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CHAPTER I  

 

FLIPPASES AND VESICLE-MEDIATED PROTEIN TRANSPORT 

 

The P-type ATPase Superfamily 

P-type ATPases are a large, evolutionary conserved family of membrane proteins 

that are involved in active transport of charged substrates, such as cations, across 

biological membranes (Moller et al., 1996; Kuhlbrandt, 2004; Paulusma and Oude 

Elferink, 2005). Members of the P-type ATPase superfamily are widely expressed in 

virtually all organisms. Based on sequence homology, this large family can be divided 

into five subfamilies referred to as types I –V (Axelsen and Palmgren, 1998; Palmgren 

and Axelsen, 1998; Kuhlbrandt, 2004). Each subfamily may be further divided into two 

or more subtypes, each unique for their transport substrates. Well studied examples of 

P-type ATPases are provided in Table 1-1 and organized by classification. Type IV 

ATPases, or P4-ATPases, are involved in lipid transport and will be the main focus of this 

thesis. These “lipid flippases” are thought to translocate phospholipids from the 

extracellular or luminal leaflet of the membrane to the cytosolic leaflet. 

The P-type designation derives from the formation of a covalent 

aspartyl-phosphate catalytic intermediate, which is intimately linked with the 

translocation process. The general mechanism by which substrates are pumped by P-type 
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ATPases is described as the Post-Albers cycle. In this model, two distinct conformations 

of the enzyme with different affinity for ions and nucleotides are called the E1 and E2 

states (Figure 1-1). In the E1 state, the ATPase contains high-affinity ion 1-binding sites 

that are exposed to the cytosol. Following the binding of ion 1 and Mg2+-ATP, the 

enzyme is phosphorylated at the invariant aspartic acid residue to form a phosphorylated 

E1-P state. The ATPase then undergoes a change in conformation to the E2-P state, which 

has reduced affinity to ion 1 and releases it to the lumenal or the extracellular side of the 

membrane. Ion 2 binds from the lumenal or the extracellular side, and subsequently 

escapes to the cytosol on dephosphorylation of the aspartic acid. The ATPase is then 

ready to start another cycle. 

 
 
 
 

Table 1-1: Members of the P-type ATPase Superfamily 
 

SUBFAMILY SUBTYPE EXAMPLES 
A E.coli Kdp K+-ATPase Type I 
B Heavy metal pumps, Cu2+-ATPase 
A Sarcoplasmic-reticulum Ca2+-ATPase 
B Plasma membrane Ca2+-ATPase 
C Na+/K+-ATPase, Gastric H+/K+-ATPase 

Type II 

D Na+-ATPase 
A H+-ATPase Type III 
B Bacterial Mg2+-ATPase 

Type IV / Phospholipid translocases 
Type V / Yeast Cod1p/Spf1p (substrate unknown)
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Figure 1-1: Structure and catalytic cycle of P-type ATPase 
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Figure 1-1: Structure and catalytic cycle of P-type ATPase. 
(A) Crystal structure of the SR-Ca2+–ATPase in the E1 state (From: Toyoshima et al., 
2000; Kuhlbrandt, 2004).  
(B) Crystal structure of the SR-Ca2+-ATPase in the thaipsigargin-inhibited E2 state. 
(From Toyoshima and Nomura, 2002; Kuhlbrandt, 2004) 
(C) Schematic diagram of the catalytic cycle of P-type ATPases. In the E1 state, ion 1 (X+) 
comes from the cytosol, and binds to its high-affinity binding site in the membrane (M) 
domain. The crucial Asp residue in the phosphorylation (P)-domain is then 
phosphorylated by Mg2+-ATP, which is delivered by the nucleotide-binding (N)-domain, 
resulting in the formation of the E1-P state. In the E1-P to E2-P transition, the P domain 
reorientates its position, while the actuator (A)-domain rotates to bring its TGE loop into 
close contact with the phosphorylation site. This movement of P domain and A-domain 
also induces the movement of the M-domain, which shuts off the cytosolic ion-access 
channel and disrupts the high-affinity X+ binding site. X+ is then released to the 
extracellular or lumenal side. Ion 2 (Y+) binds from the lumenal or the extracellular side, 
and subsequently escapes to the cytosol on dephosphorylation of the Asp residue. The 
ATPase is then ready to start another cycle. (From Kuhlbrandt, 2004) 
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Structural studies of P-type ATPases mainly focus on four members of this family: 

the Na+/K+-ATPase, sarcoplasmic reticulum-Ca2+-ATPase (SR-Ca2+-ATPase), gastric 

H+/K+-ATPase and plasma membrane H+-ATPase. So far, crystal structures with atomic 

resolution are available only for the SR-Ca2+-ATPase (Toyoshima et al., 2000; Toyoshima 

and Nomura, 2002; Toyoshima and Inesi, 2004). Remarkably, the SR-Ca2+-ATPase has 

been crystallized in four different conformations, providing a dramatic view of the 

conformational changes associated with the catalytic cycle. P-type ATPases share a 

common topology and typically have 10 transmembrane helices with both amino- and 

carboxyl- termini protruding into the cytosol. According to the model derived from 

structural studies (Figure1-1), four principal domains are defined in the SR-Ca2+-ATPase. 

The phosphorylation (P) domain lies in the large intracellular loop between 

membrane-spanning helices M4 and M5. Since this domain contains the P-type signature 

aspartic acid which gets phosphorylated during the catalytic cycle, it is the catalytic core 

of the P-type ATPases. The nucleotide-binding (N) domain is a large insert in the 

P-domain. A conserved sequence including a lysine residue is characteristic of the 

nucleotide-binding site. The actuator (A) domain is formed by the loop between helices 

M2 and M3 and the N-terminal tail leading into M1. The A-domain rotates to make close 

contact with the P-domain during the catalytic cycle, causing substantial conformational 

changes in the transmembrane segments. The membrane (M) domain comprises the 10 

transmembrane helices and the short connecting loops on the extracellular or the lumenal 

side of the membrane. For the SR-Ca2+-ATPase, the ion-binding sites are surrounded by 

 5



transmembrane helices M4, M5, M6 and M8, which provide polar and acidic side chains 

to coordinate the two ions. During the ion-pumping process, the M-domain rearranges 

dramatically, leading to a drastic affinity change for the ion-binding sites, and the opening 

and closing of pathways leading to the cytosol or extracytosolic compartments. 

P4-type ATPases are different from other subfamilies in that they are thought to 

translocate phospholipids rather than cations across the membrane bilayer. Because of the 

substrate specificity of the P4-ATPases, their activity appears to establish an asymmetric 

distribution of phospholipid species across the bilayer. Recently, studies in yeast have 

demonstrated a surprising requirement for these ATPases in vesicle-mediated protein 

trafficking. The scope of this chapter is to highlight the role of P4-ATPases in membrane 

asymmetry and protein trafficking, and to relate their cellular functions to their proposed 

phospholipid translocase activity. 

 

P4-ATPases and Membrane Asymmetry 

 

Membrane Asymmetry and Its Regulation 

Biological membranes are lipid bilayers that are mainly formed from 

glycerophospholipids, sphingolipids and sterols along with the embedded integral 

membrane proteins. Some lipids such as diacylglycerol, cholesterol or 

phosphatidylglycerol can move rapidly from one leaflet to the other in seconds or 

minutes in artificial membranes. This transbilayer movement is called lipid “flip-flop”. 
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On the contrary, phospholipids that bear polar head groups, such as phosphatidylcholine 

(PC), phosphatidylserine (PS) and phosphatidylethanolamine (PE), take hours to days to 

equilibrate between the two leaflets of artificial bilayers (Kornberg and McConnell, 1971) 

(reviewed in (Zachowski, 1993)). Consequently, these slow-flipping lipid species can be 

non-randomly distributed between the two leaflets of the membrane bilayer. For example, 

the plasma membrane of most eukaryotic cells exhibits an asymmetric lipid arrangement 

with sphingomyelin (SM) and PC located preferentially on the extracellular leaflet, while 

PS, PE and phosphatidylinositol (PI) are restricted to the cytosolic leaflet (Zachowski, 

1993; Daleke, 2003).  

Maintenance of phospholipid asymmetry is an important process associated with 

many physiological and pathological events. For example, exposure of PS and/or PE to 

the extracellular leaflet of the plasma membrane is important for platelet activation and 

clearance of apoptotic cells by phagocytes (Williamson and Schlegel, 2002; 

Balasubramanian and Schroit, 2003). Furthermore, lipid asymmetry between the bilayer 

leaflets can affect membrane morphology as suggested by the bilayer-couple hypothesis 

of Sheetz and Singer (Sheetz and Singer, 1974; Sheetz et al., 1976). Based on the effect 

of various membrane intercalating compounds on the shape of red blood cells, this 

hypothesis postulates that the two leaflets are physically coupled together and an increase 

in the surface area of one leaflet relative to the other would spontaneously increase 

membrane curvature (Sheetz and Singer, 1974; Sheetz et al., 1976). Amphipathic drugs 

that preferentially incorporated in to the PC and sphingomyelin enriched outer leaflet 
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bend the membrane outward and crenate the erythrocytes. In contrast, compounds that 

intercalate into the aminophospholipid-rich cytosolic leaflet cause an inward bending to 

generate stomatocytes. 

Lipid asymmetry is tightly regulated by the synergistic action of three classes of 

proteins that function to translocate lipids across the membrane: flippases, floppases and 

scramblases (Daleke, 2003). Scramblases dissipate lipid asymmetry by mediating 

energy-independent, bi-directional lipid movement with little specificity. In red blood 

cells and platelets, scramblase activity is stimulated by an influx of calcium, leading to 

PS exposure and stimulation of blood clotting. The ER appears to have a similar, 

although calcium-independent activity that allows uniform growth of both leaflets during 

membrane biogenesis. In contrast to scramblases, the activities of both flippases and 

floppases are energy-dependent and are required to establish and maintain lipid 

asymmetry. Flippases catalyze the inward movement of phospholipids from either the 

extracellular or lumenal leaflet to the cytosolic leaflet, whereas floppases mediate a 

reverse outward reaction. The protein responsible for scramblase activity is unknown, 

while flippase and floppase activities are apparently catalyzed by P4-ATPases and ATP 

binding cassette (ABC) transporters, respectively.  

 

The Aminophospholipid Translocase (APLT) 

In 1984, Seigneuret and Devaux first discovered a PS and PE-specific 

ATP-dependent flippase, which they named aminophospholipid translocase (APLT), by 
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measuring the translocation of spin-labeled phospholipid derivatives across the plasma 

membrane of erythrocytes (Seigneuret and Devaux, 1984). This and later studies also 

demonstrated that the addition of different exogenous phospholipids have unique impacts 

on the shape of erythrocytes, depending on whether or not the phospholipid is a substrate 

for the APLT (Seigneuret and Devaux, 1984; Daleke and Huestis, 1985; Daleke and 

Huestis, 1989). On addition of spin-labeled PC, PS or PE, erythrocytes immediately 

become crenated as the lipid intercalates into the outer leaflet. With further incubation, 

erythrocytes with the PC analogue remain crenated because this lipid is not a substrate of 

the APLT. In contrast, erythrocytes with PS or PE analogues display shape changes 

associated with translocation of the lipid to the inner leaflet, which bends the plasma 

membrane inward, transforming the cells to a discoid shape and eventually an uniconcave 

disc-like shape (Figure 1-2) (Seigneuret and Devaux, 1984). These results are consistent 

with the existence of a protein in erythrocytes that specifically translocates 

aminophospholipids to the inner leaflet of the plasma membrane.  

The biochemical properties of the APLT have been well characterized. Transport 

activity is dependent on ATP and Mg2+, but inhibited by N-ethylmaleimide, vanadate and 

Ca2+ (Seigneuret and Devaux, 1984; Daleke and Huestis, 1985; Bitbol et al., 1987; 

Daleke and Huestis, 1989). The stoichiometry of translocation is approximately one lipid 

per ATP consumed (Beleznay et al., 1993). The flippase prefers PS over other lipids and 

the selectivity for PS is determined by multiple elements of lipid structure. The amino 

group is essential and monomethylation of PS is tolerable. The carboxyl group is not 
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absolutely required, since PE is also transported, although at a much lower rate. While the 

stereochemistry of serine headgroup is unimportant for recognition, the stereochemistry 

of the glycerol backbone is absolutely required: the sn-2,3-glycerol analog of the 

naturally-occurring sn-1,2-glycerol-lipid can not stimulate ATPase activity, nor can it be 

translated across the plasma membrane of erythrocytes (Daleke, 1995; Daleke, 2003). 

The transport of PS or PE seems to be independent of the length and composition of acyl 

chains. Thus, spin and fluorescent labeled lipids, attached to a short (e.g. C6) acyl chain 

in the sn-2 position, are widely used to study the APLT activity (Seigneuret and Devaux, 

1984; Daleke and Huestis, 1985; Colleau et al., 1991; Devaux et al., 2002). 

In 1989, an APLT activity was identified in the membrane of chromaffin granules 

(Zachowski et al., 1989). Since the biochemical properties of this APLT are similar to 

ATPase II purified from chromaffin granules (Moriyama and Nelson, 1988), it was 

suggested that ATPase II was the indeed the APLT. In 1996, the gene that encodes ATPase 

II was cloned and found to share a high degree of sequence similarity to Drs2p from 

budding yeast (Tang et al., 1996). The presence of multiple P-type ATPase motifs 

indicated that ATPase II and Drs2p belonged to the P-type ATPase family. In fact, they 

are the founding members of the P4-ATPases, which are widely expressed in various 

eukaryotes including fungi, protozoa, insects, plants and animals (Table 1-2), but do not 

appear to be present in eubacteria and archaebacteria.   
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Figure 1-2: Scanning electron micrograghs of erythrocytes incubated for 3 min (A) or 6.5 
hr (B) at 5°C after labeling with exogenous PS (1-palmitoyl-2-(4-doxylpentanoyl) 
phosphatidylserine). (From Seigneuret and Devaux, 1984) 
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Table 1-2: P4-ATPases in Different Organisms 

SPECIES SUBUNIT # OF 
MEMBERS

REFERENCES REPRESENTATIVE 
GENES 

α 5 (Catty et al., 1997) NEO1 
DRS2/SWA3 
DNF1 
DNF2 
DNF3 

Saccharomyces 
cerevisiae 

β 3  CDC50/SWA4 
LEM3/ROS3 
CRF1 

Saccharomyces 
Pombe 

α 5 (Okorokova-Facanha 
et al., 2003) 

 

Magnaporthe 
Grisea 

α 4  MgPDE1 
MgAPT2 

α /  LdMT Leishmania 
donovani β /  LdRos3 
Caenorhabditis 
elegans 

α 6 (Halleck et al., 1998; 
Okamura et al., 2003)

 

Drosophila 
melanogaster 

α 6 (Okamura et al., 
2003) 

 

α 12 (Axelsen and 
Palmgren, 2001; 
Baxter et al., 2003) 

ALA1 Arabidopsis 
thaliana 

β 5   
Oryza sativa α 10 (Baxter et al., 2003)  

α 14 (Halleck et al., 1998; 
Halleck et al., 1999; 
Williamson and 
Schlegel, 2002; 
Paulusma and Oude 
Elferink, 2005) 

ATP8A1(ATPase II) 
ATP8A2 
ATP8B1/FIC1 
ATP8B3 
ATP10A/ATP10C 
ATP10D 
ATP11A 
ATP11C 

mammalian 

β 3 (Katoh and Katoh, 
2004; Osada et al., 
2006) 

TMEM30A 
TMEM30B 
TMEM30C 
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P4-ATPases Are Potential Phospholipid Translocases 

1. Mammalian P4-ATPases 

Database searches and phylogenetic analysis identified 14 P4-ATPases in 

mammals (Table 1-2). An expression profile of a panel of P4-ATPases revealed that these 

proteins are expressed in a development- and tissue-specific manner, suggesting that they 

are not simply redundant. In addition, they may also differ in subcellular localization and 

substrate specificity (Halleck et al., 1998; Halleck et al., 1999; Soupene and Kuypers, 

2006; Sobocki et al., 2007). Our knowledge of the biochemical properties of P4-ATPases 

is primarily based on characterization of ATPase II (ATP8A1), which strongly resembles 

the previously characterized APLT in the plasma membrane of erythrocytes (Moriyama 

and Nelson, 1988; Paterson et al., 2006). Xie’s group was the first to express and purify 

recombinant Atp8a1 from insect cells (Ding et al., 2000). In their studies, the 

phosphoenzyme intermediate could form in the absence of PS, but required PS for 

dephosphorylation, consistent with PS being a substrate pumped towards the cytosol 

during the E2->E1 transition. Recently, Daleke and colleagues monitored the activity of 

recombinant Atp8a1 in detergent micelles containing various lipids (Paterson et al., 2006). 

Their data strongly correlate the potential substrates that stimulate Atp8a1 activity with 

substrates transported across the erythrocyte plasma membrane by the APLT. However, 

experiments in which purified enzyme is reconstituted are still needed to directly 

demonstrate the transport activity of Atp8a1. In addition, the identity of the erythrocyte 

APLT remains unknown. So whether the APLT is Atp8a1, one of the 13 other P4-ATPase 
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or a different ATPase altogether is not clear.  

Up to now, only one P4-ATPase gene, FIC1 (ATP8B1), has been unambiguously 

linked to human disease (Paulusma and Oude Elferink, 2005). Mutations in FIC1 cause 

inherited progressive familial intrahepatic cholestasis type 1 (PFIC1) and benign 

recurrent intrahepatic cholestasis (BRIC) (Bull et al., 1998; Bull et al., 1999; Tygstrup et 

al., 1999; Klomp et al., 2000; Eppens et al., 2001; Ujhazy et al., 2001; Klomp et al., 

2004). PFIC1/BRIC patients are characterized by impaired bile salt secretion, high levels 

of serum bile salts and bilirubin, but normal levels of serum cholesterol and 

γ-glutamyltranspeptidase, an ectoenzyme whose serum activity is high in most cholestasis 

disorders. Obviously, dysfunction of Atp8b1 abrogates bile salt homeostasis and bile 

formation, but the molecular mechanism underlying the cholestatic phenotype is still not 

clear. Atp8b1 localizes to the apical membrane of epithelial cells in many tissues, 

including hepatocytes and bile duct epithelial cells. Expression of Atp8b1 in a mutant 

CHO-K1 cell line, which is defective in the non-endocytic uptake of NBD-PS, increases 

translocation of NBD-PS across the plasma membrane (Ujhazy et al., 2001). These data 

are consistent with a proposed role for Atp8b1 as an APTL, but do not rule out an indirect 

impact of Atp8b1 on NBD-PS uptake. For example, Atp8b1 may affect expression or 

trafficking of other proteins which are directly responsible for the APTL activity. 

Recently, Oude Elferink’s group observed that after intravenous infusion of a 

hydrophobic bile salt, Atp8b1 deficient mice displayed enhanced levels of PS, cholesterol 

and ectoenzymes in the bile (Paulusma et al., 2006). Moreover, disruption of Atp8b1 
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abrogates the transport of hydrophobic bile salts into bile in isolated mouse livers. Based 

on these observations, this group proposes that loss of membrane asymmetry caused by 

Atp8b1 deficiency renders the canalicular membrane more sensitive to extraction of PS 

and cholesterol by bile salts, which in turn perturbs ABCB11 activity, the major bile salt 

export pump, and causes cholestasis.  

Besides FIC1, a few other diseases have been tentatively linked to P4-ATPase loci. 

The ATP8A2 locus is frequently deleted in tumorigenic malignancies (Sun et al., 1999). 

X-linked hypoparathyroidism maps to a chromosomal region, Xq27, containing the 

3’UTR of ATP11C (Andrew Nesbit et al., 2004). Moreover, a role of P4-ATPases in drug 

resistance was suggested by a recent report, showing that elevated levels of ATP11A 

protect the lymphoblastic leukemia cells against several small molecule signal 

transduction inhibitors (Zhang et al., 2005).  

P4-ATPases have been implicated in several different physiological processes in 

the mouse system. Heterozygous mice with a maternally-inherited chromosomal deletion 

impinging on ATP10A are predisposed to develop obesity and type 2 diabetes when fed a 

high-fat diet (Dhar et al., 2000; Dhar et al., 2002; Dhar et al., 2004a; Dhar et al., 2004b; 

Dhar et al., 2006). A similar, albeit less severe phenotype is exhibited by the inbred 

mouse strain C57BL/6J, which is linked to a premature stop codon in the ATP10D gene 

(Flamant et al., 2003). Thus, both ATP10A and ATP10D seem to be involved in the 

regulation of lipid metabolism. The mouse ortholog of ATP8B3 is exclusively expressed 

in the acrosomal region of spermatozoa. Loss of ATP8B3 compromises the ability of the 
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spermatozoa to bind and penetrate the zona pellucida and reduces the acrosome reaction 

(Wang et al., 2004). At this moment, how these P4-ATPases contribute to disease 

phenotypes is still poorly understood. However, studies in yeast have shed light on 

cellular and molecular functions of P4-ATPases, which may illuminate physiological 

processes perturbed by the diseases described above.  

2. Yeast P4-ATPases 

Five members of the P4-ATPase family are expressed in the yeast S. cerevisiae, 

including Neo1p, Drs2p, Dnf1p, Dnf2p, and Dnf3p. While deletion of NEO1 alone is 

lethal, DRS2, DNF1, DNF2 and DNF3 are individually nonessential genes. However, 

deletion of all four of these genes is lethal and so they constitute an essential group (Hua 

et al., 2002). The fact that any one of these four proteins can support cell viability implies 

that they share a common biochemical function. The drs2Δ strain grows as well as 

wild-type at 30°C, but fails to grow at 23°C or below. DNF1 and DNF2 are the closest 

related genes in this family, sharing 69% sequence identity and 83% similarity. In some 

strain backgrounds, dnf1Δdnf2Δ also causes a cold-sensitive growth defect (Pomorski et 

al., 2003). Different localization patterns are observed for individual yeast P4-ATPase 

members. While Drs2p and Dnf3p primarily reside in the trans-Golgi network (TGN), 

Dnf1p and Dnf2p localize to the plasma membrane and internal compartments, 

concentrating at the sites of polarized growth (i.e. emerging bud sites, small buds and 

mother-daughter neck of dividing cells) (Hua et al., 2002; Pomorski et al., 2003). Neo1p 
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appears to populate both endosomal membranes and the Golgi. All five P4-ATPases 

members have been implicated in protein trafficking, but act at different pathways (See 

below; Figure 1-3). As we will discuss later, the functional redundancy between these 

family members and roles they play in protein transport make it difficult to define the 

flippase activity of individual proteins by analyzing yeast strains carrying knockouts of 

P4 ATPase genes. 

