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CHAPTER I 

 

INTRODUCTION 

 

Cardiac repair after ischemic injury 

An estimated seventeen million people die each year due to cardiovascular 

disease, and the most common cause of death is myocardial infarction (MI) (Go et al., 

2013). MI occurs when atherosclerotic plaque rupture and subsequent platelet 

aggregation form a coronary thrombus which occludes the coronary artery. The ensuing 

ischemia and lack of oxygen causes cardiomyocyte (CM) necrosis within minutes of the 

occlusion (Frangogiannis, 2012). While recent studies indicate the adult myocardium is 

capable of regenerating cardiac tissue, the heart lacks a robust regenerative response 

to replace the substantial amount of cardiac tissue that is lost after a severe ischemic 

injury (Uchida et al., 2013; Laflamme and Murry, 2011). Consequently, the heart 

naturally repairs the injured area with a collagenous scar which impedes cardiac 

contractility and can cause adverse remodeling. 

During ischemia, a lack of oxygen impedes oxidative phosphorylation and leads 

to the depletion of adenosine triphosphate (ATP). Consequently, cardiomyocyte ion 

pumps fail to function, the levels of intracellular calcium [Ca2+] rise, and mitochondrial 

Ca2+ accumulation occurs (Murphy and Steenbergen, 2008). The ischemic injury is 

often exacerbated by reperfusion and the generation of reactive oxygen species (ROS). 

ROS are generated as oxygen returns to the cells during reperfusion and, coupled with 

mitochondrial matrix Ca2+ overload, opens the mitochondrial permeability transition 
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pore. This process induces activation of mitochondrial apoptotic pathways, such as 

caspases, and exhausts the cell of its ATP. Cell death and rupture of the plasma 

membrane occur due to disrupted ion homeostasis, lack of ATP, ROS accumulation, 

and intracellular proteolysis. 

                   

 

 

An inflammatory response is then triggered by the remaining surviving cells as 

they are exposed to the surrounding necrotic debris and toxic mediators (Figure 1, from 

Boudoulas and Hatzopoulos, 2009). This initial immune response begins the process of 

infarct healing after cardiac ischemic injury. Chemokines such as interleukin (IL)-1, 

Figure 1. Key stages of repair after ischemic cardiac injury. After occlusion of a coronary 

artery, cell death occurs within minutes. The necrotic debris released from rupture of the 

cardiac cells induces an inflammatory phase, which progresses into a reparative granulation 

tissue phase after several days.  Neovascularization and collagen deposition occur over the 

next several weeks until a dense scar (fibrosis) has replaced the lost tissue. Figure from 

Boudoulas and Hatzopoulos (2009). 
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monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) 

attract circulating leukocytes to the infarct (Frangogiannis, 2008). Cytokines stimulate 

endothelial cells (ECs) to upregulate expression of E-selectin, intercellular adhesion 

molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), which 

promotes adhesion between ECs and infiltrating leukocytes.  Extravasation of 

leukocytes from the microvasculature to the site of injury occurs to remove dead cells 

and debris from the infarct.  Neutrophils and monocytes also transmigrate into the 

infarcted myocardium through integrin-mediated interaction with ECs and clear the 

injury of cells and matrix debris. Monocytes mature into macrophages which, over time, 

also clear the injury to leave enlarged capillaries throughout sparse amounts of 

surviving cardiac tissue.                                                            

 The inflammatory phase of infarct healing switches to a granulation tissue 

deposition phase within three to four days after the injury, (Figure 1) and is mediated in 

part by transforming growth factor-β (TGF-β) (Frangogiannis, 2014). Fibroblasts and 

ECs begin to proliferate and replace the inflammatory blood cells. Angiogenic and 

fibrogenic growth factors, secreted by leukocytes, promote neo-vascularization and 

synthesis of extracellular matrix (ECM) proteins, respectively. Fibroblasts differentiate 

into myofibroblasts, which are nonvascular, α-smooth muscle actin (αSMA) positive, 

interstitial cells that transiently appear after MI and deposit collagen. Myofibroblast 

proliferation within the healing wound produces ECM and forms a microvascular 

network (Frangogiannis, 2014).  

Ultimately, myofibroblasts, macrophages, and new blood vessels comprise the 

granulation tissue of the infarct within 7 days post-MI. The neovessels formed are 
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required for delivery of oxygen and nutrient-rich blood to the proliferative cells of the 

infarct. Angiogenic growth factors such as vascular endothelial growth factor (VEGF) 

and angiopoietins (Ang)-1 and Ang-2 are released to modulate angiogenesis.   

 Maturation of the granulation tissue occurs within weeks of the injury, and the 

tissue develops into a dense collagen-based scar. By this time in the repair phase, the 

majority of myofibroblasts cease to deposit collagen and undergo apoptosis. The dense 

collagen-rich scar contains mature vessels surrounded with mural cells. Due to the 

significant cellular and molecular changes that occur in response to MI, the infarcted left 

ventricle may also undergo dilative remodeling to compensate for the reduced 

contractile capacity, and experience electrical instability in response to the infarction. 

The adverse cardiac remodeling, and systolic dysfunction resulting from the ischemic 

injury, may cause heart failure or arrhythmias, leading to death.   

Endothelial-to-mesenchymal transition contributes to cardiac repair 

 Scar formation, which occurs with deposition of collagen from myofibroblasts, is 

necessary to heal the wound and provide stability to the infarcted ventricular wall. 

However, excessive amounts of dense, collagenous scar can impede efficient 

electromechanical coupling between surviving regions of CMs. Multiple origins of 

cardiac fibroblasts which contribute to scar formation have been proposed, and include 

resident cardiac fibroblasts, bone marrow-derived fibroblasts and endothelial cell-

derived fibroblasts (Zeisberg and Kalluri, 2010). In addition, fibroblasts may also derive 

from the epicardium, or the mesenchymal cells that surround ECs in microvessels and 
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capillaries, known as pericytes; but these putative sources have yet to be confirmed 

with fate-mapping studies (Zeisberg and Kalluri, 2010).  

 Epithelial-to-mesenchymal transition (EMT) is a well-characterized process in 

which epithelial cells lose their intrinsic characteristics and begin to express 

mesenchymal, myofibroblast markers (Thiery et al., 2009). However, studies have 

shown a role for the endothelium in generation of cardiac fibroblasts, through a process 

known as endothelial-to-mesenchymal transition (EndMT) (Zeisberg et al., 2007; 

Aisagbonhi et al., 2011). EndMT is a similar, more recently discovered process, which 

instead involves a mesenchymal transition of ECs (Boudoulas and Hatzopoulos, 2009). 

During EndMT, ECs down-regulate expression of endothelial genes, including vascular 

endothelial Cadherin (VE-Cadherin), platelet endothelial cell adhesion molecule 

(PECAM-1, or CD31), von Willebrand Factor (vWF), and the angiopoietin receptor 

tyrosine kinases, Tie1 and Tie2 (Ghosh et al., 2012; Garcia et al., 2012). Concurrent 

with down-regulation of EC markers, the trans-differentiating cells begin to express 

mesenchymal markers such as α-smooth muscle actin (αSMA) and Vimentin, and 

acquire more migratory and invasive properties.  

Myofibroblasts derived from EndMT may generate up to 35% of subepicardial 

infarct myofibroblasts (Aisagbonhi et al., 2011), and represent a significant, and only 

recently discovered, proportion of contributing repair cells. Consequently, studies 

investigating the cellular and molecular mechanisms of EndMT as it relates to repair 

post-MI are warranted, and may provide new treatments to limit excessive deposition of 

collagen and minimize maladaptive fibrosis following ischemic injury. 
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EndMT connects angiogenesis and fibrosis after myocardial infarction 

An increasing number of studies implicate both EMT and EndMT as important 

processes for generation of myofibroblasts which contribute to fibrosis (Wynn, 2008; 

Boudoulas and Hatzopoulos, 2009). Notably, these processes are not restricted to a 

particular organ, and contribute to repair in numerous organs throughout the body. For 

instance, EndMT has been implicated in lung, kidney, and cardiac fibrosis (Arciniegas et 

al., 2007; Wada et al., 2011; Goumans et al., 2008). In the lung, hypoxia-induced 

pulmonary vascular remodeling has been shown to induce a transdifferentiation of 

pulmonary arteriolar ECs into smooth muscle-like cells (Zhu et al., 2006). Significant 

damage to the kidney activates resident fibroblasts, pericytes, bone marrow-derived 

cells, epithelial cells, and endothelial cells, which all contribute to fibrosis. In the kidney, 

ECs have been shown to undergo EndMT and contribute to tubulointerstitial fibrosis. 

Similarly, in the adult mouse heart, pressure overload, chronic allograft rejection, or 

ischemic injuries such as MI, induce EndMT which generates myofibroblasts that 

deposit collagen and contribute to scar formation during repair (Zeisberg et al., 2007).  

In addition to generating myofibroblasts during tissue repair, EndMT also 

contributes to neovascularization during repair after ischemic injury. The process of 

vessel branching during revascularization of injured tissue requires that ECs develop a 

mesenchymal phenotype (Gerhardt et al., 2003). Furthermore, inhibition of the EndMT-

associated gene Vimentin has been shown to reduce angiogenesis in tumor cells (Lahat 

et al., 2010). The anti-angiogenic effects were observed in proliferating ECs, with 

minimal consequence to non-proliferating ECs. Similarly, suppression of VEGF and 

VEGFR2 in prostate tumors inhibited tumor angiogenesis and progression of 
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mesenchymal transition required for local invasion and metastasis (Singh et al., 2008). 

These studies support the idea that EndMT is necessary for cell migration and 

angiogenesis during periods of tissue repair, particularly after ischemic injury. 

         

 

 

EndMT has been observed in the production of myofibroblasts which contribute 

to cardiac fibrosis, and implicated in angiogenesis, specifically during vessel branching. 

Thus, EndMT may connect the beneficial neovascularization and detrimental fibrosis 

which occurs during cardiac repair after ischemic injury (Figure 2, from Aisagbonhi et 

al., 2011). This connection may provide the opportunity to improve the course of cardiac 

repair post-MI by temporal manipulation of ECs and myofibroblasts. EndMT may be a 

general post-injury repair mechanism providing a novel therapeutic target to bolster the 

Figure 2. Angiogenesis and fibrosis are connected through EndMT. After injury, local 

and systemic mediators induce endothelial cells to undergo EndMT. These cells remove from 

the vasculature and down-regulate expression of CD31, while simultaneously upregulating 

expression of the mesenchymal marker αSMA. The resulting bipotent mesenchymal cells 

either generate new blood vessels (neovascularization) or form myofibroblasts, which deposit 

collagen. Figure modified from Aisagbonhi et al., 2011. 
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beneficial angiogenic response or minimize maladaptive fibrosis, and ultimately improve 

cardiac repair post-infarction. 

Endothelial cell plasticity 

 The studies above show ECs contain the potential to become mesenchymal 

cells, and indicate mature ECs are not terminally differentiated. This cellular plasticity of 

adult ECs is likely retained from their multi-lineage potential as observed during heart 

formation. Understanding the contribution of the vasculature during cardiac 

development will provide insight into the plasticity of the endothelium in the adult heart. 

Throughout embryogenesis, epithelial and endothelial mesenchymal transitions 

are critical processes for tissue development. Both EMT and EndMT are necessary to 

generate the mesenchymal cells which will give rise to the heart (Boudoulas and 

Hatzopoulos, 2009). During gastrulation, the primitive ectoderm forms the mesoderm 

through EMT, and a subset of mesodermal cells then give rise to cardiovascular 

progenitors (Moorman et al., 2007). The mesodermal/mesenchymal cells in the lateral 

plate near the foregut begin to express the early cardiac regulatory genes Nkx2-5, 

Gata4 and Mef2c. Subsequently, endocardial cells derived from the inner cardiac tube 

undergo EndMT, migrate into the surrounding cardiac jelly, and form the endocardial 

cushions (Person et al., 2005). This tissue eventually matures into the heart valves. Two 

additional EMTs occur to create the cardiac neural crest cells (which migrate to the 

heart and form the aortico-pulmonary septum), and the epicardial-derived progenitor 

cells (EPDCs; which differentiate into interstitial and perivascular fibroblasts, and 

smooth muscle cells, of the developing blood vessels) (Snider et al., 2007) (Winter and 

Gittenberger-de Groot, 2007).  
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After birth, EMT and EndMT contribute to adult tissue homeostasis. However, the 

contribution of EndMT to regeneration of the adult heart remains to be determined. 

Interestingly, adult cells that have undergone EMT appear to develop stem cell 

characteristics (Mani et al., 2008). Furthermore, evidence indicates EMT of tumor 

epithelial cells generates cells with properties of stem cells, such as a proliferative ability 

for self-renewal and increased migratory capacity (Hollier et al., 2009). Based on these 

studies, it is probable that EndMT is involved with maintenance of cardiac homeostasis 

and is necessary for cell and tissue regeneration, using the vasculature as an initial 

progenitor source. From these initial findings, I hypothesize that endothelial cells 

contribute to the maintenance of cardiac tissue during homeostasis through 

mechanisms of EndMT. 

 

The role of cardiac stem and progenitor cells in the adult heart 

 Before exploring the hypothesis that ECs contribute to regeneration of cardiac 

tissue, it is first necessary to understand the numerous, putative cardiac stem and 

progenitor cells which have been identified in the adult heart.  Fish and some amphibian 

species possess a greater cardiac regenerative potential than their mammalian 

counterparts (Laflamme and Murry, 2011). Traditionally, the mammalian heart was 

thought of as a post-mitotic organ without intrinsic mechanisms to replace 

cardiomyocytes. Under this model, CM number was determined shortly after birth, and 

no additional CMs appeared to be generated within the adult heart (Beltrami et al., 

2001; Leri et al., 2011). However, an increasing number of studies have indicated the 

existence of cardiac stem cell (CSC) populations, endogenous to the adult myocardium 



  

10 

 

(Bearzi et al., 2007; Martin-Puig et al., 2008; Segers and Lee, 2008; Uchida et al., 

2013). Recent studies documented moderate annual CM renewal rates in the adult 

mammalian heart, averaging from 0.4% to 1% (Bergmann et al., 2009) (Murry and Lee, 

2009). To date, each putative population has varied expression of surface markers, 

unique or unknown origins, self-renewal capabilities, and cardiac potential (Aguirre et 

al., 2013).  

The origins of cardiac tissue renewal mechanisms have been actively pursued, 

leading to the identification of several distinct cardiac cell types with stem cell 

characteristics proposed to contribute to maintenance of the adult mammalian heart 

(Boudoulas and Hatzopoulos, 2009). One such population consists of cells that form 

cardiospheres in suspension and differentiate to CMs, endothelial cells (ECs), and 

smooth muscle cells (SMCs) (Messina et al., 2004; Smith et al., 2007). 

Cardiac stem cells (CSCs) also include c-Kit expressing cells, which generate 

CMs, ECs and SMCs after injury (Beltrami et al., 2003; Rota et al., 2008; Ellison et al., 

2013). A different CSC type consists of Side Population (SP) cells (Hierlihy et al., 2002; 

Martin et al., 2004; Mouquet et al., 2005). The potential of SP cells to differentiate to 

cardiac cells is higher in the subgroup that expresses Stem cell antigen 1 (Sca1) (Pfister 

et al., 2005).  

Sca1+ cells independently isolated from adult cardiac tissue express early 

regulators of cardiac differentiation such as Gata4 and, when stimulated, Nkx2.5 and 

sarcomeric proteins (Oh et al., 2003). Sca1+ cells home to infarcted myocardium, 

yielding CMs around the injury area and improving cardiac function (Oh et al., 2003; 

(Wang et al., 2006). Recent transcriptional profiling suggests c-Kit+ cells represent a 
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less differentiated phenotype, whereas SP and Sca1+ cells are more committed to the 

cardiac lineage (Dey et al., 2013).   

Lessons from bona fide adult stem cells 

In the heart, little is known about the origins of cardiac stem cells or the structural 

organization of their niche. By contrast, adult organs including the hair follicles, gut, 

bone marrow (BM), and brain, harbor adult stem cells (ASCs) in specialized niches, 

allowing for spatial and temporal regulation of the renewal process (Li and Clevers, 

2010; Fuentealba et al., 2012). These niches support quiescent stem cell populations 

that, upon stimulation, give rise to transient amplifying progenitors which differentiate to 

mature, tissue-specific cell types (Figure 3, modified from Li and Clevers, 2010; and 

Fuentealba et al., 2012).  

The hair follicle bulge serves as a niche for hair follicle stem cells (HFSCs; 

Figure 3A). HFSCs exist in a quiescent state in the bulge region and active proliferating 

state in the hair germ (dermal papilla, DP), and are capable of generating all lineages of 

the hair (Li and Clevers, 2010; Tumbar, 2004). These two unique regions allow the 

HFSC  niche to  restrict HFSC  growth and differentiation  until replenishment  of cells is  
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Figure 3. Adult stem cell niches in the hair follicle, bone marrow, gut, and brain. The adult 

stem cells of the (A) hair follicles (hair follicle stem cells), (B) gut (intestinal stem cells), (C) bone 

marrow (bone marrow stem cells), (D) ventricular-subventricular zone (V-SVZ) of the brain 

(neural stem cells, NSCs) and (E) subgranular zone (SGZ) of the brain (NSCs), are unique 

clusters of undifferentiated cells which reside in the specialized tissue-specific niches of their 

respective organ. They have the ability to self-renew and to differentiate into some or all of the 

mature cells of the organ in which they reside (Scadden, 2006). They are also known as somatic 

stem cells, or stem cells of the body, to distinguish them from germ cells involved in 

reproduction. Figure modified from Li and Clevers, 2010; and Fuentealba et al., 2012.  
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required. The stem cell marker Leucine-rich repeat-containing GPCR5 (Lgr5) is 

expressed in the bulge and hair germ, and can be used to sub-classify these 

populations of cells. The canonical Wnt, Noggin, and BMP signaling pathways are 

critical regulators of the bulge HFSC niche, controlling cell proliferation and quiescence. 

The proteins DKK, Wif, and sFRP are canonical Wnt pathway antagonists. 

The intestinal stem cell (ISC) niche is located at the bottom of the intestinal 

Crypts of Lieberkühn (crypts), which are small recesses within the epithelial lining of the 

small intestine and colon (Figure 3B). Both of these regions of the gastrointestinal (GI) 

tract contain crypts, however only the small intestine contains villi (Moore and 

Lemischka, 2006; Jiang and Edgar, 2012). The ISC niche generates all cells of the 

small intestine, and this occurs as ISCs mature as they migrate upwards into the villi. 

