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INTRODUCTION

This work studies quantum symmetries and 2d conformal field theory (CFT) from a unitary point
of view. The mathematics lying behind these two things are unitary modular tensor categories and
unitary vertex operator algebras respectively. Our goal in this work is, roughly speaking, to prove
that the modular tensor categories constructed from a unitary vertex operator algebra are unitary.

Most of this work is adapted from the author’s papers [Guil7a, Guil 7b].

Quantum symmetries: subfactors, low dimensional topology, and 3d TQFT

The story of quantum symmetries begins with V. Jones’ subfactor theory in [Jon83]. Due to the
Galois correspondence between a finite groups G and its fixed point subfactors A/ under an outer
action of G on a hyperfinite II; factor M, the general subfactor theory is regarded as a quantum
Galois theory. The first striking result of quantum symmetries is the non-integer but quantized index
values

{4(:052%:n=3,4,5,...}u[4,+oo)

of finite-index subfactors proved in [Jon83]. It was soon realized that the Temperley-Lieb algebras
and a quantum trace function (the Markov trace) on them, which were extracted from finite index
subfactors in [Jon83], produce a non-trivial link invariant: the Jones polynomial ([Jon85]). Thus
began the interactions between quantum symmetries and low-dimensional topology.

A key observation in [Jon85] is that the Temperley-Lieb algebra obtained from a subfactor
gives a unitary braid group representation, and the quantum trace of braids gives the link invariant.
E.Witten made a breakthrough in [Wit89]. He gave an interpretation of the Jones polynomial via
Chern-Simons topological quantum field theory (TQFT). Witten’s 3d TQFT not only reproduces the
braid group representations and the quantum trace in [Jon85], which therefore reproduces the Jones
polynomial, but also gives us new interesting 3d manifold invariants and, more generally, invariants

of (framed) links in general closed oriented 3d manifolds.

'A factor is a von Neumann algebra with trivial center. A von Neumann algebra is a strongly-closed self-adjoint
unital subalgebra of the #-algebra B(H) of bounded operators on a Hilbert space . A factor is called type II; if it has a
faithful trace.



Quantum symmetries: unitary modular tensor categories

Witten’s approach based on path integral quantization of classical Chern-Simons action cannot
be adopted directly by mathematicians, so we would like to see a mathematically rigorous construc-
tion of Witten’s 3d TQFT satisfying the axioms proposed by Atiyah [Ati88]. This was achieved by
Reshetikhin and Turaev. In [RT91] and [Turl6], they constructed unitary 3d TQFTs from unitary
modular tensor categories (UMTCs). A modular tensor category (MTC) is a tensor category with
certain structural isomorphisms (associators, braid operators, twists) and non-degeneracy proper-
ties (rigidity and modularity); unitarity of a MTC partly means that the structural isomorphisms
are unitary operators. Besides 3d TQFTs, one can also construct subfactors from UMTCs. (See,
for example, [Wen98] section 4.) So UMTC seems to provide us a (if not the) correct context to
understand different aspects of quantum symmetries: subfactors, link and 3d manifold invariants,
3d TQFT. The theory of UMTC looks so powerful. One might doubt if there exist many good
examples. Where do UMTCs come from? How can we construct examples of UMTC?

The earliest examples of UMTCs defined rigorously in math are constructed from representa-
tions of Hopf algebras (quantum groups at certain roots of unity, quantum doubles of finite groups).
(See [BKOI1] or [Turl6] for a detailed treatment. For general references, we also recommend
[Row06].) The quantum group construction produces the same TQFT as Witten’s Chern-Simons
theory does.

An even broader way to construct UMTCs is through conformal field theory (CFT). In fact, it
is even conjectured that all (unitary) MTCs can be constructed from (unitary) chiral CFTs. In the
physics literature, due to the work of Moore and Seiberg [MS88, MS89], people knew very early
how to construct MTCs from chiral CFTs (earlier than the Hopf algebra construction). However, it
has always been a big problem to realize this construction in mathematics, since Moore-Seiberg’s
works are based on some assumptions that are natural in physics but not easy to verify in math. I

explain briefly these assumptions in the following.

From vertex operator algebras to modular tensor categories

A CFT is a 2d quantum field theory with local conformal symmetry. Let us take the Euclidean

point of view. Then the elements of the local conformal group on R? are local holomorphic and anti-



holomorphic functions on C. This suggests that we first study the chiral (which means holomorphic)
and the anti-chiral (antiholomorphic) field operators in a given CFT. The algebra formed by the
chiral field operators of a CFT is called a vertex operator algebra (VOA) (usually denoted by V).

To study general field operators using chiral ones, one must introduce intertwining operators.
Given three representations W;, W;, W}, of V, a type (ij) intertwining operator of V is a multi-
valued holomorphic function on C\{0} whose values are linear operators mapping W; @ W; “al-
most” into W. Moreover, these values (linear maps) “intertwine” the actions of V' on W;, W, and
Wi. In the physics literature, intertwining operators are called conformal blocks, because a general
field operator of a CFT can be decomposed as a sum of products of an intertwining operator with
the complex conjugate of another one. In the cases that we are interested in, this decomposition is
finite, and the CFTs are called rational.

Moore and Seiberg’s construction of MTCs from rational chiral CFTs is based on the assumption
that the intertwining operators of V' satisfy braiding, fusion, and modular invariance properties. In
short, these properties mean that different ways of constructing correlation functions on a general
Riemann surface with holes by “attaching” intertwining operators (regarded as 3-point functions)

on genus 0 Riemann surfaces with 3 holes (the pants) are equivalent (see figure 1).

(= S

Figure 1

Giving a mathematically rigorous proof of all these assumptions has long been an open problem.
Many people have made contributions to this problem, but the first complete and general proof was
given by Y.Huang. We refer the reader to [HL13] for a discussion of this issue. Thus, the problem

of constructing MTCs from rational chiral CFTs (i.e., from rational VOA) was solved.



The problem of unitarity

We still need to prove that the MTCs constructed from rational unitary VOAs are unitary, which
is the goal of our work. To the author’s knowledge, previously no one has treated this problem

seriously. But why is this problem important? And what should we do to prove this unitarity?

We first answer the first question. We give three reasons for studying the unitarity of MTCs.

(a) To prove that the 3d TQFT constructed from a MTC (in the sense of Reshetikhin-Turaev)
is unitary, one must assume that the MTC is unitary. For a general 3d TQFT, the state spaces
associated to the boundary 2d manifolds (with holes) do not carry inner products, i.e., we only have
vector spaces, but not Hilbert spaces for our TQFT. To have inner products, we must require the
unitarity of the MTC. For details, see [Turl6] section IV.11.

(b) One can construct subfactors only from unitary MTCs. The reason is plain: an operator
algebra is a *-algebra of operators on a Hilbert space. Only UMTCs give us Hilbert spaces.

(c) Besides Moore-Seiberg’s construction of MTCs from chiral CFTs (i.e., from VOAs), which
is by nature geometric, there is a more analytic approach based on the idea of R.Haag’s algebraic
quantum field theory (AQFT) ([Haag]). In this approach people consider, rather than the vertex
algebras of holomorphic field operators localized at points, the nets (precosheafs) of associative
*_algebras of bounded operators localized on the open intervals in S'. These nets of operator
algebras are called conformal nets. The tensor product of modules of a conformal net is defined
using Connes’ relative tensor product [Con80], and the tensor categories for conformal nets defined
in this way are manifestly unitary. See [Kaw15] and the reference therein. It is an open question
whether the MTCs constructed from VOAs and from conformal nets are equivalent. A.Wassermann
made the first and very important step toward solving this problem. In ([Was98]) he gave a general
strategy to show that the fusion rules in the two tensor categories are equal, the main idea of which
also plays a central role in our present work. However, in order to completely solve the equivalence
problem, one first needs to prove the unitarity of the MTCs associated to unitary rational VOAs.
See [Guil7a] introduction for a detailed discussion.

As for the second question, let us first make it clear the starting point of our theory: we assume

that our rational VOA V is unitary, which roughly means that V' satisfies reflection positivity. In



particular, V' has a *-structure. We also assume that any representation (module) W of V' is uni-
tarizable, which means that we can equip W with an inner-product, so that the action of V on W
preserves the =-structure. (Rigorous definitions can be found in chapter 1.) Unitarity of VOAs and
their representations are well-studied for many examples (see chapter 8).

But proving the unitarizability of all representations of a given unitary VOA V is far from
enough to show that the MTC constructed from the unitary representations of V' is unitary. In
fact, for any unitary representations W;, W; of V, the tensor product W; [x] W}, which again is a
representation of V', cannot be defined in the classical way as the algebraic tensor product of W;, W.
It is defined indirectly using the (finite-dimensional) vector spaces of intertwining operators of V.
Therefore, even though we know that the representation W; [x] W} is unitarizable, it still remains
for us to choose a canonical unitary structure (or more explicitly, a canonical inner product A)
on W; X] W;. The word “canonical” means that such inner product cannot be chosen arbitrarily:
it should make the structural maps of the MTC (associators, braid operators, twists...) unitary.
Equivalently, we should define an inner product on each vector space of intertwining operators,
such that in addition to some small requirements, the braid matrices, the fusion matrices, and the
S-matrices (these are the matrices that relate the different ways of attaching intertwining operators
indicated in figure 1) are unitary.

As we will see, it is not hard to define such a A as a sesquilinear form on W; x] W;. Due to the
non-degeneracy property of the MTC of V' proved by Y.Huang, it is also not hard to prove that A is
non-degenerate. The main difficulty, however, is to prove the positivity of A, and such a proof will
occupy the major part of our work. Once we have shown that the A we choose is positive, which

means that A is an inner product, the unitarity of the MTC of V follows easily.

Outline

In chapter 1 we review some of the basic definitions of unitary VOAsS, their unitary representa-
tions, and intertwining operators. In chapter 2, we review the braid and fusion relations of intertwin-
ing operators proved by Y.Huang. We also review Huang-Lepowsky’s construction of MTCs from
rational VOAs, the basic idea of which dates back to Moore-Seiberg. Our proof of the positivity
of A relies on the energy-bounds condition for vertex operators and intertwining operators. This

condition allows us to connect unitary VOAs with conformal nets. This will be discussed in chapter



3 and 4.

In practice, it is often much easier to show that not all but only a generating set of intertwin-
ing operators satisfy energy bounds condition. But then one needs the generalized intertwining
operators to bridge a gap between VOAs and conformal nets. We discuss generalized intertwin-
ing operators in chapter 5. In chapter 6 we define a non-degenerate sesquilinear form A on each
W; X1 W;, and use techniques in conformal nets to show that A is positive. In chapter 7 we prove
the unitarity of the MTCs. Our theory is applied to unitary minimal models and WZW models of

certain types in chapter 8.

Notations.

In this paper, we assume that V' is a vertex operator algebra of CFT type. Except in chapter 1,

we assume that V' also satisfies the following conditions:

(1) V is isomorphic to V. 0.1)
(2) Every N-gradable weak V-module is completely reducible. 0.2)
(3) V is Cs-cofinite. (0.3)

(See [HuaO5b] for the definitions of these terminologies.) The following notations are used

throughout this paper.

A': the transpose of the linear operator A.

A': the formal adjoint of the linear operator A.

A*: the ajoint of the possibly unbounded linear operator A.
A: the closure of the pre-closed linear operator A.

C;: the antiunitary map W; — W5,

C*={2eC:z#0}.

Conf,, (C*): the n-th configuration space of C*.

Conf,, (C*): the universal covering space of Conf,,(C*).

P(A): the domain of the possibly unbounded operator A.



er(e?) = e (—m < <m).

&: a complete list of mutually inequivalent irreducible V -modules.

EY: the set of unitary V-modules in £.

Homy (W;, W;): the vector space of V-module homomorphisms from W; to W.

‘H;: the norm completion of the vector space W;.

H?': the vectors of H; that are inside Z((1 + Lo)").

M =m0 M-

I¢: the complement of the open interval I.

ILcc Iy 11, I, e Jand I; < Is.

id; = idywy,: the identity operator of W;.

J: the set of (non-empty, non-dense) open intervals of S*.

J(U): the set of open intervals of S' contained in the open set U.

P;: the projection operator of W; onto W;(s).

t(t) : ST — St e(t)(e?) = 0+,

t(t) : C®(SY) — C®(SH): t(t)h = hot(—t).

Rep(V'): the modular tensor category of the representations of V.

Rep"(V): the category of the unitary representations of V.

Repg(V): When G is additively closed, it is the subcategory of Rep" (V') whose objects are unitary
V-modules in G. When G is multiplicatively closed, then it is furthermore equipped with the struc-
ture of a ribbon tensor category.

St={zeC:|z| =1}.

1% (ikj): the vector space of type (1]“]) intertwining operators.
Wy = V, the vacuum module of V.

W;: a V-module.

Wi: the algebraic completion of W;.

W= Wi’ : the contragredient module of W;.

W;; = W; x] Wj: the tensor product of W;, W;.

w®: a vector in W;.

w® = Ciw(®.

x: a formal variable.



Y;: the vertex operator of W;.

Yq: an intertwining operator of V.

Yz = Va: the conjugate intertwining operator of )/,,.

Vo = yl: the adjoint intertwining operator of },.

VBia = B1Y,: the braided intertwining operators of V.

Yoo = CY,: the contragredient intertwining operator of V.
z’io: the creation operator of W;.

Y9 the annihilation operator of W;.

A;: the conformal weight of W;.

A, the conformal weight (the energy) of the homogeneous vector w.

@Z-: a set of linear basis of V(ikj).

ix Ujeg efja G)ij = ]_[@'es @i‘cj’@:‘} = ers @fg

0: the PCT operator of V, or a real variable.

1, the twist of W;.

v: the conformal vector of V.

0;,5: the braid operator o; ; : W; X W; — W; X W;.

Q: the vacuum vector of V.



CHAPTER 1

INTERTWINING OPERATORS OF UNITARY VERTEX OPERATOR ALGEBRAS

We refer the reader to [FHL93] for the general theory of VOAs, their representations, and inter-
twining operators. Other standard references on VOAs include [FB04, FLM89, Kac98, LL12]. Uni-

tary VOAs were defined by Dong, Lin in [DL14]. Our approach in this article follows [CKLW15].

1.1  Unitary VOAs

Let x be a formal variable. For a complex vector space U, we set

Ullz]] = { D ™ u, € U}, (1.1)

HEZZO
U((x)) = { 2 Unx" : up € U, u, = 0 for sufficiently small n}, (1.2)

nEZ

Ul[z*1] = { Z Upx™ Uy € U}, (1.3)

neZ
Uz} = { Dl uga® ug € U}. (1.4)

seR

We define the formal derivative % to be

% ( Z unx”> = Z nupz” L. (1.5)

neR neR

Let V' be a complex vector space with grading V' = @, ., V(n). Assume that dim V(n) < oo
for each n € Z, and dim V' (n) = 0 for n sufficiently small. We say that V" is a vertex operator
algebra (VOA), if the following conditions are satisfied:

(a) There is a linear map

V — (End V)[[z*]]

u Y(u,z) = Z Y (u,n)z "1

nez



(where Y (u,n) €End V),

such that for any v € V', Y (u,n)v = 0 for n sufficiently large.

(b) (Jacobi identity) For any u,v € V and m, n, h € Z, we have

2 (77>Y(Y(u, n+ v, m+h—1)

ZEZ;Q
= 3 (-1 (7)Y(u, mAn =Y (v,h+1)— > (~)H" (?)Y(v, n+h— DY (u,m+1).
ZEZZQ lEZZO

(1.6)

(c) There exists a vector 2 € V' (0) (the vacuum vector) such that Y (Q, z) = idy.

(d) For any v € V and n € Zx(, we have Y (v,n)Q2 = 0, and Y (v, —1)Q2 = v. This condition is
simply written as lim,_,o Y (v, )2 = v.

(e) There exists a vector v € V(2) (the conformal vector) such that the operators L,, = Y (v,n+1)

(n € Z) satisfy the Virasoro relation: [Ly,, Ly,| = (m — 1)Ly + 15(m3

— m)0p,—nc. Here the
number ¢ € C is called the central charge of V.

(f) If v € V(n) then Lyv = nv. n is called the conformal weight (or the energy) of v and will be
denoted by A,. Ly is called the energy operator.

(g) (Translation property) %Y(v, x) =Y (L_yv,z).

Convention 1.1. In this article, we always assume that V' is a VOA of CFT type, i.e., V(0) = CQ,
and dim V' (n) = 0 whenn < 0.

Given a (anti)linear bijective map ¢ : V' — V, we say that ¢ is an (antilinear) automorphism

of V if the following conditions are satisfied:

(a)p2 = Q, ov =v. (1.7)

(b)Forany v € V, ¢Y (v,z) =Y (¢v,x)0. (1.8)

It is easy to deduce from these two conditions that ¢L,, = Ly, ¢ (for any n € Z). In particular, since

¢ commutes with Lo, we have ¢V (n) = V(n) for each n € Z.

10



Definition 1.2. Suppose that V' is equipped with an inner product {:|-) (antilinear on the second
variable) satisfying (€2|©2) = 1. Then we call V' a unitary vertex operator algebra, if there exists

an antilinear automorphism 6, such that for any v € V we have
Y (v,z) = V(e*hr (=2 Logu, 27 1), (1.9)

where T is the formal adjoint operation. More precisely, this equation means that for any v, v1, vs €
V we have

Y (v, 2)v1|vg) = (o1 |V (e®F (=2 2)E00u, 2~ V). (1.10)

Remark 1.3. Such 6, if exists, must be unique. Moreover, € is anti-unitary (i.e. (Quv|Qva) = (va|v1)
for any v, ve € V), and % = idy (i.e. 6 is an involution). We call § the PCT operator of V. (cf.
[CKLW15] proposition 5.1.) In this article, 6 denotes either the PCT operator of V, or a real

variable. These two meanings will be used in different situations. So no confusion will arise.

We say that a vector v € V' is homogeneous if v € V' (n) for some n € Z. If moreover, Lyv = 0,
we say that v is quasi-primary. It is clear that the vacuum vector € is quasi-primary. If we let
u=wv =v,m = 0,n =2 h = —1 in the Jacoby identity (1.6), then we may compute that
Liv =Y (Lv,—1)Q2 = 0. We conclude that the conformal vector is quasi-primary.

Now suppose that V' is unitary and v € V' is quasi-primary, then equation (1.9) can be simplified

to

Y(v,2)" = (=272 Y (Qv,z71). (1.11)
If we take v = v, then we obtain
LI =L_, (nez). (1.12)

n

In particular, we have L = L. This shows that different energy subspaces are orthogonal, i.e., the

grading V.= @,,~( V(n) is orthogonal under the inner product {:|-) .

11



1.2 Unitary representations of unitary VOAs

Definition 1.4. Let W; be a complex vector space with grading W; = @,z Wi(s). Assume
dim W;(s) < oo for each s € R, and dim W;(s) = 0 for s sufficiently small. We say that W; is a
representation of V' (or VV-module), if the following conditions are satisfied:

(a) There is a linear map

V — (End W))[[z*']]

v = YYZ-(’U,.%) = 2 Yvi(van)x_n_l

neZ

(where Y (v,n) €End W;),

such that for any w® e Wi, Yi(v, n)w(i) = 0 for n sufficiently large. Y; is called the vertex
operator of W;.

(b) (Jacobi identity) For any u,v € V and m, n, h € Z, we have

)y (77>Y%(Y(U,n +lv,m+h—1)

lEZ;Q
= 3 (-1 (7>Y(u mAn—DYi(o,h+ 1) — Y (=1)H" (7>Y(vn h— DYi(u,m + D).
ZEZZO IEZZO

(1.13)

(© Yi(Q, z) = idy,.
(d) The operators L,, = Y;(v,n + 1) (n € Z) satisfy the Virasoro relation: [L,,, L,] = (m —

3 m)6m,—nc, Where c is the central charge of V.

1)L in + 75(m
(e) If w) € Wj(s) then Low® = sw®. s is called the conformal weight (or the energy) of w(?)
and will be denoted by A, i), and Ly is called the energy operator.

(f) (Translation property) %Y;(v, x) =Y;(L_yv,x).

Clearly V itself is a representation of V. We call it the vacuum module of V. Modules of V'
are denoted by W;, W;, Wy, ..., or simply ¢, j, k, .... The vacuum module is sometimes denoted
by 0. We let id; = idw, and idg = idy be the identity operators on I¥; and V' respectively.

A V-module homomorphism is, by definition, a linear map ¢ : W; — W, such that for any

12



v € V we have ¢Y;(v,z) = Yj;(v,x)¢. Itis clear that ¢ preserves the gradings of W;, W}, for ¢
intertwines the actions of L on these spaces. The vector space of homomorphisms W; — W is

denoted by Homy (W;, W;).

Remark 1.5. If the V-module W; has a subspace W that is invariant under the action of V', then the
restricted action of V' on W produces a submodule of W;. In fact, the only non-trivial thing to check
is that I inherits the grading of W;. But this follows from the fact that Lj, when restriced to W, is
diagonalizable on W. (In general, if a linear operator of a complex vector space is diagonalizable,

then by polynomial interpolations, it must also be diagonalizable on any invariant subspace.)

From the remark above, we see that a module W; is irreducible if and only if the vector space

W; has no V-invariant subspace. If W is irreducible, we call
A; = inf{s : dim W;(s) > 0}

the conformal weight of W;. It is easy to show that W; = @ Wi(n + Ay).

n€Zso
We now review the definition of contragredient modules introduced in [FHL93]. Let again W; be

a V-module. First we note that the dual space W,* of W; has the grading W;* = | [ . Wi(s)*. Here

Wi (s)* is the dual space of the finite dimensional vector space W (s), and if s # t, the evaluations

of W;i(s)* on W;(t) are set to be zero. Now we consider the subspace W; = W/ = @, g W(s)*

of W*. We define the action of V' on W as follows:

Yi(v, 2) = Yy(e"1 (—z72) Loy, z7 1) (1.14)

(2

where the superscript “t” stands for the transpose operation. In other words, for any w® e W= c

W;* and w(® € W;, we have
Yiv, 2)w, w?y = WD, v;(e (—a=2) Lo, 2 yuw®), (1.15)

We refer the reader to [FHL93] section 5.2 for a proof that (17, Y;) is a representation of V. This
representation is called the contragredient module of IV;.

In general, for each V-module W, the vector space I//I\/Z = [ Lser Wi(s) is called the algebraic
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completion of W;. The action Y; of V' on W; can be clearly extended onto I//I\/Z It is clear that WZ
can be identified with WZ‘*'
Equation (1.14) can be written in terms of modes: if v € V is a quasi-primary vector with

conformal weight A, then

L Yi(LTv, —n — m — 2 + 2A,)°". (1.16)

In particular, by letting v = v, we obtain L, = L_,,. More precisely, if w(® e W;, w(® e s, we
have (L,w®, w({)> = (w®, L_nw@)

The contragredient operation is an involution: W; is the contragredient module of W7. In par-
ticular, we have

Yi(v, ) = Yy(e" 1 (= 2) Loy, z 1)t (1.17)

Hence we identify ¢ with ?, the contragredient module of 7.

Now we turn to the definition of unitary VOA modules.
Definition 1.6. Suppose that V' is unitary and W; is a V-module equipped with an inner product
(:]->. We call W; unitary if for any v € V' we have

Yi(v,z)" = V(e (—z=2) ogu, 7). (1.18)

In the remaining part of this section, we assume that V' is unitary. Let W; be a unitary V' -module.
Then formula (1.18), with v = v, implies that the action of the Virasoro subalgebras {L,,} on W;
satisfies L, = L_,,. In particular, L is symmetric, and hence the decompsition W; = @ .p Wi(s)
is orthogonal. If we let P; be the projection operator of W; onto WW;(s) (this operator can be defined

whether W; is unitary or not), we have PsT = P.

Proposition 1.7 (Positive energy). If W; is unitary, then we have the grading W; = @, Wi(s).

In particular, if W is irreducible, then A; = 0.

Proof. We choose an arbitrary non-zero homogeneous vector w') € W; and show that A,@ = 0.
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First, assume that w(® is quasi-primary (i.e., L;w(? = 0). Then we have
24, (WD) = 2 LowPw®) = (L1, L 1Jw@|w) = | L3w®|*> 0,

which implies that A iy > 0. In general, we may find m € Z-( such that L’I”w(i) # 0, and

w(i

LT = 0. So Apmye = 0,and hence A i) = Apmym +m = 0. O
Proposition 1.8. If W; is unitary, then its contragredient module W7 is unitarizable.

Proof. Assume that TV; has inner product {-|-) . Define an anti-linear bijective map C; : W; — W=

1

such that <C,~w§i), wg)> = <w§i)|w§i)> for any wgi), wgi) e W. We simply write C;w(® = w(®),
Now we may define the inner product on W5 such that C; becomes antiunitary.

For any v € V, we show that Y;(v, ) satisfies equation (1.18). Note that for any A € End(WV;),
if A has a transpose A* € End(WW5), then A also has a formal adjoint AT € End(W), and it satisfies
AT = C;7 1 AYC;. Thus we have

Yi(v,2) = Yy(e"" (a0, 27!

=CYi(e" (—a ) oy 2O = CYi(0v, 2) O, (1.19)

which implies that Y5 satisfies (1.18). ]

From now on, if W is a unitary V'-module, we fix an inner product on W7 to be the one con-
structed in the proof of proposition 1.8. We view W5 as a unitary V'-module under this inner product.

Note that if we let v = v, then (1.19) implies that L,,C; = C;L,, (n € Z).

Since we use Wy (or simply 0) to denote the vacuum module V/, it is natural to let Cj represent
the conjugation map from V' onto its contragredient module W = V'. By equation (1.19) (with

1 = 0) and (1.8), we have:
Corollary 1.9. Cyf : V — V' is a unitary V-module isomorphism.

Therefore, we identify the vacuum module V' with its contragredient module V. This fact can be
simply written as 0 = 0. The operators 6 and Cj are also identified. The evaluation map V®V’ — C
is equivalent to the symmetric bilinear form V ® V' — C defined by (v, v2) = (vi|fv2), where

V1,02 € V.
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Recall that we also identify W; with Wf" It is easy to see that the anti-unitary map C; : W; —
W, = ng satisfies C; = C’i_l.

We now give a criterion for unitary V-modules. First, we say that V' is generated by a subset
E if V is spanned by vectors of the form Y (v, n1) - - - Y (v, np)$2 where vy, va, ..., vy, € E and
ni,...,Nm € Z. By the Jacoby identity (1.13) (with m = 0), any vertex operator Y; is determined

by its values on FE.

Now we have a useful criterion for unitarity of V'-modules.

Proposition 1.10. IV is unitary, W; is a V-module equipped with an inner product {-

>, Eisa
generating subset of V, and equation (1.18) holds under the inner product {-|-) for any v € E, then

W; is a unitary V -module.

Proof. Forany v € V we define Y;(v, z) = Y;(e®1(—z~2)L0gy, z=1)f. As in the proof of propo-
sition 1.8, we have }z(v, x)=C; IY;*-(QU, x)C;. It follows that Y; satisfies the Jacobi identity. Since

Y; also satisfies the Jacobi identity, and since Y;(v,z) = Yj(v, ) for any v € E, we must have

~

Yi(v,z) = Yi(v,z) for all v € V, which proves that Wj is unitary. O

1.3 Intertwining operators of unitary VOAs

Definition 1.11. Let W;, W;, W), be V-modules. A type (W%“VJ) (or type ( kj)) intertwining oper-

)

ator )/, is a linear map

W, — (Hom(Wj, Wk)){$},

w® = Yo (w, ) = Z Va(w®, s)z=571

seR

(where Yo (w®, s) € Hom(W;, Wy)),

such that for any w() € W;, Vo (w, s)wl) = 0 for s sufficiently large.

(b) (Jacobi identity) For any u € V, w® e Wi,m,n € Z,s € R, we have
Z (77) Vo (Yl(u, n+ l)w(i),m +s— l)
= > (-1 (7;) Yi(w,m +n — D)V (w®, s + 1)
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=) (—1)’+”<”)ya(w<i>,n+s—Z)Yj(u,m+Z). (1.20)

I€Z>¢ :

(c) (Translation property) -2V, (w¥, z) = Y, (L_1w®, z).

Intertwining operators will be denoted by Vo, V3,), ..., orjust o, 3,7, . ...

Note that if we let n = 0 and m = 0 respectively, (1.20) becomes:

> (77) Vo Yi(u, Dw® m + s — 1) = Yi(u, m)Va(w?, 5) = Va(w?, 5)Yj(u,m), (1.21)

=0

Vo (Yi(u, n)w®, 5)

= S ()it = 03w 0 = S0 ()3t s - DY)

=0 =0
(1.22)
In particular, if we let w = v and m = 0, 1 respectively, the first equation implies that
. . d .
L1, Vo, 2)] = Va(Loyw® 2) = = Ya(w', 2); (1.23)
. . d .
[Lo, Va(w®, 2)] = Vo(Low®, z) + %ya(w@, z). (1.24)
The second equation is equivalent to that
[Lo, Vo (w®, 8)] = (=5 — 1 + Ay Va(w®, 5) if w® is homogeneous. (1.25)

Hence Y, (w(i), s) raises the energy by —s — 1 + A ;). Equation (1.25) implies the relation
2Ly, (w, 2)z7lo = Y (Zrow® | zx) (1.26)

(cf. [FHL93] section 5.4), where z is either a non-zero complex number, or a formal variable which
commutes with and is independent of z. In the former case, we need to assign to z an argument,
i.e., a real number arg z such that z = |z|e®8%. Then, for any s € R, we let 2° = 2|5 387 je.,

we let the argument of z° be s arg z.

Convention 1.12. In this article, unless otherwise stated, we make the following assumptions:
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(1)If t € R then arg e® = t.
(2) If z € C* with argument arg z, then argz = — arg z. If s € R, then arg(z®) = sarg z.

(3) If 21, 29 € C* with arguments arg z; and arg zo respectively, then arg(z122) = arg 21 + arg 2.

Definition 1.13. Let U be an open subset of C and f : U — C* be a continuous function. Suppose
that z1, 29 € U, and forany t € [0, 1], tz1 + (1 —t)22 € U. Then we say that the argument arg f(z2)
is close to arg f(z1) as za — 2z, if there exists a (unique) continuous function A4 : [0,1] — R,
such that A(0) = argz;, A(1) = argzs, and that for any ¢t € [0,1], A(¢) is an argument of

fltz1 + (1 —t)2z9).

Let V(ikj) be the vector space of type (ij) intertwining operators. If ), € V(ikj), we say that
W;,W; and W}, are the charge space, the source space, and the target space of ), respectively.
We say that ), is irreducible if W;, W;, W, are irreducible V-modules. If ), is irreducible, then
by (1.25), it is easy to see that J(w "), s) = 0 except possibly when s € A; + A; — Ay + Z. If V

is unitary, and W;, W;, W, are unitary V' -modules, then we say that ), is unitary.

We have several ways to construct new intertwining operators from old ones. First, for any ), €

V(Z.kj), we define its contragredient intertwining operator (cf. [FHL93]) CY, = Vo, € V(;E)

by letting
Voo, z) = Yo (et (em ™z 2)low® z~ 1t w® e ;. (1.27)
In other words, if w/) € W; and wk) e Wi, then

YVeaw®, a:)w@) L, w)y = <w®, Vale® 1 (e 2)Logy® 5710y, (1.28)

We also define, for each ), € V(ikj), an intertwining operator C' -1y, = Yo-14 € V(ijg) such
that

Ve1(w?, z) = Vo (™ (emz ) ow® 271 w® e W, (1.29)
One can show that C~'Ca = CC~!a = a. (To prove this, we first show that (a;Ll)xOLO =
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xé’o (xxoL1) by checking this relation on any homogeneous vector. We then show that
elexOLO = xOLOemOLl, (1.30)

where x, x( are independent commuting formal variables. Finally, we may use (1.30) to prove the
desired relation.)

We now define, for any ), € V(ikj), a pair of braided intertwining operators (cf. [FHL93])
BiYVa=Ypia € v(j’“z.) in the following way: If w(® € W;, w) € W, then

Vi, oW, 2)0 = b1y, (w®, e z)w, (1.31)

Vo 2)w® = L1y, (w | e~ z)wl). (1.32)

It’s easy to see that B is the inverse operation of B+. We refer the reader to [FHL93] chapter 5
for a proof that contragredient intertwining operators and braided intertwining operators satisfy the

Jacobi identity.

In the remaining part of this section, we assume that V' is unitary. Let W;, W;, W}, be unitary
V-modules with conjugation maps C; : W; — W5, C; : W; — W5, Cy : Wi, — Wi respectively.

Given Y, € V(* j) , we define its conjugate intertwining operator ), = V5 € V (%) by setting

Va(w®, ) = Cpla(w®, 2)C;, w e W (1.33)

It is clear that Vg satisfies the Jacobi identity.

For any Y, € V (ikj) , it is easy to check that

We define Y, = Y« = Voo € V(gjk) and call it the adjoint intertwining operator of ). One

can easily check, for any w(® € W, that

Vor (WD, 2) = Vo (e (72 Loy® 41T, (1.34)
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where the symbol T on the right hand side means the formal adjoint. In other words, for any w9 e

Wi, 7, w®) € Wy, we have
Vo (w (6) ,z)w (k)|w(j)> — <w(k)|ya(exL1(e_”x_2)L0w(i),x_l)w(j)>. (1.35)

If w® is homogeneous, we can write (1.34) in terms of modes:

. ”TAw(i) .
Vs (WD, 5) = ¢ — VI, —s = m = 2428 ,0) (1.36)
mEZ;o :
for all s € R.
It is also obvious that the adjoint operation is an involution, i.e., Vo*+ = ),. Hence * :

1% (ij) — V(gj k) is an antiunitary map.

We define the cardinal number Ni’; to be the dimension of the vector space V( ikj). Ni’} is called

a fusion rule of V. The above constructions of intertwining operators imply the following:

kE _ g _ atk _ nk AT
Njj = Nz = Nj; = N;5 = N . (1.37)

We now construct several intertwining operators related to a given V-module W;. First, note
that Y; e V( ) It is obvious that B, Y; = B_Y; € V( ) We define yo = B.Y; and call it the

creation operator of W;. Using the definition of B, we have, for any w(® € W;,v e V,
0w, 2)v = " Y (v, —z)w?. (1.38)

In particular, we have

iy (w, 2)Q = b1, (1.39)

We define V% := C 1)}, = C'B.Y; € V(). Thus for any w’? e W; and wg) € Ws, we

may use (1.39) and (1.30) to compute that

O 2wl Q) =l Viy(e P (a2 ol 2 ha)
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:<w§i)7 o (emx—z)Lowgi)>
s a2~y (0) Ly im..—2\Lo, (i)
={e wy e (e ) 0w

—(e" T ) (e 2y oe T Py, (1.40)

Note that by (1.14), Y; = C*1Y; € v((f;). Y9 = C~' B+ Y; s called the annihilation operator
of W;.

