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INTRODUCTION

This work studies quantum symmetries and 2d conformal field theory (CFT) from a unitary point

of view. The mathematics lying behind these two things are unitary modular tensor categories and

unitary vertex operator algebras respectively. Our goal in this work is, roughly speaking, to prove

that the modular tensor categories constructed from a unitary vertex operator algebra are unitary.

Most of this work is adapted from the author’s papers [Gui17a, Gui17b].

Quantum symmetries: subfactors, low dimensional topology, and 3d TQFT

The story of quantum symmetries begins with V. Jones’ subfactor theory in [Jon83]. Due to the

Galois correspondence between a finite groups G and its fixed point subfactors MG under an outer

action of G on a hyperfinite II1 factor M1, the general subfactor theory is regarded as a quantum

Galois theory. The first striking result of quantum symmetries is the non-integer but quantized index

values

t4 cos2 π

n
: n � 3, 4, 5, . . . u Y r4,�8q

of finite-index subfactors proved in [Jon83]. It was soon realized that the Temperley-Lieb algebras

and a quantum trace function (the Markov trace) on them, which were extracted from finite index

subfactors in [Jon83], produce a non-trivial link invariant: the Jones polynomial ([Jon85]). Thus

began the interactions between quantum symmetries and low-dimensional topology.

A key observation in [Jon85] is that the Temperley-Lieb algebra obtained from a subfactor

gives a unitary braid group representation, and the quantum trace of braids gives the link invariant.

E.Witten made a breakthrough in [Wit89]. He gave an interpretation of the Jones polynomial via

Chern-Simons topological quantum field theory (TQFT). Witten’s 3d TQFT not only reproduces the

braid group representations and the quantum trace in [Jon85], which therefore reproduces the Jones

polynomial, but also gives us new interesting 3d manifold invariants and, more generally, invariants

of (framed) links in general closed oriented 3d manifolds.
1A factor is a von Neumann algebra with trivial center. A von Neumann algebra is a strongly-closed self-adjoint

unital subalgebra of the �-algebra BpHq of bounded operators on a Hilbert space H. A factor is called type II1 if it has a
faithful trace.
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Quantum symmetries: unitary modular tensor categories

Witten’s approach based on path integral quantization of classical Chern-Simons action cannot

be adopted directly by mathematicians, so we would like to see a mathematically rigorous construc-

tion of Witten’s 3d TQFT satisfying the axioms proposed by Atiyah [Ati88]. This was achieved by

Reshetikhin and Turaev. In [RT91] and [Tur16], they constructed unitary 3d TQFTs from unitary

modular tensor categories (UMTCs). A modular tensor category (MTC) is a tensor category with

certain structural isomorphisms (associators, braid operators, twists) and non-degeneracy proper-

ties (rigidity and modularity); unitarity of a MTC partly means that the structural isomorphisms

are unitary operators. Besides 3d TQFTs, one can also construct subfactors from UMTCs. (See,

for example, [Wen98] section 4.) So UMTC seems to provide us a (if not the) correct context to

understand different aspects of quantum symmetries: subfactors, link and 3d manifold invariants,

3d TQFT. The theory of UMTC looks so powerful. One might doubt if there exist many good

examples. Where do UMTCs come from? How can we construct examples of UMTC?

The earliest examples of UMTCs defined rigorously in math are constructed from representa-

tions of Hopf algebras (quantum groups at certain roots of unity, quantum doubles of finite groups).

(See [BK01] or [Tur16] for a detailed treatment. For general references, we also recommend

[Row06].) The quantum group construction produces the same TQFT as Witten’s Chern-Simons

theory does.

An even broader way to construct UMTCs is through conformal field theory (CFT). In fact, it

is even conjectured that all (unitary) MTCs can be constructed from (unitary) chiral CFTs. In the

physics literature, due to the work of Moore and Seiberg [MS88, MS89], people knew very early

how to construct MTCs from chiral CFTs (earlier than the Hopf algebra construction). However, it

has always been a big problem to realize this construction in mathematics, since Moore-Seiberg’s

works are based on some assumptions that are natural in physics but not easy to verify in math. I

explain briefly these assumptions in the following.

From vertex operator algebras to modular tensor categories

A CFT is a 2d quantum field theory with local conformal symmetry. Let us take the Euclidean

point of view. Then the elements of the local conformal group on R2 are local holomorphic and anti-
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holomorphic functions on C. This suggests that we first study the chiral (which means holomorphic)

and the anti-chiral (antiholomorphic) field operators in a given CFT. The algebra formed by the

chiral field operators of a CFT is called a vertex operator algebra (VOA) (usually denoted by V ).

To study general field operators using chiral ones, one must introduce intertwining operators.

Given three representations Wi,Wj ,Wk of V , a type
�
k
i j

�
intertwining operator of V is a multi-

valued holomorphic function on Czt0u whose values are linear operators mapping Wi bWj “al-

most” into Wk. Moreover, these values (linear maps) “intertwine” the actions of V on Wi,Wj , and

Wk. In the physics literature, intertwining operators are called conformal blocks, because a general

field operator of a CFT can be decomposed as a sum of products of an intertwining operator with

the complex conjugate of another one. In the cases that we are interested in, this decomposition is

finite, and the CFTs are called rational.

Moore and Seiberg’s construction of MTCs from rational chiral CFTs is based on the assumption

that the intertwining operators of V satisfy braiding, fusion, and modular invariance properties. In

short, these properties mean that different ways of constructing correlation functions on a general

Riemann surface with holes by “attaching” intertwining operators (regarded as 3-point functions)

on genus 0 Riemann surfaces with 3 holes (the pants) are equivalent (see figure 1).

Figure 1

Giving a mathematically rigorous proof of all these assumptions has long been an open problem.

Many people have made contributions to this problem, but the first complete and general proof was

given by Y.Huang. We refer the reader to [HL13] for a discussion of this issue. Thus, the problem

of constructing MTCs from rational chiral CFTs (i.e., from rational VOA) was solved.

3



The problem of unitarity

We still need to prove that the MTCs constructed from rational unitary VOAs are unitary, which

is the goal of our work. To the author’s knowledge, previously no one has treated this problem

seriously. But why is this problem important? And what should we do to prove this unitarity?

We first answer the first question. We give three reasons for studying the unitarity of MTCs.

(a) To prove that the 3d TQFT constructed from a MTC (in the sense of Reshetikhin-Turaev)

is unitary, one must assume that the MTC is unitary. For a general 3d TQFT, the state spaces

associated to the boundary 2d manifolds (with holes) do not carry inner products, i.e., we only have

vector spaces, but not Hilbert spaces for our TQFT. To have inner products, we must require the

unitarity of the MTC. For details, see [Tur16] section IV.11.

(b) One can construct subfactors only from unitary MTCs. The reason is plain: an operator

algebra is a *-algebra of operators on a Hilbert space. Only UMTCs give us Hilbert spaces.

(c) Besides Moore-Seiberg’s construction of MTCs from chiral CFTs (i.e., from VOAs), which

is by nature geometric, there is a more analytic approach based on the idea of R.Haag’s algebraic

quantum field theory (AQFT) ([Haag]). In this approach people consider, rather than the vertex

algebras of holomorphic field operators localized at points, the nets (precosheafs) of associative

*-algebras of bounded operators localized on the open intervals in S1. These nets of operator

algebras are called conformal nets. The tensor product of modules of a conformal net is defined

using Connes’ relative tensor product [Con80], and the tensor categories for conformal nets defined

in this way are manifestly unitary. See [Kaw15] and the reference therein. It is an open question

whether the MTCs constructed from VOAs and from conformal nets are equivalent. A.Wassermann

made the first and very important step toward solving this problem. In ([Was98]) he gave a general

strategy to show that the fusion rules in the two tensor categories are equal, the main idea of which

also plays a central role in our present work. However, in order to completely solve the equivalence

problem, one first needs to prove the unitarity of the MTCs associated to unitary rational VOAs.

See [Gui17a] introduction for a detailed discussion.

As for the second question, let us first make it clear the starting point of our theory: we assume

that our rational VOA V is unitary, which roughly means that V satisfies reflection positivity. In
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particular, V has a *-structure. We also assume that any representation (module) W of V is uni-

tarizable, which means that we can equip W with an inner-product, so that the action of V on W

preserves the �-structure. (Rigorous definitions can be found in chapter 1.) Unitarity of VOAs and

their representations are well-studied for many examples (see chapter 8).

But proving the unitarizability of all representations of a given unitary VOA V is far from

enough to show that the MTC constructed from the unitary representations of V is unitary. In

fact, for any unitary representations Wi,Wj of V , the tensor product Wi bWj , which again is a

representation of V , cannot be defined in the classical way as the algebraic tensor product ofWi,Wj .

It is defined indirectly using the (finite-dimensional) vector spaces of intertwining operators of V .

Therefore, even though we know that the representation Wi bWj is unitarizable, it still remains

for us to choose a canonical unitary structure (or more explicitly, a canonical inner product Λ)

on Wi bWj . The word “canonical” means that such inner product cannot be chosen arbitrarily:

it should make the structural maps of the MTC (associators, braid operators, twists...) unitary.

Equivalently, we should define an inner product on each vector space of intertwining operators,

such that in addition to some small requirements, the braid matrices, the fusion matrices, and the

S-matrices (these are the matrices that relate the different ways of attaching intertwining operators

indicated in figure 1) are unitary.

As we will see, it is not hard to define such a Λ as a sesquilinear form on Wi bWj . Due to the

non-degeneracy property of the MTC of V proved by Y.Huang, it is also not hard to prove that Λ is

non-degenerate. The main difficulty, however, is to prove the positivity of Λ, and such a proof will

occupy the major part of our work. Once we have shown that the Λ we choose is positive, which

means that Λ is an inner product, the unitarity of the MTC of V follows easily.

Outline

In chapter 1 we review some of the basic definitions of unitary VOAs, their unitary representa-

tions, and intertwining operators. In chapter 2, we review the braid and fusion relations of intertwin-

ing operators proved by Y.Huang. We also review Huang-Lepowsky’s construction of MTCs from

rational VOAs, the basic idea of which dates back to Moore-Seiberg. Our proof of the positivity

of Λ relies on the energy-bounds condition for vertex operators and intertwining operators. This

condition allows us to connect unitary VOAs with conformal nets. This will be discussed in chapter

5



3 and 4.

In practice, it is often much easier to show that not all but only a generating set of intertwin-

ing operators satisfy energy bounds condition. But then one needs the generalized intertwining

operators to bridge a gap between VOAs and conformal nets. We discuss generalized intertwin-

ing operators in chapter 5. In chapter 6 we define a non-degenerate sesquilinear form Λ on each

Wi bWj , and use techniques in conformal nets to show that Λ is positive. In chapter 7 we prove

the unitarity of the MTCs. Our theory is applied to unitary minimal models and WZW models of

certain types in chapter 8.

Notations.

In this paper, we assume that V is a vertex operator algebra of CFT type. Except in chapter 1,

we assume that V also satisfies the following conditions:

(1) V is isomorphic to V 1. (0.1)

(2) Every N-gradable weak V -module is completely reducible. (0.2)

(3) V is C2-cofinite. (0.3)

(See [Hua05b] for the definitions of these terminologies.) The following notations are used

throughout this paper.

At: the transpose of the linear operator A.

A:: the formal adjoint of the linear operator A.

A�: the ajoint of the possibly unbounded linear operator A.

A: the closure of the pre-closed linear operator A.

Ci: the antiunitary map Wi ÑWi.

C� � tz P C : z � 0u.

ConfnpC�q: the n-th configuration space of C�.�ConfnpC�q: the universal covering space of ConfnpC�q.

DpAq: the domain of the possibly unbounded operator A.

{dθ � eiθ

2π dθ.
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erpe
iθq � eirθ p�π   θ   πq.

E : a complete list of mutually inequivalent irreducible V -modules.

Eu: the set of unitary V -modules in E .

HomV pWi,Wjq: the vector space of V -module homomorphisms from Wi to Wj .

Hi: the norm completion of the vector space Wi.

Hr
i : the vectors of Hi that are inside Dpp1� L0q

rq.

H8
i �

�
r¥0 Hr

i .

Ic: the complement of the open interval I .

I1 �� I2: I1, I2 P J and I1 � I2.

idi � idWi : the identity operator of Wi.

J : the set of (non-empty, non-dense) open intervals of S1.

J pUq: the set of open intervals of S1 contained in the open set U .

Ps: the projection operator of Wi onto Wipsq.

rptq : S1 Ñ S1: rptqpeiθq � eipθ�tq.

rptq : C8pS1q Ñ C8pS1q: rptqh � h � rp�tq.

ReppV q: the modular tensor category of the representations of V .

RepupV q: the category of the unitary representations of V .

Repu
GpV q: When G is additively closed, it is the subcategory of RepupV q whose objects are unitary

V -modules in G. When G is multiplicatively closed, then it is furthermore equipped with the struc-

ture of a ribbon tensor category.

S1 � tz P C : |z| � 1u.

V
�
k
i j

�
: the vector space of type

�
k
i j

�
intertwining operators.

W0 � V , the vacuum module of V .

Wi: a V -module.xWi: the algebraic completion of Wi.

Wi �W 1
i : the contragredient module of Wi.

Wij �Wi bWj : the tensor product of Wi,Wj .

wpiq: a vector in Wi.

wpiq � Ciw
piq.

x: a formal variable.

7



Yi: the vertex operator of Wi.

Yα: an intertwining operator of V .

Yα � Yα: the conjugate intertwining operator of Yα.

Yα� � Y:
α: the adjoint intertwining operator of Yα.

YB�α � B�Yα: the braided intertwining operators of Yα.

YCα � CYα: the contragredient intertwining operator of Yα.

Y ii0: the creation operator of Wi.

Y0
ii

: the annihilation operator of Wi.

∆i: the conformal weight of Wi.

∆w: the conformal weight (the energy) of the homogeneous vector w.

Θk
ij : a set of linear basis of V

�
k
i j

�
.

Θk
i� �

²
jPE Θk

ij ,Θ
k
�j �

²
iPE Θk

ij ,Θ
�
ij �

²
kPE Θk

ij .

θ: the PCT operator of V , or a real variable.

ϑi: the twist of Wi.

ν: the conformal vector of V .

σi,j : the braid operator σi,j : Wi bWj ÑWj bWi.

Ω: the vacuum vector of V .

8



CHAPTER 1

INTERTWINING OPERATORS OF UNITARY VERTEX OPERATOR ALGEBRAS

We refer the reader to [FHL93] for the general theory of VOAs, their representations, and inter-

twining operators. Other standard references on VOAs include [FB04, FLM89, Kac98, LL12]. Uni-

tary VOAs were defined by Dong, Lin in [DL14]. Our approach in this article follows [CKLW15].

1.1 Unitary VOAs

Let x be a formal variable. For a complex vector space U , we set

U rrxss �

" ¸
nPZ¥0

unx
n : un P U

*
, (1.1)

Uppxqq �

" ¸
nPZ

unx
n : un P U, un � 0 for sufficiently small n

*
, (1.2)

U rrx�1ss �

" ¸
nPZ

unx
n : un P U

*
, (1.3)

Utxu �

"¸
sPR

usx
s : us P U

*
. (1.4)

We define the formal derivative d
dx to be

d

dx

� ¸
nPR

unx
n



�
¸
nPR

nunx
n�1. (1.5)

Let V be a complex vector space with grading V �
À

nPZ V pnq. Assume that dimV pnq   8

for each n P Z, and dimV pnq � 0 for n sufficiently small. We say that V is a vertex operator

algebra (VOA), if the following conditions are satisfied:

(a) There is a linear map

V Ñ pEnd V qrrx�1ss

u ÞÑ Y pu, xq �
¸
nPZ

Y pu, nqx�n�1

9



(where Y pu, nq PEnd V ),

such that for any v P V , Y pu, nqv � 0 for n sufficiently large.

(b) (Jacobi identity) For any u, v P V and m,n, h P Z, we have

¸
lPZ¥0

�
m

l



Y pY pu, n� lqv,m� h� lq

�
¸
lPZ¥0

p�1ql
�
n

l



Y pu,m� n� lqY pv, h� lq �

¸
lPZ¥0

p�1ql�n
�
n

l



Y pv, n� h� lqY pu,m� lq.

(1.6)

(c) There exists a vector Ω P V p0q (the vacuum vector) such that Y pΩ, xq � idV .

(d) For any v P V and n P Z¥0, we have Y pv, nqΩ � 0, and Y pv,�1qΩ � v. This condition is

simply written as limxÑ0 Y pv, xqΩ � v.

(e) There exists a vector ν P V p2q (the conformal vector) such that the operators Ln � Y pν, n�1q

(n P Z) satisfy the Virasoro relation: rLm, Lns � pm � nqLm�n �
1
12pm

3 �mqδm,�nc. Here the

number c P C is called the central charge of V .

(f) If v P V pnq then L0v � nv. n is called the conformal weight (or the energy) of v and will be

denoted by ∆v. L0 is called the energy operator.

(g) (Translation property) d
dxY pv, xq � Y pL�1v, xq.

Convention 1.1. In this article, we always assume that V is a VOA of CFT type, i.e., V p0q � CΩ,

and dimV pnq � 0 when n   0.

Given a (anti)linear bijective map φ : V Ñ V , we say that φ is an (antilinear) automorphism

of V if the following conditions are satisfied:

paqφΩ � Ω, φν � ν. (1.7)

pbqFor any v P V, φY pv, xq � Y pφv, xqφ. (1.8)

It is easy to deduce from these two conditions that φLn � Lnφ (for any n P Z). In particular, since

φ commutes with L0, we have φV pnq � V pnq for each n P Z.

10



Definition 1.2. Suppose that V is equipped with an inner product x�|�y (antilinear on the second

variable) satisfying xΩ|Ωy � 1. Then we call V a unitary vertex operator algebra, if there exists

an antilinear automorphism θ, such that for any v P V we have

Y pv, xq: � Y pexL1p�x�2qL0θv, x�1q, (1.9)

where : is the formal adjoint operation. More precisely, this equation means that for any v, v1, v2 P

V we have

xY pv, xqv1|v2y � xv1|Y pe
xL1p�x�2qL0θv, x�1qv2y. (1.10)

Remark 1.3. Such θ, if exists, must be unique. Moreover, θ is anti-unitary (i.e. xθv1|θv2y � xv2|v1y

for any v1, v2 P V ), and θ2 � idV (i.e. θ is an involution). We call θ the PCT operator of V . (cf.

[CKLW15] proposition 5.1.) In this article, θ denotes either the PCT operator of V , or a real

variable. These two meanings will be used in different situations. So no confusion will arise.

We say that a vector v P V is homogeneous if v P V pnq for some n P Z. If moreover, L1v � 0,

we say that v is quasi-primary. It is clear that the vacuum vector Ω is quasi-primary. If we let

u � v � ν,m � 0, n � 2, h � �1 in the Jacoby identity (1.6), then we may compute that

L1ν � Y pL1ν,�1qΩ � 0. We conclude that the conformal vector is quasi-primary.

Now suppose that V is unitary and v P V is quasi-primary, then equation (1.9) can be simplified

to

Y pv, xq: � p�x�2q∆vY pθv, x�1q. (1.11)

If we take v � ν, then we obtain

L:n � L�n pn P Zq. (1.12)

In particular, we have L:0 � L0. This shows that different energy subspaces are orthogonal, i.e., the

grading V �
À

n¥0 V pnq is orthogonal under the inner product x�|�y .
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1.2 Unitary representations of unitary VOAs

Definition 1.4. Let Wi be a complex vector space with grading Wi �
À

sPRWipsq. Assume

dim Wipsq   8 for each s P R, and dimWipsq � 0 for s sufficiently small. We say that Wi is a

representation of V (or V -module), if the following conditions are satisfied:

(a) There is a linear map

V Ñ pEnd Wiqrrx
�1ss

v ÞÑ Yipv, xq �
¸
nPZ

Yipv, nqx
�n�1

(where Y pv, nq PEnd Wi),

such that for any wpiq P Wi, Yipv, nqwpiq � 0 for n sufficiently large. Yi is called the vertex

operator of Wi.

(b) (Jacobi identity) For any u, v P V and m,n, h P Z, we have

¸
lPZ¥0

�
m

l



YipY pu, n� lqv,m� h� lq

�
¸
lPZ¥0

p�1ql
�
n

l



Yipu,m� n� lqYipv, h� lq �

¸
lPZ¥0

p�1ql�n
�
n

l



Yipv, n� h� lqYipu,m� lq.

(1.13)

(c) YipΩ, xq � idWi .

(d) The operators Ln � Yipν, n � 1q (n P Z) satisfy the Virasoro relation: rLm, Lns � pm �

nqLm�n �
1
12pm

3 �mqδm,�nc, where c is the central charge of V .

(e) If wpiq P Wipsq then L0w
piq � swpiq. s is called the conformal weight (or the energy) of wpiq

and will be denoted by ∆wpiq , and L0 is called the energy operator.

(f) (Translation property) d
dxYipv, xq � YipL�1v, xq.

Clearly V itself is a representation of V . We call it the vacuum module of V . Modules of V

are denoted by Wi,Wj ,Wk, . . . , or simply i, j, k, . . . . The vacuum module is sometimes denoted

by 0. We let idi � idWi and id0 � idV be the identity operators on Wi and V respectively.

A V -module homomorphism is, by definition, a linear map φ : Wi Ñ Wj , such that for any

12



v P V we have φYipv, xq � Yjpv, xqφ. It is clear that φ preserves the gradings of Wi,Wj , for φ

intertwines the actions of L0 on these spaces. The vector space of homomorphisms Wi Ñ Wj is

denoted by HomV pWi,Wjq.

Remark 1.5. If the V -moduleWi has a subspaceW that is invariant under the action of V , then the

restricted action of V onW produces a submodule ofWi. In fact, the only non-trivial thing to check

is that W inherits the grading of Wi. But this follows from the fact that L0, when restriced to W , is

diagonalizable on W . (In general, if a linear operator of a complex vector space is diagonalizable,

then by polynomial interpolations, it must also be diagonalizable on any invariant subspace.)

From the remark above, we see that a module Wi is irreducible if and only if the vector space

Wi has no V -invariant subspace. If Wi is irreducible, we call

∆i � infts : dimWipsq ¡ 0u

the conformal weight of Wi. It is easy to show that Wi �
À

nPZ¥0
Wipn�∆iq.

We now review the definition of contragredient modules introduced in [FHL93]. Let againWi be

a V -module. First we note that the dual spaceW �
i ofWi has the gradingW �

i �
±
sPRWipsq

�. Here

Wipsq
� is the dual space of the finite dimensional vector space W psq, and if s � t, the evaluations

of Wipsq
� on Wiptq are set to be zero. Now we consider the subspace Wi � W 1

i �
À

sPRW psq�

of W �. We define the action of V on Wi as follows:

Yipv, xq � Yipe
xL1p�x�2qL0v, x�1qt (1.14)

where the superscript “t” stands for the transpose operation. In other words, for any wpiq P Wi �

W �
i and wpiq PWi, we have

xYipv, xqw
piq, wpiqy � xwpiq, Yipe

xL1p�x�2qL0v, x�1qwpiqy. (1.15)

We refer the reader to [FHL93] section 5.2 for a proof that pWi, Yiq is a representation of V . This

representation is called the contragredient module of Wi.

In general, for each V -module Wi, the vector space xWi �
±
sPRWipsq is called the algebraic

13



completion of Wi. The action Yi of V on Wi can be clearly extended onto xWi. It is clear that xWi

can be identified with W �
i

.

Equation (1.14) can be written in terms of modes: if v P V is a quasi-primary vector with

conformal weight ∆v, then

Yipv, nq �
¸

mPZ¥0

p�1q∆v

m!
YipL

m
1 v,�n�m� 2� 2∆vq

t. (1.16)

In particular, by letting v � ν, we obtain Lt
n � L�n. More precisely, if wpiq P Wi, w

piq P Wi, we

have xLnwpiq, wpiqy � xwpiq, L�nw
piqy.

The contragredient operation is an involution: Wi is the contragredient module of Wi. In par-

ticular, we have

Yipv, xq � Yipe
xL1p�x�2qL0v, x�1qt. (1.17)

Hence we identify i with i, the contragredient module of i.

Now we turn to the definition of unitary VOA modules.

Definition 1.6. Suppose that V is unitary and Wi is a V -module equipped with an inner product

x�|�y. We call Wi unitary if for any v P V we have

Yipv, xq
: � Yipe

xL1p�x�2qL0θv, x�1q. (1.18)

In the remaining part of this section, we assume that V is unitary. LetWi be a unitary V -module.

Then formula (1.18), with v � ν, implies that the action of the Virasoro subalgebras tLnu on Wi

satisfies L:n � L�n. In particular, L0 is symmetric, and hence the decompsition Wi �
À

sPRWipsq

is orthogonal. If we let Ps be the projection operator of Wi onto Wipsq (this operator can be defined

whether Wi is unitary or not), we have P :
s � Ps.

Proposition 1.7 (Positive energy). If Wi is unitary, then we have the grading Wi �
À

s¥0Wipsq.

In particular, if Wi is irreducible, then ∆i ¥ 0.

Proof. We choose an arbitrary non-zero homogeneous vector wpiq P Wi and show that ∆wpiq ¥ 0.
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First, assume that wpiq is quasi-primary (i.e., L1w
piq � 0). Then we have

2∆wpiqxw
piq|wpiqy � 2xL0w

piq|wpiqy � xrL1, L�1sw
piq|wpiqy � ‖L�1w

piq‖2¥ 0,

which implies that ∆wpiq ¥ 0. In general, we may find m P Z¥0 such that Lm1 w
piq � 0, and

Lm�1
1 wpiq � 0. So ∆Lm1 w

piq ¥ 0, and hence ∆wpiq � ∆Lm1 w
piq �m ¥ 0.

Proposition 1.8. If Wi is unitary, then its contragredient module Wi is unitarizable.

Proof. Assume that Wi has inner product x�|�y . Define an anti-linear bijective map Ci : Wi Ñ Wi

such that xCiw
piq
1 , w

piq
2 y � xw

piq
2 |w

piq
1 y for any wpiq1 , w

piq
2 P W . We simply write Ciwpiq � wpiq.

Now we may define the inner product on Wi such that Ci becomes antiunitary.

For any v P V , we show that Yipv, xq satisfies equation (1.18). Note that for any A P EndpWiq,

if A has a transpose At P EndpWiq, then A also has a formal adjoint A: P EndpW q, and it satisfies

A: � C�1
i AtCi. Thus we have

Yipv, xq � Yipe
xL1p�x�2qL0v, x�1qt

�CiYipe
xL1p�x�2qL0v, x�1q:C�1

i � CiYipθv, xqC
�1
i , (1.19)

which implies that Yi satisfies (1.18).

From now on, if Wi is a unitary V -module, we fix an inner product on Wi to be the one con-

structed in the proof of proposition 1.8. We viewWi as a unitary V -module under this inner product.

Note that if we let v � ν, then (1.19) implies that LnCi � CiLn (n P Z).

Since we use W0 (or simply 0) to denote the vacuum module V , it is natural to let C0 represent

the conjugation map from V onto its contragredient module W0 � V 1. By equation (1.19) (with

i � 0) and (1.8), we have:

Corollary 1.9. C0θ : V Ñ V 1 is a unitary V -module isomorphism.

Therefore, we identify the vacuum module V with its contragredient module V 1. This fact can be

simply written as 0 � 0. The operators θ andC0 are also identified. The evaluation map VbV 1 Ñ C

is equivalent to the symmetric bilinear form V b V Ñ C defined by xv1, v2y � xv1|θv2y, where

v1, v2 P V .
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Recall that we also identify Wi with W
i
. It is easy to see that the anti-unitary map Ci : Wi Ñ

Wi �W
i

satisfies Ci � C�1
i .

We now give a criterion for unitary V -modules. First, we say that V is generated by a subset

E if V is spanned by vectors of the form Y pv1, n1q � � �Y pvk, nmqΩ where v1, v2, . . . , vm P E and

n1, . . . , nm P Z. By the Jacoby identity (1.13) (with m � 0), any vertex operator Yi is determined

by its values on E.

Now we have a useful criterion for unitarity of V -modules.

Proposition 1.10. If V is unitary, Wi is a V -module equipped with an inner product x�|�y, E is a

generating subset of V , and equation (1.18) holds under the inner product x�|�y for any v P E, then

Wi is a unitary V -module.

Proof. For any v P V we define rYipv, xq � Yipe
xL1p�x�2qL0θv, x�1q:. As in the proof of propo-

sition 1.8, we have rYipv, xq � C�1
i Yipθv, xqCi. It follows that rYi satisfies the Jacobi identity. Since

Yi also satisfies the Jacobi identity, and since Yipv, xq � rYipv, xq for any v P E, we must have

Yipv, xq � rYipv, xq for all v P V , which proves that Wi is unitary.

1.3 Intertwining operators of unitary VOAs

Definition 1.11. Let Wi,Wj ,Wk be V -modules. A type
�
Wk
WiWj

�
(or type

�
k
i j

�
) intertwining oper-

ator Yα is a linear map

Wi Ñ pHompWj ,Wkqqtxu,

wpiq ÞÑ Yαpwpiq, xq �
¸
sPR

Yαpwpiq, sqx�s�1

(where Yαpwpiq, sq P HompWj ,Wkq),

such that for any wpjq PWj , Yαpwpiq, sqwpjq � 0 for s sufficiently large.

(b) (Jacobi identity) For any u P V,wpiq PWi,m, n P Z, s P R, we have

¸
lPZ¥0

�
m

l



Yα
�
Yipu, n� lqwpiq,m� s� l

�
�
¸
lPZ¥0

p�1ql
�
n

l



Ykpu,m� n� lqYαpwpiq, s� lq

16



�
¸
lPZ¥0

p�1ql�n
�
n

l



Yαpwpiq, n� s� lqYjpu,m� lq. (1.20)

(c) (Translation property) d
dxYαpw

piq, xq � YαpL�1w
piq, xq.

Intertwining operators will be denoted by Yα,Yβ,Yγ , . . . , or just α, β, γ, . . . .

Note that if we let n � 0 and m � 0 respectively, (1.20) becomes:

¸
l¥0

�
m

l



YαpYipu, lqwpiq,m� s� lq � Ykpu,mqYαpwpiq, sq � Yαpwpiq, sqYjpu,mq, (1.21)

YαpYipu, nqwpiq, sq

�
¸
l¥0

p�1ql
�
n

l



Ykpu, n� lqYαpwpiq, s� lq �

¸
l¥0

p�1ql�n
�
n

l



Yαpwpiq, n� s� lqYjpu, lq.

(1.22)

In particular, if we let u � ν and m � 0, 1 respectively, the first equation implies that

rL�1,Yαpwpiq, xqs � YαpL�1w
piq, xq �

d

dx
Yαpwpiq, xq; (1.23)

rL0,Yαpwpiq, xqs � YαpL0w
piq, xq �

d

dx
Yαpwpiq, xq. (1.24)

The second equation is equivalent to that

rL0,Yαpwpiq, sqs � p�s� 1�∆wpiqqYαpw
piq, sq if wpiq is homogeneous. (1.25)

Hence Yαpwpiq, sq raises the energy by �s� 1�∆wpiq . Equation (1.25) implies the relation

zL0Yαpwpiq, xqz�L0 � YαpzL0wpiq, zxq (1.26)

(cf. [FHL93] section 5.4), where z is either a non-zero complex number, or a formal variable which

commutes with and is independent of x. In the former case, we need to assign to z an argument,

i.e., a real number arg z such that z � |z|ei arg z . Then, for any s P R, we let zs � |z|seis arg z , i.e.,

we let the argument of zs be s arg z.

Convention 1.12. In this article, unless otherwise stated, we make the following assumptions:
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(1) If t P R then arg eit � t.

(2) If z P C� with argument arg z, then arg z � � arg z. If s P R, then argpzsq � s arg z.

(3) If z1, z2 P C� with arguments arg z1 and arg z2 respectively, then argpz1z2q � arg z1 � arg z2.

Definition 1.13. Let U be an open subset of C and f : U Ñ C� be a continuous function. Suppose

that z1, z2 P U , and for any t P r0, 1s, tz1�p1� tqz2 P U . Then we say that the argument arg fpz2q

is close to arg fpz1q as z2 Ñ z1, if there exists a (unique) continuous function A : r0, 1s Ñ R,

such that Ap0q � arg z1, Ap1q � arg z2, and that for any t P r0, 1s, Aptq is an argument of

fptz1 � p1� tqz2q.

Let V
�
k
i j

�
be the vector space of type

�
k
i j

�
intertwining operators. If Yα P V

�
k
i j

�
, we say that

Wi,Wj and Wk are the charge space, the source space, and the target space of Yα respectively.

We say that Yα is irreducible if Wi,Wj ,Wk are irreducible V -modules. If Yα is irreducible, then

by (1.25), it is easy to see that Ypwpiq, sq � 0 except possibly when s P ∆i � ∆j � ∆k � Z. If V

is unitary, and Wi,Wj ,Wk are unitary V -modules, then we say that Yα is unitary.

We have several ways to construct new intertwining operators from old ones. First, for any Yα P

V
�
k
i j

�
, we define its contragredient intertwining operator (cf. [FHL93]) CYα � YCα P V

� j
i k

�
by letting

YCαpwpiq, xq � YαpexL1pe�iπx�2qL0wpiq, x�1qt, wpiq PWi. (1.27)

In other words, if wpjq PWj and wpkq PWk, then

xYCαpwpiq, xqwpkq, wpjqy � xwpkq,YαpexL1pe�iπx�2qL0wpiq, x�1qwpjqy. (1.28)

We also define, for each Yα P V
�
k
i j

�
, an intertwining operator C�1Yα � YC�1α P V

� j
i k

�
such

that

YC�1αpw
piq, xq � YαpexL1peiπx�2qL0wpiq, x�1qt, wpiq PWi. (1.29)

One can show that C�1Cα � CC�1α � α. (To prove this, we first show that pxL1qx
L0
0 �
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xL0
0 pxx0L1q by checking this relation on any homogeneous vector. We then show that

exL1xL0
0 � xL0

0 exx0L1 , (1.30)

where x, x0 are independent commuting formal variables. Finally, we may use (1.30) to prove the

desired relation.)

We now define, for any Yα P V
�
k
i j

�
, a pair of braided intertwining operators (cf. [FHL93])

B�Yα � YB�α P V
�
k
j i

�
in the following way: If wpiq PWi, w

pjq PWj , then

YB�αpwpjq, xqwpiq � exL�1Yαpwpiq, eiπxqwpjq, (1.31)

YB�αpwpjq, xqwpiq � exL�1Yαpwpiq, e�iπxqwpjq. (1.32)

It’s easy to see that B	 is the inverse operation of B�. We refer the reader to [FHL93] chapter 5

for a proof that contragredient intertwining operators and braided intertwining operators satisfy the

Jacobi identity.

In the remaining part of this section, we assume that V is unitary. Let Wi,Wj ,Wk be unitary

V -modules with conjugation maps Ci : Wi Ñ Wi, Cj : Wj Ñ Wj , Ck : Wk Ñ Wk respectively.

Given Yα P V
�
k
i j

�
, we define its conjugate intertwining operator Yα � Yα P V

�
k
i j

�
by setting

Yαpwpiq, xq � CkYαpwpiq, xqC�1
j , wpiq PWi. (1.33)

It is clear that Yα satisfies the Jacobi identity.

For any Yα P V
�
k
i j

�
, it is easy to check that

YB�α � YB	α, Y
C�1α

� YC	1α.

We define Y:
α � Yα� � YCα P V

� j
i k

�
and call it the adjoint intertwining operator of Yα. One

can easily check, for any wpiq PWi, that

Yα�pwpiq, xq � YαpexL1pe�iπx�2qL0wpiq, x�1q:. (1.34)
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where the symbol : on the right hand side means the formal adjoint. In other words, for any wpjq P

Wj , j, w
pkq PWk, we have

xYα�pwpiq, xqwpkq|wpjqy � xwpkq|YαpexL1pe�iπx�2qL0wpiq, x�1qwpjqy. (1.35)

If wpiq is homogeneous, we can write (1.34) in terms of modes:

Yα�pwpiq, sq �
¸

mPZ¥0

eiπ∆
wpiq

m!
YpLm1 wpiq,�s�m� 2� 2∆wpiqq

: (1.36)

for all s P R.

It is also obvious that the adjoint operation is an involution, i.e., Yα�� � Yα. Hence � :

V
�
k
i j

�
Ñ V

� j
i k

�
is an antiunitary map.

We define the cardinal number Nk
ij to be the dimension of the vector space V

�
k
i j

�
. Nk

ij is called

a fusion rule of V . The above constructions of intertwining operators imply the following:

Nk
ij � N j

ik
� Nk

ji � Nk
i j
� N j

ik
. (1.37)

We now construct several intertwining operators related to a given V -module Wi. First, note

that Yi P V
�
i

0 i

�
. It is obvious that B�Yi � B�Yi P V

�
i
i 0

�
. We define Y ii0 � B�Yi and call it the

creation operator of Wi. Using the definition of B�, we have, for any wpiq PWi, v P V ,

Y ii0pwpiq, xqv � exL�1Yipv,�xqw
piq. (1.38)

In particular, we have

Y ii0pwpiq, xqΩ � exL�1wpiq. (1.39)

We define Y0
ii

:� C�1Y ii0 � C�1B�Yi P V
�

0
i i

�
. Thus for any wpiq1 P Wi and wpiq2 P Wi, we

may use (1.39) and (1.30) to compute that

xY0
īipw

piq
1 , xqw

piq
2 ,Ωy �xw

piq
2 ,Y ii0pexL1peiπx�2qL0w

piq
1 , x�1qΩy
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�xw
piq
2 , ex

�1L�1exL1peiπx�2qL0w
piq
1 y

�xex
�1L1w

piq
2 , exL1peiπx�2qL0w

piq
1 y

�xex
�1L1w

piq
2 , peiπx�2qL0e�x

�1L1w
piq
1 y. (1.40)

Note that by (1.14), Yi � C�1Yi P V
�
i

0 i

�
. Y0

ii
� C�1B�Yi is called the annihilation operator

of Wi.

Define ϑi P EndV pWiq by setting ϑi � e2iπL0 . That ϑi is a V -module homomorphism follows

from (1.26). ϑi is called the twist of Wi. Then the intertwining operators Y0
ii

and Y0
ii

can be related

in the following way:

Proposition 1.14.

Y0
ii
pwpiq, xq � pB�Y0

ii
qpϑiw

piq, xq � pB�Y0
ii
qpϑ�1

i wpiq, xq, (1.41)

Y0
ii
pwpiq, xq � pB�Y0

ii
qpwpiq, xqϑi � pB�Y0

ii
qpwpiq, xqϑ�1

i . (1.42)

Proof. Using equations (1.30), (1.40), and that L1Ω � 0, we see that for any wpiq1 PWi, w
piq
2 PWi,

xpB�Y0
ii
qpϑ�1

i w
piq
1 , xqw

piq
2 ,Ωy

�xY0
ii
pw

piq
2 , e�iπxqe�2iπL0w

piq
1 ,Ωy

�xe�x
�1L1e�2iπL0w

piq
1 , peiπ	2iπx�2qL0ex

�1L1w
piq
2 y

�xe�2iπL0e�x
�1L1w

piq
1 , peiπ	2iπx�2qL0ex

�1L1w
piq
2 y

�xpeiπx�2qL0e�x
�1L1w

piq
1 , ex

�1L1w
piq
2 y

�xY0
īipw

piq
1 , xqw

piq
2 ,Ωy. (1.43)

Since V is of CFT type and isomorphic to V 1 as a V -module, V is a simple VOA, i.e., V is an

irreducible V -module (cf., for example, [CKLW15] proposition 4.6-(iv)). Hence Ω is a cyclic vector

in V . By (1.21), we have xpB�Y0
ii
qpϑ�1

i w
piq
1 , xqw

piq
2 , vy � xY0

īi
pw

piq
1 , xqw

piq
2 , vy for any v P V ,

which proves (1.41). (1.42) can be proved in a similar way.
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When Wi is unitary, we also have

Y0
ii
� pY ii0q:. (1.44)

Indeed, by (1.19), Yi � Yi. Hence

Y0
ii
� C�1B�Yi � CB	Yi � pB	Yiq

: � pY ii0q:.
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CHAPTER 2

BRAIDING AND FUSION OF INTERTWINING OPERATORS

Starting from this chapter, we assume that V satisfies conditions (0.1), (0.2), and (0.3). Recall

that, by corollary 1.9, a unitary VOA automatically satisfies condition (0.1).

