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TLC                                                 thin layer chromatography  

TsOH                                               p-toluenesulfonic acid 

UV                                                   ultraviolet 



CHAPTER I 

 

A NEW CATALYTIC Cu(II)/SPARTEINE OXIDANT SYSTEM FOR β-β′-
PHENOLIC COUPLINGS OF STYRENYL PHENOLS: SYNTHESIS OF 

CARPANONE AND UNNATURAL ANALOGS 
 

1. 1. Introduction 

Natural products represent a rich source of biologically active compounds and are 

an example of molecular diversity, with recognized potential in drug discovery and 

development.1-5 Oxygen-containing heterocycles are common motifs in natural products 

and pharmaceuticals, and the synthesis of these compounds remains an important 

challenge in total synthesis. The Benzoxanthenones class which was discovered in 1969 

by Brophy and co-workers, belong to a large and constantly expanding family of lignan 

natural products.  
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Figure 1.1. Benzoxanthone natural products. 
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Their highly oxygenated tetracyclic/pentacyclic carbon frameworks comprise a number 

of contiguous stereocenters, isolated as single diastereomers and produced in nature as 

racemates. Notable members include (Figure 1.1) polemannone (1.1), polemannone A 

(1.2), polemannone B (1.3), polemannone C (1.4),6 sauchinone (1.5),7  and carpanone 

(1.6).8Carpanone (1.6), a rigid hexacyclic core lignan with five contiguous stereocenters, 

was isolated in Australia from light petroleum extracts of the bark of carpano tree, a 

Cinnamomium sp. in Australia. 

 

 

Figure 1.2. Isolation of carpanone and related natural products. 

 

Isocarpanone (1.7) and carpananone (1.8) were also isolated in small quantity alongside 

carpanone (1.6) (Figure 1.2). carpacin (1.9) was also isolated in abundance from the same 

plant (Figure 1.2).  
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1. 2. Biosynthetic proposal of carpanone-like natural products 

Given the occurrence of the trioxygenated propenylbenzene of carpacin (1.9) in 

the same plant, it was proposed that carpanone and isocarpanone could arise via β-β′-

phenolic coupling of desmethyl carpacin (1.10) followed by Diels-Alder cyclization 

(Scheme 1.1).8  The biosynthesis of carpanone is shown in Scheme 1.1. Demethylation of 

carpacin (1.9) generates styrenyl phenol (1.10), oxidation of which provides radical 

cation (1.11). After deprotonation, β-β′-phenolic coupling of trans-ortho-quinone methide 

(1.13) followed by endo-selective inverse electron demand Diels-Alder to afford 

carpanone (1.6) (Scheme 1.1).8   

 

 

Scheme 1.1. Biosynthetic proposal of carpanone-like natural products. 

 

1. 3. Biomimetic synthesis of carpanone 

Nature assembles the complex molecular frameworks of natural products 

excellently and efficiently. Thus, chemists are often inspired by how nature creates these 

structurally diverse and complex natural products, and design biomimetic reactions to 

mimic the elegance of the biosynthetic pathway. Now considered a classic in total 
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synthesis, Chapman and coworkers in 1971 validated the biosynthetic proposal with the 

first total synthesis of carpanone (1.6) (Scheme 1.2).9 Following the rationale in Scheme 

1.1, Chapman decided that the β-β′-phenolic coupling must occur trans and that this 

configuration would dictate the subsequent inverse-electron demand Diels-Alder 

reaction. Utilizing PdII to promote the β-β′-phenolic coupling, Chapman was able to 

couple together the two styrenyl phenols 1.10 to deliver 1.15 en route to 1.14, and then 

carpanone (1.6) via endo-selective, inverse-electron demand Diels–Alder reaction of the 

highly reactive bis(orthoquinomethane) (1.14). Chapman’s approach afforded carpanone 

(1.6) in 46% yield as a single diastereomer, which was confirmed by single X-ray 

crystallography (Scheme 1.2).9 

 

 
Scheme 1.2. Classical biomimetic total synthesis of carpanone (1.6). 

 
 

After this initial report, several laboratories disclosed additional oxidative systems, 

stoichiometric and catalytic, to produce carpanone, including metal (II) salen/O2 (metal = 

Co, Mn, Fe), O2 (hν, Rose Bengal), AIBN (azobisisobutyronitrile), dibenzoyl peroxide 

and AgO in yields ranging from 14 to 94%.10 In 2001, Ley and coworkers reported on the 

total synthesis of carpanone in 70% yield employing only solid-supported reagents and 

scavengers (Scheme 1.3).12 
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Scheme 1.3. Ley’s synthesis of carpanone. 

 

Lindsley and Shair recently developed a tandem process for use in the diversity-

oriented synthesis of a library of carpanone-like molecules.11 The reaction involved 

electronically differentiated phenols, with the more reactive phenol immobilized on  solid 

support to minimize homocoupling. An oxidative dimerization with PhI(OAc)2 and 

subsequent intramolecular inverse electron-demand Diels-Alder cycloaddition (Scheme 

1.4), controlled by the differential electronic nature of the two aromatic partners, 

provided the carpanone-based tetracyclic derivatives in a single step. This approach was 

utilized to synthesis a 10,000-membered library of molecules resembling the natural 

product carpanone (1.6), where CLL-119 (1.18) was shown to be a potent vesicular 

traffic inhibitor.11 
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Scheme 1.4. Solid-phase biomimetic synthesis of carpanone-like molecules. 

 

1. 4. Asymmetric copper mediated naphthol coupling 

Oxidative couplings of phenols and naphthols using copper amine catalysts have 

been useful in the synthesis of biaryl containing natural products. Hovorka and coworkers 

utilized a CuCl2/tert-butyl amine system (4.0 equiv CuCl2, 16.0 equiv tert-butyl amine, 

1.0 equiv of each naphthol) to promote a highly selective oxidative cross-couplings of 

substituted 2-naphthols, 1.21 and 1.22, to afford unsymmetrical 1,1′-bi-naphthols 1.23 in 

90-97% yields (Scheme 1.5).13  

 

 

Scheme 1.5. CuCl2/t-BuNH2 oxidative coupling of 2-naphthols. 
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1. 4. 1. Asymmetric copper mediated naphthol coupling 

Wynberg and Feringa showed that a stoichiometric amount of the chiral amine-

copper salt (Cu(NO3)2/(S)-a-methylbenzylamine) complex was effective in the coupling 

of 2-naphthol, however it did so with very low enantioselection (3% ee).14 Brussee and 

coworkers discovered that excess of (S)-amphetamine combined with CuCl2 produced 

(S)-BINOL (1.25) in 98% yield and 96% ee (Scheme 1.6).15 The high enantiopurity of 

this reaction resulted from a diastereoselective precipitation of the Cu(II)-(S)-

amphetamine-(S)-BINOL with a concomitant atropisomerization of (R)-BINOL 

(dynamic kinetic resolution). 

 

 

Scheme 1.6. Asymmetric copper mediated naphthol coupling. 

 

Later, Smrcina and Kocovsky reported the coupling of 2-naphthol and hydroxyl ester 

(1.21) using CuCl2 and (-)-sparteine (1.24) in 99% yield and 41% ee, which was an 

important achievement even though the selectivity was modest (Scheme 1.6).16  

Nakajima and co-workers employed chiral prolyldiamine ligands in the presence 

of dioxygen to obtain the coupling product in 85% yield and 78% ee (Scheme 1.7).17 
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Importantly, dioxygen was established as an effective reoxidant for this catalytic process.  

The use of metered amounts of pure dioxygen or air is also viable.17  
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Scheme 1.7. Cu-catalyzed asymmetric homocoupling in the presence of a prolyldiamine. 
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Scheme 1.8. Cu-catalyzed asymmetric coupling with 1,5-diaza-decalin ligand. 

 

Kozlowski and coworkers, using a computer-aided procedure, identified the 1,5-

diaza-cis-decalin scaffold as a new chiral diamine ligands. Using O2 as the stoichiometric 

oxidant, catalyst 1.28 was found to be remarkably effective in the enantioselective 

oxidative couplings of a broad range of 3-substituted-2-naphthols and the generation of a 

number of complex binaphthols (Scheme 1.8).18 Other copper catalysts derived from an 
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octahydro BINAM have been reported to give excellent selectivity (Scheme 1.9).19 

Martell and co-workers have utilized dicopper–salen complex (Scheme 1.10) to effect 

coupling in  high yield and enantioselectivity (85%, 88% ee).20 
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Scheme 1.9. Cu-H8-BINAM catalyzed asymmetric homocoupling. 

 

Scheme 1.10. Asymmetric homocoupling catalyzed by Cu-salen complex. 
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1. 5. Studies of copper mediated β-β′-phenolic coupling of styrenyl phenols 

 

1. 5. 1. Synthesis of styrenyl phenols 

The previously mentioned copper-amine complex conditions had never been applied to 

the β-β′-phenolic coupling of styrenyl phenols. However, in order to extend these 

conditions to β-β′-phenolic couplings and the synthesis of carpanone and related analogs, 

we first had to prepare the requisite styrenyl phenols. The synthesis of the styrenyl phenol 

begins from commercially available sesamol 1.30, which is readily allylated. Following 

Clasien rearrangemen, isomerization gives alcohol 1.31.  Styrenyl phenols 1.32, 1.33 and 

1.34 were achieved from commercially available aldehyde 1.35, via an E-selective Wittig 

reaction21 in 30-87% yield (Scheme 1.11).   

 

 

Scheme 1.11. Synthesis of styrenyl phenols 1.32-1.34. 

 

1. 5. 2. Cu(II)/t-BuNH2 oxidative coupling of styrenyl phenols 

Utilizing Hovorka’s homocoupling method,13 our studies began by exposing 1.33 

to 4.0 equiv of CuCl2 and 16.0 equiv of tert-butylamine in nondegassed MeOH exposed 

to air at room temperature for different reaction times (Scheme 1.12). When the reaction 

was quenched with saturated NH4Cl after 45 min, the desired homocoupled product 1.35 

was isolated in 80% yield as a single diastereomer, and the relative stereochemistry was 
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confirmed by NOE measurements. When reactions were quenched after 8 h, two products 

were isolated in ~1:1 ratio: the desired compound 1.35 along with product 1.36 consistent 

with the conjugate addition of MeOH to 1.35, which afforded a single diastereomer 

containing six contiguous stereocenters. If the reaction was allowed to proceed in excess 

of 16 h, the conjugate addition product 1.36 formed exclusively with isolated yields of 

89% as a single diastereomer due to selective addition to the convex face of the rigid 

tetracyclic scaffold.10,22 Again, NOE measurements established the relative 

stereochemistry for 1.36.22  

 

 

Scheme 1.12. CuCl2/-t-BuNH2 oxidative β-β′-phenolic coupling of styrenyl phenol. 
 

We were surprised by the complex molecular architecture of 1.36 that could arise 

in a single pot from a starting material devoid of any chiral centers by a β-β′-phenolic 

coupling, inverse-electron demand Diels-Alder, and subsequent conjugate addition 

reaction cascade. Our attention now turned to optimization of these two reactions and 
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evaluation of chiral amine ligands to provide enantioselectivity in the β-β′-phenolic 

coupling. 

 

1.5.3. Cu(II)/chiral amine oxidative coupling of styrenyl phenols 

Having developed an optimized method for the synthesis of β-β′-phenolic coupling 

products, we investigated the scope of this overall approach utilizing variety of chiral 

amines (Figure 1.3), monodentate and bidentate, under a varied temperature (-20 oC to 

rt), solvent systems, and copper source with both stoichiometric and catalytic manifolds 

in order to determine if alternative amine/copper complexes would promote the β-β′-

phenolic coupling reaction and engender a degree of enantioselectivity in the product 

1.35 (Figure 1.3).  

 
 Figure 1.3. Chiral amine ligands surveyed to promote the β-β′-phenolic coupling. 
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Table 1.1. Copper/amine oxidative β-β′-phenolic homocouplinga 

 

 

As shown in Table 1.1, we first examined conversion to 1.35 employing various 

Cu(I) and Cu(II) salts with the four chiral amines (Figure 1.3) at -10 oC in non-degassed 

MeOH. At this temperature, the standard conditions with tert-butylamine (entry 9) 

suffered a reduction in yield, whereas the bidentate ligand 1.24 afforded excellent 

conversion to 1.35 in 80% isolated yield (entry 1). Catalytic quantities of amine ligand 

also afforded good conversion to 1.35 with excess copper.  
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Table 1.2. Metal-Catalyzed β-β′-phenolic homocoupling using various chiral ligands.a 

 

 

The effect of solvent on the conversion of 1.33 to 1.35 was evaluated (Table 1.3).  

For this study, we maintained 10 mol % copper, 10 mol % (-)-sparteine at -20 °C for 24 h 

and examined CH2Cl2, CH3CN, and MeOH. Clearly, MeOH is the optimal solvent to 

facilitate the β-β′-phenolic coupling reaction as shown by Table 1.3, entries 7-11. 

After an exhaustive survey, only poor enantioselectivity (<5% ee) was observed 

by analytical chiral LC; however, we noted that bidentate (-)-sparteine 1.24 was superior 

to the monodentate tert-butylamine facilitating the β,β-phenolic coupling reaction. 
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Table 1.3. Examination of solvent in the catalyzed β-β′-phenolic homocouplinga. 

 

 

Moreover, tert-butylamine failed at temperatures below 0 oC to promote the β,β-

phenolic coupling, whereas (-)-sparteine 1.24 provided excellent results at temperatures 

as low as -20 oC. These data suggest that the reaction does not take place in the copper 

coordination sphere due to rapid dissociation of the intermediate keto-radical leading to 

no enantioselection. Having developed optimum catalytic conditions, these conditions 

were then applied to styrenyl phenols 1.32, 1.33, and 1.34 to provide unnatural 

benzoxanthenones 1.35, 1.40 and 1.41 in 87% and 89% yield, respectively, as well as 

carpanone 1.6 in 91% yield (Figure 1.4).  

Finally, conditions were optimized to deliver the Michael adduct product 1.36 

(Table 1.4). Utilizing 8.0 equiv of 1.24 at room temperature for 4 h provided 1.36 in 91% 

isolated yield as a single diastereomer. 
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Figure 1.4. Other substrates in catalyzed β-β′-phenolic homocoupling. 

 

Table 1.4. Diastereoselective conjugate addition.a 

 

 

If the reaction is performed in EtOH in place of MeOH, the corresponding conjugate 

addition product is obtained in equivalent yield. 
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1. 6. Biomimetic total syntheses of polemannones B and C 

In 1987, Jakupovic and Eid described three new, more highly oxygenated 

congeners, 4,5-dimethoxy-4’,5’-methylenedioxypolemannone or polemannone A (1.2), 

4,5, 4’,5’-bis-methylenedioxypolemannone or polemannone B (1.3), and 4,5, 4’,5’-

tetramethoxy-polemannone or polemannone C (1.4), isolated from root of Polemannia 

montana (Figure 4).6 To date, there have been no synthetic efforts directed toward the 

polemannones, nor have the polemannones been subjected to biological evaluation. 

 

 

Figure 1.5. Structures of benzoxanthenone natural products (polemannones). 

 

Having developed a novel, catalytic CuCl2/(-)-sparteine oxidative β-β′-phenolic coupling 

reaction of styrenyl phenols that, after a rapid inverse-electron demand Diels-Alder 

reaction, affords the benzoxanthanone natural product, we now focused on the 

application of the methodology in the first total synthesis of polemannone, polemannones 

B and C. The polemannones are unique in that there is an extra electron donating ether 

moiety.6  

In all previous synthetic works, only 1 or 2 electron-donating ether moieties were 

present, and one of these was always positioned para to the phenol in order to stabilize 

the orthoquinone methide intermediate and provide the “push” in the inverse-electron 
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demand Diels–Alder reaction (Scheme 1.1).6–12 In cases where two electron-donating 

ether moieties were present, the second was always positioned meta to the phenol. While 

unprecedented, we wondered if a lone ortho-methoxy group, as in 1.42, could equally 

stabilize the ortho-quinone methide intermediate and provide the “push” in the inverse-

electron demand Diels–Alder reaction to provide the first total synthesis of polemannone 

1.1 (Scheme 1.13).  

 

1. 6. 1. Total synthesis of polemannone 

Starting from 2-hydroxy-3-methoxybenzaldehyde 1.43, an E-selective Wittig reaction21 

produced styrenyl phenol 1.42 in 71% yield. Employing our catalytic oxidant system,22 

polemannone 1.1 was obtained as a single diastereomer in 70% yield and NOE 

measurements confirmed the relative stereochemistry.22 This is the first example of a β-

β′-phenolic coupling and tandem inverse-electron demand Diels–Alder reaction cascade 

without a para-OMe group, and polemannone 1.1 represents a fundamentally new 

chemotype within the benzoxanthenone family. Importantly, this result was encouraging 

and suggested that our methodology may successfully allow for the first total synthesis of 

other members of the polemannone family of benzoxanthenones, since they all possess an 

electron-donating ether moiety in the ortho-position. 

 

Scheme 1.13. Total synthesis of polemannone 1.1. 
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1. 6. 2. Total syntheses of polemannones B and C 

Thus, we initiated a synthetic campaign to deliver polemannones B and C both 

homodimers of electron-rich styrenyl phenols 1.3 and 1.4, respectively.  

The requisite styrenyl phenol for polemannone B, 1.3, was prepared in four steps from 

commercial sesamol 1.30 (Scheme 1.14). Formylation provided 1.43 in 40% yield, 

followed by an AlCl3-mediated bromination to produce 1.44 in 94% yield (Scheme 1.14). 

The key methoxy group was installed via a Cu(II) catalyzed etherification reaction to 

afford a 61% yield of 1.45. Finally, an E-selective Wittig reaction21 produced styrenyl 

phenol 1.46 in 82% yield, or 19% overall yield for the four steps.  

Employing the catalytic Cu(II)/(-)-sparteine oxidant system,22 polemannone B 

(1.3) was delivered as a single diastereomer in 79% yield and once again, NOE 

measurements confirmed the relative stereochemistry (Scheme 1.15). As with the natural 

product, our synthetic material was racemic. Moreover, spectral data for our synthetic 

polemannone B, 1.3, were in complete accord with those reported for the natural 

product.6 

 

Scheme 1.14. Synthesis of styrenyl phenol 1.46. 
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Scheme 1.15. Total synthesis of polemannone B (1.3). 

 

The requisite styrenyl phenol for polemannone C, 1.4, was prepared in four steps 

from commercial 2,3,4-trimethoxybenzaldehyde 1.47 (Scheme 1.16). Aldehyde 1.47 was 

smoothly converted into the corresponding phenol 1.48 by treatment with acidic 

hydrogen peroxide. However, the ortho-formylation step to provide 1.47 proved to be 

problematic.  
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Scheme1.16. Total synthesis of polemannone C, 1.4. 
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The ortho-formylation protocol employed for the synthesis of 1.43, utilizing 

SnCl2 and dichloro(methoxy)methane, surprisingly afforded meta-formylation 

exclusively. Ultimately, hexamethylenetetramine in refluxing TFA provided the desired 

ortho-formylation product 1.49 in 53% yield. Then, an E-selective Wittig reaction21 

produced styrenyl phenol 1.50 in 93% yield, or 35% overall yield for the three steps. 

Employing the catalytic Cu(II)/(-)-sparteine oxidant system polemannone C, 1.4, was 

delivered as a single diastereomer in 90% yield (Scheme 1.16) and once again, NOE 

measurements confirmed the relative stereochemistry. Spectral data for our synthetic 

polemannone C were in complete accord with those reported for the natural product.6 

 

1.7. Conclusion 

In summary, we have developed a novel, catalytic CuCl2/(-)-sparteine oxidative β-

β′-phenolic coupling reaction of styrenyl phenols that, after a rapid inverse-electron 

demand Diels-Alder reaction, affords the benzoxanthanone natural product carpanone 1.6 

and related unnatural congeners in yields exceeding 85%. With a slight variation of these 

reaction conditions, a simple achiral styrenyl phenol undergoes a β-β′-phenolic coupling, 

inverse-electron demand Diels-Alder reaction, and subsequent conjugate addition 

reaction to generate unnatural tetracyclic benzoxanthanones 1.36 with six contiguous 

asymmetric centers set diastereoselectively in a one-pot reaction. Unfortunately, <5% ee 

was observed when employing chiral amine ligands under a variety of reaction 

conditions, indicating no influence of a chiral environment for β-β′-phenolic couplings. 

We have extended the substrate scope of β-β′-phenolic coupling/tandem inverse-

electron demand Diels-Alder reaction cascade of styrenyl phenols to include ortho-
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substituted ethers to afford novel, benzoxanthenones such as 1.1 by application of of a 

novel, catalytic CuCl2/(-)-sparteine oxidation system. More importantly, this new 

catalytic system enabled the first total synthesis of the highly oxygenated 

benzoxanthenone ligans polemannones B and C from commercial starting materials in 

overall yields of 15% and 31.5%, respectively.  
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Experimental Methods 

 

General. All 1H & 13C NMR spectra were recorded on Bruker DPX-300 (300 MHz), 

Bruker AV-400 (400 MHz) or Bruker AV-NMR (600 MHz) instrument. Chemical shifts 

are reported in ppm relative to residual solvent peaks as an internal standard set to δ 7.26 

and δ 77.0 (CDCl3). Data are reported as follows: chemical shift, multiplicity (s = singlet, 

d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), integration, coupling 

constant (Hz). IR spectra were recorded as thin films and are reported in wavenumbers 

(cm-1). Low resolution mass spectra were obtained on an Agilent 1200 LCMS with 

electrospray ionization. High resolution mass spectra were recorded on a Waters Qtof-

API-US plus Acquity system. The value Δ is the error in the measurement (in ppm) given 

by the equation Δ = [(ME – MT)/ MT] × 106, where ME is the experimental mass and MT 

is the theoretical mass. The HRMS results were obtained with ES as the ion source and 

leucine enkephalin as the reference. Analytical thin layer chromatography was performed 

on 250 μM silica gel 60 F254 plates. Visualization was accomplished with UV light, 

and/or the use of ninhydrin, anisaldehyde and ceric ammonium molybdate solutions 

followed by charring on a hot-plate. Chromatography on silica gel was performed using 

Silica Gel 60 (230-400 mesh) from Sorbent Technologies. Analytical HPLC was 

performed on an Agilent 1200 analytical LCMS with UV detection at 214 nm and 254 

nm along with ELSD detection.  Chiral HPLC was performed on an Agilent 1200  Series 

HPLC utilizing a Chiracel OD, OJ or Chiralpak AD columns (4.6 mm x 25 cm) obtained 

from Daicel Chemical Industries, Ltd. Solvents for extraction, washing and 

chromatography were HPLC grade. All reagents were purchased from Aldrich Chemical 
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Co. and were used without purification. All polymer-supported reagents were purchased 

from Biotage, Inc. Flame-dried (under vacuum) glassware was used for all reactions. All 

reagents and solvents were commercial grade and purified prior to use when necessary. 

Mass spectra were obtained on a Micromass Q-Tof API-US mass spectrometer was used 

to acquire high-resolution mass spectrometry (HRMS) data. 

 

1.32

MeO

OH

 

(E)-4-methoxy-2-(prop-1-enyl)phenol (1.32): Ethyltriphenylphosphonium bromide (7.4 

g, 20 mmol) was added to a 250 mL flask which was then evacuated and filled with argon 

(3x).  Anhydrous THF (50 mL) was added, followed by n-BuLi (8 mL, 20 mmol, 2.5 M 

in hexanes) at room temperature to form a bright-red ylide.  After 45 min, 2-hydroxy-5-

methoxybenzaldehyde (1.25 mL, 10 mmol) was added dropwise, and was allowed to stir 

at room temperature for 3 h.  Upon completion, the reaction was quenched with 0.5 M 

HCl, extracted with EtOAc (3 x 30 mL).  The organic layer was washed with water, brine 

and dried over magnesium sulfate.  Concentration in vacuo gave the residue which was 

then purified by automated flash chromatography (1:0 to 3:1 Hex/EtOAc) to yield the 

product 1.44 g (88%) as a pale yellow oil:  Rf = 0.72 (1:1 Hex/EtOAc); IR (neat) 3380, 

2912, 1609, 1501, 1430, 1347 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 6.85 (d, J = 

2.9 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 6.66 (dd, J = 8.7, 2.9 Hz, 1H), 6.56 (dd, J = 15.8, 

1.7 Hz, 1H), 6.20 (dq, J = 15.8, 6.6 Hz, 1H), 4.63 (brs, 1H), 3.77 (s, 3H), 1.91 (dd, J = 

6.6, 1.7 Hz, 3H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 153.7, 146.4, 128.4, 125.7, 
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125.3, 116.4, 113.5, 112.1, 55.7, 18.9; HRMS (TOF, ES+) C10H12O2 [M+H]+ calc'd 

165.0916, found 165.0933. 

 

 

(E)-2-(but-1-enyl)-4-methoxyphenol (1.33): Propyltriphenylphosphonium bromide (7.7 

g, 20 mmol) was added to a 250 mL flask which was then evacuated and filled with argon 

(3x).  Anhydrous THF (50 mL) was added, followed by n-BuLi (8 mL, 20 mmol, 2.5 M 

in hexanes) at room temperature to form a bright-red ylide.  After 45 min, 2-hydroxy-5-

methoxybenzaldehyde (1.25 mL, 10 mmol) was added dropwise, and was allowed to stir 

at room temperature for 3 h.  Upon completion, the reaction was quenched with 0.5 M 

HCl, extracted with EtOAc (3 x 30 mL).  The organic layer was washed with water, brine 

and dried over magnesium sulfate.  Concentration in vacuo gave the residue which was 

then purified by automated flash chromatography (1:0 to 3:1 Hex/EtOAc) to yield the 

product 1.40 g (85%) as a pale yellow oil:  Rf = 0.72 (1:0 Hex/EtOAc); IR (neat) 3401, 

2962, 1608, 1501, 1429, 1343 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 6.87 (d, J = 

2.6 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 6.67 (dd, J = 8.7, 2.6 Hz, 1H), 6.54 (d, J = 15.9 Hz, 

1H), 6.23 (dt, J = 15.9, 6.4 Hz, 1H), 3.77 (s, 3H), 2.26 (dq, J = 6.4, 7.5 Hz, 2H), 1.11 (t, J 

= 7.5 Hz, 3H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 153.7, 146.5, 135.2, 125.7, 

123.0, 116.5, 113.6, 112.0, 55.8, 26.4, 13.6; HRMS (TOF, ES+) C11H14O2 [M+H]+ calc'd 

179.0919, found 179.1021. 
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(E)-ethyl 4-(2-hydroxy-5-methoxyphenyl)but-3-enoate (1.34): [3-

(Ethoxxycarbonyl)propyl]-triphenylphosphonium bromide 4.6 g, 10 mmol) was added to 

a 50 mL flask which was then evacuated and filled with argon (3x).  Anhydrous THF (25 

mL) was added and the solution cooled to 0 ºC.  LHMDS (10 mL, 10 mmol, 1.0 M in 

THF) was added dropwise, the solution was allowed to warm to room temperature and 

stirred for 30 min.  The reaction was again cooled to 0 ºC, 2-hydroxy-5-

methoxybenzaldehyde (0.63 mL, 5 mmol) was added dropwise, and was allowed to warm 

to room temperature and stir for 3 h.  Upon completion, the reaction was quenched with 

0.5 M HCl, extracted with EtOAc (3 x 30 mL).  The organic layer was washed with 

water, brine and dried over MgSO4.  Concentration in vacuo gave the residue which was 

then purified by automated flash chromatography (1:0 to 3:1 Hex/EtOAc) to yield the 

product 0.35 g (26%) as a pale yellow oil:  Rf = 0.63 (1:0 Hex/EtOAc); IR (neat) 3407, 

2970, 1709, 1503, 1430, 1373 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 6.85 (d, J = 

2.9 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 6.64 (m, 2H), 6.16 (dt, J = 15.9, 6.5 Hz, 1H), 5.40 

(brs, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 2.53 (m, 4H), 1.26 (t, J = 7.1 Hz, 3H);  

13C NMR (100.6 MHz, CDCl3) δ (ppm): 173.4, 153.5, 146.9, 130.5, 125.5, 125.2, 116.6, 

113.9, 111.9, 60.6, 55.7, 34.1, 28.6, 14.2; HRMS (TOF, ES+) C14H18O4 [M+Na]+ calc'd 

273.1103, found 273.1108. 
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General Procedure for the β,β-Phenol Homocoupling: A solution of copper catalyst 

(0.1 equiv), 4Å molecular sieves and amine ligand (0.1 equiv) in appropriate anhydrous 

solvent (0.15 M) (see Tables in the main text for solvents) was stirred for 15-20 min until 

no solid copper salt was visible and then cooled to -20 oC followed by the addition of 

phenol (1.0 equiv). The reaction was stirred at -20 °C for 24 h. The reaction was 

quenched with saturated NH4Cl solution and extracted with CH2Cl2 (3x).  The combined 

organic extracts were washed with 0.5 N HCl, water and the dried over MgSO4. Filtration 

and concentration afforded the crude product, which was purified by flash 

chromatography (4:1 to 1:1 Hex/EtOAc).  

1.6

O
O

O
H

H
O
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Carpanone (1.6): The product was prepared according to the general procedure. The 

reaction was run on a 0.1 mmol scale, to afford the product as a white solid (32.4mg, 

91%):  mp 184-185 oC [lit.5 mp 185 oC]; IR (neat) 2923, 2870, 1674, 1624, 1499, 1479, 

1381 cm-1; 1H NMR (600 MHz, CDCl3) matches literature; HRMS (TOF, ES+) C20H18O6 

[M+Na]+ calc'd 377.1001, found 377.0987. 

 

27 
 

 



(1R,2R,3a1S,6aR,11bS)-1,2-diethyl-6a,10-dimethoxy-1,2,6a,11b-

tetrahydrobenzo[kl]xanthen-4(3a1H)-one (1.35): The product was prepared according 

to the general procedure. The reaction was run on a 0.1 mmol scale, to afford the product 

as an off-white solid (32.2mg, 90%):  mp 111-115 ºC; Rf = 0.68 (1:1 Hex/EtOAc); IR 

(neat) 2962, 2928, 1682, 1621, 1497, 1457, 1269 cm-1; 1H NMR (600.1 MHz, CDCl3) δ 

(ppm): 7.23 (d, J = 10.3 Hz, 1H), 7.08 (m, 1H), 6.88 (d, J = 2.7 Hz, 1H), 6.74 (d, J = 8.8  

Hz, 1H), 6.66 (ddd, J = 8.8, 2.7, 0.6 Hz, 1H), 6.31 (d, J = 10.3 Hz, 1H), 3.77 (s, 3H), 3.43 

(d, J = 6.9 Hz, 1H), 3.31 (s, 3H), 3.09 (dt, J = 6.9, 2.6 Hz, 1H), 2.34 (t, J = 6.2 Hz, 1H), 

2.01 (m, 1H), 1.49 (m, 1H), 1.37 (m, 1H), 1.05 (t, J = 7.4 Hz, 3H), 0.95(m, 1H), 0.87 (t, J 

= 6.9 Hz, 3H), 0.82 (m, 1H);  13C NMR (150.9 MHz, CDCl3) δ (ppm): 186.8, 154.2, 

144.9, 142.9, 142.5, 131.6, 128.3, 125.5, 117.9, 113.2, 112.8, 95.7, 55.7, 49.2, 42.0, 39.7, 

37.4, 32.4, 28.0, 27.9, 12.9, 12.6; HRMS (TOF, ES+) C22H26O4 [M+H]+ calc'd 355.1909, 

found 355.1913. 

 

 

(1R,2R,3a1S,6aR,11bS)-6a,10-dimethoxy-1,2-dimethyl-1,2,6a,11b-

tetrahydrobenzo[kl]xanthen-4(3a1H)-one (1.40): The product was prepared according 

to the general procedure. The reaction was run on a 0.1 mmol scale, to afford the product 

as an off-white foam (28.4 mg, 87%):  Rf = 0.67 (1:1 Hex/EtOAc); IR (neat) 2930, 1678, 

1618, 1493, 1459, 1273 cm-1; 1H NMR (600.1 MHz, CDCl3) δ (ppm): 7.24 (d, J = 10.3 
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Hz, 1H), 7.02 (m, 1H), 6.90 (d, J = 2.6 Hz, 1H), 6.75 (d, J = 8.8 Hz, 1H), 6.67 (dd, J = 

8.8, 2.6 Hz, 1H), 6.31 (d, J = 10.3 Hz, 1H), 3.76 (s, 3H), 3.32 (m, 4H), 3.14 (dt, J = 7.2, 

2.6 Hz, 1H), 2.62 (q, J = 7.0 Hz, 1H), 2.21 (m, 1H), 1.15 (d, J = 7.0 Hz, 3H), 0.67 (d, J = 

7.6 Hz, 3H);  13C NMR (150.9 MHz, CDCl3) δ (ppm): 186.7, 154.2, 144.9, 143.7, 142.5, 

131.6, 127.9, 125.4, 117.9, 113.4, 113.1, 95.7, 55.6, 49.2, 36.9, 36.6, 35.0, 33.9, 21.6, 

21.2; HRMS (TOF, ES+) C20H22O4 [M+H]+ calc'd 327.1596, found 327.1607. 

 

1.41
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Diethyl-3,3'-((1R,2R,3a1S,6aR,11bS)-6a,10-dimethoxy-4-oxo-1,2,3a1,4,6a,11b-

hexahydrobenzo[kl]xanthene-1,2-diyl)dipropanoate (1.41): The product was prepared 

according to the general procedure. The reaction was run on a 0.1 mmol scale, to afford 

the product as a pale yellow viscous oil (44.3 mg, 89%):  Rf = 0.46 (1:1 Hex/EtOAc); IR 

(neat) 2926, 2851, 1729, 1681, 1494, 1458, 1420, 1376 cm-1; 1H NMR (600.1 MHz, 

CDCl3) δ (ppm): 7.22 (d, J = 10.3 Hz, 1H), 7.01 (m, 1H), 6.84 (d, J = 2.6 Hz, 1H), 6.75 

(d, J = 8.8 Hz, 1H), 6.67 (dd, J = 8.8, 2.6 Hz, 1H), 6.30 (d, J = 10.3 Hz, 1H), 4.17 (q, J = 

7.1 Hz, 2H), 4.07 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 3.44 (d, J = 6.9, Hz, 1H), 3.30 (s, 3H), 

3.13 (dt, J = 6.9, 2.5 Hz, 1H), 2.49 (t, J = 7.1 Hz, 1H), 2.45 (m, 2H), 2.25 (m, 2H), 2.15 

(m, 1H), 1.82 (dq, J = 14.2, 7.1 Hz, 1H), 1.66 (dq, J = 14.2, 7.1 Hz, 1H), 1.29 (t, J = 7.1 

Hz, 3H), 1.25 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.13 (dq, J = 14.4 , 7.1, 1H);  13C NMR 
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(150.9 MHz, CDCl3) δ (ppm): 186.3, 173.0, 172.7, 154.6, 145.0, 142.6, 140.7, 131.6, 

129.3, 124.8, 118.2, 113.7, 112.8, 95.7, 60.5, 60.3, 55.7, 49.2, 39.1, 37.8, 37.5, 32.63, 

32.55, 32.51, 30.2, 30.1, 14.3, 14.2; HRMS (TOF, ES+) C28H34O8 [M+Na]+ calc'd 

521.2151, found 521.2151. 

 

General Procedure for Conjugate Addition Products: A solution of copper catalyst (4 

equiv), 4Å molecular sieves and amine ligand (8 equiv) in anhydrous MeOH (0.15 M) 

was stirred for 15-20 min until no solid copper salt was visible followed by the addition 

of phenol (1.0 equiv). The reaction was stirred at 23 °C for 4-16 h. The reaction was 

quenched with saturated NH4Cl solution and extracted with CH2Cl2 (3x).  The combined 

organic extracts were washed with 0.5 N HCl, water and the dried over MgSO4. Filtration 

and concentration afforded the crude product, which was purified by flash 

chromatography (4:1 to 1:1 Hex/EtOAc). 