As in mammalian cells, the plasma membrane of yeast is asymmetric with PS and 

PE restricted to the inner leaflet. However, unlike most mammalian cells, yeast can 

efficiently translocate NBD-PC cross the plasma membrane along with NBD-PS and 

NBD-PE, suggesting a broader substrate specificity for yeast translocases (Kean et al., 

1993; Grant et al., 2001; Hanson and Nichols, 2001). How active NBD-PC translocation 

relates to plasma membrane asymmetry remains unknown, although it is possible that 

most of the PC is in the inner leaflet and the outer leaflet is primarily glycosphingolipid. 

Among the five yeast P4-ATPases, Dnf1p and Dnf2p are the only two present on 

the plasma membrane, so they are most likely to be responsible for the flippase activity at 

the plasma membrane. Loss of Dnf1p and Dnf2p abolishes the ATP-dependent, 

non-endocytic uptake of NBD-labeled PE, PC and, to a lesser extent PS (Pomorski et al., 

2003). The dnf1Δdnf2Δ double mutant also exposes elevated levels of endogenous PE 

and PS on the cell surface (Pomorski et al., 2003; Chen et al., 2006). Specifically, 

wild-type cells expose a small amount of PE on the extracellular leaflet, and only at sites 

of polarized growth. In contrast, cell surface PE is also observed at the enlarged bud 
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cortex of dnf1Δdnf2Δ cells, suggesting Dnf1p and Dnf2p are involved in retrieval of PE 

at the bud cortex (Iwamoto et al., 2004). Uptake of three PC analogues with different 

Bodipy fluorophores was also tested and compared with that of NBD-PC in strains 

harboring deletions in DNF1 and DNF2 (Elvington et al., 2005). Loss of DNF1 and 

DNF2 significantly reduces the translocation of NBD-PC and Bodipy FL-PC across the 

plasma membrane, but does not perturb translocation of Bodipy 581-PC and Bodipy 

530-PC. ATP depletion and culture density also have a different impact on uptake of 

Bodipy 581-PC and Bodipy 530-PC. These observations suggest that in yeast there are at 

least three different translocation pathways which are selective for structure of the 

fluorophore attached to the acyl chain of PC molecules. dnf1Δdnf2Δ was shown to also 

perturb the endocytic pathway, so the data obtained from this mutant can not determine 

whether Dnf1p and Dnf2p directly translocate phospholipids, or whether other proteins 

that are depleted from the plasma membrane by the trafficking defects are more directly 

responsible for the phospholipid translocation.  

Whether or not disruption of Drs2 significantly decreases NBD-PS translocation 

across the plasma membrane and perturbs PS asymmetry was controversial in initial 

studies (Tang et al., 1996; Siegmund et al., 1998; Marx et al., 1999; Gomes et al., 2000). 

Using a more sensitive probe and peptides that specifically target PS and PE on the outer 

leaflet, recent studies were able to show that PS and PE asymmetry on the plasma 

membrane is impaired in drs2Δ cells (Chen et al., 2006). Deletion of DRS2 from 

dnf1Δdnf2Δ cells exacerbates the PE and PS exposure on the cell surface (Pomorski et al., 
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2003; Chen et al., 2006). Since Drs2p primarily localize to the TGN, it does not seem to 

contribute directly to the flippase activity on the plasma membrane. Instead, its activity 

may affect plasma membrane asymmetry in a couple of indirect ways. First, loss of Drs2 

may perturb exocytic vesicle formation at the TGN and accumulate cell-surface targeted 

proteins, including Dnf1p, in internal membranes (Saito et al., 2004). Moreover, 

membrane asymmetry may be established at the TGN by Drs2p before the membrane 

flows to the plasma membrane by exocytosis. Although Drs2p primarily localizes to the 

TGN, it does travel to the plasma membrane occasionally (Saito et al., 2004; Liu et al., 

2007). It remains under dispute whether Drs2p is active or not when present on the 

plasma membrane (Marx et al., 1999; Saito et al., 2004).  

Recently, a translocase activity that flips NBD-PS, NBD-PE and NBD-PC to the 

cytosolic leaflet was detected on a specific class of post-Golgi secretory vesicles 

containing Drs2p (Alder-Baerens et al., 2006). While vesicles purified from cells lacking 

Dnf1p and Dnf2p retained these activities, vesicles from cells deficient for Drs2p display 

impaired flippase activity for NBD-PS and, to a lesser extent, NBD-PE. In addition, 

translocation of all three lipid analogues is abolished on vesicles from cells deleted for 

both Drs2 and Dnf3. These data suggest that Dnf3 preferentially translocates NBD-PE 

and NBD-PC. 

At first glance, all the defects observed in the null mutants support the proposed 

flippase activity for Drs2p family of proteins. However, caution should be taken in 

interpreting these data, because the P4-ATPase null mutants may indirectly perturb the 
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expression, localization or activity of other proteins that directly translocate the 

NBD-phospholipids. For example, drs2Δ was recently shown to perturb cholesterol 

uptake across the plasma membrane (Reiner et al., 2006). Rather than directly 

transporting cholesterol, drs2Δ disrupts trafficking of the Aus1p and Pdr11p ABC 

transporters that appear to be the steroid transporters. The TGN membrane contains an 

energy-dependent flippase activity, which translocates NBD-labeled PS and PE from the 

luminal to the cytosolic leaflet (Natarajan et al., 2004). TGN membranes from drs2Δ cells 

exhibited a substantial decrease in this flippase activity (Our unpublished data). However, 

it was impossible to conclude that Drs2p was directly responsible for this flippase activity, 

because deletion of DRS2 causes mislocalization of several TGN resident enzymes and 

the TGN membranes purified from wild-type and drs2Δ cells have different protein 

compositions (Natarajan et al., 2004). In addition, other mutants with disrupted protein 

trafficking pathways, such as clathrin and endocytosis null mutants, also exhibit a loss of 

membrane asymmetry that is comparable to drs2Δ or dnf1Δdnf2Δ cells (Chen et al., 

2006). More importantly, acute inactivation of drs2-ts or chc-ts, results in defects in 

protein transport but fails to induce a measurable loss of PS asymmetry. Thus, PS 

exposure in the drs2-ts or chc-ts cells seems to be a secondary consequence of a chronic 

disruption in protein and membrane trafficking to and from the plasma membrane,  

Ideally, to determine if Drs2p is directly responsible for a flippase activity, one 

would like to compare membrane samples that differ only in the presence or absence of 

Drs2p activity. To achieve this goal, we applied two strategies with an in vitro flippase 
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assay using purified TGN membranes (Natarajan et al., 2004). First, all Dnf proteins were 

deleted from the cell to eliminate possible contribution of these proteins to the TGN 

flippase activity. Second, to avoid the chronic defects associated with loss of Drs2p, cells 

harboring either WT or temperature-sensitive alleles of Drs2 were grown at permissive 

temperature. By inactivating Drs2p-ts after membrane isolation, we could compare the 

flippase activity in the same membranes before and after inactivation of this single 

protein. These data demonstrated that Drs2p was required for ATP-dependent 

translocation of NBD-PS across TGN membranes, whereas no active translocation of 

NBP-PE or NBD-PC was detected with the TGN membranes isolated from the DRS2 

dnf1,2,3Δ cells. So far, these studies provide the most convincing evidence that Drs2p is 

indeed an APLT. Drs2p also appears to weakly translocate NBD-PE, an activity that can 

be detected when the protein is overexpressed.  

3. The Cdc50-Lem3 Family 

In yeast, an evolutionarily conserved family of proteins was found to associate 

with P4-ATPases as a potential noncatalytic subunit. Cdc50p, Lem3p and Crf1p are 

glycosylated proteins with two putative transmembrane domains. Cdc50p was originally 

identified in a screen for cold-sensitive, cell-division-cycle mutants, although it is still not 

clear why disruption of CDC50 causes a cold-sensitive block in the cell cycle (Moir et al., 

1982). CDC50 was later found to be allelic to SWA4 (described in more detail below) 

(Chen et al., 2006), a gene recovered in a genetic screen that also identified DRS2 (Chen 
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et al., 1999). Similar to drs2Δ, cdc50Δ mutants are impaired in protein transport, cell 

polarity and PS asymmetry of the plasma membrane (Saito et al., 2004; Chen et al., 

2006). Cdc50p physically interacts with Drs2p and the formation of this complex is 

required for ER exit of both proteins (Saito et al., 2004; Chen et al., 2006). Thus, the 

defects shown in cdc50Δ cells may be caused by loss of Drs2p function. Like Drs2p, 

Cdc50p localizes to the TGN and early endosome system, and accumulates on the plasma 

membrane when endocytosis is blocked, suggesting that the Drs2p-Cdc50p complex is 

maintained in post-ER compartments (Saito et al., 2004).  

LEM3 (also known as ROS3) was independently discovered in two screens for 

mutants that are either sensitive to an antifungal peptide that specifically binds to PE 

exposed on the outer leaflet of the plasma membrane, or are defective in the uptake of a 

toxic PC analogue (Kato et al., 2002; Hanson et al., 2003). Lem3p associates with and 

chaperones ER exit of Dnf1p and Dnf2p (Saito et al., 2004; Furuta et al., 2007). Thus, 

lem3Δ cells exhibit a deficiency of both Dnf1p and Dnf2p at the plasma membrane and 

consequently are impaired in translocation of NBD-PE and NBD-PC, but not NBD-PS 

across the plasma membrane (Kato et al., 2002; Hanson et al., 2003). Recently, a lem3 

mutant was isolated that exhibits normal association with Dnf1p and Dnf2p, an apparent 

normal localization of Dnf1p and nearly normal uptake of NBD-PE and NBD-PC, but 

displays a synthetic growth defect with cdc50Δ (Noji et al., 2006). This result suggests 

that Lem3p may regulate Dnf1p or Dnf2p function in more ways than just chaperoning 

their ER exit, or that Lem3p has some functions totally independent of Dnf1p and Dnf2p. 
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Like Cdc50p and Lem3p, Crf1p is a potential noncatalytic subunit that associates with 

Dnf3p (Furuta et al., 2007). Members of Cdc50p family proteins have also been 

identified in mammalian cells, although their function has not yet been explored (Katoh 

and Katoh, 2004; Osada et al., 2006). Many interesting questions remain about the 

Cdc50-Lem3 family of proteins: Are they dedicated subunits with P4-ATPases, or do they 

chaperone other proteins as well? Is their only function to escort the P4-ATPases from the 

ER or are they playing an essential role in lipid translocation? Are they required for 

proper membrane insertion, folding or association with COP II for ER exit? More 

experiments need to be done to resolve these issues.  

4. P4-ATPases in Other Organisms 

The cold sensitive growth of yeast drs2 mutants prompted the investigation of 

P4-ATPases in Arabidopsis, to determine if they are involved in chilling tolerance of 

plants (Gomes et al., 2000). Among the 11 P4-ATPases in Arabidopsis, ALA1 is the 

closest relative to DRS2, and is able to complement the cold sensitivity of the drs2 yeast 

mutants. Downregulation of ALA1 in Arabidopsis greatly impairs cold tolerance of the 

plant. The actual mechanism by which P4-ATPases participate in cold tolerance is not 

known, but is likely to be related to membrane integrity or fluidity. 

Two P4-ATPases from the rice blast fungus Magnaporthe grisea, MgAPT2 and 

MgPDE1, are required for fungal pathogenicity. Whereas MgPde1 is required for 

appressoria formation, an outgrowth of the plasma membrane used to penetrate the plant 

 23



cuticle (Balhadere and Talbot, 2001), MgApt2 plays a role in exocytosis of 

virulence-associated proteins and plant tissue colonization (Gilbert et al., 2006).  

A P4-ATPase called LdMT from Leishmania donovani, a parasite that causes 

visceral leishmaniasis, is associated with drug resistance. Parasites defective in LdMT are 

resistant to miltefosine, an alkylphosphocholine drug used to treat leishmaniasis. In 

addition, overexpression of LdMT increases the uptake of miltefosine by the parasites 

(Perez-Victoria et al., 2003). In fact, it was demonstrated earlier that yeast lem3Δ mutants 

are resistant to miltefosine (Hanson et al., 2003). A functional homolog of LEM3/ROS3 

was recently discovered in Leishmania donovani, and given the name LdRos3 

(Perez-Victoria et al., 2006). 

 

Yeast P4-ATPases in Protein Transport 

 

The Proposed Role of Flippases in Vesicle Biogenesis 

It has long been proposed that flippases, whose primary function is to establish 

and maintain membrane asymmetry, may play a role in vesicle biogenesis. Translocation 

of phospholipids by flippases increases the surface area of the cytosolic leaflet and 

coincidently decreases that of the extracellular leaflet. As suggested by the bilayer couple 

hypothesis (Sheetz and Singer, 1974), this imbalance of phospholipid number would 

induce membrane curvature towards the cytosol and hence facilitate vesicle formation. In 

fact, induced bilayer asymmetry can trigger shape changes of spherical liposomes into 
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tubular and interconnected vesicular structures (Farge and Devaux, 1992). 

Sphingomyelinase treatment, which changes the composition of the plasma membrane 

outer leaflet, induces an ATP-independent budding of functional endocytic vesicles (Zha 

et al., 1998). Moreover, exogenous PS or PE, when incorporated in the outer leaflet of the 

plasma membrane and then pumped to the inner leaflet, significantly enhances 

endocytosis (Farge et al., 1999). Conversely, addition of lyso−α-PS or a cholesterol 

derivative, which cannot be translocated across the plasma membrane and remains in the 

outer layer, inhibits endocytosis. Although these data described above are in agreement 

with the role of flippases in vesicle budding, they all deal with artificial membranes or 

perturbed cell systems. As we will discuss later, the requirements for yeast P4-ATPases in 

protein trafficking provide the first line of evidence that cells use a bilayer-couple 

mechanism under normal physiological conditions to generate vesicles.  

The role of generating the tight membrane curvature required in vesicle formation 

has traditionally been assigned to vesicle coat proteins like clathrin. Structural studies 

have revealed an intrinsic curvature in clathrin triskelia (Smith et al., 1998; Musacchio et 

al., 1999) and clathrin can self-assemble into polyhedral baskets in the absence of lipids. 

In an in vitro system, clathrin-coated buds and even clathrin-coated vesicles can form on 

appropriate protein-free liposomes, with a minimal requirement for ARF, GTP, adaptor 

proteins and clathrin (Takei et al., 1998; Zhu et al., 1999). However, recent theoretical  

studies estimated that the rigidity of clathrin-adaptor protein complexes is of the same 

order of magnitude as the resistance of lipid membranes to bending (Nossal, 2001). Thus, 
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clathrin assembly is unlikely to provide sufficient energy to drive membrane curvature in 

vivo, and instead, it may serve to stabilize an already curved membrane and prevent the 

membrane from collapsing back into a planar form. In the “Brownian ratchet” model, 

membranes spontaneously fluctuate, resulting in transient membrane invaginations, 

which could be captured by the clathrin lattice to form vesicles (Shraiman, 1997). 

Consistent with this model, additional accessory proteins with the ability to deform the 

membrane have been identified that participate in CCV formation, including 

BAR-domain containing proteins, the epsins (Itoh and De Camilli, 2006; Ren et al., 2006) 

as well as flippases.  

 

Requirements for P4-ATPases in Vesicle-mediated Protein Transport 

Drs2p was first implicated in vesicle-mediated protein transport by a genetic 

screen for mutants defective in ARF-dependent vesicle biogenesis (Chen et al., 1999). 

ARF (ADP-ribosylation factor) is a small GTP-binding protein that regulates coat protein 

assembly on transport vesicles (Randazzo et al., 2000; D'Souza-Schorey and Chavrier, 

2006). ARF acts as a molecular switch by cycling between active GTP-bound and 

inactive GDP-bound forms. The GDP-bound form is largely soluble, whereas the 

GTP-bound form exposes its myristoylated N-terminus and associates with the membrane 

via both the myristoyl group and several hydrophobic and basic residues from the 

N-terminal α-helix. Binding and hydrolysis of GTP by ARF require catalytic assistance 

from two classes of proteins. Guanine nucleotide exchange factors (GEFs) promotes the 
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exchange of GDP for GTP, while GTPase-activating proteins (GAPs) stimulate the 

hydrolysis of GTP by ARF to form GDP.  

In yeast Saccharomyces cerevisiae, ARF is encoded by two genes, ARF1 and 

ARF2, which are 96% identical in sequence and redundant in function. Single deletion of 

either gene has little effect on cell growth, but strains with the double deletion are 

inviable (Stearns et al., 1990a). In wild type cells, Arf2p is only expressed at 10% of the 

level of Arf1p, and arf2Δ shows a wild-type phenotype. However, arf1Δ exhibits partial 

defects in protein secretion and Golgi-specific glycosylation, and the morphology of 

Golgi and endosomes is substantially changed in arf1Δ mutants (Stearns et al., 1990b; 

Gaynor et al., 1998). 

The critical role of ARF in protein trafficking is to directly bind and recruit 

vesicle coats, which then capture cargos on the donor membrane and drive the formation 

of transport vesicles. ARF-dependent coats include the COPI coatomer complex, 

clathrin/adaptor protein (AP)-1, clathrin/GGA (Golgi associated, γ-ear homologous, ARF 

interacting) proteins, AP-3 and AP-4 complexes. COPI vesicles participate in the 

intra-Golgi transport and the retrograde transport from the Golgi complex to the 

endoplasmic reticulum (ER), whereas clathrin coated vesicles (CCV) mediate protein 

traffic from the plasma membrane to endosomes and between the trans-Golgi network 

(TGN) and endosomes. The polyhedral clathrin coats are assembled from triskelions, 

which are three-legged structures consisting of three clathrin heavy chains and three light 

chains (Brodsky et al., 2001). The interaction between the clathrin basket and the 
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membrane surface of the vesicle is mediated by adaptor proteins, which also facilitate 

cargo selection and bind additional accessory proteins (Robinson, 2004). A number of 

different adaptor proteins have been discovered to date, among which AP-1 and GGA are 

two major classes of adaptors that function in clathrin-mediated transport between the 

TGN and endosomes. While GGA proteins are monomeric adaptors, AP-1 is composed of 

two large subunits (β1 and γ), one medium subunit (μ1), and a small subunit (σ1). AP-3 

and AP-4 are heterotetrameric complexes with homology to AP-1, but they appear to be 

able to function independently of clathrin. AP-3 is involved in protein transport from 

endosomes and the TGN to lysosomes. AP-4, absent in yeast, has been implicated in 

sorting of cargos destined for lysosomes and the basolateral membrane in different cell 

types. 

The fact that a single ARF protein is involved in multiple protein transport 

pathways suggests that other regulators exist to coordinate its function. To better 

understand the function of ARF in vivo, the Graham lab performed a genetic screen for 

mutant alleles that displayed synthetic lethality with arf1Δ. This genetic interaction often 

implies that the two gene products involved play roles in the same pathway or in parallel 

pathways. Seven complementation groups were discovered in the screen and named 

SWA1-7 for synthetic lethality with arf1Δ. SWA5 was identified as clathrin heavy chain 

gene (CHC1), providing the first genetic evidence for a functional interaction in vivo 

between ARF and clathrin (Chen and Graham, 1998). SWA2 encodes a DnaJ protein and 

is the yeast ortholog of auxilin, a clathrin binding protein that recruits Hsc70p via its 
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DnaJ domain to uncoat CCVs (Gall et al., 2000). SWA7 is allelic to NMT1, which 

encodes the yeast N-myristoyltransferase (Our unpublished data). Myristoylation of the 

N-terminus of ARF is critical for its function. Unexpectedly, SWA3 and SWA4 were found 

to be allelic to DRS2 and CDC50 respectively (Chen et al., 1999; Chen et al., 2006). 

Drs2p and Cdc50p were later shown to be required for clathrin function in the TGN-early 

endosome system. Thus, most of the genes identified so far from this genetic screen are 

involved in regulation of clathrin dynamics, demonstrating that the screen is biased 

towards clathrin function.  

Drs2p localizes to the late Golgi and early endosomal membranes, where CCVs 

are actively budded.  drs2Δ is synthetically lethal with arf1 and chc-ts alleles and 

exhibits a marked reduction in CCVs isolated from subcellular fractions (Chen et al., 

1999). Similar to clathrin mutants, drs2Δ accumulates swollen Golgi cisternae and 

mislocalizes the TGN resident protein Kex2p, which normally cycles between the TGN 

and endosomal compartments to maintain its steady-state localization. Therefore, clathrin 

and Drs2p seem to participate in the protein traffic between the TGN and endosomes. In 

yeast, protein transport to the plasma membrane is mediated by two classes of exocytic 

vesicles, which are distinguished by density and cargos. Specifically, both clathrin and 

Drs2p are required for the formation of the dense exocytic vesicles which carry invertase 

and acid phosphatase (Gall et al., 2002). Moreover, Drs2 has genetic interactions with 

Gcs1, an ARF-GTPase activating protein, and physically associates with Rcy1, an F-box 

protein involved in recycling of cargo from the early endosome back to the TGN (Sakane 
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et al., 2006; Furuta et al., 2007). A role for Drs2p in the early endosome to TGN pathway 

has been proposed but still needs further investigation. In summary, most available data 

imply that Drs2p functions to facilitate CCV formation from the TGN and endosomal 

membranes.  