By [Hua05a] theorem 3.5, the fusion rules of V are finite numbers, and there are only finitely

many equivalence classes of irreducible V -modules. Let us choose, for each equivalence class

rWks of irreducible V -module, a representing element Wk, and let these modules form a finite set

tWk : k P Eu. (With abuse of notations, we also let E denote this finite set.) In other words, E is

a complete list of mutually inequivalent irreducible V -modules. We also require that V is inside E .

If, moreover, V is unitary, then for any unitarizable Wk (k P E), we fix a unitary structure on Wk.

The unitary structure on V is the standard one. We let Eu be the set of all unitary V -modules in E .

Let Wi,Wj ,Wk be V -modules. Then Θk
ij will always denote (the index set of) a basis tYα :

α P Θk
iju of the vector space V

�
k
i j

�
. If bases of the vector spaces of intertwining operators are

chosen, then for any Wi,Wk, we set Θk
i� �

²
jPE Θk

ij . The notations Θk
�j ,Θ

�
ij are understood in a

similar way.

2.1 Genus 0 correlation functions

In this section, we review the construction of genus 0 correlation functions from intertwining

operators. We first give a complex analytic point of view of intertwining operators. Let Yα P V
�
k
i j

�
.

For any wpiq PWi, w
pjq PWj , w

pkq PWk,

xYαpwpiq, zqwpjq, wpkqy � xYαpwpiq, xqwpjq, wpkqy
��
x�z

�
¸
sPR

xYαpwpiq, sqwpjq, wpkqyz�s�1 (2.1)

is a finite sum of powers of z. (Indeed, if all the vectors are homogeneous then, by (1.25), the

coefficient before each z�s�1 is zero, except when s � ∆wpiq � ∆wpjq � ∆wpkq � 1.) Since the

powers of z are not necessarily integers, (2.1) is a multivalued holomorphic function defined for

z P C� � Czt0u: the exact value of (2.1) depends not only on z, but also on arg z. We can also
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regard Yα as a multivalued pWi b Wj b Wkq
�-valued holomorphic function on C�. Note that

by proposition A.1, the transition from the formal series viewpoint to the complex analytic one is

faithful.

Convention 2.1. At this point, the notations Yαpwpiq, xq, Yαpwpiq, zq, and Yαpwpiq, sq seem con-

fusing. We clarify their meanings as follows.

Unless otherwise stated, Yαpwpiq, xq is a formal series of the formal variable x. If z � 0 is a

complex number, or if z is a complex variable (possibly taking real values), Yαpwpiq, zq is defined

by (2.1). If s is a real number, Yαpwpiq, sq is a mode of Yαpwpiq, xq, i.e., the coefficient before

x�s�1 in Yαpwpiq, xq.

Intertwining operators are also called 3-point (correlation) functions. In [Hua05a], Y. Z. Huang

constructed general n-point functions by taking the products of intertwining operators. His approach

can be sketched as follows:

For any n � 1, 2, 3, . . . , we define the configuration space ConfnpC�q to be the complex

sub-manifold of pC�qn whose points are pz1, z2, . . . , znq P ConfnpC�q satisfying that zm � zl

whenever 1 ¤ m   l ¤ n. We let �ConfnpC�q be the universal covering space of ConfnpC�q.

Let Yα1 ,Yα2 , . . . ,Yαn be intertwining operators V . We say that they form a chain of inter-

twining operators, if for each 1 ¤ m ¤ n� 1, the target space of Yαm equals the source space of

Yαm�1 . The following theorem was proved by Huang.

Theorem 2.2 (cf. [Hua05a] theorem 3.5). Suppose that Yα1 , . . . ,Yαn form a chain of intertwining

operators. For each 1 ¤ m ¤ n, we let Wim be the charge space of Yαm . We let Wi0 be the

source space of Yα1 , and let Wk be the target space of Yαn . Then for any wpi0q P Wi0 , w
pi1q P

Wi1 , . . . , w
pinq P Win , w

pkq P Wk, and z1, z2, . . . , zn P C such that 0   |z1|   |z2|   � � �   |zn|,

the expression

xYαnpwpinq, znqYαn�1pw
pin�1q, zn�1q � � �Yα1pw

pi1q, z1qw
pi0q, wpkqy (2.2)

converges absolutely, which means that the series

¸
s1,s2,...,sn�1PR

��xYαnpwpinq, znqPsn�1Yαn�1pw
pin�1q, zn�1qPsn�2
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� � �Ps1Yα1pw
pi1q, z1qw

pi0q, wpkqy
�� (2.3)

converges, where each Psm (1 ¤ m ¤ n � 1) is the projection of the target space of Yαm onto its

weight-sm component.

Note that (2.2) also converges absolutely and locally uniformly, which means that there exists

a neighborhood U � ConfnpC�q of pz1, z2, . . . , znq, and a finite number M ¡ 0, such that for any

pζ1, ζ2, . . . , ζnq P U , (2.3) is bounded by M if we replace each z1, z2, . . . with ζ1, ζ2, . . . in that

expression.

To see this, we assume, without loss of generality, that all the vectors in (2.2) are homo-

geneous, and that all the intertwining operators are irreducible. Consider a new set of coordi-

nates ω1, ω2, . . . , ωn such that zm � ωmωm�1 � � �ωn (1 ¤ m ¤ n). Then the condition that

0   |z1|   |z2|   � � �   |zn| is equivalent to that 0   |ω1|   1, . . . , 0   |ωn�1|   1, 0   |ωn|. By

(1.26), expression (2.2) as a formal series also equals

@
Yαn

�
wpinq, ωn

�
Yαn�1

�
wpin�1q, ωn�1ωn

�
� � �Yα1

�
wpi1q, ω1ω2 � � �ωn

�
wpi0q, wpkq

D
�
@
ωL0
n Yαn

�
ω�L0
n wpinq, 1

�
ωL0
n�1Yαn�1

�
pωn�1ωnq

�L0wpin�1q, 1
�
� � �

� ωL0
1 Yα1

�
pω1ω2 � � �ωnq

�L0wpi1q, 1
�
pω1ω2 � � �ωnq

�L0wpi0q, wpkq
D

�
@
ωL0
n Yαn

�
wpinq, 1

�
ωL0
n�1Yαn�1

�
wpin�1q, 1

�
� � �ωL0

1 Yα1

�
wpi1q, 1

�
wpi0q, wpkq

D
�
¹

1¤m¤n

ω
�
�

∆
wpi0q

�∆
wpi1q

�����∆
wpimq

�
m , (2.4)

where Yαmpwpimq, 1q � Yαmpwpimq, xq
��
x�1

. Since the target space of each Yαm is irreducible,

(2.4) is a quasi power series of ω1, . . . , ωn (i.e., a power series of ω1, . . . , ωn multiplied by a

monomial ωs11 � � �ωsnn , where s1, . . . , sn P C), and the convergence of (2.3) is equivalent to the

absolute convergence of the quasi power series (2.4). Therefore, pointwise absolute convergence

implies locally uniform absolute convergence.

We see that (2.2) is a multi-valued holomorphic function defined when 0   |z1|   � � �   |zn|.

We let ϕ be the multi-valued pWi0 bWi1 b � � � bWin bWkq
�-valued holomorphic function on
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t0   |z1|   � � �   |zn|u defined by (2.2). ϕ is called an pn � 2q-point (correlation) function1

of V , and is denoted by YαnYαn�1 � � �Yα1 . We define V
�

k
in in�1 ��� i0

�
to be the vector space of

pWi0 bWi1 b� � �bWin bWkq
�-valued n� 2-point functions of V . The following proposition can

be used to find a basis of V
�

k
in in�1 ��� i0

�
.

Proposition 2.3. Define a linear map Φ :

à
j1,...,jn�1PE

�
V
�

k

in jn�1



b V

�
jn�1

in�1 jn�2



b V

�
jn�2

in�2 jn�3



b � � � b V

�
j1
i1 i0


�

Ñ V
�

k

in in�1 � � � i0



,

Yαn b Yαn�1 b Yαn�2 b � � � b Yα1 ÞÑ YαnYαn�1Yαn�2 � � �Yα1 .

Then Φ is an isomorphism.

Therefore, if elements in tYα1u, . . . , tYαnu are linearly independent respectively, then the cor-

relation functions tYαnYαn�1 � � �Yα1u are also linearly independent. The proof of this proposition

is postponed to section A.2.

It was also shown in [Hua05a] that correlations functions satisfy a system of linear differen-

tial equations, the coefficients of which are holomorphic functions defined on ConfnpC�q. More

precisely, we have the following:

Theorem 2.4 (cf. [Hua05a], especially theorem 1.6). For anywpi0q PWi0 , w
pi1q PWi1 , . . . , w

pinq P

Win , w
pkq P Wk, there exist h1, . . . , hn P Z¥0, and single-valued holomorphic func-

tions a1,mpz1, . . . , znq, a2,mpz1, . . . , znq, . . . , ahm,mpz1, . . . , znq on ConfnpC�q, such that for any

pWi0bWi1b� � �bWinbWkq
�-valued pn�2q-point correlation function ϕ defined on t0   |z1|  

� � �   |zn|u, the function ϕpwpi0q, wpi1q, . . . , wpinq, wpkq; z1, z2, . . . , znq of pz1, . . . , znq satisfies the

following system of differential equations:

Bhmϕ

Bzhmm
� a1,m

Bhm�1ϕ

Bzhm�1
m

� a2,m
Bhm�2ϕ

Bzhm�2
m

� � � � � ahm,mϕ � 0 pm � 1, . . . , nq. (2.5)

1So far our definition of genus 0 correlation functions is local. We will give a global definition at the end of next
section.
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Hence, due to elementary ODE theory, ϕ can be analytically continued to a multivalued

holomorphic function on ConfnpC�q (or equivalently, a single-valued holomorphic function on�ConfnpC�q), which satisfies system (2.5) globally.

Note that (global) correlation functions are determined by their values at any fixed point in�ConfnpC�q. Indeed, since ϕ satisfies (2.5), the function ϕ is determined by the values of t Bl

Bzlm
ϕ :

1 ¤ m ¤ n, 0 ¤ l ¤ hm � 1u at any fixed point. On the other hand, by translation property and the

locally uniform absolute convergence of (2.2), we have

B

Bzm
ϕpwpi0q, wpi1q, . . . , wpinq, wpkq; z1, z2, . . . , znq

�ϕpwpi0q, wpi1q, . . . , L�1w
pimq, . . . , wpinq, wpkq; z1, z2, . . . , znq. (2.6)

Hence ϕ is determined by its value at a point.

2.2 General braiding and fusion relations for intertwining operators

The braid and the fusion relations for two intertwining operators were proved by Huang and

Lepowsky in [HL95a, HL95b, HL95c, Hua95, Hua05a]. In this section, we generalize these rela-

tions to more than two intertwining operators. We also prove some useful convergence theorems.

The proofs are technical, so we leave them to section A.3.

General fusion relations and convergence properties

Theorem 2.5 (Fusion of a chain of intertwining operators). Let Yσ2 ,Yσ3 , . . . ,Yσn be a chain of

intertwining operators of V with charge spaces Wi2 ,Wi3 , . . . ,Win respectively. Let Yγ be another

intertwining operator of V , whose charge space is the same as the target space of Yσn . Let Wi0 be

the source space of Yγ , Wi1 be the source space of Yσ2 , and Wk be the target space of Yγ . Then for

any wpi0q PWi0 , w
pi1q PWi1 , . . . , w

pinq PWin , w
pkq PWk, and any pz1, z2, . . . , znq P ConfnpC�q

satisfying

0   |z2 � z1|   |z3 � z1|   � � �   |zn � z1|   |z1|, (2.7)
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the expression

@
Yγ
�
Yσnpwpinq, zn � z1qYσn�1pw

pin�1q, zn�1 � z1q

� � �Yσ2pwpi2q, z2 � z1qw
pi1q, z1

�
wpi0q, wpkq

D
(2.8)

converges absolutely and locally uniformly, which means that there exists a neighborhood U �

ConfnpC�q of pz1, z2, . . . , znq, and a finite number M ¡ 0, such that for any pz1, z2, . . . , znq P U ,

¸
s2,...,snPR

��xYγpPsnYσnpwpinq, ζn � ζ1qPsn�1Yσn�1pw
pin�1q, ζn�1 � ζ1q

� � �Ps2Yσ2pwpi2q, ζ2 � ζ1qw
pi1q, ζ1qw

pi0q, wpkqy
��  M. (2.9)

Moreover, if pz1, z2, . . . , znq satisfies (2.7) and

0   |z1|   |z2|   � � �   |zn|, (2.10)

then (2.8) as a pWi0 b Wi1 b � � � b Win b Wkq
�-valued holomorphic function defined near

pz1, . . . , znq is an element in V
�

k
in in�1 ��� i0

�
, and any element in V

�
k

in in�1 ��� i0

�
defined near

pz1, . . . , znq can be written as (2.8).

The following convergence theorem for products of generalized intertwining operators is nec-

essary for our theory. (See the discussion in the introduction.)

Theorem 2.6. Let m be a positive integer. For each a � 1, . . . ,m, we choose a positive integer

na. Let Wi1 , . . . ,Wim be V -modules, and let Yα1 , . . . ,Yαm be a chain of intertwining operators

with charge spaces Wi1 , . . . ,Wim respectively. We let Wi be the source space of Yα1 , and let Wk

be the target space of Yαm . For each a � 1, . . . ,m we choose a chain of intertwining operators

Yαa2 , . . . ,Yαana with charge spaces Wia2
, . . . ,Wiana

respectively. We let Wia1
be the source space of

Yαa2 , and assume that the target space of Yαana is Wia .

For any a � 1, . . . ,m and b � 1, . . . , na, we choose a non-zero complex number zab . Choose

wab P Wiab
. We also choose vectors wi P Wi, w

k P Wk. Suppose that the complex numbers tzab u

satisfy the following conditions:

(1) For each a � 1, . . . ,m, 0   |za2 � za1 |   |za3 � za1 |   � � �   |zana � za1 |   |za1 |;
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(2) For each a � 1, . . . ,m� 1, |za1 | � |zana � za1 |   |za�1
1 | � |za�1

na�1
� za�1

1 |,

then the expression

A� ¹
m¥a¥1

Yαa
�� ¹

na¥b¥2

Yαab pw
a
b , z

a
b � za1q

	
wa1 , z

a
1

	�
wi, wk

E
�
@
Yαm

�
Yαmnm pw

m
nm , z

m
nm � zm1 q � � �Yαm2 pw

m
2 , z

m
2 � zm1 qw

m
1 , z

m
1

�
...

� Yα1

�
Yα1

n1
pw1

n1
, z1
n1
� z1

1q � � �Yα1
2
pw1

2, z
1
2 � z1

1qw
1
1, z

1
1

�
wi, wk

D
(2.11)

converges absolutely and locally uniformly, i.e., there exists M ¡ 0 and a neighborhood Uab of

each zab , such that for any ζab P U
a
b p1 ¤ a ¤ m, 1 ¤ b ¤ naq we have:

¸
sa1 ,s

a
bPR

����A� ¹
m¥a¥1

Psa1Yαa
�� ¹

na¥b¥2

PsabYαab pw
a
b , ζ

a
b � ζa1 q

	
wa1 , ζ

a
1

	�
wi, wk

E����  M. (2.12)

Assume, moreover, that tzab : 1 ¤ a ¤ m, 1 ¤ b ¤ nau satisfies the following condition:

(3) For any 1 ¤ a, a1 ¤ m, 1 ¤ b ¤ na, 1 ¤ b1 ¤ na1 , the inequality 0   |zab |   |za
1

b1 | holds when

a   a1, or a � a1 and b   b1.

Then (2.11) defined near tzab : 1 ¤ a ¤ m, 1 ¤ b ¤ nau is an element in V
�

k
imnm ��� im1 ������ i1n1 ��� i

1
1 i

�
.

We need another type of convergence property. The notion of absolute and locally uniform

convergence is understood as usual.

Corollary 2.7. Let Yσ2 ,Yσ3 , . . . ,Yσm be a chain of intertwining operators of V with charge spaces

Wi2 ,Wi3 , . . . ,Wim respectively. Let Wi1 be the source space of Yσ2 and Wi be the target space

of Yσm . Similarly we let Yρ2 ,Yρ3 , . . . ,Yρm be a chain of intertwining operators of V with charge

spaces Wj2 ,Wj3 , . . . ,Wjn respectively. Let Wj1 be the source space of Yρ2 and Wj be the target

space of Yρn . Moreover we choose V -modules Wk1 ,Wk2 ,Wk3 , a type
�
k1
i j

�
intertwining operator

Yα and a type
�
k2

k1 k0

�
intertwining operator Yβ . Choose wpi1q P Wi1 , w

pi2q P Wi2 , . . . , w
pimq P

Wim , w
pj1q P Wj1 , w

pj2q P Wj2 , . . . , w
pjmq P Wjm , w

pk0q P Wi0 , w
pk2q P Wk2

. Then for any non-

zero complex numbers z1, z2, . . . , zm, ζ1, ζ2, . . . , ζn, satisfying 0   |ζ2 � ζ1|   |ζ3 � ζ1|   � � �  

|ζn � ζ1|   |z1 � ζ1| � |zm � z1| and 0   |z2 � z1|   |z3 � z1|   � � �   |zm � z1|   |z1 � ζ1|  

29



|ζ1| � |zm � z1|, the expression

B
Yβ
�
Yα
�
Yσmpwpimq, zm � z1q � � �Yσ2pwpi2q, z2 � z1qw

pi1q, z1 � ζ1

	
� Yρnpwpjnq, ζn � ζ1q � � �Yρ2pwpj2q, ζ2 � ζ1qw

pj1q, ζ1



wpk0q, wpk2q

F
(2.13)

exists and converges absolutely and locally uniformly.

General braid relations

Let z1, z2, . . . , zn be distinct complex values in C�. Assume that 0   |z1| � |z2| � � � � � |zn|,

and choose arguments arg z1, arg z2, . . . , arg zn. We define the expression

xYαnpwpinq, znqYαn�1pw
pin�1q, zn�1q � � �Yα1pw

pi1q, z1qw
pi0q, wpkqy (2.14)

in the following way: Choose 0   r1   r2   � � �   rn. Then the expression

xYαnpwpinq, rnznqYαn�1pw
pin�1q, rn�1zn�1q � � �Yα1pw

pi1q, r1z1qw
pi0q, wpkqy (2.15)

converges absolutely. We define (2.14) to be the limit of (2.15) as r1, r2, . . . , rn Ñ 1. The existence

of this limit is guaranteed by theorem 2.4.

Let Sn be the symmetric group of degree n, and choose any ς P Sn. The general braid relations

can be stated in the following way:

Theorem 2.8 (Braiding of intertwining operators). Choose distinct z1, . . . , zn P C� satisfying

0   |z1| � � � � � |zn|. Let Yαςp1q ,Yαςp2q , . . . ,Yαςpnq be a chain of intertwining operators of V .

For each 1 ¤ m ¤ n, we let Wim be the charge space of Yαm . Let Wi0 be the source space of

Yαςp1q , and let Wk be the target space of Yαςpnq . Then there exists a chain of intertwining operators

Yβ1 ,Yβ2 , . . . ,Yβn with charge spacesWi1 ,Wi2 , . . . ,Win respectively, such that the source space of

Yβ1 isWi0 , that the target space of Yβn isWk, and that for anywpi0q PWi0 , w
pi1q PWi1 , . . . w

pinq P

Win , w
pkq PWk, the following braid relation holds:

xYαςpnqpw
piςpnqq, zςpnqq � � �Yαςp1qpw

piςp1qq, zςp1qqw
pi0q, wpkqy
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�xYβnpwpinq, znqYβn�1pw
pin�1q, zn�1q � � �Yβ1pwpi1q, z1qw

pi0q, wpkqy. (2.16)

We usually omit the vectors wpi0q, wpkq, and write the above equation as

Yαςpnqpw
piςpnqq, zςpnqq � � �Yαςp1qpw

piςp1qq, zςp1qq � Yβnpwpinq, znq � � �Yβ1pwpi1q, z1q. (2.17)

When n � 2, the proof of braid relations is based on the following well-known property. For

the reader’s convenience, we include a proof in section A.3.

Proposition 2.9. Let Yγ ,Yδ be intertwining operators of V , and assume Yγ P V
�
k
i j

�
. Choose

zi, zj P C� satisfying 0   |zj � zi|   |zi|, |zj |. Choose argpzj � ziq, and let arg zj be close to

arg zi as zj Ñ zi. Then for any wpiq PWi, w
pjq PWj ,

Yδ
�
YB�γpwpjq, zj � ziqw

piq, zi
�
� Yδ

�
Yγpwpiq, e�iπpzj � ziqqw

pjq, zj
�
. (2.18)

Remark 2.10. The braid relation (2.17) is unchanged if we scale the norm of the complex variables

z1, z2, . . . , zn, or rotate each variable without meeting the others, and change its arg value continu-

ously. The braid relation might change, however, if z1, z2, . . . , zn are fixed, but their arguments are

changed by 2π multiplied by some integers.

The proof of theorem 2.8 (see section A.3) implies the following:

Proposition 2.11. Let Yγ1 , . . . ,Yγm ,Yαςp1q , . . . ,Yαςpnq ,Yδ1 , . . . ,Yδl be a chain of intertwin-

ing operator of V with charge spaces Wi11
, . . . ,Wi1m ,Wiςp1q , . . . ,Wiςpnq ,Wi21

, . . . ,Wi2l
respec-

tively. Let Wj1 be the source space of Yγ1 and Wj2 be the target space of Yδl . Let

z1, . . . , zn, z
1
1, . . . , z

1
m, z

2
1 , . . . , z

2
l be distinct complex numbers in S1 with fixed arguments. Choose

vectors wpj1q P Wj1 , w
pi11q P Wi11

, . . . , wpi
1
mq P Wi1m , w

pi21q P Wi21
, . . . , wpi

2
l q P Wi2l

, wpj2q P Wj2
.

Let

X1 � Yγmpwpi
1
mq, z1mq � � �Yγ1pwpi

1
1q, z11q,

X2 � Yδlpw
pi2l q, z2l q � � �Yδ1pwpi

2
1q, z21q.

Suppose that the braid relation (2.16) holds for all wpi0q P Wi0 , w
pi1q P Wi1 , . . . , w

pinq P
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Win , w
pkq PWk. Then we also have the braid relation

xX2Yαςpnqpw
piςpnqq, zςpnqq � � �Yαςp1qpw

piςp1qq, zςp1qqX1w
pj1q, wpj2qy

�xX2Yβnpwpinq, znq � � �Yβ1pwpi1q, z1qX1w
pj1q, wpj2qy. (2.19)

The braiding operators B� and the braid relations of intertwining operators are related in the

following way:

Proposition 2.12. Let zi, zj P S1 and arg zj   arg zi   arg zj � π{3. Let argpzi � zjq be close to

arg zi as zj Ñ 0, and let argpzj � ziq be close to arg zj as zi Ñ 0.

Let Yβ,Yα be a chain of intertwining operators with charge spacesWj ,Wi respectively, and let

Yα1 ,Yβ1 be a chain of intertwining operators with charge spaces Wi,Wj respectively. Assume that

the source spaces of Yβ and Yα1 are Wk1 , and that the target spaces of Yα and Yβ1 are Wk2 .

If there exist a V -module Wk, and Yγ P
�
k
i j

�
,Yδ P

�
k2
k k1

�
, such that for any wpiq P Wi, w

pjq P

Wj , we have the fusion relations:

Yαpwpiq, ziqYβpwpjq, zjq � YδpYγpwpiq, zi � zjqw
pjq, zjq, (2.20)

Yβ1pwpjq, zjqYα1pwpiq, ziq � YδpYB�γpwpjq, zj � ziqw
piq, ziq. (2.21)

Then the following braid relation holds:

Yαpwpiq, ziqYβpwpjq, zjq � Yβ1pwpjq, zjqYα1pwpiq, ziq. (2.22)

Proof. Clearly we have argpzi � zjq � argpzj � ziq � π. So equation (2.22) follows directly from

proposition 2.9.

Using braid relations, we can give a global description of correlation functions. Consider the

covering map πn : �ConfnpC�q Ñ ConfnpC�q. Choose ς P Sn, let Uς � tpz1, . . . , znq : 0  

|zςp1q|   |zςp2q|   � � �   |zςpnq|u, and choose a connected component rUς of π�1
n pUςq. Then a

pWi0bWiςp1qb� � �bWiςpnqbWkq
�-valued correlation function defined when pzςp1q, . . . , zςpnqq P Uς

by the left hand side of equation (2.16) can be lifted through πn : rUς Ñ Uς and analytically

continued to a (single-valued) holomorphic function ϕ on �ConfnpC�q. We define the vector space
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V
�

k
in in�1 ��� i0

�
of pWi0 b Wi1 b � � � b Win b Wkq

�-valued (genus 0) correlation function to

be the vector space of holomorphic functions on �ConfnpC�q of the form ϕ. This definition does

not depend on the choice of ς and rUς : If ς 1 P Sn and rU 1
ς 1 is a connected component of π�1

n pUς 1q,

then by theorem 2.8, for any ϕ P V
�

k
in in�1 ��� i0

�
defined on �ConfnpC�q, it is not hard to find a

pWi0bWiς1p1qb� � �bWiς1pnqbWkq
�-valued correlation function defined when pzς 1p1q, . . . , zς 1pnqq P

Uς 1 which can be lifted through πn : rU 1
ς 1 Ñ Uς 1 and analytically continued to the function ϕ.

2.3 Braiding and fusion with vertex operators and creation operators

In this section, we prove some useful braid and fusion relations. These relations are not only

important for constructing a braided tensor category of representations of V , but also necessary for

studying generalized intertwining operators.

Braiding and fusion with vertex operators

The Jacobi identity (1.20) can be interpreted in terms of braid and fusion relations:

Proposition 2.13. Let Yα be a type
�
k
i j

�
intertwining operator of V . Choose z, ζ P C� satisfying

0   |z � ζ|   |z| � |ζ|. Choose an argument arg z. Then for any u P V,wpiq PWi, we have

Ykpu, ζqYαpwpiq, zq � Yαpwpiq, zqYjpu, ζq � Yα
�
Yipu, ζ � zqwpiq, z

�
. (2.23)

Proof. The above braid and fusion relations are equivalent to the following statement: for any

wpjq PWj , w
pkq PWk, and for any z P C�, the functions of ζ:

xYαpwpiq, zqYjpu, ζqwpjq, wpkqy, (2.24)

xYα
�
Yipu, ζ � zqwpiq, z

�
wpjq, wpkqy, (2.25)

xYkpu, ζqYαpwpiq, zqwpjq, wpkqy (2.26)

defined respectively near 0, near z, and near 8 can be analytically continued to the same (single-

valued) holomorphic function on P1. This is equivalent to that for any fpζ, zq P Crζ�1, pζ � zq�1s,

Resζ�0

�
xYαpwpiq, zqYjpu, ζqwpjq, wpkqy � fpζ, zqdζ

�
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�Resζ�z
�
xYα

�
Yipu, ζ � zqwpiq, z

�
wpjq, wpkqy � fpζ, zqdζ

�
�Resζ�8

�
xYkpu, ζqYαpwpiq, zqwpjq, wpkqy � fpζ, zqdζ

�
� 0 (2.27)

(cf. [Ueno08] theorem 1.22, or [Muk10] theorem 1). It is not hard to compute that equation (2.27)

is equivalent to the Jacobi identity (1.20).

The above intertwining property can be generalized to any correlation function.

Proposition 2.14. 2 Let z0 � 0, choose pz1, z2, . . . , znq P ConfnpC�q, and choose a correla-

tion function ϕ P V
�

k
in in�1 ��� i1 i0

�
defined near pz1, z2, . . . , znq. Then for any u P V,wpi0q P

Wi0 , w
pi1q PWi1 , . . . , w

pinq PWin , w
pkq PWk, and any 0 ¤ m ¤ n, the following formal series in

Cppζ � zmqq:

ψimpζ, z1, z2, . . . , znq

�ϕpwpi0q, . . . , wpim�1q, Yimpu, ζ � zmqw
pimq, wpim�1q, . . . , wpinq, wpkq; z1, z2, . . . , znq, (2.28)

and the following formal series in Cppζ�1qq:

ψkpζ, z1, z2, . . . , znq

�ϕpwpi0q, wpi1q, wpi2q, . . . , wpinq, Ykpu, ζq
twpkq; z1, z2, . . . , znq (2.29)

are expansions of the same (single-valued) holomorphic function on Pztz0, z1, z2, . . . , zn,8u near

the poles ζ � zm (0 ¤ m ¤ n) and ζ � 8 respectively.

Proof. When 0   |z1|   |z2|   � � �   |zn|, we can prove this property easily using proposi-

tion 2.11, proposition 2.13, and theorem 2.6. Note that this property is equivalent to that for any

fpζ, z1, . . . , znq P Crζ�1, pζ � z1q
�1, . . . , pζ � znq

�1s,

¸
0¤m¤n

Resζ�zm
�
ψimpζ, z1, . . . , znqfpζ, z1, . . . , znqdζ

�
�� Resζ�8

�
ψkpζ, z1, . . . , znqfpζ, z1, . . . , znqdζ

�
(2.30)

2One can use proposition 2.14 and the translation property to define correlation functions (parallel sections of confor-
mal blocks). cf. [FB04] chapter 10.
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(cf. [Ueno08] theorem 1.22, or [Muk10] theorem 1). If we write down the above equations explic-

itly, we will find that condition (2.30) is equivalent to a set of linear equations of ϕ, the coefficients

of which are End
�
pWi0 bWi1 b � � � bWin bWkq

�
�
-valued single-valued holomorphic functions

on ConfnpC�q. Since ϕ satisfies these equations locally, it must satisfy them globally. Therefore ϕ

satisfies the desired property at any point in ConfnpC�q.

As an application of this intertwining property, we prove a very useful uniqueness property for

correlation functions.

Corollary 2.15. Fix pz1, z2, . . . , znq P ConfnpC�q. Let ϕ P V
�

in�1

in in�1 ��� i1 i0

�
be a correlation

function defined near pz1, z2, . . . , znq. Choose l P t0, 1, 2, . . . , n�1u. For anym P t0, 1, 2, . . . , n�

1u such that m � l, we assume that Wim is irreducible, and choose a nonzero vector wpimq0 PWim .

Suppose that for any wpilq PWil ,

ϕpw
pi0q
0 , . . . , w

pil�1q
0 , wpilq, w

pil�1q
0 , . . . , w

pin�1q
0 ; z1, z2, . . . , znq � 0, (2.31)

then ϕ � 0.

Proof. We assume that l ¤ n. The case that l � n� 1 can be proved in a similar way. Suppose that

(2.31) holds. Then for any u P V , the formal series in Cppζ � zlqq:

ϕpw
pi0q
0 , . . . , w

pil�1q
0 , Yilpu, ζ � zlqw

pilq, w
pil�1q
0 , . . . , w

pin�1q
0 ; z1, z2, . . . , znq (2.32)

equals zero. By proposition 2.14, (2.32) is the expansion of a global holomorphic function (which

must be zero) on Pztz0, z1, . . . , zn,8u, and when ζ is near z0 � 0, this function becomes

ϕpYi0pu, ζqw
pi0q
0 , w

pi1q
0 . . . , w

pil�1q
0 , wpilq, w

pil�1q
0 , . . . , w

pin�1q
0 ; z1, z2, . . . , znq, (2.33)

which is zero. Therefore, for each mode Yi1pu, sq (s P Z), we have

ϕpYi0pu, sqw
pi0q
0 , w

pi1q
0 . . . , w

pil�1q
0 , wpilq, w

pil�1q
0 , . . . , w

pin�1q
0 ; z1, z2, . . . , znq � 0. (2.34)
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Since Wi0 is irreducible, for any wpi0q PW0 we have

ϕpwpi0q, w
pi1q
0 . . . , w

pil�1q
0 , wpilq, w

pil�1q
0 , . . . , w

pin�1q
0 ; z1, z2, . . . , znq � 0. (2.35)

If we repeat this argument several times, we see that for anywpi0q PWi0 , w
pi1q PWi1 , . . . , w

pin�1q P

Win�1 ,

ϕpwpi0q, wpi1q, . . . , wpin�1q; z1, . . . , znq � 0. (2.36)

Hence ϕ equals zero at pz1, . . . , znq. By theorem 2.4 and the translation property, the value of ϕ

equals zero at any point.

Braiding and fusion with creation operators

Lemma 2.16. Let Yα be a type
�
k
i j

�
intertwining operator. Then for any wpiq P Wi, w

pjq P

Wj , w
pkq PWk, z P C� and z0 P C:

(1) If 0 ¤ |z0|   |z|, and argpz � z0q is close to arg z as z0 Ñ 0, then

¸
sPR

xwpkq,Yαpwpiq, zqPsez0L�1wpjqy (2.37)

converges absolutely and equals

xwpkq, ez0L�1Yαpwpiq, z � z0qw
pjqy. (2.38)

We simply write

ez0L�1Yαpwpiq, z � z0q � Yαpwpiq, zqez0L�1 . (2.39)

(2) If 0 ¤ |z0|   |z|�1 and argp1� zz0q is close to arg 1 � 0 as z0 Ñ 0, then

¸
sPR

xwpkq, ez0L1PsYαpwpiq, zqwpjqy (2.40)
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converges absolutely and equals

@
wpkq,Yα

�
ez0p1�zz0qL1p1� zz0q

�2L0wpiq, z{p1� zz0q
�
ez0L1wpjq

D
. (2.41)

We simply write

ez0L1Yαpwpiq, zq � Yα
�
ez0p1�zz0qL1p1� zz0q

�2L0wpiq, z{p1� zz0q
�
ez0L1 . (2.42)

Proof. Assume without loss of generality that all the vectors are homogeneous.

(1) Let x, x0, x1 be commuting independent formal variables. Note first of all that (2.39) holds

in the formal sense:

xwpkq, ex0L�1Yαpwpiq, x� x0qw
pjqy � xwpkq,Yαpwpiq, xqex0L�1wpjqy, (2.43)

where

Yαpwpiq, x� x0q �
¸
sPR

¸
rPZ¥0

Yαpwpiq, sq
�
�s� 1

r



x�s�1�rp�x0q

r.

Equation (2.43) can be proved using the relation rL�1,Yαpwpiq, xqs � d
dxYαpw

piq, xq. (See

[FHL93] section 5.4 for more details.) Write

xwpkq, ex0L�1Yαpwpiq, x1qw
pjqy �

¸
mPZ¥0

cmx
m
0 x

d�m
1 (2.44)

where d P R and cm P C. Clearly cm � 0 for all but finitely many m. Then the left hand side of

(2.43) equals

¸
m,lPZ¥0

cmx
m
0 �

�
d�m

l



xd�m�lp�x0q

l.

We now substitute z and z0 for x and x0 in equation (2.43). For any z0 satisfying 0 ¤ |z0|   |z|,

let argpz � z0q be close to arg z as z0 Ñ 0. Then

xwpkq, ez0L�1Yαpwpiq, z � z0qw
pjqy

�xwpkq, ex0L�1Yαpwpiq, x1qw
pjqy
��
x0�z0,x1�z�z0
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�
¸

mPZ¥0

cmz
m
0 pz � z0q

d�m

�
¸

m,lPZ¥0

cmz
m
0 �

�
d�m

l



zd�m�lp�z0q

l, (2.45)

which converges absolutely and equals

xwpkq,Yαpwpiq, xqex0L�1wpjqy
��
x�z,x0�z0

�xwpkq,Yαpwpiq, zqez0L�1wpjqy. (2.46)

This proves part (1).

(2) Since α � C�1Cα, we have

¸
sPR

xwpkq, ez0L1PsYαpwpiq, zqwpjqy

�
¸
sPR

xPse
z0L1wpkq,YC�1Cαpw

piq, zqwpjqy

�
¸
sPR

@
YCα

�
ezL1peiπz�2qL0wpiq, z�1

�
Pse

z0L�1wpkq, wpjq
D
,

which, according to part (1), converges absolutely and equals

@
ez0L�1YCα

�
ezL1peiπz�2qL0wpiq, z�1 � z0

�
wpkq, wpjq

D
, (2.47)

where argpz�1 � z0q is close to argpz�1q � � arg z as z0 Ñ 0. This is equivalent to saying that

argp1� zz0q is close to 0 as z0 Ñ 0.

By the definition of Cα, (2.47) equals

@
YCα

�
ezL1peiπz�2qL0wpiq, z�1 � z0

�
wpkq, ez0L1wpjq

D
�
@
wpkq,Yα

�
epz

�1�z0qL1pe�iπpz�1 � z0q
�2qL0

� ezL1peiπz�2qL0wpiq, pz�1 � z0q
�1
�
ez0L1wpjq

D
. (2.48)

Note that (1.30) also holds when x P C, x0 P C�. Therefore, by applying relation (1.30), expression
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(2.48) equals (2.41). This finishes the proof of part (2).

Proposition 2.17. Let z1, . . . , zn P C� satisfy |z1|   |z2|   � � �   |zn| and |z2 � z1|   � � �  

|zn � z1|   |z1|. Choose arguments arg z1, arg z2, . . . , arg zn. For each 2 ¤ m ¤ n, we let

argpzm � z1q be close to arg zm as z1 Ñ 0. Let Yσ2 , . . . ,Yσn be a chain of intertwining operators

of V with charge spaces Wi2 , . . . ,Win respectively. Let Wi1 be the source space of Yσ2 , and let Wi

be the target space of Yσn . Then for any wpi1q P Wi1 , w
pi2q P Wi2 , . . . , w

pinq P Win , we have the

fusion relation

Y ii0
�
Yσnpwpinq, zn � z1q � � �Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
�Yσnpwpinq, znq � � �Yσ2pwpi2q, z2qY i1i10pw

pi1q, z1q. (2.49)

Proof. We assume that z1, z2, . . . , zn are on the same ray emitting from the origin (e.g. on R¡0).

(We don’t assume, however, that these complex values have the same argument.) Then for each

2 ¤ m ¤ n, these complex numbers satisfy

|z1| � |zm � z1|   |zm�1|. (2.50)

If (2.49) is proved at these points, then by theorem 2.4 and analytic continuation, (2.49) holds in

general.

Choose any wpiq PWi. Using equations (1.39) and (2.39) several times, we have

xYσnpwpinq, znq � � �Yσ3pwpi3q, z3qYσ2pwpi2q, z2qY i1i10pw
pi1q, z1qΩ, w

piqy

�xYσnpwpinq, znq � � �Yσ3pwpi3q, z3qYσ2pwpi2q, z2qe
z1L�1wpi1q, wpiqy

�xYσnpwpinq, znq � � �Yσ3pwpi3q, z3qe
z1L�1Yσ2pwpi2q, z2 � z1qw

pi1q, wpiqy

�xYσnpwpinq, znq � � � ez1L�1Yσ3pwpi3q, z3 � z1qYσ2pwpi2q, z2 � z1qw
pi1q, wpiqy

...

�xez1L�1Yσnpwpinq, zn � z1q � � �Yσ3pwpi3q, z3 � z1qYσ2pwpi2q, z2 � z1qw
pi1q, wpiqy

�
@
Y ii0
�
Yσnpwpinq, zn � z1q � � �Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
Ω, wpiq

D
. (2.51)
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Note that in order to make the above argument valid, we have to check that the expression in each

step converges absolutely. To see this, we choose anym � 1, . . . , n, and letWjm be the target space

of Yσm . Then

xYσnpwpinq, znq � � � ez1L�1Yσmpwpimq, zm � z1q � � �Yσ2pwpi2q, z2 � z1qw
pi1q, wpiqy

�
¸

s1,...,sn�1PR
xYσnpwpinq, znqPsn�1 � � �Ps1e

z1L�1PsmYσmpwpimq, zm � z1qPsm�1

� � �Ps2Yσ2pwpi2q, z2 � z1qw
pi1q, wpiqy

�
¸

s1,...,sn�1PR

@
Yσnpwpinq, znqPsn�1 � � �Ps1Y

jm
jm0

�
PsmYσmpwpimq, zm � z1qPsm�1

� � �Ps2Yσ2pwpi2q, z2 � z1qw
pi1q, z1

�
Ω, wpiq

D
, (2.52)

which, by (2.50) and theorem 2.6, converges absolutely. Therefore, equation (2.49) holds when

both sides act on the vacuum vector Ω. By (the proof of) corollary 2.15, equation (2.49) holds when

acting on any vector v P V .