 

 

(1R,2R,3a1S,6S,6aS,11bS)-1,2-diethyl-6,6a,10-trimethoxy-1,2,5,6,6a,11b-

hexahydrobenzo[kl]xanthen-4(3a1H)-one (1.36): The product was prepared according 

to the general procedure. The reaction was run on a 0.1 mmol scale, to afford the product 

as a yellow viscous oil (35.1 mg, 91%):  Rf = 0.68 (1:1 Hex/EtOAc); IR (neat) 2927, 

1691, 1622, 1493, 1462, 1258 cm-1; 1H NMR (600.1 MHz, CDCl3) δ (ppm): 6.86 (d, J = 
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2.7 Hz, 1H), 6.74 (t, J = 3.1 Hz, 1H), 6.72 (d, J = 8.8 Hz, 1H), 6.66 (dd, J = 8.8, 2.7 Hz, 

1H), 4.10 (dd, J = 3.9, 2.4 Hz, 1H), 3.75 (s, 3H), 3.49 (s, 3H), 3.35 (dd, J = 6.3, 2.0 Hz, 

1H), 3.26 (s, 3H), 3.17 (dt, J = 6.3, 2.8 Hz, 1H), 2.91 (dd, J = 17.8, 2.4 Hz, 1H), 2.82 (dd, 

J = 17.8, 3.9 Hz, 1H), 2.31 (t, J = 6.8 Hz, 1H), 1.89 (m, 1H), 1.50 (m, 1H), 1.38 (m, 1H), 

1.03 (t, J = 7.4 Hz, 3H), 0.97 (m, 2H), 0.90 (m, 3H);  13C NMR (150.9 MHz, CDCl3) δ 

(ppm): 198.2, 153. 9, 144.4, 142.3, 130.9, 125.7, 117.8, 113.2, 112.9, 98.3, 73.9, 57.2, 

55.6, 48.7, 41.8, 40.2, 38.7, 32.5, 31.9, 28.2, 28.1, 12.9, 12.4; HRMS (TOF, ES+) 

C23H30O5 [M+H]+ calc'd 387.2171, found 387.2172. 

 

 

 

(1R,2R,3a1S,6S,6aS,11bS)-6-ethoxy-6a,10-dimethoxy-1,2-dimethyl-1,2,5,6,6a,11b-

hexahydrobenzo[kl]xanthen-4(3a1H)-one: The product was prepared according to the 

general procedure except that EtOH was used as the reaction solvent. The reaction was 

run on a 0.1 mmol scale, to afford the product as a pale yellow viscous oil (29.3 mg, 

79%):  Rf = 0.73 (1:1 Hex/EtOAc); IR (neat) 2966, 2359, 2340, 1692, 1621, 1493, 1458, 

1376, 1275 cm-1; 1H NMR (600.1 MHz, CDCl3) δ (ppm): 6.89 (d, J = 2.8 Hz, 1H), 6.73 

(d, J = 8.8 Hz, 1H), 6.67 (m, 2H), 4.22 (m, 1H), 3.74 (m, 4H), 3.64 (q, J = 7.0 Hz, 1H), 

3.62 (q, J = 7.0 Hz, 1H), 3.26 (s, 3H), 3.25 (m, 2H), 2.88 (dd, J = 17.6, 2.6 Hz, 1H), 2.84 

(dd, J = 17.6, 3.7 Hz, 1H), 2.59 (q, J = 7.1 Hz, 1H), 2.10 (m, 1H), 1.25 (t, J = 7.0 Hz, 

3H), 1.17 (d, J = 7.1 Hz, 3H), 0.74 ( d, J = 7.6 Hz, 3H);  13C NMR (150.9 MHz, CDCl3) δ 
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(ppm): 198.6, 153.9, 144.4, 143.1, 130.8, 125.7, 117.8, 113.7, 113.0, 98.4, 72.0, 65.0, 

55.6, 48.7, 41.0, 36.5, 34.2, 33.2, 32.0, 21.8, 21.6, 15.5; HRMS (TOF, ES+) C23H28O5 

[M+H]+ calc'd 373.2015, found 373.2020. 

 

Polemannone B, 1.3
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Polemannone B (1.3): The product was prepared according to the general procedure. 

The reaction was run on a 0.1 mmol scale, to afford the product as a pale yellow solid 

(79%): Purified by column chromatography (4:1 to 1:1 Hex/EtOAc); Rf = 0.61 (1:1 

Hex/EtOAc); 1H NMR (600.1 MHz, CDCl3) δ (ppm): 7.05 (dd, J = 4.9, 1.5 Hz, 1H), 6.51 

(s, 1H), 5.89 (d, J = 1.3 Hz, 1H), 5.85 (d, J = 1.3 Hz, 1H), 5.66 (s, 1H), 5.64 (s,1H), 3.96 

(s, 1H), 3.93 (s, 1H), 3.26 (dd, J = 7.5, 2.3 Hz, 1H), 3.17 (dt, J = 7.5, 2.3 Hz, 1H), 2.48 

(q, J = 7.2 Hz, 1H), 2.21 (m, 1H), 1.12 (d, J = 7.2 Hz, 3H), 0.70 (d, J = 7.6 Hz, 3H); 13C 

NMR (150.9 MHz, CDCl3) δ (ppm): 183.2, 151.4, 143.7, 143.0, 137.9, 135.7, 133.6, 

131.5, 126.4, 126.4, 116.8, 101.3, 101.1, 100.6, 98.7, 60.2, 59.7, 36.3, 35.6, 35.1, 34.0, 

21.4, 21.1; HRMS (TOF, ES+) C22H22O8 [M+H]+ calcd 415.1393, found 415.1383. 
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Polemannone C (1.4): Yellow solid, Rf = 0.58 (1:1 Hex/EtOAc); 1H NMR (600.1 MHz, 

CDCl3) δ (ppm): 6.95 (m, 1H), 6.57 (s, 1H), 4.18 (s, 3H), 3.81 (s, 6H), 3.77 (s, 3H), 3.74 

(s, 3H), 3.39 (s, 3H), 3.20 (dd, J = 7.0, 1.8 Hz, 1H), 3.07 (m, 1H), 2.53 (q, J = 7.0 Hz, 

1H), 2.15 (m, 1H), 1.09 (d, J = 7.2 Hz, 3H), 0.62 (d, J = 7.8 Hz, 3H); 13C NMR (150.9 

MHz, CDCl3) δ (ppm): 183.2, 161.2, 147.3, 141.9, 141.2, 139.0, 138.5, 127.0, 119.1, 

106.1, 97.0, 61.2, 60.9, 60.4, 56.2, 53.1, 36.3, 35.6, 35.1, 33.7, 21.3, 21.0; HRMS (TOF, 

ES+) C24H30O8 [M+H]+ calcd 447.2019, found 447.2019. 

  

  

  

 

 

 

 

 

 

 

 

 

33 
 



References 

 

1. Newman, D. J.; Cragg, G. M.; Snader, K. M.; Nat. Prod. Rep. 2000, 17, 215. 

2. Harvey, A.; Drug Discov. Today 2000, 5, 294. 

3. Grabley, S.; Thiericke, R.; Drug Discovery from Nature, Springer-Verlag: Berlin:  

       Heidelberg, 1999. 

4. Grabley, S.; Thiericke, R.; Adv. Biochem. Eng. Biotechnol. 1999, 64, 102. 

5. Cragg, G. M.; Newman, D. J.; Snader, K. M.; J. Nat. Prod. 1997, 60, 52. 

6. Jaupovic, J.; Eid, F. Phytochemistry 1987, 26, 2427-2429. 

7. Sung, S.; Kim, Y. C. J. Nat. Prod. 2000, 63, 1019-1021. 

8. Brophy, G.; Mohandas, J.; Slaytor, M.; Sternhell, S.; Watson, T.; Wilson, L. Tetrahderon 

Lett. 1969, 10, 5159-5162. 

9. Chapman, O. L.; Engel, M. R.; Springer, J. P.; Clardy, J. C. J. Am. Chem. Soc. 1971, 93, 

6696. 

10. (a) Lindsley, C. W.; Chan, L. K.; Goess, B. C.; Joseph, R.; Shair, M. D.   

J. Am. Chem. Soc. 2000, 122, 422-423. (b) Goess, B. C.; Hannoush, R. N.; Chan, L. K.; 

Kirchhausen, T.; Shair, M. D. J. Am. Chem. Soc. 2006, 128, 5391-5403. 

11. Matsumoto, M.; Kuroda, K. Tetrahedron Lett. 1981, 22, 4437-4440. 

12. Baxendale, I. R.; Lee, A. I.; Ley, S. V. Synlett 2001, 9, 1482-1484. 

13. Hovorka, M.; Gunterova, J.; Zavada, J. Tetrahedron Lett. 1990, 31, 413-416. 

14. Feringa, B.; Wynberg, H.; Bioorg. Chem. 1978, 7, 397-408. 

15. J. Brussee, J. L. G.; Groenendijk, J. M.; te Koppele.; Jansen, A. C. A.; Tetrahedron. 

1985, 41, 3313-3319. 

34 
 



16. Smrcina, M.; Polakova, J.; Vyskocil, S.; Kocovsky´, P.;  J. Org. Chem. 1993, 58,  

4534-4538. 

17. Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.-I. J. Org. Chem. 1999, 64, 

2264-2271. 

18. Li, X.; Yang, J.; Kozlowski, M. C.; Org. Lett. 2001, 3, 1137–1140. 

19. Kim, K. H.; Lee, D.-W.; Lee, Y.-S.; Ko, D.-H.; Ha, D.-C. Tetrahedron. 2004, 60, 9037-

9042. 

20. Gao, J.; Reibenspies J. H.; Martell, A. E.; Angew. Chem., Int. Ed. 2003, 42, 6008-6012. 

21. Suzuki, Y.; Takahashi, H. Chem. Pharm. Bull. 1983, 31, 1751-1753. 

22. Daniels, R. N.;  Fadeyi, O. O.; Lindsley, C. W.; Org. Lett. 2008, 10, 4097-4100. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

35 
 



CHAPTER II 

 

APPLICATION OF ORGANOCATALYSIS TO THE SYNTHESIS OF 
PHARMACOLOGICAL RELEVANT SCAFFOLDS: CHIRAL β-

FLUOROAMINES AND AZIRIDINES 
 

2. 1. General access to chiral β-fluoroamines and β,β-difluoroamines via 
organocatalysis 
 

2. 1. 1. Fluorinated pharmaceuticals 

In recent years, chemists have introduced one or more fluorine atoms into 

biologically active synthetic compounds. Fluoro-organic compounds exhibit unique 

properties and their potential is increasingly being exploited in various areas of life 

sciences, particularly in the pharmaceutical and crop-protection fields. The number of 

active compounds in these fields that contain fluorine-substituted moieties has increased 

over the past 30 years and has become an important area of medicinal chemistry.1-3  

This relatively recent field of medicinal chemistry started its real expansion in the 

1970’s, and important progress has been performed in recent years, as shown by the 

number of fluorine-containing drugs on the market. In the US, 9 of the 31 new drugs 

licensed in 2002 contained fluorine, while half of the top 10 drugs sold in 2005 contained 

fluorine.1-3 Thus, it can be conservatively estimated that globally about 20–25% of drugs 

in the pharmaceutical pipeline contain at least one fluorine atom.1-3 Shown in Figure 2.1; 

are examples of fluorinated drugs on the market, including two of the current top ten 

selling medicines. Pfizer’s cholesterol lowering medicine, atorvastatin (Lipitor),4 and the 

fluticasone component in GlaxoSmithKline’s combination asthma treatment (Seretide)5,6 

(Figure 2.1). 
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Figure 2.1. Examples of pharmaceuticals containing fluorine. 

 

2. 1. 2. The Fluorine substituent effect 

The reasons for using fluorine substitution in medicinal chemistry are based on 

the very specific characteristics of the fluorine atom, i.e. mostly its small size,  high 

electronegativity, and subsequent effects on a molecule. The small size of the fluorine 

atom is a unique characteristic and its van der Waals radius is similar to that of hydrogen 

(Table 2.1), therefore, a fluorine atom can mimic a hydrogen atom or hydroxyl group in a 

bioactive compound with respect to steric requirements at receptor sites.3  

As a consequence of its electronegativity, fluorine makes a very strong bond with 

carbon (Table 2.1), and it is often introduced into a target compound in order to improve 

the metabolic stability by blocking sensitive sites. Other effects of the electronic 

properties are that fluorine may modulate the physicochemical properties of a molecule, 

such as acidity and basicity, lipophilicity, or hydrogen bonding ability. It is also 

important to note that fluorine may also exert a substantial effect on the conformation of 

a molecule.1,7  
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Table 2.1. Physiochemical properties of the carbon-fluorine bond 

 

 

 

Figure 2.2: Protective effect of fluorine substitution on oxidizable site. 

 

2. 1. 2. 1. Metabolic stability 

Metabolic stability is one of the key factors in limiting the bioavailability of a 

compound. Rapid oxidative metabolism by liver enzymes (CYP 450 cytochrome 

enzymes) and/or the acidic stomach medium may decompose the drug early. It has been 

shown, however, that introducing fluorine atoms to a molecule makes the molecule to be 
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resistant to these phenomena. For instance, the replacement of hydrogen atoms on an 

oxidizable site by fluorine atoms of Eli Lilly’s muscarinic analgesic LY316108 protects 

the site from hydroxylation processes mediated by CYP450 cytochrome enzymes.7b 

                 

2. 1. 2. 2. Acidity and basicity 

As electronegative substituents, fluorine and fluoroalkyl groups have strong 

effects on the acidity (and basicity) of neighboring functions.1-3 For instance, the 

inductive effects of a β-fluorine atom are pronounced, lowering the pKa of a linear 

aliphatic amine (pKa ~10.7) to pKa ~9.0 with single β-fluorine and to pKa ~7.3 with β,β-

difluoro substitution. These effects are general and additive, with a β-CF3 moiety 

lowering the pKa to ~5.7 (Figure 2.2).1-3  

 

 

Figure 2.3. The effect of fluorine substitution on pKa. 
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These changes could have important consequences on transportation and 

absorption (pharmacokinetic properties) of the drug in the organism. Quite often, a 

change in the pKa has a strong effect on the transportation and absorption of a drug.  

An example of this is the incorporation of fluorine into selective indole 5HT 

receptor ligand compounds. The incorporation of fluorine was found to significantly 

reduce the pKa of these compounds, leading to better bioavailabilty of the molecules 

(Figure 2.4).8 

 

 

Figure 2.4. Effects of pKa values on the bioavailability and receptor binding agonist. 

 

2. 1. 2. 3. Prenominal fluorine substitution effects 

Prenominal effects of fluorine substituents are a change in the preferred molecular 

conformation of molecules, significant effects on the binding affinity in protein-ligand 

complexes and the lipophilicity of drug molecules.1-3 
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2. 1. 3. General access to chiral β-fluoroamines and β,β-difluoroamines via 

organocatalysis 

Fluorinated analogs, in particular fluorinated analogs of nitrogen-containing 

compounds 9 of biologically active compounds, are regarded as tools of high interest for 

pharmaceutical research.10 The incorporation of β-fluoroamines into drug candidates has 

increased dramatically in the past 5 years, with >150 fluorinated drug candidates in phase 

II and phase III clinical trials.3 The role of the β-fluorine atom is diverse and has been 

shown to enhance binding interactions, improve metabolic stability, increase CNS 

penetration, and eliminate ancillary ion channel activity by attenuating amine basicity 

(pKa).1-3 

The substitution of fluorine in β-fluoroamines affects the pKa and the biological 

properties of the amine molecules. Some examples have been shown to prove this trend. 

For example, the incorporation of fluorine lead to a change in affinity and activity of 

propranolols for cytochrome oxidase enzymes,11,12 change in the  affinity of 

fluoroisoquinolines for the α2-adrenoceptor,13  metabolic and tissue distribution change of 

amphetamines,14 increased activity of lung N-methyltransferase for fluoro-

alkylarylamines,15  and better oral absorption of fluoro-piperidine and fluoro-piperazine 

indoles.16  The introduction of fluorine, especially γ- or β-fluorine substitution, not only 

strongly reduces amine basicity, it affect the degree of protonation at physiological pH,17 

membrane permeability,18 and interference with the hERG (human ether a-go-go–related 

gene) K+ channel associated with cardiovascular toxicity.19 

The human ether a-go-go–related gene (hERG) contributes to the electrical 

activity of the heart that coordinates the heart's beating and is a major cause of toxicity in 
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many drug molecules. Several therapeutic drug molecules have failed to progress due to 

interference with hERG ion channel.  About 25-40% of all lead compounds have been 

estimated to bind hERG ion channel. Drug interference with  hERG channels cause 

prolongated electrocardiographic QT interval which result to long QT syndrome and thus 

increased risk of cardiac arrhythmia.20 Due to toxicity from drug-hERG interefence, the 

Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) 

regulators now require a compusory screening of new drugs on hERG function.21 

 

2. 1. 3. 1. Synthesis of β-fluoroamines. 

Despite the importance of the β-fluoroamine moiety, there  are few synthetic 

methods in the literature for their preparation.1-3,9 Two common methods, the ring 

opening of aziridines with nucleophilic flouride sources10 and the hydrofluorination of 

olefins,22 deliver β-fluoroamines but lack generality/substrate scope, require starting 

materials that are not readily available, or in the latter case, do not provide access to 

enantiopure β-fluoroamines (Scheme 2.1).  

 

 

Scheme 2.1. Known approach to β-fluoroamine. 

The route most utilized involves the treatment of ketones or secondary alcohols 

with DAST, (diethylamino)sulfur trifluoride, to provide β,β-difluoroamines and β-
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fluoroamines (with inversion of stereochemistry), respectively.1-3,9-10,22-24 However, this 

methodology requires the synthesis of enantiopure secondary alcohols and then suffers 

from the formation of rearranged and dehydrated products, which in many published 

cases greatly diminished yields of the desired β-fluoroamines.24 Cossy and co-workers 

utilized DAST to effect an enantiospecifically and regioselectively rearrangement of N,N-

dialkyl-β-amino alcohols 2.7 to give optically active β-fluoroamines 2.8 (Scheme 2.2).25  

 

 

Scheme 2.2. Synthesis of β-fluoroamine using DAST. 

 

H

N R
S
O

tBu
R

F

NH2

N
H F

HClHCl(i) PhSO2CH2F, LHMDS, THF
(ii) Na(Hg), Na2HPO4, MeOH
(iii) HCl (dioxane), MeOH

70‐77% yield
98% ee

70‐77% yield
98% ee

n

2.9 2.10 2.11

 

Scheme 2.3. Hu’s stereoselective nucleophilic monofluoromethylation of chiral imines. 
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Scheme 2.4. Palladium-catalyzed oxidative aminofluorination 

 

Hu and co-workers reported a highly stereoselective nucleophilic 

monofluoromethylation of chiral imines with fluoromethyl phenyl sulfone to afford α-

monofluoromethylamines and α-monofluoromethyled cyclic amines (Scheme 2.3).26 In 

2009, Liu and co-workers developed a novel palladium-catalyzed intermolecular and 

intramolecular oxidative aminofluorination of unactivated alkenes to yield acyclic and 

cyclic β-fluoroamines (Scheme 2.4).27 Asymmetric catalysis using chiral organocatalysis 

has been utilized in the synthesis of enantiopure β-fluoroamines.  
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Scheme 2.5. Organocatalyzed synthesis of enantiopure β-fluoroamines 

 

Lu and co-workers developed a novel tryptophan-based bifunctional thiourea catalyst that 

was remarkably effective in promoting the asymmetric Mannich reaction of α-fluoro-β-

ketoester 2.17 with N-Boc imine 2.18 to afford α-fluoro-β-amino acids 2.19 in good to 

excellent yield, diastereoselectivity and enantioselectivity (Scheme 2.5).  Brenner-

Moyer and co-workers reported an organocatalytic asymmetric olefin aminofluorination 

reaction. Enantiopure α-fluoro-β-amino alcohols (generated after reduction of 

corresponding aldehydes) were generated in a single flask from achiral α,β-unsaturated 

aldehydes 2.21 in low to moderate yields and excellent enantioselectivity (Scheme 2.5).  

 

28

29
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Scheme 2.6. Cinchona alkaloid-catalyzed enantioselective monofluoromethylation 

 

The first catalytic enantioselective fluorobisphenylsulfonylmethylation was 

developed by Toru and co-workers. In situ generation of imines from α-amido sulfones 

2.23 underwent Mannich-type reaction with 1-fluorobis(phenylsulfonyl)methane 2.24 to 

give α-fluorobisphenylsulfonyl 2.25 in excellent yield and enantioselectivity. Further 

reductive desulfonylation of 2.25 under Mg/MeOH conditions gave 

monofluoromethylated amines 2.26 in high yields and retained enantiopurity (Scheme 

2.6).30 

Organofluorine compounds are generally formed using prepared or commercially 

available nucleophilic, electrophilic, and radical fluorine reagents.  Some common 

examples of nucleophilic fluorine reagents are DAST, DFI and Deoxofluor (Figure 2.5). 
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Figure 2.5. Common nucleophilic fluorine reagents. 

 

 

Figure 2.6. Common electrophilic fluorine reagents. 

 

2. 1. 3. 2. Enantioselective fluorination 

Common examples of electrophilic fluorine reagents are Selectfluor, NFSI, N-

fluorocamphor sultam and N-fluoropyridinium salt (Figure 2.6). Many methods for the 

synthesis of enantioenriched organofluoro compounds have been reported. The 

enantioselective fluorination is usually accomplished through substrate-controlled, 

reagent-controlled and catalytic asymmetric fluorinations (Scheme 2.7).  
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Scheme 2.7. General approach to enantioselective fluorination 

 

Early methods for the synthesis of enantiopure organofluorine compounds relied 

on substrate-controlled diastereoselective fluorinations. This approach was commonly 

accomplished by enolate trapping of chiral auxiliaries such as Evan’s oxazolidinones 

with an electrophilic fluorinating reagent to afford chiral α-fluorocarbonyl compounds 

(Scheme 2.8).31 Alternatively, enantioselective fluorinations can be achieved using 

reagent-controlled, which utilize stochiometric amounts of electrophilic fluorinating 

reagents. Chiral N-fluorinating reagents such as N-fluorosultams, N-fluorosulfonamides 

and N-fluoroammonium salts of cinchona alkaloids have been used for the 

enantioselective fluorination of various enolizable substrates.32 
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Scheme 2.8. Substrate-controlled enantioselective fluorination 

 

 

Scheme 2.9. Enantioselective fluorination using N-Fluorocamphorsultams 

 

 

Scheme 2.10. Enantioselective synthesis of BMS-204352 

 

In 1988 Differding and Lang developed N-Fluorocamphorsultams 2.30 and its 

derivatives as the first enantioselective fluorinating reagent. Subjecting various achiral 

metal enolates generated from keto-ester 2.29 led to fluorinated keto-esters 2.31 in low to 
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moderate enantioselectivities (Scheme 2.9), these results demonstrated the possibility of 

reagent controlled asymmetric fluorination by using chiral electrophilic fluorine atom.33 

One of the most remarkable demonstrations of the effectiveness of [N-F]+ reagents was 

reported by Cahard and co-workers. A new N-fluoroammonium salt F-2NaphtQN-BF4 

was developed and applied to the enantioselective synthesis of BMS-204352 (MaxiPost), 

a potent opener of maxi-K channels, which is evaluated in a worldwide phase III clinical 

trial for treatment of acute ischemic stroke. Cahard and co-workers reacted oxindole 2.31 

with the N-fluoroammonium salt F-2NaphtQN-BF4 in the presence of a base (DABCO), 

to yield the target product (S)-BMS-204352 in excellent yield and high enantioselectivity 

(Scheme 2.10).34 

 

2. 1. 3. 3. Catalytic enantioselective fluorination 

Togni and co-workers reported the first catalytic enantioselective fluorination 

reaction in 2000. In this reaction, β-keto esters 2.32 were subjected to catalytic transition-

metal complex TiCl2(R,R)-TADDOLato 2.33 (complex acted as a Lewis acid to activate 

the β-keto) in the presence of Selectfluor to give α-fluoro-β-keto esters 2.34 in good 

yields and moderate enantioselectivty. (Scheme 2.11).35 Recently, an important 

breakthrough in the field of asymmetric fluorination, namely chiral secondary amine-

catalyzed fluorination of aldehydes was achieved. Jørgensen, 36 Barbas37 and 

MacMillan38 simultaneously reported their findings on the use of various cyclic 

secondary amines as catalysts for the direct α-fluorination of aldehydes with excellent 

asymmetric induction. Their approaches to direct enantioselective α-fluorination of 
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aldehydes used N-fluorobenzenesulfonimide (NFSI) as the fluorination reagent (Scheme 

2.12). 
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O
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Scheme 2.11. TADDOL-titanium catalyzed asymmetric fluorination 

 

2.35 NFSI, 2.13
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Scheme 2.12. Organocatalytic enantioselective α-fluorination of aldehydes. 

 

51 
 



2. 1. 3. 4. Studies of Organocatalyzed Synthesis of β-fluoroamine 

` One major issue to be addressed upon enantioselective fluorination of aldehydes 

is the need to avoid racemization of the enantioenriched fluorinated compound.  Owing to 

the instability of the aldehydes, products were isolated more often as the corresponding 

α-fluoroalcohols after their reduction with hydride sources.  Given the developments of 

this chemistry, it should be noted that such methodology has yet to be applied to more 

complex targets or analogues of important structural components of various drug 

candidates.   

If these chiral α-fluoroaldehydes 2.13 were subjected to a reductive amination 

protocol, we surmised that chiral β-fluroamines would result, and depending on the 

chirality of the imidazolidinone ligand, either the (S)- or (R)-β-fluoroamine would be 

delivered. Moreover, there are thousands of commercially available amines and 

aldehydes to employ as reactants, providing improved generality in terms of substrate 

scope. Surprisingly, this powerful extension of the MacMillan enantioselective α-

fluorination of aldehydes has never been described; thus the enantioselective synthesis of 

highly important β-fluoroamines was embarked on (Scheme 2.13). 

 

 

Scheme 2.13. Synthesis of enantioenriched β-fluoroamines. 
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Table 2.2. Effect of Reagent, Solvent and Temperature survey on α-Fluorination.a 

solvent
temp
(°C)entrya

1c
2c
3c
4
5
6
7
8c
9
10

99
98
99
97
91
37
89
98
99
96

THF
THF
THF
THF

acetone
CH2Cl2
EtOAc
THF
THF
THF

conv
(%)d

time
(h)

>98
>98
>99
<98
>96
>84
>95
>98
>99
>99

5.0
3.0
2.0
1.5
1.5
1.5
1.5
1.5
1.2
1.0

‐20
‐20
‐20
24
24
24
24
4
‐20
‐20

24
24
24
3
3
3
3
12
24
24

aAll reactions were performed on a 0.05 mmol scale. bEnantiomer ratios were
measured using chiral stationary phase HPLC. c , ‐difluoro product was
observed. dConversion determined by LC/MS and 1H NMR.

2.13
(equiv.)

ee
(%)b

2.31 2.43

O

H

20 mol % 2.38
NFSI, 2.13

NaBH(OAc)3
DCE, rt

N
FPh

Ph
solvent

10% i‐PrOH
H

F
Ph

O

NBoc

NBoc
HN

2.41

2.42

 

 

To determine suitable reaction conditions, we examined the reaction under varied 

temperature, solvent systems and the effect of fluorinating reagent loading on reaction 

efficiency, utilizing MacMillan’s catalyst 2.38.38 In the presence of catalyst 2.38, 

phenylpropanal 2.40 reacted with N-fluorobenzenesulfonimide (NFSI) 2.13 to give α-

fluoroaldehyde 2.41, which was immediately subjected to reductive amination conditions 

with Boc-piperazine 2.42 and sodium triacetoxyborohydride (NaBH(OAc)3) to give the 

desired β-fluoroamine 2.43.  

Our initial attempt (entry 1) employed the conditions prescribed by MacMillan38 

for the α-fluorination, with a quick aqueous workup prior to the reductive amination step. 

Conversion and enantioselectivity to the desired β-fluoroamine were excellent, but about 

20% of the undesired β,β-difluoroamine was also observed. To avoid this side product, 
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we decreased the equivalents for NFSI from 5.0 (Table 2.2, entry 1) to 3.0 (Table 2.2, 

entry 2), to 2.0 (Table 2.2, entry 3), and finally to 1.5 (Table 2.2, entry 4).  Only in the 

latter case was the β,β-difluoroamine side product eliminated; moreover, the success of 

the α-fluorination was not hindered by decreasing the equivalents of costly NFSI, and 

workup was greatly improved. Other solvent systems were also evaluated, with acetone 

(Table 2.2, entry 6) proving to be generally useful, while CH2Cl2 (Table 2.2, entry 6) 

suffered diminished yields (37%) and low ee (84%).  
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Table 2.3. Scope of catalytic enantioselective synthesis of β-fluoroamines.* 

2.40 2.43‐2.48

O

H

20 mol % (S)‐2.38
NFSI

THF/i‐PrOH, ‐20 °C
Amine

NaBH(OAc)3, DCE, rt

N
F

*All reactions were performed on a 0.5 mmol scale and proceeded to complete conversion. aYield
after chromatography. bEnantiomer ratios were measured using chiral stationary phase HPLC.
See Supplementary Material for complete details.

2.44, 70%a

>98% ee (S)b

Ph N

F N
NH

O

Ph N
F N

O

O

Ph N
F N

Ph N
F

N

NHO

Cl Ph N
F

Ph N

N
NH

Ph

O

F

2.43, 80%a

>99% ee (S)b

N

H

R1

R2

2.45, 70%a

>98% ee (S)b
2.46, 70%a

>98% ee (S)b

2.47, 70%a

>98% ee (S)b
2.48, 70%a

>98% ee (S)b

(i)

(ii)

 

 

Ultimately, optimal conditions for the two-step sequence (Table 2.2, entry 9) employed 

1.2 equiv of NFSI in THF at -20 °C for 24 h, followed by a quick aqueous workup, 

suspension of the resulting α-fluoroaldehyde 2.41 in DCE with Boc-piperazine 2.42 and 

NaB(OAc)3H at ambient temperature to provide enantiopure (>99% ee) 2.43 with 96% 

conversion and 80% isolated yield.   
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Table 2.4. Catalytic enantioselective synthesis of (R)-β-fluoroamines.a 

2.40

2.49‐2.53

20 mol % (R)‐2.38
NFSI

THF/i‐PrOH, ‐20 °C
Amine

NaBH(OAc)3, DCE, rt

N
F

*All reactions were performed on a 0.5 mmol scale and proceeded to complete conversion. aYield
after chromatography. bEnantiomer ratios were measured using chiral stationary phase HPLC.
See Supplementary Material for complete details.

2.50, 70%a

>98% ee (R)b

Ph N

F N
NH

O

Ph N
F N

Ph N
F

N

NHO

Cl

Ph N
F

Ph N

N
NH

Ph

O

F

N

H

R1

R2

2.49, 80%a

>94% ee (R)b

2.51, 69%a

>94% ee (R)b

2.53, 76%a

>98% ee (R)b

2.52, 65%a

>96% ee (R)b

(i)

(ii)

 

 

Encouraged by these results, we next examined the general application of the catalytic 

enantioselective synthesis of various β-fluoroamines. As shown in Tables 2.3 and 2.4, 

this two-pot protocol is general with respect to the amine component, providing yields 

from 65-82% employing both primary and secondary amines, which include 

therapeutically relevant G protein-coupled receptors (GPCR) privileged structures.39 
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Table 2.5. Enantioselective β-fluoroamines substrate scope.a 

2.35 2.54‐2.63

R
O

H

NFSI, 20 mol % (S)‐2.38
THF/i‐PrOH
‐20 °C, 24 h

Amine, NaBH(OAc)3
DCE, rt

R
N

F

aAll reactions were performed on a 0.05 mmol scale. bYield after chromatography. cEnantiomer ratios were measured using chiral
stationary phase HPLC. dDiastereomer ratios were measured by 19F NMR. eReaction were performed at room temperature for 24 h.
See Supplementary Material for complete details.

N

F
N

NH
O

N

F

NBoc

N
N

NH

Ph

O

F

N

F

N
NH

O

Cl

2.60, 84% yield

(i)
R1

R2
(ii)

>97% ee

>96% ee

>98% ee>99% ee

2.58, 90% yield

2.56, 92% yield2.54, 87% yield

N

F

N
N

2.55, 88% yield
>99% ee

Ph

N

F

N
NH

O

Me

2.57, 75% yield
>95% ee, 1.2 : 1 dr

N
F

N
NH

O

N NBoc
F

2.59, 66% yield

2.62, 70% yield

12% ee 14 : 1 (endo:exo)

15% ee
14 : 1 (endo:exo)

N N
NH

O
Ph

Me F

2.61, 74% yield

2.63, 58% yield

17% ee

N
F N

F

 

 

Importantly, the (S)-imidazolidinone catalyst 2.38 provides the corresponding (S)-

β-fluoroamines 2.43-2.48 in 95-99% ee (Table 2.3), whereas the (R)-imidazolidinone 

catalyst 2.38 provides the corresponding (R)-β-fluoroamines 2.49-2.53 in 87->95% ee 

(Table 2.4).  
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The optimized reaction condition appears general with respect to both aldehyde and 

amine component,  furnishing chiral β-fluoroamines products (2.54-2.63) in good to 

excellent isolated yields (84-92%) and with high enantioselectivities (up to 99% ee) 

(Table 2.5). If the aldehyde bears a β-stereogenic center, as in 2.57, the β-fluoroine is still 

installed with high ee (>95%) but with a 1.2:1 dr. However, formation of quaternary 

stereocenters using branched aldehydes under standard conditions with (S)-2.38 provide 

moderate chemical yields (66-74%) for installation of the tertiary β-fluoroamine (Table 

2.5) but suffer low enantioselectivities (12-17% ee).28a Compounds 2.59, 2.61 and 2.62 

represent transformations  of  tertiary β-fluoroamines that cannot be produced by standard 

β-fluoroamines methodology . 

To optimize the fluorination reaction with branched aldehydes, a variety of 

proline catalysts (Figure 2.6) were examined. It was thought that using a less-sterically 

demanding catalyst such as 2.65-2.67 might be required for sterically encumbered 

substrates.  The use of prolinol 2.67 afforded the desired product with poor conversion 

and selectivity. No improvement in the conversion was observed when a sterically 

demanding silylated prolinol derivative 2.68 was used (Table 2.6). Interestingly, tetrazole 

catalyst 2.65 installed the tertiary β-fluoroamine 2.59 in good chemical yields (94 %), but 

the maximum ee observed was 31%. A similar trend was observed in the synthesis of 

tertiary β-fluoroamine 2.61. Our standard methodolgy with (S)-2.38 provided good 

conversion but only 17% ee. Switching to the tetrazole catalyst 2.65 provided the desired 

tertiary β-fluoroamine 2.61 in comparable yield but with improved ee (40%). Thus, our 

new methodology allows access to tertiary β-fluoroamines with modest % ee, as opposed 

to existing methods that are unable to install tertiary β-fluoroamines (Table 2.6). 
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Figure 2.7. Catalysts screened for branched aldehydes. 

 

Table 2.6. Screening of catalyst for tertiary β-fluoroamines.a 

2.35

R
O

H

NFSI, 20 mol % catalyst
THF/i‐PrOH
‐20 °C, 24 h

Amine, NaBH(OAc)3
DCE, rt

R1
N

F

aAll reactions were performed on a 0.05 mmol scale. bYield after chromatography. cEnantiomer ratios were
measured using chiral stationary phase HPLC. See Supplementary Material for complete details.

N
F

N
NH

O
2.59

N N
NH

O
Ph

Me F

2.61

(i)
R3

R4(ii)

ee (%)bcatalyst

93
25
<10
94
83
16

2.38
2.67
2.68
2.65
2.66
2.64

yield (%)c

15
13
ndd
31
16
12

ee (%)bcatalyst

74
75

2.38
2.65

yield (%)c

17
40

R2

 

 

Our attention now turned to developing a one-pot organocatalytic approach to β-

fluoroamines to avoid the aqueous workup step. For this study, we utilized standard 

reductive amination solvents. The α-fluorination step only proceed smoothly at room 

temperature in THF or CH3CN to give moderate yields of the desired product (Table 2.7, 

entries 1-2), with no loss in selectivity (>95% ee). CH2Cl2 and DCE both failed under all 
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conditions (entries 3-4). Interestingly, using THF and 10% i-PrOH was suitable for the 

reductive amination step to afforded the desired product in 65% yield and >96% ee (entry 

5). It should be noted that these reactions are operationally convenient and can be 

performed without exclusion of air and moisture. This one-pot tandem procedure allows 

the enantioselective synthesis of β-fluoroamine derivatives from an aldehyde and does 

not require the isolation of a preformed α-fluoro aldehyde. 

 

Table 2.7. Enantioselective synthesis of β-fluoroamine in one-pot.a 

 

 

There are many examples in the literature where a β,β-difluoroamineis required to 

address a specific liability of a candidate molecule.1-3 On the basis of an earlier 

observation of β,β-difluoroamine formation (Table 2.2) when excess NFSI was 

employed, we attempted to access this valuable moiety (Scheme 2.14). In the presence of 

40 mol % of D,L-proline as the catalyst, aldehyde 2.35 reacted with 2-3 equiv of NFSI 

2.13 at room-temperature to give α,α-difluoroaldehyde, which was subsequently 
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subjected to standard reductive amination conditions, to give the desired β,β-

difluoroamines in good yields ranging from 64% to 77% (Table 2.8). 

 

 

Scheme 2.14. Synthesis of β,β-difluoroamine.  