A drs2 allele bearing a truncation of the carboxyl terminal cytosolic tail (C-tail) 

can not complement the cold-sensitive growth and trafficking defects of drs2Δ, 

suggesting that the C-tail makes an essential contribution to Drs2 function (Chantalat et 

al., 2004; Liu et al., 2007). Three motifs have been mapped within the Drs2 C-tail thus 

far. The Gea2p interaction motif (GIM) directly interacts with the catalytically important 

Sec7 domain of the ARF-GEF Gea2p (Chantalat et al., 2004). Adjacent to GIM, there is a 

region highly conserved among all, including mammalian, Drs2p homologues. Function 

of this conserved motif is still unknown, although deletion of this motif abrogates 

function in vivo, suggesting that the conserved motif is primarily responsible for the 

essential function of the C-tail (Chantalat et al., 2004). At the membrane distal end of the 

C-tail there are two NPFX(1,2)D motifs, which are potential endocytosis signals (Tang et 

al., 1996; Valdivia et al., 2002). How the C-tail contributes to the function of Drs2p is 

still not clear, but it likely mediates protein interactions and/or TGN localization. 
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Figure 1-3: Vesicle-mediated protein-transport pathways that require Drs2p family 

P4-ATPases. (From Graham, 2004)  
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Studies have been done to determine if other members of yeast P4-ATPase family 

participate in protein traffic. NEO1 is essential for viability, so conditional alleles of 

NEO1 were isolated and studied (Hua and Graham, 2003; Wicky et al., 2004). After 

shifting to nonpermissive temperatures, neo1-ts mutants show several defects in common 

with COPI mutants, including a cargo-specific defect in secretion, aberrant glycosylation 

of cargo in the Golgi and mislocalization of Rer1-GFP to vacuole (Hua and Graham, 

2003). Rer1p is an integral membrane protein that continuously cycles between the ER 

and the Golgi. These data, in combination with the synthetic lethality between neo1-ts 

and COPI mutations, suggest that Neo1p is required for a retrograde transport pathway 

from the Golgi to the ER. In another study, neo1-ts mutants exhibited fragmented vacuole 

and defects in endocytosis (Wicky et al., 2004). Deletion of ARL1, an ARF like protein 

that functions within the endosomal/Golgi system, rescues the temperature sensitivity of 

neo1-ts. In addition, Neo1p have genetic and physical interactions with Ysl2p, a potential 

guanine nucleotide exchange factor for Arl1p. Thus, Neo1p seems to also play a role in 

protein traffic within the endosomal/Golgi system. 

Snc1p is an exocytic v-SNARE, which cycles in the TGN -> plasma membrane -> 

early endosome ->TGN pathway, but primarily localizes to the plasma membrane at 

steady-state. Disruption of DNF1 and DNF2 causes accumulation of Snc1p in internal 

membranes but has no affect on the trafficking of Ste2p, the a-factor receptor, which 

travels the endocytic pathway to the vacuole for degradation (Hua et al., 2002). Therefore, 

Dnf1p and Dnf2p play overlapping roles in an early endosome to TGN pathway. 
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Interestingly, dnf1Δ dnf2Δ mutant also displays a cold-sensitive defect in the 

internalization step of endocytosis, which is exacerbated by additional deletion of DRS2 

(Pomorski et al., 2003). Deletion of both DNF1 and DRS2 abrogates transport of alkaline 

phosphatase to the vacuole, whereas the dnf1Δ or drs2Δ single mutants transport alkaline 

phosphatase relatively normally (Hua et al., 2002). Thus, Dnf1p and Drs2p have 

redundant functions in this AP-3 mediated TGN to vacuole pathway. Remarkably, 

members of Drs2p family participate in all the protein transport pathways, in which ARF 

seems to be involved.  

 

Objectives of This Study 

The above evidence suggested that P4-ATPases function as a phospholipid 

translocases, and are important for establishing membrane asymmetry. These ATPases 

also play a critical role in vesicle mediated protein trafficking. The mechanism for 

coupling a specific P4-ATPase to specific transport pathways requires the appropriate 

localization and regulated local interactions. However, the precise mechanism that 

P4-ATPases use in facilitating vesicle biogenesis is unclear.  

In Chapter II of this thesis, the trafficking itineraries of Drs2p and Dnf1p are 

determined by studying the location of these proteins in various mutants defective for 

different trafficking pathways. Multiple endocytosis signals were defined in Drs2p, 

including two NPFXDs near the C-terminus and PEST-like sequences near the 

N-terminus for ubiquitin (Ub)-dependent endocytosis. Surprisingly, in a mutant that is 
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constitutively defective for Ub-dependent endocytosis but not for NPFXD-dependent 

endocytosis, Drs2p must be internalized through the NPFXD/Sla1p pathway to sustain 

viability. Thus, Drs2p seems to be an essential endocytic cargo for the NPFXD/Sla1p 

system.  

In Chapter III, we examined which clathrin adaptors Drs2p preferentially acts in 

conjunction with, and found that Drs2p and AP-1/clathrin function together in a 

TGN-early endosome pathway distinct from the TGN to late endosome pathway 

mediated by GGA/clathrin. A physical interaction was observed between Drs2p and AP-1. 

However, deletion of DRS2 does not seem to affect recruitment of AP-1 to the TGN 

membrane, suggesting that Drs2p is required at late stages in clathrin-coated vesicle 

formation. Interestingly, disruption of AP-1 alters Drs2p trafficking but not its 

steady-state localization to the TGN, demonstrating that Drs2p is a cargo of AP-1 

specifically for the anterograde TGN to early endosome pathway.  

Based on these observations, we propose that at the TGN, Drs2p facilitates 

formation of vesicles coated with clathrin and AP-1 by generating positive membrane 

curvature. Drs2p embarks within these AP-1/clathrin-coated vesicles for delivery to the 

early endosome, but uses an AP-1 independent pathway for retrieval back to the TGN.  
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CHAPTER II 

 

YEAST P4-ATPASES DRS2p AND DNF1p ARE ESSENTIAL CARGOS OF THE 
NPFXD/SLA1p ENDOCYTIC PATHWAY 

 

(This Chapter was previously published on: 
Molecular Biology of the Cell, Vol.18, 487-500, Feb 2007) 

 

Introduction 

Drs2p is a resident P-type ATPase of the yeast trans-Golgi network (TGN) that 

is required for vesicle-mediated protein transport from this organelle.  Most well 

characterized P-type ATPases are cation pumps that control the concentration of ions in 

both intracellular and extracellular spaces (for example, the Na+/K+ ATPase, Ca++ ATPase, 

and H+/K+ ATPase) (Kuhlbrandt, 2004). Drs2p, in contrast, is the founding member of a 

large P-type ATPase subfamily, called P4-ATPases (Catty et al., 1997), that are proposed 

to translocate phospholipid rather than ions. This flippase activity is responsible for 

translocating specific phospholipid molecules from the exoplasmic leaflet to the cytosolic 

leaflet to establish asymmetry of the membrane bilayer (Pomorski et al., 2003; Graham, 

2004; Pomorski et al., 2004; Paulusma and Oude Elferink, 2005; Devaux et al., 2006).  

For Drs2p, ATPase activity and presumably phospholipid translocation are essential, 

because mutation of the aspartic acid that forms an aspartyl-phosphate intermediate 

during catalysis (D560N) renders Drs2p nonfunctional in vivo (Chen et al., 1999).  In 
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addition, after shifting to the nonpermissive temperature, a drs2 temperature-sensitive (ts) 

allele causes a rapid loss of exocytic vesicle formation in vivo (Gall et al., 2002) and the 

loss of an ATP-dependent phosphatidylserine (PS) flippase activity in purified Golgi 

membranes containing Drs2-ts (Natarajan et al., 2004). Mammalian homologues of 

Drs2p include the chromaffin granule ATPase II (now called ATP8A1) (Tang et al., 1996), 

which is likely responsible for a PS translocase activity observed with these exocytic 

vesicles (Zachowski et al., 1989), and FIC1 (ATP8B1), for which mutations in humans 

cause an impairment of bile flow through the liver (cholestasis) (Bull et al., 1998; Klomp 

et al., 2004).  In addition, deletions removing the mouse Atp10c gene cause diet-induced 

obesity and type 2 diabetes phenotypes (Dhar et al., 2004b). P4-ATPases are also 

agriculturally important, as they are required for pathogenesis of the rice blast fungus 

Magneporthe griseus (Balhadere and Talbot, 2001; Gilbert et al., 2006) and growth of 

plants at cold temperatures (Gomes et al., 2000).   

The yeast Drs2p family of P4-ATPases, including Neo1p, Dnf1p, Dnf2p and 

Dnf3p, are all involved in protein transport in the secretory and endocytic pathways, but 

at different stages (Graham, 2004).  Drs2p and the Dnf proteins form an essential group 

and at least one of these proteins must be present to sustain yeast viability.  The 

Drs2/Dnf P4-ATPases have both overlapping and non-overlapping functions in protein 

transport (Hua et al., 2002). Strains carrying a deletion of DRS2 (drs2∆) are viable, but 

strongly cold-sensitive for growth, and exhibit defects in forming one of the two classes 

of exocytic vesicles (high density) targeted to the plasma membrane (Gall et al., 2002). 
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The drs2∆ mutant also exhibits defects in protein trafficking between the TGN and early 

endosome that are comparable to clathrin mutant phenotypes (Chen et al., 1999; Hua et 

al., 2002).  Thus, the Dnf ATPases cannot compensate for loss of Drs2p in these 

pathways and moreover, deletion of all three DNF genes does not perturb these 

Drs2p-dependent pathways.  Dnf1p and Dnf2p are 69% identical in amino acid 

sequence, localize to the plasma membrane and internal membranes (TGN, early 

endosomes and transport vesicles), and have redundant functions in the internalization 

step of endocytosis (at cold temperatures) and an early endosome to TGN transport 

pathway traveled by the Snc1p soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor (SNARE) (Hua et al., 2002; Pomorski et al., 2003). Drs2p is also 

required for Snc1p recycling suggesting that Drs2p and Dnf1,2p are partially redundant 

in the this pathway. In addition, Drs2p and Dnf1p have redundant functions in the 

AP-3-dependent transport of alkaline phosphatase from the TGN directly to the vacuole.  

The individual drs2∆ or dnf1∆ mutants show little to no defect in the AP-3 pathway while 

this pathway is blocked in the drs2∆ dnf1∆ double mutant (Hua et al., 2002).  The 

mechanism for coupling a specific P4-ATPase to a specific protein transport pathway is 

unclear, but likely involves translocation substrate specificity, unique protein interactions 

and appropriate localization.   

Localization of Drs2p to the Golgi requires interaction with the Cdc50p 

chaperone subunit in order for the Drs2p/Cdc50p complex to exit the ER (Saito et al., 

2004). In cdc50∆, Drs2p is retained in the ER and these cells show protein transport 
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defects at the TGN comparable to drs2∆ (Chen et al., 2006).  Similarly, the Cdc50p 

homolog Lem3p (also called Ros3p) is required for transport of Dnf1p and presumably 

Dnf2p to the plasma membrane and so lem3∆ phenocopies dnf1∆ dnf2∆ (Saito et al., 

2004).   The Drs2p carboxyl-terminal cytosolic tail (C-tail) makes an essential 

contribution to its function, apparently by mediating protein interactions and/or TGN 

localization. Drs2p is linked to the vesicle budding machinery by a direct interaction 

between the ARF-GEF Gea2p and a short motif in the C-tail (called GIM, for Gea2p 

interaction Motif) (Chantalat et al., 2004). Adjacent to GIM, there is a region highly 

conserved among all, including mammalian, Drs2p homologues. Function of this 

conserved motif (CM) is still unknown, although a mutational analysis suggested that the 

CM is primarily responsible for the essential function of the C-tail (Chantalat et al., 2004). 

At the membrane distal end of the C-tail there are two NPFX(1,2)D motifs (hereafter 

referred to as NPFXD), which are potential endocytosis signals (Tang et al., 1996; 

Howard et al., 2002).  

In yeast, two types of endocytosis signals have been characterized that recruit 

membrane proteins into a clathrin/actin-based endocytic pathway for internalization from 

the plasma membrane: sequences that mediates phosphorylation and ubiquitination of 

cargo, such as PEST-like sequences, and the NPFXD motif (Tang et al., 1996; Howard et 

al., 2002; Wang et al., 2003).  The NPFXD signal is recognized by the Sla1p subunit of 

an endocytic coat complex consisting of clathrin, Pan1p, End3p, Sla2p/End4p (related to 

mammalian Hip1R) and Sla1p (related to mammalian  CIN85 and intersectin) (Tang et 
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al., 1996; Howard et al., 2002; Newpher et al., 2005; Kaksonen et al., 2006). Pan1p, a 

member of the Eps15 family of modular scaffolding proteins, interacts with the clathrin 

binding proteins AP180 and epsin, and also binds to and stimulates the ARP2/3 complex 

(Wendland and Emr, 1998; Duncan et al., 2001; Aguilar et al., 2003).  Therefore, Pan1p 

has the capacity to link adaptor-bound cargo proteins to clathrin-coated pits and sites of 

actin assembly. Pan1p, End3p and actin assembly are required for both ubiquitin 

(Ub)-dependent and NPFXD-dependent endocytosis, although Sla1p is only required for 

endocytosis of cargo bearing the NPFXD signal (Howard et al., 2002; Miliaras et al., 

2004).  Not only does Drs2p have the potential to physically interact with the 

Sla1p/Pan1p/End3p complex, it is also functionally linked to this complex as drs2∆ is 

synthetically lethal with the temperature-conditional pan1-20 allele (Chen et al., 1999).  

However, the nature of these relationships between Drs2p and this endocytic complex is 

unclear. 

Drs2p exhibits a steady-state localization to the TGN, although recent reports 

showed accumulation of Drs2p on the plasma membrane of a verprolin (vrp1) mutant and 

the presence of Drs2p in exocytic vesicles, suggesting that Drs2p transits the plasma 

membrane as part of its trafficking itinerary (Saito et al., 2004; Alder-Baerens et al., 

2006).  Dnf1p also appears to cycle between the exocytic and endocytic pathways (Hua 

et al., 2002; Saito et al., 2004). In this work, we further examined the trafficking itinerary 

of Drs2p and Dnf1p and tested whether the NPFXD motifs contribute to the function and 

localization of these P4-ATPases.  
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Materials and Methods 

 

Media and Strains  

Yeast were grown in standard rich medium (YPD) or synthetic defined (SD) 

minimal media containing the required nutritional supplements (Sherman, 1991). Yeast 

transformations were performed using the lithium acetate method. Escherichia coli 

strains DH5α and XL1-Blue were used for plasmid construction and amplification.  

Yeast strains used in this study are summarized in Table 2-1. The yeast knockout 

strain collection was originally purchased from Research Genetics (Huntsville, AL), 

which is now Resgen, Invitrogen Corporation (Carlsbad, CA). Strains carrying multiple 

disruptions were generated by standard genetic crosses and tetrad dissection. The 

genotype of each spore was determined by a PCR method as described by the 

Saccharomyces genome deletion project (http://sequence-www.stanford.edu/group/yeast_ 

deletion_project/deletions3.html). Strains expressing Myc and HA tagged Dnf1p were 

generated by PCR-based targeting into BY4741 and BY4741 sla1∆ using 

pPF6a-13Myc-HisMX6 or pPF6a-3HA-HisMX6 as the PCR template (Longtine et al., 

1998). Transformants were selected on SD plates without histidine and the integrated tags 

were confirmed by PCR.   

 

Plasmid Construction 

Plasmids used in this study are listed in Table 2-2. To generate pGBT9-Drs2CT 
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used in the two-hybrid test, a BamHI fragment from pDHS279 (Chantalat et al., 2004) 

containing the Drs2p C-tail (amino acids 1230-1355) was cloned into the pGBT9 BamHI 

site, and the orientation was confirmed by PCR. PCR products used to generate DRS2 

C-tail truncation plasmids pRS315-Drs2-ΔCT, pRS315-Drs2-ΔEnd, 

pRS315-Drs2-ΔNPF2, pRS315-Drs2-ΔNPF and pRS315-Drs2-Δ1274 were produced 

using a forward primer (CAGCTGATATAGCTCTTGG) that anneals 5’ of an endogenous 

NcoI site in DRS2 and reverse primers with a stop codon and MluI site added to the 3’ 

end. PCR products were then used to replace the NcoI/MluI region of pRS315-DRS2. 

The DRS2 internal deletion mutant pRS315-Drs2-ΔCM was generated from the 

truncation plasmid pRS315-Drs2-Δ1274 with the C-terminal sequence added as a 

MluI/SalI PCR fragment. A megaprimer PCR method (Barik and Galinski, 1991) was 

used to introduce point mutations into the MscI/SalI fragment of the DRS2 gene to 

produce plasmids pRS315-Drs2-NPW1 and pRS315-Drs2-NPW2. Using similar methods, 

pRS315-Drs2-ΔGIM-NPW1,2 was generated from pSC33 (pRS315-Drs2-ΔGIM). 

Sequencing of the resulting plasmids indicated that the specific mutations were 

introduced with no additional mutations.  All other clones generated from the PCR 

fragments described below were also sequenced for confirmation.   

The full-length DNF1 gene was cloned by PCR amplification using primers 

JN01F (CTATGTAATCACCTACTTCCC) and GR02R (CTGGAGTGCTACATGAGCC) 

and subcloned into pRS416 after treating both the vector and PCR product with SpeI and 

HindIII. The SpeI/XhoI fragment of pRS416-DNF1 was inserted into SpeI/XhoI site of 
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pRS313 to produce pRS313-DNF1. Site-directed mutagenesis of DNF1 to produce 

pRS313-Dnf1-NAI was carried out in plasmid pRS313-DNF1 using the QuickChange 

protocol (Stratagene, La Jolla, CA). 

For construction of GFP-DRS2, a 1.3kb SpeI/ClaI fragment from pGOGFP 

(Cowles et al., 1997) consisting of the PRC1 promoter and GFP(S65T) was inserted into 

pRS416 to generate pRS416-GFP. The plasmid pRS315-DRS2 was used as a PCR 

template with primers SalI-Drs2-F (ACGTAGTCGACAATGACGACAGAGAAACCCC 

C) and Drs2-CT-R (CCCCTCGAGGTCGACGGTA) to generate a 3.7kb fragment that 

placed SalI sites at both the start and end of the DRS2 coding region. This fragment was 

subcloned into SalI site of pRS416-GFP, creating the plasmid pGFP-DRS2. To eliminate 

mutations produced by PCR, most of the DRS2 coding sequence in pGFP-DRS2 was 

further replaced by an AgeI/ClaI fragment from pRS315-DRS2. This form of GFP-DRS2 

fully complemented the cell growth defect of drs2Δ at 20°C. To generate C-terminal tail 

mutated GFP-DRS2 (pGFP-Drs2-ΔNPF2, pGFP-Drs2-ΔNPF or pGFP-Drs2-NPW1,2), 

PCR amplifications of different regions of DRS2 C terminus were used to replace the 

NheI/ClaI region of pGFP-DRS2. To generate N-terminal truncated GFP-DRS2 

(pGFP-Drs2-ΔN2 or pGFP-Drs2-ΔN3), primers Drs2ΔN2F 

(GATGAGATCTCATGAAAATCTATTTATGAGCAAT) or Drs2ΔN3F 

(GACTGAGATCTCGAGCAGTCAAGCCTCCC) were used with Drs2NR 

(GAACCACAGTTGGGGTATCAG) to produce fragments to replace the BglII region of 

pGFP-DRS2. To generate pGFP-Drs2-ΔN3-NPW1,2,  the 1.44kb NheI/ClaI fragment 
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from pGFP-Drs2-NPW1,2 was used to replace the corresponding sequence in 

pGFP-Drs2-ΔN3. The PRC1 promoter is stronger than the DRS2 promoter, and so to 

avoid accumulation of GFP-Drs2p in the ER (Saito et al., 2004),we co-transformed yeast 

strains with a multicopy vector carrying CDC50 (pRS425-CDC50).  

To generate pGFP-CDC50, pRS315-CDC50 was used as template with primers 

CDC50KpnIF (CGGTACCGTTTCATTGTTCAAAAGAGGTA) and CDC50KpnIR 

(CGGTACCCACAAATACCTACAGGCACTA) to produce a 1.2 kb fragment with KpnI 

sites at both ends of the CDC50 coding region.  The fragment was subcloned into the 

KpnI site of pRS416-GFP. 

 

Microscopy 

Cells were observed using an Axioplan microscope (Carl Zeiss, Thornwood, 

NY). Fluorescent images were captured with a charge-coupled-device camera and 

processed with Metamorph 4.5 software (Molecular Devices, Sunnyvale, CA). To 

visualize GFP-tagged proteins, cells were grown to early-mid logarithmic phase, 

harvested and resuspended in imaging buffer (10 mM Tris-HCl, pH 7.4, and 2% glucose). 

Cells were mounted on glass slides and observed immediately using a GFP (green) 

bandpass filter set.   

To study the kinetics of GFP-Drs2p transport to the plasma membrane, mid-log 

phase cells were collected and resuspended in SD medium containing 200 μM latrunculin 

A. Samples of cells were harvested at different time points and imaged.  To label 
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endosomes, we incubated cells in ice-cold SD medium containing 10 μg/ml FM4-64 

(Invitrogen) for 20 min. Cells were washed twice with cold medium without FM4-64 and 

then incubated for 30 min at 30°C before microscopic examination. 

 

Subcellular Fractionation and Immunological Methods  

For subcellular fractionation experiments, ~25 OD600 units of each strain were 

grown in YPD media to an OD600 of 0.5-1.0. The cells were harvested and converted to 

spheroplasts in HB buffer (1.4 M sorbitol, 50 mM KPi, pH 7.5, 10 mM NaN3, 10 mM 

NaF, 40 mM β-mercaotpethanol), by using 200 μg/ml Zymolyase 100T (MP Biomedicals, 

Irvine, CA) at 30°C for 30min. The spheroplasts were washed twice with HB buffer and 

lysed by resuspension in triethanolamine (TEA) lysis buffer (0.5 M sorbitol, 25 mM TEA, 

pH 8.0, 1 mM EDTA) containing 1x complete protease inhibitor cocktail (PIC) lacking 

EDTA (Roche Diagnostics, Basel, Switzerland). The extract was centrifuged at 400 x g 

for 5 min and the resulting supernatant at 9,000 x g for 15 min in a refrigerated 

microcentrifuge.  After each centrifugation step, the supernatant was transferred to a 

separate tube, and the pellet was resuspended in an equal volume of TEA lysis buffer 

supplemented with PIC.  SDS/urea buffer was added to 1X (20 mM Tris-HCl pH6.8, 4 

M urea, 0.05 mM EDTA, 0.5% β-mercaptoethanol, 2.5% SDS, 0.125% bromophenol 

blue), and the samples were heated at 65°C for 10 min before electrophoresis.  