Two populations of ISCs exist within the crypt niche of the small intestine, both of which 

are multipotent and capable of self-renewal. The first, at the +4 position from the crypt 

base, is a quiescent population of slow cycling, label-retaining cells, adjacent to 

mesenchymal cells (MCs) (Li and Clevers, 2010). This population is marked by Bmi-1, 

mTert, and Hopx (Sangiorgi and Capecchi, 2008). The second ISC population termed 

crypt-based columnar cells (CBCs) is found at the bottom of the crypt, interspersed 

between supportive Paneth cells, and marked by Lgr5, CD133, and Sox9 (Jiang and 

Edgar, 2012; Tian et al., 2011). Similar to the HFSC niche, the canonical Wnt and BMP 

signaling pathways regulate cell proliferation and quiescence. 

Within the BM, the hematopoietic stem cell (HSC) niche consists of two general 

sites: (1) a quiescent, osteoblastic niche at the endosteum, and a (2) proliferative, 

vascular niche in the central marrow (Figure 3C) (Nakamura-Ishizu and Suda, 2012). 
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Within the endosteal niche, osteoblast (OB) support cells and osteoblastic lining cells 

reside along the endosteum. Osteoclasts (OCLs) and macrophages exert structural and 

regulatory roles within the endosteal niche. OCLs form cavities in the bone in which 

HSCs reside. Maintenance of HSC quiescence within the endosteal niche is mediated 

by osteopontin (OPN), BMP signaling, and repression of canonical Wnt signaling via 

sFRP-1, (Li and Clevers, 2010). In the central marrow niche, to maintain blood cell 

homeostasis, quiescent long term-HSCs within the endosteal niche migrate to the 

sinusoids of the vascular niche in the central marrow, and become rapidly cycling short 

term-HSCs. BM sinusoidal endothelial cells line the lumen of these vessels and express 

vascular endothelial growth factor receptor-2 (Nakamura-Ishizu and Suda, 2012). 

Perivascular CXCL12-abundant reticular (CAR) cells provide structural support to the 

sinusoids at the central marrow. Regulation in the vascular niche is achieved by a 

balance of canonical Wnt, Fibroblast Growth Factor (FGF), Notch, SDF1, and BMP 

signaling.  

Adult neurogenesis has best been characterized within neural stem cell (NSC) 

niches located in the ventricular-subventricular zone (V-SVZ) of the lateral ventricles 

and subgranular zone (SGZ) of the dentate gyrus (Decimo et al., 2012). During neural 

development, radial glial cells give rise to a group of astroglial-like cells, known as B1 

cells, which persist in the adult brain and function as NSCs (Fuentealba et al., 2012). 

Neurogenesis within the V-SVZ utilizes these B1 cells, located in the walls of the lateral 

ventricles, which extend through this region to contact blood vessels within the SVZ 

(Figure 3D) (Fuentealba et al., 2012). B1 cells are induced to generate a subpopulation 

of transient amplifying cells, also known as intermediate progenitor cells (IPCs), or type 
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C cells. These TACs divide briefly and then become neuroblasts (type A cells) which, in 

rodents, migrate along the rostral migratory stream to the olfactory bulb and mature into 

interneurons (Kriegstein and Alvarez-Buylla, 2009). A second NSC niche exists in the 

subgranular zone of the dentate gyrus (DG), within the hippocampus (Figure 3E) 

(Fuentealba et al., 2012). The DG is composed of several layers, with the SGZ located 

at the bottom, directly above the hilus (a structure where blood vessels and nerves 

enter). The granule cell layer (GCL) and inner molecular layer (IML) exists above the 

SGZ. In the SGZ, astroglial cells, known as radial astrocytes (RAs) or type 1 

progenitors, serve as the neural stem cell. When induced, RAs generate transient 

amplifying progenitors known as intermediate progenitor cells -1 and -2 (IPC1, IPC2) or 

type 2a and 2b, respectively. Once generated, IPC1 cells quickly develop into 

proliferating IPC2 cells, characterized by expression of the early neuronal marker, 

doublecortin (Lugert et al., 2012). IPC2 cells then develop into immature granule cells 

(IGCs) which become mature granule cells (GCs) and extend axons into both the hilus 

and inner molecular layer of the dentate gyrus. 

ASCs primarily differ from their embryonic stem cell (ESC) counterparts in both 

their origins and lineage differentiation capabilities. ESCs, derived from the inner cell 

mass of the blastocyst, are pluripotent and capable of differentiating into the three germ 

layers of the embryo (endoderm, mesoderm and ectoderm) and generating all 

embryonic and somatic cell types (Thomson et al., 1998). Unlike ESCs whose origins 

are clearly defined, the origins of ASC populations, particularly those in the heart, are 

still uncertain. ASC differentiation potential is also more limited (multipotent, instead of 
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pluripotent) and generally lineage restricted to the cell types of their host organ (Jones 

and Wagers, 2008).     

ASC populations are maintained through symmetric cell divisions, in which two 

identical daughter stem cells are generated. They are also capable of generating 

multipotent progenitors with limited self-renewal capacity through asymmetric division 

(Jones and Wagers, 2008). One of the primary characteristics of ASCs is their ability to 

self-renew indefinitely. Consequently, they play a vital role in the maintenance of organ 

homeostasis by replacing dying cells lost to wear-and-tear, and also serve as a 

regenerative cell source after tissue damage or disease (Jones and Wagers, 2008). 

The number of organs in which ASCs have been identified and characterized is 

continuously growing. When studying putative cardiac stem cell populations, common 

themes observed with ASCs of other organs (i.e.: bone marrow, hair follicles, gut, and 

brain) can be used as an initial framework for generating testable hypotheses. However, 

even with these more extensively characterized stem cell populations, questions remain 

regarding the mediators which regulate their proliferation, differentiation, and fate. 

Consequently, significant effort has been applied towards understanding the regulatory 

signals and the regions in which they reside: the stem cell niche. 

Adult stem cell niches  

The adult stem cell niche is an intricate, tissue-specific structure, responsible for 

maintenance of resident ASC populations, and regulation of their differentiation 

throughout the lifetime of an organism. This remarkable process occurs in numerous 

organs, and often makes use of similar structural, cellular, molecular, and transcriptional 
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themes (Scadden, 2006; Li and Clevers, 2010). While each niche is unique, they all 

support their resident stem cell using a combination of stromal support cells, soluble 

mediators, ECM and cell adhesion components, neuronal innervation, and vascular 

networks (Figure 3). The integration of numerous regional and systemic factors 

ultimately regulates ASC activity in a spatial and temporal manner (Jones and Wagers, 

2008). Cellular and molecular methods to manipulate each tissue-specific stem cell 

population (BM, hair follicle, gut, brain, cardiac, etc.) will likely be achieved most 

optimally through regulation of their niches.  

Ultimately, maintenance of adult stem cells occurs through regulation of 

quiescent (slow-cycling) and active (rapidly proliferating) populations (Li and Clevers, 

2010). Support cells within the niche control these opposing processes through 

common molecular signaling pathways, such as canonical Wnt, Noggin, or BMP 

pathway mediators, which stimulate or inhibit stem cell proliferation and differentiation. 

Niche stem cells are responsive to secreted factors through various receptors, and 

when induced to proliferate, either generate identical daughter cells or precursors 

destined to become mature cells of the organ. This niche-mediated regulation of ASCs 

is crucial for maintenance of the tissue, and repair after damage. 

Summary and Hypothesis 

The information obtained from studies of stem cells and their niches in the BM, 

hair follicle, gut, and specific regions of the brain, can be extrapolated to predict 

characteristics of cardiac stem cells and their putative niche. It is likely that a CSC niche 

will contain quiescent and rapid populations of cells, maintained by support cells and 
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mediated by one or more of the signaling pathways described previously. Furthermore, 

previous studies demonstrate that after acute ischemic injury in the adult heart, 

endothelial-to-mesenchymal transition produces bipotent cells that generate both 

endothelial cells and myofibroblasts during scar formation (Aisagbonhi et al., 2011). 

Other groups have documented the ability of adult ECs to generate multipotent stem-

like cells via EndMT in organs such as the bone, demonstrating EC plasticity and the 

ability to differentiate to alternative cell types (Medici et al., 2010). Based on these 

findings, and increasing evidence that the adult heart harbors an endogenous 

population of CPCs, I hypothesized that ECs serve as cardiac progenitors and 

contribute to the maintenance of cardiac tissue during homeostasis.  
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CHAPTER II 

 

ENDOTHELIAL CELL LINEAGE TRACING LABELS  

CARDIOMYOCYTES IN THE ADULT HEART 

 

INTRODUCTION 

Although it is becoming increasingly evident that cardiac stem or progenitor 

populations exist, there is currently a debate about the regenerative ability of the adult 

myocardium (Kajstura et al., 2012). What is clear is that after injury, any natural 

regenerative ability of endogenous cells is inadequate to restore lost cardiac tissue. 

Instead, the myocardial response to infarction leads to scar formation, left ventricular 

remodeling, and heart failure.    

While reports suggest that adult ECs contribute to cardiac fibrosis and 

mesenchymal cells after injury (Aisagbonhi et al., 2011; Zeisberg et al., 2007; Chen et 

al., 2012), studies in the vertebrate embryo indicate they also contain regenerative 

potential. For example, during development, misspecification of the embryonic 

endothelium to a cardiac fate is observed with knockout of the transcriptional regulator, 

stem cell leukemia (SCL) (Van Handel et al., 2012). SCL-/- mouse embryos display 

beating CMs in endothelial tissues, which derived from hemogenic endothelium and the 

endocardium. This study indicates SCL as a master regulator during heart development, 

suppressing cardiogenesis in favor of inducing hemogenic endothelium to endothelial 

and hematopoietic fate.  
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Thus, evidence increasingly indicates that adult ECs retain a degree of plasticity, 

and appear to possess properties of progenitor cells. These cells may serve as a new 

potential target to improve cardiac recovery after ischemic injury. Before manipulating 

them after injury however, it is first necessary to characterize their contribution to 

cardiac homeostasis (in the uninjured heart) and determine to what degree, if any, adult 

ECs exhibit cardiogenic potential. To study the fate of ECs in the adult heart, 

constitutive and inducible fate mapping strategies were used to track cells expressing 

endothelial genes in the adult mouse heart.  

 

EXPERIMENTAL METHODS 

Animals 

ECs and their progeny were genetically labeled using Cre-LoxP recombination 

tools to activate expression of β-galactosidase (β-gal) or various fluorescent proteins 

under the control of the ubiquitously active ROSA gene locus (Soriano, 1999). Three 

independent transgenic mouse lines were used to direct constitutive or inducible Cre 

recombinase activity specifically in ECs: the Tie1-Cre and VE-Cadherin-Cre lines 

(Gustafsson et al., 2001; Alva et al., 2006) and the endothelial-SCL-Cre-ERT line, which 

drives a Tamoxifen-inducible Cre-ERT recombinase under control of the 5’ endothelial-

specific enhancer of the stem cell leukemia (SCL) gene locus (Göthert et al., 2004). The 

EC-specific Cre lines were crossed to R26RstopLacZ (Soriano, 1999) or R26RstopYFP 

(Srinivas et al., 2001) mice to generate double transgenics. The Tie1-Cre mouse line 

was also bred with the multi-fluorescent reporter R26RstopConfetti (Snippert et al., 
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2010). Finally, transgenic mice expressing β-gal directly under the Tie1 promoter 

(Korhonen et al., 1995) were used to assess Tie1 expression in cardiac tissue. 

 

Whole mount β-gal activity staining assay 

          Whole mouse hearts were isolated into cold 1X phosphate-buffered saline (PBS) 

and fixed for 1 hr at 4°C in 1X PBS containing 2% paraformaldehyde (PFA). After 

fixation, hearts were washed thrice with 1X PBS for 15 min each, and placed overnight 

(O/N) at 30°C in X-gal staining solution (1 mg/ml X-gal, 5 mM potassium ferro- and 

ferricyanate, 2 mM magnesium chloride, and 0.02% NP-40 in 1X PBS). Whole-mount 

hearts were photographed, stored in 10% phosphate buffered formalin at room 

temperature (RT) O/N and embedded in paraffin for sectioning. 

 

Immuno- and epi- fluorescence 

For cryosectioning, freshly isolated hearts were perfused with 1X PBS, bisected 

transversely, and fixed in 4% PFA dissolved in 1X PBS for 2 hrs at RT. Hearts were 

rinsed three times in 0.1% TX-100 solution in 1X PBS for 5 min each, embedded in 

Optimal Cutting Temperature compound (OCT; VWR), sectioned and stored at -70oC. 

Slides were thawed at RT and rehydrated in 1X PBS for 30 min to remove OCT. 

Sections were washed twice in 0.1% TX-100 solution for 3 min each, and permeabilized 

in 0.5% TX-100 solution for 20 min at RT. Sections were then blocked in 0.1% TX-100 

solution containing 2% BSA and 10% normal goat serum (Sigma) for 30 min at RT, and 
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incubated with primary antibodies O/N at 4oC. Afterwards, slides were washed four 

times in 1X PBS for 10 min each, incubated with secondary antibodies in blocking 

solution for 1 hr at RT, washed four times in 1X PBS for 10 min each, and mounted with 

VECTASHIELD fluorescent mounting medium (Vector Laboratories). Antibody sources 

and dilutions are included in Table 2 (Appendix). 

 

Imaging and 3-D Reconstruction 

A series of confocal images (z-stack) were acquired sequentially on 100µm 

cardiac sections. Image stacks were attained for each channel using an LSM 710 META 

inverted microscope (Zeiss). Images were maximally projected using ZEN or ImageJ 

software and reconstructed into 3-D Z-series using Imaris (Bitplane) image analysis 

software.  

 

Quantification of endothelial-derived CMs per volume of cardiac tissue 

          Cardiac cross-sections from End-SCL-CreERT-LacZ mice, previously stained with 

X-gal for β-gal activity and counterstained with hematoxylin/eosin (H&E), were analyzed 

to determine the number of labeled CMs per volume of cardiac tissue. Transverse 

cardiac sections were imaged (Nikon AZ-100M widefield) and the average area was 

calculated using the Region Measurements function of MetaMorph Image Analysis 

Software. The µm/pixel calibration value was used to convert pixels into area of tissue in 

µm2. Volume of total cardiac tissue in µm3 was calculated by multiplying the area 
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obtained per section by the 10 µm thickness of tissue for each slide. A total of 352 

slides (with 4 separate sections per slide; total of 1,408 sections) were imaged to 

analyze and estimate global cardiac CM labeling in the End-SCL-CreERT-LacZ pulse-

chase (N=17 mice) lineage tracing experiments. 

 

Tamoxifen Preparation and Administration 

For pulse-chase experiments, Cre recombinase was induced in adult, male End-

SCL-CreERT-LacZ and End-SCL-CreERT-YFP mice by five intra-peritoneal injections of 

3 mg Tamoxifen Free Base (MP Biomedicals) every other day for 9 days. Tamoxifen 

was suspended at 100 mg/ml in ethanol and mixed with sunflower oil to a final 

concentration of 10 mg/ml (10% ethanol). The fifth and last injection was set as ‘Day 0’ 

for pulse-chase experiments. A continuous 0.8% Tamoxifen chow diet (Harlan) was 

administered using Tamoxifen citrate salt in sucrose. Tamoxifen chow was freely 

available to the mice with average consumption of ~1 pellet/mouse/day. 

 

Immunohistochemistry 

Paraffin-embedded hearts were cut in 10µm sections. For antibody staining, 

sections were deparaffinized through Histo-Clear and graded alcohols per standard 

protocol. Antigen retrieval was performed by heating slides to 95oC in a solution of 

10mM Sodium Citrate (Reveal Decloaker RTU, Biocare) for 30 min. Sections were 

washed three times in 1X PBS for 5 min each. Endogenous peroxidase activity was 
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quenched by immersing slides in 0.3% peroxidase dissolved in 1X PBS for 10 min at 

RT. Sections were blocked in 2% BSA for 1 hr at RT, and stained O/N at 4oC with 

primary antibodies, cTnT (Abcam, Ab10214; 1:800) in blocking solution. Slides were 

washed three times in 1X PBS for 5 min each and then processed using the Anti-Mouse 

Ig Horseradish Peroxidase detection kit (BD Biosciences). Slides were counterstained 

with Hematoxylin and Eosin (H&E), dehydrated, and mounted in Cytoseal-60 (Fisher).  

 

Epifluorescence analysis 

We documented epifluorescence in sections from Tie1-Cre-Confetti mice with 

direct excitation at 488nm, 515nm, and 561nm to activate nGFP, YFP and RFP, 

respectively. Sections were stained with DAPI (1:5000). 

 

Analysis of regional YFP+ CM location and global YFP+ CM percentage  

           Cardiac cross sections of Tie1-Cre-YFP mice were analyzed to determine the 

regional location of YFP+ CM clusters, by visualization with direct excitation at 515nm. 

Hearts were bisected transversely at the mid-region, and embedded with the cut sides 

facing the same direction. This allowed for sections to concurrently progress towards 

the base and apex. An average of fifty 10µm sections per heart (one every 10 sections) 

were imaged, covering approximately 5000µm of tissue. Numbers of YFP+ CMs were 

recorded throughout these sections. To calculate the percentage of total YFP+ CMs, the 

number of recorded YFP+ CMs per imaged cardiac tissue was adjusted to total heart 
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size and divided by 8x106, the approximate total number of CMs in the adult mouse 

heart (Adler et al., 1996; Doevendans et al., 1998).  

 

Probability calculation of single cell origin of CM clusters in Confetti mice 

Given that Cre-recombinase activity is cell-autonomous, we assume that each 

CM has been labeled independently of Cre activity in neighboring cells. Based on all 

observed fluorescent CM labeling, we calculated that the proportion of red, yellow, and 

green fluorescent CMs in the analyzed cardiac sections are 0.46, 0.23, and 0.31, 

respectively.  Therefore, the probability for each cluster of a given size to have CMs of 

the same color has been calculated using the formula:  

P = PR
# + PY

# + PG
#,  where PR, PY, and PG are the probabilities (0.46, 0.23, and 

0.31) of seeing a RFP+, YFP+, or nGFP+ cardiomyocyte, respectively; and # is the total 

number of CMs in the cluster. Calculated values have been included in Table 1. Given 

that each cluster is independent (i.e., the colors of the labeled CMs in one cluster are 

not influenced by the labeled colors of CMs in another cluster), then the probability that 

all 26 analyzed clusters never have mixing of colors (i.e., never more than one color per 

cluster) is 5.8 x 10-36. 

 

Bone marrow engraftment 

Bone marrow engraftment was performed as described previously (Vinh et al., 

2010), using bone marrow from CAG-EGFP transgenic mice (Okabe et al., 1997) 
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engrafted into C57Bl/6 wild type recipient mice. Cardiac tissue of recipient mice was 

analyzed 10 weeks after engraftment. All animal procedures were carried out with the 

approval of the Institutional Animal Care and Use Committee. 

 

Statistical analysis   

All values were reported as mean +/- S.D. Statistical significance was assessed 

by Student’s unpaired two-tailed t-test for all statistical analysis comparisons. Statistical 

significance was expressed as follows: *p < 0.05; **p < 0.01. 