 

Table 2.8. Scope of catalytic α,α-difluorination.a 

2.69

NFSI (2‐3 equiv)
40 mol %

DL‐proline or 2.38

Amine

R
N

F

aAll reactions were performed on a 0.05 mmol scale. bYield after chromatography

2.70, 64% yield

2.72, 68% yield

F

Ph N
F F Ph N

NBocF FN

NH
O

N
F F

N

NH
O

Ph N
NBocF F

Me

THF/i‐PrOH, rt, 24 h

NaBH(OAc)3
DCE, rt

R3

R22.35

(i)

(ii)

2.71, 61% yield

2.73, 77% yield
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To show the application of the synthesized β-fluoroamines, we made new 

fluorinated analogues of five known amine based medicinal agents (Figure 2.7) having 

likely affinity for human ether-a-go-go-related gene (hERG) potassium channel. The non-

fluotinated and fluorinated compounds are currently being screened for hERG activity 

(Figure 2.8).  
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N
N

N
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R
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2.76, R = H Sigma (s) receptor
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2.45, R = F

2.77, R = H Opioid Receptor‐like
(ORL1) Antagonist

2.44, R = F  

Figure 2.8. Medicinal Agents and its fluorinated analogs. 

 

2. 2. General access to chiral N-alkyl terminal aziridines via organocatalysis 

 

2. 2. 1. Importance and synthetic utility of aziridines 

Aziridines represent an important class of nitrogen heterocycles with a wide range 

of synthetic utility and prevalence in natural products.40 The inherent reactivity of 

aziridines is mainly due to the high strain energy of about 27 kcal/mol of the 3-membered 
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heterocycle ring.41 This high strain energy renders them susceptible to a variety of 

transformations involving ring opening. These features make them an important 

intermediate in synthetic chemistry.  Aziridines are present as structural motifs in various 

biologically active natural products such as mitomycins C and azinomycin A (potent 

antitumor and antibiotic agents (Figure 2.9)).42  
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Figure 2.9. Aziridine containing biologically active natural products. 

 

There are two classes of aziridines namely, the activated and non-activated 

aziridines. Activated aziridines have N-electron-withdrawing groups and non-activated 

aziridines are N-alkyl substituted. The presence of the N-withdrawing group in activated 

aziridines renders the ring susceptible to opening through nucleophilic attack. 

Unactivated aziridine requires activation by quaternization, protonation or Lewis acid 
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chelation to affect the ring opening. Several methods have been reported for the 

regioselective ring opening of aziridines.  

 

2. 2. 2. Nucleophilic ring-opening reactions 

The nucleophilic ring opening is the most popular transformation of aziridines. 

For example, N-tosyl aziridine 2.78 can be efficiently opened by carbon-nucleophiles 

such as higher-order cuprates to give protected amino acid 2.7943 and with primary 

amines to afford tosyl-protected diamino acids 2.81.44  

 

 

Scheme 2.15. Ring-opening of activated aziridine by cuprate and amine.  

 

N OH
N
H

NHBn

OH

B(C6F5)3
(10 mol%)

97%

BnNH2
CH3CN2.82 2.83

 

Scheme 2.16. Ring-opening of unactivated aziridine with amine nucleophile.  

 

 

64 
 



The azide anion is often used as a nitrogen-nucleophile in aziridine ring opening. 

For example, tosyl aziridine 2.84 is readily transformed to azido amine 2.85, upon 

treatment with NaN3 and CeCl3.45 Unactivated aziridine 2.86 can also undergo similar 

azide opening in the presence of Lewis acids, such as AlCl3
46 (Scheme 2.17). Shibaski 

and co-workers reported the desymmetrization of meso-aziridine 2.88 with chiral Lewis 

acid 2.89 and silyl azide to afford azide 2.9047 (Scheme 2.17). Oxygen/sulfur-

nucleophiles are other common nucleophiles for the opening of aziridine ring systems 

(Scheme 2.18).48-50   

 

Scheme 2.17. Ring-opening reaction by azide anion.  
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Zhu and co-workers reported a formal SN2/[3+2] cycloaddition reaction for the synthesis 

of substituted indolizidines. N-alkylation of the N-unsubstituted aziridine 2.98 with 

iodide 2.99 followed by Michael addition/rearrangement cascade to afford various 

indolizidine derivatives 2.100 in excellent yields and enantioselectivity (Scheme 2.19).51 

 

N Ts

91%
NHTs

OMe
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Scheme 2.18. Ring-opening reaction by oxygen/sulfur nucleophiles.  
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2.98
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Scheme 2.19. SN2/[3+2] cycloaddition reaction for the synthesis indolizidines. 
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2. 2. 3. Rearrangement Chemistry 

Ha and co-workers disclosed the synthesis of substituted oxazolidinone 2.101 

from aziridine 2.102 (Scheme 2.20).52 Somafai and co-workers reported the total 

synthesis of indolizidine 209D via aza-[2,3]-Wittig rearrangement of vinyl aziridine 

2.103 (Scheme 2.21).53 Other known rearrangements of aziridines include [3+3] 

annulation reactions, ring expansion (with heterocumulenes, isocyanates, nitriles and 

carbonylative ring expansion) and radical reactions.54 

 

 

Scheme 2.20. Synthesis substituted oxazolidinone via aziridine rearrangement. 

 

 

Scheme 2.21. Indolizidine 209D via aza-[2,3]-Wittig rearrangement of vinyl aziridine. 

 

2. 2. 4. Synthesis of Aziridines 

Gabriel in 1888 was the first to report the synthesis of an aziridine via  

nucleophilic ring closure of vic-amino alcohols.55 This approach was further developed 

later by Wenker in 1935.55 Since the classic work of Gabriel, the synthetic scope of 
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aziridines has broadened tremendously. The main methods for the synthesis of aziridines 

include the addition to olefins (nitrene transfer to alkene and addition/elimination 

sequences), addition to imines (carbene methodology, azaDarzens approaches and ylide-

mediated strategies) and intramolecular nucleophilic substitution.  

 

2. 2. 4. 1. Aziridination via intramolecular substitution 

Since reported by Gabriel in 1888, the nucleophilic ring closure of vic-amino 

alcohols is one of the most utilized routes to aziridines. Nucleophilic ring closure utilizes 

a leaving group vicinal to the amine. To form enantiopure azirdines, non-racemic starting 

materials is required. The intramolecular displacement can then be achieved using 1,2-

amino alcohols, 1,2-azido alcohols, 1,2-amino halides, 1,2-amino sulfides, 1,2-amino 

selenides or epoxides.40  

Borch and Choi have reported the synthesis of enantiopure N-protected aziridine 

2.106 in excellent yield and selectivity via nucleophilic ring closure of mesylate alcohol 

generated from monoacetate 2.105 (Scheme 2.22).56 Similarly, the synthesis of 

enantiopure pyrrole-aziridines was reported by Savoia and co-workers. The treatment of 

enantiopure β-hydroxyamines 2.107 derived from (S)-phenylglycinol bearing a pyrrole 

moiety, with triphenylphosphine and DEAD led to enantiopure pyrrole-aziridines 2.108 

in excellent yields (Scheme 2.22).57 
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Scheme 2.22. Synthesis of aziridines from 1,2-amino alcohols. 

 

Davis and co-workers have reported the synthesis of N-sulfinylaziridine 2-

phosphonates 2.109 in high yields and enantioselectivities, via a base induced cyclization 

of by β -amino α-chlorophosphonates 2.110 (Scheme 2.23).58 

 

Scheme 2.23. Syntheses of N-sulfinylaziridine 2-phosphonates. 

 

One recent example was reported by Kocovsky and co-workers for the synthesis 

of terminal diarylaziridines by organocatalytic enantioselective reductive amination of α-

chloroketones followed by base-induced intramolecular substitution of the corresponding 

α-chloroamines (Scheme 2.24).59 
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Scheme 2.24. Synthesis of 1,2-diaryl aziridines. 

 

2. 2. 4. 2.  Aziridine Formation via Nitrene Addition to Olefins 

Nitrene addition to olefins, which is usually accomplished using a nitrene-transfer 

reagent, is one of the most common approaches to aziridination of olefins.  Several metal-

based reagents (Copper, Manganese, Rhodium) have been developed to generate the 

nitrene source which, in the presence of chiral ligands and [N-(p-

toluenesulfonyl)imino]aryliodinanes, provides a route for catalytic asymmetric 

aziridination. In 1993, Evans60 and Jacobsen61 were the first to report a catalytic 

asymmetric synthesis of aziridine utilizing copper-(I)-complexes generated from chiral 

bisoxazoline or diammine ligands (Scheme 2.25).  Another known approach to generate 

nitrene is by the oxidation of primary amines.  

Che and co-workers reported the asymmetric synthesis of an aziridine via a 

copper-bisoxazoline complex and nitrene precursor generated from PhI(OAc)2 and 

sulfonamides (Scheme 2.26).62  Dauban and co-workers later reported an intramolecular 

copper-catalyzed aziridination using bisoxazoline chiral ligand 2.122 as well. The 

sulfamates 2.123 were subjected to Iodosylbenzene and [Cu(MeCN)4]PF6, to give the 

corresponding aziridines 2.124 in good  yields and enantioselectivities (Scheme 2.26).63 
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Scheme 2.25. Asymmetric aziridination via copper-catalyzed nitrene. 

 

Scheme 2.26. Aziridination of alkenes mediated by bisoxazoline ligand. 
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An aziridination method utilizing the approach of addition to olefins is 

aziridination through an addition–elimination sequence. Dodd and co-workers utilize a 

Michael-type addition-elimination sequence in the total synthesis of the non-natural 

enantiomer of polyoxamic acid (Scheme 2.27).64 

 

O O

O O
TBDPSO

OTf
OMe

MeO

NH2

+

TBDPSO
OH

N CO2H
HO

OMe
OMe

DMF
64% yield
100% de

NH2OH

(‐)‐polyoxamic acid

2.125 2.126 2.127  

Scheme 2.27. Synthesis of (-)-polyoxamic acid via addition/elimination sequence. 

 
Decomposition of organyl azides is an additional method in the aziridination of 

olefins. Using a ruthenium salen complex Katsuki and coworkers reported an 

improvement in the scope of olefins. The nitrenes addition occurred in moderate to 

excellent yield with enantiomeric excess up to 98% (Scheme 2.28).65 

 

4Å MS, CH2Cl2
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70‐99% yield
82‐98% ee

N N

ArAr

Ru
O O

CO

2.128

2.129

2.130

2.129

 

Scheme 2.28. Aziridination via organyl azides using ruthenium salen complex. 
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2. 2. 4. 3. Aziridine via Addition to Imines 

There are three major ways aziridination can be achieved by addition to imines, 

this includes the addition of a carbene, α-haloenolates (aza-Darzens) and ylides. The use 

of chiral imines or nucleophiles allows diasterocontrol of the aziridine formed. The aza-

Darzen is a common, efficient approach in the synthesis of azaridines. It involves the use 

of chiral imines or in some cases the use of chiral enolates. The enolate is often generated 

using lithium base, with the reaction proceeding through a Zimmerman-Traxler transition 

state. Davis and co-workers reported the asymmetric synthesis of cis-N-sulfinylaziridine-

2-phosphonate 2.131 as a single diastereomer in good yields. The asymmetric aza-

Darzens reaction involves the addition of iodophosphonate anion 2.132 to chiral 

sulfinimine 2.133 (Scheme 2.29).66  
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Scheme 2.29. Aza-Darzens reactions of chiral imines. 
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Li and Kattuboina developed an asymmetric aza-Darzens reaction employing the 

lithium enolate of methyl 2-bromoacetate 2.134 and chiral N-phosphonyl imines 2.135 to 

afford cis-aziridines 2.136 in moderate yields with diastereoselectivity up to 99 % 

(Scheme 2.29).67  
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Scheme 2.30. Boron-catalysed aziridination mediated by VANOL and VAPOL ligands. 

 

N

R

P
S

O N
NHTs

Ph H

Na+ -
1 mol% Rh2(OAc)4

1,4-dioxane, BnEt3NCl
25 oC, 24 h

N
P

R Ph

up to 82% yield
up to 8:1 dr
up to 98% ee

2.142 2.143 trans‐2.1412.140

 

Scheme 2.31. Catalytic asymmetric ylide-mediated aziridination. 

 

Aziridination by transfer of carbenes to imines is well established. Wulff and co-

workers have reported an asymmetric catalytic aziridination of N-dianisylmethylimines 

2.137 with ethyl diazoacetate 2.138 in the presence of boron chiral ligands binaphthol 
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(VANOL) and biphenanthrol (VAPOL) to give aziridine 2.139. This reaction is highly 

efficient largely due to the reduced formation of enamine by-products previously reported 

and the aziridines are produced in moderate to excellent yields with high enantio- and 

diastereoselectivity (Scheme 2.30).68 Aggarwal and coworkers recently utilized an in situ 

formation of chiral sulfur ylides 2.140 from metallocarbenes for a catalytic asymmetric 

ylide-mediated aziridination to give trans-aziridines 2.141 (Scheme 2.31).69  

In 2007, Cordova and co-workers disclosed an organocatalytic aziridination of 

α,β-unsaturated aldehydes with acylated hydroxycarbamates. Utilizing a chiral silyl-

protected pyrrolidine alcohol 2.144, 2-formylaziridines 2.145 were achieved in moderate 

yields with moderate to high diastereoselectivities and enantioselectivities (Scheme 

2.31).70  
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2.1452.146 2.147

up to 70% yield
up to 82% dr
up to 99% ee  

Scheme 2.32. Organocatalysed aziridination aziridination of α,β-unsaturated aldehydes. 
 

Despite their value, synthetic routes to aziridines are limited in terms of generality 

and diversity of the N-substituent. Many of the classical methods for the synthesis of 

terminal aziridines, typically incorporate a p-toluenesulfonyl moiety or other electron-

withdrawing group as the the N-substituent.40 The synthesis of chiral terminal aziridines 

with diversity at the N-substituent is extremely rare. One recent example was reported for 
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the synthesis of terminal diarylaziridines by the enantioselective reductive amination of 

α-chloroamines (Scheme 2.24).59  

However, this approach lacks generality and substrate scope, as only N-

arylaziridines can be achieved using this method. Since there are few synthetic methods 

in the literature for the preparation of enantiopure N-alkylziridines, and due to some 

interesting biologically properties these molecules possess,71 we embarked on developing 

a synthetic methodology towards the enantioselective synthesis of N-alkyl terminal 

aziridines. Previously, both MacMillan72 and Jørgensen73 disclosed the enantioselective 

α-chlorination of aldehydes via organocatalysis (Scheme 2.33). Based on this precedent 

and our chiral β-fluoroamine work (Scheme 2.33), we envisioned a three-step, one-pot 

protocol involving enantioselective α-chlorination of aldehydes, subsequent reductive 

amination with a primary amine, and SN2 displacement to afford previously unattainable 

chiral terminal aziridines with a wide range of N-substituents (Scheme 2.34). Overall, this 

new approach represents the effective addition of a primary amine across an olefin to 

form aziridines. 

 

 

Scheme 2.33. Organocatalytic enantioselective α-chlorination of aldehydes. 
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Scheme 2.34. Organocatalytic approach to chiral β-fluoroamines and envisioned route to 

chiral N-alkyl terminal aziridines. 

 

For a one-pot protocol involving a reductive amination step, we could not use the 

MacMillan α-chlorination chemistry, as that route employed a chloroquinone as the 

chlorinating agent and acetone as a solvent.73 The Jørgensen route was attractive, as NCS 

was the chlorinating agent, and the optimized solvent was DCE.74First, we set out to 

determine if this proposal would allow access to racemic N-alkyl terminal aziridines. 

Thus, DL-proline-catalyzed α-chlorination of 2.154 with NCS, followed by reductive 

amination with benzylamine and subsequent base-induced SN2 cyclization with KOH in 

THF/H2O at 65 °C, did provide racemic aziridine 2.155 in 70% yield (Scheme 2.35) for 

the three step, one-pot protocol (average of 90% per step). Importantly, KOH was critical 

for the production of 2.155, as a screen of organic (i.e, Et3N, pyridine, DBU, KO-t-Bu) 

and inorganic bases (ie., NaH, K2CO3) provided less than 60% conversion to 2.155 

(Table 2.9).  

   

 

 

77 
 



Table 2.9. Screening of base for SN2 cyclization. 

2.154 2.156

O

H

10 mol % DL‐proline
NCS (1.3 equiv)
CH2Cl2, rt, 1 h

(i)

NaBH(OAc)3, rt
(ii) N

Bn
PhBnNH2Ph *

Base, solvent(iii)

entrya

1
2
3
4
5
6
7
8
9
10

CH2Cl2
CH2Cl2
CH2Cl2
THF
THF

THF/DMF/Acetone
THF:H2O (1:1)

CH2Cl2
CH2Cl2
CH2Cl2

Solvent time

<30
<30
>40

decomposed
>60
<50
100
<60
<50
<60

Et3N
Pyridine
DBU
NaH

t‐BuOK
K2CO3
KOH
Et3N

Pyridine
DBU

2 days
2 days
24 h
16 h
16 h
24 h
24 h
24 h
24 h
24 h

aAll reactions were performed on a 0.05 mmol scale. bConversion determined by LC/MS
and 1H NMR.

Base
conv
(%)b

25
25
25
25
25
85
65
45
45
45

temp
(oC)

 

 

Efforts now focused on developing an enantioselective one-pot protocol. To 

ensure we had optimal conditions for the enantioselective α-chlorination of 2.154, we 

elected to survey a set of thirteen organocatalysts (Scheme 2.36) employing NCS as the 

chlorinating agent and DCM as the solvent.  This study demonstrated that the Jørgensen74 

catalyst 2.149 was indeed optimal, affording 2.157 in >97% conversion. 
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Scheme 2.35. One-pot protocol for racemic N-alkyl terminal aziridines. 
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Scheme 2.36. Enantioselective α-chlorination of hydrocinnamaldehyde. 

 

In order to determine the degree of enantioselectivity by chiral HPLC, 2.157 was 

reduced to the corresponding α-chloroalcohol 2.158, and found to possess 95% ee 
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(Scheme 2.36).  The other novel organocatalysts 2.144, 2.168, 2.169 and 2.170 for this 

transformation afforded comparable conversion (>95%), but lower enantioselectivity (56-

90% ee). 

 

Table 2.10. Examination of temperature for reductive amination step. 

O

H

10 mol % catalyst,
NCS (1.3 equiv)
CH2Cl2, rt, 1.5 h

(i)

R2NH2, 4Å MS
reducing agent
‐78 oC, 24 h

(ii)

(iii) KOH, THF:H2O (1:1)
65 oC, 24 h

Ph

entrya

1c
2
3
4
5
6c
7

PS‐NaBH(OAc)3
NaBH(OAc)3
NaBH(OAc)3
NaBH(OAc)3
NaBH(OAc)3

PS‐NaBH(OAc)3
NaBH(OAc)3

Reducing
agent

45
68
70
85
85
60
94

aAll reactions were performed on a 0.05 mmol scale.
bEnantiomer ratios were measured using chiral stationary phase HPLC.
cPolymer‐bound sodium triacetoxy‐borohydride

ee (%)b

25
25
‐10
‐20
‐30
‐78
‐78

temp (oC)

2.154

N
Bn

Ph *

(+)-2.156

71% yield

 

 

With optimal α-chlorination conditions in hand, we attempted the three step, one-

pot protocol to deliver 2.156 enantioselectively.  Utilizing the protocol in Scheme 2.35, 

but replacing DL-proline with catalyst 2.149, we were disappointed to find that this 

approach afforded 2.156 in comparable yield, but in less than 40% ee.  Thus, we 

investigated the most probable source of epimerization in the system: the room 

temperature reductive amination step.  Molecular sieves proved essential, and we found a 

direct correlation between enantioselectivity and temperature (Table 2.10). As shown in 
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Table 2.10, reducing the temperature for the reductive amination step to -78 oC resulted 

in the enantioselective synthesis of aziridine 2.156 in 71% yield for the three steps (~90% 

per step) and 94% ee.   As shown in Table 2.11, the reaction scope was also found to be 

general with respect to both aldehyde and amine, providing chiral N-alkyl-1,2-aziridines 

in overall yields of 40-65% (50-88% per step) and, in most cases, >90% ee for the three 

step, one-pot protocol. Determining the enantioselectivity was an arduous task, and 

required classical reverse phase chiral HPLC, SFC or NMR chiral shift reagents. 
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Table 2.11. Substrate scope of enantioselective N-alkyl-1,2-disubstituted aziridines.* 

entry producta % yieldb

R1

eec

O

H

10 mol % 2.149,
NCS (1.3 equiv), CH2Cl2, rt

(i)

R2NH2, NaBH(OAc)3, ‐78
oC, 24 h(ii)

N
R2R1

(iii) KOH, THF:H2O (1:1), 65 oC, 24 h

NPh

NPh N N

NPh

NPh

N

N

NPh

N

NBoc

Ph

NBoc

BocN

Ph

Ph

N

9
Ph

NBoc

N Ph
4

1 2 3d

4d 5 6

7 8 9

N

2

10 11 12e

*All reactions were 0.50 M in substrate and proceeded to complete conversion.aYield after chromatography.
bEnantiomeric excess detreminedby chiral HPLC or SFC analysis.cDiastereomeric ratio determined via NMR
experiments using chiral solvating agents (Pirkle alcohol).174 dBecause homoaldol product formation occurred
at ‐20 °C with use of 2.149, catalyst 2.170 was used.

46% yield, 91% ee 90% ee >10:1 dr

>10:1 dr 95% ee 94% ee

86%ee 96% ee 90% ee

92%ee 77% ee 56% ee

41% yield, 64% yield,

46% yield, 54% yield, 65% yield,

52% yield, 60% yield, 52% yield,

56% yield, 53% yield, 40% yield,

NBoc

Cl

BnO

NPh

13 14

2

N NBocMeO

52% yield, 49% yield,92%ee 95% ee

NTBSO
3

Ph N
N

57% yield, 32% yield,

15 16

Boc

ND >10:1 dr
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To further expand on the utility of this new methodology (Scheme 2.37), the 

(S,S)-2.149 catalyst afforded, as anticipated, the opposite enantiomer of 2.156 in good 

yield (74%) and excellent enantioselectivity (95% ee). 

 

 

Scheme 2.37. One-pot protocol for chiral N-alkly-1,2-aziridines 

 

 

Scheme 2.38. Two-pot protocol for chiral N-alkly-1,2-aziridines 

 

Finally, modest improvements in yield and enantioselectivty were observed if we 

performed a work-up after the α-chlorination step. The addition of pentane to the crude 

reaction mixture precipitated both the succinimide and organocatalyst 2.149. Removal of 

the pentane, concentration, resupsension in CH2Cl2 and proceeding with the reductive 
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amination and base-induced cyclization now provided N-alkyl-1,2-disubstituted 

aziridines in 51-75% yield and >90% ee (Scheme 2.38).   

 

2.1.4. Conclusion 

Prior to this study the synthesis of pharmaceutically relevant β-fluoroamine, β,β-

difluoroamines and N-alkyl aziridines was limited. Previous approaches to these useful 

moieties required long-step syntheses, lack of generality and substrate scope, and 

required starting materials that were not readily available. This study, has led to the 

development of a powerful extension of the organocatalyzed enantioselective synthesis of 

fluoroaldehydes and chloroaldehydes for the general enantioselective synthesis of β-

fluoroamines and unattainable N-alkyl terminal aziridines in yields and % ee.  

The new methodology allows for the first synthesis of tertiary β-fluoroamines 

with enantioselectivities up to 40%. Furthermore, slight modification of our protocol 

provides rapid, high-yielding access to β,β-difluoroamines. Overall, these novel three 

step or two step one-pot protocols for the synthesis of β-fluoroamines, β,β-difluoroamines 

and N-alkyl terminal aziridines from readily available precursors, represents a significant 

improvement in the art to access these therapeutically relevant moieties.  

This new methodology provides access to these useful pharmalogically relevant 

scaffolds that were previously difficult to prepare, utilizing aldehydes and amines for 

which thousands are commercially available. 
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Experimental Methods 

 

General. All 1H & 13C NMR spectra were recorded on Bruker DPX-300 (300 MHz), 

Bruker AV-400 (400 MHz) or Bruker AV-NMR (600 MHz) instrument. Chemical shifts 

are reported in ppm relative to residual solvent peaks as an internal standard set to δ 7.26 

and δ 77.0 (CDCl3). Data are reported as follows: chemical shift, multiplicity (s = singlet, 

d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), integration, coupling 

constant (Hz). IR spectra were recorded as thin films and are reported in wave-numbers 

(cm-1). Low resolution mass spectra were obtained on an Agilent 1200 LCMS with 

electrospray ionization. High resolution mass spectra were recorded on a Waters Qtof-

API-US plus Acquity system. The value Δ is the error in the measurement (in ppm) given 

by the equation Δ = [(ME – MT)/ MT] × 106, where ME is the experimental mass and MT 

is the theoretical mass. The HRMS results were obtained with ES as the ion source and 

leucine enkephalin as the reference. Analytical thin layer chromatography was performed 

on 250 μM silica gel 60 F254 plates. Visualization was accomplished with UV light, 

and/or the use of ninhydrin, anisaldehyde and ceric ammonium molybdate solutions 

followed by charring on a hot-plate. Chromatography on silica gel was performed using 

Silica Gel 60 (230-400 mesh) from Sorbent Technologies. Analytical HPLC was 

performed on an Agilent 1200 analytical LCMS with UV detection at 214 nm and 254 

nm along with ELSD detection.  Chiral HPLC was performed on an Agilent 1200  Series 

HPLC utilizing a Chiracel OD, OJ or Chiralpak AD columns (4.6 mm x 25 cm) obtained 

from Daicel Chemical Industries, Ltd. Solvents for extraction, washing and 

chromatography were HPLC grade. All reagents were purchased from Aldrich Chemical 
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Co. and were used without purification. All polymer-supported reagents were purchased 

from Biotage, Inc. Flame-dried (under vacuum) glassware was used for all reactions. All 

reagents and solvents were commercial grade and purified prior to use when necessary. 

Mass spectra were obtained on a Micromass Q-Tof API-US mass spectrometer was used 

to acquire high-resolution mass spectrometry (HRMS) data. 

 

Experimental Section for β-Fluoroamines and β, β-Difluoroamines 

General Procedure for β-Fluoroamines Synthesis: A solution of 2.38 (R)-5-benzyl-

2,2,3-trimethylimidazolidin-4-one dichloroacetic acid salt (0.2 equiv) and N-

fluorobenzenesulfonimide (1.2 equiv) in 10 % i-PrOH/THF (0.30 M) was stirred at room 

temperature then cooled to -20 °C and treated with aldehyde substrate 2.35 (1 equiv). The 

reaction mixture was stirred at -20 °C for 24 h, and then cooled to -78 °C, diluted with 10 

mL Et2O and filtered through a pad of Davisil® Silica Gel, eluting with Et2O. Me2S (5.0 

mL) was added, washed with Sat. NaHCO3 (3x) and brine (1x) and then dried over 

MgSO4. Filtration and concentration afforded the crude oil which was dissolved in DCE, 

followed by the addition of amine (1.0 equiv), and NaBH(OAc)3 (1.5 equiv). The reaction 

was stirred at 23 °C overnight. The reaction was quenched with Sat. NaHCO3 and 

extracted thrice with EtOAc and dried over MgSO4, filtered and concentrated in vacuo. 

Purification by flash column chromatography with silica gel afforded the title 

compounds. The enantioselectivity was determined either by chiral HPLC analysis. 

 

One-Pot Procedure for β-Fluoroamines Synthesis: A solution of  2.38 (R)-5-benzyl-

2,2,3-trimethylimidazolidin-4-one dichloroacetic acid salt (0.2 equiv) and N-
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fluorobenzenesulfonimide  (1.2 equiv) in 10 % i-PrOH/THF (0.30 M) was stirred at room 

temperature then cooled to -20 °C and treated with aldehyde substrate 2.35 (1 equiv). The 

reaction mixture was stirred at -20 °C for 24 h, followed by the addition of amine  (1.0 

equiv), and NaBH(OAc)3 (2.2 equiv). The reaction was stirred at 23 °C overnight. The 

reaction was quenched with Sat. NaHCO3 and extracted thrice with EtOAc and dried over 

MgSO4, filtered and concentrated in vacuo. Purification by flash column chromatography 

with silica gel afforded the title compounds. The enantioselectivity was determined either 

by chiral HPLC analysis. 

 

2.43

N
F N

O

O

 

(S)-tert-butyl 4-(2-fluoro-3-phenylpropyl)piperazine-1-carboxylate (2.43): The 

product was prepared according to the general procedure and purified by SiO2 

chromatography (10% MeOH/CH2Cl2) to afford the product as a off white solid (128.8 

mg, 80%), which was determined to be ˃99% ee by chiral HPLC analysis. (Chiralcel® 

OD, Isocratic 2% i-PrOH/Hexanes/0.1% DEA, tR (major) = 8.9 min, tR (minor) = 10.9 

min). Rf = 0.75 (10% MeOH/CH2Cl2); IR (neat) 2927, 1692, 1420, 1365, 1275, 1260 cm-

1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 7.30 (d, J = 7.28 Hz, 2H), 7.25 (m, 3H),  4.94-

4.82 (dm, J = 48.0 Hz, 1H), 3.43 (t, J = 4.9 Hz, 4H),  2.98 (m, 2H), 2.56 (m, 2H), 2.45 (t, 

J = 4.7 Hz, 4H), 1.45 (s, 9H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 154.65, 136.7 (d, 

J = 5.0 Hz), 129.3, 128.4, 126.6, 92.6 (d, J = 173.0 Hz), 79.5, 61.2 (d, J = 21.1 Hz), 53.4, 

39.6 (d, J = 22.1 Hz) 28.3; 19F NMR (282 MHz, CDCl3) δ (ppm): –176.4; HRMS (TOF, 

ES+) C18H27FN2O2 [M+H]+ calc'd 323.2135, found 323.2125. 
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(S)-1-(1-(2-fluoro-3-phenylpropyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one 

(2.44):  

The product was prepared according to the general procedure and purified by SiO2 

chromatography (50% EtOAc/hexanes) to afford the product as a white solid (123.5 mg, 

70%), which was determined to be ˃98% ee by chiral HPLC analysis. (Chiralcel® OD, 

Isocratic 2% i-PrOH/Hexanes/0.1% DEA, tR (major) = 14.6 min, tR (minor) = 17.0 min). 

Rf = 0.63 (50% EtOAc/hexanes); IR (neat) 3004, 2924, 1694, 1484, 1376 cm-1; 1H NMR 

(400.1 MHz, CDCl3) δ (ppm): 10.56 (s, 1H) 7.35 (m, 2H), 7.27 (m, 4H), 7.15(m, 1H), 

7.05(m, 2H), 4.93 (dm, J = 47.6 Hz, 1H), 4.41-4.34 (m, 1H), 3.14 (br m, 2H), 3.00 (m, 

2H),  2.68 (m, 2H), 2.52 (m, 2H), 2.34-2.27 (m, 2H), 1.81 (br d, J = 11.2 Hz, 2H);  13C 

NMR (100.6 MHz, CDCl3) δ (ppm): 155.3, 136.8 (d, J = 4.0 Hz), 129.3, 128.9, 128.4, 

128.1, 126.6, 121.0 (d, J = 23.1 Hz), 109.7, (d, J = 11.0 Hz), 92.7 (d, J = 173.0 Hz), 61.2 

(d, J = 21.1 Hz), 53.7 (d, J = 8.0 Hz), 50.5, 39.8 (d, J = 21.1 Hz) 29.1 (d, J = 2.0 Hz); 19F 

NMR (282 MHz, CDCl3) δ (ppm): –176.5; HRMS (TOF, ES+) C21H24FN3O [M+H]+ 

calc'd 354.1982, found 354.1990. 

 

2.45

N
F N

N
 

(S)-1-(2-fluoro-3-phenylpropyl)-4-(pyridin-2-yl)piperazine (2.45): The product was 

prepared according to the general procedure and purified by SiO2 chromatography (50% 
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EtOAc/hexanes) to afford the product as a off white solid (113.6 mg, 76%), which was 

determined to be ˃99% ee by chiral HPLC analysis. (Chiralcel® OD, Isocratic 2% i-

PrOH/Hexanes/0.1% DEA, tR (major) = 9.4 min, tR (minor) = 12.3 min). Rf = 0.74 (50% 

EtOAc/hexanes); IR (neat) 2924, 1625, 1455, 1372 cm-1; 1H NMR (600.1 MHz, CDCl3) δ 

(ppm): 8.2 (dd, J = 4.5 Hz, 1.0 Hz, 1H), 7.48 (dt, J = 7.5 Hz, 1.8 Hz, 1H), 7.26-7.33,(m, 

5H), 6.63 (m, 2H), 4.89-5.00 (dm, J = 49.2 Hz, 1H), 3.57 (m, 4H), 3.02 (m, 2H), 2.64 (m, 

6H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 159.4, 147.8, 137.3, 136.7 (d, J = 4.0 Hz), 

129.3, 128.4, 126.6, 113.2, 107.0, 92.7 (d, J = 173.0 Hz), 61.3 (d, J = 21.1 Hz), 53.4, 

45.1, 39.7 (d, J = 21.1 Hz); 19F NMR (282 MHz, CDCl3) δ (ppm):  –176.4; HRMS (TOF, 

ES+) C18H22N3F [M+H]+ calc'd 300.1876, found 300.1876. 

 

ON

2.46

N
NHF

 

(S)-8-(2-fluoro-3-phenylpropyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one (2.46):  

The product was prepared according to the general procedure and purified by SiO2 

chromatography (10% MeOH/CH2Cl2) to afford the product as a white solid (119.2 mg, 

65%), which was determined to be ˃96% ee by chiral HPLC analysis. (Chiralcel® OD, 

Isocratic 2% i-PrOH/Hexanes/0.1% DEA, tR (major) = 12.1 min, tR (minor) = 13.4 min). 

Rf = 0.65 (10% MeOH/CH2Cl2); IR (neat) 3005, 2924, 1705, 1557, 1463, 1376 cm-1; 1H 

NMR (400.1 MHz, CDCl3) δ (ppm): 7.25-7.32 (m, 7H), 7.15 (s, 1H), 6.91 (d, J = 16.0 

Hz, 2H), 6.86 (t, J = 7.2 Hz, 1H),  4.88 (dm, J = 48.0 Hz, 1H), 4.72 (s, 2H), 2.81-3.02 (m, 

6H), 2.54-2.74 (m, 4H), 1.7 (d, J = 14.0 Hz 2H);  13C NMR (100.6 MHz, CDCl3) δ 
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(ppm): 178.0, 143.0, 137.0 (d, J = 5.0 Hz), 129.2 (d, J = 16.0 Hz), 128.3, 126.5, 119.0, 

115.5, 92.8 (d, J = 173.0 Hz), 61.2 (d, J = 21.1 Hz), 59.1 (d, J = 19.1 Hz), 50.2 (d, J = 

12.0 Hz)  39.8 (d, J = 21.1 Hz), 29.3 (d, J = 51.3 Hz); 19F NMR (282 MHz, CDCl3) δ 

(ppm): –183.9; HRMS (TOF, ES+) C22H26N3OF [M+H]+ calc'd 368.2138, found 

368.2126.  

 

 

(S)-5-chloro-1-(1-(2-fluoro-3-phenylpropyl)piperidin-4-yl)-1H-benzo[d]imidazol-

2(3H)-one (2.47): The product was prepared according to the general procedure and 

purified by SiO2 chromatography (10% MeOH/CH2Cl2) to afford the product as a off 

white solid (133.5 mg, 69%), which was determined to be ˃98% ee by chiral HPLC 

analysis. (Chiralcel® OD, Isocratic 3% i-PrOH/Hexanes/0.1% DEA, tR (major) = 10.6 

min, tR (minor) = 14.0 min). Rf = 0.59 (10% MeOH/CH2Cl2); IR (neat) 3011, 2925, 1698, 

1487, 1375 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 10.58 (s, 1H) 7.33 (m, 2H), 

7.25 (m, 3H), 7.17 (d, J = 6.0 Hz, 1H), 7.13 (d, J = 2.0 Hz, 1H), 7.03 (dd, J = 6.4, 2.0 Hz, 

1H), 4.93 (dm, J = 49.2 Hz, 1H), 4.29-4.37 (m, 1H), 3.11 (br m, 2H), 3.00 (m, 2H),  2.69 

(m, 2H), 2.45 (m, 2H), 2.31 (m, 2H), 1.80 (br d, J = 10.8 Hz, 2H);  13C NMR (100.6 

MHz, CDCl3) δ (ppm): 155.3, 136.7 (d, J = 4.0 Hz), 129.3, 129.0, 128.4, 127.5, 126.8, 

126.6,120.9, 110.2 (d, J = 22.1 Hz), 92.6 (d, J = 173.0 Hz), 61.1 (d, J = 21.1 Hz), 53.6 (d, 

J = 5.0 Hz), 50.6, 39.8 (d, J = 21.1 Hz), 29.1; 19F NMR (282 MHz, CDCl3) δ (ppm): –

176.4; HRMS (TOF, ES+) C21H23FN3OCl [M+H]+ calc'd 388.1592, found 388.1584.  
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2.48

N
HF

 

(S)-N-benzyl-2-fluoro-3-phenylpropan-1-amine (2.48): The product was prepared 

according to the general procedure and purified by SiO2 chromatography (50% 

EtOAc/hexanes) to afford the product as a yellow oil (99.6 mg, 82%), which was 

determined to be ˃95% ee by chiral HPLC analysis. (Chiralcel® AD, Isocratic 3% i-

PrOH/Hexanes/0.1% DEA, tR (major) = 4.5 min, tR (minor) = 4.9 min). Rf = 0.47 (50% 

EtOAc/hexanes); IR (neat) 3095, 2929, 1609, 1037 cm-1; 1H NMR (400.1 MHz, CDCl3) δ 

(ppm): 7.28 (m, 10H) 4.85 (dm, J = 52.0 Hz, 1H), 3.81 (m, 2H),  2.75-3.07 (m, 4H), 1.7 

(s, 1H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 139.8, 136.7 (d, J = 6.0 Hz), 129.2, 

128.4, 128.3, 128.3, 128.0,  126.9, 126.5, 93.9 (d, J = 172.0 Hz), 53.7, 52.2 (d, J = 21.1 

Hz), 39.3 (d, J = 21.1 Hz); 19F NMR (282 MHz, CDCl3) δ (ppm): –181.9; HRMS (TOF, 

ES+) C16H18FN [M+H]+ calc'd 244.1502, found 244.1501.  

