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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

 

Chapter Overview 

 The cell uses complexes composed of proteins and RNA—termed 

ribonucleoproteins (RNP)—to execute vital functions. Such processes include DNA 

replication, gene splicing, protein translation, etc. [1,2]. Consequently, how the cell 

coordinates the assembly of ribonucleoproteins is an important biological question. In 

fact, mutations that disrupt the spatiotemporal associations between the components of 

certain RNP complexes have been observed to exhibit causal roles in a number of disease 

states. Such diseases include dyskeratosis congenita [3], poikiloderma with neutropenia 

[4], spinal muscular atrophy [5] and retinitis pigmentosa [6], and male infertility and 

Native American Indian childhood cirrhosis [7] among others. Therefore, the study of 

ribonucleoprotein biogenesis is very important to our understanding of human health and 

disease. 

How are RNPs made? DNA is transcribed into RNA in the nucleus, however 

RNA is translated into proteins in the cytoplasm. How, then, does the cell regulate RNP 

assembly? When and where do the components of RNP complexes interact to form 

mature ribonucleoproteins capable of executing their diverse cellular functions? Given 

the significance of RNP function in the cell, these questions have shaped my interests and 

become the focus of my dissertation research. More specifically, my investigations have 

concentrated on the telomerase enzyme, a nuclear RNP whose activity is regulated in the 
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cell cycle [8]. Compared to the almost perpetual activity of the majority of other RNPs in 

the cell, the cell cycle regulation of telomerase activity is a feature that is fairly unique to 

this enzyme. Therefore, the study of telomerase biogenesis may reveal how the cell 

accomplishes the biogenesis of other such highly regulated RNPs as well as provide more 

insight into the general mechanisms modulating RNP assembly in the cell.  

In this introductory chapter, I have chosen to highlight the significance of RNP 

biogenesis more comprehensively, with a particular focus on telomerase. Because 

telomerase—as well as a number of other cellular RNPs—functions in the nucleus, I 

address the problem of enzyme biogenesis starting at the source, the nucleus. After this 

brief discussion summarizing the features that allow the nucleus to execute its varied 

functions, I describe the process of nuclear localization. With an emphasis on the nuclear 

pore complex as a major regulator of protein (and RNA) traffic into and out of the 

nucleus, I include a description of the key proteins and sequence motifs involved in 

active nuclear transport.  

To illustrate the significance of the process of nuclear localization to the cell, I 

present a discussion of how nuclear localization contributes to normal cell function. I also 

describe a number of disease states associated with disruptions in the nuclear localization 

of key proteins. I explain that viruses exploit endogenous nuclear transport mechanisms 

in their efforts to seize control of a cell. Using the SV40 monkey polyomavirus to 

exemplify such a virus, I summarize how SV40 was discovered as well as the 

consequence(s) associated with SV40 infection. This virus is of particular interest 

because the characterization of its mechanism of action revealed for the first time that the 

nuclear localization of a key viral protein, the SV40 Large Tumor Antigen protein, was 
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required for the virus to execute its cytopathic effects [9]. Furthermore, characterization 

of this critical protein from SV40 led to the identification of the first nuclear localization 

sequence[10]. Because nuclear localization is an integral step in the biogenesis of many 

cellular RNPs, the discussion provided in these initial sections of the introduction 

establish a solid foundation for understanding the mechanisms of RNP biogenesis and the 

significance of the study of this fundamental cellular process. 

In subsequent sections, ribonucleoprotein biogenesis is specifically discussed, 

focusing on the ribosome and components of the spliceosome. I have chosen to present 

the biogenesis of these RNP complexes in an effort to describe the general mechanisms 

controlling RNP biogenesis in the cell and because telomerase biogenesis is hypothesized 

to occur in a manner similar to that utilized by RNP molecules that comprise the 

ribosome or the spliceosome[11-14]. The remainder of the chapter focuses on telomerase, 

beginning with a general description of the telomerase holoenzyme. The next few 

sections describe human telomerase, synthesizing current data regarding telomerase 

biogenesis in humans. I also present a discussion of disease states associated with errors 

in telomerase biogenesis.  

As mentioned earlier, my research has focused on elucidating mechanisms of 

telomerase biogenesis and I have used budding yeast as the model system for my studies. 

Therefore, the chapter ends with a discussion of telomerase in Saccharomyces cerevisiae, 

including an explanation of how the components of the complex were identified and a 

summary of the functional role of the Est1p component of yeast telomerase in telomere 

maintenance. I also describe the current model of telomerase biogenesis in yeast, a model 

solely based upon studies of the localization of the RNA component of the enzyme [15]. 
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The chapter ends with a description of how I have chosen to approach the problem of 

telomerase biogenesis: because Est1p is the only telomerase component whose 

abundance is regulated in the cell cycle [16], I have reasoned that the regulation of this 

protein may impart the cell cycle regulation of telomerase function. Furthermore, since 

the current model of telomerase trafficking in the cell is not based upon studies of the 

protein components of the telomerase RNP in yeast, I have sought to test this model by 

examining the nuclear localization of Est1p, data for which is included in chapter two. 

 

The Nucleus 

The nucleus is one of a number of specialized, membrane-bound organelles—

absent in prokaryotes—that serves key functions in eukaryotic cells. Because the nucleus 

houses and protects the cell’s genomic DNA, it can be considered the cell’s hard drive, 

having roles in almost every process the cell executes. The nucleus is the site of DNA 

synthesis and transcription as well as ribosome biogenesis, serving to isolate these 

essential, complex cellular processes and, as such, providing a layer of regulation for how 

and when these processes occur [17]. 

In addition to chromosomal DNA, the nucleus contains a number of 

subcompartments and/or domains that facilitate its varied functions. The nuclear lamina 

consists of a network of filamentous proteins that provide structural support and integrity 

for the nucleus and help to anchor chromosomes within the nucleus [18]. The nucleolus is 

a dense assemblage of proteins, such as fibrillin and nucleolin, around the ribosomal 

DNA repeats and is the site of ribosome subunit assembly in the cell [19]. The nuclear 

envelope is made up of two concentric phospholipid bilayer membranes separated by up 
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to 50 nm. Nuclear pores within the nuclear envelope help to regulate macromolecular 

traffic between the nucleus and the cytoplasm [20]. Other nuclear substructures include 

Cajal bodies, Gemini of Cajal bodies (or gems), and interchromatin granule clusters 

(IGC)—each containing specific structural proteins organized around particular types of 

RNA, thereby aiding in the biogenesis of small nuclear ribonucleoproteins and ultimately 

helping to facilitate DNA transcription and RNA processing [21-23].  

The nucleus is the site of the biogenesis of many RNP complexes that are critical 

for cell survival. However, the nucleus is encased in a protective barrier that limits its 

access to enzymes that must function in the nucleus to maintain and express the genome. 

To overcome this barrier and allow for the regulated entry of such key proteins, the cell 

uses the process of nuclear localization. 

 

Nuclear Localization 

The presence of membrane-bound organelles is a key difference between 

prokaryotes and eukaryotes. These semipermeable partitions serve to isolate the varied 

processes required for cell viability, thus helping to facilitate the survival of more 

complex organisms. The process of nuclear localization (and nuclear export) is an 

example of how the membrane associated with a particular organelle provides such 

essential functions—regulation of the types of molecules that enter (and exit) the nucleus. 

Because this process links the nucleus to the cytoplasm as well as other organelles, it 

allows the cell to preserve the crosstalk between these organelles while regulating how 

and when the crosstalk occurs [2]. 
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The nuclear pore complex is a specialized structure that, through size limitations 

and/or the requirement for specific protein-protein interactions, regulates which 

molecules can localize to (or be exported from) the nucleus [20]. The nuclear pore 

complex is comprised of 30 to 50 distinct proteins—called nucleoporins—that interact to 

form a multi-domain superstructure that extends from the cytoplasm into the 

nucleoplasm, consisting of a basket-like structure on the nuclear face of the pore attached 

to a central transporter region and cytoplasmic filaments [24]. Although there is 

conflicting evidence in the literature regarding the exact size of the nuclear pore [25], 

most reports indicate that the nuclear pore in mammals has an outer diameter of greater 

than 100 nm and an inner diameter of approximately 10 nm. The difference in size results 

from the presence of nucleoporins and their associated filaments that occupy much of the 

space within the inner channel of the pore [26]. Thus, the nuclear pore forms an aqueous 

tunnel that allows for the free diffusion into the nucleus of molecules and ions less than 

10 nm in diameter or with molecular masses of up to 100 kDa in vertebrates [27]. 

Although the limited size of the nuclear pore only permits the passive diffusion of 

small molecules into the nucleus, larger molecules and molecular complexes are able to 

enter the nucleus through an active transport mechanism, which allows the nuclear pore 

to stretch to 25 nm in diameter, 2.5 times its normal size [20]. Active transport through 

the nuclear pore into the nucleus is characterized by two different mechanisms of nuclear 

transport, classical nuclear import and non-classical nuclear import. Both are defined by 

specialized proteins termed karyopherins that interact with components of the nuclear 

pore complex. These pathways make use of a class of karyopherins—commonly called 

nuclear import receptors or importins—that function in the transport of molecules from 
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the cytoplasm into the nucleus [28,29]. There are also karyopherins that primarily 

function in the transport of molecules out of the nucleus (exportins) [30,31] as well a 

number of karyopherins that can facilitate bidirectional translocation into and out of the 

nucleus [32,33]. To identify particular cargo for transport, these karyopherins utilize 

special signals within proteins destined for the nucleus called nuclear localization 

sequences (NLS) [34]. 

The classical nuclear import machinery is estimated to participate in the nuclear 

localization of approximately 40% of nuclear proteins [35]. Transport via this pathway is 

generally first defined by binding of the adapter importin  to a cargo protein harboring a 

classical NLS [36-38]. Classical NLSs consist of a single cluster of basic residues such as 

the NLS found in the simian virus 40 (SV40) large T antigen protein (TAgNLS), 

comprised of the sequence PKKKRKV [10]. Alternatively, classical NLSs can consist of 

two clusters of basic residues separated by at least 9 to 29 amino acids (aa) such as the 

NLS found in nucleoplasmin, bearing the sequence KRPAATKKAGQKKKKLD 

(residues contributing to nuclear localization are underlined) [35,39]. The importin -

cargo complex also interacts with importin , a member of the karyopherin family of 

proteins, to create a ternary protein complex for transport across the nuclear envelope 

[40-42]. To promote nuclear localization of the cargo protein, importin then interacts 

with components of the nuclear pore complex, mediating the interaction between the 

nuclear pore complex and the import complex until the cargo-importin -importin  

heterotrimer reaches the nucleoplasm [43-46].  

Nonclassical nuclear transport is similar to the classical pathway with a few 

exceptions. For molecules using this pathway, there is no requirement for importin  
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binding to the cargo protein [47]. In addition, instead of a single  importin having the 

ability to facilitate nuclear transport, multiple importin s in the cell function to directly 

recognize different cargo and transport them across the nuclear envelope. In fact, beyond 

the classical importin , 13 other  karyopherins have been identified in yeast and at least 

19 have been identified in mammalian cells [47]. Thus, there are a number of non-

classical importins available to transport the remaining 60% of nuclear proteins and other 

macromolecules into the nucleus. Another key difference between the two types of 

import pathways is the signal used by the cargo protein. Nuclear proteins that undergo 

transport using the non-classical machinery can have varying types of NLSs. These 

include the extended asparagine/glycine-rich NLS found in the yeast homolog of fibrillin, 

Nop1p [48], the proline/tyrosine (PY) NLS of the Nab2 mRNA-binding protein [49], as 

well as other non-classical motifs that have been shown to be important for the nuclear 

localization of other nuclear proteins [50-52]. 

In addition to the direct protein-protein interactions required for nuclear 

translocation, the primary mechanism of active nuclear transport, through either the 

classical or non-classical pathways, also requires the exchange of Ran-GTP for Ran-GDP 

[53]. In the cytoplasm, the concentration of active Ran-GTP is kept very low due to its 

hydrolysis to inactive Ran-GDP by the Ran-GAP, whose subcellular localization is 

restricted to the cytoplasm [54,55]. However, the concentration of Ran-GTP in the 

nucleus is kept very high due to the presence of the Ran-GEF, which primarily localizes 

to the nucleus [56-58]. Therefore, after an import complex has entered the nucleus, the 

high-affinity binding of Ran-GTP to the karyopherin disrupts the interaction between the 

importin and its substrate [59]. The karyopherin then dissociates from its cargo, allowing 
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the cargo to perform its nuclear function while the Ran-GTP-bound karyopherin is then 

exported back to the cytoplasm [60]. In the cytoplasm, Ran-GTP is hydrolyzed to Ran-

GDP, which disrupts the interaction between Ran and the karyopherin, thereby freeing 

the karyopherin to bind and transport other nuclear cargo [61]. The hydrolysis of Ran-

GTP to Ran-GDP in the cytoplasm completes the transport cycle. 

Although there are several more karyopherins in higher organisms than in yeast, 

the process of nuclear localization is highly conserved across eukaryotes [62]. In fact, a 

number of karyopherins have been identified based upon sequence conservation 

[30,49,63-65]. It is hypothesized that the conserved regions within the group of 

karyopherins are important for interacting with Ran-GTP, components of the nuclear pore 

complex, and/or transport substrates, suggesting that the mechanism of nuclear transport 

is highly conserved [66]. For homologous proteins, although precise conservation of a 

nuclear targeting sequence is not required for conservation of protein function, the 

sequence motifs used to target proteins to the nucleus are very similar across eukaryotes 

[67,68]. The specificity of the interaction of a karyopherin with a particular cargo protein 

also appears to be well-conserved. For example, transportin—karyopherin 2 (Kap2) in 

vertebrates, which is homologous to Kap104p in budding yeast—has been shown to be 

responsible for the nuclear import of numerous mRNA binding proteins [28,49]. 

Kap104p binds Nab2p through the recognition of a PY-NLS within Nab2p and the 

structure of human Kap2 bound to the PY-NLS of yeast Nab2p has recently been 

determined [69-71].  

The nuclear import of a number of proteins uniquely depends on a specific 

karyopherin. Thus, in the absence of its importin, a cargo protein remains confined to the 
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cytoplasm [72]. However, despite the specificity of the interaction between a karyopherin 

and its substrate, certain redundancies exist: in the absence of the function of a particular 

karyopherin, some cargoes are still imported into the nucleus, presumably through 

alternative karyopherins [48,73-75]. For example, the human nuclear RNA export factor 

1 (NXF1) protein, whose homologue in yeast is Mec67p, was shown to be a substrate for 

Kap2 by several groups [76-80]. However, upon treatment of HeLa cells with the 

Kap2-specific inhibitor, M9M, NXF1 was still found to localize to the nucleus, with 

subsequent studies identifying it as cargo for a number of nuclear import proteins [81]. 

Under such circumstances, it remains unclear whether two karyopherins bind the cargo 

protein competitively or cooperatively. Do they recognize the same NLS motif within a 

particular cargo protein? Is the nuclear phenotype simply compensatory with nuclear 

transport by the second karyopherin permissible only because of the absence of the first 

one? Although, these redundancies suggest that backup mechanisms have evolved to 

ensure nuclear import in critical cellular pathways, further investigation into how such 

redundancies are coordinated is warranted.  

 

Nuclear Localization and Cellular Function 

The information included above reveal that the cell has taken great lengths to 

regulate traffic into (and out of) the nucleus. This suggests that the process of nuclear 

localization is critical for normal cellular function. These data also indicate that the 

dysregulation of nuclear localization can cause considerable deleterious effects for the 

cell. In fact, there are many examples of the manner in which the process of nuclear 

localization contributes to cellular function.  
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Restriction of the subcellular location of the Ran-GAP and Ran-GEF to the 

cytoplasm and nucleus, respectively, promotes the nuclear transport cycle [53]. In the 

Wnt/-catenin signaling pathway, in the absence of the binding of Wnt ligand to the 

Frizzled receptor, -catenin is bound by several cytoplasmic proteins that preclude its 

nuclear localization and allow for targeting to the proteasome for degradation [82]. 

However, binding of Wnt to Frizzled releases the negative regulation of -catenin, 

allowing for its nuclear import to promote the upregulation of genes involved in cell 

migration and the downregulation of genes involved in cell adhesion. The binding of 

nucleocytoplasmic shuttling proteins to mRNAs in the nucleus promotes their nuclear 

export [76,83,84]. After entry into the cytoplasm, dissociation of these proteins from their 

respective mRNAs allows for return of the proteins to the nucleus and release of the 

RNAs into the cytoplasm for further processing and/or translation. In budding yeast, 

because the nuclear envelope does not break down during mitosis, one mechanism 

through which the re-replication of DNA is prevented is through the regulated nuclear 

export of replication initiation factors during S phase [85].  

While cells use nuclear localization to regulate many endogenous processes, 

viruses exploit the host nuclear transport machinery, often producing cytopathic effects. 

Many viral proteins contain one or more NLSs that are recognized by host karyopherins 

to gain entry into the host cell nucleus. Once in the nucleus, these proteins can promote 

integration of the viral genome into the genomic DNA of the host. This allows for the 

virus to hijack host DNA transcription and/or replication machinery to produce more 

viral particles. Oftentimes, such viral infection inhibits key functions in the cell and 

ultimately results in host cell death (reviewed in [86]).  
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One well-studied example of such a virus is the monkey polyomavirus SV40. 

Initially isolated from the kidney cells of rhesus monkeys, this virus was observed to 

cause cytopathic effects and vacuole formation [87]. Additionally, subcutaneous injection 

of the virus into mice and hamsters induced tumor formation [88-91]. The Salk and Sabin 

poliovirus vaccines administered from 1955 to 1963 in the United States, parts of the 

Soviet Union, and numerous other countries worldwide were contaminated with active 

SV40 virions. Consequently, a large amount of research has been executed to determine 

whether SV40 infection can transform human cells [92-97]. Investigation of the 

mechanism of action of SV40 infection in its normal host revealed that one of the early 

viral genes that encodes the large Tumor antigen protein (TAg) has a predominant role in 

viral infection [98].  

After translation in the cytoplasm, TAg localizes to the nucleus where it recruits 

the DNA polymerase -primase to replicate the viral genome and modulates the host 

transcription machinery to promote the production of virion particles [99-101]. TAg 

deregulates the cell cycle in host cells by interacting with the retinoblastoma family of 

proteins to abrogate their function [102-104]. It also prevents apoptosis through its 

interaction with the tumor suppressor p53, thereby allowing for host cell transformation 

[105-107]. In 1984 the TAgNLS—the first ever NLS identified—was characterized by 

Kalderon and colleagues [10]. Subsequent investigations into how TAg executes its varied 

functions in the host cell revealed nuclear localization of TAg as a major determinant of 

viral pathogenicity [108,109]. In fact, mechanisms that preclude the nuclear import of 

this viral protein—either through direct mutation of the TAgNLS or a frameshift mutation 

that most likely results in the formation of cytoplasmic aggregates of the protein—
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abrogate the cytopathic effects of the virus by inhibiting viral replication and cellular 

transformation [9]. 

