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CHAPTER I 

  

INTRODUCTION 

 

Learning and Memory 

 Understanding molecular mechanisms underlying normal learning and memory 

processes are fundamental to neuroscience research.  Common research methods use 

rodent models with genetic and/or environmental perturbations to cause dysfunction that 

can be demonstrated in neurobehavioral paradigms.  Using these manipulations one can 

identify proteins of interest that may have altered expression, subcellular localization, 

and/or activation states.  The effects of protein misregulation in the diseased state can 

shed light on how these proteins function in normal learning and memory.  Additionally, 

identification of signaling cascades that are altered in the diseased state can themselves 

lead to identification of therapeutic targets for the treatment of disease. 

 

Hippocampus 

Found in the medial temporal lobe, the hippocampus is a region of the brain that 

plays a crucial role in forming declarative or explicit memories (Figure 1A).  The 

hippocampus emerged as an integral component of memory when it was discovered that 

individuals who had undergone temporal lobe lobotomies, as well as those that had 

certain forms of amnesia, had significant deficiencies in the ability to form new 

memories, without other noticeable cognitive deficits (Squire and Zola-Morgan, 1991; 

Milner et al., 1998).  Numerous studies using animal models have demonstrated that 
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disruption of hippocampal neuronal circuitry, whether through lesion (Mishkin, 1978; 

Chen et al., 1996; Deacon et al., 2002; Dillon et al., 2008), genetic manipulation (Silva et 

al., 1992b; Silva et al., 1992a; Chen et al., 1994; Mayford et al., 1995; Giese et al., 1998; 

Elgersma et al., 2002; Wang et al., 2003), or pharmacological intervention (Morris et al., 

1986; McHugh et al., 2008; Wang et al., 2008), leads to altered learning and memory.   

In addition to the functional importance of the hippocampus, the anatomy of the 

hippocampus lends itself to experimental manipulation (Figure 1B).  The hippocampal 

circuitry seen in Figure 1B describes the axonal inputs projecting from the neocortex to 

the dentate gyrus making up the perforant pathway.  The mossy fiber pathway extends 

from the dentate gyrus to the Cornu Ammonis (CA) 3 region of the hippocampus.  The 

CA3 receives additional innervation through the commissural fibers extending from the 

contralateral hippocampus.  CA3 neurons project onto the CA1 region of the 

hippocampus through what is known as the Schaffer collateral pathway.  The circuit is 

complete as the CA1 sends axonal projections back to the neocortex.  The anatomical 

structure of the hippocampus and its circuitry, intact in isolated slices, has allowed the 

hippocampus to become a very well studied model of cellular learning and memory.  In 

particular, altered physiological properties at the Schaffer-collateral synapse (Figure 1B) 

have been linked to a number of learning and memory deficits (Jiang et al., 1998; Moretti 

et al., 2006; Son et al., 2006; Polydoro et al., 2009).   

Understanding mechanisms of altered physiology in disease models of 

hippocampal-dependent learning and memory allows for the design of hypotheses that 

can lead to the identification of therapeutic targets, which may be manipulated to reverse 

or prevent the memory dysfunction (van Woerden et al., 2007).  Though complex, this is  
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Figure 1.  Hippocampus location and architecture.  A.  The human hippocampus (shown in red) 
is a brain region found deep in the temporal lobe that is important in normal learning and memory 
processes.  B.  A schematic of the cellular architecture of the rodent hippocampus depicts the 
innervation of the dentate gyrus of the hippocampus by neurons projecting from the entorhinal 
cortex, known as the perforant pathway.  Granular cells of the dentate gyrus project via the Mossy 
fiber pathway synapsing onto pyramidal cells of the CA3 region of the hippocampus.  
Additionally, CA3 is innervated by commissural fibers extending from the contralateral 
hippocampus.  CA3 projections synapse on pyramidal cells of CA1, making up the Schaffer 
collateral pathway.  The circuit is completed as CA1 projects back to the neocortex.  The well 
characterized Schaffer collateral pathway can be manipulated electrophyiologically, seen in B, as 
electrical stimulation of the Schaffer collateral can lead to electrical changes recorded in the CA1 
pyramidal neurons.  
 

 

 

Figure 1 A 

B 

http://www.nmr.mgh.harvard.edu/~bradd/hippocampus.jpg 

Adapted from Kandel 2001 

Neo Cortex 
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possible in the hippocampus due to the vast knowledge of how hippocampal physiology 

relates to learning and memory behaviors. 

 

Neuron 

Hippocampal function depends on communication between excitatory 

glutamatergic neurons, of which the pyramidal cells are the major neuronal cell type 

making up the hippocampus.  The morphology of typical hippocampal pyramidal neurons 

can be seen in a golgi-stain of the CA1 region of the hippocampus  (Figure 2A).  Under 

higher magnification dendrites can be visualized, studded with dendritic spines, the site 

of synaptic transmission (Figure 2A, right).  The dendritic spines form connections with 

presynaptic axon terminals creating a structure called the synapse (Figure 2B).  Activity-

dependent regulation of the strength of synapses (synaptic plasticity) can modulate the 

number, size, morphology, and subcellular protein composition of dendritic spines 

(Chang and Greenough, 1984; Moser et al., 1994; Isaac et al., 1995; Liao et al., 1995; 

Marrs et al., 2001; Bourne and Harris, 2008).   Moreover, it is thought that synaptic 

plasticity is the cellular basis for learning and memory.   

 Dendritic spines are specialized structures that extend from the dendritic shaft and 

allow for communication between the presynaptic and postsynaptic neuron (Figure 2B). 

Vesicles in presynaptic axon terminals store neurotransmitter, and are able to release their 

contents into the synapse upon depolarization of the presynaptic neuron.  The 

neurotransmitter is able to traverse the synaptic cleft and activate receptors on the 

dendritic spine of the postsynaptic neuron, altering downstream signaling initially in the 

postsynaptic density (PSD), and then throughout the neuron.  The PSD contains all the  



 5 

Figure 2 

 
 
Figure 2.  Neuronal and dendritic spine structure.  A.  The left panel shows a golgi-stain of 
pyramidal cells of the CA1 region of the hippocampus, in slice preparations.  The tightly packed 
pyramidal cells contain dense dendritic arborizations.  Under higher magnification (A. right 
panel) an eGFP transfected dendrite reveals the dendritic spines that dot the length of the 
dendrite.  B.  An electromicograph image shows both presynaptic and postsynaptic elements that 
form the synapse.  The characteristic synaptic vesicle (SV) laden presynaptic terminal (top) forms 
connections with the postsynaptic neuron via dendritic spines.  The electron rich area of the 
dendritic spine is known as the PSD.  The spin neck, which extends from the dendrite is also 
visible. (Images taken from Marrs et al, 2001 and Shang and Hoogenraad, 2007).     
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machinery needed for the transduction of presynaptic signals into intracellular molecular 

responses.  This consists of scaffolding proteins (e.g., PSD-95), receptors and channels 

(e.g., NMDAR, AMPAR), kinases (e.g., CaMKII), as well as a number of other adhesion, 

cytoskeletal, translational, and regulatory proteins.  Through protein/protein interactions 

this collection of 400-1000 proteins (Sheng and Hoogenraad, 2007) are able to spatially 

and temporally organize signaling complexes at the PSD for efficient and specific 

dissemination of presynaptic messages (Figure 3).  It is hypothesized that altered 

expression, localization, or activation of PSD proteins that affect these protein/protein 

interactions can lead to learning and memory dysfunction.   

 

Glutamate family of receptors 

Glutamate is a major excitatory neurotransmitter in the hippocampus as well as 

the entire central nervous system (CNS).  Glutamate released by presynaptic axon 

terminals can traverse the synaptic cleft and activate a number of receptors on the 

postsynaptic membrane, including metabotropic glutamate receptors (mGluRs) and 

ionotropic glutamate receptors (iGluRs).  mGluRs are G-protein coupled receptors 

(GPCRs), which are able to alter intracellular signaling cascades upon glutamate binding.  

iGluRs function as ion channels, opening in response to glutamate activation.  For the 

purposes of this dissertation I will focus on the ionotropic family of glutamate receptors. 

  

N-methyl-D-aspartate receptors (NMDAR)  

A member of the ionotropic glutamate family of receptors, NMDARs are voltage-

gated and ligand-gated cation channels that play important roles in synaptic plasticity and      
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Figure 3 

 

Figure 3.  Representation of a postsynaptic density (PSD).  This cartoon represents an electron 
dense area of the dendritic spine seen in figure 1B.  An estimated 400-1000 proteins are present in 
a PSD.  These proteins are necessary for rapid dissemination of both electrical and chemical 
signals relayed from presynaptic neurons.  Signal transduction from the PSD initiates changes in 
spine morphology, gene expression, and altered protein activation/localization that is important in 
changes in synaptic strength, which in turn affects learning and memory.   
 

 

 

 
 

 

 

Adapted from Sheng and Hoogenraad 2007 
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learning and memory (Morris et al., 1986; Bliss and Collingridge, 1993).  Additionally, 

these receptors are involved in brain development and are crucial in synaptogenesis 

(Stephenson et al., 2008). 

The heterotetrameric transmembrane NMDARs are comprised of a combination 

of NR1, NR2 (A-D), and NR3 (A and B) subunits (Hollmann et al., 1989; Moriyoshi et 

al., 1991; Monyer et al., 1992).  Along with NR1, NR2B and NR2A are the predominate 

subunits found in the adult hippocampus, with NR3 being expressed in the immature 

brain. Each subunit of the NMDA receptor contains (1) an extracellular agonist binding 

N-terminal domain, (2) three transmembrane domains with an intracellular reentrant loop 

between transmembrane domains 1 and 2, forming the channel pore, and (3) an 

intracellular C-terminal domain important for posttranslational modification of the 

receptor, trafficking, and protein/protein interactions.  Functional NMDARs are formed 

by the association of two obligatory NR1 subunits (Forrest et al., 1994; Behe et al., 

1995), which contain an extracellular binding pocket for the co-agonist, glycine (Monyer 

et al., 1992; Anson et al., 1998; Banke and Traynelis, 2003), and two additional NR2 

subunits (Sheng et al., 1994), which contain the extracellular glutamate binding domain 

(Planells-Cases et al., 1993; Anson et al., 1998). 

NMDA receptors are localized to the PSD in part by the direct interaction of 

NR2A and NR2B with PSD-95 (Roche et al., 2001), a member of the membrane-

associated guanylate kinase (MAGUK) family of scaffolding proteins that is enriched in 

the PSD.  Stable localization of NMDA receptors at postsynaptic and extrasynaptic 

membranes is vital for receptor regulation and neuronal function (Barria and Malinow, 

2002; Mohrmann et al., 2002). 
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Activation of NMDARs is a unique process requiring the coordination of several 

simultaneous events.  In the inactive state, the pore of the channel is blocked by an Mg2+ 

ion, thus depolarization of the postsynaptic membrane is required for removal of the 

Mg2+ block.  Along with depolarization of the postsynaptic cell, coincident binding of 

glutamate, as well as the co-agonist glycine, is needed to activate the receptor.  Once 

active, Ca2+ is conducted through the pore altering local intracellular Ca2+ concentrations 

in the dendritic spine leading to activation of signaling cascades that modulate synaptic 

plasticity.  Desensitization of the NMDAR is enhanced by activation of CaMKII 

(Sessoms-Sikes et al., 2005).  This desensitization is thought to occur through 

phosphorylation at residue Ser1303 of the NR2B subunit by CaMKII (Colbran lab 

unpublished data).  Furthermore, it is hypothesized that this phosphorylation results in 

alterations of Ca2+ concentrations that can modulate synaptic plasticity and learning and 

memory.        

 

!-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR)  

The primary receptors responsible for fast excitatory neurotransmission in the 

brain are the AMPARs, another member of the ionotropic glutamate receptor family.  

These ligand-gated ion channels, activated by glutamate, are a major conductor of Na+ 

and in some cases Ca2+ ions leading to depolarization of postsynaptic neurons.  Activity-

dependent trafficking of AMPARs in and out of the postsynaptic membrane is thought to 

underlie a number of forms of synaptic plasticity, including LTP and LTD (Barry and 

Ziff, 2002; Malinow and Malenka, 2002; Bredt and Nicoll, 2003).  Altered trafficking of 
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AMPARs due to changes in phosphorylation of the receptor can lead to deficits in 

learning and memory (Lee et al., 2003; Crombag et al., 2008).  

Functional AMPARs exist as heterotetramers made up of a combination of four 

subunits, which are encoded from four separate genes (GluR1-GluR4) (Hollmann and 

Heinemann, 1994; Rosenmund et al., 1998).  All four subunits can be found in the brain, 

with GluR4 found predominantly in the immature brain.  In the mature hippocampus 

GluR1, GluR2, and GluR3 are the major subunits expressed.  These subunits combine to 

primarily form heteromers of either GluR1/GluR2 homodimers or GluR2/GluR3 

homodimers (Wenthold et al., 1996).  Structurally, AMPARs contain (1) a large 

extracellular N-terminal domain that contains the site for glutamate binding, (2) three 

transmembrane domains with a cation pore formed between transmembrane domain 1 

and 2, and (3) a C-terminal domain.  Posttranslational modification and protein/protein 

interactions in the C-terminal domain can direct trafficking and subcellular localization of 

the receptors, as well as affect function of the receptors (Kessels and Malinow, 2009).  

Insertion or removal of AMPARs from the postsynaptic membrane dictates the 

strength of the synapse (Barry and Ziff, 2002; Malinow and Malenka, 2002; Bredt and 

Nicoll, 2003).  This can be influenced by the subunit composition of individual receptors 

and the presence of long-tail (GluR1/4) or short-tail (GluR2/3) cytoplasmic C-termini.  It 

has been documented that heterotetrameric GluR2/3 containing AMPARs, that have short 

cytoplasmic tails, constitutively traffic in and out of the synapse, whereas synaptic 

activity is needed to drive AMPARs containing GluR1/2 subunits, in which a long-tail 

cytoplasmic domain is present (GluR1) (Shi et al., 2001).  Although AMPAR trafficking 

is not completely understood it is thought that phosphorylation of intracellular sites on 



 11 

the receptor can affect the subcellular localization of the receptor.  For example, synaptic 

insertion of AMPARs can be enhanced by phosphorylation of Ser845 by PKA (Roche et 

al., 1996; Song and Huganir, 2002; Esteban et al., 2003).  CaMKII activation is known to 

enhance synaptic insertion and can modulate AMPAR conductance through 

phosphorylation of Ser831 (Barria et al., 1997; Mammen et al., 1997), along with PKC 

phosphorylation at Ser818 and Ser831 (Roche et al., 1996; Boehm et al., 2006).  

Alternatively, dephosphorylation of Ser845/Ser831 (Kameyama et al., 1998; Lee et al., 

2000) along with phosphorylation of Ser880 by PKC can remove AMPARs from the 

synapse (Chung et al., 2000; Matsuda et al., 2000).  Changes in phosphorylation of the 

receptor, which affect AMPAR binding to PDZ domain proteins, are thought to lead to 

altered receptor localization (Chung et al., 2000). 

When activated, AMPARs are able to rapidly conduct Na+ ions, leading to a 

depolarization of the postsynaptic neuron.  These receptors are responsible for the fast 

component of the excitatory postsynaptic potential (EPSP) and are a crucial component 

of synaptic plasticity and learning and memory (Kessels and Malinow, 2009).  

   

Ca2+/calmodulin-dependent kinase II (CaMKII) 

Ca2+/calmodulin-dependent kinase II (CaMKII) is a multifunctional kinase that 

plays an integral role in the normal learning and memory process.  CaMKII acts as a Ca2+ 

sensor, integrating local transient changes in Ca2+ concentration to a variety of functional 

responses.  It is thought that CaMKII localization, protein interactions, and activity state 

dictate how the calcium signal will be decoded and what cellular responses will occur 

(Soderling, 2000; Lisman et al., 2002; Colbran and Brown, 2004). 
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A highly abundant protein, CaMKII accounts for ~1-2% of the total protein in the 

hippocampus, furthermore CaMKII levels in the PSD have been estimated to account for 

2-10% of the total protein present (Hanson and Schulman, 1992b; Colbran, 2004).  There 

are four isoforms of CaMKII (!, ", #, and $) encoded on four separate genes, all of which 

can undergo alternative splicing accounting for 30 mRNA products.  CaMKII! and 

CaMKII" are the major isoforms found in the brain, and more specifically the 

hippocampus.  CaMKII exists as a homo- or hetero- multimeric protein containing twelve 

individual subunits.  The individual subunits assemble through the C-terminal association 

domain to form a dodecomeric structure (two stacked, hexameric rings) (Kolodziej et al., 

2000; Morris and Torok, 2001). 

A single CaMKII subunit consists of an N-terminal catalytic domain (residues 1-

272), an internal regulatory domain (residues 273-314), and a C-terminal association 

domain (residues 315-478) (Figure 4A).  The association domain, through intersubunit 

interactions, acts as a scaffold to form the functional holoenzyme structure. The 

regulatory domain is the site of calmodulin binding and contains phosphorylation sites at 

Thr286 and Thr305/306, which can further modulate kinase activity and subcellular 

localization (Figure 4B) (Lisman et al., 2002; Colbran, 2004; Griffith, 2004).  

CaMKII responds to transient changes in local Ca2+ concentrations, with varying 

sensitivity to the duration and frequency of these changes (De Koninck and Schulman, 

1998).  Calcium-dependent activation of CaMKII occurs when increasing intracellular 

Ca2+ binds to calmodulin, the Ca2+/calmodulin complex is able to bind to the regulatory 

domain of CaMKII removing the autoinhibition and activating the kinase.   CaMKII is 

now able to bind to, and phosphorylate, its target substrates.  The active kinase is also  
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Figure 4 

 

Figure 4. CaMKII structure and regulation.  A.  A schematic representation of a single subunit 
of CaMKII, which is comprised of an N-terminal catalytic domain (Blue), a regulatory domain 
(Red) that contains autophosphorylation sites, and a calmodulin binding site that are crucial in the 
regulation of the kinase, variable regions (Yellow) that are sites of alternative splicing, and a C-
terminal association domain allowing for subunit oligomerization.  In the inactive state the 
catalytic domain binds to auto-inhibitory sites in the regulatory domain preventing ATP (T-site) 
and substrate (S-site) binding.  B.  CaMKII exists as a dodecomeric structure formed by two-
stacked hexameric rings (for simplicity only one ring is shown in B.).  Ca2+/calmodulin binding to 
the regulatory domain releases the catalytic domain from auto-inhibition activating the kinase.  
When two adjacent subunits are bound to Ca2+/calmodulin the kinase can undergo inter-subunit 
trans-autophosphorylation at Thr286 rendering the kinase autonomously active as 
Ca2+/calmodulin dissociate (subunits 4 and 5 in the diagram).  The absence of calmodulin can 
lead to inter-subunit Thr305/306 phosphorylation, which prevents calmodulin binding, and thus 
Thr286 phosphorylation. (Figure adapted from Colbran, 2004)     
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primed to undergo intersubunit trans-autophosphorylation at Thr286 (Bradshaw et al., 

2002), increasing the affinity for Ca2+/calmodulin 1000-fold, “trapping” the kinase in the 

active conformation (Meyer et al., 1992).  Thr286 phosphorylation also confers 

autonomous activity to the kinase, so as intracellular Ca2+ returns to basal levels and the 

Ca2+/calmodulin complex dissociates, CaMKII is able to remain active due to the Thr286 

phosphorylation, which prevents autoinhibition through steric hindrance (Lai et al., 1986; 

Lou et al., 1986; Miller and Kennedy, 1986; Schworer et al., 1986).  Moreover, this 

phosphorylation is thought to be a form of “molecular memory” at the level of dendritic 

spines, integrating transient changes in Ca2+ levels to long-term signals that induce 

changes in synaptic strength (Figure 4B) (Colbran 2004). 

Calcium-independent activity of CaMKII is revealed as Ca2+/calmodulin 

dissociates from the kinase.  Intra-subunit phosphorylation of Thr305/306 in the 

regulatory domain prevents further Ca2+/calmodulin binding (Colbran and Soderling, 

1990; Hanson and Schulman, 1992a; Mukherji et al., 1994).  However, the previous 

phosphorylation at Thr286 keeps the kinase in an active conformation able to interact 

with and phosphorylate substrates.  When CaMKII is dephosphorylated at Thr286 the 

kinase is locked in an inactive form until the kinase can be reset by dephosphorylation of 

Thr305/306.  However, it is not completely understood how differential phosphorylation 

of subunits within the CaMKII holoenzyme, at Thr286, Thr305/306, as well as other 

sites, affects the activity level or the subcellular localization of the kinase (Figure 4B).      

Specific functions of CaMKII are intimately coupled to its subcellular localization 

within the neuron (Figure 5).  For example, in order for calcium-dependent activation of 

CaMKII to occur, the kinase must be localized to regions within the cell that are sites of  
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Figure 5 

 

 

Figure 5.  Phosphorylation-dependent subcellular localization and function of CaMKII.  
Ca2+/calmodulin activation of CaMKII leads to translocation and differential phosphorylation of 
CaMKII (see text).  Thr286 phosphorylation increases the affinity of CaMKII to the PSD where it 
can interact with and, through phosphorylation, modulate a number of substrates including the 
NMDAR and AMPAR.  Activation of the multifunctional CaMKII leads to changes in local 
CaMKII synthesis, gene transcription, morphological changes, as well as receptor trafficking and 
changes in receptor function.  (Figure adapted from Colbran and Brown, 2004) 
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Ca2+ entry.  Additionally, activity of the enzyme is useless if CaMKII is not appropriately 

localized to sites where its substrates are localized.  Phosphorylation state dependent 

subcellular localization of CaMKII is able to position the kinase, both temporally and 

spatially, within the cell to efficiently modulate cellular functions (Colbran 2004).  In 

addition to modulating the activity of the kinase, differential phosphorylation of CaMKII 

can dictate subcellular localization of the kinase.  CaMKII phosphorylation at residue 

Thr286 (see above) stabilizes the kinase at the PSD.  It has been demonstrated that there 

is a greater than 2-fold increase in the amount of CaMKII (Strack et al., 1997a) and the 

size of the PSD (Dosemeci et al., 2001) after CaMKII Thr286 phosphorylation following 

LTP induction.  This is thought to be due to an increased affinity of CaMKII for PSD 

enriched proteins, such as the NR2B subunit of the NMDAR (Strack and Colbran, 1998).    

CaMKII is able to interact (directly or indirectly) with a number of PSD-associated 

proteins (!-actinin, densin-180, SAP-97, PSD-95, synGAP", and F-Actin) that may 

participate in targeting CaMKII to the PSD (Shen et al., 1998; Strack et al., 2000b; Li et 

al., 2001; Robison et al., 2005b; Nikandrova et al., 2010).  Presumably, translocation of 

activated CaMKII into the PSD positions the kinase in close proximity to its substrates to 

facilitate and alter molecular learning and memory functions (Robison et al., 2005a; Tsui 

and Malenka, 2006). 

Holoenzyme subunit composition can also affect subcellular localization.  

Although the CaMKII ! and " subunits are 90% homologous, CaMKII" has the ability to 

bind to F-Actin through an F-Actin binding domain located in the association domain 

(Shen et al., 1998; Fink et al., 2003).  The interaction between CaMKII" and F-Actin can 

be modulated by Ca2+/calmodulin, causing dissociation of the complex when CaMKII is 
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activated (Ohta et al., 1986).  At present it is unknown how the subunit composition (i.e. 