 

 

(S)-1-(1-(2-cyclohexyl-2-fluoroethyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one 

(2.54): The product was prepared according to the general procedure and purified by SiO2 

chromatography (10% MeOH/CH2Cl2) to afford the product as a white solid (15.0 mg, 

87%), which was determined to be ˃99% ee by chiral HPLC analysis. (Chiralcel® AD, 

Isocratic 5% i-PrOH/Hexanes, tR (major) = 7.8 min, tR (minor) = 9.4 min). Rf = 0.61 (10% 
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MeOH/CH2Cl2); IR (neat) 3006, 2924, 1691, 1462, 1377, 1275, 1260 cm-1; 1H NMR 

(600.1 MHz, CDCl3) δ (ppm): 9.93 (s, 1H) 7.29 (m, 1H), 7.11 (m, 1H), 7.04 (m, 2H), 

4.43-4.51 (dm, J = 52.5 Hz, 1H), 4.38 (br m, 1H), 3.13 (m, 2H), 2.70 (m, 1H),  2.54 (m, 

2H), 2.28 (m, 2H), 1.77-1.83 (m, 5H), 1.68 (m, 2H) 1.58 (m, 1H), 1.07-1.31 (m, 6H);  13C 

NMR (100.6 MHz, CDCl3) δ (ppm): 155.0, 129.0, 127.9, 121.0 (d, J = 13.3 Hz), 109.7, 

(d, J = 18.0 Hz), 95.9 (d, J = 171.7 Hz), 60.2 (d, J = 21.4 Hz), 53.9, 53.6, 50.5, 41.0 (d, J 

= 19.4 Hz) 29.6, 29.1, 28.7 (d, J = 4.2 Hz), 27.1 (d, J = 6.1 Hz), 26.2, 25.9, 25.7; 19F 

NMR (282 MHz, CDCl3) δ (ppm): –183.9; HRMS (TOF, ES+) C20H28FN3O [M+H]+ 

calc'd 346.2295, found 346.2279.  

 

N

2.55

F N

N
 

(S)-1-(2-cyclohexyl-2-fluoroethyl)-4-(pyridin-2-yl)piperazine (2.55): The product was 

prepared according to the general procedure and purified by SiO2 chromatography (50% 

EtOAc/hexanes) to afford the product as a white solid (12.8 mg, 88%), which was 

determined to be ˃99% ee by chiral HPLC analysis. (Chiralcel® AD, Isocratic 5% i-

PrOH/Hexanes/0.1% DEA, tR (major) = 3.9 min, tR (minor) = 7.5 min). Rf = 0.81 (50% 

EtOAc/hexanes); IR (neat) 2924, 1608, 1593, 1459, 1272 cm-1; 1H NMR (400.1 MHz, 

CDCl3) δ (ppm): 8.18 (dd, J = 4.8 Hz, 1.2 Hz, 1H), 7.46 (dt, J = 8.2 Hz, 2.0 Hz, 1H), 6.62 

(m, 2H), 4.41-4.54 (dm, J = 49.6 Hz, 1H), 3.56 (m, 4H), 2.63 (m, 5H), 1.78 (m, 3H), 1.69 

(m, 2H), 1.57 (m, 1H) 1.19 (m, 6H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 159.4, 

147.8, 137.3, 113.1, 106.9, 95.9 (d, J = 172.0 Hz), 60.4 (d, J = 22.1 Hz), 53.5, 45.0, 41.0 
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(d, J = 19.1 Hz),  28.6 (d, J = 4.0 Hz), 27.2 (d, J = 6.0 Hz), 26.1, 25.8 (d, J =18.0 Hz); 19F 

NMR (282 MHz, CDCl3) δ (ppm): –183.7; HRMS (TOF, ES+) C17H26N3F [M+H]+ calc'd 

292.2189, found 292.2193. 

 

(S)-tert-butyl 4-(2-cyclohexyl-2-fluoroethyl)piperazine-1-carboxylate (2.56): The 

product was prepared according to the general procedure and purified by SiO2 

chromatography (10% MeOH/CH2Cl2) to afford the product as a off white solid (14.4 

mg, 92%), which was determined to be ˃98% ee by chiral HPLC analysis. (Chiralcel® 

AD, Isocratic 3% i-PrOH/Hexanes/0.1% DEA, tR (major) = 6.7 min, tR (minor) = 8.1 

min). Rf = 0.73 (10% MeOH/CH2Cl2); IR (neat) 2926, 1701, 1681, 1458, 1365, 1275, 

1172 cm-1; 1H NMR (600.1 MHz, CDCl3) δ (ppm): 4.37-4.48 (dm, J = 49.2 Hz, 1H), 3.44 

(brs, 4H),  2.59-2.66 (m, 1H), 2.46 (brs, 4H), 1.74-1.82 (brs, 3H), 1.66-1.68 (m, 2H), 

1.59-1.60(m, 1H), 1.4 (s, 9H), 1.14-1.28 (m, 6H);  13C NMR (100.6 MHz, CDCl3) δ 

(ppm): 154.6, 95.8 (d, J = 172.0 Hz), 79.5, 60.3 (d, J = 21.1 Hz), 53.4, 40.9 (d, J = 19.1 

Hz) 28.6 (d J = 4.0 Hz) 28.3, 27.1 (d, J = 6.0 Hz), 26.1, 25.8, 25.7; 19F NMR (282 MHz, 

CDCl3) δ (ppm): –183.7; HRMS (TOF, ES+) C17H31FN2O2 [M+H]+ calc'd 315.2448, 

found 315.2437.  
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2.57

N
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1-(1-((2S)-2-fluoro-3-phenylbutyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one 

(2.57): The product was prepared according to the general procedure and purified by SiO2 

chromatography (50% EtOAc/hexanes) to afford the product as a off white solid (13.8 

mg, 75%), which was determined to be ˃98% ee by chiral HPLC analysis. (Chiralcel® 

OJ, Isocratic 40% EtOH/60% Hexanes, (tR (major) = 4.3 min, tR (minor) = 4.9 min; (tR 

(major) = 5.5 min. tR (minor) = 6.7 min). Rf = 0.61 (50% EtOAc/hexanes); IR (neat) 

3005, 2920, 1694, 1487, 1376 cm-1; (1H NMR spectra of the mixture of two 

diastereomers); 1H NMR (600.1 MHz, CDCl3) δ (ppm): 10.7 (s, 1H), 7.27-7.36 (m, 6H), 

7.15 (m, 1H), 7.06 (m, 2H), 4.76-4.91 (m, 1H), 4.37 (m, 1H), 3.07 (m, 3H), 2.54 (m, 4H),  

2.24 (m, 2H), 1.81 (dt, J = 12.9, 1.8 Hz, 2H), 1.43 (m, 3H);  13C NMR (100.6 MHz, 

CDCl3) δ (ppm): 155.3, 143.0 (d, J = 6.0 Hz), 141.6 (d, J = 2.0 Hz), 128.9, 128.5, 128.3, 

128.2, 127.6, 126.6 (d, J = 6.0 Hz), 120.9 (d, J = 26.1 Hz), 109.7, (d, J = 12.0 Hz), 96.0 

(d, J = 176.0 Hz), 95.3 (d, J = 175.0 Hz),  60.3, 60.1 (d, J = 1.0 Hz), 53.7 (d, J = 5.0 Hz), 

53.5, 50.5 (d, J = 2.0 Hz), 43.0 (d, J = 21.1 Hz), 42.9 (d, J = 20.1 Hz), 29.6, 29.2, 29.1, 

17.6 (d, J = 6.0 Hz), 16.8 (d, J = 6.0 Hz); 19F NMR (282 MHz, CDCl3) δ (ppm):  –182.3, 

-184.3; HRMS (TOF, ES+) C22H26FN3O [M+Na]+ calc'd 390.1958, found 390.1943. 
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(S)-8-(2-cyclohexyl-2-fluoroethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one (2.58):  

The product was prepared according to the general procedure and purified by SiO2 

chromatography (10% MeOH/CH2Cl2) to afford the product as a off white solid (16.1 

mg, 90%), which was determined to be ˃98% ee by chiral HPLC analysis. (Chiralcel® 

AD, Isocratic 3% i-PrOH/Hexanes, tR (major) = 10.0 min, tR (minor) = 13.6 min). Rf = 

0.60 (10% MeOH/CH2Cl2); IR (neat) 3013, 2940, 1704, 1598, 1463, 1367, 1302 cm-1; 1H 

NMR (600.1 MHz, CDCl3) δ (ppm): 7.52 (s, 1H), 7.29 (m, 2H), 6.93 (d, J = 7.8 Hz, 2H), 

6.88 (t, J = 7.2 Hz, 1H),  4.47 (dm, J = 49.8 Hz, 1H), 4.76 (s, 2H), 2.92 (m, 4H), 2.71 (m, 

4H), 1.78 (m, 6H), 1.60 (m, 1H), 1.25 (m, 6H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 

178.2, 143.1, 129.1, 119.0, 115.6, 96.0 (d, J = 172.0 Hz), 60.2 (d, J = 22.1 Hz), 59.2 (d, J 

= 14.0 Hz), 50.2 (d, J = 55.3 Hz) 41.1 (d, J = 19.1 Hz), 29.1, 28.7 (d, J = 5.0 Hz), 27.2 (d, 

J = 5.0 Hz), 26.1 (d, J = 5.0 Hz), 25.8; 19F NMR (282 MHz, CDCl3) δ (ppm): –183.9; 

HRMS (TOF, ES+) C21H30N3OF [M+Na]+ calc'd 382.2271, found 382.2267.  
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1-(1-(((1S,2S,4S)-2-fluorobicyclo[2.2.1]hept-5-en-2-yl)methyl)piperidin-4-yl)-1H-

benzo[d]imidazol-2(3H)-one (2.59): The product was prepared according to the general 

procedure and purified by SiO2 chromatography (50% EtOAc/hexanes) to afford the 

product as a off white solid (11.2 mg, 66%), which was determined to be ˃12% ee by 

chiral HPLC analysis. (Chiralcel® AD, Isocratic 2% i-PrOH/Hexanes, tR (major) = 14.5 

min, tR (minor) = 15.6 min). Rf = 0.71 (50% EtOAc/hexanes); IR (neat) 3009, 2926, 

1674, 1484, 1386, 1164 cm-1; 1H NMR (600.1 MHz, CDCl3) δ (ppm): 9.70 (s, 1H), 7.28 

(m, 1H), 7.13 (m, 1H), 7.07 (m, 2H), 6.24 (m, 1H), 6.06 (m, 1H), 4.35 (m, 1H), 3.23 (d, J 

= 11.4 Hz, 1H), 3.09( s, 1H), 3.06 (d, J = 11.4 Hz, 1H) 2.92 (s, 1H), 2.59 (m, 1H), 2.49 

(m, 3H), 2.35 (ddd, J = 1.8, 1.8, 1.2 Hz, 1H), 2.30 (ddd, J = 1.8, 1.8, 1.2 Hz, 1H), 1.92 

(m, 1H), 1.83 (m, 1H), 1.79 (m, 2H), 1.68 (d, J = 8.4, 1H), 1.47 (m, 1H);  13C NMR 

(100.6 MHz, CDCl3) δ (ppm): 154.9, 140.1 (d, J = 4.0 Hz), 133.3 (d, J = 9.1 Hz), 129.1, 

127.9, 120.9 (d, J = 8.0 Hz), 109.6 (d, J = 13.1 Hz), 108 (d, J = 186.1 Hz), 63.7 (d, J = 

22.1 Hz), 54.7, 54.1 (d, J = 3.0 Hz), 50.7, 50.4 (d, J = 23.1 Hz),  47.6, 40.9, 39.3 (d, J = 

21.1 Hz), 29.3 (d, J = 21.1 Hz); 19F NMR (282 MHz, CDCl3) δ (ppm): –139.4 (major), -

143.4 (minor); HRMS (TOF, ES+) C20H24N3OF [M+H]+ calc'd 342.1982, found 342.197 
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2.60

N

N

N
HO

F Cl

 

(S)-5-chloro-1-(1-(2-cyclohexyl-2-fluoroethyl)piperidin-4-yl)-1H-benzo[d]imidazol-

2(3H)-one (2.60): The product was prepared according to the general procedure and 

purified by SiO2 chromatography (10% MeOH/CH2Cl2) to afford the product as a white 

solid (15.9 mg, 84%), which was determined to be ˃97% ee by chiral HPLC analysis. 

(Chiralcel® AD, Isocratic 3% i-PrOH/Hexanes/0.1% DEA, tR (major) = 10.0 min, tR 

(minor) = 13.6 min). Rf = 0.61 (10% MeOH/CH2Cl2); IR (neat) 3004, 2924, 1697, 1487, 

cm-1;  1H NMR (600.1 MHz, CDCl3) δ (ppm): 10.4 (s, 1H) 7.19 (d, J = 8.4 Hz, 1H), 7.12 

(s, 1H), 7.01 (br d, J = 8.4 Hz, 1H), 4.45-4.53 (dm, J = 49.8 Hz, 1H), 4.36 (br m, 1H), 

3.17 (br m, 2H), 2.71 (m, 1H),  2.48 (br m, 2H), 2.33 (br m, 2H), 1.77-1.83 (m, 5H), 1.68 

(m, 2H) 1.57 (br m, 1H), 1.07-1.27 (m, 6H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 

155.2, 128.9, 127.4, 126.8,  121.0, 110.2 (d, J = 36.2 Hz), 95.6 (d, J = 172.0 Hz), 60.0 (d, 

J = 21.1 Hz), 53.6, 53.5, 50.4, 41.0 (d, J = 20.1 Hz) 29.6, 28.9, 28.6 (d, J = 4.0 Hz), 27.1 

(d, J = 6.0 Hz), 26.1, 25.9, 25.7; 19F NMR (282 MHz, CDCl3) δ (ppm): –183.9; HRMS 

(TOF, ES+) C20H27FN3OCl [M+H]+ calc'd 380.1905, found 380.1891.  
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2.61

N N
NH

OMe F

 

(S)-1-(1-(2-fluoro-2-phenylpropyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one 

(2.61): The product was prepared according to the general procedure (except that (S)-5-

(pyrrolidin-2-yl)-1H-tetrazole 2.65 was used as the catalyst) and purified by SiO2 

chromatography (50% EtOAc/hexanes) to afford the product as a yellow solid (13.1 mg, 

74%), which was determined to be 40% ee by chiral HPLC analysis. (Chiralcel® AD, 

100% MeOH/0.1 DEA, tR (major) = 6.4 min, tR (minor) = 7.4 min).  Rf = 0.60 (50% 

EtOAc/hexanes); IR (neat) 3005, 2926, 1694, 1484, 1376 cm-1; 1H NMR (600.1 MHz, 

CDCl3) δ (ppm): 10.4 (s, 1H), 7.26-7.45 (m, 6H), 7.06 (m, 3H), 4.07 (br s, 1H), 3.77 (m, 

2H), 3.52 (m, 2H), 2.98 (m, 4H) 1.95 (br d, J = 12.0 Hz, 2H), 1.89 (d, J = 22.8 Hz,  3H); 

13C NMR (100.6 MHz, CDCl3) δ (ppm): 154.7, 140.2 (d, J = 21.1 Hz), 129.2, 128.9, 

128.7, 127.8, 127.6, 126.7, 123.8 (d, J = 9.0 Hz), 121.7 (d, J = 9.0 Hz), 109.8, 95.8 (d, J 

= 178.1 Hz), 53.9, 52.8 (d, J = 5.0 Hz), 50.3, 46.8, 25.6 (d, J = 23.1 Hz); 19F NMR (282 

MHz, CDCl3) δ (ppm): –145.4; HRMS (TOF, ES+) C21H24N3OF [M+Na]+ calc'd 

376.1801, found 376.1792. 
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2.62

N
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tert-butyl-4-(((1S,2S,4S)-2-fluorobicyclo[2.2.1]hept-5-en-2-yl)methyl)piperazine-1-

carboxylate (2.62): The product was prepared according to the general procedure and 

purified by SiO2 chromatography (50% EtOAc/hexanes) to afford the product as a yellow 

solid (10.8 mg, 70%), which was determined to be ˃15% ee by chiral HPLC analysis. 

(Chiralcel® AD, Isocratic 5% i-PrOH/Hexanes, tR (major) = 10.6 min, tR (minor) = 11.9 

min). Rf = 0.78 (50% EtOAc/hexanes); IR (neat) 2988, 1685, 1459, 1275, 1260 cm-1; 1H 

NMR (600.1 MHz, CDCl3) δ (ppm): 6.21 (m, 1H), 6.01 (m, 1H),  3.42 (m, 4H), 3..02 (m, 

1H),  2.88 (brs, 1H), 2.57 (m, 3H), 2.42 (m, 3H), 1.88 (m, 1H), 1.80 (m, 1H)  1.64 (m, 

1H), 1.45 (s, 9H), 1.39 (m, 1H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 154.76, 140.1 

(d, J = 4.0 Hz), 133.2 (d, J = 9.0 Hz), 108.1, 106.2, 79.3, 79.5, 64.0 (d, J = 22.1 Hz), 54.0 

(d, J = 3.0 Hz), 50.3 (d, J = 23.1 Hz) 47.5, 40.8, 39.2 (d, J = 21.1 Hz), 28.3; 19F NMR 

(282 MHz, CDCl3) δ (ppm): 139.0 (major), -143.0 (minor);; HRMS (TOF, ES+) 

C17H27FN2O2 [M+H]+ calc'd 311.2135, found 311.2125.  
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1,4-bis((S)-2-fluoro-3-phenylpropyl)piperazine (2.63): The product was prepared 

according to the general procedure and purified by SiO2 chromatography (50% 

EtOAc/hexanes) to afford the product as yellow oil (10.3 mg, 58%). Compound was also 

isolated as yellow oil. Rf = 0.69 (50% EtOAc/hexanes); IR (neat) 2921, 1453, 1274, 1158 

cm-1;1H NMR (600.1 MHz, CDCl3) δ (ppm): 7.34 (m, 4H), 7.29 (m, 2H), 7.19 (d, J = 7.2 

Hz, 4H), 5.19 (dm, J = 49.5 Hz, 2H), 3.47 (br s, 4H), 3.35 (br m, 4H), 3.15 (m, 2H), 3.01 

(m, 6H); 13C NMR (150.9 MHz, CDCl3) δ (ppm): 134.2 (d, J = 4.6 Hz), 129.2, 128.8, 

127.4, 90.0 (d, J = 174.7 Hz), 59.6 (d, J = 20.6 Hz), 50.2, 39.2 (d, J = 21.2 Hz); 19F NMR 

(282 MHz, CDCl3) δ (ppm):  –175.7; HRMS (TOF, ES+) C22H28F2N2 [M+H]+ calc'd 

359.2299, found 359.2293.  

 

 

(S)-1-(2,2-difluoro-3-phenylpropyl)-4-(2-fluoro-3-phenylpropyl)piperazine: 

Isolated alongside compound monofluorinated piperazine as a yellow solid. Rf = 0.74 

(50% EtOAc/hexanes); IR (neat) 2921, 1454, 1275, 1261, 1158, 1096 cm-1; 1H NMR 

(600.1 MHz, CDCl3) δ (ppm): 7.25-7.34 (m, 10H), 4.95 (dm, J = 48.0 Hz, 1H), 3.27 (t, J 

= 16.2 Hz, 2H), 3.00 (m, 2H), 2.53-2.66 (m, 12H); 13C NMR (150.9 MHz, CDCl3) δ 

(ppm): 136.8 (d, J = 4.9 Hz), 133.6 (t, J = 4.6 Hz), 130.4, 129.3, 128.4, 128.3, 127.1, 

126.6 124.4 (t, J = 243.7 Hz) 92.7 (d, J = 173.0 Hz), 61.2 (d, J = 20.9 Hz), 60.0 (t, J = 

28.3 Hz), 53.8 (d, J = 5.8 Hz), 40.8 (t, J = 24.8 Hz), 39.7 (d, J = 21.5 Hz), 29.6; 19F NMR 
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(282 MHz, CDCl3) δ (ppm):  –176.4, -94.4; HRMS (TOF, ES+) C22H27F3N2 [M+H]+ 

calc'd 377.2205, found 377.2204.  

 

General Procedure for β,β -Difluoroamines Synthesis: A solution of D,L-Proline (0.4 

equiv) and N-fluorobenzenesulfonimide 33 (2 equiv) in 10 % i-PrOH/THF (0.30 M) was 

stirred at room temperature and treated with aldehyde substrate 32 (1 equiv). The reaction 

mixture was stirred at this temperature for 24 h, and then cooled to -78 °C, diluted with 

10 mL Et2O and filtered through a pad of Davisil® Silica Gel, eluting with Et2O. Me2S 

(5.0 mL) was added, washed with Sat. NaHCO3 (3X) and brine (1X) and then dried over 

MgSO4. Filtration and concentration afforded the crude oil which was dissolved in DCE, 

followed by the addition of amine (1.0 equiv), and NaBH(OAc)3. The reaction was stirred 

at 23 °C overnight. The reaction was quenched with Sat. NaHCO3 and extracted thrice 

with EtOAc and dried over MgSO4, filtered and concentrated in vacuo. Purification by 

flash column chromatography with silica gel afforded the title compounds.  

 

 

1-(1-(2,2-difluoro-3-phenylpropyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one 

(2.70): The product was prepared according to the general procedure and purified by SiO2 

chromatography (10% MeOH/CH2Cl2) to afford the product as a white solid (11.8 mg, 

64%). Rf = 0.57 (10% MeOH/CH2Cl2); IR (neat) 3003, 2925, 1691, 1481, 1377 cm-1;  1H 

NMR (400.1 MHz, CDCl3) δ (ppm): 8.33 (s, 1H) 7.46 (d, J = 6.8 Hz, 1H), 7.37 (m, 2H), 

101 
 



7.28 (m, 3H), 7.13 (m, 3H), 4.63 (br s, 1H), 3.71 (d, J = 11.6 Hz, 2H), 3.36 (m, 3H),  3.03 

(m, 4H), 2.74 (m, 1H), 1.98 (d, J = 11.2 Hz, 2H);  13C NMR (150.9 MHz, CDCl3) δ 

(ppm): 154.6, 130.6, 130.3, 130.1, 128.9, 128.2, 126.6,  122.0, 120.7 (t, J = 245.9 Hz), 

110.2, 57.6 (t, J = 27.3 Hz), 53.61, 47.1, 42.6 (t, J = 24.1 Hz) 25.7, 24.0 (t, J = 25.6 Hz); 

19F NMR (282 MHz, CDCl3) δ (ppm): –94.4; HRMS (TOF, ES+) C21H23F2N3O [M+H]+ 

calc'd 372.1887, found 372.1888.  

 

 

tert-butyl 4-(2,2-difluoro-3-phenylpropyl)piperazine-1-carboxylate (2.71): The 

product was prepared according to the general procedure and purified by SiO2 

chromatography (50% EtOAc/hexanes) to afford the product as a white solid (11.4 mg, 

67%), Rf = 0.78 (50% EtOAc/hexanes); IR (neat) 2927, 1690, 1475, 1373 cm-1; 1H NMR 

(600.1 MHz, CDCl3) δ (ppm): 7.27-7.34 (m, 5H), 3.45 (m, 4H), 3.28 (t, J = 16.2 Hz, 2H), 

2.56 (t,  J = 13.2 Hz,  2H),  2.49 (m, 4H), 1.47 (s, 9H);  13C NMR (100.6 MHz, CDCl3) δ 

(ppm): 154.6, 133.5 (t, J = 5.0 Hz), 130.3, 128.2, 127.1, 124.3 (t, J = 243.4 Hz), 79.6, 

60.1 (t, J = 28.1 Hz), 53.6, 40.9 (t, J = 24.1 Hz), 28.3; 19F NMR (282 MHz, CDCl3) δ 

(ppm):  –94.4; HRMS (TOF, ES+) C18H26F2N2O2 [M+H]+ calc'd 341.2041, found 

341.2040.  
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Tert-butyl 4-(2,2-difluoro-3-phenylbutyl)piperazine-1-carboxylate (2.72): The 

product was prepared according to the general procedure and purified by SiO2 

chromatography (50% EtOAc/hexanes) to afford the product as a white solid (12.0 mg, 

68%), Rf = 0.78 (50% EtOAc/hexanes); IR (neat) 2927, 1691, 1477, 1373 cm-1; 1H NMR 

(600.1 MHz, CDCl3) δ (ppm): 7.25-7.33 (m, 5H), 3.49 (m, 1H),  3.41 (br s, 4H), 2.53 (m, 

3H),  2.42 (m, 1H), 2.27 (m, 2H), 1.46 (s, 9H), 1.43 (d, J = 6.6 Hz, 3H);  13C NMR (100.6 

MHz, CDCl3) δ (ppm): 154.6, 140.0 (d, J = 7.0 Hz), 128.7, 128.2, 127.1, 125.2 (t, J = 

246.4 Hz), 79.5, 59.9 (dd, J = 6.0, 57.3 Hz), 53.6, 43.9 (dd, J = 3.0, 46.2 Hz), 28.3, 14.3 

(t, J = 4.5 Hz); 19F NMR (282 MHz, CDCl3) δ (ppm):  –98.7, –99.6, –106.1, –106.9; 

HRMS (TOF, ES+) C19H28F2N2O2 [M+H]+ calc'd 355.2186, found 355.2194.  

 

 

5-chloro-1-(1-(2-cyclohexyl-2,2-difluoroethyl)piperidin-4-yl)-1H-benzo[d]imidazol-

2(3H)-one: The product was prepared according to the general procedure and purified by 

SiO2 chromatography (10% MeOH/CH2Cl2) to afford the product as a white solid (15.2 

mg, 77%). Rf = 0.62 (10% MeOH/CH2Cl2); IR (neat) 3003, 2924, 1691, 1481, 1377 cm-1;  

1H NMR (600.1 MHz, CDCl3) δ (ppm): 9.83 (s, 1H) 7.13 (m, 2H), 7.04 (dd, J = 1.8, 8.4 

Hz, 1H), 4.31 (br m, 1H), 3.11 (m, 2H), 2.76 (t, J = 15.0 Hz, 2H),  2.42 (m, 4H), 1.97 (m, 
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1H), 1.82 (m, 5H), 1.72 (d, J = 13.2 Hz, 1H), 1.22 (m, 6H);  13C NMR (100.6 MHz, 

CDCl3) δ (ppm): 154.9, 128.8, 127.7 (t, J = 231.4 Hz), 126.8, 125.5, 121.0, 110.0 (d, J = 

22.1 Hz), 68.1, 59.3 (t, J = 28.1 Hz), 54.3, 50.8, 42.2 (t, J = 22.1 Hz) 29.6, 29.3, 25.7 (t, J 

= 25.1 Hz), 25.4 (t, J = 4.0 Hz); 19F NMR (282 MHz, CDCl3) δ (ppm): –104.26; HRMS 

(TOF, ES+) C20H26FN3OCl [M+H]+ calc'd 398.1811, found 398.1796.  

 

One-Pot Procedure for Chiral Aziridine Synthesis 

 

 

To a solution of aldehyde (1.0 eq.) and (2R,5R)-2,5-diphenylpyrrolidine (0.1 eq.) in 

CH2Cl2, was added N-chlorosuccinimide (1.3 eq.) at -78 oC.  This mixture was allowed to 

stir and warm to room temperature over a period of 1.5 – 2.0 hrs after which ground 

molecular sieves were added.  The reaction mixture was then cooled to -78 oC and a 

solution of amine (1.0 eq.) in 2 mL of CH2Cl2 at -78 oC was added.  This solution stirred 

at -78 oC for an additional 1.5 – 2.0 hrs followed by addition of sodium 

triacetoxyborohydride (1.2 eq.) and stirring overnight at -78 oC.  The reaction mixture 

was filtered through a pad of Celite eluting with CH2Cl2 and concentrated in vacuo 

resulting in a crude oil which was then dissolved in 1:1 THF/H2O along with KOH (6.5 

eq.) and stirred overnight at 65 oC.  The reaction mixture was extracted with EtOAc (5x), 

dried over MgSO4, and concentrated under vacuum to give the crude product.  

Purification by flash column chromatography afforded the title compounds.   

The enantiomeric excess was determined either by chiral HPLC or SFC analysis.   
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The diastereomeric ratio was determined by NMR experiments using chiral solvating 

agents. 

 

Two-Pot Procedure for Chiral Aziridine Synthesis 

 

To a solution of aldehyde (1.0 eq.) and (2R,5R)-2,5-diphenylpyrrolidine (0.1 eq.) in 

CH2Cl2, was added N-chlorosuccinimide (1.3 eq.) at -78 oC.  This mixture was allowed to 

stir and warm to room temperature over a period of 1.5 – 2.0 hrs.  The reaction was 

quenched by the addition of excess pentane followed by filtration and concentration of 

the filtrate in vacuo.  The crude product was redissolved in CH2Cl2 and ground molecular 

sieves were added.  The reaction mixture was then cooled to -78 oC and a solution of 

amine (1.0 eq.) in 2 mL of CH2Cl2 at -78 oC was added.  This solution stirred at -78 oC for 

an additional 1.5 – 2.0 hrs followed by addition of sodium triacetoxyborohydride (1.2 

eq.) and stirring overnight at -78 oC.  The reaction mixture was filtered through a pad of 

Celite eluting with CH2Cl2 and concentrated in vacuo resulting in a crude oil which was 

then dissolved in 1:1 THF/H2O along with KOH (6.5 eq.) and stirred overnight at 65 oC.  

The reaction mixture was extracted with EtOAc (5x), dried over MgSO4, and 

concentrated under vacuum to give the crude product.  Purification by flash column 

chromatography afforded the title compounds.  The enantiomeric excess was determined 

either by chiral HPLC or SFC analysis. 
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(R)-1,2-dibenzylaziridine: The product was prepared according to the two-pot procedure 

and purified by silica chromatography (4:1 EtOAc/hexane) to afford the product as a 

clear, yellow oil (167.5 mg, 75%), which was determined to have an ee of 94% by chiral 

HPLC analysis (Chiralcel® OD, Isocratic 2% IPA/hexane, tR (major) = 7.8 min, tR 

(minor) = 6.8 min).  1H NMR (400.1 MHz, CDCl3) δ (ppm):  7.29-7.25 (m, 3H); 7.24-

7.18 (m, 4H); 7.18-7.13 (m, 3H); 3.40 (d, J = 1.65 Hz, 2H); 2.81 (dd, J1 = 5.88 Hz, J2 = 

14.64 Hz, 1H); 2.60 (dd, J1 = 5.84 Hz, J2 = 14.64 Hz, 1H); 1.76-1.68 (m, 2H); 1.43 (d, J 

= 6.10 Hz, 1H).  13C NMR (100.6 MHz, CDCl3) δ (ppm):  139.75, 139.35, 128.81, 

128.47, 128.22, 127.11, 126.30, 64.90, 40.82, 39.48, 33.95.  HRMS (TOF, ES+) C16H17N 

[M+H]+ calc. mass 224.1439, found 224.1432.  Specific rotation [α]  = +32.96° (c = 

4.733, CHCl3). 

 
N

N

O

O
 

 

(R)-tert-butyl 4-(2-benzylaziridin-1-yl) piperidine-1-carboxylate (Table 1, Entry 1): 

The product was prepared according to the one-pot procedure and purified by silica 

chromatography (1:1 EtOAc/hexane with 1% Et3N) to afford the product as a clear 

yellow oil (145.6 mg, 46%), which was determined to have an ee of 91% by chiral HPLC 

analysis (Chiralpak® IA, Isocratic 60:40 pH 9, 20mM NH4HCO3(aq) /acetonitrile, tR 

(major) = 27.3 min, tR (minor) = 30.4 min).  1H NMR (400.1 MHz, CDCl3) δ (ppm):  

7.31 (m, 2H); 7.24 (m, 3H); 3.92 (br d, J = 31.2 Hz, 2H); 2.84-2.56 (m, 4H); 1.72 (m, 

2H); 1.59 (m, 1H); 1.45 (m, 1H); 1.45 (s, 9H); 1.35 (d, J = 6.4 Hz, 2H); 1.24 (m, 2H).  
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13C NMR (100.6 MHz, CDCl3) δ (ppm):  154.98, 139.93, 128.92, 128.50, 126.40, 79.49, 

66.75, 40.35, 39.86, 32.67, 31.89, 31.44, 28.56.  HRMS (TOF, ES+) C19H29N2O2 [M+H]+ 

calc. mass 317.2229, found 317.2233.  Specific rotation [α]  = +21.82° (c = 5.133, 

CHCl3). 

 

 

 

N

(R)-2-benzyl-1-(2,3-dihydro-1H-inden-2-yl) aziridine (Table 1, Entry 2): The product 

was prepared according to the two-pot procedure and purified by silica chromatography 

(4:1 EtOAc/hexane) to afford the product as a dark brown oil (127.1 mg, 51%), which 

was determined to have an ee of 90% by chiral HPLC analysis (Chiralcel® OD, Isocratic 

2% IPA/hexane, tR (major) = 7.8 min, tR (minor) = 6.2 min).  1H NMR (400.1 MHz, 

CDCl3) δ (ppm):  7.31-7.25 (m, 2H); 7.24-7.13 (m, 4H); 7.12-7.04 (m, 3H); 3.02-2.90 (m, 

2H); 2.80 (dd, J1 = 6.70 Hz, J2 = 15.93 Hz, 1H); 2.68 (dd, J1 = 5.51 Hz, J2 = 14.14 Hz, 

1H); 2.63-2.54 (m, 2H); 2.24 (p, J = 5.51 Hz, 1H); 1.70 (d, J = 3.27, 1H); 1.66-1.59 (m, 

1H); 1.39 (d, J = 6.31 Hz, 1H).  13C NMR (100.6 MHz, CDCl3) δ (ppm):  141.98, 141.66, 

140.05, 128.94, 128.45, 126.39, 126.33, 124.89, 124.64, 70.92, 40.86, 39.67, 39.60, 

39.35, 33.51.  HRMS (TOF, ES+) C17H19N [M+H]+ calc. mass 250.1596, found 

250.1596.  Specific rotation [α]  = +32.96° (c = 4.733, CHCl3).  Specific rotation [α]  = 

+7.19° (c = 4.867, CHCl3). 
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N 

 

(R)-2-benzyl-1-((S)-1-phenylethyl) aziridine (Table 1, Entry 3): The product was 

prepared according to the one-pot procedure and purified by silica chromatography (4:1 

EtOAc/hexane) to afford the product as a clear yellow oil (151.9 mg, 64%), which was 

determined to have a dr of >10:1 by NMR with the chiral solvating agent R(-)-1-(9-

anthryl)-2,2,2-trifluoroethanol (Pirkle alcohol).  1H NMR (400.1 MHz, CDCl3) δ (ppm):  

7.33-7.24 (m, 8H); 7.21-7.15 (m, 2H); 2.78 (dd, J1 = 6.51 Hz, J2 = 14.15 Hz, 1H); 2.67 

(dd, J1 = 6.06 Hz, J2 = 14.14 Hz, 1H); 2.34 (q, J = 6.59 Hz, 1H); 1.66 (dq, J1 = 3.51 Hz, 

J2 = 6.34 Hz, 1H); 1.57 (d, J = 3.51 Hz, 1H); 1.28 (d, J = 6.35 Hz, 1H); 1.21 (d, J = 6.63 

Hz, 3H).  13C NMR (100.6 MHz, CDCl3) δ (ppm):  144.73, 139.98, 129.01, 128.44, 

128.38, 127.02, 126.93, 126.34, 69.98, 41.80, 39.89, 33.60, 23.39.  HRMS (TOF, ES+) 

C17H19N [M+H]+ calc. mass 238.1596, found 238.1596.  Specific rotation [α]  = -32.67° 

(c = 8.600, CHCl3). 