Define 9; € Endy (W;) by setting 9; = ™10, That 1J; is a V-module homomorphism follows
from (1.26). ¥; is called the twist of ;. Then the intertwining operators y% and yg. can be related

in the following way:

Proposition 1.14.

Yow®, z) = (BL ) (0w, z) = (nyg)w;lw@,w), (1.41)
Vo(w®, z) = (BLY9) (w®, 2)9; = (B- V) (w, 2)0; . (1.42)

Proof. Using equations (1.30), (1.40), and that L2 = 0, we see that for any w%i) e W;, wg) e W-

2°

(B0 w0, 2yl Q)
_<yo( (z) +wrx)ei2i7rL0wgi)’Q>
—(e=" LleﬁmLowgi)7 (ei7r$2i7rx—2)Loez_1L1wg)>

—(e22imbo e Iy (O (inTim,—2)Lo ex—1L1wg)>
:<(€i7r$72)Loefx_1L1 wgi), 61_1L1w§€)>

=V, 2y, 0). (143)
Since V' is of CFT type and isomorphic to V' as a V-module, V is a simple VOA, i.e., V is an
irreducible V'-module (cf., for example, [CKLW15] proposition 4.6-(iv)). Hence € is a cyclic vector

in V. By (1.21), we have <(Biryg)(19+1w§Z : )w2 ,U) = <y0(w§7’), )wg),@ for any v € V,

which proves (1.41). (1.42) can be proved in a similar way. ]
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When W; is unitary, we also have
Vi = )" (1.44)

Indeed, by (1.19), Y5 = Y;. Hence

V) = C 7 BLY; = CB1Y; = (BsY) = (W)

22



CHAPTER 2

BRAIDING AND FUSION OF INTERTWINING OPERATORS

Starting from this chapter, we assume that V' satisfies conditions (0.1), (0.2), and (0.3). Recall
that, by corollary 1.9, a unitary VOA automatically satisfies condition (0.1).

By [Hua05a] theorem 3.5, the fusion rules of V' are finite numbers, and there are only finitely
many equivalence classes of irreducible V-modules. Let us choose, for each equivalence class
[W4] of irreducible V-module, a representing element 1y, and let these modules form a finite set
{Wy : k € £}. (With abuse of notations, we also let £ denote this finite set.) In other words, £ is
a complete list of mutually inequivalent irreducible V'-modules. We also require that V' is inside £.
If, moreover, V is unitary, then for any unitarizable Wy, (k € £), we fix a unitary structure on Wi.
The unitary structure on V is the standard one. We let £" be the set of all unitary V-modules in £.

Let W;, W;, W, be V-modules. Then @fj will always denote (the index set of) a basis {), :
o € @f]} of the vector space V(ikj). If bases of the vector spaces of intertwining operators are
chosen, then for any W;, Wy, we set OF, = || jes @fj The notations ©F ;» ©;; are understood in a

similar way.

2.1 Genus 0 correlation functions

In this section, we review the construction of genus 0 correlation functions from intertwining

operators. We first give a complex analytic point of view of intertwining operators. Let J,, € V ( lkj)

For any w® e W;, w9 e Wj,w(k) e Wr,

Vo (w®, 2)w@ w®)y = <ya(w(i)’I)w(j),w@)>|x:2 — ZQ)&(U)(Z‘)’S)w(j),w@)ﬂ—s—l 2.1)

seR

is a finite sum of powers of z. (Indeed, if all the vectors are homogeneous then, by (1.25), the

coefficient before each z 5!

is zero, except when s = A i) + A, ;) — A,m — 1.) Since the
powers of z are not necessarily integers, (2.1) is a multivalued holomorphic function defined for

z € C* = C\{0}: the exact value of (2.1) depends not only on z, but also on arg z. We can also
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regard ), as a multivalued (W; ® W; ® WE)*—Valued holomorphic function on C*. Note that
by proposition A.1, the transition from the formal series viewpoint to the complex analytic one is

faithful.

Convention 2.1. At this point, the notations YV, (w?, z), Va(w®, 2), and Yo (w®, s) seem con-
fusing. We clarify their meanings as follows.

Unless otherwise stated, Y, (w'?, z) is a formal series of the formal variable . If z # 0 is a
complex number, or if z is a complex variable (possibly taking real values), ya(w(i), z) is defined
by (2.1). If s is a real number, Y, (w(?, s) is a mode of Y, (w?, ), i.., the coefficient before

275 in Y, (w®, 2).

Intertwining operators are also called 3-point (correlation) functions. In [Hua05a], Y. Z. Huang
constructed general n-point functions by taking the products of intertwining operators. His approach
can be sketched as follows:

For any n = 1,2,3,..., we define the configuration space Conf,(C*) to be the complex
sub-manifold of (C*)™ whose points are (z1, 22, ..., 2,) € Conf,(C*) satisfying that z,, # 2
whenever 1 < m <[ < n. Welet Cfl(;ﬁ/fn((cx) be the universal covering space of Conf, (C*).

Let Vo, Vas, - - - s Va,, be intertwining operators V. We say that they form a chain of inter-
twining operators, if for each 1 < m < n — 1, the target space of ), equals the source space of

Va1 - The following theorem was proved by Huang.

Theorem 2.2 (cf. [HuaO5a] theorem 3.5). Suppose that Yy, ..., Va, form a chain of intertwining

operators. For each 1 < m < n, we let W, be the charge space of Y,,,. We let W, be the

source space of YV,,, and let W), be the target space of Y,,. Then for any wlio) e Wio,w(il) €
I/Vil,...,w(i”) € I/Vl-n,w@ e W, and 21, 23, ..., zn € Csuch that 0 < |z1| < |2z2| < -+ < |2],

the expression
o (@, 20) Vo (W, 2 1) -+ Vo (w0, 21) ), 0P (2.2)
converges absolutely, which means that the series

Z ‘<yan (w(i"l)’ zn)PSn—lyan—l (w(inil)’ anl)Psn—Z

81,82;--,8n—1€R
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< Pgy Yoy (w(il)vzl)w(io)aw(k)>‘ (2.3)

converges, where each P, (1 < m < n — 1) is the projection of the target space of Y, onto its

weight-s,, component.

Note that (2.2) also converges absolutely and locally uniformly, which means that there exists
a neighborhood U < Conf, (C*) of (21, 22, ..., 2,), and a finite number M > 0, such that for any
(¢1,¢2,---,Cn) € U, (2.3) is bounded by M if we replace each z1, zo,... with (1, (,... in that
expression.

To see this, we assume, without loss of generality, that all the vectors in (2.2) are homo-
geneous, and that all the intertwining operators are irreducible. Consider a new set of coordi-
nates wi,ws,...,wy such that z,, = wpwpe1---wy, (1 < m < n). Then the condition that
0 < |z1] < |22] < -+ < |2pn|isequivalent to that 0 < |wi| < 1,...,0 < |wp—1| < 1,0 < |wy|. By

(1.26), expression (2.2) as a formal series also equals

Yo, (w(i"),wn)yan,l (w(in-l), Wn1w0n) -+ Vou (w(z‘l)’ Wiy - - -wn)w(io), w(E>>
=<w7€0yan (w;LOw(i”), 1)%%313;%_1 ((wn,lwn)_Low(i"*), 1) e
cwhoy,, ((wiws - ) o), 1) (wiws -- ) Lo () w(E)>
(WY, (W) 1wk Y, (w1 1) - wloy, () 1)wl) o ®)

- I1 w;(%uo) +Aw<i1)+"'+Aw(im)), (2.4)

1<m<n

where Vs, (W), 1) = Y, (wl™) z)| _ . Since the target space of each Yy, is irreducible,

(2.4) is a quasi power series of wi,...,w, (i.e., a power series of wi,...,w, multiplied by a
monomial wj ---wp", where sq,...,s, € C), and the convergence of (2.3) is equivalent to the

absolute convergence of the quasi power series (2.4). Therefore, pointwise absolute convergence

implies locally uniform absolute convergence.

We see that (2.2) is a multi-valued holomorphic function defined when 0 < |2z1]| < - -+ < |zy].

We let ¢ be the multi-valued (W;, @ W;, ® --- @ W;, ® WE)*—Valued holomorphic function on
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{0 < |21] < --+ < |2a|} defined by (2.2). ¢ is called an (n + 2)-point (correlation) function'
of V, and is denoted by V,,,Va,, 1 " Va,. We define V(Z.n in_k1 io) to be the vector space of

(Wi, @ Wi, @---@W;,, ® W) *-valued n + 2-point functions of V. The following proposition can
be used to find a basis ofV(A k i )
0

in in—1 -

Proposition 2.3. Define a linear map @ :

i P P .
> v(. . )@V(. Jn1 )@V(. In-2 )@---@V(.‘“.)
1y 1E€E n Jn—1 in—1 Jn—2 in—2 Jn—3 1 %0
()
In ln—1 "+ 20

yan ®yozn_1 ®yan_2 & ®ya1 — yanyan_lyan_Q e 'yal-

Then ® is an isomorphism.

Therefore, if elements in {V,, }, ..., {Va, } are linearly independent respectively, then the cor-
relation functions {V,, Va, ;- - Va, } are also linearly independent. The proof of this proposition

is postponed to section A.2.

It was also shown in [Hua05a] that correlations functions satisfy a system of linear differen-
tial equations, the coefficients of which are holomorphic functions defined on Conf, (C*). More

precisely, we have the following:

Theorem 2.4 (cf. [Hua05a], especially theorem 1.6). For any w() € W;,, w(™) e W;,, ..., win) €

Wi w® e Wy, there exist hi,...,h, € Zzo, and single-valued holomorphic func-

n?
tions a1,m (21, ..., 2n), 62m (21,1 2n)s - -, Ak m (21, - . ., 2n) on Conf, (C*), such that for any

Wie @W;, ®---QW,; Q@ Wx)*-valued (n + 2)-point correlation function ¢ defined on {0 < |z1| <
0 1 n k SO

}, the function o(w() w0 ) w2y 2o 0 20) of (21, . . ., 20) satisfies the

following system of differential equations:

6hms0 ahm_lg@ ahm_2¢
5 Alm 71 +a
Ozp Ozp™

Zmﬁ_i_..._i_ahm’m(pzo (m: 17...,71). (25)
Ozp

'So far our definition of genus 0 correlation functions is local. We will give a global definition at the end of next
section.

26



Hence, due to elementary ODE theory, ¢ can be analytically continued to a multivalued
holomorphic function on Conf,,(C*) (or equivalently, a single-valued holomorphic function on
Cﬂa/nfn(CX )), which satisfies system (2.5) globally.

Note that (global) correlation functions are determined by their values at any fixed point in

(Tchﬁ/fn(CX ). Indeed, since ¢ satisfies (2.5), the function ¢ is determined by the values of { aii @

1<m <n,0 <1< hy, — 1} atany fixed point. On the other hand, by translation property and the

locally uniform absolute convergence of (2.2), we have

ai(’p(’u)(lo), w(il)a cee w(ln)’ w(E)a B1yR2y -5 Zn)
Zm
zw(w(io), wl L L_qwlm) (i) w®; 21529,y 2n)- (2.6)

Hence ¢ is determined by its value at a point.

2.2 General braiding and fusion relations for intertwining operators

The braid and the fusion relations for two intertwining operators were proved by Huang and
Lepowsky in [HL95a, HL95b, HLL95c, Hua95, Hua05a]. In this section, we generalize these rela-
tions to more than two intertwining operators. We also prove some useful convergence theorems.

The proofs are technical, so we leave them to section A.3.

General fusion relations and convergence properties

Theorem 2.5 (Fusion of a chain of intertwining operators). Let Vy,, Vs, - - -, Vo, be a chain of
intertwining operators of V with charge spaces W;,, Wi, ..., W, respectively. Let )., be another
intertwining operator of V., whose charge space is the same as the target space of Y, . Let W;, be
the source space of Y-, W, be the source space of V.,, and Wy, be the target space of )., Then for
any w0 e Wy, w) e W ..., wlm) e W, | wk) e W+, and any (z1, 22, - . ., 2p) € Conf,,(C*)

satisfying

0<|zo—21] <oz — 21| <+ <|zn— 21| < |21, 2.7
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the expression

<yfy (yan (w(zn)a Zn — Zl)yan_l (w(in71)7 Zn—1 — Zl)

e Vo (W2 29 — 2w, zl)w(io),w@> (2.8)

converges absolutely and locally uniformly, which means that there exists a neighborhood U c

Conf,(C*) of (21, 22, - - - , 2n), and a finite number M > 0, such that for any (z1, 22, ..., zn) € U,

2 ‘<y7(PSnyUn (w(in)’ Cn - Cl)PSn—lyO'n—l (w(in—l)’ Cn—l - Cl)

89,...,8nER
Py Yoy (™), o — ¢ )wl™, w0 @] < M. (2.9)
Moreover, if (z1, 22, . - ., 2 satisfies (2.7) and
0 < z1] < lz2] < -+ <|znls (2.10)

then (2.8) as a (Wio QW;, - QW,;, & WE)*-valued holomorphic function defined near

(21, .., 2n) is an element in V(i ; kl z.0), and any element in V(Z. ; kl Z‘0) defined near
n ‘n— n ‘n—

(21,...,2n) can be written as (2.8).
The following convergence theorem for products of generalized intertwining operators is nec-

essary for our theory. (See the discussion in the introduction.)

Theorem 2.6. Let m be a positive integer. For each a = 1,...,m, we choose a positive integer
Ng. Let Wi, ..., W;m be V-modules, and let Y 1, ...,Yom be a chain of intertwining operators
with charge spaces Wi, ..., W;m respectively. We let W; be the source space of YV,1, and let W},
be the target space of Yom. For each a = 1,...,m we choose a chain of intertwining operators

Yags - - ,ya%a with charge spaces Wig, ..., W,

ja
7‘na

respectively. We let Wia be the source space of
Yag, and assume that the target space of Yog is Wia.

Foranya =1,...,mandb = 1,...,n, we choose a non-zero complex number z;. Choose
wy € Wia. We also choose vectors w' e Wi, wk e Wr. Suppose that the complex numbers {z}'}
satisfy the following conditions:

(1) Foreacha =1,...,m, 0 < [2§ — 2| < |2§ — 27| <--- < |25, — 27| <[]

i
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a+1 a+1

(2) Foreacha=1,...,m — 1, +1|—|zna+1—zl ,

2+ lag, — 21 < |2

then the expression

(LT (T st - 0ot ) o)

mza=1 nq=b=2

E<yam (yamn (Wt Sz —21") - Vg (wy', 25" — 2wl Z{”)

Vot (Vo (wyy 2 — 21) Vai (w3, 23 — 21)wi, 21 )w', why (2.11)

ni

converges absolutely and locally uniformly, i.e., there exists M > 0 and a neighborhood U;' of

each zj, such that for any (' € U (1 < a <m,1 < b < ngy) we have:

[T Psvee(( TT Psgyag(wg,g‘f—Cf))w‘f,({z)]wi,wk>‘<M. 2.12)

m=a>1 Ng=2b>=2

2

sT,sp R

Assume, moreover, that {zg 11 <a<m,1 <b< ng} satisfies the following condition:
(3) Forany 1 < a,a’ < m,1 <b < ng, 1 <V < ny, the inequality 0 < |2¢| < |2/ | holds when
a<da,ora=a andb < V.

Then (2.11) defined near {zf : 1 < a <m,1 <b<ng}isanelementinV (. jm o o1 . 1)
nm 1 ni 1

We need another type of convergence property. The notion of absolute and locally uniform

convergence is understood as usual.

Corollary 2.7. Let Vyy, Yoy, - - -, Vo, be a chain of intertwining operators of V with charge spaces

Wios Wig, ..., W, respectively. Let Wy, be the source space of Y., and W; be the target space
of Vo,,- Similarly we let Y,,, Yy, ..., Yy, be a chain of intertwining operators of V with charge
spaces Wi, , Wi, ..., Wj respectively. Let W;, be the source space of Y,, and W; be the target

space of Y,,,. Moreover we choose V-modules Wy, , Wy, Wy, a type (f;) intertwining operator

Yo and a type (klk2ko) intertwining operator Y. Choose wl) ¢ Wil,w(m € Wi,,... ,wlim) e

VVim,w(jl) € I/le,w(j?) € Wi,,... ,w(jm) € ij,w(ko) € Wio,w(g) € WE’ Then for any non-
zero complex numbers 21, 22, . . ., Zm, (1,2, - - ., G, satisfying 0 < [(o — G| < |3 — (1| < --- <

|Gh — G| < |21 =G| = |zm — 21| and 0 < |29 — 21| < |23 — 21| < -+ < |zm — 21| < |21 — (1] <
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|C1| - |Zm

<y/3 (ya Voo (W) 20— 21) o Vo (W) 29 — 20)w( ) 2y — Cl)

Vo (WY Gy — C1) -+ Yy (w2 G — )V C1> (ko) (]“2)> (2.13)
exists and converges absolutely and locally uniformly.

General braid relations

Let z1, 22, . . ., 2, be distinct complex values in C*. Assume that 0 < |z1| = |22| = -+ = |zn],
and choose arguments arg z;, arg 2o, . . ., arg z,. We define the expression
o (W, 20) Vo (W, 2 1) -+ Vo (w0, 21) ), 0P (2.14)

in the following way: Choose 0 < 11 < r9 < --+ < 7,,. Then the expression

<yan( Tnzn)ya ,1(w(in71),rnflznfl) s 'yal (w(il)arlzl)w(io)aw@)> (215)

converges absolutely. We define (2.14) to be the limit of (2.15) as 1,79, ..., r, — 1. The existence
of this limit is guaranteed by theorem 2.4.
Let .S,, be the symmetric group of degree n, and choose any ¢ € S,,. The general braid relations

can be stated in the following way:

Theorem 2.8 (Braiding of intertwining operators). Choose distinct z1,...,z, € C* satisfying
0 < |z1] = -+ = |zn| Let Vo 1) Vacys- - - Voo, be a chain of intertwining operators of V.
Foreach 1 < m < n, we let W, be the charge space of V,,,. Let W;, be the source space of
Yo (1) and let Wi, be the target space of Ya,,,,. Then there exists a chain of intertwining operators
Va1, Vg, - - -+ Vs, with charge spaces W, , Wi, , ..., W, respectively, such that the source space of
Vg, is Wi, that the target space of Vs, is Wy, and that for any wli) e Wio,w(il) eW;,... wlin) e
W;,, w® e W, the following braid relation holds:

<ya<(n)( (ic(n)) y Z¢(n ) -V, 1) ( c(l)) (1))w(io)’ ’LU(E)>
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=Yg, (W), 20) Vs, (w0, 20 1) - Vg (00, 2w, ), (2.16)
We usually omit the vectors w() | w®), and write the above equation as

Yoy (wlistm), Ze(n)) * Yoy (wlism), Z)) = Vi, (), ) - Vg, (), 21). (2.17)

When n = 2, the proof of braid relations is based on the following well-known property. For

the reader’s convenience, we include a proof in section A.3.

Proposition 2.9. Let )., Y5 be intertwining operators of V, and assume ). € V(l.kj). Choose
i, z; € C* satisfying 0 < |z; — 2| < |2, |2j]. Choose arg(z; — z;), and let arg z; be close to

arg z; as zj — z;.. Then for any w® e Wi, wl) e Wi,
yg(yBﬂ(wU'),zj - zi)w ) yg(y ( ei”(zj — zi))w(j),zj). (2.18)

Remark 2.10. The braid relation (2.17) is unchanged if we scale the norm of the complex variables
21,22, - - ., Zn, OF TOtate each variable without meeting the others, and change its arg value continu-
ously. The braid relation might change, however, if z1, 22, . . ., 2, are fixed, but their arguments are

changed by 27 multiplied by some integers.
The proof of theorem 2.8 (see section A.3) implies the following:

Proposition 2.11. Let y%,...,y%l,yag(l),...,yag(n),y(;l,...,y(;l be a chain of intertwin-

ing operator of V with charge spaces WZ/ ey W W , Wi W//

i1y Ge(n) ey

Wi?’ respec-

tively. Let W, be the source space of )., and Wj, be the target space of Vs. Let

ZlyenesZny Zsee s 2y 215, 2) be distinct complex numbers in S with fixed arguments. Choose
vectors wlt) e le,w(il) e Wy, ... L, wlim) € Wy w(®) e Wi, ... ,wld) e Wiu,w(j?) e W=.

1 m 1 l J2
Let

=V, (w m), 2 ) Vo (w(i’l)’ ),
Xy = Vs, (w2 - Vs, (w0, 2.

Suppose that the braid relation (2.16) holds for all wlio) ¢ Wio,w(il) e W;,.. .,w(i") €
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W;, w® e Wr. Then we also have the braid relation

(XVa., (wietm), Zon)) Ve, (wliem), Zg(l))‘)c'lw(jl)7 w?)y

=(X2)s, (W) 2,) - - - Vs, (W), 2) X w0 wl2)y, (2.19)

The braiding operators B4 and the braid relations of intertwining operators are related in the

following way:

Proposition 2.12. Let z;, z; € S* and arg zj < arg z; < arg z; + 7/3. Let arg(z; — z;) be close to
arg z; as z; — 0, and let arg(z; — z;) be close to arg z;j as z; — 0.

Let Y3, Yo be a chain of intertwining operators with charge spaces W;, W respectively, and let
Vor, Vg be a chain of intertwining operators with charge spaces W;, W; respectively. Assume that
the source spaces of Vg and Y. are Wy, and that the target spaces of Vo and Y are Wy,.

If there exist a V-module Wy, and )., € (ij) , Vs € (kk,il), such that for any w e Wi, wl) e

W, we have the fusion relations:

Vo (w®, 2)Vs(wD, 2;) = Vs(Vy(wD, z; — 2))wD, z)), (2.20)

Yy (w(j), 2j) Vo (w(i), z;) = y[;(wa(w(j), zj — zi)w(i), 2i). (2.21)
Then the following braid relation holds:
Vo (wD, z) V5w, 2j) = V(w9 2)) Vs (0D, 2;). (2.22)

Proof. Clearly we have arg(z; — z;) = arg(z; — z;) + 7. So equation (2.22) follows directly from

proposition 2.9. O

Using braid relations, we can give a global description of correlation functions. Consider the

covering map m, : mn((@x) — Conf,(C*). Choose ¢ € Sy, let Uc = {(21,...,2,) : 0 <
lzey| < l2g2)l < =+ < |z¢(n)l}, and choose a connected component U, of m71(U,). Then a

(Wi, ®@Wi_,, @ - -@W;_, @Wr)*-valued correlation function defined when (z(1), - - -, 2¢(n)) € Us
by the left hand side of equation (2.16) can be lifted through 7, : (7; — U and analytically

continued to a (single-valued) holomorphic function ¢ on 63/11fn((cX ). We define the vector space
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V(Z.n z‘ni z‘o) of (Wi, @ Wi, ® --- @ W;,, ® Wy)*-valued (genus 0) correlation function to
be the vector space of holomorphic functions on (/]—cTﬁ/fn(CX) of the form . This definition does
not depend on the choice of ¢ and [7}: If¢' € S, and U g’, is a connected component of ,, *(U),
then by theorem 2.8, for any ¢ € V(A k ) defined on GF/Ilfn((C>< ), it is not hard to find a

in In—1 * 10

(Wi, ®@Wi, ,, @ -@W;, ~ @Wr)*-valued correlation function defined when (zy/(1y, - - -, 2o(n)) €

</(1) s/ (n)

U, which can be lifted through m,, : U g', — Uy and analytically continued to the function .

2.3 Braiding and fusion with vertex operators and creation operators

In this section, we prove some useful braid and fusion relations. These relations are not only
important for constructing a braided tensor category of representations of V, but also necessary for

studying generalized intertwining operators.

Braiding and fusion with vertex operators

The Jacobi identity (1.20) can be interpreted in terms of braid and fusion relations:

Proposition 2.13. Let ), be a type (Zk]) intertwining operator of V.. Choose z,( € C* satisfying

0 < |z —¢| < |2| = [¢|. Choose an argument arg z. Then for any u € V,w®) € W;, we have
Yi(u, Va(w, 2) = Ya(w', 2)Yj(u, Q) = Ya(Yi(w, ¢ = 2w, 2). (223

Proof. The above braid and fusion relations are equivalent to the following statement: for any

w) e W;, wk) e Wr, and for any z € C*, the functions of (:

Ya(wD, 2)Y;(u, Yw®, w®)y, (2.24)
Ya (Yilu, ¢ = 2)w®, 2)w®, w®y, (2.25)
Yty )V (w® | 2)wD w®y (2.26)

defined respectively near 0, near z, and near oo can be analytically continued to the same (single-

valued) holomorphic function on P!. This is equivalent to that for any f(¢, 2) € C[¢tL, (¢ —2) 1],

Res¢—o (Va(w®, 2)Y; (u, Quw?, w®) - f(¢, 2)dC)
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+Resc_ (Vo (Yi(u, ¢ — 2)w®, 2)w), w®y - £(¢, 2)dC)

+Resc—oo (Vi (1, O)Va(w®, 2)w® w®y . f(¢,2)d¢) =0 (2.27)

(cf. [Ueno08] theorem 1.22, or [Muk10] theorem 1). It is not hard to compute that equation (2.27)

is equivalent to the Jacobi identity (1.20). ]

The above intertwining property can be generalized to any correlation function.

Proposition 2.14. 2 Let zy = 0, choose (21, 22, ...,2,) € Conf,(C*), and choose a correla-
tion function @ € V(in in_lk~~~ i io) defined near (21,2, ...,%,). Then for any u € V,w() e
Wi, wli) e Wiy ,wlin) e Win,w@ € Wg, and any 0 < m < n, the following formal series in
C((¢ = zm)):
Vi, (C, 21,22, .+, 2n)
ch(w(io), o wlim=) Y (u, ¢ — zm)w(im)jw(im“), o) w(E); 21,22,y 2n), (2.28)

and the following formal series in C(((™1)):

wk(qa 21y 22y - - >zn)

=¢(w(i0)’ w(il)aw(i2)7 e 7w(i")7 Yk(ua C)tw(E)7 Z19R2y -+ Zn) (229)

are expansions of the same (single-valued) holomorphic function on P\{zo, z1, 22, . . . , 2n, 0} near

the poles ( = zp, (0 < m < n) and ( = oo respectively.

Proof. When 0 < |z1| < |22] < -+ < |zn

, we can prove this property easily using proposi-
tion 2.11, proposition 2.13, and theorem 2.6. Note that this property is equivalent to that for any

f(Cazla s ,Zn) € C[Ci1> (C - Zl)_lﬂ sy (C - Zn)_l]’

Z Res<:zm(1/1im(§,z1,...,zn)f(C,zl, .. .,zn)dC)

os<m<n

= - ReSC:OO (¢k(€7 Rlyeey zn)f(Ca RBlyee 7Zn)dC) (2.30)

?One can use proposition 2.14 and the translation property to define correlation functions (parallel sections of confor-
mal blocks). cf. [FB04] chapter 10.
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(cf. [Ueno08] theorem 1.22, or [Muk10] theorem 1). If we write down the above equations explic-
itly, we will find that condition (2.30) is equivalent to a set of linear equations of ¢, the coefficients
of which are End (W, @ W;, @ - -- @ W;;,, @ W)*)-valued single-valued holomorphic functions
on Conf,, (C*). Since ¢ satisfies these equations locally, it must satisfy them globally. Therefore ¢

satisfies the desired property at any point in Conf,, (C*). O

As an application of this intertwining property, we prove a very useful uniqueness property for

correlation functions.

Corollary 2.15. Fix (z1,22,...,2n) € Conf,(C*). Let ¢ € V(; i+l ) be a correlation

in In—1 *** 41 %0

function defined near (z1, 22, . . . , zn). Choosel € {0,1,2,...,n+1}. Foranym € {0,1,2,... ,n+
1} such that m # 1, we assume that W;, is irreducible, and choose a nonzero vector wéi’") eW;,..

Suppose that for any w) e Wi,

w(()ilﬂ) (int1)

cp(w(()io),...,w(()ilfl),w(i’), Lo, W 21,22y -5 2n) = 0, (2.31)

then o = 0.

Proof. We assume that | < n. The case that [ = n + 1 can be proved in a similar way. Suppose that

(2.31) holds. Then for any u € V, the formal series in C((¢ — z;)):
go(w(()io), . ,wéil_l), Y, (u, ¢ — zl)w(”), w(()i’“), .. ,w(()i"“); 21,22, - Zn) (2.32)

equals zero. By proposition 2.14, (2.32) is the expansion of a global holomorphic function (which

must be zero) on P\{zo, 21, . .., zn, 0}, and when ( is near zo = 0, this function becomes
o(Y;, (u, C)w(()io), w(()il) .. ,w(()il_l), w(i’),w(()il“), .. ,w[()i"“); 21,22,y 2n)5 (2.33)
which is zero. Therefore, for each mode Y;, (u, s) (s € Z), we have

o(Yi, (u, s)w(()io), w(()il) o ,w((]ilfl), w®), w(()il“), . ,w(()i”“); 21,22,y 2n) = 0. (2.34)
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Since W, is irreducible, for any wlio) e W, we have

(w0, w(()il) e ,w(()ilfl), w® w(()il“), e ,w((]i"“); 21,22,y 2n) = 0. (2.35)

If we repeat this argument several times, we see that for any w() € Wi s w() e Wiisooo, wlint1) e
Wii1s

go(w(io), wl L wle): zn) = 0. (2.36)

Hence ¢ equals zero at (z1,...,2,). By theorem 2.4 and the translation property, the value of ¢

equals zero at any point. O

Braiding and fusion with creation operators

Lemma 2.16. Let Y, be a type (ij) intertwining operator. Then for any w® e W; w() €
I/Vj,w@) e Wg, z€ C* and 2 € C:

(D If0 < |20] < |z

, and arg(z — zg) is close to arg z as zy — 0, then

Z@}@)’ ya(w(i)’ Z)PSeZOL—lw(j)> (2.37)
seR

converges absolutely and equals

<w(l<:)7 e?0L1 ya(w(i), 7 — Zo)w(j)>‘ (2.38)

We simply write

e l=1) (w®, 2 — z9) = Vo (wD, z)e?l-1, (2.39)

(2)If0 < |20] < |2|7F and arg(1 — 2z0) is close to arg 1 = 0 as zg — 0, then

Z<w(E)’ erolt Psya(w(1)7 z)w(])> (2.40)
seR
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converges absolutely and equals
< ya( 20(1=220)01 (1 — 550) 2oy 2/(1 — zzo))ezoLlw(j)>. (2.41)
We simply write
ey (w, 2) = Y, (ezO(l*zzo)Ll(l — 229) 2o 2/(1 — zzo))eZOLl. (2.42)

Proof. Assume without loss of generality that all the vectors are homogeneous.
(1) Let z, 2, 1 be commuting independent formal variables. Note first of all that (2.39) holds

in the formal sense:
w® eroL-1p (w® 2 — 20)wDy = (w® | Y, (w®, )emo L1150, (2.43)

where

. -1
ya(w(’),x—xo Z Z y (z) ( Sr ):E_S_l_r(—llfo)T-

SERT€Z>0
Equation (2.43) can be proved using the relation [L_1, Vo(w®,2)] = LY, (w®, z). (See

[FHL93] section 5.4 for more details.) Write

<w(E)’ exoLflya(w(i), xl)w(j)> = Z CTTL':EO xtli m (244)

mGZzo

where d € R and ¢;;, € C. Clearly ¢,,, = 0 for all but finitely many m. Then the left hand side of
(2.43) equals

d—m o
Z Cmg < I )xd H(—x0)".

mJEZ;O

We now substitute z and 2 for = and z( in equation (2.43). For any zj satisfying 0 < |zp| < |z],

let arg(z — zp) be close to arg z as zop — 0. Then

< (k zoL 1y ( Z—ZO) (])>
:<w(E)7 etol-1y (w(i)’ xl)w(j)>‘

TO=20,L1=2—20
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Z em2g (2 — 20)d™
mGZ;O

= 3 ensl (d _l m) ZAml(_ ), (2.45)

m,leZ;o

which converges absolutely and equals

W®), Yo (WD, z)emol 10D

Tr=2z,L0=20

=(w®), Y, (w® z)ez L1450y, (2.46)
This proves part (1).

(2) Since &« = C~'Ca, we have

Z<w@), L1 Py, (w®, 2)w®)y

seR

seR

= 2 <yCa (€ZL1 (eiﬂ272)Low(i)7 zfl)PsemL—lw(k), 'LU(j)>,
seR

which, according to part (1), converges absolutely and equals
<eZ°L*1yCQ (eZLl (emz_Q)Low(i), P zo)w@), w(j)>, (2.47)

where arg(z ! — zg) is close to arg(z ') = —argz as zg — 0. This is equivalent to saying that
arg(l — zzp) is close to 0 as zgp — 0.

By the definition of C'cv, (2.47) equals

<yCa (ele(eiwz—2)Low(i)7 L zg)w(E), eszlw(j)>
:<w(E)7ya (e(z_l—zo)h(e—iﬂ(z—l _ ZO)—Z)LO

cel (e 22y oy () (p71 zo)fl)eZOLlw(j)>. (2.48)
Note that (1.30) also holds when x € C, 29 € C*. Therefore, by applying relation (1.30), expression
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(2.48) equals (2.41). This finishes the proof of part (2). ]

Proposition 2.17. Let z1, ..., 2z, € C* satisfy |z1]| < |22| < -+ < |zn| and |20 — 21| < -+ <
|zn — 21| < |21 Choose arguments arg zi,arg zo, ...,arg z,. For each 2 < m < n, we let
arg(zm — 21) be close to arg zy, as z1 — 0. Let Yy, , . .., Vs, be a chain of intertwining operators

of V with charge spaces Wi, , ..., W respectively. Let W;, be the source space of V,, and let W;
be the target space of Yy,,. Then for any w() e Wi, wli2) e Wigy oo, wlin) e W;,., we have the

fusion relation

i (Vo (W) 20 — 21) -+ Vo (02, 29 — 29) ()| 27)
=V, (W) 2) -+ Yoy (W) 20) VI (), 21). (2.49)

Proof. We assume that 21, 29, . .., 2, are on the same ray emitting from the origin (e.g. on R~ ).
(We don’t assume, however, that these complex values have the same argument.) Then for each

2 < m < n, these complex numbers satisfy
|z1] + [2m — 21| < |2ma1]- (2.50)

If (2.49) is proved at these points, then by theorem 2.4 and analytic continuation, (2.49) holds in
general.

