W. Dally, "How scaling will change processor architecture," in

Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004

IEEE International, 2004, pp. 132-133.

[22] T. Bjerregaard and S. Mahadevan, "A survey of research and practices of

network-on-chip," ACM Computing Surveys (CSUR), vol. 38, p. 1, 2006.

32

[23] R. Mullins, A. West, and S. Moore, "Low-latency virtual-channel routers for on-

chip networks," in ACM SIGARCH Computer Architecture News, 2004, p. 188.

[24] J. Kwa and T. M. Aamodt, "Small virtual channel routers on FPGAs through

block RAM sharing," in Field-Programmable Technology (FPT), 2012

International Conference on, 2012, pp. 71-79.

[25] P. Baran, "On distributed communications networks," Communications Systems,

IEEE Transactions on, vol. 12, pp. 1-9, 1964.

[26] I. Kuon and J. Rose, "Measuring the gap between FPGAs and ASICs," Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 26,

pp. 203-215, 2007.

[27] Altera, "Altera DE2-115 User Manual."

[28] I. Altera Quartus, "9.0 Software Manuals," Altera Inc., San Jose, CA (www.

altera. com), 2009.

[29] "ModelSim - Advanced Simulation and Debugging. http : //model.com."

[30] Y. Lu, J. McCanny, and S. Sezer, "Generic low-latency NoC router architecture

for FPGA computing systems," in Field Programmable Logic and Applications

(FPL), 2011 International Conference on, 2011, pp. 82-89.

[31] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, "Network

simulations with the ns-3 simulator," SIGCOMM demonstration, 2008.

33

APPENDIX

Implement improved bufferless router using VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.pkg_IBR_NOC.all;

--The computation stage---

---------The functions are inject/eject flits and compute the desired direction of flits------------

entity first_stage is

port(

 local_address : in data_address_type;

 data_in_address : in data_address_array(DATA_DIR_NUM-1 downto 0);

 ID_in : in ID_array(DATA_DIR_NUM-1 downto 0);

 inject_data_address : in data_address_type;

 inject_ID : in ID_type;

 inject_port_req: in std_logic;

 data_out_address : out data_address_array(DATA_DIR_NUM-1 downto 0);

 data_ejection : out ID_array(EJECTION_PORT_NUM-1 downto 0);

 ID_out : out ID_array(DATA_DIR_NUM-1 downto 0);

 data_direction : out data_direction_array(DATA_DIR_NUM-1 downto 0);

 req : buffer std_logic:='0';

 clk : in std_logic;

 reset : in std_logic

);

 end first_stage;

architecture behavioral of first_stage is

signal temp_data_address_1, temp_data_address_2, temp_data_address_3 :

data_address_array(DATA_DIR_NUM-1 downto 0);

signal temp_ID_1, temp_ID_2, temp_ID_3 : ID_array(DATA_DIR_NUM-1 downto 0);

begin

eject_port : process(clk,reset)

begin

-----------------Initialization------------------

 if reset='1' then

 temp_ID_1 <= (others =>(others => '0'));

 temp_data_address_1 <= (others =>(others => '0'));

 data_ejection(1) <= (OTHERS=>'0');

----------------First ejection port-----------------

34

 elsif clk'event and clk ='1' then

 if data_in_address(3) = local_address and ID_in(3)/= empty then

 data_ejection(1) <= ID_in(3);

 temp_data_address_1(3) <= (others => '0');

 temp_ID_1(3) <= (others => '0');

 temp_data_address_1(2 downto 0) <= data_in_address(2 downto 0);

 temp_ID_1(2 downto 0) <= ID_in(2 downto 0);

 elsif data_in_address(2) = local_address and ID_in(2)/= empty then

 data_ejection(1) <= ID_in(2);

 temp_data_address_1(2) <= (others => '0');

 temp_ID_1(2) <= (others => '0');

 temp_data_address_1(3)<= data_in_address(3);