 

N
 

 

(R)-2-benzyl-1-((S)-1-(naphthalen-2-yl)ethyl) aziridine (Table 1, Entry 4): The 

product was prepared according to the one-pot procedure and purified by silica 

chromatography (4:1 EtOAc/hexane) to afford the product as a clear orange oil (163.8 

mg, 57%), which was determined to have a dr of >10:1 by NMR with the chiral solvating 

agent R(-)-1-(9-anthryl)-2,2,2-trifluoroethanol (Pirkle alcohol).  1H NMR (400.1 MHz, 
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CDCl3) δ (ppm):  7.76-7.70 (m, 4H); 7.45-7.41 (m, 1H); 7.36 (m, 2H); 7.26 (d, J = 4.32 

Hz, 3H); 7.20-7.13 (m, 2H); 2.79 (dd, J1 = 6.50 Hz, J2 = 14.15 Hz, 1H); 2.67 (dd, J1 = 

6.09 Hz, J2 = 14.15, 1H); 2.47 (q, J = 6.59 Hz, 1H); 1.69 (dq, J1 = 3.58 Hz, J2 = 6.31 Hz, 

1H); 1.58 (d, J = 3.58 Hz, 1H); 1.29 (d, J = 6.31 Hz, 1H); 1.25 (d, J = 6.59 Hz, 3H).  13C 

NMR (100.6 MHz, CDCl3) δ (ppm):  142.27, 140.01, 133.54, 132.85, 129.05, 128.50, 

128.06, 127.97, 127.75, 126.40, 126.03, 125.60, 125.51, 125.28, 70.21, 42.00, 39.94, 

33.73, 23.47.  HRMS (TOF, ES+) C21H21N [M+H]+ calc. mass 288.1752, found 

288.1746.  Specific rotation [α]  = -23.72° (c = 4.933, CHCl3). 

 

 
N

 

(R)-1-benzyl-2-(cyclopentylmethyl) aziridine (Table 1, Entry 5): The product was 

prepared according to the two-pot procedure and purified by silica chromatography (4:1 

EtOAc/hexane) to afford the product as a clear yellow oil (116.3 mg, 54%), which was 

determined to have an ee of 95% by chiral HPLC analysis (Chiralcel® OD, Isocratic 2% 

IPA/hexane, tR (major) = 5.2 min, tR (minor) = 4.6 min).  1H NMR (400.1 MHz, CDCl3) δ 

(ppm):  7.37-7.29 (m, 4H); 7.28-7.22 (m, 1H); 3.47 (d, J = 13.20 Hz, 1H); 3.36 (d, J = 

13.20 Hz, 1H); 1.85-1.75 (m, 1H); 1.75-1.62 (m, 2H); 1.60 (d, J = 3.15 Hz, 1H); 1.59-

1.52 (m, 2H); 1.51-1.40 (m, 4H); 1.39 (d, J = 6.00 Hz, 1H); 1.33 (q, J = 7.90 Hz, 1H); 

1.15-1.00 (m, 2H).  13C NMR (100.6 MHz, CDCl3) δ (ppm):  139.64, 128.43, 128.36, 

127.10, 65.18, 39.42, 39.28, 38.87, 34.43, 32.85, 32.53, 25.24, 25.12.  HRMS (TOF, 

ES+) C15H22N [M+H]+ calc. mass 216.1752, found 216.1752.  Specific rotation [α]  = 

+6.29° (c = 7.000, CHCl3). 
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(R)-1-benzyl-2-decylaziridine (Table 1, Entry 6): The product was prepared according 

to the one-pot procedure and purified by silica chromatography (4:1 EtOAc/hexane) to 

afford the product as a clear yellow oil (177.7 mg, 65%), which was determined to have 

an ee of 94% by chiral HPLC analysis (Chiralcel® OD, Isocratic 2% IPA/hexane, tR 

(major) = 4.5 min, tR (minor) = 4.1 min).  1H NMR (400.1 MHz, CDCl3) δ (ppm):  7.37-

7.29 (m, 4H); 7.28-7.22 (m, 1H); 3.50 (d, J = 13.25 Hz, 1H); 3.32 (d, J = 13.25 Hz, 1H); 

1.61 (d, J = 3.23 Hz, 1H); 1.49-1.16 (m, 20H); 0.88 (t, J = 6.67 Hz, 3H).  13C NMR 

(100.6 MHz, CDCl3) δ (ppm):  139.64, 128.43, 128.32, 127.09, 65.20, 39.98, 34.24, 

33.19, 32.07, 29.76, 29.73, 29.53, 29.49, 27.60, 22.84, 14.27.  HRMS (TOF, ES+) 

C19H31N [M+H]+ calc. mass 274.2535, found 274.2527.  Specific rotation [α]  = +7.42° 

(c = 6.467, CHCl3). 

 

N
N O

O
 

 

(R)-tert-butyl 4-((2-benzylaziridin-1-yl)methyl) piperidine-1-carboxylate (Table 1, 

Entry 7): The product was prepared according to the one-pot procedure and purified by 

silica chromatography (1:1 EtOAc/hexane with 1% Et3N) to afford the product as a clear 

yellow oil (177.7 mg, 65%), which was determined to have an ee of 86% by SFC analysis 

(Chiralcel® OJ, 5% IPA/CO2, tR (major) = 3.2 min, tR (minor) = 3.7 min).  1H NMR 

(400.1 MHz, CDCl3) δ (ppm):  7.34-7.17 (m, 5H); 4.15-3.95 (br, 2H); 2.73 (dd, J1 = 5.60 

Hz, J2 = 14.25 Hz, 1H); 2.64 (dd, J1 = 7.00 Hz, J2 = 14.25 Hz, 1H); 2.60-2.46 (m, 2H); 
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2.28 (dd, J1 = 7.81 Hz, J2 = 11.76 Hz, 1H); 1.91 (dd, J1 = 5.70 Hz, J2 = 11.76 Hz, 1H); 

1.76 (d, J = 12.82 Hz, 1H); 1.71 (d, J = 3.34, 1H); 1.57-1.48 (m, 3H); 1.46 (s, 9H); 1.30 

(d, J = 6.25, 1H); 1.06 (pd, J1 = 4.15 Hz, J2 = 12.27 Hz, 2H).  13C NMR (100.6 MHz, 

CDCl3) δ (ppm):  154.96, 139.92, 128.86, 128.49, 126.38, 79.29, 67.36, 40.97, 39.64, 

37.23, 34.32, 30.67, 30.54, 28.58.  HRMS (TOF, ES+) C20H30N2O2 [M+H]+ calc. mass 

331.2386, found 331.2387.  Specific rotation [α]  = +32.15° (c = 0.933, CHCl3). 

 

 
N

 

(R,Z)-1-benzyl-2-(oct-5-en-1-yl) aziridine (Table 1, Entry 8): The compound was 

prepared according to the two-pot procedure and purified by silica chromatography (4:1 

EtOAc/hexane) to afford the product as a clear yellow oil (146.0 mg, 60%), which was 

determined to have an ee of 96% by chiral HPLC analysis using the (2R,5R)-2,5-

diphenylpyrrolidine catalyst (Chiralcel® OD, Isocratic 2% IPA/hexane, tR (major) = 5.2 

min, tR (minor) = 4.7 min).  When the compound was prepared using the (2S,5S)-2,5-

diphenylpyrrolidine catalyst, the product had an ee of 94% (Chiralcel® OD, Isocratic 2% 

IPA/hexane, tR (major) = 4.7 min, tR (minor) = 5.3 min).  1H NMR (400.1 MHz, CDCl3) 

δ (ppm):  7.37-7.29 (m, 4H); 7.28-7.23 (m, 1H); 5.39-5.23 (m, 2H); 3.49 (d, J = 13.25, 

1H); 3.32 (d, J = 13.25, 1H); 2.06-1.93 (m, 4H); 1.61 (d, J = 3.06 Hz, 1H); 1.49-1.24 (m, 

8H); 0.94 (t, J = 7.54 Hz, 3H).  13C NMR (100.6 MHz, CDCl3) δ (ppm):  139.61, 131.79, 

129.23, 128.44, 128.31, 127.10, 65.19, 39.88, 34.26, 33.09, 29.62, 27.22, 27.18, 20.64, 

14.53.  HRMS (TOF, ES+) C17H25N [M+H]+ calc. mass 244.2065, found 244.2055.  

Specific rotation [α]  = -18.19° (c = 7.200, CHCl3). 
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(R)-tert-butyl 4-(2-(3-phenylpropyl)aziridin-1-yl)piperidine-1-carboxylate (Table 1, 

Entry 9): The product was prepared according to the one-pot procedure and purified by 

silica chromatography (1:1 EtOAc/hexane with 1% Et3N) to afford the product as a clear 

yellow oil (179.1 mg, 52%), which was determined to have an ee of 90% by chiral HPLC 

analysis (Chiralpak® IA, Isocratic 60:40 pH 9, 20mM NH4HCO3(aq) /acetonitrile, tR 

(major) = 68.8 min, tR (minor) = 81.4 min).  1H NMR (400.1 MHz, CDCl3) δ (ppm):  

7.31-7.24 (m, 2H); 7.21-7.14 (m, 3H); 4.12-3.91 (br, 2H); 2.80-2.68 (m, 2H); 2.64 (t, J = 

7.87 Hz, 2H); 1.89-1.59 (m, 5H); 1.59-1.50 (m, 3H); 1.45 (s, 9H); 1.38-1.17 (m, 4H).  13C 

NMR (100.6 MHz, CDCl3) δ (ppm):  155.03, 142.49, 128.54, 128.46, 125.88, 79.54, 

66.95, 38.55, 36.01, 33.09, 32.71, 32.18, 31.61, 29.89, 28.58.  HRMS (TOF, ES+) 

C21H32N2O2 [M+H]+ calc. mass 345.2542, found 345.2537.  Specific rotation [α]  = 

+3.08° (c = 7.467, CHCl3). 

 

 

 

 

(R)-1-(2,3-dihydro-1H-inden-2-yl)-2-(3-phenylpropyl) aziridine (Table1, Entry 10):  

The product was prepared according to the one-pot procedure and purified by silica 

chromatography (4:1 EtOAc/hexane) to afford the product as a dark brown oil (155.3 mg, 
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56%), which was determined to have an ee of 92% by chiral HPLC analysis (Chiralcel® 

OD-Cl (Cellulose-2),  4% EtOH/hexane, tR (major) = 6.0 min, tR (minor) = 5.3 min).  1H 

NMR (400.1 MHz, CDCl3) δ (ppm):  7.31-7.24 (m, 2H); 7.22-7.15 (m, 5H); 7.15-7.09 

(m, 2H); 3.11-2.94 (m, 4H); 2.65 (t, J = 7.97 Hz, 2H); 2.32 (p, J = 6.12 Hz, 1H); 1.92-

1.68 (m, 2H); 1.56 (d, J = 3.32 Hz, 1H); 1.54-1.40 (m, 2H); 1.39-1.28 (m, 2H).  13C NMR 

(100.6 MHz, CDCl3) δ (ppm):  142.58, 141.87, 141.84, 128.58, 128.46, 126.54, 126.50, 

125.87, 124.92, 124.75, 71.21, 39.88, 39.38, 35.99, 33.44, 32.95, 29.87.  HRMS (TOF, 

ES+) C20H23N [M+H]+ calc. mass 278.1909, found 278.1906.  Specific rotation [α]  = 

+0.42° (c = 7.067, CHCl3). 

 

 
N

N

OO

N
 

 

 

Tert-butyl 3-((R)-1-(2-(pyridin-2-yl)ethyl)aziridin-2-yl) piperidine-1-carboxylate 

(Table 1, Entry 11): The product was prepared according to the one-pot procedure and 

purified by silica chromatography (1:1 EtOAc/hexane with 1% Et3N followed by 1:1 

MeOH/CH2Cl2 with 0.1% Et3N) to afford the product as an orange oil (175.7 mg, 53%), 

which was determined to have an ee of 77% by chiral HPLC analysis using the (2R,5R)-

2,5-diphenylpyrrolidine catalyst (Chiralcel® OD, Isocratic 5% IPA/hexane, tR (major) = 

15.1 min, tR (minor) = 23.0 min).  When the compound was prepared using the (2S,5S)-

2,5-diphenylpyrrolidine catalyst, the product had an ee of 74% (Chiralcel® OD, Isocratic 

2% IPA/hexane, tR (major) = 15.7 min, tR (minor) = 21.9 min).  1H NMR (400.1 MHz, 
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CDCl3) δ (ppm):  8.50 (d, J = 4.63 Hz, 1H); 7.58 (td, J1 = 1.66 Hz, J2 = 7.68 Hz, 1H); 

7.19 (d, J = 7.83 Hz, 1H); 7.10 (m, 1H); 4.23-3.96 (br, 2H); 3.10-2.94 (m, 2H); 2.82-2.72 

(m, 1H); 2.71-2.55 (br, 2H); 2.53-2.43 (m, 1H); 1.81 (d, J = 12.69, 1H); 1.64-1.54 (m, 

2H); 1.45 (s, 9H); 1.31-1.14 (m, 4H); 1.08-0.96 (m, 1H).  13C NMR (100.6 MHz, CDCl3) 

δ (ppm):  159.93, 155.01, 149.42, 136.50, 123.45, 121.42, 79.42, 61.14, 44.36, 39.72, 

38.89, 32.97, 30.39, 29.46, 28.60.  HRMS (TOF, ES+) C19H29N3O2 [M+H]+ calc. mass 

332.2338, found 332.2336 [M+H-Boc]+ calc. mass 232.1814, found 232.1808.  (R)-

enantiomer specific rotation [α]  = -9.58° (c = 5.533, CHCl3).  (S)-enantiomer specific 

rotation [α]  = +8.24° (c = 6.800, CHCl3). 

 

 

 

(S)-2-((benzyloxy)methyl)-1-(cyclohexylmethyl) aziridine (Table 1, Entry 12): The 

product was prepared according to the one-pot procedure using (S)-5-(pyrrolidin-2-yl)-

1H-tetrazole (5o) as the catalyst and purified by silica chromatography (4:1 

EtOAc/hexane) to afford the product as a clear yellow oil (103.8 mg, 56%), which was 

determined to have an ee of 56% by SFC analysis (Chiralpak® IA, 15% IPA/CO2, tR 

(major) = 1.5 min, tR (minor) = 1.3 min).  1H NMR (400.1 MHz, CDCl3) δ (ppm):  7.28-

7.22 (m, 4H); 7.21-7.16 (m, 1H); 4.47 (q, J = 11.94 Hz, 2H); 3.40 (dd, J1 = 5.18 Hz, J2 = 

10.73 Hz, 1H); 3.34 (dd, J1 = 6.04 Hz, J2 = 10.36 Hz, 1H); 2.08 (dd, J1 = 7.44 Hz, J2 = 

11.80 Hz, 1H); 1.97 (dd, J1 = 6.16 Hz, J2 = 11.71 Hz, 1H); 1.85-1.77 (m, 1H); 1.75-1.67 

(m, 1H); 1.66-1.44 (m, 6H); 1.23-1.03 (m, 4H); 0.92-0.78 (m, 2H).  13C NMR (100.6 

MHz, CDCl3) δ (ppm):  138.48, 128.45, 127.74, 127.65, 73.11, 72.87, 68.16, 38.85, 

NO
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38.30, 32.02, 31.71, 31.68, 26.73, 26.18.  HRMS (TOF, ES+) C17H25NO [M+H]+ calc. 

mass 260.2014, found 260.2014.  Specific rotation [α]  = +32.96° (c = 4.733, CHCl3).  

Specific rotation [α]  = +8.27° (c = 6.533, CHCl3). 

 

 

N

O

N O

O

 

 

 

(R)-tert-butyl 4-(2-(4-methoxybenzyl)aziridin-1-yl) piperidine-1-carboxylate (Table 

1, Entry 13): The product was prepared according to the one-pot procedure and purified 

by silica chromatography (1:1 EtOAc/hexane) to afford the product as a clear, yellow oil 

(180.1 mg, 52%), which was determined to have an ee of 92% by chiral HPLC analysis 

(Chiralpak® IA, Isocratic 60:40 pH 9, 20mM NH4HCO3(aq) /acetonitrile, tR (major) = 28.1 

min, tR (minor) = 31.8 min).  1H NMR (400.1 MHz, CDCl3) δ (ppm):  7.17 (d, J = 8.48 

Hz, 2H); 6.85 (d, J = 8.48 Hz, 2H); 4.05-3.85 (br, 2H); 3.80 (s, 3H); 2.84-2.72 (m, 1H); 

2.68 (dd, J1 = 5.15 Hz, J2 = 14.21 Hz, 2H); 2.53 (dd, J1 = 7.34 Hz, J2 = 14.21 Hz, 1H); 

1.77-1.69 (m, 1H); 1.67 (d, J = 3.36 Hz, 1H); 1.58-1.40 (m. 3H); 1.45 (s, 9H); 1.33 (d, J 

= 6.34 Hz, 2H); 1.25-1.17 (m, 1H).  13C NMR (100.6 MHz, CDCl3) δ (ppm):  158.25, 

155.02, 132.08, 129.86, 113.90, 79.50, 66.83, 55.38, 40.58, 38.98, 32.61, 31.98, 31.48, 

28.58.  HRMS (TOF, ES+) C20H30N2O3 [M+H]+ calc. mass 347.2335, found 347.2325.  

Specific rotation [α]  = +33.20° (c = 3.133, CHCl3). 
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(R)-tert-butyl 4-(2-(3-chlorobenzyl)aziridin-1-yl) piperidine-1-carboxylate (Table 1, 

Entry 14): The product was prepared according to the one-pot procedure and purified by 

silica chromatography (1:1 EtOAc/hexane) to afford the product as a clear, orange oil 

(171.9 mg, 49%), which was determined to have an ee of 95% by chiral HPLC analysis 

(Chiralpak® IA, Isocratic 60:40 pH 9, 20mM NH4HCO3(aq) /acetonitrile, tR (major) = 45.4 

min, tR (minor) = 49.4 min).  1H NMR (400.1 MHz, CDCl3) δ (ppm):  7.28-7.18 (m, 3H); 

7.15-7.11 (m, 1H); 4.04-3.79 (br, 2H); 2.87-2.66 (m, 3H); 2.55 (dd, J1 = 7.37 Hz, J2 = 

14.08 Hz, 1H); 1.76-1.69 (m, 1H); 1.68 (d, J = 3.38 Hz, 1H); 1.62-1.52 (m, 1H); 1.52-

1.38 (m, 2H); 1.45 (s, 9H); 1.36 (d, J = 6.37 Hz, 1H); 1.34-1.27 (m, 1H); 1.27-1.18 (m, 

1H).  13C NMR (100.6 MHz, CDCl3) δ (ppm):  154.99, 141.93, 134.20, 129.75, 129.01, 

127.17, 126.61, 79.51, 66.67, 39.96, 39.47, 32.65, 31.87, 31.42, 28.56.  HRMS (TOF, 

ES+) C19H28N2O2Cl [M+H]+ calc. mass 351.1839, found 351.1832.  Specific rotation 

[α]  = +13.26° (c = 21.867, CHCl3). 
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CHAPTER III 

 

TOTAL SYNTHESIS OF BREVISAMIDE 

 

3.1. Introduction 

In recent years, natural marine toxins are becoming more prevalent around the 

world, affecting an estimated 500,000 individuals annually, and having deleterious 

impacts on health  resulting in a global mortality rate of 1.5%.2 These toxins, which 

poison wildlife as well as humans are known to be produced by a very large and diverse 

group of eukaryotic algae in the marine ecosystem, dinoflagellates during the course of 

harmful algal blooms (also known as the red tides).1 Interestingly, many marine toxins 

are known to have fascinating complex structures. In particular, the dinoflagellate toxins 

are structurally and functionally diverse, usually possessing multiple cyclic-ether rings 

which are often aligned in a ladder frame, and in a long carbon chain backbone bearing 

many hydroxyl groups.3 These polycyclic ether marine natural products have shown 

unique and extreme potent biological activities such as neurotoxicity, anticancer and 

antifungal properties.3  

Karenia brevis is a marine dinoflagellate known for producing complex fused 

polyethers is found in the Gulf of Mexico, Caribbean Sea and along New Zealand coasts.  

This organism is responsible for the blooms along the coasts of Florida and Texas.4 

Brevetoxin A (3.1), B (3.2) and hemibrevetoxin B (3.3) (Figure 3.1) were isolated from 

the red tide dinoflagellates, Karenia brevis, and they are the first members of this class of 

natural product to be structurally elucidated.5 This group of natural products consists of a 
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lactone ring fused to 9 to 10 contiguous trans-fused cyclic ether rings. The brevetoxins 

bind with high affinity to site 5 of the voltage-sensitive sodium channel (VSSC) in 

neurons, responsible for the passage of sodium ions through a cell's plasma membrane. 

These voltage-sensitive channels are responsible for inducing a channel mediated sodium 

ion reflux, nerve membrane depolarization, and spontaneous firing. This process causes 

the disruption of the neurological activities leading to illness known as neurotoxic 

shellfish poisoning (NSP). Brevetoxins are easily absorbed into the body due to their 

lipid-solubility properties and can pass through cell membranes including the blood brain 

barrier (BBB).6  

Nicolaou and co-workers reported the first total syntheses of brevetoxin A (3.1) 

and B (3.2) in 1995 and 1998 respectively.7 Nakata’s, Yamamoto/Kadota’s and 

Crimmins’s group have also completed syntheses of either brevetoxin A (3.1) or B (3.2).8    
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Figure 3.1. Structures of brevetoxin A (3.1), B (3.2) and hemibrevetoxin B (3.3).  

 

Gambierdiscus toxicus another marine dinoflagellate is considered to produce 

some of the most poisonous toxins, including ciguatoxin (CTX-3C) (3.4), gambierol 

(3.5), gambieric acid A-D (3.6-3.9) (Figure 3.3) and maitotoxin (3.10) (Figure 3.4).  

Other known marine toxins include gymnocin A (3.11), gymnocin B (3.12) 

(isolated from Gymnodinium mikimotoi) and yessotoxin (3.13) which was isolated from 

the marine dinoflagellate Protoceratium reticulatum (Figure 3.2). 
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Figure 3.2. Structures of gymnocin A (3.11), gymnocin B (3.12) and yessotoxin (3.13).  

 

Ciguatera, a type of seafood poisoning caused by ciguatoxins is estimated to 

affect approximately 20,000 people annually.9 Ciguatoxins are lipophilic polycyclic 

ethers with 13 five- to nine membered fused cyclic ether rings. Similar to brevetoxin, 
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ciguatoxins are extremely potent neurotoxins that lower the threshold for opening 

voltage-gated sodium channels, thus causing membrane depolarization.10 These effects 

could cause heart contractions and paralysis. In 1984, Scheuer’s group reported the 

isolation of ciguatoxin and later Yasumoto and co-workers disclosed its structure. In 

2001, the first total synthesis of ciguatoxin congener CTX-3C (3.4) (Figure 3.3) was 

accomplished by Hirama and co-workers.11  

Gambierol (3.5) (Figure 3.3), a polycyclic ether family of marine neurotoxin was 

isolated from the cultured cells of the ciguatera causative dinoflagellate Gambierdiscus 

toxicus in 1993.12 Structurally, gambierol consists of 8 ether rings, 18 stereocenters, and 2 

pyranyl rings.  Similar to ciguatoxins, gambierol (3.5) is responsible for ciguatera seafood 

poisoning, showing potent toxicity in mice at LD50 50 µg/kg (ip). It is believed that 

gambierols bind to ion channels like other similar neurotoxins. In 2003, Yasumoto, 

Hirama, and co-workers reported that gambierol inhibits the binding of brevetoxin PbTx-

3 to its target, site 5 of voltage gated sodium channels, thus acting as a competitive 

antagonist of PbTx-2.13 Later, Bigiani and co-workers reported that gambierol (3.5) is 

also capable of binding to potassium channels.14 The first total synthesis of gambierol 

(3.5) was accomplished by Sasaki and co-workers in 2002.15 Yamamoto/Kadota and 

Rainier groups have also completed the synthesis of the natural product.16 

In 1992, gambieric acids A-D (3.6-3.9) (Figure 3.3) were isolated from 

Gambierdiscus toxicus which were shown to  inihibit the growth of Aspergillus niger 

showing potency that exceeds amphotericin B by 2000-fold.17 A competitive inhibition 

assay performed by Hirama and co-workers showed that gambieric acid-A (3.6) inhibits 

the binding of isotope-labeled dihydro-brevetoxin ([3H]-PbTx-3).18  
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Figure 3.3. Structures of ciguatoxin (3.4), gambierol (3.5) and gamberic A-D (3.6-3.9). 

  

Maitotoxin (3.10) the largest molecule made by nature (excluding bio-polymers) 

was first discovered from  the  surgeon fish Ctenochaetus striatus 19 and later isolated 

from cultured cells of Gambierdiscus toxicus.20 The structure of maitotoxin (3.10) 

contains 32 rings and 98 stereogenic centers (Figure 3.4). Maitotoxin (3.10) is extremely 

potent and the most poisonous marine toxin known, showing lethality (LD50) value of 50 

ng/kg against mice.21  
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Figure 3.4. Structure of Maitotoxin (3.10).  

 

In 2005, Baden, Bourdelais and co-workers isolated a new member of polycyclic 

ether from the culture of Karenia brevis called brevenal (3.14) (Figure 3.5), a smaller, 

ladder-frame polycyclic ether that competitively displaced brevetoxin from its binding 

site in rat brain synaptosomes.22 Brevenal (3.14) was shown to displace ([3H]-PbTx-3) 

from receptor site 5 of VSSC. Also recently, it has been demonstrated that brevenal 

(3.14) is a potent antagonist of PbTx-2-induced Ca2+ influx in neurons.23 Molgo and co-

workers have recently shown that brevenal (3.14) can potently inhibit ciguatoxin’s 

stimulatory effect on exocytosis and can be used as the first treatment of ciguatera.24 For 

the treatment of cystic fibrosis and neurotoxic shellfish poisoning, brevenal (3.14) has 

been identified as a lead compound.  

Three total syntheses have been reported since the isolation of brevenal (3.14).  

The first of the syntheses was accomplished by Sasaki and co-workers in 2006.25 In 2009, 
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the second synthesis was reported by Kadota/Yamamoto and co-workers.26 Another 

synthesis was recently reported by Rainier and co-workers.27   

Brevisin (3.15) a polycyclic ether, was isolated from the dinoflagellate karenia 

brevis by Wright and co-workers in 2008. It contains two separate fused polyether rings 

linked by a methylene group. One of the polyether rings contains the same conjugated 

aldehyde side chain found in brevenal (3.14) (Figure 3.5).28 Thus, this unprecedented 

polycyclic ether could provide more insight into the biogenesis of fused polyether ring 

systems. Wright and co-workers reported that brevisin (3.15) inhibits the binding of [3H]-

PhTx-3 to its binding site on the voltage -sensitive sodium channels in rat synaptosomes. 

In 2011, the total synthesis was reported by the Satake group, who were involved in the 

isolation of this polycyclic ether natural product.29 
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Figure 3.5. Structures of brevenal (3.14) and brevisin (3.15).  
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3.2. Biosynthesis of ladder polyethers 

Complex ladder polyethers possess many structural and stereochemical 

similarities. Structurally, a carbon-carbon-oxygen unit is present through the length of the 

polycyclic ether ladder. As seen in the structure of maitotoxin (3.10) and other polyether 

toxins, the repeating C-C-O units is independent of the substitution, ladder length and 

ether ring size. The relative stereochemistry of the ladder ring function possesses a trans-

syn-trans relationship (Figure 3.1) except for maitotoxin (3.10) ((Figure 3.4) which 

contains a trans-anti-trans relationship).30,31,32  

In 1985, after the discovery and structural determination of brevetoxin B (3.2), 

Nakanishi proposed that the structural and stereochemical features of the ladder-frame 

polyethers could arise through a cascade of successive endotet epoxide openings of a 

polyepoxide precursor.33 Therefore, each epoxide opening must proceed 

stereospecifically with complete inversion of stereochemistry. A similar proposal has 

been suggested independently by Shimizu34 and Nicolaou.35,36 Specifically, Nakanishi 

proposed that brevetoxin B (3.2) is assembled from a polyepoxide precursor (3.17) via a 

cascade of SN2 epoxide openings and further proposed that the polyepoxide precursors 

could arise from epoxidation of polyene 3.16 (Scheme 3.1).33 Recently, Rein and co-

workers reported the first evidence of resident polyketide synthase (PKS) genes in 

Karenia brevis or other dinoflagellate.37 This work corroborates the proposal of 

Nakanishi that polyketides are the origin of the carbon skeleton in ladder polyethers.33  

In 2006, Gallimore and Spencer showed that contiguous rings in any single 

polyether can be derived from stereochemically identical trans epoxides. Therefore, there 

is a stereochemical regularity at the ether ring junctures which supports the previous 
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hypothesis by Nakanishi. Furthermore, they suggested that a single epoxidase is likely 

responsible for the selective and uniform epoxidation of the trans polyene precursor.38 
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Scheme 3.1. Nakanishi’s proposed biosynthesis of brevetoxin B (3.2).  

 

Recently, an important breakthrough in understanding the formation of ladder 

polyether marine natural products was reported by Jamison’s group. Their work 

explained the importance of the first ring towards the cascade formation of multiple ether 

rings present in the ladder frame polyethers. It was reported that the endo-tet cyclization 

of a polyepoxide precursors for the formation of ladder-frame polyethers can only 
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proceed in aqueous media of neutral pH, and an initial 3-hydroxy-tetrahydropyranyl ring 

moiety must be built into the polyepoxide intermediate (Scheme 3.2).39 Jamison’s work 

suggests that after enzyme catalyzed formation of the first  ether ring, the cascade 

polyepoxide opening should proceed spontaneously, relying on the spatial and 

configurational properties of the epoxide-intermediate.39,40 
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3.3. Isolation of brevisamide  

In 2008, Satake, Tachibana, Wright, and co-workers reported the isolation and 

characterization of brevisamide (3.22), an unprecedented monocylic ether alkaloid, from 

the dinoflagellate Karenia brevis. The extraction of 400 L of cultured cells lead to 0.2 mg 

of brevisamide (3.22) as an amorphous solid.41 Brevisamide (3.22), which displayed 

similar UV data to brevenal (3.14), had a very distinctive 1H NMR spectra compared to 

other known brevetoxins. The structural assignment was elucidated by 500 MHz 2D-
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NMR experiments including 1H-1H COSY, 1H-13C HMBC, TOSCY, HSQC and NOE 

experiments.  

Brevisamide (3.22), contains the same conjugated 3,4-dimethyl-2,4-dienal side 

chain as the more complex polycylic ether brevenal (3.14) and brevisin (3.15) (Figure 

3.6). Thus, brevisamide (3.22) is believed to be a biosynthectic precursor for these 

complex polyether natural products 3.14 & 3.15.22 Interestingly, the brevisamide (3.22) 

skeleton matches well with Jamison’s template ring system in the formation of ladder 

polyethers (Scheme 3.2), with the ether ring oxygen anti to the hydroxyl oxygen and a 

carbon-carbon-oxygen unit.39,40 These features are consistent with the structural and 

stereochemical trend found in complex ladder polyethers such as brevetoxins. 

Brevisamide (3.22) might prove the existence of the tetrahydropyran template in nature.41 

Wright, and co-workers suggested that based on the established biosynthesis pathway of 

other dinoflagellate metabolites, glycine could be the source of the amide nitrogen of 

brevisamide (3.22) and acts as a starter unit in a NRPS/PKS hybrid pathway.41  
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Figure 3.6. Structures of brevenal A (3.14), brevisin (3.15) and brevisamide (3.22).  

 

3.4. Proposed biosynthesis of brevisamide 

An epoxide based biosynthetic mechanism for the formation of the ether ring of 

brevisamide was proposed by Wright and co-workers (Scheme 3.3). It involves 

epoxidation of polyketide olefin chain 3.23 to give hydroxyl epoxide intermediate 3.24, 

which undergoes intramolecular SN2 cyclization of the β-hydroxy group on a flow from 

left to right-opposite the flow of polyketide chain assembly to provide brevisamide 

(3.22).41 Consequently, the isolation of brevisamide as the smallest known ether-

containing metabolite produced by dinoflagellate provides further support for the model 

of ladder-frame initiation in the biosynthesis of polycyclic ether natural products.  
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Scheme 3.3. Proposed biosynthetic mechanism for the formation of brevisamide (3.22).  

 

Due to the unique role brevisamide (3.22) could play in further understanding the 

biogenetic origin of fused, ladder-frame polyether marine natural products, it has 

garnered a great deal of interest among the synthetic community, with five total syntheses 

and two formal syntheses reported.    

 

3.5. Other total synthesis of brevisamide  

Within months of the publication of the isolation and characterization of 

brevisamide (3.22) by Satake, Tachibana, Wright, and co-workers, the first total synthesis 

and structural confirmation of brevisamide was reported by the same group.42 Satake’s 

strategy involves Suzuki-Miyaura coupling of iodide 3.25 and amino cyclic ether 

136 
 



fragment 3.26 (Scheme 3.4). Both fragments can be obtained from a commercially 

available starting material, cis-but-2-ene-1,4-diol 3.27 (Scheme 3.4).  

 

 

Scheme 3.4. Satake and Tachibana’s retrosynthesis of brevisamide (3.22).  

 

The synthesis of amino cyclic ether 3.26 began from optically active homoallylic 

alcohol 3.28, which was prepared in three steps (silyl-monoprotection, ozonolysis and 

brown crotylation) from diol 3.27 (78 % yield, 91% ee). Ozonolysis of the homoallylic 

alcohol 3.28, Wittig reaction of the resulting aldehyde, hydrogenation and 

transesterification of the enoate gave lactone 3.29 in 71% after four steps. Ketene acetal 

triflate generation from 3.29, followed by Stille coupling generated the dienol ether 3.30, 

which was further subjected to hydroboration conditions to give the pyran ring 3.31. 

TBS-protection of the diol, followed by selective deprotection of the primary silyl-

alcohol and TEMPO oxidation gave carboxylic acid 3.32 in 80% yield for three steps 

(Scheme 3.5).  
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Scheme 3.5. Synthesis of Suzuki-Miyaura coupling fragment amino cyclic ether 3.26.  

Reagents and conditions: (a) O3, CH2Cl2, -78 oC; PPh3, rt; (b) Ph3P=CHCO2Me, THF, rt;  

(c) H2, Pd/C, EtOAc, rt; (d) PPTS, benzene, reflux (71% yield for 4-steps). (e) KHMDS, 

Tf2NPh, DMPU, THF, -78 oC; (f) CH2=CHSnn-Bu3, Pd(PPh3)4, LiCl, THF, reflux (85% 

yield for 2-steps); (g) thexylborane, THF, 0 oC, 30% H2O2, sat. NaHCO3 aq, rt; (h) 

TBSCl, imidazole, DMF, rt; (i) CSA, MeOH-CH2Cl2, 0 oC; (j) TEMPO, NaOCl, KBr, 

TBAC, NaCl, NaHCO3, CH2Cl2-H2O, 0 oC, (80% yield for 3-steps). (k) DPPA, Et3N, 

toluene, 80 oC, 4 N LiOH, THF, rt, 1 h, 85%; (l) Ac2O, pyridine, quant; (m) TBAF, 

AcOH, THF, 0 oC to rt, 83%; (n) SO3-pyridine, Et3N, CH2Cl2-DMSO, 0 oC; (o) 

Ph3P+CH3Br-, NaHMDS, THF, -78 oC to rt; (56% yield for 2-steps). 

 

 

Curtius rearrangement of pyran acid 3.32 generated the terminal amino group of the 

pyran ring and subsequent acetylation delivered the desired amide 3.33. Selective 

deprotection of the silylether, Parikh-Doering oxidation and Wittig reaction of the 

resulting aldehyde furnish the desired key ether ring fragment 3.26 (Scheme 3.5).  

Unsaturated aldehyde 3.34 was prepared from diol 3.27 in three steps was 

subjected to Corey-Fuchs type reaction to generate dibromoolefin 3.35. Desilylation with 
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TBAF and debromination afforded enynol 3.36. Subsequent methylalumination-

iodination of 3.36 proceeded by syn-addition to afford the iodide side chain fragment 

3.25 with the desired E,E geometry (Scheme 3.6).  

 

 

Scheme 3.6. Synthesis of Suzuki-Miyaura coupling fragment iodide 3.25. 