!:" ratio), within individual twelve subunit holoenzymes, affects CaMKII targeting to F-

Actin or how this affects subcellular localization of the kinase. 

I have described how activation can drive the translocation of CaMKII into the 

PSD (Strack et al., 1997a; Migues et al., 2006).  Once Ca2+ levels drop and 

Ca2+/calmodulin dissociates from CaMKII, the autonomously active kinase (Thr286 

phosphorylated) remains in the PSD able to regulate its substrates.  A rapid intrasubunit 

phosphorylation of Thr305/306 follows Ca2+/calmodulin dissociation, which prevents any 

additional Ca2+/calmodulin from binding the kinase.  The PSD-associated CaMKII can be 

dephosphorylated by protein phosphatase 1 (PP1) (Strack et al., 1997b), which removes 

the Thr286 phospho-group rendering the kinase inactive.  The Thr305/306 

phosphorylation drives translocation of CaMKII out of the PSD into more cytosolic 

locations, removing the kinase from the vicinity of its PSD-associated targets.  This can 

be demonstrated in genetically modified mice where the residues Thr305/306 of the 

CaMKII! subunit are mutated to alanines.  These mice have an increased CaMKII 

associated with the PSD (Elgersma et al., 2002).  Additionally, mice that harbor a 

mutation in CaMKII! that replaces the threonine at residue 305 to an aspartate leads to a 

decrease in the amount of CaMKII associated with the PSD (Elgersma et al., 2002).  

Together this suggests that Thr305/306 is, in part, responsible for the decreased affinity 

and dissociation of CaMKII from the PSD.  After phosphorylated at Thr305/306 the 

kinase must be “reset” (i.e. dephosphorylated at Thr305/306) before it can be activated 

again by changes in Ca2+ levels.  Protein phosphatase 2A (PP2A) dephosphorylates 

cytosolic CaMKII (Strack et al., 1997b) resetting the kinase, making it available for 
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subsequent activation by Ca2+/calmodulin.  This tight regulation of CaMKII, dictating its 

activation state, subcellular localization, and interacting partners, is crucial for normal 

synaptic plasticity and learning and memory to occur.  Any perturbations that affect 

CaMKII expression or regulation can drastically alter normal cellular function and lead to 

deficits in learning and memory (see below).           

         

Synaptic plasticity 

Synaptic plasticity refers to the strengthening or weakening of synapses during 

learning and memory or synaptogenesis.  Changes in protein composition and function 

results in remodeling of dendritic spines that leads to the insertion or removal of 

AMPARs from the synapse.  This can be detected electrophysiologically as long-term 

pontentiation (LTP) or depression (LTD), respectively (Barry and Ziff, 2002; Malinow 

and Malenka, 2002; Bredt and Nicoll, 2003; Kessels and Malinow, 2009).  

LTP is a cellular correlate to learning and memory consisting of two major 

phases, an early-phase (E-LTP) and a late-phase (L-LTP).  Experimentally, LTP can be 

generated by high-frequency stimulation (HFS) of CA3 afferents leading to a potentiation 

of excitatory postsynaptic potentials (EPSPs) in CA1 neurons (Fig. 1B) (Bliss and Lomo, 

1973).  E-LTP is the immediate response to a HFS, which is protein synthesis-

independent and is sustainable for 30 minutes to one hour.  L-LTP is dependent on 

protein synthesis and can last for days to weeks and even months (Kandel, 2001).  

CaMKII is known to play a fundamental role in molecular mechanisms of 

synaptic plasticity and LTP (Figure 6) (Fink and Meyer, 2002; Lisman et al., 2002; 

Matynia et al., 2002; Colbran and Brown, 2004).  LTP begins with the release of 
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glutamate from the presynaptic terminal into the synapse.  The coincident depolarization 

of the postsynaptic membrane, often due to AMPAR activation, and binding of glutamate 

to postsynaptic NMDARs displaces Mg2+ from the ion channel pore and activates the 

receptor.  Now active, the NMDARs conduct Ca2+ ions, changing the local concentration 

of Ca2+ at the PSD, thus activating CaMKII (see above).  Activation of CaMKII allows 

the kinase to translocate to the PSD where it can bind to and phosphorylate target 

proteins, such as the GluR1 subunit of the AMPAR at Ser831.  CaMKII activation leads 

to increased expression of AMPARs at the postsynaptic membrane and phosphorylation 

of the GuR1 subunit at Ser831enhances conductance of the receptor, leading to long-term 

changes in the strength of the synapse.  This is visualized electrophyisologically as a 

potentiation of the excitatory postsynaptic potential (EPSP).  There are numerous mouse 

models linking misregulation of CaMKII to hippocampal LTP and learning and memory 

deficits, highlighting the importance of CaMKII in normal learning processes (Silva et 

al., 1992b; Silva et al., 1992a; Bach et al., 1995; Mayford et al., 1995; Mayford et al., 

1996; Giese et al., 1998; Elgersma et al., 2002; Miller et al., 2002; Hinds et al., 2003; 

Wang et al., 2003). 

 

CaMKII and Learning and Memory 

The role of CaMKII in the normal learning and memory process has been widely 

studied using both in vitro, ex vivo and in vivo paradigms.  Altering CaMKII expression, 

phosphorylation state (activity), or subcellular localization can profoundly affect the 

molecular mechanisms that drive learning and memory.  To fully understand how 

changes on a molecular level can lead to alterations in behavioral output, it first must be   
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Figure 6 

 

 

Figure 6.  Long-term potentiation (LTP).  NMDAR activation leads to an increase in 
intracellular Ca2+.  The Ca2+ is able to bind to CaM and through binding can activate a number of 
kinases associated with E-LTP and L-LTP.  In E-LTP activation of CaMKII! and PKA leads to 
phosporylation of AMPAR at Ser831 and Ser845, respectively.  The activation of these kinases 
leads to an increased trafficking of AMPARs to the synapse, as well as an increase in AMPAR 
conductance leading to a potentiation of AMPAR responses that can last for 1-3 hours.  L-LTP, 
unlike E-LTP, is dependent on protein synthesis.  Ca2+/CaM activation of a number of signaling 
pathways, such as Mitogen-activated protein kinase (MAPK), CaMKIV, and Protein kinase A 
(PKA), leads to cAMP response element binding protein (CREB) phosphorylation and gene 
transcription.  The activation of gene transcription in the context of L-LTP can lead to 
potentiation of AMPAR responses that can last for months.   
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known how manipulating the function and/or regulation of the kinase leads to learning 

and memory deficits.  

Using electrophysiological techniques it has been shown that induction of LTP in 

the hippocampus leads to an enhanced AMPAR response to glutamate due to an 

increased number of AMPARs in the postsynaptic membrane (Shi et al., 1999; Shi et al., 

2001).  The same alteration of AMPAR response to glutamate can be detected if 

exogenous CaMKII! is added to hippocampal slices (Lledo et al., 1995; Poncer et al., 

2002; Thiagarajan et al., 2002) and has been shown to be CaMKII dependent (Hayashi et 

al., 2000).  Additionally, there is an increase of CaMKII levels, and CaMKII activity, in 

the PSD following LTP (Strack et al., 1997a).  Similarly, if CaMKII activity is inhibited 

using CaMKII antagonists, LTP is blocked (Chen et al., 2001).  It is important to note 

that inhibition of CaMKII prior to, but not after, HFS blocks LTP (Sanhueza et al., 2007).  

These experiments directly show that CaMKII is a crucial player in the cellular 

mechanisms that are responsible for the induction of LTP. 

The creation of genetically modified mice, that alter learning and memory in 

behavioral paradigms, have greatly enhanced the understanding of the role CaMKII is 

playing in learning and memory (Table 1).  In attempts to understand the contribution of 

CaMKII! autonomous activity on learning and memory, the laboratory of Alcino Silva 

created CaMKII!-Thr286Ala knock-in (KI) mice by homologous recombination using a 

point mutation strategy to change the encoding of the amino acid threonine at position 

286 to an alanine.  Mice harboring this CaMKII! (Thr286 to Ala) KI mutation cannot 

autophosphorylate at position 286, thus preventing autonomous activity of the kinase 

(Giese et al., 1998).  The CaMKII! in these mice can still be activated by 
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Ca2+/calmodulin; however, without autonomous activity, when Ca2+ returns to basal 

levels in the neuron CaMKII no longer has the capacity to “remember” previous changes 

in intracellular Ca2+, losing the ability to act as a “molecular memory” protein.  The loss 

of autonomous CaMKII activity in these mice leads to profound electrophysiological and 

learning and memory deficit (Giese et al., 1998).  

Immunoblot and immunocytochemical analysis of total CaMKII! from the 

hippocampus of adult KI mice was unchanged from that of WT.  Ca2+/calmodulin-

dependent CaMKII activity was unaltered, however the Ca2+/calmodulin-independent 

activity was reduced, not absent, in the KI mice.  CaMKII" activity may be compensating 

for the decreased CaMKII! activity (Giese et al., 1998; Elgersma et al., 2004); Although 

CaMKII" expression has not been evaluated (see chapter 5). 

Electrophysiological mechanisms were tested in the KI mice to identify potential 

deficiencies associated with learning and memory.  Field recordings in hippocampal 

slices revealed no changes in basal synaptic transmission properties in KI compared to 

WT mice.  LTP experiments were used as a cellular correlate to learning and memory.  

Hippocampal slices from KI mice showed a deficiency in fEPSP potentiation compared 

to WT slices using a number of LTP induction protocols (2-theta burst, 10 Hz, 100Hz 

stimulation) (Giese et al., 1998).  

The LTP deficit in the KI slices suggested a potential hippocampal-dependent 

learning and memory deficit.   Hippocampal-dependent special learning was assayed 

using the Morris water maze (MWM) behavioral task.  During training, KI mice 

demonstrated a significantly higher escape latency to find a hidden platform.   

Additionally, during the probe trial WT mice spent significantly more time in the target 
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quadrant compared to the other three quadrants, whereas KI mice did not show 

preference for the target quadrant over any other quadrant.  Accordingly, the WT mice 

had significantly more platform crosses than the KI mice.  The MWM revealed a 

dramatic learning and memory deficit in the KI mice compared to the WT mice, 

consistent with an important physiological role for the electrophysiological deficits 

shown in these animals (Giese et al., 1998). 

A number of other genetically modified mice altering the expression, activity, 

and/or subcellular localization of CaMKII have demonstrated the crucial role for normal 

CaMKII regulation and function for proper hippocampal learning and memory to occur.  

The changes in hippocampal PSD expression, electrophysiological properties, and 

behavioral phenotypes in these other CaMKII mutant mice are outlined in Table 1. 

 

Summary 

 CaMKII functions as a serine/threonine kinase as well as a scaffolding protein 

that is able to coordinate the interaction of multiple proteins into larger signaling 

complexes, which CaMKII can regulate through its kinase activity.  CaMKII is activated 

by increases in local intracellular Ca2+ levels and can act as a “molecular memory” 

switch, integrating subsequent Ca2+ signals to affect cellular changes leading to synaptic 

plasticity.  

This research project aims to understand how CaMKII expression, 

phosphorylation, and subcellular localization are altered due to genetic and 

environmental perturbations during early postnatal development.  Using mouse models of 

a neurodevelopmental disorder, an environmental stressor, and a CaMKII! mutation, I 
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will show that alterations in normal CaMKII regulation that occur prior to adolescence 

can drastically affect biochemical, electrophysiological, and behavioral measures related 

to learning and memory.  I will attempt to identify molecular mechanisms that lead to 

dysfunction to gain a better understanding of how signaling pathways involved in 

molecular memory develop.  This may shed light on potential therapeutic targets that 

themselves can be manipulated, during these early postnatal time points, to rescue or 

prevent learning and memory deficits from occurring later in life.          
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CHAPTER II 

 

METHODS 

 

Mice/Breeding  

1) Angelman Syndrome mouse model: All mice were maintained on C57/SV-129 

mixed background. WT males (Ube3a M+/P+) were bred with AS females (Ube3a M-

/P+) to generate WT and AS littermates.  PCR analysis (described previously by Jiang et 

al., 1998) was performed on ear punches to genotype the offspring and confirmed by 

western blot analysis of E6-AP.  Male and female mice were used in this analysis. 

2) Early-life stress model: All mice were generated by C57BL/6J breeding pairs.  

Prior to beginning the stress experiments, females had to successfully rear two litters of 

pups to weaning age (P21).  Dams pregnant with their third litters (E17-E19), were 

moved into standard cages and were housed individually.  After the pups reached P2, the 

litter was culled to five pups (selecting for males).  The Dam and her five remaining pups 

were placed in a mouse cage with a wire mesh floor (McMaster-Carr cat. #9656T112, 

fabricated in the Vanderbilt machine shop). The wire mesh floor was elevated ~ 2-2.5 cm 

off the bottom of the cage.  The bottom of the cage contained 10% of the normal corncob 

bedding as a standard cage (~ 60 ml).  Additionally, a 2.5 cm x 5 cm nesting square was 

placed in the cage with the dam and her pups. The control mice were moved and the 

litters culled as described for the ES mice; however, they were always kept in a standard 

mouse cage.  Additionally, the control dams were given a 5 cm x 5 cm nesting square 
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when moved at P2.  All experiments described were done at adolescent (P24-P28) and 

adult (~P90) time points. 

3) CaMKII!-Thr286Ala KI mice were maintained on a C57BL/6J background.  

Breeding pairs consisted of heterozygous males and females that generated WT, HET, 

and KI mice in a 1:2:1 ratio.  PCR analysis (described previously by Giese et al., 1998) 

was performed on ear punches to genotype the offspring.  Animal genotypes were 

confirmed using western blot analysis of CaMKII!-Thr286 phosphorylation.     

 

Western Blot Analysis  

Protein gel samples were heated at 60°C for 10 minutes and fractionated by SDS-

polyacrylamide gel electrophoresis (PAGE).  Proteins were transferred in 10mM N-

cyclohexyl-3-amino propanesulfonic acid (CAPS) with 10% methanol buffer onto 

nitrocellulose membranes.  Membranes were stained with 0.2% Ponceau-S and digitally 

scanned in order to compare total protein levels in each lane by densitometric scanning of 

the 45-116 kDa molecular weight range using ImageJ (NIH).  Membranes were then 

blocked in 5% milk in Tris-Buffered Solution with Tween-20 (TTBS) at 4°C overnight.  

Membranes were then incubated with primary antibody in 5% milk in TTBS overnight at 

4°C.  Membranes were washed 4 x 10 minutes in TTBS, incubated with secondary 

antibody in 5% milk in TTBS for 1 hour and 30 minutes, washed 4 x 10 minutes in 

TTBS, and developed using Western Lighting Enhanced Luminol Reagent-Plus (Plus-

ECL).  X-ray films exposed in a linear range were quantified using ImageJ for 

densitometric analysis as described previously (Brown et al., 2005).  Western blot signals 

were then normalized for variations in total protein loading in the corresponding lane, as 
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quantified from Ponceau-S stained membranes, thereby avoiding potential problems 

associated with quantifying a single protein for use as a loading control.  All 

phosphoproteins were normalized to the total amount of the respective protein detected 

unless otherwise stated.   

 

Immunohistochemisty 

 Mice were deeply anesthetized and transcardially perfused with 10 ml ice-cold 

1M phosphate buffered saline (PBS; pH 7.3) followed by 20 ml ice-cold 4% 

paraformaldehyde (PFA) in PBS.  The brain was carefully removed and post-fixed 

overnight in 4% PFA at 4°C.  The brain was placed in a 50 ml conical tube containing 

15% sucrose in PBS for 8-10 hours at 4°C (until the brain sinks), and then moved to a 50 

ml conical tube containing 30% sucrose in PBS overnight at 4°C.  The brain was then 

mounted on a cryostat, frozen with cryospray, and 40 µM coronal slices were collected.  

The slices were placed into 24-well plates containing cryopretectant (300 ml ethylene 

glycol, 300 ml glycerol, 0.2 M phosphate buffer, and 300 ml H2O) and stored at 4°C.  

Slices were washed 3 x 10 minutes in 0.01 M PBS.  Slices were then placed in 0.6% 

hydrogen peroxide in 0.01 M PBS for 30 minutes, then the solution was changed and 

incubated for an additional 10 minutes.  The slices were then washed 3 x 10 minutes in 

0.01 M PBS and blocked for 1 hour in 5% normal goat serum (NGS) in 0.2% Triton X-

100 in PBS.  The slices were then incubated for 2 days in primary antibody at 4°C.  

Primary antibodies were diluted in the blocking solution, the antibody used was the 

mouse anti-E6-AP (1:5000; Sigma-Aldrich clone 330).  The slices were then washed 3 x 

10 minutes in 0.01 M PBS, and incubated for 90 minutes with an anti-mouse secondary 
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antibody at 1:1000 in blocking solution.  Immunohistochemical detection was performed 

using the Vector Labs 3,3’-diaminobenzidine (DAB) peroxidase substrate kit (SK-4100).   

The slices were first washed 3 x 10 in 0.01 M PBS and incubated with the Vecotor Labs 

ABC solution for 1 hour, washed 2 x 5 minutes in 0.01 M PBS, and 3 x 10 minutes in 

0.01 M PBS.  The DAB was added and allowed to develop for 5 minutes.  The 

development was stopped by addition of 100 µM sodium azide in H2O.  The slices were 

then washed 2 x 1 minute in 0.01 M PBS and mounted onto coverslips with aquamount.      

 

Tissue homogenization 

For total tissue homogenates that were not subsequently fractionated, tissue was 

homogenized in Kontes glass or Wheaton Teflon tissue grinders in a 2% sodium dodecyl 

sulfate (SDS) buffer containing 10!g/ml leupeptin and 1 !g/ml pepstatin.  A 

bicinchoninic acid (BCA) protein concentration assay was run on the homogenates, 

which were then diluted to a final concentration of 0.7-1 mg/ml.  

 

Subcellular fractionation 

Tissue was homogenized in homogenization buffer (150 mM KCl, 50 mM Tris-

HCl pH 7.5, mM DTT, 0.2 mM PMSF, 1 mM benzamidine, 1 !M pepstatin, 10 !g/ml 

leupeptin, and 1 !M microcystin-LR) using Wheaton Teflon or Kontes glass tissue 

grinders at 4°C.  Total homogenate was rocked for 30 minutes at 4°C and spun down at 

100,000 x g for 1 hour (or 10,000 x g for 10 minutes) yielding an S1H or (S1L) fraction 

(soluble cytosolic protein pool) and a P1 pellet (insoluble fraction).  Visual comparison of 

the S1H and S1L fractions revealed no difference in protein distribution between fractions, 
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as well as no change in the fractionation of our proteins of interest.  Unless otherwise 

noted S1 will refer to the low speed (10,000 x g) spin.  P1 was resuspended in 

homogenization buffer containing 1% (v/v) Triton X-100 using a Kontes, rounded tip 

cone pestle and rocked for 30 minutes at 4°C.  The homogenate was then spun down at 

10,000 x g for 10 minutes at 4°C yielding an S2 fraction (membrane-associated protein 

pool) and a P2 pellet (Triton insoluble fraction).  The P2 was sonicated at 4°C in 

homogenization buffer containing 1% (v/v) Triton X-100 and 1% (W/V) sodium 

deoxycholate and rocked for 30 minutes at 4°C.  The homogenate was spun down at 

10,000 x g for 10 minutes at 4°C yielding an S3 fraction (PSD-associated fraction) and a 

P3 pellet (Triton/Deoxycholate-insoluble fraction) (Figures 1 and 2).  In some cases, 

noted in text, after resuspending P2 the homogenate was not spun down so that S3 and P3 

were pooled together.  

 

Immunoprecipitation 

Homogenates from each fraction were precleared by rocking for 30 minutes at 

4ºC in microcentrifuge tubes with a 1:1 slurry of gammabind-G Sepharose beads 

(Amersham Biosciences) resuspended in IP buffer (150 mM NaCl, 50 mM Tris, and 

0.1% Triton in H2O).  After preclearing, the G-Sepharose beads were pelleted by 

centrifugation and the precleared homogenate was moved into clean microcentrifuge 

tubes.  2 µg of goat-CaMKII antibody was added to the precleared homogenate and 

rocked for 1 hour at 4ºC.  Gammabind-G-Sepharose was then added to the microfuge 

tubes and rocked overnight at 4ºC.  The goat polyclonal CaMKII antibody was purified 

off of a CaMKII! affinity purification column, and it is important to note that this  
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Figure 1 

 

 

Figure 1.  A total protein coomassie stain of the subcellular fractionations (S1, S2, S3, P3) from 
the hippocampus of WT mice at P7, P25, and P90 loaded by equal volume.  Across the 
developmental timeline there are proteins that increase in expression (Red arrows) as well as 
proteins that decrease in expression (Blue arrows).  The red asterisk is positioned next to 
CaMKII!, which can be readily seen in the S2 fraction.  Importantly, the S2 (membrane-
associated) fractions consists of roughly 60-70% of the total fractionated protein, S1 (cytosolic) 
fractions contains 25-35% of the total fractionated protein, and the S3/P3 (PSD-associated) 
fractions consist of <10% of the total fractionated protein.  Throughout this dissertation the 
fractions are loaded by equal volume and western blot analysis uses the total protein stain, 
Ponceau-S, to normalize for the loading differences.         
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Figure 2 

 

Figure 2.  Western blot analysis of hippocampal fractionation of WT mice at P7, P25, and P90.  
CaMKII and NR2B are exclusively detected in the S2 fraction at P7, but partially translocate to 
the S3 and P3 fractions at P25 and P90, paralleling the upregulation of PSD-95 expression.  These 
blots were loaded by equal volume so the PSD-95 is enriched in the S3 and P3 fractions due to 
the fact that there is 9-10-fold more total protein loaded in the S2 versus S3 and P3 (as in Figure 
1).  
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Figure 3 

 

 

Figure 3.  CaMKII immunoprecipitations in S1, S2, and S3 fractions from hippocampus of P7, 
P25, and P90 mice.  CaMKII" is readily immunoprecipitated in the S1 and S2 fractions from all 
ages.  CaMKII! can be immunoprecipitated in the S2 fraction from P7 mice, however the levels 
of CaMKII! are significantly lower than that immunoprecipitated from P25 and P90 mice in this 
same fraction.  Both CaMKII! and CaMKII" are immunoprecipitated in the S3 (PSD-associated) 
fraction from P25 and P90 mice, however no kinase is detected in the S3 fraction from the P7 
mice.  Co-immunoprecipitation of PSD-95 from the S3 fraction can be detected in both P25 and 
P90 mice.  The IgG controls demonstrate the specificity for the immunoprecipitations, with no 
CaMKII detected in any fraction, as well as no PSD-95 coming down non-specifically with the 
IgG control.  
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Figure 4 

 

 

Figure 4.  NMDAR subunit fractionation and co-IP with CaMKII throughout development from 
hippocampus of P7, P25 and P90 mice.  Expression of both NR1 and NR2B increases from P7 to 
P25, when expression is detected in the PSD-associated fractions (S3 and P3).  NR1 expression 
stays consistent into adulthood whereas NR2B expression decrease from P25 to P90 (top panel).  
The co-immunoprecipitation of NR1 and NR2B with CaMKII (bottom panel) increases with age.  
The co-immunoprecipitation is first detected at P25 and is increased at P90.    
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antibody is able to readily detect both CaMKII! and CaMKII" isoforms of the kinase.  