Modulation of the nuclear localization of endogenous proteins can also produce 

deleterious effects for an organism. Loss of nuclear localization of essential nuclear yeast 

proteins can result in cell death [110]. Spinal and bulbar muscular atrophy, or Kennedy’s 

disease, results from polyglutamine expansion within androgen receptors [111]. When the 

testosterone ligand binds the androgen receptor, the receptor normally translocates to the 

nucleus. Polyglutamine-expanded androgen receptors retain the ability to localize to the 

nucleus upon binding by testosterone [112]. However, the presence of the expanded 

repeats precludes nuclear export, thus promoting nuclear accumulation of the mutant 

receptor and toxicity [113]. One hallmark of Alzheimer’s disease is the presence of 

intracellular tangles consisting of abnormally hyperphosphorylated tau protein in the 

cytoplasm [114-116]. Protein phosphatase-2A (PP2A) functions to dephosphorylate tau 

[117] and the SET protein is an inhibitor of PP2A [118,119]. In Alzheimer’s disease 

brains, phosphorylation of serine 9 located near an N-terminal classical NLS within SET 

disrupts SET nuclear localization [120]. This cytoplasmic SET inhibits PP2A function, 

thus promoting tau hyperphosphorylation and the formation of the toxic fibrillary tangles. 

These data demonstrate that tight control of nuclear traffic is crucial for cell 

survival. Not only does nuclear localization impact how the cell functions, abrogation of 

nuclear transport can also impair the function of individual tissues (i.e. the brain, as 

mentioned above). The observation that aberrant nuclear localization contributes to 

human disease reveals the impact of this cellular process at the organismal level, with the 
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potential to reduce life expectancy and worsen the quality of life of humans affected with 

such conditions.  

 

Biogenesis and Trafficking of Multi-subunit Complexes 

Because proteins that participate in RNP complexes must be imported to the 

nucleus after translation in the cytoplasm, their nuclear transport is likely to be extremely 

important for the biogenesis of cellular ribonucleoproteins. This is supported by the fact 

that many RNPs are assembled in the nucleus and/or have nuclear functions. The 

ribosome and the spliceosome exemplify ribonucleoproteins that rely on nuclear 

localization for their biogenesis. A discussion of the regulation of the assembly and 

localization of the components of the ribosome and the uridine-rich small nuclear RNPs 

that comprise the spliceosome are included below. 

 

Ribosome Biogenesis 

The assembly and trafficking of many multi-subunit complexes often rely on tight 

regulation of the subcellular localization of the individual components that comprise such 

complexes. The ribosome exemplifies this type of complex with ribosome biogenesis 

requiring the extremely rapid, high fidelity assembly of a host of ribosomal proteins (r-

proteins) with more than 5000 nt of rRNA. This process makes use of the coordinated 

efforts of more than 70 small nucleolar RNAs (snoRNA) and at least 200 different non-r-

protein cofactors for manufacturing mature ribosomes [121]. Though much of the data 

regarding this essential process has come from studies in budding yeast, the general 
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mechanisms regulating ribosome fabrication in the cell are highly conserved across 

eukaryotes [122].  

Ribosome manufacturing is coupled to cell growth such that the rate of ribosome 

production in logarithmically growing yeast is higher than in yeast in stationary phase. 

Ultimately, this results in the presence of many more ribosomes in actively growing 

cultures than can be found in stationary yeast [123,124]. The biogenesis of ribosomes 

begins in the nucleolus—the major subcompartment in the nucleus. The nucleolus is 

organized around the rDNA repeats and serves as the ribosome manufacturing center of 

the cell [2]. After transcription of rDNA by RNA polymerase I to make the 35S primary 

precursor rRNA (pre-rRNA) transcript (RNA polymerase III transcribes the 5S pre-

rRNA), a series of endo- and exonucleolytic processing reactions result in the formation 

of 20S and 27SA3 pre-rRNAs that are packaged into 43S and 66S precursor ribosomal 

ribonocleoprotein (pre-rRNP) particles, respectively [125,126]. The 43S pre-rRNP is then 

exported to the cytoplasm where further processing of the RNA subunit to become the 

mature 18S rRNA occurs, thus creating the 40S subunit of the ribosome [127]. However, 

the 66S pre-rRNP undergoes additional processing steps in the nucleolus before being 

trafficked into the nucleoplasm. There, two redundant pathways are responsible for 

further processing of this pre-rRNP prior to its export to the cytoplasm [122]. 

Cytoplasmic localization of the 66S pre-rRNP ultimately results in the production of the 

mature 5.8S and 25S rRNAs—constituents of the 60S subunit of the ribosome [122]. In 

the cytoplasm, the 40S and 60S ribosomal subunits interact to form the mature ribosome, 

enabling the translation of mRNA into protein [2]. 
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Ribosome biogenesis illustrates how subcellular localization in eukaryotes is used 

to regulate the production of a fundamental piece of cellular machinery. After translation 

in the cytoplasm, a great number of r-proteins and assembly factors must localize to the 

nucleus. Association of these proteins with pre-rRNAs in the nucleolus stabilizes well-

folded pre-rRNAs, modulates incorrectly folded pre-rRNAs to promote correct folding, 

and alters pre-rRNA structure to allow for binding of other r-proteins [128-132]. 

Maturation of pre-rRNPs in the nucleolus and the nucleoplasm occurs by way of rRNA 

processing and is marked by the differential association of various r-proteins and 

assembly factors with pre-rRNAs [133,134]. Association of these rRNA-protein 

complexes with a number of other proteins, as well as components of the nuclear pore 

complex, facilitates active nuclear export of the pre-rRNP to the cytoplasm. There, the 

association with particular cytoplasmic proteins causes the formation of mature ribosomal 

subunits and allows for protein translation [135-137]. Overall, this process serves to 

isolate the cellular transcription machinery from the translation apparatus. It provides the 

cell with the freedom to make proteins without concern for how the production of certain 

proteins (i.e. nucleases, helicases, acetyl- and methyltransferases, etc.) could negatively 

affect the integrity of the genetic information in the cell. 

 

U snRNP Biogenesis 

The biogenesis of the Uridine-rich small nuclear ribonucleoproteins (U snRNP) 

that comprise the spliceosome is another well-characterized example of how the cell 

modulates the subcellular localization of a number of different constituents to produce a 

multi-subunit complex. The spliceosome is a large 40S cellular machine—made up of 
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proteins and RNA—that processes precursor mRNAs (pre-mRNA) into mRNA by 

catalyzing the removal of noncoding intronic sequences [2]. In addition, alternative 

splicing of coding sequences allows the generation of multiple proteins from a single 

gene, thereby increasing the complexity of the proteome [138]. Though alternative 

splicing is mainly found in higher eukaryotes [139,140], the general dynamics of splicing 

are well-conserved from yeast to metazoans [141]. The spliceosome minimally contains 5 

U snRNPs, U1, U2, U4, U5, and U6—named based upon the U snRNA component of the 

snRNP—that interact with a number of other proteins to mediate splicing [142,143]. The 

individual components of these U snRNPs differ, but the biogenesis of each requires 

similar assembly and processing steps in the cell [144,145]. 

In metazoans, upon U snRNA transcription by RNA polymerase II (or RNA 

polymerase III in the case of the U6 snRNA [146]) in the nucleus, a 7-methylguanosine 

(mG) cap is added to the 5´ end of each transcript [147]. This process serves to target the 

U snRNAs for active nuclear export [148-150]. Once in the cytoplasm, the U snRNAs 

can associate with one of two different groups of proteins—the seven Sm core proteins or 

U1A, U170K, U2B´´ and U2A that are specific for certain U snRNA subclasses [145]. Of 

note, the Sm proteins are sequestered in 4 partially assembled, snRNA-free complexes in 

the cytoplasm [144,151]. To form the heteroheptameric Sm core complex, these 4 

subcomplexes are hypothesized to assemble in a step-wise fashion with a U snRNA by 

interacting with the conserved Sm-binding site found in the U snRNA [152]. Binding of 

the Sm D3,B/B´ subcomplex forms the complete U snRNP molecule [153,154]. 

 After maturation in the cytoplasm, the U snRNP must somehow be localized to 

the nucleus to perform its function in the cell. In yeast and humans, conserved basic 
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residues in the C-terminal extensions of the SmB and SmD1 proteins have been shown 

modulate nuclear localization of the Sm core complex. This finding leads to the 

hypothesis that assembly of these proteins around the designated binding site in a U 

snRNA creates a protrusion that contains a basic patch that functions in nuclear 

localization [155,156]. Thus, binding of the Sm core complex to a U snRNA can aid in 

nuclear localization of the snRNP. Alternatively, binding of the Gemin complex, which 

contains the survivor motor neuron (SMN) protein [157], promotes U snRNP assembly 

and SMN helps to mediate the interaction of the U snRNP with importin  to facilitate 

nuclear import [158-161]. In addition, assembly of the U snRNP results in 

hypermethylation of the 5´ mG cap to make a 2,2,7-trimethyl-guanosine (m3G) cap that, 

through the binding of other proteins, also aids in nuclear localization [149,162]. 

Therefore, the cytoplasmically-matured U snRNP contains a bipartite nuclear localization 

mechanism formed by the presence of the m3G cap structure and association with the Sm 

core complex or the SMN protein. 

Once in the nucleus, the U snRNP undergoes considerable intranuclear shuttling 

prior to assembly into a spliceosome. First, the U snRNP is trafficked into Cajal bodies, 

presumably by way of the interaction of the SMN protein with the Cajal body protein 

coilin p80 [163-166]. Next, the U snRNP quickly migrates through the nucleolus where 

further maturation steps are hypothesized to occur before subsequent redelivery to Cajal 

bodies [167-169]. After this accumulation of the U snRNPs in Cajal bodies, the 

nuclearly-matured U snRNPs are trafficked to interchromatin granule clusters (IGC) for 

storage and/or assembly into spliceosomes [170-174]. Notably, these mature U snRNPs 



 

19 
 

possess the ability to migrate freely between IGCs and Cajal bodies—a process that is 

regulated by the phosphorylation state of these splicing factors [175]. 

Although U snRNP biogenesis has been fairly well-characterized in higher 

eukaryotes, specific details regarding the assembly and trafficking of these 

ribonucleoprotein complexes is less well-understood in yeast [143]. However, available 

data suggest that though some key differences exist, the general mechanisms controlling 

the biogenesis of the components of the splicing machinery may be conserved [176,177]. 

In budding yeast, the U snRNAs are RNA polymerase II (or RNA polymerase III) 

transcripts that acquire an mG cap after transcription [178-180]. While this cap structure 

targets metazoan U snRNAs to the cytoplasm, it remains unclear whether yeast U 

snRNAs necessarily undergo nucleocytoplasmic shuttling [143]. In the case of the U5 

snRNA in yeast, it is exported to the cytoplasm after transcription through the interaction 

of the Crm1p nuclear export protein with the mG cap [181,182]. In the cytoplasm, the U5 

snRNA undergoes additional processing before associating with the Sm proteins to form 

the U5 snRNP precursor that is subsequently imported into the nucleus [183,184]. This 

process presumably occurs due to the interaction of the Sm proteins with the yeast 

homolog of importin  as no SMN equivalent has been identified in yeast. Once in the 

nucleus, the U5 snRNP is subjected to additional phosphorylation-dependent processing 

that ultimately results in the reorganization and/or restructuring of the proteins that 

comprise the ribonucleoprotein before assembly with the spliceosome [182,184]. These 

data present the first observation of a cytoplasmic phase for U snRNP biogenesis in yeast 

and suggest—because Sm protein association is a requirement for U snRNP biogenesis 

and because the Sm proteins localize to the cytoplasm until they participate in the 
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heptameric ring structure that binds U snRNAs—that nucleocytoplasmic shuttling of U 

snRNAs is also important for the biogenesis of U snRNPs in yeast. 

In the absence of Tgs1p, a methyltransferase that is conserved from yeast to 

mammals, U snRNAs are not m3G-capped [180]. Thus, this enzyme is responsible for 

methylating the mG-capped U snRNAs to form the more mature m3G-capped structures. 

Immunofluorescence analysis of Tgs1p has revealed that it localizes to the nucleolus 

[176,180]. In particular, in a quarter of cells grown on solid media, Tgs1p localizes to the 

nucleolar body [176]. The nucleolar body is a subcompartment of the nucleolus. It is 

considered to be the yeast Cajal body due to its intimate relationship with the nucleolus, 

the lack of proteins and/or RNAs associated with ribosome biogenesis within the 

nucleolar body, and the presence or enrichment of snoRNAs within this region of the 

nucleolus [185]. Although, in higher eukaryotes, acquisition of the m3G cap occurs in the 

cytoplasm and serves as a nuclear-targeting mechanism for U snRNP precursors 

[149,162], these data suggest that, in yeast, U snRNA precursors receive an m3G cap after 

association with the Sm proteins and reimport into the nucleus. These data also suggest 

that transit through the nucleolus and, strictly speaking, the yeast Cajal body for 25% of 

cells under certain growth conditions are important steps in the biogenesis of yeast U 

snRNPs. This localization phenotype has also been shown to be important for vertebrate 

U snRNP biogenesis. 

 

Telomerase 

Telomerase is another type of ribonucleoprotein complex whose function is 

modulated by the subcellular distribution of its components. Telomerase is a specialized 
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reverse transcriptase responsible for replicating telomeres, the ends of linear 

chromosomes [2]. Telomeres are GT-rich, non-protein-coding DNA sequences with 

associated proteins that aid in the maintenance of genome stability by capping 

chromosome ends and preventing their recognition as DNA double-strand breaks [186]. 

Telomeres shorten due to what is termed the end-replication problem (Figure 1): after 

DNA synthesis, in an effort to regenerate the required 3´ overhang at the chromosome 

end, 5´ end resection of the newly replicated, blunt-ended daughter molecule created by 

leading strand synthesis results in a net loss of DNA sequence [187,188]. Telomeres act 

as a buffer zone for this effect by hindering the immediate loss of coding sequences. 

Nevertheless, as cells divide, in the absence of telomerase, telomeres continually shorten 

until the shortest telomere triggers cell-cycle arrest [189]. This creates a limit to the 

number of mitotic divisions a cell can undergo before telomeres are lost and gross 

chromosomal rearrangements occur, an outcome often leading to cell death [190]. 

Telomere elongation by telomerase is the preferred mechanism for telomere 

replication in most eukaryotes [191]. In an effort to circumvent the deleterious effects 

that could result from aberrant telomere addition throughout the cell cycle, telomerase 

activity is normally restricted to late S phase and G2/M phases of the cell cycle [192]. 

The individual components of telomerase vary widely across eukaryotic species. 

However, the typical telomerase holoenzyme minimally contains an RNA moiety 

associated with a reverse trancriptase—forming the catalytic core of the enzyme—and a 

number of other essential regulatory proteins [193]. The telomerase RNA contains a 

specialized sequence of nucleotides used to template the repetitive telomeric sequence 

added to the ends of chromosomes [194]. Telomerase can function using two different  
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Figure 1. Diagram of the end replication problem. 

After DNA replication, two DNA daughter molecules, each comprised of a parental DNA 
strand (blue and red) and a newly replicate strand of DNA (pink and aqua). Removal of 
the RNA primer after lagging strand replication (hashed aqua) regenerates the 5´ 
overhang on that DNA daughter molecule. However, the product of leading strand 
synthesis is a blunt-ended DNA molecule. Therefore, resection of the 5´ strand of this 
DNA daughter molecule occurs to generate the required 3´ overhang, ultimately resulting 
in the net loss of DNA sequence. Figure adapted from [188]. 
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modes of activity, nucleotide addition processivity (NAP) and repeat addition 

processitivity (RAP) [195]. In NAP, association of telomerase with a DNA substrate 

occurs just long enough to allow for the addition of only a few nucleotides before 

telomerase dissociates [196]. The length of one telomeric repeat defines the maximum 

number of nucleotides added to a DNA substrate using NAP. However, RAP occurs 

when a single telomerase binds to a DNA substrate and adds multiple telomeric repeats 

by translocating along the growing DNA molecule, requiring realignment of the RNA 

template with the DNA end for each round of addition [197]. 

 

Human Telomerase 

In human cells, in addition to the telomerase RNA component (hTR) and the 

telomerase reverse transcriptase (hTERT), the telomerase holoenzyme contains a number 

of other proteins involved in modulating enzyme stability, assembly, and/or recruitment 

to the telomere. These proteins include Est1A, TCAB1, dyskerin, Nop10, Nhp2, and 

Gar1 [198,199] (Figure 2). Est1A has been shown to be involved in regulating the 

abundance of telomeric repeat-containing RNA (TERRA), a large non-coding RNA 

transcribed from telomeric DNA [200]. Depletion of Est1A results in stochastic telomere 

loss while Est1A overexpression leads to telomere uncapping and, consequently, 

telomere fusions [200]. Est1A is also involved in nonsense-mediated mRNA decay in the 

cytoplasm, which is hypothesized by some to be the major role of Est1A in the cell [201]. 

The Cajal body protein, TCAB1, promotes telomerase delivery to telomeres by 

modulating the trafficking of telomerase to Cajal bodies (a process described in greater 

detail below) [202,203]. 
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Figure 2. Diagram of human telomerase. 

Human telomerase minimally contains the indicated proteins associated with the 
telomerase RNA, hTR. hTERT is the reverse transcriptase. Together, hTERT and hTR 
form the catalytic core of the enzyme as they are sufficient for in vitro telomerase 
activity. Dyskerin, Nop10, Nhp2, and Gar1 form a heteroteteramic complex that is 
required for correct processing of hTR. TCAB1 is involved in recruitment of telomerase 
to telomeres by way of Cajal bodies. EST1A is also a component of human telomerase. 
However, the details of its interaction with components of the telomerase holoenzyme 
and its functional role in telomerase remain unclear. Figure modified from [204]. 
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Dyskerin, Nop10, Nhp2, and Gar1 participate in a chaperoning subcomplex that 

associates with hTR to modulate its stability as well as the stability of the telomerase 

holoenzyme [193,205]. Dyskerin, a pseudouridine synthase encoded by the dyskeratosis 

congenita 1 (DKC1) gene, is a well-conserved nucleolar protein that binds to H/ACA 

motifs in snoRNAs to promote small nucleolar RNP (snoRNP) assembly [12]. The 

association of dyskerin with H/ACA containing snoRNAs is important for 18S rRNA 

production and thus ribosome biogenesis in the cell [206]. However, binding of dyskerin 

to the H/ACA motif in hTR allows for proper subnuclear trafficking and processing of 

the RNA, thus promoting stabilization of hTR interaction with hTERT [207].  

Dyskerin, Nop10, and Nhp2 form a heterotrimer that associates with hTR 

[205,208]. This association has been hypothesized to occur cotranscriptionally as is the 

case for the association of these chaperones with other H/ACA RNAs in the cell 

[193,209]. Nop10 and Nhp2 directly interact while dyskerin binds both proteins and 

likely mediates their interaction with hTR [205,208]. Depletion of dyskerin, Nop10, or 

Nhp2 in telomerase expressing cells destabilizes hTR, ultimately resulting in telomerase 

deficiency [210]. Thus, the association of these proteins with hTR is essential for optimal 

telomerase expression and activity in the cell. After transcription, hTR associates with a 

number of other factors involved in its maturation before binding of Gar1 to hTR-bound 

dyskerin [193], which appears to be the signal for a mature hTR in the cell. Although 

Gar1 depletion does not impact hTR stability (most likely due to its relatively late 

association with the RNA), Gar1 is hypothesized to participate in hTR intranuclear 

trafficking by enhancing the nucleolar localization of hTR [211]. Further studies to 

elucidate the exact functional role of Gar1 in the telomerase holoenzyme are warranted. 
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Trafficking 

Not much is known about the intracellular trafficking of human telomerase—a 

process that, of necessity, is tightly regulated due to and/or providing for the cell cycle 

restriction of telomerase activity. Certainly, after translation in the cytoplasm, the protein 

components of the enzyme must localize to the nucleus to execute their function(s) in the 

cell. However, the mechanisms controlling this process are not well understood. 