 temp_ID_1(3) <= ID_in(3);

 temp_data_address_1(1)<= data_in_address(1);

 temp_ID_1(1) <= ID_in(1);

 temp_data_address_1(0)<= data_in_address(0);

 temp_ID_1(0) <= ID_in(0);

 elsif data_in_address(1) = local_address and ID_in(1)/= empty then

 data_ejection(1) <= ID_in(1);

 temp_data_address_1(1) <= (others => '0');

 temp_ID_1(1) <= (others => '0');

 temp_data_address_1(3) <= data_in_address(3);

 temp_ID_1(3) <= ID_in(3);

 temp_data_address_1(2)<= data_in_address(2);

 temp_ID_1(2) <= ID_in(2);

 temp_data_address_1(0)<= data_in_address(0);

 temp_ID_1(0) <= ID_in(0);

 elsif data_in_address(0) = local_address and ID_in(0)/= empty then

 data_ejection(1) <= ID_in(0);

 temp_data_address_1(0) <= (others => '0');

 temp_ID_1(0) <= (others => '0');

 temp_data_address_1(3 downto 1) <= data_in_address(3 downto 1);

 temp_ID_1(3 downto 1) <= ID_in(3 downto 1);

 else

 temp_ID_1 <= ID_in;

 temp_data_address_1 <= data_in_address;

 end if;

 end if;

end process;

--------------------Second ejection port-----------------

dual_ejection : process(reset, temp_ID_1, temp_data_address_1)

begin

35

 if reset = '1' then data_ejection(0)<= (OTHERS=>'0');

 elsif temp_data_address_1(2) = local_address and ID_in(2)/= empty then

 data_ejection(0) <= temp_ID_1(2);

 temp_data_address_2(2) <= (others => '0');

 temp_ID_2(2) <= (others => '0');

 temp_data_address_2(3)<= temp_data_address_1(3);

 temp_ID_2(3) <= temp_ID_1(3);

 temp_data_address_2(1)<= temp_data_address_1(1);

 temp_ID_2(1) <= temp_ID_1(1);

 temp_data_address_2(0)<= temp_data_address_1(0);

 temp_ID_2(0) <= temp_ID_1(0);

 elsif temp_data_address_1(1) = local_address and ID_in(1)/= empty then

 data_ejection(0) <= temp_ID_1(1);

 temp_data_address_2(1) <= (others => '0');

 temp_ID_2(1) <= (others => '0');

 temp_data_address_2(3) <= temp_data_address_1(3);

 temp_ID_2(3) <= temp_ID_1(3);

 temp_data_address_2(2)<= temp_data_address_1(2);

 temp_ID_2(2) <= temp_ID_1(2);

 temp_data_address_2(0)<= temp_data_address_1(0);

 temp_ID_2(0) <= temp_ID_1(0);

 elsif temp_data_address_1(0) = local_address and ID_in(0)/= empty then

 data_ejection(0) <= temp_ID_1(0);

 temp_data_address_2(0) <= (others => '0');

 temp_ID_2(0) <= (others => '0');

 temp_data_address_2(3 downto 1) <= temp_data_address_1(3 downto 1);

 temp_ID_2(3 downto 1) <= temp_ID_1(3 downto 1);

 else

 temp_ID_2 <= temp_ID_1;

 temp_data_address_2 <= temp_data_address_1;

 end if;

end process;

------------------------Injection port----------------------

injection : process(temp_ID_2, temp_data_address_2,req)

begin

if req = '0' then

 if inject_port_req = '1' then

 if temp_ID_2(3) = empty then

 temp_data_address_3(3) <= inject_data_address;

 temp_data_address_3(2 downto 0) <= temp_data_address_2(2 downto 0);

 temp_ID_3(3) <= inject_ID;

