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1 CHAPTER I 

INTRODUCTION 

This study investigates conditions that enable teachers to teach mathematics for 

understanding.  It is not well understood how pedagogical or mathematical knowledge developed 

in university courses exhibits itself in pre-service teachers’ (PSTs’) classroom practices.  

My aim is to understand the intricacies of this “transfer” from a university setting to 

school-based teaching practices.  In doing this, I focus first on PSTs’ understandings of 

mathematics as the primary resource upon which they draw while teaching.  The importance of 

teachers’ knowledge of content has been acknowledged by a variety of scholars (Ball, 1993; Ball 

& McDiarmid, 1989; Bransford, Brown, & Cocking, 2000; Grossman, 1990; Grossman, Wilson, 

& Shulman, 1989; Ma, 1999; Schifter, 1990, 1995; Shulman, 1986). However, it is axiomatic 

that a teacher’s knowledge of mathematics alone is insufficient to support his or her attempts to 

teach for understanding. In that vein, Shulman (1986) coined the phrase pedagogical content 

knowledge [PCK], or specific content knowledge as applied to teaching, to address what at that 

time had become increasingly evident – that content knowledge itself is not sufficient for 

teachers to be successful. Ma (1999) and Stigler and Hiebert (Stigler & Hiebert, 1999) further 

refined the idea of PCK by arguing that teachers need a profound understanding of mathematics 

– knowledge having the characteristics of breadth, depth, and thoroughness: “Breadth of 

understanding is the capacity to connect a topic with topics of similar or less conceptual power.  

Depth of understanding is the capacity to connect a topic with those of greater conceptual power.  

Thoroughness is the capacity to connect all topics” (p. 124). 
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My first research question builds from Ma’s construct of profound understanding of 

mathematics:  

Research Question 1: 

What understandings of function will a group of PSTs have after participating in 

instruction that employs simultaneous covariation of quantities as a pathway to their 

development of profound understandings of function?  

My previous work with student teachers (Silverman, 2004a) led me to believe that PST’s 

naïve conceptions of “profound” understandings of mathematics are inconsistent with teaching 

mathematics for understanding. Since teachers’ understandings of mathematics enable or 

constrain their ability to orchestrate mathematical discussions that provide students with 

opportunities to make sense of advanced mathematical ideas, it is important for teacher educators 

to understand both the understandings with which PSTs enter our programs and ways in which 

those understandings can be productively influenced. By teachers’ understandings of 

mathematics I mean “the loose ensembles of actions, operations, and ways of thinking that come 

to mind unawarely – of what they wish their students to learn, and the language in which they 

have captured those images” (Thompson & Thompson, 1996, p. 16).  It is against the 

background of the images that teachers hold with regard to their own understandings and of the 

understandings they hope students will have that they select tasks, pose questions, and make 

other pedagogical decisions.  

Thus, in this study, I am extending Ma’s (1999) notion of profound mathematical 

understanding in two key ways.  First, I argue that teachers must develop explicit images of (1) 

the mathematics that they want their students to understand, (2) an understanding of the 

pedagogical importance of these understandings, and (3) a sense of how these understandings 
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might develop in students.  Second, I will build upon Simon’s (2002) notion of a key 

developmental understanding of a mathematical idea to propose the idea of key pedagogical 

understanding of a mathematical idea as a threshold for teaching for mathematical 

understanding. A key developmental understanding is a particular understanding of a 

mathematical idea that facilitates understanding a variety of additional mathematical topics. A 

key pedagogical understanding involves an individual’s awareness of the pedagogical 

implications of those key developmental understandings of important mathematical ideas. While 

teacher education research locates notions such as profound understanding of fundamental 

mathematics, key developmental understandings, and pedagogical content knowledge as 

particular states along a developmental trajectory, I will argue that focusing on the idea of key 

pedagogical understanding addresses how one might one come to develop such understandings.  

As such, I propose a second broad research question:  

Research Question 2: 

How do PSTs’ understandings of covariation impact their image of instruction and their 

engagement with students when teaching concepts of function?  Put another way, in what 

ways can a profound understanding of covariation serve as a key pedagogical idea in 

teaching for understanding of functions?
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2 CHAPTER II 

THEORETICAL BACKGROUND 

In this chapter, I will make explicit the theoretical perspectives employed in this study’s 

design and analysis.  This chapter will consist of a discussion of (a) teaching and learning 

mathematics with understanding; (b) genetic epistemology, reflecting abstraction, and radical 

constructivism (theories of knowledge development); (c) key developmental and pedagogical 

understandings; (d) different understandings and conceptions of the concept of function; and (e) 

didactic objects and didactic models.  

Teaching and Learning Mathematics with Understanding 

Teaching and learning mathematics with understanding is the cornerstone of the National 

Council of Teachers of Mathematics’ [NCTM] Principles and Standards of School Mathematics 

(National Council of Teachers of Mathematics, 2000).  The idea of teaching mathematics with 

understanding is not new– it was also the focus of the three prior NCTM standards documents 

(National Council of Teachers of Mathematics, 1989, 1991, 1995) and has its roots in the work 

of Brownell (1928, 1932), Dewey (Finken, 2001), and constructivism (Stiff, 2001).  These 

reform initiatives attempted to fundamentally change what it means to learn mathematics.  

Instead of memorizing techniques and algorithms, they envisioned that students develop 

mathematical power:  “[the] ability to explore, conjecture, and reason logically, as well as the 

ability to use a variety of mathematical methods effectively to solve non-routine problems” 

(National Council of Teachers of Mathematics, 1989, p.5).  Mathematics, therefore, is about 
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sense-making and problem solving as opposed to thoughtless applications of algorithms and 

procedures.   

A similar image of teaching and learning mathematics with understanding is expressed by 

NCTM mathematics reform organizations (Committee of Inquiry into the Teaching of 

Mathematics in Schools, 1993; Mathematical Sciences Education Board and National Research 

Council, 1989) and research in mathematics education and psychology.  For example, Bransford, 

Brown and Cocking (2000) speak of competence in an area in a way that is consistent with 

learning mathematics with understanding.  They claim that this understanding requires “a deep 

factual knowledge,” understanding the “facts and ideas in a context of a conceptual framework,” 

and an organization of the knowledge “in ways that facilitate retrieval and application” (p. 16).  

Their definition is consistent with learning mathematics “with understanding,” which is 

described by the NCTM as “the ability to use knowledge flexibly, applying what is learned in 

one setting appropriately in another” (National Council of Teachers of Mathematics, 2000, p. 20) 

or as understanding mathematics in a way that allows one to apply mathematical concepts in a 

variety of situations and applications (McDiarmid, Ball, & Anderson, 1989).  My definition of 

learning mathematics with understanding follows Bransford, Brown & Cocking’s description, 

but my focus will be on the first two aspects – deep knowledge of mathematics and a conceptual 

framework within which those facts reside.  I also agree with Kahan, Cooper, & Bethea (2003), 

who believe in the importance of factual knowledge, but “value it most when it is coordinated 

with deeper understanding and ready for application” (p. 225).   

Thompson & Saldanha (2003) define “to understand” as “to assimilate to a scheme,” 

relying on Piaget’s notion of assimilation (Piaget, 1970/1971, 1976a; von Glasersfeld, 1995), 

which Glasersfeld (1995) describes as “[coming] about when a cognizing organism fits an 
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experience within a conceptual structure it already has” (p. 62).  In this case, the conceptual 

structure is analogous to Bransford et al’s notion of conceptual framework.  This conceptual 

structure is the web of connections that is developed by an individual that allows them to act and 

enact within situations he or she encounters (Carpenter, 1986; Hiebert, 1986; Thompson & 

Saldanha, 2003).  In this way, understanding is not a “store” of facts, algorithms, procedures, etc. 

to be obtained.  Rather, it is a lens through which an individual organizes the world.  This notion 

is a key aspect of Piaget’s view that knowledge “cannot have any iconic correspondence with an 

ontological reality. … [Thus,] the cognitive organism shapes and coordinates its experience and, 

in doing so, transforms it into a structural world”  (Glasersfeld, 1995, p. 57).  This bold notion is 

the basis of radical constructivism, which traces its origins to Piaget’s theory, and can be 

summarized by the following three “tenets:” 

1.  Mathematics is created through human activity.  Humans have no access to a 

mathematics that is independent of our ways of knowing it. 