Experiments to directly determine whether hTR transits through the cytoplasm as part of 

its maturation are lacking. However, the observation that injection of in vitro-transcribed 

hTR into Xenopus oocytes results in cytoplasmic accumulation of the RNA indicates that 

hTR is inefficiently transported from the cytoplasm to the nucleus in vertebrates [11]. 

These experiments suggest that it is unlikely that hTR is routed to the cytoplasm during 

its maturation. 

Recently, Chung and colleagues characterized the nuclear localization of hTERT 

[212]. Their work identifies two patches of basic residues (7 residues in total) within the 

N-terminal 300 aa of hTERT that are conserved among vertebrates and function as a 

bipartite NLS. They show that along with the NLS, Akt kinase phosphorylation of serine 

227, which lies between the basic clusters comprising the bipartite NLS, is required for 

hTERT nuclear translocation. Alanine mutations at serine 227 and the residues 

comprising the NLS resulted in failure of hTERT to localize to the nucleus and the 

inability of hTERT to immortalize human foreskin fibroblast cells [212]. These findings 

implicate the nuclear localization of hTERT as an important determinant of telomerase 

function. 
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Additionally, modulation of the nuclear localization of telomere-binding proteins 

has been shown to affect telomerase recruitment and/or access to the telomere in many 

organisms. In fact, the Songyang group has demonstrated that the subcellular localization 

of one component of telomeric chromatin in humans—a specialized hexameric complex 

that specifically associates with telomeric repeats—influences telomere maintenance 

through its regulation of the nuclear localization of another component of telomeric 

chromatin [213]. TPP1, POT1, and TIN2 are telomere-binding proteins that form a DNA-

end binding subcomplex at chromosomal termini [186]. The Songyang group found that 

in the nucleus, the interaction of POT1 with TPP1 away from the telomere targets POT1 

to the cytoplasm [213]. Abrogation of the nuclear export of this complex resulted in 

telomere uncapping and telomere elongation, indicating a functional role for the nuclear 

export of these proteins in telomere homeostasis [213]. In the cytoplasm, POT1-TPP1 

associates with TIN2, which then directs nuclear localization of the heterotrimeric 

complex [213]. Although the exact purpose of this nucleocytoplasmic shuttling remains 

unclear, these data indicate that the intracellular trafficking of telomere-associated proteins 

is important for telomere maintenance in human cells. 

Instead of focusing on the nucleocytoplasmic trafficking of telomerase, 

considerably more research has concentrated on the intranuclear shuttling of the enzyme 

in human cells. Initial studies of the subnuclear localization of hTR and hTERT revealed 

that during G1 (and G2) phases of the cell cycle, hTR localizes to Cajal bodies while 

hTERT is confined to distinct foci in the nucleoplasm [214]. During early S phase, 

hTERT relocalizes to nucleoli while hTR-containing Cajal bodies can be found 

associated with the nucleolar periphery [214]. During mid S phase, however, just before 
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the time at which telomerase acts, hTR and hTERT colocalize within Cajal bodies 

[13,214], an interaction thought to mediate telomerase localization to telomeres.  

Additional investigations concerning the Cajal body localization of telomerase 

components has added to the understanding of telomerase biogenesis in human cells. 

TCAB1, a Cajal body-associated RNA chaperone, binds the CAB-box motif in hTR and 

directs telomerase delivery to Cajal bodies [202,203,215-217]. While mutation of the 

CAB-box in hTR does not impact telomerase in vitro activity, humans that possess the 

CAB-box mutation or expression of the CAB-box mutant cultured cells reduces 

telomerase association with telomeres and causes telomere shortening [3]. Similarly, 

depletion of TCAB1 in human cells leads to extensive telomere shortening [3]. Although 

prior studies in mice and frogs have indicated that localization of telomerase to Cajal 

bodies is dispensable for telomerase function in these organisms [218,219], the studies 

mentioned above provide evidence that in human cells, telomerase interaction with Cajal 

bodies impacts enzyme function. 

Of late, the Chung group has published the most detailed investigations into the 

intranuclear biogenesis of telomerase in an effort to synthesize how the regulation of 

telomerase assembly and activity are coordinated with its cell cycle regulation in human 

cells. Using immunogold transmission electron microscopy combined with fluorescence 

microscopy and co-immunoprecipitation approaches in HeLa cells, they observed that 

hTERT (and not dyskerin) exhibits differential localization to Cajal bodies in the cell 

cycle [220]. In G1 phase, hTERT primarily localized to the dense fibrillar and granular 

subcompartments of the nucleolus and, to a lesser extent, Cajal bodies. However, in 

mid/late S phase, hTERT localized to DNA and Cajal bodies as well as the dense fibrillar 
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and granular components of the nucleolus [220]. Using an in vitro primer extension assay 

to monitor telomerase activity in extracts from subdomains within the nucleus, they 

observed that catalytically active telomerase can be found in the nucleolus. However this 

nucleolar telomerase is less competent for primer extension than the enzyme activity 

found in nucleoplasmic extracts and this primer-extension activity does not depend on 

cell cycle position [220]. Ectopic expression of hTERT in telomerase deficient cells 

resulted in nucleolar accumulation of hTERT that did not interact with TCAB1 or 

localize to Cajal bodies [220]. These results indicate that while hTERT can localize to the 

nucleolus in the absence of hTR, interaction with the RNA subunit is required for hTERT 

delivery to Cajal bodies. 

This work also showed that dyskerin localizes to Cajal bodies and the dense 

fibrillar compartment of the nucleolus in a manner that does not depend on its association 

with telomerase. As expected, depletion of dyskerin destabilized hTR, causing a 

reduction in telomerase activity [220]. Also in the absence of dyskerin, the association of 

active telomerase with TCAB1 was reduced, resulting in reduced localization of hTERT 

to Cajal bodies. The authors also showed that TCAB1 localized to the interface between 

the dense fibrillar and granular components of the nucleolus and colocalized to Cajal 

bodies with hTERT. While TCAB1 depletion did not affect telomerase activity, reduced 

TCAB1 resulted in nucleolar retention of active telomerase by precluding the localization 

of hTERT and dyskerin to Cajal bodies [220]. 

In an elegant set of experiments using co-immunoprecipitation to monitor the 

association between telomerase assembly and activity in the cell cycle, these researchers 

showed that in G1 phase, telomerase components did not assemble. Furthermore, in vitro 
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telomerase activity was virtually undetectable in their immunoprecipitates [220]. 

Although expression of hTR or dyskerin did not appear to be regulated in the cell cycle, 

hTERT expression peaked during S phase. Thus, as cells entered early S phase, hTR was 

found assembled with hTERT and dyskerin primarily in the nucleolus. However, this 

assembled telomerase was only slightly competent for in vitro primer extension. Also 

during early S phase, assembled telomerase consisting of hTR, hTERT, and dyskerin 

associated with TCAB1, but this telomerase was only marginally more competent for 

primer extension than that found in the nucleolus [220]. In mid/late S phase, although 

some nucleolar assembled telomerase was present, the bulk of telomerase associated with 

TCAB1 outside of the nucleolus. While the activity associated with nucleolar telomerase 

was essentially undetectable, TCAB1-associated telomerase activity peaked, reaching an 

overall maximum value in the cell cycle [220]. Finally, in late S/G2/M phase, telomerase 

primarily associated with TCAB1 with no assembled telomerase detectable in the 

nucleolus. Telomerase activity from these immunoprecipitates was also very high for 

TCAB1-bound telomerase with no detectable activity found in the nucleolus [220]. 

Taken together, these data lead to the following model of human telomerase 

biogenesis: after transcription and some processing in the nucleoplasm, hTR localizes to 

the dense fibrillar component of the nucleolus where it associates with dyskerin (and 

presumably Nop10, Nhp2, and Gar1) through its H/ACA motif to form the hTR-dyskerin 

RNP [220]. As the cell traverses into S phase, hTERT trafficking to nucleoli allows for 

assembly of the telomerase RNP in the dense fibrillar nucleolar subcompartment. This 

process produces a catalytically active telomerase that is confined to the nucleolus in 

early/mid S phase through the interaction of hTERT with nucleolin [220]. As the cell 
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proceeds to mid/late S phase, TCAB1 association with the nucleolus permits its binding 

to the CAB-box motif in hTR to deliver the telomerase RNP to Cajal bodies [220]. This 

step is followed by Cajal body-dependent transport of telomerase to telomeres [220]. 

Telomerase is then recruited to the end of chromosome by an interaction between the 

telomere-binding protein TPP1 and hTERT, thus allowing for telomere elongation [220]. 

 

Telomerase Trafficking and Disease 

Telomerase regulation is very important for human disease. Telomerase is 

expressed in germ cells and stem cells (although relatively less telomerase is expressed in 

stem cells than germ cells) however, telomerase is not normally expressed in somatic 

cells [221]. Because telomerase modulates the replicative potential of cells by elongating 

telomeres, telomerase dysfunction has been implicated in several cellular aging-related 

syndromes due to telomerase deficiency in the stem cell population [222]. Furthermore, 

telomerase gain-of-function, typically resulting from the upregulation of hTERT 

expression in human somatic cells, has been incriminated in the cancer phenotype [223]. 

In fact, telomerase activity is reactivated in approximately 90% of human tumor cell lines 

and is implicated in the immortal growth of such cells [224]. However, telomerase-

related disease is not limited to those involving direct modulation of the catalytic activity 

of the enzyme [225]. Instead, there are a number of disease states caused by errors in 

telomerase biogenesis [3,226]. 

Dyskeratosis congenita (DC) is an early-onset syndrome of telomerase 

dysfunction that affects multiple cellular systems, especially those involving highly 

replicative tissues in humans [226]. Hallmarks of DC include bone marrow failure, 
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pulmonary fibrosis, and increased cancer risk [227]. Many DC patients present with 

abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. The rarest form of DC 

(Hoyeraal-Hreidarrson syndrome) is also characterized by growth retardation, cerebellar 

hypoplasia, and impaired mental development [228,229]. DC can arise from mutations in 

a number of genes related to telomere homeostasis. These include mutations in hTR and 

hTERT that directly impact the catalytic activity of telomerase as well as mutations in 

TIN2, a component of telomeric heterchromatin [227]. In addition, many DC-related 

mutations do not affect the catalytic activity of telomerase, including mutations in genes 

encoding dyskerin and TCAB1 [3,230,231].  

An X-linked form of DC results from point mutations in the DKC1 gene that 

perturb dyskerin association with hTR, leading to a decrease in hTR expression levels 

and decreased assembly of hTR into active telomerase RNP [230]. Compound 

heterozygous mutations in TCAB1 cause an autosomal recessive form of DC. In these 

DC patients, the mutated TCAB1 protein exhibits reduced expression and aberrant 

subcellular localization. This prevents TCAB1 association with hTR, precludes delivery 

of hTR to Cajal bodies, and promotes nucleolar accumulation of active telomerase [3]. 

Mutations in the genes encoding Nhp2 or Nop10 cause rare autosomal recessive forms of 

DC [210,211,232]. Although the pathology associated with these forms of DC is likely 

due to destabilization of hTR—as is the case with the dyskerin mutants described 

above—further investigations are required to elucidate the exact mechanism yielding the 

disease phenotype. 

Idiopathic pulmonary fibrosis (IPF) is an adult-onset condition related to 

telomerase dysfunction that increases in prevalence with advanced age [233]. Loss of 
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pulmonary epithelium and progressive scarring of lung tissue causes the development of 

hypoxia, chronic cough, and shortness of breath in IPF patients [234]. Average patient 

survival after diagnosis with IPF is 3 years [235]. Although the exact cause of the disease 

is not well-understood, characterization of mutations in telomerase-associated genes 

found in patients with familial IPF have begun to shed light on the manifestation of this 

disease [236,237].  

A point mutation at valine 144 in the telomerase essential N-terminal domain of 

hTERT was determined to associate with IPF [236,238]. While this V144M mutation has 

no detectable effect on telomerase catalytic activity, cells expressing the mutant protein 

exhibited a disruption in hTERT recruitment to telomeres resulting from arrest of 

telomerase trafficking in Cajal bodies [238,239]. A similar phenotype was observed with 

the expression of the P33S hTERT [238]. However, further characterization is required to 

determine the mechanism by which this mutant manifests disease. Most recently, a point 

mutation in the DKC1 gene has been implicated in Familial Interstitial Pneumonia, the 

inherited form of IPF [240]. An A to G transition at nucleotide 1213 of DKC1 encoded a 

T405A mutation that correlated with reduced levels of hTR [241], suggesting that this 

mutation impairs telomerase function by destabilizing hTR. 

Liver cirrhosis and aplastic anemia are two additional telomerase-deficiency 

related disease states. Individuals with aplastic anemia possess hypocellularity of bone 

marrow and reduced peripheral blood counts, often requiring bone marrow 

transplantation for survival [242]. Liver tissue fibrosis and scar tissue production are 

hallmarks of cirrhotic livers [243]. Telomere shortening related to mutations in hTR and 

hTERT that compromise the catalytic activity of the enzyme have been observed in 
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patients with these conditions [244-247]. As techniques for elucidating the mechanism of 

various mutations affecting telomerase function become more prevalent, it will be 

interesting to see whether telomerase trafficking errors also contribute to these diseases.  

 

 

Saccharomyces cerevisiae Telomerase 

 The advances in human telomerase research are in large part founded upon 

seminal studies of telomeres and telomerase in microorganisms. For example, in the mid-

to-late 1980s, Carol Greider and Elizabeth Blackburn set out to isolate the terminal 

transferase activity that had, at that time, been proposed to elongate telomeres [248]. 

They took advantage of macronuclear development in the ciliate Tetrahymena 

thermophila—a time at which germline chromosomes are fragmented into ~200 pieces 

that each require telomeres at both ends followed by DNA replication to a final ploidy of 

approximately 45C. These researchers reasoned that the activity they were seeking would 

necessarily be present at relatively high levels as compared to cells undergoing vegetative 

growth [249,250]. Therefore, using a biochemical approach, they were able to isolate 

telomerase, eventually characterizing it as a ribonucleoprotein complex that minimally 

requires an RNA, protein component(s), and a G/T-rich DNA substrate for activity 

[250,251]. 

 

Identification of Components 

Studies in budding yeast have also greatly contributed to our understanding of 

telomeres and telomerase. Prior to the isolation of telomerase in ciliate extracts, studies in 
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yeast led to several important findings from the Szostak group. They provided for the 

initial characterization of telomere structure, revealing that ciliate telomeric sequence 

could be recognized as telomeres in yeast and that short telomeric “seed” sequences on a 

linearized plasmid could be elongated to allow for stable plasmid maintenance [252,253]. 

Furthermore, in 1989 Lundblad and Szostak published a genetic screen in which they 

attempted to identify mutants defective for telomere elongation with the ultimate goal of 

elucidating the mechanism of telomere replication in yeast [254].  

Prior to the publication of this work, two primary hypotheses to explain the 

properties of telomere elongation observed in yeast had been proposed: (1) the existence 

of a sequence-specific terminal transferase-like enzyme with a non-template directed 

activity [253] and (2) the presence of a recombination mediator capable of controlling the 

addition of repetitive sequences to short telomeres [255,256]. In the absence of existing 

evidence to definitively support or refute the contribution of either of these proposed 

mechanisms to telomere replication, Lundblad and Szostak set out to use genetic analysis 

to identify the enzymatic activities responsible for telomere elongation. They chose a 

genetic approach because it would allow for the identification of factors contributing to 

telomere replication without having to make assumptions about how these factors might 

function—a potential limitation associated with the use of a biochemical approach [254].  

To begin, these researchers constructed a single-copy circular plasmid containing 

yeast ARS and CEN sequences, the LEU2 gene as a selectable marker, and the URA3 

gene placed between inverted Tetrahymena telomeric repeats, hypothesizing that the 

telomere seeds exposed by plasmid breakage within URA3 would need to be extended to 

produce functional telomeres that could support stable maintenance of the plasmid [254]. 
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Yeast that had been transformed with this plasmid were then mutagenized with ethyl-

methyl sulfonate (EMS). Seven thousand EMS-treated single colonies were inoculated 

into liquid media in 96-well microtiter dishes and the liquid cultures were spotted onto 5-

fluoro-orotic acid (5-FOA) synthetic complete media lacking leucine. Cells expressing 

URA3 are sensitive to 5-FOA[257]. Thus, selection for 5-FOA resistance allowed for the 

isolation of colonies that had maintained the plasmid and lost URA3 function due to the 

acquisition of an EMS-derived or spontaneous, inactivating mutation in URA3 or, most 

desirably, plasmid breakage within URA3. They assessed the growth of each spotted 

culture relative to the growth of wild-type EMS-treated cells to screen for mutants with 

potential alterations in any of several characteristics of telomere function including: (1) 

those with alterations in the frequency of plasmid linearization, (2) those with a defect in 

lengthening the “telomeres” of the plasmid, and (3) those with a defect in maintaining the 

end-structure of the telomere [254]. Subsequently, they assayed mutants with defects in 

the plasmid linearization assay for telomere shortening and senescence, leading to the 

isolation of one mutant that displayed decreased frequencies of 5-FOA resistant colonies 

as compared to wild-type cells, progressive telomere shortening, and senescence. These 

characteristics embodied what they termed the Ever Shorter Telomere (EST) phenotype, 

which led to the discovery of EST1 [254].  

Complementation analysis was conducted to verify that the est1-1 mutant 

obtained from their screen did not have a mutation in any genes that had previously been 

shown to exhibit defects in telomere length maintenance. To accomplish this, the haploid 

est1-1 mutants were crossed to haploid tel1 or tel2 strains—mutants that had previously 

been shown undergo telomere shortening [258]—and the telomere lengths of these 
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diploids were assayed over several generations. Because the telomere length and growth 

phenotypes of these diploid cells were wild-type, the est1 mutation was thought to occur 

in a gene different from TEL1 or TEL2 [254]. To further support this conclusion, linkage 

analysis was used to determine the segregation pattern of est1 and tel1 or tel2 alleles. 

This was achieved by sporulating the est1-1/EST1+ tel1/TEL1+ or est1-1/EST1+ 

tel2/TEL2+ diploid strains to determine the phenotypes of the tetrads produced. Eight 

wild-type spores were obtained from nine tetrads assayed in these experiments, indicating 

that the mutant alleles assort independently and therefore cannot be alleles of the same 

gene [254]. 