36

 temp_ID_3(2 downto 0) <= temp_ID_2(2 downto 0);

 req <= '1';

 elsif temp_ID_2(2) = empty then

 temp_data_address_3(3) <= temp_data_address_2(3);

 temp_data_address_3(2) <= inject_data_address;

 temp_data_address_3(1 downto 0) <= temp_data_address_2(1 downto 0);

 temp_ID_3(3) <= temp_ID_2(3);

 temp_ID_3(2) <= inject_ID;

 temp_ID_3(1 downto 0) <= temp_ID_2(1 downto 0);

 req <= '1';

 elsif temp_ID_2(1) = empty then

 temp_data_address_3(3) <= temp_data_address_2(3);

 temp_data_address_3(2) <= temp_data_address_2(2);

 temp_data_address_3(1) <= inject_data_address;

 temp_data_address_3(0) <= temp_data_address_2(0);

 temp_ID_3(3) <= temp_ID_2(3);

 temp_ID_3(2) <= temp_ID_2(2);

 temp_ID_3(1) <= inject_ID;

 temp_ID_3(0) <= temp_ID_2(0);

 req <= '1';

 elsif temp_ID_2(0) = empty then

 temp_data_address_3(3 downto 1) <= temp_data_address_2(3 downto 1);

 temp_data_address_3(0) <= inject_data_address;

 temp_ID_3(3 downto 1) <= temp_ID_2(3 downto 1);

 temp_ID_3(0) <= inject_ID;

 req <= '1';

 else

 temp_data_address_3(3 downto 0) <= temp_data_address_2(3 downto 0);

 temp_ID_3(3 downto 0) <= temp_ID_2(3 downto 0);

 end if;

 else

 temp_data_address_3(3 downto 0) <= temp_data_address_2(3 downto 0);

 temp_ID_3(3 downto 0) <= temp_ID_2(3 downto 0);

 end if;

else req <= '0';

end if;

end process;

-----------------Compute the desired direction----------------

direction : process(temp_ID_3, temp_data_address_3)

begin

 if temp_ID_3(3)=empty then data_direction(3) <= NONE;

37

 elsif temp_data_address_3(3)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) >

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then

 data_direction(3) <= SOUTH;

elsif temp_data_address_3(3)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) <

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then

 data_direction(3) <= NORTH;

elsif temp_data_address_3(3)(MESH_COLUMN_BI-1 downto 0) >

local_address(MESH_COLUMN_BI-1 downto 0) then

 data_direction(3) <= EAST;

elsif temp_data_address_3(3)(MESH_COLUMN_BI-1 downto 0) <

local_address(MESH_COLUMN_BI-1 downto 0) then

 data_direction(3) <= WEST;

 else

 data_direction(3) <= WEST;

 end if;

 if temp_ID_3(2)=empty then data_direction(2) <= NONE;

elsif temp_data_address_3(2)(MESH_COLUMN_BI-1 downto 0) >

local_address(MESH_COLUMN_BI-1 downto 0) then

 data_direction(2) <= EAST;

elsif temp_data_address_3(2)(MESH_COLUMN_BI-1 downto 0) <

local_address(MESH_COLUMN_BI-1 downto 0) then

 data_direction(2) <= WEST;

elsif temp_data_address_3(2)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) >

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then

 data_direction(2) <= SOUTH;

elsif temp_data_address_3(2)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) <

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then

 data_direction(2) <= NORTH;

 else

 data_direction(2) <= NORTH;

 end if;

 if temp_ID_3(1)=empty then data_direction(1) <= NONE;

elsif temp_data_address_3(1)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) >

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then

 data_direction(1) <= SOUTH;

elsif temp_data_address_3(1)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) <

