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CHAPTER 1

INTRODUCTION

1.1 Context

It is a commonly known trend that computing hardware grows in density and capacity

at a rapid pace. However, developer competency in leveraging the advanced platforms’

capabilities does not keep pace. As multiple core architectures and their performance benefits

become a mainstream expectation reaching even mobile and wearable technologies, developer

communities in every environment must learn to utilize the full gamut of hardware power

available to them. Building tools and abstractions to support the developer learning process

will secure the trend of increasingly powerful and responsive computational systems and

applications [3].

1.2 History

Operating systems have long supported native threading for multicomputing purposes, and

“green threading”, or when threads are created and managed by a virtual machine (VM), has

also been well established for years. Offloading long running computations to a secondary

thread in order to prevent blocking a primary thread is a commonly observed technique in

various areas of development. For example, such a technique drives many GUI applications

in which user input may come at any unknown time. If the thread responsible for accepting

user input is blocked, the application may feel unresponsive. Effectively managing threading

and asynchrony is therefore critical to the usability of the application.

Further, though, modern applications tend to incorporate digital information from any

number of disjoint web services, such as geographical location, price of goods, current events,

and many others. As such, network requests, which are inherently indeterminate in running

time and therefore are most effectively handled asynchronously, are being used liberally in
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today’s applications. Because of the meteoric rise in the availability and utility of these

services and APIs, the use of asynchronous code has become commonplace. As with most

low-level abstractions, though, directly managing thread communication and scheduling is

time consuming and verbose, and introduces inconsistencies across platforms and code bases.

These asynchronous programming issues are compounded when operations depend on the

results of a previously scheduled operation, or multiple operations, and such operations may

fail independently.

Asynchronous solutions are often constructed using callbacks, which are a functions in-

voked upon completion of a given operation. Pipelines of operations require nesting callback

functions which obfuscates the intent of each call individually, and can lead to a confusing

tangle of code that is difficult to understand and build upon. Further, errors can cause the

pipeline to fail in any phase, but relaying specific failure information back to the calling

thread is difficult and requires extra code to selectively fail the remainder of the operations.

This problem is compounded when certain phases are optional to the overall success of the

pipeline.

1.3 Statement

The goal of this project is to present a solution free of common asynchronous pitfalls using

native Java code in a client-server application setting. Further, the proposed solution should

be easily read and understood by programmers of intermediate experience. The resulting

application focuses on many Java 8 features, namely the CompletableFutures abstraction,

the Streams API, and lambda expressions. These features play a pivotal role in unifying

a well established language’s interface for performing long running operations in complex

dependency networks efficiently, while maintaining code readability and understanding.
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1.4 Implementation

In order to display the flexibility of the Java 8 specific features regarding asynchronous

computation, an example application was implemented. The application solution represents

a network of dependencies between a number of real world, freely available web service

requests in order to plan an eventful weekend at an input destination city.

Firstly, the application queries the Sabre Flights API to find a round-trip flight between

the input origin and destination cities that is within the input budget, departing on the

nearest Friday, and returning on the nearest Sunday. The timing and cost of the flight

itinerary then serve as dependencies for when and how many ticketed events can be scheduled

using the StubHub EventSearch API. Independently, the weather for the appropriate days

is retrieved using the OpenWeatherMap API, and the call serves as an example of how the

pipeline may be manipulated without affecting the outcome given the proper dependencies

are upheld. The daily weather serves as a dependency for a query to the Google Places API

for interesting things to do during the weekend outside of ticketed events.

While the example application is written primarily to convey the usage of the primary

asynchronous programming abstractions available in Java 8, it also provides a general struc-

ture to a solution that could extend into other environments. The interfaces of the asyn-

chronous method calls are critical to the interaction between phases of the pipeline, and

could extend to any asynchronous operation chain to reduce code complexity and maintain

modularity in an inherently dependent context.
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CHAPTER 2

SOLUTIONS IN ASYNCHRONOUS PROGRAMMING

2.1 Callbacks and Handlers

Historically, asynchronous solutions hinged upon callbacks and handlers, which in general

can be described as way to invoke code designated to run upon the completion of a typically

long running operation occuring remotely. For example, a network request might also pass

along an function indicator or closure that will have access to the result of the request.

This technique is particularly effective when all the required information is retrieved from

the single asynchronous call being made. However, problems arise when these methods are

chained and the callbacks are nested.