To clone EST1, plasmids from a genomic yeast library were transformed into the 

est1-1 mutant and assayed for the ability to complement the EST phenotype [254]. To 

verify that the cloned gene was indeed EST1 and to ensure that the telomere length and 

senescence phenotypes exhibited by the est1-1 allele were the null phenotypes of the 

EST1 gene, the cloned EST1 fragment was used to introduce deletions in the 

chromosomal copy of EST1. Plasmids expressing the est1 mutant were shown to be 

unable to complement the phenotype conferred by the est1-1 allele and displayed the 

same phenotypes as the est1-1 mutant when assayed for telomere length, temperature 

sensitivity, and senescence [254]. Additionally, genomic DNA was isolated from an 

est1/EST1+ diploid yeast strain and used for agarose gel-electrophoresis and Southern 

blotting to demonstrate that both alleles of EST1 were present and of different sizes in 

this strain. Upon sporulation of the diploid, there was 2:2 segregation of each allele of 

EST1 with shorter telomeres segregating with the est1 spores [254]. Taken together, 
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these experiments demonstrated that Lundblad and Szostak had identified and cloned the 

EST1 gene. 

Despite the fact that EST1 was isolated in this screen, there were a number of 

potential limitations in the experimental methodology used that could allow for obtaining 

false positives or false negatives, thereby hindering the overall power of the screen. 

Growth of the mutagenized strains on the selective media could result from a mutation in 

URA3 instead of plasmid breakage, from the lack of selection strength in their 5-FOA 

media—a problem that, as mentioned in the text of the journal article, prohibited the use 

of replica-plating to obtain mutant candidates [254]—or from recombination of LEU2 

into the genome. False negatives, mutations in genes that result in a more rapid loss of the 

linearized plasmid, could also occur, leading to a no-growth phenotype on selective 

media.  

Because the researchers sought to obtain mutants with a defect in telomere 

elongation [254], the timing of the plasmid linearization assay was an important factor for 

their experiments: if a telomere elongation mutant was obtained, the telomeres of the 

plasmid would not be maintained, the plasmid would be lost, cells would lose the LEU2 

gene and be unable to grow on the selective media. Therefore, mutant candidates would 

need to be isolated within a somewhat narrow window of time after mutagenesis and 

before plasmid loss. Previous studies in yeast identifying TEL1 and TEL2 had revealed 

that ~150 generations of growth are necessary to detect a telomere length phenotype 

when these genes were mutated [258]. Although we now know that tel1 and tel2 mutants 

do not display an EST phenotype [259,260], based on the published results at the time of 

the Lundblad and Szostak work, the researchers may have overestimated the number of 
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population doublings allowed before plasmid loss would occur, potentially resulting in 

the death of certain mutants that met the criteria for their screen. In addition, although 

276 bp of Tetrahymena telomeric sequence—a value very close to the ~300 bp length of 

wild-type yeast telomeres [261]—flanked URA3 in their circular plasmid [254], the 

ciliate telomeric sequence may not be protected very well by yeast telomere binding 

proteins, resulting in a more rapid rate of telomere sequence loss on the plasmid due to 

inadequate telomere structure. Similarly, recognition of ciliate telomeric sequence as a 

telomere may not occur extremely readily in yeast. Therefore, after plasmid breakage 

within URA3, resection may proceed well into the Tetrahymena repeats, thus making the 

telomeres of the linearized plasmid shorter than expected and further limiting the number 

of population doublings possible before plasmid loss. 

Furthermore, the identification of only one gene involved in telomere elongation 

in this study was sufficient evidence to indicate that this screen was not saturated. This 

lack of a saturating screen prompted the Lundblad group to develop a more high-

throughput screen to assay for mutants in the enzymatic activity responsible for 

lengthening telomeres. By this time, biochemical analyses had identified as a 

ribonucleoprotein, termed telomerase, of which the protein components were unknown 

[194,250,251]. This new screen was based on an observation made in the original study 

by Lundblad and Szostak that the frequency of chromosome loss is increased in est1 

strains, an outcome presumed to be a consequence of telomere loss [254]. Therefore, in 

the second study, Lendvay et al. utilized a visual assay for chromosome loss that allowed 

them to screen through fifty-fold more mutants than Lundblad and Szostak were able to 

assay in the initial screen [262].  
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To identify mutants displaying a chromosome instability phenotype, a yeast 

artificial chromosome (YAC) expressing the SUP11 tRNA suppressor in a strain that had 

an ochre mutation at the endogenous ADE2 locus was utilized [262]. This SUP11 gene 

contained a mutation that results in the insertion of a tyrosine residue at stop codons 

during translation and is therefore able to suppress the ochre mutation in ADE2 

[263,264]. In the adenine biosynthetic pathway, ade2 mutant cells produce a red purinic 

precursor that is unable to be converted to adenine, which is not pigmented [265]. 

Consequently, ade2 mutants are red and cells that are wild-type for ADE2 or that express 

this SUP11 gene on the YAC are white. Therefore, expression of this artificial 

chromosome allowed for visual detection—by an increase in red sectors on agar plates 

with limiting adenine—of mutagenized strains that were more likely to lose the YAC as 

compared to wild-type strains. To uncover potential mutants, individual mutagenized 

colonies were subjected to multiple rounds of growth to allow for telomere shortening 

before final plating to permit color development [262]. Mutants obtained from this initial 

screening protocol were then subjected to the plasmid linearization, telomere length, and 

senescence assays used in the first study to identify four complementation groups that 

each represented mutations in genes affecting some aspect of telomerase function [262]. 

Two years prior to the publication of this screen, the Gottschling group published 

a screen for genes that, when overexpressed, suppressed telomere silencing [266]. In their 

screen, the telomerase component 1 (TLC1) gene was isolated and determined to be the 

RNA component of yeast telomerase. Therefore, to examine whether the 

complementation groups obtained from the Lundblad screen included mutations in genes 

previously determined to be involved in telomere replication, representative haploid 



 

41 
 

mutants from each complementation group were crossed to haploid est1 or tlc1strains 

[262]. For three out of the four complementation groups, the telomere length and growth 

phenotypes of each diploid were wild-type, supporting the notion that three new genes 

had been identified [262]. However, when mutants from the remaining complementation 

group were crossed to the est1 strain, complementation was not observed, indicating 

that this complementation group represented the EST1 gene. Linkage analysis was also 

performed on these strains in the same manner as that carried out in the previous screen 

[254,262]. Results of these experiments showed that the mutants analyzed displayed a 

Mendelian pattern of inheritance and more conclusively demonstrated that new genes had 

been identified.  

Epistasis analysis was used to determine whether the newly identified genes 

participated in a single or multiple pathways contributing to telomere elongation. The 

double mutant spores resulting from crosses between a rad52 strain and either EST 

mutant or a tlc1 strain exhibited a more severe senescence phenotype and survivor 

formation, which results from a recombination-based, telomerase-independent mode of 

telomere maintenance [262]. However, crosses between an est1 or tlc1 strain and the 

newly identified mutants formed diploid strains whose double mutant spores showed no 

exacerbation of the telomere length or senescence phenotype. This indicated that TLC1, 

EST1, EST2, EST3, and EST4 all function together in a pathway different from the 

recombination-based pathway of which RAD52 is a participant [262,267]. Subsequent 

analysis of EST4 revealed that it corresponds to the CDC13 gene—which encodes a 

single-stranded DNA end-binding protein with important roles in telomere end protection 
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and telomerase recruitment [268,269]—identified by the Hartwell group more than a 

decade before the publication of the Lundblad screen [270].    

  The use of the YAC and the chromosome loss assay in the Lundblad screen was 

fortuitous in that the number of potential limitations that could arise from the use of this 

experimental paradigm were reduced as compared to the original screen. Reversion 

mutations at ADE2 or SUP11 were the most likely means by which false negatives or 

false positives, respectively, could be obtained from this screen. The protocol utilized in 

the second screen also allowed for examination of many more mutant colonies. This, 

ultimately resulted in the isolation of the gene identified in the first screen, the isolation 

of a previously identified gene involved in chromosome end protection, as well as two 

new genes involved in telomere maintenance [262]. To date, along with TLC1 RNA, 

three of the genes identified in the Lundblad screen are still considered to comprise the 

telomerase holoenzyme in budding yeast [271]. Thus, in Saccharomyces cerevisiae, 

telomerase minimally contains four components, which include three EST proteins and 

the TLC1 RNA. The catalytic reverse transcriptase (Est2p) and TLC1 RNA are sufficient 

to provide the in vitro activity of the enzyme [272,273], while Est1p and Est3p are 

hypothesized to serve regulatory functions during complex assembly and/or activation 

(Figure 3). 

 
Est1p Function 

 Since its isolation, Est1p has been shown to serve many roles in telomere 

maintenance as part of telomerase and/or through its interaction with the telomere. In 

telomerase, Est1p binds a specific stem-loop structure on TLC1 RNA [274-277]. Est1p is 

necessary and sufficient for the optimal recruitment of Est3p to telomerase [16]. While  
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Figure 3. Diagram of S. cereviasiae telomerase. 

In budding yeast, the telomerase holoenzyme minimally contains the TLC1 RNA along 
with three EST proteins. Est2 is the reverse transcriptase and, along with TLC1 RNA, 
forms the catalytic core of the enzyme. Est1p and Est3p are a regulatory components. 
Est1p functions in telomerase recruitment to the telomere through its interaction with the 
single stranded DNA end-binding protein, Cdc13p. Est1p and Est3p are both 
hypothesized to contribute to telomerase activation at the telomere.  
 
TLC1 RNA also binds the Sm proteins, an interaction that is essential for its correct 
maturation in the cell. The interaction of TLC1 RNA with the double-stranded DNA end-
binding yKu70/80p heterodimer is hypothesized to be important for nuclear retention of 
the RNA. Figure modified from [186]. 
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Est3p has been shown to interact with the N-terminal domain of Est2p [278], a direct 

interaction between Est1p and Est3p has also been observed [279]. There are conflicting 

reports regarding the association of Est1p with Est2p. The Lundblad group has shown 

that Est1p is unable to co-immunoprecipitate with Est2p in a tlc1 strain and that RNase 

treatment dissociates Est1p and Est2p, suggesting that Est1p interaction with Est2p is 

indirect and mediated by TLC1 RNA [280]. However, the Freeman lab has identified an 

RNA-independent interaction between Est1p and Est2p in vitro [281]. Thus, further 

investigation into the interaction between these protein components of telomerase is 

warranted. At the telomere, Est1p, but not Est2p, directly interacts with the single-

stranded telomeric DNA binding protein, Cdc13p [269,282]. Expression of a Cdc13-Est2 

fusion protein in an est1 strain results in stable telomere maintenance, bypassing the 

need for Est1p at the telomere [269]. This result suggests that Est1p recruits telomerase to 

the telomere through its interaction with Cdc13p.  

Est1p is conserved. In fact, it is the budding yeast ortholog of the Est1 and Est1A 

proteins found in fission yeast and humans, respectively [283,284]. However, while the 

yeast Est1 proteins contribute to telomerase recruitment to the telomere [269,285], such a 

role has not been identified for human Est1A. 

In addition to the interactions Est1p makes and/or mediates in the telomerase 

holoenzyme, there is also evidence to support an activating function for Est1p. 

As mentioned above, although telomeres are maintained at a short, but stable length in an 

est1 strain expressing the Cdc13-Est2 fusion protein, telomere lengthening up to 

~800bp—a length more than two-fold greater than the 300 ± 50bp average length of 

wild-type telomeres—occurs when Cdc13-Est2p is expressed in an EST1 strain [269]. 
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These data indicate that the presence of Est1p stimulates telomere overelongation even 

when the recruitment function of Est1p is bypassed, suggesting that Est1p may promote 

the activation of telomere-bound telomerase in vivo. Furthermore, the Freeman lab has 

shown that recombinant Est1p enhances the in vitro DNA extension activity of 

telomerase up to 14-fold when added to telomerase extracts isolated from an est1 strain 

[281]. 

Est1p is a cell-cycle regulated component of telomerase. Our lab has 

demonstrated that Est1p is degraded in the G1 phase of the cell cycle in a manner that 

depends on the proteasome [16,286]. Chromatin immunoprecipitation experiments have 

shown that although Est2p can associate with telomeric DNA via the interaction of TLC1 

with the DNA-end binding yKu70/80p heterodimer during G1 phase [287,288], Est1p is 

absent from the telomere at this time [289]. Instead, Est1p association with the telomere 

peaks in late S phase, the time at which telomerase elongates telomeres [8,289,290]. 

Since Est1p telomere association varies in the cell cycle in a manner corresponding to the 

timing of telomerase activity, these data suggest that Est1p levels modulate telomerase 

activity in a cell cycle dependent fashion, altogether identifying Est1p as an important 

determinant of telomerase assembly and activity in the cell.  

  
Telomerase Trafficking in Budding Yeast 
 

In contrast to the human system, in which a considerable amount of work has 

focused on telomerase trafficking, little is known about the biogenesis of telomerase in 

budding yeast. By definition, telomerase is a small, nuclear ribonucleoprotein. Therefore, 

it has been hypothesized that telomerase assembles in a manner analogous to a more 

conventional snRNP. In support of this idea, in S. cerevisiae, TLC1 RNA possesses a 
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binding site for the Sm proteins and the association between TLC1 RNA and the 

heteroseptameric Sm complex is required for the in vivo activity of telomerase [14]. This 

finding is significant because it outlined key differences between the trafficking of 

vertebrate and yeast telomerase: 1) use of the H/ACA motif to promote maturation of the 

vertebrate telomerase RNA in the nucleolus along with the unlikelihood of hTR transit 

through the cytoplasm highlights vertebrate telomerase as a snoRNP and 2) Sm 

association with TLC1 RNA and the requirement for a m3G cap structure for correct 

processing of the RNA [14] suggests that TLC1 RNA must transit through the cytoplasm 

and that telomerase biogenesis in yeast is similar to that of the U snRNP components of 

the splicing machinery.  

As a result of these findings, data concerning telomerase biogenesis in yeast has 

focused almost exclusively on TLC1 RNA. Using fluorescence in situ hybridization to 

detect endogenous TLC1 RNA, the Chartrand group has published the most in-depth 

investigations into telomerase trafficking in yeast. Their experiments have confirmed 

routing of TLC1 RNA to the cytoplasm and identified the karyopherins required for TLC1 

RNA intracellular transport [291]. More specifically, their work demonstrated that TLC1 

RNA undergoes nucleocytoplasmic shuttling in which, after transcription and a number 

of processing steps in the nucleus, TLC1 RNA is exported to the cytoplasm by the 

exportin Crm1p [291] . After presumably further processing and assembly with proteins 

in the cytoplasm, TLC1 RNA is then imported to the nucleus by the  importins Mtr10p 

and Kap122p [291]. Whether this nuclear import occurs by way of direct protein-RNA 

interactions between TLC1 and the karyopherins remains unclear. Because TLC1 RNA 

possesses binding sites for both Est1p and Est2p [292], a model for yeast telomerase 
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biogenesis was developed from this body of work (Figure 4). Similar to the nuclear 

import of cytoplasmically matured U snRNPs, this model suggested that binding of the 

EST and Sm proteins to TLC1 RNA in the cytoplasm results in a bipartite nuclear 

localization mechanism for TLC1 RNA [15], thus presenting the yeast telomerase RNA 

as a scaffold that mediates telomerase assembly in the cytoplasm before transport of the 

holoenzyme to the nucleus. 

Although this model appears valid, one important caveat lies in the fact that the 

transport of the protein components of telomerase was not specifically examined. The 

authors assayed the effect of deleting individual components of telomerase on TLC1 

RNA subcellular localization and found that TLC1 RNA localized to the cytoplasm in the 

absence of either of the EST proteins [291]. This phenotype was also observed in an 

yku70 strain [291]. However, the methodology used in this work precluded definitive 

examination of whether it is the nuclear import or the nuclear retention of TLC1 RNA 

that is perturbed in these deletion strains. 

Furthermore, the model for telomerase biogenesis resulting from these initial 

studies did not take the cell cycle regulation of telomerase into account and failed to 

synthesize current data regarding the telomere association of telomerase components. 

Most recently, elegant studies from this group using live-cell imaging techniques to 

monitor TLC1 RNA localization dynamics in the cell cycle revealed a transient 

association of TLC1 RNA with the telomere in G1 and G2 phases of the cell cycle [293]. 

This fleeting interaction becomes a persistent focus of TLC1 RNA at telomeres as the cell 

traverses through mid/late S phase [293]. This telomere association of TLC1 in late S 

phase is greatly reduced in cells harboring the cdc13-2 mutation, which disrupts the  
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Figure 4. Previous model for telomerase biogenesis in yeast.  

Current data about telomerase biogenesis has come from studies focusing on the 
trafficking of TLC1 RNA. These data indicate that: (1) after transcription, TLC1 
undergoes several processing steps in the nucleus before (2) associating with the Crm1p 
nuclear export protein and being exported to the cytoplasm. (3) Once in the cytoplasm, 
TLC1 presumably undergoes a number of other processing and assembly steps before (4) 
associating with the  importins Kap122p and Mtr10 (and presumably the other 
components of telomerase), which facilitate its import into the nucleus, (5) to allow for 
the recruitiment of telomerase to telomeres for elongation.  
 
Despite what is known about the nucleocytoplasmic trafficking of TLC1 RNA, the 
trafficking of the protein components of telomerase has not explicitly been examined. 
Figure adapted from [15]. 
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Cdc13-Est1 interaction [282]. However, once again, this work did not examine the 

localization of the protein components of telomerase.  

Understandably, low protein abundance has hampered studies of the subcellular 

localization of telomerase protein components, making it unclear when or how the 

telomerase complex is imported into the nucleus. The ability of other telomerase 

components to associate with telomeric DNA when Est1p levels are very low (during G1 

phase) [16,290] suggests that Est1p may localize to telomeres independent of its 

interaction with other telomerase components. Furthermore, nuclear localization of a 

fusion between Est1p and the Green Fluorescent Protein (GFP) is retained when the 

fusion protein is expressed in great excess to the other components of telomerase [294]. 

These data support the idea that Est1p possesses a mechanism for nuclear import that is 

independent of its interactions with other components of telomerase and suggest that the 

regulation of Est1p nuclear import may contribute to telomerase biogenesis and function. 

Therefore, my research has focused on characterizing Est1p nuclear localization. As the 

only known telomerase component whose abundance is regulated in the cell cycle, Est1p 

is a particularly attractive target for my efforts to obtain a more integrative model for 

telomerase biogenesis in yeast. 
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CHAPTER II 

 

NORMAL TELOMERE LENGTH MAINTENANCE IN YEAST REQUIRES 

NUCLEAR IMPORT OF THE EVER SHORTER TELOMERES 1 (EST1) 

PROTEIN VIA THE IMPORTIN ALPHA PATHWAY1 

 

Introduction 

Telomeres, the heterochromatic, G/T-rich regions of DNA located at the ends of 

linear chromosomes, are dynamic structures, undergoing multiple rounds of attrition and 

elongation over the lifetime of many eukaryotic cells. Because telomeres provide an 

essential capping function that protects DNA ends and aids in the maintenance of 

genomic stability, most eukaryotes use the enzyme telomerase to elongate telomeres 

[295].  