Choose any w® e W-. Using equations (1.39) and (2.39) several times, we have

Vo (W), 20) -+ Vory (W), 23) Vi (w32, 20) Vi1 (0, 20) 2, D)
=W (W), 2,) -+ Yoy (W), 25) Vo (w2, 29) e =10, 00D
=<3’an(w<"">,zn>---yas<w<i3>,z) ALy, (W), 2 — 21)w <z‘1>,w<%>>
=V, (W) 2,) e P 1Y (w8 2 — 21) Yy, (w02 2 2o — 2)w®), w®)

:<eZIL_1ya'n (w(ln)7 Zn — 21) yo‘ ( 23 - Zl)y ( (i2)7 22 — Zl)w(il)v w(z)>
< (yon n)v Zn — Zl) e yog (w(i2)7 z9 — zl)w(il)a ZI)Q7 'LU(;)> (251)
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Note that in order to make the above argument valid, we have to check that the expression in each
step converges absolutely. To see this, we choose any m = 1,...,n, and let W;,  be the target space

of V... Then

<yan( Zn) ZlL_lyam (w(im)v Zm — Zl) yo ( z9 — Zl) (i) l)>

2 <ya'n (w(in)’ Zn)PS’!’Lfl e PSI€Z1L 1 Smya'm( 72777» - 21)P5m71

81,...,Sn_1€R

PSQyUQ( y 22 — Zl) (il)a w@)>

2 <yon (w(ln)7 Zn)Psn,1 Tt Ps1 ]J:: ( smyam( 7Zm - Zl)Pgm,1

S1,eySn—1€R

Py Vo (w2, 29 — 21)0 (™), 21) 0, w®, (2.52)

which, by (2.50) and theorem 2.6, converges absolutely. Therefore, equation (2.49) holds when
both sides act on the vacuum vector €2. By (the proof of) corollary 2.15, equation (2.49) holds when

acting on any vector v € V. U

Corollary 2.18. Let Y, € V(ikj). Let z;,zj € S with arguments satisfying arg zj < argz <

arg zj + 2m. Then for any w® e W; and w\) e W, we have the braid relation
Va(w®, z) V(. 2j) = Vi, (W, 2) Vg (w®, z). (2.53)

Proof. By analytic continuation, we may assume, without loss of generality, that 0 < |z; — z;| < 1.
Let arg(z; — z;) be close to arg z; as z; — 0, and let arg(z; — z;) be close to arg z; as z; — 0.

Then by propositions 2.17 and 2.12,

Valw, 2) V] (w, z))
=V5 (ya(w(i), 7 — zj)wl), z;)
=V5 (Va2 — 2)wl®, z)
=V5,a(w, 2) Vi (w, z).
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2.4 The ribbon categories associated to VOAs

We refer the reader to [Turl6] for the general theory of ribbon categories and modular tensor
categories. See also [BKO1, EGNOO4]. In this section, we review the construction of the ribbon
category Rep(V') for V' by Huang and Lepowspky. (cf. [HL94] and [Hua08b].) As an additive
categoy, Rep (V) is the representation category of V': Objects of Rep(V') are V-modules, and the
vector space of morphisms from W; to W; is Homy (W;, W;). We now equip with Rep(V') a
structure of a ribbon category.

The tensor product of two V-modules W;, W is defined to be

k ES
WijEWinZC—BV(Z. > ® Wi,
ke&

Yij(v,2) = Pid @ Yy (v, z) (veV), (2.54)
ke

where V(ikj) * is the dual space of V(ikj). (Recall our notations at the beginning of this chapter.)

Thus for any k£ € £, we can define an isomorphism

k
V<. > — Homy (Wi, W), Y — Ry,
ij

such that if ¥ € V()" and w(® € Wy, then

Ry(Y@w®) = (¥, Yyuw®. (2.55)

Ry is called the homomorphism represented by ).
The tensor product of two morphisms are defined as follows: If F' € Homy (W;,,W,,),G €
Homy (W}, , Wj,), then for each k € £ we have a linear map (F ® G)" : V(izkjg) — V(ilkjl), such

thatif ) € V(iijQ), then (F®@ G)'Y € V(ilkjl), and for any w() € W;,, w\) e Wy,
(FRG&)'Y) (w0, 2)wl) = Y(Fw) | 2)Guwv). (2.56)

Then FRG : V(. k )* — V( k )* is defined to be the transpose of (F®G)t, and can be extended

11 J1 12 J2
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to a homomorphism

FRG=@PEFG) ®idy: Wiy IWj, — Wi, W,
ke&

Hence we’ve define the tensor product F' ® G of F and G.

Let Wy = V be the unit object of Rep(V'). The functorial isomorphisms \; : Wy X W; — W;
and p; : W; x] Wy — W, are defined as follows: If 7 € £, then ); is represented by the intertwining
operator Y;, and p; is represented by fo- In general, \; (resp. p;) is defined to be the unique
isomorphism satisfying that for any k € £ and any R € Homy (W;, W}), R\; = A\x(idg ® R) (resp.
Rpi = pr(R®ido)).

We now define the associator. First of all, to simplify our notations, we assume the following:

Convention 2.19. Let W;, W;, Wy, Wy, W, Wy, be V-modules. Let ), € V(i,k;.,). If either
Wi # Wy, W; # Wy, or Wi, # W)y, then for any w® e W;, w9 e Wj,w@ € Wg,ze C*, we
let

Therefore, Vg(w®, 29) Vo (w), 21) = 0 if the target space of ), does not equal the source space
of Vg; Vy (yg(w(i), z1 — ZQ)'U)(j ), zz) = 0 if the target space of )5 does not equal the charge space

of V.

Given three V-modules W;, W;, W}, we have

t *k *
(W, HIW)EW, = P V( ) ®V<.S.> ® W4, (2.57)
sgee \SK tJ
t * *
Wi (W; - Wy) = (—BV< ) ®V<.r) @ Wi. (2.58)
riee \UT Jk

Choose basis O, , 05, O}

, . - x
3> Oy, O of these spaces of intertwining operators. Choose z;,z; € C

satisfying 0 < |z; — 2;| < |zj] < |2|. Choose arg z;. Let arg z; be close to arg z; as z; — z; — 0,
and let arg(z; — z;) be close to arg z; as z; — 0. Forany t € £,a € ©L,,3 € @;‘k, there exist

complex numbers Fg ,;,al independent of the choice of z;, z;, such that for any w® e Wi, wl e Wj,
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we have the fusion relation

Yaw®, 2) Vs, z) = 31 FL Yy Vo, 2 = 2w, z)). (2.59)
a’e@j‘j,ﬁ’e@;k
If the source space of ), does not equal the target space of Vg, or if the target space of ), does

not equal the charge space of Vg, we set F, fg", = 0. Then, by the proof of proposition 2.3, the
a’e@?},ﬂ’e@ik .

numbers Ff/éa/ are uniquely determined by the basis chosen. The matrix {Fo%al}ae@ﬁ*’ peot,

called a fusion matrix. Define an isomorphism

Ay (itr> oY (jrk> -y (Stk> oY (Z’SJ’) ’

Va®Vs > Y. FI Ve @V (2.60)

’ L Y] t
« e@ij,ﬁ SO

Clearly A is independent of the basis chosen. Define
t * s * t * r *
A: 2.61
S@"(w) ov() *,@V(ig v(;) ey

to be the transpose of A%, and extend it to

A= AQid, : (W W) R Wy — Wi & (W; K W), (2.62)
te€

which is an associator of Rep(V). One can prove the pentagon axiom using theorem 2.6 and
corollary 2.7, and prove the triangle axiom using propositions 2.13 and 2.9.

Recall the linear isomorphisms

By : V<k> —)V(,k,), Y ByY.
J? ()

We let o ; : V(ikj) f LY (jkl) * be the transpose of By and extend it to a morphism

i = 2,00, ®idy : Wy W, — W; ®W;. (2.63)
te€

This gives the braid operator. The hexagon axiom can be proved using propositions 2.11, 2.12,
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and theorem 2.6.

For each object , the twist is just the operator 1J; = vy, defined in section 1.3.

With these structural maps, Huang proved in [Hua05b, Hua08a, Hua08b] that Rep(V') is rigid
and in fact a modular tensor category. From his proof, it is clear that i is the right dual of i: there

exist homomorphisms coev; : V. — W; X] W5 and ev; : W3 X] W; — V satisfying

(id; ® ev;) o (coev; ®id;) = id;, (2.64)

(ev; ®id;) o (id; ® coev;) = id;. (2.65)

Since i = 4, i is also the left dual of i.

Now assume that V' is unitary. The additive category Rep" (V) is defined to be the representation
category of unitary V-modules. We show that Rep" (V) is a C*-category. First, we need the

following easy consequence of Schur’s lemma.

Lemma 2.20. Choose for each k € E" a number ny, € Z~q. Define the unitary V -module

1 1
W=@W,@C"* =P W, & W, ®" ---&" W,.
kegu kegu - g

Nk

Then we have

Endy (W) = P idy ® End(C™). (2.66)
ke&u

Theorem 2.21. Rep" (V') is a C*-category, i.e., Rep" (V') is equipped with an involutive antilinear
contravariant endofunctor x which is the identity on objects; The positivity condition is satisfied: If
W;, W; are unitary and F' € Homy (W;, W;), then there exists R € Endy (W;) such that F*F =

R*R; The hom-spaces Homy (W;, W;) are normed spaces and the norms satisfy

IGF| < |GIFL, [F*F| =|F| (2.67)

forall F € Hom(i, j), G € Hom(j, k).
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Proof. For any F' € Homy (W;, W;), we let F'* be the formal adjoint of F', i.e. the unique homo-
morphism F* € Homy (W, W;) satisfying (Fw®|w)y = (w®|F*w) for all w®) € W;, wl) e
W;. The existence of F'* follows from lemma 2.20 applied to W =~ W; @ W;. Let | F| be the
operator norm of F, i.e., |F|| = supw(i)ewi\{o}(HFw(i)H/Hw(i) [). Using lemma 2.20, it is easy to

check that Rep" (V') satisfies all the conditions to be a C*-category. O

It is not clear whether unitarizable V'-modules are closed under tensor product. So it may not
be a good idea to define a structure of a ribbon category on Rep" (V). We consider instead certain
subcategories. Let G be a collection of unitary V' -modules. We say that G is additively closed, if
the following conditions are satisfied:

() If i € G and W} is isomorphic to a submodule of W;, then j € G.

(2)If 1,2, ...,ip € G, then W;, @ W, @ --- @+ W;, €G.

If G is additively closed, we define the additive category Repg (V') to be the subcategory of Rep" (V')
whose objects are elements in G.

We say that G is multiplicatively closed, if G is additively closed, and the following conditions

are satisfied:

(a0eg.

(b)Ifie G, thenieG.

(c)If 7, j € G, then W;; = W; [X] W is unitarizable, and any unitarization of W;; is inside G.

Suppose that G is multiplicatively closed. A unitary structure on G assigns to each triplet
(i,j,k) € G x G x £ an inner product on V(Z.kj)*. For each unitary structure on G, we define
Repg (V) to be a ribbon category in the following way: If i, j € G, then W;; as a V-module is
defined, as before, to be P V(ikj)* ® Wi, Since G is multiplicatively closed, each W}, in £
satisfying Ni’;- > 0 must be equipped with a unitary structure. Hence the inner products on all
1% (Zk]) s give rise to a unitary structure on W;;. W;; now becomes a unitary V'-module. The other
functors and structural maps are defined in the same way as we did for Rep(V'). Clearly Repg (V)
is a ribbon fusion category and is equivalent to a ribbon fusion subcategory of Rep (V).

Our main goal in this two-part series is to define a unitary structure on G, under which Repg (V')

becomes a unitary ribbon fusion category. More explicitly, we want to show (cf. [Gall2]) that for
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any i1,142, j1, jo € G and any F' € Homy (W;,, W,,), G € Homy (W, , W;,),
(FR®G)* = F* ® G*; (2.68)

that the associators, the operators A;, p; (i € G), and the braid operators of Repg (V') are unitary; and
that for each ¢ € G, ¥; is unitary, and ev; and coev; can be chosen in such a way that the following

equations hold:

(coev;)* = ev; 00,70 (¥; ®idy), (2.69)

(evi)* = (id; ®9; ') 0 07| o coev;. (2.70)
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CHAPTER 3

ANALYTIC ASPECTS OF VERTEX OPERATOR ALGEBRAS

3.1 Intertwining operators with energy bounds

The energy bounds conditions for vertex operators are important when one tries to construct
conformal nets/loop groups representations from unitary VOAs/infinite dimensional Lie algebras.
This can be seen, for instance, in [GW84], [BS90], and [CKLW15]. In this section, we generalize
this notion to intertwining operators of VOAs.

We assume in this chapter that V' is unitary. If W; is a unitary V-module, we let the Hilbert
space H,; be the norm completion of W;, and view W; as a norm-dense subspace of ;. It is clear
that the unbounded operator L on H; (with domain W) is essentially self-adjoint, and its closure
Ly is positive.

Now for any 7 € R, we let H! be the domain Z((1 + Lo)") of (1 + Lo)". If £ € HY, we define

the r-th order Sobolev norm to be

€ll-= 11 + Lo)"¢]l-

Note that the 0-th Sobolev norm is just the vector norm. We let

HE = (A

r=0

Clearly #;° contains ;. Vectors inside 7;° are said to be smooth.

Definition 3.1. Let W;, W;, W}, be unitary V-modules, ), € V(ikj), and w® € W; be homoge-
neous. Choose r = 0. We say that ya(w(i), x) satisfies r-th order energy bounds, if there exist

M > 0,t > 0, such that for any s € R and w9 € W,

Va(w®, $)w < M1+ [s)"w?]]. 3.1
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Here ), (w(®, s) is the s-th mode of the intertwining operator Y, (w(®, z). It is clear that if r; <
r9 and ya(w(i), x) satisfies r1-th order energy bounds, then ), (w(i), x) also satisfies ro-th order
energy bounds.

1-st order energy bounds are called linear energy bounds. We say that ya(w(i) ,x) is energy-
bounded if it satisfies energy bounds of some positive order. If for every w(® e W, ya(w(i), x)
is energy-bounded, we say that )/, is energy-bounded. A unitary V' -module W; is called energy-
bounded if Y; is energy-bounded. The unitary VOA V is called energy-bounded if the vacuum
module V' = W) is energy-bounded. We now prove some useful properties concerning energy-

boundedness.

Proposition 3.2. If w") € W; is homogeneous and inequality (3.1) holds, then for any p € R, there

exists M, > 0 such that for any w) e W,
Vo (w®, $)wP|ly< My(L + )P [P . (3.2)
Proof. (cf. [TLO4] chapter II proposition 1.2.1) We want to show that
Vo (w, s)wD< M (L + [s))* P+ D2, (3.3)
Since

1Valw®, )P 2= Py 1ia o Yalw, )o@ 2= 3 |Va(w®, ) P2,
geR qeR

w2 = D NP3,
qeR

it suffices to assume that w(/) is homogeneous. We also assume that ya(w(i), s)w(j ) # 0. Then by
proposition 1.7, A &) + A, —1—5=0.

By (3.1) we have

Ve (w, )0 P MP(L + [s])* (1 + Ay w2, (3.4)
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Hence

alu?, )]
:(Aw(i) + Aw(j) - S)Zp”ya(w(i), s)w(J)H2

< (Aw(i) + A

wl

) N 2 .
:MQ(Awm REAE) 8) P(l + DL+ Ay ) 2P |2

1+ Aw(]’)
_ M2 (Aw(i) —s+A,0
1+ Aw(]’)

2p .
)+ L) w2,

If p > 0 then

(Aww — s+ A, )21’
1+ Aw(j)

<(1 + Ay + | + Ay >2p

= 1+ Aw(j)

<+ Ayo + D < (14 Ayw)? (1 + |s)?.

Ifp<Oand1 <A, u — s, then

(Aw(i) -5+ A, )2?’
1+ Aw(j)

:< 1+ A,w(j) )2‘13‘ <1
Ay — 5+ A0

Ifp<Oand1> A, u — s, thensince A, iy —s+ A, i = 1,

( 1+ Aw(]’) )2\p|
Ay — s+ Aum

1 — A i 2|p‘
- (1 T Skt 0 )
Ay — s+ AL

<(2— Ay + s)2P
<(2+ 24,0 + 2|s])2P!

<Pl (1 + A @) 2P + |s])2Pl.

Therefore, if we let M, = 2/PI(1 + A ))/P!, then (3.3) is always true.
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(3.9)



The next property is obvious.

Proposition 3.3. If) € V(ikj) is unitary, w € W; is homogeneous, and Y, (w'), x) satisfies r-th

order energy bounds, then Y=(w®, ) satisfies r-th order energy bounds.

Proposition 3.4. Suppose that Y, € V(ikj) is unitary, w € W; is homogeneous, v > 0, and for any
m € Zso, Vo (L7w®, x) satisfies r-th order energy bounds. Then Yox (w®, 2) and Yos1, (wD, 2)

satisfy r-th order energy bounds.

Proof. First we note that L’lnw(i) = 0 for m large enough. Now suppose that (3.1) holds for all m

if we replace w(® by LTw(i). Then by (1.36), for any w(?) € Wi, w*) € W, and s € R,

R

1 . :
< Z mkw“”)@([&”w(z), —-s—k—-2+ 2Aw(i))w(k)>‘

m=0

-3 %‘<(1 + Lo) wD|(1 + Lo) " Vo (Liw®, —s — k=2 + 2Aw(i))w(k>>‘
m=0 "

< ) O] [ValZpw®, =5 — k=24 28 ,0)u®]|_,.
m=0 "

By proposition 3.2, we can find positive numbers C, Cy independent of w7, w(¥), such that

}|ya(L’1”w(i>, —s—m—2+ 2Aw(i))w(k)H_T
<CL(1+ s +m+2—28,0)) " lw® |

<Co(1+s)™ ™
Thus there exists C5 > 0 independent of w(), w(*¥), such that
(Y (@0, )| < €1+ 1s]) ™ ]| | D]
This proves that
[ Vo (@, 5)wD || < C5(1+]s])" lw?]] . (3.9)

Therefore ), (W, ) satisfies 7-th order energy bounds. Since Cav = a* and V-1, (w?, z) =
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e* 200 Yoo (WD z), by proposition 3.3, Voi1, (w®, z) also satisfy r-th order energy bounds.

O]

Proposition 3.5. Let W;, W;, Wy, be unitary V-modules, Y, € V(ikj), and choose homogeneous
vectors w') € Wy, u € V. Suppose that Yo (w®, x), Yj(u,x), Yy (u, x) are energy-bounded. Then

for any n € Z, Yo (Yi(u, n)w®, x) is energy-bounded.

Proof. By Jacobi Identity, for any s € R we have

VaYi(u, n)w®, )
= Z (—1)! <Z>Yk(u, n—DYVa(w®, s +1) — 16%0(—1)”" (l>ya(w(i),n +s—1)Y;(u,l).

(3.10)

It can be shown by induction on |n| that

lim sup
l—

(7) ‘z'”' <t

Choose any homogeneous vector wl?) e W; with energy A ;). Then by energy-boundedness of
Volw®, ), Y;(u, ), Yi(u, ) and proposition 3.2, there exist positive constants Cy, Cy, . . ., Cg

and r1,t1, 7o, t2, r3, t3 independent of w) and s, such that

-1 (] ) a0,

=0

<> | Va(w®,n+ s — DY (u, huw||

=0

<3 CulP {1+ o 5 = 1) 55 ]

=0

< Y G @ O,
O0<ISAu+A -1

< ) C(1 + |s])1 (1 4 DFterttz O

SCOu(1+ [s])1 (1 + A o) Itz Dy,

=Cy(1 + |s)"* w®® 14|t b2 201 4o (3.11)
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Here the inequality [ < A, + A, ;) — 1 comes from the fact that every nonzero Yj(u, l)w(j ) must

have non-negative energy. Similarly we have

2(—1)1 (7;) Yi(u,n — l)ya(w(i), s+ l)w(j)

=0
< Z C’g,l‘”‘ HYk(u,n — l)ya(w(i), s+ l)w(j)H
=0
< ) Cl™ (1 + [n = 1) Valw, s + D]
=0
< 2 Coll (14 13 (1 + |5 + 1) 2 w0y,

OglgAw(i) +Aw(j) —s5—1

S 2 Cr(L+[s)™s 2 (1 + plriretrariz D,
O0<ISA () +A,, ) —s—1

<Cs(1+ [s]) T2 (1+ Ay + |s|) s trs b,
<CS(1 + |S|)2r3+2t2+1+\n\+t3(1 + Aw(j))1+|n‘+t3+r3+t2”w(j)||r3+r2

208(1 + |S|)2r3+2t2+1+\n\+t3 Hw(j)H2r3+r2+t2+l+\n\+t3' (3.12)

The energy-boundedness of Y, (Y;(u, n)w(®, z) follows from these two inequalities. O

The following proposition is also very useful. One can prove it using the argument in [BS90]

section 2.

Proposition 3.6. If v = v or v € V (1), then for any unitary V-module W;, Y;(v, z) satisfies linear

energy bounds.
We summarize the results in this section as follows:

Corollary 3.7. Let W;, W;, Wy, be unitary V -modules, and ), € V(ikj).

(a) Suppose that V' is generated by a set E of homogeneous vectors. If for each v € E, Y;(v,x) is
energy-bounded, then Y; is energy-bounded.

(b) If W, is irreducible, Y}, Y}, are energy-bounded, and there exists a nonzero homogeneous vector
w® e W; such that ya(w(i), x) is energy-bounded, then ), is energy-bounded.

(¢) If WD e W; is homogeneous, and Yo(wD,z) is energy-bounded, then Yo1,(w®, x),

Va(w®, z), and Yox (WD, ) are energy-bounded.
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(d) If w® e W is quasi-primary, and ya(w(i),x) satisfies r-th order energy bounds. Then

Veorin (WD, z), Va(w®, z), and Yox (WD, z) satisfy r-th order energy bounds.

Proof. (a) and (b) follow from proposition 3.5. (c¢) follows from propositions 3.3, 3.4, 3.5, and 3.6.
(d) follows from propositions 3.3 and 3.4. O

3.2 Smeared intertwining operators

In this section, we construct smeared intertwining operators for energy-bounded intertwining
operators, and prove the adjoint relation, the braid relations, the rotation covariance, and the inter-
twining property for these operators. The proof of the last property requires some knowledge of the
strong commutativity of unbounded closed operators on a Hilbert space. We give a brief exposition

of this theory in chapter B.

The unbounded operator Y, (w®, f)

For any open subset I of S!, we denote by C®°(I) the set of all complex smooth functions on
St whose supports liein I. If I = {e? : a < t < b} (a,b € R,a < b < a + 27), we say that [
is an open interval of S'. We let J be the set of all open intervals of S'. In general, if U is an
open subset of S', we let 7(U) be the set of open intervals of S* contained in U. If I € 7, then its
complement /€ is defined to be Sl\f If I, I, € J, we write [ cc I if I} < I».

Let ), € V(ikj) be unitary. (Recall that this means that W;, W;, W), are unitary V-modules.)
For any w9 € W;,z € C¥*, ya(w(i), z) is a linear map W; — Wk Therefore we can regard
Va(w®| 2) as a sesquilinear form W; x Wy — C, (w), wk)) s (Y, (w, 2)w) [ *)y,

We now define the smeared intertwining operators. Let 46 = %d@. Forany f € CX(S'\{-1}),

we define a sesquilinear form
Valw®, ) : Wy x Wi > €, (w?, w®) i Qo (w®, £luw?|uw®)
satisfying

Yo, P |w®)y = " Ya(w®, )y wD|w®y £ () 6. (3.13)

—Tr
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ya(w(i), f) can be regarded as a linear map W; — I//I\/k In the following, we show that when
Vo (w®, z) is energy-bounded, YV, (w®, f) is a preclosed unbounded operator.

To begin with, we note that for any f € C(S*\{—1}) and any s € R, the s-th mode of f is

iy . N 10y ,—is6 ﬁ
fo) =] e o (3.14)
Then we have
Yaw®, f) = 3" Valw®, 5) f(s). (3.15)

seR

Define

Dy ={A;+ Aj — Ay : W;, W, Wy, are irreducible V-modules},

Zy =7 + Dy

Then Y, (w(i), s) = 0 except possibly when s € Zy . Since V has finitely many equivalence classes

of irreducible representations, the set Dy is finite. Now for any ¢ € R we define a norm | - |y on

CP(SN\{—1}) tobe

[flve= D 0+ IsDF(s)], (3.16)

SELy

which is easily seen to be finite. For each r € R, we define e, : S'\{~1} — C to be
e (€)= e (—m <6 <) (3.17)

When r € Z, we regard e, as a continuous function on St

Lemma 3.8. Suppose that w® e W is homogeneous, and ya(w(i), x) is energy-bounded and
satisfies condition (3.1).

(a) Let p € R. Then there exists M), > 0, such that for any f € C*(S"\{~1}),w") € W}, we have
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Va(w®, fw) e HE, and

9, 20, < Mylfly [0, G189

(b) For any wl) e Wj,w( ) e Wy we have

, , A Gi) ,
(WP Ve (D, )y = 2 6T<ya*(L W, e( 19 -2n ())f) Flw?). (3.19)
mz=0
Proof. (a) We have
Ya(w®, HHu) = 3 f(s  s)w) (3.20)
SELy

Choose M), = 0 such that (3.2) always holds. Then

2 F©Yalw®, 9w,

SELy
< Y M| F()|@ + )P0,
S€Ely
:Mp‘f‘v,\thHw(j)Hp+7-' (321)

In particular, Y, (w®, f)w() e HP.

(b) For any w e W;, w®) e W, and z € C* with argument arg z, we have

WY (w®, 2)wb)y
:<yoz* (65L1 (efiﬂ'z )LOUJ( ) ) (k)|w(])>
M= 2Aw(l)

m=0

Note also that % = ¢~ 294 Therefore we have

<w(k) |ya(w(i), f)w(j)>
R NN ON Ty 7
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,iﬂAw(i) - . ' -
o (T, a0y 42250 ) g

=Zr€

mz0v T
€D T ey ®) )
= Z T<ya* (Linw(z)’ e(m+2—2Aw(i))f)w |’LU / > (323)
m=0 )

O]

By lemma 3.8, if w(?) is homogeneous and Y, (w(?, z) is energy-bounded, then Y, (w®, f)
can be viewed as an unbounded operator from H; to H;, with domain W);. Moreover, the domain
of Va(w?, f)* contains a dense subspace of H, (which is Wy). So Ve (w®, f) is preclosed. We

let Va(w®, f) be its closure . By inequality (3.18), H{° is inside 2(Vu(w(, f)), the domain

of Vo (w®, f), and Yo (w®, HHP = H;?. In the following, we will always view Vo (w®, f) -
H® — H} as the restriction of m to Hi°. Vo(w® | f) is called a smeared intertwining
operator. The closed operator V, (w®, f)* = m* is the adjoint of Y, (w?, f). The
formal adjoint of ), (w®, f), which is denoted by Y, (w(?, f)T, is the restriction of Y, (w(®, f)*
to H;? — H.

The following proposition follows directly from lemma 3.8.

Proposition 3.9. Suppose that w® e W; is homogeneous, ya(w(i),x) is energy-bounded and
satisfies condition (3.1). Then for any f € C.(S™\{—1}), the following statements are true:
(a) Valw®, PR < HE. Moreover, for any p € R, there exists My, = 0 independent of f, such

that for any £9) € H, we have

Ve (w®, PED < M| £y 1€ (3.24)

(b) Vo w®, f) : HP — H;? has the formal adjoint Vo (w®, f)F Hy? — H, which satisfies

e_iﬂ-Aw(i)

Y (L0, ez o)) (3.25)

m.

Valw®, f) = Z

mz=0
In particular, if w® s quasi-primary, then we have the adjoint relation

Valwl?, )T = e 200 Vo (W, eapn_ ) )- (3.26)
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Hence the adjoint relation (3.26) for smeared intertwining operators is established.

Remark 3.10. If ), € V(ikj) is a unitary energy-bounded intertwining operator of V, w9 € Wj is
not necessarily homogeneous, and f € C®(S'\{—1}), then by linearity, we can define a preclosed
operator Vo (w®, f) : HP — H}? to be Va(w?, ) = 3 g Ya(Paw®, f). Proposition 3.9-(a)

still holds in this case.

Remark 3.11. If W; is a unitary V-module, then Y; € V(Oii). Choose any vector v € V. Since the
powers of x in Y (v, x) are integers, for each z € C*, Y;(v, z) does not depend on arg z. Therefore,

for any f € C*(S'), we can defined a smeared vertex operator Y; (v, f) : H® — H using (3.13).

)

Braiding of smeared intertwining operators

The relation between products of smeared intertwining operators and correlation functions is

indicated as follows.

Proposition 3.12. Let Yy, , Va,, - - - s Vo, be a chain of unitary energy-bounded intertwining oper-
ators of V with charge spaces W; ,W,,, ..., W;_ respectively. Let W; be the source space of Va,,
and let Wy, be the target space of Y,,,. Choose mutually disjoint I1, I, . .., I, € J(S'\{—1}). For
eachm = 1,2,...,n we choose w'm) € W;  and f,, € C*(I,,). Then for any w\9) € W; and

w(k) € Wk,

<yan (w(ln)’ fn) e yoq (w(il)7 fl)w(J>|w(k)>
= Jﬂ [ Yo,y (W) ) Yy (w0 ) |y 1 (e - - - fr () - 40y - - - 6,

—T

(3.27)
Proof.
Z Hpsnyan (w(in)’ fn)Psn—1yan—1 (w(infl)a fnfl)Psn—z e P81ya1 (w(il)v fl)w(j) H
S1,-.,SnER
- Z Hyom (W) £) - Vo, (w(“),tl)w(j)H ) |fA1(t1) .. J?n(tn)|7 (3.28)
t1,.. tn€Zy
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which, by proposition 3.2, is finite. Hence, for all r1,..., 7y, 71/r2, ..., "—1/Tn € [1/2,1], the

following functions of sy, ..., Sy:

<Psnyan( fn) Sn—1"" 'PS1ya1(w(i1)afl)w(j)|w(k)>

are bounded by a constant multiplied by
(Py, Ve, (w(in)7 )P, -+ P, Va, (w(il)’ fl)w(j)|w(k)>‘, (3.30)
the sum of which over s1, ..., s, is finite. Therefore, if we always assume that 1, ...,r, > 0 and

0<ri/rg <--+ <rp_1/rn < 1, then by dominated convergence theorem and relation (1.26),

<yom (w(in)7 fn) U yoq (w(h)’ fl)w(J)|w(k)>
= 3 (P Yo, (@), f) oy o Py Yy (w0, f1)w® |y

S1,..,Sn€ER

> lm (<P3nyan (W), f)Psy 4 -+ Pay Yoy (0 )@ |uw®)y

T1yeees T —>
S1y.8n€R Y

AN —A ) (T1) 51 Tn—1\5"-1 A (g
e ) )
T2 Tn

= lim Z (<P5nyan (w(in)7 fn)Pan t 'P51ya1 (w(h)’ fl)w(j)|w(k)>

S1,..,Sn€ER

-A A in S1 Tn—1\5"—1 A
7 win) Bl )( ) . (n ) rnw“))

. 1
hmHl E f f (Ps, Va, (w in) e )P,

T1yeeesTn
S15-- ’SnER

. . . —A —A
..pﬂyal(w(u)’ez91)w(J)|w(k)>7a1 wli) e Palin)

()" (”_l)s“r,?w“ Fule ) fulei®) oy - 46,

T2 Tn
= lim f <Psnyan( (in) Tnewn)Psn 1
1”1,...,7‘nﬁls17 SnERYT -
e+ Py, Voo, (W) 11w [0 BNy 1 (01) - - £ (e0) 40, - - - 6, (3.31)
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By theorem 2.2 and the discussion below, the sum and the integrals in (3.31) commute. Therefore

(3.31) equals

Tl,..l-{gialj J Z <P3nyan Tne )Psn71

51, ,Sn€ER

P31ya1 (i1) Tl€z€1)w(j)|w(k)>f1(ei61) . fn(eié)n)dgl 4,

= lim <yan ( , rpetfn )

14y —1

) .yal(w(il)’ Tlewl)w(j)|w(k)>f1 (€0 .o £ (e9)d0, - - - 46, (3.32)
By continuity of correlation functions, the limit and the integrals in (3.32) commute. So (3.32)
equals the right hand side of equation (3.27). Thus the proof is completed. O

Corollary 3.13. Let V,, Y, be unitary energy-bounded intertwining operators of V with common
charge space W;, and Vg, Vg be unitary energy-bounded intertwining operators of V with common
charge space W;. Choose z;,z; € S and assume that arg zj < argz; < argzj + 2m. Choose
disjoint open intervals I,J € J(S\{—1}) such that I is anticlockwise to J. Suppose that for any
w® e Wy, w) e W;, the following braid relation holds:

Valw®, 2)Vp(w, 2j) = Vo (wD, 25) Vo (w, 25). (3.33)
Then for any f € CX(I),g € CF(J), we have the braid relation for intertwining operators:
Yo, )Vs(w?, g) = Vg (D, 9)Vor (. ). (3.34)

Note that if ¥}, is the source space of )3, then both sides of equation (3.34) are understood to

be acting on H°.

Remark 3.14. If ), and Y, (resp. Vg and Vg ) are the vertex operator Y}, then the above corollary

still holds if we assume that I € 7 (resp. J € J).
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Rotation covariance of smeared intertwining operators

For each ¢ € R, we define an action
e(t) : St - S r(t) () = ' 0FD), (3.35)
For any g € C*(S1), we let
t(t)g = gor(—t). (3.36)

Therefore, if J € 7, then t(t)CX(J) = CP(¢(t).J). We also define g’ € C*(S!) to be

Cc

A d _
g(e") = 259(") (337)

Rotation covariance is stated as follows.