Immunoblotting and immunofluorescence experiments were performed as 

described previously (Chen et al., 1999). The 9E10 mouse monoclonal c-Myc antibody 
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(Oncogene Research Products, Darmstadt, Germany) was used at 1:2000 for Western 

Blot and 1:100 for immunofluorescence. Polyclonal rabbit anti-Pma1p antibody was a 

gift from Amy Chang (University of Michigan, Ann Arbor, MI), and was used at 1:1000 

to detect Pma1p by Western Blot. Polyclonal rabbit anti-G6PDH antibody 

(Sigma-Aldrich, St. Louis, MO) was used at 1:10,000 dilutions. Alexa-594 goat 

anti-mouse IgG (Invitrogen) was used at 1:200 as secondary antibodies for 

immunofluorescence.  
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Table 2-1:Yeast strains used in chapter II  
Strain  Genotype Source 
BY4741 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Research Genetics 
BY4742 MATα his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 Research Genetics 
BY4741 YBL007C BY4741 sla1Δ::KanMX6 Research Genetics 
KLY011 MATα  his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 sla1Δ::KanMX6 This study 
BY4742 YNL084C BY4742 end3Δ::KanMX6* Research Genetics 
KLY201 MATα his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 end3Δ::KanMX6 This study 
BY4742 YLR337C BY4742 vrp1Δ::KanMX6 Research Genetics 
BY4741 YPR173C BY4741 vps4Δ::KanMX6 Research Genetics 
BY4741 YNR006W BY4741 vps27Δ::KanMX6 Research Genetics 
ZHY615D1C MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 drs2Δ::KanMX6 Hua et al., 2002 
ZHY615M2D MATα his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 drs2Δ::KanMX6 Hua et al., 2002 
ZHY2149D MATα his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 drs2Δ::KanMX6 

dnf1Δ::KanMX6 
Hua et al., 2002 

KLY041 BY4742 DNF1::13XMYC This study 
KLY054 KLY011 DNF1::13XMYC This study 
KLY035 MATα his3Δ1 leu2Δ0 ura3Δ0 drs2Δ::KanMX6 

sla1Δ::KanMX6 
This study 

SEY6210 MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 lys2-801 
suc2-Δ9 

Robinson et al., 1988 

SEY6211 MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 ade 
suc2-Δ9 

Robinson et al., 1988 

SEY6210 drs2Δ SEY6210 drs2Δ::TRP1 Chen et al., 1999 
TGY1907 MATα  leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 

pan1-20  
Chen et al., 1999 

TGY1906 MATa leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 
pan1-20 

Chen et al., 1999 

TGY1912 MATa leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 lys2-801 
suc2-Δ9 end4-1  

Chen et al., 1999 

ZHY823 MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 
 pan1-20 drs2Δ::TRP1 ( pRS416-DRS2) 

This study 

CCY2808 MATa leu2 ura3-52 his3 trp1-Δ901 ade2 ade3 
arf1Δ::HIS3 drs2-2 (pRS416-DRS2) 

Chen & Graham, 
1998 

YJF1165 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4Δ 
gal80Δ LYS2::GAL1-HIS3 GAL2-ADE2 
met2::GAL7-lacZ 

James et al., 1996 

* An extragenic suppressor mutation was found in this strain. 
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Table 2-2: Plasmids used in chapter II 
Plasmid Description Reference or Source 
pRS416 GFP-SNC1 GFP-SNC1 URA3 CEN Lewis et al., 2000 
pGO41 GFP-ALP URA3 2　 Cowles et al., 1997 
pRS426-KEX2-GFP KEX2-GFP URA3 2  　  Gift from Tom Vida 
pSM1493 STE6-GFP URA3 2　 Kelm et al., 2004 
pRS315-DRS2 DRS2 LEU2 CEN Chen et al., 1999 
pDRS2(D560N) drs2(D560N) LEU2 CEN Chen et al., 1999 
pRS315-Drs2-∆CT drs2-∆1259-1355 LEU2 CEN Chantalat et al., 2003
pRS315-Drs2-∆End drs2-∆1337-1355 LEU2 CEN Chantalat et al., 2003
pRS315-Drs2-∆NPF2 drs2-∆1315-1355 LEU2 CEN Chantalat et al., 2003
pRS315-Drs2-∆NPF drs2-∆1310-1355 LEU2 CEN Chantalat et al., 2003
pRS315-Drs2-∆CM drs2-∆1274-1283 LEU2 CEN Chantalat et al., 2003
pSC33  
[pRS315-Drs2- GIM]　  

drs2-∆1250-1270 LEU2 CEN Chantalat et al., 2003

pRS315-Drs2-∆GIM-∆NP
F 

drs2-∆1250-1263, ∆1310-1355 LEU2 CEN This study 

pRS315-Drs2-NPW1 drs2(F1313W) LEU2 CEN This study 
pRS315-Drs2-NPW2 drs2(F1335W) LEU2 CEN This study 
pRS315-Drs2-NPW1,2 drs2(F1313W,F1335W) LEU2 CEN This study 
pRS315-Drs2-∆GIM-NPW
1,2 

drs2-∆1250-1270, F1313W, F1335W LEU2 CEN This study 

pGBT9-Drs2-CT DRS2(aa 1230-1355) TRP1 2　 This study 
pZH429  
[pGBT9-Drs2-CT∆NPF] 

DRS2(aa 1230-1310) TRP1 2　 This study 

pGBT9-Drs2-CT-NPW1,2 DRS2(aa 1221-1355, F1313W,F1335W) TRP1 2　 This study 
pGBT9-Drs2-CT-∆GIM DRS2(aa 1221-1355, ∆1250-1263) TRP1 2　 This study 
pPAN1.1  
[Pan1-EH] 

PAN1(aa 96-713) TRP1 2　 Wendland and Emr, 
1998 

pGAD-SLA1-555 
[Sla1-SHD1] 

SLA1(aa 471-555) LEU2 2　 Gift from Gregory 
Payne Lab 

pGAD-SLA1charged 
[Sla1-Charged] 

SLA1(aa 511-855) LEU2 2　 Gift from Gregory 
Payne Lab 

pRS313-DNF1 DNF1 HIS3 CEN This study 
pRS313-Dnf1-NAI DNF1(PF147,148AI) HIS3 CEN This study 
pGOGFP CPY5’UTR-GFP URA3 2　 Cowles et al., 1997 
pRS416-GFP CPY5’UTR-GFP URA3 CEN This study 
pGFP-DRS2 CPY5’UTR-GFP-DRS2 URA3 CEN This study 
pGFP-Drs2-∆NPF2 CPY5’UTR-GFP-drs2 ∆1333-1355 URA3 CEN This study 
pGFP-Drs2-∆NPF CPY5’UTR-GFP-drs2 ∆1310-1355 URA3 CEN This study 
pGFP-Drs2-NPW1,2 CPY5’UTR-GFP-drs2(F1313W,F1335W) URA3 

CEN 
This study 

pGFP-Drs2-∆N2 CPY5’UTR-GFP-drs2∆1-72 URA3 CEN This study 
pGFP-Drs2-∆N3 CPY5’UTR-GFP-drs2∆1-103 URA3 CEN This study 
pGFP-Drs2-∆N3-NPW1,2 CPY5’UTR-GFP-drs2∆1-103(F1313W,F1335W) 

URA3 CEN 
This study 

pRS425-CDC50 CDC50 LEU2 2　 Chen et al., 2006 
pGFP-CDC50 CPY5’UTR-GFP-CDC50 URA3 CEN This study 
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Results 

 

The C-tail is Essential for Drs2p Function in Protein Transport 

Previously, we had shown that the ATPase dead drs2-D560N allele and a drs2 

allele bearing a truncation of the last 96 amino acids of the C-tail (drs2-ΔCT) could not 

complement the cold-sensitive growth defect of drs2Δ (Chen et al., 1999; Chantalat et al., 

2004). To test whether these alleles could complement trafficking defects of drs2Δ, we 

examined the localization of the exocytic v-SNARE Snc1p, which cycles between the 

plasma membrane, early endosomes and the TGN (Hettema et al., 2003). In wild-type 

cells, although a small fraction of GFP-Snc1p localizes to punctuate structures within the 

cell, GFP-Snc1p primarily localizes to the plasma membrane, concentrating in bud or the 

regions of polarized growth. In contrast, drs2Δ cells carrying an empty plasmid exhibited 

very little GFP-Snc1p at the plasma membrane and most of this fusion protein was found 

in internal structures, which may be either early endosomes or the TGN (Figure 2-1, 

empty; (Hua et al., 2002)). Introduction of a plasmid bearing wild-type DRS2 restored 

normal plasma membrane localization of GFP-Snc1p, but neither the drs2-D560N mutant 

nor the drs2-ΔCT allele were able to restore normal localization of GFP-Snc1p (Figure1; 

D560Ν, ΔCT).  
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Figure 2-1: ATPase activity and the C-tail region are essential for Drs2p function in 
protein trafficking.  
(A) Requirement for Drs2p ATPase activity and the C-tail region in Snc1p-GFP recycling. 
Plasmids pRS315 (empty), pRS315-DRS2 (DRS2), pDRS2-D560N (D560N, ATPase dead) 
and pRS315-Drs2-ΔCT (ΔCT) were introduced into strain ZHY615M2D (drs2Δ) along 
with pRS416-GFP-SNC1 (GFP-Snc1). Transformants were grown at 30°C to mid-log 
phase and examined by fluorescence microcopy. Snc1-GFP is at the plasma membrane of 
DRS2 (wild-type) cells and is trapped in internal membranes in the drs2 mutants.  
(B) Requirement for Drs2p ATPase activity and the C-tail region in alkaline ALP 
transport to the vacuole. The same DRS2 plasmids as in (A) were co-transformed into 
strain ZHY2149D (drs2Δdnf1Δ) with pGO41 (GFP-ALP). Cells were grown at 30°C to 
mid-log phase, shifted to 15°C for 2 h and then imaged. Fluorescent rings in the DRS2 
(wild-type) cells are vacuoles while GFP-ALP was mislocalized to extravacuolar puncta 
in drs2dnf1 mutants. 
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We also tested if these two drs2 mutant alleles could complement the alkaline 

phosphatase (ALP) trafficking defect shown by drs2Δ dnf1Δ cells. Drs2p and Dnf1p have 

redundant functions in the transport of GFP-ALP from the TGN to the vacuole (Hua et al., 

2002), a pathway mediated by AP-3 coated vesicles (Cowles et al., 1997).  In wild-type 

cells, GFP-ALP primarily localizes to the vacuole membrane, and one to three punctate 

structures outside of the vacuole in a small percentage of cells.  In drs2Δ dnf1Δ cells, 

however, most of the GFP-ALP localizes to extravacuolar puncta (Figure 2-1, empty; 

(Hua et al., 2002)). Wild-type DRS2 complemented this phenotype, but drs2-ΔCT and 

drs2-D560N failed to restore the normal vacuolar GFP-ALP localization pattern (Figure 

2-1; D560Ν, ΔCT). These results indicate that both the ATPase activity and the C-tail are 

critical for Drs2p function in protein trafficking from the TGN. 

 

Functional Requirement for the Drs2p NPFXD Motifs  

Three motifs have been mapped within the Drs2 C-tail thus far (Figure 2-2A), 

the Gea2p interaction motif (GIM), a highly conserved motif (CM) and the two NPFXD 

motifs, which could potentially interact with the Sla1p homology domain 1 (SHD1) of 

Sla1p (Howard et al., 2002). A two-hybrid analysis was done to test for an interaction 

between the Drs2p C-tail and the Sla1p SHD1 domain. The Eps15 homology (EH) 

domain of Pan1p interacts with NPF motifs (Wendland and Emr, 1998) and so the 

Pan1-EH domain was also tested for interaction with the Drs2p C-tail. The Drs2p C-tail 

gave a positive two-hybrid interaction with the Sla1p SHD1 domain but did not interact 
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with the Pan1p EH domain (Figure 2-2B). The Drs2p C-tail also failed to interact with a 

fragment of Sla1p containing the SHD2 domain and a number of charged amino acids 

(Fig 2-2B, Sla1-charged). Deletion of the C-terminal region containing the two NPFXD 

motifs abolished the two-hybrid interaction as did mutating both NPFXDs to NPWXD 

(Drs2-CT∆NPF and Drs2-CT-NPW). The F to W mutation was previously shown to 

disrupt the two-hybrid interaction of Sla1p with the NPFXD motif of Kex2p, and to 

disrupt the ability of this motif to serve as an endocytosis signal (Howard et al., 2002).  

In contrast, deletion of the C-tail GIM sequence had no effect on the interaction 

(Drs2-CT∆GIM). These data indicate that the interaction between Drs2p and Sla1p is 

mediated by the NPFXD motifs.  

As shown previously, deletion of the conserved motif (ΔCM) partially abrogated 

the ability of this drs2 allele to complement the cold-sensitive growth defect of drs2Δ, 

while deletion of both GIM and CM abolished Drs2p function.  In contrast, deletion of 

C-terminal sequences containing the NPFXD motifs (ΔNPF) did not appear to perturb 

Drs2p function or exacerbate the defect caused by ΔCM (Chantalat et al., 2004). These 

data initially suggested that the NPFXD motifs did not contribute to the essential function 

of the Drs2p C-tail. However, while neither deletion of the NPFXD motifs (∆NPF) nor 

deletion of GIM (∆GIM) perturbed complementation of the drs2Δ cold-sensitive growth 

defect, the ΔGIM-∆NPF double mutant failed to complement (Figure 2-2C).  These 

results indicate that the interaction with ARF-GEF and the C-terminal 44 residues bearing 

the two NPFXD motifs make important contributions to Drs2p function in vivo.   

 51



 

 

 

 

 

Figure 2-2: C-tail sequences containing the NPFXD motifs bind Sla1p and contribute to 
Drs2p function.
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Figure 2-2: C-tail sequences containing the NPFXD motifs bind Sla1p and contribute to 
Drs2p function.   
(A) Predicted topology and domain structure of Drs2p based on the crystal structure of 
the related sarcoplasmic reticulum Ca2+ ATPase ((A) actuator, (P) phosphorylation, (N) 
nucleotide binding) (Toyoshima and Inesi, 2004). Schematic diagram of motifs in the 
Drs2p C-tail and constructs used in this study ((GIM) Gea2p interaction motif, (CM) 
conserved motif).   
(B) Two-hybrid test for interaction between Drs2p C-tail and Sla1p SHD1 domain. Bait 
and prey plasmids used are described in Table 2-2. Serial dilutions of the cells were 
spotted on minimal medium with or without adenine (Ade).  Growth in the absence of 
adenine indicates a two-hybrid interaction.   
(C) Synergistic defect caused by deleting both the GIM and C-terminal 44 amino acids 
bearing the two NPFXD motifs. Serial dilutions of drs2∆ strains (ZHY615M2D) 
expressing the indicated constructs were tested for their ability to grow at 20°C. DRS2 is 
the wild-type gene and “empty” received the vector without an insert, thus showing the 
drs2∆ growth phenotype.   
(D) Western blot of cell lysates probed for Drs2p and clathrin light chain (Clc1p).  
Lysates were normalized for cell equivalents and compared to a dilution series from cells 
expressing wild-type DRS2.  
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Figure 2-3: Mutation of Drs2p NPFXD motifs causes synthetic lethality with pan1-20. 

 54



Figure 2-3: Mutation of Drs2p NPFXD motifs cause synthetic lethality with pan1-20. 
(A) Serial dilutions of ZHY823 (drs2Δ pan1-20 pRS416-DRS2) expressing the indicated 
constructs from LEU2-based plasmids were tested for growth at 30°C on medium with or 
without 5-FOA. Failure to grow on the +5-FOA medium indicates synthetic lethality 
between pan1-20 and the drs2 allele expressed from the LEU2 plasmid.   
(B) The experiment shown in Figure 2-2C was repeated to include ∆GIM combined with 
the NPW point mutations.  
(C) The drs2-NPW1,2 allele is not synthetically lethal with arf1Δ. Serial dilutions of 
CCY2808 (arf1Δ drs2-2 pRS416-DRS2) expressing the indicated constructs from 
LEU2-based plasmids were tested for growth at 30°C on medium with or without 5-FOA. 
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To determine how mutations of the C-tail affect expression of Drs2p, we 

performed a Western Blot with whole cell lysates from the strains indicated in Figure 

2-2C. Most of the mutants were expressed at lower levels than wild-type Drs2p (DRS2), 

with ∆CT being most affected at significantly less than 10% expression (Figure 2-2D).  

However, co-expression of ΔCT and the ATPase dead D560N allele from two separate 

plasmids complements the cold-sensitive (cs) growth defect of drs2Δ, which indicates 

that this small amount of ΔCT provides sufficient ATPase activity to support Drs2p 

function reasonably well (Chantalat et al., 2004).  Importantly, all other C-tail mutant 

proteins were more stable than ΔCT. Therefore, while protein stability might be a factor 

that influences the ability of C-tail mutants to complement drs2∆, each mutant should 

supply sufficient Drs2p ATPase activity for in vivo function, and loss of specific sequence 

within the Drs2p C-tail is primarily responsible for reduced Drs2p function. Particularly 

relevant is the observation that ΔNPF and ΔGIM-∆NPF are expressed at a similar level, 

but the ΔGIM-∆NPF double mutant is much more defective than either single mutant 

(Figures 2-2C and 2D). 

Moreover, we were surprised to find that deletion of even one NPFXD motif was 

sufficient to cause synthetic lethality with pan1-20 (Figure 2-3A). For this experiment, 

viability of a drs2∆ pan1-20 strain was maintained by the presence of wild-type DRS2 on 

a URA3-based plasmid (pRS416-DRS2). Various mutant drs2 alleles were introduced into 

this strain on LEU2 plasmids and cells capable of losing the wild-type DRS2-URA3 

plasmid were selected on medium containing 5 fluoro-orotic acid (5-FOA). Growth in the 
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absence of 5-FOA shows the phenotype of the pan1-20 single mutant while the 5-FOA 

plate shows the drs2 pan1-20 double mutant phenotype. The drs2∆ (empty) and ∆CM 

alleles are synthetically lethal with pan1-20 although the ∆GIM allele is not. Deletion of 

the C-terminal 22 residues (∆End) had little effect on Drs2p function by this assay, but 

constructs bearing additional deletions removing one (∆NPF2) or both NPFXDs (∆NPF) 

failed to support growth of a pan1-20 drs2∆ strain. To better define the role of the 

NPFXDs in this genetic interaction, we mutated them to NPWXD. In this case, each 

individual drs2-NPW allele supported growth of the drs2∆ pan1-20 strain (NPW1 and 

NPW2), but the drs2-NPW1,2 double mutant (NPW1,2) failed to complement the drs2∆ 

pan1-20 synthetic lethality (Figure 3A). This allele-specific genetic interaction indicates 

that a yeast strain compromised for Pan1p activity relies on an NPFXD-dependent 

function of Drs2p to sustain life.   

Because the ∆NPF2 C-terminal truncations showed a stronger phenotype in the 

pan1-20 synthetic lethality test than the NPW2 point mutation, we considered the 

possibility that other sequences in the C-terminal 44 residues contribute to Drs2p function 

independently of the NPFXDs. This possibility was tested by combining the ∆GIM and 

NPW1,2 mutations (∆GIM-NPW1,2) and comparing the ability of this new allele to 

complement drs2∆ relative to the alleles used in Figure 2-2C. As shown in Figure 2-3B, 

the ∆GIM-NPW1,2 allele complemented the cs growth defect of drs2∆ while 

∆GIM-∆NPF again failed to complement. These data indicate that C-terminal 44 amino 

acids have an NPFXD-independent function that appears to act redundantly with the 
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Gea2p interaction motif (GIM). Alternatively, it is possible that the mutant NPW motif 

retains some function.  

To further test if the genetic interaction is specific to pan1-20, we also examined 

the synthetic lethality between drs2 mutants and arf1∆ (Figure 2-3C). As expected, the 

ATPase dead drs2-D560N allele failed to support growth of a drs2-2 arf1∆ strain. The 

drs2-ΔCT allele causes slow growth when combined with arf1∆ (data not shown), but 

drs2 alleles carrying deletions of CM, GIM or NPFXD motifs do not substantially perturb 

growth of arf1∆ cells. Therefore, the synthetic lethal interaction between drs2-npf alleles 

and pan1-20 is specific. 

 

Functional Requirement for the Dnf1p NPFXD Motif 

Interestingly, Dnf1p contains an NPFXD within its N-terminal cytosolic tail 

(N-tail) that is not present in the closely related Dnf2p. In addition, Dnf1p, but not Dnf2p, 

has redundant functions with Drs2p at the TGN, suggesting that the NPFXD-dependent 

endocytosis of Dnf1p may be required for its Golgi function. To test whether the NPFXD 

is important for Dnf1p function, we mutated NPF to NAI, the sequence found in Dnf2p 

(Figure 2-4A). Because there is no significant phenotype associated with deleting DNF1 

alone, we tested the dnf1-NAI allele for complementation of growth defects associated 

with the drs2∆ dnf1∆ double mutant. On minimal medium, drs2∆ dnf1∆ grows well at 

30˚C but is strongly cs and ts for growth (Figure 2-4B, empty). Transformation with 

wild-type DRS2 completely complements these growth defects (Figure 2-4B, DRS2), 

 58



showing the robust growth of a dnf1 single mutant. Transformation with wild-type DNF1 

allowed growth at 24˚C and 37˚C, although these drs2∆ DNF1 cells grew more slowly 

than the DRS2 dnf1∆ cells. In contrast, dnf1-NAI weakly complemented the cs growth 

defect and failed to complement the ts growth defect. Therefore, the NPFXD motif plays 

an important role in the ability of Dnf1p to compensate for the loss of Drs2p.  

If the important role of the Dnf1p NPFXD is for Sla1p-dependent endocytosis, 

then a drs2∆ sla1∆ mutant should show a more severe growth defect than drs2∆, similar 

to what was observed for drs2∆ dnf1-NAI. Deletion of SLA1 alone causes a ts growth 

defect; however, we could detect a slightly more severe growth defect of sla1∆ drs2∆ at 

37˚C (Figure 2-4C). However, the sla1∆ single mutant grows well at low temperatures. 