2.  What individuals currently know affords and constrains what they can 

assimilate (perceive and understand). 

3.  Learning mathematics is a process of transforming one’s ways of knowing and 

acting (Heinz, Kinzel, Simon, & Tzur, 2000). 

Noting that (1) students have no direct access to mathematical content and (2) that what students 

learn is dependent on what they already “know,” and (3) that learning is an internal process of 

construction from previous constructions, begs the question of how any new knowledge or 

understandings are developed. 

Comments on Teaching Mathematics with Understanding 

The push for teaching and learning mathematics “with understanding” began as a 

response to widespread dissatisfaction with teaching and learning of mathematics (Ebert, 1993).  
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In fact, the NCTM, in the Principles and Standards of School Mathematics [PSSM], notes that 

research has shown that today’s mathematics students are not learning the mathematics they need 

in order to be active contributors in a mathematics intensive society (Mathematical Sciences 

Education Board and National Research Council, 1989).  

The PSSM claims that “students must learn mathematics with understanding, actively 

building new knowledge from experience and prior knowledge” (National Council of Teachers 

of Mathematics, 2000, p. 20).  This belief addresses two issues.  First, it addresses the need for 

developing a coherent conceptual framework within which the factual knowledge might lie.  

Thus, learning mathematics with understanding is about relationships between concepts.   

Second, it brings to the fore the idea that mathematical objects are constructed and re-constructed 

within each individual student – mathematical objects do not exist outside of these constructions.  

Reflecting Abstraction:  A Theory of the Development of Knowledge 

Piaget (1980) proposed reflecting abstraction as the process by which new, more refined 

conceptions develop from an individual’s current conceptions.  This process is described by 

Piaget (1977/2001) as a process where more advanced cognitive structures are developed from 

“lower level” cognitive structures.  Dubinsky (1991) claims that this process is at the heart of the 

development of mathematical thought.  In this section, I will discuss reflecting abstraction for 

two reasons.  First, it responds to the question posed in the previous section about how new 

understandings are developed.  Second, it highlights a theory of knowledge as a dynamic web of 

meanings that is in a state of continual flux (though seeking equilibrium) and, at the same time, 

is the lens through which we view the world as well as the means through which we attempt to 

organize the world and make sense of it. 
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The idea that knowing is always a dynamic process, involving mental operations, and that 

these mental operations are always part of a larger system of operating, was central to Piaget’s 

work.  It is this knowing as a dynamic, related system of mental operations that will be the focus 

of this study.  For example, when I speak of a PST’s knowledge, what I am referring to is the 

lens through which she interprets her task:  enabling the mathematical development of her 

students (by some metric).  The “knowledge” the PSTs bring to the task both enables and 

constrains not only how they plan to achieve their instructional goal, but also how they envision 

their task and how they plan to achieve it. Knowledge, or knowing, is not an endpoint: “Little by 

little, there has to be a constant equilibrium established between the parts of the subject’s 

knowledge and the totality of his knowledge at any given moment.  There is a constant 

differentiation of the totality of knowledge into the parts and an integration of the parts back into 

the whole” (Piaget, 1977, p. 11).  Rather than a fixed goal state, or static equilibrium, Piaget’s 

idea of knowledge is akin to dynamic equilibrium, where the forces exerted (or change in 

quantities of particular elements or compounds) all balance each other out.  To Piaget, it was not 

equilibrium that was important, but rather the process of equilibration.   

Equilibration is the process through which an individual “organizes the world” that they 

have no direct access to (Piaget, 1937/1971). Equilibration consists of two sub-processes:  

assimilation and accommodation.  Assimilation involves an individual “[fitting] an experience 

into a conceptual structure [they] already have” (Glasersfeld, 1995, p. 62).   Piaget believed that 

“… no behavior, even if it is new to the individual, constitutes an absolute beginning.  It is 

always grafted onto previous schemes and therefore amounts to assimilating new elements to 

already constructed structures (innate, as reflexes are, or previously acquired)” (Piaget, 1976b, p. 

17).  At times, the experience may not fit within a conceptual structure – it may not act similar to 
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the individual’s expectations.  In cases such as this, Piaget believed that in order to equilibrate, 

the individual must modify his conceptual structures, or schemes, in order to better organize his 

experiences (and thus better “organize” the world).  This modification of conceptual structures is 

referred to as accommodation.  It is the process of equilibration, via accommodation and 

assimilation, that enables the development of knowledge.  Glasersfeld (1995) details a theory 

where learning “in a specific direction take[s] place when a scheme, instead of producing the 

expected result, leads to a perturbation [something that is not easily assimilated], and 

perturbation, in turn, to an accommodation that maintains or reestablishes equilibrium” (p. 68).  

While I must comment that perturbations cannot dictate what an individual will learn, Piaget’s 

theory is grounded on the fact that all learning is “triggered” by perturbations. 

The theory of equilibration is not sufficient for explaining the development of new, more 

advanced conceptions out of existing ones – cognitive structures can be accommodated in order 

to “fit” with experiences, but how can that explain the development of new cognitive structures 

that differ almost entirely from existing structures?  Piaget calls upon abstraction as the 

mechanism whereby new cognitive structures are developed, and abstraction should also be 

thought of as a (more advanced) means of equilibration.  Abstraction involves abstracting 

properties of coordinations of actions from the actions themselves. “It does so in two phases. The 

first phase projects a structure at a lower developmental level (such as the action coordination of 

interest) onto a higher level (where the coordination may now be understood concisely and 

explicitly). The second phase reorganizes the structure and higher level; an explicit 

understanding of something about our knowledge or our actions is not a mere copy of the 

previous cognitive structure, and it needs to be able to be integrated with other new structures at 

the higher level” (Piaget, 1977/2001, p. 4). 
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Piaget distinguished among three types of abstraction:  empirical, pseudo-empirical, and 

reflecting.  For my purposes, I will focus this discussion on empirical and reflecting abstraction.   

Empirical abstraction involves looking for similarities and differences among the objects 

under consideration, or “draw[ing] … information from objects and from the material or 

observable characteristics of actions,” (Piaget, 1977/2001, p. 317).  Empirical, or simple, 

abstraction is the extraction of characteristics from an object or set of objects and the 

classification on the bases of these characteristics alone.  Empirical abstraction, though it may be 

a transformation of a previous cognitive structure, focuses on classifying based on characteristics 

already in one’s conception of that object. This does not result in the creation of a new cognitive 

structure, but rather involves focusing attention on particular attributes of the object (Piaget, 

1977/2001).  For example, Saldanha (2003) notes that a child may abstract from his or her daily 

experiences that all apples are green and smooth.  This child would likely be surprised when 

presented with a red delicious or russet apple.   

Consider, briefly, the following diagram: 

 

 

Figure 2-1:  Colored Marbles 

Thompson (2002) notes that diagrams like the one shown in Figure 2-1, are often presented 

within the context of a discussion of additive reasoning.  As an example, Thompson notes that, if 

viewed additively, the collection might be viewed as one of the following:  3 of five disks are 

dark, there are 2 more disks than dark disks, etc.  In contrast, Thompson notes that, if viewed 

multiplicatively, a person might understand Figure 3 as the number of disks is 5 times as large as 

one-third the number of dark disks (i.e., the number of disks is five-thirds the number of dark 
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disks) (Thompson, 2002)1.  It is well accepted that reasoning additively is conceptually simpler 

than reasoning multiplicatively.  In the case of the additive reasoning discussed above, the 

student is simply looking for similarities and difference between the objects themselves, or 

“draw[ing] … information from objects and from the material or observable characteristics of 

actions,” (Piaget, 1977/2001, p. 317) where, in this case, the action is understanding the 

characteristics of the collection.  Piaget refers to this as empirical abstraction.  Knowledge 

obtained through empirical abstraction, though it may be a transformation of previous 

knowledge, is not viewed as the development of new knowledge, simply focusing on 

characteristics already in that object (Piaget, 1977/2001).  