Control samples were incubated with goat IgG.  The samples were pelleted and the 

supernatant was removed as a depleted input (supernatant from CaMKII IP) or input 

(supernatant from goat IgG).  The beads were washed 3 x 5 minutes in 500 µl of IP buffer 

and eluted with 2 x SDS loading dye (Figures 3 and 4).  Due to the vast differences in 

expression and subcellular localization of the CaMKII isoforms seen via western blot 

analysis, I normalized the IPs to: 1) levels of CaMKII!, 2) levels of CaMKII", and 3) 

equal loading volume.  Additionally, all phospho-proteins were normalized to the 

respective total protein present in the IPs. 

 

Antibodies 

Primary antibodies used for immunoprecipitation and immunoblotting: CaMKII: 

Goat anti-CaMKII!/" (McNeill and Colbran, 1995), mouse anti-CaMKII! (ABR), 

mouse anti-CaMKII" (Zymed), mouse anti-phospho-Thr286-CaMKII! (ABR), rabbit 

anti-phospho-Thr286-CaMKII! (Promega), and rabbit anti-phospho-Thr305/306-

CaMKII! (BIOMOL).  NMDAR: mouse anti-NR1 (BD Pharmingen), mouse anti-NR2B 

(Transduction Laboratories), rabbit anti-phospho-Ser1303-NR2B (Upstate), and rabbit 

anti-NR2A (Millipore).  AMPAR: rabbit anti-GluR1 (Abcam) and rabbit anti-phospho-

Ser831-GluR1 (PhosphoSolutions).  Other: mouse anti-PSD-95 (NeuroMab), mouse 

anti-E6-AP (Sigma-Aldrich), rabbit anti-E6-AP (Bethyl Labs), mouse anti-GAPDH 

(Chemicon), mouse anti-synapsin-1 (Santa Cruz), mouse anti-IP3R (NeuroMab), mouse 

anti-"actin (Santa Cruz), and rabbit anti-AKAP150 (Upstate).  Secondary antibodies:  All 
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secondary antibodies used were preabsorbed antibodies from Santa Cruz: Donkey anti-

goat, donkey anti-rabbit, donkey anti-mouse, and goat anti-mouse IgG1.    

Behavioral paradigms  

Rotarod: Mice were placed on an accelerating rotarod at 4 rpm.  Over 5 minutes 

the rotarod accelerated from 4-40 rpm and the latency to fall was recorded.  If the mouse 

made three consecutive rotations around the rotarod it was recorded as a fall.  An 

individual mouse underwent two trials per day for 5 consecutive days.  Each trial was 

separated by 1 hour.  In some instances mice were run for an additional two trials on day 

10.     

Fear conditioning:  Mice were placed in the conditioning chamber under white 

light and white noise for 2 minutes.  At the end of the 2 minutes, the conditioned stimulus 

(85 dB tone) was administered for 30 seconds.  An unconditioned stimulus (0.5 mA, 2 

second foot shock) was given at the end of the conditioned stimulus.  An additional tone-

shock pairing was given 2 minutes following the first pairing.  The mice were kept in the 

chamber for 2 minutes following the training and then placed back in their home cages. 

To test context-dependent fear memory, mice were placed back into the 

conditioned chamber and the amount of freezing was recorded over a 3 minute testing 

period.  Contextual fear was tested 24 hours and 7 days post training. 

Cue-dependent fear memory was tested in a novel context (Plexiglas inserts 

covered the inside of the conditioned chamber and vanilla extract was used as a different 

odor cue) 24 hours or 7 days post training.  Each mouse was placed in the novel context 

and allowed to explore for 3 minutes.  At the end of the three minutes the conditioned cue 

(85 dB tone) was administered for 3 minutes and the amount of freezing was assayed. 
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Y-maze:  The y-maze was conducted between 10:00 am and 1:00 pm under 

normal lighting conditions (250-300 lux).  For adolescent mice visual cues, construction 

paper with different patterns, were placed at the end of each arm as well as under each 

individual arm of the maze.  The percentage of spontaneous alternations (the number of 

times a mouse entered all three arms consecutively without revisiting an arm over the 

total possible alternations) and the number of total arm entries were manually recorded in 

a 6-minute test visualized via ANY-maze software (Stoelting) (Figure 5).    

Novel object:  At weaning (P21), the familiar object (PVC pipe) was placed in 

the home cage with the weanlings.  The mice were housed with the objects until testing at 

P25-P26. The novel object paradigm was conducted between 10:00 am and 1:00 pm 

under normal lighting conditions (250-300 lux).  18-24 hours prior to testing the mice 

were allowed to explore the novel object chamber (empty standard mouse cage) for 20 

minutes.  On the testing day the mice were placed in the novel object chamber with 2 

familiar objects and allowed to explore for 5 minutes.  The mice were then placed back 

into the home cage for 3 minutes.  During this time one of the familiar objects in the 

chamber was replaced with a novel object (50 ml conical tube filled with sand).  The 

mice were placed back in the chamber and allowed to explore for an additional 5 minutes.  

The amount of time the mouse spent exploring the novel object versus the familiar object 

was recorded by post-hoc analysis of video collected via ANY-maze software (Stoelting)  

(Figure 5).    

Elevated-plus maze (EPM): The EPM was conducted between 10:00 am and 

1:00 pm under normal lighting conditions (250-300 lux).  Mice were placed on an open-

arm facing the center of the maze.  The mouse was allowed to explore the maze for 5  
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Figure 5 

 

Figure 5.  Memory behavioral tasks in adolescent (P24-P26) mice.  Due to the limited literature 
on the success of learning and memory behaviors in adolescent rodents it was first necessary to 
establish that adolescent mice could perform the tasks.  Left panel: WT mice (P24-P25) showed 
74% spontaneous alternations in the Y-maze and this was statistically significant over chance 
(33.3% spontaneous alternations) (p<0.0001).  Right panel: WT mice showed preference for the 
novel object over that of the familiar object, spending 64% of the time with the novel object in 
the novel object recognition task.  This was statistically significant from chance (50%) 
(p=0.0020).  (N: Y-maze=17; Novel object=9)  
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minutes.  The amount of time spent in the open-arms versus the closed-arms was 

recorded, along with total arm entries.  For control versus stress mice the paradigm was 

conducted under red light conditions. 

 

Kinase Activity Assay 

Hippocampi from WT and AS mice were homogenized in 400 µl of a 

homogenization buffer (1 M Tris-HCl pH 7.5, 0.5 M EDTA, 0.2 M EGTA, 1 M sucrose, 

0.5 M benzamidine, 5 mg/ml aprotinin, 5 mg/ml leupeptin, 1 mM pepstatin, 500 µM 

NaF, 0.5 M "-glycerophosphate, 200 µM Na pyrophosphate, 500 µM microcystin-LR).  2 

µl of homogenate was added to 500 µl of a dilution buffer (50 mM HEPES pH 7.5, 10% 

(v/v) ethylene glycol, 2 mg/ml bovine serum albumin), 5 µl of sample was then added to 

20 µl of ice-cold assay buffer (50 mM HEPES pH 7.5, 10 mM Mg(Ac)2, 0.5 nM CaCl2, 1 

mM EGTA, 1 µM CaM, 1 mg/ml BSA, 1 mM DTT, 0.4 mM [$-32P] ATP, and 10 µM  

autocamtide).  Ca2+/CaM-dependent activity was assayed in buffer without EGTA and 

Ca2+/CaM-independent activity was assayed in buffer without CaCl2 and CaM. The 

sample was vortexed and placed at 30°C for 10 minutes.  15 µl of sample was spotted on 

Whatman phosphocellulose P81 paper squares to stop the reaction.  Papers were washed 

5 x 15 minutes, rinsed 2 x in 95% EtOH, and dried.  The papers were then placed into 

scintillation vials containing 10 ml of non-aqueous scintillation fluid and counted in the 

scintillation counter for 2 minutes. 

 

Phosphatase Activity Assay 

 Hippocampi from WT and AS mice were homogenized as in the kinase assay 
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(described above).  Samples were diluted with or without phosphatase inhibitors (0 

inhibitor, 2.5 nM okadaic acid, or 2.5 µM okadaic acid) and incubated on ice for 10 

minutes.  Samples were then diluted into assay buffer (50 mM Tris-HCl, pH 7.5, 0.1 M 

NaCl, 20 mM Mg(Ac)2, 10 mg/ml BSA, 0.2 mM EGTA,1mM DTT, [32P]-phosphorylase 

a, and 5mM caffeine) and incubated at 30°C for 30 minutes (Strack et al., 1997b).  The 

assay was stopped with the addition of 40% (w/v) trichloroacetic acid, placed on ice for 

10 minutes, and spun down at 10,000 x g for 10 minutes at 4°C.  Liquid scintillation 

counting was used to quantify the 32P-release.  [32P]-phosphorylase a is a substrate for 

both PP1 and PP2A (Cohen, 1989).  The amount of PP2A activity was determined by the 

amount of activity inhibited by 2.5 nM okadaic acid.  The amount of PP1 activity was 

determined by the difference in inhibition by 2.5 nM and 2.5 µM of okadaic acid (Cohen, 

1991).  

 

Electrophysiology 

Field-recordings: Coronal hippocampal slices (300 µm) were cut on a vibratome 

from P25-P28 control and ES mice in ice-cold sucrose cutting solution (194 mM sucrose, 

20 mM NaCl, 4.4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 1.2 mM NaH2PO4, 10 mM 

glucose, 26 mM NaHCO3, and 1 mM kynurenic acid) bubbled with 95%/5% O2/CO2.  

After dissection, the slices were immediately transferred to an interface recording 

chamber where they were perfused with heated (30°C) ACSF (124 mM NaCl, 4.4 mM 

KCl, 2 mM CaCl2, 1.2 mM MgSO4, 1 mM NaH2PO4, 10 mM glucose, and 26 mM 

NaHCO3) that was bubbled with 95%/5% O2/CO2.  Following a 1-hour recovery period, a 

stimulating electrode was placed in the Schaffer collaterals with the recoding electrode 
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placed in the CA1 region of the hippocampus (Chapter 1: Figure 1).  An input/output 

curve was generated to find the maximum fEPSP response.  The stimulus intensity that 

generated the half-maximal slope of the fEPSP was used for LTP experiments.  After 20 

minutes of stable baseline responses were acquired, a single 100 Hz train was delivered 

and subsequent responses were recorded for 60 minutes.   

Whole-cell patch recordings: These experiments were conducted in 

collaboration with Dr. Brian Shonesy (postdoctoral researcher in Dr. Roger Colbran’s 

laboratory).  Coronal hippocampal slices (300 µm) were generated as previously 

described.  Following a 1-hour recovery period slices were transferred to a submerged 

recording chamber, and continuously perfused at a rate of 2 ml/min with ACSF bubbled 

with 95%/5% O2/CO2 (28°C).  Recording electrodes (3–6 M%) were filled with a pipette 

solution (120 mM Cs-gluconate, 17.5 mM CsCl, 10 mM NaCl, 2 mM MgCl2, 0.2 mM 

EGTA, 10 mM NaHEPES, 2 mM MgATP, 0.2 mM NaGTP, 1 mM QX-31).  The 

amplitude and frequency of spontaneous EPSCs were recorded.  AMPAR mediated 

responses were generated by holding the membrane potential at -70mV and then the duel 

AMPAR-NMDAR mediated responses were recoded at +40mV.  For AMPAR/NMDAR 

ratios the duel component responses were subtracted from the AMPAR mediated 

responses and then expressed as a ratio.    

 

Statistics 

 Statistical comparisons were made by one-sample t-test, unpaired Student t-test, 

one-way ANOVA, or two-way ANOVA followed by Tukey’s or Bonforroni post-tests, as 

appropriate. 
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CHAPTER III 

 

 ANGELMAN SYNDROME 

 

Introduction 

 Angelman Syndrome (AS) is a neurodevelopmental disorder first described in 

1965 by the English physician Dr. Harry Angelman (Angleman, 1965).  Over the course 

of several years Dr. Angelman encountered three young patients, all diagnosed with a 

different form of mental retardation.  The commonalities these patients shared, a distinct 

gait, lack of speech, and the severity of their mental retardation, led Dr. Angleman to 

document the new disorder as “Puppet Syndrome,” which has since been changed to 

Angleman Syndrome in dedication to Dr. Angelman.  

 AS is characterized by a severe mental retardation, movement and balance 

disorder, language deficiencies, and epilepsy (Laan et al., 1999; Williams et al., 2006).  

The disorder is caused by the loss of functional E6-Associated Protein (E6-AP), an E3-

ubiquitin ligase that is encoded by the UBE3A gene.  UBE3A is a maternally imprinted 

gene found on chromosome 15q11-13 (Knoll et al., 1989; Kishino et al., 1997; Matsuura 

et al., 1997; Sutcliffe et al., 1997).  80% of AS cases are due to a large chromosomal 

deletion on a region of the maternal chromosome encompassing UBE3A (Figure 1).  Less 

common causes of AS are UBE3A mutations, uniparental paternal disomy (UPD), and 

imprinting center mutations (Figure 1).  Additionally, there are AS patients where the 

cause has not been determined.  Although the genetic cause of AS has been discovered 

and several E6-AP substrates have been characterized, none of them have been linked to 
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the pathogenesis of AS (Huibregtse et al., 1991; Kuhne and Banks, 1998; Nuber et al., 

1998; Kumar et al., 1999; Reiter et al., 2006).  Several mouse models of AS have been 

developed in attempts to better understand the genetic imprinting and molecular 

mechanisms underlying AS pathology (Albrecht et al., 1997; Cattanach et al., 1997; Jiang 

et al., 1998; Miura et al., 2002).  These mouse models recapitulate several of the AS 

phenotypes including an increased seizure susceptibility, motor dysfunction, as well as 

hippocampal-dependent learning and memory deficits (Jiang et al., 1998; Miura et al., 

2002; van Woerden et al., 2007).  

  The UBE3A expression pattern, seen by in situ hybridization, suggested maternal 

imprinting of UBE3A was exclusive to the hippocampus, the Purkinje cells of the 

cerebellum, and the olfactory bulbs, with biallelic expression of UBE3A in all other brain 

regions (Albrecht et al., 1997; Jiang et al., 1998).  These initial studies describing UBE3A 

expression guided AS research towards focusing primarily on the hippocampus and 

cerebellum.   

 The loss of maternal UBE3A gene expression and subsequent E6-AP protein 

expression leads to several AS-like phenotypes in the mouse.  Motor coordination 

assayed on the rotarod reveals a severe motor deficit in the AS mice (Jiang et al., 1998; 

Miura et al., 2002).  Additionally, gait analysis shows that AS mice have a smaller step 

length than control mice (Jiang et al., 1998), suggesting that the altered gait is leads to the 

motor deficits in these mice.   

AS mice also display severe hippocampal-dependent learning and memory 

deficits compared to WT controls.  AS mice have an increased latency to find the 

platform in the Morris water maze task, as well as a decreased time exploring the target   
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Figure 1 

 

 
 
 
 
 
Figure 1. Genetic determinates of Angelman Syndrome.  UBE3A is normally expressed from the 
maternal chromosome, 15q11-13.  The most common cause of AS is a large chromosomal 
deletion of the maternal chromosome, occurring in 80% of AS patients.  Less common causes of 
AS are UBE3A mutations, uniparental paternal disomy (UPD), and imprinting center mutations.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Adapted from Angelman Syndrome Foundation, Inc. 
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quadrant in the probe trial compared to WT mice (Miura et al., 2002).  Additionally, AS 

mice exhibit a significant decrease in the amount of contextual freezing twenty-four 

hours after training compared to WT mice in a fear conditioning paradigm.  There were 

no differences between the genotypes in the cued portion of the test, suggesting a specific 

hippocampal-dependent memory deficiency in the AS mice (Jiang et al., 1998).  Thus, 

two separate murine hippocampal-dependent behavioral assays were able to recapitulate 

intellectual disabilities seen in human patients. 

Along with the motor and memory deficits, AS mice show an increase in 

inducible audiogenic seizure susceptibility (Jiang et al., 1998).  The seizure susceptibility 

in the AS mice is thought to be associated with the increased brain activity seen by EEG 

analysis in awake non-active animals (Miura et al., 2002).  Again mimicking the human 

disorder by showing a seizure phenotype, one of the most debilitating symptoms of AS 

that patients and families struggle with day to day (Laan et al., 1999).  

With mouse models of AS now available, research efforts turned to identifying 

the biochemical and physiological mechanisms underlying the phenotypes of AS.  In 

agreement with the behavioral data, generation of LTP is significantly reduced in AS 

mice (Jiang et al., 1998; Weeber et al., 2003).  The loss of LTP in the AS mice is thought 

to be due to misregulation of CaMKII.  In the AS mice there is an increase in both 

Thr305/306 and Thr286 phosphorylation.  This altered phosphorylation leads to a 

decrease in the total amount of CaMKII associated with the PSD (Weeber et al., 2003).  

Additionally, the misphosphorylation of CaMKII was linked to a decrease in PP1/PP2A 

activity in the AS mouse (Weeber et al., 2003). 
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CaMKII dysfunction in Angelman Syndrome 

 It has been shown that CaMKII! phosphorylation at Thr286 and Thr305/306 is 

elevated in AS compared to WT mice, with no change in total CaMKII! levels (Weeber 

et al., 2003).  This misphosphorylation of CaMKII! leads to a decrease of the kinase in 

PSD-enriched fractions (Weeber et al., 2003), which is thought to be involved in the 

molecular mechanisms leading to the LTP deficits and learning and memory deficiencies 

seen in the AS mice (Jiang et al., 1998; Miura et al., 2002; Weeber et al., 2003).  We 

attempted to genetically alter CaMKII! in attempts to reverse or prevent the AS 

phenotype from occurring (van Woerden et al., 2007). 

 Heterozygous CaMKII!-Thr305Val/Thr306Ala mice (Elgersma et al., 2002) 

(Table 1) were crossed with AS mice to alter CaMKII! phosphorylation, function, and 

location in double mutant AS/CaMKII!TT305/306VA mice.  CaMKII!-

Thr305Val/Thr306Ala mice have been shown to have an increase in total CaMKII in 

PSD-associated fractions, thought to be due to the decrease in phosphorylated residues 

305 and 306.  Interestingly the increase in total CaMKII at the PSD was due to an 

increase in CaMKII", as CaMKII! levels were not changed in the PSD fraction.  

Additionally, these mice display enhanced LTP, thought to be caused by a decreased 

threshold for initiating LTP.  The CaMKII!-Thr305Val/Thr306Ala mice do show 

memory deficiencies in reversal learning in the Morris water maze and a discrimination 

deficit in fear conditioning (Elgersma et al., 2002). 

 Since inhibitory phosphorylation of CaMKII can lead to learning and memory 

deficiencies (Elgersma et al., 2002; Elgersma et al., 2004), we hypothesized that crossing 

the AS mice, which have an increased phosphorylation of Thr305 and a decreased 
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CaMKII associated with the PSD, with heterozygous CaMKII!-Thr305Val/Thr306Ala 

mice would decrease the amount of phosphorylation at Thr305/306 in the AS/CaMKII 

double mutant mice, potentially increasing the amount of CaMKII at the PSD, and 

prevent behavioral deficits seen in the AS mice (van Woerden et al., 2007). 

 

Double mutant AS/CaMKII mice alter CaMKII phosphorylation and activity 

 AS mice have increased Thr305 phosphorylation, whereas heterozygous 

CaMKII!-Thr305Val/Thr306Ala mice have a decreased Thr305 phosphorylation, 

compared to WT controls.  When crossed, AS/CaMKII mice displayed a similar level of 

Thr305 phosphorylation as heterozygous CaMKII!-Thr305Val/Thr306Ala mice, 

preventing the enhanced Thr305 phosporylation seen in the AS mice.  Additionally, AS 

mice exhibit a 2-fold reduction in CaMKII kinase activity compared to WT controls, 

which is restored in the AS/CaMKII double mutants (van Woerden et al., 2007).  

 

AS/CaMKII double mutants prevent behavioral deficits seen in AS mice 

 Mice were assayed for motor deficits using the rotarod.  The AS mice displayed a 

significant rotarod deficiency compared to WT mice.  AS/CaMKII double mutants 

performed equally well as the WT, thus the genetic cross prevents the motor coordination 

deficits seen in the AS mice.  It must be noted that the heterozygous CaMKII!-

Thr305Val/Thr306Ala mice had a significant increase in latency to fall compared to WT 

mice (van Woerden et al., 2007), presenting the possibility that the AS/CaMKII double 

mutant did not necessarily prevent the rotarod deficit, but that the AS/CaMKII mice fall 
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in between the two genetic extremes in this case (i.e. the AS mice and the heterozygous 

CaMKII!-Thr305Val/Thr306Ala mice). 

 One of the most debilitating aspects of AS is the seizure associated with the 

disorder.  Audiogenic seizures were induced by vigorously scratching scissors against the 

metal grating of the mouse cage lid for twenty seconds or until the mouse begins to seize. 

Audiogenic seizures were unable to be induced in WT or heterozygous CaMKII!-

Thr305Val/Thr306Ala mice; however in 50% of the AS mice seizure was induced.  The 

number of audiogenic seizures induced in the AS/CaMKII double mutants was  reduced 

75% from that seen in the AS mice (van Woerden et al., 2007). 

 The learning and memory deficit in the AS mouse models have been very well 

characterized (Jiang et al., 1998; Miura et al., 2002).  Here we were able to recapitulate 

the memory deficits in the Morris water maze and fear conditioning paradigms.  During 

the Morris water maze all genotypes were able to decrease their latency to find the hidden 

platform to the same extent.  During the probe trials, both the WT and AS/CaMKII 

double mutant mice displayed a significantly higher number of platform crosses than the 

AS mice.  Once again demonstrating how the AS/CaMKII double mutant was able to 

prevent behavioral deficits seen in the AS mice (van Woerden et al., 2007). 

 In addition to Morris water maze, we assessed hippocampal-dependent learning 

and memory using the contextual fear conditioning paradigm (Figure 2).  In this assay 

mice were trained to associate a context (shock chamber) with a foot shock.  When tested 

twenty-four hours post training the WT mice displayed roughly 75% freezing, indicating 

these mice were able to associate the context (shock chamber) with the shock.  Consistent 

with data in the literature, AS mice spent a significantly less time freezing than WT mice 
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twenty-four hours after training, revealing the memory deficit (Jiang et al., 1998; Miura 

et al., 2002).  The AS/CaMKII double mutant performed as WT mice, significantly better 

than AS mice.  The heterozygous CaMKII!-Thr305Val/Thr306Ala mice also displayed 

the same level of freezing as the WT mice; however, knowing that the homozygous 

CaMKII!-Thr305Val/Thr306Ala mice have a discrimination deficit seen in the fear 

conditioning paradigm (Table I) (Elgersma et al., 2002), this may not be normal 

contextual learning.  Similarly, when contextual fear memory was tested seven days post 

training the same results were obtained with WT, heterozygous CaMKII!-

Thr305Val/Thr306Ala, and AS/CaMKII double mutants freezing to the same extent and 

AS mice displaying significantly less freezing than that of the WT and AS/CaMKII 

double mutant mice (van Woerden et al., 2007). 

 Cued fear conditioning was also assayed to determine if other hippocampal-

independent forms of memory may be altered in AS mice.  Here mice were trained to 

associate a cue (tone) with a footshock.  Twenty-four hours later the mice were placed 

into a novel environment, the tone was administered, and the amount of freezing was 

recorded  (Figure 3).  All genotypes displayed the same degree of freezing in response to 

the tone, suggesting that the fear conditioning deficit in the AS mice, that was prevented 

in the AS/CaMKII double mutant was hippocampal-dependent (van Woerden et al., 

2007).  