Therefore, we tested whether sla1∆ would exacerbate the cs growth of drs2∆ by using a 

slightly lower, more restrictive temperature than used in Figure 2-4B. Indeed, drs2∆ 

sla1∆ grew much more slowly at 23˚C than drs2∆ or sla1∆. Even though sla1∆ may have 

pleiotropic effects on trafficking of several proteins, the uniquely strong cs growth defect 

of drs2∆ dnf1∆ suggests the effect of sla1∆ we are scoring in this assay is reduced Dnf1p 

function.   
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Figure 2-4: An NPFXD/Sla1p interaction contributes to Dnf1p function and endocytosis. 
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Figure 2-4: An NPFXD/Sla1p interaction contributes to Dnf1p function and endocytosis.   
(A) Sequence alignment of Dnf1p and Dnf2p in the region surrounding the Dnf1p 
NPFXD motif.   
(B) Plasmids bearing wild-type DRS2 (pRS315-DRS2), DNF1 (pRS313-DNF1), empty 
vector and NPF to NAI mutated DNF1 (pRS313-Dnf1-NAI) were introduced into 
drs2Δdnf1Δ (ZHY2149D). Cell growth on minimal medium at 37°C, 30°C and 24°C was 
examined.   
(C) Growth of wild-type (BY4742), sla1∆ (KLY011), drs2∆ (ZHY615M2D) and sla1∆ 
drs2∆ (KLY035) was examined at 37°C, 30°C and 23°C.  
(D) Fluorescence microscopy of wild-type and sla1Δ cells expressing Dnf1-Myc and 
stained with a mouse monoclonal anti-Myc antibody. Arrowheads indicate regions of 
labeled plasma membrane.  
(E) Distribution of Dnf1p-HA between the plasma membrane and internal membranes. 
Wild-type, sla1Δ and end3Δcells expressing HA tagged Dnf1p were osmotically lysed 
and centrifuged at 400 x g to clear the cell debris. The supernatants were subsequently 
centrifuged at 13,000 x g for 15min to generate pellet (P) and (S) fractions. Samples from 
each fraction were immunoblotted for Dnf1p-HA, the plasma membrane H+-ATPase 
(Pma1p) and the Golgi protein Mnn1p. The arrow indicated a background protein that 
distributes in the S fraction. 
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NPFXD-dependent Endocytosis of Dnf1p and Drs2p 

To directly determine whether the endocytosis of Dnf1p was dependent on Sla1p, 

the localization of Dnf1p-Myc was examined in both wild-type and sla1∆ cells by 

indirect immunofluorescence (Figure 2-4D). In wild-type cells, Dnf1p-Myc is localized 

to both the plasma membrane and internal membranes with a polarized distribution, 

which could be transient endocytic and/or exocytic vesicles. Dnf1p is concentrated at the 

emerging bud site, small buds and the mother-daughter neck of dividing cells (Hua et al., 

2002; Pomorski et al., 2003); Figure 2-4D). Relative to wild-type cells, sla1∆ cells 

showed an accumulation of Dnf1p-Myc on the plasma membrane, although the change in 

the localization pattern was subtle by this method. To more quantitatively address the 

distribution of Dnf1p, a fractionation approach was used (Figure 2-4E). Cells expressing 

HA tagged Dnf1p were converted to spheroplasts, osmotically lysed, centrifuged at 400 X 

g to pellet unlysed cells and large membranes, and then centrifuged at 13,000 X g to 

produce pellet (P) and supernatant (S) fractions. In wild-type cells, most Dnf1p-HA was 

found in the S fraction, which was relatively devoid of plasma membrane as judged by 

the distribution of the plasma membrane H+-ATPase, Pma1p. However, with sla1Δ and 

end3Δ, the amount of Dnf1p-HA in the S fraction was diminished with a concomitant 

increase in the plasma membrane P fraction. As a control, the distribution of an integral 

membrane glycoprotein of Golgi complex, Mnn1p, was examined, and no difference was 

observed between wild-type and sla1Δ and end3Δ cells. Moreover, the HA-tagged 

Dnf1-NAI mutant showed a 1.4-fold increase in the pellet fraction relative to wild-type 
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HA tagged Dnf1p (our unpublished data). The end3Δ strain showed a more substantial 

redistribution of Dnf1o to the P fraction than sla1Δ or wild-type cells expressing 

Dnf1-NAI. In total, these experiments indicate that the NPFXD/Sla1p interaction 

significantly contributes to endocytosis of Dnf1p, but other endocytosis signals likely 

exist in this protein.  

Even though Drs2p localizes to the TGN with Kex2p (Chen et al., 1999), the 

fact that Drs2p contains two NPFXD motifs suggests that it might travel to the plasma 

membrane and get rapidly endocytosed by the NPFXD/Sla1p pathway to maintain a 

steady-state TGN localization. If this is the case, we would expect to see accumulation of 

Drs2p on the cell surface when either the NPFXD motifs were mutated or SLA1 was 

deleted. To test this hypothesis, wild-type or NPFXD mutated GFP-Drs2 fusion proteins 

were expressed in either wild-type or sla1Δ cells (Figure 2-5). The GFP-DRS2 construct 

used here fully complements the drs2∆ cs growth defect and localizes appropriately to 

the TGN based on its co-localization with Sec7-RFP (Chen et al., 2006). We fused GFP 

to the N-terminus of Drs2p to avoid interference with the potential trafficking signals 

near the C-terminus. Surprisingly, neither truncation of the C-terminal region containing 

the two NPFXD motifs (GFP-ΔNPF) nor mutation of both NPFXD motifs to NPWXD 

(GFP-NPW1,2) caused accumulation of Drs2p on the plasma membrane of wild-type 

cells (Figure 2-5, WT). Similar results were obtained for sla1Δ cells, with neither the 

wild-type nor the ∆NPFXD GFP-Drs2p being mislocalized (Figure 2-5, sla1∆).  
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Figure 2-5: Drs2p does not rely on its NPFXDs and Sla1p for endocytosis unless the 
endocytic machinery is compromised.   
A series of plasmids harboring GFP tagged wild-type (pGFP-DRS2) or NPFXD mutated 
drs2 alleles (pGFP-ΔNPF2, pGFP-ΔNPF, pGFP-NPW1,2) were co-transformed with 
pRS425-CDC50 into wild-type (BY4742), sla1Δ (KLY011) or end3Δ (BY4742 
YNL084C) cells. Transformants were grown to early-log phase at 30 °C and imaged by 
fluorescence microscopy at room temperature.  Arrowheads indicate plasma membrane 
fluorescence.  
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       To test whether Drs2p trafficked to the plasma membrane and was retrieved by 

endocytosis signals other than NPFXD motifs, we expressed GFP-Drs2p in cells carrying 

a disruption of END3 (end3Δ), which should elicit an efficient block in endocytosis of all 

proteins that transit the cell surface. Only a modest amount of wild-type GFP-Drs2p was 

trapped on the end3Δ plasma membrane, most noticeably in small buds of a small 

percentage of cells (arrowheads Figure 2-4, end3Δ, GFP-Drs2). Surprisingly, we found 

that deletion of one NPFXD motif (GFP-ΔNPF1) caused substantial accumulation of 

Drs2p on the end3Δ cell surface. Further truncation to remove the second NPFXD motif 

(GFP-ΔNPF) exacerbated this phenotype. Mutation of both NPFXDs to NPWXDs also 

resulted in accumulation of GFP-Drs2p on the end3Δ plasma membrane (Figure 2-5). 

These results were unexpected and suggested that Drs2p did not normally travel 

to the plasma membrane, but deletion of the NPFXD motifs caused mislocalization of 

Drs2p to the plasma membrane where it could be trapped behind the end3 block. This 

was, however, contradictory to a published report showing Drs2p-GFP accumulates on 

the plasma membrane upon deletion of verprolin (vrp1∆), a protein required for proper 

organization of cortical actin patches and the internalization step of endocytosis (Saito et 

al., 2004). In addition, NPFXD-mediated endocytosis reportedly requires End3p function 

(Tang et al., 1996). To resolve these discrepancies, we examined localization of 

GFP-Drs2 in vrp1Δ as well as end4-1 (also known as sla2), another endocytosis mutant. 

GFP-Drs2 accumulated at the plasma membrane of both vrp1∆ and end4-1 cells (Figure 

2-6), in agreement with previously published vrp1∆ data (Saito et al., 2004). This result 
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led us to suspect that the end3Δ strain from the yeast knockout collection contained an 

extragenic suppressor that specifically restored function of the NPFXD/Sla1p pathway. 

By backcrossing the original end3Δ strain to wild-type cells, new end3Δ strains were 

isolated that exhibited a tighter temperature-sensitive growth phenotype. Using a 

backcrossed end3Δ strain (KLY201), wild-type GFP-Drs2 was readily detected on the 

plasma membrane (Figure 2-6).   

The observation that GFP-Drs2p localizes to the TGN in wild-type cells, but 

accumulates on the plasma membrane of end3, vrp1 and end4 suggests that Drs2p cycles 

between the exocytic and endocytic pathways. Neither deletion of SLA1, nor deletion of 

the Drs2-NPFXD motifs led to accumulation at the plasma membrane.  Therefore, 

Drs2p must contain a second endocytosis signal that acts independently of Sla1p, but 

requires the actin-based endocytic machinery.  Because GFP-Drs2p was only trapped on 

the plasma membrane of the original end3∆ strain when the NPFXD motifs were mutated, 

this strain must contain an extragenic mutation that suppresses Sla1p/NPFXD-mediated 

endocytosis but does not suppress end3∆ defects in endocytosis mediated by other signals. 

Thus, the original end3Δ strain (BY4742 end3∆) was useful because it demonstrated an 

active role for the Drs2p NPFXD motifs in endocytosis.  
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Figure 2-6: Localization of GFP-tagged Drs2p to the plasma membrane of endocytosis 
mutants.  
pGFP-DRS2 was co-transformed with pRS425-CDC50 into wild-type (BY4742), vrp1Δ 
(BY4742 YLR337C), end3Δ (KLY201) and end4-1 (TGY1912) cells. Transformants 
were grown to early-log phase at 27°C and examined by fluorescence microscopy. 
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Figure 2-7: The pan1-20 mutant exhibits a constitutive defect in Ub-dependent 
endocytosis and a temperature conditional defect in NPFXD-dependent endocytosis. 
(A) Localization of GFP-Drs2p and GFP-Drs2-NPW1,2p in pan1-20 (TGY1906) cells. 
This pan1-20 strain expresses wild-type Drs2p from its endogenous locus to support 
viability. Cells were grown to mid-log phase at 27°C with or without shifting to 37°C for 
1 h before imaging. Arrowheads indicate plasma membrane fluorescence.  
(B) Ste6p-GFP localization in wild-type and pan1-20 cells at 27°C. Wild-type (SEY6211) 
and pan1-20 (TGY1906) cells transformed with a plasmid harboring Ste6p-GFP 
(pSM1493) were grown at 27°C to mid-log phase and examined by fluorescence 
microscopy. Arrows indicate vacuoles. Arrowheads indicate plasma membrane 
fluorescence. 
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Cargo-selective Endocytosis Defect of pan1-20 

Mutation of both NPFXD motifs in Drs2p results in synthetic lethality with 

pan1-20 (Figure 2-3), suggesting that pan1-20 must maintain an active 

Sla1p/NPFXD-dependent endocytosis pathway at the permissive growth temperature. 

Otherwise, it is difficult to understand how mutation of an NPFXD endocytosis signal 

would further exacerbate growth of pan1-20. To test the Pan1p requirement for 

endocytosis of Drs2p, we examined the localization of GFP-Drs2p and 

GFP-Drs2-NPW1,2p in pan1-20 at the permissive (27˚C) and nonpermissive (37˚C) 

growth temperatures. GFP-Drs2p localized appropriately to the TGN at 27˚C, but in stark 

contrast, GFP-Drs2-NPW1,2p was primarily localized to the plasma membrane. After a 

1-h shift to 37˚C, both GFP-Drs2p and GFP-Drs2-NPW1,2p accumulated on the plasma 

membrane. Kex2-GFP, another TGN resident, did not accumulate on the plasma 

membrane of pan1-20 at either temperature (unpublished observations). These results 

indicate that at the permissive temperature, pan1-20 cells are defective in the 

Sla1p/NPFXD-independent endocytosis pathway but retain a functional 

Sla1p/NPFXD-dependent pathway. Both pathways are blocked at the nonpermissive 

temperature, causing accumulation of wild-type GFP-Drs2p at the plasma membrane.   

The Sla1p/NPFXD-independent endocytosis pathway blocked in pan1-20 at all 

temperatures is mostly likely dependent on Ub-dependent endocytosis signals. To test this 

possibility, we examined the localization of Ste6p-GFP in pan1-20 cells. Ste6p is a ABC 

transporter that uses a Ub-dependent signal for endocytosis (Kolling and Hollenberg, 
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1994; Kelm et al., 2004; Krsmanovic et al., 2005). In wild-type cells, Ste6-GFP 

accumulates in the vacuole over time and so the cells show primarily vacuolar patterns of 

fluorescence. However, Ste6-GFP accumulated at the plasma membrane of pan1-20 cells 

at 27˚C (Figure 2-7B). Thus, Ub-dependent endocytosis is abrogated in pan1-20 at 

permissive growth temperatures.   

 

Additional Endocytosis Signals in the Drs2p N-tail 

The dependence of Drs2p on its NPFXD signals for TGN localization in 

pan1-20 and end3∆ (suppressor) cells, but not wild-type cells strongly suggested that 

Drs2p must contain an additional endocytosis signal that is Ub dependent. A search for 

this signal using the PESTfind algorithm identified two “potential” and one “poor” PEST 

sequence along with 11 lysines in the N-tail of Drs2p (Figure 2-8A). Several other “poor” 

PEST sequences were found throughout Drs2p although none were in the C-tail. 

Deletions removing two (∆N2, amino acids 1-72) or all three possible PEST sequences 

(∆N3, amino acids 1-103) in the N-tail were constructed and the localization of 

GFP-Drs2-∆N proteins was examined in wild-type, sla1∆ and pan1-20 cells. As predicted, 

GFP-Drs2-∆N2 and GFP-Drs2-∆N3 were localized to the TGN in wild-type and pan1-20 

cells at 30 ˚C and mislocalized to the plasma membrane in sla1∆ cells (Figure 2-8B). 

Both GFP-Drs2-∆N2 and GFP-Drs2-∆N3 complemented the cs growth defect of drs2∆, 

indicating that this deletion did not perturb Drs2p ATPase activity or function in protein 

transport. These data indicate that Drs2p has an endocytosis signal(s) in the N-tail that is 
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recognized by components of the endocytic apparatus specifically disrupted by the 

pan1-20 mutation. Combining the ∆N3 and NPW mutations caused accumulation of a 

small amount of GFP-Drs2p on the plasma membrane of wild-type cells (Figure 2-8C). 

The localization of most Drs2-∆N3-NPW1,2 to intracellular compartments suggests that 

these mutations have not eliminated all of the endocytosis signals in Drs2p. In addition, 

the observation that Drs2-ΔN3-NPW1,2 does not accumulate on the plasma membrane as 

much as Drs2-ΔN3 expressed in slaΔ cells suggests that Sla1p contributes more to 

endocytosis than just the recruitment of NPFXD cargo. 
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Figure 2-8:  Sequences in the Drs2p N-tail bearing PEST-like motifs mediate 
endocytosis redundantly with the NPFXD motifs.  
(A) The N-tail of Drs2p contains two potential PEST sequences and one poor PEST 
sequence. Arrowheads indicate the N-terminal truncation boundaries for the 
GFP-DRS2-∆N2 and -∆N3 alleles.  
(B) Localization of the GFP-Drs2p with N-terminal truncations in wild-type, sla1∆ and 
pan1-20 cells. pGFP-DRS2, pGFP-Drs2-∆N2 and pGFP-Drs2-∆N3 were co-transformed 
with pRS425-CDC50 into wild-type (BY4742), sla1∆ (KLY011) or pan1-20 (TGY1907) 
cells. Transformants were grown to early-log phase at 30 °C and imaged by fluorescence 
microscopy at room temperature. Arrowheads indicate plasma membrane fluorescence.  
(C) Localization of the GFP-Drs2p with both the N-terminal truncation and the NPW1,2 
mutations in wild-type cells. pGFP-Drs2-∆N3-NPW1,2 was co-transformed with 
pRS425-CDC50 into wild-type cells. Transformants were grown to early-log phase at 30 
°C and imaged by fluorescence microscopy at room temperature.  Arrowheads indicate 
plasma membrane fluorescence. 

 

 72



 

 
 
 
 

 

 

Figure 2-9: Drs2p accumulates slowly on the plasma membrane after disrupting 
endocytosis.   
Wild-type cells expressing either GFP-Drs2p or Kex2p-GFP were grown to early-log 
phase at 30˚C and then incubated in SD medium containing 200 μM latrunculin A (Lat-A) 
or dimethylsulfoxide at 30°C for the times shown. Arrowheads indicate plasma 
membrane fluorescence. 
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Slow Exit of Drs2p from the TGN 

The vrp1 and end mutants used above are constitutively defective for 

endocytosis and so these studies do not indicate how frequently GFP-Drs2p travels to the 

plasma membrane. To determine the kinetics of GFP-Drs2p transport to the plasma 

membrane, wild-type cells expressing GFP-Drs2 were treated with latrunculin A (lat-A), 

an inhibitor of actin assembly and endocytosis, and imaged over time (Figure 2-9). After 

1 h of treatment, GFP-Drs2p was still primarily retained intracellularly in small puncta, 

although it could be detected on the plasma membrane (Figure 2-9, Lat-A 1 h). After 3 h 

of treatment, the cell surface GFP-Drs2p further increased, concomitant with a reduction 

in the intensity of GFP-Drs2p intracellular fluorescence, and approached the distribution 

observed in the end mutants (Figure 2-9, Lat-A 3 h). Actin assembles on Golgi 

membranes and so we considered the possibility that perturbation of actin caused 

mislocalization of all late Golgi proteins, comparable with clathrin mutants. Therefore, 

Kex2p-GFP was also examined in this experiment. Even when overexpressed, 

Kex2p-GFP did not show any plasma membrane staining after 3 h of lat-A treatment 

(Figure 2-9, Kex2-GFP). These data demonstrate that unlike Kex2p, another 

TGN-localizing, NPFXD-containing protein, Drs2p slowly cycles between the TGN and 

the plasma membrane.  
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Drs2p and Cdc50p Do Not Significantly Transit the Late Endosome 

Several different TGN proteins cycle through the late endosome as part of their 

normal trafficking itinerary (Wilcox et al., 1992; Nothwehr et al., 1993; Cooper and 

Stevens, 1996; Brickner and Fuller, 1997; Foote and Nothwehr, 2006). We tested if Drs2p 

transited through the late endosome/prevacuolar compartment (PVC) by examining its 

localization in class E vps mutants, which block protein and lipid transport out of the 

PVC and result in the formation of an enlarged endosomal compartment adjacent to the 

vacuole called the class E compartment (Conibear and Stevens, 1998). Proteins that 

traffic through the PVC accumulate in the class E compartment of vps4 or vps27 cells. 

We expressed GFP-Drs2p in vps4∆ or vps27∆ and labeled the class E compartments with 

the endocytic tracer FM4-64 (Vida and Emr, 1995)  before analysis by fluorescence 

microscopy. Although a small amount of GFP-Drs2 was detected in class E 

compartments at steady-state, the large majority of this protein did not colocalize with the 

FM4-64 and remained in small puncta (Figure 2-10A). In addition, we could not detect 

Drs2-Myc (C-terminal tag) in the class E compartment of vps27∆ by 

immunofluorescence (data not shown). 

The Drs2p chaperone Cdc50p has been described as a late endosomal protein 

because Cdc50-GFP (GFP fused to C-terminus of Cdc50p) accumulated in the class E 

compartment (Misu et al., 2003).  However, this phenotype does not discriminate 

between a TGN or endosomal protein, and is inconsistent with our observations with 
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GFP-Drs2p. Therefore, we examined the localization of GFP-Cdc50p (GFP fused to the 

N-terminus of Cdc50p) in the vps mutants.  This fusion protein is functional based on 

complementation of the cs growth defect of cdc50∆. However, we were unable to detect a 

significant amount of colocalization between FM4-64 and GFP-Cdc50 in the class E 

compartment of vps27∆ or vps4∆ cells (Figure 2-10B). Because neither GFP-Drs2p nor 

GFP-Cdc50p fluorescence collapsed into the class E compartments of either mutant, the 

PVC does not appear to be a significant destination in the trafficking itinerary of these 

proteins. We also considered the possibility that NPFXD motifs play a role in retrieval of 

Drs2p from early endosomes back to the TGN. If so, deletion of the NPFXD motifs may 

force Drs2p to transit through the PVC more frequently. To test this possibility, we 

examined localization of GFP-Drs2p-∆NPF and GFP-Drs2p-NPW in the vps cells. 

Neither GFP-Drs2p-∆NPF nor GFP-Drs2p-NPW accumulated in the class E 

compartments (our unpublished data), indicating that potential sorting signals that 

prevent Drs2p trafficking to the PVC do not lie in the last 44 amino acids.  
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Figure 2-10: GFP-Drs2p and GFP-Cdc50p do not accumulate in the prevacuolar 
compartment of class E vps mutants. 
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Figure 2-10: GFP-Drs2p and GFP-Cdc50p do not accumulate in the prevacuolar 
compartment of class E vps mutants.  
vps27Δ and vps4Δ cells carrying pGFP-DRS2 and pRS425-CDC50 (A) or pGFP-CDC50 
and pRS425-DRS2 (B) were grown to early-middle log phase at 30˚C, labeled with10 
μg/ml FM4-64 on ice for 20 min, washed with fresh medium, and then chased at 30°C for 
30 min before analysis. GFP and FM4-64 images were acquired separately and merged to 
show the coincidence of the two patterns. Arrowheads indicate the prevacuolar 
compartment. 
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Discussion 

 

Trafficking of Drs2p and Dnf1p 

TGN-dwelling proteins have evolved different mechanisms to maintain their 

steady-state localization in this organelle, although transport to the endosomal system and 

retrieval back to the TGN appears to be a common theme.  Recycling mechanisms are 

critical for localization of Golgi proteins because a growing body of evidence indicates 

that Golgi cisternae are not stable structures but instead mature from cis to trans by 

changing the content of resident enzymes (Losev et al., 2006; Matsuura-Tokita et al., 

2006).  Cisternae mature with a half-time of 1 to 2 min in the yeast system and the TGN 

is apparently consumed into transport carriers with multiple destinations. Therefore, TGN 

resident proteins must recycle back to younger cisternae every few minutes to maintain 

Golgi residence. Some mammalian TGN proteins, such as the mannose-6-phosphate 

receptor, TGN38 and furin, cycle to the plasma membrane and endosomes before 

returning to the TGN. These proteins require endocytic signals for removal from the 

plasma membrane and retrograde sorting signals to mediate endosome to TGN transport 

(Thomas, 2002; Ghosh et al., 2003; Traub, 2005). In yeast, the vacuolar hydrolase sorting 

receptors Vps10p and Mrl1p rapidly cycle between the TGN and the late endosome / 

PVC (Cereghino et al., 1995; Cooper and Stevens, 1996; Andrew Nesbit et al., 2004).  