A question to ask might be how might someone develop multiplicative reasoning skills if 

additive reasoning is all that is currently available to them?  As previously discussed, Piaget 

proposed Reflecting Abstraction as the answer to this question (Piaget, 1977/2001).  Reflecting 

abstraction, as described previously, is a process by which new, more advanced conceptions 

develop out of existing conceptions and involves abstracting properties of our action 

coordinations in order to develop new cognitive structures.  In the case of the student who 

reasons multiplicatively, the student needs to separate the action of understanding the collection 

from the actual collection:  in essence, multiplicative reasoning involves invariant relationships 

between quantities (i.e. the number of disks is 5 times as large as one-third the number of dark 

disks) as opposed to particular relationships between sets (three of the five marbles are dark).  In 

the case of multiplicative reasoning, the student has transcended the objects themselves and 

discovered a characteristic of “five times as large” by using the collection of marbles as tools for 

                                                 

1
 The difference between additive and multiplicative reasoning is not of interest in this discussion, except to note 

that the multiplicative reasoning is the more complex of the two. 
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his exploration.  The abstracted knowledge is no longer in terms of marbles, but characteristics 

of the group of marbles (Piaget, 1970/1971).    

Reflecting abstraction involves developing new cognitive structures by abstracting 

invariant features in our coordinations of action ensembles (Piaget, 1980) and therefore enriching 

an object with characteristics previously not present in it. This statement makes sense, of course, 

only with the understanding that the “objects” of which Piaget spoke were known objects, not 

objects existing independently of a knower (Piaget, 1970/1971).  In another classic example, 

Piaget described the development of how a child might develop the notion of a quantity.  In his 

example, when placing ten pebbles in various configurations (lines, circles, etc), the child 

discovers that he always got ten, regardless of how the pebbles were arranged or how he counted 

them:   

It is true that the pebbles, as it were, let him arrange them in various ways; he 
could not have done the same with drops of water. So in this sense there was a 
physical aspect to his knowledge. But the order was not in the pebbles; it was he, 
the subject, who put the pebbles in a line and then in a circle. Moreover, the sum 
was not in the pebbles themselves; it was he who united them. The knowledge . . 
. was drawn [sic] not from the physical properties of the pebbles, but from the 
actions that he carried out on the pebbles (Piaget, 1970/1971, p. 17). 

Key Developmental Understandings and  

Key Pedagogical Understandings in Mathematics 

Simon (1995) introduces the idea of a key developmental understanding in mathematics 

as a way to think about understandings that can be useful goals of mathematics instruction. He 

describes two characteristics of a key developmental understanding. First, a key developmental 

understanding involves a conceptual advance or a “change in the learner’s ability to think about 

and/or perceive particular mathematical relationships” (Simon, 2002, p. 993).  Students who 

possess a key developmental understanding tend to find different, yet conceptually related ideas 

and problems understandable, solvable and sometimes even trivial. I describe this understanding 
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as a powerful understanding of mathematics2. Second, Simon claims that key developmental 

understandings are not developed through explanation and/or demonstration of the concepts to be 

understood. In this way, key developmental understandings are related to the previous discussion 

of reflecting abstraction – when developing a key developmental understanding, the learner must 

actually imbue new characteristics on her knowledge and therefore fundamentally transform her 

understanding. Thompson & Thompson (1996) describe such an understanding where the 

students’ ability to solve problems is as a consequence of their understanding and is distinct 

from explicitly teaching how to solve the same problems. 

It is unclear whether teachers who develop or have developed key developmental 

understandings are thereby able to orchestrate instructional environments within which students 

are positioned to develop a robust understanding of the particular mathematical ideas.  My 

hypothesis is that key developmental understandings are not, by themselves, sufficient for a 

teacher to teach for understanding. In the hands of particular teachers, a key developmental 

understanding might aid the teacher’s goals for instruction and the means for achieving them.  

However, there is nothing in a key developmental understanding that indicates that one who 

possesses this understanding is aware of its utility. It is for this reason that I propose the concept 

of a key pedagogical understanding [KPU]. A key pedagogical understanding also involves a 

conceptual advance that is not developed through telling or explaining. A key pedagogical 

understanding is a person’s transformation of a key developmental understanding, from a way of 

personally understanding a particular mathematical concept, to a way of understanding how this 

                                                 

2
 Though it seems that a key developmental understanding and a powerful mathematics understanding are 

synonymous, I argue that the difference is an important one. In short, the understanding may be developmental but a 

developmental understanding may or may not be seen by the teacher as powerful – i.e. something that it is 

worthwhile for the students to attain.  
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key developmental understanding could empower students’ learning of related ideas were they to 

have it.  

The Development of Key Pedagogical Understanding 

In this section, I discuss one possible mechanism for the development of a key 

pedagogical understanding from a key developmental understanding. I use reflecting abstraction 

as a construct to explain the development of key pedagogical understandings. 

A key developmental understanding might be viewed as a pedagogical action, where 

action is used in the Piagetian sense3. Teachers are engaged in pedagogical actions when they 

wonder, “What might I do to help students think like what I have in mind?” Their question is 

posed in a domain specific manner, such as “How might I help my students think about 

logarithms as an accelerated condensing and recoding of the number line? 

The development of a key pedagogical understanding involves separating one’s own 

understanding from the hypothetical understanding of the learner (Steffe, 1994). When a person 

views a pedagogical action as if she is not an actor in the situation (even though she is), and 

when the person can separate herself from the action (and thereby reflect on it), the pedagogical 

action has been transformed into a pedagogical understanding.  It is this understanding that is 

capable of being reflected upon, for the teacher now sees various alternatives that could have 

happened and has developed agency over the process.  The teacher is also now able to see the 

“pedagogical power” of a key developmental understanding. 

When a teacher develops a key developmental understanding, his content knowledge 

becomes “related” to other content knowledge and extends his web of connections (Thompson & 

                                                 

3
 Piaget defined the word broadly as any change to the perceptual input (Piaget, 1967). 
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Saldanha, 2003).  A key developmental understanding could then be viewed as knowledge that is 

assimilated to a scheme.  This new understanding (and thus new knowledge) cannot be PCK 

because this transformed knowledge is not in and of itself pedagogical4.  At this point, this new 

knowledge is mathematical knowledge that has pedagogical potential.  It is not until the teacher 

transforms this knowledge into knowledge that is pedagogically powerful that the teacher has 

developed PCK.  Thus, rather than content knowledge for teaching, PCK is the transformation of 

content knowledge into a form that is recognized by the teacher as pedagogically powerful, and 

that transformation entails the teachers’ creation of key developmental understandings, becoming 

reflectively aware of them, and placing them within a model of students’ learning in the context 

of instruction. 