Proposition 3.15. Suppose that ), € V(Z.kj) is unitary, w® € W; is homogeneous, y(w(i),x)
is energy bounded, and J € J(S'\{—1}). Choose ¢ > 0 such that v(t)J < S'\{—1} for any
t € (—¢,¢). Then forany g € C(J) and t € (—¢,¢), the following equations hold when both sides

act on 7—[;0:

[Lo. VoD, 9)] = Va (w, (A, ) — 1)g + ig'), (3.38)

0 Yo (w®, g)e™ 0 = Y, (w®, B~ Die(t) ). (3.39)
Proof. By equation (1.24), for any z = €'’ € J we have

[Lo, Ya(w®, 2)]
:Aw(i)ya(w(i), z) + z&zya(w(i), 2)

:Aw(i)ya (w(l)v 67;9) - ia@y& (w(Z)v ei@)
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when evaluated between vectors inside WW; and Wj,. Thus we have

(Lo, Ya(w®, g)] = f (Lo, Ya(w, ¢)]g(c?)do

—T

- f (A0 Va(w®, ) —i0pYa(w®, ) g(e)do
7 i0

:Aw(i)ya(w(i)7g) -1 59ya(w(i), eie)g(eie)%de
. s
=A 0 VoW, g) +i ' Va(w® ew)d<g(€w)ew>d0
w (03 b . (0% 9 da 27_‘_
=A, 0 ya(w(i),g) +1 ya(w(l), e’e)(g'(ew) + z'g(ew))%rdﬁ

=(Api) — DVa(w?, g) +iVu(w®, ).

This proves the first equation. To prove the second one, we first note that for any 7 > 0, when h € R

is small enough, the | - |y, --norm of the function

ei(Aw(i)fl)(t-ﬁ—h)r(t + h)g _ ei(Aw(i)fl)tt(t)g

= (i(A 0 — DB Die(t)g — B0~ Die(t)g')

is o(h). For any £U9) e H°, we define a function Z(2) for |¢| < ¢ to be

(1]

(t) = (;itﬂ)ya(w(i)7 62'(Aw(i)*1)tt(t)g)eitfo§(j).

Now we can apply relation (3.38) and proposition 3.9 to see that the vector norm of Z(t + h) — Z(t)
is o(h) for any |t| < e. (In fact this is true for any Sobolev norm.) This shows that the derivative of
=(t) exists and equals 0. So =(¢) is a constant function. In particular, we have Z(0) = Z(t), which

implies (3.39). ]

The intertwining property of smeared intertwining operators

Proposition 3.16. Let )V, € V(ikj) be unitary, w® e W; be homogeneous, and v € V be quasi-
primary. Suppose that v = v, Vo (w?), x) is energy bounded, and Y; (v, ), Yy (v, z) satisfy linear

energy bounds. Let I € J,J € J(S'\{—1}) be disjoint. Choose f € C(I),g € CX(J). Assume
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that f satisfies
NI S - e (3.40)

Then Y;(v, f) and Yy, (v, f) are essentially self-adjoint, and for any t € R, we have

eith(v,f)H;O < HT, eitYk(wf)HZO c HY, (3.41)

e LY (@), g) = Ya(w®, g) - Vi1, (3.42)

Proof. Define the direct sum V-module W; = W; @t Wy of W; and Wj. Then H; is

the norm completion of W;, H;° is the dense subspace of smooth vectors, and Y;(v, f) =
diag(Yj(v, f), Yi(v, f)) By equations (3.40) and (3.26), Y;(v, f) is symmetric (i.e., Y;(v, )7 =
Yi(v, f)). Since Y;(v, z) satisfies linear energy bounds, by proposition 3.9-(a), relation (3.38), and
lemma B.8, Y (v, f) is essentially self-adjoint, and eitWH?O c H;°. This is equivalent to saying
that Yj (v, f) and Y}, (v, f) are essentially self-adjoint, and relation (3.41) holds.

Let A = Yj(v, f). Regard B = Y, (w, ¢) as an unbounded operator on #;, being the original
one when acting on #;, and zero when acting on Hj,. (So the domain of B is ’H;O @ Hi.) By
propositions 2.13, 3.13, and remark 3.14, AB = BA when both sides of the equation act on #;°.

By theorem B.9, A commutes strongly with B. Therefore A . B = B - A which is equivalent

to equation (3.42). L]
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CHAPTER 4

FROM UNITARY VOAS TO CONFORMAL NETS

In this chapter, we assume that V' is unitary and energy-bounded. A net My, of von Neumann
algebras on the circle can be defined using smeared vertex operators of V. If My, is a conformal
net, then V is called strongly local. A theorem in [CKLW15] shows that when V' is generated by a
set of quasi-primary vectors whose field operators satisfy linear energy bounds, then V' is strongly
local. This is discussed in section 4.1.

Let W; be an energy-bounded unitary V-module. If this representation of V' can be integrated
to a representation of the conformal net My, we say that W is strongly integrable. In section
4.1, we show that the abelian category of energy-bounded strongly-integrable unitary V'-modules is
equivalent to the category of the corresponding integrated My -modules. A similar topic is treated
in [CWX].

There are two majors ways to prove the strong integrability of a unitary V'-modules W;. First, if
the action of V' on W is restricted from the inclusion of V' in a larger energy-bounded strongly-local
unitary VOA, then W; is strongly local. This result is proved in [CWX], and will not be used in
our paper. In section 4.2, we give a different criterion using linear energy bounds of intertwining

operators.

4.1 Unitary VOAs, conformal nets, and their representations

We first review the definition of conformal nets. Standard references are [CKLW15, Car04,
GF93, GL96, KL.04]. Conformal nets are based on the theory of von Neumann algebras. For an
outline of this theory, we recommend [Con80] chapter 5. More details can be found in [Jon03,
Tak02, Tak13, KR83, KR15].

Let Diff(S') be the group of orientation-preserving diffeomorphisms of S'. Convergence in
Diff (S') means uniform convergence of all derivatives. Let H be a Hilbert space, and let 2/ (#) let
the group of unitary operators on #, equipped with the strong (operator) topology. PU(H) is the

quotient topology group of U(H), defined by identifying = with Az when = € U(H),\ € S'. A
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strongly continuous projective representation of Diff (S!) on # is, by definition, a continuous
homomorphism from Diff (S!) into PU(H).
Diff(S') contains the subgroup PSU(1,1) of Mobius transformations of S'. Elements in

PSU(1, 1) are of the form

Az 4+
—>

L 1 4.1
P (z€85%), 4.1)

z

where \, € C,|\|> — |u|? = 1. PSU(1, 1) contains the subgroup S* = {t(¢) : t € R} of rotations
of S*.

A conformal net M associates to each I € 7 a von Neumann algebra M () acting on a fixed
Hilbert space Hg, such that the following conditions hold:
(a) (Isotony) If I; < I € J, then M(I;) is a von Neumann subalgebra of M (12).
(b) (Locality) If Iy, Is € J are disjoint, then M(I;) and M(I3) commute.
(c) (Conformal covariance) We have a strongly continuous projective unitary representation U of

Diff(S') on H, such that for any g € Diff(S*), I € J,

Moreover, if g fixes the points in 7, then for any x € M(I),

U(g)zU(9)* = =.

(d) (M&bius covariance) The projective unitary representation U of Diff (S') restricts to a unitary
representation of the Mobius group PSU(1, 1) on H,.
(e) (Positivity of energy) The generator of the restriction of U to S is positive.
(f) There exists a vector 2 € H, (the vacuum vector), such that  is fixed by PSU(1, 1), and it is
cyclic under the action of \/ ;. M(I) (the von Neumann algebra generated by all M([)).
(g) (Irreducibility) The von Neumann algebra \/ ;. ; M(I) is the algebra of all bounded linear
operators on Hy.

The following properties are satisfied by a conformal net, and will be used in our theory:

(1) (Additivity) If {1, : a € A} is a collection of open intervals in 7, I € J, and I = | ¢ 4 La, then
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M) = ey M(L).
(2) (Haag duality) M(I)" = M(I°).

(3) M(I) is a type III factor. (Indeed, it is of type III;.)

Properties (2) and (3) are natural consequences of Bisognano-Wichmann theorem, cf. [BGL93,
GF93].

Following [CKLW15], we now show how to construct a conformal net My from V. Let the
Hilbert space H( be the norm completion of V. For any I € J we define My (I) to be the von
Neumann algebra on H, generated by closed operators of the form W, where v € V and
f € CL(I). Thus we’ve obtained a net of von Neumann algebras I € J — My (I) and denote
it by My. The vacuum vector €2 in Hy is the same as that of V. The projective representation
U of Diff(S!) is obtained by integrating the action of the real part of the Virasoro algebra on V.
The representation of PSU(1, 1) is determined by the action of L41, Lo on V. All the axioms of
conformal nets, except locality, are satisfied for My, .

Locality of My, however, is much harder to prove. To be sure, for any disjoint I, J € J, and

any u, v € V, we can use proposition 2.13, corollary 3.13, and proposition 3.9 to show that

Y(u, )Y (v,9) = Y (v,9)Y (u, ), (4.2)

Y(“?f)TY(vag) = Y(U,Q)Y(’U,, f)Tv 4.3)

where both sides act on H3°. The commutativity of closed operators on a common invariant core,
however, does not imply the strong commutativity of these two operators, as indicated by the exam-

ple of Nelson (cf. [Nel59]). So far, the best result we have for the locality of My is the following:

Theorem 4.1. Suppose that V is generated by a set E of quasi-primary vectors, and that for any
v € E, Y(v,x) satisfies linear energy bounds. Then the net My satisfies the locality condition,
and is therefore a conformal net. Moreover, if we let Er = {v + 0v,i(v — 0v) : v € E}, then for
any I € J, My (1) is generated by the closed operators Y (u, f), where u € Eg, and f € C*(I)

satisfies €™/ 2e) A f = ei™u/2¢) A .

Proof. Clearly ER generates V. From the proof of [CKLW15] theorem 8.1, it suffices to prove,

for any disjoint I,.J € J, u,v € Eg, and f € C®(I),g € CP(J) satisfying e™u/2¢; A, f =
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eimBul2e;_p f, ™A 2e) A g = ei™o/2¢;_a g, that Y (u, f) and Y (v, g) commute strongly.

By proposition 3.9-(b), Y (u, f) and Y (v, g) are symmetric operators. Hence by equation (3.38),

proposition 3.9-(a), equation (4.2), Lemma B.8, and theorem B.9, Y (u, f) and Y (v, g) are self-

adjoint operators, and they commute strongly with each other. O

We say that a unitary energy-bounded strongly local VOA V is strongly local, if My satisfies

the locality condition.

Suppose that V' is strongly local. We now discuss representations of the conformal net My, .
Let H; be a Hilbert space (currently not yet related to ;). Suppose that for any I € J, we have a
(normal unital *-) representation 7; ; : My (I) — B(#,;), such that for any I, I, € J satisfying
I c I, and any x € My (I;), we have m; 1, () = m; 1,(x). Then (H;, 7;) (or simply #,;) is called
a (locally normal) represention of the My, (or a My -module). We shall abbreviate 7; r, () and
i1, (x) as m;(x), if we do not want to emphasize which von Neumann algebra x belongs to. If
£0) e H;, we simply write 26 for 7; ()@ = 7; ()€,

The My -modules we are interested in are those arising from unitary V'-modules. Let W; be an
energy-bounded unitary V-module, and let H; be the norm completion of the inner product space
W;. Assume that we have a representation 7; of My on H;. Then we say that (;, 7;) is associated

with the V-module (W;,Y;), if forany I € J,v e V,and f € C(I), we have

i1 (Y (v, f)) = Yi(v, f). 4.4)

(See section B.1 for the definition of 7; ; acting on unbounded closed operators affiliated with
My (I).) A My-module associated with W, if exists, must be unique. We say that an energy-
bounded unitary V-module W; is strongly integrable if there exists a My -module (#;, 7;) asso-
ciated with W;. Let S be the collection of strongly integrable energy-bounded unitary V' -modules.
Obviously V' € S. It is easy to show that S is additively complete.

We now introduce a very useful density property. For any I € J, we define My (I)o to be the

set of smooth operators in My (1), i.e., the set of all x € My ([) satisfying that for any unitary
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V-module W; inside S,
THE € HP, *HL < HP. 4.5)

Proposition 4.2. IV is unitary, energy-bounded, and strongly local, then My (I is a strongly

dense self-adjoint subalgebra of My (I).

Proof. By additivity or by the construction of My, we have My (1) = \/ ;. My (J). (J o= I
means that J € J and J < I.) For each J cc I and # € My (J), we choose € > 0 such that

t(t).J < I whenever t € (—¢, €). For each h € C°(—¢, €) such that { _h(t)dt = 1, define
€ J—
xTp = J ethoge=itlop, (1) dt.
—€
Then by (3.39), x;, € My (I). For each W; inside S, equations (3.39) and (4.4) imply that
m(eitfoa:e*itfo) = e"tfom(a;)e*itfo. (4.6)

So we have

€ _ e
mi(xp) = J etor(z)e Mo p(t)dt,
—€
which implies that
eitf()?ri(l‘h)f(i) = Ty (.T}ht)eitfof(i), (4.7)

where hy(s) = h(s — t). From this equation, we see that the derivative of e“Lo¢() ¢ HP att =0

exists and equals
—7ip )ED + imy(ap) Lo, (4.8)

This implies that 7;(z, )£ € H} and i Lom; (21,)¢®) equals (4.8). Using the same argument, we see

that for each n € Z~, the following Leibniz rule holds:
mi(an)6® € 2(Lo") = M},
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— . n n\ . —_—— .
Lo mi(xn)§ = ) (m> i @) - LoD,
m=0
where h("™) is the m-th derivative of h. This proves that 7; (), ) H® < HY.
Since (zp,)* = (2*), we also have 2} H;° < Hi°. So xj, € My (). Clearly x;, —  strongly
as h converges to the J-function at 0. We thus conclude that any x € My (J) can be strongly

approximated by elements in My (I)o,. Hence the proof is finished. O

We study the relation between the representation categories of My, and V. Assume, as before,
that V' is unitary, energy-bounded, and strongly local. We define an additive category Repg(My/)
as follows: The objects are My -modules of the form H;, where W; is an element inside S. If
Wi, W; are inside S, then the vector space of morphisms Hom g, (#;, H;) consists of bounded
linear operators R : H; — #;, such that forany I € J,x € My (I), the relation Rm;(x) = 7;(x)R
holds.

Define a functor § : Rep&(V) — Repg(My ) in the following way: If W; is a uni-
tary V-module in S, then we let F(W;) be the My-module H;. If W;, W, are in S and
R € Homy (W;, Wj), then by lemma 2.20, R is bounded, and hence can be extended to a bounded
linear map R : H; — H#;. Itis clear that R is an element in Hom g, (H;, H;). We let F(R) be
this My,-module homomorphism. Clearly § : Homy (W;, W;) — Hompy,, (Hi, H;) is linear. We

show that § is an isomorphism.

Theorem 4.3. ! Let V be unitary, energy-bounded, and strongly local. For any Wi, Wj in
S, the linear map § : Homy (W;, W;) — Homp, (Hi, H;) is an isomorphism. Therefore,

§ : Reps(V) — Reps(My ) is an equivalence of additive categories.

Proof. The linear map § : Homy (W;, W;) — Hom, (Hi, H;) is clearly injective. We only
need to prove that § is surjective. Choose R € Hom y,, (#;, H;). Define an orthogonal direct sum
module W), = W; @+ W;. Then Hy, is the orthogonal direct sum My -module of H;, H;. Regard
R as an element in End a4, (#H}), which is the original operator when acting on #;, and is 0 when

acting on ;. Then for any I € J,x € My(I), R commutes with 7 (x), 7 (2*). Therefore, for

any homogeneous v € V and f € CX(I), R commutes strongly with 7 (Y (v, f)) = Yi(v, f).

!"This theorem is also proved in [CWX]. We would like to thank Sebastiano Carpi for letting us know this fact.
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We first show that RW; < W;. Choose I1,I> € J and f; € CP(I1,R), fo € CF(I2,R)
such that f; + fo = 1. Regard Lg as an unbounded operator on H; with domain Wp. Then L is
the restriction of the smeared vertex operator Y (v, e1) to Wj. (Recall that by our notation of e,,

e1(e?) = ) Therefore,

Lo c Yi(v,e1fr) + Yi(v, e1 fo),

and hence

fo (- Yk(V, elfl) + Yk(l/, €1f2) () Yk(v, elfl) + Yk(l/, elfg).

Recall that v is quasi-primary and A, = 2. Therefore, by equation (3.25), Y (v,e1f1) and

Y (v, e1 fo) are symmetric operators. It follows that A = Yy (v, e1f1) + Yi(v, €1 f2) is symmet-

ric. Note that Ly is self adjoint. Thus we have

Loc Ac A* c Ly = Lo,

which implies that

Ly = Yi(v.e1f1) + Yi(v, e fo).

Therefore, since R commutes strongly with Y (v, e1 f1) and Yy (v, e1 f2), R also commutes strongly
with Lg. In particular, R preserves every eigensubspace of Lg in Hj,. This implies that RW;(s)
W;(s) for any s € R, and hence that RW; < W.

Now, for any n € Z, w® € W;, and v € V, we have

Yk(v,n)w(i) = Yi(v, en)w(i) = Yi(v, enfl)w(i) + Yy (v, enfg)w(i).

Since R commutes strongly with Y;(v,e,f1),Yi(v,enfa), we have RYi(v,en)w® =
Vi(v,e,) Rw®, which implies that RY;(v,n)w® = Yj(v,n)Rw. Therefore, R €
Homv(Wi,Wj). O

Corollary 4.4. If W; is a unitary V-module in S, and H1 is a (norm-)closed My -invariant sub-
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space of H;, then there exists a V -invariant subspace Wy of W, such that Hy is the norm closure

Of W1 .

Proof. Let e be the orthogonal projection of H; onto H;. Then e; € Enday, (#;). By theorem
4.3, ey restricts to an element in Endy (W;). So W; = e; W is a V-invariant subspace of W;, and
e1Lg = Loe; when both sides act on W;. Therefore e; commutes strongly with L. Let P; be the
projection of H; onto W;(s). Then P is a spectral projection of Ly. Hence eP; = Pse for any
s = 0.

Choose any § € Hi. Then § = > P& Since for any s > 0 we have Ps{ = Psei§ =
e1 P& € egW; = Wy, we see that £ can be approximated by vectors in Wj. This proves that H; is

the norm closure of Wi. O]

4.2 A criterion for strong integrability

Assume that V' is unitary, energy bounded, and strongly local. In this section, we give a criterion

for the strong integrability of energy-bounded unitary V-modules.

Proposition 4.5. Let W; be a non-trivial energy-bounded unitary V-module. Then W; is strongly
integrable, if and only if for any I € J, there exists a unitary operator Uy : Hog — H;, such that

anyv € V and f € CF(I) satisfy

Yi(v, f) = UrY (v, )UT .- (4.9)

Proof. “If part”: For any I € J(I), we define a representation m; ; of My (I) on #; to be

mi1(x) = UrzUf (x € My (I)). (4.10)

If Je J(I)and I < J, then by equation (4.9), UjU; commutes strongly with every Y (v, f) where
veVand fe CP(I). SoUjUr commutes with My (), which implies that 7; 7 is the restriction
of m; ; on My (I). So m; is a representation of the conformal net My . It is obvious that 7; is
associated with W;. So W; is strongly integrable.

“Only if part”: Suppose that W; is strongly integrable. We let (H;, ;) be the My -module

associated with W;. For each I € M, ; 1 is a non-trivial representation of My (1) on #;. Since
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the Hilbert spaces #g, H; are separable, and My (1) is a type III factor, ; y is (unitary) equivalent
to the representation 7y ; of My () on Hp. So there exits a unitary Uy : H; — H; such that

equation (4.9) always holds. O

Remark 4.6. Equation (4.9) is equivalent to the following relations:

UrY (v, f) < Yi(v, /)Ur, (4.11)

UrYi(v, f) < Y(v, )HUT. (4.12)

Proposition 4.7. Let W;, W), be non-trivial energy-bounded unitary V -modules. Assume that W;
is strongly integrable. If for any I € [J there exits a collection {T, : a € A} of bounded linear
operators from H; to Hy, such that \/ ,  ToH; is dense in Hy, and that for any a € A,v eV, f €

C*(I), we have

C

Ta%(vv f) = Yk('l), f)T(l7 (413)

T;Yk(vv f) = Y}(’U, f)T*

a’

(4.14)

then Wy, is strongly integrable.

Proof. Let W) = W; @+ W, be the direct sum module of W; and Wy, and extend each T}, to a

bounded linear operator on H;, such that 7}, equals zero on the subspace Hj. Choose any I € J.

Since Y(v, f) = diag(Yj(v, f), Yi(v, f)), equations (4.13) and (4.14) are equivalent to that Tj,

commutes strongly with Yi(v, f) for any v € V, f € CP(I). We construct a unitary operator

Ur : H; — Hj, such that

Yi(o. f) = UrY; (v, U} (4.15)

for any v € V, f € CP(I). Then the strong integrability of W} will follow immediately from
proposition 4.5 and the strong integrability of W;.

Let {Uj : b € B} be a maximal collection of non-zero partial isometries from 7{; to #, satisfying
the following conditions:

(a) Forany b e B,v eV, f € C¥(I), U, commutes strongly with Y;(v, f).
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(b) The projections {e, = UpU;" : b € B} are orthogonal.
Note that similar to 7, each Uy is extended to a partial isometry on H;, being zero when acting on
Hi.

Lete = >, cze. We prove that e = idy, . Let €/ = idy, —e. If ¢’ # 0, then by the density
of \/ e 4 TuH; in Hy, there exists a € A such that €'T, # 0. Take the left polar decomposition
e'T, = U H, of €'T,, where U, is the partial isometry part. Then U,U? is the projection of H; onto
the range of €'Ty,, which is nonzero and orthogonal to each e;. For each v € V, f € CP(I), since
e’ and T, commute strongly with Y;(v, f), U, also commutes strongly with Y;(v, f). Therefore,
{Up : b e B} U {U,} is a collection of partial isometries from #; to H;, satisfying conditions (a)
and (b), and {U,, : b € B} is its proper sub-collection. This contradicts the fact that {U} : b € B} is
maximal. So ¢/ = 0, and hence e = idy, .

For each b € B we let p, = U; Uy, which is a non-zero projection on H;. We now restrict
ourselves to operators on H ;. Then p, commutes strongly with each W, which, by the strong
integrability of W}, is equivalent to that p, € 7; ;(My (I))’. Note that B must be countable. We
choose a countable collection {g; : b € B} of non-zero orthogonal projections on H; satisfying that
2w @b = idy;, and that each g € 7; [ (My (1)) Since 7 1(My (1)) is a type III factor, for
each b there exists a partial isometry Uy € 7, 1(My(I)) satisfying [71,(7; = pp, [7; U, = Qp.

We turn our attention back to operators on ;. Since ﬁb e r(My(I)), (7}, commutes strongly
with each m Let Ur = Y uep Ub(N]b. Then Uy is a unitary operator from H; to H;, satisfying
relation (4.15) for any v € V, f € C°(I). Thus our proof is finished. O

We now prove the strong integrability of an energy-bounded unitary V' -module using the linear

energy-boundedness of intertwining operators.

Theorem 4.8. Let W;, W, Wy, be non-zero unitary irreducible V-modules. Assume that W; and
Wy, are energy-bounded, that W; is strongly integrable, and that there exist a non-zero quasi-
primary vector w[(]i) e W, and a non-zero intertwining operator Y, € V(Z.kj), such that ya(w[()i), x)

satisfies linear energy bounds. Then Wy, is strongly integrable.

Proof. Step 1. Fix any J € J(S'\{—1}), and let W, be the subspace of H;, spanned by the vectors

ya(w(()i), g)w) where g € C®(J) and wl) € W;. We show that W is a dense subspace of ..
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Our proof is similar to that of Reeh-Schlieder theorem (cf. [RS61]). Choose & ) e Wj Note

that for each 1(*) € #{*, the multivalued function

Z - zLOn(k) = Z zsPsn(k) (4.16)
520
is continuous on D"~ (1) = {¢ € C : 0 < |¢| < 1} and holomorphic on its interior D* (1). So we

have a multivalued holomorphic function of z:
OV, gD, @.17)

which is continuous on D (1) and holomorphic on D*(1). Choose £ > 0 such that the support of

gt = exp(it(A @ —1))r(t)g is inside J for any ¢ € (—¢, ). Then, by proposition 3.15, we have
0

(@0 Ya(wg”, gy D) = Y, g)e 0w W), (4.18)

which must be zero when ¢ € (—9, J).

By Schwarz reflection principle, the value of function (4.17) is zero for any z € D (r). In
particular, it is zero for any z € S'. This shows that (4.18) is zero for any ¢t € R. Here, when
we define the smeared intertwining operator, we allow the arguments to exceed the region (—, )

under the action of t(¢). So the right hand side of equation (4.18) becomes
t+m

Zf Yalwy, ) PowDPED) - exp(it(A o — 1)g(e® ) db, (4.19)

seR

which is O for any £ € R. (Recall our notation that do = ei9d0/27r.) Since W;, W;, W), are
irreducible, we let A;, A;, Ay, be their conformal dimensions, and set A, = A; + A; — Ay, Then

by equation (1.25),
Yalwd,2)2% = Y Va(w, Ag — 1 —n)2" (4.20)
neZ

is a single valued holomorphic function for z € C*. So the fact that (4.19) always equals 0 implies

73



that

J Yaw?, )@ | Pg®eiBa? . h(e)do = 0 (4.21)
seR

for any w) € W;, T € J and h € C*(I). By partition of unity on S', we see that equation (4.21)
holds for any h € C®°(S1).

For any m € Z, we choose h(e?’) = e=™?. Then the left hand side of equation (4.21) becomes

ZJ Da(wl?, i@)w(j)|PS£(k)>eiAa9 . e—imb gp

seR
= 2 f Z@a w(()z)j A, —1-— n)w(j)|PS£(k)> . giln—m)0 g

sER Y™™ nez
L2 J Gy, B = 1=y |PEW) - elrm?ag

seER neZ
—QWZQ)& ),A —1—-mw (j)|PS§(k)>

seR

=27 (Va(wl, Ao = 1 = m)uwDg®), 4.22)

which by equation (4.21) must be zero. By corollary 2.15 and the proof of corollary A.4, vectors of
the form )/, (wo , )w(j) (where s € R, w) e W;) span W, which is a dense subspace of H;. So
k) = .

Step 2. Choose any I € J, and let J € J(I°\{—1}). Take W, = W; &' W. Then for each

v eV, feC®(I) we have Yi(v, f) = diag(Y;(v, f), Yi(v, f)). For each g € C*(J), we extend
ya(w(()i), g) to an operator on ;° whose restriction to #,;° is zero. We also regard A = ya(wéz), 9)
as an unbounded operator on H; with domain H;°. Let N(I) be the von Neumann algebra on
H; generated by the operators Y;(v, f) where v € V, f € C*(I), and let N'(I ), be the set of all
x € N(I) satisfying 2H;° < H}°, 2*H}° < H;°. Then as in the proof of proposition 4.2, N'(I)c
is a strongly dense self-adjoint subalgebra of N'(I). Let H = (A + A")/2and K = (A — AT)/(2i)
be symmetric unbounded operators on H; with domain #;°. Then by proposition 2.13, corollary

3.13, remark 3.14, and equation (3.26), for any v € V and f € C (1), Yi(v, f) commutes with H

and K when acting on H;°. By lemma B.8 and relations (3.38), (3.26), H and K are self adjoint,
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and by theorem B.9, Y;(v, f) commutes strongly with H and K. Hence any = € N (I) commutes
strongly with H and K. In particular, if x € N'(I)e, we have tH = Hz,zK = Kx when both

sides of the equations act on H;°. So x(H + iK) = (H + iK)x when acting on H;°. Therefore,

xya(w[()i), g) © ya(w(()i), g)x for any x € N(I)y, which implies that N'(I) commutes strongly
with ya(w(()i), g). Thus Y;(v, f) commutes strongly with ya(w(()i), g)-

Let ya(w(()i), g) = TyH, be the left polar decomposition of ya(w(()i), g), where Ty is the partial
isometry. Then T, commutes strongly with each Y;(v, f). By step 1, {T}, : g € C*°(J)} form a col-
lection of bounded operators from H ; to H, satisfying the conditions in proposition 4.7. Therefore,

by that proposition, Wy, is strongly integrable. O
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CHAPTER 5

GENERALIZED INTERTWINING OPERATORS

The goal of this chapter is to prove (in section 3) the rotation covariance, the intertwining
property, the braid relations, and the adjoint relation for generalized smeared intertwining opera-
tors. The first two can be derived from the same properties for smeared intertwining operators, so
their proofs are easier. To prove the braiding and the adjoint relation for generalized smeared in-

tertwining operators, we first prove them for unsmeared ones, which are the goals of section 1 and 2.

Generalized intertwining operators are nothing but genus 0 correlation functions written in
a particular way. Suppose that V,,,...,)s, is a chain of intertwining operators with charge

spaces Wi,,...,W;,

respectively, such that the source space of ), is W;,, and the target space

of YV, is Wj. Choose Y, € y(fj). Choose (z1,...,2,) € Conf,(C*), and choose arguments

arg z1, arg(za — 21), ..., arg(z, — z1). A generalized intertwining operator ), ...,  is defined
near (z1,. .., z,) in the following two situations.
The first case is when (21, . .., z,) satisfies 0 < |z — 21| < -+ < |2p, — 21| < |21|. We define a

(W; @Wi, ®- - -@W;,, @ Wr)*-valued holomorphic function ), ..., o near (21, . .., z,) to satisfy

that for any w@) € W;, w(™® e W;,,...,wl) e W, ,w® e Wy,

<ygn...(,27a(w(i”), Zni .. ;w(iQ), 29; w(il), zl)w(j),w(k)>
=V (Vo (W) 2 = 20) - - Vi (w2 29 — 21)00 ), 21) D, 0P, (5.1
The V-modules W, , ..., W;, are called the charge spaces of Vs, ..., o. W) is called the source

space of Vs, ...00,a, and Wy, is called the target space of )., ...5, . The vector space of generalized

intertwining operators with charge spaces W, , ..., W, , source space W, and target space Wy, is
k

also denoted by V(in i j).

In the second case, we choose I € J, and choose an arbitrary continuous argument function

arg; on I. We define &,,(I) to be the set of all (21, ..., 2,) € Conf, (C*) n I"™ satisfying that for

76



any 2 < | < m < n, either arg; (22, ') arg;(zmz; 1) < 0, or |arg;(z12; V)| < |arg (zmz; 1)
Our definition is clearly independent of the choice of arg;, and &, (1) is a finite disconnected union
of simply-connected sets.

We want to define our generalized intertwining operators near any (z1,...,2,) € On(I). To
do this, we rotate z1, ..., 2z, along I without meeting each other, until these points satisfy 0 <
|29 — 21| < -+ < |zn — 21| < |21] = 1. The arguments of 21,z — 21,..., 2, — 21 are changed
continuously. We first define Vs, ...s,, o Near the new point (21, ..., z,) using equation (5.1). Then
we reverse this process of rotating z1, . . ., 2, and change ), ...5,, o continuously so as to be defined
near the original point.

We now define the product of two generalized intertwining operators defined near S'. Prod-
ucts of more than two generalized intertwining operators are defined in a similar way. Choose
disjoint I, J € J, choose (z1,...,2m) € On(I),((1,...,(n) € On(J), and choose arguments
arg z1,arg(za — 21),...,arg(zm, — 21),arg (1, arg(Ce — (1), ...,arg(¢, — ¢1). Choose gener-
alized intertwining operators YVy,...c; .0 € V(im“l_“l.1 io),ypn...m”g € V( ]n”;l jo)‘ If we choose
arg 29, ...,arg zm, arg (o, . . ., arg ¢,, then we can find uniquely chains of intertwining operators
Vais -+ Va,, With charge spaces W, ..., W;  respectively, and Vg, , ..., Vg, with charge spaces
Wi, ..., Wj, respectively, such that the source space of Vg, is W, that the source space of

Yo, and the target space of Vg, are W, that the target space of V,,, is Wy, and that for any

wln) e Wii,... ,win) e Wi, w) e Wiy ,wlim) ¢ W;,.., we have the fusion relations
Yooz, 25wl 21) = Vo (™), 200) -+ Yoy (wl), 21), (5.2)
ypnu-pg,ﬁ(w(jn)a Cna ceey w(jl)a Cl) = yﬁn (w(jn)a Cn) e yﬁl (w(]l)v Cl) (53)

We then define a (W;, @ W;, @ --- Q@ W;, Wy, ®--- @ W;,, ® Wr)*-valued holomorphic func-
tion Vs, 01,0V pn--p1,3 N€AT (C1y .oy Cny 21, -+« , 2m) to satisfy that for any w(0) € W, wlt) e

Wi, wi) e Wy w0l e Wy, wl) e Wy w®) e Wy,

<ygm...027a(w(im), Zoms e e w() zl)ypn...pzﬁ(w(j"), Co ool Cl)w(jo), w(E)>

=Va,, (w(im)’ Zm) - yal(w(il)’ 21)Vs, (w(jn)7 Co) - Vs, (w(ﬁ)’ Cl)w(j°)7w(k)>. (5.4)
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Remark 5.1. It is clear that our definition does not depend on the choice of
arg zo, ..., arg zm,arg (o, ..., arg (,. Moreover, if we choose ¢ € S, w € S,, and real
variables A1, ..., Ap,71,. .., 7y defined near 1 and satisfying 0 < A5y <+, Ag(n) < 7¢1) <

s+ < T¢(m), then the following series

Z<ygm...02,a(w(im), TmZm; -« - ;w(il), rlzl)Psypn...p275(w(j”), AnCas .. ;w(jl), )q(l)w(jo), w(E)>
seR

5.5

of s converges absolutely, and by proposition 2.11, as 11, ..., 7y, A1, . .., Ap — 1, the limit of (5.5)

exists and equals the left hand side of equation (5.4).

5.1 Braiding of generalized intertwining operators

Theorem 5.2. Choose disjoint I,J € [J. Choose (z1,...,2zm) € Op(I),(C1,-..,Cn) € On(J).

Choose arguments arg z1, arg (1, arg(ze — 21), . . ., arg(zm — 21), arg(Cn — C1)s - - -, arg(Cn — C1)-

Let Wi, Wi, Wi Wiy, oot ;Wi . Wi, Wiy, oo, W, be V-modules. Assume that for any w® e

m?