Corollary 2.18. Let Yα P V
�
k
i j

�
. Let zi, zj P S1 with arguments satisfying arg zj   arg zi  

arg zj � 2π. Then for any wpiq PWi and wpjq PWj , we have the braid relation

Yαpwpiq, ziqYjj0pw
pjq, zjq � YB�αpwpjq, zjqY ii0pwpiq, ziq. (2.53)

Proof. By analytic continuation, we may assume, without loss of generality, that 0   |zi� zj |   1.

Let argpzi � zjq be close to arg zi as zj Ñ 0, and let argpzj � ziq be close to arg zj as zi Ñ 0.

Then by propositions 2.17 and 2.12,

Yαpwpiq, ziqYjj0pw
pjq, zjq

�Ykk0

�
Yαpwpiq, zi � zjqw

pjq, zj
�

�Ykk0

�
YB�αpwpjq, zj � ziqw

piq, zi
�

�YB�αpwpjq, zjqY ii0pwpiq, ziq.
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2.4 The ribbon categories associated to VOAs

We refer the reader to [Tur16] for the general theory of ribbon categories and modular tensor

categories. See also [BK01, EGNO04]. In this section, we review the construction of the ribbon

category ReppV q for V by Huang and Lepowspky. (cf. [HL94] and [Hua08b].) As an additive

categoy, ReppV q is the representation category of V : Objects of ReppV q are V -modules, and the

vector space of morphisms from Wi to Wj is HomV pWi,Wjq. We now equip with ReppV q a

structure of a ribbon category.

The tensor product of two V -modules Wi,Wj is defined to be

Wij �Wi bWj �
à
kPE

V
�
k

i j


�
bWk,

Yijpv, xq �
à
kPE

idb Ykpv, xq pv P V q, (2.54)

where V
�
k
i j

��
is the dual space of V

�
k
i j

�
. (Recall our notations at the beginning of this chapter.)

Thus for any k P E , we can define an isomorphism

V
�
k

i j



Ñ HomV pWij ,Wkq, Y ÞÑ RY ,

such that if qY P V
�
k
i j

��
and wpkq PWk, then

RYp qY b wpkqq � x qY,Yywpkq. (2.55)

RY is called the homomorphism represented by Y .

The tensor product of two morphisms are defined as follows: If F P HomV pWi1 ,Wi2q, G P

HomV pWj1 ,Wj2q, then for each k P E we have a linear map pF bGqt : V
�

k
i2 j2

�
Ñ V

�
k

i1 j1

�
, such

that if Y P V
�

k
i2 j2

�
, then pF bGqtY P V

�
k

i1 j1

�
, and for any wpi1q PWi1 , w

pj1q PWj1 ,

�
pF bGqtY

�
pwpi1q, xqwpj1q � YpFwpi1q, xqGwpj1q. (2.56)

Then FbG : V
�

k
i1 j1

��
Ñ V

�
k

i2 j2

��
is defined to be the transpose of pFbGqt, and can be extended
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to a homomorphism

F bG �
à
kPE

pF bGq b idk : Wi1 bWj1 ÑWi2 bWj2 .

Hence we’ve define the tensor product F bG of F and G.

Let W0 � V be the unit object of ReppV q. The functorial isomorphisms λi : W0 bWi Ñ Wi

and ρj : Wi bW0 ÑWi are defined as follows: If i P E , then λi is represented by the intertwining

operator Yi, and ρi is represented by Y ii0. In general, λi (resp. ρi) is defined to be the unique

isomorphism satisfying that for any k P E and any R P HomV pWi,Wkq, Rλi � λkpid0bRq (resp.

Rρi � ρkpRb id0q).

We now define the associator. First of all, to simplify our notations, we assume the following:

Convention 2.19. Let Wi,Wj ,Wk,Wi1 ,Wj1 ,Wk1 be V -modules. Let Yα P V
�
k1

i1 j1

�
. If either

Wi � Wi1 ,Wj � Wj1 , or Wk � Wk1 , then for any wpiq P Wi, w
pjq P Wj , w

pkq P Wk, z P C�, we

let

xYαpwpiq, zqwpjq, wpkqy � 0.

Therefore, Yβpwpiq, z2qYαpwpjq, z1q � 0 if the target space of Yα does not equal the source space

of Yβ; Yγ
�
Yδpwpiq, z1 � z2qw

pjq, z2

�
� 0 if the target space of Yδ does not equal the charge space

of Yγ .

Given three V -modules Wi,Wj ,Wk, we have

pWi bWjqbWk �
à
s,tPE

V
�
t

s k


�
b V

�
s

i j


�
bWt, (2.57)

Wi b pWj bWkq �
à
r,tPE

V
�
t

i r


�
b V

�
r

j k


�
bWt. (2.58)

Choose basis Θt
sk,Θ

s
ij ,Θ

t
ir,Θ

r
jk of these spaces of intertwining operators. Choose zi, zj P C�

satisfying 0   |zi � zj |   |zj |   |zi|. Choose arg zi. Let arg zj be close to arg zi as zi � zj Ñ 0,

and let argpzi � zjq be close to arg zi as zj Ñ 0. For any t P E , α P Θt
i�, β P Θ�

jk, there exist

complex numbers F β
1α1

αβ independent of the choice of zi, zj , such that for any wpiq PWi, w
pjq PWj ,
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we have the fusion relation

Yαpwpiq, ziqYβpwpjq, zjq �
¸

α1PΘ�
ij ,β

1PΘt�k

F β
1α1

αβ Yβ1pYα1pwpiq, zi � zjqw
pjq, zjq. (2.59)

If the source space of Yα does not equal the target space of Yβ , or if the target space of Yα1 does

not equal the charge space of Yβ1 , we set F β
1α1

αβ � 0. Then, by the proof of proposition 2.3, the

numbers F β
1α1

αβ are uniquely determined by the basis chosen. The matrix tF β
1α1

αβ u
α1PΘ�

ij ,β
1PΘt�k

αPΘti�,βPΘ�
jk

is

called a fusion matrix. Define an isomorphism

At :
à
rPE

V
�
t

i r



b V

�
r

j k



Ñ
à
sPE

V
�
t

s k



b V

�
s

i j



,

Yα b Yβ ÞÑ
¸

α1PΘ�
ij ,β

1PΘt�k

F β
1α1

αβ Yβ1 b Yα1 . (2.60)

Clearly At is independent of the basis chosen. Define

A :
à
sPE

V
�
t

s k


�
b V

�
s

i j


�
Ñ
à
rPE

V
�
t

i r


�
b V

�
r

j k


�
(2.61)

to be the transpose of At, and extend it to

A �
¸
tPE

Ab idt : pWi bWjqbWk ÑWi b pWj bWkq, (2.62)

which is an associator of ReppV q. One can prove the pentagon axiom using theorem 2.6 and

corollary 2.7, and prove the triangle axiom using propositions 2.13 and 2.9.

Recall the linear isomorphisms

B� : V
�
k

j i



Ñ V

�
k

i j



, Y ÞÑ B�Y.

We let σi,j : V
�
k
i j

��
Ñ V

�
k
j i

��
be the transpose of B� and extend it to a morphism

σi,j �
¸
tPE

σi,j b idt : Wi bWj ÑWj bWi. (2.63)

This gives the braid operator. The hexagon axiom can be proved using propositions 2.11, 2.12,
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and theorem 2.6.

For each object i, the twist is just the operator ϑi � ϑWi defined in section 1.3.

With these structural maps, Huang proved in [Hua05b, Hua08a, Hua08b] that ReppV q is rigid

and in fact a modular tensor category. From his proof, it is clear that i is the right dual of i: there

exist homomorphisms coevi : V ÑWi bWi and evi : Wi bWi Ñ V satisfying

pidi b eviq � pcoevi b idiq � idi, (2.64)

pevi b idiq � pidi b coeviq � idi. (2.65)

Since i � i, i is also the left dual of i.

Now assume that V is unitary. The additive category RepupV q is defined to be the representation

category of unitary V -modules. We show that RepupV q is a C�-category. First, we need the

following easy consequence of Schur’s lemma.

Lemma 2.20. Choose for each k P Eu a number nk P Z¥0. Define the unitary V -module

W �
Kà

kPEu

Wk b Cnk �
Kà

kPEu

Wk `
KWk `

K � � � `KWklooooooooooooooomooooooooooooooon
nk

.

Then we have

EndV pW q �
à
kPEu

idk b EndpCnkq. (2.66)

Theorem 2.21. RepupV q is a C�-category, i.e., RepupV q is equipped with an involutive antilinear

contravariant endofunctor � which is the identity on objects; The positivity condition is satisfied: If

Wi,Wj are unitary and F P HomV pWi,Wjq, then there exists R P EndV pWiq such that F �F �

R�R; The hom-spaces HomV pWi,Wjq are normed spaces and the norms satisfy

}GF } ¤ }G}}F }, }F �F } � }F }2 (2.67)

for all F P Hompi, jq, G P Hompj, kq.
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Proof. For any F P HomV pWi,Wjq, we let F � be the formal adjoint of F , i.e. the unique homo-

morphismF � P HomV pWj ,Wiq satisfying xFwpiq|wpjqy � xwpiq|F �wpjqy for allwpiq PWi, w
pjq P

Wj . The existence of F � follows from lemma 2.20 applied to W � Wi `
K Wj . Let }F } be the

operator norm of F , i.e., }F } � supwpiqPWizt0u
p}Fwpiq}{}wpiq}q. Using lemma 2.20, it is easy to

check that RepupV q satisfies all the conditions to be a C�-category.

It is not clear whether unitarizable V -modules are closed under tensor product. So it may not

be a good idea to define a structure of a ribbon category on RepupV q. We consider instead certain

subcategories. Let G be a collection of unitary V -modules. We say that G is additively closed, if

the following conditions are satisfied:

(1) If i P G and Wj is isomorphic to a submodule of Wi, then j P G.

(2) If i1, i2, . . . , in P G, then Wi1 `
KWi2 `

K � � � `KWin P G.

If G is additively closed, we define the additive category Repu
GpV q to be the subcategory of RepupV q

whose objects are elements in G.

We say that G is multiplicatively closed, if G is additively closed, and the following conditions

are satisfied:

(a) 0 P G.

(b) If i P G, then i P G.

(c) If i, j P G, then Wij �Wi bWj is unitarizable, and any unitarization of Wij is inside G.

Suppose that G is multiplicatively closed. A unitary structure on G assigns to each triplet

pi, j, kq P G � G � E an inner product on V
�
k
i j

��
. For each unitary structure on G, we define

Repu
GpV q to be a ribbon category in the following way: If i, j P G, then Wij as a V -module is

defined, as before, to be
À

kPE V
�
k
i j

��
b Wk. Since G is multiplicatively closed, each Wk in E

satisfying Nk
ij ¡ 0 must be equipped with a unitary structure. Hence the inner products on all

V
�
k
i j

��
’s give rise to a unitary structure on Wij . Wij now becomes a unitary V -module. The other

functors and structural maps are defined in the same way as we did for ReppV q. Clearly Repu
GpV q

is a ribbon fusion category and is equivalent to a ribbon fusion subcategory of ReppV q.

Our main goal in this two-part series is to define a unitary structure on G, under which Repu
GpV q

becomes a unitary ribbon fusion category. More explicitly, we want to show (cf. [Gal12]) that for
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any i1, i2, j1, j2 P G and any F P HomV pWi1 ,Wi2q, G P HomV pWj1 ,Wj2q,

pF bGq� � F � bG�; (2.68)

that the associators, the operators λi, ρi (i P G), and the braid operators of Repu
GpV q are unitary; and

that for each i P G, ϑi is unitary, and evi and coevi can be chosen in such a way that the following

equations hold:

pcoeviq
� � evi � σi,i � pϑi b idiq, (2.69)

peviq
� � pidi b ϑ�1

i q � σ�1
i,i

� coevi. (2.70)
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CHAPTER 3

ANALYTIC ASPECTS OF VERTEX OPERATOR ALGEBRAS

3.1 Intertwining operators with energy bounds

The energy bounds conditions for vertex operators are important when one tries to construct

conformal nets/loop groups representations from unitary VOAs/infinite dimensional Lie algebras.

This can be seen, for instance, in [GW84], [BS90], and [CKLW15]. In this section, we generalize

this notion to intertwining operators of VOAs.

We assume in this chapter that V is unitary. If Wi is a unitary V -module, we let the Hilbert

space Hi be the norm completion of Wi, and view Wi as a norm-dense subspace of Hi. It is clear

that the unbounded operator L0 on Hi (with domain Wi) is essentially self-adjoint, and its closure

L0 is positive.

Now for any r P R, we let Hr
i be the domain Dpp1 � L0q

rq of p1 � L0q
r. If ξ P Hr

i , we define

the r-th order Sobolev norm to be

‖ξ‖r� ‖p1� L0q
rξ‖.

Note that the 0-th Sobolev norm is just the vector norm. We let

H8
i �

£
r¥0

Hr
i .

Clearly H8
i contains Wi. Vectors inside H8

i are said to be smooth.

Definition 3.1. Let Wi,Wj ,Wk be unitary V -modules, Yα P V
�
k
i j

�
, and wpiq P Wi be homoge-

neous. Choose r ¥ 0. We say that Yαpwpiq, xq satisfies r-th order energy bounds, if there exist

M ¥ 0, t ¥ 0, such that for any s P R and wpjq PWj ,

‖Yαpwpiq, sqwpjq‖¤Mp1� |s|qt‖wpjq‖r. (3.1)
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Here Yαpwpiq, sq is the s-th mode of the intertwining operator Yαpwpiq, xq. It is clear that if r1 ¤

r2 and Yαpwpiq, xq satisfies r1-th order energy bounds, then Yαpwpiq, xq also satisfies r2-th order

energy bounds.

1-st order energy bounds are called linear energy bounds. We say that Yαpwpiq, xq is energy-

bounded if it satisfies energy bounds of some positive order. If for every wpiq P Wi, Yαpwpiq, xq

is energy-bounded, we say that Yα is energy-bounded. A unitary V -module Wi is called energy-

bounded if Yi is energy-bounded. The unitary VOA V is called energy-bounded if the vacuum

module V � W0 is energy-bounded. We now prove some useful properties concerning energy-

boundedness.

Proposition 3.2. If wpiq PWi is homogeneous and inequality (3.1) holds, then for any p P R, there

exists Mp ¡ 0 such that for any wpjq PWj ,

‖Yαpwpiq, sqwpjq‖p¤Mpp1� |s|q|p|�t‖wpjq‖p�r. (3.2)

Proof. (cf. [TL04] chapter II proposition 1.2.1) We want to show that

‖Yαpwpiq, sqwpjq‖2
p¤M2

p p1� |s|q2p|p|�tq‖wpjq‖2
p�r. (3.3)

Since

‖Yαpwpiq, sqwpjq‖2
p�

¸
qPR

‖Pq�s�1�∆
wpiq

Yαpwpiq, sqwpjq‖2
p�

¸
qPR

‖Yαpwpiq, sqPqwpjq‖2
p,

‖wpjq‖2
p�r�

¸
qPR

‖Pqwpjq‖2
p�r,

it suffices to assume that wpjq is homogeneous. We also assume that Yαpwpiq, sqwpjq � 0. Then by

proposition 1.7, ∆wpiq �∆wpjq � 1� s ¥ 0.

By (3.1) we have

‖Yαpwpiq, sqwpjq‖2¤M2p1� |s|q2tp1�∆wpjqq
2r‖wpjq‖2. (3.4)
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Hence

‖Yαpwpiq, sqwpjq‖2
p

�p∆wpiq �∆wpjq � sq2p‖Yαpwpiq, sqwpjq‖2

¤p∆wpiq �∆wpjq � sq2pM2p1� |s|q2tp1�∆wpjqq
2r‖wpjq‖2

�M2
�∆wpiq �∆wpjq � s

1�∆wpjq

	2p
p1� |s|q2tp1�∆wpjqq

2pp�rq‖wpjq‖2

�M2
�∆wpiq � s�∆wpjq

1�∆wpjq

	2p
p1� |s|q2t‖wpjq‖2

p�r. (3.5)

If p ¥ 0 then

�∆wpiq � s�∆wpjq

1�∆wpjq

	2p

¤
�1�∆wpiq � |s| �∆wpjq

1�∆wpjq

	2p

¤p1�∆wpiq � |s|q2p ¤ p1�∆wpiqq
2pp1� |s|q2p. (3.6)

If p   0 and 1 ¤ ∆wpiq � s, then

�∆wpiq � s�∆wpjq

1�∆wpjq

	2p

�
� 1�∆wpjq

∆wpiq � s�∆wpjq

	2|p|
¤ 1. (3.7)

If p   0 and 1 ¥ ∆wpiq � s, then since ∆wpiq � s�∆wpjq ¥ 1,

� 1�∆wpjq

∆wpiq � s�∆wpjq

	2|p|

�
�

1�
1� s�∆wpiq

∆wpiq � s�∆wpjq

	2|p|

¤p2�∆wpiq � sq2|p|

¤p2� 2∆wpiq � 2|s|q2|p|

¤22|p|p1�∆wpiqq
2|p|p1� |s|q2|p|. (3.8)

Therefore, if we let Mp � 2|p|p1�∆wpiqq
|p|, then (3.3) is always true.
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The next property is obvious.

Proposition 3.3. If Y P V
�
k
i j

�
is unitary, wpiq PWi is homogeneous, and Yαpwpiq, xq satisfies r-th

order energy bounds, then Yαpwpiq, xq satisfies r-th order energy bounds.

Proposition 3.4. Suppose that Yα P V
�
k
i j

�
is unitary,wpiq PWi is homogeneous, r ¥ 0, and for any

m P Z¥0, YαpLm1 wpiq, xq satisfies r-th order energy bounds. Then Yα�pwpiq, xq and YC�1αpw
piq, xq

satisfy r-th order energy bounds.

Proof. First we note that Lm1 w
piq � 0 for m large enough. Now suppose that (3.1) holds for all m

if we replace wpiq by Lm1 w
piq. Then by (1.36), for any wpjq PWj , w

pkq PWk and s P R,

���@Yα�pwpiq, sqwpjq��wpkqD���
¤
¸
m¥0

1

m!

���@wpjq��YαpLm1 wpiq,�s� k � 2� 2∆wpiqqw
pkq
D���

�
¸
m¥0

1

m!

���@p1� L0q
rwpjq

��p1� L0q
�rYαpLm1 wpiq,�s� k � 2� 2∆wpiqqw

pkq
D���

¤
¸
m¥0

1

m!

∥∥wpjq∥∥
r

∥∥YαpLm1 wpiq,�s� k � 2� 2∆wpiqqw
pkq

∥∥
�r
.

By proposition 3.2, we can find positive numbers C1, C2 independent of wpjq, wpkq, such that

∥∥YαpLm1 wpiq,�s�m� 2� 2∆wpiqqw
pkq

∥∥
�r

¤C1

�
1� |s�m� 2� 2∆wpiq |

�r�t∥∥wpkq∥∥
¤C2

�
1� |s|

�r�t∥∥wpkq∥∥.
Thus there exists C3 ¡ 0 independent of wpjq, wpkq, such that

���@Yα�pwpiq, sqwpjq��wpkqD��� ¤ C3

�
1� |s|

�r�t∥∥wpjq∥∥
r

∥∥wpkq∥∥.
This proves that

∥∥Yα�pwpiq, sqwpjq∥∥ ¤ C3

�
1� |s|

�r�t∥∥wpjq∥∥
r
. (3.9)

Therefore Yα�pwpiq, xq satisfies r-th order energy bounds. Since Cα � α� and YC�1αpw
piq, xq �

50



e2iπ∆
wpiqYCαpwpiq, xq, by proposition 3.3, YC�1αpw

piq, xq also satisfy r-th order energy bounds.

Proposition 3.5. Let Wi,Wj ,Wk be unitary V -modules, Yα P V
�
k
i j

�
, and choose homogeneous

vectors wpiq P Wi, u P V . Suppose that Yαpwpiq, xq, Yjpu, xq, Ykpu, xq are energy-bounded. Then

for any n P Z, Yα
�
Yipu, nqw

piq, x
�

is energy-bounded.

Proof. By Jacobi Identity, for any s P R we have

YαpYipu, nqwpiq, sq

�
¸
lPZ¥0

p�1ql
�
n

l



Ykpu, n� lqYαpwpiq, s� lq �

¸
lPZ¥0

p�1ql�n
�
n

l



Yαpwpiq, n� s� lqYjpu, lq.

(3.10)

It can be shown by induction on |n| that

lim sup
lÑ8

�����nl

����l�|n|   �8.

Choose any homogeneous vector wpjq P Wj with energy ∆wpjq . Then by energy-boundedness of

Yαpwpiq, xq, Yjpu, xq, Ykpu, xq and proposition 3.2, there exist positive constants C1, C2, . . . , C8

and r1, t1, r2, t2, r3, t3 independent of wpjq and s, such that

∥∥∥∥¸
l¥0

p�1ql�n
�
n

l



Yαpwpiq, n� s� lqYjpu, lqw

pjq

∥∥∥∥
¤
¸
l¥0

C1l
|n|
∥∥Yαpwpiq, n� s� lqYjpu, lqw

pjq
∥∥

¤
¸
l¥0

C2l
|n|
�
1� |n� s� l|

�t1∥∥Yjpu, lqwpjq∥∥r1
¤

¸
0¤l¤∆u�∆

wpjq
�1

C3l
|n|p1� |s|qt1p1� lqt1 � p1� lqr1�t2‖wpjq‖r1�r2

¤
¸

0¤l¤∆u�∆
wpjq

�1

C3p1� |s|qt1p1� lq|n|�t1�r1�t2‖wpjq‖r1�r2

¤C4p1� |s|qt1p1�∆wpjqq
1�|n|�t1�r1�t2‖wpjq‖r1�r2

�C4p1� |s|qt1‖wpjq‖1�|n|�t1�t2�2r1�r2 . (3.11)
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Here the inequality l ¤ ∆u � ∆wpjq � 1 comes from the fact that every nonzero Yjpu, lqwpjq must

have non-negative energy. Similarly we have

∥∥∥∥¸
l¥0

p�1ql
�
n

l



Ykpu, n� lqYαpwpiq, s� lqwpjq

∥∥∥∥
¤
¸
l¥0

C5l
|n|
∥∥Ykpu, n� lqYαpwpiq, s� lqwpjq

∥∥
¤
¸
l¥0

C6l
|n|p1� |n� l|qt3

∥∥Yαpwpiq, s� lqwpjq
∥∥
r3

¤
¸

0¤l¤∆
wpiq

�∆
wpjq

�s�1

C7l
|n|p1� lqt3p1� |s� l|qr3�t2‖wpjq‖r3�r2

¤
¸

0¤l¤∆
wpiq

�∆
wpjq

�s�1

C7p1� |s|qr3�t2p1� lq|n|�t3�r3�t2‖wpjq‖r3�r2

¤C8p1� |s|qr3�t2p1�∆wpjq � |s|q1�|n|�t3�r3�t2‖wpjq‖r3�r2

¤C8p1� |s|q2r3�2t2�1�|n|�t3p1�∆wpjqq
1�|n|�t3�r3�t2‖wpjq‖r3�r2

�C8p1� |s|q2r3�2t2�1�|n|�t3‖wpjq‖2r3�r2�t2�1�|n|�t3 . (3.12)

The energy-boundedness of YαpYipu, nqwpiq, xq follows from these two inequalities.

The following proposition is also very useful. One can prove it using the argument in [BS90]

section 2.

Proposition 3.6. If v � ν or v P V p1q, then for any unitary V -module Wi, Yipv, xq satisfies linear

energy bounds.

We summarize the results in this section as follows:

Corollary 3.7. Let Wi,Wj ,Wk be unitary V -modules, and Yα P V
�
k
i j

�
.

(a) Suppose that V is generated by a set E of homogeneous vectors. If for each v P E, Yipv, xq is

energy-bounded, then Yi is energy-bounded.

(b) If Wi is irreducible, Yj , Yk are energy-bounded, and there exists a nonzero homogeneous vector

wpiq PWi such that Yαpwpiq, xq is energy-bounded, then Yα is energy-bounded.

(c) If wpiq P Wi is homogeneous, and Yαpwpiq, xq is energy-bounded, then YC�1αpw
piq, xq,

Yαpwpiq, xq, and Yα�pwpiq, xq are energy-bounded.
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(d) If wpiq P Wi is quasi-primary, and Yαpwpiq, xq satisfies r-th order energy bounds. Then

YC�1αpw
piq, xq, Yαpwpiq, xq, and Yα�pwpiq, xq satisfy r-th order energy bounds.

Proof. (a) and (b) follow from proposition 3.5. (c) follows from propositions 3.3, 3.4, 3.5, and 3.6.

(d) follows from propositions 3.3 and 3.4.

3.2 Smeared intertwining operators

In this section, we construct smeared intertwining operators for energy-bounded intertwining

operators, and prove the adjoint relation, the braid relations, the rotation covariance, and the inter-

twining property for these operators. The proof of the last property requires some knowledge of the

strong commutativity of unbounded closed operators on a Hilbert space. We give a brief exposition

of this theory in chapter B.

The unbounded operator Yαpwpiq, fq

For any open subset I of S1, we denote by C8
c pIq the set of all complex smooth functions on

S1 whose supports lie in I . If I � teit : a   t   bu (a, b P R, a   b   a � 2π), we say that I

is an open interval of S1. We let J be the set of all open intervals of S1. In general, if U is an

open subset of S1, we let J pUq be the set of open intervals of S1 contained in U . If I P J , then its

complement Ic is defined to be S1zI . If I1, I2 P J , we write I1 �� I2 if I1 � I2.

Let Yα P V
�
k
i j

�
be unitary. (Recall that this means that Wi,Wj ,Wk are unitary V -modules.)

For any wpiq P Wi, z P C�, Yαpwpiq, zq is a linear map Wj Ñ xWk. Therefore we can regard

Yαpwpiq, zq as a sesquilinear form Wj �Wk Ñ C, pwpjq, wpkqq ÞÑ xYαpwpiq, zqwpjq|wpkqy.

We now define the smeared intertwining operators. Let {dθ � eiθ

2π dθ. For any f P C8
c pS

1zt�1uq,

we define a sesquilinear form

Yαpwpiq, fq : Wj �Wk Ñ C, pwpjq, wpkqq ÞÑ xYαpwpiq, fqwpjq|wpkqy

satisfying

xYαpwpiq, fqwpjq|wpkqy �
» π
�π
xYαpwpiq, eiθqwpjq|wpkqyfpeiθq{dθ. (3.13)
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Yαpwpiq, fq can be regarded as a linear map Wj Ñ xWk. In the following, we show that when

Yαpwpiq, xq is energy-bounded, Yαpwpiq, fq is a preclosed unbounded operator.

To begin with, we note that for any f P C8
c pS

1zt�1uq and any s P R, the s-th mode of f is

pfpsq � » π
�π
fpeiθqe�isθ �

dθ

2π
. (3.14)

Then we have

Yαpwpiq, fq �
¸
sPR

Yαpwpiq, sq pfpsq. (3.15)

Define

DV � t∆i �∆j �∆k : Wi,Wj ,Wk are irreducible V -modulesu,

ZV � Z�DV .

Then Yαpwpiq, sq � 0 except possibly when s P ZV . Since V has finitely many equivalence classes

of irreducible representations, the set DV is finite. Now for any t P R we define a norm | � |V,t on

C8
c pS

1zt�1uq to be

|f |V,t �
¸
sPZV

p1� |s|qt| pfpsq|, (3.16)

which is easily seen to be finite. For each r P R, we define er : S1zt�1u Ñ C to be

erpe
iθq � eirθ, p�π   θ   πq. (3.17)

When r P Z, we regard er as a continuous function on S1.

Lemma 3.8. Suppose that wpiq P Wi is homogeneous, and Yαpwpiq, xq is energy-bounded and

satisfies condition (3.1).

(a) Let p P R. Then there exists Mp ¥ 0, such that for any f P C8
c pS

1zt�1uq, wpjq PWj , we have
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Yαpwpiq, fqwpjq P H8
k , and

∥∥Yαpwpiq, fqwpjq∥∥p ¤Mp

��f ��
V,|p|�t

∥∥wpjq∥∥
p�r

. (3.18)

(b) For any wpjq PWj , w
pkq PWk we have

xwpkq|Yαpwpiq, fqwpjqy �
¸
m¥0

e�iπ∆
wpiq

m!
xYα�pLm1 wpiq, epm�2�2∆

wpiq
qfqw

pkq|wpjqy. (3.19)

Proof. (a) We have

Yαpwpiq, fqwpjq �
¸
sPZV

pfpsqYαpwpiq, sqwpjq. (3.20)

Choose Mp ¥ 0 such that (3.2) always holds. Then

¸
sPZV

∥∥ pfpsqYαpwpiq, sqwpjq∥∥p
¤
¸
sPZV

Mp

�� pfpsq��p1� |s|q|p|�t‖wpjq‖p�r

�Mp

��f ��
V,|p|�t

∥∥wpjq∥∥
p�r

. (3.21)

In particular, Yαpwpiq, fqwpjq P H8
k .

(b) For any wpjq PWj , w
pkq PWk, and z P C� with argument arg z, we have

xwpkq|Yαpwpiq, zqwpjqy

�xYα�pezL1pe�iπz�2qL0wpiq, z�1qwpkq|wpjqy

�e�iπ∆
wpiq

¸
m¥0

zm�2∆
wpiq

m!
xYα�pLm1 wpiq, z

�1qwpkq|wpjqy. (3.22)

Note also that {dθ � e�2iθ{dθ. Therefore we have

xwpkq|Yαpwpiq, fqwpjqy

�

» π
�π
xwpkq|Yαpwpiq, eiθqwpjqyfpeiθq{dθ
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�
¸
m¥0

» π
�π

e�iπ∆
wpiq

m!
xYα�pLm1 wpiq, e

iθqwpkq|wpjqye�ipm�2�2∆
wpiq

qθfpeiθq{dθ

�
¸
m¥0

e�iπ∆
wpiq

m!
xYα�pLm1 wpiq, epm�2�2∆

wpiq
qfqw

pkq|wpjqy. (3.23)

By lemma 3.8, if wpiq is homogeneous and Yαpwpiq, xq is energy-bounded, then Yαpwpiq, fq

can be viewed as an unbounded operator from Hj to Hk with domain Wj . Moreover, the domain

of Yαpwpiq, fq� contains a dense subspace of Hk (which is Wk). So Yαpwpiq, fq is preclosed. We

let Yαpwpiq, fq be its closure . By inequality (3.18), H8
j is inside DpYαpwpiq, fqq, the domain

of Yαpwpiq, fq, and Yαpwpiq, fqH8
j � H8

k . In the following, we will always view Yαpwpiq, fq :

H8
j Ñ H8

k as the restriction of Yαpwpiq, fq to H8
j . Yαpwpiq, fq is called a smeared intertwining

operator. The closed operator Yαpwpiq, fq� � Yαpwpiq, fq
�

is the adjoint of Yαpwpiq, fq. The

formal adjoint of Yαpwpiq, fq, which is denoted by Yαpwpiq, fq:, is the restriction of Yαpwpiq, fq�

to H8
k Ñ H8

j .

The following proposition follows directly from lemma 3.8.

Proposition 3.9. Suppose that wpiq P Wi is homogeneous, Yαpwpiq, xq is energy-bounded and

satisfies condition (3.1). Then for any f P CcpS1zt�1uq, the following statements are true:

(a) Yαpwpiq, fqH8
j � H8

k . Moreover, for any p P R, there exists Mp ¥ 0 independent of f , such

that for any ξpjq P H8
j , we have

∥∥Yαpwpiq, fqξpjq∥∥p ¤Mp

��f ��
V,|p|�t

∥∥ξpjq∥∥
p�r

. (3.24)

(b) Yαpwpiq, fq : H8
j Ñ H8

k has the formal adjoint Yαpwpiq, fq: : H8
k Ñ H8

j , which satisfies

Yαpwpiq, fq: �
¸
m¥0

e�iπ∆
wpiq

m!
Yα�pLm1 wpiq, epm�2�2∆

wpiq
qfq. (3.25)

In particular, if wpiq is quasi-primary, then we have the adjoint relation

Yαpwpiq, fq: � e�iπ∆
wpiqYα�pwpiq, ep2�2∆

wpiq
qfq. (3.26)
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Hence the adjoint relation (3.26) for smeared intertwining operators is established.

Remark 3.10. If Yα P V
�
k
i j

�
is a unitary energy-bounded intertwining operator of V , wpiq PWi is

not necessarily homogeneous, and f P C8
c pS

1zt�1uq, then by linearity, we can define a preclosed

operator Yαpwpiq, fq : H8
j Ñ H8

k to be Yαpwpiq, fq �
°
sPR YαpPswpiq, fq. Proposition 3.9-(a)

still holds in this case.

Remark 3.11. If Wi is a unitary V -module, then Yi P V
�
i

0 i

�
. Choose any vector v P V . Since the

powers of x in Y pv, xq are integers, for each z P C�, Yipv, zq does not depend on arg z. Therefore,

for any f P C8
c pS

1q, we can defined a smeared vertex operator Yipv, fq : H8
i Ñ H8

i using (3.13).

Braiding of smeared intertwining operators

The relation between products of smeared intertwining operators and correlation functions is

indicated as follows.

Proposition 3.12. Let Yα1 ,Yα2 , . . . ,Yαn be a chain of unitary energy-bounded intertwining oper-

ators of V with charge spaces Wi1 ,Wi2 , . . . ,Win respectively. Let Wj be the source space of Yα1 ,

and let Wk be the target space of Yαn . Choose mutually disjoint I1, I2, . . . , In P J pS1zt�1uq. For

each m � 1, 2, . . . , n we choose wpimq P Wim and fm P C8
c pImq. Then for any wpjq P Wj and

wpkq PWk,

xYαnpwpinq, fnq � � �Yα1pw
pi1q, f1qw

pjq|wpkqy

�

» π
�π

� � �

» π
�π
xYαnpwpinq, eiθnq � � �Yα1pw

pi1q, eiθ1qwpjq|wpkqyf1pe
iθ1q � � � fnpe

iθnq � {dθ1 � � � {dθn.

(3.27)

Proof.

¸
s1,...,snPR

∥∥PsnYαnpwpinq, fnqPsn�1Yαn�1pw
pin�1q, fn�1qPsn�2 � � �Ps1Yα1pw

pi1q, f1qw
pjq

∥∥
�

¸
t1,...,tnPZV

∥∥Yαnpwpinq, tnq � � �Yα1pw
pi1q, t1qw

pjq
∥∥ � �� pf1pt1q � � � pfnptnq��, (3.28)
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which, by proposition 3.2, is finite. Hence, for all r1, . . . , rn, r1{r2, . . . , rn�1{rn P r1{2, 1s, the

following functions of s1, . . . , sn:

���xPsnYαnpwpinq, fnqPsn�1 � � �Ps1Yα1pw
pi1q, f1qw

pjq|wpkqy

� r
�∆

wpi1q

1 � � � r
�∆

wpinq
n

�r1

r2

	s1
� � �
�rn�1

rn

	sn�1

r
∆
wpkq

n

��� (3.29)

are bounded by a constant multiplied by

���xPsnYαnpwpinq, fnqPsn�1 � � �Ps1Yα1pw
pi1q, f1qw

pjq|wpkqy
���, (3.30)

the sum of which over s1, . . . , sn is finite. Therefore, if we always assume that r1, . . . , rn ¡ 0 and

0   r1{r2   � � �   rn�1{rn ¤ 1, then by dominated convergence theorem and relation (1.26),

xYαnpwpinq, fnq � � �Yα1pw
pi1q, f1qw

pjq|wpkqy

�
¸

s1,...,snPR
xPsnYαnpwpinq, fnqPsn�1 � � �Ps1Yα1pw

pi1q, f1qw
pjq|wpkqy

�
¸

s1,...,snPR
lim

r1,...,rnÑ1

�
xPsnYαnpwpinq, fnqPsn�1 � � �Ps1Yα1pw

pi1q, f1qw
pjq|wpkqy

� r
�∆

wpi1q

1 � � � r
�∆

wpinq
n

�r1

r2

	s1
� � �
�rn�1

rn

	sn�1

r
∆
wpkq

n

	
� lim
r1,...,rnÑ1

¸
s1,...,snPR

�
xPsnYαnpwpinq, fnqPsn�1 � � �Ps1Yα1pw

pi1q, f1qw
pjq|wpkqy

� r
�∆

wpi1q

1 � � � r
�∆

wpinq
n

�r1

r2

	s1
� � �
�rn�1

rn

	sn�1

r
∆
wpkq

n

	
� lim
r1,...,rnÑ1

¸
s1,...,snPR

» π
�π

� � �

» π
�π
xPsnYαnpwpinq, eiθnqPsn�1

� � �Ps1Yα1pw
pi1q, eiθ1qwpjq|wpkqyr

�∆
wpi1q

1 � � � r
�∆

wpinq
n

�
�r1

r2

	s1
� � �
�rn�1

rn

	sn�1

r
∆
wpkq

n f1pe
iθ1q � � � fnpe

iθnq{dθ1 � � � {dθn

� lim
r1,...,rnÑ1

¸
s1,...,snPR

» π
�π

� � �

» π
�π
xPsnYαnpwpinq, rneiθnqPsn�1

� � �Ps1Yα1pw
pi1q, r1e

iθ1qwpjq|wpkqyf1pe
iθ1q � � � fnpe

iθnq{dθ1 � � � {dθn. (3.31)
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By theorem 2.2 and the discussion below, the sum and the integrals in (3.31) commute. Therefore

(3.31) equals

lim
r1,...,rnÑ1

» π
�π

� � �

» π
�π

¸
s1,...,snPR

xPsnYαnpwpinq, rneiθnqPsn�1

� � �Ps1Yα1pw
pi1q, r1e

iθ1qwpjq|wpkqyf1pe
iθ1q � � � fnpe

iθnq{dθ1 � � � {dθn

� lim
r1,...,rnÑ1

» π
�π

� � �

» π
�π
xYαnpwpinq, rneiθnq

� � �Yα1pw
pi1q, r1e

iθ1qwpjq|wpkqyf1pe
iθ1q � � � fnpe

iθnq{dθ1 � � � {dθn. (3.32)

By continuity of correlation functions, the limit and the integrals in (3.32) commute. So (3.32)

equals the right hand side of equation (3.27). Thus the proof is completed.

Corollary 3.13. Let Yα,Yα1 be unitary energy-bounded intertwining operators of V with common

charge spaceWi, and Yβ,Yβ1 be unitary energy-bounded intertwining operators of V with common

charge space Wj . Choose zi, zj P S1 and assume that arg zj   arg zi   arg zj � 2π. Choose

disjoint open intervals I, J P J pS1zt�1uq such that I is anticlockwise to J . Suppose that for any

wpiq PWi, w
pjq PWj , the following braid relation holds:

Yαpwpiq, ziqYβpwpjq, zjq � Yβ1pwpjq, zjqYα1pwpiq, ziq. (3.33)

Then for any f P C8
c pIq, g P C

8
c pJq, we have the braid relation for intertwining operators:

Yαpwpiq, fqYβpwpjq, gq � Yβ1pwpjq, gqYα1pwpiq, fq. (3.34)

Note that if Wk is the source space of Yβ , then both sides of equation (3.34) are understood to

be acting on H8
k .

Remark 3.14. If Yα and Yα1 (resp. Yβ and Yβ1) are the vertex operator Yk, then the above corollary

still holds if we assume that I P J (resp. J P J ).
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Rotation covariance of smeared intertwining operators

For each t P R, we define an action

rptq : S1 Ñ S1, rptqpeiθq � eipθ�tq. (3.35)

For any g P C8
c pS

1q, we let

rptqg � g � rp�tq. (3.36)

Therefore, if J P J , then rptqC8
c pJq � C8

c prptqJq. We also define g1 P C8
c pS

1q to be

g1peiθq �
d

dθ
gpeiθq (3.37)

Rotation covariance is stated as follows.