PCK and Instructional Environments 

Thompson (2002) proposed the construct of a didactic object to make sense of 

instructional design from a constructivist perspective.  By instructional design, however, 

Thompson envisioned something quite different from a typical lesson plan consisting of 

materials, objectives, procedures, etc.  He described the process of instructional design as 

creating “a particular dynamical space, one that will be propitious for individual growth in some 

intended direction, but will also allow for a variety of understandings that will fit with where 

individual students are at that moment of time” (p. 194).  With regards to this dynamical space, 

Thompson (1985) notes that when conceptualized in this way, instructional design requires that 

the objectives of instruction be stated in cognitive terms and that images of instruction be of a 

                                                 

4
 Thus there is a transformation in the development of further refined and developed mathematical knowledge. It is, 

however, new mathematical knowledge, not pedagogical knowledge.  
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teacher choreographing conversations which have the possibility of stimulating reflective 

discourse around the desired mathematical idea.  Instructional design, therefore, is not about 

teaching particular content; rather it is about understanding the content and how one who might 

come to know the content as conceptualized by the teacher as powerful.  It is also about 

designing instructional environments that take into account the varied understandings the 

students bring to the class within which they have a significant chance of understanding the 

content that way.   

Instructional design of this type is consistent with learning mathematics with 

understanding as discussed previously.  First, by prescribing the instructional environment, as 

opposed to the content per se, natural variations among students’ histories and existing 

knowledge increases the likelihood that they will bring different perspectives to any discussion. 

Additionally, these different perspectives lead to different solutions or views on the topics at 

hand and different means of justification of these solutions or views.  Both of these facts will 

provide the teacher with opportunities to highlight the relationships between the different 

mathematical ideas that are at play in any particular situation.  Second, by not prescribing 

instruction, this mode of instructional design allows for students to take part in the act of 

constructing the mathematics as opposed to simply learning the mathematics that is “out there.” 

Didactic Objects 

Thompson describes a didactic object, as “a thing to talk about” that is designed with the 

intention of supporting reflective mathematical discourse (p. 198).  The didactic object, along 

with the ensuing discourse, is envisioned by the instructor to provide an environment within 

which students can be exposed to rich mathematical concepts, take part in reflexive discourse, 
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and ultimately be provided with opportunities within which to construct their own images of the 

mathematics at play. Thompson stresses that an object is not didactic in itself.  Rather, it is 

didactic only to the extent that the instructional designer using it (e.g., a teacher) has conceived 

of it as such. I would push this issue a bit to say that it is didactic when the teacher has designed 

it to be; a didactic object is a tool that the teacher envisions as having the possibility of 

engendering productive discourse.  One designs the object to be didactic by envisioning three 

things: Conversations regarding it, ways to support those conversations, and students’ 

interactions with it so that the students are afforded many opportunities to construct an image of 

mathematics that is consistent with both the teachers’ mathematics and the standard 

mathematical canon.  This requires that the teacher have deep understanding of the mathematics 

at play and its role within the mathematical curriculum and mathematics at large, as well as a 

working understanding of the students’ possible interactions with the object and the ensuing 

discussions.   

Though it appears that Thompson has clarified an environment in which one might learn 

mathematics for understanding, we must still answer the question, “What knowledge must 

teachers possess in order to conceive of such an environment?” 

An example might help clear up a few issues.  One example of a didactic object discussed 

in Thompson (2002) is a common diagram used as a didactic object.  Figure 2-2 below depicts a 

collection of different colored marbles.   

 

 

Figure 2-2:  Colored Marbles 
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As noted previously, diagrams like this can be found in any school mathematics textbook and are 

likely to be discussed in a way that emphasizes additive reasoning.  Thompson proposes the use 

of Figure 2-2 and Figure 2-3 as a didactic object (see Figure 2-3, below). 

 

 
Figure 2-3: Figure 2-2 as a Didactic Object 

(Thompson, 2002, p. 199) 

The conversations had with his or her students by a teacher who envisions Figure 2-2 as a 

didactic object are ones in which reflection on both the characteristics of the figure and the 

contributions of other students is encouraged. The parenthetical questions (in Figure 2-3) are 

designed to provide the students with an environment in which they are likely to construct a 

multiplicative understanding of the collection. What the example does for us is allow us now to 

ask the question, “What knowledge might one need in order to conceive of such an object?” 

Clearly, knowledge of multiplicative reasoning alone is not sufficient knowledge for a 

teacher to conceive of such an object, regardless of how robust and connected that knowledge is.  

Pedagogical knowledge is also undoubtedly insufficient.  The knowledge necessary to conceive 

of objects as didactic is knowledge of the pedagogical power and utility of a particular key 
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understanding of mathematics.  The knowledge necessary to conceive of a didactic object is a 

key pedagogical understanding.   

Didactic Models 

A key pedagogical understanding is similar to Thompson’s notion of a didactic model: 

“A scheme of meanings, actions, and interpretation that constitute the instructor’s or instructional 

designer’s image of all that needs to be understood for someone to make sense of the didactic 

object in the way he or she intends” (Thompson, 2002, p. 211).  Thompson notes the similarity 

between a didactic model and Simon’s (1995) idea of a learning trajectory, but distinguishes the 

two by highlighting the clear distinction between the instructional activities and what it is 

envisioned that the students will come to understand in a didactic model.   

Another way to phrase the purpose of this study is to better understand the development 

of didactic models and the relationship between didactic models and key pedagogical 

understandings.  My second research question, How do the PSTs’ understandings of covariation 

impact their image of instruction and their engagement with students when teaching concepts of 

function?, focuses precisely on this issue.  My initial hypothesis is that KPU’s are necessary but 

not sufficient for one to develop a didactic model. 

The Concept of Function 

In the previous section, I discussed Thompson’s notion of instructional design from a 

constructivist perspective.  One of the primary notions discussed was that the objectives of 

instruction be in cognitive terms.  In other words, developing instruction must begin with 

answering the question How do we want students to come to think about particular mathematical 
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ideas.  The process of answering this question is similar to Glasersfeld’s (1995) Conceptual 

Analysis, an analytic method whose aim is to answer the question, “What mental operations must 

be carried out to see the presented situation in the way one is seeing it?” (p. 78).  The main 

difference between conceptual analysis and instructional design is that conceptual analysis is a 

method which attempts to explain how one might know something in light of how they act and 

interact; instructional design, from a constructivist perspective, begins with an explanation of a 

desired “way of knowing” and attempts to design instructional situations within which one is 

likely to have productive mathematical conversations towards this end.  In this section, I discuss 

a particular “way of knowing” functions. 

The predominant conception of function in mathematics today can be described as 

functions as correspondence, or “a rule that assigns each element x in a set A exactly one 

element, y, called f(x), in a set B” (Stewart, 1999).  For more than 100 years, the field of 

mathematics has accepted this conception of function as the definition of a function.  As a result, 

this is virtually the only way functions are presented in school mathematics, regardless of level.  

This presentation is not consistent with the historical development of the function concept, for it 

was little more than 100 years ago that the correspondence definition of a function was 

introduced, largely because it was helpful for those who wished to define functions by a limiting 

process (Kleiner, 1989; Thompson, 1994).  The correspondence conception of function was also 

consistent with the push within the mathematics community for formalization of mathematics in 

response to the number paradoxes that arise from imprecise mathematical definitions (Burton, 

1999).  This current definition of functions persists despite the fact that many mathematicians 

and mathematics educators (Eisenberg, 1991; Thompson, 1994; Wilder, 1967) criticize this 

conception on pedagogical grounds.    
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In response to the criticisms of the correspondence conception of a function a number of 

researchers (Carlson, 1998; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Confrey & Smith, 1995; 

Thompson, 1994; Thompson & Thompson, 1994) have proposed a covariational conception of a 

function5.  The covariational conception of a function is consistent with “reform” mathematics 

which calls for a shift in attention in the mathematics curriculum from functions as rules and 

formulas to functional relationships, understood in both mathematical settings and in related 

applications.  A covariational conception of a function highlights two key aspects of the 

functional relationship.  First, that a function is a relationship between quantities, which can be 

represented by an ordered pair whose coordinates represent values of the two quantities 

simultaneously. Second, a covariational conception entails the notion that the two quantities’ 

values can, in fact, vary (Saldanha & Thompson, 1998). 