 

RESULTS 

Endothelial fate mapping strategy 

To investigate the potential role of the endothelium for maintenance of the 

normal, uninjured adult heart, we analyzed cell fate in the hearts of 3-5 month-old Tie1-

Cre-LacZ or Tie1-Cre-YFP mice, generated by crossing Tie1-Cre mice to ROSA-β-

galactosidase (LacZ) or ROSA-Enhanced Yellow Fluorescence Protein (YFP) reporter 

mice, respectively (Gustafsson et al., 2001; Soriano, 1999; Srinivas et al., 2001)  

(Figure 4). In double transgenic animals, the ubiquitous Rosa26 promoter constitutively 

drives reporter gene expression in ECs and their progeny.   
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Endothelial-specific Tie1 and VE-Cadherin expression labels patches of CMs 

Tie1-Cre-LacZ hearts were stained with X-gal to visualize β-gal activity and thus 

Tie1+ cells and their derivatives. In addition to marking ECs as expected, we detected 

labeled cells of non-endothelial appearance that were organized in clusters (Figure 5A). 

Histological analysis showed the β-gal+ clusters were CMs, based on morphology and 

co-staining for cardiac Troponin T (Figure 5B). To exclude that CM staining was due to 

aberrant β-gal activity in CMs, we stained cardiac tissue sections from Tie1-Cre-YFP 

mice with antibodies recognizing YFP and the CM marker α-Actinin. 

Immunofluorescence (IF) analysis showed robust EC staining, but also revealed the 

presence of YFP+ CMs with proper sarcomeric structures (Figure 5C). EC-derived CMs 

in sections appeared in clusters, in agreement with the pattern observed in whole-mount 

images. 

 

Figure 4. Endothelial cell lineage tracing strategy. Schematic drawing of gene loci used for 

EC lineage tracing and fate mapping. Transgenic mice expressing Tie1-Cre or VE-Cadherin-

Cre were crossed with R26R-LacZ or R26R-EYFP mice to generate double transgenic lines.  
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Figure 5. Endothelial-specific Tie1 promoter expression labels patches of 
cardiomyocytes. (A) Whole mount X-gal staining of hearts from 3 month old Tie1-Cre-LacZ 

mice shows EC labeling and clusters of non-ECs in the ventricles. Right panels represent 
boxed areas showing a cluster of labeled non-ECs (upper panel) and ECs (lower panel). Scale 
bars 1mm in original image, 250µm in insets. (B) Upper panel: Histological analysis of X-gal-
stained cardiac tissue sections from Tie1-Cre-LacZ mice shows CM staining (arrows). Lower 
panel: labeled non-ECs co-stain for cardiac Troponin T (cTnT; arrows). Scale bars 10µm. (C) IF 
analysis of cardiac tissue from Tie1-Cre-YFP mice stained for YFP (green) shows ECs and 
CMs, the latter co-stained for α-Actinin (red). YFP+ CMs (arrows) are shown sectioned 
longitudinally (left) and transversely (right). DAPI (blue) was used for nuclear counter-staining. 
Lower panels depict boxed areas to depict sarcomeric structures in YFP+ CMs. Scale bars 
50µm (top panels), 10µm (bottom panels).  
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To eliminate the possibility that CM staining was due to ectopic Tie1 promoter 

activity in cardiac cells, we used mice expressing β-gal directly under the Tie1 promoter 

to mark ECs, but not their progeny (Korhonen et al., 1995). Histological analysis at 2 

days, 2 weeks, 1 month, and 2 months of age detected exclusive EC labeling, without β-

gal+ CMs (Figure 6). These results indicate the labeled CMs observed in Tie1-Cre-LacZ 

and Tie1-Cre-YFP hearts are progeny of Tie-1+ cells and not due to ectopic Tie1 

expression in CMs.  
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Figure 6. Lack of cardiomyocyte labeling in the absence of Cre recombinase.                  
(A-D, top panels) Whole mount X-gal staining of Tie1-LacZ transgenic hearts at 2 days (A), 2 
weeks (B), 1 month (C) and 2 months (D) depicts widespread labeling of blood vessels, but no 
labeling of cardiac tissue. (A-D, bottom panels)  Histological analysis of Tie1-LacZ cardiac 
tissue sections shows prominent labeling of ECs, but no labeling of CMs, at each of the four 
time points, precluding aberrant Tie1 promoter activity in adult CMs. Arrows indicate coronary 
artery and vein ECs, arrowheads denote microvasculature.  
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To further confirm that ECs give rise to CMs, we used an independent mouse 

line with endothelial-specific Cre expression under the control of the Vascular 

Endothelial (VE)-Cadherin gene transcription regulatory elements (Alva et al., 2006) 

(Figure 4). The VE-Cadherin promoter-based labeling produced comparable results to 

the Tie1-Cre-LacZ or Tie1-Cre-YFP mice. Specifically, histological sections obtained 

from 3-5 month-old VE-Cadherin-Cre crossed to ROSA-LacZ (VE-Cadherin-Cre-LacZ) 

or ROSA-YFP (VE-Cadherin-Cre-YFP) hearts showed labeling of both ECs and CMs 

(Figure 7). 

 

 

 

 

 

Figure 7. Endothelial-specific VE-Cadherin expression labels patches of CMs.                  
(A) Histological analysis of X-gal-stained cardiac tissue from VE-Cadherin-Cre-LacZ mice 
shows staining of ECs (left panels). A labeled CM cluster is highlighted in the right image. Scale 
bars 25µm (left panels), 10µm (right panel). (B) IF analysis of cardiac tissue from VE-Cadherin-
Cre-YFP mice co-stained for YFP (top and bottom, green) and α-Actinin (bottom; red). DAPI 
(blue) was used for nuclear counter-staining. Scale bars 10µm. 
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    IF analysis showed EC-derived, YFP+ CMs were surrounded by normal basal 

membrane (Collagen IV staining), properly expressed cell-adhesion membrane 

molecules (N-Cadherin), and formed gap junctions (Connexin 43) among themselves, 

as well as non-EC derived CMs, suggesting they are functionally integrated with 

neighboring YFP(-) CMs (Figure 8). Taken together, our results show that in adult mice 

fate mapping using endothelial genetic labeling yields cells with functional and structural 

properties of CMs. 

  

 

 

 

Figure 8. Functional and structural characterization of YFP+ CMs. (A-C) IF analysis of 
cardiac tissue from Tie1-Cre-YFP mice indicating YFP (yellow) and basal membrane Collagen 
IV (A; Col IV, red), membrane cell adhesion protein N-cadherin (B; red) and gap junction 
protein Connexin 43 in intercalated discs (C; Cx43, red). YFP antibody marks both ECs and 
EC-derived CMs. Higher magnification inserts are shown in the right panels. Arrows indicate 
adjacent YFP+/YFP+ CMs, arrowheads indicate adjacent YFP+/YFP- CMs.  Scale bars 30µm (A) 
and 10µm (B,C) in original images, and 10µm (A) and 5µm (B,C) in insets.  
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Endothelial-derived myocytes first appear 2 weeks after birth  

During development, mesodermal progenitor cells, which differentiate to ECs, 

CMs, and SMCs, also express the endothelial-specific gene Vascular Endothelial 

Growth Factor Receptor 2 (Vegfr2, or Flk-1; (Kattman et al., 2006). This raised the 

possibility that the labeled CM clusters in the adult heart are derived from early 

embryonic cells with endothelial characteristics. To distinguish whether EC-derived CMs 

are of embryonic or adult origin, we used End-SCL-CreERT mice with inducible Cre 

recombinase expression under the control of the 5’ endothelial-specific enhancer of the 

Stem Cell Leukemia (SCL) gene (Göthert et al., 2004). End-SCL-CreERT mice were 

crossed to the ROSA-LacZ or ROSA-YFP reporter lines to generate End-SCL-CreERT-

LacZ or End-SCL-CreERT-YFP mice, respectively. These double transgenic mice allow 

for specific labeling of mature ECs after tamoxifen induction of Cre-recombinase 

activity.  

End-SCL-CreERT-LacZ and End-SCL-CreERT-YFP adult mice were continuously 

fed a diet containing 0.8% tamoxifen to tag and lineage trace ECs. Whole-mount 

staining with X-gal and histological analysis of End-SCL-CreERT-LacZ hearts after 6 

weeks of tamoxifen diet showed EC as well as CM labeling (Figure 9A,B), similar to the 

constitutively active endothelial-specific Cre models described in Figures 5 and 7. 

Labeling of CMs, which co-stained for sarcomeric α-Actinin, was also observed after 12 

weeks on tamoxifen (Figure 9C).  
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Of note, we did not detect CM labeling, and found extremely rare EC labeling 

(<1%), in control End-SCL-CreERT-LacZ mice without tamoxifen administration, 

indicating tight regulation of inducible Cre recombinase activity. No labeled cells were 

present in ROSA-STOP-LacZ mice on tamoxifen (Figure 10). 

 

 

Figure 9. Endothelial-specific End-SCL-CreERT expression labels patches of CMs in the 
adult heart. (A,B) Images of X-gal stained hearts from 5 month old End-SCL-CreERT-LacZ mice, 
fed tamoxifen chow for 6 weeks to induce Cre recombinase in adult ECs and their progeny. Whole 
mount staining in A shows EC and CM labeling. Scale bar 1mm in original image, 250µm in inset. 
Histological sections in B depict labeled CMs (arrows) and ECs (representative arrowheads). Scale 
bars 20µm. (C) Labeling of cardiac ECs and CMs in End-SCL-CreERT-YFP double transgenic line 
after 12 weeks of tamoxifen diet. Sections stained for YFP (green) and α-Actinin (red). Right panel: 
magnification of boxed area highlights sarcomeric structures in YFP+ CM. Scale bars 10µm (left), 
50µm (right). 
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To test whether the observed CM staining is due to ectopic activity of the Tie1 or 

Endothelial-SCL promoter/enhancer elements in non-ECs, we stained cardiac tissue 

sections from Tie1-Cre-YFP and End-SCL-CreERT-YFP mice with antibodies 

recognizing Cre protein. IF analysis showed that Cre expression is restricted to ECs, 

supporting an endothelial origin of labeled CMs (Figure 11A,B). We confirmed the 

endothelial specificity of Tie1 expression by co-staining cardiac sections from Tie1-Cre-

YFP mice for Tie1 and α-Actinin. Furthermore, we did not detect co-labeling of Tie1 in 

YFP+ or YFP- CMs, showing that CMs do not express Tie1 (Figure 11C). Collectively,  

Figure 10. Cardiomyocyte labeling in EC lineage tracing depends on endothelial Cre 
expression. (A) Whole mount X-gal staining of hearts from End-SCL-CreERT-LacZ mice 
without tamoxifen administration shows minimal EC labeling (<1%; arrows) and no CM 
labeling, demonstrating tight and specific regulation of Cre recombinase activity. Scale bars 
1mm in top panels, 20µm in bottom left panel, 5µm in bottom right panel.  (B) Whole mount X-
gal staining of single ROSA-STOP-LacZ transgenic hearts demonstrates lack of aberrant β-
galactosidase activity without the presence of Cre recombinase. Scale bar 1mm in top panel, 
50µm in bottom panel.   
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these results indicate the observed labeling is not due to 1) leaky activity of the 

inducible Cre fusion protein, 2) expression of β-gal and YFP without Cre activity, or 3) 

aberrant Tie1 or Cre expression in CMs. 

 

                

 

 

 

Figure 11. Cre and Tie1 expression are restricted to cardiac endothelial cells.  (A,B) IF 
analysis of cardiac sections from End-SCL-CreERT-YFP and Tie1-Cre-YFP mice with 
antibodies recognizing Cre recombinase protein (red), CD31 (green), and YFP (yellow) 
illustrates Cre recombinase expression is restricted to CD31+ ECs, and does not mark CMs. 
Arrows indicate  examples of YFP+ CMs which do not express Cre recombinase. Scale bars, 
10µm. (C) Analysis of cardiac tissue sections from Tie1-Cre-YFP mice with antibodies 
recognizing the endothelial marker Tie1 (red), and mature CM marker α-Actinin (green), 
indicate Tie1 expression is restricted to ECs and is not present in CMs. Arrows point to 
examples of Tie1-, α-Actinin+ CMs; arrowheads indicate Tie1+ ECs. Scale bars, 10µm. 
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To further exclude the possibility that EC-derived CMs are marked during 

development, we isolated and stained hearts from neonatal and young Tie1-Cre-LacZ 

mice with X-gal. Staining of hearts from perinatal day P2, weanling (P14) and young 

adult (2 months) mice indicated that while cardiac vasculature was labeled at each time 

point (Figure 12A-D; also Figure 6), CM clusters first appeared within the postnatal 

heart by 2 weeks of age (Figure 12C,D). 

 

 

 

  

Figure 12. Endothelial-derived cardiomyocytes appear in the adult heart.                   
(A,B) Whole mount images (A) and sections (B) of X-gal stained neonatal hearts from 2 
day old Tie1-Cre-LacZ mice shows EC, but not CM labeling. Scale bars 1mm in original 
images, 250µm in magnified areas. (C,D) X-gal staining of hearts from weanling              
(2 weeks) and young adult (2 months) mice show EC-derived CM clusters appear 
around 2 weeks of age. Scale bars 1mm. 
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In summary, three independent, constitutive (Tie1, VE-Cadherin) or inducible 

(End-SCL) endothelial-specific promoters, with two independent reporters (LacZ, YFP) 

were used that all showed similar labeling of ECs and CM clusters. Thus, the data 

support the idea that a subset of CMs in the adult mouse heart is postnatally derived 

from ECs. 

Clusters of endothelial-derived cardiomyocytes originate from single cells 

The clustering of EC-derived CMs suggested they were clonally related. To test 

this model, the Tie1-Cre line was crossed to the ROSA-Confetti multi-fluorescent 

reporter to generate Tie1-Cre-Confetti mice. The Confetti line carries four distinct 

fluorescent protein genes (red, yellow, nuclear green and membrane-bound cyan) in the 

ROSA locus (Snippert et al., 2010). The fluorescent protein coding sequences are 

organized in tandem among alternating LoxP sites in a way that recombination of the 

ROSA-Confetti allele leads to stochastic expression of RFP, YFP, nuclear GFP (nGFP) 

or membrane CFP (mCFP).   

The confetti construct is designed such that random recombination activates only 

one of the fluorescent protein genes, allowing stochastic labeling of each targeted cell 

and its descendants with a single color (Figure 13). As a result, this fate mapping 

strategy can distinguish whether cells in a cluster are clonally related (i.e., generated 

from a single, labeled progenitor cell), or if each cell in a cluster has been independently 

derived. In the first case, the entire cluster should have CMs of one color; if the latter is 

true, individual clusters should consist of cells expressing different colors (Greif et al., 

2012). 
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Epifluorescence examination of cardiac sections from adult Tie1-Cre-Confetti 

mice detected ECs expressing RFP, YFP and nGFP in equal proportions (Figure 14); in 

our hands, expression of mCFP in cardiac sections was too weak to reliably detect; 

therefore we focused further analysis on RFP, YFP, and nGFP). Among labeled CMs, 

each individual cluster was marked by expression of the same single fluorescent protein 

(Figure 15).   

 

 

 

 

Figure 13. Schematic drawing of the ROSA-Confetti reporter gene locus. 
Stochastic expression of either mCFP, nGFP, YFP, or RFP occurs with Cre-
mediated recombination at one of the loxP sites of the Confetti gene construct. The 
Tie1 promoter drives expression of a constitutively active Cre recombinase. 
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Figure 14. Quantitative analysis of red, yellow, and green fluorescent protein 
expressing endothelial cells in stochastic lineage tracing. (A) Epifluorescence 
examination of transverse cardiac section from adult Tie1-Cre-Confetti mouse illustrates 
EC labeling with the analyzed RFP, nGFP, and YFP fluorescent proteins. Scale bars 50µm.                        
(B) Quantification of ECs marked with epifluorescence in Tie1-Cre-Confetti mice shows 
equivalent ratios of RFP+, nGFP+, and YFP+ ECs. Percentages of RFP, nGFP and YFP 
expressing ECs were quantified by counting the number of individually fluorescent ECs as 
a percentage of the total fluorescent EC population in a given visual field (N=4 mice, n=8 
total visual fields). 
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To calculate the probability (P) that each cluster would randomly consist of CMs 

expressing the same fluorescent protein without being derived from a single cell, we 

recorded the size and color of CM clusters with ≥3 cells in sections of three independent 

Tie1-Cre-Confetti mouse hearts (Table 1). The probability that the observed labeling 

patterns in this analyzed set of CMs are due to random recombination events is P<10-36, 

indicating that labeled CMs in each cluster are not independently derived, but originate 

from a single cell. 

 

Figure 15. Each CM in a cluster expresses the same fluorescent color in Tie1-Cre-

Confetti mice. (A-D) Epifluorescence analysis for RFP, YFP and nGFP expression in 

transverse cardiac sections from adult Tie1-Cre-Confetti mice depicts ECs and CMs 

expressing RFP, YFP and nGFP. CM clusters marked in boxed areas in A are magnified 

in B-D. Individual CMs in each cluster express the same fluorescent protein. Scale bars 

100µm in A, 10µm in B-D. 
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  Table 1. Quantitative analysis of red, yellow, and green fluorescent protein 
expressing cardiomyocytes in stochastic lineage tracing. The table indicates the 
calculated probability values for observing clusters of single color labeled CMs. Percentages 
of RFP, nGFP, and YFP expressing CM clusters were determined by counting the number 
of single-color labeled CMs in each distinct cluster and comparing with the total number of 
fluorescently labeled CMs (N=4 mice, n=26 separate CM clusters). 



  

43 

 

Using 3-D reconstruction images, we documented that in many instances 

individual CM clusters were marked by a different fluorescent color than neighboring 

microvasculature, suggesting CM labeling was not due to fusion with ECs (Figure 16). 

Furthermore, CMs in the same cluster were not always contiguous but often 

interspersed with unlabeled CMs, a pattern also observed in other organs that might be 

indicative of tissue repair in the adult versus de novo development in the embryo 

(Kopinke et al., 2011; Bowman et al., 2013).  

 

 

 

 

 

 

 

 

Figure 16. 3-D reconstruction of a representative CM cluster. (A) Single image from 
within the serial section plane. Each CM expresses RFP; adjacent ECs express YFP; DAPI 
is shown in blue. Scale bar 10µm. (B,C) Compilation of z-stack images is used to recreate  
the 3-dimensional RFP+ CM cluster. Surrounding YFP+ and nGFP+ vasculature indicates a 
lack of endothelial cell fusion with adjacent CMs. Scale bars 10µm.  
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Collectively, the staining patterns in Tie1-Cre-Confetti mice indicate that each 

labeled CM cluster has originated from a single parental cell expressing EC markers. It 

is also possible that rare, proliferating CMs transiently express endothelial markers, and 

thus become labeled before expansion to form clusters.  