Proposition 3.15. Suppose that Yα P V
�
k
i j

�
is unitary, wpiq P Wj is homogeneous, Ypwpiq, xq

is energy bounded, and J P J pS1zt�1uq. Choose ε ¡ 0 such that rptqJ � S1zt�1u for any

t P p�ε, εq. Then for any g P C8
c pJq and t P p�ε, εq, the following equations hold when both sides

act on H8
j :

rL0,Yαpwpiq, gqs � Yα
�
wpiq, p∆wpiq � 1qg � ig1

�
, (3.38)

eitL0Yαpwpiq, gqe�itL0 � Yα
�
wpiq, eip∆wpiq

�1qtrptqg
�
. (3.39)

Proof. By equation (1.24), for any z � eiθ P J we have

rL0,Yαpwpiq, zqs

�∆wpiqYαpw
piq, zq � zBzYαpwpiq, zq

�∆wpiqYαpw
piq, eiθq � iBθYαpwpiq, eiθq
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when evaluated between vectors inside Wj and Wk. Thus we have

rL0,Yαpwpiq, gqs �
» π
�π
rL0,Yαpwpiq, eiθqsgpeiθq{dθ

�

» π
�π

�
∆wpiqYαpw

piq, eiθq � iBθYαpwpiq, eiθq
�
gpeiθq{dθ

�∆wpiqYαpw
piq, gq � i

» π
�π

BθYαpwpiq, eiθqgpeiθq
eiθ

2π
dθ

�∆wpiqYαpw
piq, gq � i

» π
�π

Yαpwpiq, eiθq
d

dθ

�
gpeiθq

eiθ

2π

	
dθ

�∆wpiqYαpw
piq, gq � i

» π
�π

Yαpwpiq, eiθq
�
g1peiθq � igpeiθq

�eiθ
2π
dθ

�p∆wpiq � 1qYαpwpiq, gq � iYαpwpiq, g1q.

This proves the first equation. To prove the second one, we first note that for any τ ¥ 0, when h P R

is small enough, the | � |V,τ -norm of the function

eip∆wpiq
�1qpt�hqrpt� hqg � eip∆wpiq

�1qtrptqg

�
�
ip∆wpiq � 1qeip∆wpiq

�1qtrptqg � eip∆wpiq
�1qtrptqg1

�
h

is ophq. For any ξpjq P H8
j , we define a function Ξptq for |t|   ε to be

Ξptq � e�itL0Yαpwpiq, eip∆wpiq
�1qtrptqgqeitL0ξpjq.

Now we can apply relation (3.38) and proposition 3.9 to see that the vector norm of Ξpt�hq�Ξptq

is ophq for any |t|   ε. (In fact this is true for any Sobolev norm.) This shows that the derivative of

Ξptq exists and equals 0. So Ξptq is a constant function. In particular, we have Ξp0q � Ξptq, which

implies (3.39).

The intertwining property of smeared intertwining operators

Proposition 3.16. Let Yα P V
�
k
i j

�
be unitary, wpiq P Wi be homogeneous, and v P V be quasi-

primary. Suppose that θv � v, Yαpwpiq, xq is energy bounded, and Yjpv, xq, Ykpv, xq satisfy linear

energy bounds. Let I P J , J P J pS1zt�1uq be disjoint. Choose f P C8
c pIq, g P C

8
c pJq. Assume
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that f satisfies

eiπ∆v{2e1�∆vf � eiπ∆v{2e1�∆vf. (3.40)

Then Yjpv, fq and Ykpv, fq are essentially self-adjoint, and for any t P R, we have

eitYjpv,fqH8
j � H8

j , eitYkpv,fqH8
k � H8

k , (3.41)

eitYkpv,fq � Yαpwpiq, gq � Yαpwpiq, gq � eitYjpv,fq. (3.42)

Proof. Define the direct sum V -module Wl � Wj `
K Wk of Wj and Wk. Then Hl is

the norm completion of Wl, H8
l is the dense subspace of smooth vectors, and Ylpv, fq �

diag
�
Yjpv, fq, Ykpv, fq

�
. By equations (3.40) and (3.26), Ylpv, fq is symmetric (i.e., Ylpv, fq: �

Ylpv, fq). Since Ylpv, xq satisfies linear energy bounds, by proposition 3.9-(a), relation (3.38), and

lemma B.8, Ylpv, fq is essentially self-adjoint, and eitYlpv,fqH8
l � H8

l . This is equivalent to saying

that Yjpv, fq and Ykpv, fq are essentially self-adjoint, and relation (3.41) holds.

Let A � Ylpv, fq. Regard B � Yαpwpiq, gq as an unbounded operator on Hl, being the original

one when acting on Hj , and zero when acting on Hk. (So the domain of B is H8
j `K Hk.) By

propositions 2.13, 3.13, and remark 3.14, AB � BA when both sides of the equation act on H8
l .

By theorem B.9, A commutes strongly with B. Therefore eitA � B � B � eitA, which is equivalent

to equation (3.42).
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CHAPTER 4

FROM UNITARY VOAS TO CONFORMAL NETS

In this chapter, we assume that V is unitary and energy-bounded. A net MV of von Neumann

algebras on the circle can be defined using smeared vertex operators of V . If MV is a conformal

net, then V is called strongly local. A theorem in [CKLW15] shows that when V is generated by a

set of quasi-primary vectors whose field operators satisfy linear energy bounds, then V is strongly

local. This is discussed in section 4.1.

Let Wi be an energy-bounded unitary V -module. If this representation of V can be integrated

to a representation of the conformal net MV , we say that Wi is strongly integrable. In section

4.1, we show that the abelian category of energy-bounded strongly-integrable unitary V -modules is

equivalent to the category of the corresponding integrated MV -modules. A similar topic is treated

in [CWX].

There are two majors ways to prove the strong integrability of a unitary V -modules Wi. First, if

the action of V onWi is restricted from the inclusion of V in a larger energy-bounded strongly-local

unitary VOA, then Wi is strongly local. This result is proved in [CWX], and will not be used in

our paper. In section 4.2, we give a different criterion using linear energy bounds of intertwining

operators.

4.1 Unitary VOAs, conformal nets, and their representations

We first review the definition of conformal nets. Standard references are [CKLW15, Car04,

GF93, GL96, KL04]. Conformal nets are based on the theory of von Neumann algebras. For an

outline of this theory, we recommend [Con80] chapter 5. More details can be found in [Jon03,

Tak02, Tak13, KR83, KR15].

Let DiffpS1q be the group of orientation-preserving diffeomorphisms of S1. Convergence in

DiffpS1q means uniform convergence of all derivatives. Let H be a Hilbert space, and let UpHq let

the group of unitary operators on H, equipped with the strong (operator) topology. PUpHq is the

quotient topology group of UpHq, defined by identifying x with λx when x P UpHq, λ P S1. A
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strongly continuous projective representation of DiffpS1q on H is, by definition, a continuous

homomorphism from DiffpS1q into PUpHq.

DiffpS1q contains the subgroup PSUp1, 1q of Möbius transformations of S1. Elements in

PSUp1, 1q are of the form

z ÞÑ
λz � µ

µz � λ
pz P S1q, (4.1)

where λ, µ P C, |λ|2 � |µ|2 � 1. PSUp1, 1q contains the subgroup S1 � trptq : t P Ru of rotations

of S1.

A conformal net M associates to each I P J a von Neumann algebra MpIq acting on a fixed

Hilbert space H0, such that the following conditions hold:

(a) (Isotony) If I1 � I2 P J , then MpI1q is a von Neumann subalgebra of MpI2q.

(b) (Locality) If I1, I2 P J are disjoint, then MpI1q and MpI2q commute.

(c) (Conformal covariance) We have a strongly continuous projective unitary representation U of

DiffpS1q on H0, such that for any g P DiffpS1q, I P J ,

UpgqMpIqUpgq� �MpgIq.

Moreover, if g fixes the points in I , then for any x PMpIq,

UpgqxUpgq� � x.

(d) (Möbius covariance) The projective unitary representation U of DiffpS1q restricts to a unitary

representation of the Möbius group PSUp1, 1q on H0.

(e) (Positivity of energy) The generator of the restriction of U to S1 is positive.

(f) There exists a vector Ω P H0 (the vacuum vector), such that Ω is fixed by PSUp1, 1q, and it is

cyclic under the action of
�
IPJ MpIq (the von Neumann algebra generated by all MpIq).

(g) (Irreducibility) The von Neumann algebra
�
IPJ MpIq is the algebra of all bounded linear

operators on H0.

The following properties are satisfied by a conformal net, and will be used in our theory:

(1) (Additivity) If tIa : a P Au is a collection of open intervals in J , I P J , and I �
�
aPA Ia, then
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MpIq �
�
aPAMpIaq.

(2) (Haag duality) MpIq1 �MpIcq.

(3) MpIq is a type III factor. (Indeed, it is of type III1.)

Properties (2) and (3) are natural consequences of Bisognano-Wichmann theorem, cf. [BGL93,

GF93].

Following [CKLW15], we now show how to construct a conformal net MV from V . Let the

Hilbert space H0 be the norm completion of V . For any I P J we define MV pIq to be the von

Neumann algebra on H0 generated by closed operators of the form Y pv, fq, where v P V and

f P C8
c pIq. Thus we’ve obtained a net of von Neumann algebras I P J ÞÑ MV pIq and denote

it by MV . The vacuum vector Ω in H0 is the same as that of V . The projective representation

U of DiffpS1q is obtained by integrating the action of the real part of the Virasoro algebra on V .

The representation of PSUp1, 1q is determined by the action of L�1, L0 on V . All the axioms of

conformal nets, except locality, are satisfied for MV .

Locality of MV , however, is much harder to prove. To be sure, for any disjoint I, J P J , and

any u, v P V , we can use proposition 2.13, corollary 3.13, and proposition 3.9 to show that

Y pu, fqY pv, gq � Y pv, gqY pu, fq, (4.2)

Y pu, fq:Y pv, gq � Y pv, gqY pu, fq:, (4.3)

where both sides act on H8
0 . The commutativity of closed operators on a common invariant core,

however, does not imply the strong commutativity of these two operators, as indicated by the exam-

ple of Nelson (cf. [Nel59]). So far, the best result we have for the locality of MV is the following:

Theorem 4.1. Suppose that V is generated by a set E of quasi-primary vectors, and that for any

v P E, Y pv, xq satisfies linear energy bounds. Then the net MV satisfies the locality condition,

and is therefore a conformal net. Moreover, if we let ER � tv � θv, ipv � θvq : v P Eu, then for

any I P J , MV pIq is generated by the closed operators Y pu, fq, where u P ER, and f P C8
c pIq

satisfies eiπ∆u{2e1�∆uf � eiπ∆u{2e1�∆uf .

Proof. Clearly ER generates V . From the proof of [CKLW15] theorem 8.1, it suffices to prove,

for any disjoint I, J P J , u, v P ER, and f P C8
c pIq, g P C

8
c pJq satisfying eiπ∆u{2e1�∆uf �
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eiπ∆u{2e1�∆uf, e
iπ∆v{2e1�∆vg � eiπ∆v{2e1�∆vg, that Y pu, fq and Y pv, gq commute strongly.

By proposition 3.9-(b), Y pu, fq and Y pv, gq are symmetric operators. Hence by equation (3.38),

proposition 3.9-(a), equation (4.2), Lemma B.8, and theorem B.9, Y pu, fq and Y pv, gq are self-

adjoint operators, and they commute strongly with each other.

We say that a unitary energy-bounded strongly local VOA V is strongly local, if MV satisfies

the locality condition.

Suppose that V is strongly local. We now discuss representations of the conformal net MV .

Let Hi be a Hilbert space (currently not yet related to Wi). Suppose that for any I P J , we have a

(normal unital *-) representation πi,I : MV pIq Ñ BpHiq, such that for any I1, I2 P J satisfying

I1 � I2, and any x PMV pI1q, we have πi,I1pxq � πi,I2pxq. Then pHi, πiq (or simply Hi) is called

a (locally normal) represention of the MV (or a MV -module). We shall abbreviate πi,I1pxq and

πi,I2pxq as πipxq, if we do not want to emphasize which von Neumann algebra x belongs to. If

ξpiq P Hi, we simply write xξpiq for πipxqξpiq � πi,Ipxqξ
piq.

The MV -modules we are interested in are those arising from unitary V -modules. Let Wi be an

energy-bounded unitary V -module, and let Hi be the norm completion of the inner product space

Wi. Assume that we have a representation πi of MV on Hi. Then we say that pHi, πiq is associated

with the V -module pWi, Yiq, if for any I P J , v P V , and f P C8
c pIq, we have

πi,I
�
Y pv, fq

�
� Yipv, fq. (4.4)

(See section B.1 for the definition of πi,I acting on unbounded closed operators affiliated with

MV pIq.) A MV -module associated with Wi, if exists, must be unique. We say that an energy-

bounded unitary V -module Wi is strongly integrable if there exists a MV -module pHi, πiq asso-

ciated with Wi. Let S be the collection of strongly integrable energy-bounded unitary V -modules.

Obviously V P S. It is easy to show that S is additively complete.

We now introduce a very useful density property. For any I P J , we define MV pIq8 to be the

set of smooth operators in MV pIq, i.e., the set of all x P MV pIq satisfying that for any unitary
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V -module Wi inside S,

xH8
i � H8

i , x�H8
i � H8

i . (4.5)

Proposition 4.2. If V is unitary, energy-bounded, and strongly local, then MV pIq8 is a strongly

dense self-adjoint subalgebra of MV pIq.

Proof. By additivity or by the construction of MV , we have MV pIq �
�
J��I MV pJq. (J �� I

means that J P J and J � I .) For each J �� I and x P MV pJq, we choose ε ¡ 0 such that

rptqJ � I whenever t P p�ε, εq. For each h P C8
c p�ε, εq such that

³ε
�ε hptqdt � 1, define

xh �

» ε
�ε
eitL0xe�itL0hptqdt.

Then by (3.39), xh PMV pIq. For each Wi inside S, equations (3.39) and (4.4) imply that

πipe
itL0xe�itL0q � eitL0πipxqe

�itL0 . (4.6)

So we have

πipxhq �

» ε
�ε
eitL0πipxqe

�itL0hptqdt,

which implies that

eitL0πipxhqξ
piq � πipxhtqe

itL0ξpiq, (4.7)

where htpsq � hps � tq. From this equation, we see that the derivative of eitL0ξpiq P H8
i at t � 0

exists and equals

�πipxh1qξ
piq � iπipxhqL0ξ

piq. (4.8)

This implies that πipxhqξpiq P H1
i and iL0πipxhqξ

piq equals (4.8). Using the same argument, we see

that for each n P Z¥0, the following Leibniz rule holds:

πipxhqξ
piq P DpL0

n
q � Hn

i ,
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L0
n
πipxhqξ

piq �
ņ

m�0

�
n

m



imπipxhpmqq � L0

n�m
ξpiq,

where hpmq is the m-th derivative of h. This proves that πipxhqH8
i � H8

i .

Since pxhq� � px�qh, we also have x�hH8
i � H8

i . So xh PMV pIq8. Clearly xh Ñ x strongly

as h converges to the δ-function at 0. We thus conclude that any x P MV pJq can be strongly

approximated by elements in MV pIq8. Hence the proof is finished.

We study the relation between the representation categories of MV and V . Assume, as before,

that V is unitary, energy-bounded, and strongly local. We define an additive category RepSpMV q

as follows: The objects are MV -modules of the form Hi, where Wi is an element inside S. If

Wi,Wj are inside S, then the vector space of morphisms HomMV
pHi,Hjq consists of bounded

linear operatorsR : Hi Ñ Hj , such that for any I P J , x PMV pIq, the relationRπipxq � πjpxqR

holds.

Define a functor F : Repu
SpV q Ñ RepSpMV q in the following way: If Wi is a uni-

tary V -module in S, then we let FpWiq be the MV -module Hi. If Wi,Wj are in S and

R P HomV pWi,Wjq, then by lemma 2.20, R is bounded, and hence can be extended to a bounded

linear map R : Hi Ñ Hj . It is clear that R is an element in HomMV
pHi,Hjq. We let FpRq be

this MV -module homomorphism. Clearly F : HomV pWi,Wjq Ñ HomMV
pHi,Hjq is linear. We

show that F is an isomorphism.

Theorem 4.3. 1 Let V be unitary, energy-bounded, and strongly local. For any Wi,Wj in

S, the linear map F : HomV pWi,Wjq Ñ HomMV
pHi,Hjq is an isomorphism. Therefore,

F : Repu
SpV q Ñ RepSpMV q is an equivalence of additive categories.

Proof. The linear map F : HomV pWi,Wjq Ñ HomMV
pHi,Hjq is clearly injective. We only

need to prove that F is surjective. Choose R P HomMV
pHi,Hjq. Define an orthogonal direct sum

module Wk � Wi `
K Wj . Then Hk is the orthogonal direct sum MV -module of Hi,Hj . Regard

R as an element in EndMV
pHkq, which is the original operator when acting on Hi, and is 0 when

acting on Hj . Then for any I P J , x P MV pIq, R commutes with πkpxq, πkpx�q. Therefore, for

any homogeneous v P V and f P C8
c pIq, R commutes strongly with πk

�
Y pv, fq

�
� Ykpv, fq.

1This theorem is also proved in [CWX]. We would like to thank Sebastiano Carpi for letting us know this fact.
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We first show that RWi � Wj . Choose I1, I2 P J and f1 P C8
c pI1,Rq, f2 P C8

c pI2,Rq

such that f1 � f2 � 1. Regard L0 as an unbounded operator on Hk with domain Wk. Then L0 is

the restriction of the smeared vertex operator Ykpν, e1q to Wk. (Recall that by our notation of er,

e1pe
iθq � eiθ.) Therefore,

L0 � Ykpν, e1f1q � Ykpν, e1f2q,

and hence

L0 � Ykpν, e1f1q � Ykpν, e1f2q � Ykpν, e1f1q � Ykpν, e1f2q.

Recall that ν is quasi-primary and ∆ν � 2. Therefore, by equation (3.25), Ykpν, e1f1q and

Ykpν, e1f2q are symmetric operators. It follows that A � Ykpν, e1f1q � Ykpν, e1f2q is symmet-

ric. Note that L0 is self adjoint. Thus we have

L0 � A � A� � L0
�
� L0,

which implies that

L0 � Ykpν, e1f1q � Ykpν, e1f2q.

Therefore, since R commutes strongly with Ykpν, e1f1q and Ykpν, e1f2q, R also commutes strongly

with L0. In particular, R preserves every eigensubspace of L0 in Hk. This implies that RWipsq �

Wjpsq for any s P R, and hence that RWi �Wj .

Now, for any n P Z, wpiq PWi, and v P V , we have

Ykpv, nqw
piq � Ykpv, enqw

piq � Ykpv, enf1qw
piq � Ykpv, enf2qw

piq.

Since R commutes strongly with Yipv, enf1q, Yipv, enf2q, we have RYkpv, enqw
piq �

Ykpv, enqRw
piq, which implies that RYipv, nqw

piq � Yjpv, nqRw
piq. Therefore, R P

HomV pWi,Wjq.

Corollary 4.4. If Wi is a unitary V -module in S, and H1 is a (norm-)closed MV -invariant sub-
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space of Hi, then there exists a V -invariant subspace W1 of Wi, such that H1 is the norm closure

of W1.

Proof. Let e1 be the orthogonal projection of Hi onto H1. Then e1 P EndMV
pHiq. By theorem

4.3, e1 restricts to an element in EndV pWiq. So W1 � e1Wi is a V -invariant subspace of Wi, and

e1L0 � L0e1 when both sides act on Wi. Therefore e1 commutes strongly with L0. Let Ps be the

projection of Hi onto Wipsq. Then Ps is a spectral projection of L0. Hence ePs � Pse for any

s ¥ 0.

Choose any ξ P H1. Then ξ �
°
s¥0 Psξ. Since for any s ¥ 0 we have Psξ � Pse1ξ �

e1Psξ P e1Wi � W1, we see that ξ can be approximated by vectors in W1. This proves that H1 is

the norm closure of W1.

4.2 A criterion for strong integrability

Assume that V is unitary, energy bounded, and strongly local. In this section, we give a criterion

for the strong integrability of energy-bounded unitary V -modules.

Proposition 4.5. Let Wi be a non-trivial energy-bounded unitary V -module. Then Wi is strongly

integrable, if and only if for any I P J , there exists a unitary operator UI : H0 Ñ Hi, such that

any v P V and f P C8
c pIq satisfy

Yipv, fq � UIY pv, fqU
�
I . (4.9)

Proof. “If part”: For any I P J pIq, we define a representation πi,I of MV pIq on Hi to be

πi,Ipxq � UIxU
�
I px PMV pIqq. (4.10)

If J P J pIq and I � J , then by equation (4.9), U�
JUI commutes strongly with every Y pv, fq where

v P V and f P C8
c pIq. So U�

JUI commutes with MV pIq, which implies that πi,I is the restriction

of πi,J on MV pIq. So πi is a representation of the conformal net MV . It is obvious that πi is

associated with Wi. So Wi is strongly integrable.

“Only if part”: Suppose that Wi is strongly integrable. We let pHi, πiq be the MV -module

associated with Wi. For each I P MI , πi,I is a non-trivial representation of MV pIq on Hi. Since
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the Hilbert spaces H0,Hi are separable, and MV pIq is a type III factor, πi,I is (unitary) equivalent

to the representation π0,I of MV pIq on H0. So there exits a unitary UI : Hi Ñ Hi such that

equation (4.9) always holds.

Remark 4.6. Equation (4.9) is equivalent to the following relations:

UIY pv, fq � Yipv, fqUI , (4.11)

U�
I Yipv, fq � Y pv, fqU�

I . (4.12)

Proposition 4.7. Let Wj ,Wk be non-trivial energy-bounded unitary V -modules. Assume that Wj

is strongly integrable. If for any I P J there exits a collection tTa : a P Au of bounded linear

operators from Hj to Hk, such that
�
aPA TaHj is dense in Hk, and that for any a P A, v P V, f P

C8
c pIq, we have

TaYjpv, fq � Ykpv, fqTa, (4.13)

T �a Ykpv, fq � Yjpv, fqT
�
a , (4.14)

then Wk is strongly integrable.

Proof. Let Wl � Wj `
K Wk be the direct sum module of Wj and Wk, and extend each Ta to a

bounded linear operator on Hl, such that Ta equals zero on the subspace Hk. Choose any I P J .

Since Ylpv, fq � diagpYjpv, fq, Ykpv, fqq, equations (4.13) and (4.14) are equivalent to that Ta

commutes strongly with Ylpv, fq for any v P V, f P C8
c pIq. We construct a unitary operator

UI : Hj Ñ Hk such that

Ykpv, fq � UIYjpv, fqU
�
I (4.15)

for any v P V, f P C8
c pIq. Then the strong integrability of Wk will follow immediately from

proposition 4.5 and the strong integrability of Wj .

Let tUb : b P Bu be a maximal collection of non-zero partial isometries from Hj to Hk satisfying

the following conditions:

(a) For any b P B, v P V, f P C8
c pIq, Ub commutes strongly with Ylpv, fq.
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(b) The projections teb � UbU
�
b : b P Bu are orthogonal.

Note that similar to Ta, each Ub is extended to a partial isometry on Hl, being zero when acting on

Hk.

Let e �
°
bPB eb. We prove that e � idHk

. Let e1 � idHk
� e. If e1 � 0, then by the density

of
�
aPA TaHj in Hk, there exists a P A such that e1Ta � 0. Take the left polar decomposition

e1Ta � UaHa of e1Ta, where Ua is the partial isometry part. Then UaU�
a is the projection of Hl onto

the range of e1Ta, which is nonzero and orthogonal to each eb. For each v P V, f P C8
c pIq, since

e1 and Ta commute strongly with Ylpv, fq, Ua also commutes strongly with Ylpv, fq. Therefore,

tUb : b P Bu Y tUau is a collection of partial isometries from Hj to Hk satisfying conditions (a)

and (b), and tUb : b P Bu is its proper sub-collection. This contradicts the fact that tUb : b P Bu is

maximal. So e1 � 0, and hence e � idHk
.

For each b P B we let pb � U�
b Ub, which is a non-zero projection on Hj . We now restrict

ourselves to operators on Hj . Then pb commutes strongly with each Yjpv, fq, which, by the strong

integrability of Wj , is equivalent to that pb P πj,IpMV pIqq
1. Note that B must be countable. We

choose a countable collection tqb : b P Bu of non-zero orthogonal projections on Hj satisfying that°
bPB qb � idHj , and that each qb P πj,IpMV pIqq

1. Since πj,IpMV pIqq
1 is a type III factor, for

each b there exists a partial isometry rUb P πj,IpMV pIqq
1 satisfying rUb rU�

b � pb, rU�
b
rUb � qb.

We turn our attention back to operators on Hl. Since rUb P πj,IpMV pIqq
1, rUb commutes strongly

with each Ylpv, fq. Let UI �
°
bPB Ub

rUb. Then UI is a unitary operator from Hj to Hk satisfying

relation (4.15) for any v P V, f P C8
c pIq. Thus our proof is finished.

We now prove the strong integrability of an energy-bounded unitary V -module using the linear

energy-boundedness of intertwining operators.

Theorem 4.8. Let Wi,Wj ,Wk be non-zero unitary irreducible V -modules. Assume that Wj and

Wk are energy-bounded, that Wj is strongly integrable, and that there exist a non-zero quasi-

primary vector wpiq0 P Wi and a non-zero intertwining operator Yα P V
�
k
i j

�
, such that Yαpwpiq0 , xq

satisfies linear energy bounds. Then Wk is strongly integrable.

Proof. Step 1. Fix any J P J pS1zt�1uq, and let WJ be the subspace of Hk spanned by the vectors

Yαpwpiq0 , gqwpjq where g P C8
c pJq and wpjq PWj . We show that WJ is a dense subspace of Hk.
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Our proof is similar to that of Reeh-Schlieder theorem (cf. [RS61]). Choose ξpkq P WK
J . Note

that for each ηpkq P Hk, the multivalued function

z ÞÑ zL0ηpkq �
¸
s¥0

zsPsη
pkq (4.16)

is continuous on D�
p1q � tζ P C : 0   |ζ| ¤ 1u and holomorphic on its interior D�p1q. So we

have a multivalued holomorphic function of z:

xzL0Yαpwpiq0 , gqwpjq|ξpkqy, (4.17)

which is continuous on D�
p1q and holomorphic on D�p1q. Choose ε ¡ 0 such that the support of

gt � exppitp∆
w
piq
0
� 1qqrptqg is inside J for any t P p�ε, εq. Then, by proposition 3.15, we have

xeitL0Yαpwpiq0 , gqwpjq|ξpkqy � xYαpwpiq0 , gtqeitL0wpjq|ξpkqy, (4.18)

which must be zero when t P p�δ, δq.

By Schwarz reflection principle, the value of function (4.17) is zero for any z P D
�
prq. In

particular, it is zero for any z P S1. This shows that (4.18) is zero for any t P R. Here, when

we define the smeared intertwining operator, we allow the arguments to exceed the region p�π, πq

under the action of rptq. So the right hand side of equation (4.18) becomes

¸
sPR

» t�π
t�π

xYαpwpiq0 , eiθqeitL0wpjq|Psξ
pkqy � exppitp∆

w
piq
0
� 1qqgpeipθ�tqq{dθ, (4.19)

which is 0 for any t P R. (Recall our notation that {dθ � eiθdθ{2π.) Since Wi,Wj ,Wk are

irreducible, we let ∆i,∆j ,∆k be their conformal dimensions, and set ∆α � ∆i � ∆j � ∆k. Then

by equation (1.25),

Yαpwpiq0 , zqz∆α �
¸
nPZ

Yαpwpiq0 ,∆α � 1� nqzn (4.20)

is a single valued holomorphic function for z P C�. So the fact that (4.19) always equals 0 implies
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that

¸
sPR

» π
�π
xYαpwpiq0 , eiθqwpjq|Psξ

pkqyei∆αθ � hpeiθqdθ � 0 (4.21)

for any wpjq P Wj , I P J and h P C8
c pIq. By partition of unity on S1, we see that equation (4.21)

holds for any h P C8pS1q.

For any m P Z, we choose hpeiθq � e�imθ. Then the left hand side of equation (4.21) becomes

¸
sPR

» π
�π
xYαpwpiq0 , eiθqwpjq|Psξ

pkqyei∆αθ � e�imθdθ

�
¸
sPR

» π
�π

¸
nPZ

xYαpwpiq0 ,∆α � 1� nqwpjq|Psξ
pkqy � eipn�mqθdθ

�
¸
sPR

¸
nPZ

» π
�π
xYαpwpiq0 ,∆α � 1� nqwpjq|Psξ

pkqy � eipn�mqθdθ

�2π
¸
sPR

xYαpwpiq0 ,∆α � 1�mqwpjq|Psξ
pkqy

�2πxYαpwpiq0 ,∆α � 1�mqwpjq|ξpkqy, (4.22)

which by equation (4.21) must be zero. By corollary 2.15 and the proof of corollary A.4, vectors of

the form Yαpwpiq0 , sqwpjq (where s P R, wpjq P Wj) span Wk, which is a dense subspace of Hj . So

ξpkq � 0.

Step 2. Choose any I P J , and let J P J pIczt�1uq. Take Wl � Wj `
K Wk. Then for each

v P V, f P C8
c pIq we have Ylpv, fq � diagpYjpv, fq, Ykpv, fqq. For each g P C8

c pJq, we extend

Yαpwpiq0 , gq to an operator on H8
l whose restriction to H8

k is zero. We also regard A � Yαpwpiq0 , gq

as an unbounded operator on Hl with domain H8
l . Let N pIq be the von Neumann algebra on

Hj generated by the operators Ylpv, fq where v P V, f P C8
c pIq, and let N pIq8 be the set of all

x P N pIq satisfying xH8
l � H8

l , x
�H8

l � H8
l . Then as in the proof of proposition 4.2, N pIq8

is a strongly dense self-adjoint subalgebra of N pIq. Let H � pA�A:q{2 and K � pA�A:q{p2iq

be symmetric unbounded operators on Hl with domain H8
l . Then by proposition 2.13, corollary

3.13, remark 3.14, and equation (3.26), for any v P V and f P C8
c pIq, Ylpv, fq commutes with H

and K when acting on H8
l . By lemma B.8 and relations (3.38), (3.26), H and K are self adjoint,
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and by theorem B.9, Ylpv, fq commutes strongly with H and K. Hence any x P N pIq commutes

strongly with H and K. In particular, if x P N pIq8, we have xH � Hx, xK � Kx when both

sides of the equations act on H8
l . So xpH � iKq � pH � iKqx when acting on H8

l . Therefore,

xYαpwpiq0 , gq � Yαpwpiq0 , gqx for any x P N pIq8, which implies that N pIq commutes strongly

with Yαpwpiq0 , gq. Thus Ylpv, fq commutes strongly with Yαpwpiq0 , gq.

Let Yαpwpiq0 , gq � TgHg be the left polar decomposition of Yαpwpiq0 , gq, where Tg is the partial

isometry. Then Tg commutes strongly with each Ylpv, fq. By step 1, tTg : g P C8
c pJqu form a col-

lection of bounded operators from Hj to Hk satisfying the conditions in proposition 4.7. Therefore,

by that proposition, Wk is strongly integrable.
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CHAPTER 5

GENERALIZED INTERTWINING OPERATORS

The goal of this chapter is to prove (in section 3) the rotation covariance, the intertwining

property, the braid relations, and the adjoint relation for generalized smeared intertwining opera-

tors. The first two can be derived from the same properties for smeared intertwining operators, so

their proofs are easier. To prove the braiding and the adjoint relation for generalized smeared in-

tertwining operators, we first prove them for unsmeared ones, which are the goals of section 1 and 2.

Generalized intertwining operators are nothing but genus 0 correlation functions written in

a particular way. Suppose that Yσ2 , . . . ,Yσn is a chain of intertwining operators with charge

spaces Wi2 , . . . ,Win respectively, such that the source space of Yσ2 is Wi1 , and the target space

of Yσn is Wi. Choose Yα P Y
�
k
i j

�
. Choose pz1, . . . , znq P ConfnpC�q, and choose arguments

arg z1, argpz2 � z1q, . . . , argpzn� z1q. A generalized intertwining operator Yσn���σn,α is defined

near pz1, . . . , znq in the following two situations.

The first case is when pz1, . . . , znq satisfies 0   |z2 � z1|   � � �   |zn� z1|   |z1|. We define a

pWjbWi1b� � �bWinbWkq
�-valued holomorphic function Yσn���σn,α near pz1, . . . , znq to satisfy

that for any wpjq PWj , w
pi1q PWi1 , . . . , w

pinq PWin , w
pkq PWk,

xYσn���σ2,αpwpinq, zn; . . . ;wpi2q, z2;wpi1q, z1qw
pjq, wpkqy

�
@
Yα
�
Yσnpwpinq, zn � z1q � � �Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
wpjq, wpkq

D
. (5.1)

The V -modules Wi1 , . . . ,Win are called the charge spaces of Yσn���σ2,α. Wj is called the source

space of Yσn���σ2,α, and Wk is called the target space of Yσn���σ2,α. The vector space of generalized

intertwining operators with charge spaces Wi1 , . . . ,Win , source space Wj , and target space Wk is

also denoted by V
�

k
in ... i1 j

�
.

In the second case, we choose I P J , and choose an arbitrary continuous argument function

argI on I . We define OnpIq to be the set of all pz1, . . . , znq P ConfnpC�q X In satisfying that for
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any 2 ¤ l   m ¤ n, either argIpzlz
�1
1 q argIpzmz

�1
1 q   0, or | argIpzlz

�1
1 q|   | argIpzmz

�1
1 q|.

Our definition is clearly independent of the choice of argI , and OnpIq is a finite disconnected union

of simply-connected sets.

We want to define our generalized intertwining operators near any pz1, . . . , znq P OnpIq. To

do this, we rotate z1, . . . , zn along I without meeting each other, until these points satisfy 0  

|z2 � z1|   � � �   |zn � z1|   |z1| � 1. The arguments of z1, z2 � z1, . . . , zn � z1 are changed

continuously. We first define Yσn���σn,α near the new point pz1, . . . , znq using equation (5.1). Then

we reverse this process of rotating z1, . . . , zn, and change Yσn���σn,α continuously so as to be defined

near the original point.

We now define the product of two generalized intertwining operators defined near S1. Prod-

ucts of more than two generalized intertwining operators are defined in a similar way. Choose

disjoint I, J P J , choose pz1, . . . , zmq P OmpIq, pζ1, . . . , ζnq P OnpJq, and choose arguments

arg z1, argpz2 � z1q, . . . , argpzm � z1q, arg ζ1, argpζ2 � ζ1q, . . . , argpζn � ζ1q. Choose gener-

alized intertwining operators Yσm���σ1,α P V
�

k
im���i1i0

�
,Yρn���ρ1,β P V

�
i0

jn���j1j0

�
. If we choose

arg z2, . . . , arg zm, arg ζ2, . . . , arg ζn, then we can find uniquely chains of intertwining operators

Yα1 , . . . ,Yαm with charge spaces Wi1 , . . . ,Wim respectively, and Yβ1 , . . . ,Yβn with charge spaces

Wj1 , . . . ,Wjn respectively, such that the source space of Yβ1 is Wj0 , that the source space of

Yα1 and the target space of Yβn are Wi0 , that the target space of Yαm is Wk, and that for any

wpj1q PWj1 , . . . , w
pjnq PWjn , w

pi1q PWi1 , . . . , w
pimq PWim , we have the fusion relations

Yσm���σ2,αpwpimq, zm; . . . ;wpi1q, z1q � Yαmpwpimq, zmq � � �Yα1pw
pi1q, z1q, (5.2)

Yρn���ρ2,βpwpjnq, ζn; . . . ;wpj1q, ζ1q � Yβnpwpjnq, ζnq � � �Yβ1pwpj1q, ζ1q. (5.3)

We then define a pWj0 bWj1 b � � � bWjn bWi1 b � � � bWim bWkq
�-valued holomorphic func-

tion Yσm���σ1,αYρn���ρ1,β near pζ1, . . . , ζn, z1, . . . , zmq to satisfy that for any wpj0q P Wj0 , w
pj1q P

Wj1 , . . . , w
pjnq PWjn , w

pi1q PWi1 , . . . , w
pimq PWim , w

pkq PWk,

xYσm���σ2,αpwpimq, zm; . . . ;wpi1q, z1qYρn���ρ2,βpwpjnq, ζn; . . . ;wpj1q, ζ1qw
pj0q, wpkqy

�xYαmpwpimq, zmq � � �Yα1pw
pi1q, z1qYβnpwpjnq, ζnq � � �Yβ1pwpj1q, ζ1qw

pj0q, wpkqy. (5.4)
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Remark 5.1. It is clear that our definition does not depend on the choice of

arg z2, . . . , arg zm, arg ζ2, . . . , arg ζn. Moreover, if we choose ς P Sm, $ P Sn, and real

variables λ1, . . . , λn, r1, . . . , rm defined near 1 and satisfying 0   λ$p1q   � � � , λ$pnq   rςp1q  

� � �   rςpmq, then the following series

¸
sPR

xYσm���σ2,αpwpimq, rmzm; . . . ;wpi1q, r1z1qPsYρn���ρ2,βpwpjnq, λnζn; . . . ;wpj1q, λ1ζ1qw
pj0q, wpkqy

(5.5)

of s converges absolutely, and by proposition 2.11, as r1, . . . , rm, λ1, . . . , λn Ñ 1, the limit of (5.5)

exists and equals the left hand side of equation (5.4).

5.1 Braiding of generalized intertwining operators

Theorem 5.2. Choose disjoint I, J P J . Choose pz1, . . . , zmq P OmpIq, pζ1, . . . , ζnq P OnpJq.

Choose arguments arg z1, arg ζ1, argpz2 � z1q, . . . , argpzm � z1q, argpζn � ζ1q, . . . , argpζn � ζ1q.

Let Wi,Wj ,Wi1 ,Wi2 , . . . ,Wim ,Wj1 ,Wj2 , . . . ,Wjn be V -modules. Assume that for any wpiq P

Wi, w
pjq PWj , the braid relation

Yαpwpiq, z1qYβpwpjq, ζ1q � Yβ1pwpjq, ζ1qYα1pwpiq, z1q (5.6)

holds. Then for any intertwining operators Yσ2 , . . . ,Yσm ,Yρ2 , . . . ,Yρn , any wpi1q P

Wi1 , . . . , w
pimq PWim , w

pj1q PWj1 , . . . , w
pjnq PWjn , we have the generalized braid relation

Yσm���σ2,αpwpimq, zm; . . . ;wpi1q, z1qYρn���ρ2,βpwpjnq, ζn; . . . ;wpj1q, ζ1q

�Yρn���ρ2,β1pw
pjnq, ζn; . . . ;wpj1q, ζ1qYσm���σ2,α1pw

pimq, zn; . . . ;wpi1q, z1q. (5.7)

(Note that here, as before, we follow convention 2.19 to simplify our statement.)