Telomerase is a ribonucleoprotein complex in which the RNA subunit interacts 

with a specialized reverse transcriptase to synthesize telomeric DNA. In the yeast 

Saccharomyces cerevisiae, telomerase minimally consists of the TLC1 RNA, which 

contains the template for nucleotide addition, and three Ever Shorter Telomere (EST) 

proteins [254,262,266,296]. Est2p is the reverse transcriptase that, together with TLC1 

RNA, is necessary and sufficient for enzyme activity in vitro [272,273]. Est1p and Est3p 

are essential regulatory components that stimulate the in vitro activity of telomerase and 

                                                            
1This chapter is adapted from Hawkins C and Friedman KL. (2014) Normal telomere length maintenance in 
yeast requires nuclear import of the Ever Shorter Telomeres 1 (EST1) protein via the importin alpha 
pathway. Eukaryot Cell [Epub ahead of print 2014 Jun 6]. 
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have been implicated in the recruitment and/or activation of telomerase at the telomere 

[273,278,281,296]. 

Interactions between the subunits of telomerase and between telomerase and the 

telomere are complex. Est1p interacts with the single-stranded, telomeric DNA binding 

protein, Cdc13p [268,282]. Ectopic expression of a Cdc13-Est2 fusion protein bypasses 

the requirement for EST1, suggesting that Est1p recruits telomerase to the telomere 

through the interaction with Cdc13p [269]. TLC1 RNA possesses distinct binding sites 

for Est1p and Est2p, suggesting that the interaction between Est1p and Est2p is RNA-

mediated in vivo [275,276,280,297]. However, an RNA-independent interaction between 

Est1p and Est2p has been observed [281]. In live cells, persistent foci of TLC1 RNA are 

detected at telomeres during S phase—a phenotype greatly reduced in cells harboring the 

cdc13-2 mutation in which telomere synthesis is perturbed [293]. During G1 phase, Est2p 

is detected at telomeres by chromatin immunoprecipitation in a manner that depends on 

the interaction of TLC1 RNA with the DNA-end binding yKu70/80p heterodimer 

[289,290,298,299]. However, imaging of TLC1 dynamics during G1 phase in live cells 

suggests that the interactions of TLC1 with the telomere are transient and qualitatively 

different from those observed during S phase [293].  

In contrast to Est2p and Est3p, Est1 protein levels are low in G1 phase due to 

proteasome-mediated degradation [16,286]. Low levels of Est3p are detected at telomeres 

during G1 phase [279], presumably through the interaction of Est3p with Est2p [278], but 

the association of Est3p with telomeres increases in S phase concurrent with rising Est1p 

expression and with the ability of telomerase to elongate telomeres [8,279,290,298]. 

Est1p is necessary and sufficient to stimulate the recruitment of Est3p to telomerase [16], 



 

52 
 

consistent with the hypothesis that assembly of Est1p with telomerase allows optimal 

recruitment of Est3p to the complex. 

Though much attention has focused on the dynamic associations of telomerase 

components with the telomere, less is known about where and when the components of 

telomerase assemble. By fluorescence in situ hybridization, endogenous TLC1 RNA 

shuttles between the nucleus and the cytoplasm with nuclear import depending on the  

importins Mtr10p and Kap122p [291,300]. Furthermore, deletion of any one of the EST 

proteins or yKu70 perturbs TLC1 RNA nuclear localization and/or retention [291]. 

Despite what is known about TLC1 RNA nucleocytoplasmic shuttling, direct studies of 

the subcellular localization of telomerase protein components have been hampered by 

low protein abundance [279,301,302]. The ability of other telomerase components to 

associate with telomeric DNA during G1 phase (when Est1p levels are low) suggests that 

Est1p may localize independently to telomeres. Indeed, overexpressed Est1p localizes to 

the nucleus, even when present in great excess to other telomerase components 

[274,294]. These data support the idea that Est1p possesses a mechanism for nuclear 

import that is independent of its interactions with other components of telomerase and 

suggest that the regulation of Est1p nuclear import may contribute to telomerase 

biogenesis and function. 
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Experimental Procedures 

Yeast Strains  

Standard protocols for manipulation of yeast were carried out as described [303]. Strains 

and corresponding references are listed in Table 1; plasmids and corresponding 

references are listed in Table 2. The hygromycin resistance gene (HPHMX4) was PCR- 

amplified from pBS4 using primers containing sequences found immediately upstream 

and downstream of the BAR1 open reading frame (ORF) [304] and the resulting product 

was transformed into yeast strain K1534 to generate YKF450. EcoRV linearization of 

YIplac204/TKC-dsRED-HDEL allowed for one-step integration of the construct into the  

TRP1 locus of YKF450 to create YKF900. PCR-amplification of the kanamycin 

resistance gene from pFA6a-KANMX6 using primers containing sequences found 

immediately upstream and downstream of the EST1 ORF generated a fragment that was 

transformed into YKF450 to produce YKF901. YKF902 was constructed in a similar 

manner using sequences flanking KAP123. YKF903 was generated by PCR amplification 

of the kap122::KANMX4 locus from BY4741 kap122::KANMX4 followed by 

transformation of the PCR product into the mtr10-7 strain. Sequences of PCR primers 

used in this study are available upon request. 

 

Plasmids 

To generate pCH100, pPS809 (originally designed to insert ORFs at the C-terminus of 

GFP) was altered to allow fusion at the N-terminus of GFP. Briefly, the multiple cloning 

site (MCS) at the C-terminus of GFP was replaced with a STOP codon. A DNA fragment  

Table 1. Yeast strains used in this study. 
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Strain 
Name 

Genotype Source 

K1534 MATa ade2-1 trp1-1 can1-100 leu2-3,113 his3-11,15 
ura3 ssd1 bar1::HISG 

M.A. Hoyt 
[305] 

YKF450 
 

K1534 bar1:: HPHMX4 This Study 

YKF900 YKF450 dsRED-HDEL This Study 
YKF901 YKF450 est1::KANMX6 This Study 
YKF902 YKF450 kap123::KANMX6 This Study 
mtr10-7 Mat mtr10::HIS3 ade2 leu2 trp1 ura3 his3 pRS314 

mtr10-7 
E. Hurt [306] 

YKF903 mtr10-7 kap122::KANMX4 This Study 
BY4741 MATa his31 leu20 lys20 ura30 Open 

Biosystems 
 BY4741 kap122::KANMX4 Open 

Biosystems 
 BY4741 kap108::KANMX4 Open 

Biosystems 
 BY4741 kap114::KANMX4 Open 

Biosystems 
 BY4741 kap120::KANMX4 Open 

Biosystems 
 BY4741 los1::KANMX4 Open 

Biosystems 
 BY4741 msn5::KANMX4 Open 

Biosystems 
ACY1563 MATa ura3-1 leu2-3 trp1-1 his3-11 can1-100 srp1-54 A. Corbett 

[307] 
PSY1199 MAT ade2∆::hisG ade8∆100::KANR ura3∆ leu2∆1 

his3∆200 nmd5∆::HIS3 
P. Silver [308] 

PSY688 MATa srp1-31 ura3 leu2 trp1 his3 ade2 P. Silver [309] 
PSY1103 MATa ura3-52 leu21 trp163 rsl1-4 P. Silver [308] 
PSY580 
pse1-1 

MATa ura3–52 leu21 trp163 pse1-1 P. Silver [310] 

 

  



 

55 
 

containing the MCS, GAL1 promoter, and the first 171 base pairs (bp) of the GFP ORF 

was generated by Overlap Extension PCR [311] and cloned into the AgeI/MscI sites of 

the redesigned pPS809 vector. GFP was replaced by enhanced GFP (S65T variant; 

EGFP) through PCR amplification from pAC1069 and insertion into the HindIII/NotI 

sites of the redesigned pPS809 plasmid. To generate pCH200 (2GFP), EGFP was PCR-

amplified from pCH100 and inserted into the HindIII site of pCH100. 

The EST1 open reading frame was PCR amplified from pRS416-EST1 and 

inserted into the SphI/NotI sites of pCH100 to generate pCH101. To fuse different 

regions of EST1 with 2GFP, pRS416-EST1 was used as template to amplify regions of 

EST1 for cloning into the SpeI/SphI sites of pCH200. EST1 mutants were created by site- 

directed mutagenesis within the N-terminal 600bp or the central 900bp of EST1 and 

cloned as BamHI/PflMI or BspEI fragments, respectively, into pRS416-EST1. The 

resultant mutant vectors were used as template to amplify specific regions of EST1 for 

cloning in frame into the BamHI/PflMI or BspEI sites of pCH100 or the SpeI/SphI sites of 

pCH200. 

The TAgNLS [10] (including residues GSPKKKRKVEASEFGS; positively 

charged amino acids contributing to nuclear localization are underlined) was cloned into 

pRS416-EST1, pCH100, and pCH200 by annealing two oligonucleotides and inserting 

the resulting fragment into the BamHI site of each vector. The Nab2NLS [49] containing 

residues 198-252 based on full-length Nab2p was amplified from pAC719 and the 175bp 

fragment was cloned into the BamHI/SpeI site of pCH101 to generate pCH112. To 

generate pCH015, a SpeI/NotI fragment from pCH101 was inserted into the multiple 

cloning site of pRS416. Next, a SacI fragment containing the EST1 terminator from  
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Table 2. Plasmids used in this study. 
Plasmid Name Description Source 

pBS4 
CFP-HPHMX4 AmpR 

Yeast Resource 
Center 

pKF600 PGAL1-HA3-EST1 LEU2 2μ AmpR [286] 
 YIplac204/ TKC-dsRED-HDEL TRP1 

AmpR 
B. Glick [312] 

pFA6a-
KANMX6 

pFA6a (PT7KANMX6 AmpR) [313] 

pRS416 URA3 CEN AmpR [314] 
pRS416-EST1 pRS416 PEST1 EST1 [286] 
pCH001 pRS416 PEST1 est1(K113A) This Study 
pCH002 pRS416 PEST1 est1(K122A, K123A) This Study 
pCH003 pRS416 PEST1 est1-mut1 This Study 
pCH004 pRS416 PEST1 est1-mut2 This Study 
pCH005 pRS416 PEST1 est1-mut3 This Study 
pCH006 pRS416 PEST1 est1-mut4 This Study 
pCH007 pRS416 PEST1 est1-mut5 This Study 
pCH008 pRS416 PEST1 est1-mut2,3 This Study 
pCH009 pRS416 PEST1 est1-mut1,2,3 This Study 
pCH010 pRS416 PEST1 TAgNLS-EST1 This Study 
pCH011 pRS416 PEST1 TAgNLS-est1-mut1 This Study 
pCH012 pRS416 PEST1 TAgNLS-est1-mut2 This Study 
pCH013 pRS416 PEST1 TAgNLS-est1-mut3 This Study 
pCH014 pRS416 PEST1 TAgNLS-est1-mut1,2,3 This Study 
pCH015 pRS416 PEST1 EST1-GFP This Study 
pPS809 PGAL1 GFP 2 URA3 AmpR P. Silver 
pAC1069 PMET25 GFP2 URA3 CEN AMP A. Corbett [315] 
pCH100 PGAL1 GFP 2 URA3 AmpR This Study 
pCH101 pCH100 EST1-GFP This Study 
pCH102 pCH100 est1-mut1-GFP This Study 
pCH103 pCH100 est1-mut2-GFP This Study 
pCH104 pCH100 est1-mut3-GFP This Study 
pCH105 pCH100 est1-mut1,2,3-GFP This Study 
pCH106 PGAL1 TAgNLS-GFP 2 URA3 AmpR This Study 
pCH107 pCH100 TAgNLS-EST1-GFP This Study 
pCH108 pCH100 TAgNLS-est1-mut1-GFP This Study 
pCH109 pCH100 TAgNLS-est1-mut2-GFP This Study 
pCH110 pCH100 TAgNLS-est1-mut3-GFP This Study 
pCH111 pCH100 TAgNLS-est1-mut1,2,3-GFP This Study 
pCH112 pCH100 Nab2NLS-EST1-GFP This Study 
pCH200 PGAL1 2GFP 2 URA3 AmpR This Study 
pCH201 pCH200 TAgNLS-2GFP This Study 
pCH202 pCH200 EST1(NT200)-2GFP This Study 
pCH203 pCH200 est1(K113A)NT200-2GFP This Study 
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pCH204 pCH200 est1(K122A, K123A)NT200-
2GFP 

This Study 

pCH205 pCH200 est1-mut1(NT200)-2GFP This Study 
pCH206 pCH200 EST1(Mid300)-2GFP This Study 
pCH207 pCH200 est1-mut2(Mid300)-2GFP This Study 
pCH208 pCH200 est1-mut3(Mid300)-2GFP This Study 
pCH209 pCH200 est1-mut2,3(Mid300)-2GFP This Study 
pCH210 pCH200 EST1(Cterm200)-2GFP This Study 
pCH211 pCH200 EST1(CT500)-2GFP This Study 
pCH212 pCH200 EST1(199-350)-2GFP This Study 
pCH213 pCH200 est1-mut2(199-350)-2GFP This Study 
pCH214 pCH200 EST1(351-499)-2GFP This Study 
pCH215 pCH200 est1-mut3(351-499)-2GFP This Study 
pCH216 pCH200 est1-mut4(351-499)-2GFP This Study 
pCH217 pCH200 est1-mut5(351-499)-2GFP This Study 
pCH218 pCH200 EST1(351-435)-2GFP This Study 
pCH219 pCH200 EST1(436-499)-2GFP This Study 
pHK537 PHRB1 Hrb1-GFP CEN URA3 AmpR H. Krebber [316] 
pAC719 PNAB2 NAB2-GFP 2 URA3 AmpR A. Corbett [317] 
pMH1326 PGAL1 RNR4-GFP CEN URA3 AmpR M. Huang [318] 
pRS413 HIS3 CEN AmpR [314] 
pCH016 pRS413 PEST1 EST1 This Study 
pCH017 pRS413 PSRP1 SRP1  This Study 
pCH018 pRS413 PEST1 Nab2NLS-EST1  This Study 
pCH019 pRS313 TLC1 CEN HIS3 AmpR This Study 
pCH020 pRS423 TLC1 2 HIS3 AmpR This Study 
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pKF600 was inserted at the 3’ end of the EST1 ORF and a PvuII/PflMI fragment from 

pRS416-EST1 containing the EST1 promoter as well as the first 717bp of EST1 coding 

sequence was inserted. 

To generate pCH016, a PvuII fragment from pRS416-EST1 was cloned into 

pRS413. After PCR amplification of SRP1 from genomic DNA isolated from strain 

YKF450, the 2434bp PCR product—containing 506bp and 302bp of SRP1 promoter and 

terminator sequence, respectively—was cloned into the XhoI/BamHI sites of pRS413 to 

generate pCH017. A BamHI/PflMI fragment from pCH112 was cloned into pCH016 to 

generate pCH018. 

 

Fluorescence Microscopy 

Direct fluorescence microscopy was used to examine the localization of GFP fusion 

proteins as well as dsRED-HDEL in YKF450-derived strains. Cells expressing GFP-

fusion proteins under control of the GAL1 promoter were grown overnight to mid-log 

phase in synthetic complete media lacking uracil and containing 2% raffinose. Galactose 

was added to a final concentration of 2% and cells were incubated at 30°C for 1 hour. 

Cells expressing GFP fusion proteins driven by a native promoter were grown similarly 

without the addition of galactose. Hoechst 33342 was added to a final concentration of 1 

g/ml and cells were incubated 15 min at 30°C. Cells were washed once and resuspended 

in the appropriate expression media (described above). Cells were imaged using a Zeiss 

Axio Observer inverted microscope (40X Oil Immersion objective, 1.3 numerical 

aperture) with FITC, TexasRED, and DAPI (Semrock Brightline FITC-3540B-ZHE-

ZERO, TXRED-4040B-ZHE-ZERO, and DAPI-1160A-ZHE-ZERO, respectively) filters 
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and a Photometrics Cool Snap EZ CCD camera. Images were acquired using Slidebook 

4.2 software, making use of the zoom + feature located under the Scope tab of the Focus 

Controls window to obtain an additional 2X magnification of the captured images. 

Images were collected and scaled using ImageJ software [319] and Adobe Photoshop 

CS5 software was used for image processing.  

At least 100 GFP-expressing cells for each GFP-fusion protein examined were 

quantified and binned as having a Nuclear only (N) phenotype, in which the fluorescent 

signal was localized exclusively in the nucleus, a Cytoplasmic only (C) phenotype, in 

which the fluorescence was localized primarily to the cytoplasm with no evidence of 

nuclear enrichment, or as Intermediate (I), in which GFP fluorescence was both nuclear 

and cytoplasmic. N, I, and C are mutually exclusive designations. Cells were also 

categorized non-exclusively as having a Vacuolar phenotype (V) in which GFP 

fluorescence was observed in the vacuole. 

Strains containing temperature-sensitive alleles of importin mutants were grown 

to mid-log phase in appropriate selective media at the permissive temperature (18°C or 

25°C) and galactose was added to the appropriate cultures to induce plasmid expression. 

A 3 ml aliquot was kept at the permissive temperature while the remainder of the culture 

was shifted to the restrictive temperature (37°C). Cells were incubated 5 hours before 30 

min fixation by the addition of formaldehyde to a 3.7% final concentration and 15 min 

Hoechst-staining as described above. Cells were washed twice with 0.1M potassium 

phosphate, pH 6.5 and resuspended in 1X phosphate buffered saline prior to imaging. 

Because of the high level of cytoplasmic fluorescence associated with expression of 
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Rnr4-GFPp from pMH1326, strains harboring this construct were incubated for only 2.5 

hours at the permissive temperature before fixation. 

 

Telomere Length Analysis by Southern Blot 

A YKF901 strain containing the complementing plasmid pRS416-EST1 was grown 

overnight in rich liquid media and subsequently plated on solid media containing 5-

Flourorotic acid (5-FOA; Gold Biotechnology) to select for loss of the complementing 

plasmid. A single YKF901 colony that grew on 5-FOA was inoculated into rich media 

and transformed with variants of pRS416 or pCH101. ACY1563 was transformed with 

pRS413 or pRS423 derived constructs. Transformants were restreaked for ~100 

generations on solid selective media with 2% glucose, raffinose, or galactose as the 

carbon source where appropriate. YKF901 strains were grown at 30°C and ACY1563 

strains were grown at 25°C or 35°C. Liquid cultures were grown to saturation in selective 

media at the appropriate temperature, genomic DNA was isolated from each strain by 

glass bead lysis [320], digested with PstI, and separated in a 1.2% agarose gel. The DNA 

was blotted to a Hybond N+ membrane (GE Healthcare), crosslinked to the membrane, 

and probed at 65°C using a yeast radiolabeled telomeric probe as previously described 

[321].  

Southern blot images were quantified using Image J software. A line drawn down 

the middle of each lane was used to derive a plot of signal intensity at each lane position. 

Telomere restriction fragment (TRF) length was defined as the point of highest signal 

intensity within the predominant smear of Y' telomeres and was converted to base pairs 

by comparison with a radio-labeled molecular weight ladder. In cases where a second 
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smear of higher molecular weight was observed on the gel the higher molecular weight 

smear was not included in the quantification. The derivation of this additional smear is 

unclear, but could represent partial digestion. To account for slight differences in 

migration across the gel, where possible, samples were flanked by molecular weight 

marker lanes placed no more than 6 lanes apart. Marker bands of less than or equal to 4kb 

were utilized for quantification. In cases where the flanking markers did not migrate 

identically, the lengths of intervening samples were corrected using the slope of a line 

connecting marker bands of the same molecular weight. Based on sequenced telomeres 

available in the Saccharomyces genome database (www.yeastgenome.org), the terminal 

PstI restriction site on Y' element-containing telomeres lies an average of 540bp from the 

TG1-3 repeats of the yeast telomere. Therefore, telomere lengths were determined by 

subtracting 540bp from each TRF length. Statistical analysis of the Southern blot data 

(ANOVA with Tukey’s post hoc test or Student’s T test) was performed using JMP 

software. 