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then

 data_direction(1) <= NORTH;

elsif temp_data_address_3(1)(MESH_COLUMN_BI-1 downto 0) >

local_address(MESH_COLUMN_BI-1 downto 0) then

 data_direction(1) <= EAST;

elsif temp_data_address_3(1)(MESH_COLUMN_BI-1 downto 0) <

local_address(MESH_COLUMN_BI-1 downto 0) then

 data_direction(1) <= WEST;

 else

38

 data_direction(1) <= WEST;

 end if;

 if temp_ID_3(0)=empty then data_direction(0) <= NONE;

elsif temp_data_address_3(0)(MESH_COLUMN_BI-1 downto 0) >

local_address(MESH_COLUMN_BI-1 downto 0) then

 data_direction(0) <= EAST;

elsif temp_data_address_3(0)(MESH_COLUMN_BI-1 downto 0) <

local_address(MESH_COLUMN_BI-1 downto 0) then

 data_direction(0) <= WEST;

elsif temp_data_address_3(0)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) >

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then

 data_direction(0) <= SOUTH;

elsif temp_data_address_3(0)(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) <

local_address(ADDRESS_SIZE-1 downto MESH_COLUMN_BI) then

 data_direction(0) <= NORTH;

 else

 data_direction(0) <= NORTH;

 end if;

end process;

display_out :process(temp_data_address_3,temp_ID_3)

begin

 data_out_address <= temp_data_address_3;

 ID_out <= temp_ID_3;

end process;

end behavioral;

---The permutation stage---

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.pkg_IBR_NOC.all;

entity deflection is

 port(

 data_in_address : in data_address_array(DATA_DIR_NUM-1 downto 0);

 data_direction_in : in data_direction_array(DATA_DIR_NUM-1 downto 0);

 ID_in : in ID_array(DATA_DIR_NUM-1 downto 0);

 data_out_address: out data_address_array(DATA_DIR_NUM-1 downto 0);

 ID_out : out ID_array(DATA_DIR_NUM-1 downto 0);

 data_direction_out : out data_direction_array(DATA_DIR_NUM-1 downto 0);

39

 clk : in std_logic;

 reset : in std_logic

);

end deflection;

architecture behavioral of deflection is

signal temp_data_direction_2, temp_data_direction_3, temp_data_direction_4, temp_data_direction_5 :

data_direction_array(DATA_DIR_NUM-1 downto 0);

signal temp_data_address_2, temp_data_address_3, temp_data_address_4, temp_data_address_5 :
data_address_array(DATA_DIR_NUM-1 downto 0);

signal temp_ID_2, temp_ID_3, temp_ID_4, temp_ID_5 : ID_array(DATA_DIR_NUM-1 downto 0);

begin

stage_1 : process(clk,reset)

begin

--------------Initialization--------------------

 if reset = '1' then

 temp_data_address_2 <= (others =>(others => '0'));

 temp_data_direction_2 <= (others =>(others => '0'));

 temp_ID_2 <= (others =>(others => '0'));

--------------Top left arbiter------------------

 elsif clk'event and clk ='1' then

if (data_direction_in(3)=EAST or data_direction_in(3)=SOUTH) or

(data_direction_in(2)=WEST or data_direction_in(2)=NORTH)

 then

 temp_data_direction_2(3 downto 2)<=data_direction_in(3 downto 2);

 temp_data_address_2(3 downto 2) <= data_in_address(3 downto 2);

 temp_ID_2(3 downto 2) <= ID_in(3 downto 2);

 else

 temp_data_direction_2(3)<=data_direction_in(2);

 temp_data_direction_2(2)<=data_direction_in(3);

 temp_data_address_2(3)<=data_in_address(2);

 temp_data_address_2(2)<=data_in_address(3);

 temp_ID_2(3)<=ID_in(2);

 temp_ID_2(2)<=ID_in(3);

 end if;

--------------Bottom left arbiter------------------

if (data_direction_in(1)=EAST or data_direction_in(1)=SOUTH) or

(data_direction_in(0)=WEST or data_direction_in(0)=NORTH)

 then

 temp_data_direction_2(1 downto 0)<=data_direction_in(1 downto 0);

 temp_data_address_2(1 downto 0)<=data_in_address(1 downto 0);