 

Cardiac myocyte progeny of endothelial cells are regionally restricted 

 

Whole-mount heart staining indicated EC-derived CM clusters were localized in 

specific areas (Figures 5 and 12). To determine overall distribution patterns throughout 

right and left ventricles, we systematically mapped the location of CM progeny following 

EC lineage tracing. Complete sets of serial transverse cardiac tissue sections from five 

Tie1-Cre-YFP mice were analyzed using confocal microscopy.  

The results revealed clusters of labeled CMs were present in both left and right 

ventricles, most frequently around coronary blood vessels in subepicardial regions 

(Figure 17 A,B). The locations of clusters containing 4 YFP+ CMs were placed in a 

diagram of four heart planes from base to apex. We found YFP+ CM clusters were 

primarily localized in three regions of the heart: the anterior free wall of the right 

ventricle; the junction areas between right and left ventricles and adjacent septum; and 

the lateral free posterior wall of the left ventricle (Figure 17C).  

 

 

 

 



  

45 

 

        

 

  

Figure 17. Endothelial-derived cardiomyocytes are localized to three specific heart 
areas. (A) Transverse cardiac section from adult Tie1-Cre-YFP mice stained for YFP reveals 
EC-derived YFP+ CMs are found in both left and right ventricles, most frequently in 
perivascular (insets 1,2,3) and subepicardial (insets 1,3) areas. Scale bars 500µm in original 
image, 10µm in insets. (B) Clusters of CMs are also localized at the junction of the left and 
right ventricles and adjacent septum. Scale bars 50µm. (C) Schematic drawing depicting the 

location of all clusters 4 YFP+ CMs identified in serial sections of 5 Tie1-Cre-YFP mice. 
Abbreviations: AA, atrial appendage; RV, right ventricle; LV, left ventricle; JX, junction;          
L, lumen. 
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Each cluster consisted of up to 50 CMs. 60% of the observed clusters were in the 

left ventricle with the remaining 40% equally distributed in the right ventricle and junction 

areas. Furthermore, left ventricle clusters consisted on average of twice as many cells 

per cluster than those in the right ventricle (Figure 18A,B).   

 

    

 

  

 

 

Taking into account the number of clusters in each heart and the number of cells 

per cluster, we calculated the total number of YFP+ CMs represent ~0.3% of the 

approximately 8 million CMs in the mouse heart (Adler et al., 1996; Doevendans et al., 

1998). These data indicate that in both ventricles, cardiogenic endothelium seeds 

specific cardiac areas, representing a relatively small fraction of the CM population.  

 

Figure 18. Quantitative analysis of the three cardiac regions where labeled CMs are 
observed. (A) Quantification of CM cluster locations shows 60% are present in the left 
ventricle and the remaining 40% in the right ventricle and junction areas. (B) Quantification of 
CM number in each cluster shows clusters in the left ventricle are on average double in size 
compared to clusters in the right ventricle. Abbreviations: RV, right ventricle; LV, left ventricle; 
JX, junction; L, lumen. 

. 
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Pulse labeling of endothelial cells leads to rapid long-term CM labeling 

To test whether ECs are the originating cells, or represent an intermediate, 

transient step in the cardiogenic process, we pulsed-chased ECs using the inducible 

End-SCL-CreERT-LacZ mouse described above. Adult mice were given a series of 

closely spaced tamoxifen injections (‘pulse’) and hearts were isolated at various time-

points after the final injection (‘chase’) (Figure 19A). Hearts were then stained with X-

gal to visualize labeled CMs in transverse sections. Analysis of cardiac tissue sections 

immediately (i.e., 1 day after the end of the pulse), and 3-days later showed exclusive 

labeling of ECs, whereas labeled CMs appeared one week after the pulse and persisted 

up to 12 weeks, the last time point examined (Figure 19B). 

The number of labeled CMs per volume of cardiac tissue was quantified for each 

of the time-points. The data indicate labeled CMs appeared in low numbers one week 

after the pulse, increased over a period of 3 weeks, and remained relatively constant at 

least up to 12 weeks (Figure 19C).   

These results suggest cells labeled by EC-specific Cre expression represent an 

originating cell rather than a transient subpopulation in the CM generation process, 

since in the latter case CM numbers would decline after a single pulse. Alternatively, it 

is likely EC-derived CMs have long life spans beyond the examined 12-week period. In 

either case, the duration required to achieve maximum CM labeling after the pulse 

suggests the process is efficient and reaches a steady state within approximately 3 

weeks. 
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  Figure 19. Pulse-chase labeling of ECs leads to rapid long-term labeling of CM 
progeny. (A) Schematic drawing of the pulse-labeling experimental design. (B) 
Histological analysis of hearts stained with X-gal and counter-stained with Hematoxylin 
and Eosin to visualize ECs and labeled CMs in transverse sections at indicated time 
points. After a 1- and 3-day chase, labeling of only cardiac ECs was observed, whereas 
labeled CMs appeared by one week after the pulse and persisted at 3 months. Arrows 
indicate X-gal+ CMs. Scale bars 50µm (upper), 20µm (lower panels). (C) Quantification of 
CM numbers at different chase time points shows maximum CM labeling within 3 weeks 
which remains constant thereafter. N indicates number of mice used for analysis. Values 
reported as mean +/- S.D. *p < 0.05; **p < 0.01. 

. 
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Bone marrow-derived cells do not contribute to CMs in the adult heart 

The SCL gene, as well as Tie1 and VE-Cadherin, are also expressed in 

hematopoietic stem cells (HSCs), raising the possibility that labeled CMs are of bone 

marrow origin. One advantage of the SCL 5’ enhancer is that it is not expressed in adult 

HSCs (Göthert et al., 2004), which suggests labeled CMs are derived from ECs and not 

bone marrow cells.  

To directly test whether HSCs contribute CMs in the adult heart, we used a 

method independent of lineage tracing. Specifically, we analyzed cardiac tissues from 

mice transplanted with fluorescently tagged bone marrow cells (Figure 20). IF analysis 

showed bone marrow derived cells present in the adult heart were primarily F4/80+ 

macrophages and FSP-1+ fibroblasts, with no labeling of CMs, consistent with previous 

studies (Murry et al., 2004). The results of the transplantation studies excluded that 

labeled CM clusters are derived from HSCs. 
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Figure 20. Analysis of 
heart tissue in mice after 
fluorescently labeled bone 
marrow transplantation. 
Bone marrow (BM) from 
CAG-EGFP transgenic mice 
was engrafted into wild type 
recipient mice.  Fluorescent 
BM-derived cells were 
observed in cardiac sections 
only after BM engraftment. 
(A) GFP+ BM-derived cells in 
cardiac sections co-stain with 
the fibroblast marker FSP-1 
(top panels) and the 
macrophage marker F4/80 
(bottom panels). Arrows 
indicate overlap of BM-
derived GFP+ cells with  
FSP-1 and F4/80. Scale bars 
10µm in top panels, 5µm in 
bottom panels. (B) GFP+ 
BM-derived mononuclear 
cells (arrowheads) do not 
costain with the mature CM 
marker α-Actinin (top 
panels), or the early cardiac 
marker Gata4 (bottom 
panels). Scale bars 10µm. 
(C) Similarly, GFP+ BM-
derived cells (arrowheads) in 
the proximity of coronary 
vessels do not costain with 
the smooth muscle marker 
αSMA or endothelial cell 
marker CD31 (top panels), or 
the cardiac stem cell surface 
marker Sca1 (bottom 
panels). Scale bars 20µm. 
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DISCUSSION 

We have used Cre/Lox technology to generate a fate map of vascular cells in the 

healthy, adult heart. Our data show ECs retain cardiogenic potential in the adult heart, 

similar to the differentiation capacity of cardiovascular progenitor cells during the early 

stages of cardiac development, the EC-based cardiogenic process is rapid, but 

restricted to specific areas of the myocardium, and approximately 0.3% of the adult 

heart is comprised of endothelial-derived CMs.  

 Although the classical role of ECs is to ensure proper functioning of the inner wall 

in blood vessels, evidence increasingly points to a more direct and active role of ECs in 

organ development, homeostasis, and tissue repair. ECs display exceptional 

differentiation potential and plasticity during development and disease. During 

development, ECs in the ventral wall of the dorsal aorta transform to budding blood cells 

and migrate to hematopoietic organs, ultimately residing in the bone marrow (Lancrin et 

al., 2009). This particular type of EC is called the hemogenic endothelium. In the adult, 

besides the angiogenic response of ECs to build new blood vessels after ischemia, they 

also undergo mesenchymal transition after injury (EndMT), producing SMA+ 

myofibroblasts in the heart, lung and kidney, supporting a fibrogenic potential of ECs 

(Zeisberg et al., 2007; Arciniegas et al., 2007; Zeisberg et al., 2008; Aisagbonhi et al., 

2011; Chen et al., 2012). 

 These results indicate ECs also have cardiogenic potential in the adult. This 

notion is compatible with embryonic development when all three types of cardiovascular 

cells (ECs, SMCs, and CMs) are derived from multipotent progenitor cells expressing 

EC markers such as VEGFR2 (or Flk-1; Kattman et al., 2006). Furthermore, inactivation 
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of SCL/TAL1 can transform vasculature to cardiac cells, turning the yolk sac from a 

hematopoietic tissue to a contracting sheet of CMs (Van Handel et al., 2012). This 

striking outcome suggests, at least early in development, EC to CM transition can be 

accomplished by switching off a single transcriptional regulator. 

 Additionally, the data show EC-derived CMs represent a small number of the 

total cardiac cell pool and are confined to specific areas. The first observation likely 

reflects the slow rate of cardiac renewal necessary during cardiac homeostasis, a fact 

also supported by the low number of new CMs generated annually in the human and 

mouse hearts (Bergmann et al., 2009; Murry and Lee, 2009). The second suggests 

renewal may take place in specific sites characterized by high attrition rates due to work 

overload or structural constrains.  

 Since the heart is constantly contracting, areas of the myocardium which are 

under greater strain may require localized regeneration. In support of the possibility that 

localized renewal of CMs occurs in the adult heart, clinical studies showed cardiac 

tissue fibrosis often appears in the perivascular space, or the insertion points between 

ventricles (Biernacka and Frangogiannis, 2011; Karamitsos and Neubauer, 2013). 

These areas of the myocardium are sites that contain the majority of the labeled 

clusters we identified in the mouse hearts.  

 In summary, endothelial lineage tracing in the adult mouse, using three 

independent constitutive or inducible promoters, all indicate CMs are derived from an 

endothelial population. This physiological process may occur through asymmetric 

division of a vascular stem or progenitor population, or direct de-differentiation of 
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endothelial cells. Thus far, the data show that lineage tracing using separate endothelial 

promoters labels both ECs and CMs, and further suggests that ECs serve as an 

originating source of CMs. It is likely that an intermediate population, transiently present 

during the cellular transition between endothelial progenitor and mature cardiomyocyte, 

also exists in the adult heart. Locating this putative population, and characterizing its 

role in the cardiogenic process, is a necessary step in generating a complete model to 

describe the cardiogenic capability of ECs under conditions of cardiac homeostasis. 
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CHAPTER III 

 

CORONARY ARTERIES SERVE AS THE SITE OF  

THE CARDIAC STEM CELL NICHE 

 

INTRODUCTION 

 The concept of a niche for cells was first proposed in 1978 based on studies 

involving hematopoietic stem cells (Schofield, 1978). Contradictory data indicated 

apparent limitless renewal of stem cells, but a finite life-span of spleen colony-forming 

cells, which were believed to be HSCs themselves (Schofield, 1978). To reconcile this 

discrepancy, the idea of a stem cell niche was proposed to explain how stem cells were 

regulated to continuously self-renew, but also generate differentiated progeny which do 

not persist indefinitely and have various rates of turnover. 

Today, the stem cell (SC) niche is more fully defined as a unique, tissue-specific, 

regulatory microenvironment responsible for enabling and controlling stem cell self-

renewal while balancing internal and external molecular signals for maintenance or 

repair of host tissue (Scadden, 2006). An increasing number of studies have identified a 

wide variety of tissue-specific stem cells, each with their own unique niche (Jones and 

Wagers, 2008). Studying the relationship between these stem cells and their niche 

environment will provide a better understanding of maintenance of organ homeostasis, 

or repair of damaged tissue in the adult.   
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The brain was once viewed as a post-mitotic organ, with little to no mechanisms 

for neurogenesis after birth. However, the discovery of specialized niches in the lateral 

ventricles (V-SVZ) and hippocampus (SGZ) which continue to undergo neurogenesis, 

provided strong evidence that even adult organs considered to lack regenerative 

potential, still had this capability. This localized regenerative ability of the brain may 

provide clues into the heart, another organ which was classically considered to lack 

regenerative potential.  

Increasing evidence indicates the heart contains one or more resident 

populations of cardiac stem cells. However, each putative population has a distinct 

expression of surface markers, unique or unknown origins, and varied cardiogenic 

potential. While recent studies show that CSC populations generate new 

cardiomyocytes in the heart, there is still considerable debate about the actual 

regenerative ability of the myocardium over the lifetime of an individual.  

These putative cell populations must be characterized to understand their 

contribution to the heart, and how the integration of different signals culminates to affect 

their function and turnover within the niche. It is also necessary to understand the 

source and location of the CSC populations to establish consensus within the field. 

Finally, it is important to reconcile these CSC progenitors with the cardiogenic 

endothelial population I have identified through endothelial lineage tracing. 
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EXPERIMENTAL METHODS 

Animals  

The Tie1-Cre line (Gustafsson et al., 2001) and the Tamoxifen-inducible 

endothelial-SCL-Cre-ERT line (Göthert et al., 2004) were crossed to R26RstopLacZ 

(Soriano, 1999) or R26RstopYFP (Srinivas et al., 2001) mice to generate double 

transgenics as described in the previous Chapter. The Tie1-Cre mouse line was also 

bred with the multi-fluorescent reporter R26RstopConfetti (Snippert et al., 2010). 

 

Whole mount β-gal activity staining assay 

Whole mouse hearts were isolated and X-gal stained as described in the 

previous Chapter.  

 

Immuno- and epi- fluorescence 

Freshly isolated hearts were prepared for cryosectioning as described in the 

previous chapter. Primary antibodies and their dilutions used include: rabbit anti-GFP, 

also recognizing YFP (Abcam, Ab290; 1:3000), mouse anti-α-Actinin (Sigma, A7811; 

1:800), mouse anti-α-SMA (Sigma, A2547; 1:800), rat anti-CD31 (BD Pharmingen; 

1:100), rabbit anti-Gata-4 (Santa Cruz, sc9053; 1:100), rabbit anti-Ki67 (Abcam, 

Ab15580; 1:100), rabbit anti-phospho-Histone H3 (Santa Cruz, sc8656; 1:500), goat 

anti-Sca1/Ly6 (R&D, AF1226; 1:100), rabbit anti-c-Kit (Santa Cruz, sc5535; 1:50), 

mouse anti-Cre (Abcam, Ab24607; 1:400), rabbit anti-FSP1 (S100A4) (Abcam, 
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Ab27957; 1:200), and mouse anti-Snail (Chemicon; 1:600). The nucleophilic dye 4’,6-

diamidino-2-phenylindole (DAPI; 1:5000; Invitrogen) was used to visualize cellular 

nuclei. Primary and corresponding secondary antibodies are also listed in Table 2 

(Appendix). 

 

Imaging and 3-D Reconstruction 

A series of confocal images (z-stack) were acquired sequentially and 

reconstructed       3-dimensionally as described in the previous Chapter. 

 

Tamoxifen Preparation and Administration 

For pulse-chase experiments, Cre recombinase was induced in adult, male End-

SCL-CreERT-LacZ mice by five intra-peritoneal injections of Tamoxifen as described in 

the previous Chapter. Furthermore, a continuous 0.8% Tamoxifen chow diet (Harlan) 

was administered using Tamoxifen citrate salt in sucrose. Tamoxifen chow was freely 

available to the mice with average consumption of ~1 pellet/mouse/day. 

 

Hematoxylin and Eosin counter-stain of X-gal stained cardiac sections 

Paraffin-embedded hearts were cut in 10µm sections, and deparaffinized through 

Histo-Clear and graded alcohols per standard protocol. Slides were counterstained with 

Hematoxylin and Eosin (H&E), dehydrated, and mounted in Cytoseal-60 (Fisher).  



  

58 

 

 

Epifluorescence analysis 

We documented epifluorescence in sections from Tie1-Cre-Confetti mice with 

direct excitation at 488nm, 515nm, and 561nm to activate nGFP, YFP and RFP, 

respectively. Sections were stained with DAPI (1:5000). 

 

Quantification of perivascular YFP+ cells  

The percentage of coronary arteries containing YFP+ perivascular cells was 

determined by using cardiac sections from Tie1-Cre-YFP 3-5 month-old, adult males, 

counterstained with αSMA and CD31. Values were determined by counting the number 

of arteries with YFP+ perivascular cells compared to total coronary arteries imaged. 

(N=3 mice, n=57 coronary artery sections). Subsequently, the percentage of YFP+ M 

cells of total coronary SMCs was quantified by counting the number of YFP+ αSMA+ 

cells as a percentage of total coronary αSMA+ cells (N=3 mice, n=30 coronary artery 

sections which contained YFP+ coronary SMCs).  

The percentage of Gata4+/YFP+ M and A cells of total YFP+ M and A cells was 

calculated by counting single and double positive cell numbers around coronary arteries 

(N=3 mice, n=30 sections). Furthermore, the percentages of Ki67+/YFP+, pH3+/YFP+, 

Sca1+/YFP+ and c-Kit+/YFP+ cells was also determined by quantification of single and 

double positive cell numbers (N=3 mice, n=26 sections). 10µm thick transverse sections 

were used for all image quantification.  
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RESULTS 

Endothelial fate mapping identifies perivascular cell populations 

The results of Figure 19 indicate ECs represent an originating source of CMs, 

rather than a transient cell type. This model predicts EC lineage tracing will mark 

intermediate, proliferating cell populations that express early cardiac markers, but have 

not yet differentiated to CMs. In support of this model, examination of cardiac tissue 

sections obtained from Tie-Cre-YFP, Tie-Cre-LacZ and End-SCL-CreERT-LacZ mice 

revealed that besides ECs and CMs, EC fate mapping marked two additional cell types 

(Figure 21).  

The first resided in the media layer of coronary arteries and was marked by 

expression of α Smooth Muscle Actin (Figure 21A). YFP+/αSMA+ double positive cells 

in the media layer of coronary vessels, termed M cells (Figure 21B-E), also expressed 

the early cardiac transcription factor Gata4, but lost expression of the EC marker CD31 

(Figure 21B). The second subpopulation, termed A cells, was found within, or 

immediately adjacent to the adventitia layer of coronary vessels (Figure 21B-E).  
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Figure 21. Endothelial fate mapping marks distinct populations of perivascular       
M and A cells.  
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Serial histological analysis revealed that half of the coronary artery sections had 

M cells, which constituted approximately 30% of the SMC population in those coronary 

arteries. Moreover, 44% of the YFP+/ αSMA+ M cells expressed nuclear Gata4 protein 

(Figure 22). Approximately half of the coronary arteries had A cells, and nearly 65% of 

them expressed Gata4 (Figure 22).  