Firstly, error handling must be done at each stage, and each stage must acknowledge each

possible exception that may have been thrown in an earlier method of the pipeline. This

lengthens and decentralizes the code necessary for handling exceptions. It is also difficult

to relay the specific failure back to the calling thread, making appropriate cleanup difficult.

Lastly, it is difficult to selectively fail or retry operations.

Secondly, code becomes difficult to test as invoking the asynchronous calls individually

requires mocking the effect of each of the previous pipeline phases. The code is structured in

a way that is dependent on the calling order, with relevant data being passed as parameters,

rather than as singular units of computation capable of existing by themselves. This tends

to lead to more traditional symptoms of poor design, and code becomes unmaintainable and

unreadable.

2.2 Lazy Computation and Caching

While lazy computation is not a direct solution to asynchronous programming pitfalls, it is

often used as an optimization to reduce the number of long running operations needed within
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an application session. Computing lazily means that data is not generated or retrieved until

it is needed within a pipeline. A common example is iteration over random values to be

used in later phases; Rather than computing a collection of random values of appropriate

size upfront, random values are computed and supplied each time a phase of the pipeline

requires one. This can be generalized into more common results caching of data requested

from the internet, which can reduce the total number of network requests made in a given

session. This technique does not act as a solution to the challenges presented by asynchronous

programming, however lazy computation is an important consideration in asynchronous

system design as unnecessary requests can be foregone.

2.3 “Future” and “Chainable Future” Abstractions

Many environments support “future” abstractions, which serve as a wrapper around a value

that represents the result of an operation that may or may not be completed. These abstrac-

tions have been paramount to concurrent and asynchronous systems, but often plague the

system with similar issues to a callback or handler based solution. That is, scheduling futures

to interact with, or depend upon, one or many other futures leads to tangles of dependent

code.

More recently, a chainable version of the future abstraction has gained traction in asyn-

chronous environments that is able to invoke an operation or chain of operations immediately

upon the given value’s completion. In addition to eliminating the need to hand-synchronize

multiple dependent asynchronous calls, it is often possible to run different phases of the

pipeline in different threads, allowing independent calls to run concurrently. This departure

allows natural pipelining of operations that can exist individually, and promotes sound de-

sign while maintaining the performance of an asynchronous solution. This is the abstraction

upon which Java 8’s CompletableFuture is based, and serves as the primary design element

for the weekend planner application.
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CHAPTER 3

JAVA 8

3.1 Executors

While the Executor and Executor Service interfaces are not new in Java 8, they are fun-

damental to asynchronous and concurrent Java code, and are used heavily in the weekend

planner application. Both interfaces and their implementing classes serve to manage thread-

ing within a Java application, often acting as a scheduler managing an underlying thread

pool. The power of the Executor family lies in the flexibility it affords the programmer by

allowing thread pool implementations to be substituted with no change to the client code.

Employing executors effectively reduces cluttered code accumulated in handling thread cre-

ation directly or even using a thread pool implementation.

A secondary, Java 8 specific benefit of using executors is that each method of the Com-

pletableFuture class can specify an executor upon which to schedule the specified operation.

This allows the executor implementation to handle the scheduling of background tasks with

no infrastructure code necessary. When an executor is not specified, however, the operation

completes in the same context in which the CompletableFuture completed. This knowl-

edge affords programmers fine control over the progression of a pipeline while keeping code

succinct.

3.2 CompletableFutures

Java 8’s CompletableFuture is the manifestation of the “Chainable Future” abstraction in

Java, and is the core element of the work presented in the weekend planner application. The

CompletableFuture class provides a way to construct a pipeline of typically asynchronous op-

erations. A few of the methods of the CompletableFuture class play a particularly important

role in the weekend planner application and are presented here in detail.
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The first is the “thenApply” method. The thenApply method takes a CompletableFuture,

or completion stage as part of a pipeline, and transforms the CompletableFuture value once

it is completed. It then returns a CompletableFuture of the transformed value. In this way

the thenApply method works analogously to the “map” function of the Streams API, which

is discussed in a later section.

Next, the “thenCompose” method plays a significant role in chaining asynchronous

method calls. The difference between thenCompose and thenApply is that, where thenAp-

ply would transform a CompletableFuture into a nested CompletableFuture, thenCompose

would flatten the nesting and return a typical CompletableFuture.