Reagents and conditions: (a) CBr4, PPh3, Et3N, CH2Cl2, -40 to 0 oC (b) TBAF, THF, 45 
oC;  

(c) n-BuLi, Et2O, -78 oC; H2O, rt (66% yield for 2-steps); (d) Me3Al, ZrCp2Cl2, CH2Cl2-

heptane, rt; I2, THF, -78 to 0 oC, 38%. 

 

Hydroboration of the terminal olefin in amino cyclic ether fragment 3.26 afforded 

the alkylborane, which was coupled with iodide side chain fragment 3.25 (Cs2CO3, cat. 

PdCl2(dppf), DMF, 45 oC) to give the cross-coupled product. TBAF deprotection of the 

crude product gave diol 3.37 in 40% yield for the two steps. Finally, selective allylic 

oxidation with MnO2 provided the first synthetic brevisamide 3.22 in 55% yield (Scheme 

3.7).  
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Scheme 3.7. Satake and Tachibana’s synthesis of brevisamide (3.22). 

Reagents and conditions: (a) 9-BBN, THF, rt; 3 M, Cs2CO3, PdCl2(dppf), DMF, 45 oC;  

(b) TBAF, THF, 0 oC (40% yield for 2-steps); (c) MnO2, CH2Cl2, rt 55%. 

 

Ghosh and Li reported the total synthesis of brevisamide based on the same 

coupling strategy reported by Satake and co-workers.43 The synthesis features a Suzuki-

Miyaura coupling of pyran 3.26 and iodide 3.38. The pyran ring 3.26 was accessed using 

Jacobsen’s asymmetric hetreo-Diels-Alder reaction and iodide 3.38 was constructed via 

Negishi’s zirconium-catalyzed carboalumination-iodination reaction (Scheme 3.8).   

 

 

Scheme 3.8. Ghosh and Jianfeng’s retrosynthesis of brevisamide (3.22).  

 

The synthesis of pyran ring 3.26 began from triethylsilyl diene 3.39, which was 

prepared in three steps (monoprotection, ozonolysis and brown crotylation) from 

aldehyde 3.40. Asymmetric hetero-Diels-Alder reaction of triethylsilyl diene 3.39 and 
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aldehyde 3.40 in the presence of 10 mol % Jacobsen’s catalyst 3.41, afforded the desired 

cycloadduct 3.42 in 52% yield (95% dr, 96% ee). Rubottom oxidation of 3.42 with m-

CPBA in the presence of aqueous NaHCO3 buffer gave alcohol 3.43 in 60% yield 

(Scheme 3.9).  

 

 

Scheme 3.9. Synthesis of alcohol 3.43. Reagents and conditions:  

(a) 3.40, 10 mol% Jacobsen’s catalyst, 52%; (b) m-CPBA, NaHCO3, 60%. 

 

Wolff-Kishner ketone reduction in a three step protocol afforded alcohol 3.44 

(76% yield for three steps). Silyl protection of the alcohol, followed by removal of the 

benzyl ether provided the alcohol 3.45 in 82% yield for the two steps. Azide formation 

via Mitsunobu reaction of alcohol 3.45, followed by reduction of the azide, acetylation of 

the resulting amine and selective desilylation of the primary TBS-ether gave acetamide 

3.46. Two step conversion of the primary alcohol gave key olefin fragment 3.26 (50% 

yield for two steps) (Scheme 3.10). 
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Scheme 3.10. Synthesis of Suzuki-Miyaura coupling fragment amino cyclic ether 3.26. 

Reagents and conditions: (a) TsNHNH2; (b) NaBH3CN; (c) NaOAc, EtOH, (73% yield 

for 3-steps); (d) TBSOTf, Et3N, 0 oC; (e) H2, Pd-C (f) PPh3, DIAD, NH3, 0 oC, 94%; (g) 

H2, Pd-C, Ac2O, NaHCO3; (h) PPTS, EtOH, (77% yield for 2-steps); (i) 2-NO2PhSeCN, 

n-Bu3P; (j) m-CPBA, Na2HPO4, i-Pr2NH (50% yield for 2-steps). 

 

 

Scheme 3.11. Synthesis of Suzuki-Miyaura coupling fragment iodide 3.25.  

Reagents and conditions: (a) trimethylsilylacetylene, Pd(PPh3)4, 20 mol% CuI, DIPEA 

96%; (b) K2CO3, MeOH, 82 %; (c) Me3Al, -78 to 0 oC, ZrCp2Cl2, 23 oC, then I2, 0 oC, 

39%. (d) TBSCl, imidazole, 87%. 

 

The iodide fragment 3.38 was accomplished starting from previously known E-

bromocrotyl alcohol 3.47. Enynol 3.36 was generated by reacting alcohol 3.47 with 

trimethylsilylacetylene (in the presence of diisopropylethylamine and a cat. Pd(PPh3)4 

and CuI) and desilylation with K2CO3. Similar to Satake’s approach, iodide fragment 

3.38 was achieved from Negishi’s zirconium-catalyzed carboalumination-iodination 

reaction of enynol 3.36 and silylation of the resulting alcohol (Scheme 3.11).  

Suzuki-Miyaura coupling of the two fragments, followed by desilylation gave 

alcohol 3.37, a two step protocol similar to that reported by Satake and co-workers. 
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Chemoselective oxidation with TEMPO of the allylic alcohol 3.37 gave brevisamide 

(3.22) (Scheme 3.12).   

 

 

Scheme 3.12. Ghosh and Jianfeng’s synthesis of brevisamide (3.22). 

Reagents and conditions: (a) 9-BBN, then aq. Cs2CO3, PdCl2(dppf)-CH2Cl2;  

(b) TBAF, THF, (40% yield 2-steps); (c) TEMPO, PhI(OAc)2, 87%. 

 

Another synthesis of brevisamide was reported by Lee and Panek.44 Their synthesis 

utilized a modified Negishi cross-coupling of fragments 3.48 and 3.49. The (E)-vinyl 

iodide of pyran ring 3.48 was installed through SN2-type propynl substitution and 

hydrozirconation-iodination (Scheme 3.13). 

 

O

OH

H

Me
Me

Me

O
H
N

O

Me

H
H

Negishi
coupling

TBDPSO

Me

I

O

OTBSMe

OTBS

+

3.48

3.49

I

Me
O

OHMe

OTBS

3.50
BnO

BnO

O

SiMe2Ph
CO2Me

OTMS

+

3.51 3.52

3.22

 

Scheme 3.13. Lee and Panek’s retrosynthesis of brevisamide (3.22).  

 

The synthesis began with the preparation of pyran ring 3.48 (Scheme 3.14). 

Utilizing Panek’s silicon-directed [4 + 2]-annulation reaction, (Z)-crotylsilane 3.51 was 
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reacted with aldehyde 3.52 in the presence of TMSOTf to give 5,6-cis-dihropyran 3.53  

in 70%  (10:1 dr). Isomerization of the olefin with DBU, reduction of the ester with LAH 

and silyl protection of the alcohol gave allylic silyl-ether 3.54. Hydroboration of the 

allylic silyl-ether 3.54 with BH3
.SMe2 gave the desired key tetrahydropyranol 3.50 in 

90% yield and high diastereoselectivity (>11:1 dr). Silyl-ether protection of the 

tetrahydropyranol and deprotection of the benzyl ether gave primary alcohol 3.55 in 

excellent yield. Triflation of the alcohol, followed by SN2 displacement with 1-

propynyllithium and hydrozirconation of the internal alkyne using Schwartz reagent, 

followed by trapping of the organozirconium intermediate with iodine furnished the 

coupling precursor (E)-iodoalkene 3.48 (E/Z =10:1) (Scheme 3.14).  
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Scheme 3.14. Synthesis of Negishi coupling fragment pyran ring 3.58. 

Reagents and conditions: (a) TMSOTf, CH2Cl2, PhH, -50 oC, 70% yield, 10:1 dr; (b) 

DBU, THF, rt, 86%; (c) LiAlH4, Et2O, 0 oC; (d) TBSCl, imidazole, DMF, rt, (84% yield 

for 2-steps); (e) BH3.SMe2, THF, 0 oC to rt, H2O2, 1 N NaOH, 90% yield, >11:1 dr; (f) 

TBSOTF, 2,6-lutidine, CH2Cl2, 0 oC, 98%; (g) Pd/C, H2, EtOAc, rt quant; (h) Tf2O, 2,6-

lutidine, CH2Cl2, -78 oC; (i) 1-propynylithium, THF, -78 oC to rt, (78% yield for 2-steps); 

(j) Cp2ZrHCl, THF, 50 oC, I2/THF, 0 oC, 88%. 
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Modified Negishi coupling of fragment 3.48 and 3.49 in the presence of 10 mol% 

Pd(PPh3)4 and selective desilylation afforded diene 3.56 in 58% for two steps. 

Completion of the synthesis was acheieved by subjecting diene 3.56 to Mitsunobu 

conditions (80% yield), azide reduction and acetylation of the resulting amine to afford 

amide 3.57 in 83% yield over three steps. Desilylation of 3.57 with TBAF and 

chemoselective oxidation of the allylic alcohol with MnO2 provided brevisamide (3.22) 

(Scheme 3.15). 

 

 

Scheme 3.15. Lee and Panek’s completion of the synthesis of brevisamide (3.22). 

Reagents and conditions: (a) t-BuLi, ZnCl2, THF, -78 oC to 0 oC, Pd(PPh3)4;  

(b) CSA, MeOH, CH2Cl2, (58% yield 2-steps); (c) DIAD, PPh3, DPPA, THF, 80%; (d) 

PPh3, NH4OH, dioxane/MeOH, rt; (e) Ac2O, DMAP, TEA, CH2Cl2, rt, (83% yield 2-

steps); (f) TBAF, THF, 83%; (g) MnO2, CH2Cl2, rt, 66%. 

 

Recently, Satake and co-workers reported an improved synthesis of brevisamide, 

in an aim to develop a more efficinet route to the ether ring fragment and improve the 

yield of their key step (Suzuki-Miyaura coupling reaction).45 In their current strategy, the 

Suzuki-Miyaura coupling pyran ring iodide fragment 3.58 was prepared from 3-
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benzyloxy-propan-1-ol 3.59, while bromodienol fragment 3.60 was prepared from 

methacrylate 3.61 (Scheme 3.16).   

 

 

Scheme 3.16. Satake and Tachibana’s new retrosynthesis of brevisamide (3.22).  

 

The synthesis of pyran ring 3.58 began from β-hydroxyaldehyde 3.62 which was 

preapred in four steps  from 3-benzyloxy-propan-1-ol 3.59. Horner-Wadsworth-Emmons 

(HWE) reaction of 3.62 with (PhO)2P(O)CH2CO2Me in the presence of excess NaH 

afforded α,β-unsaturated lactone 3.63 in 71% yield. Hydrogenation, triflation and 

palladium catalyzed carbonylation gave oxene carboxylate 3.64. DIBALH reduction and 

subsequent hydroboration gave diol 3.65 as single isomer. Bis-silylation of the diol with 

TBSCl, followed by benzyl deprotection and conversion of the primary alcohol gave the 

desired iodide fragment 3.58 (Scheme 3.17).  

Bromodienol fragment 3.60 was prepared from methyl methacrylate 3.61 

(Scheme 3.18). Bromination, dehydrobromination, hydrolysis, allylic oxidation, Grignard 

addition, MnO2 allylic oxidation and finally Horner-Wadsworth-Emmons (HWE) 

reaction gave the desired (E,E)-dienoate 3.65 in 31% from 3.61 without purification. 
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DIBALH reduction of the (E,E)-dienoate 3.65, followed by silyl protection of the 

resulting alcohol gave the bromodienol side chain fragment 3.60 in excellent yield.  

 

 

Scheme 3.17. Synthesis of Suzuki-Miyaura coupling fragment pyran ring 3.58. 

Reagents and conditions: (a) (PhO)2P(O)CH2CO2Me (1.2 equiv), NaH (1.5 equiv), THF, 

-78 to 0 oC, 71%.; (b) H2, Pd/C, EtOAc, rt, 98%; (c) PhNTf2, KHMDS, DMPU, THF, -78 

to 0 oC; (d) CO, Et3N, Pd(PPh3)4, DMF/MeOH, rt, 88% for two steps; (e)  DIBALH, 

CH2Cl2, -78 to 0 oC, 88%; (f) BH3.SMe2, THF, 0 oC; then 3 M NaOH aq, 30% H2O2 aq, 

45 oC, 86%;  (g) TBSCl, imidazole, DMF, rt, 95%; (h) LiDBB, THF, -78 oC, 82%;  (i) I2, 

PPh3, imidazole, toluene, 91%. 
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Scheme 3.18. Synthesis of Suzuki-Miyaura coupling fragment bromodienol 3.60. 

(a) Br2, CCl4, 0 oC to rt; (b) NaOH, THF/H2O, 0 oC to rt; (c) LiAlH4, ether, 0 oC to rt;  

(d) MnO2, ether, rt, (e) MeMgBr, ether, 0 oC; (f) MnO2, ether, rt; (g) 

(EtO)2P(O)CH2COOEt,  n-BuLi, THF, 0 oC to rt, 3.65 31%, for seven steps; (h) 

DIBALH, CH2Cl2, -78 oC, 98%; (i) TBDPSCl, imidazole, DMF, 0 oC to rt, 99%. 

 

Suzuki-Miyaura coupling of fragments 3.60 and 3.58 gave the desired cross-

coupled product 3.66 in 64% yield. Selective desilylation of 3.66, followed by treatment 

with I2 in the presence of PPh3 and imidazole gave the desired iodide 3.67. Conversion of 

iodide to azide, followed by reduction to amine, acetylation and desilylation gave dienol 

3.37 in 89% yield over four steps. Finally, oxidation of the allylic alcohol with TEMPO 

and PhI(OAc)2 gave brevisamide 3.22 in 88% yield (Scheme 3.19). Brevisamide (3.22) 

was screened against mouse lymhoid P388 cells. It showed only weak cytotoxity at 30 

µg/mL and no symptoms were noticed against the mice even at 3 mg/kg.  
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Scheme 3.19. Satake and Tachibana’s second synthesis of brevisamide (3.22). 

Reagents and conditions: (a) B-OMe-9-BBN, t-BuLi, Et2O/THF, -78 oC to rt, then 3 M, 

Cs2CO3, PdCl2(dppf), aq. DMF, 64%; (b) CSA, CH2Cl2/MeOH, 0 oC, 85% brsm; 

(c) I2, PPh3, imidazole, toluene, rt, 90%; (d) NaN3, DMF, rt; (e) PPh3, THF, rt; then 

H2O, 50 oC; (f) Ac2O, pyridine, rt; (g) TBAF, THF, 0 oC to rt, 89% for four steps;  

(h) TEMPO, PhI(OAc)2, CH2Cl2, rt, 88%. 

 

Due to the unique properties of marine polycyclic ether natural products and the 

crucial role of brevisamide (3.22) could play in understanding the process of initiation of 

ladder frame formations. We have embarked on the total synthesis of brevisamide (3.22). 

In addition, we plan to employ feeding experiments, where we intend to utilize isotopic 

labeled brevisamide as a precursor to better understand the formation or the biosynthesis 

of these complex toxin structures. We also envisioned that pharmacological screening 

could be performed on this congener as well as unnatural analogs that we plan to 

synthesize.  

Shortly, after we initiated our campaign towards the total synthesis of brevisamide 

(3.22), Satake and co-workers who reported the isolation disclosed the first total synthesis 

and structural confirmation, within months of the publication. Their synthesis proceeded 

in 28 total synthetic steps, with the linear sequence of 21 steps, for an overall yield of 
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0.23% from cis-but-2-ene diol. From our perspective a more concise approach and 

improved overall yield to brevisamide (3.22) is required.  

 

3.6. Retrosynthetic analysis 

The biosynthetic hypothesis proposed by by Satake and co-workers guided the 

retrosynthetic analysis of brevisamide (3.22).41 The approach involves an intramolecular 

SN2 cyclization of the hydroxyl group into the epoxide of alcohol 3.68 and Wittig-

Schlosser reaction to generate the E-geometry of C4-C5 of brevisamide 3.22 (Scheme 

3.20). The hydroxyl group could be installed via an Evans aldol reaction46 and the 

epoxide via Sharpless asymmetric epoxidation47 (Scheme 3.20).     
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Scheme 3.20.  Restrosynthetic analysis of brevisamide (3.22) based on proposed 

biosynthesis. 

The synthesis of 3.68 began with the monoprotection of diol 3.70, followed by 

Swern oxidation to give aldehyde 3.71. Evans aldol reaction46 of the aldehyde 3.71 and 

oxazolidinone 3.72 provided the desired syn-aldol adduct auxillary in 89% yield, which 
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was reductively removed with LiBH4 to give diol 3.72 in 93% yield. The diol was 

protected as the p-methoxybenzylidene acetal, and later reduced regioselectively with 

DIBALH to afford primary alcohol 3.73 in 91% yield for the two steps (Scheme 3.21).25 
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Scheme 3.21. Synthesis of alcohol 3.73. Reagents and conditions: (a) TBDPSCl, 

Imidazole, DMF, 0 oC, 3 h; (b) (COCl)2, Me2SO Et3N, CH2Cl2, -78 oC, (c) 92 %; 3.74, n-

Bu2BOTf, Et3N, 89%; (d) LiBH4, THF, 93%; CH2Cl2 -78 to 0 oC; (e) p-

MeOC6H4CH(OMe)2, PPTS, CH2Cl2, rt;  

(f) DIBALH, CH2Cl2 -78 to 0 oC 

 

At this juncture, we envisioned to install a silyl propargyl ether by displacement 

of a leaving group. To that end the C17 hydroxyl group was functionalized to different 

leaving groups (3.74-3.77) (Scheme 3.22). Our first approach towards the displacement 

of the leaving group utilizes carbo-alumination reaction. It was thought that the vinyl ate-

complex generated from alkyne 3.78 would cause the displacement to proceed smoothly. 

Unfortunately, all attempts for form the desired product 3.79 via carbo-alumination 

reaction were unsuccessful (Scheme 3.23).  
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Scheme 3.22. Synthesis of 3.74-3.77. Reagents and conditions: (a) MsCl, Pyridine, 96%; 

(b) TsCl, Pyridine, 92%; (c) NBS, CH2Cl2, 86%; (d) I2, PPh3, 83%. 
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Scheme 3.23. Synthesis of allylic alcohol 3.79 via carbo-alumination reaction. 

 

We then attempted to form 3.79 by simple displacement using lithiated alkyne 

3.78 and subsequent reduction of the alkyne 3.80. In all cases the desired product was not 

formed, only trace amounts of the eliminated side-product 3.81 or complex mixtures were 

observed (Scheme 3.24).  

 Since the displacement proved difficult, we decided to install the silyl propargyl 

ether via Negishi coupling.48 We relied on the single one-pot procedure of Negishi 

coupling involving transmetallation to ZnII species of lithiated 3.77 followed by Pd(0)-

mediated coupling of vinyl halide 3.82 to give 3.79. Subjecting 3.77 and 3.82 to Negishi 
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coupling conditions provide the desired product but in low yield (<10% yield) (Scheme 

3.25).  

 

 

Scheme 3.24. Synthesis of allylic alcohol 3.79 via SN2 displacement. 

 

 

Scheme 3.25. Synthesis of allylic alcohol 3.79 via Negishi coupling reaction. 

 

Due to the failed attempts to incorporate the silyl propargyl ether, a revised 

retrosynthetic plan was developed. Scheme 3.26 illustrates a revised retrosynthetic plan 

inspired by the synthesis of brevenal by Takamura and co-worker.49 We envisioned the 

western C1-C4 side chain would be installed through a Horner-Emmons-Wadsworth 

reaction50 utilizing 3.83, prepared from commercially available 3.84. Key pyran 3.85, the 
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C5-C15 fragment, was conceived to be derived from 3.86 through a SmI2-mediated 

reductive cyclization reaction.51 

 

 

Scheme 3.26. Revised retrosynthetic analysis of brevisamide (3.22)  

 

The synthesis of pyran 3.85 began with the Swern oxidation of monobenzyl 

protected-1,4-butane diol 3.87 to the corresponding aldehyde which was then subjected to 

a Brown crotylation reaction to afford 3.88 as a single diastereomer in 87% ee (Scheme 

3.27).52 Hydroboration and chemoselective TBS protection of the primary alcohol 

provided 3.89 in 89% yield for the two steps. 1,4-addition of alcohol 3.89 to ethyl 

propiolate 3.90 proved difficult, resulting in complex product mixtures and dienedioate 

3.91 under a number of reaction conditions.53 Ultimately, slow addition of ethyl 
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propiolate 3.90 via syringe pump over 24 h delivered the key intermediate 3.92 in 93% 

isolated yield (Scheme 3.27).54 
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Scheme 3.27. Synthesis of acrylate 3.92. 

 

Removal of the TBS group proved equally problematic. Upon exposure to TBAF, 

a 1:1 mixture of the desired 3.93 and an unanticipated 1,3-dioxepane 3.94 formed. While 

separable, this undesired side product was detrimental at this stage of the synthesis. After 

surveying a variety of reaction conditions, we found that addition of a few drops of 

concentrated HCl in MeOH at 0 °C smoothly delivered the alcohol 3.93 in quantitative 

yield. Swern oxidation proceeded uneventfully delivering the key template 3.86 for the 

reductive cyclization in 94% yield (Scheme 3.28).51  
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Scheme 3.28. Synthesis of tetra-substituted pyran 3.95. 

 

Exposure of the key hydroxy ester 3.86 to SmI2 provided the desired pyran 3.95 in 

73% yield. The relative stereochemistry of 3.95 was assigned by NMR and NOE analysis 

and in agreement with literature precedent (Scheme 3.29).51 
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Scheme 3.29.  NOE Analysis of Pyran 3.95. 

Once in hand, the secondary alcohol of 3.95 was protected and the ester 

hydrolyzed to produce acid 3.96 in 85% yield for the two steps. Curtius rearrangement 

with (PhO)2P(O)N3 (DPPA) provided the aminomethyl congener 3.97 in 81% yield 
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(Scheme 3.30).55 Finally, an acetylation, benzyl deprotection, and oxidation sequence 

afforded target pyran 3.85, the C5-C15 fragment, in 81% yield for the three steps (Scheme 

3.30).54  
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3.95 3.96

3.973.85 Py.SO3, Et3N
DMSO

Ac2O, pyridine

85 oC

(iii)

81%

81% for 3 steps  

Scheme 3.30. Synthesis of key Horner-Emmons-Wadsworth fragment pyran 3.85. 

 

Attention now focused on the synthesis of phosphonate ester 3.83.49 As shown in 

Scheme 3.31, a Wittig reaction56 with 3-hydroxybutan-2-one 3.84, and subsequent 

bromination, generated the secondary bromide 3.98 in 94% yield. Application of an 

Arbuzov reaction delivers the key phosphonate ester 3.83, the C1-C4 side chain, in 92% 

yield.49,57 
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Scheme 3.31. Synthesis of phosphonate ester 3.83. 

 

The Horner-Wadsworth-Emmons reaction50 between the C1-C4 fragment 3.83 and 

the C5-C15 fragment 3.85 proceeded well, installing the conjugated 3,4-dimethyl-2,4-

dienal moiety and delivering 3.99  in 78% yield (Scheme 3.32). DIBALH reduction of 

the ester to the corresponding allylic alcohol49 and TBAF-mediated deprotection of the 

secondary TBS ether delivered 3.100, the direct precursor to brevisamide 3.22, in 71% 

yield for the two steps. A final MnO2 oxidation of the allylic alcohol produced the natural 

product brevisamide 3.22 in 74% yield (Scheme 3.32). The synthetic 3.22 exhibited 

physical and spectroscopic data identical to that of the natural brevisamide and that of the 

previously prepared synthetic brevisamide 3.22.41,58 
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Scheme 3.32. Completion of the synthesis of brevisamide (3.22). 
 
 

3.7. Conclusion 

Thus, the second total synthesis of brevisamide (3.22) has been accomplished in 

21 synthetic steps, with 18 steps longest linear sequence, and an overall yield from 

monobenzyl protected-1,4-butane diol 3.87 of 5.2%. Noteworthy synthetic steps from this 

route include a SmI2 reductive cyclization to generate the highly functionalized pyran 

3.95 and a Horner-Wadsworth-Emmons reaction to assemble the western C1-C4 3.83 and 

eastern C5-C15 3.85 fragments.  

As discussed earlier, Satake, Ghosh and Panek have independently completed the 

synthesis of brevisamide (3.22). As shown below in Scheme 3.33 our route this route 

appears to be the most efficient, with fewer steps and highest overall yield (Scheme 

3.33). 
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 Scheme 3.33. Summary of the synthesis of brevisamide (3.22). 
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Experimental Methods 

 

General. All 1H & 13C NMR spectra were recorded on Bruker DPX-300 (300 MHz), 

Bruker AV-400 (400 MHz) or Bruker AV-NMR (600 MHz) instrument. Chemical shifts 

are reported in ppm relative to residual solvent peaks as an internal standard set to δ 7.26 

and δ 77.0 (CDCl3). Data are reported as follows: chemical shift, multiplicity (s = singlet, 

d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), integration, coupling 

constant (Hz). IR spectra were recorded as thin films and are reported in wave-numbers 

(cm-1). Low resolution mass spectra were obtained on an Agilent 1200 LCMS with 

electrospray ionization. High resolution mass spectra were recorded on a Waters Qtof-

API-US plus Acquity system. The value Δ is the error in the measurement (in ppm) given 

by the equation Δ = [(ME – MT)/ MT] × 106, where ME is the experimental mass and MT 

is the theoretical mass. The HRMS results were obtained with ES as the ion source and 

leucine enkephalin as the reference. Analytical thin layer chromatography was performed 

on 250 μM silica gel 60 F254 plates. Visualization was accomplished with UV light, 

and/or the use of ninhydrin, anisaldehyde and ceric ammonium molybdate solutions 

followed by charring on a hot-plate. Chromatography on silica gel was performed using 

Silica Gel 60 (230-400 mesh) from Sorbent Technologies. Analytical HPLC was 

performed on an Agilent 1200 analytical LCMS with UV detection at 214 nm and 254 

nm along with ELSD detection.  Chiral HPLC was performed on an Agilent 1200  Series 

HPLC utilizing a Chiracel OD, OJ or Chiralpak AD columns (4.6 mm x 25 cm) obtained 

from Daicel Chemical Industries, Ltd. Solvents for extraction, washing and 

chromatography were HPLC grade. All reagents were purchased from Aldrich Chemical 
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Co. and were used without purification. All polymer-supported reagents were purchased 

from Biotage, Inc. Flame-dried (under vacuum) glassware was used for all reactions. All 

reagents and solvents were commercial grade and purified prior to use when necessary. 

Mass spectra were obtained on a Micromass Q-Tof API-US mass spectrometer was used 

to acquire high-resolution mass spectrometry (HRMS) data. 

 

Experimental Section for Brevisamide 

 

 

4-(benzyloxy)butanal. 

Oxalyl chloride (14 mL, 161.3 mmol) was dissolved in 300 mL of CH2Cl2 at -78oC. 

DMSO (14.6 mL, 205 mmol) in 75 mL CH2Cl2 was added dropwise. The mixture was 

stirred for 20 minutes at -78oC.  4-benzyloxy-butan-1-ol 3.87 (13.2 g, 73.3 mmol) was 

added drop-wise. After stirring for 20 minutes, triethylamine (48.2 mL, 354.2 mmol) was 

added dropwise via syringe. The cooling bath was removed after 5 minutes, and the 

reaction was allowed to warm to room temperature. The reaction mixture was diluted 

with EtOAc and washed NH4Cl and then brine, the combine organic layer was dried over 

Na2SO4, filtered, and concentrated.  Purification through a short plug of silica gel 

(EtOAc/hexanes 1:4) yielded 11.7 g (90%) 4-(benzyloxy)-butanal 66 as a clear oil. 1H 

NMR (400.1 MHz, CDCl3) δ (ppm): 9.78 (d, J = 1.6 Hz, 1H) 7.36-7.26 (m, 5H), 4.49 (s, 

2H), 3.51 (t, J = 6.0 Hz, 2H), 2.55 (dt, J = 7.2, 1.6 Hz, 2H), 1.98-1.92 (m, 2H);  13C NMR 

(100.6 MHz, CDCl3) δ (ppm): 202.2, 138.2, 128.3, 127.5, 72.9, 69.1, 40.8, 22.5; HRMS 

(TOF, ES+) C11H14O2 [M+H]+ calc'd 179.1072, found 179.1072. 
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(3S,4S)-7-(benzyloxy)-3-methylhept-1-en-4-ol (3.88). 

To a solution of potassium tert-butoxide (4.3 g, 38.3 mmol) in THF (20 mL) was added 

Z-butene (5 mL, 100 mmol) via a cannula at -78oC. nBuLi (16 mL, 1.6 M in hexane, 25.6 

mmol) was added and the reaction was stirred at -78oC for 5 minutes and then stirred at -

45oC for 15 minutes. The reaction was then cooled back to -78oC and (+)-B-methoxydi-

isopinocampheylborane (12.5 g, 34.3 mmol) in Et2O (30 mL) via syringe pump. After 

stirring for 30 minutes, BF3･Et2O (6.25 mL, 49.3 mmol) was added, followed by a 

solution of aldehyde  (6.0 g, 33.7 mmol) in THF (18 mL) via syringe pump. The reaction 

mixture was allowed to stir at -78oC for 3 h before 3 M solution of NaOH (15 mL) and 15 

mL of 30% H2O2 were slowly added, and the mixture was allowed to stir overnight at 

room temperature.  

The mixture was then extracted Et2O (5 x 30 mL) and the combined organic extracts 

were washed with water and brine, dried over Na2SO4, and concentrated. Caranol was 

removed through distillation under full vacuum, and the residue was purified by flash 

chromatography (EtOAc/hexanes) to give homoallylic alcohol 3.88 as colorless oil (4.1 g, 

52%). The optical purity was assessed to be 87% ee by derivation to the corresponding 

MPTA ester. [α]D
20 -22.5 (c 0.2, CHCl3); Rf = 0.75 (4:1 hexanes/EtOAc); IR (neat) 3600-

3200 (brs), 3066, 3031, 2926, 2867, 1811, 1639, 1454, 1364, 1099, 997, 912, 736, 697 

cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 7.36-7.26 (m, 5H),  5.79 (m, 1H),  5.09-

5.04 (m, 2H), 4.52 (s, 2H),  3.51 (t, J = 5.9 Hz 2H), 3.48-3.46 (m, 1H), 2.31-2.23 (m, 
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1H), 2.15 (brs, 1H), 1.84-1.63 (m, 3H), 1.46-1.37 (m, 1H), 1.03 (d, J = 6.8 Hz, 3H);  13C 

NMR (100.6 MHz, CDCl3) δ (ppm): 141.1, 138.2, 128.3, 127.6, 127.6, 114.9, 74.5, 72.9, 

70.4, 43.6, 31.3, 26.5, 14.5; HRMS (TOF, ES+) C15H22O2 [M+H]+ calc'd 235.1698, 

found 235.1689.  

 

 

(3S,4S)-7-(benzyloxy)-1-(tert-butyldimethylsilyloxy)-3-methylheptan-4-ol (3.89). 

To a solution of 3.88 (4.0 g, 17.1 mmol) at 0oC was added 9-BBN (89 mL, 0.5 M in THF, 

44.5 mmol) slowly. The reaction was allowed to stir at rt overnight. The reaction was 

cooled in ice-bath and 3 M NaOH (24 mL) was added dropwise followed by 30% H2O2 

(24 mL) added dropwise. The mixture was stirred at 0oC for 1 h and overnight at room 

temperature. The reaction was diluted with water and extracted with EtOAc (5 x 30 mL) 

and the combined organic layer was washed with sat. NaHCO3, brine dried over Na2SO4 

and concentrated to give the crude diol. To a solution of the crude diol in CH2Cl2 (250 

mL) at 0oC was added imidazole (2.33 g, 34.2 mmol) and TBSCl (2.6 g, 17.0 mmol). 

After stirring at rt for 2 h, water was added. The organic was separated and the aqueous 

layer was extracted twice with CH2Cl2. The combined organic extracts were dried over 

Na2SO4, filtered and concentrated in vacuo. Purification by SiO2 chromatography (4:1 to 

1:1 EtOAc/hexanes) affords the alcohol 3.89 as colorless oil (5.57 g, 89%). [α]D
20 -8.4 (c 

0.2, CHCl3); Rf = 0.31 (4:1 EtOAc/hexanes); IR (neat) 3435, 2954, 2929, 2857, 1474, 

1454, 1255, 1096 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 7.34-7.26 (m, 5H), 4.51 

(s, 2H), 3.77-3.71 (m, 1H), 3.67-3.61 (m, 1H), 3.56-3.47 (m, 3H), 2.75 (brs, 1H), 1.87-
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1.78 (m, 1H), 1.76-1.64 (m, 3H), 1.59-1.43 (m, 3H), 0.89 (m, 12H), 0.06 (s, 6H); 13C 

NMR (100.6 MHz, CDCl3) δ (ppm): 128.3, 127.6, 127.5, 74.1, 72.8, 70.5, 61.4, 36.4, 

36.2, 30.9, 26.8, 25.8, 13.8, -5.5; HRMS (TOF, ES+) C21H38O3Si [M+H]+ calc'd 

367.2668, found 367.2668. 

 

 

(E)-ethyl-3-((3S,4S)-7-(benzyloxy)-1-(tert-butyldimethylsilyloxy)-3-methylheptan-4-

yloxy)acrylate (3.92). 

To a solution of secondary alcohol 3.89 (1.2 g, 3.28 mmol) in CH3CN (3.5 mL) was 

added N-methyl morpholine (72 µL, 0.656 mmol). To the stirred solution was added 

slowly ethyl propiolate via syringe pump over 24 h at room temperature. Concentration 

and flash chromatography on silica gel (Hex/EtOAc, 4:1) afforded β-alkoxyacrylate 3.92 

(1.41 g, 93%).  [α]D
20 -1.8 (c 0.2, CHCl3); Rf = 0.5 (4:1 hexanes/EtOAc); IR (neat) 3031, 

2929, 2862, 1707, 1648, 1487, 1375, 1132, 1095, 1072 cm-1; 1H NMR (400.1 MHz, 

CDCl3) δ (ppm): 7.49 (d, J = 12.4 Hz, 1H), 7.37-7.28 (m, 5H), 5.23 (d, J = 12.4 Hz, 1H), 

4.50 (s, 2H), 4.14 (q, J = 7.2 Hz, 2H), 3.82-3.80 (m, 1H), 3.69-3.57 (m, 2H), 3.48-3.43 

(m, 2H), 1.97-1.85 (m, 1H), 1.73-1.58 (m, 5H),  1.37-1.31 (m, 1H), 1.27 (t, J = 7.2 Hz, 

3H), 0.91 (d, J = 7.2 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 6H);  13C NMR (100.6 MHz, CDCl3) 

δ (ppm): 168.2, 163.3, 138.4, 128.3, 127.6, 127.5, 96.8, 88.2, 72.9, 69.8, 60.8, 59.5, 35.3, 

33.2, 27.9, 25.9, 25.8, 18.2, 14.3, 14.2, -5.3, -5.4; HRMS (TOF, ES+) C26H44O3Si 

[M+H]+ calc'd 465.3036, found 465.3037. 
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(E)-ethyl 3-((3S,4S)-7-(benzyloxy)-1-hydroxy-3-methylheptan-4-yloxy)acrylate 

(3.93). 

To a solution of β-alkoxyacrylate 3.92 (1.0 g, 2.15 mmol) in MeOH (10 mL) at 0oC was 

added conc. HCl (3 drops). After stirring for 1 h at 0oC, the reaction mixture was 

neutralized with Et3N (0.5 mL) and concentrated in vacuo. The solid was dissolved in 

EtOAc and washed with sat. NaHCO3 and brine. The organic layer was dried over 

Na2SO4 and concentrated. The crude product purified by SiO2 chromatography (1:1 

EtOAc/Hex) to give alcohol 3.93 as a colorless liquid (751 mg, 99.8%). [α]D
20 -5.5 (c 0.2, 

CHCl3); Rf = 0.39 (1:1 hexanes/EtOAc); IR (neat) 3449, 3030, 2929, 2862, 1707, 1450, 

1369, 1305, 1262, 1180, 1087, 739 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 7.49 (d, 

J = 12.4 Hz, 1H), 7.37-7.26 (m, 5H), 5.24 (d, J = 12.4 Hz, 1H), 4.49 (s, 2H), 4.15 (q, J = 

7.2 Hz, 2H), 3.86-3.82 (m, 1H), 3.74-3.62 (m, 2H), 3.51-3.45 (m, 2H), 1.95.1.88 (m, 1H), 

1.72-1.55 (m, 5H), 1.46-1.37 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H), 0.94 (d, J = 7.2 Hz, 3H); 

13C NMR (100.6 MHz, CDCl3) δ (ppm): 169.9, 138.5, 128.3, 127.6, 127.4, 98.6, 80.9, 

72.8, 70.1, 60.4, 60.3, 40.4, 36.4, 35.1, 30.1, 26.6, 14.1, 12.6; HRMS (TOF, ES+) 

C20H30O5 [M+Na]+ calc'd 373.1991, found 373.1992.  
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ethyl 2-((2R,4S,5S)-4-(3-(benzyloxy)propyl)-5-methyl-1,3-dioxepan-2-yl)acetate 

(3.94). 