 

AS/CaMKII double mutant mice prevent the LTP deficits seen in AS mice  

 Electrophysiological experiments were performed to determine the effects of the 

AS/CaMKII double mutant mice on the LTP deficit seen in AS mice.  A high-frequency  
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Figure 2 

 

 

Figure 2.  Contextual fear conditioning.  We trained mice to associate a context (shock 
chamber) with a footshock.  Hippocampal-dependent memory was assayed by recording the 
amount of freezing when placed back into the context 24-hr (left panel) or 7-days (right panel) 
post training.  AS mice displayed a significant decrease in the amount of freezing compared to 
WT and AS/CaMKII double mutants at both time points (van Woerden et al., 2007).  
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Figure 3 
 
 

 

Figure 3. Cued fear conditioning.  We trained mice to associate a cue (tone) with a footshock.  
Hippocampal-independent memory was assayed by the amount of freezing when mice were 
placed into a novel environment and exposed to the cue.  All mice froze to the same extent when 
tested 24-hrs post training. 
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100 Hz stimulation was used to induce LTP in hippocampal slices.  HFS was able to 

potentiate fEPSPs in WT slices; however; LTP was not induced in AS slices.  This LTP 

deficit was prevented in the AS/CaMKII double mutant, as HFS was able to induce LTP 

to similar levels of potentiation as seen in WT slice (van Woerden et al., 2007). 

 

Molecular mechanisms underlying the learning and memory deficits in AS 

The discovery of UBE3A as the gene responsible for causing AS led to the hunt 

for the target of E6-AP that was elevated in AS due to the decreased expression of the 

ubiquitin ligase.  To date no such target has been discovered and it is possible that E6-AP 

functions to alter gene expression at the transcriptional level (Ramamoorthy and Nawaz, 

2008).  In 2003 a new approach was taken to understand the molecular mechanism 

underlying AS pathology.  Using the current knowledge of normal molecular 

mechanisms of LTP generation and hippocampal-dependent learning and memory, the 

laboratory of Dave Sweatt discovered CaMKII had altered phosphorylation and 

subcellular distribution in AS mice (Weeber et al., 2003).  They also showed that 

PP1/PP2A activity was decreased in these animals, which the authors suggested was the 

reason for increased CaMKII phosphorylation.  The mechanism linking loss of E6-AP 

expression and/or function to the misregulation of CaMKII has yet to be defined. 

 

Establish baseline behavioral phenotype in an AS mouse model 

The goal of my initial project was to uncover the molecular mechanism of how 

loss of E6-AP leads to the misregulation of CaMKII.  I first attempted to reconfirm the 

behavioral and biochemical data that suggests a role for CaMKII in AS pathology. 
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 To confirm our AS mouse line displayed behavioral deficits characteristic of AS, 

I used the rotarod to assay for motor coordination and learning deficits that had been 

previously documented (Jiang et al., 1998; Miura et al., 2002; Weeber et al., 2003; van 

Woerden et al., 2007).  With increasing trials, WT mice were able to display motor 

learning by an increased latency to fall over the 4 days of testing (Figure 4), which was 

significantly higher than AS mice (Two-way ANOVA: F=42.95, p<0.0001).  The AS 

mice were never able to master the rotarod as their latency to fall remained consistent 

from day 1 to day 4 of training (Figure 4), consistent with the motor coordination and 

learning deficits reported in these mice. 

 

Expression of CaMKII in AS mice 

 Previous evaluation of total hippocampal homogenates from WT and AS revealed 

no change in total levels of several proteins, including CaMKII!, known to be involved 

in LTP and learning and memory (Weeber et al., 2003).  Closer inspection of CaMKII! 

did show that there was a 60% increase in phospho-Thr286 CaMKII! levels and a 33% 

increase in phospho-Thr305/306 CaMKII! levels in total hippocampal homogenates in 

AS compared to WT animals (Weeber et al., 2003).  Moreover, this misphosphorylation 

altered the subcellular localization of the kinase, causing a 50% reduction in PSD-

associated CaMKII! in the AS mice.  Interestingly, the PSD-associated CaMKII! in the 

AS mice displayed 2.5-fold higher levels of phospho-Thr286 levels with no change in 

phospho-Thr305/306 levels (Weeber et al., 2003).  This is counterintuitive due to the 

large literature demonstrating CaMKII! phosphorylated at Thr286 has increased affinity 

for PSDs (Strack et al., 1997a; Strack and Colbran, 1998; Dosemeci et al., 2001).    
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Figure 4 

 

Figure 4.  Rotarod analysis of WT and AS mice.  Over 4 days of training (2-trails/day) WT mice 
displayed motor memory with an increase in their latency to fall from day 1 to day 4.  AS mice 
were never able to master the apparatus and had a significant decrease in latency to fall compared 
to WT animals. (WT= 6 AS= 6; Two-way ANOVA: F=42.95, p<0.0001)  
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Figure 5   

 

Figure 5.  Western blot analysis comparing hippocampal homogenates from WT and AS mice 
confirmed the genotypes with &90-95% reduction in E6-AP levels in both the TSF and TIF.  
There was no change CaMKII! subcellular localization, nor was there a change in CaMKII! 
phosphorylation (Thr286 or Thr305/306) in AS compared to WT mice.  Quantification below 
western blots; total CaMKII! (left panel), Thr286 (middle panel), and Thr305/306 (right panel). 
(WT= 5 AS= 7)       
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I used western blot analysis to confirm the changes in CaMKII phosphorylation 

and subcellular localization in hippocampi from 2-3 month old AS mice.  Here I used a 

modified fractionation protocol to isolate a Triton-soluble fraction (TSF) (cytosolic-

membrane protein pool) and a Triton-insoluble fraction (TIF) (PSD-fraction) (Brown et 

al., 2005).  To confirm the genotypes of WT and AS mice in both the TSF and the TIF I 

performed western blot analysis using an E6-AP antibody.  AS mice showed roughly a 

90% reduction of E6-AP in both the TSF and TIF (Figure 5). 

Western blot analysis of CaMKII! showed no difference in total levels in the TSF 

(Figure 5).  In contrast to what was reported by Weeber et al., 2003, I was unable to 

detect a change in the amount of CaMKII! in the PSD-fraction (TIF) (Figure 5).  

Additionally, although I detected a trend for an increase in levels of phospho-Thr286 in 

both fractions from AS mice (Figure 5), this never reached statistical significance in 

repeated assays across a range of ages (P10, P21, and 2-3 month) (data not shown).  As 

with the phospho-Thr286, using western blot analysis, I was unable to detect the 

previously reported change in levels of phospho-Thr305/306 (Figure 5). 

 

Altered CaMKII activity in AS mice 

 Due to the inability to detect significant changes in phosphorylated CaMKII! in 

our AS mouse model, we turned to a kinase assay to evaluate potential changes in the 

kinase activity of CaMKII in AS mice.  Moreover, we wanted to see if CaMKII was 

indeed playing a role in AS pathology. 

Once again a previous report had documented a decrease CaMKII activity in 

homogenates from adult AS compared to WT mice (Weeber et al., 2003).  Using 
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autocamtide, a peptide substrate mimicking the Thr286 autophosporylation site of 

CaMKII, we assayed the Ca2+/calmodulin dependent and Ca2+/calmodulin independent 

activity in hippocampal homogenates from AS and WT mice at P10 and P21.  

Interestingly, hippocampal homogenates from P10 AS mice showed a 23% decrease in 

Ca2+/calmodulin dependent CaMKII activity compared to that of WT, with no change in 

Ca2+/calmodulin independent activity (Figure 6).  No changes in CaMKII activity were 

detected at the P21 time point (Figure 6).  Our data suggests that developmental 

regulation of CaMKII may be altered in AS mice, even though we were unable to detect 

CaMKII expression or phosphorylation changes via western blot analysis.  It may be 

interesting to evaluate CaMKII! as well as CaMKII" expression profiles early on in 

development (P5-P10) to determine if the severity of AS pathology may be linked to 

developmental regulation of CaMKII. 

  

Phosphatase activity in AS hippocampus  

The reported increase in CaMKII phosphorylation and activity in adult AS mice 

has been linked to a non-specific decrease in PP2A/PP1 activity (Weeber et al., 2003).  

We were interested if we could confirm the phosphatase activity decrease in AS mice as 

well as identify what phosphatase (PP2A or PP1) was responsible for the decreased 

activity.  To this end we took advantage of the PP1/PP2A substrate, [32P]-phosphorylase 

a (Cohen, 1989).  Using 2.5 nM or 2.5 µM okadaic acid to block PP2A or both 

PP2A/PP1, respectively (Cohen, 1991), we determined that there was no change in the 

activity of PP2A or PP1 in the adult hippocampus of AS mice (Figure 7).  
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Figure 6 

 

Figure 6. CaMKII kinase activity assay.  Ca2+/calmodulin-dependent CaMKII activity was 
significantly decrease in AS versus WT mice in P10, but not P21, hippocampal homogenates.  
Ca2+/calmodulin-independent CaMKII activity was unchanged at either time point between 
genotypes.  (* p= 0.0174, WT P10= 5; AS P10= 5; WT P21= 4; AS P21=6) 
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Figure 7 

 

Figure 7.  PP1/PP2A phosphatase activity.  No differences in PP1 activity or PP2A activity were 
detected between WT and AS mouse hippocampal homogenates.  (Adult mice 3-4 months, WT= 
3; AS= 3) 
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Results  

 

E6-AP expression is significantly reduced throughout the brain of the AS mouse 

 In situ hybridization data suggested that UBE3A is maternally imprinted in the 

hippocampus, cerebellum, and olfactory bulbs, with biallelic expression throughout the 

rest of the brain (Albrecht et al., 1997; Cattanach et al., 1997; Jiang et al., 1998).  This 

has led the AS field to assume that protein expression of E6-AP follows the identical 

pattern, with E6-AP expression deficient in the hippocampus, cerebellum, and olfactory 

bulbs in the AS mouse, and more importantly no change in E6-AP levels in other brain 

regions.  Using western blot analysis of E6-AP on several brain regions of WT and AS to 

confirm the genotypes of the mice, we noticed that the lack of E6-AP expression is not 

isolated to hippocampus, cerebellum, and olfactory bulbs. Additionally, recent data 

looking at E6-AP protein levels suggests that the loss of E6-AP in the AS brain may be 

more global than previously thought (Dindot et al., 2008; Yashiro et al., 2009).  This 

underscores the importance for better characterization of E6-AP expression patterns in 

the AS mouse.  Here we use western blot and 

immunocytochemical/immunohistochemical analysis to determine the effects of maternal 

imprinting of UBE3A on E6-AP expression across multiple brain regions as well as 

peripheral tissues. 

To begin to understand the extent of the effects of maternal imprinting on E6-AP 

expression we performed western blot analysis on several brain regions microdissected 

from WT and AS mice (Figure 8).  Total homogenates from the hippocampus, striatum, 

hypothalamus, thalamus, cortex, cerebellum, midbrain, and olfactory bulbs were prepared 



 61 

form WT and AS mice.  The western blot analysis shows expression of E6-AP in all 

brain regions assayed from WT mice, with the highest relative expression in the cortex, 

thalamus, and olfactory bulbs (Figure 8).  Comparison of E6-AP levels across WT brain 

regions revealed a significant 2.5-fold variation (one-way ANOVA; p=0.0017).  Post-hoc 

Tukey’s multiple comparison test showed E6-AP expression in the striatum was lower 

than that of the thalamus (2.2-fold; p<0.05), cortex (2.2-fold; p<0.05), and olfactory 

bulbs (2.5-fold; p<0.01).  Additionally, E6-AP expression was lower in the hypothalamus 

(1.7-fold; p<0.05) and the cerebellum (1.9-fold; p<0.05) when compared to the olfactory 

bulbs.  

 In comparison, all brain regions assayed from the AS mice showed a marked 

reduction in E6-AP expression (Figure 8).  Longer film exposure times revealed low 

levels of E6-AP in all AS brain regions, and we estimated that E6-AP levels were 

reduced by at least 90-95% in all brain regions of AS mice relative to WT brain regions. 

 To more completely evaluate the cell-type specificity of E6-AP expression in the 

brain we performed immunohistochemical analysis in 40 µm coronal slices from WT and 

AS animals.  In slices from WT animals, E6-AP specific staining was seen throughout the 

pyramidal cell layers and the dentate gyrus of the hippocampus, as well as cells spotted 

throughout the stratum moleculare in a pattern consistent with interneuron staining.  

Notably there was no specific E6-AP staining in slices from the AS mice in any of the 

brain regions tested (Figure 9 and Gustin et al., 2010). The pattern of E6-AP staining in 

the hippocampus suggested that both pyramidal cells as well as interneurons expressed 

E6-AP (Figure 9 and Gustin et al., 2010).  In order to confirm interneuron E6-AP 

expression, co-staining experiments using the interneuron specific markers parvalbumin  
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Figure 8 

 

Figure 8.  Western blot analysis of WT and AS mouse brain regions.  Top: Western blot 
analysis of total homogenates from hippocampus, striatum, hypothalamus, thalamus, cortex, 
cerebellum, midbrain, and olfactory bulbs shows an estimated 90-95% loss of E6-AP in AS mice 
compared to WT mice.  Film overexposure reveals the presence of E6-AP in AS all brain regions 
tested.  Bottom: Quantification of the relative E6-AP levels across WT mouse brain regions 
reveals a significant 2.5-fold variation between brain regions (one-way ANOVA p=0.0017; N=4).  
(Gustin et al., 2010)   
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Figure 9 

 

Figure 9.  Immunohistochemical analysis comparing brain slices of coronal slices from WT and 
AS mice.  E6-AP staining was detected throughout brain slices from WT mice.  Intense staining 
in the pyramidal cell layer of the hippocampus of WT mice was observed.  Strikingly, no E6-AP 
could be detected in slices from AS mice (Figure courtesy of Dr. Ariel Deutch, Gustin et al., 
2010)     
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(PV) and calretinin (CR) were performed.  E6-AP specific staining was seen in 

interneurons expressing PV and CR, respectively (Figure 10).  E6-AP was detected in 

interneurons present in the globus palidus and the reticular nucleus of the thalamus.  

Additionally, E6-AP was detected in the majority of PV and CR positive interneurons of 

the neocotex.  Co-staining experiments of E6-AP and glial fibrillary acidic protein 

(GFAP), a glial cell marker, revealed no E6-AP staining in glial cells, confirming the 

neuronal specificity of E6-AP staining in the brain (Figure 10). 

 

Subcellular E6-AP expression profile 

To determine the subcellular distribution of E6-AP, immunocytochemical and 

subcellular fractionation studies were performed.  Using WT rat hippocampal dissociated 

cultures we were able to show E6-AP was ubiquitously expressed throughout the neuron 

with most intense staining in the nucleus; however, staining in the soma and dendritic 

arbors was also readily detectable (Figure 11).  E6-AP synaptic expression was evaluated 

using co-staining experiments with synapsin-1 (presynaptic marker) and PSD-95 

(postsynaptic marker) antibodies, respectively.  The co-localization of E6-AP with 

synapsin-1 and PSD-95 suggests the presence of E6-AP in both presynaptic and 

postsynaptic neurons (Figure 11).  

Biochemical subcellular fractionation on WT mouse hippocampi was performed 

to further examine the subcellular localization of E6-AP.  The subcellular fractionation 

protocol uses homogenization buffers containing detergents with increasing harshness to 

isolate different pools of proteins from different subcellular compartments.  Our protocol 

yields an S1 fraction (soluble protein pool), S2 fraction (membrane-associated protein  
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Figure 10 

 

Figure 10:  E6-AP was found to be expressed in interneurons but not astrocytes.  A. E6-AP co-
localized with a fraction of parvalbumin (PV) expressing interneurons in the neocortex (arrow).  
B. In the hippocampus E6-AP was found to co-localize to interneurons expressing calretinin.  C.  
The majority of PV-positive interneurons in the thalamic reticular nucleus co-localized with E6-
AP.  D.  In the hippocampus, astrocytes, stained with GFAP, did not express E6-AP.  Scale bars 
are 25 µm in panel C and 10 µm in panel D; the scale bar in panel D applies also to panels A and 
B.  (Figure courtesy of Dr. Ariel Deutch, Gustin et al., 2010)   
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Figure 11 

 

Figure 11.  Immunocytochemical analysis of rat hippocampal dissociated neuronal culture.  E6-
AP staining is ubiquitous throughout neurons, with the most intense staining seen in the nucleus; 
however staining is visible in soma and dendrites (Red images in A and B).  Partial co-
localization of E6-AP with synapsin (A) and PSD-95 (B) suggests E6-AP is expressed at the 
synapse and potentially at both pre- and postsynaptic sites. (Scale bars: Upper panels 20 µm; 
lower panel 5 µm) (Figure courtesy of Dr. Kevin Haas, Gustin et al., 2010).   
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pool), S3 fraction (PSD-associated pool), and a P3 pellet (insoluble fraction).  (See 

Chapter 2: Methods for a detailed description of the biochemical fractionation protocol)  

Equal amounts of protein from each fraction were loaded into a 7.5% acrylamide gel for 

SDS-PAGE and western blot analysis.  The majority of E6-AP co-fractionated with the 

cytosolic protein GAPDH in the S1 fraction (soluble protein pool).  Lower levels of E6-

AP co-fractionated with the IP3R, an endoplasmic reticulum marker, in the S2 fraction 

(membrane-associated protein pool).  E6-AP was also detected in the S3 fraction (PSD-

associated protein pool) and P3 pellet (insoluble fraction), where the majority of PSD-95 

fractionates (Figure 12).  These data are consistent with a broad distribution of E6-AP 

throughout the neuron, with the highest abundance in soluble pools. 

 

Maternal imprinting of UBE3A and E6-AP expression in peripheral tissues                                 

Little is known about E6-AP expression in peripheral tissues, or whether a lack of 

maternally expressed E6-AP in the periphery could contribute to associated symptoms in 

AS.  To begin to evaluate E6-AP expression in peripheral tissues, we compared E6-AP 

levels in total homogenates of the heart, liver, and kidney from WT and AS mice.  E6-AP 

was readily detected in WT tissues via western blot analysis (Figure 13).  Interestingly, 

E6-AP levels in heart, liver, and kidney from AS mice were reduced by 73±14%, 68±7%, 

and 64±18% respectively, compared to levels seen in WT tissues (Figure 13).  Equal 

biallelic gene expression of the maternal and paternal genes would contribute ~50% of 

protein expression.  Therefore we tested whether the total tissue levels of E6-AP in AS 

mice were significantly less than the predicted 50% of WT levels.  A one-sample t-test 

revealed that reduction in E6-AP levels in AS heart (p=0.006) and AS liver (p=0.01)  
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Figure 12 

 

 
 
Figure 12.  Biochemical subcellular fractionation of WT hippocampus.  E6-AP is detected in the 
soluble protein pool (S1), membrane-associated protein pool (S2), PSD-associated protein pool 
(S3), and the insoluble fraction (P3).  The majority of E6-AP is soluble, fractionating with the 
cytosolic protein, GAPDH (S1).  E6-AP also co-fractionates with the ER protein , IP3R (S2), and 
with PSD-95, a marker of PSD (S3 and P3).  (Gustin et al., 2010) 
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Figure 13 

 

Figure 13.  Peripheral expression of E6-AP.  E6-AP was readily detected in total homogenates 
of heart, liver, and kidney from WT and AS mice.  The relative expression of E6-AP in AS mice 
was significantly decreased from WT in all peripheral tissues (heart 73±14%, p=0.0038; liver 
68±7%, p=0.0001; and kidney 64±18%, p=0.0165).  The decrease in all peripheral tissues was 
greater than 50%, suggesting maternal imprinting may be playing a role in the periphery.  
(Animals WT=4; AS=3) (Gustin et al., 2010) 
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were reduced by significantly more than 50% of the WT; however, in the kidney there 

was only a trend for loss of E6-AP expression to be significantly greater than 50% of the 

WT (p=0.21).  This suggests that reduced levels of UBE3A in peripheral tissues could 

potentially contribute to symptoms of AS.  

 

Discussion 

 AS research has centered around hippocampal and cerebellar dysfunction due to 

the initial in situ hybridization studies describing the maternal imprinting of UBE3A 

(Albrecht et al., 1997; Jiang et al., 1998).  However, until recently there were no studies 

evaluating the expression profile of the UBE3A protein product, E6-AP.  Through 

western blot and immunohistochemical analysis we were able to show that the loss of E6-

AP in AS mice is not limited to the hippocampus and cerebellum, but in fact there is a 

global loss of E6-AP throughout the brain of AS mice.  These results highlight the 

importance of evaluating protein expression changes in addition to transcript levels.  

These results have changed the way we think about the mechanisms underlying 

AS pathology, and underscore the need for research efforts to extend beyond the 

hippocampus and cerebellum to more global approaches.  These new data are consistent 

with previous RT-PCR studies evaluating human AS brain samples, which showed 

UBE3A transcript was reduced to 10% of control levels in the frontal cortex (Rougeulle 

et al., 1997).  Our E6-AP expression data also extends work done on UBE3A-YFP 

reporter mouse that shows loss of E6-AP expression is not limited to the hippocampus 

and cerebellum (Dindot et al., 2008), and a recent report showing the E6-AP levels are 

dramatically down in neocortical areas in AS mice (Yashiro et al., 2009). 
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 The roughly 90-95% global loss of E6-AP across all brain regions in the AS 

mouse is not surprising due to the broad pathological phenotypes displayed by these 

mice.  As we move away from thinking of AS pathology strictly stemming from 

hippocampal and cerebellar dysfunction, a more global mechanism of AS pathology can 

potentially be revealed.  The movement disorder associated with AS suggests dysfunction 

in basal ganglia circuitry (Beckung et al., 2004), while the severe impairment of speech 

may be linked to deficiencies in cortical circuitry development (Catani et al., 2005).  

Additionally, the seizure phenotype, EEG abnormalities, and sleep disturbances may be 

the outcome of thalamocortical dysfunction (Lossie et al., 2001; Colas et al., 2005; Miano 

et al., 2005). 

A closer look at the subcellular localization of E6-AP, using 

immunocytochemistry and biochemical subcellular fractionation, revealed a ubiquitous 

expression pattern throughout the neurons.  The highest levels of E6-AP were detected in 

nuclear and cystosolic pools of protein; however, E6-AP was readily detectible in 

membrane-associated as well as PSD-associated pools of protein.  Partial co-localization 

with synapsin and PSD-95 showed that E6-AP is possibly both pre- and post-synaptic.  

Others have also recently reported that E6-AP localizes to dendrites and spines (Dindot et 

al., 2008; Yashiro et al., 2009).  Additional immunocytochemical analysis showed that 

E6-AP expression is not restricted to excitatory neurons, as co-staining with GABAergic 

interneuron markers revealed the presence of E6-AP in both PV and CR positive 

interneurons. 

 Extending our studies into peripheral tissues, we documented a significant 

decrease in E6-AP levels in the heart, liver, and kidney of AS mice.  Generally, 
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genes/proteins are expressed equally from both alleles, and a typical heterozygote will 

show a 50% reduction in protein levels.  In the AS mice we detected a &75% reduction in 

the peripheral tissues assayed, below the 50% reduction expected if there was equal 

biallelic expression.  One report suggested that UBE3A is preferentially maternally 

imprinted in human fibroblast cells (Herzing et al., 2002), but no study has shown that 

maternal imprinting of UBE3A in peripheral tissues extends to the E6-AP protein level.  