Saldanha & Thompson (1998) discuss the development of covariational reasoning as 

emerging from focusing on a quantity of variable magnitude (henceforth variable) and tracking 

its variation.  I find it important to reiterate the fact that a variable has two important 

characteristics.  First, it is a measurable quantity (it has a magnitude); second, the measure of that 

quantity can vary.  Covariational reasoning involves the coordination of two variables, each of 

which can be envisioned as varying independently.  Ultimately, this way of thinking allows 

students to (a) envision a graph as a collection of points; (b) envision the collection of points as 

being generated by keeping track, simultaneously, of two quantities whose values vary; and (c) 

envisioning that every point in a graph represents, at once, simultaneous values of two quantities.  

                                                 

5
 Historically, the covariational conception of function pre-dated the correspondence conception. 
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Covariation as a Candidate for a Key Developmental Understanding of Functions 

The basis of this study is grounded in the fact that a covariational conception of a 

function can be a key developmental understanding of the concept of function.  Ultimately, 

whether or not a student possesses a KDU is an empirical question that will be investigated 

through analysis of how the students’ understandings allow them to make sense of more 

conceptually challenging problems that it is unlikely that they would have been able to solve 

without the KDU. 

A covariational conception can be thought of as a conceptual precursor to a fully-

developed correspondence conception of a function. At an appropriate time, as Thompson 

suggests, I believe that the correspondence (set-theoretic) conception of function should be 

introduced to students of mathematics.  This notion is consistent with the NCTM standards. 

With regard to the development of the function concept, Thompson (1994) notes that 

many elementary mathematics students tend to see a function as a “command to calculate” and 

that early algebra students are no more likely to see the expression  

x (12 (x – 5)) as representing a number as elementary students are to see that the expression 4 (12 

(4 – 5)) represents anything other than something to do.  Researchers (Asiala, Brown, DeVries, 

Dubinsky, Mathews, & Thompson, 1996; Briedenbach, Dubinsky, Hawks, & Nichols, 1992; 

Dubinsky & Harel, 1992) have labeled this such a conception of a mathematical concept as an 

action conception. When a learner is at this stage, they are able to perform the prescribed actions 

when induced by external stimuli – in the case of functions, a number and an expression to be 

evaluated.  A process conception of a function involves the learner automating lengthy 

sequences of operations into an expression that, in his or her image of it, “evaluates itself” 

(Thompson, 1994).  When a student possesses a process conception of function, he or she can 

imagine the function as something that performs the sequences of operations but no longer needs 
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to actually think about the chain of operations when envisioning the result of the evaluation.  In 

the case of the process conception, the function is no longer tied to external stimuli but rather 

under the individual’s control.  Whereas a student with an action conception of a function tends 

to struggle with piece-wise defined functions, inverse functions, students with a process 

conception can begin to understand these advanced ideas (Briedenbach et al., 1992; Sfard, 1987, 

1992).  Moreover, a process conception of function is necessary to understand trigonometric 

functions such as sin x since no explicit instructions are given for obtaining an output for a given 

input (Asiala et al., 1996).   

The covariational conception is related to the progression of a function from an action 

conception to a process conception (Zandieh, 2000).  For example, Zandieh notes that once a 

person conceives of a function as the covariation of quantities, they “can begin to imagine 

‘running through’ a continuum of numbers, letting an expression evaluate itself (very rapidly!) at 

each number” (Thompson, 1994, p. 26).  It is this notion of “quantities varying” that is a 

conceptual precursor to a fully-developed correspondence conception of a function.  For 

example, consider students’ understanding of the concept of derivative.  If the student’s 

conception of function is simply a relationship between quantities (for example, when x = 2 and f 

'(x) = 4), it is unlikely that the student truly understands the concept of derivative.  

Understanding the concept of derivative requires that students think of some change in x and the 

corresponding change in y.  Cottrill, Dubinsky, Nichols, Shcwingendorf, Thomas and Vidakovic 

(1996) found that for students to understand the derivative concept, which by definition is 

directly related to the concept of a limit, the students must consider the function as involving 

dynamic aspects rather than as a static entity.  Thus, without that background image of the 

derivative, the slope of the tangent line has no meaning with respect to the characteristics of the 
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original function6. Furthermore, Dubinsky and Harel (1992) remind us that the process 

conception of a function, in addition to a formula not necessarily being needed to conceive of a 

function value, involves the notion of “a dynamic transformation of quantities according to some 

repeatable means that, given the same original quantity, will always produce the same 

transformed quantity” (p. 85).  It is in this way that a dynamic covariational conception is a 

conceptual precursor to a fully-developed correspondence conception.  The notion of an 

invariant functional relationship, as opposed to a formulaic recipe, is abstracted from the 

students’ experiences with the functions.  Also, note that this abstraction is not empirical 

abstraction, for the relationship is not in the realm of the observables. 

Additionally, the covariational conception of a function allows the student to make sense 

of traditionally more advanced mathematics.  For example, for a student who possesses a 

covariational conception of function, it is not a big conceptual leap to make sense of the behavior 

of polynomials, piecewise defined functions “mod” (modulus after division) functions, 

trigonometric functions, functions in polar coordinates, functions defined parametrically, and 

functions of more than one variable. 

Summary and Comments 

The perspectives presented in this chapter form a framework that served to guide the 

analysis that I present in Part II of this dissertation.  Teaching and Learning Mathematics with 

Understanding and Radical Constructivism provided a background theory that helps focus the 

                                                 

6
 Note that this problem is further compounded when students study multivariable calculus. Without the notion of 

quantities varying the partial derivatives, directional derivatives, gradient, etc have no meaning other than either (a) 

new equations you can evaluate at values of (x,y) or possibly (b) a memorized definition like the partial of f with 

respect to x is the derivative of the function f(x,y) with the y’s treated as constant. 
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kinds of questions that are asked.  As Thompson (2002) noted “[A background theory] constrains 

the types of explanations we give, [helps] to frame our conceptions of what needs explaining, 

and to filter what may be taken as a legitimate problem” (p. 192).  Key developmental and 

pedagogical understandings, didactic objects and models, and functions as covariation of 

quantities provide the content for the analysis that follows. 
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3 CHAPTER III 

LITERATURE REVIEW 

While research on the relationships between teachers’ content knowledge and their 

pedagogy has a long history, it has received increased attention in the education literature in the 

past 20 years.  In this chapter, I discuss this “recent” research to locate this study within the 

literature.  

Recent Research on Teacher Education and Teacher Knowledge 

Teachers’ knowledge of content specific to teaching has been dubbed pedagogical 

content knowledge [PCK] by Shulman and his colleagues (1986).  In this section, I will discuss 

past and current research on teacher knowledge, with particular emphasis being placed on 

pedagogical content knowledge.  The purpose of this discussion will be to substantiate the claim 

for the need to re-conceptualize PCK.  It is this re-conceptualization that is key to understanding 

the knowledge necessary for teachers to have the possibility of designing instructional 

environments within which students can learn mathematics with understanding.  I will propose a 

re-conceptualization of PCK that is consistent with the notions of learning mathematics with 

understanding and the development of knowledge.  Unlike the current conceptualization of PCK, 

which involves teaching of particular strands of mathematical content and the “best” or most 

effective ways of teaching them as endpoints of mathematics teacher preparation, I will speak of 

PCK as a way of knowing particular mathematical ideas that allows teachers to conceive of and 

enact environments within which students have the likelihood of learning mathematics with 
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understanding.  Though the necessity of students constructing their own relationships abounds in 

the literature on the learning of mathematics (Simon, 1995; Thompson, 1996, 2002; von 

Glasersfeld, 1995), it is strikingly absent from the literature on the teaching of mathematics.   