The “thenCombine” method is another flexible and heavily used CompletableFuture func-

tionality in the weekend planner application. The thenCombine method takes two Com-

pletableFuture parameters and combines them according to the parameter function as soon

as they have both completed. The method is particularly helpful when a disjoint dependency,

that is, a dependency that is not integral to previous phases of the pipeline, is introduced.

Finally, the “handle” method of the CompletableFuture plays an important role in ex-

ception handling in CompletableFuture operation pipelines. The handle method makes use

of two parameters, one representing a successful result of the prior phases in the pipeline,

and one representing a Completion Exception that might have been generated. The Com-

pletion Exception object acts as a wrapper around the thrown exception with additional

functionality for failing through the remainder of the pipeline after a given phase fails. The

handle method allows the success and exception cases to be treated individually, and in this

way is useful for handling the exceptions of an individual CompletableFuture operation as

well as those of an entire pipeline. For example, in a client-server environment, handling an

exception is done most effectively by conveying what call failed back to the client for appro-

priate user notification. Using the handle method, this can be implemented in a centralized

manner at the end of the pipeline. However in a mission-critical application, if a critical

phase fails, it may be important to retry the operation or fail out of the pipeline completely
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and invoke a backup routine. This could be implemented using the handle method at each

critical phase.

3.3 Streams API

The Streams API is another significant Java 8 addition that is used within the weekend

planner application. Its purpose is more general than the CompletableFuture abstraction in

that the Streams API brings lazy computation, infinite series, and monadic, functional-like

programming to Java. Pipelining of operations is supported, but the Streams API is not

tailored to asynchronous and long running operations as is the case for CompletableFutures.

One of the major benefits of the Streams API in addition to the succinct functional

syntax is the simplicity of parallelizing operations. In many cases, parallelizing a stream

requires a single method call. Under the hood, this call will use a thread pool to execute

the pipeline concurrently. The Streams API can be leveraged in combination with the

CompletableFutures abstraction to generate multiple CompletableFutures in parallel and

wait for the completion of one or each of them. This functionality can be an optimization

for making multiple independent requests.

3.4 Lambda Expressions and Functional Interfaces

A third significant addition to Java 8 is a language feature to make anonymous inner class

creation more succinct called lambda expressions. This feature is effective in reducing in-

frastructure code when used in combination with the CompletableFuture “supplyAsync”

method as this method is parameterized with a Supplier. Because Supplier in Java 8 is an

interface with a single method that returns, or “supplies”, a value of a given type, a lambda

expression can be used to replace a Supplier with a typical method call that also returns

type of T. In practice, this upholds the common trend of the additions discussed here to

significantly reduce infrastructure code.
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CHAPTER 4

WEEKEND PLANNER APPLICATION

4.1 Problem Definition

The primary goal of the weekend planner application is to provide an example of a way to

organize a solution where dependent asynchronous programming is central to the function-

ality and performance. In order to deploy the Java 8 features in a non-trivial way, a full

pipeline of dependent asynchronous operations was necessary. The problem of planning a

weekend using freely available web services was a natural choice as a network of dependen-

cies exists between the operations. At a high level the application retrieves real time flight

information and schedules a parameterized number of different variants of the weekend plan.

The plan incorporates real world ticketed event postings on StubHub in addition to low-cost

or free places of interest such as museums and parks retrieved from the Google Places API.

The dependencies between each pipeline phase is detailed below, and an overview of the

architecture is given.

4.2 Implementation

4.2.1 Pipeline Dependencies

First, the Sabre Flights by Cities API was used to retrieve real time flight information.

Retrieving the appropriate flight information depends upon the origin and destination city,

as well as the budget input by the user. Further, the flight depends upon an implicit time

constraint; The weekend in this context is considered to begin at 5:00pm on Friday in the

origin city and end at any point on Sunday. Therefore the flight itinerary must have a

departing flight between 5:00pm and 11:59pm on Friday in the origin city and must include

a returning flight on Sunday. Further still, the Sabre Flights by Cities API is authenticated

using an Open Authorization 2.0 token, which must first be generated by the server. This
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adds another, implementational dependency which must be handled by the application.