Although clinical significance of maternal imprinting of UBE3A and subsequent loss of 

E6-AP in the periphery is unclear, it is known that AS patients suffer from disturbances 

in gastrointestinal function (Laan et al., 1999; Williams et al., 2006).  These findings 

demonstrate the importance of evaluating the role of E6-AP deficiency in these 

symptoms, as well as taking a closer look at other potential adverse symptoms of AS that 

my be due to a loss of peripheral E6-AP protein.  These expression studies have revealed 

a global E6-AP deficit in AS mice that extend, not just throughout the brain, but into 

peripheral tissues as well.  This provides a foundation for further exploration into how 

E6-AP deficiency leads to the vast number of symptoms seen in AS.  

The documented CaMKII misregulation in AS mice (Weeber et al., 2003) and the 

prevention of several of the AS behavioral phenotypes when AS mice are crossed with 

CaMKII!-Thr286Ala heterozygous mice (van Woerden et al., 2007), suggested CaMKII 

may be playing a direct role in AS pathology.  Unfortunately, our attempts to recapitulate 

the CaMKII altered phosphorylation and activity were unsuccessful.  Additionally, we 

did not see the change in phosphatase activity that had been previously reported in the AS 

mice (Weeber et al., 2003).  Although we were unable to confirm the alterations in 
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CaMKII previously seen, genotyping and western blot analysis, along with rotarod 

behavioral data, confirmed that we were assaying AS mice. 

 Our biochemical analysis of P10 AS mice did reveal a significant decrease in 

CaMKII activity that returned to WT levels by P21.  This suggests that there may be a 

time window, early in development, that E6-AP deficiency may alter CaMKII regulation 

in AS mice.  CaMKII is known to play an important role in synaptogenesis during this 

time period.  Alteration in CaMKII expression, phosphorylation, activity, protein/protein 

interactions, and/or subcellular localization could have deleterious effects on synapse 

development.  This becomes more interesting as we know that E6-AP is localized to both 

pre- and post- synaptic neurons in PSD-enriched pools, areas where CaMKII is 

expressed.  A closer look at the expression pattern of E6-AP throughout development is 

necessary for complete understanding of how E6-AP may be functioning.  Furthermore 

E6-AP substrates that may be expressed early on in development may have been 

overlooked due to the time points during which AS research has focused.  It would also 

be interesting to evaluate CaMKII! and CaMKII" expression, phosphorylation state, and 

activity in AS mice earlier in development to see if misregulation of CaMKII during 

development could be causing the AS phenotype.  There is evidence that AS mice do 

have abnormal spine morphology (Dindot et al., 2008).  It is possible that CaMKII 

misregulation during critical time points during development could lead to the 

phenotypes seen in AS.   

A recent report in the literature was able to show that neuronal activity induces 

UBE3A transcription and that this leads to the degradation of Arc (Greer et al., 2010).  

Arc is a synaptic protein important for the internalization of AMPARs (Chowdhury et al., 
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2006; Rial Verde et al., 2006; Shepherd et al., 2006).  In neurons cultured from UBE3A 

KO mice the increase in Arc was shown to increase AMPAR internalization leading to a 

decrease in the AMPA/NMDA ratio, along with a decrease in mESPC frequency, when 

compared to WT neurons (Greer et al., 2010).  The authors go on to posit, that when the 

AS mice were crossed with the CaMKII!-Thr305Val/Thr306Ala heterozygous mice (van 

Woerden et al., 2007), the increase in CaMKII activity increased AMPAR insertion into 

the synapse, allowing for a rescue of the deficits in the double mutants.  This suggests 

that the CaMKII role in AS is more indirect rather than causative.  Therefore, the rescued 

behavioral deficits may be due to a generalized AMPAR insertion rather than a direct 

CaMKII effect.  The one major caveat to the Arc hypothesis is that all experiments were 

conducted in UBE3A KO neurons.  It may be the case that the &5-10% of E6-AP protein 

that is expressed from the paternal UBE3A gene (Gustin et al., 2010) is enough to control 

Arc levels at the synapse and that Arc is not playing a major role in the AS phenotype.    

 In considering possible explanations for the loss of CaMKII phenotypes from the 

AS mice used in these studies, I became concerned about the breeding strategies currently 

in use.  Traditionally, breeding of AS mice has been done by crossing WT males with AS 

females, such that all pups are reared by AS females.  This raises the possibility that the 

broad AS phenotype of the dams may compromise normal maternal care in some way, 

producing a chronic early-life stress in the pups.  As will be discussed in Chapter 4, 

transient early-life stress can have a prolonged impact on future brain function.  Thus, 

early-life stress in our AS mice (raised by AS dams) may contribute to some aspects of 

the phenotype displayed by the pups in adulthood.  It is unknown what effects this early-

life stress may be playing in the misregulation of CaMKII, and it is also unknown what 
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additional epigenetic factors are being altered, specifically due to the early-life stress, and 

not the AS phenotype itself.   

 I suggest that a different breeding strategy be developed for the maintenance of 

AS colonies and generation of experimental mice.  Human AS patients inherit the UBE3A 

mutation from their mothers.  However, the mothers are almost always asymptomatic 

because they inherit the mutation paternally.  In contrast, the current mouse breeding 

strategy raises experimental animals using symptomatic dams, which are lacking 90-95% 

of the E6-AP protein across all brain regions, perpetuating an early-life stress throughout 

the colony via the epigenetic factors and enhancing sensitivity to other environmental 

factors.  I suggest that the AS mouse model should be maintained as a paternal deficient 

mouse, more closely mimicking the propagation of AS in the human population. 

Experimental mice should be generated by crossing asymptomatic females (paternal 

UBE3A deficient mice) with WT male mice to yield WT and AS littermates with no 

potential for external stress issues to confound the interpretation. 
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CHAPTER IV 

 

EARLY-LIFE CHRONIC STRESS AND LEARNING AND MEMORY 

 

Introduction 

 The potential confound of AS phenotypes by environmental factors begged the 

question, does CaMKII play a role in the molecular mechanisms underlying the negative 

effects propagated through chronic early-life environmental stressors?  Stress in different 

forms is known to affect both synaptic plasticity and performance on a number of 

behavioral paradigms in the rodent (Table 1).  Depending on the type and duration of 

stress, as well as the age of the animal during exposure, a variety of biochemical, 

electrophysiological, and behavioral outcomes have been reported.  

The effects of stress on CaMKII are not well understood.  A number of 

biochemical, morphological, electrophysiological, and behavioral effects due to different 

stressors can be linked to CaMKII and CaMKII dysfunction or misregulation.  However, 

the effects on CaMKII vary with the time, duration, and type of stressor (Table 1).  For 

example, acute stress leads to an increase in Thr286 phosphorylation (Suenaga et al., 

2004; Ahmed et al., 2006), whereas chronic stress leads to a decrease in Thr286 

phosphorylation (Gerges et al., 2004; Fumagalli et al., 2009).  At a biochemical level, this 

is consistent with the idea that acute stress can enhance cognitive ability, whereas chronic 

stress is detrimental to cognition.   

Chronic and acute stress have both been shown to effect synaptic plasticity. Acute 

restraint stress in adult rats has been shown to enhance LTP (Suenaga et al., 2004). 
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Conversely, chronic psychosocial stress using an intruder stress paradigm for one month 

in adult rats causes a reduction in LTP (Gerges et al., 2004).  Interestingly, maternal 

separation of rat pups for one hour a day from P0-P7 leads to an increase in LTD in later 

adolescent time points at which LTD is absent in control animals (Ku et al., 2008).  When 

elevation of corticosterone levels is mimicked by dexamethasone administration in rats 

from P1-P3 and then assayed at 5-weeks of age, there is a decrease in LTP along with an 

increase in LTD (Lin et al., 2006; Huang et al., 2007).  This could potentially be due to a 

developmental delay that shifts a sliding threshold for LTP/LTD induction.   

Chronic environmental stressors can also affect performance on a number of 

behavioral paradigms.  Chronic stress in adult rats can lead to deficits in Morris water 

maze performance (Xu et al., 2009).  Additionally, early-life stressors can lead to 

behavioral deficits later in life.  These include deficits in passive avoidance tests, novel 

object recognition, Morris water maze, elevated-plus maze, as well as forced swim test 

(MacQueen et al., 2003; Romeo et al., 2003; Lin et al., 2006; Huang et al., 2007; Rice et 

al., 2008). 

Taken together, the evidence suggests that early-life stressors are leading to 

CaMKII misphosphorylation and mislocalization.  These changes in CaMKII can affect 

the proper regulation and activity of the kinase, and it has been shown in a variety of 

experimental paradigms that this leads to alterations in synaptic plasticity.  Furthermore, 

misregulation of CaMKII has dramatic effects on learning and memory behavioral 

paradigms.  This led to the hypothesis that early-life stress is altering the 

phosphorylation, subcellular localization, and protein/protein interactions of CaMKII, 

which is leading to the physiological and behavioral deficits seen later in life. 
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A new mouse model of early-life stress 

To test if misregulation of CaMKII could be playing a role in the development of 

learning and memory deficits associated with early-life stress, we adopted a behavioral 

paradigm of chronic early-life stress first described in the Baram laboratory (Rice et al., 

2008).   The chronic early-life stress paradigm we used, introduced an environmental 

stressor between P2-P9 in C57BL/6J mice (Figure 1).  The success of the ES is 

determined by tracking the weight of Control versus ES mice at P9, additionally weights 

are taken at P25 and P90 (Figure 2).  The decrease in weight is due to fractured maternal 

care due to the dams leaving their litters to search for nesting material (Rice et al., 2008).  

The pups are thought to be affected not only by the uncomfortable environment, but also 

suffer from a temperature stress, as well as decreased time feeding.  We also speculate 

that stress may affect lactation in the dams compromising milk production and adding to 

the feeding deficits in the ES pups.   

Mice undergoing this chronic early-life stress paradigm have been shown to have 

a &4-fold increase in basal plasma cortocosterone (CORT) levels compared to control 

mice at P9 persisting into adult mice (Rice et al., 2008).  Along with the change in plasma  

CORT levels, ES mice show a 75% decrease in corticotrophin releasing hormone (CRH) 

mRNA levels in the hypothalamic paraventricular nucleus (PVN) at P9, again persisting 

into the adult (Rice et al., 2008).  

The ES mice are deficient in hippocampal-dependent learning and memory 

behavioral tasks at adult time points.  In the Morris water maze, ES mice show an 

increased latency to escape on the second day of training compared to the control mice, 

revealing a subtle learning and memory deficiency in the ES mice (Rice et al., 2008).  To 
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Figure 1 

 

 

Figure 1.  Early-life stress paradigm.  At P2 litters are culled to 5 pups and moved with Dam 
into new home cages.  Control mice are placed in a standard cage with a 5cm x 5cm nesting 
square.  Early-life stress mice are placed on a wire mesh floor suspended 2-2.5cm from the 
bottom of the cage containing 10% of the normal corncob bedding material.  The early-life stress 
mice receive reduced nesting material (2.5cm x 5cm nesting square).  At P9 all mice are moved to 
a standard mouse cage and weaned at P21 as per normal procedure. 
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Figure 2 

 

Figure 2. Weight (g) of Control and ES mice.  Weight of control and ES mice was determined 
on P9 at the end of the stress paradigm.  Control mice were significantly heavier than stress mice 
(p<0.0001).  The difference in weight was maintained at P25 (p<0.0001), and at P90 there was no 
longer a weight difference between control and stress mice (P9: Con=5.6g, N=25; Str=3.7g, 
N=23.  P25: Con=12.9g, N=24; Str=10.9g, N=18.  P90: Con=27.46, N=5; Str=26.32, N=5). 
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confirm there was a learning and memory deficit in the ES mice, the novel object assay 

was used.  The ES mice spent significantly less time exploring the novel object versus the 

familiar object than that of the control mice (Rice et al., 2008).  This confirms the 

memory deficit seen in the Morris water maze.  It is important to reiterate that these 

learning and memory tasks are being conducted on adult animals where the stress was 

performed in a very specific time-window in early postnatal development. Thus, these 

deficits reveal a long-lasting change in developmental programming.  

In mice, exposure to novel objects are anxiogenic events, which could account for 

the decrease in time spent with the novel object seen in the ES mice.  However, open-

field activity tasks revealed no effect of early-life stress on anxiety, as evidence by no 

differences in center time between control and ES mice.  However, more appropriate 

anxiety behavioral assays must be completed to make definitive conclusions on the 

anxiety of these animals. 

       

Results 

 

Early-life stress effects on CaMKII 

 As an initial test of the hypothesis that the effects of early-life stress may be in 

part mediated by long-term disruptions in CaMKII signaling, we analyzed hippocampal  

homogenates from P25 control or ES mice by western blotting. 

 Total hippocampal homogenates from P25 control and ES mice did not reveal any 

major differences in the expression levels of CaMKII! or CaMKII", however there was a 

trend for a decrease in the CaMKII! Thr286 phosphorylation in the ES mice compared to 
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the controls (Figure 3).  This suggests that there could be a shift in the subcellular 

localization of CaMKII due to the fact that Thr286 increases the affinity of the kinase for 

the PSD.  Additionally, there was no change in total levels of PSD-95, NR1, NR2A, 

NR2B, Ser1303 phosphorylation, GluR1, or Ser831 phosphorylation in control versus ES 

mice (data not shown).   

 Subcellular fractionation to isolate an S1 (cytosolic protein pool), S2 (membrane-

associated protein pool), S3 (PSD-associated protein pool), and P3 (insoluble pellet) was 

performed to determine if early-life stress caused a shift in CaMKII distribution in P25 

mice.  CaMKII! levels were reduced in the PSD-associated S3 and P3 fractions, as well 

as the S1 fraction with no change in the S2 fraction (Figure 4).  It may be counterintuitive 

that there is no change in the amount of CaMKII! from the total homogenates and a 

decrease in the S1, S3, and P3 fractions from the ES mice.  However, this is potentially 

due to how the protein is distributed in the fractions.  The majority of protein is isolated 

in the S2 fraction with less than 10% of the protein in the S3 and P3 fractions, so the S2 

fraction is more representative of the total homogenate (see Chapter 2: Methods, figures 1 

and 2).  There was also a strong trend for a reduction of CaMKII! Thr286 

phosphorylation in the S2 and S3 fractions (Figure 4).  CaMKII" levels were unchanged 

in the S2 fraction; however, CaMKII" was not detected in the other fractions (Figure 4). 

 We looked at the distribution of several other PSD-associated proteins known to 

be important in learning and memory, and that may interact either directly or indirectly 

with CaMKII (Figure 5).  PSD-95, a scaffolding protein and the prototypical PSD 

marker, was reduced in the P3 fraction of ES mice compared to controls (Figure 5).  We   
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Figure 3 

 

Figure 3.  Western blot analysis of total hippocampal homogenates from P25 control and ES 
mice revealed no change in the total amount of CaMKII! or CaMKII" normalized to total protein 
loaded.  There was a non-significant 25% decrease in CaMKII!-Thr286 phosphorylation when 
normalized to total CaMKII! (p=0.12). (Control=5; Stress=5) 
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Figure 4 

 

Figure 4.  Western blot analysis of subcellular fractionation of total hippocampal 
homogenates from P25 control and ES mice.  CaMKII! levels were decreased in S1 (p=0.01), S3 
(p=0.02), and P3 (p=0.0128) from ES mice.  There was no change in the levels of CaMKII! or 
CaMKII" in the S2 fractions of control and ES mice.  When normalized to total CaMKII!, there 
was a non-significant trend for a 40% decrease in Thr286 phosphorylation in S2 and S3 fractions 
from ES compared to control mice.  (Control=5; Stress=5) 
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also wanted to determine if there was a redistribution of the subcellular localization of 

NMDAR and AMPAR subunits, due to the role these receptors play in synaptic plasticity 

and learning and memory.  The NR1 subunit was significantly reduced in the P3 fraction 

of ES mice compared to controls (Figure 5).  Though not significant, the P3 fraction of 

the ES mice showed a strong trend for a reduction in NR2A levels and lesser so for 

NR2B levels (Figure 5).  Again this fits with the reduction in PSD-95 and the possibility 

that there is a decrease in the number of PSDs in the ES mice.  The GluR1 subunit of the 

AMPAR was not detected in the P3 fraction; however, no change in GluR1 levels was 

detected in the S2 or S3 fractions of the ES mice compared to that of control (Figure 5).  

Interestingly, there was a strong trend for a decrease in GluR1 Ser831 phosphorylation in 

the S3 fraction as well as an increase in Ser831 in the S2 fraction in the ES mice when 

normalized to total GluR1 (Figure 5).  This suggests that CaMKII function may be 

altered in the PSD-associated fractions, which is leading to a decrease in phosphorylation 

of Ser831 of the GluR1 AMPAR subunit, a substrate of CaMKII that modulates of 

AMPAR function.   

Changes in the phosphorylation state of CaMKII, as well as changes in the 

distribution of the kinase and several of its known interacting partners could affect the 

interaction of CaMKII with these other proteins.  Immunoprecipitation (IP) studies were 

performed to determine how early-life stress could affect CaMKII’s interaction with 

PSD-associated proteins.  We first assayed for differences in the amount of CaMKII 

precipitated from control versus ES fractions (Figure 6).  In all fractions there was a 

significant decrease in the amount of CaMKII! coming down in the IPs from ES mice 

compared to controls, with a 50% reduction in the S3 (PSD-associated fraction) (Figure 
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Figure 5 

 

Figure 5.  Distribution of several PSD-associated proteins in the subcellular fractions of 
hippocampal homogenates from P25 control and ES mice.  PSD-95 was significantly reduced in 
P3 fractions from ES mice (p=0.0156).  Although there was no change in the amount of total 
GluR1 detected in the S2 or S3 fraction, there was a trend for an increase in S2 (p=0.03) and a 
decrease in S3 (p=0.04) of phosphorylated Ser831 when normalized to total GluR1 in the 
respective fractions.  The NR1 subunit of the NMDAR was significantly decreased in the P3 
fraction from ES compared to control mice (p=0.0015).  There were no differences in the amount 
of NR2B or NR2A subunits in any of the fractions when normalized to total protein loaded; 
however there was a trend for a decrease in the amount of NR2A in the P3 fraction from ES mice 
(p=0.051).  (Control=5; Stress=5) 
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6).  This is consistent with the total levels in each fraction shown in Figure 3, where there 

was reduced CaMKII! in S1, S3, and P3.  In the S2 fraction, the significant 13% 

reduction of CaMKII! levels in the IPs from ES samples is similar to the &12% decrease 

in the amount of CaMKII! in the ES S2 fraction (figure 3).  Thus, the IPs recapitulate the 

reductions in CaMKII! levels detected in the ES fractions (Figure 3 and 6).  Moreover, 

levels of Thr286 phosphorylation in IPs from the ES S3 fraction are significantly 

reduced; however, the ratio of phospho-Thr286 to total CaMKII! is not different between 

the control and stress groups (Figure 6).  Together this shows that ES mice have a 

reduced level of CaMKII! in PSD-associated fractions compared to control mice, and 

that the ES mice also have a decrease total amount of CaMKII! phosphorylated at 

Thr286 in these same fractions.  This does not change the ratio of the CaMKII!:Thr286 

phosporylation in the PSD-associated fractions. 

 CaMKII" was only detected in the S2 fraction homogenates (Figure 3), but was 

detected in all IP complexes (Figure 6).  In agreement with the western blot data from the 

S2 fraction total homogenate, CaMKII" was unchanged in the ES mouse IP from the 

same fraction.  Interestingly, CaMKII" levels were significantly reduced in the IP from 

the S1 fraction of ES mice when normalized to CaMKII! (Figure 6). These changes in 

CaMKII! and CaMKII" levels in the different fractions of the ES mice alter the ratios of 

CaMKII! and CaMKII" in the holoenzyme, potentially altering protein/protein 

interactions (Figure 6). 

In order to look more specifically at potential changes in CaMKII’s interaction 

with its known interacting proteins, we analyzed CaMKII IPs from the different fractions 

of control and ES mice by western blot.  Total levels of PSD-95 in the S2 and the S3  
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Figure 6 

 

Figure 6.  CaMKII immunoprecipitations on fractions isolated from P25 control and ES mice.  
The amount of CaMKII! precipitated from ES mice was significantly decreased in all fractions 
(S1: p=0.0015; S2: p=0.0055; S3: p=0.0077).  CaMKII" was only decreased in the S1 fraction 
from ES compared to WT mice when normalized to CaMKII! (p=0.0487), revealing a shift in the 
CaMKII!:CaMKII" ratio in the S1 fraction (p=0.04).  When normalized to total CaMKII!, 
phosphorylated Thr286 was unchanged.  Alternatively, when normalized to volume there was a 
decrease in Thr286 phosphorylation in the IP from the S3 fraction (p=0.03), meaning there is an 
overall lose of CaMKII! phosphorylated at Thr286 in the PSD-enriched fraction. (Control=5; 
Stress=5) 
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fractions from the control and ES mice were not significantly different (Figure 5).  

However, levels of PSD-95 in CaMKII IPs were increased by &63% when normalized to 

the total amount of CaMKII! in the IPs.  In contrast, there was no difference in the 

interaction of CaMKII and PSD-95 in the S2 fraction (Figure 7).  This means that 

although there is 50% less CaMKII! in the S3 IP in the ES mice there is 63% more PSD-

95 associated with the CaMKII! that is present.  Although not significant, there appears 

to be a 40% decrease in the CaMKII!:CaMKII" ratio, suggesting that the stress is 

causing a shift in holoenzyme composition that may be altering CaMKII’s interaction 

with PSD-95. 

We also wanted to determine if there was a difference in the amount of NMDAR 

subunits that were interacting with CaMKII in the ES mice.  The NR1 subunits were 

shown to have an increased association with CaMKII in both the S2 and S3 fractions of 

the ES mice when normalized to CaMKII! (Figure 7).  Co-IP of NR2A and NR2B with 

CaMKII were both increased in the S3 fraction of ES mice, but showed no change in the 

S2 fraction between groups (Figure 7).  None of these increases are statistically 

significant, and additional studies to increase the N need to be performed.   

To this point, all proteins evaluated showed increased interaction when 

normalized to CaMKII!.  To show the specificity for these increased interactions, we 

probed the fractions and IPs for A-Kinase Associated Protein 150 (AKAP150), a protein 

thought to indirectly complex with CaMKII via SAP97 (Nikandrova et al., 2010) (Figure 

8).  The expression of AKAP150 mirrored that of CaMKII! throughout the fractions 

(Figure 8).  More importantly, there was no change in the amount of AKAP150 

associated with CaMKII when normalized to CaMKII! in the IP in the S2 or S3 fraction  
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Figure 7 

 

Figure 7.  CaMKII co-IPs in S2 and S3 hippocampal fractions from P25 control and ES mice.  
Top panel: There is an increase in the amount of PSD-95 co-precipitated in S3 fractions from ES 
mice (p=0.0017).  Bottom panel: CaMKII co-IP of NMDAR subunits.  The amount of NR1 in the 
CaMKII IPs in S2 fractions from ES mice was increased compared to controls (p=0.04), with a 
trend for an increase in S3 fractions (p=0.06).  NR2A showed a similar increase in CaMKII IPs 
from the S3 fractions in ES mice (p=0.02).  NR2B co-IPs were unchanged in S2 fractions with a 
trend for an increase in the S3 fractions comparing control and ES mice.  (Control=5; Stress=5) 
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of control versus ES animals (Figure 8). 