 

 

  

Figure 21. Endothelial fate mapping marks distinct populations of perivascular       
M and A cells. (A-C) IF analysis of cardiac tissue sections from Tie1-Cre-YFP mice. (A) 
YFP+/αSMA+ cells (termed M cells) are present in the media layer of coronary arteries 
(arrows). Scale bars 10µm. DAPI was used for nuclear counterstaining in these and 
subsequent IF images. (B) YFP+/CD31- cells (termed A cells) are present within, or 
immediately adjacent to, the adventitia layer of coronary vessels. Magnification inset 
shows both M (arrows) and A (arrowheads) cells acquire expression of Gata4 protein. 
Scale bars 10µm. (C) IF analysis shows Gata4+ perivascular M cells (arrows) and A cells 
(arrowheads) in coronary artery medial and adventitial layers. Scale bars 10µm in main 
panel, 5µm in insets. (D,E) Histological analysis of X-gal-stained cardiac tissue sections 
from (D) Tie1-Cre-LacZ mice, and (E) End-SCL-CreERT-LacZ mice 3 days (top image) or 
6 weeks (bottom image) after Tamoxifen administration. Images shows staining of ECs 
(arrowheads) and perivascular cells (arrows), similar to results in (A-C). Sections were 
counter-stained with H&E. Scale bars 10µm.    

Figure 22. Quantification of perivascular M and A cells. (A) Quantification using 
cardiac tissue serial sections revealed 52.6% of coronary arteries contain EC-derived M 
cells (left graph). In those coronaries, ~25% of SMCs are EC-derived M cells (middle) 
and 44% of M cells express Gata4 (right). (D) Quantification using serial sections 
revealed approximately half of coronary arteries contain endothelial-derived A cells (left 
graph) and ~65% of A cells express Gata4 (right). 
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Heterogenous populations of quiescent and proliferating perivascular cells exist 

in the adult heart 

Endothelial cell lineage tracing marks four distinct cells populations: ECs, smooth 

muscle cells in the media layer of coronary arteries (M cells), adventitial cells 

immediately surrounding the coronary vessels (A cells), and mature cardiomyocytes. 

The appearance of M and A cells is also restricted to coronary arteries. Since the 

microvasculature and veins do not require a smooth muscle layer for support, or contain 

surrounding adventitial cells, the arteries serve as the only site for observing these 

unique cell populations. 

A cells did not express EC markers, noted by the absence of CD31 expression, 

and also were negative for mature CM markers such as α-Actinin (Figure 23A,B). A 

cells were often small in size, and found in clusters that stained with antibodies 

recognizing cell-cycle markers Ki67 and phospho-Histone H3 (pH3) (Figure 23B,C). 

Around 20% of A cells stained positive for proliferation markers (Figure 23D).  

The proliferative phenotype was a unique property of A cells among all labeled 

cell types identified in the cell fate mapping experiments. In contrast to the proliferative 

A cells, M cells were quiescent, as noted by the consistent absence of Ki67 and pH3 

staining. M cells were also larger in size than their adjacent adventitial A cells. 

Furthermore, pulse-chase analysis of ECs using the inducible End-SCL-CreERT-LacZ 

mouse showed EC-derived perivascular M & A cells can be detected as early as 3 days 

after the end of the tamoxifen pulse (Figure 21E).  
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Figure 23. Quiescent M 
cells and proliferative A 
cells. (A) A cells are often 
found in close proximity to 
YFP+ CMs (arrows). YFP+ A 
cells lost CD31 expression 
(arrowheads in magnified 
boxed areas below). Scale 
bars 10µm. (B) A cells 
(arrowheads in magnified 
boxed area) do not express 
α-Actinin, but stain positive 
for proliferation marker     
Ki-67. Scale bars 5µm.  (C) 
A cells (arrows in magnified 
boxed area) stain positive 
for proliferation marker pH3. 
Arrowheads indicate YFP+ 
ECs. Scale bars 5µm.      
(D) Ki-67+ (top graph) and 
pH3+ (bottom) cells 
represent ~20% and 16% of 
A cells, respectively.  
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Lineage tracing using Tie1-Cre-Confetti mice indicated coronary ECs and M cells 

were heterogeneously labeled and expressed different color fluorescent proteins 

(Figure 24A,B). In contrast, A cell clusters were uniformly marked by the same color 

fluorescent protein (Figure 24B,C). This labeling pattern suggests A cell clusters 

expand from a single cell, consistent with their expression of proliferation markers.  

 

 

 

 

 

Figure 24. Uniform labeling of A cell clusters suggests single-cell origins. (A-C) 
Epifluorescence analysis of cardiac sections from Tie1-Cre-Confetti mice. (A) Images show 
heterogeneous labeling of M cells expressing either RFP or YFP (arrows). Arrowheads 
indicate RFP+ or YFP+ ECs. Scale bars, 50µm for original and 20µm for Inset. (B) Clusters of 
A cells are uniformly marked by a single color fluorescent protein (YFP). In the magnified area, 
arrows point to YFP+ A cells. Heterogeneous labeling of fluorescent M cells (with RFP, YFP, or 
nGFP) is seen in the media layer (arrowheads, Merge). Scale bars, 20µm for original, 5µm for 
Insets. (C) Heterogeneous labeling of M cells (RFP and YFP; arrowheads) in contrast to the 
uniform marking of A cell clusters (RFP, arrows). Scale bars, 20µm for original image, 10µm 
for insets. Abbreviations: L, M, and A stand for lumen, media, and adventitia, respectively, of 
the coronary arterial wall. 
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IF analysis showed no Cre recombinase protein expression in labeled M and A 

cells, supporting an endothelial origin (Figure 25A). Consistent with this possibility, 

staining of heart tissue sections from Tie1-Cre-YFP and wild-type C57Bl/6 mice with 

antibodies recognizing mesenchymal markers illustrated that a rare subpopulation of 

coronary endothelium expresses the mesenchymal marker FSP-1 (Zeisberg et al., 

2007) (Figure 25B-D). This subpopulation of cells represents approximately 2.5% of 

coronary ECs (Figure 25C).  

In addition, proteins known to initiate mesenchymal transformation such as Snail 

were also observed within rare populations of coronary vasculature (Timmerman et al., 

2004) (Figure 25E). Subcellular Snail localization was observed in both nuclear and 

cytoplasmic compartments, a pattern that depends on the activation state of Snail 

(Dominguez et al., 2003).  

The co-staining of coronary ECs with mesenchymal markers lend support to the 

idea that labeled perivascular cells of EC origin are derived by EndMT. Rare 

subpopulations of coronary ECs appear to undergo EndMT and generate αSMA+ M 

cells in the coronary wall. Staining of this cell population with the EndMT-associated 

transcription factor Snail suggests coronary ECs are capable of generating SMCs. 
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Figure 25. Coronary ECs undergo EndMT to generate M cells. (A,B) Cardiac sections from 
Tie1-Cre-YFP mice. (A) IF analysis with antibodies recognizing Cre recombinase protein show 
Cre expression is restricted to CD31+ ECs and does not mark YFP+ perivascular cells M and A  
cells (arrows) within the coronary artery wall. Scale bars, 5µm. (B) Antibodies recognizing the 
mesenchymal marker FSP-1 indicate rare co-labeling with coronary ECs. Scale bars, 20µm in 
original, 5µm in insets. (C) Approximately 2.5% of coronary ECs co-stain with FSP-1 (N=3 
mice, n=16 separate coronary vessels). (D) IF analysis of cardiac sections from C57Bl/6 mice 
indicate a rare population of CD31+/FSP1+ ECs. (E) Cardiac sections from Tie1-Cre-YFP mice 
show a subpopulation of coronary ECs express Snail. Arrowheads indicate nuclear co-
staining; arrows indicate cytoplasmic co-staining. Scale Bars, 10µm for originals, 5µm for 
insets.  
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Endothelial progeny in perivascular areas include Sca1+ cardiac progenitor cells 

The results of the lineage tracing experiments and the identification of EC-

derived intermediate cell populations suggested these intermediates represent cardiac 

progenitor cells. To test this possibility, we stained cardiac tissue sections from Tie1-

Cre-YFP mice with antibodies recognizing Sca1 and c-Kit. These two cell surface 

markers are increasingly used to identify populations of cardiac stem cells. 

The results showed M cells did not express either marker. However, 42% of the 

YFP+ A cells stained positive for Sca1, whereas only a small subset (5%) of A cells 

stained positive for c-Kit (Figure 26). Further histological analysis showed the majority 

(>70%) of perivascular, Sca1+, CD31- cells expressed YFP. These results suggest a 

significant fraction of Sca1+ CSCs are descendants of ECs.  

3-D reconstruction of a coronary artery, using z-stack imaging, provided a 

physical depiction of the spatial arrangement of M and A cells within the coronary niche 

(Figures 27A). ECs, M cells, and A cells are highlighted in gray to showcase their 

locations within the coronary niche. Single 2-D panels also indicate the locations of 

these three cell populations (Figure 27B), but full reconstruction of a portion of the 

coronary artery provides a more comprehensive picture of this niche in vivo.  
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Figure 26. Endothelial fate mapping yields cardiac progenitor cells. (A,B) IF analysis of 
cardiac tissue sections from Tie1-Cre-YFP mice illustrates YFP+/CD31- A cells express 
Sca1 (panel A) whereas a small subpopulation expresses c-Kit (panel B). Arrows in 
magnified areas in panel A indicate YFP+/Sca1+ cells, and arrowheads indicate Sca1+ ECs. 
Arrows in (B) indicate cKit+ cells in magnified areas. DAPI was used for nuclear counter 
staining. Scale bars 5µm. (C) Serial section analysis of cardiac tissue measured ~40% and 

5% of A cells are Sca1+ or c-Kit+, respectively. 
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Figure 27. Spatial arrangement of M and A cells within the coronary artery niche.                
(A) A series of confocal images (z-stack) were acquired sequentially on a 100μm thick cardiac 
section from a Tie1-Cre-YFP mouse and stained with anti-CD31 antibodies. CD31 (red) and 
YFP epifluorescence (yellow) marks microvasculature and coronary ECs. Perivascular M and A 
cells surround the coronary artery (highlighted in white). (B) A single cross-section from within 
the z-stack depicts CD31 (bottom left panel) and YFP (bottom right panel) expression. The 
merged image (top panel) shows individual M and A cells (outlined with dashed lines) within, 
and immediately adjacent to, the coronary arterial wall. Abbreviations: EC, endothelial cells; M, 
M cells; A, A cells. 
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Considering the results described above and taking into account the cellular 

spatial relationships, (i.e., distance from coronary endothelium), we propose the 

following model (Figure 28): endothelial, or endothelial-like cells give rise to quiescent, 

perivascular cells in the coronary wall that lose EC markers and acquire SMC 

characteristics. These cells, termed M cells, express early cardiac differentiation 

markers such as Gata4. Further distal to the vascular wall, M cells are replaced by A 

cells, which lose SMC characteristics, but maintain expression of Gata4, and acquire 

markers of CSCs such as Sca1+. A cells proliferate, leave the coronary niche, and 

differentiate to CMs. Thus, EC-derived YFP+ M and A perivascular cells within the 

medial and adventitial layers of coronary vessels likely serve as intermediate 

populations during generation of adult CMs. 

 

 

 

Figure 28. Coronary niche model. Schematic drawing of the cardiac stem cell niche model 
illustrates the spatial organization of EC progeny. The four unique cell populations marked 
during endothelial lineage tracing are included with their corresponding expression profiles. 
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It is important to note that alternative interpretations may also explain the pattern 

of the lineage tracing results. For instance, low level expression of EC genes in cardiac 

fibroblasts with cardiogenic potential could account for the observed labeling of 

cardiomyocytes. Another possibility is that rare proliferating CMs transiently express EC 

genes, and become labeled before proliferating into labeled clusters. While expression 

of endothelial markers was not observed in fibroblasts or CMs, the results above cannot 

fully exclude such possibilities. 

 

DISCUSSION 

 Current evidence showing low rates of CM apoptosis suggests a renewal 

mechanism is required to maintain cardiac tissue (Anversa et al., 2006; Ellison et al., 

2007), yet there is little information regarding the native regenerative mechanisms 

during cardiac homeostasis. Lineage tracing of vascular cells in the healthy adult heart 

indicates ECs retain cardiogenic potential. The data from this chapter show that 1) the 

EC-based regenerative mechanism generates both quiescent (M cells) and proliferative 

(A cells) progeny expressing early stage cardiac differentiation genes such as Gata4, 2) 

Sca1+ cardiac stem cells are EC progeny, and 3) the coronary arteries serve as a 

structural component of the cardiac stem cell niche, organized in a radial manner.  

Although the site of the original cell type with EC characteristics that gives rise to 

CMs remains currently undetermined, our data provide evidence that the majority 

(>70%) of Sca1+ CSCs are derived from cells with endothelial characteristics. We found 

EC-derived Sca1+ perivascular cells lost endothelial markers and gave rise to         

CD31neg, Sca1+ cells. These cells expressed early cardiac markers such as Gata4, but 
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lacked mature CM characteristics such as sarcomeric structures and α-Actinin 

expression. In support of this finding, Sca1+ CSCs continuously replace myocardial cells 

in the adult heart (Uchida et al., 2013). In contrast, we found limited overlap between 

endothelial-derived YFP+ cells and c-Kit+ cells, suggesting the majority of c-Kit+ cells in 

the heart belong to a different lineage. 

Moreover, the data show EC-derived Gata4+ cells around coronary arteries can 

be divided into subpopulations based on several criteria (location, size, molecular 

markers, and proliferation status), indicating the CSC niche is organized in a radial 

manner with the vasculature at the center. M-cells, closest to the lumenal ECs, are 

quiescent and combine smooth muscle and early cardiac characteristics, whereas A 

cells further afield in the adventitia are proliferative and acquire expression of Sca1.  

In many respects, the CSC niche shares similarities with the neuronal stem cell 

niches in the brain. Here, neuronal stem cells in the SVZ give rise to astrocytes (a 

mesenchymal cell population similar to αSMA+ cells), which differentiate to groups of 

proliferating cells before joining the rostral migratory stream (Fuentealba et al., 2012).  

The cardiac renewal process is also confined to a small subpopulation of mature CMs, 

similar to the adult brain where renewal is mainly restricted to the olfactory bulb and 

dentate gyrus. 
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CHAPTER IV 

 

ENDOTHELIAL CELLS CONTRIBUTE TO MYOCARDIAL REPAIR AFTER CARDIAC 

INJURY, AT THE EXPENSE OF CARDIOMYOCYTE REGENERATION 

 

INTRODUCTION 

 After myocardial infarction, current treatment is designed to preserve residual 

heart function, prevent additional myocyte death through revascularization, and delay 

ventricular remodeling and heart failure through medical therapy. A number of studies 

using experimental models and human patients indicate that cardiac function can be 

improved through injection of stem cells directly into the myocardium, or when delivered 

through the coronary circulation (Joggerst and Hatzopoulos, 2009). However, the 

current challenge is to overcome the limited long-term engraftment of stem cells and 

their minimal differentiation into mature cardiovascular tissue (Bernstein and Srivastava, 

2012). 

Stem or progenitor cell therapy for treatment of cardiac disease holds the 

promise of restoring lost cardiac tissue. Enthusiasm for this field began with studies 

involving transplantation of progenitor cells into various animal models and 

demonstration of improved cardiac parameters (Segers and Lee, 2008). After muscle 

injury, skeletal myoblasts were shown to regenerate in mammals (Wagers and Conboy, 

2005; Shi and Garry, 2006). Consequently, myoblasts were one of the first cell types 

transplanted into animal models of cardiac disease, which improved left ventricular 

function even though they did not fully differentiate into CMs (Reinecke et al., 2002). 
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The potential for tissue regeneration through transplantation of exogenous 

progenitor cells was studied through a number of government-sponsored clinical trials. 

One such initiative established by the National Heart Lung and Blood Institute is the 

Cardiovascular Cell Therapy Research Network (CCTRN) (Simari et al., 2010). These 

studies were based on data indicating that intracoronary delivery of autologous bone 

marrow mononuclear cells (BMCs) after MI can improve left ventricular function. 

(Schächinger et al., 2006; Janssens et al., 2006). One major question about delivery of 

autologous BMCs was when to administer them following an MI. Consequently, TIME 

and Late-TIME trials were designed to compare the effects after administration of BMCs 

in patients with ST-segment elevation MIs at either 3 or 7 days following MI (TIME), or 2 

to 3 weeks after MI (Late-TIME) (Traverse et al., 2009; Traverse et al., 2010). 

Unfortunately, results from both TIME and Late-TIME trials indicated there was no 

global or regional improvement in LV function by six months after intracoronary BMC 

injection at 3 or 7 days following MI (Traverse et al., 2012), or 2 to 3 weeks post-MI 

(Traverse et al., 2011).  

To date, skeletal myoblasts, bone marrow-derived cells (including BMCs), 

mesenchymal stem cells, and others have been administered to patients after MI, and 

produced variable results ranging from no significant effect to improved cardiac ejection 

fraction or ventricular function (Boudoulas and Hatzopoulos, 2009; Segers and Lee, 

2008). Interestingly, after injection of these various cell populations, paracrine effects 

may actually provide most of the observed benefit by preventing necrosis and promoting 

healing of the injured myocardium (Gnecchi et al., 2005). Specifically, thymosin β4 is 

known to accelerate wound repair, and the Wnt antagonist secreted frizzled-related 
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protein 2 (sFRP2) can minimize hypoxia-induced necrosis in myocytes (Mirotsou et al., 

2007; Hinkel et al., 2008; Alfaro et al., 2008). These studies implicate the distinct 

possibility of improving cardiac repair after ischemic injury through the use of biological 

mediators. Consequently, it is imperative to develop a better understanding of the 

molecular and cellular mechanisms occurring during the repair process.  

Exogenous cell transplantation studies thus far have yet to achieve significant 

regeneration of cardiac tissue following MI. The inability of transplanted cells to 

regenerate CMs is primarily due to 1) poor engraftment of the injected cells, 2) the 

inability to integrate with supportive host cells, and 3) a lack of blood supply. An 

alternative strategy to transplantation of exogenous progenitor cells involves harnessing 

the regenerative potential of endogenous cells, which already exist within the 

myocardium, and are integrated with both vasculature and surrounding cells. Bolstering 

the natural cardiac regenerative mechanisms of endogenous cardiac progenitors holds 

great promise for tissue regeneration after injury.  