The Principles and Standards for School Mathematics [PSSM], notes that teaching for 

understanding “requires knowing and understanding mathematics, students as learners, and 

pedagogical strategies” (National Council of Teachers of Mathematics, 2000, p. 17).  The 

knowledge noted by the PSSM, as well as other factors not explicitly considered, such as 

classroom norms and socio-mathematical norms (Cobb, 1999; Cobb & Yackel, 1996; McClain & 

Cobb, 2001) and general pedagogical knowledge (Shulman, 1986), are all key aspects of 

teaching and worthy of study in their own right.  However, research indicates that the knowledge 

and skills a teacher draws upon are interrelated (Colton & Sparks-Langer, 1993). Thus, by 

deepening our understanding of the mathematics-specific knowledge and its relationship to pre-

service teachers’ emerging pedagogy, I am actually further developing and articulating one 

aspect of the complex tapestry of teaching.  Further understanding this complex tapestry is 

essential for the improvement of mathematics teacher education. 

Research on Teacher Knowledge 

Early study of teacher knowledge was grounded in the search for statistical relationships 

between teacher knowledge and student achievement (Grossman et al., 1989)7.  One view of 

teacher knowledge is that it can be at least roughly quantified by evaluating teachers’ subject 

matter preparation.  For instance, Monk (1994) found a positive correlation between teacher 

                                                 

7
 This strand of research continues to be encouraged by modern day legislation, including The Glenn Commission 

(United States Department of Education, 2001) and Conference Board of the Mathematical Sciences (Conference 

Board of the Mathematical Sciences, 2001). 
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knowledge and student achievement.  Ashton & Crocker (1987), in their review of studies on 

teacher preparation, found studies that documented a positive relationship between courses taken 

in the academic field and student achievement.  Additionally, in Druva and Anderson’s (1983) 

meta-analysis, both pre-service teacher’s education and science courses were positively 

associated with successful teaching.   

A great deal of research, however, contradicts these findings.  The majority of the 

research of this genre has failed to establish a clear relationship between student achievement 

and teacher knowledge (Ashton & Crocker, 1987; Grossman et al., 1989).  For example, a 1990 

study conducted by the National Center for Educational Statistics found that there was no 

relationship between student achievement and the academic preparation of science teachers as 

measured by the number of content courses taken (National Center for Educational Statistics 

(NCES), 1992).  These results, combined with the common-sense notion that there must be some 

relationship between teacher knowledge and student achievement, suggests the need for further 

exploration of this issue.  Grossman, Wilson, et al. (1989) propose three possible reasons for the 

lack of definitive evidence backing our common sense notions.  First, there may be no relation 

between teacher knowledge and student achievement, but they note that “the belief that teachers 

who know more about the content can probably teach more about the content is too appealing a 

notion to be cast off lightly” (p. 25).  Second, they propose Begle’s (1972) suggestion of a 

“threshold effect:”  teachers need a certain amount of subject matter knowledge and more subject 

matter knowledge results in small changes in student achievement.  Third, they propose that the 

relationship may be inadequately conceptualized.  I will follow up on this third reason; however, 

I do so noting that I believe the last two reasons may be related:  If the relationship between 
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teacher subject matter knowledge and student achievement is inadequately conceptualized, then 

Begle’s suggestion must then be re-examined in that light. 

Researchers have noted that teacher knowledge and student achievement are extremely 

hard to quantify (Byrne, 1983; Heaertel, 1986).  For example, a teacher’s subject matter 

knowledge is most commonly quantified by scores on standardized tests, or by whether they 

have a major or have advanced coursework in an academic discipline ("The no child left behind 

act of 2001", 2001).  McDiarmid, Ball, and Anderson (1989) note that teachers require flexible 

understanding of the subject matter, which requires not only specific content area knowledge, but 

knowledge that bridges both content within the subject area and across disciplines.  This type of 

understanding is not often tested on standardized tests.  With respect to the amount of 

preparation for teachers, it “may differ both quantitatively, in the number of units teachers have 

taken in the subject and qualitatively, as in the relative coherence of [the] subject matter 

coursework” (McDiarmid et al., 1989, p. 24).   

Researchers within alternative traditions in research on teaching have begun to answer 

these criticisms by studying how teachers think in action, examining the decision making that 

actually takes place (Johnson & Whitenack, 1992).  As a result, researchers have begun to 

explore how teachers come to view teaching and learning in the way that they do (Ball, 1988; 

Lederman, 1992).  In other words, rather than trying to quantify how much teachers know and its 

result on student achievement, this new strand of research focuses on the development of 

knowledge and its use in action.  This research has, at its core, the assumption that teacher 

knowledge is not easily quantifiable and that the relationship between teacher thinking, teacher 

knowledge, and student achievement is not a simple cause-effect relationship as previously 

assumed.  Rather, the relationship between teacher knowledge, teachers’ instructional practices, 
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and student achievement is complex and interconnected (Barnes, 1989; Fennema & Franke, 

1992) and therefore not easily understood through statistical analysis. 

Research on teacher thinking has pushed researchers to seek out new conceptualizations 

of teacher knowledge.  For example, in their review of the literature on teacher thinking, Clark 

and Peterson note that  

[the research on teachers in action] shows that thinking plays an important part in 
teaching… Teachers do plan in a rich variety of ways, and these plans do have 
real consequences in the classroom.  Teachers do have thoughts and make 
decisions frequently (one every two minutes) during interactive teaching.  
Teachers do have theories and belief systems that influence their perceptions, 
plans, and actions.  [Reviewing the literature on teacher thinking] has given us 
the opportunity to broaden our appreciation for what teaching is by adding rich 
descriptions of the mental activities of teachers to the existing body of work that 
describes the visible behavior of teachers. (Clark & Peterson, 1986, p. 292)  

Thus, Clark and Peterson envision teacher thinking and teacher knowledge as the focus of further 

study.  They go on to claim that in order to do so, a much finer-grained characterizations of 

teacher thinking and teacher knowledge is needed.  The need for a finer-grained measure of 

knowledge for teaching is supported in the literature by the work of Ball & McDiarmid (1989), 

Ball & Wilson (1990), and Ma (1999).  For example, Ma notes that elementary school teachers 

in China, when asked about mathematical teaching scenarios, produce far richer instructional 

plans and justifications for them than university trained elementary school teachers in the United 

States, despite the fact that the Chinese teachers have less than an undergraduate degree in 

mathematics or mathematics education (Ma, 1999). 

Pedagogical Content Knowledge: Knowledge for Teaching 

Shulman and his colleagues (Grossman et al., 1989; Shulman, 1986, 1987; Wilson, 

Shulman, & Richert, 1987) proposed a number of finer-grained characterization of teacher 

knowledge, each of which were an attempt to “probe the complexities of teacher understanding” 
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and answer the question, “How might we think about the knowledge that grows in the minds of 

teachers?” (Shulman, 1986, p. 9).  Shulman describes multiple models of a knowledge base for 

teaching8.  In each model, Shulman distinguishes among three (in some cases more) broad 

categories of teacher knowledge:  (a) subject matter knowledge, (b) pedagogical content 

knowledge, and (c) curricular knowledge.  He distinguishes the categories as follows: content 

knowledge refers to both the subject matter knowledge and its organization or lack thereof, while 

pedagogical content knowledge involves content knowledge as it is directly related to the 

teaching of specific subject matter.  Finally, curricular knowledge deals with knowledge of the 

programs of study and instructional materials, including texts, software, visual aides, 

manipulatives, etc. available to the teachers.  

Pedagogical content knowledge [PCK] is of primary concern for two main reasons.  First, 

the importance of PCK has been accepted by educators in fields from mathematics to science 

(Tobin & Garnett, 1988), English (Grossman, 1989), and social studies (Gudmundsdottir & 

Shulman, 1987).  Regardless of discipline, educators are interested in PCK despite the fact that 

there is little research backing the claim that it is an important knowledge base for prospective 

teachers (Wilson, Floden and Ferrini-Mundi 2001).  Second, it is important to note that PCK, 

which lies at the confluence of the content and the curriculum, is the knowledge base of 

mathematics education:  PCK is the knowledge and skills required for one to transform his 

knowledge into a set of experiences, activities, and environments that optimize the likelihood of 

students learning.   