Fusion of the TAgNLS to wild-type EST1 slightly increased telomere length 

compared to strains complemented with untagged EST1 alone. To account for this 

increase, the average difference in telomere length between the EST1 and TAgNLS-EST1 

complemented strains was subtracted from the telomere length of strains harboring 

TAgNLS fusions with est1-mut1(FL), est1-mut2(FL), or est1-mut3(FL) prior to statistical 

analysis.  
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Telomere Length Analysis by Ligation-Mediated PCR 

After ACY1563 was transformed with pRS413- or pRS423-derived constructs, 

transformants were restreaked for ~150 generations at 25°C or 35°C on solid selective 

media. Liquid cultures were grown to saturation in selective media at the appropriate 

temperature. Genomic DNA was isolated from each strain by glass bead lysis [320] and 

prepared for ligation-mediated telomere PCR as described [322]. In brief, after RNase-

treatment, genomic DNA was blunted with T4 DNA polymerase (New England BioLabs) 

and ligated to a double-stranded oligonucleotide. Y' element-containing telomeres were 

amplified by PCR using one primer that anneals to the sub-telomeric DNA of at least five 

yeast telomeres and a second primer that anneals to the ligated, double-stranded 

oligonucleotide. PCR products were stained with 1X SYBR Green (Life Technologies), 

resolved on a 2.5% agarose gel, and imaged using a Typhoon Scanner. TRF lengths were 

analyzed and quantified from the resulting images using Image J as described for the 

Southern blot analysis above. Because the telomeric primer anneals, on average, 166bp 

from the TG1-3 repeats, this value was subtracted from the TRF lengths to obtain the 

average telomere length of each sample. 

 

Western Blotting 

The YKF450 strain was transformed with various constructs expressing GFP-fusion 

proteins as well as untagged control constructs. Transformants were grown to mid-log 

phase in 15 ml synthetic complete media lacking uracil and containing 2% raffinose. For 

cells harboring pCH100- or pCH200-derived constructs, galactose was added to a final 

concentration of 2% and cells were incubated 1 hour at 30°C to induce plasmid 
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expression. When the cultures reached an OD600 of 1.0, cells were harvested by 

centrifugation at 4°C for 10 min at 6000 rpm from 10 ml of culture and whole cell extract 

was prepared by trichloroacetic acid precipitation [323]. Extracts were resuspended in 

150 l 0.05N NaOH, immediately frozen and stored at -80°C. Samples were resolved on 

10% Bis-Tris NuPAGE gels (Invitrogen) according to the manufacturer’s instructions and 

transferred to Hybond P membrane (GE Healthcare) by wet transfer in NuPAGE transfer 

buffer (Invitrogen). A 1:3000 dilution of Rabbit anti-GFP (Torrey Pines Biolabs) was 

used as primary antibody for GFP detection and 1:5000 dilution of mouse monoclonal 

anti-actin (Abcam) was used as primary antibody for Actin detection. Peroxidase-

conjugated goat anti-rabbit (Millipore) and goat anti-mouse (Chemicon) were used as 

secondary antibodies, respectively. Proteins were detected using ECL plus Western 

Blotting Detection system (GE Healthcare). 

 

Results 

In initial experiments to monitor and characterize the subcellular localization of Est1p, 

we utilized strains that overexpress a green fluorescent protein (GFP)-tagged variant 

because the limited abundance of Est1p precludes the use of fluorescence microscopy to 

examine localization at endogenous levels [279,301,302]. Importantly, as presented 

below, we proceed to determine the functional relevance of Est1p nuclear localization 

using untagged protein expressed from the endogenous EST1 promoter at low copy 

number. 
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An Est1-GFP Fusion Protein Localizes to the Nucleus 

Est1p localizes to the nucleus when expressed from a galactose-inducible 

promoter [274,294] suggesting that Est1p possesses an autonomous mechanism for 

nuclear import. To confirm these results and to identify residues that mediate nuclear 

localization, an EST1-GFP fusion construct under control of the inducible GAL1 

promoter was cloned into a high-copy vector and transformed into cells possessing the 

dsRED-HDELp fusion [312], a marker for the nuclear envelope. Upon galactose-

induction, the Est1-GFP fusion protein (Est1-GFPp) localized within the area outlined by 

dsRED-HDELp and colocalized with Hoechst 33342 staining (Figure 5). Est1-GFPp 

exhibited diffuse fluorescence throughout the nucleus with a single bright focus within 

the nuclear envelope but outside of the region staining for DNA. This phenotype is 

consistent with nucleolar localization, as previously reported [294], since the nucleolus 

resists staining by Hoechst 33342 [324]. We conclude that the Est1-GFP fusion protein 

utilized in this study localizes to the nucleus, with a tendency to concentrate in the 

nucleolar compartment.  

To estimate the extent of overproduction of Est1-GFPp, the expression level upon 

galactose induction was compared to expression of the same protein from the native 

EST1 promoter on a centromere vector (Est1-GFPpCEN). While Est1-GFPpCEN was 

undetectable by Western blot (Figure 6, lane 2), the overexpressed protein was visible 

when whole cell extract was diluted up to 81 fold (Figure 6, lane 9), placing a lower 

boundary on the extent of overexpression relative to Est1-GFPpCEN. We cannot rule out 

the possibility that steady state levels of Est1-GFPpCEN are lower than those of 

endogenous Est1p. However, the ability of Est1-GFPpCEN to support telomere  
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Figure 5. Localization of the overexpressed Est1-GFP fusion protein.  

Yeast containing pCH101 (2; EST1-GFP) were grown in galactose-containing medium 
and examined by live-cell fluorescence microscopy. Hoechst 33342 (Hoechst) stains 
DNA and the dsRED-HDEL fusion marks the nuclear envelope. 96% of GFP-fluorescing 
cells demonstrate exclusive nuclear localization of Est1-GFPp (Merge). n ≥ 100 GFP-
expressing cells. Representative images are selected from at least 3 biological replicates. 
Scale bar = 2m. 
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Figure 6. Relative expression levels of the Est1-GFP fusion protein.  

Whole cell extracts (WCE) prepared from wild-type cells expressing EST1 from a 
centromere vector (pRS416-EST1; lane 1) or EST1-GFP from a low-copy (pCH015; lane 
2) or high-copy vector (pCH101; lanes 3 thru 9) were separated by gel electrophoresis, 
Western blotted, and probed with anti-GFP and anti-Actin antibodies. Uninduced samples 
(lanes 3 and 4) are WCE prepared from cells grown in raffinose; induced samples (lanes 
5 thru 9) were grown in galactose. The fold dilutions of each sample of WCE are 
indicated. (*): nonspecific band. 
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maintenance (see below) demonstrates that the fusion protein is expressed and at least 

partially functional. Since there are fewer than 100 molecules of each of the known core 

components of telomerase in the cell [279,325], we conclude that the galactose-induced 

Est1-GFPp is expressed in great excess to the levels of endogenous telomerase 

components.  

To test Est1-GFPp function, its ability to complement the deletion of EST1 was 

examined. As expected, transformation of an est1 strain with an empty vector led to 

senescence followed by the appearance of rare survivors that use a recombination-based  

mode of telomere maintenance [267,326]. This phenotype is evidenced by amplification 

of subtelomeric Y´ elements (Figure 7A, lanes 1 and 2, see arrows) and the absence of 

the discrete telomeric signal below 1 kb that is observed in cells transformed with a 

construct harboring wild-type EST1 (Figure 7A, lanes 3-5). In contrast to the phenotypes 

observed from cells harboring the empty vector, both low level and over-expression of 

the Est1-GFP fusion protein in an est1 strain supported normal growth. Expression of 

the fusion protein from a centromere plasmid resulted in short, but stable telomere length, 

while cells overexpressing the fusion protein maintained telomeres at a length 

comparable to that of cells harboring untagged EST1 (Figure 7B). Thus, the Est1-GFP 

fusion retains functionality and overexpression is compatible with normal telomere 

maintenance.  
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Figure 7. The Est1-GFP fusion protein complements the deletion of EST1. 

A. Telomere length analysis of est1 cells containing empty vector (pRS416; lanes 1 and 
2) or wild-type EST1 (pRS416-EST1; lanes 2-5). The indicated constructs were 
transformed into an est1 strain following loss of a complementing plasmid and cells 
were grown for ~100 generations. Marker sizes are indicated in kilobases (kb). Arrows 
point to bands resulting from amplification of subtelomeric Y´ elements. 

B. Telomere length analysis of cells expressing Est1-GFPp from a low- or high-copy 
number vector. Constructs described in (B) were transformed into an est1 strain and 
cells were grown for ~100 generations on solid media containing glucose (lanes 1-12) or 
galactose (lanes 13-16). Strains were grown to saturation in the appropriate liquid 
medium, genomic DNA was isolated, and Southern blotted. Four independent colonies 
were analyzed for each strain. Marker sizes are indicated in kilobases (kb). Quantification 
of the Southern blot is to the right of the gel. Error bars represent standard deviation. 
 

   

A. B. 



 

69 
 

Three Separable Regions of Est1p Are Able to Mediate Nuclear Localization 

To identify sequences capable of supporting nuclear import, Est1p was initially 

subdivided into three regions of 200-300 residues. To prevent passive import through the 

nuclear pore [327], each peptide was expressed as a fusion with two tandem GFP 

monomers (2GFP) under control of the inducible GAL1 promoter. The localization 

phenotype(s) observed for at least 100 GFP-expressing cells were quantified and 

categorized as exhibiting exclusively nuclear or cytoplasmic fluorescence (N or C, 

respectively) or both nuclear and cytoplasmic fluorescence (I). We interpret the “I” 

category as representing a partial phenotype in which nuclear localization can occur, but 

is incomplete. Proteins that exhibit localization in the “N” and “I” categories, with few or 

no cells displaying the “C” phenotype, are considered to be capable of nuclear 

localization while those with 70% or more of the cells in the “C” category are defined as 

lacking the ability to localize to the nucleus. A few constructs exhibited variable levels of 

vacuolar fluorescence (V) in addition to nuclear and/or cytoplasmic fluorescence. 

Because Est1p does not appear to possess a vacuolar targeting sequence and the wild-

type Est1-GFP fusion protein was not observed in the vacuole (see Figure 5), such 

localization is likely artifactual. 

As expected, 2GFP alone localized primarily to the cytoplasm, while a fusion 

between the TAgNLS and 2GFP localized primarily to the nucleus (Figure 8). Proteins  

containing the N-terminal 200 amino acids (aa) (NT200) or the central 300 aa [Mid300; 

residues 199-499] of Est1p fused to 2GFP showed either complete or partial nuclear 

localization in most cells, similar to the TAgNLS-GFP fusion. However, fusion of the C-

terminal 200 aa (CT200) of Est1p to 2GFP primarily resulted in cytoplasmic localization  
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Figure 8. Localization analysis of three regions of Est1p.  

Wild-type cells harboring 2GFP fusions of the indicated proteins under control of a 
galactose-inducible promoter in a high copy vector (from top to bottom: pCH200, 
pCH201, pCH202, pCH206, pCH210) were grown in galactose-containing medium. 
Cells were stained with Hoechst 33342 and visualized by live-cell, fluorescence 
microscopy. Adjacent to each set of images is a graph indicating the localization 
phenotype observed in the GFP-expressing cells. N = nuclear fluorescence only, I = 
intermediate (fluorescence in both nucleus and cytoplasm), C = cytoplasmic fluorescence 
only, and V = vacuolar fluorescence. N, I, and C are mutually exclusive categories, while 
any cell exhibiting vacuolar staining was counted in the V category regardless of other 
localization observed. n ≥ 100 GFP-expressing cells for each sample. Representative 
images are selected from at least 3 biological replicates. Scale bar = 2m. See Figure 10 
for locations of each construct. 
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(Figure 8). To lend additional support to the observation that Est1p possesses at least two 

separable regions that can direct nuclear localization, a region containing the C-terminal 

500 aa (CT500) of Est1p was expressed in the context of the 2GFP fusion protein; this 

fusion also demonstrated the ability to localize to the nucleus (Figure 9). Subdivision of 

the Mid300 region (aa 199-499) revealed that two shorter regions, 199-350 and 351-499, 

are each able to direct nuclear localization of 2GFP (Figure 9). Finally, the 351-499 

region was divided to produce fragments from 351-435 and 436-499. Only the second of 

these fragments is consistently observed in the nucleus (Figure 9). Each fusion protein 

was expressed and was of the expected molecular weight (Figure 10). As summarized in 

Figure 11, we conclude that at least three separable regions within the N-terminal 500 aa 

of Est1p are able to support nuclear localization of 2GFP. 
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Figure 9. Additional mapping of Est1p sequences sufficient to mediate nuclear 
localization. 

Experiments were conducted as described in (A) on cells containing plasmids (from top 
to bottom) pCH211, pCH212, pCH214, pCH218, pCH219. In the bottom panel, the 
location of the nucleus was determined by dsRED-HDELp fluorescence. 
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Figure 10. Expression level of Est1-GFP fusion proteins. 

Whole cell extract was prepared from wild-type yeast cells containing the indicated 2GFP 
fusion constructs (from left to right: pCH200, pCH201, pCH202, pCH211, pCH210, 
pCH206, pCH212, pCH214, pCH218, pCH219). Cells were grown to mid-log phase in 
selective media containing 2% raffinose and protein expression was induced with the 
addition of galactose for one hour. Samples were separated on an SDS-PAGE gel and 
Western blotted using anti-GFP and anti-Actin primary antibodies. The 2GFP fusion 
proteins are marked by an asterisk in each lane. The arrow indicates a nonspecific band. 
The low expression level of the TAgNLS-2GFP sample is not reproducible. 
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Figure 11. Three separable regions of Est1p support nuclear localization.  

Summary of the regions of Est1p sufficient for nuclear localization based on (A) and (B). 
Black bar = predominantly nuclear distribution. Grey bar = predominantly cytoplasmic 
distribution. 
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Est1p Contains Three NLSs that Contribute to Nuclear Localization 

To identify specific residues required for nuclear localization, putative NLSs 

within the three target regions were identified using online NLS prediction programs 

[PSORT [328,329], PredictNLS [330], and cNLS mapper [331,332]] or through the 

presence of three or more adjacent basic residues. Positively charged amino acids within 

each candidate NLS were mutated to alanine and localization was examined in 

comparison with the appropriate unmutated 2GFP fusion construct. Mutation of lysine 

113 or lysines 122 and 123 (positions based on full-length Est1p) in the context of NT200 

slightly reduced nuclear localization (compare Figure 12, top and middle panels). 

However, simultaneous mutation of all three lysines (est1-mut1) abrogated nuclear 

localization (Figure 12, bottom panel), suggesting that the N-terminal 200 aa of Est1p 

contains a bipartite NLS, defined as an NLS that contains two required clusters of 

positively charged amino acids separated by a short linker sequence [39,307]. 

Alanine mutations of two distinct basic clusters lying within the Mid300 region of 

Est1p [residues 291 to 293 (est1-mut2) and 455 to 458 (est1-mut3)] modestly reduced 

nuclear localization when mutated separately (compare Figure 13, top and middle 

panels). However, simultaneous mutation of these clusters caused loss of Mid300 nuclear 

localization (Figure 13, bottom panel). Expression of est1-mut2 in the context of residues 

199-350 or est1-mut3 in the context of residues 351-499 severely perturbed nuclear 

localization of the corresponding 2GFP fusion proteins (Figure 14). Mutation of  

two other basic clusters located between residues 382 and 392 had no effect on 

localization of the 351-499 fragment (Figure 15), consistent with our observation that 

residues 351-435 do not mediate nuclear localization (Figures 9 and 10). We conclude 
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that each of the three regions of Est1p shown to independently facilitate nuclear 

localization contains a single cluster of basic residues (defined by mut1, mut2, and mut3) 

required for localization.  
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Figure 12. The N-terminal 200 aa of Est1p contains a bipartite NLS.  

Live-cell, fluorescence microscopy images were generated and quantified as in Figure 8 
on cells containing the indicated fusion constructs. Mutational analysis was conducted in 
the context of the EST1(NT200)-2GFP fusion with mutated residues shown in red (from 
top to bottom: pCH202, pCH203, pCH204, pCH205). The est1-mut1 allele contains 
mutations K113A, K122A, and K123A. n ≥ 100 GFP-expressing cells for each sample. 
Scale bar = 2m. Representative images are selected from at least 3 biological replicates 
for. 
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Figure 13. Mutational analysis conducted in the context of the EST1(Mid300)-2GFP 
fusion identifies 2 NLSs in this region of Est1p (from top to bottom: pCH206, pCH207, 
pCH208, pCH209). est1-mut2: R291A, R292A, R293A; est1-mut3: R455A, R457A, 
K458A.  

Live cell fluorescence microscopy was conducted and images were quanified as in Figure 
12. 
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Figure 14. Analysis of cells expressing mut2 or mut3 Est1p variants in the context of 
EST1(199-350)-2GFP or EST1(351-499)-2GFP, respectively (from top to bottom: 
pCH212, pCH213, pCH214, pCH215).  

Live cell fluorescence microscopy was conducted and images were quanified as in Figure 
12. 
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Figure 15. Mutational analysis conducted in the context of the EST1(351-499)-2GFP 
fusion (from top to bottom: pCH214, pCH216, pCH217). 

Live cell fluorescence microscopy was conducted and images were quantified as in 
Figure 12. 
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The est1-mut1, est1-mut2, and est1-mut3 mutations were simultaneously 

introduced into the full-length Est1-GFP overexpression plasmid utilized in Figure 5. As 

predicted, this NLS triple mutant [est1-mut1,2,3(FL)] caused cytoplasmic localization  

(Figure 16, middle panel). To determine whether loss of nuclear localization is solely 

due to loss of NLS function, the TAgNLS was fused with est1-mut1,2,3(FL) in the context 

of the GFP overexpression plasmid. Although this TAgNLS-est1-mut1,2,3(FL)-GFP 

fusion protein regains some ability to enter the nucleus, the rescue of mislocalization is 

incomplete (Figure 16, bottom panel). 

To investigate redundancy among the three NLSs, the localization phenotypes of 

the individual est1-mut1, est1-mut2, and est1-mut3 alleles were examined in the context 

of full-length EST1. The est1-mut1 mutation causes a partial reduction in the nuclear 

localization of Est1p, a phenotype that is completely rescued by fusion with the TAgNLS 

(Figure 17). This partial phenotype suggests that the first NLS contributes to the nuclear 

localization of Est1p, but that the two remaining NLSs have some ability to direct nuclear 

localization in its absence. Similar to est1-mut1, the est1-mut2 and est1-mut3 mutations 

partially perturbed nuclear localization of full-length Est1p (Figure 17). However, for 

reasons that are unclear, fusion of the TAgNLS only modestly suppressed the localization 

defect (Figure 17). 
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Figure 16. NLS mutations perturb nuclear localization of full length Est1p. 