Endogenous populations of CSCs, such as c-Kit+ or Sca1+ cells, represent a 

viable source for cell-based therapy, but we currently lack knowledge about their 

origins, and the molecular signaling pathways which regulate their fate after injury. 

Furthermore, a better understanding of the role of Sca1+ EC-derived cardiac progenitors 

will provide a novel cell population to target for treatment during cardiac repair. 

Additional insight into changes in the Sca1+ coronary niche after injury may provide new 

methods for improving recovery and survival, independently or in combination with stem 

cell therapy.   
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EXPERIMENTAL METHODS 

Animals 

The Tie1-Cre line (Gustafsson et al., 2001) and the Tamoxifen-inducible 

endothelial-SCL-Cre-ERT line (Göthert et al., 2004) were crossed to R26RstopLacZ 

(Soriano, 1999) or R26RstopYFP (Srinivas et al., 2001) mice to generate double 

transgenics as described in Chapter II. The Tie1-Cre mouse line was also bred with the 

multi-fluorescent reporter R26RstopConfetti (Snippert et al., 2010). 

Myocardial infarction   

Adult, male mice underwent open chest surgery under anesthesia. During 

surgery, a 10-0 nylon suture was placed through the myocardium into the anterolateral 

left ventricular wall   around the left anterior descending artery and the vessel was 

permanently ligated. After surgery, the chest was closed and the animals were allowed 

to recover. At defined time points after surgery, i.e. 1 and 3 weeks, mice were 

euthanized and whole hearts were isolated for whole-mount X-gal staining and 

histological analysis. Sham-operated animals underwent similar procedures without 

coronary artery ligation. Surgeries were performed in the Vanderbilt Mouse 

Cardiovascular Pathophysiology and Complications Core. 

 
Angiotensin II infusion via osmotic pump  

          Tie1-Cre-YFP adult, male mice were implanted with an osmotic minipump (Alzet) 

containing Angiotensin II (AngII). Hypertension was induced by the infusion of AngII 

(490 ng-/kg per minute) for ~4 weeks (26 days). Sham mice were implanted with the 

minipump, but instead received a saline infusion. At the end of the experiment mice 
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were sacrificed, hearts were perfused with 1X PBS, and frozen in OCT to obtain cryo-

sections. 

Transverse aortic constriction 

         Tie1-Cre-LacZ adult, male mice underwent transverse aortic constriction (TAC) 

surgery to induce hypertension and subsequent cardiac hypertrophy. Control animals 

underwent the same procedure but did not receive arterial banding. Doppler (flow 

through) analysis was used to verify a reduction in velocity (mm/s) 1 day after TAC 

banding in experimental mice compared to controls. Echocardiography analysis was 

performed to quantify the change in fractional shortening (%FS) at 2 and 3 weeks post-

TAC, compared to controls.  

Fluorescence activated cell sorting 

          Suspensions of cardiac cells depleted of myocytes were prepared as follows. 

Murine hearts were washed to remove blood and aseptically isolated after incision at 

the base of the aorta. The atria were entirely removed. The ventricles of the heart were 

minced and digested with 10 mg/ml collagenase II (Worthington), 2.4 U/ml dispase II 

(Roche Diagnostics), DNase IV (Sigma) in 2.5 mM CaCl2 at 37°C for 20-25 minutes and 

then passed through a cell strainer. The myocyte-depleted cell suspension was 

centrifuged at 1500xg for 5 minutes and resuspended in 1X PBS containing 0.5% BSA 

and 2 mM EDTA.  

          To prevent non-specific binding, cells were incubated with FcR Blocking Reagent 

(Miltenyi Biotec). Single-cell suspensions (106 cells/ml) were then labeled using FITC-

conjugated rabbit anti-GFP (A21311; Invitrogen), Cy7-conjugated anti-mouse Ly-6A/E 
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(Sca1), phycoerythrin-conjugated anti-mouse CD31 (clone 390; eBioscience), and 

peridinin-chlorophyll protein-conjugated anti-CD45 (clone 30-F11; eBioscience). Cells 

were incubated for 20 minutes at 4°C, washed and resuspended in PBS/BSA/EDTA 

buffer. 

         Data acquisition was performed on a FACScalibur flow cytometer (BD 

Immunocytometry Systems) in the Vanderbilt Flow Cytometry Core and the data were 

analyzed with the WinList 5.0 software. Antigen-negative background binding was 

defined by the fluorescent intensity of isotype controls.  

 

Whole mount β-gal activity staining assay  

Whole mouse hearts were isolated and X-gal stained as described in Chapter II. 

 

Immuno- and epi- fluorescence 

Freshly isolated hearts were prepared for cryosectioning as described in the 

Chapter II. Primary antibodies and their dilutions used include: rabbit anti-GFP, also 

recognizing YFP (Abcam, Ab290; 1:3000), mouse anti-α-SMA (Sigma, A2547; 1:800), 

rat anti-CD31 (BD Pharmingen; 1:100), and rabbit anti-FSP1 (S100A4) (Abcam, 

Ab27957; 1:200). The nucleophilic dye 4’,6-diamidino-2-phenylindole (DAPI; 1:5000; 

Invitrogen) was used to visualize cellular nuclei. Primary and corresponding secondary 

antibodies are also listed in Table 2 (Appendix). 
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Tamoxifen Preparation and Administration 

For pulse-chase experiments, Cre recombinase was induced in adult, male End-

SCL-CreERT-LacZ mice by five intra-peritoneal injections of Tamoxifen as described in 

Chapter II.  

 

Hematoxylin and Eosin counter-stain of X-gal stained cardiac sections 

Paraffin-embedded hearts were cut in 10µm sections, and deparaffinized through 

Histo-Clear and graded alcohols per standard protocol. Slides were counterstained with 

Hematoxylin and Eosin (H&E), dehydrated, and mounted in Cytoseal-60 (Fisher).  

 

Quantification of endothelial-derived CMs per volume of cardiac tissue 

           Cardiac cross-sections from End-SCL-CreERT-LacZ mice, previously stained 

with X-gal for β-gal activity and counterstained with H&E, were analyzed to determine 

the number of labeled CMs per volume of cardiac tissue as described in Chapter II.  

 

Statistical analysis   

All values were reported as mean +/- S.D. Statistical significance was assessed 

by Student’s unpaired two-tailed t-test for all statistical analysis comparisons. Statistical 

significance was expressed as follows: *p < 0.05; **p < 0.01. 
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RESULTS 

Endothelial cell lineage tracing after acute ischemic injury labels myofibroblasts 

The regenerative rates of ECs during homeostasis indicate a low percentage of 

cardiac tissue is renewed in the adult heart. However, the effects of ischemic injury or 

fibrosis, such as that caused by myocardial infarction or hypertension, have not been 

studied on this particular population of cells. The resulting effects on M and A cells, and 

EC-derived CM regenerative rates, were studied under conditions of acute (MI) and 

chronic (pressure overload) cardiac injuries. 

 Adult, male Tie1-Cre-YFP mice underwent experimental MI surgery and were 

sacrificed one week after infarction. Within the infarct, IF analysis revealed labeling of 

ECs and myofibroblasts (Figure 29A). Quantitative analysis of YFP+ αSMA+ cells, which 

marks reparative myofibroblasts or endothelial origin, indicated approximately 35% of 

total αSMA+ cells were derived from ECs (Figure 29B). By comparison, sham hearts, 

which did not receive an infarction, had less than 1% of total αSMA+ cells that co-

expressed YFP. Furthermore, analysis of infarct tissue using a second marker for 

fibroblasts known as fibroblast specific protein (FSP-1), indicated substantial co-staining 

of EC-derived myofibroblasts (Figure 29C). These myofibroblasts of endothelial origin 

co-stained with the mesenchymal marker FSP-1, but not with the endothelial marker 

CD31. 

 To explore the clonal origins of infarct myofibroblasts, the Tie1-Cre-Confetti 

mouse line was used. Similar to EC lineage tracing in the uninjured heart, this multi-

fluorescent reporter can determine if infarct myofibroblasts are clonally related or 

independently derived (Figure 13). If these repair cells have a clonal origin they will all 
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express the same color fluorescent protein; however, if they are independently derived, 

then each cell will randomly express a color. Analysis of infarct tissue from Tie1-Cre-

Confetti mice indicated that EC-derived infarct myofibroblasts consisted of a 

heterogenous population of cells (Figure 29D). Expression of nGFP, YFP, and RFP 

was observed in apparent random fashion throughout the infarct, and clusters of 

myofibroblasts in which all cells expressed the same color did not appear within the 

injury tissue.  

 The granulation tissue repair phase begins around 4-7 days after MI and 

generally concludes with 21 days (3 weeks) in the mouse. At this point in the repair 

process, infarct myofibroblasts undergo apoptosis or migrate out of the mature scar 

tissue. To study the contribution of myofibroblasts within the infarct at 3 weeks after MI, 

End-SCL-CreERT-LacZ mice were given a series of Tamoxifen injections (pulse) to label 

ECs, underwent experimental MI, and were sacrificed 3 weeks after surgery. Consistent 

with the infarct repair timeline, analysis of cardiac tissue from these mice indicated a 

lack of myofibroblasts; (both EC-derived or originating from other sources) (Figure 

29E). At this later repair time point, EC lineage tracing marked only ECs of larger 

vessels and microvasculature. Sham mice, which underwent thoracotomy surgery 

without ligation and were sacrificed 3 weeks after, also displayed labeling of ECs, but 

not myofibroblasts.  
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 Figure 29. Endothelial fate mapping 1 week after MI marks infarct myofibroblasts.  
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EC lineage tracing in the uninjured heart indicated annual CM regenerative rates 

of ~0.3%. To determine what affect global ischemic injury had on CM renewal, End-

SCL-CreERT-LacZ mice were pulsed with Tamoxifen, once every 48 hours, to label 

ECs. Seven days after the fifth and final injection, mice underwent experimental MI, and 

were sacrificed at either 1 or 3 weeks after surgery (Figure 30A). Rare X-gal+ CMs, 

identified based on morphology, were observed within the border zone, infarct, and 

healthy myocardium at both 1 and 3 weeks following MI (Figure 30B). Serial 

histological analysis of infarct tissue indicated a significant reduction in EC-derived 

cardiomyocytes at 1 and 3 weeks after MI, when compared to sham controls (Figure 

30C). Furthermore, CM renewal rates did not increase between 1 and 3 weeks after 

ischemic injury, suggesting the repair process prevents any EC-derived cardiac 

progenitor cell regenerative response.  

Figure 29. Endothelial fate mapping 1 week after MI marks infarct myofibroblasts. 
(A-C) Tie1-Cre-YFP adult, male mice were used for histological analysis 1 week after MI 
surgery. (A) IF analysis of infarct tissue indicated numerous EC-derived myofibroblasts, 
as determined by co-staining of YFP and the mesenchymal marker, αSMA. Arrows 
indicate αSMA+ GFP+ myofibroblasts. (B) Serial histological sections were used to 
quantify numbers of YFP+ αSMA+

 cells, which were compared with the total number of 
observed αSMA+ cells in the infarct tissue. Based on their co-expression of YFP, 
approximately 35% of total myofibroblasts within the scar tissue were EC-derived. Arrows 
indicate FSP-1+ YFP+ myofibroblasts. (C) Within the infarct tissue, a large proportion of 
repair cells were YFP+, FSP-1+, CD31neg, indicating an endothelial origin of these 
myofibroblasts. Dashed line indicates border between healthy and infarct tissue. (D) Tie1-
Cre-Confetti mice sacrificed 1 week post-MI show heterogenous labeling of infarct repair 
cells. Seemingly random expression of nGFP, YFP, and RFP was observed within the 
tissue. Dashed line indicates border between healthy and infarct tissue. (E) Analysis of 
cardiac tissue from End-SCL-CreERT-LacZ mice sacrificed 3 weeks after MI surgery 
indicated a lack of infarct myofibroblasts. Staining with X-gal, and co-staining with 
antibodies against αSMA, showed occasional X-gal+ αSMA+

 perivascular cells. However, 
as compared to 1 week after MI, a lack of myofibroblasts within the scar was observed at 
3 weeks post-MI. Arrows indicate X-gal+ αSMA+

 perivascular cells (sham and 21days 
post-MI, middle panel), and X-gal+ vascular cells (21days post-MI, right panel). 
Abbreviations: H, healthy myocardium; I, infarcted myocardium. 
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Figure 30. CM renewal rates drop after ischemic injury and have not recovered 
by 3 weeks post-MI. (A) End-SCL-CreERT-LacZ mice were given a series of five 
intraperitoneal Tamoxifen injections to induce labeling of ECs. Seven days after the 
final injection, mice were given an experimental MI, and sacrificed at either 1 or 3 
weeks after surgery. Sham mice underwent thoracotomy surgery but did not have the 
left anterior descending (LAD) coronary artery ligated. (B) Histological sections from 
End-SCL-CreERT-LacZ mice sacrificed at 1 or 3 weeks post-MI were stained with 
H&E, and counter-stained with X-gal to visualize ECs and their derivatives. EC-
derived X-gal+ CMs (indicated by arrows) were observed with the border zone and 
infarct tissues, as well as the healthy myocardium at both time points. (C) 
Histological analysis of cardiac tissue revealed a significant reduction in the number 
of X-gal+ CMs compared with sham controls at 1 and 3 weeks post-infarction. EC-
derived cardiomyocyte renewal rates did not recover by 3 weeks after infarction, the 
latest time point analyzed.  



  

85 

 

YFP+ EC and EC-derived populations proliferate 1 week after MI 

 Myocardial infarction and the subsequent cardiac ischemia induces a significant 

change in endothelial cell fate. EC lineage tracing after MI marks myofibroblasts 

contributing to infarct repair. Furthermore, a decline in CM regenerative rates is 

observed throughout different regions of ventricular tissue, including healthy 

myocardium, as well as infarct and border zone tissue. Thus, characterizing the 

changes which occur after MI in specific YFP+ cell populations would provide important 

insight into the alternative EC fate.  

Flow cytometry analysis was used to assess total numbers of cardiac YFP+ cells 

one week after experimental MI surgery (Figure 31). Tie1-Cre-YFP adult, male mice 

were given an MI and sacrificed 7 days after. Cells were isolated from complete 

ventricular tissue and analyzed by flow cytometry after excluding cardiomyocytes. 

Analysis of non-EC, non-hematopoietic cells (CD31neg, CD45neg) showed an increase in 

the percentage of Sca1+ YFP+ cells after MI, indicating a greater contribution of EC-

derived Sca1+ cells in response to injury. (Figure 31A). In addition, the percentage of 

proliferating non-endothelial Sca1+ cells (Sca1+, Ki67+) dramatically increased after MI 

(Figure 31B).  

There is also a significant increase in the number of proliferating non-endothelial, 

non-hematopoietic YFP+ cells 7 days after MI, in comparison to sham controls (Figure 

31C). Figure 31A indicates that roughly one third of non-endothelial YFP+ cells are 

Sca1+, but does not account for the remaining proportion of YFP+ cells. Alternative 

populations of EC-derived YFP+ cells, such as myofibroblasts, likely represent the 

remaining proliferating cells.  
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Figure 31. YFP+ endothelial cell and non-EC populations proliferate 1 week after MI.  
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Gating for non-hematopoietic (CD45neg) cells indicated that a greater proportion 

of endothelial cells also proliferate after MI (Figure 31D,E). Approximately 4 fold more 

CD31+ cells express the proliferative marker Ki67, and a similar increase in YFP+, 

CD31+ ECs is observed under more stringent gating conditions. The proliferating ECs 

may be contributing to angiogenesis, which is actively occurring at this point in the 

repair process.   

The FACS data, analyzing YFP+ cell fate at 1 week after infarction, indicate an 

alternative fate for ECs and EC-derived cells after ischemic injury. The granulation 

tissue phase, which is active by 1 week post-infarction, requires extensive angiogenesis 

and fibrosis. Consequently, the proportion of proliferating ECs at this time during repair 

increases significantly in comparison with sham controls. Revascularization of the 

infarct tissue is necessary to provide oxygen and nutrients to repair cells via the blood, 

and the YFP+ ECs actively participate in this reparative process. There is also an 

increase in proliferating YFP+ non-endothelial cells at this time point. A large proportion 

of these EC-derived YFP+ cells are likely myofibroblasts contributing collagen to 

Figure 31. YFP+ endothelial cell and non-EC populations proliferate 1 week after MI. 
(A-E) FACS analysis of Tie1-Cre-YFP adult, male mice was performed one week after 
infarction to assess the relative percentages of specific YFP+ cell populations in the heart. 
(A) Gating for CD31neg, CD45neg (non-EC, non-hematopoietic cells) reveals an increase in 
EC-derived Sca1+ cells. (B) The same gating parameters as (A) indicate the EC-derived 
Sca1+ cell population undergoes a significant increase in proliferation. (C) A large 
percentage of YFP+ non-EC, non-hematopoietic cells are revealed to proliferate after MI. 
Not all of these proliferating YFP+ cells are Sca1+ (see panel A), indicating alternative 
YFP+ EC-derived cells, such as myofibroblasts, also response to injury by proliferating. 
(D) Analysis of non-hematopoietic (CD45neg) cells illustrates that ~4 fold more ECs 
proliferate in response to MI. (E) Gating for CD31+, non-hematopoietic cells shows YFP+ 
ECs proliferate after MI. 
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strengthen the wound. Flow cytometric analysis of this YFP+ subpopulation with a 

fibroblast marker such as αSMA would confirm the identity of these repair cells.  

 Furthermore, by 1 week post-MI, an increase in the percentage of proliferating 

YFP+, Sca1+ cells was observed in comparison to sham controls. While the overall rates 

of cardiomyocyte regeneration appear to decrease following infarction, it is interesting 

that the proportion of proliferating Sca1+ cardiac progenitors increases. This finding may 

reflect an alternative fate for these cells under conditions of cardiac injury, and if so, 

represents a unique opportunity to stimulate Sca1+ cardiogenic potential, as is observed 

in the uninjured heart. 

 
 
Chronic hypertension causes fibroblast production from non-EC populations 

 
 Acute ischemic cardiac injury, such as myocardial infarction, causes immediate 

cell death and invokes a massive reparative response which resolves in a few weeks. In 

contrast to the abrupt cellular and molecular changes which occur after MI, chronic 

cardiac injury due to hypertensive heart disease elicits a different reparative response. 

Chronic hypertension can occur for a variety of reasons, such as diet (i.e.: high in salt), 

weight, age, or genetics. The consistent pressure and volume overload eventually 

causes left ventricular hypertrophy (LVH). This type of maladaptive ventricular 

remodeling often leads to pathological systolic or diastolic dysfunction, and heart failure. 

The underlying myocardial fibrosis and CM necrosis are associated with substantial 

rates of morbidity and mortality (Neeland et al., 2013).  