The TGN markers Kex2p and Ste13p are thought to primarily cycle between the TGN 

and early endosomes, occasionally transiting the PVC but not the plasma membrane 
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(Abazeed et al., 2005; Foote and Nothwehr, 2006).  

None of the yeast TGN proteins mentioned above accumulate on the plasma 

membrane when endocytosis is blocked (Cooper and Bussey, 1992; Roberts et al., 1992; 

Wilcox et al., 1992; Bryant and Stevens, 1997).  In contrast, most (but not all) Drs2p 

accumulates on the plasma membrane of mutants constitutively defective for endocytosis.  

However, acute inactivation of endocytosis by latrunculin A treatment of cells causes a 

rather slow accumulation of Drs2p on the plasma membrane over the course of ~3 h. 

These findings suggest that Drs2p is inefficiently incorporated into exocytic vesicles, and 

is rapidly endocytosed upon arrival at the plasma membrane.  The slow delivery to the 

plasma membrane and rapid endocytosis leads to an undetectable amount of Drs2p on the 

plasma membrane of wild-type cells unless endocytosis is inhibited. It is formally 

possible that disruption of endocytosis causes an aberrant incorporation of Drs2p into 

exocytic vesicles leading to plasma membrane accumulation. However, other TGN 

proteins do not share this fate in endocytosis mutants arguing against a reduced fidelity of 

sorting TGN residents from exocytic cargo. Moreover, Drs2p can be found in exocytic 

vesicles that accumulate in the sec6 mutant, providing a method independent of 

disrupting actin or blocking endocytosis to show targeting of some Drs2p to the plasma 

membrane (Alder-Baerens et al., 2006).  Thus, it is much more likely that disrupting 

endocytosis simply traps Drs2p on the plasma membrane as it undergoes its normal 

trafficking itinerary.  

After endocytosis, Drs2p must also be efficiently removed from the endocytic 
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pathway and transported from the early endosome to the TGN, because we fail to see 

significant accumulation of Drs2p or its Cdc50p subunit in the late endosome of class E 

vps mutants. This is similar to the recycling pathway described for the SNARE protein 

Snc1p and chitin synthase (Chs3p).  In contrast, class E vps mutants accumulate most of 

Vps10p, Mrl1p, Kex2p and Ste13p in the PVC (Cereghino et al., 1995; Brickner and 

Fuller, 1997; Bryant and Stevens, 1997; Andrew Nesbit et al., 2004). Moreover, we never 

detect GFP-Drs2p in the vacuole, which is a common destination for many proteins that 

use Ub for an endocytosis signal because this modification also directs proteins into the 

multivesicular body pathway at the late endosome for delivery to the vacuole lumen 

(Katzmann et al., 2002; Hicke and Dunn, 2003). If Drs2p is ubiquitinated, it must either 

avoid the late endosome to escape vacuolar delivery, or the Ub must be removed to allow 

retrieval of Drs2p to the TGN/early endosomal system. A previous report suggested that 

Drs2p is a late endosomal protein based on a relatively minor localization of Drs2p-GFP 

to the prevacuolar compartment of a class E vps mutant (Saito et al., 2004).  We 

disagree with this interpretation because at the rate of recycling suggested by the cisternal 

maturation model, the majority of Drs2p would relocate to the PVC in class E vps 

mutants if even a small percentage of molecules transited the PVC in each round of 

recycling (as observed for Ste13p and Kex2p). In contrast, a majority of Cdc50-GFP 

(C-terminally tagged) was reported to localize to the PVC (Misu et al., 2003) while we 

found that GFP-Cdc50p (N-terminally tagged) was primarily excluded from the PVC. We 

suggest that the GFP-Cdc50p fusion protein more faithfully represents the localization of 
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the endogenous Drs2p-Cdc50p complex as these data are more consistent with the 

localization data for Drs2p. In summary, it is likely that Drs2p rapidly cycles between the 

TGN and early endosome as suggested for several other TGN proteins, and slowly cycles 

in the TGN  plasma membrane  early endosome  TGN loop.   

Dnf1p is localized to both the plasma membrane and cytoplasmic punctate 

structures typically found near the plasma membrane. The steady-state localization 

pattern of Dnf1p and functional studies suggest that this protein cycles in a plasma 

membrane  endosome  TGN  plasma membrane pathway (Hua et al., 2002). This 

hypothesis was confirmed by studies of the Tanaka group (Saito et al., 2004) and those 

reported here, which extend these studies to demonstrate that endocytosis of Dnf1p is 

dependent on the NPFXD motif and Sla1p. Interestingly, the majority of Dnf1p was 

reported to fractionate in membranes with the same density as the plasma membrane 

(Pomorski et al., 2003; Alder-Baerens et al., 2006), which we have confirmed (our 

unpublished data), but most Dnf1p appears to be inside the cell by immunofluorescence 

localization and is separable from the plasma membrane by differential centrifugation 

techniques. We suggest that these data could be explained by efficient incorporation of 

Dnf1p into exocytic vesicles at the TGN (and/or endosome) and efficient endocytosis at 

the plasma membrane, thus giving a primary steady-state localization to vesicles 

trafficking to and from the plasma membrane. 
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Synthetic Lethality between drs2 and pan1 

Endocytosis plays an important role in remodeling the plasma membrane, 

internalizing extracellular nutrients, down-regulating signal transduction pathways by 

internalizing receptors, and retrieving proteins required for Golgi/endosome function that 

have escaped to the plasma membrane. The synthetic lethality between pan1-20 and 

drs2-npw1,2 provides the best example we are aware of for the essential role of 

endocytosis in retrieving Golgi proteins. The synthetic lethality between drs2∆ and 

pan1-20 was initially surprising because Drs2p is required for Golgi/early endosome 

function while Pan1p acts at the internalization step of endocytosis. However, the 

relationship between Drs2p and Pan1p is now clearer.  The Ub-dependent endocytosis 

defect of pan1-20 likely depletes the TGN/endosomal system of several proteins required 

for the essential function of these organelles in protein transport. In spite of this deficit, 

Golgi/early endosome function can be maintained as long as Drs2p is present in these 

organelles. In pan1-20, Drs2p localization to the TGN/early endosome requires its 

endocytosis by the NPFXD/Sla1p pathway, thus explaining the inviability of pan1-20 

drs2-npw1,2 (shown here) and pan1 sla1∆ (Tang et al., 1996).  

We have also considered the possibility that the pan1-20 drs2-npw1,2 synthetic 

lethality could be explained by a requirement for Drs2p in the internalization step of 

endocytosis.  However, Dnf1p and Dnf2p appear to provide a much more important 

contribution to endocytosis than Drs2p (Hua et al., 2002; Pomorski et al., 2003).  In 

addition, Dnf1p should be present in the plasma membrane of pan1-20 cells and capable 
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of engaging Sla1p through its NPFXD motif, thus satisfying a potential requirement to 

couple a phospholipid translocase to the endocytic machinery.  Surprisingly, Drs2p does 

not appear to be active on the plasma membrane because end4 cells accumulate Drs2p on 

the plasma membrane, but there does not appear to be a loss of phosphatidylserine 

translocation across the plasma membrane when DRS2 is deleted in end4 cells (Marx et 

al., 1999). Therefore, it is much more likely that TGN/early endosome residence of Drs2p 

is required to sustain viability of pan1-20 cells. Moreover, endocytosis of Dnf1p is 

required in order for this protein to compensate for loss of Drs2p, further arguing for 

critical Golgi functions for these proteins. Class I myosins (Myo3p and Myo5p) are 

required for endocytosis in yeast and CDC50 was recovered in a screen for multicopy 

suppressors of a myo3∆ myo5-360 double mutant growth defect (Misu et al., 2003).   

This suppression could also be explained by an increased Drs2p/Cdc50p concentration in 

the Golgi/early endosome that overcomes the loss caused by the endocytosis defect.      

It is also possible that Pan1p has some unrecognized function in the TGN/early 

endosome system because end3∆, end4∆ and vrp1∆ mutants have a defect in both the 

Ub- and NPFXD-dependent endocytic pathways, accumulate Drs2p on the plasma 

membrane, and yet these mutants are viable while pan1∆ is not. In addition, drs2∆ 

end4-1 and drs2∆ sla1∆ double mutants are viable but the drs2∆ pan1-20 double mutant 

is dead (Chen et al., 1999); this study). One potential explanation for this discrepancy is 

that Pan1p contributes to the clathrin-dependent localization of TGN proteins 

independently of End4p, End3p and Sla1p, perhaps though its interaction with the 
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clathrin assembly protein AP180.  In this case, loss of Pan1p function would accelerate 

transport of TGN proteins to the plasma membrane while trapping them there behind the 

endocytosis block.  Moreover, it seems that the redistribution of GFP-Drs2p from the 

TGN to the plasma membrane occurs faster and more completely in pan1-20 after shift to 

the nonpermissive temperature relative to latrunculin A-treated cells. This potential 

influence of Pan1p on Golgi localization seems to be specific to Drs2p because Kex2p is 

not mislocalized to the plasma membrane of pan1-ts cells. However, further work is 

required to determine whether or not these differences are significant and whether Pan1p 

has any functions beyond the internalization step of endocytosis.    

 

Interactions between Cargo and the Endocytic Machinery 

The nature of the pan1-20 mutation is also of interest because it causes 

cargo-selective defects in endocytosis at the permissive growth temperature, and the 

mechanism for recognition of Ub-dependent endocytic cargo is incompletely understood.  

Pan1p, End3p, End4p and Sla1p are all recruited to the same endocytic sites and are 

considered a coat complex for clathrin/actin-based endocytosis. The Ub-dependent signal 

typically requires phosphorylation prior to ubiquitination by the Rsp5p ubiquitin ligase 

(Rotin et al., 2000; Hicke and Dunn, 2003), then recognition of the ubiquitinated cargo 

by epsins (Ent1p, Ent2p) and Ede1p, another Eps15-related protein, for inclusion into 

forming vesicles (Shih et al., 2002).  Any of these steps could be defective in the 

pan1-20 strain at the permissive temperature and so it will be informative to test whether 
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Drs2-npw1,2p accumulates on the pan1-20 plasma membrane in a phosphorylated and/or 

ubiquitinated form.  Interestingly, the pan1-20 mutation is a frameshift very near the 

carboxyl-terminus within the proline-rich domain of Pan1p (Beverly Wendland, personal 

communication), suggesting this mutation abrogates interaction with a Src homology 

(SH)3-containing protein. One possibility is that this region could potentially interact 

with the SH3 domain of Rvs167p (amphiphysin/endophilin). A point mutation in the SH3 

domain of Rvs167p causes a synthetic lethal interaction with sla1∆ (Friesen et al., 2006), 

as does the pan1-20 allele. Moreover, Sla1p forms a complex with Rvs167 that interacts 

with Rsp5p, comparable to the Cin85-Endophilin interaction with the Cbl ubiquitin ligase 

in mammalian cells (Stamenova et al., 2004).  This network of interactions may play a 

critical role in coupling cargo recognition (by Sla1p, Rsp5p and epsins) to packaging of 

cargo into forming vesicles. 

In summary, the observations reported here are novel in several respects. To our 

knowledge, the inviability of pan1-20 drs2-npw2 represents the first example where 

mutation of an endocytosis signal in a single protein is lethal to a cell. This result 

highlights the importance of endocytosis in retrieving proteins whose primary function is 

in the Golgi/endosomal system. In addition, the selective defect of pan1-20 in 

Ub-dependent endocytosis should facilitate a better understanding of how cargo is 

recognized and packaged into endocytic vesicles through characterization of effectors of 

the Pan1p praline-rich domain.   
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CHAPTER III 

 
DRS2p IS A TGN TO EARLY ENDOSOME ANTEROGRADE CARGO REQUIRED 

FOR AP-1/CLATHRIN-COATED VESICLE FORMATION 

 

Introduction 

Clathrin was the first vesicle coat protein identified and is now known to mediate 

protein traffic from the plasma membrane to endosomes and between the trans-Golgi 

network (TGN) and endosomes. The spherical, cage-like clathrin coats are assembled 

from triskelions, which are three-legged structures containing three clathrin heavy chains 

and three light chains (Brodsky et al., 2001). Clathrin does not bind directly to cargo 

proteins, but instead interacts with pathway-specific adaptors (AP-1, AP-2 etc) that 

associate with the cytosolic sorting signals of cargo proteins (Owen et al., 2004). In 

addition to adaptors, a large variety of accessory factors, such as phosphoinositides, Arf, 

epsins, amphiphysins, AP180 and dynamins, have been identified that also contribute to 

clathrin coated vesicle (CCV) formation (Traub, 2005). These accessory factors facilitate 

a set of sequential steps in vesicle formation: recruitment of adaptors to the appropriate 

membrane, assembly of coat proteins to promote membrane invagination as well as 

selective incorporation of cargo into the forming vesicles, and scission of the membrane 

to release the vesicle.  

The AP-1 and GGA proteins are two major classes of adaptors that function in 

clathrin-mediated transport between the TGN and endosomes (Hinners and Tooze, 2003). 
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AP-1 is composed of two large subunits (β1 and γ), one medium subunit (μ1), and a 

small subunit (σ1). Three other heterotetrameric complexes with homology to AP-1 

function as clathrin adaptors in other protein trafficking pathways (Robinson, 2004). 

AP-2 acts in clathrin-mediated endocytosis and AP-3 is implicated in protein transport 

from endosomes and the TGN to lysosomes. AP-4, absent in yeast, has been involved in 

sorting of cargos destined for lysosomes and the basolateral membrane in different cell 

types. GGA proteins (Golgi-localized, γ-ear-containing, ARF-binding proteins) are 

monomeric adaptors identified by searching sequence databases for homologs of the 

AP-1 γ subunit (Bonifacino, 2004). Mammalian cells express three GGA proteins and 

yeast express two. Like AP-1, GGAs localize to the TGN and endosomal membranes and 

depend on a small GTP binding protein called ADP-ribosylation factor (ARF) for 

membrane association. However, the precise pathways and protein sorting steps mediated 

by AP-1 and GGA are still poorly understood (Hinners and Tooze, 2003). In yeast, 

simultaneous inactivation of both AP-1 and GGA function causes a severe synthetic 

growth defect, suggesting that these adaptors mediate parallel transport pathways 

(Costaguta et al., 2001; Hirst et al., 2001). Current evidence favors a primary role for 

GGAs in the direct TGN to late endosome / prevacuole compartment (PVC) pathway 

(Black and Pelham, 2000; Costaguta et al., 2001; Hirst et al., 2001; Hinners and Tooze, 

2003), while the primary role for AP-1 is proposed to be in the early endosome to TGN 

retrograde pathway (Valdivia et al., 2002; Foote and Nothwehr, 2006). AP-1 is required 

for proper trafficking of several proteins within the TGN/endosome system, including 
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Kex2p, Ste13p, Chs3p, Tgl1p and Cps1p (Valdivia et al., 2002; Ghosh et al., 2003; Foote 

and Nothwehr, 2006; Phelan et al., 2006; Copic et al., 2007). Even though AP-1 is 

recruited to the TGN in yeast and mammals, and is present in clathrin coated buds 

forming on the TGN, no specific anterograde cargo requiring AP-1 has been defined in 

either system.  

A genetic screen to identify accessory factors that function with ARF in vesicle 

biogenesis uncovered a novel requirement for a phospholipid translocase in clathrin 

function at the TGN. This arf1 synthetic lethal screen recovered mutant alleles of DRS2, 

encoding the catalytic α subunit of this P-type ATPase, and CDC50, the noncatalytic 

β-subunit required for chaperoning the αβ complex from the ER to the Golgi (Chen et al., 

1999; Saito et al., 2004; Chen et al., 2006). Drs2p is directly responsible for an 

aminophospholipid translocase activity in the yeast TGN that flips phosphatidylserine 

(PS) and to a lesser extent phosphatidylethanolamine (PE) from the lumenal leaflet to the 

cytosolic leaflet (Natarajan et al., 2004; Alder-Baerens et al., 2006). Mutations in Drs2p 

that disrupt its ATPase or translocase activity phenocopy the effect of clathrin mutations 

on protein trafficking in the TGN and endosomal system. Drs2 and clathrin mutants cause 

mislocalization of TGN proteins, the accumulation of swollen Golgi cisternae, and loss of 

specific class of post-Golgi vesicles carrying exocytic cargo (Chen et al., 1999; Gall et al., 

2002). In addition, drs2Δ cells exhibit a deficiency in CCVs that can be recovered in 

subcellular fractions containing assembled clathrin (Chen et al., 1999). Moreover, Drs2p 

interacts directly with an ARF guanine nucleotide exchange factor Gea2p and Drs2 
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mutations that disrupt this interaction abrogate Drs2p function in vivo (Chantalat et al., 

2004; Liu et al., 2007).  

Drs2p has a steady-state localization to the TGN, although this protein slowly 

traffics to the plasma membrane where it is rapidly endocytosed and efficiently retrieved 

to the TGN from early endosomes (Chen et al., 1999; Saito et al., 2004; Liu et al., 2007). 

As with other TGN proteins, Drs2 likely cycles rapidly to the early endosome and back to 

maintain TGN residence, a pathway linked to AP-1/clathrin function. Here we show that 

Drs2p interacts with AP-1 and loss of AP-1 causes rapid transport to the plasma 

membrane. However, retrieval of Drs2p back to the TGN is unaffected in AP-1 mutants 

and so steady-state localization is not perturbed. These data indicate that Drs2p requires 

AP-1 for anterograde transport to the endosome but not for endosome to TGN retrograde 

transport. We also show that Drs2p is required for AP-1/clathrin function, but does not 

appear to contribute significantly to the GGA/clathrin pathway. AP-1 and clathrin are 

recruited to the Golgi and endosomal membrane in the absence of Drs2p but appear to be 

incapable of budding CCVs. We propose that phospholipid translocation by Drs2p plays 

an essential role in generating the membrane curvature required for budding 

AP-1/clathrin-coated vesicles. 
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Materials and Methods 

 

Media and Strains  

Yeast were grown in standard rich medium (YPD) or synthetic defined (SD) 

minimal media containing the required nutritional supplements (Sherman, 1991). The 

calcoflour white (CW) sensitivity test was done on YPD 2% agar plates containing 100 

μg/ml calcoflour white (F6259; Sigma-Aldrich, St. Louis, MO). Yeast transformations 

were performed using the lithium acetate method. Escherichia coli strains DH5α and 

XL1-Blue were used for plasmid construction and amplification.  

Yeast strains used in this study are summarized in Table 3-1. The yeast knockout 

strain collection was purchased from Resgen, Invitrogen Corporation (Carlsbad, CA). 

Strains carrying multiple disruptions were generated by standard genetic crosses and 

tetrad dissection. The genotype of each clone was determined by PCR as described by the 

Saccharomyces genome deletion project (http://sequence-www.stanford.edu/group/yeast_ 

deletion_project/deletions3.html). The DRS2 disruption plasmid pZH523 (Hua et al., 

2002) was linearized with SacI and HpaI and transformed into different strains to delete 

DRS2. Strains expressing Myc or HA tagged proteins were generated by PCR-based 

targeting into BY4741 or BY4742 strains using pPF6a-13Myc-HisMX6 or 

pPF6a-3HA-HisMX6 as the PCR template (Longtine et al., 1998). Transformants were 

selected on SD plates without histidine and the integrated tags were confirmed by PCR. 

To avoid artifactual accumulation of GFP-Drs2p in the ER (Saito et al., 2004), 
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pGFP-DRS2 was co-transformed into yeast strains with a multicopy vector carrying 

CDC50 (pRS425-CDC50) for experiments shown in Figure 3-4 and 3-5.  

 

Microscopy 

To visualize GFP or DsRed-tagged proteins, cells were grown to mid-log phase, 

harvested and resuspended in imaging buffer (10 mM Tris-HCl pH 7.4, 2% glucose). 

Cells were mounted on glass slides and observed immediately using an Axioplan 

microscope (Carl Zeiss, Thornwood, NY). Fluorescent images were captured with a 

charge-coupled device camera and processed with Metamorph 4.5 software (Universal 

Imaging, Downingtown, PA). Chitin staining was performed with cells incubated in 1 

mg/ml calcofluor white in water for 5 min, and washed 3 times prior to imaging. To study 

the kinetics of GFP-Drs2p transport to the plasma membrane, mid-log phase cells were 

collected and resuspended in SD medium containing 200 μM latrunculin A. Samples of 

cells were imaged at different time points. Brefeldin A (BFA, Sigma, B-7651) was 

dissolved in ethanol and used treat cells at 100 μg/ml in imaging buffer. 