Wi, wl) g W, the braid relation

yoc(w(i)v Zl)yﬁ(w(j)7 gl) = yﬁ’ (w(J)) Cl)yo/ (w(l)7 Zl) (56)
holds. Then for any intertwining operators Yoy, ... VopsVpss-+-3Vpn, a0y wl) e
Wiisooo, wlim) e Wi, wln) e Wiy, whn) e W;,., we have the generalized braid relation

ygm...(,w(w(im), Zim e ;w(“), zl)ypn...pQﬁ(w(j"), Cnjve o w(jl), (1)

=Vpreepa, (w(j"), Cnjee o w(jl), cl)ygm...%a,(w“m), 2y w(il), 21). (5.7)

(Note that here, as before, we follow convention 2.19 to simplify our statement.)

Proof. By analytic continuation, it suffices to assume that |z; — (1| is small enough with respect to

1,and |22 — z1], ..., |2m — 21],|C2 — (i, - - -, |G — (1] are small enough with respect to |21 — (1,
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such that for any r, A > 0 satisfying % <3< %, the following inequalities are satisfied:

|Cn — C1| + |2m — 21| < 1/4, (5.8)
0< |)\C2 — )\C1| < |)\C3 — )\C1| < - << |)\Cn — )\C1| < |7“211 — )\C1| — |sz — ’I”Zl|, (59)

0<|rzg—rz| <|rzs—rzi| <--- <|rzm —rzi| <|rzi1 = AG| < A= |rzm —rz1]. (5.10)

Choose arg(z; — (1). Since |21 — (1| < 1, there exist intertwining operators ), and )5 such

that for any w( € W;, w9 € W;, we have
ya(w(2)7z1)yﬁ(w(])a<l) = y(S(y"/(w(i)azl - Cl)w(])7C1) = yﬂ'(w(j)acl)ya’(w(i)7Zl)' (5.11)

Choose 7, > -+ > r; > Ay > --+ > A; > 0 satisfying 2/3 < r;/\ < 3/2. When
T9/T1y -y Tm/T1, A2/ A1, ..., An/A1 are close to 1, by corollary 2.7, the right hand side of the equa-

tion

Vo (Vo (W™ Pz — 1121) -+ Vo (w02, 929 — 1120 ) (™), r121)
Vs (Y (@I, NG = ML) -+ Voo (w2, Moo — MG)w, M)
=Vs (yw (yam (W) 2 — 1121) Vo (W) 7229 — 120 )W) 1y 2y — >\1C1)

Vo (@), NG = AiC1) -+ P (w82, Moo = AiCr)wbY, m) (5.12)
converges absolutely and locally uniformly. If moreover 1 /A; = 4/3, then by theorem 2.6, the left
hand side of equation (5.12) also converges absolutely and locally uniformly, and hence equation
(5.12) holds.

Now we let 1, ..., 7m, A1, ..., Ay — 1, then the left hand side of equation (5.12) converges to

the left hand side of equation (5.7), and the right hand side of (5.12) converges to

Vs (y’y (yUm (w(im)7 Zm — Zl) Tt yaz (w(h)’ z9 — Zl)w(il)a 21 — Cl)

YV (W) Gy = C1) Yy (w2, G — G, 41). (5.13)

Therefore, the left hand side of equation (5.7) equals (5.13). The same argument shows that the
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right hand side of (5.7) also equals (5.13). This finishes our proof. O

Note that it is easy to generalize proposition 2.11 to generalized intertwining operators.

5.2 The adjoint relation for generalized intertwining operators

This section is devoted to the proof of the adjoint relation for generalized intertwining operators
(5.34). We first recall that if ), is a unitary intertwining operator of a unitary V, z € S* with chosen

argument, and w® € W is quasi-primary, then by relation (1.34),

Va(w®, 2)T = e7 ™20 22800 Yu (W), 2). (5.14)

We want to obtain a similar relation for generalized intertwining operators. To achieve this goal,
we first need an auxiliary fusion relation. Recall that for any V-module W;, we have the creation
operator y@'o = B.Y; of W;, and the annihilation operator yQ = _132?0 of W5. We set T% =

)

CYj,- Then similar to equation (1.40), for any wg D e Wi, wg € W7 we have

<T0 (w1 , )w2 Q) =(e” 1Llw2 ,(e_mw_Q)L"e_flLlwgi)} (5.15)

Proposition 5.3 (Fusion with annihilation operators). Let z1, zo € C* satisfy 0 < |z1], |21 — 22| <
|22|. Choose arg z, let arg z1 be close to arg zo as z1 — z3, and let arg(zo — z1) be close to arg z,

as z1 — 0. Then for any Y, € V( ) w® e W; and w) e W;, we have the fusion relation
10 (Valw®, e (20 = 20)) D, 29) = T (wl), 20)Voa (W, 21). (5.16)

Proof. Letus assume that 21, 20 € R.gand 0 < 29 — 21 < 21 < 2. If the proposition is proved for
this special case, then by analytic continuation, it also holds in general.

Therefore, we assume that arg z; = arg zo = arg(zo — 21) = 0. Let au"g(zl_1 — 22_1) be close
to arg(z; ') = —arg z; as z, * — 0. Then it is obvious that arg(z; ' — 2, ') = 0 = arg(Z271).

We now use equation (5.15) and the definition of C'a to compute that
% (WD, 29) Vo (w®, z1)w®, 0)
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= >0 (), ) PYea(w®, 21)uw®, )

seR

= Z<ez51L1PsyCa(w(i)’ 2)w®, (e—mZQ—Q)Loe—zglLlw(j)>
seR

= 3 (w®, Yo (1P (e Ty 0w 2 1Y Pt Lt (e Ty 2y 0e s Iy Dy (517)
seR

which, according to lemma 2.16-(1), converges absolutely and equals

<w(E)’ 622—1[’713)04 (ezlLl (6_iWZ;2)L0w(i)’ 29 — 21 ) (e_i”z;2)L°e_Z2_1L1w(j)>. (518)

2179

By (1.26) and (1.30), the above formula equals

<w®, ezglL_l(efinQ—Z)Lo
Y, ((emz2)LoezlL1( o 2)L0w(i)7 e (2 — Zl)g)e,zglmw(j)>
Z1
=<w(E)7 ez,;lL,l(e—mZQ—z)Lo

_ya<e—Z1z 2L1< )QLOw(i) et (29 — 21)— ) —2 Ly (])> (5.19)

21

On the other hand, we have

<T2E (J/a (w(i) e (29 — z1))w(j), 2:2) w®, Q>

= Z <T P ya (22 - Zl))w(])v ZQ)U}(E)7 Q>
seR

=Y w®, e Lot (e hoe s L p iy, (w6 (2 — 21))w®). (5.20)
seR

Note that | — 2z, !| < |€7 (29 — 21)|7%. Let arg(l — €™ (22 — 21) - (=2, ) be close to arg(1l —
€™(22 — 21) - 0) = 0as —z; ' — 0. Then clearly arg(1 — €' (20 — 21) - (—2; 1)) = 0 = arg(2).
We can use lemma 2.16-(2) to compute that (5.20) equals (5.19). This proves equation (5.16) when
both sides act on 2. By the proof of corollary 2.15, equation (5.16) holds when acting on any vector

inside V. O
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Remark 5.4. By proposition 2.9 and the above property, we have the fusion relation
ng(yB_Fa(w(j), 22 — 21)w(i), Zl) = T?j(w(j)’ ZZ)yCa(’LU(i), Zl) (521)

when 0 < |22 — 21| < |z1| < |22], arg 21 is close to arg zs as z; — 22, and arg(ze — z1) is close to

arg z9 as z; — 0. Similarly, we can also show that
Ver(VB_a@, 2 — 21w, 21) = yf;(w(j), 29)Vo-10(w, 21). (5.22)

Theorem 5.5 (Fusion of contragredient intertwining operators). Let z1, ..., zn, 25, ..., 2, € C*
satisfy the following conditions:

(1)0 < |z1] < |22 < - <|zn|and 0 < |za — 21| < -+ < |z, — 21| < |21
(1°)

Choose arguments arg zy,argz]. For each 2 < m < n, we choose arguments arg(z, —

>

2 > > o> 2| > 0and 0 < |2 — 24| < -« < |2, — 21| < |#}).

z1),arg(z), — z1). Let arg zy, be close to arg z, as z,, — zi1, and let arg z,, be close to arg 2}
as z), — 2.

Let Wy, ..., W;,, and W; be V-modules, and let YV, , ..., Y, be a chain of intertwining op-
erators of 'V satisfying the following conditions:
(a) for each 2 < m < n, the charge space of Vs, is W, ;
(b) the source space of Vs, is Wy, ;
(c) the target space of YV, is Wi.
Then there exists a chain of intertwining operators yc,;, -+« Vot , whose types are the same as those
of Voo, -, Vs, respectively, such that for any Y, € V(ikj) s Yoars Vags - - -y Ya, i a chain of
intertwining operators of V' satisfying the following conditions:
(i) for each 1 < m < n, the charge space of V., is W, ;
(ii) the source space of Vo, is Wj;

(iii) the target space of Y, is Wy,

(iv) for any wli) e Wiy .. ,wiin) g W;,., we have the fusion relation

ya (yan (w(in)7 Zn — Zl) e ya’g (w(i2)7 2 — Zl)w(il)a Zl)
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:yan(w(in)azﬂ) o 'yal (w(il)azl)a (523)
then the following fusion relation also holds:

Vea (Yo, (w2, —2) e Yoy (w w2 — 2w 21)
:yCal (w(i1)7 Zi) o yCOcn (w(ln), z;z) (524)

Proof. Let Wj, ,...,W; . be the target spaces of V,,,...,Va,_, respectively. Choose
1o 5 G € Reg satisfying (o < ¢ < ++- < ¢} < Oand [ — G > [ — G| Let
G =G0 Cn = G —Cp- Letarg Gy = arg ¢ = -+ = arg ¢, = —m,arg (1 = arg((; —¢p) =
0,...,arg ¢, = arg(¢/, — ¢}) = 0. Note that for any 2 < m < n, (n — G = ¢}, — (1. We let
arg(Gm — Q1) = arg(G, — ¢1) = 0.

We now rotate and stretch these points, so that for each 1 < m < n, (,, is moved to Z,,, = 2,
¢! ismovedto 2], = z/, arg (,, becomes arg 2, = arg z,,,, and arg ¢/, becomes arg z/,, = arg z,,.
We assume that during this process, conditions (1) and (1’) are always satisfied. (Note that such
process might not exist if the choice of arg z9, arg z3, ... and arg 2}, arg 24, . .. are arbitrary with
respect to arg z; and arg z]. ) Denote this process by (P). Then under this process, for each 2 <
m < n, arg((m,—C1) is changed to an argument arg(Z,,,—21) of Z,,,—Z1, and arg((},, —({) is changed
to an argument arg(z, — Z}) of 2/, — Z] accordingly. Since arg(Z,,, — 21) € arg(zy, — 21) + 2i7Z
and arg(2;, — 2}) € arg(z,, — 21) + 2inZ, there exist intertwining operators V, , YV, of the same

type as that of ), , such that for any wlim) e Wi, .,

yo'm( (im) 72}” - 21) = yUm(w(im)a Zm — Zl)v

yofn(w(im)vz;n_zl) yN ( (zm)az:n_zi)
Then equation (5.23) implies that

Vo (Y5, (W), 2, = 21) -+ V5, (0™, 25 — )™, 1)
=V () Z) - Vo (w0 31). (5.25)
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By reversing process (P), the above equation is analytically continued to the equation

Vo (Vs, () ¢ = ¢]) - Vs, (0™, ¢ — ¢Dwl™) ¢ = )
=Yo, (W, ¢ = ¢0) - Vo (0™ (] = ). (5.26)

For any 1 < m < n, we let arg(¢) — ¢},) be close to arg(), = —m as (/, — 0. Then
arg(¢) — ¢,) = —, and hence ¢, — ¢ = €™ (o — (). Choose arbitrary w) € W;. Then by

lemma 5.3, we have

T (w0, ) Voa, (W, () -+ Vo, (win), ()
=) — (Ve (), ¢ = @)D, ) Yoy (w2, 3)

) ycag(w(i?’), Y- Vea, (w(in), )
=Y (Vao (012, = () Var (™), ] = ), )

: yCozg (w(i3)7 Ci/),) Tt yCan (w(’tn)7 Crlz)

=T (Va, (), ¢, = ) -+ Vau (W) ¢ = ), ), (5.27)

where, by theorem 2.6, the expression in each step converges absolutely. By (5.26), expression

(5.27) equals

10 (Yo (i, ), ¢ — )+ Vi, 02, — ) ¢~ G 5), (528)

the absolute convergence of which is guaranteed by corollary 2.7. Again by proposition 5.3, equa-
tion (5.28) equals
15w, ) Vea Vs, (), G = (1) -+ Voo (.G = D™ 7)., (5.29)

77

the absolute convergence of which follows from theorem 2.6. Therefore, the left hand side of
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equation (5.27) equals (5.29). By proposition 2.3, we obtain

Voo Vs, (W) ¢ — 1) - Vi, (0 ¢ — ¢Hw™,¢))

=Yoo (W™, () - Vea, (W), G). (5.30)
Now we do process (P). Then (5.30) is analytically continued to the equation

Vea Vs, (w3 — 30y Vs, (w3 — 2w, 7))

=Y0a; (W, 2) - Vea, (w),3), (5:31)
which implies (5.24). Thus the proof is completed. O
Remark 5.6. Choose (not necessarily disjoint) I,J € J, and choose (z1,...,z,) €
On(I),(2},...,2}) € O,(J). Choose continuous argument functions arg;, arg; on I, J respec-
tively, and let argz, = arg;(z1),...,argz, = arg;(z,),argz] = arg;(#}),...,argz, =

arg;(z} ). For each 2 < m < n we choose arguments arg(z,, — z1) and arg(z/, — z}). Then
by theorem 5.5, for any chain of intertwining operators Y, , ..., Vs, satisfying conditions (a), (b),
and (c) of theorem 5.5, there exists a chain of intertwining operators V,,, ..., Y,/ whose types are

the same as those of )V,,, ..., ),, respectively, such that
yon...g%a(w(i”), PSS w(“), 21) = Va, (w(i"), Zn) e yal(w(il), 21) (5.32)
always implies
Vor, o calwl™ 20w 21) = Voo, (0™, 21) -+ Ve, (wl), 2],). (5.33)

Corollary 5.7 (Adjoint of generalized intertwining operators). Let V' be unitary. Let I € J,
choose (z1,...,2n) € On(I), and choose arguments arg z1,arg(zo — 21),...,arg(z, — z1). Let
Wiy, ..., W, and W; be unitary V -modules, and let Y,,, . . ., V5, be a chain of unitary intertwin-
ing operators of V' satisfying the following conditions:

(a) for each 2 < m < n, the charge space of Y5, is W;

m’
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(b) the source space of V., is Wi, ;

(c) the target space of YV, is W,.

Then for each 2 < m < n, there exists a unitary intertwining operator Yz whose type is the
same as that of Vs, such that for any unitary Y, € V (ikj), and any nonzero quasi-primary vectors

w e Wy, ..., wl) e W;_, we have

Vo020 (w(i"), Zny e w(il), zl)T

—im(A iy +tA G 248 ) 2A (in) — —_—
=e 747'('( w( 1) wl n))zl wl?l c e Zn w 'y5n~-~527a*(w(ln)azn§---;w(“),zl), (534)

where the formal adjoint is defined for evaluations of the operators between the vectors inside W;

and Wiy,

Proof. Let arg; be the continuous argument function on I satisfying arg;(z1) = argz;. We
let argze = arg;(z2),...,argz, = arg;(z,). Recall that by convention 1.12, we have
argz] = —argzj,argzy = —argzy,...,argz, = —argz,. Let arg(zz — z1) = —arg(zy —
21),...,arg(z, —z1) = — arg(z, — 21). By remark 5.6, we can find a chain of unitary intertwining
operators Vg, ..., Vor Whose types are the same as those of Vs, ..., Vs, respectively, such that
for any chain of intertwining operators Vg, - . . , Va, and any unitary ),, if equation (5.32) holds

for any w®™ e Wy, ..., win) e W; | then

no

yo'fn-"O'lz,Ca(w(in%%; ey w(“)aa) = ycoq (w(“)771) U yCan (w(ln)’%) (535)

Now assume that w(™), ... w(i) are quasi-primary. By equation (1.27), for any 1 < m < n, we

have
(im) —— —imA oy 2B m) (im) t
yCOcm(w " 7Zm) =€ w(zm)zm * yam(w m 7zm) . (536)
Therefore, by equation (5.32), we see that (5.35) equals

i e ) 24 g 2A , .
e ’LTI‘(AM(”)*F +Aw(’tn))zl u;( 1) . Zn w( n) (yan (w(ln)’ Zn) e yal (w(ll), Zl))t

=e “T(Aw(ll)+ +Aw(ln))zl w( 1) ct2n w(ln)yO'n"'O'Q,Oc (w(ln)’ Z’I’L; . ;w(ll), Zl) . (537)
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Recall that o* = Ca. It is obvious that equation

Cjilyo'%"'a'lgyca(w(in)a%;'-',w(il)va)ck = yil (w(in)azn;“-;w(il)yzl) (538)

ol oh,a

holds when z1, ..., z,, also satisfy 0 < |22 — 21| < - -+ < |z, — 21| < |21|. By analytic continuation,
it holds for general (z1, ..., z,) € O,(I). Therefore, if we apply C;l (+)Cy to the left hand side of

equation (5.35) and the right hand side of equation (5.37), we obtain

yﬁ...? a* (w(in)7 Znseees w(i1)7 Zl)
; e . —2A —2A . .
:e“r(Aw(n)Jr +Aw(zn))zl Wl ”)yonm@’a (w(ln)’ i ;w(ll)’ zl)T. (5.39)
So if we let V3, = yg, N yg, then equation (5.34) is proved. O

5.3 Generalized smeared intertwining operators

In this section, we assume that V' is unitary, energy-bounded, and strongly local. Let F be a
non-empty set of non-zero irreducible unitary V-modules, and let F = {W; :ie F}. Let be
the collection of unitary V' -modules W;, where W; is equivalent to a finite direct sum of submodules
of tensor products of some V-modules in F U F. So is additively closed, and any irreducible
element in is equivalent to a submodule of W; [X]- - -XIW; , where i1, ...,i, € F uF.Ifie F,
we let E'(WW;) be the vector space of all quasi-primary vectors w*) € W satisfying the condition
that for any j, k € and any ), € V(Z.kj), Vo (w®, z) satisfies linear energy bounds. E'(V) is
defined in a similar way to be the set of all quasi-primary vectors v € V, such that for any k € F,
Y% (v, z) satisfies linear energy bounds.

In this section, we always assume, unless otherwise stated, that J satisfies one of the following

two conditions.

Condition A.

(a) Every irreducible submodule of a tensor product of V -modules in F U F is unitarizable.
(b) V is generated by E*(V)).

(c)Ifie F,jke F¥ and Y, € V(Z.kj), then Y, is energy-bounded.
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Condition B.
(a) Every irreducible submodule of a tensor product of V-modules in F U F is unitarizable and
energy-bounded.

(b) For any i € F, EY(W;) contains at least one non-zero vector

Note that if V' is unitary and F satisfies condition A-(b), then by corollary 3.7 and theorem 4.1,
V' is energy bounded and strongly local. By corollary 3.7, Conditions A-(a),(b) = condition B-(a),

and condition B-(b) = A-(c).

Remark 5.8. If 7 satisfies condition B, then by theorem 4.8, any unitary V-module W; in is
strongly integrable. Now we suppose that F satisfies condition A. Then, using the same argument as
in the proof of theorem 4.8, one can show that any W; in is almost strongly integrable, which
means the following: Define a real vector subspace E'(V)g = {v + 0v,i(v — 0v) : v € EX(V)} of
El (V). Then there exists a representation 7; of the conformal net My, on the H;, such that for any

Ie J,ve EYV)g,and f € C®(I) satisfying that
einAv/Qel_AUf — eiﬂA”/2€1—Avf, (5.40)

we have

i1 (Y (v, f)) = Yi(v, f). (5.41)

Note that by theorem 4.1, the von Neumann algebra My (I) is generated by these Y (v, f)’s.
Therefore, such representation 7;, if exists, must be unique. In this way, we have a functor
§ : Repim(V) — Repzm(My ) sending the object (W;,Y;) to (H;, 7). By proposition 3.6,
the conformal vector v is inside F'(V)g. Therefore, from their proof we see that theorem 4.3 and
corollary 4.4 still hold, with S replaced by F.

We define My (I)q to be the set of all x € My (I) satisfying relation (4.5) for any i € F. We

can conclude that My () is a strongly dense self-adjoint subalgebra of My (1), either by using

the same argument as in the proof of proposition 4.2, or by observing that every ¢’*Y (:f) is inside

My (I)s (by Lemma B.8-(1)), where t € R,v € EY(V)g, and f € C®(I) satisfies equation (5.40).

We now define generalized smeared intertwining operators. First, forany I € J,n =1,2,...,
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we choose an arbitrary continuous argument function arg; on /, and define O,,(/) to be the set of
all (I1,...,1I,), where I, ..., I, € J(I) are mutually disjoint, and for any 2 < [ < m < n, either
arg;(z27 ") argy (zmzyt) < 0forall 2, € Iy, 2 € I, or |arg (2127 1)| < |arg (zmzy )] for all
Zm € Iy, 21 € 1.

Let Vs, ...00,o be a generalized intertwining operator in V(in k i j). We say that Vy,,...00,o 18
controlled by F if iy,...,i, € F U F, and j, k € F¥. Choose I € J(S'\{-1}), (I1,...,1I,) €
O,(I) and f; € CP(L),..., fn € CP(I,). For any w() € W;,, ..., wl") € W; , we define a

sesquilinear form

ygn...o%a(w(i"),fn; .. .;w(il), f) : W; x Wy, — C,

(W9, w®Y > (Vs (@) fr 5w ) w@ k)
using the equation

<y0'n"'0'2704(w(in)7 fn% ce. ;w(il)7 fl)w(j)|w(k)>
:J <y0”...0—2,a(w(i"),€i6";...;w(il),eiel)w(j)|w(k)>-fl(eiel)---fn(eien)del---d@n,

(5.42)

where, foreach | = 2,3,...,n, arg(e’ — ¢%1) is close to §; = arg e as €1 — 0.

Proposition 5.9. Assume that )Y,,..;,« is controlled by F.  Then the linear operator
ygn...gz,a(w(i"),fn;...;w(“),fl) B I//[\/k maps W; into Hy'. If we regard it as

an unbounded operator H; — Hj with domain W, then it is preclosed. The closure

Vo o a(Win) | fr: w0 f1) maps HP into HE, and its adjoint maps HL into H*. More-
n 2, p 7 ] p k g

over, there exists p € Zxo, such that for any | € Zq, we can find Cy1,, > 0, such that the inequality

[ Vonroma (W), foy 5w fED || < Crapll€D 14, (5.43)

holds for any £49) € HE.

Proof. Choose any zy € I,...,z, € I,. Choose arguments arg z1,...,arg z, € (—m, 7). For

each [ = 2,3,...,n, we let arg(z; — z1) be close to argz; as z; — 0. Suppose that for any
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w() g Wiy .. ,wlin) € W;,, we have the fusion relation
yan...@’a(w(i”), Zni e w(il), 21) = Va,, (w(i”), Zn) e yal(w(il), 21) (5.44)

for a chain of intertwining operators ),,, ..., Va,. Then the source spaces and the charge spaces
of these intertwining operators are unitary V-modules in 7. By condition A-(c) and proposition

3.3, these intertwining operators are energy-bounded. It follows from proposition 3.12 that

ya'n'~~02,oé(w(in)7 fna cees w(il)a fl) = yan (w(’bn)’ fn) e yal (w(il)v fl) (545)
when both sides act on W;. Therefore, by equation (3.25), the adjoint of
ygn...@,a(w(in), fui-..;w@) 1) has a dense domain containing H7’, which proves that
ygn...gz,a(w(in), fnyoo s w), f1) is preclosed. By proposition 3.9, there exists p € Z=¢, such that

for any | € Z, there exists Cj, > 0, such that inequality (5.43) holds for any £ @) e W;. From

this we know that 1 is inside the domain of Vo, ..oy o (W), fn;...;w(), f1), that this closed

operator maps 7—[;0 into H°, and that inequality (5.43) holds for any £ () e ”H;?O. Clearly we have

Vi worga frs 5wl 1) 5 Vo (0, )T Vo (w0 £)7.

SO Vo rg.a(wlin), fri. . ;w(@), 1) maps H;? into H. O

We regard the linear operator Vo, ...y o (W), frs. . 5w f1) - HP — HJP as the re-

striction of YV, ..oy o (W), fr; .. 5w f1) to HP, and call it a generalized smeared in-

] b
tertwining operator. Then, if the fusion relation (5.44) holds, relation (5.45) holds when
both sides act on H. The formal adjoint V., ..q,o(w(), fu;.. 5w )T o HE —

HY of ygn...@’a(w(in), frn:-- ;w0 f1) is defined to be the restriction of the closed operator

Vonewoa,a(W) for 5w f1)* to HP.

Proposition 5.10 (Intertwining property). Let Vs, ..o5.0 € V(;_ & i j) be controlled by F, w(i) €
Wiy,...,wl) e W, , ITe J,Je J(SN\{—1}) be disjoint, and (J1, ..., J,) € On(J). If F sat-

isfies condition A, then for any x € My (I),w™) e Wy,,...,wl) e W; g1 € C€(J1),...,gn €
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CE(Jyn), we have

Wk(x) : yon“ﬂz,a(w(i")agrz; cee ;w(il)agl) = y0n~~~02,a(w(i")a gns- -3 w(h)’ 91) ) 71'j(m)' (5.46)

Relation (5.46) still holds if we assume that F satisfies condition B, and that x € My (I), wlit) e

EY (W), .., wli) € BY(W;,), g1 € C2(1), .., gu € C2(Jy)

Proof. We assume that the fusion relation (5.44) holds when 2z € Ji,..., 2, € J, and the argu-
ments are chosen as in the proof of proposition 5.9.

First, suppose that F satisfies condition A. By theorem 4.1, the von Neumann algebra My (1)

is generated by the bounded operators 'Y ("), where t € R,v € E'(V)g, f € C¥(I), and

e™o/2ey A, f = em™Av/2e; A f. Now form = 1,2,...,n welet W, _, and W}, be the source

m—1

space and the target space of ), respectively. Then by proposition 3.16 (and proposition B.1), for

any 2 € My (I),wl) € W; | gm € CP(Jn), we have

T () Ve, (wm), i) © Ve, (wlim), Gm) Ty (7). (5.47)

Therefore, if z € My (1), then equation
T (0) Vo (W), gi) = Ve (0, gr) s, (). (5.48)
holds when both sides act on H;-’:P . Thus, by (5.45), for any = € My (1), equation
() - ygn...az,a(w(i"), Ini .-} w(il), g1) = yan...@,a(w(i"),gn; celd w(il),gl) -mi(z)  (5.49)

also holds when both sides act on ’H;’O This proves relation (5.46) for any x € My (), and hence
for any x € My (I).

Now we assume that F satisfies condition B. Then from step 2 of the proof of theorem 4.8,
relation (5.47) holds for any 2 € My, (I). This again implies relation (5.46). Thus we are done with

the proofs for both cases. O

Proposition 5.11 (Rotation covariance). Let Vs,,...50,0 € V(in k“ j) be controlled by F, w(i) €

Wi, ...,wl) e W;,_ be homogeneous, J € S\{—1}, and (Ji,...,J,) € On(J). Choose ¢ > 0
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such that v(t)J < S™\{—1}. Then for any g1 € C*(J1),...,gn € CL(J,), and t € (—¢,¢), we

have
eitfo : ycrn"-UQ,a(w(in)a 9ns -3 w(il)a gl) ) e—itfo
=V 09,0 (w(in), ei(Aw(in)_l)tt(t)gn; i) ei(Aw(il)fl)tt(t)gl). (5.50)
Proof. This follows from relations (5.45) and (3.39). ]

Theorem 5.12 (Braiding). Let I,J € J(S'\{—1}) be disjoint. ~Choose (I1,...,1I,) €

Om(D), (J1,...,Jn) € On(J). Choose z € I,( € J, and let —1 < argz,arg( < T.
K k k

Let yo'm"'o'an € V(’Lm T k,‘l)’ypn"'PQ),B € V(jn ...1j1 k)’yo'm"'o'%a/ € V(’Lm ...2i1 k‘)’yp’n"',‘)%ﬁ/ €

V(jn k;l kz) be generalized intertwining operators of V controlled by F. Suppose that W; is the

charge spaces of Y, and YV, W is the charge space of Yz and Vg, and for any w e Wy, w) e

W;, we have the braid relation
Ya(w®, 2)Vs(wD, ¢) = Vg (0D, ) Vo (0, 2). (5.51)

Then for any w™) € Wy, , ..., wt) e W; w1 e Wi,... ,wlin) e Wi, f1e CP(1),... fm €
CP(In),q1 € CP(J1), ..., gn € CL(J,), we have the braid relation

yUm"'UQ,Ol(w(im)7 fﬂ% cee w(il)u fl)ypn"'ﬁmﬁ(w(jn)a 9ni-- -3 w(jl))gl)

=V opapr (WIS g w0 gV, o () fs ) f), (5.52)

Proof. Choose 21 € Ii,....z;mm € In,G6 € Ji,....C., € Jn. Let —m <
argzi,...,arg zm,arg Cy, ..., arg G, < m, and let arg(ze — 21),...,arg(z, — 21),arg(Ce —
(1), ... arg(¢, — (1) be close to arg 2o, . . ., arg z,,, arg (o, . . . ,arg (, as 21, ..., 21,C1, ..., —
0 respectively. Suppose that for any w) e Wi,y ,wlim) e Wim,w(jl) e Wj,,... ,wln) e Wi,

we have the fusion relations

yomn-az,oz(w(im), Zmy - - ;w(il)7 21) = yam (w(im)7 zm) e yaq (w(il)a 21)7 (553)

Vorooon g (W09 G 50D 1) = Vg (w0 ¢) -+ Vg, (wD) [ (). (5.54)
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Then the source spaces and the target spaces of V,,, ... Va,., V3,,-- -, V3, are unitary V'-modules

inside 7. So these intertwining operators are energy-bounded. By relation (5.45), we have

Voo™, 5w 1) = Voo (w0 ) - Vo, (w0, 1), (5.55)
Voo (@I gz 5wl g1y = Vg (w0l g,) -+ Vg, (w0l gy). (5.56)

Therefore, by proposition 3.12,

y0m~~'027a(w(im)7 fms oo §w(il)7 fl)ypn“'f)zﬁ(w(jn)v gns- -3 w(j1)’ 91)

=Yoo (W™, 1) -+ y( W ) Vg, (W), go) -+ Vg, (W), g7)

J; J_ J_ ) yam (im) sz) . yal( (1) 191)

D W, €)oo s, (W), ) () - )
D) o)l A 40,

0 ) 0
J J f Vooza(wim), e sl ¢
—m -7 J-7 —m

' yPn"'mﬁ(w(j")a eWns ) ewl)fl (ei(’l) . fm(ewm)

g1 () - g () by - - - A0y - - - D, (5.57)

The same argument shows that

Vpn- pzﬁ’ wir )gn cey W wldv) 3 91) Vo 02,0 ( fma-'-§w(i1)afl)

[ [ w0t iy

Vopeozar (W) s Oy g (00) L (610

cq1(e71) o gn ()l - - Ay - - AV, (5.58)

By theorem 5.2, the right hand sides of equations (5.57) and (5.58) are equal, which proves equation
(5.52). O

Theorem 5.13 (Adjoint relation). Choose I € J(SM\{=1}) and (I1,...,I,) € O,(I). Let

Wiy, Wiy, ..., W, be unitary V-modules in F U F, and let Vs, ...,Y,, be a chain of unitary
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intertwining operators of V with charge spaces W,, ..., W, respectively, such that the source
space of Vs, is Wi,. We let W; € be the target space of V,,. Then for each 2 < m < n,
there exists a unitary intertwining operator Yz whose type is the same as that of Vs, such that
for any unitary V-modules W;, Wy, in F*, Y, € V(ikj),w(il) eWi,... ,wlin) e W;,, being quasi-
primary, and f1 € CP(11), ..., fn € CP(I,), we have

ya-n...a'27a (w(i"), fn, e ;w(i1)7 fl)T

_em (B A )

< Vs, g o (W), e@—2a ;) fnie w(i), 6(2—2Aw(i1))f1)- (5.59)

Proof. This is obtained by multiplying both sides of equation (5.34) by the expression

Fi(et®r)... fn(e’ien)6*27:(91+~..+9n)d91 b,

and then taking the integral. We leave the details to the reader. 0
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CHAPTER 6

DEFINING AN INNER PRODUCT A ON W; [x] W}

In this chapter, we define (in section 2) a sesquilinear form A on W;; = W; [x] W; using trans-
port matrices, and prove (in section 3) that these forms are inner products. As discussed in the
introduction of part I, our strategy for proving the positivity of A is to identify the form A on a
dense subspace of H;; with the inner product on a subspace of the Connes fusion product H; X] H;
of the conformal net modules H; and ;. In section 1, we prove a density property for constructing
such a dense subspace.

Note that the Connes fusion product (Connes relative tensor product) is a motivation rather than
a logistic background of our theory. So we don’t assume the reader has any previous knowledge
on this topic, nor shall we give a formal definition on Connes fusion in this paper. Those who are
interested in this topic can read [Was98] section 30 for a brief introduction, or read [Con80] or

[Tak13] section IX.3 for more details.

6.1 Density of the range of fusion product

Recall from section 3.2 that W;; = W; I W; = @pee V(ikj)* ® Wy is the tensor product
module of W;, W;. We now define a type (Z”]) intertwining operator Vix; : W; @ W; — Wj;{z} in
the following way: If )/, € V(ikj),w(i) e Wi, w? e W and w® € W, then

Vo ® w(E)’yz.(w(i)7 2)w?y = <w(E)7 Vo (0@, 2w, 6.1)

For any k € £, we choose a basis {V, : a € @f]} of V(Z.kj), and let {J* : o € @Z} c V(ikj)*
be the dual basis of @fj (e.,ifa,B € @fj, then (Y, )V)ﬂ> = 0q,3.) Then for any w® e W; and

wl) e W; we have

yz’(w(i),%)w(j) = Z 2 ye ®ya(w(i),w)w(j) = Z y ®ya(w(i),x)w(j). (6.2)

ke& ae@fj ae@f‘j
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(See the beginning of section 2 for notations.)