Secondly, event postings at the destination city are retrieved using the StubHub EventSearch

API. The retrieved flight timing information is used to limit the event postings query to the

appropriate time frame. The cost of the flight is used to limit the maximum ticket price in the

query, as well as to select events to plan for each trip variant. In all the logical dependencies

of the event query are the timing and the cost of the flight. The event service also requires

an authorization token, but one that can be generated directly from the user development

account information and needn’t be retrieved from a server. However, the token generation

is brought into the pipeline by invoking ”thenCombine” so that it may be computed as soon

as there are available resources and therefore concurrently to a network request, and allows

for flexibility in the way that the authorization token is generated.

The pipeline is then constructed to retrieve the weather from the OpenWeatherMap web

service. While the weather for the weekend is independent from the previous phases of the

pipeline, it is composed into the pipeline in order to show the modular nature of pipelined

operations. To this end, retrieval of the weather can be rearranged to any point earlier in

the call chain and the pipeline will still produce identical results. It should be noted that

the OpenWeatherMap service is unauthorized.

At any point after the weather has been retrieved, the Google Places web service is

queried for places of interest at the destination city. The weather conditions of each day de-

termine the query parameter that limits the scope of the request to certain types of places.

Clear or cloudy conditions will search for amusement parks, campgrounds, parks, stadiums,

and zoos, while rainy and snowy conditions will search for aquariums, art galleries, bowling

alleys, movie theaters, museums, and shopping malls. Because the places requests are made

by day rather than for the entire weekend at once, the Streams API is employed in com-

bination with CompletableFutures to make each day request run concurrently. Here again

the authorization token can be constructed locally and does not require a network request,

however the destination city must be converted into latitude and longitude coordinates via
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reverse geocoding. The Google Places API has a reverse geocoding web service which is

combined into the pipeline with the places requests.

The final stage of the pipeline is responsible for identifying and sending either the well

formed weekend plan back to the client, or a detailed and specific message about an exception

that might have occurred at any given phase using the handle method. The server handles

each individual exception by sending detailed information back to the client, and allows the

client code to handle exceptions more specifically. The weekend planner application displays

a message to the user detailing the exception information.

4.2.2 Architecture

The organization of the solution is important in maintaining sound modular structure in a

densely dependent environment. The code is divided into packages based on purpose, which

are detailed below.

• WeekendPlanner

The WeekendPlanner package holds the three primary classes that drive the applica-

tion. The first is the WeekendPlannerServlet that is directly responsible for handling

client requests. The server will respond to HTTP GET requests with valid cities from

the Sabre Flights by Cities API, and respond to POST requests with a planned week-

end at the requested destination city. The WeekendPlannerServlet is where the most

concise use of the CompletableFuture abstraction is focused. The second is the Week-

endPlannerResponse, which serves as a container for the data aggregated throughout

the pipeline, and is directly sent back to the client. The WeekendPlannerResponse

is the structure that each phase of the pipeline transforms. Finally, the Weekend-

PlannerOps class serves as an interface between the WeekendPlannerServlet and the

individual Ops classes. It is primarily responsible for maintaining the executor upon

which the operations are run, and submitting each asynchronous task of the Ops classes

to the executor.
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• Ops

The individual Ops classes are responsible for maintaining constants and operations

directly relating to the member web service. For example, the PlacesOps class stores

the query parameters for indoor and outdoor places. Each Ops class shares a common

base, BaseOps, which ensures that each Ops class defines how the service may be

authorized in addition to maintaining the endpoint of the service. In all, the Ops classes

are an aggregate structure of a Retrofit web service, the authorization information for

that service, and the operations necessary to invoke the service.

• Requests, Responses, and Model

The requests, responses, and model packages all represent data that is being sent and

received between the client, the server, and the various web servers. The requests

and responses packages are the top level structures, while the model package holds

the nested objects of each response. Web service JSON responses are deserialized into

these objects in order to manipulate the data as part of the pipeline. While they are

plain old Java objects, each class exists as an inner class of the relevant response object

to reduce the number of files necessary.

• Services

The services package holds a collection of interfaces necessary for the Retrofit library.

Each interface defines only the request operations to each related web service and the

various query parameters used in the requests.

• Utils

Finally, the utils package provides various authorization and date-time manipulation

methods. For example, the DateUtils class is responsible for determining the date of

the nearest weekend in addition to other various timing calculations. These methods

are general purpose, and do not fit logically into any of the existing classes.
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