 

Immunological Methods 

For chemical crosslinking experiments, approximately 50 OD600 units of each strain 

were harvested and converted to spheroplasts. After washing the spheroplasts three times 

with crosslinking buffer (1 M Sorbitol, 0.15 M NaCl, 0.1 M KH2PO4 pH 7.2), the cells 

were resuspended in crosslinking buffer supplemented with either 1 or 2 μm 
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dithiobis(succinimidyl)propionate (DSP) (Pierce, Rockford, IL) that was freshly prepared 

as a 20 mg/ml stock in dimethylsulphoxide. Crosslinking reactions were incubated at 

room temperature for 30 minutes. The cells were then pelleted, resuspended in 1 ml 

ice-cold lysis buffer (20 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 mM NaCl, 1% CHAPS, 

1x complete protease inhibitor cocktail lacking EDTA (Roche Diagnostics, Basel, 

Switzerland), 1 mg/ml BSA) and incubated on ice for 15 minutes. The cell lysate was 

cleared by incubation with 30 μl protein G Sepharose (Amersham Biosciences, Sweden) 

at 4°C for 30 minutes and centrifugation at 20,000 x g for 20 minutes. The cleared lysate 

was incubated with 9 μg monoclonal anti-HA (HA-7, Sigma-Aldrich, St. Louis, MO) or 

anti-Myc (9E10, Sigma-Aldrich, St. Louis, MO) antibodies for 1.5 h at 4°C, and 

subsequently with 30 μl protein G Sepharose for 1.5 h at 4°C. The protein G Sepharose 

beads were washed three times with washing buffer I (20 mM Tris-HCl pH 7.5, 1 mM 

EDTA, 350 mM NaCl, 1% Tween-20, 1x complete protease inhibitor cocktail lacking 

EDTA) and twice with washing buffer II (20 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 

mM NaCl, 1x complete protease inhibitor cocktail lacking EDTA). Bound material was 

eluted with SDS/urea sample buffer (40 mM Tris-HCl pH 6.8, 8 M urea, 0.1 mM EDTA, 

1% 2-mercaptoethanol, 5% SDS, 0.25% bromophenol blue) for 20 minutes at 50°C. The 

eluted material was separated by SDS-PAGE and immunoblotting was performed as 

previously described (Chen et al., 1999) using anti-Drs2 (1:2000, (Chen et al., 1999)), 

anti-Arf (1:2000), anti-Apl2 (1:1000, (Yeung et al., 1999)), anti-HA (Sigma-Aldrich, St. 

Louis, MO) and anti-Myc (Sigma-Aldrich, St. Louis, MO) antibodies. 
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Table 3-1：Yeast Strains Used in Chapter III. 
Strain  Genotype Source 
BY4741 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Invitrogen 
BY4742 MATα his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 Invitrogen 
BY4741 YDR358W BY4741 gga1Δ::KanMX6 Invitrogen 
BY4742 YHR108W BY4742 gga2Δ::KanMX6 Invitrogen 
BY4741 YKL135C BY4741 apl2Δ::KanMX6 Invitrogen 
BY4741 YPR029C BY4741 apl4Δ::KanMX6 Invitrogen 
BY4741 YLR170C BY4741 aps1Δ::KanMX6 Invitrogen 
BY4741 YPL259C BY4741 apm1Δ::KanMX6 Invitrogen 
BY4741 YHL019C BY4741 apm2Δ::KanMX6 Invitrogen 
BY4741 YJL204C BY4741 rcy1Δ::KanMX6 Invitrogen 
BY4741 YJL036W BY4741 snx4Δ::KanMX6 Invitrogen 
ZHY615D1C MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 drs2Δ::KanMX6 Hua et al., 2002 
ZHY615M2D BY4742 drs2Δ::KanMX6 Hua et al., 2002 
 BY4742 drs2Δ::LEU2  
KLY691 MATa his3Δ1 leu2Δ0 ura3Δ0 gga1Δ::KanMX6 

gga2Δ::KanMX6 
This Study 

KLY741 gga1Δ::KanMX6 gga2Δ::KanMX6 drs2Δ::LEU2 This Study 
KLY751 MATα his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 apl4Δ::KanMX6 

drs2Δ::LEU2 
This Study 

KLY371 MATa  his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 apm1Δ::KanMX6 
apm2Δ::KanMX6 

This Study 

BY4742 YJL099W BY4742 chs6Δ::KanMX6 Invitrogen 
KLY022 MATa his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 drs2Δ::KanMX6 

chs6Δ::KanMX6 
This Study 

KLY492 MATα his3Δ1 leu2Δ0 ura3Δ0 met15Δ0  apl4Δ::KanMX6 
chs6Δ::KanMX6 

This Study 

SEY6210 MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 lys2-801 
suc2-Δ9 

Robinson et al., 
1988 

KLY281 BY4741 APL4-3XHA::HIS3 This Study 
ZHYDRS2-MYC BY4742 DRS2-13MYC::KanMX6 Hua et al., 2002 
KLY1101 SEY6210 SEC7-DsRed.T4::TRP Chen et al., 2006 
KLY261 KLY1101 drs2Δ::LEU2 This Study 
GGA2-GFP BY4741 GGA2-GFP::HIS3 Invitrogen 
APL1-GFP BY4741 APL1-GFP::HIS3 Invitrogen 
APL2-GFP BY4741 APL2-GFP::HIS3 Invitrogen 
APL6-GFP BY4741 APL6-GFP::HIS3 Invitrogen 
CLC-GFP BY4741 CLC-GFP::HIS3 Invitrogen 
KLY421 BY4741 APL2-GFP::HIS3 drs2Δ::LEU2 This Study 
KLY451 BY4741 GGA2-GFP::HIS3 drs2Δ::LEU2 This Study 
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KLY391 BY4741 CLC-GFP::HIS3 drs2Δ::LEU2 This Study 
KLY791 APL2-GFP X KLY1101 This Study 
KLY795 GGA2-GFP X KLY1101 This Study 
KLY792 CLC-GFP X KLY1101 This Study 
KLY362 KLY451 X KLY261 This Study 
KLY363 KLY421 X KLY261 This Study 
KLY361 KLY391 X KLY261 This Study 
KLY551 MATa his3Δ1 leu2Δ0 ura3Δ0 APL2-GFP::HIS3 

erg6Δ::KanMX6 
This Study 

KLY561 MATα his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 APL6-GFP::HIS3 
erg6Δ::KanMX6 

This Study 

KLY351 KLY1101 apl2Δ::KanMX6 This Study 
KLY701 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 apl4Δ::KanMX6 

vps4Δ::KanMX6 
This Study 

KLY711 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 lys2Δ0 
apl4Δ::KanMX6 vps27Δ::KanMX6 

This Study 

KLY761 BY4741 rcy1Δ::KanMX6 vps27Δ::KanMX6 This Study 
KLY771 BY4742 snx4Δ::KanMX6 vps27Δ::KanMX6 This Study 
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Figure 3-1: Drs2p functions in an AP-1 pathway. 
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Figure 3-1: Drs2p functions in an AP-1 pathway. 
(A) Tetrad analysis of progeny derived from crossing drs2Δ with gga1Δgga2Δ. Circled 
progeny are drs2Δ gga1Δgga2Δ triple mutants. Boxed progeny are drs2Δ gga2Δ double 
mutants.  
(B) Synthetic genetic interaction between drs2 and gga alleles. Growth of the indicated 
strains (From Top to bottom: BY4742, ZHY615M2D, BY4742 YPR029C, KLY691, 
KLY751, KLY741) was assessed by spotting tenfold serial dilutions onto YPD plates and 
growing at 30°C and 23°C  
(C) Cells deficient in Drs2p or AP-1 restore calcofluor white sensitivity to chs6Δ cells. 
Calcofluor white sensitivity was assayed on rich medium supplemented with 100 μg/ml 
calcofluor white.  
(D) Chitin-ring staining is restored to chs6Δ cells by deletion of either AP-1 subunits or 
DRS2. Cell wall chitin was visualized by staining cells with 1 mg/ml calcofluor white. 
(E) Localization of Chs3p to the plasma membrane of chs6Δ is restored by disruption of 
Drs2p or Apl4p. The distribution of proteins between the plasma membrane and the 
internal membranes was determined by centrifugation of cell lysates at 13,000 x g to pellet 
the plasma membrane. Golgi and endosomal membranes remain in the supernatant. 
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Results 

 

Drs2p Is Required for AP-1 Function in the TGN-Early Endosome Pathway 

Previously, we had implicated Drs2p in the formation of clathrin-coated vesicles 

from the TGN-endosomal system (Chen et al., 1999; Gall et al., 2002; Chantalat et al., 

2004). To address whether Drs2p preferentially acts in conjunction with AP-1 or Gga 

clathrin adaptors, we performed a synthetic genetic analysis between mutant alleles 

encoding these proteins. Cell growth is robust when either AP-1 or Gga-mediated 

transport is abolished, but disruption of both pathways causes a dramatic growth defect 

(Costaguta et al., 2001; Hirst et al., 2001). Thus, cells deficient for either adaptor are 

sensitized to perturbations in the function of the other. Therefore, if Drs2p is required for 

AP-1 function, drs2Δ should exhibit a strong synthetic growth defect with 

gga1Δ gga2Δ mutants. Conversely, if AP-1 function is lost in drs2Δ cells, then combining 

AP-1 null alleles with drs2Δ should have no additional consequence. To test this 

possibility, we crossed drs2Δ with gga1Δ gga2Δ and performed a tetrad analysis (Figure 

3-1A). The drs2Δ gga1Δ gga2Δ triple mutant progeny were either inviable or extremely 

slow-growing (Figure 3-1A, circled and 3-1B), and the drs2Δ gga2Δ double mutants 

(Figure 3-1A, boxed) grew slower than drs2Δ or gga2Δ single mutant spores. In contrast, 

when we combined drs2Δ with apl4Δ, a deletion in the γ1 subunit of AP-1, the drs2Δ 

apl4Δ mutant showed a similar growth rate to the drs2Δ single mutant at all temperatures 

tested (Figure 3-1B). For example, drs2Δ grew poorly at 23˚C, but even at this 
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semi-permissive temperature, loss of AP-1 has no additional consequence. These results 

suggest that Drs2p has selective function in AP-1/clathrin mediated traffic but does not 

appear to act in the Gga pathway.  

The best defined role for AP-1 in yeast is in the trafficking of chitin synthase III 

(Chs3p), and so we tested if Drs2p is required in this pathway. Chs3p deposits a ring of 

chitin around emerging buds that remains as a scar after the bud is released. Most Chs3p 

is retained intracellularly by cycling between the TGN and early endosome, but a portion 

is transported to the plasma membrane in a cell-cycle regulated process that requires the 

Chs5p and Chs6p (ChAPs/exomer) coat complex (Santos et al., 1997; Ziman et al., 1998; 

Trautwein et al., 2006; Wang et al., 2006). Thus, chs6∆ cells retain nearly all Chs3p 

intracellularly and have reduced chitin incorporation at the bud site, which makes this 

mutant resistant to toxic effects of calcofluor white (CW), a chitin-binding fluorescent 

compound (Figure 3-1C and (Valdivia et al., 2002; Phelan et al., 2006)). Deletion of any 

AP-1 subunit bypasses the Chs6p requirement, restoring cell surface transport of Chs3p, 

the appearance of chitin rings and CW sensitivity to an AP-1 chs6Δ double mutant 

(Valdivia et al., 2002). Similar to the chs6Δ apl4Δ strain, the chs6Δ drs2Δ double mutant 

failed to grow on the medium containing CW (Figure 3-1C), and formed chitin rings 

morphologically indistinguishable from those in the wild-type and drs2Δ cells (Figure 

3-1D). Subcellular fractionation of membranes by differential centrifugation (9,000g) was 

also used to distinguish Chs3p in the PM and intracellular membrane pools (Figure 3-1E). 

This analysis again indicated that disruption of DRS2 in the chs6Δ background, like 
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disruption of APL4, caused redistribution of Chs3p from internal organelles to the plasma 

membrane fractions, but did not alter the steady-state subcellular distribution of other 

cytosolic (G6PDH) and endosomal (Pep12p) markers. Together, these data indicate that 

deletion of drs2∆ bypasses chs6∆ as effectively as deletion of an AP-1 subunit, consistent 

with a requirement for Drs2p in forming AP-1/clathrin coated vesicles.      

 

Drs2p Associates with AP-1, but Is Not Required to Recruit AP-1 to Membranes 

AP-1 recruitment to Golgi or endosomal membranes of mammalian cells 

requires the small GTP-binding protein ARF. The observation that Drs2p interacts 

directly with an ARF-GEF by its C-terminal tail prompted us to further test if ARF or its 

effector AP-1 can associate with Drs2p. To do so, cells expressing a functional Myc 

tagged version of Drs2p were spheroplasted and treated with dithiobis(succinimidyl) 

-prionate (DSP) before lysis. DSP is a bifunctional, cleavable chemical crosslinking 

reagent that can permeate the cell. Drs2p was immunoprecipitated from the cell lysate, 

the crosslinks were disrupted by reduction, and the immunoprecipitate was probed by 

immunoblotting with affinity-purified polyclonal antibodies to Arf1p and Apl2p, the 

AP-1β subunit. Apl2p, but not Arf1p, co-immunoprecipitated with Drs2p-Myc (Figure 

3-2A). However, Apl2p could not be detected in control immunoprecipitates from cells 

lacking DRS2-Myc. In addition, chemical crosslinking followed by immunoprecipitation 

of HA tagged Apl4p, the AP-1 γ subunit, specifically isolated endogenous Drs2p (Figure 

3-2B). These results indicate that AP-1 can form a complex with Drs2p in yeast cells; 
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however, only a small percentage (0.5%) of Drs2p co-immunoprecipated with AP-1 and 

so this complex is likely to be transient in vivo.   

The requirement for Drs2p in the AP-1/clathrin-dependent Chs3p pathway and 

the association of Drs2p with AP-1 suggested that Drs2p might be required to recruit 

AP-1 and clathrin onto TGN/endosomal membranes. To test this possibility, we compared 

the localization of AP-1β-GFP (Apl2p-GFP) in wild-type and drs2Δ mutant cells. Both 

strains showed a pattern of spots typical of the yeast Golgi and endosomal compartments 

with no indication that membrane association of AP-1 was perturbed in drs2∆ (Figure 

3-2C). We also analyzed the distribution of Apl2p relative to the TGN marker Sec7p. The 

overlap between Apl2p and Sec7p was extensive in both wild-type and drs2Δ cells: in 

wild-type cells, 51% of Apl2-GFP puncta were coincident with Sec7-DsRed puncta and 

in drs2Δ cells, 73% of Apl2-GFP puncta colocalized with Sec7-DsRed puncta. The 

increased association of Apl2-GFP with Sec7-positive membrane is likely caused by 

normal recruitment of AP-1 to the TGN combined with a defect in the release of 

AP-1/clathrin-coated vesicles (Chen et al., 1999; Gall et al., 2000). Localization of GFP 

tagged clathrin light chain (Clc1-GFP) and GGA2 (GGA2-GFP) were also examined in 

these strains and their membrane association appeared to be unaffected (Figure 3-2C). 

Thus, Drs2p is not required for recruitment of AP-1 or clathrin to the TGN membrane, 

even though it appears to be essential for AP-1/clathrin function.  
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Figure 3-2: Drs2p interacts with AP-1 but is not required for AP-1 or clathrin recruitment 
to Golgi membranes.  
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Figure 3-2: Drs2p interacts with AP-1 but is not required for AP-1 or clathrin recruitment 
to Golgi membranes.  
Chemical crosslinking identifies a complex containing Drs2p and AP-1.  
(A) Cells expressing Myc-tagged Drs2p or control cells without the tag were treated with 
crosslinker DSP, lysed, and anti-Myc monoclonal antibodies were used to purify the 
Drs2p-Myc. The crosslinker was cleaved by reduction and bound material was visualized 
by immunoblotting. For the “lysate” lanes, approximately 0.5% of the amount of material 
used for the crosslinking reaction was loaded.  
(B) Cells expressing HA-tagged Apl4p and control cells without the tag were treated as 
described in (A). Anti-HA monoclonal antibodies were used to immunoprecipitate the 
Apl4p-HA.  
(C) Drs2 is not required for Golgi recruitment of AP-1 or clathrin.  
Wild-type and drs2Δ strains expressing the indicated fusion proteins are imaged by 
fluorescence microscopy. 
(D) Membrane association of AP-1 is not affected by deletion of Drs2. 
Wild-type, drs2Δ and pik1-83 cells grown at 30°C were lysed (Lysate, L) and subjected 
to centrifugation at 13,000 x g for 20 min to generate pellet (P1) and supernatant fractions. 
The supernatant fraction was further centrifuged at 100, 000 x g for 1 hour to generate 
pellet (P2) and supernatant (S2) fractions. Different fractions were then immunoblotted 
for Apl2p and Arf1p. 
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Figure 3-3: The punctate localization pattern of AP-1 and AP-3, but not AP-2, is 
dependent on Arf. Cells expressing GFP tagged Apl1p (AP-2 β), Apl2p (AP-1 β) or 
Apl6p (AP-3 β) were grown to log phase, treated with 100 μg/ml BFA and the visualized 
by fluorescence microscopy.  
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Membrane association of AP-1 was also examined in wild-type and 

drs2Δ mutant cells by differential centrifugation. Because it is reported that 

phosphatidylinositol-4-phosphate is required for AP-1 recruitment to the Golgi in 

mammalian cells (Wang et al., 2003), a pik1 mutant, the yeast Golgi resident 

phosphatidylinositol 4-kinase, was also tested. Cell lysates (L) were sequentially 

centrifuged at 10,000 x g and 130,000 x g to collect P1 and P2 pellets, respectively, and 

130,000 x g supernatants (S2), which were probed for AP-1 (Apl2p) and ARF. Apl2p was 

found primarily in the membrane fractions (P1 and P2) while ARF was found primarily in 

the cytosol (S2) fractions (Figure 3-2D). No significant difference in the fractionation 

profile for AP-1 or ARF was detected between wild-type and drs2Δ strains, and we also 

failed to detect any release of Apl2p from the pik1-83 membranes.   

In mammalian cells, AP-1 can be released from membranes by brefeldin A 

(BFA), a drug that binds to an Arf GEF-Arf1-GDP complex and prevents Arf1 activation 

(Peyroche et al., 1999). Wild-type yeast are resistant to BFA, but an erg6Δ mutant, 

defective in one of the final steps of ergosterol biosynthesis, is sensitive (Graham et al., 

1993; Peyroche and Jackson, 2001). To be certain that the punctate localization pattern of 

Apl2-GFP required ARF-dependent membrane localization, we introduced the 

erg6Δ mutation into cells expressing Apl2p-GFP and treated the cells with BFA. In these 

cells, Apl2p-GFP was released from membranes within 1min of treatment with BFA and 

was dispersed throughout the cytosol (Figure 3-3). We also introduced erg6Δ into strains 

expressing GFP tagged Apl1p, the AP-2 α subunit, and GFP tagged Apl6p, the AP-3 β 
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subunit, and treated these cells with BFA. BFA also caused release of GFP-Apl6p (AP-3) 

but not GFP-Apl1p (AP-2) (Figure 3-3). Hence, as with mammalian cells, the dynamic 

association of AP-1 and AP-3 with membranes requires a BFA-sensitive ARF-GEF (i.e. 

Gea1p, Gea2p or Sec7p) while AP-2 does not. These data also indicate that the punctate 

pattern of Apl2p-GFP represents an ARF-dependent membrane-associated pool and 

Drs2p is not required for recruiting AP-1 to the membrane.   

 

Disruption of AP-1 Alters Drs2p Trafficking but not Its Steady-state Localization to 
the TGN 

Our previous work suggested that Drs2 primarily traffics between the TGN and 

early endosome, a pathway associated with AP-1 function (Liu et al., 2007). To test if 

Drs2p localization requires AP-1, we first examined the steady-state localization of 

GFP-Drs2p in wild-type and AP-1-deficient cells. GFP-Drs2p localizes to several discrete 

puncta in wild-type cells, representing the TGN and possibly early endosomes. This 

pattern was not altered in cells lacking AP-1 function (Figure 3-4A, apl2Δ). Furthermore, 

similar levels of overlap between GFP-Drs2p and Sec7p-DsRed were observed for 

wild-type and apl2Δ cells: in wild-type cells 81% of Drs2p-GFP puncta were coincident 

with Sec7-DsRed puncta, while in apl2Δ cells 82% of Drs2p-GFP puncta colocalized 

with Sec7-DsRed puncta. Thus, the steady-state localization of GFP-Drs2p is not affected 

by AP-1 disruption.  

 

 106



 

 

 

Figure 3-4: Loss of AP-1 perturbs Drs2p trafficking but not its steady-state localization.  
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Figure 3-4: Loss of AP-1 perturbs Drs2p trafficking but not its steady-state localization.  
(A) Colocalization of Drs2p-GFP and Sec7-DsRed in wild-type and AP-1 deficient 
(apl4Δ) cells. 
(B) Disruption of AP-1 causes rapid accumulation of Drs2p on the plasma membrane 
when endocytosis is blocked. The indicated strains (BY4741, BY4741 YLR170C, 
BY4741 YPR029C, BY4741 YKL135C, BY4741 YPL259C, KLY691, BY4741 
YHL019C, BY4741 YJL204C, KLY371, BY4741 YJL036W) expressing GFP-Drs2p 
were incubated with or without 200 μM latrunculin A (Lat-A) at room temperature for 30 
minutes and then examined by fluorescence microscopy. 
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We then addressed whether deletion of AP-1 has an effect on trafficking of 

GFP-Drs2p. Drs2p slowly cycles in the TGN  plasma membrane  early endosome  

TGN loop. Acute inactivation of endocytosis by treating cells with latrunculin A (Lat A), 

an inhibitor of actin assembly and endocytosis, causes a rather slow accumulation of 

Drs2p on the plasma membrane over the course of about three hours. If GFP-Drs2p 

rapidly cycles between the TGN and early endosome in an AP-1 pathway, we would 

expect an increased rate of Drs2p transport to either the plasma membrane or late 

endosome in an AP-1 mutant. To test this possibility, we treated wild-type and AP-1 

mutant cells expressing GFP-Drs2p with Lat A and imaged over time. In wild-type cells 

GFP-Drs2p was primarily retained intracellularly in small puncta after 30 minutes of Lat 

A treatment (Figure 3-4B, WT). In stark contrast, deletion of the AP-1 β subunit (APL2), 

γ subunit (APL4), or σ subunit (APS1) caused accumulation of nearly all GFP-Drs2p on 

the plasma membrane after 30 minutes of treatment. This cell surface accumulation of 

GFP-Drs2p was much less pronounced in apm1Δ or apm2Δ cells, which harbor deletions 

of the two alternative AP-1 μ subunits. However, deletion of both APM1 and APM2 leads 

to plasma membrane accumulation comparable to deletion of other AP-1 subunits (Figure 

3-4B), suggesting that the two μ subunits play redundant roles in Drs2p trafficking. To 

determine whether trafficking of Drs2p also requires Gga functions, we treated the gga1Δ 

gga2Δ strain with Lat A and found that these cells slowly accumulated GFP-Drs2p on the 

plasma membrane at a rate similar to wild-type cells. Thus, the fast cell surface 

accumulation of Drs2p after Lat A treatment is specific to AP-1 mutants.  
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AP-1 has been proposed to play a role in retrograde transport from early 

endosome back to the TGN. To determine if the Lat A-induced fast accumulation of 

Drs2p on the plasma membrane in AP-1-deficienct cells was an indirect consequence of 

perturbing early endosome to TGN recycling, we examined the trafficking of GFP-Drs2p 

in two other mutants implicated in early endosome to TGN retrieval (Figure 3-3B, rcy1Δ 

and snx4Δ). However, inactivation of Rcy1p, an F-box protein, only slightly increased the 

rate of GFP-Drs2p accumulation on the cell surface after Lat A treatment, while deletion 

of Snx4p, a sorting nexin had no effect on the rate of GFP-Drs2p plasma membrane 

accumulation. These data suggest a direct requirement for AP-1 in removing Drs2p from 

the exocytic pathway for delivery to the early endosome.  