This type of long-term, less-immediately damaging injury can be experimentally 

modeled through transverse aortic constriction (TAC) surgery or administration of the 
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vasoconstrictor Angiotensin II (AngII). The peptide hormone AngII is part of the renin-

angiotensin-aldosterone-system (RAAS), and increases blood pressure through 

vasoconstriction of arteries and veins. AngII also induces release of aldosterone from 

the adrenal cortex, which further increases blood pressure through promoting retention 

of sodium. Alternatively, TAC surgery reduces the internal diameter of the aorta through 

banding, which causes hypertension through pressure overload, and leads to cardiac 

hypertrophy within several weeks.  

Adult, male Tie1-Cre-LacZ mice underwent experimental TAC surgery to induce 

hypertrophy and determine how the EC-based cardiac regenerative response changes 

with chronic injury. Sham mice underwent thoracotomy surgery but did not have the 

aorta banded. Doppler velocity flow rates indicated a significant change in velocity 

between Baseline and after TAC surgery, as compared with sham controls. (Figure 

32A). This reduction in velocity (mm/s) was observed only for TAC-operated mice. 

Three weeks after TAC, evidence of cardiac hypertrophy was obvious between sham 

and TAC hearts from unstained Tie1-Cre-LacZ mice (Figure 32B).   

X-gal stained hearts from Tie-Cre-LacZ mice did not show noticeable differences 

in EC-derived CM labeling patterns, compared with sham controls (Figure 32C). While 

hypertrophy and cardiac remodeling was obvious in TAC-operated mice, the 

appearance and location of the X-gal+ CM clusters did not differ significantly from 

uninjured controls. As expected, labeling of vasculature was observed in both groups 

throughout the atria and ventricles.  
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Ultimately, chronic pressure overload (lasting for 3 weeks) did not appear to 

affect the EC-derived CM regenerative process. Alternatively, this time period may not 

have been long enough to cause a significant difference in EC-derived X-gal+ CM 

clusters. To distinguish between these two scenarios, and determine if chronic 

hypertension and LV remodeling affect coronary niche EC-derived progenitor cells, a 

TAC experiment of longer duration (between 6-24 weeks) could be performed.  

 

 
 
 
 
 
 
 
 
 

Figure 32. Transverse aortic constriction does not affect EC-derived CM clusters. 
(A) The histogram shows changes in Doppler flow rates (velocity, mm/s) from sham and 
TAC experimental Tie1-Cre-LacZ mice. (B) Hypertrophy of the heart is observed 3 weeks 
after aortic banding (TAC) in unstained Tie1-Cre-LacZ mouse hearts. Arrow indicates 
location of the band around the aorta. (C) X-gal stained Tie1-Cre-LacZ whole hearts do 
not show significant differences in EC-derived CM labeling patterns 3 weeks after TAC.  
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Since EC-derived X-gal+ CM clusters were not affected after 3 weeks of pressure 

overload via TAC, AngII was administered as an alternative method to induce 

hypertension. The potent effects of AngII, and subsequent increase in aldosterone, act 

in combination to cause significant systemic vasoconstriction. After 3 or more weeks, 

these mediators cause cardiac hypertrophy and ventricular remodeling.  

To examine the effects of AngII-mediated hypertension on EC-derived 

myofibroblasts and CM clusters, Tie1-Cre-YFP mice were implanted with an AngII 

infusing osmotic pump. After approximately 4 weeks (26 days) of receiving AngII, mice 

were sacrificed and hearts removed. By comparison with sham controls, IF analysis of 

cardiac sections from mice implanted with the AngII-releasing osmotic pump indicated 

the number and locations of YFP+ CM clusters did not appear to change after AngII 

treatment (Figure 33A). Alternatively, an increase in total fibroblasts was observed in 

comparison with sham controls. Both EC-derived (YFP+, FSP-1+) and non-EC derived 

fibroblasts (YFPneg, FSP-1+) were observed within the myocardium and coronary 

adventitia after chronic AngII.  

Fibroblasts within the coronary adventitial layer and ventricular myocardium were 

quantified (Figure 33B). After 26 days of AngII treatment, the proportion of EC derived 

FSP-1+ fibroblasts (YFP+/FSP-1+) was reduced. Conversely, the percentage of non-EC 

derived fibroblasts (YFPneg/FSP-1+) increased with AngII treatment. This pattern was 

consistent for both adventitial fibroblasts and the fibroblasts located within ventricular 

myocardial tissue.  
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Figure 33. AngII-mediated hypertension increases the proportion of non-EC derived 
fibroblasts. (A) IF analysis from cardiac sections of Tie1-Cre-YFP mice after 26 day 
treatment with AngII shows clusters of EC-derived YFP+ CMs (main panel), similar to sham 
controls (see Figure 8). Both EC and non-EC derived FSP-1+ cells were found within the 
adventitial layer of coronary arteries (arrows, 4 inset panels). (B) Cardiac sections from Tie-
Cre-YFP mice were used to quantify the proportion of EC or non-EC derived fibroblasts after 
26 days of AngII treatment. Numbers of YFP+, FSP-1+ positive cells were compared with the 
total population of FSP-1+ cells to calculate the percentage of EC-derived fibroblasts in the 
adventitial layer of coronary arteries (“Adventitial”) and within the ventricular myocardial 
tissue (“Myocardial”) in sham or AngII treated mice.  
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Preliminary IF analysis suggests that chronic administration of AngII does not 

significantly affect location or numbers of EC-derived CM clusters. However, the total 

number of fibroblasts within the myocardium and around coronary vessels increases 

with AngII treatment. Of these cells, the proportion of EC-derived fibroblasts is reduced 

after 26 days of AngII, while other non-EC derived fibroblast populations alternatively 

comprise a greater percentage of the FSP-1+ population. This outcome suggests that 

chronic, low-level injury may not stimulate an EC-derived fibrotic response. Instead, 

resident fibroblasts or BM-derived populations appear to respond to the cardiac 

hypertrophy and remodeling. Furthermore, EC-derived CM regeneration does not seem 

to be affected by chronic AngII. These findings are in contrast to the robust EndMT, and 

reduced CM renewal rates, observed after an acute, traumatic MI.  

 

DISCUSSION 

 Acute versus chronic cardiac injuries ultimately elicit different reparative 

responses. Studies using endothelial lineage tracing models to explore the contribution 

of the vasculature during both of these processes also indicate unique EC responses to 

different injuries. Induction of acute myocardial infarction or chronic hypertension 

(pressure overload) in mice were used to explore the changes in coronary M and A 

cells, EC-derived CM renewal rates, as well as proliferation and origins of 

myofibroblasts.  

  After acute MI, a pro-fibrotic repair response is the natural process by which the 

heart heals, and involves a balance of angiogenesis and fibrosis. One week after MI, 

endothelial fate mapping using Tie1-Cre and End-SCL-CreERT transgenic mice 

indicated approximately 35% of the infarct myofibroblasts have been derived through 
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EndMT. The remaining myofibroblasts originated from activated resident fibroblasts or 

from bone marrow-derived hematopoietic cells. This endothelial-derived population of 

myofibroblasts was observed only during the repair phase after cardiac injury, and not 

under conditions of homeostasis.  

 Interestingly, the EC-based cardiomyocyte regenerative process observed in the 

uninjured heart, decreases after MI. Analysis of EC-derived CM numbers within the 

myocardial tissue indicate a significant decrease compared with sham controls at both 1 

and 3 weeks post-MI. Renewal rates have not recovered by 3 weeks after infarction, 

which may reflect a change in the environment of the coronary artery niche. Conditions 

of ischemia, and potential exposure to inflammatory mediators, may adversely affect 

cardiogenic M or A cell proliferation. Any hindrance to these intermediate cardiogenic 

populations would result in fewer EC-derived cardiomyocytes. Consequently, a better 

understanding of how injury impedes the EC-derived cardiogenic response could 

improve tissue regeneration after infarction.  

 One week after MI, FACS analysis of total cardiac YFP+ cell populations (which 

encompasses both EC and EC-derived cells) indicated a general proliferative response. 

First, proliferating YFP+ ECs were observed, and are likely contributing to angiogenesis 

within the maturing scar tissue. Without the restoration of blood flow to the wound, no 

repair cells would survive long enough to heal the injury. Second, the percentage of 

proliferating YFP+, CD31neg non endothelial cells (A cells) increased, which may 

correspond to EC-derived myofibroblasts contributing to infarct repair through 

deposition of collagen. M cells did not appear to be significantly affected within the 

smooth muscle layer. Finally, there was an increase in the number of proliferating EC-
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derived, Sca1+ A cells. Combined with the fact that CM regenerative rates decreased 

after MI, this cardiogenic population may alternatively undergo a fibrotic response and 

contribute to fibrosis under conditions of ischemia. The ability to repress this type of 

maladaptive fate change, would counteract the response to injury and might instead 

lead to formation of healthy cardiac tissue.  

 Chronic injury, induced through transverse aortic constriction or the 

vasoconstrictor angiotensin II, elicits a different repair response. Chronic hypertension 

via TAC did not appear to change the labeling pattern of EC-derived CM clusters. 

Analysis of whole hearts from Tie1-Cre-LacZ mice 3 weeks after aortic banding 

indicated X-gal+ vasculature and CM clusters were not significantly different than sham 

controls. This finding suggests artificial pressure overload may not induce enough 

damage to the myocardium to influence the coronary niche.  

 However, hypertension and cardiac hypertrophy, achieved through chronic 

administration of AngII, increased the proportion of non-EC derived fibroblasts in the 

ventricular myocardium and in the adventitial layer of coronary arteries. This increase in 

alternatively derived fibroblasts (i.e.: from resident fibroblasts or BM-derived) may have 

happened independently, or in addition to, a decrease in fibroblast production from EC 

derived populations. These data indicate low level injury to the myocardium may not 

affect EC-derived cardiac progenitors (M and A cells), but instead induce a fibrotic 

response from alternative cell populations.  

  



  

96 

 

CHAPTER V 

 

IN VITRO KNOCKDOWN OF SCL/TAL1 INCREASES EXPRESSION OF GENES  

ASSOCIATED WITH IMMATURE CARDIOMYOCYTES 

 

INTRODUCTION 

Lineage tracing using three different endothelial specific promoters indicates 

endothelial cells retain cardiogenic potential in the adult myocardium. Previous studies 

have shown that ECs also possess cardiogenic potential during embryonic 

development. Vascular endothelial growth factor receptor 2 expressing progenitors are 

multipotent in the developing embryo and give rise to endothelial, smooth muscle, and 

cardiomyocyte lineages (Kattman et al., 2006). Furthermore, floxed removal of the 

transcriptional regulator SCL/TAL1 during development led to unexpected 

cardiomyogenesis in the yolk sac vasculature and endocardium (Van Handel et al., 

2012). Without SCL, the hemogenic endothelium, which naturally generates 

hematopoietic progenitor cells, alternatively formed ectopic cardiomyocytes. This finding 

indicates SCL acts as a natural repressor of cardiac fate, in favor of endothelial and 

hematopoietic lineages. 

Based on these data, I hypothesized that subpopulations of adult coronary 

endothelial cells retain cardiogenic ability, which is observable after down-regulation of 

SCL. The mouse cardiac endothelial cell (MCEC-1) line consists of immortalized ECs 

isolated from the hearts of H-2Kb-tsA58 mice, and serves as a robust cell line for in vitro 

culture and testing of this hypothesis (Lidington et al., 2002). MCECs were isolated from 
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transgenic mice containing a temperature-sensitive simian virus 40 large T antigen gene 

(tsA58 TAg), and proliferate under permissive conditions but enhance expression of 

mature EC characteristics under non-permissive conditions. Since the MCEC-1 line is a 

heterogenous population of cells, consisting of ECs from the coronary vessels, 

microvasculature, and endocardium, it is suitable for expansion and testing of the 

cardiogenic potential in cardiac coronary ECs. 

 

EXPERIMENTAL METHODS  

Cell culture 

Conditionally immortalized murine cardiac endothelial cells were initially cultured 

under conditions permissive for proliferation (33oC, with Interferon [IFN] γ). Cells were 

moved to non-permissive conditions (38oC, no IFNγ) to enhance expression of 

endothelial characteristics in response to growth factors, and were used for experiments 

between the first and third passages. MCEC-1 cells were cultured in standard high-

glucose DMEM containing 10% FBS, 20mM HEPES, 10 U/mL Heparin, and 30µg/mL 

EC growth supplement. 

Cells were seeded in 12-well plates (4x104 cells/well), grown for 24 hours, and 

then transfected with 10pmol of a non-targeting negative control siRNA or with siRNA 

targeting SCL. The final concentration of siRNA was 10µM in 1mL total volume/well. 

Cells were treated with Noggin or PRDC at 300ng/mL or 120ng/mL, respectively. 

MCEC-1 cells were left in the transfection conditions for 48 hours (2 days), at which 

point the media was replaced and the transfection was continued using fresh reagents. 
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After 72 hours (3 days) total treatment time, cells were washed with 1X PBS and 

cultured in a “minimal component media” containing only standard high-glucose DMEM 

with 10% FBS and 20mM HEPES. After 96 hours (4 days) from the start of the siRNA 

knock-down experiment, cells were lysed for isolation of RNA.  

 

RNA interference 

siRNA gene expression knockdown studies were performed with the 

Lipofectamine RNAi-MAX Transfection Reagent (Invitrogen) and corresponding 

protocol. Each 21-mer siRNA was transfected into cells using Opti-MEM (Gibco) 

following the manufacturer’s guidelines. MISSION siRNA targeting SCL/TAL1 (Sigma; 

siRNA ID: SASI Mm01 00037684) was designed using the Rosetta Algorithm. The non-

coding Silencer Select Negative Control No.1 siRNA (Invitrogen) was used as a 

negative control. A working concentration of 10µM was used for all experiments.  

 

Real time quantitative RT-PCR 

Total RNA was isolated from MCEC-1 cells using the RNeasy Mini Kit (Qiagen) 

following the manufacturers’ instructions. To reverse-transcribe RNA into cDNA, 3 µg of 

RNA was mixed with 100 ng oligo(dT)15 and incubated for 5 minutes at 65°C. 1 mM 

dNTPs, 60 mM KCl, 15 mM Tris-Cl, pH 8.4, 3 mM MgCl2, 0.3% Tween 20, 10 mM β-

mercaptoethanol, 10 U RNasin (Promega) and 100 U Mo-MLVRT (Invitrogen) were 

added, and the mix was incubated for 55 minutes at 37°C. The enzyme was inactivated 
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by incubating at 95°C for 5 minutes. Next, 20 ng cDNA was incubated with Taq DNA 

polymerase (Promega) and respective primers at 0.25 µM concentration for 35 cycles (1 

minute at 95°C, 1 minute 60-65°C, and 1 minute 72°C). Gapdh was used as an internal 

control. Quantitative PCR was performed using the iQ SYBR Green Supermix kit 

(BioRad) on an iCycler (BioRad). Relative gene expression levels were quantified using 

the 2(–DDCt) formula (Livak and Schmittgen, 2001).  

          The sequence of primers used for RT-PCR analysis was as follows: SCL/TAL1 5’ 

(GGGATGAGAAGCAGGTCAATGG), 3’ (CAAGCTGGATGGATCAACATGG); MLC-2A 

5’ (AAATCAGACCTGAAGGAGACCTATT), 3’ (CAGAGAGACTTGTAGTCAATGTTGC); 

βMHC 5’ (AATGCAGAGTCAGTGAAGGG), 3’ (TCTTCCTGTCTTCCTCTGTCT); 

GapDH 5’ (CTCACTCAAGATTGTCAGCAATG), 3’ (GAGGGAGATGCTCAGTGTTGG).  

RESULTS 

Knockdown of SCL in MCECs induces expression of early cardiac genes   

To determine if subpopulations of adult cardiac ECs possess cardiogenic 

potential in vitro, MCECs were cultured and treated with siRNA targeting the 

cardiogenic repressor SCL. MCECs were seeded and grown for 24 hours before 

transfection with siRNA targeting SCL. After either 2 or 4 days in culture with continuous 

exposure to the transfection reagent, no morphological differences were observed in the 

MCECs aside from changes in confluence due to cell proliferation (Figure 34A). 

Nonetheless, gene expression analysis indicated knock-down of SCL at both 2 and 4 

days in culture, after transfection with anti-SCL siRNA but not with negative control, 

non-specific siRNA (Figure 34B).  
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Figure 34. Knockdown of SCL/TAL1 in cultured MCECs induces expression of early 
cardiac genes. (A) MCECs were treated with siRNA targeting SCL/TAL1. After 96 hours (4 
days) of culture, no obvious physical differences were noted in the cultured cells. (B-D) 
Quantitative real time RT-PCR analysis of RNA isolated from MCECs after 2 or 4 days of 
culture indicated expression levels of SCL/TAL1 decreased two-fold at both time points. 
Gene expression levels of MLC-2A (Myl7) and βMHC (Myh7) increased by 1.7 fold and 1.5 
fold, respectively, after only after 4 days of culture. (E) Treatment with the BMP antagonists 
PRDC or Noggin did not significantly affect expression of SCL/TAL1, MLC-2A, or βMHC 
after continuous treatment for 96 hours (4 days) in culture. 
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Gene expression levels of the immature cardiomyocyte genes MLC-2A (Myl7) 

and βMHC (Myh7) showed a statistically significant increase after treatment with anti-

SCL siRNA for 4 days in culture (Figure 34C,D). Notably, expression levels of MLC-2A 

did not rise until after a minimum of 2 days growth under conditions of low levels of 

SCL. Other mature cardiomyocytes genes (αMHC, α-Actinin, cardiac Troponin T) were 

not expressed at detectable levels in MCECs treated with anti-SCL or negative control 

siRNA.  

The increase in immature cardiomyocyte gene expression levels after 

knockdown of SCL indicated MCECs may possess cardiogenic ability. However, 

analysis of gene expression levels indicated modest fold changes by comparison to 

controls. In attempt to bolster the cardiogenic response, co-treatment of MCECs with 

anti-SCL siRNA and a bone morphogenetic protein (BMP) antagonist was performed. 

The BMP pathway has been shown to maintain quiescence of stem and progenitor cells 

(Li and Clevers, 2010), and inhibition of this signaling cascade is one method of 

spurring proliferation of potential cardiogenic ECs.  

 MCECs were cultured for four days under continuous exposure to siRNA 

targeting SCL, and either the BMP antagonist Noggin or protein related to DAN and 

Cerberus (PRDC). While knock down of SCL was achieved in the presence or absence 

of BMP antagonists, no significant increase in early cardiac genes was observed 

through blockade of the BMP pathway (Figure 34E). Furthermore, while not statistically 

significant, PRDC appeared to reduce expression of MLC-2A and βMHC compared with 

untreated controls. 
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DISCUSSION 

Several groups have demonstrated the cardiac potential of various progenitor 

populations in vitro, such as mesenchymal-like stem cells, and stem cells derived from 

the amniotic fluid or umbilical cord blood (Guan et al., 2011; Ryzhov et al., 2012; 

Khattab et al., 2013). While transplantation of these progenitor populations may improve 

cardiac function, oftentimes the positive outcomes are due to paracrine effects and not 

because of direct differentiation to cardiomyocytes (Hare and Chaparro, 2008). Thus, 

the ability to induce a novel population of endogenous, endothelial-derived cardiac 

progenitors to regenerate lost cardiac tissue after injury could have tremendous 

therapeutic potential. Reaching this goal requires a precise understanding of the 

molecular mechanisms which regulate this unique endothelial population.     