[α]D
20 -1.0 (c 0.2, CHCl3); IR (neat) 3031, 2939, 1738, 1636, 1368, 1051 cm-1; 1H NMR 

(400.1 MHz, CDCl3) δ (ppm): 7.34-1.26 (m, 5H), 5.11 (t, J = 6.0 Hz, 1H), 4.49 (s, 2H),  

4.13 (q, J = 7.2 Hz, 2H), 3.91-3.85 (m, 1H), 3.7-3.59 (m, 2H), 3.53-3.42 (m, 2H), 2.65-

2.55 (m, 2H), 1.91-1.85 (m, 2H), 1.77-1.71 (m, 1H), 1.69-1.55 (m, 2H), 1.53-1.42 (m, 

2H), 1.26 (t, J = 7.2 Hz, 3H), 0.94 (d, J = 7.2 Hz, 3H);  13C NMR (100.6 MHz, CDCl3) δ 

(ppm): 169.9, 138.5, 128.3, 127.6, 127.4, 98.6, 80.9, 72.8, 70.1, 60.4, 60.3, 40.4, 36.4, 

35.1, 30.1, 26.6, 14.1, 12.6; HRMS (TOF, ES+) C20H30O5 [M+Na]+ calc'd 373.1991, 

found 373.1992.  

 

 

ethyl 2-((2R,3S,5S,6S)-6-(3-(benzyloxy)propyl)-3-hydroxy-5-methyltetrahydro-2H-

pyran-2-yl)acetate (3.95). 

Oxalyl chloride (0.27 mL, 3.15 mmol) was dissolved in 2 mL of CH2Cl2 at -78oC. DMSO 

(0.3 mL, 0.34 mmol) in 1 mL CH2Cl2 was added dropwise. The mixture was stirred for 

20 minutes at -78oC.  Alcohol 3.93 (500 mg, 1.43 mmol) was added drop-wise. After 

stirring for 20 minutes, triethylamine (0.96 mL, 6.91 mmol) was added dropwise via 

syringe. The cooling bath was removed after 5 minutes, and the reaction was allowed to 

warm to room temperature. The reaction mixture was diluted with EtOAc and washed 
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NH4Cl and then brine, the combine organic layer was dried over Na2SO4, filtered, and 

concentrated.  Purification through a short plug of silica gel (EtOAc/hexanes 1:1) yielded 

the desired aldehyde (467.7 mg, 94%).  

[α]D
20 -17.7 (c 0.2, CHCl3); 1H NMR (400.1 MHz, CDCl3) δ (ppm): 9.73 (s, 1H) 7.46 (d, 

J = 12.4 Hz, 1H), 7.35-7.26 (m, 5H), 5.25 (d, J = 12.4 Hz 1H), 4.49 (s, 2H), 4.15 (q, J = 

7.2 Hz, 2H), 3.89-3.85 (m, 1H), 3.53-3.43 (m, 2H),  2.57-2.51 (dd, J = 16.8, 5.2 Hz, 1H), 

2.44-2.39 (m, 1H), 2.35-2.29 (ddd, J = 16.4, 8.0, 1.6 Hz, 1H), 1.73-1.57 (m, 4H), 1.26 (t, 

J = 7.2 Hz, 3H), 0.97 (d, J = 7.2 Hz, 3H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 

201.6, 167.9, 162.5, 138.3, 128.3, 127.6, 127.5, 97.5, 86.7, 72.9, 69.5, 59.7, 46.6, 31.2, 

27.6, 25.9, 14.7, 14.3; HRMS (TOF, ES+) C20H28O5 [M+Na]+ calc'd 371.1834, found 

371.1831.  

To a solution aldehyde  (100 mg, 0.28 mmol) in dried THF 10 mL under argon was 

added anhydrous MeOH (0.13 mL), the mixture was cooled to 0oC and 0.1 M SmI2 in 

THF (8.3 mL, 8.4 mmol)  was added dropwise. After stirring for 30 minutes at 0oC, the 

reaction was quench with 1:1 mixture of sat. NaHCO3/Na2SO3. The mixture was 

concentrated, extracted with EtOAc and the combined organic layer was dried over 

Na2SO4. Flash chromatography on silica gel (Hex/EtOAc, 4:1) afforded pyran 3.95 (71.5 

mg, 73%). [α]D
20 -5.3 (c 0.2, CHCl3); Rf = 0.4 (1:1 hexanes/EtOAc); IR (neat) 3449, 

3030, 2929, 2862, 1738, 1636, 1369, 1305, 1262, 1180, 1087, 739 cm-1; 1H NMR (600.1 

MHz, CDCl3) δ (ppm): 7.35-7.31 (m, 4H), 7.29-7.26 (m, 1H), 4.49 (s, 2H), 4.15 (qd, J = 

7.2, 1.2 Hz, 2H), 3.57-3.51 (m, 1H), 3.50-3.43 (m, 3H), 3.42-3.39 (m, 1H),  2.81-2.78 

(dd, J = 15.0, 4.8 Hz, 1H), 2.51-2.48 (dd, J = 15.0, 7.8 Hz, 1H), 1.99-1.96 (dm, 1H), 

1.88-1.84 (m, 1H), 1.75-1.68 (m, 1H), 1.61-1.57 (m, 2H), 1.54-1.49 (m, 1H), 1.43-1.38 
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(m, 1H), 1.26 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 7.2 Hz, 3H); 13C NMR (100.6 MHz, 

CDCl3) δ (ppm): 172.1, 138.6, 128.3, 127.5, 127.4, 79.8, 79.6, 72.7, 70.1, 67.0, 40.8, 

46.6, 38.7, 32.9, 29.1, 26.4, 14.1, 12.6; HRMS (TOF, ES+) C20H30O5 [M+H]+ calc'd 

351.2171, found 351.2174. 

 

 

2-((2R,3S,5S,6S)-6-(3-(benzyloxy)propyl)-3-(tert-butyldimethylsilyloxy)-5-

methyltetrahydro-2H-pyran-2-yl)acetic acid (3.96). 

To a solution of pyran 3.95 (42.7 mg, 0.12 mmol) in DMF (1.5 mL) was added TBSCl 

(56.8 mg, 0.38 mmol) and imidazole (25.7 mg, 0.38 mmol). The reaction mixture was 

stirred at rt overnight, quench with H2O and extracted with EtOAc. The combined 

organic layer was dried over Na2SO4 and concentrated to give TBS-protected ester. To a 

solution of the crude ester in THF (1.5 mL) and H2O (1.5 mL) was added LiOH･H2O 

(11.8 mg, 0.49 mmol). After stirring overnight at 75 °C, an additional amount of 

LiOH･H2O (5.9 mg, 0.24 mmol) was added to the reaction mixture, and stirred overnight 

at the same temperature. The reaction mixture was cooled to 0oC, diluted with EtOAc and 

carefully neutralized with 0.5 N HCl. The organic layer was combined and washed with 

H2O and brine, dried over Na2SO4 and concentrated to give the crude carboxylic acid. 

Purification by SiO2 chromatography (10% EtOAc/Hex containing 0.5% AcOH) afforded 

carboxylic acid (3.96) as a colorless liquid (44.4 mg, 85% for 2 steps).   

[α]D
20 15.1 (c 0.2, CHCl3); Rf = 0.297 (10% EtOAc/Hex containing 0.5% AcOH); IR 

(neat) 2929, 2856, 2360, 1714, 1421, 1111 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 
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7.39-7.2 (m, 5H), 4.51 (s, 2H),  3.58-3.44 (m, 5H), 2.87-2.83 (dd, J = 16.0, 3.2 Hz, 1H), 

2.50-2.44 (dd, J = 16.0, 8.4 Hz, 1H), 1.88-1.87 (m, 2H), 1.74-1.44 (m, 4H), 1.36-1.32 (m, 

1H), 0.98 (d, J = 6.8 Hz, 3H); 0.89 (s, 9H), 0.08 (s, 6H);  13C NMR (100.6 MHz, CDCl3) 

δ (ppm): 173.2, 138.4, 128.3, 127.6, 127.4, 80.3, 79.3, 72.8, 69.9, 67.0, 40.7, 37.3, 32.6, 

29.1, 26.3, 25.6, 17.8, 12.6, -4.2, -4.8; HRMS (TOF, ES+) C24H40O5Si [M+H]+ calc'd 

437.2723, found 437.2716.  

 

 

((2R,3S,5S,6S)-6-(3-(benzyloxy)propyl)-3-(tert-butyldimethylsilyloxy)-5-

methyltetrahydro-2H-pyran-2-yl)methanamine (3.97). 

To a solution of carboxylic acid 3.96 (250 mg, 0.57 mmol) in toluene (5 mL) were added 

Et3N (0.25 mL, 1.79 mmol) and diphenyl phosphorazidate (DPPA) (0.25 mL, 1.16 mmol) 

and the mixture was stirred at rt for 30 min, then stirred at 80 °C for 4 h. The reaction 

mixture was concentrated and re-dissolved in THF (5 mL), 4N LiOH (2.8 mL) in H2O 

was added and stirred for 1 h at rt. The mixture was diluted with water, extracted EtOAc. 

The organic layer was dried over Na2SO4, concentrated and purified by chromatography 

on silica gel (10% MeOH/CH2Cl2, containing 0.5% of Et3N) to give amine 3.97 (188 mg, 

81%) as a colorless oil.  

[α]D
20 15.8 (c 0.2, CHCl3); Rf = 0.57 (10% MeOH/CH2Cl2); IR (neat) 3073, 2929, 2856, 

1598, 1473, 1102 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm) 7.35-7.28 (m, 5H), 4.50 

(s, 2H), 3.41-3.33 (m, 3H), 3.30-3.28 (m, 1H), 3.16-3.13 (m, 1H), 3.03 (dd, J = 12.6, 2.6 

Hz, 1H), 2.48 (m, 1H), 1.85-1.73 (m, 2H), 1.70-1.63 (m, 1H), 1.57-1.44 (m, 2H), 1.41-
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1.38 (m, 1H), 1.33-1.25 (m, 1H), 0.88 (d, J = 7.2 Hz, 3H), 0.85 (s, 9H), 0.03 (d, J = 4.4 

Hz, 6H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 138.4, 129.1, 128.3, 127.7, 127.5, 

120.4, 79.4, 72.8, 70.2, 66.1, 40.7, 32.4, 28.9, 26.2, 25.7, 25.6, 17.8, 12.6, -4.2, -4.8; 

HRMS (TOF, ES+) C23H41NO3Si [M+H]+ calc'd 408.2934, found 408.2935.  

 

O
H
N

OTBS

O
H H

O
 

N-(((2R,3S,5S,6S)-3-(tert-butyldimethylsilyloxy)-5-methyl-6-(3-

oxopropyl)tetrahydro-2H-pyran-2-yl)methyl)acetamide (3.85). 

To a solution of amine 3.97 (90.3 mg, 0.22 mmol) in pyridine (2 mL) was added 

(CH3CO)2O, the mixture was warmed to 85oC for 1 h. The reaction mixture was 

concentrated and purified by SiO2 chromatography (Hex/EtOAc, 4:1) to afford the 

desired amide (93.8 mg, 95%). [α]D
20 12.5 (c 0.2, CHCl3); Rf = 0.29 (Hex/EtOAc, 4:1); 

IR (neat) 3437, 3073, 2929, 2856, 1653, 1589, 1104, 836, 776 cm-1;  1H NMR (400.1 

MHz, CDCl3) δ (ppm) 7.36-7.26 (m, 5H), 5.82 (brs, 1H), 4.51 (s, 2H), 3.79-3.73 (m, 1H), 

3.56-3.44 (m, 3H), 3.42-3.39 (m, 1H), 3.14-3.06 (m, 2H), 1.95 (s, 3H), 1.88-1.82 (m, 

2H), 1.75-1.67 (m, 2H), 1.64-1.53 (m, 2H), 1.44-1.38 (m, 1H), 0.93 (d, J = 7.2 Hz, 3H) 

0.88 (s, 9H), 0.06 (d,  J = 9.2 Hz, 6H);  13C NMR (100.6 MHz, CDCl3) δ (ppm): 169.7, 

138.4, 128.3, 127.6, 127.5, 81.1, 79.5, 72.9, 70.1, 65.6, 41.4, 40.8, 32.5, 29.3, 26.5, 25.7, 

23.3, 17.8, 12.6, -4.2, -4.9; HRMS (TOF, ES+) C25H43NO4Si [M+H]+ calc'd 450.3040, 

found 450.3036.  

To a solution of the benzyl ether (93.8 mg, 0.21 mmol) in MeOH (4 mL) was added 

Pd(OH)2/C (95 mg) and the mixture was stirred under H2 atmosphere at room 
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temperature overnight. The catalyst was filtered off through a short silica gel column 

(EtOAc) and the filtrate was concentrated and purified on a short silica gel column to 

give the desired alcohol. [α]D
20 47.5 (c 0.2, CHCl3); IR (neat) 3437, 3345, 2927, 2856, 

1633, 1599, 1109 cm-1;  1H NMR (400.1 MHz, CDCl3) δ 5.82 (brs, 1H), 3.87-3.82 (dm, 

1H), 3.68-3.65 (m, 2H), 3.57-3.51 (m, 1H), 3.45-3.43 (m, 1H), 3.19-3.13 (m, 1H), 3.08-

3.02 (m, 1H), 1.98 (s, 3H), 1.90-1.83 (m, 2H), 1.71-1.50 (m, 4H), 1.48-1.42 (m, 1H), 0.93 

(d, J = 7.2 Hz, 3H) 0.88 (s, 9H), 0.06 (d,  J = 9.2 Hz, 6H);  13C NMR (100.6 MHz, 

CDCl3) δ (ppm): 169.8, 81.6, 80.1, 65.5, 62.4, 41.4, 40.8, 33.1, 29.8, 29.2, 25.7, 23.2, 

17.9, 12.7, -4.2, -4.9; HRMS (TOF, ES+) C18H37NO4Si [M+H]+ calc'd 360.2570, found 

360.2565. To a solution of alcohol (75.2 mg, 0.21 mmol) in CH2Cl2 (6 mL) and DMSO 

(2 mL) at 0 °C was added Et3N (0.15 mL, 1.05 mmol) and SO3･pyr. (133.7 mg, 0.84 

mmol), and stirred for 1 hour at 0 °C. The mixture was diluted with EtOAc, and washed 

with sat. NH4Cl, water and brine. Concentration gave the crude aldehyde 3.85 (63.6 mg, 

81% for 3 steps), which was used for the next reaction directly. 

 

 

(E)-ethyl 4-bromo-3-methylpent-2-enoate (3.98). 

A mixture of 3-hydroxy-2-butanone 3.84 (1 g, 11.3 mmol) and Ph3P=CHCO2Et (4.72 g, 

13.6 mmol) in toluene (15 mL) was refluxed overnight. The mixture was concentrated 

and purified by chromatography (hexane/EtOAc, 4:1 to 1:1) to give the desired ester (1.7 

g, 96%) as yellow oil. Rf = 0.37 (1:1 EtOAc/hexanes); 1H NMR (400.1 MHz, CDCl3) δ 

(ppm): 5.95 (d, J = 1.2 Hz, 1H), 4.26 (q, J = 6.4 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 2.12 
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(s, 3H), 1.31 (d, J = 6.4 Hz, 3H), 1.27 (t, J = 7.2 Hz,  3H); 13C NMR (100.6 MHz, CDCl3) 

δ (ppm): 166.9, 161.1, 113.9, 72.3, 59.7, 21.7, 14.8, 14.2; HRMS (TOF, ES+) C8H14O3 

[M+H]+ calc'd 159.1021, found 159.1021. To a stirred solution of the hydroxyl ester (1.7 

g, 10.8 mmol) obtained above, imidazole (1.03 g, 15.1 mmol) and PPh3 (4.23 g, 16.1 

mmol) in CH2Cl2 (100 mL) at 0 °C was added CBr4 (5.0 g, 15.1 mmol). After stirring for 

1 hour at room temperature, the reaction was quenched with sat. Na2SO3, diluted with 

Et2O, and washed with water and brine. 

Concentration and chromatography (hexane/EtOAc, 20:1 to 4:1) gave bromide 3.98 (2.2 

g, 90% for 2 steps): colorless oil; Rf = 0.58 (Hexane/EtOAc, 2:1); IR (neat) 2951, 1721, 

1655, 1101, 1077 cm-1; 1H NMR (400.1 MHz, CDCl3) δ (ppm): 5.91 (s, 1H), 4.65 (q, J = 

6.4 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 2.27 (d, J = 0.8 Hz, 3H), 1.80 (d, J = 6.8 Hz, 3H), 

1.27 (t, J = 7.2 Hz,  3H); 13C NMR (100.6 MHz, CDCl3) δ (ppm): 156.7, 116.7, 60.0, 

53.3, 23.7, 14.9, 14.2; HRMS (TOF, ES+) C8H14O2Br [M+H]+ calc'd 221.0177, found 

221.0177.  

 

 

(E)-ethyl 4-(diethoxyphosphoryl)-3-methylpent-2-enoate (3.83). 

Bromide 3.98 (597 mg, 2.71 mmol) was heated to 140oC in triethyl phosphite (0.4 mL, 

2.45 mmol) overnight. The mixture was cooled to room temperature and purified on 

silica gel chromatography ( 1:2 Hex/EtOAc) to give phosphate 3.83 (694 mg, 92%): 

colorless oil; Rf = 0.27 (Hexane/EtOAc, 1:2); IR (neat) 3470, 2990, 1655 cm-1; 1H NMR 

(400.1 MHz, CDCl3) δ (ppm): 5.81 (d, J = 4.8 Hz, 1H), 4.18-4.06 (m, 6H), 2.71 (dq, J = 
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24.0, 7.2  Hz, 1H), 2.27 (d, J = 2.8 Hz, 3H), 1.41-1.26 (m, 12H); 13C NMR (100.6 MHz, 

CDCl3) δ (ppm): 166.3, 155.5, 155.4, 118.8, 118.7, 62.3, 62.2, 62.2, 62.1, 59.7, 43.0, 

41.7, 18.2, 16.4, 16.3, 14.2, 13.7, 13.6; HRMS (TOF, ES+) C12H23O5P [M+H]+ calc'd 

279.1361, found 279.1361.  

 

 

(2E,4E)-ethyl-7-((2S,3S,5S,6R)-6-(acetamidomethyl)-5-(tert-butyldimethylsilyloxy)-

3-methyltetrahydro-2H-pyran-2-yl)-3,4-dimethylhepta-2,4-dienoate (3.99). 

To a solution of phosphate 3.83 (24.6 mg, 0.088 mmol) in THF (0.7 mL) cooled to -78oC 

was added nBuLi (50 µL, 0.0752 mmol) dropwise. The mixture was stirred at -78oC for 

10 minutes, warmed to 0oC and stir for 50 minutes. The mixture was re-cooled to -78oC 

and a precooled (-78oC) solution of aldehyde 3.85 (26.8 mg, 0.0752 mmol) in THF (0.5 

mL) was added dropwise. The mixture was then warmed to room temperature over 1 h 

and stir overnight.  The reaction mixture was quenched with sat. NH4Cl diluted with 

EtOAc and washed with H2O and brine. Organic layer was dried over Na2SO4, 

concentrated and purified by SiO2 chromatography (1:1 EtOAc/hexanes) to give ester 

3.99 (33 mg, 78%). [α]D
20 11.7 (c 1.30, CHCl3); Rf = 0.46 (1:1 EtOAc/hexanes); IR (neat) 

2929, 1721, 1619, 1599, 1089  cm-1; 1H NMR (400.1 MHz, CDCl3) 5.89 (t, J = 7.2 Hz, 

1H), 5.84 (s, 1H), 5.79 (brs, 1H), 4.16 (q, J = 7.2 Hz, 2H) 3.78-3.70 (m, 1H), 3.57-3.51 

(m, 1H), 3.40-3.37 (m, 1H), 3.18-3.07 (m, 2H), 2.31 (s, 3H), 2.26-2.21 (q, J = 7.2 Hz, 

2H), 2.04 (s, 3H), 1.89-1.84 (m, 2H), 1.81 (s, 3H), 1.66-1.58 (m, 2H), 1.43-1.35 (m, 1H), 

1.27 (t, J = 7.2 Hz, 3H) 0.94 (d, J = 7.2 Hz, 3H) 0.87 (s, 9H), 0.06 (d,  J = 8.8 Hz, 6H);  
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13C NMR (100.6 MHz, CDCl3) δ (ppm): 169.6, 167.4, 155.9, 136.6, 132.3, 114.7, 81.2, 

78.9, 65.6, 59.6, 41.4, 40.8, 32.6, 32.1, 25.7, 25.5, 23.2, 17.8, 15.3, 14.3, 13.9, 12.7, -4.2, 

-4.9; HRMS (TOF, ES+) C26H47NO5Si [M+Na]+ calc'd 504.3121, found 504.3123.  

 

 

N-(((2R,3S,5S,6S)-3-hydroxy-6-((3E,5E)-7-hydroxy-4,5-dimethylhepta-3,5-dienyl)-5-

methyltetrahydro-2H-pyran-2-yl)methyl)acetamide (3.100). 

To a solution of ester 3.99 (27 mg, 0.056 mmol) in CH2Cl2 (2 mL) at -78oC was added 

DIBAL-H (212.8 µL, 0.213 mmol, 1.0 M solution in hexane). After stirring for 15 min, 

the reaction was quenched with MeOH and diluted with Et2O. The mixture was filtered 

through a short silica gel column (Et2O and then EtOAc), and the filtrate was 

concentrated to give the crude allyl alcohol, which was used for the next reaction directly.  

To a solution of the crude allyl alcohol in THF at 0oC was added TBAF (0.06 mL, 0.056 

mmol, 1.0 M solution in THF). The reaction mixture was warmed to room temperature 

and stir for 1 h.  The mixture was quenched with NH4Cl, extracted with CHCl3, dried 

over Na2SO4 and concentrated.  Purification by SiO2 chromatography (5% 

MeOH/CHCl3) gave diol 3.100 (12.9 mg, 71% for 2 steps) as a light yellow oil. [α]D
20 -

8.0 (c 0.2, MeOH); Rf = 0.2 (5% MeOH/CHCl3); IR (neat) 3313, 2924, 2853, 2360, 1653, 

1559, 1537, 1457, 1375, 1106, 1020, 797, 668 cm-1; 1H NMR (400.1 MHz, CD3OD) δ 

(ppm): 5.65 (dd, J = 6.4, 6.0 Hz, 1H), 5.61 (dd, J = 7.2, 6.4 Hz, 1H), 4.22 (d, J = 6.4 Hz, 

2H), 3.58-3.53 (m, 1H), 3.45–3.32 (m, 3H), 3.07 (ddd, J = 9.6, 6.8, 2.8 Hz, 1H), 2.35–

2.16 (m, 2H), 1.97 (s, 3H), 1.94-1.89 (dm, 1H), 1.86–1.83 (m, 1H), 1.81 (s, 3H), 1.80 (s, 
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3H), 1.67–1.57 (m, 2H), 1.44–1.34 (m, 1H), 0.96 (d, J = 6.8 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ 172.1, 138.9, 136.1, 126.9, 124.1, 82.4, 79.6, 61.9, 69.9, 40.9, 38.3, 32.6, 

32.5, 29.6, 25.2, 22.9, 14.1, 12.6; HRMS (TOF, ES+) C18H31NO4 [M+Na]+ calc'd 

348.2151, found 348.2151.  

 

 

Brevisamide (3.22). 

To a solution of diol 3.100 (7.0 mg, 0.0215 mmol) in CH2Cl2 (1.5 mL) was added MnO4 

(141 mg, 1.615 mmol) and the mixture was stirred at room temperature for 1.5 h. After 

stirring for 1 hour, the mixture was filtered through a short silica gel column (EtOAc), 

and the filtrate was concentrated. Purification by SiO2 chromatography (5% 

MeOH/CHCl3) gave brevisamide 3.22 (5.1 mg, 74%) as colorless oil. [α]D
20 -7.7 (c 0.2, 

MeOH); Rf = 0.2 (5% MeOH/CHCl3);  IR (neat) 3330, 2924, 2853, 2360, 1653, 1550, 

1457, 1375, 1106, 1060, 795cm-1; 1H NMR (500.1 MHz, CD3OD) δ (ppm): 10.1 (d, J = 

8.0 Hz, 1H), 6.23 (dd, J = 7.5, 7.0 Hz, 1H), 6.04 (d, J = 8.0 Hz, 1H), 3.54 (dd, J = 14.0, 

3.0 Hz, 1H), 3.45–3.37 (m, 2H), 3.34 (dd, J = 14.0, 7.0 Hz, 1H), 3.08 (ddd, J = 9.5, 6.7, 

2.7 Hz, 1H), 2.38–2.36 (m, 1H), 2.34 (s, 3H), 1.96 (s, 3H), 1.92 (ddd, J = 2.5, 2.5, 12.5 

Hz, 1H), 1.87 (s. 3H), 1.87–1.81 (m, 1H), 1.69–1.54 (m, 2H), 1.48–1.38 (m, 1H), 0.97 (d, 

J = 7.2 Hz, 3H); 13C NMR (100 MHz, CD3OD) δ 194.3, 173.8, 160.9, 137.3, 136.8, 

126.2, 83.1, 80.3, 64.9, 42.5, 40.8, 34.2, 33.2, 26.9, 22.4, 14.5, 13.9, 13.0; HRMS (TOF, 

ES+) C18H29NO4 [M+H]+ calc'd 324.2175, found 324.2174. 
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Comparison of NMR data of natural and synthetic brevisamide 

entry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

10.10 (d, 7.9)
6.04 (d, 7.9)

6.23 (t, 7.1)
2.34 m
1.65 m
1.44 m
3.39 m
1.85 m
1.90 m
1.65 m
3.42 m

3.08 (ddd, 2.6, 7.0, 9.3)
3.53 (dd, 2.6, 14.0)
3.32 (dd, 7.1, 14.0)

1.95 s
2.33 s
1.86 s

0.95 (d, 6.9)

10.1 (d, 8.0)
6.04 (d, 8.0)

6.23 (dd, 7.0, 7.5)
2.35 m
1.64 m
1.43 m
3.40 m
1.84 m

1.92 (ddd, 2.5, 2.5, 12.5)
1.64 m
3.43 m

3.08 (ddd, 2.7, 6.7, 9.5)
3.54 (dd, 3.0, 14.0)
3.34 (dd, 7.0, 14.0)

1.96 s
2.34 s
1.87 s

0.97 (d, 7.2)

194.4
126.3
160.9
137.2
136.8
26.9
33.2

80.3
34.3
40.9

65.0
83.1
42.5

173.7
22.5
14.6
14.0
13.1

194.3
126.2
160.9
137.3
136.8
26.9
33.2

80.3
34.2
40.8

64.9
83.1
42.5

173.8
22.4
14.5
13.9
13.0

Natural

C (mult)
Natural

H (mult, J in Hz)
Synthetic

H (mult, J in Hz)
Synthetic

C (mult)
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CHAPTER IV 

   

A GENERAL APPROACH FOR THE CONSTRUCTION OF AZABICYCLIC 
RING-CONTAINING ALKALOIDS: PROGRESS TOWARDS THE TOTAL 

SYNTHESIS OF STEMAPHYLLINE AND GRANDISINES A, D & G. 
 

 

4. 1. Introduction 

Azabicyclic ring skeletons are common structural subunits present in numerous 

alkaloid natural products and serve as important scaffolds in biologically active and 

pharmaceutically significant compounds.1-4 Pyrrolizidine, indolizidine, pyrrolo[1,2-

a]azepine, and pyrrolo[1,2-a]azocine are common examples of the azabicyclic ring 

system (Figure 4.1). Due to the importance of azabicyclic skeletons, the synthesis of 

these ring systems constitutes an area of current interest among synthetic chemists.  

 

 

Figure 4.1.  Azabicylic ring systems. 

 

The purpose of our research in this area is to develop a general approach for the 

construction of azabicyclic ring systems and the application of the methodology towards 

the synthesis of indolizidine and stemona alkaloids. Therefore a brief introduction of 

Stemona and indolizidine alkaloids is warranted.  
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4.2. Stemona alkaloids 

The Stemona plants primarily grow in southern Asia, Malaysia and northern 

Australia in dry vegetation and have been used for centuries in traditional Japanese and 

Chinese folk medicine.2 Many of the secondary metabolites of stemona plants roots 

possess potentially significant biological activities. The water extract from these roots is 

used for both insecticidal and medicinal purposes, such as treatment of respiratory 

diseases (pulmonary tuberculosis, bronchitis) and as anthelmintics (anti-parasitic for both 

human and cattle use).2  

Stemona alkaloids represent a class of approximately 100 biogenetically 

intriguing and structurally unique natural products. They are isolated from plants of the 

Stemona genus (Stemonaceae family) and are well-known to contain chemically diverse 

alkaloids with a pyrrolo[1,2-a]azepine  (also 4-azazulene) nucleus. The Stemona 

alkaloids are divided into 8 major groups: stenine, stemoamide, tuberostemospirone, 

stemonamine, stemofoline, stemocurtisine, parvistemoline and miscellaneous groups 

(contains stemona alkaloids with cleaved pyrrolo[1,2-a]azepine nucleus) (Figure 4.2).3 

Examples of Stemona alkaloids (4.1-4.8) for each group are shown in Figure 4.2.  

Due to their structural and stereochemical challenges and interesting biological 

activities, the synthesis of Stemona alkaloids has attracted considerable interest from the 

synthetic community. 
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Figure 4.2.  Stemona alkaloid groups. 

 

 

Figure 4.3.  Examples of Stemona alkaloids. 
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4.3. Biosynthesis of Stemona alkaloids 

The biosynthetic origin of Stemona alkaloids is not well established. Seger and 

co-workers proposed that the formation of Stemona alkaloids is similar to that of the 

pyrrolizidinealkaloids, which utilize a homospermidine precursor. The proposal involves 

conversion of spermidine 4.9 to iminium 4.10, which then undergoes cyclization to give 

7,5-member-fused ring system of the pyrrolo[1,2-a] azepine system. Further oxidation of 

azepine 4.11, opening of the lactone ring 4.12 and several ring closures result in 

stemofoline 4.8 (Scheme 4.1).4 

 

O
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H
N

NH2
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N

O

4.10

N

O

O

O
N

O

O

O
OMe

O

-CO2

stemofoline
(4.8)

4.11

4.12  

Scheme 4.1.  Proposed biosynthesis of Stemona alkaloids. 

 

In 2009, Greger and co-workers isolated Pandanus alkaloid (pandanamine 4.13-

4.15 and pandamarilactonines A-D (4.16-4.19)) from Stichoneuron calcicola of the 

family stemonaceae. Thus, co-occurrence of pandanamines and croomine 4.20 in the 

family of stemonaceae represents a new biogentic origin argument of Stemona alkaloids. 

It was proposed that pandanamines, which originate from leucine and glutamate are a 

biogentic precursor to croomine 4.20, stichoneurine 4.21 and unnamed pyrroloazepine 

derivative 4.24 (Scheme 4.2).5 
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Scheme 4.2.  Possible biosynthetic pathway of pandanamines and structural relation to 

Stemona alkaloids. 

 

4.4 Synthetic approach to Stemona alkaloids 

4.4.1 Azepine formation by Staudinger-Aza-Wittig reaction 

Williams and co-workers in 1989 completed the first total synthesis of a stemona 

alkaloid. The total synthesis of (+)-croomine was accomplished in 24 steps from (2S)-3-

(hydroxymethyl) propionate 4.26. Their strategy utilizes azidoaldehyde 4.27 in a 

Staudinger-Aza-Wittig reaction to generate azepine ring 4.28. The pyrrolidino-

butyrolactone unit of croomine 4.20 was achieved in a single step which involves 
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iodoamination, followed by intramolecular cyclization to give aziridinium salt, and a 

second cyclization for the formation of the lactone ring (Scheme 4.3).6 

 

 

Scheme 4.3. Staundinger-Aza-Wittig approach for the synthesis of (+)-croomine (4.20). 

Similar to the approach used in the total synthesis of croomine (4.20), Williams 

and co

 

-workers also accomplished the total synthesis of (-)-stenospironine (4.31) and (-)-

stenomine (4.32) via a Staundinger-Aza-Wittig reaction and iodine-induced double 

cyclization process (Scheme 4.4).7 
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Scheme 4.4. Staundinger-Aza-Wittig approach for the synthesis of 4.31 and 4.32. 

 

4.4.2. Azepine formation by 7-exo-tet-cyclization 

Narasaka and co-workers reported a 12-linear step racemic synthesis of 

stemoamide; the key-step utilizes an oxidative coupling reaction of silylenol ether 4.36 

and acyliminium ion generated from stannyl 4.37 (Scheme 4.6).  
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Scheme 4.5. Azepine formation by 7-exo-tet-cyclization. 
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4.4.3

ide 

(4.39

O

. Azepine formation through intramolecular radical coupling 

-epi-stemoam

) v

Khim and co-workers constructed the azepine ring of 9,10-bis

ia a 7-exo-trig radical cyclization reaction of phenylthiolactam 4.40 (Scheme 

4.6).9 
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(ii)

4.40  

Scheme 4.6. Azepine formation through intramolecular radical coupling. 

4.4.4. Azepine formation by [4+2] cycloaddition 

 ring was accomplished through an 

intramo

 

Construction of stemoamide (4.2) azepine

leclar Diels-Alder/retro Diels-Alder protocol. Thermolysis of alkyne 4.41 

followed by reduction afforded stemoamide (4.2) in good yield (Scheme 4.7).10 

 

 

Scheme 4.7. Azepine formation by [4+2] cycloaddition. 
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4.4.5. Azepine formation by ring-closing metathesis (RCM) 

as been accomplished by 

several 

epi-

The formation of the azepine ring of (-)-stemoamide h

groups using the ring closing metathesis approach as shown in Scheme 4.8.11  

Peter Wipf recently reported the total synthesis of sessilifoliamide C and (-)-8-

stemoamide in 21-synthetic steps. The synthesis utilizes a [3,3]-sigmatropic 

rearrangement to install stereocenters at C9-C10 and a RCM to construct the azepine ring 

(Scheme 4.9).12 
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Scheme 4.8. Strategies using an RCM process. 
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Scheme 4.9. Wipf’s total synthesis of sessilifoliamide C and (-)-8-epi-stemoamide. 

 

4.4.6. Cyclic nitrone strategy 

Figueredo and co-workers reported a general approach to the azepine ring of 

stemona alkaloids. Their approach employ a 1,3-dipolar cycloaddition of cyclic nitrones, 

followed by N-O reductive cleavage and azepine closure (Scheme  4.10).13 
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Scheme 4.10. Formation of azabicyclo intermediates from chiral nitrones. 

 

4.4.7. Intramolecular Schmidt rearrangement 

In 2009, Renaud and co-workers utilized a previously developed intramolecular 

Schmidt rearrangement in the synthesis of the azepine ring. Subjecting alcohol 4.60 to 

NaH, triflic anhydride followed by DIBALH gave azepine 4.61 (77% yield, 95:5 dr).14 
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Scheme 4.11. Azepine via intramolecular Schmidt rearrangement. 

 

Other very important type of azabicyclic ring system is the indolizidine ring system. 

Discussed in the next section is a brief background on indolizidine containing alkaloids 

and synthetic approach towards them.   

 

4.5. Indolizidine alkaloids 

Indolizidine alkaloids are usually isolated from a myriad of sources including 

ants, frog, fungi and trees. Indolizidine alkaloids have shown interesting biological 

activities including insecticidal, antibacterial, antifungal, antiviral, antiinfective, 

antiparasitic, antimalaria and anticancer activities.15 

Indolizidine alkaloids are defined by 1-aza-bicyclo-[4.3.0]-octane core similar to 

the stemona alkaloids, different approaches have been utilized in the synthesis of 

indolizidine alkaloids. Shown in Figure 4.3 are some examples of indolizidine containing 

natural products. Outlined below are few approaches to the construction of indolizidine 

ring systems. 
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Figure 4.4.  Examples of indolizidine containing natural products. 

 

4.6. Synthetic approach for the construction of indolizidine ring systems  

In 2006, Rovis and co-workers reported a regioselective/enantioselective 

rhodium-catalyzed [2+2+2] cycloaddition of terminal alkyne 4.62 and akenylisocyanates 

4.63 to access indolizidine frameworks 4.64 and 4.65 in good to excellent yields and up 

to 98% ee (Scheme 4.12).16  

Micalizio and co-workers developed a diastereoselective synthesis of indolizidine 

frameworks through a chemoselective coupling of 2-hydroxymethyl-substituted allylic 

silanes 4.66 with amines 4.67 followed by acid induced cyclization (Scheme 4.13).17 

Similar to their approach towards Stemona alkaloids, Renaud and co-workers also 

reported the synthesis of indolizidine (-)-167B (4.69) via an intramolecular Schmidt 

rearrangement reaction of primary azido alcohols 4.70 (Scheme 4.14).14 
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Scheme 4.12. Rovis’s indolizidine ring system via rhodium-catalyzed [2+2+2] 

cycloaddition. 