As a cargo of the AP-1 mediated early endosome to TGN retrograde pathway, 

Chs3p normally avoids transport to the late endosome / prevacuole compartment (PVC) 

but transits this compartment frequently in AP-1 mutants. This perturbation is revealed in 

the class E vps AP-1 double mutants (apl4Δvps4Δ and apl4Δvps27Δ) which trap Chs3p in 

enlarged endosomal compartments adjacent to the vacuole. To test if AP-1 disruption 

perturbs retrograde transport of Drs2p in a manner similar to Chs3p, localization of 

GFP-Drs2p and Chs3p-GFP were monitored in apl4Δ vps4Δ  and apl4Δ vps27Δ  cells. As 

previously observed, Chs3-GFP collapses into a few aberrant structures next to the 

vacuole in both apl4Δ vps4Δ  (Figure 3-5) and apl4Δ vps27Δ   (unpublished results). In 

contrast, GFP-Drs2p does not accumulate in the PVC of these double mutants and shows 

a localization pattern indistinguishable from that in the wild-type cells. Moreover, 
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GFP-Drs2p also appears to localize normally in rcy1Δ vps27Δ and snx4Δ vps27Δ strains 

(Figure 3-5). Thus, GFP-Drs2p does not appear to require AP-1, Rcy1 or Snx4 for its 

exclusion from the late endosome. In summary, these data indicate that AP-1 is required 

for anterograde transport of Drs2p from the TGN back to the early endosome, does not 

require AP-1 for the retrograde trip back to the TGN.     

Snc1p is a v-SNARE that actively cycles along the TGN  plasma membrane  

early endosome  TGN loop. Drs2p, Rcy1p, and Snx4p are all required for efficient 

Snc1p recycling. In wild-type cells, GFP-Snc1p primarily localizes to the plasma 

membrane concentrating in the regions of polarized growth, with a few intracellular punta 

corresponding to endosomal/TGN compartments. Deletion of DRS2 or RCY1 causes 

accumulation of GFP-Snc1p on internal structures, whereas GFP-Snc1p is missorted to 

the vacuole in snx4Δ cells. To test if AP-1 has any function in the Snc1p recycling 

pathway, we expressed GFP-Snc1p in apl4Δ and apl4Δvps27Δ cells (Figure 3-6 A). 

GFP-Snc1p localized normally in both mutants. We next tested whether loss of AP-1 

function would affect the kinetics of GFP-Snc1p trafficking to the plasma membrane. 

Since most GFP-Snc1p is already present on the cell surface in wild-type and apl4Δ cells, 

we instead treated drs2Δ and drs2Δ apl4Δ strains with Lat A (Figure 3-6 B). Both strains 

have little GFP-Snc1p present on the PM before Lat A treatment and they exhibit similar 

kinetics of Snc1p-GFP accumulation on the PM after treatment. Collectively, these results 

demonstrate that Snc1p trafficking does not seem to require AP-1 function. 
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Figure 3-5: GFP-Drs2p is not trapped in the late endosome/PVC in AP-1, rcy1 or snx4 
mutants.  
(A) In apl4Δ vps27Δ cells, Chs3p-GFP accumulates in the class E compartments, while 
GFP-Drs2p appears to localize normally to the TGN. 
apl4 Δvps27Δ strains expressing GFP-Drs2p or Chs3p-GFP are imaged by fluorescence 
microscopy. Arrowheads indicate the class E compartments. 
(B) Localization of GFP-Drs2p in rcy1Δ vps27Δ and snx4Δ vps27Δ cells. 
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Figure 3-6: Loss of AP-1 does not perturb Snc1p trafficking and its steady-state 
localization. 
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Figure 3-6: Loss of AP-1 does not perturb Snc1p trafficking and its steady-state 
localization. 
(A) Localization of Snc1p-GFP in wild-type cells and various mutants that disrupt protein 
trafficking in the TGN-endosomal system. 
(B) Deletion of AP-1 from drs2Δ cells does not alter the trafficking kinetics of 
Snc1p-GFP. drs2Δ and drs2Δ apl4Δ cells expressing GFP-Drs2p were incubated with or 
without 200 μM latrunculin A (Lat-A) at room temperature for 30 min or 2 h and then 
examined by fluorescence microscopy. 
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Discussion 

A major goal of this study is to address the relationship between the clathrin 

adaptor AP-1 and Drs2p, a potential phospholipid translocase, in clathrin mediated 

protein trafficking. Our results demonstrate that Drs2p and AP-1 function together to 

mediate protein transport between the TGN and early endosome, and that these proteins 

interact directly or indirectly. Deletion of DRS2 does not seem to affect recruitment of 

AP-1 to the TGN membrane, suggesting that Drs2p is required at late stages in 

AP/clathrin-coated vesicle formation. In addition, disruption of AP-1 causes missorting of 

Drs2p to the plasma membrane as judged by fast plasma membrane accumulation of 

Drs2p after acute inactivation of endocytosis. These results define Drs2p as an 

anterograde cargo for AP-1.  

 

Potential Roles Drs2p Might Play in Budding Clathrin-Coated Vesicles 

Previous studies have demonstrated that Drs2p, a phospholipid translocase, plays 

a role in the CCV formation from the TGN and endosomal membranes (See Introduction). 

Several lines of evidence indicated that the translocase activity of Drs2p is required for its 

function in vesicle biogenesis. Acute inactivation of drs2-ts by temperature shift 

abrogates the translocation of NBD-PS, a fluorescent phosphatidylserine derivative, 

across the purified TGN membrane as well as the formation of a clathrin-dependent class 

of exocytic vesicles (Gall et al., 2002; Natarajan et al., 2004). Moreover, an ATPase-dead 

allele of Drs2 (drs2-D560N) fails to complement drs2Δ defects in dense exocytic vesicle 
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formation and the recycling of the exocytic v-SNARE Snc1p (Chen et al., 1999; 

Chantalat et al., 2004; Liu et al., 2007).  

Two models have been proposed to explain how the phospholipid translocase 

activity of Drs2p contributes to vesicle biogenesis (Chen et al., 1999). One possibility is 

that Drs2p may affect the recruitment of peripherally associated proteins by increasing 

the concentration of some specific phospholipid on the cytosolic leaflet. However, our 

results rule out this possibility by showing that membrane association of coat components 

required for vesicle formation, such as AP-1, GGA2, AP-3 and clathrin, is independent of 

Drs2p. In addition, we had previously shown that recruitment of the Arf-GEF Gea2p to 

the TGN does not require Drs2p (Chantalat et al., 2004). In fact, we observed a modest 

clustering of Clc-GFP in drs2Δ haploid cells. Therefore, in contrast to current models for 

CCV budding, our data argue that membrane recruitment of Arf-GEF, Arf, AP-1 and 

clathrin is insufficient to bud AP-1/clathrin-coated vesicles in the absence of Drs2p. 

An alternative possibility is that the transbilayer movement of lipids mediated by 

Drs2p helps to bend the membrane to facilitate vesicle budding. According to the 

bilayer-couple hypothesis of Sheetz and Singer, the two leaflets of membrane are 

physically coupled together and a relative increase in surface area of one leaflet would 

spontaneously induce membrane curvature (Sheetz and Singer, 1974; Sheetz et al., 1976). 

Both in erythrocytes and pure phospholipid model systems, bilayer asymmetry induced 

by insertion of additional lipids in one of the membrane leaflets leads to dramatic shape 

changes (Seigneuret and Devaux, 1984; Daleke and Huestis, 1985; Daleke and Huestis, 
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1989; Farge and Devaux, 1992). When the surface area of outer leaflet is increased 

relative to the inner leaflet, the closed lipid bilayer system (e.g. liposomes, erythrocytes) 

will become crenated, tubulated or vesiculated. When the surface area of inner leaflet is 

increased relative to the outer leaflet, the membrane becomes concave. A large group of 

proteins, which have the potential to induce the transbilayer area asymmetry, have been 

implicated in protein trafficking, including proteins with amphipathic helixes that could 

physically penetrate into one face of the bilayer (e.g. endophilin, amphiphysin, epsin 

(Itoh and De Camilli, 2006; Ren et al., 2006)), lipid transfer proteins, lipid metabolic 

enzymes (e.g. sphingomyelinase (Zha et al., 1998), lysophosphatidic acid transferases 

(Schmidt et al., 1999; Weigert et al., 1999)), as well as lipid translocases (Graham, 2004). 

By translocating phospholipids from the lumenal leaflet to the cytosolic leaflet, 

phospholipid translocases could increase the surface area of the cytosolic leaflet and bend 

the membrane towards the cytosol. Indeed, ATP-dependent inward translocation of 

exogenous PS and PE by phospholipid translocase on the plasma membrane of human 

erythroleukemia cells enhances bulk endocytosis (Farge et al., 1999). Consistent with a 

putative role of Drs2p in regulating membrane curvature, Golgi membranes in the drs2Δ 

mutants are notable for their lack of fenestration or tubular regions (Chen et al., 1999), 

whereas the Golgi in arf1Δ mutants is highly fenestrated or tubular in appearance 

(Gaynor et al., 1998).  
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Drs2p Is an Anterograde Cargo of AP-1 

In wild-type cells, Drs2p primarily cycles between the TGN and early endosomes, 

and only visits the plasma membrane occasionally (Liu et al., 2007). Strikingly, in the 

AP-1 mutants, Drs2p rapidly traffics to and from the plasma membrane, but still maintian 

its steady-state TGN residence. How AP-1 affects the trafficking itinerary of Drs2p could 

be explained by two possibilities. First, AP-1 may mediate the retrieval of Drs2p from 

early endosome back to the TGN. In this case, loss of AP-1 would cause accumulation of 

Drs2p at the early endosome, from which Drs2p could potentially recycle to the plasma 

membrane. The second possibility is that AP-1 is required for the anterograde transport of 

Drs2p from the TGN to early endosomes. When AP-1 is disrupted, Drs2p is incorporated 

into exocytic vesicles targeted to the plasma membrane more frequently than in a 

wild-type cell. The second possibility is favored by several experimental results. The 

extensive colocalization between Drs2p and the TGN marker Sec7p remains in the AP-1 

mutant, indicating that endocytosis and early endosome to TGN transport of Drs2p is 

unaffected by loss of AP-1. If Drs2p accumulated in the early endosome in AP-1 deficient 

cells, we would expect it to traffic more frequently to the late endosome/PVC, like Chs3p. 

However, Drs2p is not trapped in the class E compartments of apl2Δvps27Δ or 

apl4Δvps4Δ cells, suggesting that Drs2p does not transit through the late endosome/PVC, 

even in the absence of AP-1. Thus, inactivation of AP-1 does not seem to cause 

accumulation of Drs2p in the early endosome. The Snx4-Snx41-Snx42 complex and the 

F-box protein Rcy1p have both been implicated in the transport pathway from early 
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endosome back to the TGN (Wiederkehr et al., 2000; Hettema et al., 2003). In rcy1Δ cells 

the Drs2p/Cdc50p complex colocalizes extensively with Snc1p-positive structures, which 

are probably derived from early endosomes (Furuta et al., 2007). These results, in 

combination with the physical interaction between Drs2p and Rcy1p, indicate that Rcy1p 

is involved in early endosome to TGN retrieval of Drs2p. However, disruption of Rcy1 

only slightly increases the rate of Drs2p transport to the plasma membrane, while 

disruption of Snx4-Snx41-Snx42 has no apparent impact on Drs2p trafficking. Thus, the 

substantially enhanced plasma membrane trafficking of Drs2p in AP-1 deficient cells is 

more likely due to missorting of Drs2p at the TGN into secretory vesicles than a 

secondary effect of Drs2p accumulation at the early endosome.  

A(F->A)ALP is a Ste13p based reporter protein which is thought to primarily 

traffic between the TGN and early endosome, but accumulates relatively slowly in the 

late endosome of class E vps mutants. AP-1 directly binds to the cytosolic tail of 

A(F->A)ALP and reduces its rate of trafficking to the late endosome (Foote and 

Nothwehr, 2006). Chs3p also accumulates rapidly in the late endosome of AP-1 mutants. 

These results suggest that AP-1 functions to retrieve proteins from the early endosome 

back to the TGN. However in this study, we demonstrate that AP-1 primarily mediates 

the anterograde transport of Drs2p from the TGN to the early endosome. Moreover, loss 

of AP-1 function restores the transport of Chs3p to the cell surface under conditions in 

which the normal export route of Chs3p is blocked (Valdivia et al., 2002). Thus, AP-1 

seems to function in both anterograde and retrograde pathways between the TGN and 
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early endosome. Remarkably, Drs2p appears to only use AP-1 for anterograde transport, 

while Chs3p may use AP-1 for both pathways. In fact, similar phenomena could also be 

observed for other clathrin adaptors such as GGA proteins. The GGA proteins are 

implicated in the direct TGN to late endosome transport of Pep12p (Black and Pelham, 

2000) and Vps10p (Costaguta et al., 2001), and a recent study demonstrated that GGA 

mutations have an impact on trafficking of Chs3p and A(F->A)ALP similar to AP-1 

mutations. These results imply that GGA proteins may, like AP-1, play a role in 

TGN/early endosome pathways (Copic et al., 2007). How the adaptors achieve this 

ability to perform a cargo-specific function is still not clear, but likely to involve the 

recognition of pathway-specific sorting signals.  

 

Transport Pathways that Involve Drs2p 

As we have discussed above, AP-1 and GGA proteins have redundant and 

non-redundant functions in clathrin-mediated transport between the TGN and endosomes. 

Simultaneous inactivation of AP-1 and GGA proteins causes a severe synthetic growth 

defect, while perturbation on either AP-1 or GGA mediated transport has little impact on 

cell growth (Costaguta et al., 2001; Hirst et al., 2001). Similar genetic interactions are 

found between Drs2 and the GGA proteins, but not between Drs2 and AP-1, suggesting 

that Drs2p is required for essential function of AP-1 but not that of the GGA proteins. 

However, Drs2p has a more substantial impact on protein trafficking than AP-1, since 

drs2 mutants display more severe defects than AP-1 in both protein transport and cell 
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growth. Drs2p also play roles in AP-1 independent transport pathways, such as the AP-3 

mediated alkaline phosphatase pathway to the vacuole and the Snc1p recycling pathway 

(Hua et al., 2002; Liu et al., 2007).   

Interestingly, unlike other proteins that frequently transit the TGN (e.g. Kex2p, 

Chs3p, Vps10p, Snc1p), Drs2p is never trapped in the late endosome derived class E 

compartment in various mutants we tested (vps4Δ, vps27Δ, apl2Δvps27Δ, rcy1Δvps27Δ, 

snx4Δvps27Δ). It seems that the cells go to great lengths to prevent Drs2p from getting 

into the late endosome. The normal function of the late endosome/multivesicular body 

requires production of negative membrane curvature on its surface to facilitate the inward 

budding of vesicles. Considering that the proposed role for Drs2p is to induce positive 

membrane curvature, it is tempting to speculate that the presence of Drs2p on the late 

endosome/multivesicular body would be detrimental to late endosome function, and thus 

Drs2p is excluded from this compartment.  
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CHAPTER IV 

 

SUMMARY 

 

Drs2p, a P-type ATPase, is a phospholipid translocase at the yeast TGN that flips 

phosphatidylserine (PS) and to a lesser extent phosphatidylethanolamine (PE) from the 

luminal leaflet to the cytosolic leaflet (Natarajan et al., 2004; Alder-Baerens et al., 2006). 

Interestingly, mutations in Drs2p that disrupt its ATPase or translocase activity 

phenocopy the effect of clathrin mutations on protein trafficking in the TGN and early 

endosomal system (Chen et al., 1999; Gall et al., 2002). In addition, drs2Δ cells exhibit a 

deficiency in clathrin-coated vesicles that can be recovered in subcellular fractions 

containing assembled clathrin (Chen et al., 1999). Moreover, Drs2p is engaged in 

extensive genetic and physical interactions with vesicle budding machinery acting in the 

TGN-early endosomal system (Chen et al., 1999; Chantalat et al., 2004; Saito et al., 2004; 

Sakane et al., 2006; Furuta et al., 2007). Although all these evidences suggest that Drs2p 

is implicated in clathrin-mediated protein trafficking, two fundamental questions remain: 

1) What mechanism does Drs2p use to facilitate clathrin coated vesicle biogenesis? 2) 

How is Drs2p function coupled to specific transport pathways? In this study, we 

attempted to answer these two questions by examining the trafficking itinerary, protein 

interactions and biological function of Drs2p. 

Previously, two models have been proposed to describe the role Drs2p might play 
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in vesicle formation. One model proposes that Drs2p may help to recruit peripherally 

associated coat proteins by protein interactions or by concentrating specific phospholipid 

molecules on the cytosolic leaflet of the membrane. To test this model, we studied the 

membrane association of the coat componenets required for vesicle formation such as 

AP-1, AP-3 and clathrin and found that they are recruited to the Golgi and endosomal 

membrane in absence of Drs2p. In addition, we had previously shown that recruitment of 

the Arf-GEF Gea2p to the TGN does not require Drs2p (Chantalat et al., 2004). The 

GGA/clathrin pathway appears functional in the absence of Drs2p, but AP-1/clathrin 

pathways require Drs2p activity. Therefore, in contrast to current models for CCV 

budding, our data argue that membrane recruitment of Arf-GEF, Arf, AP-1 and clathrin is 

insufficient to bud AP-1/clathrin-coated vesicles in the absence of Drs2p.  

In an alternative model, phospholipid translocation by Drs2p may help to bend the 

membrane to facilitate vesicle budding. According to the bilayer-couple hypothesis of 

Sheetz and Singer, the two leaflets of membrane are physically coupled together and a 

relative increase in surface area of one leaflet spontaneously induces membrane curvature 

(Sheetz and Singer, 1974; Sheetz et al., 1976). By translocating phospholipid from the 

lumenal leaflet to the cytosolic leaflet of the TGN or early endosomes, Drs2 would 

increase the surface area of the cytosolic leaflet relatively to the lumenal leaflet, and bend 

the membrane towards the cytosol. We propose that Drs2p imparts curvature to the 

membrane through a bilayer-couple mechanism that is captured by coat proteins to 

produce vesicles. To test this hypothesis, futher studies need to be done with purified and 
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reconstituted Drs2p in liposomes. 

Although bending membrane is a common requirement for formation of all kinds 

of vesicles, Drs2p seems to only function in specific post-Golgi pathways. How Drs2p 

activity is coupled to these pathways remains unknown, but it is essential that Drs2p 

maintains its appropriate localization to the TGN/early endosome system. To do this, 

Drs2p primarily cycles between the TGN and the early endosome, and it occasionally 

traffics to the plasma membrane where it is rapidly endocytosed and efficiently retrieved 

to the TGN from early endosomes. Endocytosis of Drs2p is mediated by multiple signals, 

including two NPFXD motifs near the C terminus and PEST-like sequences near the N 

terminus for ubiquitin-dependent endocytosis. The NPFXD motifs can be specifically 

recognized by Sla1p, part of an endocytic coat/adaptor complex with clathrin, Pan1p, 

End3p, and Sla2p. When both ubiquitin- and NPFXD- dependent endocytic mechanisms 

are abrogated, Drs2p accumulates on the plasma membrane. In pan1-20 

temperature-sensitive mutants, mislocalization of Drs2p to the plasma membrane is lethal 

to the cell, demonstrating a requirement for Drs2p at the TGN and endosomes to sustain 

viability of pan1-20. 

AP-1 and GGA proteins are two classes of clathrin adaptors that play both 

redundant and nonredundant roles in transport between the TGN and endosomes. AP-1 is 

required for the anterograde transport of Drs2p to the early endosome, while GGA 

proteins have little impact on Drs2p trafficking. Interestingly, Drs2p is implicated in 

AP-1/clathrin function but does not appear to contribute significantly to the GGA/clathrin 
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pathway. These observations indicate that Drs2p activity is tightly coupled to 

AP-1/clathrin coated vesicle budding, and that Drs2p becomes a cargo of these vesicles 

during their formation. Drs2p and AP-1 act in close proximity as they can be crosslinked 

in a complex. It remains to be determined whether Drs2p and AP-1 directly interact and if 

Drs2p has a sorting signal recognized by AP-1. Interestingly, Drs2p and clathrin are 

required for biogenesis of a class of dense exocytic vesicles, but Drs2p does not appear to 

be efficiently incorporated into these vesicles.  

Despite these findings, many mysteries still remain. Although Drs2p is directly 

responsible for the translocation of NBD-PS across the TGN membrane, PS deficient 

mutants transport and process proteins normally in the secretory pathway, and still require 

Drs2p for vesicle formation. These results strongly suggest that Drs2p must pump some 

other substrates that may play a more critical role in transport vesicle formation. Drs2p 

appears to weakly translocate PE, and it is possible that the precise lipid translocated is less 

important than the physical displacement of lipid to distort the membrane. Purification and 

reconstitution of Drs2p in liposomes with defined lipid composition will help us to better 

understand the biochemical function of this protein. Moreover, the C-terminal tail of Drs2p 

has been found to be essential for its function and mediates a direct interaction with Gea2p, 

an ARF-GEF, by the Gea2p interacting motif (GIM). Adjacent to the GIM, there is another 

motif conserved among all Drs2p homologues that is homologous to a lipid-binding motif 

in Vps36p. Whether these interactions with proteins or lipids have a regulatory role for 
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Drs2p activity is not clear. More investigation will be needed to address these 

fundamentally important questions.  
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