The following density property generalizes proposition A.3.

Proposition 6.1. Let V,,, ..., Vs, be a chain of non-zero irreducible intertwining operators of V

with charge spaces Wi,, ..., W,

respectively. Let W, be the source space of Vs,, and let W; be
the target space of V,,. Choose a V-module W}, non-zero vectors w(()il) e Wi,... ,w(()i") e W,
I e J,(z1,...,2n) € Op(I), and choose arguments arg z1,arg(zo — z1), . .., arg(z, — z1). Fix
w(@) ¢ Wﬁ. Suppose that for any w) e Wi,

(w), yan,,.gw(w(()i"), LS w(()il), 2wty =0, ©.3)

then w(@) = 0.

Proof. Suppose that equation (6.3) holds. From the proof of corollary 2.15, we see that

<w(5),ygn...027i(w(i"), Zns o w ™ 2))w@y =0 (6.4)
for all w(®) € Wiy, wlin) € Wi, w® e W;. By theorem 2.4 and the discussion below, equation
(6.4) holds for all (z1,...,2,) € O,(I) (the arguments arg z1, arg(z2 — z1),...,arg(z, — 21) are
changed continuously). In particular, for any (z1,...,2,) € O,(I) satisfying 0 < |29 — 21| <

|z3 — 21| < -+ < |z — 21| < |21], equation (6.4) reads
<w(7j)’ Vimi (yan (w(in)’ 2 —21) Ve (w(i2), 2y — Zl)w(il)’ Zl)w(j)> =0. (6.5)
If we let 25 be close to 21, then by proposition A.1, for any s3 € R, we have

(0D Visgi (Vo (w0, 2y = 21) -+ Vi (00 25 — 21) Vi (002, 59) 0 21 )@y = 0,
(6.6)

where V,, (w(%2), 55) is a mode of the intertwining operator Y, (w(2), z). Let W}, be the target

space of ),, (which is also the source space of ),,). Then by corollary A.4, vectors of the form
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Yoy (w(iZ), sz)w(il) span the vector space Wj,. Therefore, for any wi2) e W;,, we have
<w(7j), Vizj Vo (W) 2 — 21) -+ Vg (0| 25 — 2 )w2), zl)w(j)> -0 6.7)
If we apply the same argument several times, then for any w® e Wi, w e Wi,
<w(7j), yi(w(i), zl)w(j)> =0. (6.8)

So by proposition A.3, w(@) must be zero. O
A smeared version of the above proposition can be stated as follows.

Proposition 6.2. Let V' be unitary, energy-bounded, and strongly local. Let F be a non-empty
set of non-zero irreducible unitary V-modules satisfying condition A or B. Let W;, W be unitary
V-modules in ™, and assume that W is irreducible. Fix an arbitrary unitary structure on Wij.
Let Wy, , ..., W;, be irreducible unitary V-modules in F U F. Let Yy, ..., Yy, be a chain of
non-zero irreducible unitary intertwining operators of V with charge spaces Wi, , ..., W;  respec-
tively, such that W;, is the source space of YV,, and W; is the target space of Y,,. Choose I €
J(SN{=1}),(I4, ..., I,,) € O,(I). Fix non-zero homogeneous vectors woil) e Wiy... ,w((]i") €

Wi... Then for any | € Z=q, vectors of the form
711§ () Voo (W™ fus - 30§, fryw', (6.9)

span a coreforfgl, where x € My ([)g, f1 € CP(11), ..., fn € Cgo(ln),w(j) e Wj.

Proof. Let W be the subspace of 7-[%? spanned by vectors of the form (6.9). We first show that W,
is a dense subspace of H;;.

The first step is to show that Wj- is invariant under the action of the conformal net My,. Choose
an open interval J = I, and choose § > 0 such that v(¢).J < I forany t € (6, ). Fix £9) € Wi,
Then for any w() € Wi,m € Zso,&1,...,%m € My(J)w, fi € CC(I1),..., fn € CF(In), wWe

have

<$m s x2$1y0n-~~02,i(wéin)a fn§ e ;w(()il)7 fl)w(j)|§(”)> =0. (6.10)
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Choose € > 0 such that the support of

i = exp(it(A o = D)e(t)fa

is inside I, for any ¢ € (—¢,e) and any a = 1,2,...,n. Then, by proposition 5.11, for any ¢ € R

we have

<xm$ ZtLOyO'n 0‘272.]( n)ufnv"w (()7’1)’f1)w(3)|€(l.7)>

(@m0 Voo (WS LY o@Dy, ©6.11)

which must be zero when ¢ € (—¢,¢). Therefore, as in step 1 of the proof of theorem 4.8, the
Schwarz reflection principle implies that (6.11) equals zero for any ¢ € R. (Note that when we define
generalized smeared intertwining operators, the arguments are restricted to (—m, 7). Here we allow
the arguments to exceed (—, 7) and change continuously according to the action of v(¢).) Hence
we conclude that equation (6.10) holds for any t € R, w(?) € Wi, x1,...,2m € My(J)w, f1 €
CP(t) 1), ..., fne CP(x(t) ).

We use similar argument once more. Choose any w e Wi, to,t € R,xq,...,2y €
My (), fr € CP(x(to) 1), ..., fn € CL(x(to)I,). Then by proposition 5.11 and equation (4.6),

we have

<Z13m"'«772 ZtLOﬂ'z (xl)yan O’Q,Z.j( ’fna‘-';w(()il)vfl)w(j)|§(ij)>
=<xm-"$2'€itf°7fij(3?1) ltLOyan a1 (W (i) fhswg ™ fDe itLo w9y

(i1)
W
(() ft) ZtLow(])|£ Z] > (612)

=Xy * - T2+ Ty (eitf‘)xle*itf")ygn..mﬂ; (w(()i"), fho..
If t € (=8,6), then e*Log e=iLo € My (¢(t)J)w © My (I)w, and hence (6.12) must be zero.
So the value of (6.12) equals zero when t € (—6,6). By Schwarz reflection principle, (6.12)
equals zero for any ¢ € R. Since the choice of ¢y is arbitrary, we conclude that equation (6.10)
holds for any tg,t1 € R,z1 € My(t(t1)J)e, 22 € My(J)ew,...,Tm € My (), w") €
W;, fr € CX(x(to) 1), ..., fn € CP(¥(to)]5). The same argument shows that equation 6.10 holds

for any to,t1,t2,...,tm € R,w(j) € Wj,:):l € Mv(t(tl)J)oo,l'Q € Mv(t(tQ)J)oo,...,iL‘m €
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My (t(tm)) oo, f € CP(x(to)11),..., fn € CP(x(to)I,). Hence, by proposition 4.2 and the

additivity of My, the equation
<xm e xlycrn'"og,i(w(()in)v fna -y w(()il)v fl)w(])|£(”)> =0 (613)

holds for any m € Zso,J1,...,Jm € JT,z1 € My(J1),...,2m € My(Jn),f1 €
CP(I), ..., fn € CP(I,), w9 e W;, £9) € Wi-. This proves that Wi~ is My -invariant.

Now suppose that Wi~ is non-trivial. By corollary 4.4 and remark 5.8, Wi is the closure of a
non-trivial V-submodule of W;;. Thus there exists a non-zero vector w() e Wi n Wf- For any

fre CP(L),. .., fne CX(I,),wV) € W;, we have

Do iy (W™ iy wl™ | ) w® @y = 0. (6.14)
Fix z1 € I1,...,2, € I,. Foreach 1 < m < n we let f,,, converge to the J-function at z,,. Then
we have

Oz (W™ 20wl 2w @ [w)y = 0 (6.15)

for any w9} € W;. By proposition 6.1, w(™) equals zero, which is impossible. So WW; must be
dense.

Now we show that WV is a core for fol. Choose an open interval K cc [, and (K1,...,K,) €
O, (K), such that Ky << I, ..., K, o= I,,. Let W be the subspace of #;? spanned by vectors

of the form
Wij(x)yan---ag,i(w[(]in)a fnio e ;w(()il)7 1w,

where 2 € My (K)o, f1 € CP(K1), ..., fn€ CP(K,), w9 € W;. Then clearly W is also dense
in #H;;. Choose € > 0 such that for any ¢ € (—e¢,€), t(t)K < I,v(t)Ky < I1,...,t(t)K,, < Ip.

Then by proposition 5.11, eMTOWQ < W;. Hence, by the next lemma, W is a core for fol. ]

Lemma 6.3 (cf. [CKLW15]lemma7.2.). Let A be a self-adjoint operator on a Hilbert space H, and

let U(t) = et € R be the corresponding strongly-continuous one-parameter group of unitary
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operators on H. For any k € 7=, let H* denote the domain of A*, and let H® = ﬂkeZ>0 HE.
Assume that there exists a real number € > 0 and two dense linear subspaces 9, and 9 of H* such

that U(t)D. < 9D for any t € (—¢, €). Then, for every positive integer k, 9 is a core for A,

6.2 The sesquilinear form A on W; x] W;

Beginning with this section, we assume that V' is unitary, energy bounded, and strongly lo-
cal, and that there exists a non-empty set F of non-zero irreducible unitary V'-modules satisfying
condition A or B.

Choose unitary V-modules W;, W; in 7. We now define, for any k € £, a sesquilinear form
A = A(:]") on V(k)* (antilinear on the second variable). Choose a basis {V, : « € @’?-} of
V(”) Choose z1, z9 € C* satisfying 0 < |22 — 21| < |21| < |22|- Choose arg z9, let arg z; be
close to arg z9 as zo — 21 — 0, and let arg(z2 — 21) be close to arg z9 as z; — 0. By fusion of
intertwining operators, there exists a complex NJ x NJ; matrix A = {A*7}

@ @

any w, ’,wy’ € W; we have the following transport formula (version 1):

o,BeOF > such that for
) ij

Y: (yP, (wg), 29 — zl)wgi), 21)

=3 > AYse(wl?, 29) Valwl?, 21)

ke€ o ,3(;@}&

= ), A Vor (@S, 25) Vo, 21). (6.16)

« BG@’}‘

The matrix A is called a transport matrix of . Let {JVJO‘ ta € @k } be the dual basis of 9

then define a sesquilinear form A(-|-) on V(ikj) * by setting
A*PP) = AP, (6.17)

It is easy to see that this definition does not depend on the basis chosen. These sesquilinear forms

induce one on the vector space W; [x] W; = @kes V(ikj)* Q Wit if k1,ko € £ n ,371 €
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V()" e e V()" wt) e Wi, wh2) e Wy, then

. - AP w®D) [wE2)y i by = ko,
A ®w(k1)‘y2®w(k2)) - (V1]372)C | ) ! 2 (6.18)
0 if ky # ko.

In the next section, we will prove that A is an inner product.

Remark 6.4. Our definition of transport formulas is motivated by A.Wassermann (cf. [Was98]
section 31). In that paper, transport formulas were defined, using smeared intertwining operators,
only when the fusion rules are at most 1. So transport matrices become transport coefficients.
Proving the strict positivity of these coefficients is one of the key steps to compute the Connes
fusion rules of representations of type A,, unitary WZW models in [Was98]. Unfortunately, it is not
easy to generalize this proof to other examples.

The non-negativity of the transport coefficients in [Was98] was proved by computing explicitly
the monodromy coefficients of the solutions of differential equations (2.5) (in the case of WZW
models, the Knizhnik-Zamolodchikov (KZ) equations). In the case of [Was98], these equations
reduce to a generalized hypergeometric equation, the manipulation of which is still possible. For
other examples, say type Go WZW models, these differential equations are so complicated that
computing the exact values of transport coefficients becomes very hard.

On the other hand, one might think of showing the nonzeroness of transport coefficients (or the
non-degeneracy of transport matrices) without computing their exact values, and it turns out that this
task is directly related to the problem of proving the (weak) rigidity of the braided tensor category
Rep(V) (see step 3 of the proof of theorem 6.7). A general proof of the rigidity of Rep(V') does
not exist until the significant works of Y.Z.Huang [Hua05b], [Hua0O8a], [HuaO8b]. In these works,
Huang proved the modular invariance of genus 1 (chiral) correlation functions of V, generalizing
the partial result of Y.C.Zhu [Zhu96], and used this theorem to solve the rigidity problem. It was
Huang who first noticed that the rigidity of Rep(V), a purely genus 0 phenomenon, is related to the
modular invariance of genus I correlation functions. We refer the reader to [HL13] for a discussion
of this issue.

Generalizing the positivity result of [Was98] is no easier. Wassermann’s argument can be used

to prove the positivity of A on V (Zk]) " whenie F , 1.e., when all intertwining operators with charge
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space IW; are energy-bounded. The reason was explained in the introduction of part I: when inter-
twining operators are energy-bounded, the smeared ones are thus preclosed, so they can be approx-
imated by bounded operators intertwining the actions of My (I). The problem is that one cannot
always show the energy-boundedness of all intertwining operators. In the case of type A,, unitary
WZW models, only those whose charge spaces have the lowest conformal dimension (the vector
representation) were proved energy-bounded. It is for proving the general positivity of transport
matrices that we introduce and study generalized (smeared) intertwining operators in our papers.
The sesquilinear form A is also closely related to the non-degenerate bilinear form constructed

in [HKO7]. This will be explained in section 8.3.

For any k € £ n F¥, since W}, is irreducible, we have Né‘“k =N lfo = 1. That the sesquilinear
forms A on V(Okk) “andon V ( kko) * are positive definite can be seen from the following two fusion

relations:

Y}, (Y(u, Z9 — 21)0, zl) = Yi(u, 22) Y (v, 21), (6.19)

Y (02, (w$, 25 — 21w, 21) = 2 (Wi, z) V(i) 21), (6.20)

where u,v € V, and wgk), wgk) € Wy. The first equation follows from proposition 2.13, and the

second one follows from proposition 2.17. (Note that these two fusion relations hold for any V-
module W;.) Moreover, the dual element of Y}, is an orthonormal basis of V(Okk) *, and the dual
element of Y}, is an orthonormal basis of V( kko) .

We derive now some variants of transport formulas.

Proposition 6.5. Let I € J. Choose distinct complex numbers z1,z2 € 1. Choose zy € I°¢
with argument argzo. Define a continuous argument function arg; on I, and let argz; =
argy(z1),arg 2o = arg;(22). Let W;, W; be unitary V-modules in F™.

(1) Let Wy, W, be unitary V-modules in F¥, and choose Y, € V(jTS). Then for any wgi), wgi) €

Wi, wl) g W, we have the braid relation

) X 8wl )

a,ﬁe@fs
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( Z Aaﬁyﬁ*(UJQ’ )ya( , ))y’y( G) ZO) (6.21)

a,Be0¥

(4)

(2) For any w;’,w ( ) e W; and w9 € W;, we have the transport formula (version 2)

Vi 20>y0<w2  20) Vi (w!?, 21)

< > AP Y (WS, 22) V(w2 )) (w9, ). (6.22)

,56@*

(3) If arg zp < argzo < argzg + 2w, then for any wg) e W;,w e W;, we have the transport

formula (version 3)

V@D, )2 20) = 3 A Ygu (), 29) V5, o (0, 20). (6.23)
a,fe0;

If arg z9 < arg zp < arg zo + 2m, then equation (6.23) still holds, with B, « replaced by B_a.

Proof. (1) By rotating z1, zo along I and changing their arguments continuously, we can assume
that 0 < |z1 — 23] < 1. Then clearly argz; is close to arg zy as zo — 21 — 0. We also let
arg(zy — z1) be close to arg z3 as z; — 0. Then by equation (6.16), proposition 2.13, and theorem

5.2, we have

) (5 Al el )

a,BE@*
2, (), 20) Yy (2w, 2 — 2)w?, 21) (6.24)
=Y, ()% (wé),ZQ—zl)wp,zl)y,y( D, 20) (6.25)
( S AV (wf), z2)Vawl?, 1))yy<w<”,zo>,
a,Be0F

where (6.24) and (6.25) are understood as products of two generalized intertwining operators (see
the beginning of chapter 5). This proves equation (6.21).
(2) Equation (6.22) is a special case of equation (6.21).

(3) If arg 29 < argzg < arg zg + 2w, we choose 21 € S'\{—1} close to 23 and let arg z; be
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close to arg z5 as 21 — z2. Then by equation (6.22), corollary 2.18, and proposition 2.11, we have

yfo(w(”» ZO)yg(wg), 22) iio(wgi)7 21)

= Y AW (wl, 20) Vi, 0w, 20) Vg (wf”, 21).
a,Be@fj

By proposition 2.3, we obtain equation (6.23). The other case is proved in a similar way. O

6.3 Positive definiteness of A

Let W;, W; be unitary V-modules in 7%, and let Wy, be in £ N as before. We prove in this
section that the sesquilinear form A on V(ikj) " is positive definite. One suffices to prove this when
W;, W; are irreducible. Indeed, if W;, W; are not necessarily irreducible, and have orthogonal

decompositions W; = W;, @ W;, @ --- @ W, , W; = W;, @ W,, @ --- @ W,,,. Then clearly

the unitary V-modules Wi, ..., W; W, ..., W, arein F*. It is easy to see that the transport
matrix for V(ikj) * can be diagonalized into the mn blocks of the transport matrices for V(Z. kjb)

1 <a<m,1<b<n). Therefore, if we choose W;,,..., W, |

Wi, ..., Wj, to be irreducible,
and if we can prove that the transport matrix for every V (z‘akjb) s positive definite, then the one for
1% (lk]) " is also positive definite.

So let us assume that W;, W; are irreducible. We let V,(;) = y;’o and Vi) = yjfo. Then
yn(i)* = yg,yﬁ(j)* = ngj. Since W; (resp. W) is in F™ there exits unitary V-modules
Wiy, Wi, (resp. Wi, ..., W, )in F U F, such that W; (resp. W;) is equivalent to a sub-

module of W; =W, X--- X W; (resp. Wj, ...j;). Therefore, we can choose a chain of

N
non-zero irreducible unitary intertwining operators V., . . ., Vo,,, (t€8p. Vp,, ..., V), ) with charge
spaces Wi, ,..., W;  (resp. Wj,,..., W, ) respectively, such that W;, (resp. W) is the source
space of ), (resp. V,,), and that W; (resp. ;) is the target space of )V, (resp. V,,,).

Fix non-zero quasi-primary vectors wit) e Wi,y ,w(im) e W;,., wli) e Wi, ... ,w(j") €
W;j,. If F satisfies condition B, we assume moreover that w() e EY(W;),...,wlim) ¢
EY(W;,),wi) e EYW,,),...,wbn) e EYW,,). Choose disjoint open intervals I,.J €
J(SY™\{-1}), and choose (I1,..., 1) € Oun(D), (J1,...,Jn) € On(J). We define two sets

A = My(l)w x CP(I1) x --+ x CP(In) and B = My (J)e x CL(J1) x -+- x CL(Jp).

104



For any a = (x, fi,...,fm) € Aand b = (y,91,...,9n) € B, we define two linear operators

Afa) : Hi® — H;° and B(D) : Hg” — Hj° as follows: if ¢0) e HX then

A(@)EQ = 15(2) Vs iy (W™, fis w0, 1)@ (6.26)

BO)E = 75(1) Vo pon(i) (@I, g w1, 1)), (6.27)

By proposition 5.9, the formal adjoints of these two linear operators exist.

Lemma 6.6. For any N € Z~q, a1,...,any € A, b1,..., by € B andfgo), - (0) € ", we have
> (Bb)Alar) Aa )€ Bb)E™) = 0. (6.28)
s,t=1,...,.N

Proof. Suppose that

N (B(b)Alar) Alas) e B(0)E”) ¢ [0, +00). (6.29)

s,it=1,....N

Then we can find € > 0, such that for any 7 € [0, +00),

S (Bbs)Alar) A(a )P |B(br)E) — 7| > . (6.30)
s,it=1,....N

By proposition 5.10, for any € My (J¢) and r = 1,..., N, we have 7;(x)B(b,) < B(b,)mo(x).

We also regard B(b,) as an unbounded operator on Ho @ #;, being the original operator when

restrict to H, and the zero map when restricted to H;. We let = act on Ho @ H; diagonally (i.e.,

x = diag(mo(z), 77(x))). Then zB(b,) c B(b,)z. Since z* also satisfies this relation, elements
in My (J¢) commute strongly with B(b,.). Therefore, if we take the right polar decomposition
W = K, V, (where K, is self-adjoint and V, is an partial isometry), then My (J¢) commutes
strongly with V,. and K,. We let K, = Sf;’ AdQ@;(\) be the spectral decomposition of K. Then
for each A > 0, Q,(\ S dQ,(p) commutes with My, (J¢). Therefore, the bounded operator
m commutes with My (J€), i.e., m € Hom vy, (jey(Ho, H;)-
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Now we choose a real number M > 0, such that for any s,t =1,..., N,
| B(b)A(ar) Ala )&V |1< M, B lI< M. (631)

Foreachr = 1,..., N, since the projection @, (\) converges strongly to 1 as A — +o0, there exists

A > 0, such that foranyt =1,..., N,

€
AMN?’

1BGIE = QrA)BGIEY 1< s (6.33)

|B(br) Alar) Alar)&® = Qs (Ar) B(br) Alar) Alar)& | <

(6.32)

We let B(b,) = Qr(\r) B(b;) € Hom vy, (yey(Ho, H;), then the above inequalities imply that
(B Alar) Ala) VB = (B Aa) Ala)e Bl )| < 5. (634
s,t s,t

Now, for any 1 < r < N, since B(b;) € Hompy,(je)(Ho,H;), we also have
B(b,)* € Hompyg,(jey(Hj, Ho). Thus, for any 1 < s, < N, we have B(bs)*B(b:) €
End v, (ey(Ho) = My (J¢)'. By Haag duality, B(bs)*B(b) € My (J). By proposition 5.10,

7 (B (bs)*B(br)) A(ar) = Alar)B(bs)*B(by). In particular, B (bs)*B(by) Z(A(ar)) = 2(A(ayr)).

Since £t(0) eHE < Z(A(ar)),

B (bs)*B (b)) € B(ba)*B (1) 2 (A(ar)) © Z(A(ar)). (6.35)
Therefore,

(B(bs) Alar)t Aas)e B (b))
=(Aar)T A(as) €8 (bs) B (b))

=(Alar)" - Alag) €0 |B (bs) *B (b))

=(A(as) e Aar)B (bs)* B (b)) (6.36)

Let A(as) = HgUs; be the right polar decomposition of A(as), and take the spectral decomposition
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H, = Si;‘g kdPs(k). Then for each s, we can find ks > 0 such that

DAL TA)Bb)" B = Y @Aa)Ma)Bb,) BN < 5, (637)

s,t
where (as) = Ps(rs)A(as) € Hompgrey(Ho, Hi). Note that (as) and B(b;) are bounded

operators. Set

7= Y UA(a:)EQ [ A(ar)B(b,)* Bb)E"Y = Y (B(ba)A(ar) Wa)eDBHIE).  (6.38)
s,t

s,t

Then by inequalities (6.34), (6.37), and equation (6.36),

<e. (6.39)

N(B(bs) Alar) Alas)eQ[B(b)e "y —
s,t

We now show that 7 = 0, which will contradict condition (6.30) and thus prove inequality
(6.28). Let M (N, C) be the complex valued N x N matrix algebra. By evaluating between vectors
in HPN, we find that the My (I)-valued matrix [2(a;)*?(as)] v v is a positive element in the von
Naumann algebra My (1) ® M (N, C). So [m; 1(A(a¢)*A(as))|nxn € 75 1(My (1)) ® M(N,C)

is also positive. Therefore, if for each s we define a vector ns = %(bs)fgo), then

> 0 (A ar) *A(as))ms|ne) = 0. (6.40)

s,t

Since B (bs) € Hom py,, (sey(Ho, Hj) © Hompy,, 1y (Ho, H;), we have

B (bs)2A(ar)*A(as)E0 = 7 1 (A(ar) *A(as)) B (bs)E = 7)1 (A(ar)*Aas))ms. (641
Hence

7= 2t<%<bs>at<at>*m<as>§§0>|%<bt>f§°>> = Zt@rj,mm(at)*m(as))ns|m> >0, (642)

O

Theorem 6.7. Suppose that V' is unitary, energy bounded, and strongly local, and F is a non-empty
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set of non-zero irreducible unitary V-modules satisfying condition A or B. Let W;, W; be unitary
V-modules in FX. Then the sesquilinear form A on W; W; is an inner product. Equivalently,
for any irreducible unitary V -module Wy, in € N F¥, the sesquilinear form A on V(ik j) " is positive

definite.

Proof. As argued at the beginning of this section, we can assume, without loss of generality, that

W;, W are irreducible.

Step 1. We first show that A is positive. For each k € £ n F, we choose a basis {), : a € @fj}
of V(ikj), let {JV/O‘ fa € @Z} be its dual basis in V(Z.kj) *, and define an inner product on V(ikj)*
under which {Jv)a o€ @fj} becomes orthonormal. We extend these inner products to a unitary
structure on W;; = @, V(ikj) * ® Wy, just as we extend A using (6.18). As usual, we let H;; be
the corresponding M,-module. The sesquilinear form A on W;; defined by (6.18) can be extended
uniquely to a continuous sesquilinear form A on the Hilbert space H;;.

Choose intertwining operators  Ve,, ..., Vo, s Vpos -+ -3 Vp,» disjoint open intervals
LJ (I....I,) € On),(J1,...,Jn) € On(J), and non-zero quasi-primary vectors

w) | wlm) @) ) as at the beginning of this section. By proposition 6.2, for each

l € Z=o, vectors of the form
BO)ED = 751 V() @09, gi 5wl g1)e®) (6.43)

span a core for LT)Z in H®, where b = (y,91,...,9,) € B, and £ ¢ H. For any

] b
a = (z,f1,...,fm) € A, we define an unbounded operator A(a) : H; — H;; with domain

© .
H;” to satisfy

~

Ala) = 11 (2) Voo i (W™, frs 5wl ). (6.44)

Then, by inequality (5.43), vectors of the form (6.43) span a core for A(a). Therefore, by proposi-

tion 6.2, vectors of the form

¢ = 31 Aas)B(by)El” (6.45)



form a dense subspace of #;;, where N = 1,2,..., and for each s, ay = (zs, fs1,..., fs,m) €
A, bs = (Ysy Gs1s---59sn) € B, and £§0) € Ho. If we can prove, for any £(4) e H;; of the form
(6.45), that A(£09)|¢(9)) > 0, then A is positive on W; [x] V.

Step 2. We show that A(£(9)|¢()) > 0. Let us simplify the notations a little bit. Let () =
(W), wim)) & = (59,...,0m), fs = (fsis---» fsm). If Yo is an intertwining operator

whose charge space, source space, and target space are inside 72, then we set

y&',a(w)(ayﬁ) = yom-nag, ( im) fs msi .- fs 1) (646)

Similarly, we let a0 = (w(jl), . ,w(jn)),ﬁ = (p2,---sPn)sGs = (gsi,---:Gsn)-
Vir() (w(;), Js) is defined in a similar way.
Assume, without loss of generality, that [ is anti-clockwise to J, i.e., forany z € I,( € J, we

have —m < arg ( < arg z < 7. By proposition 5.10, forany s = 1,..., N,

A(as)B(bs) = 25V (5D, F2)ysVsniy (39, Gi)

= Y V@2 Vs @, f)Vin (@D, 50). (6.47)

®
ae@ij

Soforanys,t=1,...,N,

A(A(as)B(b:) §0>|ﬁ<at>B<bt>5§°>)

= 2 Aa6<x5ysy6’,a( f )yp, ( )7§S go)‘xtytyﬁ,ﬁ( f)yp, 0)>
a,ﬂe@fj

= Z Aaﬁ<yaﬁ ft Ty xsysya Oé( ")>fs) (u_j ags 5(0 ‘yt _’G‘):gt) §O)>
aﬁe@*

= 3 AP (@D, Pt rsys Ve (@D, Fo)Vpnin (@9, G)EQBBEDY.  (6.48)
a,fe0;

By corollary 2.18 and theorem 5.12,

N A 50D, F) sy Ve o@D, F) Ve (0D, G0)
a,ﬁe@fj
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Z Aaﬁyc?, _> ft) Ty 'IsysypB a( (_‘)ags) ()(u_j(Z)’ _;)

a,,@e@fj
= 3 A Ve (0D, ) V5@, G)3F Vs (i), Fo). (6.49)
a,BG@fj
By theorem 5.13, for each [ = 2,...,m, there exists an intertwining operators &; having the

same type as that of oy, such that (5.59) holds for all )}, whose charge space, source space, and
target space are unitary V-modules in FX. Let hii = AL G (eg_gA' (il)ft71)7 N

w(im) (6272Aw(’im) ft,m)- Set Et = (ht,17 ceey ht,m); Et = (m7 ceey ht,m)’ U_;(Z) =
(w(@), ... w(m)). Then (6.49) equals

iTA
e

—

2 A“ﬁysw (D, )V, 0 (@D, G2t 25V () (@D, ). (6.50)

By equation (6.23) and theorem 5.12, (6.50) equals

YsVin() (@, G5) Vs 010 (@D, h)2F 25V (o) (@, ), 6.51)

which, due to equation (5.59), also equals

—

Ys V() (W, Go) 5,5(1‘)(@3@7 FOter s Vs oy (@9, fo)
=B(bs)A(ar)" A(as). (6.52)

Substitute this expression into equation (6.48), we see that
A(A(as) Bb,)EM [ A(ar) B(bo)&”) = (B(bs) Alar) Ala )& B(br)™). (6.53)
Therefore, by lemma 6.6,

MEDED) =P AR BOI K)o

s,it=1,....\N
= Y (B A(a) Aa)EP|B0)E”) > 0. (6.54)
s,t=1,...,N
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Step 3 (See also [HKO07] theorem 3.4). We prove the non-degeneracy of A using the rigidity of
Rep(V'). Since A is positive, for each k € £, we can choose a basis G)Z-, such that the transport

matrix A is a diagonal, and that the entries are either 1 or 0. Thus, we have the transport formula

V00w, 2 — 2wl 21) = 3 Aadar (), 22)Valw?, 21), (6.55)

ae@*

where each A, is either 1 or 0. For each k € &, we let n - be the number of a € @k satisfying
Ao = 1. Then clearly nij < NZ; If we can show that ni NZ, then the non-degeneracy of A
follows.

Since W; is irreducible, we have Ng = Néi = 1. So there exists a complex number p; # 0
such that yg represents the morphism p;ev; : W>[X1W; — V. We also regard ), as a morphism
Wi xIW; — Wy, and Y4+ a morphism W; [X] W), — W; (see section 2.4). Then equation (6.55) is

equivalent to the following relation for morphisms:

pi(evi ®id;) = X7 >0 Ao 0 (id; ® Va). (6.56)

ke€ aeok

By equation (2.64),

,U,Z‘(idi 9] idj) :,ul-[(idi ) evi) o (COQVZ' & ldz)] ® idj
=p;(id; ® ev; ®id;) o (coev; ®id; ®id;)

= 7 Aa(idi ® (Var o (id; ® Va))) © (coev; ®id; ®id;)

ke ae@fj

= 2 Z )\a(idi ® ya*) O (ldz ® ldz @ ya) o] (COGVZ‘ @ ldl ® ld])
ke ae@fj

= Z Z )‘a(id’i ®ya*) o (COeVZ' ®ya)

ke ae@fj

=37 3" Xalid; ® Vax) o (coev; ®idy) o (ido ® Va).

ke ae@fj

This equation implies that the isomorphism p;(id; ® id;) : W; X W; — W; ] W; factors through
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the homomorphism

® @
o:> > i ®@Va:WiHW, - W =P D W
ke& aE@fj,Aaio ke&E ae@fj,ka;&o

So ® must be injective, which implies that W; [x] W; can be embedded as a submodule of 1¥. Note

that W; I W) ~ @ W, ¥ and W =~ @, W~ 7. So we must have nfj > NE O

ij*
Remark 6.8. The problem of the positivity of A is a stated in the pure language of vertex operator
algebras. However, as we have seen, its proof relies heavily on conformal nets and operator algebras.

It is interesting to notice that a problem in algebra is solved using ideas and techniques in functional

analysis.
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CHAPTER 7

UNITARITY OF THE RIBBON FUSION CATEGORIES

In this chapter, we still assume that V' is unitary, energy bounded, and strongly local, and that
F is a non-empty set of non-zero irreducible unitary V'-modules satisfying condition A or B. If
W;, W; are unitary V-modules in F™. then by theorem 6.7, for each k € £, the sesquilinear form A
onV ( ik j) * defined by the transport matrix is an inner product. Therefore, we have a unitary structure
on defined by A (see section 2.4). We fix this unitary structure, and show that the ribbon fusion
category Repyx (V) is unitary.

We first note that the inner product A on V(Z.kj) * induces naturally an antilinear isomorphism
map V(ik.) - V(Z.kj) *. We then define the inner product A on V(Zk) so that this map becomes
anti-unitary. Then a basis 6’“ c V( ) is orthonormal if and only if its dual basis is an orthonormal

basis of V(i ) Therefore, if for each k € £ n FX, @k is an orthonormal basis of V( ) then the
transport formulas (6.16), (6.21) and (6.23) become

Y, (00w, 2 — 2wl 21) = 3 Vas(wd), ) Va(w?, 21), (7.1)
ae@*
% ( 3 Vs (@), 22)Velul?, 2 ) ( 3 Vs (@, 22) Vi (l?, 2 ))%(w@zw,
aG@* OcE@*
(7.2)
Vi, 202w, 29) = 3 Vo (0, 22) Y, 0w, 20). (7.3)
ae@*

7.1 Unitarity of braid matrices

For any unitary V-modules W;, W, in 7>, and any s, ¢ € £ n 7™, we choose bases O}, O ; of

is?