 

 

Scheme 4.13. Diastereoselective synthesis of indolizidine ring system. 

 

 

Scheme 4.14. Indolizidine (-)-167B via intramolecular Schmidt rearrangement. 
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Recently, Yu and co-workers reported the total synthesis of (+)-steviamine 4.72 

via a cyclic nitrone strategy. The synthesis was achieved from readily available D-ribose- 

derived cyclic nitrone 4.73 (Scheme 4.15).18 

 

 

Scheme 4.15. Synthesis of (+)-steriamine 4.72 via a cyclic nitrone strategy. 

 

Several laboratories have utilized the ring closing metathesis in the construction 

of the indolizidine ring of different natural product alkaloids. An example is the total 

synthesis of (+)-leutiginose 4.76 reported by Pilli and co-workers (Scheme 4.16).  
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Scheme 4.16. Synthesis of (+)-leutiginose 4.76 via ring closing metathesis (RCM). 

 

n important example of indolizidine containing natural products is the grandisine 

alkaloids. Discussed in the next section is the isolation and synthetic approach to this 

unique natural product.   

 

A
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4.7. Isolation of grandisines A-G 

zidine alkaloids, isolated by Carroll and co-workers 

from th

 

Grandisines A-G are indoli

e leaves of the Australian rain forest tree Elaeocarpus grandis. These alkaloids 

display selective human δ-opioid receptor affinity. Selective activation of the δ-opioid 

receptor is an attractive strategy for the development of new analgesics, thus grandisines 

are potential potent analgesic agents.20 
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Figure 4.5.  Structures of grandisines. 

4.8. Total synthesis of grandisines B, D, and F 

the first total synthesis of grandisine 

alkaloid

 

Tamura and co-workers have reported 

s, grandisines B, D, and F (4.80, 4.83 and 4.82). Key steps in their syntheses 

involve the construction of the isoquinuclidinone moiety of grandisine B 4.80 by 

intramolecular imine formation, and the tetracyclic ring system of grandisine F 4.82 by 

stereoselective ring closure of the enolate of amine 4.82 generated by amination of 

grandisine D 4.83. Grandisine D (4.83) was achieved by a Brønsted acid mediated 
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Morita-Baylis-Hillman (MBH) ring-closure reaction and stereoselective aldol reaction 

with (S)-5-methylcyclohexenone (9) as key steps.21,22  

 

 

Scheme 4.17. Tamura’s restrosynthetic analysis for grandisines B, D, and F. 

 

amura’s synthesis of grandisine D began with the synthesis of aminal 4.89 from 

comme

T

rcially available (S)-malic acid in 6 steps. Subjecting aminal 4.89 to Morita-

Baylis-Hillman (MBH) ring-closure reaction in the presence of TfOH, Me2S in CH3CN 

gave the desired MBH product 4.90 in good yield and high stereoselectivity (trans:cis = 

96:4). Acetal protection of the conjugated aldehdye followed by deacetylation, 

deoxygenation and subsequent deprotection of the aldehyde gave key aldehyde 4.87. 

Aldol reaction of enone 4.88 with aldehyde 4.87 followed by Dess Martin oxidation gave 

α,β-unsaturated ketone of 4.91. Reduction of the lactam carbonyl group gave the first 
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total synthesis of grandisine D. The synthesis was accomplished in 26 synthetic steps, 

with 20 steps longest linear sequence (Scheme 4.18).21,22  
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Scheme 4.18. Total synthesis of grandisine D.  

Reagents and conditi aOEt, EtOH, 70%;  

ac ; 

According to previously proposed biosynthesis of grandisines B, the total 

synthes

ons: (a) HO(CH2)2OH, p-TsOH (cat.) 96%; (b) N

(c) ClCSOPh, DMAP, CH2Cl2 (d) Bu3SnH, AIBN, C6H6 (96% 2 steps); (e) p-TsOH, 
n ietone-H2O, 97%; (f) 4.88, Bu2BOTf, Pr2NEt, CH2Cl2, quant; (g) DMP, CH2Cl2, 88%

(h) PhSH HCIO4, MeOH, 93%; (i) Lawesson’s reagent; (j) Me3O+B-F4; (k) NaBH3CN, 

63% (2 steps) 

 

is was achieved from grandisine D (4.83) on treatment with ammonia. The 

synthesis involves an intermolecular 1,4-addition of ammonia and intramolecular imine 

formation to afford grandisine B (4.80).22  
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Scheme 4.19. Total synthesis of grandisine B.  

 

Grandisine F was synthesized by treatment of diketone 4.91 with ammonia 

solution to give tetracyclic amine 4.86 as a single isomer. Further 4-step to reduce the 

amide carbonyl group gave grandisine F (Scheme 4.20).22 

 

 
Scheme 4.20. Total synthesis of grandisine F. Reagents and conditions: (a) Boc2O, 

CH3CN, 99%; (b) Lawesson’s reagent, 99%; (c) Raney Ni, THF, 80% (d) TFA, CH2Cl2, 

 

4.9. Total synthesis of grandisine A 

Danishefsky and Maloney disclosed the total synthesis of grandisine A in 2007.  

The key step in their synthesis employed a stereo-controlled Lewis acid catalyzed diene-

aldehyde cyclocondensation (LACDAC) reaction (Scheme 4.22). In their previous effort, 

the LACDAC reaction of lactam 4.92 and acetaldehyde 4.93 yielded 4.94, in which 

cycloaddition of the acetaldehyde had occurred in an anti fashion to give the undesired 

stereochemistry at C9 (Scheme 4.23).23 An alternate approach was then developed, where 

a siloxyvinyl 4.95 would replace lactam 4.92 in the LACDAC reaction.  
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Scheme 4.21. Danishefsky’s restrosynthetic analysis for grandisine A. 

 

 

Scheme 4.22. LACDAC strategy to 9-epi-grandisine A. 

 

The synthesis of key cyclocondensation precursor 4.95 was accomplished from 

dihydropyridone 4.96 in 7 steps. Subjecting diene 4.95 and acetaldehyde 4.93 to 

BF3·OEt2 delivered the desired Diels-Alder product endo-bicyclic ring 4.96, which upon 

deprotection gave racemic 4.97 (Scheme 4.23).  

Chiral HPLC separation of rac-4.97 gave enantiopure (+)-4.97, which was 

subjected to aldol reaction with (R)-3-(triethylsilyloxy)butanal 4.98 to give 

hydroxyketone 4.99. 4-step transformation of 4.99 gave α,β-unsaturated ester 4.100, 

which was subjected to double bond reduction, cleavage of the Cbz group, lactamization 

and reduction of the lactam carbonyl group to give the first synthesis of grandisine A 

(4.79) (Scheme 4.24).24  
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Scheme 4.23. Synthesis of vinyl 4.97. 

 

 

Scheme 4.24. Total synthesis of grandisine A. Reagents and conditions: (a) LiHMDS, 

ZnCl2, THF, -78 oC, then 4.98, -78 oC to -50 oC, 3.5 h; (b) Dess–Martin periodinane, 

CH2Cl2; (c) TFA, CH2Cl2, 73% over 3 steps; (d) O3, MeOH, Sudan III (indicator), -78 oC, 

then Me2S, -78 oC to 25 oC; (e) methyl (triphenylphosphoranylidene)acetate, benzene, 60 
oC to 40 oC, 9.5 h, 80% over 2 steps; (f) 10% Pd/C, H2 (1 atm), MeOH; (g) PhMe, reflux, 

24 h, 98% over 2 steps; (h) Lawesson’s reagent, PhMe, 65 oC, 98%; (i) Raney nickel, 

THF, 25 oC, 94%. 
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4.10. Isolation of stemaphylline and stemaphylline-N-oxide  

phylline-N-oxide (4.102) 

(Figure

o al synthesis of 

stemap

Recently in 2009, stemaphylline (4.101) and stema

 4.5) were isolated from the root extracts of Stemona aphylla (Stemonaceae) that 

were collected at Mae Hong Son, Thailand, by Pitchaya and co-workers.25 The structures 

were elucidated by extensive NMR analysis.  Stemaphylline showed  moderate 

acetylcholinesterase (AChE) inhibitory activities, pronounced insecticidal  activity, and 

weak antimicrobial activity against Escherichia coli, Staphylococcus aureus, 

Pseudomonas auruginosa and Candida albicans (MIC 62.5-125 μg/mL).25 

To date, there have been no synthetic efforts directed toward the t t

hylline (4.101) and stemaphylline-N-oxide (4.102) (Figure 4.6).  

 

 

Figure 4.6.  Stemaphylline (4.101) and stemaphylline-N-oxide ( .102). 

 

.11. A general approach for the construction of azabicyclic ring systems and    

zidine containing natural 

produc

4

4

         progress towards the total synthesis of stemaphylline  

Due to the unique properties of azepine and indoli

ts, we have embarked on the development of a general and asymmetric synthesis 

for the construction of azabicyclic ring systems and its application towards the total 

synthesis of stemaphylline and grandisines. Relying on our previous work on the 

enantioslective synthesis of N-alkyl aziridines, we envisioned a Lewis acid mediated 
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aziridine ring opening/reductive amination protocol of aziridine 4.104 to access various 

ring size of the azabicylic skeleton (Scheme 4.25).  

 

 

Scheme 4.25. Azabicyclic ring skeleton via N-alkyl aziridines. 

 

Based on the proposed approach to azabicyclic ring systems, we then developed a 

retrosynthesis for stemaphylline (4.101). The retrosynthetic analysis is outlined in 

Scheme 4.26. The lactone and 7-membered azepine rings could be installed via RCM. 

The pyrrolindine ring 4.106 would be constructed by ring opening of aziridine 4.107 and 

subsequent reductive amination. 

 

 

Scheme 4.26. Retrosynthetic analysis of stemaphylline (4.101). 

To test the viability of the above strategy, aldehydes 110-112 were chosen, which 

are commercially available or prepared from corresponding alcohols. In the presence of 
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the

N

 organocatalyst 4.112, aldehyde (4.109-4.110) reacted with N-chlorosuccinimde 

(NCS) to give α-chlorination product, which was subsequently subjected to reductive 

amination with allyamine and finally treated with KOH to give the desired aziridines 

(4.113–4.115) (Scheme 4.27). With the aziridine in hand, Lewis acid mediated aziridine 

ring opening/reductive amination protocol was envisioned. Finally, functional group 

interconversion (in the case of 4.114 and 4.115) and RCM/hydrogenation should give the 

desired azabicyclic ring skeletons products 4.116-4.118 (Scheme 4.27). 
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Scheme 4.27. Synthesis of enantioenriched azabicyclic rings. 

 

With m ynthezise the 

quired aziridine 4.107 for the synthesis of stemaphylline (Scheme 4.26). The synthesis 

started 

odel aziridines (4.113-4.115) in hand, we then attempted to s

re

from carboxylic acid 4.119. Acylation of pseudoephedrine with the mixed 

anhydrides of carboxylic acid 4.119 derived from pivaloyl chloride followed by 
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asymmetric alkylation gave the desired alkylated product 4.120 in 96% yield (Scheme 

4.28).26  

 

 

Scheme 4.28. Synthesis of aldehyde 4.121. 

Semi-reduction of amide 4.120 with Brown's lithium triethoxyborohydride27 to 

aldehyd

repared from 

oxazoli

 

e 4.121 proved problematic on a large scale synthesis. However a 2 step protocol 

involving reduction with lithium amidotrihydroborate (LiH2NBH3, LAB) followed by 

oxidation proceeded to give aldehyde 4.121 in 96% yield (Scheme 4.28).   

Standard Wittig reaction of aldehyde 4.121 with ylide 4.122 (p

dinone 4.123, Scheme 4.29)28 gave the desired product 4.124 in low yield and 

about 1.5:1 mixture of E/Z-olefin. Alternatively the aldehyde 4.121 was subjected to 

Horner-Emmons-Wadsworth reaction29 with chiral imide 4.125 (prepared from 

oxazolidinone 4.123, Scheme 4.29)30 to give E-enone 4.124 in 97% yield.31 1,4-

Conjugate addition of 4.124 with allyl cuprate afforded desired product 4.126 in 95% 

yield (dr =10:1).32 At this point, reduction of oxazolidinone 4.124 with LiBH4 gave the 

desired primary alcohol in 98% yield. Swern oxidation of the alcohol gave the required 

aldehyde 4.127 in 92% yield. Application of the 3-steps one-pot protocol using (S,S)-

4.112 provides aziridine 4-epi-4.107 in 27% yield (3:1 dr) (Scheme 4.30).  

207 
 



Ph3P C C O
PhMe

reflux, 24 h

86%

4.123

O NH

O

Ph

4.122

O N

O

Ph

O
PPh3

(i)

O N

O

Ph

O
P
O

OEt
OEt

n‐BuLi, THF
‐78 oC, 87%
(ii) P(OEt)3

91%

O

Br
Br

4.125
 

Scheme 4.29. Synthesis of ylide 4.122 and chiral imide 4.125. 
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Scheme 4.30. Synthesis of aziridine 4-epi-4.107. 

 

Encouraged by the progress in the synthesis of the key aziridine precursor 9-epi-

4.107 towards the synthesis of stemaphylline (4.101), we moved to advance the model 

studies aziridines 4.113–4.115 to the azabicyclic frameworks 4.116-4.118 (Scheme 4.31). 

Regrettably, every attempt to open the aziridine rings 4.113–4.115 to amines 4.128-4.130 

led to complex mixtures under established conditions. Additionally, using various Lewis 
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acids catalyst failed to give the desired product (Scheme 4.31). Since the aziridine route 

proved to be problematic, it was decided to switch to an alternate route. 

 

 

Scheme 4.31. Failed aziridine ring opening. 

 

4.12. Approach to azabicyclic ring systems via chiral sulfinamides  

Our new route was inspired by Ellman’s synthesis of chiral 2-substituted 

pyrrolidines 4.133 that proceeds with high yields and diastereoselectivities (Scheme 

4.32).33 

 

 

Scheme 4.32. Synthesis of chiral 2-substituted pyrrolidines. 
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We envisioned a protocol involving asymmetric Grignard addition or Indium-

mediated allylation, N-alkylation, ring closing metathesis (RCM), and finally an 

intramolecular reductive amination or cyclization to afford enantiopure azabicyclic ring 

skeleton. Our new approach to azabicyclic rings is outlined in Scheme 4.33.  
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Scheme 4.33. Enantioenriched azabicyclic rings via chiral sulfinamides. 

 

To test the viability of the above strategy, azepine ring 4.134 and lactam 4.141 

were prepared in excellent enantiopurity starting from 4-propenal 4.137 and methyl 4-

oxobutanoate, respectively (Scheme 4.34). The N-Sulfinyl aldimines were prepared by 

condensation of the aldehydes in the presence of Ti(OEt)4.  

Addition of Grignard reagent 4.138 into N-sulfinyl aldimine 4.139 gave the 

desired sulfinamide in 88% yield and high diastereoselectivity (9:1 dr). The sulfinamide 

was isolated as a single diastereomer after silica-gel column chromatography. N-

alkylation with allyl bromide gave acetal 4.140 as single diastereomer. As previously 

noticed by Ellman, the addition of the acetal Grignard reagent 4.138 to N-sulfinyl 

aldimine 4.139 proceeds with the opposite sense of induction compared to that observed 
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for other Grignard reagents. Ellman suggested that the reversal in selectivity is likely due 

to the intramolecular chelation of the acetal of 4.138.33 RCM followed by acidic 

deprotection of the sulfinamide protecting group and acetal cleavage effected the 

cyclization, which upon reduction of the resulting iminium ion with triethyl silane gave 

the desired azepine ring 4.134 in 86% yield (Scheme 4.34).  

 

 

Scheme 4.34. Approach towards azabicyclic ring systems. 

 

Xu and co-workers reported the asymmetric synthesis of chiral homoallylic 

amines by In-mediated allylation of N-sulfinyl imines in saturated NaBr solution.34 

Applying the conditions, indium mediated allylation of chiral N-tert-butanesulfinylimine 

4.141 in saturated aqueous NaBr solution at room temperature gave the desired N-

sulfinyl-amino ester product in 88% yield as 10:1 diastereoslectivity (only the major 

diastereomer was isolated after column chromatography).34 N-sulfinyl cleavage with HCl 
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in MeOH, followed by refluxing in toluene resulted in the subsequent lactamization to 

give lactam 4.142 in 97% yield. Further N-alkylation and RCM will afford indolizidine 

ring 4.135 and azozine ring 4.136 (Scheme 4.34). 

 

4.13. Progress towards the total synthesis stempahylline via chiral sulfinamides 

With the model ring systems in place, we moved to apply the new methodology to 

the total synthesis of stemphylline 4.102 and grandisines alkaloids (4.79, 4.83 and 4.89). 

Outlined in Scheme 4.35 is our new retrosynthetic analysis of stemaphylline 4.101.  

 

 

Scheme 4.35. New retrosynthetic analysis of stemaphylline (4.101). 

 

In the new approach, the 5-membered ring of the azepine ring would be installed 

via asymmetric Grignard addition and acid mediated auxiliary 

deprotection/intramolecular reductive amination protocol (Scheme 4.35). Sulfinamide 

4.145 would be obtained from diene 4.146, while the C10 and C9 stereochemistry will be 

installed by asymmetric 1,4-conjugate addition and allylation of  commercially available 

chiral camphor sultam 4.147.  

Conjugate addition of allyl cuprate in the presence of lithium chloride and 

chlorotrimethylsilane provided 4.148 in 87% yield and high diastereoselectivity (97:3 dr). 
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Cross metathesis of 4.148 with bis-silyl diol 4.149 in the presence of Grubbs’ second 

generation catalyst gave exclusively the isomerised product 4.150 in 75% (Scheme 4.36).  

Recently, Grubbs and co-workers reported that using 10 mol% 1,4-benzoquinone 

as an additive prevents olefin isomerization of a number of allylic ethers and long-chain 

aliphatic alkenes during olefin metathesis reactions with ruthenium catalysts. Thus 

performing the reaction in the presence of 10 mol% 1,4-benzoquinone gave the desired 

cross metathesis product, which was subsequently subjected to stereoselective α-

allylation in the KHMDS and HMPA to give  diene 4.146   in 78% for 2 steps (Scheme 

4.36). The high diastereomeric purity of 4.146 (>95% dr) is most likely due to the 

cooperative contributions arising from the stereocenter at C10 and that of the auxillary.  

The sultam was reductively cleaved with LAH and oxidation of the resulting 

primary alcohol with Ley reagent furnished the desired aldehyde. N-Sulfinyl aldimine 

4.151 was prepared by condensation with (S)-tert-butanesulfinamide in the presence of 

Ti(OEt)4 (Scheme 4.36).   

 

 

Scheme 4.36. Synthesis of sultam 4.146. 
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Grignard addition into the N-sulfinyl aldimine 4.151 furnished the desired 

sulfinamide 4.145 in 4:1 diastereomeric ratio, which upon chromatography gave a single 

diastereomer of 4.145 in 75% yield (Scheme 4.37).  

The configuration at C4 of 4.145 is assigned according to literature precedent.33  

 

 

Scheme 4.37. Synthesis of sulfinamide 4.145. 

 

The final stages of the synthesis would involve generation of the key vinyl 

alcohol 4.152 through sharpless epoxidation of the resulting allylic alcohol after TBAF 

deprotection. We anticipate that Appel reaction on the resulting hydroxyl epoxide will 

provide the required bromide to initiate zinc-mediated ring opening of the epoxide. 

Exposure of the vinyl alcohol to methacryloyl chloride should provide the acylated 

product 4.153. 

Acid-mediated intramolecular reductive amination of the resulting sulfinamide 

should deliver the pyrrolidine ring. Subsequently, N-alkyaltion with allyl bromide will 

give pyrrolidine ring 4.106, which will set the stage for the double RCM reaction to 

generate the azepine and the lactone rings. Finally, we anticipate that global 
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hydrogenation of the double bonds will yield stemaphylline 4.101 with the desired C14 

stereochemistry (Scheme 4.38).  
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Scheme 4.38. Completion of the total synthesis of stemaphylline 4.101. 

 

4.14. Progress towards the Total Synthesis of Grandisines A, D, and G 

Our interest in the total synthesis of grandisines A, D and G (4.79, 4.83, and 4.85) 

was inspired by the successful progress achieved in the application of our new 

methodology towards the total synthesis of stemophylline (4.101).  

We envisioned a common intermediate tetrahydropyridine 4.154 in the 

construction of these indolizidine alkaloids. The retrosynthetic analysis of grandisines A, 

D, and G (4.79, 4.83, and 4.85) is summarized in Scheme 4.39.  
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Scheme 4.39. Retrosynthetic analysis of grandisine A, D and G. 

 

Similar to Danishefsky’s approach,24 grandisine A (4.79) would be obtained by an 

aldol reaction of (R)-3-(triethylsilyloxy)-butanal 4.98 with pyranone 4.155 prepared from 

ring opening of commercially available epoxide 4.156 by dithiane 4.157. We envisage 

that 4.157 can be prepared from tetrahydropyridine 4.154 (Scheme 4.40). Grandisine D 

(4.83) was seen to arise from aldol reaction of previously known enone 4.88 and α, β-

unsaturated aldehyde 4.158, readily prepared from common intermediate 4.154. Our 

retrosynthetic analysis of grandisine G (4.85) envisaged an intramolecular Michael 
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addition reaction of ketimine 4.159. Cross metathesis of olefin 4.160 and α, β- 

unsaturated ester 4.161, followed by ketimine formation will provide 4.159. 

Based on the developed methodology, the key tetrahydropyridine ring 4.154 

would be installed via asymmetric Grignard addition of acetal reagent 4.162 into N-

sulfinyl aldimine 4.163. The precursor to this key transformation, aldehyde 4.164 would 

be accessible by mono-protection and allylic oxidation of diol 4.165 (Scheme 4.40).  

 

 

Scheme 4.40. Approach to common intermediate for grandisines A, D and G. 

 

We propose to approach the synthesis of 4.154 or similar intermediate 4.158 via 

two similar substrates. The synthesis of 4.154 began from diol 4.165; mono-protection 

with TBSCl followed by MnO2 oxidation gave desired aldehyde 4.164 in 75% yield for 

2-steps. Condensation with (S)-tert-butanesulfinamide in the presence of Ti(OEt)4 gave 

the desired N-sulfinyl aldimine 4.163. Grignard addition reaction furnished the desired 

sulfinamide 4.166 in >8:1 diastereomeric ratio, which upon chromatography gave a 

single diastereomer in 65% yield (Scheme 4.41). 
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Scheme 4.41. Synthesis of sulfinamide 4.166. 

 

At this point, we decided to approach aldehyde 4.158 via a similar approach. 

Grignard addition into aldimine 4.167 generated from commercially available 

methacrolein, gave sulfinamide 4.168 in 78% yield (>8:1 dr) (Scheme 4.42).   
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Scheme 4.42. Synthesis of sulfinamide 4.168. 

 

Surprisingly, N-alkylation of these substrates proved to be problematic. A variety 

of base and leaving groups were utilized as shown in Scheme 4.43. Only triflate 4.169 

gave the desired N-alkylated products 4.173 and 4.174 in poor yields. It is noteworthy to 
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mention that N-alkylation with the bromides such as allyl bromide and 5-bromopentene 

proceed smoothly to give their corresponding N-alkylated products. We thought that the 

ease for 4.169-4.172 to eliminate to butadiene might be the reason for the low yield or 

lack of reactivity in the case of 4.173 or 4.174. Although, there is literature precedent for 

this type of N-alkylation using 4.169-4.172,35  unfortunately these conditions did not work 

in our hands. 

 

 
Scheme 4.43. N-alkylation of sulfinamide 4.168. 

 

 

Scheme 4.44. Failed route to 4.158. 
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RCM of 4.174 furnished the desired tetrahydropyridine ring 4.175 in 88% yield. 

Unfortunately, oxidation of the allylic methyl group to give key aldehyde 4.158 failed 

using established conditions (Scheme 4.45). Due to these unexpected results, we decided 

to construct the tetrahydropyridine ring 4.158 via an alternative route.  

The synthesis began from aldehyde 4.176, which undergoes condensation with 

(R)-tert-butanesulfinamide to give aldimine 4.177. Initial investigations focused on 

performing indium-mediated allylation of 4.177 using a variety of bromides (4.178-

4.182), and the results are summarized in Scheme 4.46. Utilizing bromo-ester 4.178 and 

4.179 gave the desired homoallylic sulfinamide 4.183 and 4.184 in 50-55% conversions. 

These results were promising as revealed by the bromo-esters. Using free alcohol 4.182 

led to lower conversion and diastereoselectivity, while no reaction occurred when PMB-

ether 4.181 was used. An increase of the reaction conversion to product and moderate 

diastereoselectivity was observed when TBS-ether 4.180 was used (>85% conversion, 

>4:1 dr) (Scheme 4.45).  

 

 

Scheme 4.45. Indium-mediated allylation aldimine 4.177. 
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The syn-configuration was assigned according to literature precedent and the six-

membered chair transition state model (Scheme 4.46).34 These reactions were all 

performed at 0.05 mmol scale of 4.177. Surprisingly, upon scaling up the synthesis (even 

at 0.25mmol scale of 4.177) only 20% conversion to the desired product was observed. 

After surveying a variety of reaction conditions, we found that pre-mixing by stirring and 

sonication of the indium metal and bromide before adding the aldimine was crucial to 

deliver homoallylic sulfinamide 4.185.  

N-alkylation proceeded uneventfully delivering key diene 4.188 for RCM 

reaction. Exposure to second generation Grubbs catalyst provided the desired 

tetrahydropyridine ring 4.189. Once in hand, the TBS-ether was deprotected, oxidized 

and the double bond was isomerized with DBU to produce the desired α, β-unsaturated 

aldehyde 4.158 in 55% yield over 3-steps (Scheme 4.46). 
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Scheme 4.46. Synthesis of α, β-unsaturated aldehyde 4.158. 

 

221 
 



Aldol reaction of previously known enone 4.88 and aldehyde 4.158 followed by 

Ley oxidation furnished α, β-unsaturated ketone 4.190, the direct precursor to grandisine 

D (4.83). At this point, we are hopeful that subjecting 4.190 to acid would mediate N-

sulfinyl and acetal deprotection and intramolecular reductive amination after reduction of 

the resulting iminiun ion to provide grandisine D 4.83 (Scheme 4.47). 
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Scheme 4.47. Completion of synthesis of grandisine D 4.83. 

 

Grandisine A (4.79) will be accomplished as follows (Scheme 4.48). Protection of 

the aldehyde 4.158 as 1,3-dithiane, lithiation of 4.157 followed by epoxide ring opening, 

deprotection of the dithiane group of the resulting alcohol and 1,4-conjugate addition of 

the resulting ketone will give rise to tetrahydro-cis-fused pyranone 4.155. Aldol reaction 

of pyranone 4.155 and aldehyde 4.98 should proceed smoothly. The resulting β-hydroxy 

ketone 4.191 will be oxidized and subsequent acid-mediated global deprotection and 

double cyclization would provide grandisine A (4.79) after reduction of the resulting 

iminium ion.  
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Scheme 4.48. Synthesis of grandisine A 4.79. 

 

Grandisine G (4.85) would be achieved as follows (Scheme 4.49). Starting from 

dithiane 4.157, we envisioned SN2 displacement of olefin 4.192, followed by 

deprotection of the dithiane. Cross metathesis of the resulting α,β-unsaturated ketone 

4.160 will furnish α,β-unsaturated ester 4.159. We anticipate that ketimine formation will 

occur, which should rapidly undergo intramolecular Michael addition into the α,β-

unsaturated ester to provide grandisine G (4.85). We anticipate an intramolecular Michael 

addition reaction to occur from the desired face to give the correct configuration due to 

the stereochemistry of the methyl substituent (Scheme 4.49). 
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Scheme 4.49. Synthesis of grandisine G 4.85. 

 

4.15. Conclusion 

In conclusion, two independent approaches towards the construction of the 

azabicyclic ring system were studied. The aziridine ring opening proved problematic but 

current studies are underway to effect this transformation which is precedent in the 

literature.  

We have developed a powerful extension of Ellman asymmetric synthesis of 

pyrrolidine rings for the general construction of azabicyclic ring systems in good yields 

and diastereoselectivity. Moreover, the new methodology allows the asymmetric 

synthesis of key intermediates towards the total synthesis of stemaphylline, grandisine A, 

D and G. Overall, these novel strategies for the synthesis of azabicyclic ring systems 

found in numerous alkaloids and drug molecules from readily available precursors, 

represent a significant improvement in the art to access these therapeutically relevant 

alkaloid scaffolds. 

224 
 



References 

 

1. (a) Fattorusso, E.; Taglialatela-Scafati, O. Modern Alkaloids: Structure, Isolation, 

Synthesis and Biology; Wiley-VCH: Weinheim, 2007. (b) Michael, J. P. Nat. Prod. Rep. 

2005, 22, 603-626. (c) Mitchinson, A.; Nadin, A. J. Chem. Soc. Perkin Trans. 1 2000, 

2862-2892. (d) Ohagan, D. Nat. Prod. Rep. 1997, 14, 637-651. 

2. (a) M. Götz and G. M. Strunz, ‘Tuberostemonine and Related Compounds: The 

Chemistry of Stemona Alkaloids’, in Alkaloids, vol. 9, ed. G. Wiesner, MTP,   

International Review of Sciences Organic Chemistry, Series One, Butterworths, London, 

1975, pp. 143–160. (b) Sakata, K.; Oki, K. A.; Chang, C.-F.; Sakurai, A.; Tamura, S.; 

Murakoshi, S. Agric. Biol. Chem., 1978, 42, 457. (c) Ye, Y.; Qin, G.W.; Xu, R. S. 

Phytochemistry, 1994, 37, 1205. (d) Shinozaki, H.; Ishida, M.; Brain Res., 1985, 334, 33. 

(e) Pilli, R.A.;. Rosso, G.B.; De Oliveira, M.D.C.F. Nat. Prod. Rep. 2000, 17, 117-127. 

3. Pilli, R.A.;. Rosso, G.B.; De Oliveira, M.D.C.F. Nat. Prod. Rep. 2010, 27, 1908-1937. 

4. Seger, C.; Mereiter, K.; Kaltenegger, E.; Pacher, T.; Greger, H.; Hofer,  

O. Chem. Biodiversity 2004, 1, 265-279 

5. Gregor, H.; Schinnerl, J.; Vajrodaya, S.; Brecker, L.; Hofer, O. J. Nat. Prod. 2009, 72, 

1708-1711. 

6. Williams, D. R.; Brown, D. L.; Benbow, J. W. J. Am. Chem. Soc. 1989, 111, 1923-1925. 

7. (a) Williams, D. R.; Fromhold, M. G.; Earley, J. D. Org. Lett. 2001, 3, 2721-2724. (b) 

Williams, D. R.; Shamim, K.; Reddy, J. P.; Amato, G. S.; Shaw, S. M.;  

Org. Lett. 2003, 5, 3361-3364. 

8. Kohno, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 1996, 69, 2063-2070. 

225 
 



9. Khim, S. K.; Schultz, A. G. J. Org. Chem. 2004, 69, 7734-7736. 

10. (a) Jacobi, P. A.; Lee, K. J. Am. Chem. Soc. 1997, 119, 3409-3410. (b) Jacobi, P. A.; Lee, 

K. J. Am. Chem. Soc. 2000, 122, 4295-4303. 

11. (a) Alibés, R.; Figueredo, M. Eur. J. Org. Chem. 2009, 2421-2435. (b) Torssell, S.; 

Wanngren, E.; Somfai, P. J. Org. Chem. 2007, 72, 4246-4249. (c) Sibi, M. P.; 

Subramanian, T. Synlett 2004, 1211-1214. (d) Olivo, H. F.; Tovar-Miranda, R.; Barragán, 

E. J. Org. Chem. 2006, 71, 3287-3290. 

12. Hoye, A. T.; Wipf, P. Org. Lett. 2011, 13, 2634-2637. 

13. (a) Cid, P.; Closa, M.; de March, P.; Figueredo, M.; Font, J.; Sanfeliu, E.; Soria, A. Eur. 

J. Org. Chem. 2004, 4215-4233; (b) Alibés, R.; Blanco, P.; Casas, E.; Closa, M.; de 

March, P.; Figueredo, M.; Font, J.; Sanfeliu, E.; Álvarez-Larena, A.  J. Org. Chem. 2005, 

70, 3157-3167. 

14. Kapat, A.; Nyfeler, E.; Giuffredi, G. T.; Renaud, J. Am. Chem. Soc. 2009, 131, 17746-

17747. 

15. (a) Michael, J. Nat. Prod. Rep., 2007, 24, 191-222. (b) Michael, J. Nat. Prod. Rep. 2008, 

25, 139-165. 

16. Yu, R. T.; Rovis, T. J. Am. Chem. Soc., 2006, 128, 12370-12371. 

17. Yang, D.; Micalizio, G. C. J. Am. Chem. Soc., 2009, 131, 17548-17549. 

18. Hu, X. G.; Bartholomew, B.; Nash, R. J.; Wilson, F. X.; Fleet, G. W. J.; Nakagawa, S.; 

Kato, A.; Jia, Y. M.; Well, R.; Yu, C. Org. Lett. 2010, 12, 2562-2565. 

19. Klitzke, C. F.; Pilli, R. A. Tetrahedron Lett. 2001, 42, 5605-5608. 

226 
 



20. (a) Carroll, A. R.; Arumugan, G.; Quinn, R. J.; Redburn, J.; Guymer, G.; Grimshaw, P.  

J. Org. Chem. 2005, 70, 1889–1892. (b) Katavic, P. L.; Venables, D. A.; Forster, P. I.; 

Guymer, G.; Carroll, A. R. J. Nat. Prod. 2006, 69, 1295–1299. 

21. Kurasaki, H.; Okamoto, I.; Morita, N.; Tamura, O. Chem. Eur. J. 2009, 15, 12754-12763. 

22. Kurasaki, H.; Okamoto, I.; Morita, N.; Tamura, O. Org Lett. 2009, 11, 1179-1181. 

23. Maloney, S. J. Danishefsky, Heterocycles 2007, 72, 167. 

24. Maloney, D. J.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46, 7789-7792. 

25. Pitchaya, M.; Sukanda, C.; Thanapat, S.; Araya, J.; Chaiwat, J.;  Stephen G. Pyne.; 

Alison T. Ung.;  John, K.; Wilford, L.; J. Nat. Prod. 2009, 72, 848–851. 

26. Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. 

Am. Chem. Soc. 1997, 119, 6496-6511. 

27. Brown, H. C.; Tsukamoto, A. J. Am. Chem. Soc. 1964, 86, 1089. 

28. Boeckman, R. K.; Song, X.; Pero, J.E.; J. Org. Chem.  2006, 71 (23), 8969-8972 

29. (a) Leopold Horner, Hoffmann, H. M. R.; Wippel, H. G. Ber. 1958, 91, 61-63.  

(b) Horner, L.; Hoffmann, H. M. R.; Wippel, H. G.; Klahre, G. Ber. 1959, 92, 2499-2505. 

(c) Wadsworth, W. S., Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733. (d) 

Wadsworth, W. S., Jr.; Emmons, W. D. Organic Syntheses, Coll. Vol. 5, p.547 (1973); 

Vol. 45, p.44 (1965). 

30. Dias, L. C.; Melgar, G. Z.; Jardim, L. S. A. Tetrahedron Lett., 2005, 46(26), 4427-4431. 

31. Morita, M.; Ishiyama, S.; Koshino, H.; Nakata, T. Org. Lett. 2008, 10, 1675. 

32. Nicolas, E.; Russell, K. C.; Hruby, V. J. J. Org. Chem. 1993, 58, 766. 

33. Brinner, K.M.; Ellman, J.A.; Org. Biomol. Chem. 2005, 3, 2109-2113. 

227 
 



228 
 

34. (a) Sun, X. W.; Liu, M.; Xu, M. H.; Lin, G. Q. Org. Lett. 2008, 10, 1259-1262. (b) Liu, 

M.; Shen, A.; Sun, X. W.; Deng, F.; Xu, M. H.; Lin, G. Q. Chem. Commun., 2010, 46, 

8460-8462. (c) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 

3600-3740. 

35. Yao, Q.; Zhang, Y. J. Am. Chem. Soc. 2004, 126, 74-75 



Appendix A1: 

 

 

Spectra Relevant to Chapter I. 



































nOe correlations observed for 1.35 to confirm relative stereochemistry





nOe correlations observed for 1.36 to confirm relative stereochemistry
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Spectra Relevant to Chapter II. 
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Spectra Relevant to Chapter III. 
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