TOP: Diagram illustrating the three NLSs in the context of full-length Est1p. Alanine 
mutations of the nine residues in red constitute the NLS triple mutant, est1-mut1,2,3(FL).  

BOTTOM: Live-cell fluorescence microscopy was conducted on cells harboring full-
length, wild-type Est1p, est1-mut1,2,3(FL), and the TAgNLS-est1-mut1,2,3(FL) proteins 
expressed as fusions with GFP in a high-copy vector (from top to bottom: pCH101, 
pCH105, pCH111). Representative images are selected from at least 3 biological 
replicates. Quantification as in Figure 8. Scale bar = 2m. 
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Figure 17. The NLSs in Est1p are partially redundant.  

Localization analysis of single NLS mutants in full-length Est1p with and without the 
TAgNLS fusion was conducted as in Figure 16. Fluorescence microscopy images of cells 
expressing est1-mut1(FL) or TAgNLS-est1-mut1(FL), est1-mut2(FL) or TAgNLS-est2-
mut1(FL), and est1-mut3(FL) or TAgNLS-est1-mut3(FL) as fusions with GFP from a high 
copy vector (from top to bottom: pCH102, pCH108, pCH103, pCH109, pCH104, and 
pCH110). 
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Autonomous Nuclear Localization of Est1p Contributes to Telomere Maintenance 

To ascertain whether the NLSs contribute to telomere maintenance in vivo, the 

complementation phenotypes of the individual NLS mutant alleles were examined in the 

context of full-length, untagged EST1 expressed from the native EST1 promoter in a low-

copy number vector. When the est1-mut1(FL) allele was expressed from a centromere 

vector in an est1 strain, telomeres shortened by an average of 63bp compared to cells 

harboring the EST1 construct (Figure 18). To test whether this decrease in telomere  

length is due to mislocalization, we fused the TAgNLS to the N-terminus of wild-type and 

mutant EST1. Addition of TAgNLS to wild-type EST1 caused a small, but reproducible 

increase in telomere length. Importantly, cells expressing the TAgNLS-est1-mut1 allele 

maintained telomeres only 26±11bp shorter than cells expressing the TAgNLS-EST1 

allele, a decrease in length significantly smaller than the 63±15bp difference observed 

between the EST1 and est1-mut1 strains. The ability of the TAgNLS to substantially 

rescue the telomere length defect of the est1-mut1 allele is consistent with a functional 

role for the autonomous localization of Est1p during telomerase biogenesis. 

Similar to est1-mut1, the est1-mut2 and est1-mut3 alleles caused telomere length 

to be maintained at a shorter, but stable length (Figures 19 and 20; average decreases of 

30±11bp and 90±7bp relative to EST1, respectively). However, in neither case did fusion 

of the TAgNLS significantly restore telomere length (average decreases of the TAgNLS- 

fused mutant alleles relative to TAgNLS-EST1 of 33±16bp and 99±12bp, respectively), 

consistent with the lack of rescue observed for the overexpressed proteins (Figure 17). 
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Figure 18. The TAgNLS rescues telomere shortening of the N-terminal NLS mutant.  

Untagged and TAgNLS fusions of wild-type EST1 or est1NLS mutants were expressed on 
a centromere vector under control of the endogenous EST1 promoter and transformed 
into an est1 strain (YKF901). After growth for ~100 generations, genomic DNA was 
isolated from each strain and Southern blotted (Experimental Procedures). Where 
appropriate, quantification of the Southern blot is shown to the right of each gel. After 
correcting for telomere lengthening observed in the TAgNLS-EST1 strain (see text and 
Materials and Methods), statistical analysis was performed by one way ANOVA with 
Tukey’s HSD. Marker sizes are indicated in kilobases (kb). Error bars represent standard 
deviation.  

Telomere length analysis of est1-mut1(FL). Four independent colonies were analyzed 
from each strain (pRS416-EST1, lanes 1-4; pCH003, lanes 5-8; pCH010, lanes 9-12; 
pCH011, lanes 13-16). (*) = Telomere lengths of cells expressing est1-mut1(FL) are 
significantly shorter than those of the EST1 or TAgNLS-est1-mut1(FL) expressing strains 
(p = 0.006). 
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Figure 19. Telomere shortening observed in est1-mut2(FL) strain is not rescued by 
TAgNLS fusion. 

Telomere length analysis of est1-mut2(FL) was conducted as in Figure 18. Six 
independent colonies were analyzed from each strain (pRS416-EST1, lanes 1-6; pCH004, 
lanes 7-12; pCH010, lanes 13-18; pCH012, lanes 19-24). There is no statistical difference 
between telomere lengths of cells harboring est1-mut2(FL) or TAgNLS-est1-mut2(FL) (p = 
0.21).  
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We attempted to test the essential nature of Est1p nuclear localization by 

expressing an untagged allele containing all three mutations [est1-mut1,2,3(FL)] from a 

centromere vector. This strain maintains very short telomeres and shows evidence of 

subtelomeric Y' amplification (Figure 21), a phenotype observed when telomerase 

function is lost and rare survivors arise that utilize recombination to maintain viability 

(see Figure 7A) [267,326]. Although fusion of the TAgNLS with the est1-mut1,2,3(FL) 

variant restored some nuclear localization to the GFP-tagged protein (Figure 16), 

addition of the TAgNLS to the untagged est1-mut1,2,3(FL) low-copy number construct 

was unable to restore telomere maintenance in an est1 strain (Figure 21). Thus, the  

telomere length defect of the est1-mut1,2,3(FL) allele cannot be solely attributed to a 

defect in nuclear localization. 

Taken together, these data suggest that the three NLS sequences in Est1p 

contribute in a partially redundant manner to the nuclear localization of Est1p. Rescue of 

the telomere length defect of the est1-mut1 allele by addition of the TAgNLS demonstrates 

that normal localization of Est1p is important for telomerase function. However, the 

mutations required to eliminate the function of the other two NLSs (est1-mut2 and est1-

mut3) have additional effects that preclude the unambiguous determination of whether 

the ability of Est1p to mediate its own nuclear localization is essential for telomerase 

function. 
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Figure 20. The TAgNLS does not suppress the telomere shortening of est1-mut3(FL). 

Telomere length analysis of est1-mut3(FL) was conducted as in Figure 18. Four 
independent colonies were analyzed from each strain (pRS416-EST1, lanes 1-4; pCH005, 
lanes 5-8; pCH010, lanes 9-12; pCH013, lanes 13-16). There is no statistical difference 
between telomere lengths of cells harboring est1-mut3(FL) or TAgNLS-est1-mut3(FL) (p = 
0.54).  
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Figure 21. The TAgNLS does not rescue the telomere length defect of the NLS triple 
mutant.  

Telomere length analysis of est1-mut1,2,3 (FL) was conducted as in Figure 18. Four 
independent colonies were analyzed for each strain (pRS416-EST1, lanes 1-4; pCH009, 
lanes 5-8; pCH010, lanes 9-12; pCH014, lanes 13-16). Arrows point to Y' amplification 
indicative of a failure to complement the est1 phenotype (see Figure 7A). Because the 
cells are utilizing recombination to maintain telomeres, telomere length is not quantified. 
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Est1p Does Not Require Kap122p or Mtr10p for Nuclear Import 

 The  importins Mtr10p and Kap122p have been implicated in the nuclear import 

of TLC1 RNA [291,300,333,334]. However, the nucleocytoplasmic shuttling of the 

protein components of telomerase was not explicitly examined. Since our overexpression 

analysis suggests that Est1p does not require interaction with the other components of 

telomerase for nuclear localization, we sought to determine whether Est1p also requires 

MTR10 and KAP122 for nuclear accumulation. A kap122 strain and a strain harboring a 

conditional allele of MTR10, mtr10-7, were transformed with the EST1-GFP 

overexpression construct and with GFP fusions to Nab2p, Rnr4p, or Hrb1p, proteins that 

depend upon the importins Kap104p, Kap122p, or Mtr10p for nuclear import, 

respectively [28,306,316,335]. As expected, each of these GFP fusions localized 

primarily to the nucleus in wild-type yeast cells (Figure 22).  

Even in the complete absence of Kap122p, Est1-GFPp retained nuclear 

localization (Figure 23). The Rnr4-GFP fusion exhibited partial mislocalization [the 

previously reported phenotype [335]], while Nab2-GFPp localized to the nucleus as 

expected (Figure 23). At the permissive temperature of 18˚C, all of the GFP constructs 

showed nuclear localization in mtr10-7 cells. Upon shift to the restrictive temperature, the 

Hrb1-GFP fusion protein was redistributed to the cytoplasm as expected, while Est1-

GFPp and the other control proteins retained nuclear localization (Figure 24). To rule out 

redundancy, localization was examined in mtr10-7 kap122 double-mutant cells. Once 

again, the Est1-GFP and Nab2-GFP fusion proteins remained localized to the nucleus at 

both temperatures tested while Rnr4-GFPp exhibited a primarily cytoplasmic distribution 

and Hrb1-GFPp lost nuclear localization after shift to the restrictive  
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Figure 22. Analysis of protein localization in wild-type cells. 

Live-cell fluorescence microscopy of wild-type cells (BY4741) expressing GFP fusions 
of NAB2 (pAC719), HRB1 (pHK537), RNR4 (pMH1326) or EST1 (pCH101). NAB2 and 
HRB1 are expressed under control of their native promoters while RNR4 and EST1 are 
expressed under control of galactose-inducible promoters. Quantification in (A-D) was 
performed as in Figure 8. Representative images are selected from at least 3 biological 
replicates. Scale bar = 2m. 
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Figure 23. Est1p localizes to the nucleus in the absence of Kap122p function. 

Analysis of protein localization in kap122 cells. Live-cell fluorescence microscopy of a 
BY4741 kap122 strain containing the NAB2, RNR4, and EST1 vectors was conducted as 
described in Figure 22.  
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temperature (Figure 25). Since Est1p localization is unaffected by perturbations in both 

KAP122 and MTR10, these results indicate that under conditions of overexpression, 

Est1p is imported to the nucleus via a different pathway than TLC1 RNA. 
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Figure 24. Est1p does not require the function of Mtr10p to for nuclear localization. 

Analysis of protein localization in mtr10-7 cells. Cells containing a temperature-sensitive 
allele of MTR10, mtr10-7, were transformed with the indicated GFP fusion constructs 
[described in (Figure 22)]. Cells were grown to mid-log phase at the permissive 
temperature of 18°C in selective media and galactose was added to the cultures 
containing RNR4- or EST1-GFP fusion plasmids to induce protein expression. Cultures 
were split and incubated at 18°C or 37°C. Cells were fixed and visualized as described in 
Materials and Methods. Black: localization at 18°C; grey: localization at 37°C. 
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Figure 25. Neither Mtr10p nor Kap122p is required for Est1p nuclear localization.  

Analysis of protein localization in mtr10-7 kap122 cells. The indicated GFP fusion 
constructs were transformed into an mtr10-7 kap122 strain and analyzed as in (Figure 
24). 
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Est1p Requires the Classical Nuclear Import Machinery for Import to the Nucleus 

 The classical nuclear import pathway—defined by binding of the adapter, 

importin , to a cargo protein followed by recruitment of importin  to permit active 

transport through the nuclear pore [38,336,337]—is purported to participate in the 

transport of ~40% of nuclear proteins [35]. To test whether the classical nuclear import 

machinery is required for Est1p nuclear import, localization phenotypes of Est1-GFP, 

Nab2-GFP and TAgNLS-2GFP fusion proteins were examined in a strain containing a 

temperature-sensitive allele of the yeast importin , srp1-54 [41,338]. 

At the permissive temperature (25˚C), each GFP fusion protein localized 

predominantly to the nucleus. As expected, Nab2-GFPp, the nuclear import of which 

does not require importin , retained nuclear localization after incubation at the 

restrictive temperature (Figure 26). However, TAgNLS-2GFPp—known to utilize 

importin  [331]—and Est1-GFPp relocalized to the cytoplasm upon shift to 37˚C, 

indicating that Est1p requires importin  for nuclear import (Figure 26). To rule out the 

possibility of a non-specific effect of temperature on Est1-GFPp localization, the 

Nab2NLS [49,70] was fused to Est1-GFPp and localization was monitored in the srp1-54 

strain. The Nab2NLS-Est1-GFP fusion protein retained nuclear localization at both 

permissive and non-permissive temperatures (Figure 26), indicating that mislocalization 

of Est1-GFPp at the restrictive temperature is specifically due to reduced importin  

function. 

 

 

 



 

97 
 

 

 

 

 

Figure 26. Importin  is required for Est1p nuclear import. 

Analysis of protein localization in srp1-54 cells. A temperature-sensitive srp1-54 strain 
(ACY1563) was transformed with the indicated GFP fusion constructs (top to bottom: 
pAC719, pCH201, pCH101, pCH112). Localization analysis and quantification were 
performed as described in Figure 24 except that 25˚C was the permissive temperature. 
Representative images are selected from at least 3 biological replicates. Scale bar = 2m. 
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To exclude the possibility that other nuclear import proteins function in Est1p 

localization, the EST1-GFP overexpression construct was transformed into a panel of 

yeast importin mutants. Est1p nuclear import was retained in all strains except those 

associated with the classical nuclear import machinery, namely srp1 and rsl1, the yeast 

homolog of importin  (Figure 27) [41,339]. 
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Figure 27. The classical nuclear import machinery is uniquely required for Est1p import. 

Table containing localization data for Est1-GFPp in strains defective for different nuclear 
import pathways. The EST1-GFP overexpression construct was transformed into the 
indicated mutant strain backgrounds. Live-cell fluorescence microscopy was used to 
quantify localization as described in Figure 8. Values for the wild-type (BY4741) strain 
are from the experiment shown in Figure 22, bottom panel. Strains pse1-1, rsl1-4, and 
srp1-31 were analyzed as described in (A) and localization is reported at both permissive 
and restrictive temperatures. n ≥ 100 GFP-expressing cells for each sample. Data for 
srp1-54 are repeated from Figure 26 for completeness. 
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Import of Est1p Via the Classical Pathway Contributes to Telomere Length Maintenance 

The results presented above indicate that Est1p requires the SRP1/RSL1 pathway 

for nuclear import upon overexpression. To address whether this import pathway affects 

telomere maintenance under endogenous conditions, we examined telomere length in the 

srp1-54 strain. At the permissive temperature of 25˚C, telomere length was identical in 

srp1-54 cells containing either an empty vector or a complementing SRP1 gene on a 

centromere vector. After ~100 generations of growth at the semi-permissive temperature 

of 35°C, telomeres shortened in both the complemented and non-complemented strains. 

However, there was a significantly greater decrease in telomere length in cells 

transformed with the empty vector relative to those complemented with wild-type SRP1 

(Figure 28). Since steady-state telomere length decreases upon growth at elevated 

temperature in wild-type yeast strains [340], these data suggest that the exaggerated 

decrease in telomere length that occurs in the non-complementated strain is specifically 

attributable to decreased SRP1 function. 

Given the importance of the importin  pathway for the nuclear localization of 

overexpressed Est1-GFPp, we hypothesized that compromised nuclear localization of 

endogenous Est1p is responsible for the difference in telomere length between the 

complemented and non-complemented srp1-54 strains at the semi-permissive 

temperature. If true, we predicted that expression of a Nab2NLS-EST1 fusion protein, 

which attains nuclear localization in the srp1-54 mutant at 37˚C when overexpressed, 

would be sufficient to rescue the telomere length defect at 35˚C even when expressed at 

more moderate levels. As shown in Figure 29, expression of Nab2NLS-EST1 from a  
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Figure 28. The srp1 mutant strain undergoes telomere shortening when grown at high 
temperature. 

Four independent colonies were restreaked four times on solid media and grown to 
saturation in liquid culture for a total of ~100 generations of growth at the indicated 
temperature. Genomic DNA was isolated and telomeres were detected by Southern blot. 
Telomere length analysis of strain ACY1563 transformed with an empty vector (VO; 
pRS413) or a plasmid expressing wild-type SRP1 (CEN; pCH017) and grown at 25°C 
(lanes 1-8) or 35°C (9-16). At 25°C, there is no significant difference in the telomere 
lengths of cells expressing the empty vector versus those expressing SRP1 (p = 0.16 by 
Student’s T-test). However, cells harboring the empty vector have significantly shorter 
telomeres than those harboring SRP1 when grown at 35°C by Student’s T-test (p = 
0.0052).Error bars represent standard deviation. (*) indicates statistically significant 
increase in telomere length above that of cells expressing the empty vector. 
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Figure 29. Introduction of EST1 into srp1 cells suppresses the telomere length defect 
observed at high temperature  

The srp1-54 strain (ACY1563) was transformed with an empty vector (VO; pRS413) or 
with centromere vectors containing SRP1 (pCH017), EST1 (pCH016), or Nab2NLS-EST1 
(pCH018), each expressed from the native SRP1 or EST1 promoters. Telomere length 
analysis was conducted as in Figure 28. Cells containing the SRP1, EST1, or Nab2NLS-
EST1 plasmids have significantly longer telomeres than cells containing the empty vector 
(p = 0.0004, p = 0.007, and p = 0.0004, respectively, by one way ANOVA with Tukey’s 
HSD).  
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centromere vector rescued telomere length in the srp1-54 strain to a similar extent as the 

SRP1 complementing plasmid. 

Since we are limited to performing these experiments at a semi-permissive 

temperature, we reasoned that slight overexpression of even wild-type EST1 may be 

sufficient to overcome the telomere shortening observed in the srp1-54 strain at 35˚C.  

When the srp1-54 strain containing either the empty vector or low-copy number EST1 

was grown at the semi-permissive temperature, cells expressing additional EST1 had 

significantly longer telomeres than those harboring the empty vector (Figure 29). The 

decrease in telomere length attributable to reduced Srp1p function at 35˚C averaged 

57±14bp, while expression of an extra copy of EST1 restored telomere length by an 

average of 40±16bp as measured by Southern blot (Figure 29). 

We confirmed this result using a different method to measure the telomere lengths 

of eight additional colonies of each genotype. Amplification of a subset of Y' telomeres 

using ligation-mediated PCR to measure the length of the double-stranded telomere 

sequence confirmed that low-level expression of EST1 rescues the telomere length defect 

conferred by the srp1-54 allele at 35˚C (Figure 30). Although the absolute telomere 

lengths measured by PCR are slightly longer than those measured by Southern blot 

(perhaps reflecting extrapolation of migration distances between the 500 and 1000bp 

markers on the Southern blot), the increase in telomere length conferred by EST1 

expression relative to empty vector is indistinguishable in the two assays (40±16bp by 

Southern blot and 42±16bp by ligation-mediated PCR).  

To confirm that this level of EST1 overexpression does not result in telomere 

elongation in a wild-type strain, we examined telomere length in srp1-54 strains  
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Figure 30. Telomere length analysis of srp1-54 cells harboring an additional copy of 
EST1 at 35°C by ligation-mediated telomere PCR. 