Proof. By analytic continuation, it suffices to assume that |z1 � ζ1| is small enough with respect to

1, and |z2 � z1|, . . . , |zm � z1|, |ζ2 � ζ1|, . . . , |ζn � ζ1| are small enough with respect to |z1 � ζ1|,
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such that for any r, λ ¡ 0 satisfying 2
3  

r
λ  

3
2 , the following inequalities are satisfied:

|ζn � ζ1| � |zm � z1|   1{4, (5.8)

0   |λζ2 � λζ1|   |λζ3 � λζ1|   � � �   |λζn � λζ1|   |rz1 � λζ1| � |rzm � rz1|, (5.9)

0   |rz2 � rz1|   |rz3 � rz1|   � � �   |rzm � rz1|   |rz1 � λζ1|   λ� |rzm � rz1|. (5.10)

Choose argpz1 � ζ1q. Since |z1 � ζ1|   1, there exist intertwining operators Yγ and Yδ such

that for any wpiq PWi, w
pjq PWj , we have

Yαpwpiq, z1qYβpwpjq, ζ1q � YδpYγpwpiq, z1 � ζ1qw
pjq, ζ1q � Yβ1pwpjq, ζ1qYα1pwpiq, z1q. (5.11)

Choose rm ¡ � � � ¡ r1 ¡ λn ¡ � � � ¡ λ1 ¡ 0 satisfying 2{3   r1{λ1   3{2. When

r2{r1, . . . , rm{r1, λ2{λ1, . . . , λn{λ1 are close to 1, by corollary 2.7, the right hand side of the equa-

tion

Yα
�
Yσmpwpimq, rmzm � r1z1q � � �Yσ2pwpi2q, r2z2 � r1z1qw

pi1q, r1z1

�
� Yβ

�
Yρnpwpjnq, λnζn � λ1ζ1q � � �Yρ2pwpj2q, λ2ζ2 � λ1ζ1qw

pj1q, λ1ζ1

�
�Yδ

�
Yγ
�
Yσmpwpimq, rmzm � r1z1q � � �Yσ2pwpi2q, r2z2 � r1z1qw

pi1q, r1z1 � λ1ζ1

	
� Yρnpwpjnq, λnζn � λ1ζ1q � � �Yρ2pwpj2q, λ2ζ2 � λ1ζ1qw

pj1q, λ1ζ1



(5.12)

converges absolutely and locally uniformly. If moreover r1{λ1 � 4{3, then by theorem 2.6, the left

hand side of equation (5.12) also converges absolutely and locally uniformly, and hence equation

(5.12) holds.

Now we let r1, . . . , rm, λ1, . . . , λn Ñ 1, then the left hand side of equation (5.12) converges to

the left hand side of equation (5.7), and the right hand side of (5.12) converges to

Yδ
�
Yγ
�
Yσmpwpimq, zm � z1q � � �Yσ2pwpi2q, z2 � z1qw

pi1q, z1 � ζ1

	
� Yρnpwpjnq, ζn � ζ1q � � �Yρ2pwpj2q, ζ2 � ζ1qw

pj1q, ζ1



. (5.13)

Therefore, the left hand side of equation (5.7) equals (5.13). The same argument shows that the
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right hand side of (5.7) also equals (5.13). This finishes our proof.

Note that it is easy to generalize proposition 2.11 to generalized intertwining operators.

5.2 The adjoint relation for generalized intertwining operators

This section is devoted to the proof of the adjoint relation for generalized intertwining operators

(5.34). We first recall that if Yα is a unitary intertwining operator of a unitary V , z P S1 with chosen

argument, and wpiq PWi is quasi-primary, then by relation (1.34),

Yαpwpiq, zq: � e�iπ∆
wpiqz2∆

wpiqYα�pwpiq, zq. (5.14)

We want to obtain a similar relation for generalized intertwining operators. To achieve this goal,

we first need an auxiliary fusion relation. Recall that for any V -module Wi, we have the creation

operator Y ii0 � B�Yi of Wi, and the annihilation operator Y0
ii
� C�1Y ii0 of Wi. We set Υ0

ii
�

CY ii0. Then similar to equation (1.40), for any wpiq1 PWi, w
piq
2 PWi we have

xΥ0
īipw

piq
1 , xqw

piq
2 ,Ωy � xex

�1L1w
piq
2 , pe�iπx�2qL0e�x

�1L1w
piq
1 y. (5.15)

Proposition 5.3 (Fusion with annihilation operators). Let z1, z2 P C� satisfy 0   |z1|, |z1 � z2|  

|z2|. Choose arg z2, let arg z1 be close to arg z2 as z1 Ñ z2, and let argpz2 � z1q be close to arg z2

as z1 Ñ 0. Then for any Yα P V
�
k
i j

�
, wpiq PWi and wpjq PWj , we have the fusion relation

Υ0
kk

�
Yαpwpiq, eiπpz2 � z1qqw

pjq, z2

�
� Υ0

jj
pwpjq, z2qYCαpwpiq, z1q. (5.16)

Proof. Let us assume that z1, z2 P R¡0 and 0   z2 � z1   z1   z2. If the proposition is proved for

this special case, then by analytic continuation, it also holds in general.

Therefore, we assume that arg z1 � arg z2 � argpz2 � z1q � 0. Let argpz�1
1 � z�1

2 q be close

to argpz�1
1 q � � arg z1 as z�1

2 Ñ 0. Then it is obvious that argpz�1
1 � z�1

2 q � 0 � argp z2�z1z1z2
q.

We now use equation (5.15) and the definition of Cα to compute that

xΥ0
jj
pwpjq, z2qYCαpwpiq, z1qw

pkq,Ωy
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�
¸
sPR

xΥ0
jj
pwpjq, z2qPsYCαpwpiq, z1qw

pkq,Ωy

�
¸
sPR

xez
�1
2 L1PsYCαpwpiq, z1qw

pkq, pe�iπz�2
2 qL0e�z

�1
2 L1wpjqy

�
¸
sPR

@
wpkq,Yα

�
ez1L1pe�iπz�2

1 qL0wpiq, z�1
1

�
Pse

z�1
2 L�1pe�iπz�2

2 qL0e�z
�1
2 L1wpjq

D
, (5.17)

which, according to lemma 2.16-(1), converges absolutely and equals

A
wpkq, ez

�1
2 L�1Yα

�
ez1L1pe�iπz�2

1 qL0wpiq,
z2 � z1

z1z2

	
pe�iπz�2

2 qL0e�z
�1
2 L1wpjq

E
. (5.18)

By (1.26) and (1.30), the above formula equals

A
wpkq, ez

�1
2 L�1pe�iπz�2

2 qL0

� Yα
�
peiπz2

2q
L0ez1L1pe�iπz�2

1 qL0wpiq, eiπpz2 � z1q
z2

z1

	
e�z

�1
2 L1wpjq

E
�
A
wpkq, ez

�1
2 L�1pe�iπz�2

2 qL0

� Yα
�
e�z1z

�2
2 L1

�z2

z1

	2L0

wpiq, eiπpz2 � z1q
z2

z1

	
e�z

�1
2 L1wpjq

E
. (5.19)

On the other hand, we have

@
Υ0
kk

�
Yαpwpiq, eiπpz2 � z1qqw

pjq, z2

�
wpkq,Ω

D
�
¸
sPR

@
Υ0
kk

�
PsYαpwpiq, eiπpz2 � z1qqw

pjq, z2

�
wpkq,Ω

D
�
¸
sPR

xwpkq, ez
�1
2 L�1pe�iπz�2

2 qL0e�z
�1
2 L1PsYαpwpiq, eiπpz2 � z1qqw

pjqy. (5.20)

Note that | � z�1
2 |   |eiπpz2 � z1q|

�1. Let argp1 � eiπpz2 � z1q � p�z
�1
2 qq be close to argp1 �

eiπpz2 � z1q � 0q � 0 as �z�1
2 Ñ 0. Then clearly argp1 � eiπpz2 � z1q � p�z

�1
2 qq � 0 � argp z1z2 q.

We can use lemma 2.16-(2) to compute that (5.20) equals (5.19). This proves equation (5.16) when

both sides act on Ω. By the proof of corollary 2.15, equation (5.16) holds when acting on any vector

inside V .
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Remark 5.4. By proposition 2.9 and the above property, we have the fusion relation

Υ0
kk

�
YB�αpwpjq, z2 � z1qw

piq, z1

�
� Υ0

jj
pwpjq, z2qYCαpwpiq, z1q (5.21)

when 0   |z2 � z1|   |z1|   |z2|, arg z1 is close to arg z2 as z1 Ñ z2, and argpz2 � z1q is close to

arg z2 as z1 Ñ 0. Similarly, we can also show that

Y0
kk

�
YB�αpwpjq, z2 � z1qw

piq, z1

�
� Y0

jj
pwpjq, z2qYC�1αpw

piq, z1q. (5.22)

Theorem 5.5 (Fusion of contragredient intertwining operators). Let z1, . . . , zn, z
1
1, . . . , z

1
n P C�

satisfy the following conditions:

(1) 0   |z1|   |z2|   � � �   |zn| and 0   |z2 � z1|   � � �   |zn � z1|   |z1|;

(1’) |z11| ¡ |z12| ¡ � � � ¡ |z1n| ¡ 0 and 0   |z12 � z11|   � � �   |z1n � z11|   |z11|.

Choose arguments arg z1, arg z11. For each 2 ¤ m ¤ n, we choose arguments argpzm �

z1q, argpz1m � z11q. Let arg zm be close to arg z1 as zm Ñ z1, and let arg z1m be close to arg z11

as z1m Ñ z11.

Let Wi1 , . . . ,Win , and Wi be V -modules, and let Yσ2 , . . . ,Yσn be a chain of intertwining op-

erators of V satisfying the following conditions:

(a) for each 2 ¤ m ¤ n, the charge space of Yσm is Wim;

(b) the source space of Yσ2 is Wi1;

(c) the target space of Yσn is Wi.

Then there exists a chain of intertwining operators Yσ12 , . . . ,Yσ1n , whose types are the same as those

of Yσ2 , . . . ,Yσn respectively, such that for any Yα P V
�
k
i j

�
, if Yα1 ,Yα2 , . . . ,Yαn is a chain of

intertwining operators of V satisfying the following conditions:

(i) for each 1 ¤ m ¤ n, the charge space of Yαm is Wim;

(ii) the source space of Yα1 is Wj;

(iii) the target space of Yαn is Wk;

(iv) for any wpi1q PWi1 , . . . , w
pinq PWin , we have the fusion relation

Yα
�
Yσnpwpinq, zn � z1q � � �Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
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�Yαnpwpinq, znq � � �Yα1pw
pi1q, z1q, (5.23)

then the following fusion relation also holds:

YCα
�
Yσ1npw

pinq, z1n � z11q � � �Yσ12pw
pi2q, z12 � z11qw

pi1q, z11
�

�YCα1pw
pi1q, z11q � � �YCαnpwpinq, z1nq. (5.24)

Proof. Let Wj1 , . . . ,Wjn�1 be the target spaces of Yα1 , . . . ,Yαn�1 respectively. Choose

ζ 10, ζ
1
1, � � � , ζ

1
n P R 0 satisfying ζ 10   ζ 11   � � �   ζ 1n   0 and |ζ 10 � ζ 11| ¡ |ζ 11 � ζ 1n|. Let

ζ1 � ζ 11�ζ
1
0, . . . , ζn � ζ 1n�ζ

1
0. Let arg ζ 10 � arg ζ 11 � � � � � arg ζ 1n � �π, arg ζ1 � argpζ 11�ζ

1
0q �

0, . . . , arg ζn � argpζ 1n � ζ 10q � 0. Note that for any 2 ¤ m ¤ n, ζm � ζ1 � ζ 1m � ζ 11. We let

argpζm � ζ1q � argpζ 1m � ζ 11q � 0.

We now rotate and stretch these points, so that for each 1 ¤ m ¤ n, ζm is moved to rzm � zm,

ζ 1m is moved to rz1m � z1m, arg ζm becomes arg rzm � arg zm, and arg ζ 1m becomes arg rz1m � arg z1m.

We assume that during this process, conditions (1) and (1’) are always satisfied. (Note that such

process might not exist if the choice of arg z2, arg z3, . . . and arg z12, arg z13, . . . are arbitrary with

respect to arg z1 and arg z11. ) Denote this process by pPq. Then under this process, for each 2 ¤

m ¤ n, argpζm�ζ1q is changed to an argument argprzm�rz1q of rzm�rz1, and argpζ 1m�ζ
1
1q is changed

to an argument argprz1m � rz11q of rz1m � rz11 accordingly. Since argprzm � rz1q P argpzm � z1q � 2iπZ

and argprz1m� rz11q P argpz1m� z11q� 2iπZ, there exist intertwining operators Y
rσm ,Yσ1m of the same

type as that of Yσm , such that for any wpimq PWim ,

Y
rσmpw

pimq, rzm � rz1q � Yσmpwpimq, zm � z1q,

Yσ1mpw
pimq, z1m � z11q � Y

rσmpw
pimq, rz1m � rz11q.

Then equation (5.23) implies that

Yα
�
Y
rσnpw

pinq, rzn � rz1q � � �Yrσ2pw
pi2q, rz2 � rz1qw

pi1q, rz1

�
�Yαnpwpinq, rznq � � �Yα1pw

pi1q, rz1q. (5.25)
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By reversing process pPq, the above equation is analytically continued to the equation

Yα
�
Y
rσnpw

pinq, ζ 1n � ζ 11q � � �Yrσ2pw
pi2q, ζ 12 � ζ 11qw

pi1q, ζ 11 � ζ 10
�

�Yαnpwpinq, ζ 1n � ζ 10q � � �Yα1pw
pi1q, ζ 11 � ζ 10q. (5.26)

For any 1 ¤ m ¤ n, we let argpζ 10 � ζ 1mq be close to arg ζ 10 � �π as ζ 1m Ñ 0. Then

argpζ 10 � ζ 1mq � �π, and hence ζ 1m � ζ 10 � eiπpζ0 � ζmq. Choose arbitrary wpjq P Wj . Then by

lemma 5.3, we have

Υ0
jj
pwpjq, ζ 10qYCα1pw

pi1q, ζ 11q � � �YCαnpwpinq, ζ 1nq

�Υ0
j1j1

�
Yα1pw

pi1q, ζ 11 � ζ 10qw
pjq, ζ 10

�
YCα2pw

pi2q, ζ 12q

� YCα3pw
pi3q, ζ 13q � � �YCαnpwpinq, ζ 1nq

�Υ0
j2j2

�
Yα2pw

pi2q, ζ 12 � ζ 10qYα1pw
pi1q, ζ 11 � ζ 10qw

pjq, ζ 10
�

� YCα3pw
pi3q, ζ 13q � � �YCαnpwpinq, ζ 1nq

...

�Υ0
kk

�
Yαnpwpinq, ζ 1n � ζ 10q � � �Yα1pw

pi1q, ζ 11 � ζ 10qw
pjq, ζ 10

�
, (5.27)

where, by theorem 2.6, the expression in each step converges absolutely. By (5.26), expression

(5.27) equals

Υ0
kk

�
Yα
�
Y
rσnpw

pinq, ζ 1n � ζ 11q � � �Yrσ2pw
pi2q, ζ 12 � ζ 11qw

pi1q, ζ 11 � ζ 10
�
wpjq, ζ 10

	
, (5.28)

the absolute convergence of which is guaranteed by corollary 2.7. Again by proposition 5.3, equa-

tion (5.28) equals

Υ0
jj
pwpjq, ζ 10qYCα

�
Y
rσnpw

pinq, ζ 1n � ζ 11q � � �Yrσ2pw
pi2q, ζ 12 � ζ 11qw

pi1q, ζ 11
�
, (5.29)

the absolute convergence of which follows from theorem 2.6. Therefore, the left hand side of
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equation (5.27) equals (5.29). By proposition 2.3, we obtain

YCα
�
Y
rσnpw

pinq, ζ 1n � ζ 11q � � �Yrσ2pw
pi2q, ζ 12 � ζ 11qw

pi1q, ζ 11
�

�YCα1pw
pi1q, ζ 11q � � �YCαnpwpinq, ζ 1nq. (5.30)

Now we do process pPq. Then (5.30) is analytically continued to the equation

YCα
�
Y
rσnpw

pinq, rz1n � rz11q � � �Yrσ2pw
pi2q, rz12 � rz11qwpi1q, rz11�

�YCα1pw
pi1q, rz11q � � �YCαnpwpinq, rz1nq, (5.31)

which implies (5.24). Thus the proof is completed.

Remark 5.6. Choose (not necessarily disjoint) I, J P J , and choose pz1, . . . , znq P

OnpIq, pz
1
1, . . . , z

1
nq P OnpJq. Choose continuous argument functions argI , argJ on I, J respec-

tively, and let arg z1 � argIpz1q, . . . , arg zn � argIpznq, arg z11 � argJpz
1
1q, . . . , arg z1n �

argJpz
1
nq. For each 2 ¤ m ¤ n we choose arguments argpzm � z1q and argpz1m � z11q. Then

by theorem 5.5, for any chain of intertwining operators Yσ2 , . . . ,Yσn satisfying conditions (a), (b),

and (c) of theorem 5.5, there exists a chain of intertwining operators Yσ12 , . . . ,Yσ1n whose types are

the same as those of Yσ2 , . . . ,Yσn respectively, such that

Yσn���σ2,αpwpinq, zn; . . . , wpi1q, z1q � Yαnpwpinq, znq � � �Yα1pw
pi1q, z1q (5.32)

always implies

Yσ1n���σ12,Cαpw
pinq, z1n; . . . , wpi1q, z11q � YCα1pw

pi1q, z11q � � �YCαnpwpinq, z1nq. (5.33)

Corollary 5.7 (Adjoint of generalized intertwining operators). Let V be unitary. Let I P J ,

choose pz1, . . . , znq P OnpIq, and choose arguments arg z1, argpz2 � z1q, . . . , argpzn � z1q. Let

Wi1 , . . . ,Win , and Wi be unitary V -modules, and let Yσ2 , . . . ,Yσn be a chain of unitary intertwin-

ing operators of V satisfying the following conditions:

(a) for each 2 ¤ m ¤ n, the charge space of Yσm is Wim;
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(b) the source space of Yσ2 is Wi1;

(c) the target space of Yσn is Wi.

Then for each 2 ¤ m ¤ n, there exists a unitary intertwining operator Y
rσm whose type is the

same as that of Yσm , such that for any unitary Yα P V
�
k
i j

�
, and any nonzero quasi-primary vectors

wpi1q PWi1 , . . . , w
pinq PWin , we have

Yσn���σ2,α
�
wpinq, zn; . . . ;wpi1q, z1

�:
�e�iπ

�
∆
wpi1q

�����∆
wpinq

�
z

2∆
wpi1q

1 � � � z
2∆

wpinq
n � Y

rσn���rσ2,α�
�
wpinq, zn; . . . ;wpi1q, z1

�
, (5.34)

where the formal adjoint is defined for evaluations of the operators between the vectors inside Wj

and Wk.

Proof. Let argI be the continuous argument function on I satisfying argIpz1q � arg z1. We

let arg z2 � argIpz2q, . . . , arg zn � argIpznq. Recall that by convention 1.12, we have

arg z1 � � arg z1, arg z2 � � arg z2, . . . , arg zn � � arg zn. Let argpz2 � z1q � � argpz2 �

z1q, . . . , argpzn�z1q � � argpzn�z1q. By remark 5.6, we can find a chain of unitary intertwining

operators Yσ12 , . . . ,Yσ1n whose types are the same as those of Yσ2 , . . . ,Yσn respectively, such that

for any chain of intertwining operators Yα1 , . . . ,Yαn and any unitary Yα, if equation (5.32) holds

for any wpi1q PW1, . . . , w
pinq PWin , then

Yσ1n���σ12,Cαpw
pinq, zn; . . . , wpi1q, z1q � YCα1pw

pi1q, z1q � � �YCαnpwpinq, znq. (5.35)

Now assume that wpi1q, . . . , wpinq are quasi-primary. By equation (1.27), for any 1 ¤ m ¤ n, we

have

YCαmpwpimq, zmq � e�iπ∆
wpimqz

2∆
wpimq

m Yαmpwpimq, zmqt. (5.36)

Therefore, by equation (5.32), we see that (5.35) equals

e�iπ
�

∆
wpi1q

�����∆
wpinq

�
z

2∆
wpi1q

1 � � � z
2∆

wpinq
n

�
Yαnpwpinq, znq � � �Yα1pw

pi1q, z1q
�t

�e�iπ
�

∆
wpi1q

�����∆
wpinq

�
z

2∆
wpi1q

1 � � � z
2∆

wpinq
n Yσn���σ2,α

�
wpinq, zn; . . . ;wpi1q, z1

�t
. (5.37)
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Recall that α� � Cα. It is obvious that equation

C�1
j Yσ1n���σ12,Cαpw

pinq, zn; . . . , wpi1q, z1qCk � Y
σ1n���σ

1
2,α

�pwpinq, zn; . . . ;wpi1q, z1q (5.38)

holds when z1, . . . , zn also satisfy 0   |z2�z1|   � � �   |zn�z1|   |z1|. By analytic continuation,

it holds for general pz1, . . . , znq P OnpIq. Therefore, if we apply C�1
j p�qCk to the left hand side of

equation (5.35) and the right hand side of equation (5.37), we obtain

Yσ1n���σ1n,α�pw
pinq, zn; . . . ;wpi1q, z1q

�eiπ
�

∆
wpi1q

�����∆
wpinq

�
z
�2∆

wpi1q

1 � � � z
�2∆

wpinq
n Yσn���σ2,α

�
wpinq, zn; . . . ;wpi1q, z1

�:
. (5.39)

So if we let Y
rσ2 � Y

σ12
, . . . ,Y

rσ2 � Y
σ12

, then equation (5.34) is proved.

5.3 Generalized smeared intertwining operators

In this section, we assume that V is unitary, energy-bounded, and strongly local. Let F be a

non-empty set of non-zero irreducible unitary V -modules, and let F � tWi : i P Fu. Let Fb be

the collection of unitary V -modulesWi, whereWi is equivalent to a finite direct sum of submodules

of tensor products of some V -modules in F Y F . So Fb is additively closed, and any irreducible

element in Fb is equivalent to a submodule ofWi1b � � �bWin , where i1, . . . , in P FYF . If i P F ,

we let E1pWiq be the vector space of all quasi-primary vectors wpiq P Wi satisfying the condition

that for any j, k P Fb and any Yα P V
�
k
i j

�
, Yαpwpiq, xq satisfies linear energy bounds. E1pV q is

defined in a similar way to be the set of all quasi-primary vectors v P V , such that for any k P Fb,

Ykpv, xq satisfies linear energy bounds.

In this section, we always assume, unless otherwise stated, that F satisfies one of the following

two conditions.

Condition A.

(a) Every irreducible submodule of a tensor product of V -modules in F Y F is unitarizable.

(b) V is generated by E1pV q.

(c) If i P F , j, k P Fb, and Yα P V
�
k
i j

�
, then Yα is energy-bounded.

87



Condition B.

(a) Every irreducible submodule of a tensor product of V -modules in F Y F is unitarizable and

energy-bounded.

(b) For any i P F , E1pWiq contains at least one non-zero vector.

Note that if V is unitary and F satisfies condition A-(b), then by corollary 3.7 and theorem 4.1,

V is energy bounded and strongly local. By corollary 3.7, Conditions A-(a),(b) ñ condition B-(a),

and condition B-(b) ñ A-(c).

Remark 5.8. If F satisfies condition B, then by theorem 4.8, any unitary V -module Wi in Fb is

strongly integrable. Now we suppose that F satisfies condition A. Then, using the same argument as

in the proof of theorem 4.8, one can show that any Wi in Fb is almost strongly integrable, which

means the following: Define a real vector subspace E1pV qR � tv � θv, ipv � θvq : v P E1pV qu of

E1pV q. Then there exists a representation πi of the conformal net MV on the Hi, such that for any

I P J , v P E1pV qR, and f P C8
c pIq satisfying that

eiπ∆v{2e1�∆vf � eiπ∆v{2e1�∆vf, (5.40)

we have

πi,I
�
Y pv, fq

�
� Yipv, fq. (5.41)

Note that by theorem 4.1, the von Neumann algebra MV pIq is generated by these Y pv, fq’s.

Therefore, such representation πi, if exists, must be unique. In this way, we have a functor

F : Repu
FbpV q Ñ RepFbpMV q sending the object pWi, Yiq to pHi, πq. By proposition 3.6,

the conformal vector ν is inside E1pV qR. Therefore, from their proof we see that theorem 4.3 and

corollary 4.4 still hold, with S replaced by Fb.

We define MV pIq8 to be the set of all x PMV pIq satisfying relation (4.5) for any i P Fb. We

can conclude that MV pIq8 is a strongly dense self-adjoint subalgebra of MV pIq, either by using

the same argument as in the proof of proposition 4.2, or by observing that every eitY pv,fq is inside

MV pIq8 (by Lemma B.8-(1)), where t P R, v P E1pV qR, and f P C8
c pIq satisfies equation (5.40).

We now define generalized smeared intertwining operators. First, for any I P J , n � 1, 2, . . . ,
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we choose an arbitrary continuous argument function argI on I , and define OnpIq to be the set of

all pI1, . . . , Inq, where I1, . . . , In P J pIq are mutually disjoint, and for any 2 ¤ l   m ¤ n, either

argIpzlz
�1
1 q argIpzmz

�1
1 q   0 for all zm P Im, zl P Il, or | argIpzlz

�1
1 q|   | argIpzmz

�1
1 q| for all

zm P Im, zl P Il.

Let Yσn���σ2,α be a generalized intertwining operator in V
�

k
in ... i1 j

�
. We say that Yσn���σ2,α is

controlled by F if i1, . . . , in P F Y F , and j, k P Fb. Choose I P J pS1zt�1uq, pI1, . . . , Inq P

OnpIq and f1 P C
8
c pI1q, . . . , fn P C

8
c pInq. For any wpi1q P Wi1 , . . . , w

pinq P Win , we define a

sesquilinear form

Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q : Wj �Wk Ñ C,

pwpjq, wpkqq ÞÑ xYσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1qw
pjq|wpkqy

using the equation

xYσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1qw
pjq|wpkqy

�

» π
�π

� � �

» π
�π
xYσn���σ2,αpwpinq, eiθn ; . . . ;wpi1q, eiθ1qwpjq|wpkqy � f1pe

iθ1q � � � fnpe
iθnq{dθ1 � � � {dθn,

(5.42)

where, for each l � 2, 3, . . . , n, argpeiθl � eiθ1q is close to θl � arg eiθl as eiθ1 Ñ 0.

Proposition 5.9. Assume that Yσn���σ2,α is controlled by F . Then the linear operator

Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q : Wj Ñ xWk maps Wj into H8
k . If we regard it as

an unbounded operator Hj Ñ Hk with domain Wj , then it is preclosed. The closure

Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q maps H8
j into H8

k , and its adjoint maps H8
k into H8

j . More-

over, there exists p P Z¥0, such that for any l P Z¥0, we can find Cl�p ¡ 0, such that the inequality

∥∥Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1qξ
pjq

∥∥
l
¤ Cl�p‖ξpjq‖l�p (5.43)

holds for any ξpjq P H8
j .

Proof. Choose any z1 P I1, . . . , zn P In. Choose arguments arg z1, . . . , arg zn P p�π, πq. For

each l � 2, 3, . . . , n, we let argpzl � z1q be close to arg zl as z1 Ñ 0. Suppose that for any
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wpi1q PWi1 , . . . , w
pinq PWin we have the fusion relation

Yσn���σ2,αpwpinq, zn; . . . ;wpi1q, z1q � Yαnpwpinq, znq � � �Yα1pw
pi1q, z1q (5.44)

for a chain of intertwining operators Yα1 , . . . ,Yαn . Then the source spaces and the charge spaces

of these intertwining operators are unitary V -modules in Fb. By condition A-(c) and proposition

3.3, these intertwining operators are energy-bounded. It follows from proposition 3.12 that

Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q � Yαnpwpinq, fnq � � �Yα1pw
pi1q, f1q (5.45)

when both sides act on Wj . Therefore, by equation (3.25), the adjoint of

Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q has a dense domain containing H8
k , which proves that

Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q is preclosed. By proposition 3.9, there exists p P Z¥0, such that

for any l P Z¥0, there exists Cl�p ¡ 0, such that inequality (5.43) holds for any ξpjq P Wj . From

this we know that H8
j is inside the domain of Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q, that this closed

operator maps H8
j into H8

k , and that inequality (5.43) holds for any ξpjq P H8
j . Clearly we have

Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q
� � Yα1pw

pi1q, f1q
: � � �Yαnpwpinq, fnq:.

So Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q
�

maps H8
k into H8

j .

We regard the linear operator Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q : H8
j Ñ H8

k as the re-

striction of Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q to H8
j , and call it a generalized smeared in-

tertwining operator. Then, if the fusion relation (5.44) holds, relation (5.45) holds when

both sides act on H8
j . The formal adjoint Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q

: : H8
k Ñ

H8
j of Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q is defined to be the restriction of the closed operator

Yσn���σ2,αpwpinq, fn; . . . ;wpi1q, f1q
� to H8

k .

Proposition 5.10 (Intertwining property). Let Yσn���σ2,α P V
�

k
in ... i1 j

�
be controlled by F , wpi1q P

Wi1 , . . . , w
pinq P Win , I P J , J P J pS1zt�1uq be disjoint, and pJ1, . . . , Jnq P OnpJq. If F sat-

isfies condition A, then for any x P MV pIq, w
pi1q P Wi1 , . . . , w

pinq P Win , g1 P C
8
c pJ1q, . . . , gn P
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C8
c pJnq, we have

πkpxq � Yσn���σ2,αpwpinq, gn; . . . ;wpi1q, g1q � Yσn���σ2,αpwpinq, gn; . . . ;wpi1q, g1q � πjpxq. (5.46)

Relation (5.46) still holds if we assume that F satisfies condition B, and that x P MV pIq, w
pi1q P

E1pWi1q, . . . , w
pinq P E1pWinq, g1 P C

8
c pJ1q, . . . , gn P C

8
c pJnq.

Proof. We assume that the fusion relation (5.44) holds when z1 P J1, . . . , zn P Jn and the argu-

ments are chosen as in the proof of proposition 5.9.

First, suppose that F satisfies condition A. By theorem 4.1, the von Neumann algebra MV pIq

is generated by the bounded operators eitY pv,fq, where t P R, v P E1pV qR, f P C8
c pIq, and

eiπ∆v{2e1�∆vf � eiπ∆v{2e1�∆vf . Now for m � 1, 2, . . . , n we let Wjm�1 and Wjm be the source

space and the target space of Yαm respectively. Then by proposition 3.16 (and proposition B.1), for

any x PMV pIq, w
pimq PWim , gm P C8

c pJmq, we have

πjmpxqYαmpwpimq, gmq � Yαmpwpimq, gmqπjm�1pxq. (5.47)

Therefore, if x PMV pIq8, then equation

πjmpxqYαmpwpimq, gmq � Yαmpwpimq, gmqπjm�1pxq. (5.48)

holds when both sides act on H8
jm�1

. Thus, by (5.45), for any x PMV pIq8, equation

πkpxq � Yσn���σ2,αpwpinq, gn; . . . ;wpi1q, g1q � Yσn���σ2,αpwpinq, gn; . . . ;wpi1q, g1q � πjpxq (5.49)

also holds when both sides act on H8
j . This proves relation (5.46) for any x PMV pIq8, and hence

for any x PMV pIq.

Now we assume that F satisfies condition B. Then from step 2 of the proof of theorem 4.8,

relation (5.47) holds for any x PMV pIq. This again implies relation (5.46). Thus we are done with

the proofs for both cases.

Proposition 5.11 (Rotation covariance). Let Yσn���σ2,α P V
�

k
in ... i1 j

�
be controlled by F , wpi1q P

Wi1 , . . . , w
pinq P Win be homogeneous, J P S1zt�1u, and pJ1, . . . , Jnq P OnpJq. Choose ε ¡ 0
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such that rptqJ � S1zt�1u. Then for any g1 P C
8
c pJ1q, . . . , gn P C

8
c pJnq, and t P p�ε, εq, we

have

eitL0 � Yσn���σ2,αpwpinq, gn; . . . ;wpi1q, g1q � e
�itL0

�Yσn���σ2,α
�
wpinq, eip∆wpinq

�1qtrptqgn; . . . ;wpi1q, eip∆wpi1q
�1qtrptqg1

�
. (5.50)

Proof. This follows from relations (5.45) and (3.39).

Theorem 5.12 (Braiding). Let I, J P J pS1zt�1uq be disjoint. Choose pI1, . . . , Imq P

OmpIq, pJ1, . . . , Jnq P OnpJq. Choose z P I, ζ P J , and let �π   arg z, arg ζ   π.

Let Yσm���σ2,α P V
�

k1

im ... i1 k1

�
,Yρn���ρ2,β P V

�
k1

jn ... j1 k

�
,Yσm���σ2,α1 P V

�
k2

im ... i1 k

�
,Yρn���ρ2,β1 P

V
�

k1

jn ... j1 k2

�
be generalized intertwining operators of V controlled by F . Suppose that Wi is the

charge spaces of Yα and Yα1 , Wj is the charge space of Yβ and Yβ1 , and for any wpiq PWi, w
pjq P

Wj , we have the braid relation

Yαpwpiq, zqYβpwpjq, ζq � Yβ1pwpjq, ζqYα1pwpiq, zq. (5.51)

Then for any wpi1q PWi1 , . . . , w
pimq PWim , w

pj1q PWj1 , . . . , w
pjnq PWjn , f1 P C

8
c pI1q, . . . fm P

C8
c pImq, g1 P C

8
c pJ1q, . . . , gn P C

8
c pJnq, we have the braid relation

Yσm���σ2,αpwpimq, fm; . . . ;wpi1q, f1qYρn���ρ2,βpwpjnq, gn; . . . ;wpj1q, g1q

�Yρn���ρ2,β1pw
pjnq, gn; . . . ;wpj1q, g1qYσm���σ2,α1pw

pimq, fm; . . . ;wpi1q, f1q. (5.52)

Proof. Choose z1 P I1, . . . , zm P Im, ζ1 P J1, . . . , ζn P Jn. Let �π  

arg z1, . . . , arg zm, arg ζ1, . . . , arg ζn   π, and let argpz2 � z1q, . . . , argpzm � z1q, argpζ2 �

ζ1q, . . . , argpζn � ζ1q be close to arg z2, . . . , arg zm, arg ζ2, . . . , arg ζn as z1, . . . , z1, ζ1, . . . , ζ1 Ñ

0 respectively. Suppose that for any wpi1q PWi1 , . . . , w
pimq PWim , w

pj1q PWj1 , . . . , w
pjnq PWjn ,

we have the fusion relations

Yσm���σ2,αpwpimq, zm; . . . ;wpi1q, z1q � Yαmpwpimq, zmq � � �Yα1pw
pi1q, z1q, (5.53)

Yρn���ρ2,βpwpjnq, ζn; . . . ;wpj1q, ζ1q � Yβnpwpjnq, ζnq � � �Yβ1pwpj1q, ζ1q. (5.54)
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Then the source spaces and the target spaces of Yα1 , . . .Yαm ,Yβ1 , . . . ,Yβn are unitary V -modules

inside Fb. So these intertwining operators are energy-bounded. By relation (5.45), we have

Yσm���σ2,αpwpimq, fm; . . . ;wpi1q, f1q � Yαmpwpimq, fmq � � �Yα1pw
pi1q, f1q, (5.55)

Yρn���ρ2,βpwpjnq, gn; . . . ;wpj1q, g1q � Yβnpwpjnq, gnq � � �Yβ1pwpj1q, g1q. (5.56)

Therefore, by proposition 3.12,

Yσm���σ2,αpwpimq, fm; . . . ;wpi1q, f1qYρn���ρ2,βpwpjnq, gn; . . . ;wpj1q, g1q

�Yαmpwpimq, fmq � � �Yα1pw
pi1q, f1qYβnpwpjnq, gnq � � �Yβ1pwpj1q, g1q

�

» π
�π

� � �

» π
�π

�

» π
�π

� � �

» π
�π

Yαmpwpimq, eiθmq � � �Yα1pw
pi1q, eiθ1q

� Yβnpwpjnq, eiϑnq � � �Yβ1pwpj1q, eiϑ1qf1pe
iθ1q � � � fmpe

iθmq

� g1pe
iϑ1q � � � gnpe

iϑnq{dθ1 � � � {dθm{dϑ1 � � � {dϑn

�

» π
�π

� � �

» π
�π

�

» π
�π

� � �

» π
�π

Yσm���σ2,αpwpimq, eiθm ; � � � ;wpi1q, eiθ1q

� Yρn���ρ2,βpwpjnq, eiϑn ; � � � ;wpj1q, eiϑ1qf1pe
iθ1q � � � fmpe

iθmq

� g1pe
iϑ1q � � � gnpe

iϑnq{dθ1 � � � {dθm{dϑ1 � � � {dϑn. (5.57)

The same argument shows that

Yρn���ρ2,β1pw
pjnq, gn; . . . ;wpj1q, g1qYσm���σ2,α1pw

pimq, fm; . . . ;wpi1q, f1q

�

» π
�π

� � �

» π
�π

�

» π
�π

� � �

» π
�π

Yρn���ρ2,β1pw
pjnq, eiϑn ; � � � ;wpj1q, eiϑ1q

� Yσm���σ2,α1pw
pimq, eiθm ; � � � ;wpi1q, eiθ1qf1pe

iθ1q � � � fmpe
iθmq

� g1pe
iϑ1q � � � gnpe

iϑnq{dθ1 � � � {dθm{dϑ1 � � � {dϑn. (5.58)

By theorem 5.2, the right hand sides of equations (5.57) and (5.58) are equal, which proves equation

(5.52).

Theorem 5.13 (Adjoint relation). Choose I P J pS1zt�1uq and pI1, . . . , Inq P OnpIq. Let

Wi1 ,Wi2 , . . . ,Win be unitary V -modules in F Y F , and let Yσ2 , . . . ,Yσn be a chain of unitary
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intertwining operators of V with charge spaces Wi2 , . . . ,Win respectively, such that the source

space of Yσ2 is Wi1 . We let Wi P Fb be the target space of Yσn . Then for each 2 ¤ m ¤ n,

there exists a unitary intertwining operator Y
rσm whose type is the same as that of Yσm , such that

for any unitary V -modules Wj ,Wk in Fb,Yα P V
�
k
i j

�
, wpi1q PWi1 , . . . , w

pinq PWin being quasi-

primary, and f1 P C
8
c pI1q, . . . , fn P C

8
c pInq, we have

Yσn���σ2,α
�
wpinq, fn; . . . ;wpi1q, f1

�:
�e�iπ

�
∆
wpi1q

�����∆
wpinq

�
� Y

rσn���rσ2,α�
�
wpinq, ep2�2∆

wpinq
qfn; . . . ;wpi1q, ep2�2∆

wpi1q
qf1

�
. (5.59)

Proof. This is obtained by multiplying both sides of equation (5.34) by the expression

f1peiθ1q � � � fnpeiθnqe
�2ipθ1�����θnq{dθ1 � � � {dθn,

and then taking the integral. We leave the details to the reader.
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CHAPTER 6

DEFINING AN INNER PRODUCT Λ ON Wi bWj

In this chapter, we define (in section 2) a sesquilinear form Λ on Wij � Wi bWj using trans-

port matrices, and prove (in section 3) that these forms are inner products. As discussed in the

introduction of part I, our strategy for proving the positivity of Λ is to identify the form Λ on a

dense subspace of Hij with the inner product on a subspace of the Connes fusion product Hi bHj

of the conformal net modules Hi and Hj . In section 1, we prove a density property for constructing

such a dense subspace.

Note that the Connes fusion product (Connes relative tensor product) is a motivation rather than

a logistic background of our theory. So we don’t assume the reader has any previous knowledge

on this topic, nor shall we give a formal definition on Connes fusion in this paper. Those who are

interested in this topic can read [Was98] section 30 for a brief introduction, or read [Con80] or

[Tak13] section IX.3 for more details.

6.1 Density of the range of fusion product

Recall from section 3.2 that Wij � Wi b Wj �
À

kPE V
�
k
i j

��
b Wk is the tensor product

module of Wi,Wj . We now define a type
�
ij
i j

�
intertwining operator Yibj : WibWj ÑWijtxu in

the following way: If Yα P V
�
k
i j

�
, wpiq PWi, w

pjq PWj and wpkq PWk, then

xYα b wpkq,Yibjpwpiq, xqwpjqy � xwpkq,Yαpwpiq, xqwpjqy. (6.1)

For any k P E , we choose a basis tYα : α P Θk
iju of V

�
k
i j

�
, and let t qYα : α P Θk

iju � V
�
k
i j

��
be the dual basis of Θk

ij . (i.e., if α, β P Θk
ij , then xYα, qYβy � δα,β .) Then for any wpiq P Wi and

wpjq PWj we have

Yibjpwpiq, xqwpjq �
¸
kPE

¸
αPΘkij

qYα b Yαpwpiq, xqwpjq �
¸
αPΘ�

ij

qYα b Yαpwpiq, xqwpjq. (6.2)
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(See the beginning of section 2 for notations.)

The following density property generalizes proposition A.3.