 

Early-life stress induced electrophysiological changes 

 The mislocalization of CaMKII and the altered protein interactions, along with the 

decrease in PSD-95 that suggests a potential loss of dendritic spines in the ES mice, lead 

us to hypothesize that these mice would have altered electrophysiological properties 

associated with early-life stress.  LTP experiments were performed as a cellular correlate 

to learning and memory.  In slices from control mice there was a 187% potentiation of 

the slope of the fEPSP 60 minutes post LTP induction (Figure 9).  Slices from the ES 

mice also showed LTP, but the extent of potentiation was reduced to 154% (Figure 9).  

The difference in LTP generation between control and ES mice was significant using the 

two-way repeated measures ANOVA statistical analysis (p=0.0428).  

 We wanted to identify if there are any changes in synaptic transmission that could 

lead to the reduction of LTP seen in the ES mice.  To achieve this, we performed whole 

cell patch clamp recordings in CA1 pyramidal neurons from control and ES mice. By 

including Cs and TEA in the patch pipette to block K channels, we isolated AMPAR-

mediated spontaneous-EPSCs (sEPSCs) while voltage-clamping the membrane at -70 

mV. These events are action potential dependent, and are thought to be the result of 

multivesicular release events.  The amplitude of the sEPSC, which is a function of the 

number of receptors present on the postsynaptic terminal as well as the function of 

individual AMPAR channels, is reduced 36% in ES slices compared to control slices 

(Figure 10).  Additionally, the frequency of events, which can be altered by changes in 

the probability of release or the number of synapses, was decreased by 51% in ES slices  
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Figure 8 

 

Figure 8.  AKAP150 subcellular localization and co-IP with CaMKII in control and stress mice.  
Left panel: AKAP150 levels were decreased in S1 (p=0.0028), S3 (p=0.0113), and P3 
(p=0.0002), paralleling the expression pattern of CaMKII!.  Right panel: The CaMKII co-IP of 
AKAP150 in S2 and S3 fractions from ES mice were unchanged from that of controls when 
normalized to the amount of total CaMKII! in the respective IPs. (Control=5; Stress=5) 
 

 

 

 

 

 

 



 94 

Figure 9 

 

Figure 9.  LTP recordings in P25-P28 control versus ES mice.  A single-train, 100 Hz HFS was 
used to induce LTP in hippocampal slices from control and ES mice.  60 minutes post stimulation 
control slices had potentiated 187%, whereas ES slices had only potentiated 154%, a greater than 
30% reduction in LTP due to early-life stress. (Control=6 slices, 4 mice; Stress=8 slices, 4 mice) 
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(Figure 10). 

 To understand if there is a developmental delay that may have altered the 

AMPA/NMDA receptor ratio that could account for the change in sEPSC responses, we 

again turned to whole-cell patch clamp.  AMPAR mediated responses were generated by 

holding the cell at -70 mV, at which AMPAR-mediated evoked EPSCs can be isolated as 

NMDARs will be inactive due the Mg-blockade.  After AMPAR responses were 

recorded the cell was stepped to +40 mV to relieve the Mg2+ block of the NMDAR, we 

measured 50 ms after the peak of the dual component eEPSC to identify the NMDAR 

component.  There was no change in the AMPA/NMDA receptor ratios comparing 

control and ES slices (data not shown).   

 

Long-term Effects of early-life stress 

 To understand the long-term effects of the early-life stress in adulthood, 

biochemical and electrophysiological analysis was also performed on 3-month old mice.  

Western blots of total hippocampal homogenates revealed a trend for a decrease in 

CaMKII! expression following ES compared to control mice (Figure 11).  CaMKII" 

expression in the same samples was unchanged, leading to a trend for a decrease in the 

CaMKII!:CaMKII" ratio (Figure 11).  However, there was no difference in Thr286 

phosphorylation in the total homogenates of control and ES mice (Figure 11).  GluR1 

levels in total homogenates of control compared to the ES mice were unchanged; 

however, Ser831 levels were decreased in the ES mice when normalized to total GluR1 

(Figure 11).  Protein expression of all other proteins analyzed in the total homogenates 

was unchanged (data not shown).  
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Figure 10 

 

Figure 10.  Spontaneous EPSCs from whole-cell voltage clamp recordings (Vh = -70 mV) 
revealed a decrease in both the amplitude (p=0.0001) and frequency (p=0.0117) of responses in 
ES compared to control mice. (Control=7 slices, 5 mice; Stress=9 slices, 5 mice)  
(Figure courtesy of Brian Shonesy) 
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To take a closer look at protein distribution, subcellular fractionation was 

performed as previously described.  CaMKII! was unchanged throughout all fractions 

assayed.  There were trends for a decrease in both S3 and P3 fractions (the PSD-

associated fractions) where the majority of CaMKII localizes, fitting with the global 

decrease in CaMKII! seen in the total homogenates (Figure 12).  CaMKII" was 

unchanged in all fractions, which led to a trend for a decrease in the CaMKII!:CaMKII" 

ratio in the ES mice in the P3 PSD-associated fraction (Figure 12).   

 We also wanted to determine the changes in subcellular localization of several 

other proteins important in learning and memory, especially their expression in the 

synaptic (S3 and P3) and extrasynaptic (S2) pools of protein.  PSD-95 levels were 

significantly reduced in the adult ES P3 fraction compared to control (Figure 13).  The 

trend for a decrease in the NR2B subunit of the NMDAR in the P3 fraction of adolescent 

ES mice (Figure 5) was also maintained into adulthood (Figure 13).  Interestingly, NR2A 

levels in the P3 fraction were normal in adult ES animals (Figure 13), where there was a 

strong trend for a decrease in the adolescent ES animals (Figure 5).  The early-life stress 

may be leading to a switch in the NR2B:NR2A ratio, which would potentially alter 

NMDAR function.  The CaMKII dependent Ser1303 phosphorylation of the NR2B 

subunit can also affect NMDAR function.  Interestingly, there was no change in the total 

levels of phospho-Ser1303 in the total homogenates in adult ES mice. However, there 

was a strong trend for an increase of Ser1303 phosphorylation in the S3 fraction, with a 

decrease of Ser1303 phosporylation in the P3 fraction in the ES mice (Figure 13), 

suggesting a shift in subcellular localization of NR2B containing NMDARs that are 

phosphorylated at Ser1303.  This could drastically alter normal NMDAR function if there  
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Figure 11 

 

Figure 11.  Western blot analysis of total homogenates from adult control and ES mice.  Left 
panel: There was a trend for a 25% decrease in CaMKII! levels in ES mice (p=0.10) with no 
change in CaMKII" levels when normalized to total protein loaded, leading to a slight non-
significant trend for a reduced CaMKII!:CaMKII" ratio.   No change in the amount of Thr286 
phosphorylation was detected when normalized to total CaMKII!.  Right panel: There was no 
decrease in the amount of total GluR1 in ES compared to control mice, but Ser831 
phosphorylation was decreased 20% when normalized to total GluR1 (p=0.0374).  
(Control=5; Stress=5)  
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Figure 12 

 

Figure 12.  CaMKII western blots of subcellular fractions of hippocampal homogenates from 
adult control and ES mice.  A trend for a decrease in CaMKII! levels in S3 and P3 from ES mice, 
with no change in CaMKII", leads to a non-significant 33% decrease in the CaMKII!:CaMKII" 
ratio in the P3 fraction. (Control=5; Stress=5) 
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is a shift in subcellular populations of NMDARs that are being differentially regulated in 

the ES mice. 

In adult mice, unlike adolescent mice, the GluR1 subunit of the AMPAR was 

readily detected in the P3 fraction, along with the S2 and S3 fractions.  Furthermore, 

there is a strong trend for a decrease in the amount of GluR1 in the S3 and P3 fraction of 

adult ES mice compared to control mice, with no change in GluR1 levels in the S2 

fraction (Figure 13).  This redistribution of GluR1 was accompanied by a trend for a 

decrease in Ser831 phosphorylation in the S2 fraction (Figure 13).  

Whole-cell patch clamp recordings revealed the amplitude of the sEPSCs was 

reduced 42% in adult ES cells versus control cells (Figure 14), as seen in adolescent 

mice.  However, the frequency of sEPSCs was not changed between groups (Figure 14).  

 

Discussion 

Chronic early-postnatal stress is known to cause behavioral deficits lasting the life 

of the animal (MacQueen et al., 2003; Romeo et al., 2003; Rice et al., 2008).  It is 

unknown how early-life stress alters neuronal processes, during these developmental 

periods, which creates a diseased state for the life of the animal.  Through our work using 

an AS mouse model, we hypothesized that early-life stress would lead to misregulation of 

CaMKII during development that leads to long-lasting changes on a cellular level that 

cause behavioral deficits throughout the life of the animal. 

Our biochemical data suggest there is a developmental effect on expression and 

localization of PSD proteins in the hippocampus of adolescent ES mice.  At P25 ES mice 

have a reduction in PSD-95 levels in PSD-enriched fractions.  This difference could be  
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Figure 13 

 

Figure 13.  Subcellular fractionation of PSD-associated proteins in control and ES mice.  
Several proteins were shown to be decreased in the P3 fraction from ES mice, including PSD-95 
(p=0.0038), GluR1 (p=0.0453), and NR2B (p=0.0148).  When normalized to total NR2B in the 
S3 fraction there was a trend for an increase in the amount of Ser1303 phosphorylation of the 
NR2B subunit in ES mice (p=0.06).  The level of Ser831 phosphorylation in the S2 fraction of ES 
mice showed a trend for a decrease when normalized to total GluR1 (p=0.08). (Control=5; 
Stress=5)  
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Figure 14 

 

Figure 14.  sEPSCs in whole-cell patch recordings from adult control and ES mice reveal a 
decrease in amplitude (p=0.0048) with no change in the frequency of the sEPSCs from ES mice. 
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due to a decrease in the number of PSDs in the ES mice or a restructuring of the PSD 

following early-life stress. There are data that demonstrate chronic stress leads to a 

dramatic decrease in dendritic arborization and spine number (Xu et al., 2009), consistent 

with a loss of PSD-95 from PSD-associated fractions.  Furthermore, analysis of adult 

mice revealed a consistent reduction of PSD-95 in PSD-associated fractions from ES 

mice.  Additionally, at these adult time points there are significant trends for a reduction 

in the NMDAR subunit, NR2B, as well as the AMPAR subunit, GluR1.  Taken together, 

these data are consistent with a long-lasting change in PSD number or structure, induced 

by early-life stress in a specific developmental time window (P2-P9). 

 The redistribution of CaMKII!, which leads to a decrease in the amount of 

CaMKII! associated with the PSD-enriched fractions, could be due to a decrease in 

number or morphology of PSDs.   Alternatively, misregulation of the kinase may be 

causing the alterations in the PSDs themselves.  Support for this hypothesis can be seen 

when evaluating the subcellular localization of GluR1 and Ser831-phosphorylated GluR1 

at P25.  No changes in the total levels of GluR1 were detected between control and ES 

animals; however, there were significant &50% decreases in the amount of Ser831 

phosphorylation in the P3 fractions in the ES mice.  This suggests that CaMKII function 

may be misregulated in PSD-associated fractions, leading to altered phosphorylation of 

Ser831 in GluR1 AMPAR subunits, and changes in AMPAR function, supported by 

decreased sEPSC amplitudes.  Interestingly, this difference in Ser831 phosporylation is 

not detected in the S3 and P3 adult time points, but adult ES mice were shown to have a 

significant trend for reduced Ser831 phosphorylation in the S2 fraction, along with a 

trend for a reduction in phosphorylated Ser1303 of NR2B.  The altered phosphorylation 
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of Ser831 across the different fractions, and Ser1303 in the S2 fraction, from control 

versus ES mice may suggest that AMPARs, and potentially NMDARs, are being 

differentially modulated at different membrane sites (i.e. synaptic versus exptrasynaptic).  

Current efforts are underway to create fractionation protocols coupled to biotinylation 

assays to identify biochemical changes in synaptic versus exptrasynaptic membranes.  

Together this may indicate that CaMKII misregulation, leading to alterations in GluR1 

phosphorylation, is a component of a cellular mechanism leading to changes in the PSDs 

of ES mice.  

CaMKII immunoprecipitation studies from the PSD-enriched fractions of ES 

mice revealed an altered association with PSD-95.  Although less CaMKII! was 

immunoprecipitated from the ES mice, there was a >60% increase in the amount of PSD-

95 co-precipitated.  We know that the ratio of CaMKII!:Thr286 phosphorylation has not 

changed, so it does not appear that this increased interaction with PSD-95 is mediated 

through Thr286 phosphorylation.  Could this be due to a shift in the CaMKII!:CaMKII" 

ratio?  Although not statistically significant, there does appear to be a 28% reduction in 

CaMKII" in the ES S3 fraction IP normalized to CaMKII!.   

The decrease in hippocampal LTP generation at P25 in ES hippocampal slices 

could be due to a decreased number synapses recruited, thus leading to a decrease in 

LTP.  Additionally, the decrease in both frequency and amplitude of the sEPSCs points to 

a decrease in the total number of synapses on a particular neuron.  Although the decrease 

in sEPSC amplitude is maintained into adulthood, the decrease in frequency returns to 

WT levels by P90.  This suggests that there is a potential decrease in the number of PSDs 

due to a developmental delay, seen at P25, which is corrected for by adult time points.  
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The decrease in sEPSC amplitude that is maintained into adulthood implies that the 

proper regulation at the PSD remains altered at this later time point.  These data appear to 

be in agreement with the hypothesis that there is a decrease in the number of spines or an 

alteration in spine morphology that is causing a decrease in postsynaptic responses. 

The trend for reduced protein levels of CaMKII!, NR2B, and GluR1 in PSD-

associated fractions supports the hypothesis that there are either decreased PSD number 

or altered PSD morphology in the hippocampus of ES mice.  This could potentially lead 

to the decrease in EPSC frequency seen in adolescent ES mice.  Less activation of 

postsynaptic neurons would lead to a decrease in CaMKII activation, evidenced by the 

decrease in CaMKII localizing to the PSD-associated fractions in the ES mice.  This in 

turn may be altering CaMKII dependent phosphorylation of Ser1303 of the NR2B 

subunit and Ser831 of the GluR1 subunit.  A decrease in Ser831 could be seen 

electrophysiologically as a decrease in EPSC amplitude, which we do show in both 

adolescent and adult time points.  Thus, we hypothesize the dysfunction in the ES mice is 

due to a combination of decreased PSD number with altered signaling of CaMKII, as 

well as additional signaling cascades that have yet to be tested.  

 Despite promising data obtained in these initial early-life stress experiments, 

changes in the animal care facility compromised our ability to reliably generate ES and 

control mice.  A high percentage of pups in the ES environment died, and weights of the 

controls were not different from the ES survivors.  This situation underscores the 

importance of having consistent proper maintenance of mouse colonies.  Ongoing 

experiments have been moved into a more stable environment where the health of the 

mice will be appropriately maintained.  The biochemical, electrophysiological, as well as 
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behavioral experiments will be continued to elucidate the role of CaMKII in the learning 

and memory deficit associated with earl-life stress.   

 These experiments demonstrate that environmental stressors, occurring during 

early postnatal development, can lead to persistent and evolving synaptic and molecular 

changes that last into adulthood.  Although we were able to identify CaMKII 

misregulation and altered localization in the early-life stress mice we do not know if this 

is due to a direct effect on the kinase or a compensatory mechanism.  To better 

understand the role of CaMKII regulation during development we decided to take 

advantage of the CaMKII!-Thr286Ala knock-in transgenic mouse model.     
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CHAPTER V 

 

CaMKII-Thr286Ala KNOCK-IN MICE 

 

Introduction 

 Biochemical data generated using the early-life stress model (Chapter 4) suggest 

that CaMKII misregulation early in postnatal development can alter normal cellular 

processes for the life of the animal.  Thus we sought an understanding of how normal 

development is affected by disrupting CaMKII! auto-phosphorylation.   

The phosphorylation of CaMKII is vital for proper subcellular localization and 

directing protein/protein interactions that are thought to be necessary for normal learning 

and memory (Chapter 1: Introduction) (Colbran and Brown, 2004).  However, much of 

our understanding of these processes comes from work in vitro and/or in cultured 

neurons.  To understand how altering CaMKII!-Thr286 autophosphorylation affects 

CaMKII expression, localization, and protein/protein interactions in vivo, and in turn 

affecting learning and memory, we took advantage of the CaMKII!-Thr286Ala knock-in 

mice (Giese et al., 1998).  CaMKII regulation and the phenotypes seen in the knock-in 

mice were completely described in the introduction of chapter 1.  Briefly, the CaMKII!-

Thr286Ala knock-in (KI) mice are able to undergo normal Ca2+/calmodulin-dependent 

activation leading to a translocation of CaMKII to the PSD.  However, due to the 

inability of the kinase to undergo autophosphorylation at Thr286, CaMKII! is unable to 

become autonomously active as Ca2+ dissipates, reducing the binding of CaMKII to 
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several of its interacting partners, and decreasing the affinity of the kinase for PSDs.  

Until now this hypothesis has not been directly tested in vivo. 

 Research using CaMKII!-Thr286Ala KI mice to understand how misregulation 

of CaMKII! leads to memory deficits has focused solely on the adult.  CaMKII! 

expression begins at & P5 in the rodent, so these mice live there entire postnatal lives 

without proper CaMKII! function.  Thus, the adult phenotypes may represent acute 

neuronal deficits due to the lack of Thr286 autophosphorylation, or may reflect an altered 

functional state due to developmental compensation.   

        

Results 

 

CaMKII expression pattern in WT versus KI mice 

We first wanted to describe the expression pattern of CaMKII in the hippocampus 

from P25 KI mice compared to WT controls (Figure 1).  Western blot analysis of total 

hippocampal homogenates confirmed the genotypes of individual mice by readily 

detecting Thr286 phosphorylation in WT mice with an absence of Thr286 

phosphorylation in the homogenates from the KI animals (Figure 1).  A 40% reduction in 

total CaMKII!, along with a 33% increase in total CaMKII" leads to a 58% reduction in 

the !:" ratio (Figure 1).  Thus, the absence of Thr286 phosphorylation in the KI mice 

alters the expression pattern of total CaMKII in adolescence.  We hypothesize that the 

lack of Thr286 phosphorylation and the change in !:" ratio will lead to altered 

subcellular localization of CaMKII as well as changes in normal protein/protein 

interactions.   
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Figure 1 

 

Figure 1.  Western blot analysis of total hippocampal homogenates from P25 WT and KI mice.  
CaMKII! levels were decreased 40% (p<0.0001) and CaMKII" levels were increased 33% 
(p=0.0424) in KI compared to WT mice.  The change in CaMKII expression leads to an overall 
58% decrease in the CaMKII!:CaMKII" ratio (p=0.0004) in the KI mice.  Probing for 
phosphorylated Thr286 reveals the total absence of Thr286 phosphorylation in the KI mice, 
confirming the genotyping.  (WT=7; KI=9) 
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Subcellular fractionation was performed to identify if CaMKII localization was 

altered in P25 KI mice (Figure 2).  The CaMKII! levels were significantly reduced in the 

S1 fraction from the KI mice, whereas CaMKII! levels in S2 were unchanged, although 

there was a slight trend for a decrease in the KI mice (Figure 2).  The CaMKII! levels in 

S3 and P3 fractions from the KI mice were dramatically decreased, 87% in S3 and 95% 

in P3 (Figure 2). CaMKII" in the S1 and S2 fractions of the KI mice were increased 

130% and 60%, respectfully, whereas CaMKII" was decreased 70% in both S3 and P3 

fractions (Figure 2).  The changes in expression and localization of both CaMKII 

isoforms leads to a significant decrease in the !:" ratio in all fractions (Figure 2). 

 

CaMKII immunoprecipitation in WT and KI mice 

The altered CaMKII expression, localization, and isoform ratio led us to 

hypothesize that there were changes in CaMKII protein/protein interactions, specifically 

at the PSD.  We used immunoprecipitation assays to probe for changes in interaction of 

CaMKII with several known interacting partners in the different subcellular fractions.  

Due to our interests in determining what is occurring at the PSD in the WT versus KI 

animals, I wanted to be able to perform the immunoprecipitation assays on the entire 

PSD-associated fraction (S3 and P3).   To this end the pooled S3 and P3 fractions were 

used as inputs.  

 Levels of CaMKII! immunoprecipitated from S3 fractions of KI mice were 

decreased 80% compared to WT when normalized to volume (Figure 3).  CaMKII" 

levels were decreased 46% in PSD-associated fractions of KI mice compared to WT mice 

when normalized to volume.  The decrease in the amounts of the CaMKII isoforms in the  
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Figure 2 

 
Figure 2.  Western blot analysis of hippocampal subcellular fractions from P25 WT and KI  
mice.  CaMKII! levels were significantly decreased in S1 (40%; p=0.003), S3 (87%; p<0.0001), 
and P3 (95%; p=0.0016) KI fractions.  CaMKII" levels were increased in S1 (130%; p=0.0016) 
and S2 (60%; p=0.0038) KI fractions and decreased in S3 (70%; p=0.007) and P3 (70%; 
p=0.015) KI fractions.  Due to the shift in expression, CaMKII!:CaMKII" ratio is decreased in 
all fractions S1 (69%; p<0.0001), S2 (49%; p=0.0025), S3 (80%; p<0.0001), and P3 (79%; 
p=0.0008) in the KI animals.   No Thr286 phosporylation was detected in any fraction from the 
KI mice.  (WT: S1=10, S2=10, S3=10, P3=7; KI: S1=12, S2=12, S3=12, P3=7) 
 

 

 

 

 

 

 

 

 



 112 

Figure 3 

 

Figure 3.  CaMKII immunoprecipitation from the PSD-associated fraction (S3) of hippocampal 
subcellular fractionation from P25 WT and KI mice.  The amount of CaMKII! in the KI IP was 
decrease 78% (p<0.0001) when normalized to volume.  When normalized to the amount of 
CaMKII", the CaMKII!:CaMKII" ratio in the KI IP was decreased 64% (p=0.0004).  CaMKII", 
normalized to volume, was decreased 46% (p=0.0033).  When normalized to the amount of 
CaMKII! in the IP (CaMKII":CaMKII!) ratio, CaMKII" was increased significantly (225%; 
p=0.0041).  Taken together, the KI mice have reduced holoenzyme in the PSD-associated 
fraction, but the holoenzyme that is present has an increase in the amount of CaMKII" per 
CaMKII! subunits.  (WT=10; KI=7) 
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PSD-associated fraction of the KI mice leads to a subsequent 64% decrease in the !:" 

ratio (Figure 3).  These decreases in CaMKII isoforms seen in the immune complexes 

mirror those seen in the whole S3 and P3 fractions (Figure 2 and 3).  CaMKII"-Thr287 

phosphorylation could be compensating for the loss of CaMKII!-Thr286 

phosphorylation, creating an autonomously active kinase.  To understand the contribution 

of Thr287 phosphorylation in the KI mice we quantified the amount of CaMKII"-Thr287 

phosphorylation in the PSD-associated fraction (Figure 4).  There was no change in the 

amount of phosphorylated Thr287 in the PSD-associated fraction from the KI mice when 

normalized to total CaMKII" (Figure 4).  By normalizing to the Ponceau-S total protein 

stain, we revealed that the total amount of CaMKII" phosphorylated at Thr287 was 

decreased by 74% (Figure 4).  Taken together this suggests that CaMKII" levels are 

down in the PSD-associated fraction of KI mice, but there is no change in the ratio of 

Thr287/CaMKII".  Additionally, this is shown when the amount of CaMKII" and the 

amount of Thr287 in the IP is normalized to the amount of CaMKII!.  In both cases there 

is a 2-fold increase in the KI versus the WT (Figure 3 and 4).  