V(lt ), V( Stj) respectively. Now fix 4, j € F¥, we also define

18

62** = H 62576 = ]_[ 62]

s,teENFX s,teEnFX
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Choose distinct z;, z; € S1, and let arg zj < argz < argzj + 2m. Forany a, o’ € ©F,, 3,5 €

@*

> if either the source space of ), does not equal the target space of Vg, or the target space of

Yo does not equal the source space of Vg, or the target space of ), does not equal the target space
of Vg, or the source space of Vg does not equal the source space of )/, then we set (B+)§,ﬁ“/ =

0; otherwise the values (BJF)EIBO‘/ are determined by the following braid relation: for any w() €

Wi, wl) e W,
Va(wD, 2)Va(w), 2;) = D (BT Ve (wD, 2) Var(w, zy). (7.4)
o e@:“*,ﬂ’e@*
, e* 7
The matrix (B );; = {(B+) }Zeegg”iﬁie*]* is called a braid matrix. The matrix (B_);; =

1o/ €O Be@F . .. .
{(B )ﬁ }aee*’*ﬁe@,ﬁ* is defined in a similar way by assuming argz; < argz; < argz; + 2m.
Q%) jx

Clearly (By );; is the inverse matrix of (Bt );i.
Proposition 7.1. For any a, o’ € ©,, 3, 5’ € ©%,, we have

J®

ﬁ/ / a/*ﬁ/*

(B1) af = (BJ?)IQ*Q* . (7.5)

Proof. Choose distinct z;, z; € S1, and let arg zj < argz; < argzj + 2m. Then for any w® e

Wi, w) e W;, the braid relation (7.4) holds. Taking the formal adjoint of (7.4), we have

VoD, 2)) Ve (w, 2)T = 37 (B Var(w®, 2) Vg (), 2))1. (7.6)
al7ﬁl

By equation (1.34), for any w(®) € W;, w() € W; we have

Vi (W), ) Vorr (W, 23) = > (BL) 5 Vo (D), 2) Vs (w), 25). (1.7)

a,7/BI
But {(B_)3 ﬁ* A } is also the braid matrix for the braid relation (7.7). So we must have (B+)ﬂ ; =
(B,)B:f* .If we let arg z; < arg z; < argz; + 2m, then we obtain (B_ )B o (B+)B;*f,;*. O

Proposition 7.2. If the bases O @”f* are orthonormal under the inner product A, then for any

%)
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a,d €0F,, 6,0 € O7,, we have

* ok

77 % af
(Bi)gﬁa = (Bi)gag = (Bi)gl*ﬁl*' (78)

Proof. Choose distinct 21, 22, 23, 24 € S with arguments arg z; < argzy < argzz < argzy <
arg z1 + 2. By relation (7.2), for any k € £ n F¥, wq, w5 € Wi, w1, we € Wi, w3, wy € W;, we

have, following convention 2.19,

2 <y,3* (W, 24) V(w3 23) Vors (W2, 22) Vo (wr, Zl)wo‘w5>
o/e@;"*
ﬁe@;“*

= 2 <y,3*(UT4,24)ya*(W2,Zz)ya(wl,21)yﬁ(w3723)w0‘w5>- (7.9)
« @**

By exchanging ), and Vg, (7.9) equals

S0 (B2 (Ve (W, 20) Ve (3, 22) Vi (g, 20) Ve (wn, 21wl ). (7.10)
a,a’e®f,

B.pe0*,

By proposition 2.3, we have

Va(ws, 23)Vors (W3, 22) = Y. (Bo)3 S Y (W3, 22) Vg (w3, 23). (7.11)
o, €0F,

B,8'€0%,
This proves that (B+)gzxﬁ*, = (B—)glﬁal'

Similarly, we also have

Z <375* (Wa, 24) Ya(ws, 23) Vors (W2, 22) Vor (w1, Zl)wo‘w5>
a’e@f*
,Be@;‘*

= Z <yo/* (W2, 22) Ve (Wa, 24) Ve (w3, 23) Vor (w1, Zl)wo‘w5> (7.12)

lcO*

o'€e0F,
IcO*

B'eOF,
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= Z (B- )a,*51*<3},3* (W, 24) Yar (W2, 22) Vg (w3, 23) Vo (w1, 21) wo‘w5> (7.13)
a,a'€e®F,
Baeer,

* ok

which implies that (B.)j ;B* = (B,)g,*ﬁl*.

If 21,29, 23,24 € S! and their arguments are chosen such that arg 2z, < argzz < argzo <

* * *

arg z1 < arg z4 + 2m, then the same argument implies that (B+)g/ﬂ = (B- )ga,* = (B+) ’*6’*

O

Corollary 7.3. If the bases O @’-“* are orthonormal under the inner product A, then the braid

[ES)

matrix (B );j is unitary.

Proof. If we apply propositions 7.1 and 7.2, then for any a, &’ € O, 3,5’ € O7,, we have
! o/ B*a* a3
(Bi)g[? (B+) '*ﬁ'* = (B$)g/‘;/7 (714)

which shows that (B+);; is the adjoint of (B );;. But we know that (B );; is also the inverse
matrix of (B );;. So (By )i; is unitary. O
7.2 Unitarity of fusion matrices

X

Recall from section 2.4 that for any W;, W;, Wy, W; in FX we have a fusion matrix

{Fﬁ o }z:e@t” ’5622*'“ defined by the fusion relation
ya(w(i), Zz‘)yﬂ(w(j)’ zj) = Z Fo%a’yﬁ, (ya/(w(i)7 2 — zj)w(j)7 zj), (7.15)

! * 0 t
« e®ij’ﬁ €O,

where z;, z; € C*,0 < |z; — 2| < |zj| < |2, arg z; is close to arg z; as z; — z;, and arg(z; — z;)
N4

is close to arg z; as z; — 0. We let Ff Ba = ( if the source space of ), does not equal the target

space of Vg, or if the target space of ), does not equal the charge space of Vg . In this section, we

show that fusion matrices are unitary.

Proposition 7.4. Choose unitary V -modules W;, Wy, in F%, Wi, Wiin € n FX. Then for any for
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any € O, B € @;’.‘k,a € OF

Z],B’ € O, we have

7 1 B ,’ ’ B ,’ ,
Fl = B0 =B gs (7.16)

Proof. Choose distinct z;, 2, 2, € S! with arguments arg z;, < arg zj < argz; < arg zj + 2w, and
assume that 0 < |z; — z;| < 1. Choose w® e Wi,w(j) € Wj,w(k) € Wy. By corollary 2.18, we

have

y( Zz)yﬁ( Zj)ykl)( (k)azk)
=Va(w®, 2) Vg, g(w®), 2) Vo (wD, 25)
= Y BB Ve, ) (w0, )V (w0, 2). (7.17)

IO
o'e0F,
/e
e,

On the other hand, by corollary 2.18 and theorem 5.2,

y( Zz)yﬁ( Zj)yko( (k)azk)
=SS BV (Vw2 — 2w, ) Vo (w®), zp) (7.18)

s€€ a e@SJ
pedt,

=3 N F Ve a(w®, ) Vi (Var (0, 2 — 2j)w'D, 25), (7.19)
s€€ /€0,
B’ eegk
where (7.18) and (7.19) are understood as products of two generalized intertwining operators (see

the beginning of chapter 5). By proposition 2.17, (7.19) equals

ST E Vg (), 2) Yo (0D, 2) Vi (WD), 2;). (7.20)
s€€ o/€O;
B’e@ék

Comparing this result with (7.17), we see immediately that Ff/;,al = (Bgf%il ’50‘,. If we assume at

the beginning that arg z; < argz; < argz, < arg z; + 2w, then we obtain FO%O/ = (B_)fjgﬁj’;/.

O]

Proposition 7.5. Let W;, W; be unitary V-modules in FX. Foreach k € £~ FX we let {Vo: €
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@]9} be a set of orthonormal basis ofv(]‘?) under the inner product A. Then B,LO}; = {Vp,q :

ae ek "} and B @ ={Vp o:acOf ;} are orthonormal bases ofV( J)-

Proof. Choose distinct z;, z; € S with arguments satisfying arg z; < argz; < argz; + 27. B
J g ymg arg g Zj g y

proposition 6.5-(3), for any w(¥) € W;, w?) € W}, we have

VgD, 2) W0 (w@, 2) = 3" Yax (D, 2)Vp_a(w?, 2)). (7.21)

ae@*

Take the formal adjoint of both sides, we obtain

W w®, z) Vw2 = 30 Vp_a(w?, 2) Var (w®, 2)". (7.22)

ae@*

Recall that yﬂf T =30 and ()°)T = Vi . Thus, by equation (1.34), equation (7.22) shows that
jo 77 (% 10 yeq q

Vio(w, z) V2w, ) = 37 Vip_ays (W), 2)Va(w, 2)

ae@*

S Y (w, ) Vg, 5w, z), (7.23)

ﬂeB_G);"j

which, by proposition 6.5-(3), shows that B_ @ is an orthonormal basis of V( ) for any k € £.
The other case is treated in a similar way. O

Blal & e@;"],/ﬁ €l

Corollary 7.6. For any W;, W;, Wy, in F2 and Wy in &, the fusion matrix { B }aeet 669* s
* b

unitary.

Proof. 1f W is irreducible, then W is unitarily equivalent to a unitary V-module in & N F™. The
unitarity of the fusion matrix follows then from propositions 7.4, 7.5, and the unitarity of braid
matrices proved in the last section. In general, the fusion matrix is diagonalized according to the
orthogonal decomposition of W; into irreducible submodules. Thus the unitarity can be proved

easily. 0
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7.3 Unitarity of the ribbon fusion categories

In this section, we prove that Rep (V) is unitary when the unitary structure on is defined
by A. By corollary 7.6, the associators are unitary. By proposition 7.5, the braid operators are
unitary. That \; : V XIW; — W; and p; : W; X1V — W, are unitary follows from equations (6.19)
and (6.20).

Choose Wi,, Wi,, W;,,W;, in FX. We show, for any F € Homy (Wi, ,W;,),G €
Homy (W;,, Wj,), that

(FQG)* = F* Q@ G*. (7.24)

Consider direct sum modules W; = W;, @+ W;,, W; = W,, @1 Wj,. For each k € &, it is easy to

see that V (ij) has the natural orthogonal decomposition
k = k
v(. > = @ V(_ ) (7.25)
¥ a,b=1,2 ta Jb
which induces the natural decomposition

1
P W, "BWj,. (7.26)
a,b=1,2

W; Wj

Therefore, if we regard I, G as endomorphisms of the modules W;, W; respectively, then F'® G
and F'* @ G* can be regarded as endomorphisms of W; [x] W;. Thus, it suffices to prove equation
(7.24) for any F' € Endy (W;), G € Endy (Wj).

Since Endy (W;) and Endy (WW;) are C*-algebras (see theorem 2.21), they are spanned by
unitary elements inside them. Therefore, by linearity, it suffices to prove (7.24) when F' €
Endy (W;), G € Endy (W}) are unitary operators. By equation (2.56), it is easy to see that F @ G

is unitary. Hence we have

(F*QG*)(F®G) = F*FQG*G = id; ®id; = id;, (7.27)

which implies that F* @ G* = (F ® G) ! = (F ® G)*. This proves relation (7.24).
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For each W; in FX, the twist 9; = €710 is clearly unitary. Hence, in order to prove the
unitarity of Rep'g (1), it remains to find ev;, coev;, such that equations (2.69) and (2.70) hold.

To prove this, we let ev, ; € Homy (W; x] W3, V') be the homomorphism represented by the
intertwining operator yg, and let coev, ; = ev’. Since i and i are identified, we can define ev;,; and
coevy; in a similar way. Set ev; = ev;;, coev; = coev,;. If we can verify, for all V; in FH, the

following relations:

(idi ®ev; ;) o (coev,; ®id;) = id;, (7.28)
(ev;; ®@id;) o (id; ® coevs ;) = id;, (7.29)
ev,; =ev;; 00,70 (¥ ®1idy), (7.30)
coev,; = (id; ® 191:1) o Uz‘_jl o coevy ;, (7.31)

then equations (2.64), (2.65), (2.69), and (2.70) are true for all W;, and our modular tensor category
is unitary.

To begin with, we define the positive number d; to be the norm square of the vector y% inside
% (Z.O;) ,i.e.,

di = | V. (7.32)

By propositions 1.14 and 7.5, d; = d;. The following property will indicate that d; is the quantum

dimension of W;.

Proposition 7.7.

ev,; 0 coev, ; = d;. (7.33)

Proof. First we assume that W is irreducible. Then {)?} is a basis of V(). Let {373} be its dual
basis. Then 37"‘ = di% 5)3 has unit length. Now, for any v € V, ev, ; maps JVJO‘ Qv e W; X W; to
e, Yov = di% <3VJZ%, Yo = di% v. It follows that its adjoint coev, ; maps each v € V' to di% VoQu.
Hence ev, ; o coev, :(v) = d;v.

In general, W; has decomposition W; = @ j W;., where each W;_ is irreducible. Let p, be
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the projection of W on W;,. Then the projection pg of W; on Wi- satisfies pyw( = paw(®

(w(i) e W;). It is easy to check that

ev;; Z ev; 79 (Pa ®Pa) = Z eV, inr (7.34)
a
coev, ; = Z(pa ®Pa) © coev, 7 = Zcoevlma (7.35)
a a
and d; = )., d;,. The general case can be proved using these relations. O

Now we are ready to prove equations (7.28)-(7.31).

Proof of equation (7.29). By equations (7.34) and (7.35), it suffices to prove (7.29) when W; is

irreducible. Choose wg ),wé) € W;. Choose z1, z9 € C* satisfying 0 < |z9 — 21| < |2z1] < |22].

Choose arg z9, let arg 21 be close to arg z5 as zo — 21 — 0, and let arg(ze — 21) be close to arg zo

1=

as z; — 0. Since \|y§i d; !, by transport formula we have

Yi(yQ(wg), Zg — Zl)wg ), 21)
() W, 2) 30 (w0, 21) + Yy (wl, 20) Vs, 21)

—d7 Vi, )0 (W, 21) + Yy (wl, 22) Vs, 21) (7.36)

where Vg, ), are a chain of intertwining operators, and the target space of )g does not contain any

submodule equivalent to the vacuum module V. Equation (7.36) is equivalent to the relation
(ev;; ®id;) = d; ' (id; @ evs ;) + Py o (idi ® V), (7.37)
where ), and )3 denote the corresponding morphisms. By proposition 7.7,

(ev;; ®id;) o (id; ® coevy ;)
=d; ! (id; ® ev;;) o (id; ® coevy ;) + Yy o (id; ® V) o (id; ® coevy ;)

=id; + Yy o (id; ® (Vg © coevy ;). (7.38)

Since Vg o coev; ; is a morphism from the vacuum module V' to a V-module with no irreducible
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submodule equivalent to V', V3 o coev; , must be zero. So (7.38) equals id;, and equation (7.29) is

proved. O
Proof of equations (7.28), (7.30), and (7.31). Take the adjoint of equation (7.29), we immediately

obtain equation (7.28). Equation (7.30) follows from equation (1.41). Equation (1.42) indicates that

ev,; =ev;; 00,;0 (id; ®¥;), (7.39)

2y

the adjoint of which is (7.31). ]
Thus we’ve proved the unitarity of our ribbon fusion category.

Theorem 7.8. Let V' be unitary, energy bounded, and strongly local, and let F be a non-empty
set of non-zero irreducible unitary V -modules satisfying condition A or B. If we define a unitary

structure on using A, then the ribbon fusion category Rep%w (V') is unitary.

Note that the proof of this theorem uses only the positive definiteness of A.
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CHAPTER 8

APPLICATIONS

8.1 APPLICATION TO UNITARY VIRASORO VOAs
Let Vir = Spanc{C, L,, : n € Z} be the Virasoro Lie algebra satisfying the relation

1
[Lms Ln] = (m = 1) Lingn + 75(m* =)o, nC (m,n € Z),

[C,L,] =0 (neZ).

If W is a Vir-module, and the vector space W is equipped with an inner product {-|-), we say that
W is a unitary Vir-module, if L}, = L_,, holds for any n € Z. More precisely, this means that for

any wi,ws € W, we have
<an1|w2> = <w1|L,nw2>. (81)

Choose Lie subalgebras Viry = Spanc{L, : n € Z~¢} and Vir_ = Spanc{L,, : n € Zo} of
Vir, and let U (Vir) be the universal enveloping algebra of Vir. For each ¢, h € C, the Verma module
M (e, h) for Vir is the free U (Vir_ )-module generated by a distinguished vector (the highest weight

vector) v, p,, subject to the relation
U(Viry)vep =0, Cve,p, = Cp, Lovep, = hvcp,. (8.2)

Then there exists a unique maximal proper submodule J(c, h) of M(c,h). We let L(c,h) =
M(c,h)/J(c,h). It was proved in [FQS84] and [GKOS86] that the Vir-module L(c, k) is unita-
rizable if and only if there exist m,r, s € Z satisfying2 < m,1 <r <m— 1,1 < s < m, such

that

c=1-——— (8.3)
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(m+1)r — ms)2 -1
dm(m + 1)

h=hy, = (8.4)

For such a module L(c, h), we fix a unitary structure such that (v, p|v¢ p)=1.

Let Q = v.0,v = L_5. Then there exists a unique VOA structure on L(c, 0), such that €2 is
the vacuum vector, and v is the conformal vector (cf.[FZ92]). Let E = {Q, v}, then E is a set of
quasi-primary vectors generating L(c, 0).

We now assume that ¢ satisfies relation (8.3). Then by [DL14] theorem 4.2 or [CKLW15]
proposition 5.17, L(c, 0) is a unitary VOA. The PCT operator 6 is determined by the fact that 6 fixes
vectors in E. L(c, 0) satisfies conditions (), (5), and () in the introduction. (See the introduction
of [HuaO8b], and the reference therein.)

Since Y (v,n) = L,_1, representations of L(c,0) are determined by their restrictions to Vir.
By [Wang93] theorem 4.2, irreducible representations of L(c,0) are precisely those that can be
restricted to irreducible Vir-modules of the form L(c, h, s), where the highest weight h,. ; satisfies
relation (8.4). By proposition 1.10, L(c, h, ) is a unitary L(c,0)-module. It follows that any
L(c,0)-module is unitarizable. Clearly the conformal dimension of L(c, h, s) is hy .

Let F = {L(c, h12), L(c, ha2)}. The fusion rules of L(c,0) (see [Wang93] theorem 4.3) in-
dicate that F is generating, i.., any unitary L(c,0)-module is in F™. We check that F satisfies
condition A:

Condition A-(a): Since we know that any L(c,0)-module is unitarizable, condition A-(a) is
obvious.

Condition A-(b): Since £ = E'(L(c,0)), E'(L(c,0)) is generating.

Condition A-(c): If ), € V(Z.kj) is unitary and irreducible (hence W;, W;, W, restrict to irre-
ducible highest weight Vir-modules), we choose a non-zero highest weight vector o) e W;. We

then define a linear map

¢a : Wj — Wk{l‘},

w9 go ()W) = Y, (@, 2)w'D.

Then ¢,, is a primary field in the sense of [Loke94] chapter II. By [Loke94] proposition IV.1.3, if

W; € F, then ¢, satisfies 0-th order energy bounds. This proves condition A-(c). Theorem 7.8 now
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implies the following:

Theorem 8.1. Letc = 1 — where m = 2,3,4, ..., and let L(c,0) be the unitary Vira-

6
m(m+1)
soro VOA with central charge c. Then any L(c,0)-module is unitarizable, the transport matrices of
L(c,0) are positive definite, and the modular tensor category Rep"(L(c,0)) of the unitary repre-

sentations of L(c,0) is unitary.

8.2 Application to unitary affine VOAs

Let g be a complex simple Lie algebra. Let ) be a Cartan subalgebra of g, A € h*, and let L(\)
be the irreducible highest weight module of g with highest weight A and a distinguished highest
(non-zero) vector vy € L(\).

Choose the normalized invariant bilinear form (-, -) satisfying (0, #) = 2, where 6 is the highest

root of g. Let § = Spang{K, X (n) : X € g,n € Z} be the affine Lie algebra satisfying

[X(m),Y(n)] = [X,Y](m+n) +m(X,Y)0p,_nK (X, Yegm,neZ),

[K,X(n)]=0 (Xegnel).

Let gr be a compact real form of g. Then g = gr @r igr. If W is a g-module, and the vector space
W is equipped with an inner product {:|-), we say that TV is a unitary g-module, if for any X € gg

and n € Z, we have
X))t =-X(—n), K =K. (8.5)

Let U(g) be the universal enveloping algebra of g. Choose Lie subalgebras g. =
Spanc{X(n) : X € g,n > 0}, = Spanc{X(n) : X € g,n < 0} of g. We regard g as a
Lie subalgebra of g by identifying X € g with X (0) € g. For any k € C, \ € h*, the Verma module
M (K, \) for g is the free U(g—)-module generated by L(\) and subject to the conditions

UG )LV =0, Klgoy = k-id| 0. (8.6)
We let M (k, \) be graded by Z=q: Forany X1,..., X, € g,n1,...,nmym > 0,0 € L()), the weight
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of X1(—n1) -+ Xpm(—nm)v equals ny + - -+ + ny,. There exits a unique maximal proper graded
submodule J(k,\) of M(k,\). We let L(k,\) = M(k,\)/J(k,\). Then by [Kac94] theorem

11.7, the g-module L(k, )) is unitarizable if and only if

k=0,1,2,..., (8.7)

A is a dominant integral weight of g, and (), 0) < k. (8.8)

For such a g-module L(k, \), we fix a unitary structure.
Let 1" be the dual Coxeter number of g. Let {2 be a highest weight vector of L(k,0). It was
proved in [FZ92] that when k # —h", there exists a unique VOA structure on L(k, 0), such that {2

is the vacuum vector, that for any X € g we have

V(X (-1)Q,2) = > X(n)z™""", (8.9)

nezZ

and that the conformal vector v is defined by

dim g
1
- X;(—=1)%Q 8.10
v 2(k+hv); (-1, (8.10)

where { X} is an orthonormal basis of igr under the inner product (-, -). The set £ = {Q, X (—1)$2 :
X € gr} generates L(k,0). By writing the operator L; = Y (v, 2) in terms of X (n)’s using Jacobi
identity, one can show that the vectors in E' are quasi-primary.

We now assume that k € Z~. Then L(k, 0) satisfies conditions (), (5), and () in the intro-
duction. (See the introduction of [Hua08b], and the reference therein.) By [DL14] theorem 4.7 or
[CKLW15] proposition 5.17, L(k,0) is a unitary VOA, and the PCT operator 6 is determined by
the fact that it fixes the vectors in .

Representations of L(k,0) are determined by their restrictions to g. By [FZ92] theorem 3.1.3,
irreducible L(k,0)-modules are precisely those which can be restricted to the g-modules of the
form L(k, \), where A\ € h* satisfies condition (8.8). By proposition 1.10, these L(k,0)-modules
are unitary. Hence all L(k, 0)-modules are unitarizable, and any set F of irreducible unitary L(k, 0)-

module satisfies condition A-(a).
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By proposition 3.6, E = E'(L(k,0)). Since F generates L(k, 0), any F also satisfies condition
A-(b). Checking condition A-(c) is much harder, and requires case by case studies. Note that given
the set F, finding out which irreducible modules are inside requires the knowledge of fusion
rules. A very practical way of calculating fusion rules for a unitary affine VOA is to calculate the

dimensions of the spaces of primary fields.

Primary fields

Fix k € Z~. For each A € h* satisfying condition (8.8), we write Uy = L(\), W) = L(k, \).
Let A be the conformal dimension of the L(k,0)-module ). We define the normalized energy
operator on Wy tobe D = Ly — Aj.

Assume that A, u, v € h* satisfy condition (8.8). We let AK“ =Ay+A,— A, Atype ()\VM)

primary field ¢,, is a linear map

bo 2 U@ W, — Wy [zt ]2,
u® @) s g (N, 2y = 3 g (W, nyuw g =A%

neZ

(where ¢o(u?, n) € Hom(W,,, W,)),
such that for any uM e Uy, X € g,m e Z, we have

[X(m), pa(u™M, 2)] = ¢o(XuP, z)2™, 8.11)

[Z0,6a(u®,2)] = (25 + 83} 6a(u®, ). 812

We say that U, is the charge space of ¢,,.

Note that the above two conditions are equivalent to that for any m,n € Z,u™ e Uy, X € g,

[X (m), ¢ (™, )] = ¢ (XM, n +m), (8.13)
[D, a(u™,n)] = —nda(u™, n). (8.14)

Primary fields and intertwining operators are related in the following way: Let V), ( /\Vu) be the

vector space of type ( N u) primary fields. If ), € V( /\Vu) is a type ( /\Vu) intertwining operator of
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L(k,0), then by relation (1.26), for any w® e W, we have,
Va(wM z) = 2loy, (z=Fow™M 1)z~ e End(W,, W) [[zE1]]z 23 (8.15)

where Vo (-, 1) = Va (-, x)‘x=1' We define a linear map ¢, : Uy @ W, — Wl,[[xil]]waKu to
be the restriction of Y, to Uy ® W,,. Then the Jacobi identity and the translation property for V,

implies that ), satisfies equations (8.11) and (8.12). Therefore, we have a linear map

1% 14
@.V(}\ﬂ) HVP<M), Vo > ba. (8.16)

The injectivity of ® follows immediately from relation (1.22) or from corollary 2.15. @ is also

surjective. Indeed, if we fix any z € C* and define another linear map

14

FE Vp()\ M) - (WM W, Wy)*,

ba = al-2) = %(',CU)LCZZ,

then by equation (8.12), U, is injective. By equation (8.11) and [Ueno08] theorem 3.18, the dimen-

sion of the image of ¥ is no greater than that of “the space of vacua” % (P1;0, z,0) defined in

UAD
[TUY89] and [Ueno08]. The later can be calculated using the Verlinde formula proved in [Bea94],
[Fal94], and [Tel95]. The same Verlinde formula for Ny u proved in [HuaO8a] shows that the di-

mension of the vector space V( /\”#) (which is the fusion rule VY ) equals that of VZ (P10, 2, 0).

So dim V), ( /\VH) < NY ,,» and hence ® must be surjective. We conclude the following:
Proposition 8.2. The linear map ® defined in (8.16) is an isomorphism. In particular, the fusion
rule NY, of L(k,0) equals the dimension of the vector space of type ( N u) primary fields of L(k,0).

Theorem 8.3. Let k = 0,1,2,..., and let L(k,0) be the level k unitary affine VOA associated
to g. Then any L(k,0)-module is unitarizable. Suppose that F is a generating set of irreducible
unitary L(k,0)-modules (i.e., contains any unitary L(k,0)-module), and that for any A € F, all
primary fields of L(k,0) with charge spaces Uy are energy-bounded. Then the transport matrices

of L(k,0) are positive definite, and the modular tensor category Rep"(L(k, 0)) is unitary.
We now show that theorem 8.3 can be applied to the unitary affine VOAs of type A4,, and D,,.
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The case g = sl,, (n > 2)

Let L(o) be the (n-dimensional) vector representation of sl,,, and let
F = {L(k,0)}.

In [Was98], especially in section 25, it was proved that if A = o and the weights u, v of sl,, satisfy

condition (8.8), then

dimV, (; ) — dim (Homg (LN ® L(p), L(u))). (8.17)

I
(Note that this relation is not true for general L()\).) Using this relation, one can show that F is
generating. In the same section, it was proved that any ¢, € V), (D”M) satisfies O-th order energy

bounds.

The case g = 509, (n > 3)

Let L(o) be the vector representation of $0s,, and let L(s.) and L(s_) be the two half-spin
representations of sog,. In [TLO04] chapter IV, it was proved that if A equals = or s+, and the

weights i, v of s09,, satisfy condition (8.8), then relation (8.17) holds. This shows that the set
F = {L(kv D)7 L(k7 5+)7 L(kv 3—)}

is generating. By [TL04] theorem VI.3.1, any primary field whose charge space is L(k, o), L(k, s+),
or L(k, s_) is energy-bounded.

We conclude the following.

Theorem 8.4. Let g be s, (n = 2) or so2, (n = 3), let k = 0,1,2,..., and let L(k,0) be the
unitary affine VOA associated to g. Then the transport matrices of L(k,0) are positive definite, and

the modular tensor category Rep"(L(k,0)) of the unitary representations of L(k,0) is unitary.
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Other examples

As we see in theorem 8.3, to finish proving the unitarity of the modular tensor categories asso-
ciated to unitary affine VOAs, one has to show, for the remaining types, that a “generating” set of
primary fields are energy-bounded. Our success in type A,, and D,, unitary WZW models, as well
as in unitary minimal models, shows that achieving this goal is promising. Indeed, the main idea of
proving the energy-boundedness of a primary field in [Was98], [Loke94], and [TL04] is to embedd
the original VOA V in a larger (super) VOA V, the energy-boundedness of the field operators of
which is easy to show, and realize the primary field as the compression of a field operator in V. This
strategy is proved to work for some other types of affine VOAs, say type G (cf. [Gui]). We expect

that it works for all examples.

8.3 Full conformal field theory with reflection positivity

In this section, we give an interpretation of our unitarity results from the perspective of full
conformal field theory. In [HKO07], Y.Z.Huang and L.Kong constructed (genus 0) full conformal
field theory for V. This construction relies on the non-degeneracy of a bilinear form on each pair

4 (ij) ®V ({E

3), which follows from the rigidity of Rep(V'). These bilinear forms (-, -) are directly

related to our sesquilinear forms A(-|-) on each V (ikj):

Oudp) =A@ (@sev())) 8.18)

In light of this relation, we sketch the construction of full field algebras in [HKO07] from a unitary
point of view.

Let us assume that V' is unitary, all V-modules are unitarizable, and all transport matrices are
positive definite. (This last condition holds for V' if there exists a generating set F of irreducible

unitary V-modules satisfying condition A of B.) We define a vector space
F=@W,W;. (8.19)
i€€

Its algebraic completion is F' = @ics W; ® I//[\/;
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For each i, j, k € £, we choose an orthonormal basis @fj of V(ikj) under the inner product A.
The full field operator Y is defined to be an End(F ® F, F )-valued continuous function on C*,
such that for any w(L) ® w(l) eW, @W-cC F, w(Lj) ® w%) eW;®@W; c F,

Y @ w2, 7)) @wld) =3 Y Vaw?, 2w @ Vx @®, 2w, (8.20)
ke& ae@k
Then (F,Y) is a full field algebra of V' satisfying certain important properties, including the com-
mutativity ([HKO7] proposition 1.5) and the associativity ((HKO07] proposition 1.4). In fact, in our
unitarity context, it is not hard for the reader to check that these two properties are equivalent to the
unitarity of braid matrices and fusion matrices respectively.
Let us equip the vector space I’ with an inner product {-|-), such that the decomposition (8.19)

is orthogonal, and for any ¢ € &, wg)l, w%)l, w%)Q, w%)Q e W,

) @ wi [l ® wiDy) = di i [y, i), 8.21)

We also define an antilinear operator 6 : F' — F' sending each w( ) ® w( ) to w(z) ® w( 9. which is

easily checked to be an anti-automorphism:
0Y (w; z,Z) = Y(0w; 2,2)0 (weF). (8.22)

We call 6 the PCT operator of (F,Y).

Note that when V' is non-unitary, we can only define a non-degenerate bilinear form on F,
and show that under this bilinear form, the full field algebra (F,Y) satisfies the invariance prop-
erty ([HKO7] definition 3.9). But in our case, this invariance property should be replaced by the

reflection positivity:
Y(w; z,z) = Y(eZLlLJFEL?( ﬂ”z*Q)L (e~mz=2) é%6’10;,271,F) (weF), (8.23)

where for each n € Z,, the linear operators Lﬁ =L,®1, LR = 1®L,, are defined on F'. The factor

2n+1)7‘r

e~ in equation (8.23) can be replaced by any el where n € Z. The reflection positivity is
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equivalent to the fact that for any 4, j,k € £,),, Vg € V (ikj),

d
VealVes) = 7 ValVs). (8.24)
J

This relation is essentially proved in [HKO7] using properties of the fusion matrices of intertwining
operators. We remark that it can also be proved using graphical calculations for ribbon fusion
categories.

A final remark. The positivity of A is not used in full power to prove the reflection positivity
of F. One only uses the positivity of quantum dimensions d; and the fact that A is Hermitian
(i.e., A(ValYVs) = A(V3]Va)), which can be checked more directly without doing long and tedious
analysis as in our papers. So unlike the non-degeneracy of A, which is of significant importance in

constructing full field algebras, the positivity of A only plays a marginal role.
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Appendix A

APPENDIX FOR CHAPTER 2

A.1 Uniqueness of formal series expansions

Using Cauchy’s integral formula, the coefficients of a Laurent series > - ; a, 2™ are determined
by the values of this series when z is near 0. This uniqueness property can be generalized to formal
series, as we now see.

Let % be a finite subset of R, and let ¥ = % + Z=o = {pt + m : pn € %, m € Z=p}. It is clear

that the series

— Bl
fz1, . 2n) = 2 Cpnyopin 21t 2B (A.1)
K1y in €Y
converges absolutely if and only if for any p1, ..., i, € %, the power series
p1+ma +m
Z Cu1+m17"'a/"'n+mnzl e Zﬁ:n "

m17---7mneZ>0

converges absolutely. Hence, by root test, if f(z1,...,2,) converges absolutely for some
21,...,2n # 0, then f((1,...,(,) converges absolutely whenever 0 < |(1| < |21],...,0 < |G| <
|2n]-

The uniqueness property is stated as follows:

Proposition A.1. Let ri,...,r, > 0. Forany 1 < | < n, we choose a sequence of complex
numbers {z(m;) : 0 < |z1(my)| < Ti}mez, such that limy,, o z;(m;) = 0. Suppose that (A.1)
converges absolutely when 0 < |z1| < 11,...,0 < |zn| < 7y, and that for any mq, ..., my,, we

have f(21 (mq),. .. ,zn(mn)) = 0. Then for any i1, ..., pin € 9, the coefficient c,, ... ., = 0.

Proof. (cf. [Hua95] section 15.4) By induction, it suffices to prove the case when n = 1.
Then the series can be written as f(z) = >z ¢, 2", where pgy1 > py for any k, and

we have a sequence of complex values {z,,} converging to zero, on which the values of f van-
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ish. Define a series g(z) = >z, ¢u, 2" #2. Then the series g(z) converges absolutely when
0 < |2| < r, and limsup,_,q|g(2)] < 400 . Since f(z)z™" = ¢, + 2*27F1g(z), we have
¢y = limp, o0 f(2(m))z(m) #* = 0. This proves that ¢,, = 0. Repeat the same argument, we

see that ¢, = 0 for any k. U

A.2 Linear independence of products of intertwining operators

This section is devoted to the proof of proposition 2.3. First, we need the following lemma, the

proof of which is an easy exercise.