Proposition 6.1. Let Yσ2 , . . . ,Yσn be a chain of non-zero irreducible intertwining operators of V

with charge spaces Wi2 , . . . ,Win respectively. Let Wi1 be the source space of Yσ2 , and let Wi be

the target space of Yσn . Choose a V -module Wj , non-zero vectors wpi1q0 P Wi1 , . . . , w
pinq
0 P Win ,

I P J , pz1, . . . , znq P OnpIq, and choose arguments arg z1, argpz2 � z1q, . . . , argpzn � z1q. Fix

wpijq PWij . Suppose that for any wpjq PWj ,

xwpijq,Yσn���σ2,ibjpw
pinq
0 , zn; . . . ;w

pi1q
0 , z1qw

pjqy � 0, (6.3)

then wpijq � 0.

Proof. Suppose that equation (6.3) holds. From the proof of corollary 2.15, we see that

xwpijq,Yσn���σ2,ibjpwpinq, zn; . . . ;wpi1q, z1qw
pjqy � 0 (6.4)

for all wpi1q PWi1 , . . . , w
pinq PWin , w

piq PWi. By theorem 2.4 and the discussion below, equation

(6.4) holds for all pz1, . . . , znq P OnpIq (the arguments arg z1, argpz2 � z1q, . . . , argpzn � z1q are

changed continuously). In particular, for any pz1, . . . , znq P OnpIq satisfying 0   |z2 � z1|  

|z3 � z1|   � � �   |zn � z1|   |z1|, equation (6.4) reads

@
wpijq,Yibj

�
Yσnpwpinq, zn � z1q � � �Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
wpjq

D
� 0. (6.5)

If we let z2 be close to z1, then by proposition A.1, for any s2 P R, we have

@
wpijq,Yibj

�
Yσnpwpinq, zn � z1q � � �Yσ3pwpi3q, z3 � z1qYσ2pwpi2q, s2qw

pi1q, z1

�
wpjq

D
� 0,

(6.6)

where Yσ2pwpi2q, s2q is a mode of the intertwining operator Yσ2pwpi2q, xq. Let Wj2 be the target

space of Yσ2 (which is also the source space of Yσ3). Then by corollary A.4, vectors of the form
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Yσ2pwpi2q, s2qw
pi1q span the vector space Wj2 . Therefore, for any wpj2q PWj2 , we have

@
wpijq,Yibj

�
Yσnpwpinq, zn � z1q � � �Yσ3pwpi3q, z3 � z1qw

pj2q, z1

�
wpjq

D
� 0. (6.7)

If we apply the same argument several times, then for any wpiq PWi, w
pjq PWj ,

xwpijq,Yibjpwpiq, z1qw
pjqy � 0. (6.8)

So by proposition A.3, wpijq must be zero.

A smeared version of the above proposition can be stated as follows.

Proposition 6.2. Let V be unitary, energy-bounded, and strongly local. Let F be a non-empty

set of non-zero irreducible unitary V -modules satisfying condition A or B. Let Wi,Wj be unitary

V -modules in Fb, and assume that Wi is irreducible. Fix an arbitrary unitary structure on Wij .

Let Wi1 , . . . ,Win be irreducible unitary V -modules in F Y F . Let Yσ2 , . . . ,Yσn be a chain of

non-zero irreducible unitary intertwining operators of V with charge spaces Wi2 , . . . ,Win respec-

tively, such that Wi1 is the source space of Yσ2 , and Wi is the target space of Yσn . Choose I P

J pS1zt�1uq, pI1, . . . , Inq P OnpIq. Fix non-zero homogeneous vectors wpi1q0 P Wi1 , . . . , w
pinq
0 P

Win . Then for any l P Z¥0, vectors of the form

πijpxqYσn���σ2,ibjpw
pinq
0 , fn; . . . ;w

pi1q
0 , f1qw

pjq, (6.9)

span a core for L0
l, where x PMV pIq8, f1 P C

8
c pI1q, . . . , fn P C

8
c pInq, w

pjq PWj .

Proof. Let W1 be the subspace of H8
ij spanned by vectors of the form (6.9). We first show that W1

is a dense subspace of Hij .

The first step is to show that WK
1 is invariant under the action of the conformal net MV . Choose

an open interval J �� I , and choose δ ¡ 0 such that rptqJ � I for any t P p�δ, δq. Fix ξpijq PWK
1 .

Then for any wpjq P Wj ,m P Z¡0, x1, . . . , xm P MV pJq8, f1 P C
8
c pI1q, . . . , fn P C

8
c pInq, we

have

xxm � � �x2x1Yσn���σ2,ibjpw
pinq
0 , fn; . . . ;w

pi1q
0 , f1qw

pjq|ξpijqy � 0. (6.10)
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Choose ε ¡ 0 such that the support of

f ta � exppitp∆
w
piaq
0

� 1qqrptqfa

is inside Ia for any t P p�ε, εq and any a � 1, 2, . . . , n. Then, by proposition 5.11, for any t P R

we have

xxm � � �x1 � e
itL0Yσn���σ2,ibjpw

pinq
0 , fn; . . . ;w

pi1q
0 , f1qw

pjq|ξpijqy

�xxm � � �x1Yσn���σ2,ibjpw
pinq
0 , f tn; . . . ;w

pi1q
0 , f t1qe

itL0wpjq|ξpijqy, (6.11)

which must be zero when t P p�ε, εq. Therefore, as in step 1 of the proof of theorem 4.8, the

Schwarz reflection principle implies that (6.11) equals zero for any t P R. (Note that when we define

generalized smeared intertwining operators, the arguments are restricted to p�π, πq. Here we allow

the arguments to exceed p�π, πq and change continuously according to the action of rptq.) Hence

we conclude that equation (6.10) holds for any t P R, wpjq P Wj , x1, . . . , xm P MV pJq8, f1 P

C8
c prptqI1q, . . . , fn P C

8
c prptqInq.

We use similar argument once more. Choose any wpjq P Wj , t0, t P R, x1, . . . , xm P

MV pJq8, f1 P C
8
c prpt0qI1q, . . . , fn P C

8
c prpt0qInq. Then by proposition 5.11 and equation (4.6),

we have

xxm � � �x2 � e
itL0πijpx1qYσn���σ2,ibjpw

pinq
0 , fn; . . . ;w

pi1q
0 , f1qw

pjq|ξpijqy

�xxm � � �x2 � e
itL0πijpx1qe

�itL0Yσn���σ2,ibjpw
pinq
0 , f tn; . . . ;w

pi1q
0 , f t1qe

itL0wpjq|ξpijqy

�xxm � � �x2 � πijpe
itL0x1e

�itL0qYσn���σ2,ibjpw
pinq
0 , f tn; . . . ;w

pi1q
0 , f t1qe

itL0wpjq|ξpijqy. (6.12)

If t P p�δ, δq, then eitL0x1e
�itL0 P MV prptqJq8 � MV pIq8, and hence (6.12) must be zero.

So the value of (6.12) equals zero when t P p�δ, δq. By Schwarz reflection principle, (6.12)

equals zero for any t P R. Since the choice of t0 is arbitrary, we conclude that equation (6.10)

holds for any t0, t1 P R, x1 P MV prpt1qJq8, x2 P MV pJq8, . . . , xm P MV pJq8, w
pjq P

Wj , f1 P C
8
c prpt0qI1q, . . . , fn P C

8
c prpt0qInq. The same argument shows that equation 6.10 holds

for any t0, t1, t2, . . . , tm P R, wpjq P Wj , x1 P MV prpt1qJq8, x2 P MV prpt2qJq8, . . . , xm P
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MV prptmqJq8, f1 P C8
c prpt0qI1q, . . . , fn P C8

c prpt0qInq. Hence, by proposition 4.2 and the

additivity of MV , the equation

xxm � � �x1Yσn���σ2,ibjpw
pinq
0 , fn; . . . ;w

pi1q
0 , f1qw

pjq|ξpijqy � 0 (6.13)

holds for any m P Z¥0, J1, . . . , Jm P J , x1 P MV pJ1q, . . . , xm P MV pJmq, f1 P

C8
c pI1q, . . . , fn P C

8
c pInq, w

pjq PWj , ξ
pijq PWK

1 . This proves that WK
1 is MV -invariant.

Now suppose that WK
1 is non-trivial. By corollary 4.4 and remark 5.8, WK

1 is the closure of a

non-trivial V -submodule of Wij . Thus there exists a non-zero vector wpijq P Wij XWK
1 . For any

f1 P C
8
c pI1q, . . . , fn P C

8
c pInq, w

pjq PWj , we have

xYσn���σ2,ibjpw
pinq
0 , fn; . . . ;w

pi1q
0 , f1qw

pjq|wpijqy � 0. (6.14)

Fix z1 P I1, . . . , zn P In. For each 1 ¤ m ¤ n we let fm converge to the δ-function at zm. Then

we have

xYσn���σ2,ibjpw
pinq
0 , zn; . . . ;w

pi1q
0 , z1qw

pjq|wpijqy � 0 (6.15)

for any wpjq P Wj . By proposition 6.1, wpijq equals zero, which is impossible. So W1 must be

dense.

Now we show that W1 is a core for L0
l. Choose an open interval K �� I , and pK1, . . . ,Knq P

OnpKq, such that K1 �� I1, . . . ,Kn �� In. Let W2 be the subspace of H8
ij spanned by vectors

of the form

πijpxqYσn���σ2,ibjpw
pinq
0 , fn; . . . ;w

pi1q
0 , f1qw

pjq,

where x PMV pKq8, f1 P C
8
c pK1q, . . . , fn P C

8
c pKnq, w

pjq PWj . Then clearly W2 is also dense

in Hij . Choose ε ¡ 0 such that for any t P p�ε, εq, rptqK � I, rptqK1 � I1, . . . , rptqKn � In.

Then by proposition 5.11, eitL0W2 �W1. Hence, by the next lemma, W1 is a core for L0
l.

Lemma 6.3 (cf. [CKLW15] lemma 7.2.). LetA be a self-adjoint operator on a Hilbert space H, and

let Uptq � eitA, t P R be the corresponding strongly-continuous one-parameter group of unitary
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operators on H. For any k P Z¥0, let Hk denote the domain of Ak, and let H8 �
�
kPZ¥0

Hk.

Assume that there exists a real number ε ¡ 0 and two dense linear subspaces Dε and D of H8 such

that UptqDε � D for any t P p�ε, εq. Then, for every positive integer k, D is a core for Ak.

6.2 The sesquilinear form Λ on Wi bWj

Beginning with this section, we assume that V is unitary, energy bounded, and strongly lo-

cal, and that there exists a non-empty set F of non-zero irreducible unitary V -modules satisfying

condition A or B.

Choose unitary V -modules Wi,Wj in Fb. We now define, for any k P E , a sesquilinear form

Λ � Λp�|�q on V
�
k
i j

��
(antilinear on the second variable). Choose a basis tYα : α P Θk

iju of

V
�
k
i j

�
. Choose z1, z2 P C� satisfying 0   |z2 � z1|   |z1|   |z2|. Choose arg z2, let arg z1 be

close to arg z2 as z2 � z1 Ñ 0, and let argpz2 � z1q be close to arg z2 as z1 Ñ 0. By fusion of

intertwining operators, there exists a complex Nk
ij � Nk

ij matrix Λ � tΛαβuα,βPΘkij
, such that for

any wpiq1 , w
piq
2 PWi we have the following transport formula (version 1):

Yj
�
Y0
ii
pw

piq
2 , z2 � z1qw

piq
1 , z1

�
�
¸
kPE

¸
α,βPΘkij

ΛαβYβ�pw
piq
2 , z2qYαpwpiq1 , z1q

�
¸

α,βPΘ�
ij

ΛαβYβ�pw
piq
2 , z2qYαpwpiq1 , z1q. (6.16)

The matrix Λ is called a transport matrix of V . Let t qYα : α P Θk
iju be the dual basis of Θk

ij . We

then define a sesquilinear form Λp�|�q on V
�
k
i j

��
by setting

Λp qYα| qYβq � Λαβ. (6.17)

It is easy to see that this definition does not depend on the basis chosen. These sesquilinear forms

induce one on the vector space Wi b Wj �
À

kPE V
�
k
i j

��
b Wk: if k1, k2 P E X Fb, qY1 P
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V
�
k1
i j

��
, qY2 P V

�
k2
i j

��
, wpk1q PWk1 , w

pk2q PWk2 , then

Λ
� qY1 b wpk1q

�� qY2 b wpk2q
�
�

$'&'% Λp qY1| qY2qxw
pk1q|wpk2qy if k1 � k2,

0 if k1 � k2.
(6.18)

In the next section, we will prove that Λ is an inner product.

Remark 6.4. Our definition of transport formulas is motivated by A.Wassermann (cf. [Was98]

section 31). In that paper, transport formulas were defined, using smeared intertwining operators,

only when the fusion rules are at most 1. So transport matrices become transport coefficients.

Proving the strict positivity of these coefficients is one of the key steps to compute the Connes

fusion rules of representations of type An unitary WZW models in [Was98]. Unfortunately, it is not

easy to generalize this proof to other examples.

The non-negativity of the transport coefficients in [Was98] was proved by computing explicitly

the monodromy coefficients of the solutions of differential equations (2.5) (in the case of WZW

models, the Knizhnik-Zamolodchikov (KZ) equations). In the case of [Was98], these equations

reduce to a generalized hypergeometric equation, the manipulation of which is still possible. For

other examples, say type G2 WZW models, these differential equations are so complicated that

computing the exact values of transport coefficients becomes very hard.

On the other hand, one might think of showing the nonzeroness of transport coefficients (or the

non-degeneracy of transport matrices) without computing their exact values, and it turns out that this

task is directly related to the problem of proving the (weak) rigidity of the braided tensor category

ReppV q (see step 3 of the proof of theorem 6.7). A general proof of the rigidity of ReppV q does

not exist until the significant works of Y.Z.Huang [Hua05b], [Hua08a], [Hua08b]. In these works,

Huang proved the modular invariance of genus 1 (chiral) correlation functions of V , generalizing

the partial result of Y.C.Zhu [Zhu96], and used this theorem to solve the rigidity problem. It was

Huang who first noticed that the rigidity of ReppV q, a purely genus 0 phenomenon, is related to the

modular invariance of genus 1 correlation functions. We refer the reader to [HL13] for a discussion

of this issue.

Generalizing the positivity result of [Was98] is no easier. Wassermann’s argument can be used

to prove the positivity of Λ on V
�
k
i j

��
when i P F , i.e., when all intertwining operators with charge

101



space Wi are energy-bounded. The reason was explained in the introduction of part I: when inter-

twining operators are energy-bounded, the smeared ones are thus preclosed, so they can be approx-

imated by bounded operators intertwining the actions of MV pIq. The problem is that one cannot

always show the energy-boundedness of all intertwining operators. In the case of type An unitary

WZW models, only those whose charge spaces have the lowest conformal dimension (the vector

representation) were proved energy-bounded. It is for proving the general positivity of transport

matrices that we introduce and study generalized (smeared) intertwining operators in our papers.

The sesquilinear form Λ is also closely related to the non-degenerate bilinear form constructed

in [HK07]. This will be explained in section 8.3.

For any k P E X Fb, since Wk is irreducible, we have Nk
0k � Nk

k0 � 1. That the sesquilinear

forms Λ on V
�
k

0 k

��
and on V

�
k
k 0

��
are positive definite can be seen from the following two fusion

relations:

Yk
�
Y pu, z2 � z1qv, z1

�
� Ykpu, z2qYkpv, z1q, (6.19)

Y
�
Y0
kk
pw

pkq
2 , z2 � z1qw

pkq
1 , z1

�
� Y0

kk
pw

pkq
2 , z2qYkk0pw

pkq
1 , z1q, (6.20)

where u, v P V , and wpkq1 , w
pkq
2 P Wk. The first equation follows from proposition 2.13, and the

second one follows from proposition 2.17. (Note that these two fusion relations hold for any V -

module Wk.) Moreover, the dual element of Yk is an orthonormal basis of V
�
k

0 k

��
, and the dual

element of Ykk0 is an orthonormal basis of V
�
k
k 0

��
.

We derive now some variants of transport formulas.

Proposition 6.5. Let I P J . Choose distinct complex numbers z1, z2 P I . Choose z0 P Ic

with argument arg z0. Define a continuous argument function argI on I , and let arg z1 �

argIpz1q, arg z2 � argIpz2q. Let Wi,Wj be unitary V -modules in Fb.

(1) Let Ws,Wr be unitary V -modules in Fb, and choose Yγ P V
�
r
j s

�
. Then for any wpiq1 , w

piq
2 P

Wi, w
pjq PWj , we have the braid relation

Yγpwpjq, z0q

� ¸
α,βPΘ�

is

ΛαβYβ�pw
piq
2 , z2qYαpwpiq1 , z1q
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�

� ¸
α,βPΘ�

ir

ΛαβYβ�pw
piq
2 , z2qYαpwpiq1 , z1q



Yγpwpjq, z0q. (6.21)

(2) For any wpiq1 , w
piq
2 PWi and wpjq PWj , we have the transport formula (version 2)

Yjj0pw
pjq, z0qY0

ii
pw

piq
2 , z2qY ii0pw

piq
1 , z1q

�

� ¸
α,βPΘ�

ij

ΛαβYβ�pw
piq
2 , z2qYαpwpiq1 , z1q



Yjj0pw

pjq, z0q. (6.22)

(3) If arg z0   arg z2   arg z0 � 2π, then for any wpiq2 P Wi, w
pjq P Wj , we have the transport

formula (version 3)

Yjj0pw
pjq, z0qY0

ii
pw

piq
2 , z2q �

¸
α,βPΘ�

ij

ΛαβYβ�pw
piq
2 , z2qYB�αpwpjq, z0q. (6.23)

If arg z2   arg z0   arg z2 � 2π, then equation (6.23) still holds, with B�α replaced by B�α.

Proof. (1) By rotating z1, z2 along I and changing their arguments continuously, we can assume

that 0   |z1 � z2|   1. Then clearly arg z1 is close to arg z2 as z2 � z1 Ñ 0. We also let

argpz2 � z1q be close to arg z2 as z1 Ñ 0. Then by equation (6.16), proposition 2.13, and theorem

5.2, we have

Yγpwpjq, z0q

� ¸
α,βPΘ�

is

ΛαβYβ�pw
piq
2 , z2qYαpwpiq1 , z1q




�Yγpwpjq, z0qYs
�
Y0
ii
pw

piq
2 , z2 � z1qw

piq
1 , z1

�
(6.24)

�Yr
�
Y0
ii
pw

piq
2 , z2 � z1qw

piq
1 , z1

�
Yγpwpjq, z0q (6.25)

�

� ¸
α,βPΘ�

ir

ΛαβYβ�pw
piq
2 , z2qYαpwpiq1 , z1q



Yγpwpjq, z0q,

where (6.24) and (6.25) are understood as products of two generalized intertwining operators (see

the beginning of chapter 5). This proves equation (6.21).

(2) Equation (6.22) is a special case of equation (6.21).

(3) If arg z0   arg z2   arg z0 � 2π, we choose z1 P S
1zt�1u close to z2 and let arg z1 be
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close to arg z2 as z1 Ñ z2. Then by equation (6.22), corollary 2.18, and proposition 2.11, we have

Yjj0pw
pjq, z0qY0

ii
pw

piq
2 , z2qY ii0pw

piq
1 , z1q

�
¸

α,βPΘ�
ij

ΛαβYβ�pw
piq
2 , z2qYB�αpwpjq, z0qY ii0pw

piq
1 , z1q.

By proposition 2.3, we obtain equation (6.23). The other case is proved in a similar way.

6.3 Positive definiteness of Λ

Let Wi,Wj be unitary V -modules in Fb, and let Wk be in E X Fb as before. We prove in this

section that the sesquilinear form Λ on V
�
k
i j

��
is positive definite. One suffices to prove this when

Wi,Wj are irreducible. Indeed, if Wi,Wj are not necessarily irreducible, and have orthogonal

decompositions Wi � Wi1 ` Wi2 ` � � � ` Wim ,Wj � Wj1 ` Wj2 ` � � � ` Wjn . Then clearly

the unitary V -modules Wi1 , . . . ,Wim ,Wj1 , . . . ,Wjn are in Fb. It is easy to see that the transport

matrix for V
�
k
i j

��
can be diagonalized into the mn blocks of the transport matrices for V

�
k

ia jb

��
(1 ¤ a ¤ m, 1 ¤ b ¤ n). Therefore, if we choose Wi1 , . . . ,Wim ,Wj1 , . . . ,Wjn to be irreducible,

and if we can prove that the transport matrix for every V
�

k
ia jb

��
is positive definite, then the one for

V
�
k
i j

��
is also positive definite.

So let us assume that Wi,Wj are irreducible. We let Yκpiq � Y ii0 and Yκpjq � Yjj0. Then

Yκpiq� � Y0
ii
,Yκpjq� � Y0

jj
. Since Wi (resp. Wj) is in Fb, there exits unitary V -modules

Wi1 , . . . ,Wim (resp. Wj1 , . . . ,Wjn) in F Y F , such that Wi (resp. Wj) is equivalent to a sub-

module of Wim���i1 � Wim b � � � b Wi1 (resp. Wjn���j1). Therefore, we can choose a chain of

non-zero irreducible unitary intertwining operators Yσ2 , . . . ,Yσm (resp. Yρ2 , . . . ,Yρn) with charge

spaces Wi2 , . . . ,Wim (resp. Wj2 , . . . ,Wjn) respectively, such that Wi1 (resp. Wj1) is the source

space of Yσ2 (resp. Yρ2), and that Wi (resp. Wj) is the target space of Yσm (resp. Yρn).

Fix non-zero quasi-primary vectors wpi1q P Wi1 , . . . , w
pimq P Wim , w

pj1q P Wj1 , . . . , w
pjnq P

Wjn . If F satisfies condition B, we assume moreover that wpi1q P E1pWi1q, . . . , w
pimq P

E1pWimq, w
pj1q P E1pWj1q, . . . , w

pjnq P E1pWjnq. Choose disjoint open intervals I, J P

J pS1zt�1uq, and choose pI1, . . . , Imq P OmpIq, pJ1, . . . , Jnq P OnpJq. We define two sets

A � MV pIq8 � C8
c pI1q � � � � � C8

c pImq and B � MV pJq8 � C8
c pJ1q � � � � � C8

c pJnq.
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For any a � px, f1, . . . , fmq P A and b � py, g1, . . . , gnq P B, we define two linear operators

Apaq : H8
0 Ñ H8

i and Bpbq : H8
0 Ñ H8

j as follows: if ξp0q P H8
0 then

Apaqξp0q � πipxqYσm���σ2,κpiqpw
pimq, fm; . . . , wpi1q, f1qξ

p0q, (6.26)

Bpbqξp0q � πjpyqYρn���ρ2,κpjqpw
pjnq, gn; . . . , wpj1q, g1qξ

p0q. (6.27)

By proposition 5.9, the formal adjoints of these two linear operators exist.

Lemma 6.6. For any N P Z¡0, a1, . . . , aN P A, b1, . . . , bN P B and ξp0q1 , . . . , ξ
p0q
N P H8

0 , we have

¸
s,t�1,...,N

xBpbsqApatq
:Apasqξ

p0q
s |Bpbtqξ

p0q
t y ¥ 0. (6.28)

Proof. Suppose that

¸
s,t�1,...,N

xBpbsqApatq
:Apasqξ

p0q
s |Bpbtqξ

p0q
t y R r0,�8q. (6.29)

Then we can find ε ¡ 0, such that for any τ P r0,�8q,

���� ¸
s,t�1,...,N

xBpbsqApatq
:Apasqξ

p0q
s |Bpbtqξ

p0q
t y � τ

���� ¥ ε. (6.30)

By proposition 5.10, for any x P MV pJ
cq and r � 1, . . . , N , we have πjpxqBpbrq � Bpbrqπ0pxq.

We also regard Bpbrq as an unbounded operator on H0 ` Hj , being the original operator when

restrict to H0, and the zero map when restricted to Hj . We let x act on H0
À

Hj diagonally (i.e.,

x � diagpπ0pxq, πIpxqq). Then xBpbrq � Bpbrqx. Since x� also satisfies this relation, elements

in MV pJ
cq commute strongly with Bpbrq. Therefore, if we take the right polar decomposition

Bpbrq � KrVr (where Kr is self-adjoint and Vr is an partial isometry), then MV pJ
cq commutes

strongly with Vr and Kr. We let Kr �
³�8
�8 λdQrpλq be the spectral decomposition of Kr. Then

for each λ ¥ 0, Qrpλq �
³λ
�8 dQrpµq commutes with MV pJ

cq. Therefore, the bounded operator

QrpλqBpbrq commutes with MV pJ
cq, i.e., QrpλqBpbrq P HomMV pJcqpH0,Hjq.
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Now we choose a real number M ¡ 0, such that for any s, t � 1, . . . , N ,

‖BpbsqApatq:Apasqξp0qs ‖¤M, ‖Bpbtqξp0qt ‖¤M. (6.31)

For each r � 1, . . . , N , since the projectionQrpλq converges strongly to 1 as λÑ �8, there exists

λr ¡ 0, such that for any t � 1, . . . , N ,

‖BpbrqApatq:Aparqξp0qr �QrpλrqBpbrqApatq
:Aparqξ

p0q
r ‖  ε

4MN2
, (6.32)

‖Bpbrqξp0qr �QrpλrqBpbrqξ
p0q
r ‖  ε

4MN2
. (6.33)

We let Bpbrq � QrpλrqBpbrq P HomMV pJcqpH0,Hjq, then the above inequalities imply that

����¸
s,t

xBpbsqApatq
:Apasqξ

p0q
s |Bpbtqξ

p0q
t y �

¸
s,t

xBpbsqApatq
:Apasqξ

p0q
s |Bpbtqξ

p0q
t y

����   ε

2
. (6.34)

Now, for any 1 ¤ r ¤ N , since Bpbrq P HomMV pJcqpH0,Hjq, we also have

Bpbrq
� P HomMV pJcqpHj ,H0q. Thus, for any 1 ¤ s, t ¤ N , we have Bpbsq

�Bpbtq P

EndMV pJcqpH0q � MV pJ
cq1. By Haag duality, Bpbsq�Bpbtq P MV pJq. By proposition 5.10,

πi
�
Bpbsq

�Bpbtq
�
Apatq � ApatqBpbsq

�Bpbtq. In particular, Bpbsq�BpbtqDpApatqq � DpApatqq.

Since ξp0qt P H8
0 � DpApatqq,

Bpbsq
�Bpbtqξ

p0q
t P Bpbsq

�BpbtqDpApatqq � DpApatqq. (6.35)

Therefore,

xBpbsqApatq
:Apasqξ

p0q
s |Bpbtqξ

p0q
t y

�xApatq
:Apasqξ

p0q
s |Bpbsq

�Bpbtqξ
p0q
t y

�xApatq
�
�Apasqξ

p0q
s |Bpbsq

�Bpbtqξ
p0q
t y

�xApasqξ
p0q
s |ApatqBpbsq

�Bpbtqξ
p0q
t y. (6.36)

Let Apasq � HsUs be the right polar decomposition of Apasq, and take the spectral decomposition
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Hs �
³�8
�8 κdPspκq. Then for each s, we can find κs ¡ 0 such that

����¸
s,t

xApasqξ
p0q
s |ApatqBpbsq

�Bpbtqξ
p0q
t y �

¸
s,t

xApasqξ
p0q
s |ApatqBpbsq

�Bpbtqξ
p0q
t y

����   ε

2
, (6.37)

where Apasq � PspκsqApasq P HomMpIcqpH0,Hiq. Note that Apasq and Bpbtq are bounded

operators. Set

τ �
¸
s,t

xApasqξ
p0q
s |ApatqBpbsq

�Bpbtqξ
p0q
t y �

¸
s,t

xBpbsqApatq
�Apasqξ

p0q
s |Bpbtqξ

p0q
t y. (6.38)

Then by inequalities (6.34), (6.37), and equation (6.36),

����¸
s,t

xBpbsqApatq
:Apasqξ

p0q
s |Bpbtqξ

p0q
t y � τ

����   ε. (6.39)

We now show that τ ¥ 0, which will contradict condition (6.30) and thus prove inequality

(6.28). Let MpN,Cq be the complex valued N �N matrix algebra. By evaluating between vectors

in H`N
0 , we find that the MV pIq-valued matrix rApatq�ApasqsN�N is a positive element in the von

Naumann algebra MV pIq bMpN,Cq. So rπj,IpApatq�ApasqqsN�N P πj,IpMV pIqq bMpN,Cq

is also positive. Therefore, if for each s we define a vector ηs � Bpbsqξ
p0q
s , then

¸
s,t

pπj,IpApatq
�Apasqqηs|ηtq ¥ 0. (6.40)

Since Bpbsq P HomMV pJcqpH0,Hjq � HomMV pIqpH0,Hjq, we have

BpbsqApatq
�Apasqξ

p0q
s � πj,I

�
Apatq

�Apasq
�
Bpbsqξ

p0q
s � πj,IpApatq

�Apasqqηs. (6.41)

Hence

τ �
¸
s,t

xBpbsqApatq
�Apasqξ

p0q
s |Bpbtqξ

p0q
t y �

¸
s,t

pπj,IpApatq
�Apasqqηs|ηtq ¥ 0. (6.42)

Theorem 6.7. Suppose that V is unitary, energy bounded, and strongly local, and F is a non-empty
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set of non-zero irreducible unitary V -modules satisfying condition A or B. Let Wi,Wj be unitary

V -modules in Fb. Then the sesquilinear form Λ on Wi bWj is an inner product. Equivalently,

for any irreducible unitary V -module Wk in E XFb, the sesquilinear form Λ on V
�
k
i j

��
is positive

definite.

Proof. As argued at the beginning of this section, we can assume, without loss of generality, that

Wi,Wj are irreducible.

Step 1. We first show that Λ is positive. For each k P EXFb, we choose a basis tYα : α P Θk
iju

of V
�
k
i j

�
, let t qYα : α P Θk

iju be its dual basis in V
�
k
i j

��
, and define an inner product on V

�
k
i j

��
under which t qYα : α P Θk

iju becomes orthonormal. We extend these inner products to a unitary

structure on Wij �
À

k V
�
k
i j

��
bWk, just as we extend Λ using (6.18). As usual, we let Hij be

the corresponding MV -module. The sesquilinear form Λ on Wij defined by (6.18) can be extended

uniquely to a continuous sesquilinear form Λ on the Hilbert space Hij .

Choose intertwining operators Yσ2 , . . . ,Yσm ,Yρ2 , . . . ,Yρn , disjoint open intervals

I, J, pI1, . . . , Imq P OmpIq, pJ1, . . . , Jnq P OnpJq, and non-zero quasi-primary vectors

wpi1q, . . . , wpimq, wpj1q, . . . , wpjnq as at the beginning of this section. By proposition 6.2, for each

l P Z¥0, vectors of the form

Bpbqξp0q � πjpyqYρn���ρ2,κpjqpw
pjnq, gn; . . . ;wpj1q, g1qξ

p0q (6.43)

span a core for L0
l in H8

j , where b � py, g1, . . . , gnq P B, and ξp0q P H8
0 . For any

a � px, f1, . . . , fmq P A, we define an unbounded operator rApaq : Hj Ñ Hij with domain

H8
j to satisfy

rApaq � πijpxqYσm���σ2,ibjpwpimq, fm; . . . ;wpi1q, f1q. (6.44)

Then, by inequality (5.43), vectors of the form (6.43) span a core for rApaq. Therefore, by proposi-

tion 6.2, vectors of the form

ξpijq �
¸

s�1,...,N

rApasqBpbsqξp0qs (6.45)
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form a dense subspace of Hij , where N � 1, 2, . . . , and for each s, as � pxs, fs,1, . . . , fs,mq P

A, bs � pys, gs,1, . . . , gs,nq P B, and ξp0qs P H0. If we can prove, for any ξpijq P Hij of the form

(6.45), that Λpξpijq|ξpijqq ¥ 0, then Λ is positive on Wi bWj .

Step 2. We show that Λpξpijq|ξpijqq ¥ 0. Let us simplify the notations a little bit. Let ~wp~iq �

pwpi1q, . . . , wpimqq, ~σ � pσ2, . . . , σmq, ~fs � pfs,1, . . . , fs,mq. If Yα is an intertwining operator

whose charge space, source space, and target space are inside Fb, then we set

Y~σ,αp~wp
~iq, ~fsq � Yσm���σ2,αpwpimq, fs,m; . . . ;wpi1q, fs,1q. (6.46)

Similarly, we let ~wp
~jq � pwpj1q, . . . , wpjnqq, ~ρ � pρ2, . . . , ρnq, ~gs � pgs,1, . . . , gs,nq.

Y~ρ,κpjqpwp
~jq, ~gsq is defined in a similar way.

Assume, without loss of generality, that I is anti-clockwise to J , i.e., for any z P I, ζ P J , we

have �π   arg ζ   arg z   π. By proposition 5.10, for any s � 1, . . . , N ,

rApasqBpbsq � xsY~σ,ibjp~wp
~iq, ~fsqysY~ρ,κpjqp~wp

~jq, ~gsq

�
¸
αPΘ�

ij

qYα b xsysY~σ,αp~wp
~iq, ~fsqY~ρ,κpjqp~wp

~jq, ~gsq. (6.47)

So for any s, t � 1, . . . , N ,

Λ
� rApasqBpbsqξp0qs �� rApatqBpbtqξp0qt �

�
¸

α,βPΘ�
ij

Λαβ
@
xsysY~σ,αp~wp

~iq, ~fsqY~ρ,κpjqp~wp
~jq, ~gsqξ

p0q
s

��xtytY~σ,βp~wp~iq, ~ftqY~ρ,κpjqp~wp~jq, ~gtqξp0qt D
�

¸
α,βPΘ�

ij

Λαβ
@
Y~σ,βp~wp

~iq, ~ftq
:x�t xsysY~σ,αp~wp

~iq, ~fsqY~ρ,κpjqp~wp
~jq, ~gsqξ

p0q
s

��ytY~ρ,κpjqp~wp~jq, ~gtqξp0qt D
�

¸
α,βPΘ�

ij

Λαβ
@
Y~σ,βp~wp

~iq, ~ftq
:x�t xsysY~σ,αp~wp

~iq, ~fsqY~ρ,κpjqp~wp
~jq, ~gsqξ

p0q
s

��Bpbtqξp0qt D. (6.48)

By corollary 2.18 and theorem 5.12,

¸
α,βPΘ�

ij

ΛαβY~σ,βp~wp
~iq, ~ftq

:x�t xsysY~σ,αp~wp
~iq, ~fsqY~ρ,κpjqp~wp

~jq, ~gsq
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�
¸

α,βPΘ�
ij

ΛαβY~σ,βp~wp
~iq, ~ftq

:x�t xsysY~ρ,B�αp~w
p~jq, ~gsqY~σ,κpiqp~wp

~iq, ~fsq

�
¸

α,βPΘ�
ij

ΛαβysY~σ,βp~wp
~iq, ~ftq

:Y~ρ,B�αp~w
p~jq, ~gsqx

�
t xsY~σ,κpiqp~wp

~iq, ~fsq. (6.49)

By theorem 5.13, for each l � 2, . . . ,m, there exists an intertwining operators rσl having the

same type as that of σl, such that (5.59) holds for all Yα whose charge space, source space, and

target space are unitary V -modules in Fb. Let ht,1 � eiπ∆
wpi1q pe2�2∆

wpi1q
ft,1q, . . . , ht,m �

eiπ∆
wpimq pe2�2∆

wpimq
ft,mq. Set ~ht � pht,1, . . . , ht,mq,~ht � pht,1, . . . , ht,mq, ~wp

~iq �

pwpi1q, . . . , wpimqq. Then (6.49) equals

¸
α,βPΘ�

ij

ΛαβysY~
rσ,β�

p~wp~iq,~htqY~ρ,B�αp~w
p~jq, ~gsqx

�
t xsY~σ,κpiqp~wp

~iq, ~fsq. (6.50)

By equation (6.23) and theorem 5.12, (6.50) equals

ysY~ρ,κpjqp~wp
~jq, ~gsqY~

rσ,κpiq�
p~wp~iq,~htqx

�
t xsY~σ,κpiqp~wp

~iq, ~fsq, (6.51)

which, due to equation (5.59), also equals

ysY~ρ,κpjqp~wp
~jq, ~gsqY~σ,κpiqp~wp

~iq, ~ftq
:x�t xsY~σ,κpiqp~wp

~iq, ~fsq

�BpbsqApatq
:Apasq. (6.52)

Substitute this expression into equation (6.48), we see that

Λ
� rApasqBpbsqξp0qs �� rApatqBpbtqξp0qt � � xBpbsqApatq

:Apasqξ
p0q
s |Bpbtqξ

p0q
t y. (6.53)

Therefore, by lemma 6.6,

Λpξpijq|ξpijqq �
¸

s,t�1,...,N

Λ
� rApasqBpbsqξp0qs �� rApatqBpbtqξp0qt �

�
¸

s,t�1,...,N

xBpbsqApatq
:Apasqξ

p0q
s |Bpbtqξ

p0q
t y ¥ 0. (6.54)
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Step 3 (See also [HK07] theorem 3.4). We prove the non-degeneracy of Λ using the rigidity of

ReppV q. Since Λ is positive, for each k P E , we can choose a basis Θk
ij , such that the transport

matrix Λ is a diagonal, and that the entries are either 1 or 0. Thus, we have the transport formula

YjpY0
ii
pw

piq
2 , z2 � z1qw

piq
1 , z1q �

¸
αPΘ�

ij

λαYα�pw
piq
2 , z2qYαpwpiq1 , z1q, (6.55)

where each λα is either 1 or 0. For each k P E , we let nkij be the number of α P Θk
ij satisfying

λα � 1. Then clearly nkij ¤ Nk
ij . If we can show that nkij � Nk

ij , then the non-degeneracy of Λ

follows.

Since Wi is irreducible, we have N0
ii
� N i

0i � 1. So there exists a complex number µi � 0

such that Y0
ii

represents the morphism µievi : Wi bWi Ñ V . We also regard Yα as a morphism

Wi bWj Ñ Wk, and Yα� a morphism Wi bWk Ñ Wj (see section 2.4). Then equation (6.55) is

equivalent to the following relation for morphisms:

µipevi b idjq �
¸
kPE

¸
αPΘkij

λαYα� � pidi b Yαq. (6.56)

By equation (2.64),

µipidi b idjq �µirpidi b eviq � pcoevi b idiqs b idj

�µipidi b evi b idjq � pcoevi b idi b idjq

�
¸
kPE

¸
αPΘkij

λα
�
idi b pYα� � pidi b Yαqq

�
� pcoevi b idi b idjq

�
¸
kPE

¸
αPΘkij

λαpidi b Yα�q � pidi b idi b Yαq � pcoevi b idi b idjq

�
¸
kPE

¸
αPΘkij

λαpidi b Yα�q � pcoevi b Yαq

�
¸
kPE

¸
αPΘkij

λαpidi b Yα�q � pcoevi b idkq � pid0 b Yαq.

This equation implies that the isomorphism µipidi b idjq : Wi bWj Ñ Wi bWj factors through
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the homomorphism

Φ :
`̧

kPE

`̧

αPΘkij ,λα�0

id0 b Yα : Wi bWj ÑW �
à
kPE

à
αPΘkij ,λα�0

Wk.

So Φ must be injective, which implies that Wi bWj can be embedded as a submodule of W . Note

that Wi bWj �
À

kPE W
`Nk

ij

k and W �
À

kPE W
`nkij
k . So we must have nkij ¥ Nk

ij .

Remark 6.8. The problem of the positivity of Λ is a stated in the pure language of vertex operator

algebras. However, as we have seen, its proof relies heavily on conformal nets and operator algebras.

It is interesting to notice that a problem in algebra is solved using ideas and techniques in functional

analysis.
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CHAPTER 7

UNITARITY OF THE RIBBON FUSION CATEGORIES

In this chapter, we still assume that V is unitary, energy bounded, and strongly local, and that

F is a non-empty set of non-zero irreducible unitary V -modules satisfying condition A or B. If

Wi,Wj are unitary V -modules in Fb, then by theorem 6.7, for each k P E , the sesquilinear form Λ

on V
�
k
i j

��
defined by the transport matrix is an inner product. Therefore, we have a unitary structure

on Fb defined by Λ (see section 2.4). We fix this unitary structure, and show that the ribbon fusion

category Repu
FbpV q is unitary.