 

CaMKII-complexes in WT and KI mice 

To begin to understand how CaMKII protein/protein interactions are altered in the 

KI mice we looked at changes in the co-immunoprecipitation with CaMKII of several 

known interacting proteins.  The levels of NR1, NR2B, and NR2A in the PSD-associated 

fraction were unchanged between genotypes when normalized to Ponceau-S total protein 

stain (Figure 5).  Co-immunoprecipitation of NR1, NR2B, and NR2A with CaMKII was 

significantly reduced in KI compared to WT when normalized to volume (Figure 5).   
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Figure 4 

 

Figure 4.  CaMKII"-Thr287 phosphorylation in PSD-associated fraction from P25 WT and KI 
mice.  Left panel (S3 inputs): The amount of CaMKII"-Thr287 phosphorylation was unchanged 
in the S3 fraction when normalized to CaMKII", revealing that the Thr287 phosphorylation was 
decreased to the same extent as the CaMKII" in the KI mice.  This is visualized when 
normalizing Thr287 phosphorylation to total protein loading, where the Thr287 is decreased 74% 
in the KI compared to WT (p=0.0003).  Right panel (S3 CaMKII IP): The amount of CaMKII"-
Thr287 phosphorylation in the CaMKII IP from KI mice was decreased 52% (p=0.0118) when 
normalized to volume.  No difference in the amount of Thr287 phosphorylation between WT and 
KI mice was observed when normalized to CaMKII" in the IPs, meaning the fraction of 
CaMKII"-Thr287 phosphorylation is unchanged.  By normalizing to the amount of CaMKII! in 
the IP, there is a 3-fold increase in the amount of CaMKII"-Thr287 phosphorylation per 
CaMKII! in the KI mice (p=0.0161).  (WT=9; KI=6) 
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This is not surprising due to the significant reduction in CaMKII in the IPs, from the KI 

mice (Figure 3).  However, normalization to the amount of CaMKII! in the IPs revealed, 

a significant &2-fold increase in the amount of NR1 and NR2B in KI compared to WT 

mice (Figure 5).  However, there was no difference in the amount of NR1 or NR2B 

present in the co-immunoprecipitaion in WT versus KI animals when normalized to 

levels of CaMKII" (Figure 5).  This again suggests that CaMKII" may be directing these 

interactions at the PSD or potentially compensating for the mutant CaMKII! in the KI 

mice. 

 The total amount of NR2A in the co-immunoprecipitation was decreased when 

normalized to volume; however, unlike NR1 and NR2B, when normalized to CaMKII! 

there was no difference in the amount of NR2A relative to CaMKII! (Figure 5).  

Furthermore, when normalized to the amount of CaMKII" in the IPs, there is a trend for a 

decrease in the amount of co-immunoprecipitated NR2A (Figure 5).  

CaMKII is able to regulate NR2B containing NMDARs via phosphorylation of 

Ser1303 residue in the C-terminus (Sessoms-Sikes et al., 2005).  We wanted to determine 

if the phosphorylation at Ser1303 is misregulated in PSD-associated fractions from KI 

mice, which could potentially affect learning and memory behaviors in these mice.  

Western blot analysis of the PSD-associated fraction of P25 mice revealed no change in 

the amount of Ser1303 normalized to total NR2B (Figure 6).  Additionally, there was no 

change in the fraction of NR2B phosphorylated at Ser1303 in the co-

immunoprecipitation, seen when normalizing the phospho-Ser1303 signal to total NR2B 

in the co-immunoprecipitation (Figure 6). 
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Figure 5 

 

Figure 5.  NMDAR complexes in hippocampal S3 fractions in P25 WT and KI mice.  Top panel 
(S3 inputs): Total levels of NR1, NR2B, and NR2A are unchanged in KI compared to WT mice.  
Bottom panel (S3 CaMKII IPs): Co-immunoprecipitaion of NMDAR in S3 fractions from WT 
and KI mice.  When normalized to the amount of CaMKII! in the IP, there is a greater than 2-
fold increase in the association of NR1 (128%; p=0.0072) and NR2B (118%; p=0.0001) in the KI 
mice.  Normalizing to the amount of CaMKII" reveals that the relative amount of NR1 and 
NR2B is unchanged, meaning NR1 and NR2B decreased to the same extent as CaMKII" in the 
IPs.  The amount of NR1 and NR2B are decreased in the IPs, seen when normalizing to volume, 
48% (p=0.010) and 51% (p=0.0092), respectively.  The amount of NR2A in the IPs was 
decreased 63% (p=0.0087) in the KI mice when normalized to volume.  When normalized to 
CaMKII! there was no difference in the fraction of NR2A coming down in the IP, but 
interestingly, when normalized to CaMKII" there was a trend for a 40% decrease in the fraction 
of NR2A (p=0.1) associating with CaMKII".  (WT=10; KI=7) 
 
 

 

 



 117 

Figure 6 

 

Figure 6.  Expression and CaMKII co-immunoprecipitation of NR2B-Ser1303 phosphorylated 
subunits in WT and KI mice.  When normalized to the amount of total NR2B in the S3 fraction 
there was no change in the amount of Ser1303 phosphorylation in the inputs (left panel) or in the 
CaMKII IPs (right panel).  (WT=10; KI=7) 
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To determine if the increased interaction of CaMKII! with NR1 and NR2B 

extends to additional PSD-associated proteins that complex with CaMKII, we also probed 

the co-immunoprecipitations for PSD-95.  The amount of PSD-95 in the PSD-associated 

fraction was unchanged between WT and KI mice (Figure 7).  There was a strong trend 

for a &15% decrease in the amount of PSD-95 in the KI mice (p=0.085).  Co-

immunoprecipitation of PSD-95 with CaMKII was readily detected via western blot 

(Figure 7).  The total amount of PSD-95 in the IPs was decreased by 45% in the KI mice 

when normalized to volume.  The ratio of PSD-95 to CaMKII! revealed a greater than 2-

fold increase of PSD-95 associated with CaMKII! in the KI compared to WT IPs, but no 

change when normalized to CaMKII" (Figure 7).  

  

Behavioral deficits in adolescent KI mice 

 Hippocampal-dependent learning and memory deficits have been reported in adult 

(2-3 month old) KI mice in the Morris water maze (Giese et al., 1998).  To date there has 

been no report on behavioral phenotypes that may be present in adolescent KI mice.  Due 

to the biochemical changes we uncovered in the PSD-associated fractions of the KI mice 

we wanted to determine if a behavioral phenotype could be exposed in the adolescent 

animals (P24-P25).  We adjusted the conditions of three behavioral tasks for assaying 

adolescent mice (see Chapter 2: Methods-Figure 5).  Two hippocampal-dependent 

memory tasks, Y-Maze (working memory) and a variation of the Novel Object 

Recognition (short-term/long-term memory), were used to assay for hippocampal 

dysfunction in the KI mice.  Additionally, the Elevated-Plus Maze (EPM) was used to 

assay for anxiety phenotypes, which also often includes a hippocampal component.  We  
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Figure 7 

 

Figure 7.  PSD-95 expression and CaMKII co-immunoprecipitation in hippocampal S3 fractions 
from P25 WT and KI mice.  There was a trend for a slight decrease in the amount of PSD-95 
(15%; p=0.0858) in the S3 fraction of KI compared to WT mice.  PSD-95 co-
immunoprecipitation mirrored CaMKII" in the IP, normalized to CaMKII! there was a 135% 
(p<0.0001) increase of PSD-95 association, normalized to CaMKII" there was no change in the 
association of PSD-95, and normalizing to the volume showed that there was a 45% (p=0.0002) 
decrease in the amount of PSD-95 in the IP of KI mice.  (WT=10; KI=7) 
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are interested in exploring an EPM phenotype in adolescent KI mice due to unpublished 

data in our laboratory that show adult KI mice have an increased center time in the open-

field paradigm, eluding to a potential anxiolytic phenotype in these animals.  Adult KI 

mice also display an increased overall activity in the open-field task (Rentz and Colbran 

unpublished). 

 These behavioral tasks were run on all mice, on three consecutive days.  The 

experimental paradigm was as follows: 1.  Mice were weaned at P21 (familiar object for 

novel object recognition placed in weanling home cage at this time-see Chapter 2: 

Methods for details).  2.  Y-maze was performed on P24.  3.  The variation of novel 

object recognition was performed on P25.  4.  On P26 the mice were run on the EPM, and 

5.  Mice were sacrificed for biochemical analysis.  

 The Y-maze revealed no differences in spontaneous alternations between the WT, 

KI, or Heterozygous (HET) animals (Figure 8).  Interestingly, the KI mice had a & 3-fold 

increase in the number of total arm entries compared to both WT and HET mice (Figure 

8).  This supports unpublished data that adult KI mice have increased activity in the open-

field. 

 The novel object recognition paradigm that we performed was a short-term 

memory task, with associated long-term memory components.  Adolescent WT and HET 

mice showed significant preference for the novel object over that of the familiar object 

(WT: 30% > chance HET: 23% > chance) (Figure 8).  However, adolescent KI mice 

showed no preference for novel or familiar objects, revealing a memory deficit (Figure 

8).   

  To determine if adolescent KI mice show an anxiety phenotype, EPM was    
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Figure 8 

 

Figure 8.  Hippcampal-dependent learning and memory tasks in adolescent WT and KI mice.  
Left panel: Spontaneous alternations in the y-maze are unchanged between WT, KI, and 
Thr286Ala heterozygous mice (N: WT=14; KI=11; HET=22).  KI mice display an increase in 
total arm entries with an average of 38 entries in the y-maze compared to WT, 15 entries, and 
HET, 16 entries mice (ANOVA p<0.0001).  Right panel:  Both WT and HET mice spent 
significantly more time with the novel object compared to the familiar object over that of chance, 
whereas KI mice displayed no preference for the novel or familiar object (WT=70%; KI=56%; 
HET=64%) (N: WT=14; KI=8; HET=20). 
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Figure 9 

 

Figure 9.  The elevated-plus maze reveals an anxiolytic phenotype in KI mice when compared 
to WT and HET mice.  The percent time spent in the open-arm versus the closed-arm showed that 
the WT mice spent 15% of the time in the open-arms of the EPM, with the HET mice spending 
21% of the time in the open-arms.  The KI mice spent 42% of the time in the open-arms versus 
closed-arms.  (ANOVA p=0.0011; bonferroni post-tests: WT<KI p=0.001, HET<KI p=0.001) (N: 
WT=13; KI=8; HET=21) 
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performed (Figure 9).  WT and HET mice spent 15% and 20% of their time on the open-

arms compared to closed-arms, respectively, whereas KI mice spent 42% of their time on 

the open-arms compared to closed-arms.  The significant 2-fold increase in open-arm 

time from that of WT or HET mice reveals a dramatic anxiolytic phenotype in the KI 

mice (Figure 9).     

      

Discussion  

Hippocampal deficits in adult CaMKII!-Thr286Ala KI mice have been well 

documented both electrophysiologically and behaviorally (Giese et al., 1998).  Our 

understanding of how CaMKII functions within neurons, and specifically at the PSD, 

allows for the generation of hypotheses allowing us to test the mechanism underlying the 

memory deficits seen in these animals (see chapter 1: Introduction).  Knowing that 

CaMKII! expression begins postnatally in the rodent (&P5) as well as the role it plays in 

neuronal development (Wu and Cline, 1998), we wanted to understand if postnatal 

development was altered in the KI animals, due to the lack of Thr286 phosphorylation.  

Furthermore, does this altered development cause changes in intracellular signaling 

mechanisms that in turn lead to long-term behavioral deficits.  

Thr286 phosphorylation of CaMKII! confers autonomous activity to the kinase 

and increases the affinity of the kinase for the PSD (Lisman et al., 2002; Colbran, 2004; 

Griffith, 2004).  Using our biochemical fractionation protocol, we were able to examine 

the direct contribution of Thr286 phosphorylation on subcellular localization of CaMKII 

and how the lack of Thr286 during development altered the kinase localization.  

CaMKII! was readily detected in all subcellular fractions from hippocampal 
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homogenates of WT mice; however, CaMKII! was enriched in the PSD-associated 

fractions.  This was not too surprising since that CaMKII accounts for 1-2% of the total 

protein in the hippocampus, and 2-10% of the protein in the PSD (Hanson and Schulman, 

1992b; Colbran, 2004).  Thr286 phosphorylation stabilizes CaMKII localization to the 

PSD (Strack and Colbran, 1998).  Thus, we expected to see a reduced amount of CaMKII 

at the PSD in WT versus KI mice.  When compared to WT, the loss of CaMKII!-Thr286 

phosphorylation in KI animals drastically decreased the amount of CaMKII in the PSD-

associated fractions, with CaMKII! decreased 90-95% and CaMKII" decreased 70-75% 

from that of WT.  This was the first time the decrease in PSD-associated CaMKII in KI 

mice has been quantified.     

Along with this decrease in total CaMKII in the PSD-associated fractions, we 

detected a concurrent switch in CaMKII holoenzyme subunit composition decreasing the 

CaMKII!:CaMKII" ratio, such that in the KI mice there are more CaMKII" subunits per 

CaMKII! subunits at the PSD.  Taking into account that CaMKII" contains an F-actin 

binding domain and can directly bind F-actin (Shen et al., 1998; Fink et al., 2003), along 

with a higher affinity for Ca2+/CaM binding (Brocke et al., 1999), this altered 

CaMKII!:CaMKII" ratio can potentially have significant effects on subcellular 

localization as well as normal protein/protein interactions that are necessary for proper 

CaMKII regulation of PSD-associated protein.  

The change in levels of CaMKII in the PSD-associated fractions of the KI mice 

are most likely not solely due to a redistribution of the kinase, but also alterations in the 

total expression of CaMKII.  Total hippocampal homogenates possessed a 40% decrease 

in CaMKII! expression and a 33% increase in CaMKII" expression in KI compared to 
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WT mice.  CaMKII! levels were significantly decreased in both the cytosolic and PSD-

associated fractions, which may point to a global CaMKII! transcription/translation 

deficit throughout the hippocampus in KI mice (Bito et al., 1997; Ouyang et al., 1999; 

Thiagarajan et al., 2002; Atkins et al., 2004).  Conversely, CaMKII" levels where 

significantly increased in cytosolic and membrane-associated non-PSD fractions and 

decreased in the PSD-associated fractions in KI mice, suggesting that Thr286 

phosphorylation of CaMKII! is regulating CaMKII" expression.  Until now there has 

been no report on the effect of CaMKII!-Thr286 phosphorylation on CaMKII" 

expression in the KI mice.  

 In attempts to more completely understand how the PSD-associated fraction was 

altered, from a biochemical standpoint, we investigated the expression of a number of 

proteins know to be crucial in proper PSD function.  The total levels of PSD-95 as well as 

the NMDAR subunits, NR1, NR2B, and NR2A, were unchanged in the PSD-associated 

fractions of WT versus KI mice.  Due to the decrease in the total amount of CaMKII in 

the PSD-associated fractions of the KI mice, along with no change in several PSD-

associated proteins in these same fractions, we anticipated to see a significant decrease in 

the amount of interaction between CaMKII and these proteins that are known to complex 

with CaMKII (Strack and Colbran, 1998; Strack et al., 2000a; Robison et al., 2005b).  

Although the total amounts of PSD-95, NR1, NR2B, and NR2A are decreased in the 

CaMKII co-immunoprecipitations when normalized to volume, the amount of PSD-95, 

NR1, and NR2B normalized to the amount of CaMKII! in the immunoprecipitation was 

significantly increased, revealing a difference in affinity of these protein/protein 

interactions.  Interestingly, there was no change in the amount of NR2A co-precipitating 
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when normalized to CaMKII!.  When normalized to the amount of CaMKII" in the IPs 

there was no difference in the amount of PSD-95, NR1, or NR2B co-precipitating; 

however, there was a trend for a 40% decrease in the amount of NR2A co-precipitating in 

KI versus WT animals.  This may be revealing a difference in the interactions of NR2B 

versus NR2A containing NMDARs with CaMKII isoforms, where CaMKII" is playing a 

dominant role in stabilizing interactions with NR2B containing NMDARs and having 

less of an effect on NR2A containing NMDARs and more so for NR2B containing 

NMDARs.  Knowing that CaMKII, NR2B, and NR2A are developmentally regulated and 

critical for neuronal development and synaptogenesis (Wu and Cline, 1998; Stephenson 

et al., 2008), this differential CaMKII isoform affinity for specific NMDAR subunits 

could be part of the mechanism that drives neuronal development.   

 The difference in the apparent affinities of CaMKII! and CaMKII" for the 

NMDAR subunits could be due to altered phosphorylation of CaMKII (Strack and 

Colbran, 1998).  Specifically, is there an increase in CaMKII"-Thr287 phosphorylation in 

the KI mice that may be compensating for the lack of CaMKII!-Thr286 

phosphorylation?  We were able to show that there is no difference in the ratio of 

CaMKII" phosphorylated at Thr287 in the PSD-enriched fractions comparing WT and KI 

mice, suggesting that the difference in CaMKII protein/protein interactions is not due to a 

compensation of CaMKII"-Thr287 phosphorylation.   

We predicted that these biochemical changes would have functional consequences 

at the synaptic level that would affect behavior in the adolescent KI mice.  The 

biochemical changes in CaMKII along with the altered protein/protein interactions in the 

PSD-enriched fractions translated to hippocampal-dependent dysfunction evidenced by 
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deficits in a novel object recognition paradigm.  Taken together this confirms the crucial 

role of CaMKII in proper hippocampal function in adolescent mice.  Additionally, the 

increase in total activity seen in the Y-maze, as well as the anxiolytic phenotype 

displayed in the EPM by the KI mice suggest important roles for proper CaMKII function 

in additional brain regions (amygdala, cortical, and striatal circuits) at these adolescent 

time points.  It will be important to thoroughly establish these behavioral models in 

adolescent mice to be able to understand how early-life perturbations (genetic and 

otherwise) can alter the normal development of these complex behaviors.        

 In summary these studies revealed that the loss of CaMKII!-Thr286 

phosphorylation leads to memory deficits as early as postnatal day 25 in mice, 

demonstrated by a novel object recognition deficit.  This behavioral deficiency was 

accompanied by alterations in CaMKII expression and localization that led to a shift in 

CaMKII holoenzyme composition, which we were able to show has profound effects on 

CaMKII protein/protein interactions.  This demonstrates that altering CaMKII 

composition and changing CaMKII protein interactions can lead to significant effects on 

synaptic function and behavior.   
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CHAPTER VI 

 

CONCLUSIONS 

 

Introduction 

The underlying theme of this dissertation project has been to understand the role 

of CaMKII during postnatal development.  I have used three separate mouse models of 

environmental (early-life stress) and genetic (UBE3A M-/P+ and CaMKII!-Thr286Ala 

knock-in mice) perturbations that are known to alter learning and memory in adult 

animals.  We want to link the learning and memory deficits to the perturbations occurring 

in early postnatal development.  To accomplish this we used mouse models where 

CaMKII! phosphorylation has been shown (or documented in this dissertation) to be 

misregulated, to determine how aberrant phosporylation could change the expression, 

subcellular localization, as well as protein/protein interactions that are crucial for normal 

CaMKII function and proper learning and memory to occur.  Our efforts focused on 

prepubescent, adolescent mice (P24-P28) so we could more completely understand how 

these perturbations, genetic or environmental, alter developmental regulation of 

expression, subcellular localization, and interactions of CaMKII and several proteins 

known to play crucial roles in adult learning and memory.   

       

Angelman Syndrome 

 Angelman syndrome is a neurodevelopmental disorder that is normally caused by 

a chromosomal deletion of the UBE3A gene, which encodes for the E3-ubiquitin ligase, 
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E6-AP (Knoll et al., 1989; Kishino et al., 1997; Matsuura et al., 1997; Sutcliffe et al., 

1997).  The report linking abnormal synaptic transmission, in a mouse model of AS, to a 

misregulation (Weeber et al., 2003) of CaMKII prompted my interest in using this mouse 

model to establish the developmental progression of the AS phenotype and attempt to 

find a mechanistic link between E6-AP and CaMKII.  

 

E6-AP expression in an Angelman Syndrome mouse model 

 Since development of the first AS mouse models, the dogma in the AS field has 

been that UBE3A is maternally imprinted solely in hippocampus, cerebellum, and 

olfactory bulbs.  However, it is unclear how this selective maternal imprinting leads to 

such a vast array of disease phenotypes.  We were successful in showing that the E6-AP 

protein in AS mice is decreased by &90-95% compared to WT mice across all brain 

regions.  Moreover, we identified a greater than 50% reduction in the E6-AP levels in the 

heart, liver, and kidney of AS compared to WT mice.  This more global loss of E6-AP 

expression in AS might explain the broad phenotypes. 

 Attempts to determine the molecular mechanism of how the loss of maternal 

UBE3A can lead to the behavioral deficits seen in the AS mouse, research has focused on 

hippocampal and cerebellar dysfunction.  These findings expand AS research to include a 

global understanding of how the loss of the maternal UBE3A gene can lead to the variety 

of phenotypes seen in AS.  We are hopeful that a more complete knowledge of E6-AP 

expression will expand AS research that will lead to discovery of better therapeutic 

targets for the treatment of AS.   
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 Although this research better defines E6-AP expression profiles in the AS mouse, 

the developmental expression pattern of E6-AP is not clearly understood.  It is crucial to 

AS research that a complete developmental expression pattern of E6-AP across brain 

regions in WT compared to AS mice is done to determine when E6-AP is first expressed 

and what point in development E6-AP is most highly expressed.  As an E3-ubiquitin 

ligase, E6-AP is involved in regulating protein degradation, however to date no target of 

E6-AP has been shown to be involved in the generation of AS phenotypes.  Research 

focused on adult time points ignores the role of abnormal development that may be 

involved.  If E6-AP is most highly expressed early in development, it may be playing a 

more dominant role early in life, which has not yet be evaluated.  Alternatively, if there is 

a target of E6-AP that is involved in AS and it is developmentally regulated, we may be 

missing the time window to identify the protein of interest.  A developmental role for E6-

AP may be supported by the fact that the only difference in our biochemical analysis of 

CaMKII in the AS animals that we were able to identify was a decrease in Ca2+/CaM-

dependent CaMKII activity in the P10 time point.    

 Moving forward with evaluating UBE3A and E6-AP in WT versus AS mice, I 

propose to do a more complete developmental profile of both gene and protein 

expression.  By establishing a timeline that encompasses embryonic, early development, 

adolescent, and adult time points, in situ hybridization studies evaluating UBE3A gene 

expression and concurrent immunohistochemistry/western blot analysis evaluating E6-

AP protein expression could give clues to what point in development E6-AP is playing a 

dominate role.  Along the same lines, subcellular localization studies could point to what 
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part of the cell E6-AP is acting.  This information should guide a more systematic 

approach to identifying disease mechanisms. 