40

 temp_ID_2(1 downto 0)<=ID_in(1 downto 0);

 else

 temp_data_direction_2(1)<=data_direction_in(0);

 temp_data_direction_2(0)<=data_direction_in(1);

 temp_data_address_2(1)<=data_in_address(0);

 temp_data_address_2(0)<=data_in_address(1);

 temp_ID_2(1)<=ID_in(0);

 temp_ID_2(0)<=ID_in(1);

 end if;

 end if;

end process;

--------------Middle swap------------------

stage_swap: process(temp_data_direction_2,temp_data_address_2, temp_ID_2)

begin

 temp_data_direction_3(3) <= temp_data_direction_2(3);

 temp_data_direction_3(2) <= temp_data_direction_2(1);

 temp_data_direction_3(1) <= temp_data_direction_2(2);

 temp_data_direction_3(0) <= temp_data_direction_2(0);

 temp_data_address_3(3) <= temp_data_address_2(3);

 temp_data_address_3(2) <= temp_data_address_2(1);

 temp_data_address_3(1) <= temp_data_address_2(2);

 temp_data_address_3(0) <= temp_data_address_2(0);

 temp_ID_3(3) <= temp_ID_2(3);

 temp_ID_3(2) <= temp_ID_2(1);

 temp_ID_3(1) <= temp_ID_2(2);

 temp_ID_3(0) <= temp_ID_2(0);

end process;

--------------Top right arbiter------------------

stage_2: process(temp_data_direction_3,temp_data_address_3, temp_ID_3)

begin

 if (temp_data_direction_3(3)=EAST or temp_data_direction_3(2)=SOUTH)

 then

 temp_data_direction_4(3 downto 2) <= temp_data_direction_3(3 downto 2);

 temp_data_address_4(3 downto 2) <= temp_data_address_3(3 downto 2);

 temp_ID_4(3 downto 2) <= temp_ID_3(3 downto 2);

 else

 temp_data_direction_4(3)<=temp_data_direction_3(2);

 temp_data_direction_4(2)<=temp_data_direction_3(3);

 temp_data_address_4(3)<=temp_data_address_3(2);

 temp_data_address_4(2)<=temp_data_address_3(3);

 temp_ID_4(3)<=temp_ID_3(2);

 temp_ID_4(2)<=temp_ID_3(3);

41

 end if;

--------------Bottom right arbiter------------------

 if (temp_data_direction_3(1)=WEST or temp_data_direction_3(0)=NORTH)

 then

 temp_data_direction_4(1 downto 0) <= temp_data_direction_3(1 downto 0);

 temp_data_address_4(1 downto 0) <= temp_data_address_3(1 downto 0);

 temp_ID_4(1 downto 0) <= temp_ID_3(1 downto 0);

 else

 temp_data_direction_4(1)<=temp_data_direction_3(0);

 temp_data_direction_4(0)<=temp_data_direction_3(1);

 temp_data_address_4(1)<=temp_data_address_3(0);

 temp_data_address_4(0)<=temp_data_address_3(1);

 temp_ID_4(1)<=temp_ID_3(0);

 temp_ID_4(0)<=temp_ID_3(1);

 end if;

end process;

--------------Final chance component------------------

stage_3 : process(temp_data_direction_4,temp_data_address_4,temp_ID_4)

begin

 if temp_data_direction_4(3) /= EAST

 then

if temp_data_direction_4(1) /= WEST and temp_data_direction_4(3) /= NONE

and temp_data_direction_4(1) /= NONE then

 temp_data_direction_5(3)<=temp_data_direction_4(1);

 temp_data_direction_5(2)<=temp_data_direction_4(2);

 temp_data_direction_5(1)<=temp_data_direction_4(3);

 temp_data_direction_5(0)<=temp_data_direction_4(0);

 temp_data_address_5(3)<=temp_data_address_4(1);

 temp_data_address_5(2)<=temp_data_address_4(2);