We first note that the inner product Λ on V
�
k
i j

��
induces naturally an antilinear isomorphism

map V
�
k
i j

�
Ñ V

�
k
i j

��
. We then define the inner product Λ on V

�
k
i j

�
so that this map becomes

anti-unitary. Then a basis Θk
ij � V

�
k
i j

�
is orthonormal if and only if its dual basis is an orthonormal

basis of V
�
k
i j

��
. Therefore, if for each k P E X Fb, Θk

ij is an orthonormal basis of V
�
k
i j

�
, then the

transport formulas (6.16), (6.21) and (6.23) become

Yj
�
Y0
ii
pw

piq
2 , z2 � z1qw

piq
1 , z1

�
�

¸
αPΘ�

ij

Yα�pw
piq
2 , z2qYαpwpiq1 , z1q, (7.1)

Yγpwpjq, z0q

� ¸
αPΘ�

is

Yα�pw
piq
2 , z2qYαpwpiq1 , z1q



�

� ¸
αPΘ�

ir

Yα�pw
piq
2 , z2qYαpwpiq1 , z1q



Yγpwpjq, z0q,

(7.2)

Yjj0pw
pjq, z0qY0

ii
pw

piq
2 , z2q �

¸
αPΘ�

ij

Yα�pw
piq
2 , z2qYB�αpwpjq, z0q. (7.3)

7.1 Unitarity of braid matrices

For any unitary V -modules Wi,Wj in Fb, and any s, t P E XFb, we choose bases Θt
is,Θ

t
sj of

V
�
t
i s

�
,V
�
t
s j

�
respectively. Now fix i, j P Fb, we also define

Θ�
i� �

º
s,tPEXFb

Θt
is,Θ

�
�j �

º
s,tPEXFb

Θt
sj .
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Choose distinct zi, zj P S1, and let arg zj   arg zi   arg zj � 2π. For any α, α1 P Θ�
i�, β, β

1 P

Θ�
j�, if either the source space of Yα does not equal the target space of Yβ , or the target space of

Yα1 does not equal the source space of Yβ1 , or the target space of Yα does not equal the target space

of Yβ1 , or the source space of Yβ does not equal the source space of Yα1 , then we set pB�q
β1α1

αβ �

0; otherwise the values pB�q
β1α1

αβ are determined by the following braid relation: for any wpiq P

Wi, w
pjq PWj ,

Yαpwpiq, ziqYβpwpjq, zjq �
¸

α1PΘ�
i�,β

1PΘ�
j�

pB�q
β1α1

αβ Yβ1pwpjq, zjqYα1pwpiq, ziq. (7.4)

The matrix pB�qij � tpB�q
β1α1

αβ u
α1PΘ�

i�,β
1PΘ�

j�

αPΘ�
i�,βPΘ�

j�
is called a braid matrix. The matrix pB�qij �

tpB�q
β1α1

αβ u
α1PΘ�

i�,β
1PΘ�

j�

αPΘ�
i�,βPΘ�

j�
is defined in a similar way by assuming arg zi   arg zj   arg zi � 2π.

Clearly pB�qij is the inverse matrix of pB	qji.

Proposition 7.1. For any α, α1 P Θ�
i�, β, β

1 P Θ�
j�, we have

pB�q
β1α1

αβ � pB	q
α1�β1�

β�α� . (7.5)

Proof. Choose distinct zi, zj P S1, and let arg zj   arg zi   arg zj � 2π. Then for any wpiq P

Wi, w
pjq PWj , the braid relation (7.4) holds. Taking the formal adjoint of (7.4), we have

Yβpwpjq, zjq:Yαpwpiq, ziq: �
¸
α1,β1

pB�q
β1α1

αβ Yα1pwpiq, ziq:Yβ1pwpjq, zjq:. (7.6)

By equation (1.34), for any wpiq PWi, w
pjq PWj we have

Yβ�pwpjq, zjqYα�pwpiq, ziq �
¸
α1,β1

pB�q
β1α1

αβ Yα1�pwpiq, ziqYβ1�pwpjq, zjq. (7.7)

But tpB�q
α1�β1�

β�α� u is also the braid matrix for the braid relation (7.7). So we must have pB�q
β1α1

αβ �

pB�q
α1�β1�

β�α� . If we let arg zi   arg zj   arg zi � 2π, then we obtain pB�q
β1α1

αβ � pB�q
α1�β1�

β�α� .

Proposition 7.2. If the bases Θ�
i�,Θ

�
j� are orthonormal under the inner product Λ, then for any
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α, α1 P Θ�
i�, β, β

1 P Θ�
j�, we have

pB�q
β1α1

αβ � pB	q
α�β1

βα1� � pB�q
β�α�

α1�β1� . (7.8)

Proof. Choose distinct z1, z2, z3, z4 P S1 with arguments arg z1   arg z2   arg z3   arg z4  

arg z1 � 2π. By relation (7.2), for any k P E X Fb, w0, w5 P Wk, w1, w2 P Wi, w3, w4 P Wj , we

have, following convention 2.19,

¸
α1PΘ�

i�

βPΘ�
j�

A
Yβ�pw4, z4qYβpw3, z3qYα1�pw2, z2qYα1pw1, z1qw0

���w5

E

�
¸

αPΘ�
i�

βPΘ�
j�

A
Yβ�pw4, z4qYα�pw2, z2qYαpw1, z1qYβpw3, z3qw0

���w5

E
. (7.9)

By exchanging Yα and Yβ , (7.9) equals

¸
α,α1PΘ�

i�

β,β1PΘ�
j�

pB�q
β1α1

αβ

A
Yβ�pw4, z4qYα�pw2, z2qYβ1pw3, z3qYα1pw1, z1qw0

���w5

E
. (7.10)

By proposition 2.3, we have

Yβpw3, z3qYα1�pw2, z2q �
¸

α,α1PΘ�
i�

β,β1PΘ�
j�

pB�q
β1α1

αβ Yα�pw2, z2qYβ1pw3, z3q. (7.11)

This proves that pB�q
α�β1

βα1� � pB�q
β1α1

αβ .

Similarly, we also have

¸
α1PΘ�

i�

βPΘ�
j�

A
Yβ�pw4, z4qYβpw3, z3qYα1�pw2, z2qYα1pw1, z1qw0

���w5

E

�
¸

α1PΘ�
i�

β1PΘ�
j�

A
Yα1�pw2, z2qYβ1�pw4, z4qYβ1pw3, z3qYα1pw1, z1qw0

���w5

E
(7.12)
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�
¸

α,α1PΘ�
i�

β,β1PΘ�
j�

pB�q
β�α�

α1�β1�

A
Yβ�pw4, z4qYα�pw2, z2qYβ1pw3, z3qYα1pw1, z1qw0

���w5

E
, (7.13)

which implies that pB�q
α�β1

βα1� � pB�q
β�α�

α1�β1� .

If z1, z2, z3, z4 P S1 and their arguments are chosen such that arg z4   arg z3   arg z2  

arg z1   arg z4 � 2π, then the same argument implies that pB�q
β1α1

αβ � pB�q
α�β1

βα1� � pB�q
β�α�

α1�β1� .

Corollary 7.3. If the bases Θ�
i�,Θ

�
j� are orthonormal under the inner product Λ, then the braid

matrix pB�qij is unitary.

Proof. If we apply propositions 7.1 and 7.2, then for any α, α1 P Θ�
i�, β, β

1 P Θ�
j�, we have

pB�q
β1α1

αβ � pB�q
β�α�

α1�β1� � pB	q
αβ
β1α1 , (7.14)

which shows that pB�qij is the adjoint of pB	qji. But we know that pB�qij is also the inverse

matrix of pB	qji. So pB�qij is unitary.

7.2 Unitarity of fusion matrices

Recall from section 2.4 that for any Wi,Wj ,Wk,Wt in Fb, we have a fusion matrix

tF β
1α1

αβ u
α1PΘ�

ij ,β
1PΘt�k

αPΘti�,βPΘ�
jk

defined by the fusion relation

Yαpwpiq, ziqYβpwpjq, zjq �
¸

α1PΘ�
ij ,β

1PΘt�k

F β
1α1

αβ Yβ1pYα1pwpiq, zi � zjqw
pjq, zjq, (7.15)

where zi, zj P C�, 0   |zi� zj |   |zj |   |zi|, arg zj is close to arg zi as zj Ñ zi, and argpzi� zjq

is close to arg zi as zj Ñ 0. We let F β
1α1

αβ � 0 if the source space of Yα does not equal the target

space of Yβ , or if the target space of Yα1 does not equal the charge space of Yβ1 . In this section, we

show that fusion matrices are unitary.

Proposition 7.4. Choose unitary V -modules Wi,Wk in Fb, Wj ,Wt in E X Fb. Then for any for
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any α P Θt
i�, β P Θ�

jk, α
1 P Θ�

ij , β
1 P Θt

�k, we have

F β
1α1

αβ � pB�q
B�β1,α1

α,B�β
� pB�q

B�β1,α1

α,B�β
. (7.16)

Proof. Choose distinct zi, zj , zk P S1 with arguments arg zk   arg zj   arg zi   arg zk� 2π, and

assume that 0   |zi � zj |   1. Choose wpiq P Wi, w
pjq P Wj , w

pkq P Wk. By corollary 2.18, we

have

Yαpwpiq, ziqYβpwpjq, zjqYkk0pw
pkq, zkq

�Yαpwpiq, ziqYB�βpwpkq, zkqY
j
j0pw

pjq, zjq

�
¸

α1PΘ�
i�

β1PΘ�
�k

pB�q
B�β1,α1

α,B�β
YB�β1pw

pkq, zkqYα1pwpiq, ziqYjj0pw
pjq, zjq. (7.17)

On the other hand, by corollary 2.18 and theorem 5.2,

Yαpwpiq, ziqYβpwpjq, zjqYkk0pw
pkq, zkq

�
¸
sPE

¸
α1PΘsij
β1PΘtsk

F β
1α1

αβ Yβ1
�
Yα1pwpiq, zi � zjqw

pjq, zj
�
Ykk0pw

pkq, zkq (7.18)

�
¸
sPE

¸
α1PΘsij
β1PΘtsk

F β
1α1

αβ YB�β1pw
pkq, zkqYss0

�
Yα1pwpiq, zi � zjqw

pjq, zj
�
, (7.19)

where (7.18) and (7.19) are understood as products of two generalized intertwining operators (see

the beginning of chapter 5). By proposition 2.17, (7.19) equals

¸
sPE

¸
α1PΘsij
β1PΘtsk

F β
1α1

αβ YB�β1pw
pkq, zkqYα1pwpiq, ziqYjj0pw

pjq, zjq. (7.20)

Comparing this result with (7.17), we see immediately that F β
1α1

αβ � pB�q
B�β1,α1

α,B�β
. If we assume at

the beginning that arg zi   arg zj   arg zk   arg zi � 2π, then we obtain F β
1α1

αβ � pB�q
B�β1,α1

α,B�β
.

Proposition 7.5. Let Wi,Wj be unitary V -modules in Fb. For each k P E XFb, we let tYα : α P
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Θk
iju be a set of orthonormal basis of V

�
k
i j

�
under the inner product Λ. Then B�Θk

ij � tYB�α :

α P Θk
iju and B�Θk

ij � tYB�α : α P Θk
iju are orthonormal bases of V

�
k
j i

�
.

Proof. Choose distinct zi, zj P S1 with arguments satisfying arg zi   arg zj   arg zi � 2π. By

proposition 6.5-(3), for any wpiq PWi, w
pjq PWj , we have

Yjj0pw
pjq, zjqY0

ii
pwpiq, ziq �

¸
αPΘ�

ij

Yα�pwpiq, ziqYB�αpwpjq, zjq. (7.21)

Take the formal adjoint of both sides, we obtain

Y0
ii
pwpiq, ziq

:Yjj0pw
pjq, zjq

: �
¸
αPΘ�

ij

YB�αpwpjq, zjq:Yα�pwpiq, ziq:. (7.22)

Recall that pYjj0q: � Y0
jj

and pY0
ii
q: � Y ii0. Thus, by equation (1.34), equation (7.22) shows that

Y ii0pwpiq, ziqY0
jj
pwpjq, zjq �

¸
αPΘ�

ij

YpB�αq�pwpjq, zjqYαpw
piq, ziq

�
¸

βPB�Θ�
ij

Yβ�pwpjq, zjqYB�βpwpiq, ziq, (7.23)

which, by proposition 6.5-(3), shows that B�Θk
ij is an orthonormal basis of V

�
k
i j

�
for any k P E .

The other case is treated in a similar way.

Corollary 7.6. For any Wi,Wj ,Wk in Fb and Wt in E , the fusion matrix tF β
1α1

αβ u
α1PΘ�

ij ,β
1PΘt�k

αPΘti�,βPΘ�
jk

is

unitary.

Proof. If Wj is irreducible, then Wj is unitarily equivalent to a unitary V -module in E X Fb. The

unitarity of the fusion matrix follows then from propositions 7.4, 7.5, and the unitarity of braid

matrices proved in the last section. In general, the fusion matrix is diagonalized according to the

orthogonal decomposition of Wj into irreducible submodules. Thus the unitarity can be proved

easily.
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7.3 Unitarity of the ribbon fusion categories

In this section, we prove that Repu
FbpV q is unitary when the unitary structure on Fb is defined

by Λ. By corollary 7.6, the associators are unitary. By proposition 7.5, the braid operators are

unitary. That λi : V bWi ÑWi and ρi : Wi b V ÑWi are unitary follows from equations (6.19)

and (6.20).

Choose Wi1 ,Wi2 ,Wj1 ,Wj2 in Fb. We show, for any F P HomV pWi1 ,Wi2q, G P

HomV pWj1 ,Wj2q, that

pF bGq� � F � bG�. (7.24)

Consider direct sum modules Wi � Wi1 `
KWi2 ,Wj � Wj1 `

KWj2 . For each k P E , it is easy to

see that V
�
k
i j

�
has the natural orthogonal decomposition

V
�
k

i j



�

Kà
a,b�1,2

V
�

k

ia jb



, (7.25)

which induces the natural decomposition

Wi bWj �
Kà

a,b�1,2

Wia bWjb . (7.26)

Therefore, if we regard F,G as endomorphisms of the modules Wi,Wj respectively, then F b G

and F � b G� can be regarded as endomorphisms of Wi bWj . Thus, it suffices to prove equation

(7.24) for any F P EndV pWiq, G P EndV pWjq.

Since EndV pWiq and EndV pWjq are C�-algebras (see theorem 2.21), they are spanned by

unitary elements inside them. Therefore, by linearity, it suffices to prove (7.24) when F P

EndV pWiq, G P EndV pWjq are unitary operators. By equation (2.56), it is easy to see that F bG

is unitary. Hence we have

pF � bG�qpF bGq � F �F bG�G � idi b idj � idij , (7.27)

which implies that F � bG� � pF bGq�1 � pF bGq�. This proves relation (7.24).
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For each Wi in Fb, the twist ϑi � e2iπL0 is clearly unitary. Hence, in order to prove the

unitarity of Repu
FbpV q, it remains to find evi, coevi, such that equations (2.69) and (2.70) hold.

To prove this, we let evi,i P HomV pWi b Wi, V q be the homomorphism represented by the

intertwining operator Y0
ii

, and let coevi,i � ev�
ii

. Since i and i are identified, we can define evi,i and

coevi,i in a similar way. Set evi � evi,i, coevi � coevi,i. If we can verify, for all Wi in Fb, the

following relations:

pidi b evi,iq � pcoevi,i b idiq � idi, (7.28)

pevi,i b idiq � pidi b coevi,iq � idi, (7.29)

evi,i � evi,i � σi,i � pϑi b idiq, (7.30)

coevi,i � pidi b ϑ�1
i
q � σ�1

i,i
� coevi,i, (7.31)

then equations (2.64), (2.65), (2.69), and (2.70) are true for all Wi, and our modular tensor category

is unitary.

To begin with, we define the positive number di to be the norm square of the vector Y0
ii

inside

V
�

0
i i

�
, i.e.,

di � }Y0
ii
}2. (7.32)

By propositions 1.14 and 7.5, di � di. The following property will indicate that di is the quantum

dimension of Wi.

Proposition 7.7.

evi,i � coevi,i � di. (7.33)

Proof. First we assume that Wi is irreducible. Then tY0
ii
u is a basis of V

�
0
i i

�
. Let t qY0

ii
u be its dual

basis. Then qYα � d
1
2
i
qY0
ii

has unit length. Now, for any v P V , evi,i maps qYα b v P Wi bWi to

x qYα,Y0
ii
yv � d

1
2
i x
qY0
ii
,Y0

ii
yv � d

1
2
i v. It follows that its adjoint coevi,i maps each v P V to d

1
2
i
qYαbv.

Hence evi,i � coevi,ipvq � div.

In general, Wi has decomposition Wi �
ÀK

a Wia , where each Wia is irreducible. Let pa be
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the projection of Wi on Wia . Then the projection pa of Wi on Wia
satisfies pawpiq � pawpiq

(wpiq PWi). It is easy to check that

evi,i �
¸
a

evi,i � ppa b paq �
¸
a

evia,ia , (7.34)

coevi,i �
¸
a

ppa b paq � coevi,i �
¸
a

coevia,ia , (7.35)

and di �
°
a dia . The general case can be proved using these relations.

Now we are ready to prove equations (7.28)-(7.31).

Proof of equation (7.29). By equations (7.34) and (7.35), it suffices to prove (7.29) when Wi is

irreducible. Choose wpiq1 , w
piq
2 P Wi. Choose z1, z2 P C� satisfying 0   |z2 � z1|   |z1|   |z2|.

Choose arg z2, let arg z1 be close to arg z2 as z2 � z1 Ñ 0, and let argpz2 � z1q be close to arg z2

as z1 Ñ 0. Since ‖ qY0
ii
‖2� d�1

i , by transport formula we have

Yi
�
Y0
ii
pw

piq
2 , z2 � z1qw

piq
1 , z1

�
�d�1

i pY0
ii
q:pw

piq
2 , z2qY0

ii
pw

piq
1 , z1q � Yγpwpiq2 , z2qYβpw

piq
1 , z1q

�d�1
i Y ii0pw

piq
2 , z2qY0

ii
pw

piq
1 , z1q � Yγpwpiq2 , z2qYβpw

piq
1 , z1q (7.36)

where Yβ,Yγ are a chain of intertwining operators, and the target space of Yβ does not contain any

submodule equivalent to the vacuum module V . Equation (7.36) is equivalent to the relation

pevi,i b idiq � d�1
i pidi b evi,iq � Yγ � pidi b Yβq, (7.37)

where Yγ and Yβ denote the corresponding morphisms. By proposition 7.7,

pevi,i b idiq � pidi b coevi,iq

�d�1
i pidi b evi,iq � pidi b coevi,iq � Yγ � pidi b Yβq � pidi b coevi,iq

�idi � Yγ �
�
idi b pYβ � coevi,iq

�
. (7.38)

Since Yβ � coevi,i is a morphism from the vacuum module V to a V -module with no irreducible
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submodule equivalent to V , Yβ � coevi,i must be zero. So (7.38) equals idi, and equation (7.29) is

proved.

Proof of equations (7.28), (7.30), and (7.31). Take the adjoint of equation (7.29), we immediately

obtain equation (7.28). Equation (7.30) follows from equation (1.41). Equation (1.42) indicates that

evi,i � evi,i � σi,i � pidi b ϑiq, (7.39)

the adjoint of which is (7.31).

Thus we’ve proved the unitarity of our ribbon fusion category.

Theorem 7.8. Let V be unitary, energy bounded, and strongly local, and let F be a non-empty

set of non-zero irreducible unitary V -modules satisfying condition A or B. If we define a unitary

structure on Fb using Λ, then the ribbon fusion category Repu
FbpV q is unitary.

Note that the proof of this theorem uses only the positive definiteness of Λ.
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CHAPTER 8

APPLICATIONS

8.1 APPLICATION TO UNITARY VIRASORO VOAs

Let Vir � SpanCtC,Ln : n P Zu be the Virasoro Lie algebra satisfying the relation

rLm, Lns � pm� nqLm�n �
1

12
pm3 �mqδm,�nC pm,n P Zq,

rC,Lns � 0 pn P Zq.

If W is a Vir-module, and the vector space W is equipped with an inner product x�|�y, we say that

W is a unitary Vir-module, if L:n � L�n holds for any n P Z. More precisely, this means that for

any w1, w2 PW , we have

xLnw1|w2y � xw1|L�nw2y. (8.1)

Choose Lie subalgebras Vir� � SpanCtLn : n P Z¡0u and Vir� � SpanCtLn : n P Z 0u of

Vir, and letUpVirq be the universal enveloping algebra of Vir. For each c, h P C, the Verma module

Mpc, hq for Vir is the free UpVir�q-module generated by a distinguished vector (the highest weight

vector) vc,h, subject to the relation

UpVir�qvc,h � 0, Cvc,h � cvc,h, L0vc,h � hvc,h. (8.2)

Then there exists a unique maximal proper submodule Jpc, hq of Mpc, hq. We let Lpc, hq �

Mpc, hq{Jpc, hq. It was proved in [FQS84] and [GKO86] that the Vir-module Lpc, hq is unita-

rizable if and only if there exist m, r, s P Z satisfying 2 ¤ m, 1 ¤ r ¤ m � 1, 1 ¤ s ¤ m, such

that

c � 1�
6

mpm� 1q
, (8.3)
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h � hr,s �

�
pm� 1qr �ms

�2
� 1

4mpm� 1q
. (8.4)

For such a module Lpc, hq, we fix a unitary structure such that xvc,h|vc,hy=1.

Let Ω � vc,0, ν � L�2Ω. Then there exists a unique VOA structure on Lpc, 0q, such that Ω is

the vacuum vector, and ν is the conformal vector (cf.[FZ92]). Let E � tΩ, νu, then E is a set of

quasi-primary vectors generating Lpc, 0q.

We now assume that c satisfies relation (8.3). Then by [DL14] theorem 4.2 or [CKLW15]

proposition 5.17, Lpc, 0q is a unitary VOA. The PCT operator θ is determined by the fact that θ fixes

vectors in E. Lpc, 0q satisfies conditions pαq, pβq, and pγq in the introduction. (See the introduction

of [Hua08b], and the reference therein.)

Since Y pν, nq � Ln�1, representations of Lpc, 0q are determined by their restrictions to Vir.

By [Wang93] theorem 4.2, irreducible representations of Lpc, 0q are precisely those that can be

restricted to irreducible Vir-modules of the form Lpc, hr,sq, where the highest weight hr,s satisfies

relation (8.4). By proposition 1.10, Lpc, hr,sq is a unitary Lpc, 0q-module. It follows that any

Lpc, 0q-module is unitarizable. Clearly the conformal dimension of Lpc, hr,sq is hr,s.

Let F � tLpc, h1,2q, Lpc, h2,2qu. The fusion rules of Lpc, 0q (see [Wang93] theorem 4.3) in-

dicate that F is generating, i.e., any unitary Lpc, 0q-module is in Fb. We check that F satisfies

condition A:

Condition A-(a): Since we know that any Lpc, 0q-module is unitarizable, condition A-(a) is

obvious.

Condition A-(b): Since E � E1pLpc, 0qq, E1pLpc, 0qq is generating.

Condition A-(c): If Yα P V
�
k
i j

�
is unitary and irreducible (hence Wi,Wj ,Wk restrict to irre-

ducible highest weight Vir-modules), we choose a non-zero highest weight vector vpiq P Wi. We

then define a linear map

φα : Wj ÑWktxu,

wpjq ÞÑ φαpxqw
pjq � Yαpvpiq, xqwpjq.

Then φα is a primary field in the sense of [Loke94] chapter II. By [Loke94] proposition IV.1.3, if

Wi P F , then φα satisfies 0-th order energy bounds. This proves condition A-(c). Theorem 7.8 now
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implies the following:

Theorem 8.1. Let c � 1 � 6
mpm�1q where m � 2, 3, 4, . . . , and let Lpc, 0q be the unitary Vira-

soro VOA with central charge c. Then any Lpc, 0q-module is unitarizable, the transport matrices of

Lpc, 0q are positive definite, and the modular tensor category RepupLpc, 0qq of the unitary repre-

sentations of Lpc, 0q is unitary.

8.2 Application to unitary affine VOAs

Let g be a complex simple Lie algebra. Let h be a Cartan subalgebra of g, λ P h�, and let Lpλq

be the irreducible highest weight module of g with highest weight λ and a distinguished highest

(non-zero) vector vλ P Lpλq.

Choose the normalized invariant bilinear form p�, �q satisfying pθ, θq � 2, where θ is the highest

root of g. Let pg � SpanCtK,Xpnq : X P g, n P Zu be the affine Lie algebra satisfying

rXpmq, Y pnqs � rX,Y spm� nq �mpX,Y qδm,�nK pX,Y P g,m, n P Zq,

rK,Xpnqs � 0 pX P g, n P Zq.

Let gR be a compact real form of g. Then g � gR`R igR. If W is a pg-module, and the vector space

W is equipped with an inner product x�|�y, we say that W is a unitary pg-module, if for any X P gR

and n P Z, we have

Xpnq: � �Xp�nq, K: � K. (8.5)

Let Uppgq be the universal enveloping algebra of pg. Choose Lie subalgebras pg� �

SpanCtXpnq : X P g, n ¡ 0u,pg� � SpanCtXpnq : X P g, n   0u of pg. We regard g as a

Lie subalgebra of pg by identifying X P g with Xp0q P pg. For any k P C, λ P h�, the Verma module

Mpk, λq for pg is the free Uppg�q-module generated by Lpλq and subject to the conditions

Uppg�qLpλq � 0, K|Lpλq � k � id|Lpλq. (8.6)

We let Mpk, λq be graded by Z¥0: For any X1, . . . , Xm P g, n1, . . . , nm ¡ 0, v P Lpλq, the weight
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of X1p�n1q � � �Xmp�nmqv equals n1 � � � � � nm. There exits a unique maximal proper graded

submodule Jpk, λq of Mpk, λq. We let Lpk, λq � Mpk, λq{Jpk, λq. Then by [Kac94] theorem

11.7, the pg-module Lpk, λq is unitarizable if and only if

k � 0, 1, 2, . . . , (8.7)

λ is a dominant integral weight of g, and pλ, θq ¤ k. (8.8)

For such a pg-module Lpk, λq, we fix a unitary structure.

Let h_ be the dual Coxeter number of g. Let Ω be a highest weight vector of Lpk, 0q. It was

proved in [FZ92] that when k � �h_, there exists a unique VOA structure on Lpk, 0q, such that Ω

is the vacuum vector, that for any X P g we have

Y
�
Xp�1qΩ, x

�
�
¸
nPZ

Xpnqx�n�1, (8.9)

and that the conformal vector ν is defined by

ν �
1

2pk � h_q

dim g¸
i�1

Xip�1q2Ω, (8.10)

where tXiu is an orthonormal basis of igR under the inner product p�, �q. The setE � tΩ, Xp�1qΩ :

X P gRu generates Lpk, 0q. By writing the operator L1 � Y pν, 2q in terms of Xpnq’s using Jacobi

identity, one can show that the vectors in E are quasi-primary.

We now assume that k P Z¥0. Then Lpk, 0q satisfies conditions pαq, pβq, and pγq in the intro-

duction. (See the introduction of [Hua08b], and the reference therein.) By [DL14] theorem 4.7 or

[CKLW15] proposition 5.17, Lpk, 0q is a unitary VOA, and the PCT operator θ is determined by

the fact that it fixes the vectors in E.

Representations of Lpk, 0q are determined by their restrictions to pg. By [FZ92] theorem 3.1.3,

irreducible Lpk, 0q-modules are precisely those which can be restricted to the pg-modules of the

form Lpk, λq, where λ P h� satisfies condition (8.8). By proposition 1.10, these Lpk, 0q-modules

are unitary. Hence allLpk, 0q-modules are unitarizable, and any set F of irreducible unitaryLpk, 0q-

module satisfies condition A-(a).

126



By proposition 3.6, E � E1pLpk, 0qq. SinceE generates Lpk, 0q, any F also satisfies condition

A-(b). Checking condition A-(c) is much harder, and requires case by case studies. Note that given

the set F , finding out which irreducible modules are inside Fb requires the knowledge of fusion

rules. A very practical way of calculating fusion rules for a unitary affine VOA is to calculate the

dimensions of the spaces of primary fields.

Primary fields

Fix k P Z¡0. For each λ P h� satisfying condition (8.8), we write Uλ � Lpλq,Wλ � Lpk, λq.

Let ∆λ be the conformal dimension of the Lpk, 0q-module Wλ. We define the normalized energy

operator on Wλ to be D � L0 �∆λ.

Assume that λ, µ, ν P h� satisfy condition (8.8). We let ∆ν
λµ � ∆λ � ∆µ � ∆ν . A type

�
ν
λ µ

�
primary field φα is a linear map

φα : Uλ bWµ ÑWνrrx
�1ssx�∆ν

λµ ,

upλq b wpµq ÞÑ φαpu
pλq, xqwpµq �

¸
nPZ

φαpu
pλq, nqwpµqx�∆ν

λµ�n

pwhere φαpuλ, nq P HompWµ,Wνqq,

such that for any upλq P Uλ, X P g,m P Z, we have

rXpmq, φαpu
pλq, xqs � φαpXu

pλq, xqxm, (8.11)

rL0, φαpu
pλq, xqs �

�
x
d

dx
�∆λ

	
φαpu

pλq, xq. (8.12)

We say that Uλ is the charge space of φα.

Note that the above two conditions are equivalent to that for any m,n P Z, upλq P Uλ, X P g,

rXpmq, φαpu
pλq, nqs � φαpXu

pλq, n�mq, (8.13)

rD,φαpu
pλq, nqs � �nφαpu

pλq, nq. (8.14)

Primary fields and intertwining operators are related in the following way: Let Vp

�
ν
λ µ

�
be the

vector space of type
�
ν
λ µ

�
primary fields. If Yα P V

�
ν
λ µ

�
is a type

�
ν
λ µ

�
intertwining operator of
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Lpk, 0q, then by relation (1.26), for any wpλq PWλ we have,

Yαpwpλq, xq � xL0Yαpx�L0wpλq, 1qx�L0 P EndpWµ,Wνqrrx
�1ssx�∆ν

λµ (8.15)

where Yαp�, 1q � Yαp�, xq
��
x�1

. We define a linear map φα : Uλ bWµ Ñ Wνrrx
�1ssx�∆ν

λµ to

be the restriction of Yα to Uλ bWµ. Then the Jacobi identity and the translation property for Yα

implies that Yα satisfies equations (8.11) and (8.12). Therefore, we have a linear map

Φ : V
�
ν

λ µ



Ñ Vp

�
ν

λ µ



, Yα ÞÑ φα. (8.16)

The injectivity of Φ follows immediately from relation (1.22) or from corollary 2.15. Φ is also

surjective. Indeed, if we fix any z P C� and define another linear map

Ψz : Vp

�
ν

λ µ



Ñ pWλ bWµ bWνq

�,

φα ÞÑ φαp�, zq � φαp�, xq
��
x�z

,

then by equation (8.12), Ψz is injective. By equation (8.11) and [Ueno08] theorem 3.18, the dimen-

sion of the image of Ψz is no greater than that of “the space of vacua” V:µλνpP
1; 0, z,8q defined in

[TUY89] and [Ueno08]. The later can be calculated using the Verlinde formula proved in [Bea94],

[Fal94], and [Tel95]. The same Verlinde formula for Nν
λµ proved in [Hua08a] shows that the di-

mension of the vector space V
�
ν
λ µ

�
(which is the fusion rule Nν

λµ) equals that of V:µλνpP
1; 0, z,8q.

So dimVp

�
ν
λ µ

�
¤ Nν

λµ, and hence Φ must be surjective. We conclude the following:

Proposition 8.2. The linear map Φ defined in (8.16) is an isomorphism. In particular, the fusion

rule Nν
λµ of Lpk, 0q equals the dimension of the vector space of type

�
ν
λ µ

�
primary fields of Lpk, 0q.

Theorem 8.3. Let k � 0, 1, 2, . . . , and let Lpk, 0q be the level k unitary affine VOA associated

to g. Then any Lpk, 0q-module is unitarizable. Suppose that F is a generating set of irreducible

unitary Lpk, 0q-modules (i.e., Fb contains any unitary Lpk, 0q-module), and that for any λ P F , all

primary fields of Lpk, 0q with charge spaces Uλ are energy-bounded. Then the transport matrices

of Lpk, 0q are positive definite, and the modular tensor category RepupLpk, 0qq is unitary.

We now show that theorem 8.3 can be applied to the unitary affine VOAs of type An and Dn.
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The case g � sln pn ¥ 2q

Let Lp�q be the (n-dimensional) vector representation of sln, and let

F � tLpk, �qu.

In [Was98], especially in section 25, it was proved that if λ � � and the weights µ, ν of sln satisfy

condition (8.8), then

dimVp

�
ν

λ µ



� dim

�
Homg

�
Lpλq b Lpµq, Lpνq

�	
. (8.17)

(Note that this relation is not true for general Lpλq.) Using this relation, one can show that F is

generating. In the same section, it was proved that any φα P Vp

�
ν
� µ

�
satisfies 0-th order energy

bounds.

The case g � so2n pn ¥ 3q

Let Lp�q be the vector representation of so2n, and let Lps�q and Lps�q be the two half-spin

representations of so2n. In [TL04] chapter IV, it was proved that if λ equals � or s�, and the

weights µ, ν of so2n satisfy condition (8.8), then relation (8.17) holds. This shows that the set

F � tLpk, �q, Lpk, s�q, Lpk, s�qu

is generating. By [TL04] theorem VI.3.1, any primary field whose charge space isLpk, �q, Lpk, s�q,

or Lpk, s�q is energy-bounded.

We conclude the following.

Theorem 8.4. Let g be sln pn ¥ 2q or so2n pn ¥ 3q, let k � 0, 1, 2, . . . , and let Lpk, 0q be the

unitary affine VOA associated to g. Then the transport matrices of Lpk, 0q are positive definite, and

the modular tensor category RepupLpk, 0qq of the unitary representations of Lpk, 0q is unitary.
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Other examples

As we see in theorem 8.3, to finish proving the unitarity of the modular tensor categories asso-

ciated to unitary affine VOAs, one has to show, for the remaining types, that a “generating” set of

primary fields are energy-bounded. Our success in type An and Dn unitary WZW models, as well

as in unitary minimal models, shows that achieving this goal is promising. Indeed, the main idea of

proving the energy-boundedness of a primary field in [Was98], [Loke94], and [TL04] is to embedd

the original VOA V in a larger (super) VOA rV , the energy-boundedness of the field operators of

which is easy to show, and realize the primary field as the compression of a field operator in rV . This

strategy is proved to work for some other types of affine VOAs, say type G2 (cf. [Gui]). We expect

that it works for all examples.

8.3 Full conformal field theory with reflection positivity

In this section, we give an interpretation of our unitarity results from the perspective of full

conformal field theory. In [HK07], Y.Z.Huang and L.Kong constructed (genus 0) full conformal

field theory for V . This construction relies on the non-degeneracy of a bilinear form on each pair

V
�
k
i j

�
b V

�
k
i j

�
, which follows from the rigidity of ReppV q. These bilinear forms p�, �q are directly

related to our sesquilinear forms Λp�|�q on each V
�
k
i j

�
:

pYα,Yβq � ΛpYα|Yβq pα, β P V
�
k

i j



q. (8.18)

In light of this relation, we sketch the construction of full field algebras in [HK07] from a unitary

point of view.

Let us assume that V is unitary, all V -modules are unitarizable, and all transport matrices are

positive definite. (This last condition holds for V if there exists a generating set F of irreducible

unitary V -modules satisfying condition A of B.) We define a vector space

F �
à
iPE

Wi bWi. (8.19)

Its algebraic completion is pF �
À

iPE
xWi bxWi.
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For each i, j, k P E , we choose an orthonormal basis Θk
ij of V

�
k
i j

�
under the inner product Λ.

The full field operator Y is defined to be an EndpF b F, pF q-valued continuous function on C�,

such that for any wpiqL b w
piq
R PWi bWi � F,w

pjq
L b w

pjq
R PWj bWj � F ,

YpwpiqL b w
piq
R ; z, zqpw

pjq
L b w

pjq
R q �

¸
kPE

¸
αPΘkij

YαpwpiqL , zqw
pjq
L b YαpwpiqR , zqw

pjq
R . (8.20)

Then pF,Yq is a full field algebra of V satisfying certain important properties, including the com-

mutativity ([HK07] proposition 1.5) and the associativity ([HK07] proposition 1.4). In fact, in our

unitarity context, it is not hard for the reader to check that these two properties are equivalent to the

unitarity of braid matrices and fusion matrices respectively.

Let us equip the vector space F with an inner product x�|�y, such that the decomposition (8.19)

is orthogonal, and for any i P E , wpiqL,1, w
piq
R,1, w

piq
L,2, w

piq
R,2 PWi,

xw
piq
L,1 b w

piq
R,1|w

piq
L,2 b w

piq
R,2y � d�1

i xw
piq
L,1|w

piq
L,2yxw

piq
R,2|w

piq
R,1y. (8.21)

We also define an antilinear operator θ : F Ñ F sending each wpiqL b w
piq
R to wpiqR b w

piq
L , which is

easily checked to be an anti-automorphism:

θY pw; z, zq � Y pθw; z, zqθ pw P F q. (8.22)

We call θ the PCT operator of pF,Yq.

Note that when V is non-unitary, we can only define a non-degenerate bilinear form on F ,

and show that under this bilinear form, the full field algebra pF,Yq satisfies the invariance prop-

erty ([HK07] definition 3.9). But in our case, this invariance property should be replaced by the

reflection positivity:

Ypw; z, zq: � Y
�
ezL

L
1�zL

R
1 pe�iπz�2qL

L
0 pe�iπz�2qL

R
0 θw; z�1, z�1

�
pw P F q, (8.23)

where for each n P Z,, the linear operators LLn � Lnb1, LRn � 1bLn are defined on F . The factor

e�iπ in equation (8.23) can be replaced by any eip2n�1qπ, where n P Z. The reflection positivity is
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equivalent to the fact that for any i, j, k P E ,Yα,Yβ P V
�
k
i j

�
,

xYCα|YCβy �
dk
dj
xYα|Yβy. (8.24)

This relation is essentially proved in [HK07] using properties of the fusion matrices of intertwining

operators. We remark that it can also be proved using graphical calculations for ribbon fusion

categories.

A final remark. The positivity of Λ is not used in full power to prove the reflection positivity

of F . One only uses the positivity of quantum dimensions di and the fact that Λ is Hermitian

(i.e., ΛpYα|Yβq � ΛpYβ|Yαq), which can be checked more directly without doing long and tedious

analysis as in our papers. So unlike the non-degeneracy of Λ, which is of significant importance in

constructing full field algebras, the positivity of Λ only plays a marginal role.
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Appendix A

APPENDIX FOR CHAPTER 2

A.1 Uniqueness of formal series expansions

Using Cauchy’s integral formula, the coefficients of a Laurent series
°
n¥N anz

n are determined

by the values of this series when z is near 0. This uniqueness property can be generalized to formal

series, as we now see.

Let G0 be a finite subset of R, and let G � G0 � Z¥0 � tµ�m : µ P G0,m P Z¥0u. It is clear

that the series

fpz1, . . . , znq �
¸

µ1,...,µnPG

cµ1,...,µnz
µ1
1 � � � zµnn (A.1)

converges absolutely if and only if for any µ1, . . . , µn P G0, the power series

¸
m1,...,mnPZ¥0

cµ1�m1,...,µn�mnz
µ1�m1
1 � � � zµn�mnn

converges absolutely. Hence, by root test, if fpz1, . . . , znq converges absolutely for some

z1, . . . , zn � 0, then fpζ1, . . . , ζnq converges absolutely whenever 0   |ζ1|   |z1|, . . . , 0   |ζn|  

|zn|.

The uniqueness property is stated as follows:

Proposition A.1. Let r1, . . . , rn ¡ 0. For any 1 ¤ l ¤ n, we choose a sequence of complex

numbers tzlpmlq : 0   |zlpmlq|   rlumlPZ¡0 such that limmlÑ8 zlpmlq � 0. Suppose that (A.1)

converges absolutely when 0   |z1|   r1, . . . , 0   |zn|   rn, and that for any m1, . . . ,mn, we

have f
�
z1pm1q, . . . , znpmnq

�
� 0. Then for any µ1, . . . , µn P G , the coefficient cµ1,...,µn � 0.