Lemma A.2. Let W, be an irreducible V-module. Letn = 1,2,.... Consider the V-module

WZ@” = W’ AW, ®---® T/VJZ Then for any V-module homomorphism R : W; — Wz»@", there

exist complex numbgrs Aly ..., Ap such that
R(w(i)) = (z\lw(i), Aow® )\nw(i)) (w(i) evV). (A.2)

Proof. For any 1 < m < n, let p,, be the projection of Wi@” onto its m-th component. Then
pm R € Endy (W;). Since W; is irreducible, there exists A, € C such that p,,, R = A\pidw,. (A.2)

now follows immediately. O

Let W;, W; be two V-modules. For any k € £ we choose a basis {V, : o € @fj} of V(ikj).
Consider the V-module W; = @, ¢ (@ae@fj W,?) where each W is a V-module equivalent to
Wy, It’s contragredient module is W7 = @c¢ (@ aeok, Wf‘), where WEQ is the contragredient
module of W*. Consider a type (ilj) intertwining operator ) defined as follows: for any w® e
Wi, w9 € W, we let

V', 2yt =P ( D ya<w<”,x>w<f>), (A3)

ke& aE@fj

i.e., the projection of Y (w®, 2)w) to W is Vo (w?, z)wl?),
The following property is due to Huang. See [Hua95] lemma 14.9. The notations and termi-

nologies in that article are different from ours, so we include a proof here.
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Proposition A.3. Choose z € C* with argument arg z. Let w® e W5 If for any w® e Wi, w e

W;, we have
w®, Y, 2)w?y =0, (A4)

then w® = 0.

Proof. Let W7 be the subspace of all wD e Wi satisfying (A.4). We show that TV} = 0.

Note that by relation (1.21), for any u € V, m € Z we have

Yi(u, m)Y(w®, z) = Y(wD, 2)Vy(u,m) = Z <7Z)y(yg(u, Rw®, 2)zm". (A.5)

heZxo

From this we see that W is a V-submodule of W7. If Wy # 0, then 17 contains an irreducible
submodule equivalent to W7 for some k € £. This implies that we have a non-zero V-module
homomorphism R : Wz — (—BO{E@Z_ W2 < W7, and that the image of R is inside ;.

By lemma A.2, we can choose complex numbers {\, : & € @fj

}, not all of which are zero, such
that for any w(E), Ruw®) = (—Daeeﬁ_ )\aw@. Hence for any w® e Wi, wl) e W, w® e Wy, we

have

Z Aalw®, Yo (@, 2)w@y = 0.

k
ae@ij

Since 3-point correlation functions are determined by their values at the point z, we have

3 Aaw®, Yo (w®, )0y =0,

k
ae@ij

where 7 is a formal variable. But we know that {), : o € OF,

j} are linearly independent, which

forces all the coefficients A, to be zero. Hence we have a contradiction. ]

Corollary A.4. Vectors of the form y(w(i), s)w(j ) (w e Wi, w9 e W;,s € R) span the vector

space W.
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Proof. Choose any w() € 1W; satistying that for any w(® € W;, w?) € W;, s € R,
w®, Y(w®, s)wdy = 0. (A.6)

Then for any z € C*, equation (A.4) holds. So w® must be zero. O

Proof of proposition 2.3. It is clear that ® is surjective. So we only need to prove that ® is injective.

By induction, it suffices to prove that the linear map W:

k ] k
(—D(V(. . . .)@V(.].>)—>V(. . . )
je€ nin—1 """ 1727 11 %0 Intn—1 """ 17117

X® Vo = XV
is injective. To prove this, we choose, for any j € £, a linear basis {), : « € @gm} of V(Z.ljio). If
we can prove, for any j € £, a € ng‘o’ Xo€V(; inilk___ i j), that

Y D Xada=0 (A7)

je€E J
J ae®i1i0

always implies that X, = 0 for all «, then the injectivity of ¥ follows immediately.

Now suppose that (A.7) is true. Then for any w(0) ¢ W;,, w() € W;,,...,w() e W; ,s e R,

and 2o, ..., 2, satisfying 0 < |z2| < --- < |2,|, we have, by proposition A.1,
Z Z Xa(w(in), w2 ,zz)ya(w(“), s)w(io) =0. (A.8)
Je€ ae@zlio

(i0) (o)

By corollary A4, for any j € & w') € Wj and o € @jl there exist w; ’,...,wy, €

1110°

I/I/Z-O,w§i1), .. ,wa;l) € Wi, $1,...,Sm € R, such that
ya(wgil), Sl)wgio) 4ot yoz(w%l)7 Sm)UJ,(riLO) = wl),
and that for any 3 # «,

y@(wgil), sl)wgio) + o4 V(D) s )wli) = 0.
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Hence Xa(w(i”), w2z zg)w(j) =0. O

A.3 General braiding and fusion relations

In this section, we prove all the results claimed in section 2.2. Our proof of the convergence
properties is motivated by that of [HLZ11] proposition 12.7. To prove these properties, we need a
technical lemma, for which we now introduce some temporary notations.

Forany r > 0,let D(r) = {z € C : |z| <}, D*(r) = D(r)\{0}, and E(r) = D(r)n (0, +0).

Then we have the following:

Lemma A.5. Given a power series

n n n
Z Croni..m 20 %1 < - 2" (A.9)

n9,n1,...,NEL30

of the complex variables zg, z1, . . ., 2, where | € Z~q and each cpyn,..n, € C. Suppose that there
exist ro,r1, ..., > 0, such that for any ng, the power series
n
no (21, .y 21) = Z Crony..m 21 2 (A.10)

’nl,...,TLZEZ;O

converges absolutely on D(r1) x --- x D(r}); that for any z1 € E(r1),...,2z1 € E(r}),
f(z0,21,...,21) = Z Gno (21, -+, Zn) 20 s (A.11)
TLQGZ>0

converges absolutely as a power series of zy on D(rq); and that f can be analytically continued to
a multivalued holomorphic function on D* (rg) x D*(r1) X -+- x D*(r;). Then the power series

(A.9) converges absolutely on D(rg) x D(r1) x -+ x D(r).

Proof. Consider the multivalued holomorphic function f. From (A.11), we know that for any z; €
E(r1),...,z1 € E(ry), f is single-valued for zyp € D*(rg). So f is single-valued on z( for any

z1 € DX(’I”l), ..., 21 € DX(TZ).
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Now, for any ng € Z,
.ano(zly"'azn):§f(207217"'7zl)20 B - (A12)

is a multivalued holomorphic function on D*(r1) x --- x D*(r;). If ng > 0, then by (A.11), we
must have §n, = gn, on E(ry) x -+ x E(ry). Since gy, is holomorphic, §,, = gn, on D*(r1) x

- x D*(r;). Hence gy, is single-valued. Similarly, when ny < 0, we have g, (21,...,2,) = 0
on E(ry) x --- x E(ry), and hence on D*(ry) x --- x D*(r;). Therefore, f(zo,21,...,2n) =
Donoez Ino (215 - - -5 2n)2° is single-valued on D> (rg) x D*(ry) x - -+ x D*(ry,), and the Laurant
series expansion of f near the origin has no negative powers of zg, 21,...,2,. So f is a single-

valued holomorphic function on D(rg) x D(r1) x --- x D(r;) with power series expansion (A.9).

We can thus conclude that (A.9) converges absolutely on D(rg) x D(r1) x --- x D(r). O]

Recall that a series f(z1,...,2,) = 2517_””9”6]1@ Csy..sn?y -+ 25n is called a quasi power series
of z1,..., 2z, if f equals a power series multiplied by a monomial of z1, ..., z,, i.e., if there exist
t1,... tn € Csuchthat f(z1,...,2,)24 -~ 2tn € C[[21, - . ., 2a]]-

Proof of theorem 2.5. Step 1. We first prove the convergence. Let W; be the charge space of ).

Then for any wlio) e Wi s w® e W;, we have

y’y (w(i) ) :E)w(io)
:yB+B_fy(U1(i) 7 x)w(io)

:exL—lyB_v(w(iO), e”x)w(i),
where z is a formal variable. Then for any w® e Wz, we have

Dy (w21 wlio) w®)y
=@, (w®, 2yl w®|
=(e" b1y (w0, emx)w(i)7w(%)>|x:z1
=(Vp_ (w0 ™) w®, exLlw(E)>‘

T=21

=Yg (W), 2 )w® 21 L1y R)y,
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Therefore,

<y7 (Psnyan (w(in)» Zn — Zl)Psn—1yUn—1(w(inil)v Zn-1— 21)
e Py Yy (00, 25 — 1)), 2 )wti), @Y
:<yB_'y(w(i0)a eiﬂ-zl)Psnyan (w(ln); Zn — Zl)PSnfp))O'nfl (w(in_l)7 Zn—1 — 21)

Py Vo (w0'2) 29 — 2 ) ) e21214p(R)y, (A.13)

Hence, by theorem 2.2 and the discussion below, the sum of (A.13) over sg,s3,...,8, € R

converges absolutely and locally uniformly.

Step 2. Assume that

0 <|z1| <22 <+ <|znl,

0<l|zg—21]| <|z3— 21| < |zn — 21| <21, (A.14)
and choose arguments arg z1,arg za, . .., arg z,, arg(ze — 21),...,arg(z, — z1). We prove, by
induction on n, that (2.8) defined near the point (z1, 22, ..., z,) is a correlation function, i.e., it

can be written as a product of a chain of intertwining operators. The case n = 2 was proved in
[Hua95] and [Hua05a]. Suppose this theorem holds for n — 1, we now prove it for n. By analytic

continuation, it suffices to assume also that
|z1] + |22 — 21| < |23]- (A.15)

Let W, be the target space of ),,. By induction, there exists a chain of intertwining operators

Vs Vass Vays -+ -y Va, with charge spaces W, Wi, , Wi, ..., W;,

respectively, such that W, is
the source space of Vs, that Wy, is the target space of ),,,, and that for any wlio) e Wi, wl2) e

Wi,, wlis) e Wi3,w(i4) € Wiy, o, wlin) g W;,., we have the fusion relation

Vy (Yo, (w0, 2 — 20) Vg (W) 2y g — 20) o Vg (W), 25 — 29)w052), Zl)w(io)

=V, (W) 2 Ve (D) 2 ) e Vi (w0 23) Vs (w92), 21 ) () (A.16)
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near the point (z1, 23, 24, - . . , 2.
There also exists a chain of intertwining operator Vo, , Vo, With charge spaces W;, , W;,, such
that the source space of ), is Wj,, that the target space of ), equals that of Vs, and that the fusion

relation

y (yag( y B2 — Zl) ( )721) = yozg(w(i2)>ZQ)yal(w(il)azl) (A17)
holds near the point (z1, z2). Now we compute, omitting the evaluation under any w® e Wz, that

Vo (Vo (W), 2 — 20) Vi, (0= 2y — 20) o Vg (w2, 29 — 21) (), 21 )0

= 3 V(Yo (@) 2y — 21) Vo, (W) 2y 1 — 21) -+ Py Vi (012), 29 — 21)w ) 2 w(i0)
s1eER

= Z yan (w(in)v Z’n)yan—l (w(in71)> anl) T yas (w(i?))a Z3)
s1€R

Vs (PslyU'Q (w(i2)7 Z2 — Zl)w(“), 21)w(i0)
= Z Z yan(w(in)’zn) Sn 1yo¢n 1( (in71)72n,1)Psn_2

s1€ER 82,...,8,”,16[@

Py Vo (W), 23) Py, V5 (Psy Vo (w2, 20 — 20)w™), 21 )wl®). (A.18)
If we can prove, for any w®) e Wr, and any 21, 22, . . . , 2, satisfying

0 <22 —21] < |21]| < |z3] < za| < -+ <|znl,

|21] + [z2 — 21] < [z, (A.19)
that the expression

Do (W 2) Vi, (w1 2 1) o Vo (033 23)

Vs (Vs (w02, 25 — 20 )w ™), 21 )w®), ) (A.20)
converges absolutely, i.e., the sum of the absolute values of
<P3’ﬂyan (w(zn)7 Zn ) Sn— 1yan 1( Z’ﬂ 1)’ anl)Psn—Z
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- Py Vo ('), 23) Py, V5 (P, Yoy (w2, 29 — 21)w) 2100 1P (A.21)

over si,S82,...,S, € R is a finite number, then the two sums on the right hand side of (A.18)

commute. Hence (A.18) equals

2 Z Psnyan (w(ln)’ Zn)PSn—l yOén—l (w(inil)’ anl)PSn_z

89,...,8nER s1ER

e Pssyocg (w(i3)7 33)P82y5 (Pslyag (w(i2), 29 — zl)w(il), Zl)w(io)

= Z Z Psnyan (w(ln)’ Z”)Psnflyanfl (w(i’n—l), Zn_l)Psn72

89,...,Sn€ER s1ER
o PSSyOés (w(ig), Z3)Pszyoz2 (w(i2), ZZ)Psl Nz (w(il), Zl)w(io)

:yan (w(ln)’ Zn)yan_l (w(in71)7 anl) T yal (w(il)a Zl)w(io)- (A.22)

Therefore, if the series (A.20) converges absolutely, then (2.8) defines an (n + 2)-point correlation
function of V. The converse statement (every (n + 2)-point function can be written in the form

(A.20)) can be proved in a similar way.

Step 3. We show that when (A.19) holds, (A.20) converges absolutely. Assume, without loss
of generality, that all the intertwining operators in (A.20) are irreducible, and that all the vectors in

(A.20) are homogeneous. Define a new set of variables wy, wo, . .. ,w, by setting

Zm = WnWmtl - wWn (3 <m < n),
21 = WaW3 - Wnp,

29 — R = Wi * - Wnp.
Then condition (A.19) is equivalent to the condition

0<|wm| <l (I<m<n-1),
0 < |wnl,

lwa(1 + |wi]) < 1. (A.23)
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It is clear that if 1, o, . .. W, are complex numbers satisfying condition (A.23), then there exist

positive numbers 71 > |wi|,72 > |wal,..., 7 > |Wn], such that whenever 0 < |wp| < 7T
(1 € m < n), condition (A.23) is satisfied. We now prove that the sum of (A.21) over s1,..., S,
converges absolutely on {0 < |wi| < r1,...,0 < |wp| < 7}
Let
Csy59...5n

:<Psnyan (w(ln)7 ]‘)Psn—lyan—l (w(in71)7 ]‘)PSH—Z e

+ Pay Yoy (w0, 1) Py Vs (Pay Vo (w0, Do), 1)), ®, (A.24)
where each ).(-,1) = V.(+, x) ‘z:l' By relation (1.26), it is easy to see that (A.21) equals

<Psn,w’l’-ll//0yan (w(in)’ 1)Psn71w7€/21yan71 (w(in—1)7 1)Psn72 e

' sswgoyas (w(i3)7 1)P82w§0y6 (PslwlLOyO'Z (w(iQ)a 1)w(i1)7 1)w(i0)7 w(E)>

=Csy 59,5, W] WH < - W (A.25)
multiplied by a monomial wj*wi? - - -wi™, where the powers 71,72, ..., 7, € R are independent of
s1, 82, .. .,Sn. Therefore, the absolute convergence of (A.20) is equivalent to the absolute conver-

gence of the series
S S S
2 Cslsg...an11W22 Wy (A.26)

on {0 < |wi] < 71,0 < |wa| < 79,...,0 < |wp| < r,}. Note that by irreducibility of the
intertwining operators, (A.26) is a quasi power series of wy,ws, ..., w,. SO we are going to prove
the absolute convergence of (A.26) by checking that (A.26) satisfies all the conditions in lemma
AS.

Since (A.21) equals (A.25) multiplied by wj*ws? - - -wj*, for each sy € R, step 1 and theorem

2.2 imply that the series

s1,,83 .54 s
Z Cs15983...5p, W] Wy Wy~ =+~ Wy" (A.27)
§1,83,84,...,Sn€ER
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converges absolutely on {0 < |wi| < 71,0 < |ws| < 73,0 < |wa| < 74,...,0 < |wy| <7} If we
assume moreover that 0 < w; < 7y, then 0 < |wa| < 72 clearly implies 0 < |z1] < |z2| < -+ <

|2n| and 0 < |22 — 21| < |z1]. Hence, the following quasi power series of wy

r1,,T2 T 81, ,83 S S2
Wy Wy Wy ( Z ( 2 Csi1s283...5, W1 W3 "'Wnn)w2 )

s2€R N s1,83,...,5,ER

= Z <yoén (w(in)7 Zn)yanfl (w(in_1)7 Z'rl—l) T ya3 (w(ld)v 23)

s9€R

: P82y6 (yo'z (w(iz)’ 29 — zl)w(il)’ z1)w(i0), w(E)>

= Z <yan (w(ln)7 Zn)yan—l (w(in71)7 anl) U yOlS (w(13)’ Z'?’)

s2€R

 Poy Yoy (w02, 29) Vo, (0, 21w 1p(R)y (A.28)

must converge absolutely on {0 < |w2| < r2}. By theorem 2.4, the function (A.28) defined on
{0 <wy; <71,0 < |wa| < re,...,0 < |wy| <7y} can be analytically continued to a multivalued
holomorphic function on {0 < |wi| < 71,0 < |wa| < 72,...,0 < |wp| < 7, }. Hence by lemma
A.5, the quasi power series (A.26) converges absolutely on {0 < |wi| < 71,...,0 < |w,| <

Tn}. O

Proof of theorem 2.6. The argument here is similar to step 3 of the proof of theorem 2.5. Assume,
without loss of generality, that all the intertwining operators in (2.11) are irreducible, and all the
vectors in it are homogeneous. We prove this theorem by induction on m. The case that m = 1 is
proved in theorem 2.5. Suppose that the theorem holds for m — 1, we prove this for m.

Define a new set of variables {wf)” :1 < a<m,1<b< ng}in the following way: For any

1 <a<<m,weset

2§ = Wit (A.29)
and if 2 < b < ng, we set
a a a, a+1 m a, .a a
2y — 2] SWiwW] Wy Wy Wyt Wy (A.30)
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Then the condition (1) and (2) on {zg :1<a<m,1<b< n,}isequivalent to the condition

0<|wpl<1l (1<a<m,2<b<ng),
0 < |wi,

0 < |wf|(14+ (1 =dna1)|ws |) <1—(1=6n1)w ] 1<ag<m—1). (A.31)

Na+1

It is clear that if {wg :1<a<m,1<0b< n,}are complex numbers satisfying condition (A.31),
then there exist positive numbers {rj > |wi|}, such that whenever 0 < |wj!| < rf for all a and b,
then (A.31) is true. If, moreover, any wy except w% satisfies 0 < wy < 7y, then condition (3) also
also holds for {2} : 1 <a <m,1 < b < ng}.

Let § be the sequence {s¢}, & be {wi}, S\si be {all s{ excepts}}, and &\wi be

1 -5 a N
{all wy exceptwy}. Welet & = [ ]y <y 1<pen, (Wh)* - For each 8, we define

Cg=<[ I1 Psgyaa« I1 Psgyag(wg,1)>w‘f,1>]w",wg>, (A.32)

mz=az=1 Ne=b=>2

where each ).(+, 1) means ).(-, x)|,—1. Then by (1.26), the expression

[1 PsWaC‘(( Il Psgyag(w?%?—zi‘))w‘f,zf)]wi,w@ (A.33)

mzaz1l ng=b=>2

equals ¢z - & multiplied by a monomial of & whose power is independent of §. By induction, we
can show that for each si € R, the series 25\5% s @ - (w%)_s% of (\w! converges absolutely on

{BG\wi : 0 < |wf| < r¢}; that for all F\w] satisfying 0 < wf < 7Y,

D> e &, (A.34)

1 1
s1ER 3\s]

as a series of w{, converges absolutely on {w] : 0 < |wi| < 7{}; and that as a function of &, (A.34)
can be analytically continued to a multivalued holomorphic function on {J : 0 < |wj| < 77}.
Hence, by lemma A.5, the quasi power series > ¢z - &° converges absolutely on {& : 0 < |w| <
ri}. If, moreover, {z{!} satisfy condition (3), then by induction and the argument in step 2 of the

proof of theorem 2.5, (2.11) can be written as a product of a chain of intertwining operators. So it
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is a correlation function defined near {z;'}. O

Proof of corollary 2.7. One can prove this corollary, either by theorem 2.6 and the argument in step
1 of the proof of theorem 2.5, or by induction and the argument in step 3 of the proof of theorem

2.5. We leave the details to the reader. O

Proof of proposition 2.9. Fix z; € C*. Let wy (resp. ws) be a vector in the source space (resp. in
the contragredient module of the target space) of V5. Let x;, xj;, T;; be commuting independent

formal variables. It is easy to check that for any w(¥) € Wy,

(Vs (eiﬁL’lw(k)ywi)wlawﬁ = (Vs (w(k)7$i + Zji)wr, wa)

= )] <y5(w(k),s)w1,wg>(_sl_1>:cis1l§§-i. (A.35)

sER,IEZ >0

Put x; = z;, we have

Vs (€51 w® )y, way = Vs(w®, 25 + Fji)wr, wa)

= Z <y5(w(k),s)w1,w2>(_sl_ 1>z{s‘1‘l%§-i. (A.36)

seR,I€Z >0

Clearly
<y5 (yv(w(i), ei”zji)w(j), Z; + 5]‘1')101, ’LU2> (A.37)
is a multivalued holomorphic function of z;;, Zj; when 0 < |z;4],|Zji| < %|2|. Since the series

Z <y5 (Psyw (w(i), eii”zji)w(j), zi + Eji)wl, w2> (A38)
seR

converges absolutely and locally uniformly, the infinite sum commutes with Cauchy’s integrals

around the pole Z;; = 0. From this we see that (A.37) has the series expansion

(Vs (yy(w(i)7 e w, 2 + Tji)wi, wa) ; (A.39)

Tji=2ji,Tji=2ji
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which must be absolute convergent, and also equals

s (e 1Y, (0D, e ;) w2 wy, wa) (A.40)
Tji=25i,% ji=2ji
Therefore, when 0 < |2; — 2| < 12|, the series
Z <y5 (Pre(zj*zi)L—lPsyv(w(i), eii”(zj — zi))w(j), zi)wl, w2> (A41)

r,s€ER

converges absolutely and equals (A.37) with zj; = Zj; = 2z; — ;.

One the other hand,

Vs (VBar (WD, 25 — 2)wD, 2)wr, wa)

= Z (Vs (PryBi'y(w(j), z; — 2w, zi)wi, w2 )

reR

= 2 <y5 (Pre(zf_zi)Lflyﬂ,(w(i), eim(zj - zi))w(j), zi)wl, w2>,

reR

which is just (A.41). So it also equals (A.37) with zj; = Zj; = z; — 2;. This proves relation (2.18)

when 0 < |z; — 2| < §|2;|. The general case follows from analytic continuation. O

Proof of theorem 2.8. The case n = 2 follows immediately from proposition 2.9 and the fusion
relations of two intertwining operators. We now prove the general case.
Since .5, is generated by adjacent transpositions, we can assume that ¢ exchanges m, m + 1 and

fixes the other elements in {1,2,...,n}. Write

Xl = yamfl(w(im_lk Zm—l) e yoq (w(il)a 21)7

XQ = yOén (w(in)’ Zn) T yam+2 (w(im+2)7 Zm+2)~

To proof the braid relation in this case, it is equivalent to showing thatif 0 < |z1| < -+ < |zpm—1] <
|Zm+1] < |zm| < |2Zm+2] < -+ < |zn|, and if we move z,, 2,41 to satisfy 0 < |z < -+ <

|Zm=1] < |2m| < |2Zm+1| < |2Zm+2| < --+ < |2n]| by scaling the norms of z,,, z,,+1, then we can
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find intertwining operators Vg, , Vg, ., independent of the choice of vectors, such that

(Y (W) 20) Vo (4, 2 1) Ay, ) (A42)
can be analytically continued to

(V3,1 (w(im+l), 1) Vs, (w(im)7 zm)Xlw(iO), w(E)>_ (A.43)

By analytic continuation, we can also assume that during the process of moving 2., Zm+1, condi-
tions 0 < |z1| < -+ < |zm—1| < |zm], |#m+1] < |2ma2] < -+ < |zn] and 0 < |z — 2m41] <
|zm+1| are always satisfied.

Let W, be the source space of ),,,,, and W}, be the target space of },,,. By braiding of two
intertwining operators, there exists a chain of intertwining operators Vg, , V3,, ., With charge spaces

W W, respectively, such that the source space of Vg, is W, that the target space of Vg, .,

m+1

is Wj,, and that for any wi) e Wi, wm) e Wi, wlim+1) g Wit w?) e W5, the expression
Dot (00, 20) Vo (070, )0, w02 (A44)
defined on 0 < |z;11| < |2m| can be analytically continued to

<y5m+l(w(im+1)7 2mi1) Vs, (w(im)7 zm)w(jl), w(ﬁ)> (A.45)

defined on 0 < |z,,| < |2m+1] by scaling the norms of z,, and zy,+1.
Now, by fusion of intertwining operators, there exist intertwining operators Vs, )., with suitable

charge spaces, source spaces, and target spaces, such that (A.44) equals
(Vs (yv(w(im)’ Zm — Zmat JwlmD) Zm+1)w(j1)7 w®)y (A.46)

when |zn4+1| < |zm|- Then (A.45) equals (A.46) when |z,,| < |zm+1]- By theorem 2.6, the

expression

(Y5 (yv(w(im), Zm — 21 Jw (D), Zm+1)X1w(i°), w(E)> (A.47)
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converges absolutely and locally uniformly. Hence it is a locally defined holomorphic function
when 0 < |z1] < -+ < |zZm—1| < |Zm|, |2Zm+1] < |2Zm+2| < -+ < |2n|. Therefore (A.42) can be

analytically continued to (A.43) from {0 < |zm+1] < |2m|} to {0 < |2m| < |Zm+1|}- O
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Appendix B

APPENDIX FOR CHAPTER 3

B.1 von Neumann algebras generated by closed operators

Let A be a (densely defined) unbounded operator on # with domain Z(A). Choose = € B(H),
i.e., let = be a bounded operator on H. Recall that the notation zA < Az means that tZ(A) c

2(A), and x A = Ax€ for any £ € Z(A). The following proposition is easy to show.

Proposition B.1. Let A be a preclosed operator on H with closure A.

(1) If v € B(H) and tA < Az, then we have x* A* ¢ A*z* and 1A  Ax.

(2) If A is closed, then the set of all x € B(H) satisfying xA — Ax form a strongly closed subalge-
bra of B(H).

Proof. If tA c Ax then (Az)* < (zA)*. Recall that in general, if A, B are two densely defined
unbounded operators on H, and if AB has dense domain, then B*A* c (AB)*. If A is bounded,
then B*A* = (AB)*. Thus we have 2*A* < (Ax)* < (zA)* = A*z*. Apply this relation to
x*, A*, and note that A** = A, then we have A — Ax. This proves part (1). Part (2) is a routine

check. O

Definition B.2. Let A be a closed operator on a Hilbert space H with domain Z(A), and let x €

B(H). We say that A and = commute strongly', if the following relations hold:

A c Az, z¥Ac Ax*. (B.1)

Corollary B.3. Suppose that S is a collection of closed operators on H. We define its commutant
&’ to be the set of all bounded operators on H which commute strongly with any element of &.
Then &' is a von Neumann algebra. It’s double commutant &", which is the commutant of &', is

called the von Neumann algebra generated by S.

'Our definition follows [Neul6] chapter XIV, in which the strong commutativity of an unbounded operator with a
bounded one is called adjoint commutativity.
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Lemma B.4. Suppose that A is a closed operator on H, and v € B(H) is a unitary operator. Let
A = uH (resp. Hu) be the left (vesp. right) polar decomposition of A, such that u the partial

isometry and H the self adjoint opertor. Then the following conditions are equivalent:

(a) v commutes strongly with A.
(b) vA = Aw. (B.2)

(¢) [u,v] = 0, and [¢",v] = 0 for any t € R. (B.3)

Proof. We prove this for the left polar decomposition. The other case can be proved in the same
way.
(a)=(b): Since v commutes strongly with A, we have vA ¢ Avandv 1A c Av—!. Therefore,
v2(A) € 2(A) andv 1 2(A) < Z(A). So we must have v (A) = Z(A), and hence vA = Av.
(b)=(a): If vA = Av, thenvAv~! = A. So Av~! = v~! A, which proves (a).

(b)=(c): We have vAv—! = A. Thus by uniqueness of left polar decompositions, we have

vuv~ ! = wand vHv ' = H. Hence for any ¢ € R we have

) B ) 1 )
U@ZtHU 1 iw(tH)v™" _ eth‘

=€

This proves (c).

1

(c)=(b): Suppose that we have (B.3). Then vuv~! = u and ve®v~1 = ¢ On the other

; ; -1 . _
hand, we always have ve’y~1 = ¢®Hv™" in general. So vHv~" and H are both generators of

the one parameter unitary group ve®®v~1. Hence we must have vHv~! = H. This implies that

vA = Awv. Therefore (b) is true. ]

Proposition B.5. Let S be a set of closed operators on H. For each A € &, we either let A =
uaH 4 be the left polar decomposition of A, or let A = H agup be the right polar decomposition
itH 4

of A. Then &" is the von Neumann algebra generated by the bounded operators {uy, e i te

R, A e &}

Proof. Let M be the von Neumann algebras generated by those u4 and ¢4, We show that

M=6".
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Let U(&') be the set of unitary operators in &’. We know that U/ (&') generates &'. So &” =
U(S&"). By lemma B.4 (a)=(c) we see that M commutes with /(&’). Hence M c U(&') = &".
Let U (M) be the set of unitary operators in M’, the commutant of M. Then by lemma B.4
(c)=>(a) we also have U(M’) c &'. Hence M’ = &', which implies that M > &”. Thus we’ve
proved that M = &”. O

Corollary B.6. Assume that A is a closed operator on H and x € B(H). Let A = uH (resp. Hu)
be the left (resp. right) polar decomposition of A with u the partial isometry and H the self adjoint

opertor. Then x commutes strongly with A if and only if [u, 2] = 0 and [e'*!, 2] = 0 for any t € R.

Proof. Let & = {A}. Then by proposition B.5, &” is generated by u and all ¢, Thus z € &' if

and only if z commutes with « and all e®*¥ . O

Definition B.7. Let A and B be two closed operators on a Hilbert space 7{. We say that A and B
commute strongly, if the von Neumann algebra generated by A commutes with the one generated

by B.

If M is a von Neumann algebra on H and A is a closed operator on 7{. We say that A is
affiliated with M, if the von Neumann algebra generated by the single operator A is inside M.
Now suppose that A/ is another von Neumann algebra on a Hilbert space K, and 7 : M — N
is a normal (i.e. o—weakly continuous) unital *-homomorphism. We define w(A) to be a closed
operator on K affiliated with A in the following way: Let A = uH be its left polar decomposition.
it

Define 7(H) to be the generator of the one parameter unitary group 7(e acting on H, i.e., the

unique self-adjoint operator on /C satisfying
) — 7 (™) (t e R). (B.4)
We then define
m(A) = w(u)n(H). (B.5)

We can also define 7(A) using the right polar decomposition of A. It is easy to show that these two

definitions are the same.
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B.2 A criterion for strong commutativity

A famous example of Nelson (cf. [Nel59]) shows that two unbounded self-adjoint operators
commuting on a common invariant core might not commute strongly. In this section, we give a
criterion on the strong commutativity of unbounded closed operators. Our approach follows [TL99]
and [TLO4]. See also [GJ12] section 19.4 for related materials.

Suppose that D is a self-adjoint positive operator on a Hilbert space . For any r € R, we let
H" be the domain of (1 + D)". It is clear that H™* > H"? if r; < ro. Welet H* = (). H".
Define a norm |||, on H, to be ||£]|,= ||(1 + D)"¢||. Suppose that K is an unbounded operator on
‘H with invariant domain H® (“invariant” means that KH® < H%), that K is symmetric, i.e., for

any £,1 € H® we have

K|y = &K, (B.6)

and that for any n € Zx( there exist positive numbers |K|,1 and |K|p ,+1, such that for any

& € H® we have

[KE&n< (K n+1ll€lln+1, (B.7)

1D, KJ¢llns [K|Dnr1ll€llnta- (B.8)

Since K is symmetric, it is obviously preclosed. We let K denote the closure K. The following

lemma is due to Toledano-Laredo (cf. [TL99] proposition 2.12 and corollary 2.2).

Lemma B.8. K is self-adjoint. Moreover;, the following statements are true:

(1) For any n € Z=q and t € R, the unitary operator ¥

restricts to a bounded linear map
H" — H" with

e gllns e HEIDn gl €€ H™. (B.9)

(2) Forany £ € H*, he Rand k = 1,2,..., we have

, — = hE
el(t+h)K§ — 6”K€+ cee

o K*e"K¢ 1 R(h), (B.10)

R(h)||nh™* — 0as h — 0.

where all terms are in H* and R(h) = o(h¥) in each ||-||,, norm, i.e.,

Toledano-Laredo’s proof of this proposition was based on a trick in [FL74] theorem 2.
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This lemma may help us prove the following important criterion for strong commutativity of

unbounded closed operators.

Theorem B.9. Let T' be another unbounded operator on H with invariant domain H®. Suppose

that T satisfies the following conditions:

(1) There exists m € Zx=, such that for any n € Zx=q, we can find a positive number |T'|,, 4, such

that

ITENn< |Tlnamlléllnem (€€ HP).

(2) T is a preclosed operator on H.
(3) KT¢ = TKE forany £ € H®.

Then the self-adjoint operatorK commutes strongly with T, the closure of T.

Proof. By lemma B.8, for each t € R, K leaves H® invariant. We want to show that
BT K _ T on 14,
For any £ € H® we define a {*-valued function = on R by

=(t) = K e itKe,

(B.11)

(B.12)

(B.13)

If we can show that this function is constant, then we have =(¢) = =(0), which proves (B.12). To

prove this, it suffices to show that the derivative of this function is always 0.

Forany t € R, if 0 # h € R, then

=(t + h) =/ e iE
= WED (1 = ihK)e K¢ + o(h))
= KDL — ihK)e K ¢ + o(h)
_ MR p =it ¢ _ ip i+ E gpo=itK ¢ | o(p)
—[e"F (1 + ihK)Te K¢ 4 o(h)]
— [ (1 + ihK)KTe "5¢ + o(h)] + o(h)

—e"ETe K¢ 4 o(h) = Z(t) + o(h),
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(B.15)
(B.16)

(B.17)

(B.18)

(B.19)



where (B.15) and (B.18) follow from (B.10), and (B.17) follows from the relation K" = T K on
H®. We also used the fact that To(h) = o(h) (which follows from (B.11)) in (B.16). Here the
meaning of o(h) is same as that in lemma B.8.

Hence we have shown that =Z/(t) = 0 for any ¢ € R, which proves (B.12). Now we regard T
as an unbounded operator on . By passing to the closure, we have ¢?/K Te K — T'. This shows

that 7 commutes strongly with K. O
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