 temp_data_address_5(1)<=temp_data_address_4(3);

 temp_data_address_5(0)<=temp_data_address_4(0);

 temp_ID_5(3)<=temp_ID_4(1);

 temp_ID_5(2)<=temp_ID_4(2);

 temp_ID_5(1)<=temp_ID_4(3);

 temp_ID_5(0)<=temp_ID_4(0);

elsif temp_data_direction_4(0) /= NORTH and temp_data_direction_4(3) /=

NONE and temp_data_direction_4(0) /= NONE then

 temp_data_direction_5(3)<=temp_data_direction_4(0);

 temp_data_direction_5(2)<=temp_data_direction_4(2);

 temp_data_direction_5(1)<=temp_data_direction_4(1);

 temp_data_direction_5(0)<=temp_data_direction_4(3);

42

 temp_data_address_5(3)<=temp_data_address_4(0);

 temp_data_address_5(2)<=temp_data_address_4(2);

 temp_data_address_5(1)<=temp_data_address_4(1);

 temp_data_address_5(0)<=temp_data_address_4(3);

 temp_ID_5(3)<=temp_ID_4(0);

 temp_ID_5(2)<=temp_ID_4(2);

 temp_ID_5(1)<=temp_ID_4(1);

 temp_ID_5(0)<=temp_ID_4(3);

 else

 temp_data_direction_5<=temp_data_direction_4;

 temp_data_address_5<=temp_data_address_4;

 temp_ID_5<=temp_ID_4;

 end if;

 elsif temp_data_direction_4(2) /= SOUTH then

if temp_data_direction_4(0) /= NORTH and temp_data_direction_4(2) /=

NONE and temp_data_direction_4(0) /= NONE then

 temp_data_direction_5(3)<=temp_data_direction_4(3);

 temp_data_direction_5(2)<=temp_data_direction_4(0);

 temp_data_direction_5(1)<=temp_data_direction_4(1);

 temp_data_direction_5(0)<=temp_data_direction_4(2);

 temp_data_address_5(3)<=temp_data_address_4(3);

 temp_data_address_5(2)<=temp_data_address_4(0);

 temp_data_address_5(1)<=temp_data_address_4(1);

 temp_data_address_5(0)<=temp_data_address_4(2);

 temp_ID_5(3)<=temp_ID_4(3);

 temp_ID_5(2)<=temp_ID_4(0);

 temp_ID_5(1)<=temp_ID_4(1);

 temp_ID_5(0)<=temp_ID_4(2);

elsif temp_data_direction_4(1) /= WEST and temp_data_direction_4(2) /=
NONE and temp_data_direction_4(1) /= NONE then

 temp_data_direction_5(3)<=temp_data_direction_4(3);

 temp_data_direction_5(2)<=temp_data_direction_4(1);

 temp_data_direction_5(1)<=temp_data_direction_4(2);

 temp_data_direction_5(0)<=temp_data_direction_4(0);

 temp_data_address_5(3)<=temp_data_address_4(3);

 temp_data_address_5(2)<=temp_data_address_4(1);

 temp_data_address_5(1)<=temp_data_address_4(2);

 temp_data_address_5(0)<=temp_data_address_4(0);

 temp_ID_5(3)<=temp_ID_4(3);

 temp_ID_5(2)<=temp_ID_4(1);

 temp_ID_5(1)<=temp_ID_4(2);

 temp_ID_5(0)<=temp_ID_4(0);

43

 else

 temp_data_direction_5<=temp_data_direction_4;

 temp_data_address_5<=temp_data_address_4;

 temp_ID_5<=temp_ID_4;

 end if;

 else

 temp_data_direction_5<=temp_data_direction_4;

 temp_data_address_5<=temp_data_address_4;

 temp_ID_5<=temp_ID_4;

 end if;

end process;

 data_out_address<=temp_data_address_5;

 ID_out<=temp_ID_5;

end behavioral;