Proof. (cf. [Hua95] section 15.4) By induction, it suffices to prove the case when n � 1.

Then the series can be written as fpzq �
°
kPZ¥1

cµkz
µk , where µk�1 ¡ µk for any k, and

we have a sequence of complex values tzmu converging to zero, on which the values of f van-
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ish. Define a series gpzq �
°
kPZ¥2

cµkz
µk�µ2 . Then the series gpzq converges absolutely when

0   |z|   r, and lim supzÑ0 |gpzq|   �8 . Since fpzqz�µ1 � cµ1 � zµ2�µ1gpzq, we have

cµ1 � limmÑ8 f
�
zpmq

�
zpmq�µ1 � 0. This proves that cµ1 � 0. Repeat the same argument, we

see that cµk � 0 for any k.

A.2 Linear independence of products of intertwining operators

This section is devoted to the proof of proposition 2.3. First, we need the following lemma, the

proof of which is an easy exercise.

Lemma A.2. Let Wi be an irreducible V -module. Let n � 1, 2, . . . . Consider the V -module

W`n
i � Wi `Wi ` � � � `Wilooooooooooomooooooooooon

n

. Then for any V -module homomorphism R : Wi Ñ W`n
i , there

exist complex numbers λ1, . . . , λn such that

Rpwpiqq � pλ1w
piq, λ2w

piq, . . . , λnw
piqq pwpiq P V q. (A.2)

Proof. For any 1 ¤ m ¤ n, let pm be the projection of W`n
i onto its m-th component. Then

pmR P EndV pWiq. Since Wi is irreducible, there exists λm P C such that pmR � λmidWi . (A.2)

now follows immediately.

Let Wi,Wj be two V -modules. For any k P E we choose a basis tYα : α P Θk
iju of V

�
k
i j

�
.

Consider the V -module Wl �
À

kPE
�À

αPΘkij
Wα
k

�
, where each Wα

k is a V -module equivalent to

Wk. It’s contragredient module is Wl �
À

kPE
�À

αPΘkij
Wα
k

�
, where Wα

k
is the contragredient

module of Wα
k . Consider a type

�
l
i j

�
intertwining operator Y defined as follows: for any wpiq P

Wi, w
pjq PWj , we let

Ypwpiq, xqwpjq �
à
kPE

� à
αPΘkij

Yαpwpiq, xqwpjq


, (A.3)

i.e., the projection of Ypwpiq, xqwpjq to Wα
k is Yαpwpiq, xqwpjq.

The following property is due to Huang. See [Hua95] lemma 14.9. The notations and termi-

nologies in that article are different from ours, so we include a proof here.
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Proposition A.3. Choose z P C� with argument arg z. Let wplq P Wl. If for any wpiq P Wi, w
pjq P

Wj , we have

xwplq,Ypwpiq, zqwpjqy � 0, (A.4)

then wplq � 0.

Proof. Let W1 be the subspace of all wplq PWl satisfying (A.4). We show that W1 � 0.

Note that by relation (1.21), for any u P V,m P Z we have

Ylpu,mqYpwpiq, zq � Ypwpiq, zqYkpu,mq �
¸

hPZ¥0

�
m

h



YpYipu, hqwpiq, zqzm�h. (A.5)

From this we see that W1 is a V -submodule of Wl. If W1 � 0, then W1 contains an irreducible

submodule equivalent to Wk for some k P E . This implies that we have a non-zero V -module

homomorphism R : Wk Ñ
À

αPΘkij
Wα
k
�Wl, and that the image of R is inside W1.

By lemma A.2, we can choose complex numbers tλα : α P Θk
iju, not all of which are zero, such

that for any wpkq, Rwpkq �
À

αPΘkij
λαw

pkq. Hence for any wpiq P Wi, w
pjq P Wj , w

pkq P Wk, we

have

¸
αPΘkij

λαxw
pkq,Yαpwpiq, zqwpjqy � 0.

Since 3-point correlation functions are determined by their values at the point z, we have

¸
αPΘkij

λαxw
pkq,Yαpwpiq, xqwpjqy � 0,

where x is a formal variable. But we know that tYα : α P Θk
iju are linearly independent, which

forces all the coefficients λα to be zero. Hence we have a contradiction.

Corollary A.4. Vectors of the form Ypwpiq, sqwpjq (wpiq P Wi, w
pjq P Wj , s P R) span the vector

space Wl.
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Proof. Choose any wplq PWl satisfying that for any wpiq PWi, w
pjq PWj , s P R,

xwplq,Ypwpiq, sqwpjqy � 0. (A.6)

Then for any z P C�, equation (A.4) holds. So wplq must be zero.

Proof of proposition 2.3. It is clear that Φ is surjective. So we only need to prove that Φ is injective.

By induction, it suffices to prove that the linear map Ψ:

à
jPE

�
V
�

k

in in�1 � � � i2 j



b V

�
j

i1 i0


�
Ñ V

�
k

in in�1 � � � i1 i0



,

X b Yα ÞÑ XYα

is injective. To prove this, we choose, for any j P E , a linear basis tYα : α P Θj
i1i0

u of V
�

j
i1 i0

�
. If

we can prove, for any j P E , α P Θj
i1i0

,Xα P V
�

k
in in�1 ��� i2 j

�
, that

¸
jPE

¸
αPΘji1i0

XαYα � 0 (A.7)

always implies that Xα � 0 for all α, then the injectivity of Ψ follows immediately.

Now suppose that (A.7) is true. Then for any wpi0q PWi0 , w
pi1q PWi1 , . . . , w

pinq PWin , s P R,

and z2, . . . , zn satisfying 0   |z2|   � � �   |zn|, we have, by proposition A.1,

¸
jPE

¸
αPΘji1i0

Xαpwpinq, . . . , wpi2q; zn, . . . , z2qYαpwpi1q, sqwpi0q � 0. (A.8)

By corollary A.4, for any j P E , wpjq P Wj and α P Θj
i1i0

, there exist wpi0q1 , . . . , w
pi0q
m P

Wi0 , w
pi1q
1 , . . . , w

pi1q
m PWi1 , s1, . . . , sm P R, such that

Yαpwpi1q1 , s1qw
pi0q
1 � � � � � Yαpwpi1qm , smqw

pi0q
m � wpjq,

and that for any β � α,

Yβpw
pi1q
1 , s1qw

pi0q
1 � � � � � Yβpwpi1qm , smqw

pi0q
m � 0.
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Hence Xαpwpinq, . . . , wpi2q; zn, . . . , z2qw
pjq � 0.

A.3 General braiding and fusion relations

In this section, we prove all the results claimed in section 2.2. Our proof of the convergence

properties is motivated by that of [HLZ11] proposition 12.7. To prove these properties, we need a

technical lemma, for which we now introduce some temporary notations.

For any r ¡ 0, letDprq � tz P C : |z|   ru, D�prq � Dprqzt0u, andEprq � DprqXp0,�8q.

Then we have the following:

Lemma A.5. Given a power series

¸
n0,n1,...,nlPZ¥0

cn0n1...nlz
n0
0 zn1

1 � � � znll (A.9)

of the complex variables z0, z1, . . . , zl, where l P Z¡0 and each cn0n1...nl P C. Suppose that there

exist r0, r1, . . . , rl ¡ 0, such that for any n0, the power series

gn0pz1, . . . , zlq �
¸

n1,...,nlPZ¥0

cn0n1...nlz
n1
1 � � � znll (A.10)

converges absolutely on Dpr1q � � � � �Dprlq; that for any z1 P Epr1q, . . . , zl P Eprlq,

fpz0, z1, . . . , zlq �
¸

n0PZ¥0

gn0pz1, . . . , znqz
n
0 , (A.11)

converges absolutely as a power series of z0 on Dpr0q; and that f can be analytically continued to

a multivalued holomorphic function on D�pr0q �D�pr1q � � � � �D�prlq. Then the power series

(A.9) converges absolutely on Dpr0q �Dpr1q � � � � �Dprlq.

Proof. Consider the multivalued holomorphic function f . From (A.11), we know that for any z1 P

Epr1q, . . . , zl P Eprlq, f is single-valued for z0 P D�pr0q. So f is single-valued on z0 for any

z1 P D
�pr1q, . . . , zl P D

�prlq.
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Now, for any n0 P Z,

rgn0pz1, . . . , znq �

¾
0

fpz0, z1, . . . , zlqz
�n�1
0

dz0

2iπ
(A.12)

is a multivalued holomorphic function on D�pr1q � � � � �D�prlq. If n0 ¥ 0, then by (A.11), we

must have rgn0 � gn0 on Epr1q � � � � � Eprlq. Since gn0 is holomorphic, rgn0 � gn0 on D�pr1q �

� � � �D�prlq. Hence rgn0 is single-valued. Similarly, when n0   0, we have rgn0pz1, . . . , znq � 0

on Epr1q � � � � � Eprlq, and hence on D�pr1q � � � � � D�prlq. Therefore, fpz0, z1, . . . , znq �°
n0PZ rgn0pz1, . . . , znqz

n0
0 is single-valued on D�pr0q �D�pr1q � � � � �D�prnq, and the Laurant

series expansion of f near the origin has no negative powers of z0, z1, . . . , zn. So f is a single-

valued holomorphic function on Dpr0q �Dpr1q � � � � �Dprlq with power series expansion (A.9).

We can thus conclude that (A.9) converges absolutely on Dpr0q �Dpr1q � � � � �Dprlq.

Recall that a series fpz1, . . . , znq �
°
s1,...,snPR cs1...snz

s1
1 � � � zsnn is called a quasi power series

of z1, . . . , zn, if f equals a power series multiplied by a monomial of z1, . . . , zn, i.e., if there exist

t1, . . . , tn P C such that fpz1, . . . , znqz
t1
1 � � � ztnn P Crrz1, . . . , znss.

Proof of theorem 2.5. Step 1. We first prove the convergence. Let Wi be the charge space of Yγ .

Then for any wpi0q PWi0 , w
piq PWi, we have

Yγpwpiq, xqwpi0q

�YB�B�γpwpiq, xqwpi0q

�exL�1YB�γpwpi0q, eiπxqwpiq,

where x is a formal variable. Then for any wpkq PWk, we have

xYγpwpiq, z1qw
pi0q, wpkqy

�xYγpwpiq, xqwpi0q, wpkqy
��
x�z1

�xexL�1YB�γpwpi0q, eiπxqwpiq, wpkqy
��
x�z1

�xYB�γpwpi0q, eiπxqwpiq, exL1wpkqy
��
x�z1

�xYB�γpwpi0q, eiπz1qw
piq, ez1L1wpkqy.
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Therefore,

@
Yγ
�
PsnYσnpwpinq, zn � z1qPsn�1Yσn�1pw

pin�1q, zn�1 � z1q

� � �Ps2Yσ2pwpi2q, z2 � z1qw
pi1q, z1

�
wpi0q, wpkq

D
�xYB�γpwpi0q, eiπz1qPsnYσnpwpinq, zn � z1qPsn�1Yσn�1pw

pin�1q, zn�1 � z1q

� � �Ps2Yσ2pwpi2q, z2 � z1qw
pi1q, ez1L1wpkqy. (A.13)

Hence, by theorem 2.2 and the discussion below, the sum of (A.13) over s2, s3, . . . , sn P R

converges absolutely and locally uniformly.

Step 2. Assume that

0   |z1|   |z2|   � � �   |zn|,

0   |z2 � z1|   |z3 � z1| � � �   |zn � z1|   |z1|, (A.14)

and choose arguments arg z1, arg z2, . . . , arg zn, argpz2 � z1q, . . . , argpzn � z1q. We prove, by

induction on n, that (2.8) defined near the point pz1, z2, . . . , znq is a correlation function, i.e., it

can be written as a product of a chain of intertwining operators. The case n � 2 was proved in

[Hua95] and [Hua05a]. Suppose this theorem holds for n � 1, we now prove it for n. By analytic

continuation, it suffices to assume also that

|z1| � |z2 � z1|   |z3|. (A.15)

Let Wj2 be the target space of Yσ2 . By induction, there exists a chain of intertwining operators

Yδ,Yα3 ,Yα4 , . . . ,Yαn with charge spaces Wj2 ,Wi3 ,Wi4 , . . . ,Win respectively, such that Wi0 is

the source space of Yδ, that Wk is the target space of Yαn , and that for any wpi0q P Wi0 , w
pj2q P

Wj2 , w
pi3q PWi3 , w

pi4q PWi4 , . . . , w
pinq PWin , we have the fusion relation

Yγ
�
Yσnpwpinq, zn � z1qYσn�1pw

pin�1q, zn�1 � z1q � � �Yσ3pwpi3q, z3 � z1qw
pj2q, z1

�
wpi0q

�Yαnpwpinq, znqYαn�1pw
pin�1q, zn�1q � � �Yα3pw

pi3q, z3qYδpwpj2q, z1qw
pi0q (A.16)
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near the point pz1, z3, z4, . . . , znq.

There also exists a chain of intertwining operator Yα1 ,Yα2 with charge spaces Wi1 ,Wi2 , such

that the source space of Yα1 isWi0 , that the target space of Yα2 equals that of Yδ, and that the fusion

relation

Yδ
�
Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
� Yα2pw

pi2q, z2qYα1pw
pi1q, z1q (A.17)

holds near the point pz1, z2q. Now we compute, omitting the evaluation under any wpkq PWk, that

Yγ
�
Yσnpwpinq, zn � z1qYσn�1pw

pin�1q, zn�1 � z1q � � �Yσ2pwpi2q, z2 � z1qw
pi1q, z1

�
wpi0q

�
¸
s1PR

Yγ
�
Yσnpwpinq, zn � z1qYσn�1pw

pin�1q, zn�1 � z1q � � �Ps1Yσ2pwpi2q, z2 � z1qw
pi1q, z1

�
wpi0q

�
¸
s1PR

Yαnpwpinq, znqYαn�1pw
pin�1q, zn�1q � � �Yα3pw

pi3q, z3q

� Yδ
�
Ps1Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
wpi0q

�
¸
s1PR

¸
s2,...,sn�1PR

Yαnpwpinq, znqPsn�1Yαn�1pw
pin�1q, zn�1qPsn�2

� � �Ps3Yα3pw
pi3q, z3qPs2Yδ

�
Ps1Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
wpi0q. (A.18)

If we can prove, for any wpkq PWk, and any z1, z2, . . . , zn satisfying

0   |z2 � z1|   |z1|   |z3|   |z4|   � � �   |zn|,

|z1| � |z2 � z1|   |z3|, (A.19)

that the expression

xYαnpwpinq, znqYαn�1pw
pin�1q, zn�1q � � �Yα3pw

pi3q, z3q

� Yδ
�
Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
wpi0q, wpkqy (A.20)

converges absolutely, i.e., the sum of the absolute values of

@
PsnYαnpwpinq, znqPsn�1Yαn�1pw

pin�1q, zn�1qPsn�2
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� � �Ps3Yα3pw
pi3q, z3qPs2Yδ

�
Ps1Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
wpi0q, wpkq

D
(A.21)

over s1, s2, . . . , sn P R is a finite number, then the two sums on the right hand side of (A.18)

commute. Hence (A.18) equals

¸
s2,...,snPR

¸
s1PR

PsnYαnpwpinq, znqPsn�1Yαn�1pw
pin�1q, zn�1qPsn�2

� � �Ps3Yα3pw
pi3q, z3qPs2Yδ

�
Ps1Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
wpi0q

�
¸

s2,...,snPR

¸
s1PR

PsnYαnpwpinq, znqPsn�1Yαn�1pw
pin�1q, zn�1qPsn�2

� � �Ps3Yα3pw
pi3q, z3qPs2Yα2pw

pi2q, z2qPs1Yα1pw
pi1q, z1qw

pi0q

�Yαnpwpinq, znqYαn�1pw
pin�1q, zn�1q � � �Yα1pw

pi1q, z1qw
pi0q. (A.22)

Therefore, if the series (A.20) converges absolutely, then (2.8) defines an pn� 2q-point correlation

function of V . The converse statement (every pn � 2q-point function can be written in the form

(A.20)) can be proved in a similar way.

Step 3. We show that when (A.19) holds, (A.20) converges absolutely. Assume, without loss

of generality, that all the intertwining operators in (A.20) are irreducible, and that all the vectors in

(A.20) are homogeneous. Define a new set of variables ω1, ω2, . . . , ωn by setting

zm � ωmωm�1 � � �ωn p3 ¤ m ¤ nq,

z1 � ω2ω3 � � �ωn,

z2 � z1 � ω1ω2 � � �ωn.

Then condition (A.19) is equivalent to the condition

0   |ωm|   1 p1 ¤ m ¤ n� 1q,

0   |ωn|,

|ω2|p1� |ω1|q   1. (A.23)
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It is clear that if ω̊1, ω̊2, . . . ω̊n are complex numbers satisfying condition (A.23), then there exist

positive numbers r1 ¡ |̊ω1|, r2 ¡ |̊ω2|, . . . , rn ¡ |̊ωn|, such that whenever 0   |ωm|   rm

(1 ¤ m ¤ n), condition (A.23) is satisfied. We now prove that the sum of (A.21) over s1, . . . , sn

converges absolutely on t0   |ω1|   r1, . . . , 0   |ωn|   rnu.

Let

cs1s2...sn

�xPsnYαnpwpinq, 1qPsn�1Yαn�1pw
pin�1q, 1qPsn�2 � � �

� Ps3Yα3pw
pi3q, 1qPs2Yδ

�
Ps1Yσ2pwpi2q, 1qwpi1q, 1

�
wpi0q, wpkqy, (A.24)

where each Y�p�, 1q � Y�p�, xq
��
x�1

. By relation (1.26), it is easy to see that (A.21) equals

xPsnω
L0
n Yαnpwpinq, 1qPsn�1ω

L0
n�1Yαn�1pw

pin�1q, 1qPsn�2 � � �

� Ps3ω
L0
3 Yα3pw

pi3q, 1qPs2ω
L0
2 Yδ

�
Ps1ω

L0
1 Yσ2pwpi2q, 1qwpi1q, 1

�
wpi0q, wpkqy

�cs1s2...snω
s1
1 ω

s2
2 � � �ωsnn (A.25)

multiplied by a monomial ωr11 ω
r2
2 � � �ωrnn , where the powers r1, r2, . . . , rn P R are independent of

s1, s2, . . . , sn. Therefore, the absolute convergence of (A.20) is equivalent to the absolute conver-

gence of the series

¸
s1,s2,...,snPR

cs1s2...snω
s1
1 ω

s2
2 � � �ωsnn (A.26)

on t0   |ω1|   r1, 0   |ω2|   r2, . . . , 0   |ωn|   rnu. Note that by irreducibility of the

intertwining operators, (A.26) is a quasi power series of ω1, ω2, . . . , ωn. So we are going to prove

the absolute convergence of (A.26) by checking that (A.26) satisfies all the conditions in lemma

A.5.

Since (A.21) equals (A.25) multiplied by ωr11 ω
r2
2 � � �ωrnn , for each s2 P R, step 1 and theorem

2.2 imply that the series

¸
s1,s3,s4,...,snPR

cs1s2s3...snω
s1
1 ω

s3
3 ω

s4
4 � � �ωsnn (A.27)
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converges absolutely on t0   |ω1|   r1, 0   |ω3|   r3, 0   |ω4|   r4, . . . , 0   |ωn|   rnu. If we

assume moreover that 0   ω1   r1, then 0   |ω2|   r2 clearly implies 0   |z1|   |z2|   � � �  

|zn| and 0   |z2 � z1|   |z1|. Hence, the following quasi power series of ω2

ωr11 ω
r2
2 � � �ωrnn �

� ¸
s2PR

� ¸
s1,s3,...,snPR

cs1s2s3...snω
s1
1 ω

s3
3 � � �ωsnn



ωs22



�
¸
s2PR

xYαnpwpinq, znqYαn�1pw
pin�1q, zn�1q � � �Yα3pw

pi3q, z3q

� Ps2Yδ
�
Yσ2pwpi2q, z2 � z1qw

pi1q, z1

�
wpi0q, wpkqy

�
¸
s2PR

xYαnpwpinq, znqYαn�1pw
pin�1q, zn�1q � � �Yα3pw

pi3q, z3q

� Ps2Yα2pw
pi2q, z2qYα1pw

pi1q, z1qw
pi0q, wpkqy (A.28)

must converge absolutely on t0   |ω2|   r2u. By theorem 2.4, the function (A.28) defined on

t0   ω1   r1, 0   |ω2|   r2, . . . , 0   |ωn|   rnu can be analytically continued to a multivalued

holomorphic function on t0   |ω1|   r1, 0   |ω2|   r2, . . . , 0   |ωn|   rnu. Hence by lemma

A.5, the quasi power series (A.26) converges absolutely on t0   |ω1|   r1, . . . , 0   |ωn|  

rnu.

Proof of theorem 2.6. The argument here is similar to step 3 of the proof of theorem 2.5. Assume,

without loss of generality, that all the intertwining operators in (2.11) are irreducible, and all the

vectors in it are homogeneous. We prove this theorem by induction on m. The case that m � 1 is

proved in theorem 2.5. Suppose that the theorem holds for m� 1, we prove this for m.

Define a new set of variables tωab : 1 ¤ a ¤ m, 1 ¤ b ¤ nau in the following way: For any

1 ¤ a ¤ m, we set

za1 � ωa1ω
a�1
1 � � �ωm1 , (A.29)

and if 2 ¤ b ¤ na, we set

zab � za1 � ωa1ω
a�1
1 � � �ωm1 � ωabω

a
b�1 � � �ω

a
na . (A.30)
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Then the condition (1) and (2) on tzab : 1 ¤ a ¤ m, 1 ¤ b ¤ nau is equivalent to the condition

0   |ωab |   1 p1 ¤ a ¤ m, 2 ¤ b ¤ naq,

0   |ωm1 |,

0   |ωa1 |
�
1� p1� δna,1q|ω

a
na |
�
  1�

�
1� δna�1,1

�
|ωa�1
na�1

| p1 ¤ a ¤ m� 1q. (A.31)

It is clear that if tω̊ab : 1 ¤ a ¤ m, 1 ¤ b ¤ nau are complex numbers satisfying condition (A.31),

then there exist positive numbers trab ¡ |̊ωab |u, such that whenever 0   |ωab |   rab for all a and b,

then (A.31) is true. If, moreover, any ωab except ω1
1 satisfies 0   ωab   rab , then condition (3) also

also holds for tzab : 1 ¤ a ¤ m, 1 ¤ b ¤ nau.

Let ~s be the sequence tsabu, ~ω be tωab u, ~szs1
1 be tall sab except s1

1u, and ~ωzω1
1 be

tall ωab except ω1
1u. We let ~ω~s �

±
1¤a¤m,1¤b¤na

pωab q
sab . For each ~s, we define

c~s �
A� ¹

m¥a¥1

Psa1Yαa
�� ¹

na¥b¥2

PsabYαab pw
a
b , 1q

	
wa1 , 1

	�
wi, wk

E
, (A.32)

where each Y�p�, 1q means Y�p�, xq|x�1. Then by (1.26), the expression

A� ¹
m¥a¥1

Psa1Yαa
�� ¹

na¥b¥2

PsabYαab pw
a
b , z

a
b � za1q

	
wa1 , z

a
1

	�
wi, wk

E
(A.33)

equals c~s � ~ω~s multiplied by a monomial of ~ω whose power is independent of ~s. By induction, we

can show that for each s1
1 P R, the series

°
~szs11

c~s � ~ω
~s � pω1

1q
�s11 of ~ωzω1

1 converges absolutely on

t~ωzω1
1 : 0   |ωab |   rab u; that for all ~ωzω1

1 satisfying 0   ωab   rab ,

¸
s11PR

¸
~szs11

c~s � ~ω
~s, (A.34)

as a series of ω1
1 , converges absolutely on tω1

1 : 0   |ω1
1|   r1

1u; and that as a function of ~ω, (A.34)

can be analytically continued to a multivalued holomorphic function on t~ω : 0   |ωab |   rab u.

Hence, by lemma A.5, the quasi power series
°
~s c~s � ~ω

~s converges absolutely on t~ω : 0   |ωab |  

rab u. If, moreover, tzab u satisfy condition (3), then by induction and the argument in step 2 of the

proof of theorem 2.5, (2.11) can be written as a product of a chain of intertwining operators. So it
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is a correlation function defined near tzab u.

Proof of corollary 2.7. One can prove this corollary, either by theorem 2.6 and the argument in step

1 of the proof of theorem 2.5, or by induction and the argument in step 3 of the proof of theorem

2.5. We leave the details to the reader.

Proof of proposition 2.9. Fix zi P C�. Let w1 (resp. w2) be a vector in the source space (resp. in

the contragredient module of the target space) of Yδ. Let xi, xji, rxji be commuting independent

formal variables. It is easy to check that for any wpkq PWk,

@
Yδ
�
erxjiL�1wpkq, xi

�
w1, w2

D
�
@
Yδ
�
wpkq, xi � rxji�w1, w2

D
:�

¸
sPR,lPZ¥0

@
Yδpwpkq, sqw1, w2

D��s� 1

l



x�s�1�l
i rxlji. (A.35)

Put xi � zi, we have

@
Yδ
�
erxjiL�1wpkq, zi

�
w1, w2

D
�
@
Yδ
�
wpkq, zi � rxji�w1, w2

D
:�

¸
sPR,lPZ¥0

@
Yδpwpkq, sqw1, w2

D��s� 1

l



z�s�1�l
i rxlji. (A.36)

Clearly

@
Yδ
�
Yγpwpiq, e�iπzjiqwpjq, zi � rzji�w1, w2

D
(A.37)

is a multivalued holomorphic function of zji, rzji when 0   |zji|, |rzji|   1
2 |zi|. Since the series

¸
sPR

@
Yδ
�
PsYγpwpiq, e�iπzjiqwpjq, zi � rzji�w1, w2

D
(A.38)

converges absolutely and locally uniformly, the infinite sum commutes with Cauchy’s integrals

around the pole rzji � 0. From this we see that (A.37) has the series expansion

@
Yδ
�
Yγpwpiq, e�iπxjiqwpjq, zi � rxji�w1, w2

D���
xji�zji,rxji�rzji

, (A.39)
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which must be absolute convergent, and also equals

@
Yδ
�
erxjiL�1Yγpwpiq, e�iπxjiqwpjq, zi

�
w1, w2

D���
xji�zji,rxji�rzji

. (A.40)

Therefore, when 0   |zj � zi|  
1
2 |zi|, the series

¸
r,sPR

@
Yδ
�
Pre

pzj�ziqL�1PsYγpwpiq, e�iπpzj � ziqqw
pjq, zi

�
w1, w2

D
(A.41)

converges absolutely and equals (A.37) with zji � rzji � zj � zi.

One the other hand,

@
Yδ
�
YB�γpwpjq, zj � ziqw

piq, zi
�
w1, w2

D
�
¸
rPR

@
Yδ
�
PrYB�γpwpjq, zj � ziqw

piq, zi
�
w1, w2

D
�
¸
rPR

@
Yδ
�
Pre

pzj�ziqL�1Yγpwpiq, e�iπpzj � ziqqw
pjq, zi

�
w1, w2

D
,

which is just (A.41). So it also equals (A.37) with zji � rzji � zj � zi. This proves relation (2.18)

when 0   |zj � zi|  
1
2 |zi|. The general case follows from analytic continuation.

Proof of theorem 2.8. The case n � 2 follows immediately from proposition 2.9 and the fusion

relations of two intertwining operators. We now prove the general case.

Since Sn is generated by adjacent transpositions, we can assume that ς exchanges m,m�1 and

fixes the other elements in t1, 2, . . . , nu. Write

X1 � Yαm�1pw
pim�1q, zm�1q � � �Yα1pw

pi1q, z1q,

X2 � Yαnpwpinq, znq � � �Yαm�2pw
pim�2q, zm�2q.

To proof the braid relation in this case, it is equivalent to showing that if 0   |z1|   � � �   |zm�1|  

|zm�1|   |zm|   |zm�2|   � � �   |zn|, and if we move zm, zm�1 to satisfy 0   |z1|   � � �  

|zm�1|   |zm|   |zm�1|   |zm�2|   � � �   |zn| by scaling the norms of zm, zm�1, then we can
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find intertwining operators Yβm ,Yβm�1 independent of the choice of vectors, such that

xX2Yαmpwpimq, zmqYαm�1pw
pim�1q, zm�1qX1w

pi0q, wpkqy (A.42)

can be analytically continued to

xX2Yβm�1pw
pim�1q, zm�1qYβmpwpimq, zmqX1w

pi0q, wpkqy. (A.43)

By analytic continuation, we can also assume that during the process of moving zm, zm�1, condi-

tions 0   |z1|   � � �   |zm�1|   |zm|, |zm�1|   |zm�2|   � � �   |zn| and 0   |zm � zm�1|  

|zm�1| are always satisfied.

Let Wj1 be the source space of Yαm�1 and Wj2 be the target space of Yαm . By braiding of two

intertwining operators, there exists a chain of intertwining operators Yβm ,Yβm�1 with charge spaces

Wim ,Wim�1 respectively, such that the source space of Yβm is Wj1 , that the target space of Yβm�1

is Wj2 , and that for any wpj1q PWj1 , w
pimq PWim , w

pim�1q PWim�1 , w
pj2q PWj2

, the expression

xYαmpwpimq, zmqYαm�1pw
pim�1q, zm�1qw

pj1q, wpj2qy (A.44)

defined on 0   |zm�1|   |zm| can be analytically continued to

xYβm�1pw
pim�1q, zm�1qYβmpwpimq, zmqwpj1q, wpj2qy (A.45)

defined on 0   |zm|   |zm�1| by scaling the norms of zm and zm�1.

Now, by fusion of intertwining operators, there exist intertwining operators Yδ,Yγ with suitable

charge spaces, source spaces, and target spaces, such that (A.44) equals

xYδ
�
Yγpwpimq, zm � zm�1qw

pim�1q, zm�1

�
wpj1q, wpj2qy (A.46)

when |zm�1|   |zm|. Then (A.45) equals (A.46) when |zm|   |zm�1|. By theorem 2.6, the

expression

xX2Yδ
�
Yγpwpimq, zm � zm�1qw

pim�1q, zm�1

�
X1w

pi0q, wpkqy (A.47)
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converges absolutely and locally uniformly. Hence it is a locally defined holomorphic function

when 0   |z1|   � � �   |zm�1|   |zm|, |zm�1|   |zm�2|   � � �   |zn|. Therefore (A.42) can be

analytically continued to (A.43) from t0   |zm�1|   |zm|u to t0   |zm|   |zm�1|u.
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Appendix B

APPENDIX FOR CHAPTER 3

B.1 von Neumann algebras generated by closed operators

Let A be a (densely defined) unbounded operator on H with domain DpAq. Choose x P BpHq,

i.e., let x be a bounded operator on H. Recall that the notation xA � Ax means that xDpAq �

DpAq, and xAξ � Axξ for any ξ P DpAq. The following proposition is easy to show.

Proposition B.1. Let A be a preclosed operator on H with closure A.

(1) If x P BpHq and xA � Ax, then we have x�A� � A�x� and xA � Ax.

(2) If A is closed, then the set of all x P BpHq satisfying xA � Ax form a strongly closed subalge-

bra of BpHq.

Proof. If xA � Ax then pAxq� � pxAq�. Recall that in general, if A,B are two densely defined

unbounded operators on H, and if AB has dense domain, then B�A� � pABq�. If A is bounded,

then B�A� � pABq�. Thus we have x�A� � pAxq� � pxAq� � A�x�. Apply this relation to

x�, A�, and note that A�� � A, then we have xA � Ax. This proves part (1). Part (2) is a routine

check.

Definition B.2. Let A be a closed operator on a Hilbert space H with domain DpAq, and let x P

BpHq. We say that A and x commute strongly1, if the following relations hold:

xA � Ax, x�A � Ax�. (B.1)

Corollary B.3. Suppose that S is a collection of closed operators on H. We define its commutant

S1 to be the set of all bounded operators on H which commute strongly with any element of S.

Then S1 is a von Neumann algebra. It’s double commutant S2, which is the commutant of S1, is

called the von Neumann algebra generated by S.
1Our definition follows [Neu16] chapter XIV, in which the strong commutativity of an unbounded operator with a

bounded one is called adjoint commutativity.
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Lemma B.4. Suppose that A is a closed operator on H, and v P BpHq is a unitary operator. Let

A � uH (resp. Hu) be the left (resp. right) polar decomposition of A, such that u the partial

isometry and H the self adjoint opertor. Then the following conditions are equivalent:

(a) v commutes strongly with A.

(b) vA � Av. (B.2)

(c) ru, vs � 0, and reitH , vs � 0 for any t P R. (B.3)

Proof. We prove this for the left polar decomposition. The other case can be proved in the same

way.

(a)ñ(b): Since v commutes strongly with A, we have vA � Av and v�1A � Av�1. Therefore,

vDpAq � DpAq and v�1DpAq � DpAq. So we must have vDpAq � DpAq, and hence vA � Av.

(b)ñ(a): If vA � Av, then vAv�1 � A. So Av�1 � v�1A, which proves (a).

(b)ñ(c): We have vAv�1 � A. Thus by uniqueness of left polar decompositions, we have

vuv�1 � u and vHv�1 � H . Hence for any t P R we have

veitHv�1 � eivptHqv
�1
� eitH .

This proves (c).

(c)ñ(b): Suppose that we have (B.3). Then vuv�1 � u and veitHv�1 � eitH . On the other

hand, we always have veitHv�1 � eitvHv
�1

in general. So vHv�1 and H are both generators of

the one parameter unitary group veitHv�1. Hence we must have vHv�1 � H . This implies that

vA � Av. Therefore (b) is true.

Proposition B.5. Let S be a set of closed operators on H. For each A P S, we either let A �

uAHA be the left polar decomposition of A, or let A � HAuA be the right polar decomposition

of A. Then S2 is the von Neumann algebra generated by the bounded operators tuA, eitHA : t P

R, A P Su.

Proof. Let M be the von Neumann algebras generated by those uA and eitHA . We show that

M � S2.
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Let UpS1q be the set of unitary operators in S1. We know that UpS1q generates S1. So S2 �

UpS1q1. By lemma B.4 (a)ñ(c) we see that M commutes with UpS1q. Hence M � UpS1q1 � S2.

Let UpM1q be the set of unitary operators in M1, the commutant of M. Then by lemma B.4

(c)ñ(a) we also have UpM1q � S1. Hence M1 � S1, which implies that M � S2. Thus we’ve

proved that M � S2.

Corollary B.6. Assume that A is a closed operator on H and x P BpHq. Let A � uH (resp. Hu)

be the left (resp. right) polar decomposition of A with u the partial isometry and H the self adjoint

opertor. Then x commutes strongly with A if and only if ru, xs � 0 and reitH , xs � 0 for any t P R.

Proof. Let S � tAu. Then by proposition B.5, S2 is generated by u and all eitH . Thus x P S1 if

and only if x commutes with u and all eitH .

Definition B.7. Let A and B be two closed operators on a Hilbert space H. We say that A and B

commute strongly, if the von Neumann algebra generated by A commutes with the one generated

by B.

If M is a von Neumann algebra on H and A is a closed operator on H. We say that A is

affiliated with M, if the von Neumann algebra generated by the single operator A is inside M.

Now suppose that N is another von Neumann algebra on a Hilbert space K, and π : M Ñ N

is a normal (i.e. σ�weakly continuous) unital *-homomorphism. We define πpAq to be a closed

operator on K affiliated with N in the following way: Let A � uH be its left polar decomposition.

Define πpHq to be the generator of the one parameter unitary group πpeitHq acting on H, i.e., the

unique self-adjoint operator on K satisfying

eitπpHq � πpeitHq pt P Rq. (B.4)

We then define

πpAq � πpuqπpHq. (B.5)

We can also define πpAq using the right polar decomposition of A. It is easy to show that these two

definitions are the same.
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B.2 A criterion for strong commutativity

A famous example of Nelson (cf. [Nel59]) shows that two unbounded self-adjoint operators

commuting on a common invariant core might not commute strongly. In this section, we give a

criterion on the strong commutativity of unbounded closed operators. Our approach follows [TL99]

and [TL04]. See also [GJ12] section 19.4 for related materials.

Suppose that D is a self-adjoint positive operator on a Hilbert space H. For any r P R, we let

Hr be the domain of p1 � Dqr. It is clear that Hr1 � Hr2 if r1   r2. We let H8 �
�
r¥0 Hr.

Define a norm ‖�‖r on Hr to be ‖ξ‖r� ‖p1�Dqrξ‖. Suppose that K is an unbounded operator on

H with invariant domain H8 (“invariant” means that KH8 � H8), that K is symmetric, i.e., for

any ξ, η P H8 we have

xKξ|ηy � xξ|Kηy, (B.6)

and that for any n P Z¥0 there exist positive numbers |K|n�1 and |K|D,n�1, such that for any

ξ P H8 we have

‖Kξ‖n¤ |K|n�1‖ξ‖n�1, (B.7)

‖rD,Ksξ‖n¤ |K|D,n�1‖ξ‖n�1. (B.8)

Since K is symmetric, it is obviously preclosed. We let K denote the closure K. The following

lemma is due to Toledano-Laredo (cf. [TL99] proposition 2.12 and corollary 2.2).

Lemma B.8. K is self-adjoint. Moreover, the following statements are true:

(1) For any n P Z¥0 and t P R, the unitary operator eitK restricts to a bounded linear map

Hn Ñ Hn with

‖eitKξ‖n¤ e2nt|K|D,n‖ξ‖n, ξ P Hn. (B.9)

(2) For any ξ P H8, h P R and k � 1, 2, . . . , we have

eipt�hqKξ � eitKξ � � � � �
hk

k!
KkeitKξ �Rphq, (B.10)

where all terms are in H8 and Rphq � ophkq in each ‖�‖n norm, i.e., ‖Rphq‖nh�k Ñ 0 as hÑ 0.
2Toledano-Laredo’s proof of this proposition was based on a trick in [FL74] theorem 2.
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This lemma may help us prove the following important criterion for strong commutativity of

unbounded closed operators.

Theorem B.9. Let T be another unbounded operator on H with invariant domain H8. Suppose

that T satisfies the following conditions:

(1) There exists m P Z¥0, such that for any n P Z¥0, we can find a positive number |T |n�m, such

that

‖Tξ‖n¤ |T |n�m‖ξ‖n�m pξ P H8q. (B.11)

(2) T is a preclosed operator on H.

(3) KTξ � TKξ for any ξ P H8.

Then the self-adjoint operatorK commutes strongly with T , the closure of T .

Proof. By lemma B.8, for each t P R, eitK leaves H8 invariant. We want to show that

eitKTe�itK � T on H8. (B.12)

For any ξ P H8 we define a H8-valued function Ξ on R by

Ξptq � eitKTe�itKξ. (B.13)

If we can show that this function is constant, then we have Ξptq � Ξp0q, which proves (B.12). To

prove this, it suffices to show that the derivative of this function is always 0.

For any t P R, if 0 � h P R, then

Ξpt� hq �eipt�hqKTe�ipt�hqKξ (B.14)

�eipt�hqKT
�
p1� ihKqe�itKξ � ophq

�
(B.15)

�eipt�hqKT p1� ihKqe�itKξ � ophq (B.16)

�eipt�hqKTe�itKξ � iheipt�hqKKTe�itKξ � ophq (B.17)

�reitKp1� ihKqTe�itKξ � ophqs

� ihreitKp1� ihKqKTe�itKξ � ophqs � ophq (B.18)

�eitKTe�itKξ � ophq � Ξptq � ophq, (B.19)
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where (B.15) and (B.18) follow from (B.10), and (B.17) follows from the relation KT � TK on

H8. We also used the fact that Tophq � ophq (which follows from (B.11)) in (B.16). Here the

meaning of ophq is same as that in lemma B.8.

Hence we have shown that Ξ1ptq � 0 for any t P R, which proves (B.12). Now we regard T

as an unbounded operator on H. By passing to the closure, we have eitKTe�itK � T . This shows

that T commutes strongly with K.
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