                                                 

8
 Shulman and his colleagues propose multiple models for teacher knowledge for the simple reason that there was no 

consensus on an appropriate model for the necessary knowledge for teaching. To date, there still is no consensus. 
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Validation of PCK as an important aspect of teacher development is most strongly 

grounded in common-sense:  It “just makes sense” that teachers need some amount of PCK in 

order to be successful in their endeavors with students.  In Shulman’s definition of PCK, he 

mentions subject matter knowledge for teaching, a phrase that is highly laden and potentially 

problematic. By teaching, does PCK refer to knowledge required for teaching traditionally, as in 

the majority of American mathematics classrooms (Stevenson & Stigler, 1992) or for teaching 

mathematics as espoused in the recent mathematics reform documents (National Council of 

Teachers of Mathematics, 1991, 2000)?  Though one might assume the latter, there is nothing 

inherent in PCK that demands this.  In fact, it could be argued that Shulman and his colleagues 

were not especially concerned with reform modes of education, as is evidenced by their use of 

language.  For example, they speak of the “goals of instruction including the transmission of 

knowledge and understanding to students” (Wilson et al., 1987, p. 104) and of PCK as the 

knowledge that enables this “transmission of content knowledge” (Shulman, 1986, p. 9), which 

appears to be at odds with the current mathematics reform movement.  

Additionally, there is no consensus about exactly what PCK is.  It is commonly defined 

component-wise as an amalgam of pedagogical and content based “stuff.”  Most definitions of 

PCK within mathematics education are simply mappings of Shulman’s definition onto the 

domain of mathematics.  For example, Ball and Bass (2000) define pedagogical content as 

knowledge “[that] bundles mathematical knowledge with knowledge of learners, learning and 

pedagogy” (p. 88).  Wilson, et al. (1987) describe PCK as “specialized understanding of the 

subject matter, one that permits them to foster understanding in most of their students” (p. 104).  

These examples of attempts to define PCK have one factor in common:  they speak of 

pedagogical content knowledge as a blend of different kinds of knowledge, as content knowledge 
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as it is applied to pedagogy or pedagogical knowledge as it is applied to content, not as a type of 

knowledge itself.  Pedagogical content “knowing” in the way described by the teacher education 

literature would not likely allow a pre-service teacher to conceive of the variety of possible 

student conceptions, the value of particular student conceptions or the development of 

instructional agendas centered on powerful conceptions of mathematics content.  Though in the 

literature, PCK is grounded in particular mathematics, it is often not guided by precisely 

explicated conceptions of mathematics. 

Some mathematics teacher education programs have as their goal the development of 

additional pedagogical knowledge that could supplement and possibly revise the teachers’ 

understanding of particular aspects of mathematical knowledge (see, for example, Carpenter, 

Fennema, & Franke, 1996).  This knowledge might consist of reflecting on the students’ thinking 

en route to developing a richer understanding of the students’ mathematics (Steffe, 1994) at play 

or how one might help a student who understands the mathematics in a certain way develop a 

deeper understanding.  This knowledge can be contrasted with developing more sophisticated 

understanding of the mathematics in a way that was pedagogical.  These two forms of knowledge 

are qualitatively different.  While the former focuses on how teachers might help students 

develop particular understandings of mathematical concepts, the latter focuses on how teachers 

might reconceptualize the mathematics in a way that is pedagogical (i.e. unpack their own 

knowledge and develop a conceptual framework within which their knowledge of mathematics 

may lie).   

For example, in a mathematics methods class, pre-service teachers (PSTs) often learn 

different ways to help students answer the question, “What is x?” as posed in typical 

mathematics textbook, where it is tacitly understood that x stands for a single number. In this 
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case, the PSTs’ beliefs about algebra as finding the unknown and the implications of such a belief 

are left unchanged. PSTs are likely to teach in a way that emphasizes what x is.  Students will be 

prone to imagine that x is the number and that their activity should end in something like “x = 4.”  

In contrast, if through a methods class the PST comes to understand that an equation implies the 

question, “among all the values that can be substituted for x, which values make the equation 

true?”, then the PST’s students are more likely to imagine that answering the question will 

produce two sets of values – those that make the equation false and those that make the equation 

true.  Thus, the former PST’s students will think that “solve 2(x+1) = 2x +2” has no answer (it 

cannot be reduced to the form “x = number”), whereas the latter PST’s students will be more 

likely to see, by inspection, that x can be any value in the variable’s domain. 

Thus, another finer-grained measure for teacher knowledge is not just the amount of 

knowledge that PSTs possess, but rather how they understand particular mathematical content. It 

is this understanding that mediates both how PSTs, as students, learn additional mathematics and 

how they, as teachers, conceive of the mathematics to be taught.  The work of Ma (1999), 

Thompson & Thompson (1996, 1994), and Silverman (2004a) call for more attention to this 

aspect of teacher knowledge.  

Re-Conceptualizing PCK 

Pedagogical content knowledge has become a “catch phrase” in educational research and 

in policy debates regarding mathematics teaching and mathematics teacher education. It would 

be hard to question the spirit of the construct, but as currently conceptualized, its utility must be 

questioned. The spirit of PCK does raise interesting questions about the relationship between 

teachers’ knowledge and their teaching practices, but the contradictions described above present 
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the possibility that the questions being asked are “ill-defined.”  In an ill-defined problem, it is 

unclear from the beginning about what the problem is and thus, what a solution is. Thus, it is 

necessary to first clarify the questions being related before one can even begin to seek a solution.  

With regard to PSTs’ understandings of mathematics, this study will focus on their image 

of what they wish their students to learn, and the language in which they have captured those 

images.  With regard to PSTs’ teaching practices, this study will focus on their pedagogical 

decision making (identifying key “big ideas” in understanding a mathematical idea, planning for 

and selecting appropriate tasks that have the likelihood of eliciting productive mathematical 

discourse, orchestrating this mathematical conversation, etc.).  

Thompson & Thompson (1996) note that how a teacher conceived of particular 

mathematical content, not just whether they knew it, had a significant impact on the interactions 

the teacher could conceive of having with a student. In their report of one teacher’s interactions 

with one student, it became evident that his understandings of mathematics prevented him from 

being aware of key aspects of the students’ reasoning, and thus he was forced to remediate the 

problem as he saw it.  Rather than helping the student develop more powerful ways of 

understanding the mathematics, the teacher resorted to a deficit model of instruction, telling and 

questioning in an attempt to help the student “see” aspects of the mathematics at hand.  How 

might mathematics teacher education be designed to position future teachers to develop 

mathematical and pedagogical understandings that would allow them to conceive of 

environments within which students are likely to develop powerful mathematical 

understandings?  At an even more basic level, what might these pedagogical and mathematical 

understandings look like and how might we study their development?   I examine these ideas in 

the following section. 
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An Example of Teacher Knowledge:  The Concept of Area 

In this section, I discuss an example of research that focuses on the transformation of 

teachers’ knowledge en route to the development of PCK (conceived of as the mathematical and 

pedagogical understandings described in the previous section).  The purpose behind sharing this 

example is to analyze the development of a group of PSTs’ understandings of mathematics as 

they interact with particular mathematics content as a way to make further sense of the question 

of how to position future teachers to develop mathematical and pedagogical understandings that 

allow them to conceive of environments within which students are likely to develop powerful 

mathematical understandings. This example will also help to gain insight into the question of 

what these pedagogical and mathematical understandings look like and how we might study their 

development.  

I will briefly discuss the structural differences between a group of PSTs prior and 

transformed mathematical knowledge.  These examples are not to be read simply as examples of 

“good teacher education,” but rather as a case of teacher education designed to help PSTs 

develop PCK – content knowledge transformed into deep, organized knowledge that is 

pedagogically useful and necessary for the development of educative environments.   