Experiment shown in panel B was repeated by growth of an additional eight colonies of 
the srp1-54 strain harboring the empty vector or low copy-number plasmids expressing 
SRP1 or EST1 at 35°C. Genomic DNA was isolated and telomeres were detected by 
ligation-mediated telomere PCR using a primer specific to the Y' element (see Materials 
and Methods). Representative results from four independent colonies of each strain are 
shown. Telomere length is quantified in the accompanying graph as described in 
Materials and Methods. Error bars represent standard deviation. Telomeres are 
significantly longer in strains containing an additional copy of EST1 or SRP1 than in cells 
containing the empty vector (p < 0.0001 for each by one way ANOVA with Tukey’s 
HSD; n = 8). 
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complemented by plasmid-borne SRP1 and additionally expressing either low-copy 

number EST1 or an empty vector at the permissive temperature. Under these conditions, 

an additional copy of EST1 did not affect telomere length (Figure 31). Furthermore, the 

rescue of telomere length by additional EST1 expression is specific since it was not 

observed upon introduction of TLC1 RNA at low or high expression levels into the srp1-

54 strain (Figure 32). We conclude that the telomere attrition observed in the importin  

mutant at semipermissive temperature is substantially due to Est1p mislocalization, 

indicating that the autonomous localization of Est1p to the nucleus via the classical 

nuclear import pathway contributes to normal telomere length maintenance. 
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Figure 31. Introduction of EST1 into SRP1 cells does not cause telomere elongation. 

Telomere length analysis of the srp1-54 strain (ACY1563) complemented by plasmid-
borne wild-type SRP1 (CEN; pCH017)—denoted pCENSRP1—and containing either an 
empty vector (VO; pRS416) or EST1 expressed from a centromere vector (pRS416-
EST1) at 25°C was conduct as in Figure 28. Expression of an additional copy of EST1 
does not significantly increase telomere length in the SRP1 background (p = 0.5 by one 
way ANOVA). 
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Figure 32. Expression of additional TLC1 RNA does not suppress the telomere 
shortening of the srp1 mutant.  

Telomere length analysis of srp1-54 cells harboring an additional copy of TLC1 RNA 
expressed from a low- or high-copy vector. Experiment was conducted as in (B) except 
that the srp1-54 strain was transformed with constructs containing TLC1 expressed from 
its native promoter in a centromere (pCH019) or high-copy (2; pCH020) vector. While 
expression of SRP1 complements the telomere length defect of the mutant (p < 0.0001 by 
one way ANOVA with Tukey’s HSD), there is no statistical difference between telomere 
lengths of cells containing the empty vector and those transformed with either TLC1 
construct (p = 0.8 for cells harboring pCH018 and p = 0.9 for cells harboring pCH019 by 
one way ANOVA with Tukey’s HSD). 
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Discussion 

Here we describe the first in-depth characterization of the mechanism through 

which a protein component of S. cerevisiae telomerase undergoes nuclear localization. 

While our studies, of necessity, used an overexpression approach to characterize 

sequences required for Est1p nuclear localization, we established the functional relevance 

of these sequences by showing that telomere shortening occurs when the cis-acting 

sequences (NLS) or trans-acting import machinery (importins  or ) are mutated. 

Furthermore, this telomere maintenance defect is specific since it can be rescued by 

conditions predicted to restore nuclear localization of Est1p. 

 Our overexpression studies demonstrate that Est1p contains three sequences that 

mediate nuclear localization and that mutation of any one NLS within full-length Est1p 

only partially affects the exclusive nuclear localization of the protein (Figures 16 and 

17). Such redundancy is not unprecedented and many yeast proteins that contain multiple 

NLSs—including ribosomal proteins and a subset of the MCM proteins [341-343]—are 

part of multiprotein complexes. At endogenous expression levels, we have only been able 

to unambiguously demonstrate a contribution by the most N-terminal NLS to telomere 

length maintenance, since mutations in the second and third NLS (est1-mut2 and est1-

mut3) affect protein function(s) in addition to localization. Therefore, the N-terminal 

NLS may contribute disproportionately to Est1p nuclear localization under endogenous 

conditions.  

To determine whether Est1p NLSs contribute to telomerase function, we 

examined the consequence of mutating these sequences in the context of full-length Est1p 

expressed at or near normal levels. Consistent with the partial mislocalization of the est1-
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mut1(FL) protein, expression of the est1-mut1 allele in an est1 strain results in short, but 

stable telomeres. This defect is suppressed by fusion of the mutant protein with the 

TAgNLS (Figure 18), indicating that the autonomous nuclear localization of Est1p 

contributes to normal telomerase function.  

We were unable to identify a triple NLS mutant allele that is uniquely defective 

for nuclear import, perhaps reflecting effects of the multiple mutations on Est1p folding 

and/or function. Thus, although we favor the idea that the NLSs of Est1p are essential for 

telomere maintenance, we cannot rule out the possibility that additional binding partners 

partially compensate for the loss of Est1p NLS function when the protein is expressed at 

endogenous levels. 

TLC1 RNA acquires a 2,2,7-tri-methyl guanosine cap as step in its maturation to 

become a functional component of telomerase and it possesses a binding site for the Sm 

proteins, thus making telomerase a small nuclear ribonucleoprotein particle (snRNP) 

[14]. Another class of snRNPs with functions vital to the cell include the uridine-rich 

snRNPs (UsnRNP) that comprise the spliceosome [143]. Although the mechanisms 

controlling UsnRNP biogenesis in yeast have yet to be completely elucidated, current 

data support assembly of these ribonucleoproteins in the cytoplasm prior to nuclear 

import of the assembled complex [143]. Telomerase biogenesis has been hypothesized to 

occur in a similar manner, with the most prevalent model asserting that the protein 

components of the enzyme assemble onto the RNA like beads on a string before shuttling 

of the complex into the nucleus [15].  

Our demonstration that Est1p nuclear translocation via the classical import 

pathway is important for normal telomere length maintenance (Figures 28-32) suggests 
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that there may be additional complexity to the current model of telomerase biogenesis. 

TLC1 nucleocytoplasmic shuttling depends on the nuclear exportin, Crm1p, and the  

importins Mtr10p and Kap122p [30,291,300]. In contrast, the nuclear import of 

overexpressed Est1p is unperturbed in mutants of Kap122p and/or Mtr10p (Figures 22-

25). Nuclear localization of TLC1 is unaffected at the restrictive temperature in a srp1 

strain [291], while overexpressed Est1p is excluded from the nucleus under this condition 

(Figures 26 and 27). Finally, overexpression of TLC1, but not Est1p, in an mtr10 strain 

rescues the telomere length defect of the mutant [300]. In contrast, telomere shortening 

occurs when trafficking through the classical import pathway is disrupted and this defect 

is counteracted by expression of excess Est1p, but not TLC1 RNA (Figures 28-32). 

Together, these data point to independent nuclear localization of TLC1 RNA and Est1p. 

A possible explanation for these findings is that Est1p does not assemble with the 

telomerase holoenzyme in the cytoplasm, but rather is imported autonomously, 

associating with telomerase at a later step of biogenesis within the nucleus. This model is 

consistent with the cell cycle regulated abundance of Est1p and with the ability of TLC1 

to localize to the nucleus during G1 phase when Est1p levels are low [16,289,290,293]. 

One caveat is that deletions of any of the EST proteins, including Est1p, disrupt the 

nuclear localization of TLC1 RNA [291]. However, as previously suggested, it may be 

the nuclear retention of TLC1 RNA, rather than its import into the nucleus, that is 

disrupted when EST1 is deleted. 

The studies described here address only the mechanism of Est1p import and do not 

clarify the trafficking of the other protein components of telomerase. A GFP fusion with 

Est2p also localizes to the nucleus when overexpressed [294], suggesting that Est2p 
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contains an NLS that is capable of facilitating nuclear import. However, further 

investigations are required to determine whether the localization of Est2p is autonomous. 

Est3p, with a mass of 20kDa, is theoretically capable of passive diffusion into the nucleus 

[25]. However, direct interactions of Est3p with both Est1p and Est2p have been 

observed [278,279], so the free diffusion of Est3p may be limited through its interaction 

with other telomerase components. Although Est3p associates with the telomere at low 

levels during G1 phase [279], its interaction with telomerase is stimulated by Est1p [16], 

suggesting that at least a fraction of Est3p may assemble with telomerase after the import 

and assembly of Est1p within the nucleus. 
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CHAPTER III 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 The ribonucleoprotein complex telomerase functions to counteract the gradual 

telomere shortening that dividing cells experience when the conventional DNA 

replication machinery fails to fully replicate chromosome ends [188]. Telomerase is 

inactive in somatic cells, but its activity may contribute to the continued proliferation of 

stem cells [221]. Reactivation of telomerase is observed in ~90% of cancer cell lines and 

is essential for the immortalization of these cells [224]. Hence, the study of the function 

and regulation of telomerase has significant implications for our understanding of the 

mechanisms underlying cellular aging and cancer.  

The biogenesis of telomerase exemplifies a significant layer of regulation that the 

cell uses to restrict enzyme activity in the cell cycle. In fact, in human cells, mutations 

that uniquely perturb telomerase assembly and/or subnuclear localization can have the 

same effects as those that reduce the catalytic activity of the enzyme, resulting in a range 

of aging-related diseases and/or syndromes [3,230,246]. In recent years, characterization 

of the intranuclear localization dynamics of human telomerase components has produced 

a fairly comprehensive model of the cell cycle regulation of telomerase biogenesis [220].  

Mechanisms of telomerase biogenesis in yeast are also important. Mutations that 

abrogate telomerase recruitment to telomeres result in an EST phenotype, ultimately 

leading to cell death [268,269,282]. However the paucity of studies related to this 

phenomenon causes the model for telomerase biogenesis to remain primarily incomplete. 
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Therefore in this work we sought to characterize the nuclear localization of a protein 

component of yeast telomerase to shed more light on how the cell accomplishes the 

correctly-timed assembly and shuttling of such an enzyme. 

Telomerase biogenesis in budding yeast requires the regulated assembly of the 

TLC1 RNA with three essential proteins, Est1p, Est2p, and Est3p. Est1p is a critical 

determinant of telomerase assembly and function: its cell cycle-regulated degradation 

precludes telomerase assembly in G1 phase of the cell cycle [16,290]; it interacts directly 

with TLC1 RNA (and likely with Est2p and Est3p) [275,279,281]; it stimulates the 

association of Est3p with the telomerase complex [16]; and it recruits telomerase to 

telomeres through its interaction with a telomere end-binding protein [290]. Therefore, in 

this study we chose to examine mechanisms of telomerase biogenesis from the standpoint 

of Est1p nuclear localization, proposing that the subcellular localization of Est1p, as 

mediated through endogenous NLSs, functions as an additional mechanism for the 

regulation of telomerase assembly and activity in the cell. 

In this study, we used the overexpression of an Est1-GFP fusion protein, which 

precludes association with other telomerase components due to their limited abundance, 

to characterize the requirements for Est1p nuclear localization. We have shown that three 

endogenous sequences are capable of directing nuclear localization of Est1p. Mutation of 

any single NLS resulted in partial mislocalization of the full-length Est1-GFP fusion. 

Abrogation of Est1-GFPp nuclear localization was observed only with simultaneous 

substitutions within each NLS. Thus, the NLSs in Est1p are partially redundant. We 

found that mutation of the most N-terminal NLS resulted in telomere shortening. Fusion 

with an exogenous NLS suppressed the nuclear localization and telomere length defects 
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of the N-terminal NLS mutant. To determine the nuclear import pathway that Est1 

utilizes, we monitored the localization of the Est1-GFP fusion protein in a number of 

importin mutants and found that Est1p requires the classical nuclear import machinery for 

nuclear import. We also found that low level expression of EST1 (and not TLC1 RNA) 

from the native promoter suppressed the telomere shortening observed at the 

semipermissive temperature in strain harboring a conditional allele of the yeast homolog 

of importin . These data reveal that the autonomous nuclear localization of Est1p 

through its endogenous NLS(s) is important for telomerase function in the cell. 

The presence of multiple NLSs in Est1p may serve to promote nuclear 

localization if Est1p assembles with an unidentified binding partner, during which time 

one or more of the NLSs may be concealed. Alternatively, though the multimerization 

state of telomerase is debated [344], if Est1p possesses the ability to self-assemble, its 

NLSs that function relatively weakly in the context of a single molecule of Est1p may 

function more strongly upon protein multimerization. Therefore, Est1p tertiary structure 

or the quaternary structure resulting from its interaction(s) with other proteins may—by 

concealing or revealing an NLS—account for the observed differences in NLS function.  

Another possibility is that the NLSs in Est1p may contribute to different modes of 

telomerase activity. The regulation of telomerase function during normal telomere 

replication is intrinsically different from the regulation that occurs during de novo 

telomere addition [345] and the subcellular or subnuclear localization of the entire 

telomerase complex or a specific component of the enzyme may contribute to this 

difference.  
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This work alters the model of yeast telomerase biogenesis (Figure 33). Our 

observations that Est1p and TLC1 RNA utilize two distinct mechanisms for nuclear 

import indicate that the previously hypothesized assembly of telomerase protein 

components with TLC1 RNA in the cytoplasm prior to nuclear import of the assembled 

telomerase holoenzyme is likely too simple. Instead, our data suggest that Est1p and 

TLC1 RNA, which may or may not be associated with other telomerase proteins, are 

trafficked into the nucleus independently.  

The nucleolus has been shown to play an important role in telomerase biogenesis 

in human cells [220]. The same also appears to be true for yeast telomerase. The 

observation that Est1p localizes to the nucleolus when overexpressed [294] suggests that 

one or more of its NLSs may function as a nucleolar localization sequence, serving to 

modulate the subnuclear trafficking of Est1p and potentially influencing its association 

with the other components of telomerase within the nucleus.  

Additionally, in the only other publication specifically examining the localization 

of protein components of yeast telomerase, the Lingner group showed that co-

overexpression of Est2-GFPp and TCL1 RNA caused redistribution of Est2-GFPp from 

the nucleolus to the nucleoplasm—a phenotype that was not observed when an Est2-

GFPp mutant protein that cannot bind TLC1 RNA was expressed [294]. These results 

suggest that the interaction of TLC1 RNA with Est2p modulates the subnuclear 

localization of Est2p, a phenotype somewhat similar to the effect of hTR on hTERT 

localization in humans [193,214,220]. Furthermore, overexpression of Est2p in an est1 

or est3 strain resulted in nucleolar localization of Est2p [294]. While the nuclear 

localization of endogenous TLC1 RNA was disrupted in an est1 or est3 strain,  
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Figure 33. New model of telomerase biogenesis.  

The results of my dissertation work add further complexity to the previous model of 
telomerase biogenesis. After nuclear export of TLC1 RNA by Crm1p, TLC1 may or may 
not associate with the other protein components of telomerase before its nuclear import 
by Kap122p and Mtr10p. Instead, through endogenous NLSs in the protein, Est1p 
associates with the components of the classical nuclear import machinery in yeast, Srp1p 
and Rs11p, to allow for its nuclear import. These findings suggest that at least under 
some circumstances, Est1p can localize to the nucleus autonomously. The nuclear import 
of Est2p and Est3p may or may not depend on interaction with TLC1 or Est1p. 
Characterization of the nuclear import of these protein components of telomerase is 
warranted. 
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overexpression of Est2p under these conditions rescued TCL1 RNA nuclear localization 

[294]. These observations suggest a cooperative relationship between Est2p and TLC1 

RNA for (sub)nuclear localization. They also suggest that the interaction between TLC1 

RNA and Est1p or Est3p facilitates nuclear retention of the RNA, providing further 

support for our data demonstrating independent trafficking of Est1p and TLC1 RNA into 

the nucleus. 

Future directions for this work involve using more direct approaches to detect the 

subcellular localization of telomerase components when expressed at endogenous levels. 

The use of overexpressed protein proved beneficial for our investigations, especially 

since our functional analysis using proteins expressed at or near endogenous levels 

corroborated the findings from our overexpression studies. However, the use of 

overexpressed proteins could cause artifactual results. Our studies only examined the 

nuclear localization of Est1p. To obtain a more complete model of telomerase biogenesis 

in yeast, the nuclear localization of Est2p and Est3p should also be characterized. Also, 

because telomerase is a multi-subunit complex, simultaneous examination of the nuclear 

localization of each of its components should be performed. Using an overexpression 

system to conduct these experiments would be difficult and may ultimately prove 

uninformative. Thus, subcellular fractionation followed by immunoblotting of cytosolic 

and nuclear or nucleoplasmic and nucleolar extracts should be conducted to monitor 

localization. 

Our experiments do not specifically address the cell cycle regulation of the 

assembly and trafficking of telomerase components. However, this layer of regulation is 

important for the model of telomerase biogenesis. Therefore, future experiments should 
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include using subcellular fractionation to characterize the subcellular localization of 

telomerase components in a normal cell cycle. Treatment of cells with hydroxyurea or 

nocadazole will allow for the observation of the subcellular localization of telomerase 

proteins in S phase and G2/M phase, respectively. An alternative way to monitor the 

subcellular localization of telomerase components in the cell cycle includes arresting 

cells in G1 phase (when Est1p levels are essentially undetectable) with -factor and 

releasing into the cell cycle by -factor removal. 

One question of interest to us has been whether Est1p nuclear localization 

modulates the localization of other telomerase components. We were not able to obtain a 

variant of Est1p that is uniquely deficient for nuclear localization to permit us to answer 

this question—primarily due to effects on protein function(s) unrelated to nuclear 

localization caused by mutating all three NLSs in Est1p simultaneously. However, our 

findings suggest that Est1p nuclear localization does not necessarily impact TLC1 RNA 

localization and vice versa. To examine the effect of Est1p mislocalization on the 

distribution of other telomerase components more directly, fusion of a cytoplasmic 

targeting sequence to Est1p to shift its steady state localization to the cytoplasm can be 

used with subcellular fractionation experiments to monitor the localization of other 

telomerase components. The localization of endogenous TLC1 RNA can be determined 

by Northern blotting of nuclear and cytosolic extracts isolated using subcellular 

fractionation or by using fluorescence in situ hybridization with probes specific for TLC1 

RNA. If Est1p nuclear localization is required for TLC1 RNA nuclear retention, these 

experiments should be performed in a leptomycin B (LMB)-sensitive yeast strain. LMB 

is a specific inhibitor of Crm1p [346], thus LMB treatment should essentially trap TLC1 
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RNA in the nucleus. These experiments would need to be carefully timed so that TLC1 

RNA is exported from the nucleus to undergo cytoplasmic maturation, but cannot be re-

exported after nuclear import of the mature RNA.  In addition, subcellular fractionation 

can be used to examine which subunit interactions can occur in the absence of Est1p 

nuclear localization. 

In this work, we sought to identify mechanisms that regulate the biogenesis of 

yeast telomerase by determining whether Est1p contains an NLS that is important for 

telomerase function at the telomere. We found that Est1p possesses three NLSs that 

impact telomerase function in the cell by influencing Est1p nuclear localization. 

Investigation of Est1p nuclear import revealed a previously unreported mechanism for 

the biogenesis of telomerase in yeast, the independent nuclear import of two telomerase 

components, Est1p and TLC1 RNA. These experiments impact our understanding of how 

telomerase might function as a snRNP and provide evidence for how the cell 

accomplishes the cell cycle restricted activity of such a complex enzyme.  
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