 

 CaMKII role in Angelman Syndrome 

  There are two reports in the literature implicating CaMKII as a player in the 

molecular mechanism underlying the disease phenotypes in a mouse model of AS 

(Weeber et al., 2003; van Woerden et al., 2007).  My attempts to recapitulate the findings 

that support a role for CaMKII in AS were unsuccessful.  However, the behavioral 

deficits along with the decrease in E6-AP expression confirmed that our mice still 

displayed characteristic AS phenotypes (see Chapter 3: Angelman Syndrome).  Also, the 

genetic cross of AS mice with heterozygous CaMKII!-Thr-Thr305/305Val-Ala mice did 

prevent several of the AS phenotypes, seen in the double mutant mice (van Woerden et 

al., 2007), further supporting the role of CaMKII in AS. 

 CaMKII is known to play a dominant role at the PSD in normal learning and 

memory, so is it realistic to expect that a mutation in CaMKII that prevents inhibitory 

phosphorylation and enhances total CaMKII at the PSD along with LTP (see Table I in 

Chapter 1: Introduction) would have the potential to prevent learning deficits from 

occurring.  However, I hypothesize that if you cross a CaMKII mutant mouse that 

increases the effectiveness of CaMKII at the PSD, with any mouse model that displays a 

form of hippocampal learning and memory dysfunction that there will be some alteration 

of behavioral and/or electrophysiological phenotypes in the double mutants.  If 

hippocampal deficits could be prevented by altering CaMKII activity or localization in 

numerous mouse models, this would suggest that CaMKII may not be directly involved 
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in the mechanisms leading to the deficits displayed in the AS mouse, but that changing 

normal CaMKII function can compensate for the deficiencies in the AS mouse.  

The AS mouse phenotype was prevented by genetic cross of heterozygous 

CaMKII! Thr-Thr305/306Val-Ala, which should reduce the inhibitory phosphorylation 

and increase the amount of total CaMKII at the PSD.  If reducing CaMKII inhibition 

while increasing local concentrations at the PSD prevents the behavioral deficits in AS, 

then it would stand to reason that increasing inhibition by blocking phosphorylation 

genetically (Thr286Ala), which decreases total CaMKII at the PSD, would either have no 

effect or may enhance the behavioral deficits.  To test this hypothesis we crossed 

heterozygous CaMKII!-Thr286A mice with AS mice, which yielded four genotypes: 

WT, AS, T286A Heterozygous, and Double mutant (AS/T286A Heterozygous) mice.  In 

rotarod assays for motor coordination, the WT and Heterozygous CaMKII!-Thr286Ala 

latency to fall was not different on any of the days tested (Figure 1).  The AS mice did 

not display any motor learning as there latency to fall did not significantly change 

throughout testing, if anything there was a reduction in the AS mice latency to fall on 

trial day 10 (Figure 1).  Interestingly, the double mutants showed a partial prevention of 

the rotarod deficit seen in the AS mice, and showed a significant retention of motor 

memory when tested on day 10 compared to the AS mice (Figure 1).  Although 

preliminary, this suggests that CaMKII is acting though compensatory pathways rather 

than being directly effected by the loss of E6-AP in the AS mice. 

 The major caveat to the AS studies, other than the effects of external stressors 

described in Chapter 3, is the confounding influences that murine strain differences can 

contribute to variation in behavioral and biochemical effects.  I inherited a mouse colony  
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Figure 1                 

 

Figure 1.  The genetic cross of AS with Thr286Ala HET mice yield four genotypes: WT, 
Thr286Ala (+/-), AS, and double mutant (DM) mice.  Rotarod analysis recapitulates the known 
deficits in the AS mice.  The Thr286Ala (+/-) mice performed as well as the WT mice, showing 
no deficits in the ability to learn the rotarod.  The DM mice never reached the performance level 
of the WT mice, however they did perform at a higher level than the AS mice, revealing a partial 
prevention of the AS rotarod phenotype.  Additionally, at day 10 the WT, Thr286Ala (+/-), and 
DM all were able to retain performance at the same level as at day 5, whereas the AS mice 
showed a loss of performance.  (two-way ANOVA p<0.0001) (N: WT=3; Thr286Ala (+/-)=6; 
DM=8; AS=3)  
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with a wide range of C57/B6 and SV/129 stain contributing to the genetic makeup of the 

mice.  I contemplated back crossing the mice nine generations to a pure C57/B6 strain, 

however time restraints made this unrealistic.    

   

Early-life Stress 

 The additional environmental stressors that we predicted to be confounding the 

results obtained from the AS mouse model using the current breeding strategies lead us to 

adopt a model of early-life stress in attempts to identify roles for CaMKII across 

development.  Using a model of maternal deficient care from P2-P9 (Rice et al., 2008), 

my goal was to determine whether CaMKII was misregulated early in development, 

potentially playing a role in long-term behavioral consequences. 

 

Early-life stress induced PSD morphological changes 

The reduction in levels of PSD-95 in the PSD-associated fraction of adolescent 

early-life stress mice compared to control animals is maintained into adulthood (P90) 

(Figure 2).  This suggests that there could be an overall loss of PSDs in the hippocampus 

due to the early-life stress that is maintained throughout the life of the animal.  There is 

evidence that shows chronic stress can decrease hippocampal dendrite and dendritic spine 

density (Xu et al., 2009), which one would predict there would be a loss of PSD-95 with 

decreasing numbers of dendritic spines.  Another possibility that could account for the 

decrease in PSD-95 could be a change in PSD morphology while maintaining similar 

dendritic spine numbers.  To gain insight into the mechanism underlying the learning 

deficits induced by early-life stress, I believe it will be important to determine changes in   
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Figure 2 

 

Figure 2.  PSD-95 levels in PSD-associated fractions in control and early-life stress animals at 
P25 and P90.  The loss of PSD-95 in the ES mice at P25 (43%) is maintained into adult time 
points (30%).  (P25 p=0.0156 ; Adult p=0.0038).  
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dendrite and dendritic spine number and/or morphology.  Golgi staining methods could 

be performed at different time points post early-life stress to determine if changes in 

dendrites and/or dendritic spines are occurring.  Additionally, changes in specific 

subregions of the hippocampus could give insight into mechanism.  If there is an overall 

loss of spines you may predict it is a global loss of signaling that is leading to 

dysfunction, whereas a change in spine morphology with no loss in total spines may point 

to a misregulation of specific signaling pathways.   

 

Early-life stress induced plasticity changes 

At both time points assayed (P25 and P90), there was a decrease in amplitude of 

evoked AMPAR mediated responses in neurons from early-life stress mice compared to 

controls.  However, at P25 the early-life stress mice showed a decrease in frequency of 

the evoked AMPAR responses compared to controls, which was not seen at the P90 time 

point.  The decrease in frequency at P25 could be due to alterations in presynaptic release 

mechanisms, however paired-pulse facilitation at this time point seems to be unchanged 

in early-life stress compared to control animals (data not shown), suggesting that the 

stress is not affecting presynaptic release.  I hypothesize that the deceased frequency in 

the early-life stress mice at P25 is due to either an increase in silent synapses, or fewer 

synaptic sites in general and that this is corrected or compensated for in adulthood.  To 

test this I propose to look, electrophysiologically and biochemically using biotinylation 

studies, at the number of silent synapses (those containing NMDAR, but no AMPAR) in 

adolescent time points to determine if there is a delay in the unsilencing of synapses 

(addition of AMPAR) in the early-life stress mice compared to that of control mice.      
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 Developmental delay can also lead to an increase in the amount of LTD generated 

in mice later into life, and there is evidence that neonatal stress can induce this 

developmental delay (Ku et al., 2008).  I would predict that the early-life stress mice have 

an increased hippocampal LTD at P25 compared to Control animals.  We could induce 

LTD in hippocampal slices from adolescent control and early-life stress animals to assay 

the amount of depression of fEPSPs.  The hypothesis is that P25 control animal fEPSPs 

would depotentiate, whereas early-life stress animal fEPSPs would depotentiate roughly 

30%.  Additionally, I would expect that the early-life stress animals would show 

significant depotentiation at P40, ages when control animals do not show fEPSP 

depotentiation.  This hippocampal LTD is NMDAR dependent (Ku et al., 2008) and 

could reveal developmental changes or delays that are represented in the early-life stress 

animals.   

 

Behavioral characterization  

 The early-life stress paradigm used in these studies was developed in the 

laboratory of Dr. Baram (Rice et al., 2008).  These initial studies reported deficits in the 

Morris water maze and novel object recognition tasks.  The authors of this study also 

reported no change in overall activity in the stress versus non-stressed animals, as well as 

no change in the center time in the open-field.  Although these studies pointed towards a 

hippocampal-dependent learning and memory deficiency, the wide range in age of the 

mice used in these behavior studies (4-8 months) may add variability to these behavioral 

tasks that could potentially mask other deficits in these animals.  Therefore a more 

complete behavioral characterization of the early-life stress animals is needed to more 
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fully understand the long-term adverse effects the early postnatal stress is having long-

term. 

 In future experiments, I propose to do a more rigorous behavioral characterization 

over a timeline (adolescent, young adult, and mature adult) to determine how early-life 

stress induced behavioral deficits develop over time.  This would also give insight into 

how normal behavioral development occurs, which would give us the potential to tie 

known biochemical and electrophysiological changes at these time windows to a 

behavioral output.     

 These experiments would need the development and/or conversion of a variety of 

behavioral tasks to be able to test adolescent mice.  With the assistance of Dr. Gregg 

Stanwood’s laboratory, we have developed behavioral paradigms (Y-maze, novel object, 

and elevated-plus maze) to assay behavioral deficits in adolescent mice with some 

success (see Chapter 2: Methods and Chapter 5: CaMKII-Thr286Ala).  We are beginning 

attempts to identify behavioral deficits in adolescent early-stress mice using the y-maze, 

novel object, and EPM (Figure 3).  With only a single cohort of animals (control N=3; 

stress N=3) it is too early to make any definitive conclusions.  Assaying the percent of 

spontaneous alternations in the y-maze show no significant trend of difference between 

control and early-life stress animals (Figure 3).  In the novel object recognition task time 

spent with the novel over the familiar object was not significantly different between 

groups (Figure 3).  There may be a slight trend for an increase in novel object recognition 

in the early-life stress mice; however, we predict that this is due to inter-litter variability 

due to the fact that the control mice in these studies only spent 60% of their time with the 

novel object.  We expect, from our other adolescent behavior studies that with an increase 
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in N, the control mice will spend &70% of their time with the novel object.  Finally, the 

initial EPM studies reveal no difference between control and early-life stress groups 

(Figure 3).  

 We may or may not be able to identify behavior deficits in the adolescent early-

stress mice for several potential reasons.  For one, at this age compensatory molecular 

mechanisms may be preventing deficits in the behaviors we are assaying.  Alternatively, 

the complex brain circuitry that is needed to perform these tasks may not be completely 

established, which could mask subtle deficits in behavior.   Additionally, brain plasticity 

at this age is able to overcome the early-life stress revealing the resiliency of young 

animals.  Lastly, the behavioral paradigms that we have set up may not be sensitive 

enough to reveal subtle changes in behavior and better paradigms need to be created to 

test these behaviors in adolescent mice.  For these reasons I believe it is important to 

establish that we are able to identify behavioral deficits in adult early-life stress mice 

prior to attempting to understand how these complex behaviors develop in the adolescent 

animals.  

 

Therapeutic rescue of early-life stress deficits 

 There are many long-term benefits of identifying the molecular mechanisms 

underlying the behavioral deficits caused by early-life stress.  With an understanding of 

how biochemical misregulation leads to the development of behavioral deficits we can 

identify therapeutic targets that can be pharmacologically manipulated to prevent or 

reverse the adverse effects of early-life stress.  From a human health standpoint this is 

immensely important.  Environmental factors, such as different forms of stress, can  
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Figure 3 

 

Figure 3.  Behavioral tasks in adolescent control and early-life stress mice.  Initial behavioral 
characterization of ES mice has not revealed any significant deficits in performance on the y-
maze, novel object, or elevated-plus maze behavioral paradigms in the adolescent time point. 
(Control=3; Stress=3)  
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adversely affect brain development, which can lead to profound effects on cognition, 

depression, anxiety, as well as other behavior abnormalities later in life.  The ability to 

identify these external stressors as well as their biochemical and behavioral effects could 

suggest novel therapeutic strategies to eliminate the long-term consequences of the 

adverse early-life stressors. 

 

CaMKII and General Neuroscience Questions 

    

Synaptic versus extra-synaptic surface receptors 

 A major caveat to the subcellular fractionation studies used in this dissertation is 

that we are isolating the total population of protein in any one particular fraction.  Our 

method does not allow for differentiation of surface versus intracellular protein.  Using 

our protocol, significant changes in synaptic membrane receptors may be masked by the 

total pool of receptor in the PSD-enriched fraction.  Currently, we are attempting to use 

biotinylation techniques in hippocampal slices along with our fractionation protocol to be 

able to probe for changes in total versus surface protein expression in any given 

biochemical fraction.   

 The major goal of these studies is to develop a biotinylation/fractionation 

technique that will allow us to differentiate, not just between surface and total protein, but 

to identify synaptic versus extra-synaptic membrane fractions.  This will allow for the 

identification of membrane proteins and subunits that may be differentially expressed in 

extra-synaptic versus synaptic membranes.  Additionally, it will allow us to determine 

how different proteins are expressed, trafficked, and regulated in these various 
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membranes under differing conditions (i.e. early-life stress or genetic modification).  To 

date we have had success combining the biotinylation with our fractionation protocol to 

be able to probe for surface versus total protein.  We are currently trying to determine 

how to identify and isolate the synaptic from the extra-synaptic membranes.  This may 

prove to be an extremely powerful technique, when coupled with electrophysiological 

techniques, to look at contributions of extra-synaptic and synaptic membrane associated 

receptor in learning and memory process.  

 

Importance of the CaMKII!!:CaMKII""  ratio in learning and memory 

 CaMKII exists as a docecameric holoenzyme consisting of a combination of !, ", 

#, and $ subunits (see Chapter 1: Introduction).  CaMKII research, relating to the 

hippocampus, has mainly focused on the role of CaMKII! in describing learning and 

memory processes.  However, it is important to understand the role the additional 

subunits play in regulation, activity, and localization of the holoenzyme to truly 

understand the function of CaMKII. 

 Our data suggests that the lack of CaMKII!-Thr286 phosphorylation, as seen in 

the adolescent CaMKII!-Thr286Ala knock-in mice, alters the CaMKII!:CaMKII" ratio 

of the CaMKII holoenzyme at the PSD.  This suggests that for every CaMKII! subunit 

there is an increased number of CaMKII" subunits in the KI mice compared to WT mice.  

Immunoprecipitation experiments from WT and KI PSD-associated fractions show a 

significant increase in the co-immunoprecipitation of several NMDAR subunits and PSD-

95 when normalized to the amount of CaMKII! immunoprecipitated.  However, when 

normalized to the amount of CaMKII" present in the immunoprecipitation there is no 
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change in the interaction of these proteins.  This may suggest that CaMKII" is the major 

contributor to the scaffolding properties of the CaMKII holoenzyme.  There is evidence 

that CaMKII" is playing a dominant role as a scaffold protein.  CaMKII" has a F-actin 

binding domain, which allows targeting of CaMKII" containing holoenzymes to the actin 

cytoskeleton (Shen et al., 1998; Fink et al., 2003).  The binding of Ca2+/calmodulin 

modulates the actin interaction with CaMKII".  Additionally, CaMKII" has a higher 

affinity to Ca2+/calmodulin than CaMKII!.  Taken together with the decrease in the 

CaMKII!:CaMKII" ratio in the KI animals, CaMKII" may be compensating for a loss of 

CaMKII holoenzyme at the PSD, directing the interaction of the decreased CaMKII to the 

PSD and thereby positioning the remaining kinase in close vicinity to its interacting 

proteins.  However, once there, when Ca2+ dissipates and CaMKII!-Thr286 is unable to 

be phosphorylated, misregulation of CaMKII signaling occurs, leading to the 

electrophysiological and behavioral deficits seen in the KI animals. 

 Preliminary data suggests that increasing the amount of CaMKII" subunits may 

indeed increase the interactions with selected PSD-associated proteins (Figure 4).  In 

these experiments CaMKII immunoprecipitations, using three different antibodies, were 

performed on whole-forebrain homogenates from WT and CaMKII! knock-out mice 

(courtesy of Ype Elgersma).  The three antibodies used were: 1. A goat-anti-CaMKII 

polyclonal antibody purified from a CaMKII! filtration column, which is able to 

recognize both CaMKII! and CaMKII" with a higher affinity for the ! subunit.  2.  A 

mouse-anti-CaMKII! monoclonal antibody, which is unable to detect CaMKII", and 3.  

A mouse-anti-CaMKII" monoclonal antibody, which is unable to detect CaMKII! in 

western blot analysis.  By performing immunoprecipitations using these three antibodies 
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we can determine the amount of CaMKII! and CaMKII" that are present in the 

immunoprecipitation and how the changes in subunit contribution to the holoenzyme 

affects the interaction with CaMKII binding proteins, such as NR2B, and NR2A (Figure 

4).  There are significant differences in the amount of CaMKII! versus CaMKII" present 

in the different immunoprecipitations from WT animals (!:" ratio from WT: GT-IP = 

4.7; MS-!-IP = 2.5; MS-"-IP = 1.1).  Although a CaMKII!:CaMKII" ratio cannot be 

obtained from the CaMKII! KO animals, there was a substantial difference in the 

amount of CaMKII" immunoprecipitated in the KO animals using the different 

antibodies, with the MS-CaMKII" specific antibody immunoprecipitating & 5.5-fold 

more CaMKII" compared to the GT-CaMKII immunoprecipitation (CaMKII" in KI: GT-

IP = 2.1; MS-!-IP = N.D.; MS-"-IP = 11.7).   

When normalized to the amount of CaMKII" in the IP there was a no difference 

in the amount of NR2A co-immunoprecipitated in GT-CaMKII IP versus the MS-

CaMKII" IP from WT animals.  However, when normalized to the amount of CaMKII" 

in the immunoprecipitations, the amount of NR2B in the co-immunoprecipitation was 

over 2-fold higher in the MS-CaMKII" IP versus the GT-CaMKII IP.  Additionally, MS-

CaMKII" immunoprecipitations from the CaMKII! KO mice had an increase in the 

amount of NR2B associating with CaMKII compared to GT-CaMKII IP from WT 

animals; however, the amount of NR2A co-immunoprecipitating seems to be unchanged.  

Together this suggests that CaMKII holoenzymes consisting of more CaMKII" per 

CaMKII! subunits may preferentially interact with NMDAR subunits and perhaps 

scaffold the CaMKII holoenzyme to specific areas of the cell for appropriate signaling to 

take place.  Closer examination comparing the CaMKII co-immunoprecipitations from   
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Figure 4 

 

Figure 4.   CaMKII immunoprecipitations using different antibodies to isolate CaMKII 
holoenzymes consisting of differential CaMKII!:CaMKII" ratios in WT and CaMKII! KO mice.  
Immunoprecipitations that contain higher fractions of CaMKII" are able to co-immunoprecipitate 
a larger amount of NR2B.  The amount of NR2A co-immunoprecipitated seems to increase with 
the total amount of CaMKII holoenzyme that is IPed without showing preference to holoenzymes 
containing CaMKII". (Red arrow identifies IgG recognized by the goat-CaMKII antibody)  
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WT and KI animals may be revealing this same potential differential interaction when 

CaMKII holoenzyme composition is altered (see Chapter 5, Figures 3, 5, and 6).  In the 

CaMKII immunoprecipitation there is a decrease in both CaMKII! and CaMKII" in the 

KI animals compared to WT controls.  The extent to which these subunits are decreased 

is different, such that the CaMKII!:CaMKII" ratio is decreased 60%.  This leads to an 

overall decrease in PSD-95, NR1, NR2B, and NR2A in the KI mice when the co-

immunoprecipitations are normalized to volume.  This makes sense due to the decrease in 

total CaMKII in the immunoprecipitations from the KI animals.  When these same 

proteins are normalized to the amount of CaMKII! in the immunoprecipitation there is a 

significant increase the amount of PSD-95, NR1, and NR2B co-immunoprecipitating in 

the KI versus WT mice; however, NR2A is not significantly increased.  Alternatively, 

when these proteins are normalized to the amount of CaMKII" in the 

immunoprecipitation there is no difference in the amount of PSD-95, NR1, and NR2B 

co-immunoprecipitating in WT and KI animals.  This means that PSD-95, NR1, and 

NR2B are decreased to the same extent as CaMKII" in the KI animals.  More 

interestingly, there is a significant trend for a decrease in the amount of NR2A when 

normalized to CaMKII" (& 50%) in KI compared to WT mice. 

 I hypothesize that CaMKII" plays a predominate scaffolding role in targeting 

CaMKII to specific proteins, which allows for the construction of larger signaling 

complexes at the PSD that are crucial for learning and memory processes to occur.  The 

role of CaMKII" in targeting CaMKII to specific proteins could be worked out using in 

vitro, heterologous cell system to overexpress the CaMKII subunits at different 

concentrations along with known interacting proteins (i.e. NR1, NR2B, and NR2A), to 
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see how different CaMKII holoenzymes consisting of different CaMKII!:CaMKII" 

ratios can alter interactions and potentially localization within the cell.  To this end, 

recent data in the lab using heterologous expression systems has shown that CaMKII" 

interacts with NR2B with a much higher affinity than does CaMKII! (Dr. Yuxia Jiao and 

Nidhi Jalan-Sakrikar).  

 In the attempts to understand the differential roles of CaMKII! and CaMKII" in 

the neuron as it pertains to function of the holoenzyme, there is a major caveat.  We have 

not begun looking at the effects the other CaMKII subunits (i.e. # and $) may be having 

on protein/protein interactions, localization, or activity of the kinase.  Although these 

CaMKII isoforms are minor in their contribution to the total amount of CaMKII in the 

hippocampus, their concentrations may be significant in pools of kinase that are 

selectively targeted to specific sites within the cell.  Additionally, these other CaMKII 

isoforms may be playing important roles in other brain regions or in specific cell types 

where they are expressed to a great extent (Erondu and Kennedy, 1985; Bayer et al., 

1999; Thiagarajan et al., 2002; van Woerden et al., 2009). 

 

Conclusions 

 The role of CaMKII as a scaffolding protein is not a novel idea (Erondu and 

Kennedy, 1985; Colbran, 2004; Sheng and Hoogenraad, 2007; Bingol et al., 2010).  

CaMKII! phosphorylated at Thr286 is able to translocate to the PSD bringing together 

signaling components from multiple signaling systems to orchestrate complex molecular 

events, in response to temporal and local changes in calcium concentration.  However, 

the majority of research, to determine the role of CaMKII in learning and memory, has 



 148 

focused on how changes in CaMKII! expression, activation, localization, and 

phosphorylation affect these processes.  This has given us a great understanding of how 

CaMKII functions in the cell; however, due to the complex structure and intersubunit 

regulation of CaMKII, not much is understood about how different isoform 

conformations contribute to CaMKII localization and function in vivo.  Additionally, a 

complete understanding of the modulation of function of CaMKII by alternative 

phosphorylation sites (i.e. Thr253) has not been determined. 

 This dissertation project begins to tie together biochemical, electrophysiological, 

and behavioral techniques that will allow for the understanding of how learned behaviors 

are developed over time.  Moving forward, must establish how neuronal circuits can be 

developed and become functional, and how the development of these circuits are crucial 

for specific learned behaviors.  Understanding the role of CaMKII in these processes and 

how these behaviors develop overtime, we may be able to identify specific target for 

therapeutic manipulation to prevent or reverse disease.     
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