Murine cardiac endothelial cells were found to express low levels of early cardiac 

genes after knockdown of SCL and four days in culture. While complete knock out of 

SCL in the developing embryo led to ectopic expression of cardiomyocytes, these 

results indicate SCL may continue to play a role in repressing cardiogenesis in adult 

ECs. The current challenge is to demonstrate more robust cardiogenic potential in 

MCECs, or primary ECs isolated directly from the adult heart. This may be achieved 

through treatment beyond 4 days, or exposure of the ECs to a more complicated 

cocktail of mediators (signaling proteins and/or small molecules) which perturb more 

than one transcriptional regulator or signaling pathway. 

Interestingly, in the SCL-/- mouse embryo, MLC-2A (Myl7) was the highest 

induced cardiac-specific gene (Van Handel et al., 2012). Observing a statistically 

significant induction of this same gene after knockdown of SCL in adult MCECs 
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suggests it continues to act as a repressor of cardiogenesis. Similarly, upregulation of 

βMHC (Myh7) was observed after repression of SCL in both the developing mouse 

embryo and adult MCECs. 

Since the BMP pathway maintains quiescence of progenitor cells, it was logical 

to assume that BMP antagonism would allow for proliferation of cardiogenic endothelial 

progenitors. However, co-treatment with the BMP antagonist PRDC appeared to 

repress expression of cardiogenic genes. This result was counterintuitive to the 

predicted outcome, and may indicate a lack of cardiogenic EC progenitors in the MCEC 

culture, or the requirement to simultaneously induce EC progenitor proliferation, such as 

through stimulation via canonical Wnt signaling.  
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CHAPTER VI 

 

SUMMARY AND CONCLUSIONS 

 

Perspective 

 Heart disease remains the leading cause of death in the world (Go et al., 2013). 

Current treatment for cardiovascular disease is focused on mitigating the symptoms, 

minimizing the risk factors, and delaying its progression. Increasing the level of oxygen 

to the myocardium while simultaneously reducing its oxygen demand helps to minimize 

stress from the ischemia imposed on the surviving tissue. However, while these 

techniques may assist with reducing the myocardial burden, they do not lead to 

regeneration of the lost tissue. Once cardiac tissue has been lost, it cannot be replaced. 

Until recently, the heart was regarded as a post-mitotic organ, incapable of 

additional proliferation and woefully inadequate to replace lost cardiac tissue after injury.  

However, an increasing number of studies indicate the heart contains CM regenerative 

capacity and numerous populations of cardiac stem cells have been proposed to 

contribute to tissue regeneration. Stem cell antigen-1 (Sca1) and c-Kit expressing cells, 

side population (SP) cells, and cardiosphere-derived progenitor cells have all been 

shown to possess varying degrees of regenerative capacity (Aguirre et al., 2013). These 

stem/progenitor populations represent a viable source for cell-based therapy, but 

current methods have yet to achieve substantial rates of CM regeneration, especially in 

humans. As such, novel methods to improve recovery following ischemic injury are 

warranted, and may provide a more successful alternative to the less effective, current 

therapies.  
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Summary and Implications  

These studies indicate endothelial cells serve as a cardiac progenitor population 

in the adult heart during homeostasis, but generate myofibroblasts for repair after 

cardiac injury. Lineage tracing using three different endothelial promoters (Tie1, VE-

Cadherin, and endothelial 5’-Scl) each independently showed the same labeling pattern. 

Ultimately, the vasculature plays a dynamic and important role in the adult heart, and is 

influenced by the degree of myocardial damage and stress. 

Using constitutive and inducible fate mapping strategies to track cells expressing 

endothelial genes in the uninjured adult mouse heart, we discovered ECs generate cells 

with cardiac stem cell characteristics. EC-derived cells were organized in a radial 

manner within coronary arteries, with quiescent and proliferative cells residing in the 

media and adventitia layers, respectively. Distal to the coronary niche, we identified 

labeled cardiomyocytes organized in clusters of single cell origin. EC pulse-chase 

experiments demonstrated CM renewal was rapid but spatially restricted. Our data 

reveal that cells with EC properties are part of the intrinsic cardiac renewal program, 

and that coronary arteries constitute a structural component of the cardiac stem cell 

niche. 

An important finding of EC lineage tracing during cardiac homeostasis is the 

emergence of the coronary arteries as the site of the CSC niche. Previous studies show 

the vasculature is an integral component of most well characterized stem cell niches in 

various organs, such as the bone marrow and the subventricular zone in the brain (Li 

and Clevers, 2010). Our data suggest this biological strategy extends to the heart, with 



  

106 

 

the coronary vessels serving as the CSC niche. In support of this finding, vascular 

progenitor cells have been observed in the walls of coronary arteries in the human heart 

(Bearzi et al., 2009). 

The molecular mechanisms which regulate endothelial progenitor fate within the 

coronary niche remain to be determined. Our data indicate that ECs, through the 

process of EndMT, are capable of generating cells with CSC characteristics in the 

uninjured, adult heart. We and others have shown that TGF-β/BMP and Wnt signaling 

regulate EndMT after injury, and it is likely these pathways also regulate the process 

during homeostasis (Zeisberg et al., 2007; Aisagbonhi et al., 2011; (Chen et al., 2012). 

In addition, Sonic hedgehog (SHH) signaling has been shown to activate Sca1+ cells 

with stem cell properties residing in the adventitia layer of the arterial wall, and may also 

influence cardiogenic EC fate (Passman et al., 2008).  

Furthermore, the mechanisms which direct trafficking of the endothelial-derived 

cardiac progenitors remain elusive. It is possible that A cells enter the circulation and 

are recruited to distal heart areas by chemoattractants such as SDF-1, similarly to 

mesenchymal stem cells (Wynn et al., 2004; Laird et al., 2008). Alternatively, local 

gradients of chemoattractants may recruit EC-derived progenitors from their coronary 

niche. 

After acute or chronic cardiac injury, the regenerative fate of endothelial cells 

changes and they alternatively contribute to repair of the myocardium. It is intriguing 

that adult ECs give rise to myofibroblasts after cardiac injury (Zeisberg et al., 2007; 

Aisagbonhi et al., 2011). The striking parallels on the origins of CSCs and 
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myofibroblasts raise the possibility the two processes are intrinsically linked. Thus, EC-

derived CSCs may switch to a pro-fibrotic phenotype in the disease environment after 

injury, and alter their differentiation from CMs to myofibroblasts to preserve ventricular 

integrity. This scenario is reminiscent of the situation which occurs in skeletal muscle 

where myoblasts switch from a regenerative to a pro-fibrotic phenotype with aging 

(Brack et al., 2007).  

The ability of endogenous cardiac cells to change fate based on their 

environment is further supported by an exciting finding which showed after cardiac 

injury, murine cardiac fibroblasts can be reprogrammed in vivo into CMs (Qian et al., 

2012). Thus, the plasticity of cardiac fibroblasts and endothelial cells may be primarily 

determined by their environment and exposure to secreted factors. The notion that cell 

fate is largely determined by environmental signaling suggests it is possible to influence 

the regenerative capacity of ECs with the right combination of cellular mediators. 

 Ultimately, endothelial cells within the adult heart respond differently depending 

on their surrounding environment and overall condition of the myocardium (Figure 35). 

In the uninjured heart, an endothelial-marked cardiac progenitor cell expressing Tie1, 

VE-Cadherin, SCL, and Flk-1 (Kattman et al., 2006), gives rise to both ECs and 

cardiomyocytes (Figure 35A). These CPCs reside within the medial and adventitial 

layers of coronary arteries throughout the ventricular myocardium, and give rise to 

clusters of CMs found within both left and right ventricles. Approximately 0.3% of CMs in 

the entire adult mouse heart are derived from this unique cardiac progenitor source, but 

rates of regional CM replacement reflect a greater regenerative rate. While the signaling 

mechanisms regulating this process remain to be determined, a 
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Figure 35, MODEL. Endothelial contribution to cardiac regeneration and repair in the 
adult heart. (A, Homeostasis) In the uninjured heart, endothelial-derived cardiac progenitor 
cells expressing Tie1, VE-Cadherin, SCL, and Flk-1 (VEGFR2) generate ECs and CMs 
(thick blue arrow). (B, Acute Injury) After ischemic injury, such as MI, regenerative rates 
decrease and endothelial cells alternatively generate myofibroblasts (thick red arrow). (C, 
Chronic Injury) Non-ischemic injuries, such as hypertension induced through AngII, reduce 
the endothelial contribution to myofibroblasts. These cells instead are generated from non-
EC sources such as resident fibroblasts or bone marrow-derived cells. Abbreviations: 
myocardial infarction (MI); transverse aortic constriction (TAC); angiotensin II (AngII). 
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“cardiogenic EndMT” is the means by which the endothelial-derived CPCs gradually 

develop into mature cardiomyocytes. 

 The fate of endothelial cells changes after an ischemic injury such as a 

myocardial infarction. During the granulation tissue repair phase, ECs alternatively 

generate myofibroblasts through a “fibrogenic EndMT” (Figure 35B). Concurrently, the 

number of EC-derived CMs decreases. FACS analysis also showed an increase in the 

percentage of YFP+/Sca1+ cells (cardiac progenitor A cells). Therefore, EC-derived 

CPCs may give rise to myofibroblasts instead of CMs after acute ischemic injury. 

 Considering that approximately 30% of infarct myofibroblasts are derived from an 

endothelial origin, this EC fate change after MI represents a novel opportunity for 

improving recovery after ischemic injury. Understanding the molecular mechanisms that 

regulate the EndMT which generates endothelial-derived fibroblasts could minimize 

maladaptive fibrosis. Minimizing or inhibiting this EC fibrotic fate switch may instead 

promote formation of CMs for regeneration of beneficial, contractile myocardial tissue. 

 Interestingly, ECs respond differently under chronic, non-ischemic injury by 

comparison with the acute, traumatic injury induced by MI. After AngII-induced 

hypertension in the adult heart, the proportion of EC-derived fibroblasts in the 

myocardium and surrounding the coronary arteries decreases in comparison with sham 

controls (Figure 35C). Fibroblasts are instead derived from non-EC sources, such as 

the bone marrow or resident populations within the myocardium.   

 Chronic injury induces a less robust “fibrogenic EndMT” in comparison with that 

caused by MI and its subsequent ischemic damage. Understanding how these two 
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types of injuries affect the extent of EndMT and the contribution of EC-derived 

myofibroblasts to the heart will provide greater insight into the role of the vasculature 

during cardiac repair. These different cellular outcomes, which depend on the type of 

cardiac injury, may originate based on environmental changes which affect the coronary 

niche. Here, the fate of M and A cells, and resulting CMs or myofibroblasts, seems to be 

uniquely regulated based on the specific environment in which they reside. 

 Our model may also provide novel insight into how coronary arterial disease can 

lead to heart failure. It is likely that inflammation, oxidative stress, ischemia, 

calcification, and fibrosis around coronary vessels negatively impact the niche 

environment, disturbing the normal proliferation and differentiation of CSCs. This effect 

could compromise cardiac homeostasis, weaken the heart muscle, and eventually lead 

to hypertrophy and remodeling. Therefore, our findings may open novel opportunities to 

establish the intrinsic cardiac molecular mechanisms, and identify factors that prevent a 

pro-fibrotic fate switch after injury in favor of cardiac regeneration. 

 

Limitations 

Collectively, the data presented here during cardiac homeostasis, and the results 

showing ECs contribute to angiogenesis and fibrosis after injury, indicate ECs remain 

multipotent in the adult. However, it is not clear if this is a universal property of mature 

cardiac ECs, or confined to specific EC subpopulations within coronary arteries. It is 

also likely that a multipotent cardiovascular stem cell expressing EC markers exists in 

the adult and is genetically labeled using EC lineage tracing approaches. Finally, the 

cardiogenic endothelium may represent one mechanism of cardiac regeneration, but 



  

111 

 

our findings do not exclude proliferation of resident CMs, or alternative sources of CSCs 

(Senyo et al., 2013; Malliaras et al., 2013).  

Furthermore, although the proposed model is consistent with the observed data, 

alternative interpretations may also explain the pattern of the lineage tracing results. For 

example, low level expression of endothelial genes in cardiac fibroblasts with 

cardiogenic potential could account for some of the observed labeling patterns. Or, as 

mentioned above, rare proliferating CMs may transiently express endothelial genes, and 

thus become labeled before expansion. While we did not observe expression of 

endothelial markers in fibroblasts and CMs, we cannot fully exclude these possibilities. 

 

Future Directions 

While numerous types of cardiac stem cell populations have been identified in 

the adult heart, they lack a substantial regenerative response after injury. We have 

identified a subset of endothelial cells in the adult heart which possess cardiogenic 

potential under conditions of homeostasis. After acute ischemic injury, cardiomyocyte 

regenerative rates from this cell population decreased significantly. Alternatively, 

activated myofibroblasts are generated, leading to repair of the injury, at the cost of 

beneficial regeneration. 

 To date, there are no effective/robust methods for regenerating myocardial tissue 

after injury. Myocardial infarction is the most common cause of cardiac injury and 

results in the permanent loss of cardiomyocytes. This can lead to heart failure and 

death. Thus, continued studies designed to characterize and enhance the regenerative 

potential of endogenous cardiac stem cell populations in the adult heart are warranted.  
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To better understand the unique endothelial-derived CPCs, it will be important to 

isolate and analyze this population before and after injury. Transcriptional-based 

profiling of coronary niche M cells (YFP+, CD31neg, αSMA+) and A cells (YFP+, CD31neg, 

Sca1+) under different conditions will elucidate their distinct genetic profiles in the 

uninjured heart and after acute or chronic injury. In addition, isolation and in vitro culture 

of these populations will allow for study of the molecular mechanisms used for their 

regulation. Mediators found to be influential from initial transcriptional screening can be 

used to direct cell differentiation. Ultimately, any differences in regulatory mediators or 

signaling pathways may lead to novel treatments to enhance the regenerative response, 

instead of reparative response, of EC-derived CPCs after injury.  

 It will also be important to examine how inflammation affects the vascular-derived 

cardiac progenitor cell population. Inflammatory mediators likely prevent a regenerative 

response, and instead induce an EC reparative fate through formation of 

myofibroblasts. In situ analysis of the coronary niche M and A cell populations after 

acute (MI) or chronic (AngII, TAC) injury may identify a ‘fork-in-the-road’ crucial time 

period during repair in which these progenitor cells are directed towards a particular 

maladaptive cell fate. 

Finally, to induce significant rates of CM regeneration, it will be necessary to 

develop a better understanding of the molecular signaling mechanisms and pathways 

(Wnt, BMP, Notch, SHH, etc.) which regulate this progenitor population. Developing 

mediators, including small molecules or proteins, which directly target the regenerative 

capacity of the EC-derived CPC populations may provide significant benefit during 

recovery after cardiac injury. Ultimately, to promote regeneration of lost cardiac tissue 
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and reduce the risk of cardiac remodeling and heart failure after injury, we must find a 

way to enhance the rates of CM regeneration from all available cardiac progenitor cell 

populations.  
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APPENDIX A 
 

Antibody Species Dilution 1o/
2o 

Company Catalog 
Number 

Anti-α-Actinin Mouse 1:800 1o Sigma A7811 

Anti-c-Kit Rabbit 1:50 1o Santa Cruz sc5535 

Anti-CD31 Rat 1:100 1o BD Biosciences 553370 

Anti-Collagen-IV Rabbit 1:500 1o Abcam Ab6586 

Anti-Connexin43 
(GJA1) 

Rabbit 1:100 1o Abcam Ab11370 

Anti-Cre Mouse 1:400 1o Abcam  Ab24607 

Anti-F4/80 Rat 1:100 1o Abcam Ab6640 

Anti-FSP1 
(S100A4) 

Rabbit 1:200 1o Abcam Ab27957 

Anti-Gata4 Rabbit 1:100 1o Santa Cruz sc9053 

Anti-GFP# Rabbit 1:3000 1o Abcam Ab290 

Anti-phospho 
Histone H3 

Rabbit 1:500 1o Santa Cruz sc8656 

Anti-Ki67 Rabbit 1:100 1o Abcam Ab15580 

Anti-N-Cadherin Mouse 1:100 1o Sigma C2542 

Anti-Sca1 (Ly6) Goat 1:100 1o R&D AF1226 

Anti-α-SMA Mouse 1:800 1o Sigma A2547 

Anti-Snail Mouse 1:600 1o EMD Millipore MABE167 

Anti-Tie1 Rabbit 1:100 1o Santa Cruz sc342 

Anti-Rabbit  
Alexa-Fluor488 

Donkey 1:400 2o Invitrogen A21206 

Anti-Goat  
Alexa-Fluor488 

Donkey 1:400 2o Invitrogen A11001 

Anti-Rabbit Cy3 Donkey 1:400 2o Jackson 
ImmunoResearch 

711-165-152 

Anti-Mouse Cy3 Goat 1:400 2o Jackson 
ImmunoResearch 

115-165-146 

Anti-Rat Cy3 Donkey 1:400 2o Jackson 
ImmunoResearch 

712-165-153 

Anti-Mouse Cy5 Goat 1:400 2o Jackson 
ImmunoResearch 

115-176-146 

Anti-Rabbit Cy5 Goat 1:400 2o Jackson 
ImmunoResearch 

111-175-144 

Anti-Rat  
Alexa-Fluor647 

Donkey 1:400 2o Jackson 
ImmunoResearch 

712-605-150 

 
 
 
 
 

Table 2. Primary and secondary antibodies used for histological analysis.                 

The table includes the species, company, catalog number, and various dilutions of 

antibodies in blocking solution. To visualize and quantify individual cells, sections were 

counter-stained nuclei with the nucleophilic dye 4’,6-diamidino-2-phenylindole (DAPI; 

1:6000; Invitrogen).  
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Extra References from Fig.3 legend – (will be removed in final pdf document) 

(A) HFSC niche: (Tumbar, 2004) 
(B) ISC niche: (Moore and Lemischka, 2006); (Jiang and Edgar, 2012); (Sangiorgi 

and Capecchi, 2008); (Tian et al., 2011) 
(C) BM niche: (Nakamura-Ishizu and Suda, 2012) 
(D) NSC niche (SVZ, SGZ): (Decimo et al., 2012); (Fuentealba et al., 2012); 

(Kriegstein and Alvarez-Buylla, 2009); (Lugert et al., 2012) 