As part of the Construction of Elementary Mathematics program (Simon, 1995), PSTs 

were studied as they took part in a course whose goal was to increase their mathematical 

knowledge.  Simon (1995) documents one segment of the course that centered on the 

multiplicative relationships and employing the concept of area as a vehicle for the development 

of multiplicative reasoning.  Simon began the segment of instruction with the following problem:  

RECTANGLES PROBLEM 1: Determine how many rectangles, of the size and 

shape that you were given, could fit on the top surface of your table.  Rectangles 

cannot be overlapped, cannot be cut, nor can they overlap the edges of the table.  

Be prepared to describe to the class how you solved the problem (Simon, 1995, 

p 123). 
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As groups of students worked through the problem, the question of whether the 

orientation of the rectangle should be maintained for the second measurement became an issue 

for (at least some) of the PSTs.  They wondered whether the rectangle should be maintained (see 

Figure 3-1a) or rotated 90 degrees (Figure 3-1b) in order to “do the measuring.” Though they all 

recognized the need to multiply, questions such as the one about the orientation of the rectangle 

indicate that the PSTs lacked a fundamental understanding of the relationship between the 

product of length and width and the rectangle’s area.  Simon pushed this issue, not to improve 

the students’ ability to calculate the area, at which they were already proficient, but to help them 

understand why multiplication was appropriate in this situation and to help them see the 

multiplication of length and width as a logical consequence of their understanding.   

 

 

Figure 3-1: (a) Maintaining the orientation of the rectangle; (b) 

Rotating the rectangle to measure the adjacent side 

Rectangles problem 1 was followed by a similar problem that asked the PSTs to explain 

why, when maintaining the orientation of the rectangle, and multiplying the “width” of the table 

by the “length,” the corner rectangle was not counted twice.  In the ensuing whole class 

discussion, the topic of conversation shifts from “counting quicker” to speaking of “groups:” 

Simon:  And how is that connected to the issue about the corner? 
Molly: Because it … the corner not only represents a one, it’s just one numbering of a 

group, or it’s also numbering a part of that unit – a unit in that group – so it’s 
not, it is two different things … it’s a unit and also representing a group. 
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Candy:  … it makes it confusing to try to look at the length times width. … You should 
really treat it as so many sets or so many groups, like nine groups …, thirteen 
groups of nine. That way, you’re not even going to deal with the corner and you 
won’t even have that problem (Simon, 1995, p. 126) 

 

In this interchange we see the beginning of a shift from thinking of measurement of area as 

“multiplying length times width” to measurement of area as a certain number of groups of a 

given size.  Simon then returned to the question of rotating the rectangles in order to measure the 

area with a particular side of the rectangle, and the class eventually decided that this calculation 

of area (see Figure 3-2 below) had no meaning because the rectangles overlapped. They did not 

recognize that they were measuring the lengths of the larger rectangles’ sides in units of the 

length of one side of the smaller rectangle, thereby creating a square whose area is taken as 

“one”, and measuring the area of the larger rectangle in units of this new “one”.  Simon ended 

his discussion of the teaching experiment noting that his efforts to help his students deeply 

understand the multiplicative relationship at play were less than successful, for in the end, only 

half of the small groups were able to explain why this method of “overlapping rectangles” (see 

Figure 3-2) was useful for finding the areas of rectangles in general.  Additionally, of the 

students who were able to explain their thinking, some wondered how one would know when to 

use the different units of measurement.  

 

Figure 3-2:  Students believed that the calculation  

4 times 2 (=8) had no meaning in this scenario. 
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It was clear that, prior to this instruction, the students believed that calculating the area of 

a rectangle was about multiplication.  When asked why they multiply, students responded  “… 

‘cause that’s the way we’ve been taught,” or “… it’s a mathematical law” (Simon, 1995, p. 124).  

Though Simon notes that these explanations were a product of both cognitive and social factors, 

I wish to focus on the cognitive.  Throughout multiple iterations of the mathematics teaching 

cycle (Simon, 1995), the students came to think of this multiplication as a number of rectangles 

of a given size.  This realization enabled some of the students to conceive of the idea of a unit 

(which was previously just “the rectangle”) and ultimately make sense of what the square units 

were measuring.  Thus, the students had developed a conceptual link between the procedure that 

they were employing and the measuring of the area.  

The students in Simon’s study had developed knowledge that, conceivably, will assist 

them in teaching area and multiplication.  With respect to the development of mathematics 

teachers, an important question must be asked:  what were the qualities of this new knowledge?  

This question is not asked to reduce their knowledge to a new “file folder” containing new 

retrievable information, but rather as a new cognitive structure that will allow (and possibly 

necessitate) them to organize and interpret the world differently.  This “new” way of knowing 

would ideally allow them to see different aspects of their interactions with Simon, and thus 

enabling them to conceive of the problems of instruction in a different way.   

PCK as a “New” Way of Knowing 

I will argue that the knowledge that PSTs developed in discussing Simon’s rectangle 

problem was truly a new way of knowing. By demonstrating that instead of simply adding to and 

reorganizing current knowledge, the PSTs developed a way of knowing in which they actually 
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imbued upon the objects some characteristics that were not previously present in the object.  

Before discussing the example of Simon and his pre-service teachers, I will briefly discuss an 

example that will highlight issues critical to understanding the development of the PSTs’ 

knowledge. 

As noted in the previous section, the class did develop a means of understanding the 

relationship between the larger rectangle’s area and “multiplying the length times the width”.  

With respect to this, Candy notes: “ … it makes it confusing to try to look at the length times 

width. … You should really treat it as so many sets or so many groups, like nine groups …, 

thirteen groups of nine” (Simon, 1995, p. 126).  This realization seemed to be the result of 

students visualizing a number of copies of their rectangle covering the surface to be measured.  

Much like the case of additive reasoning (see Chapter 2, Reflecting Abstraction), the students 

were prone to using empirical abstraction, or drawing on observable characteristics of the 

situation.  In this case, students might reason something like this: “If I cover the surface with 

copies of my rectangle and try to count all the rectangles, it would be easier if I counted the 

number in a row [or column] and then see how many rows [columns] there are.  The total area 

will be the same as the number of rows times how many rectangles there are in a row.”  In 

contrast, consider the PSTs who developed the ability to explain why measuring the lengths of 

sides to create square units was useful in describing areas.  These PSTs realized that they were 

not measuring the larger rectangle’s area by covering it with smaller rectangles. They realized 

that they were using the length of one side of the smaller rectangle to measure the length of the 

sides of the larger rectangle, and thus creating a unit of area out of units of length.   

The latter PSTs developed new knowledge through reflecting, not empirical, abstraction.  

Rather than conceiving of the smaller rectangle as something to use to “cover” the larger 



 

 41 

rectangle, they abstracted from their actions the notion that a side of the smaller rectangle can be 

used to measure the sides of the larger rectangle.  In essence, the side of the smaller rectangle is 

now a tool for measuring length.  Moreover, what they are measuring is not how many smaller 

rectangles fill up the larger rectangle, but how many sides of the smaller rectangle can cover one 

side of the larger rectangle.  It was this realization that allowed them to make sense of the area of 

the larger rectangles in units of “square sides.”  It is thus my claim that the PSTs who came to 

recognize the square as a derived unit of measurement developed new knowledge that was 

transformed, or abstracted, from their prior knowledge.  Those PSTs who simply developed an 

understanding of why they multiply when calculating area did not fundamentally transform their 

knowledge, but simply augmented it with additional characteristics. 

An understanding of area being measured by these new units allows a teacher to conceive 

of the problems of teaching area in a different way.  When encountering a student who is 

struggling with the notion of area, rather than relying on many different ways of saying, 

essentially, “multiply length times width,” a teacher could also focus on the development of the 

idea of area as “covering” and the relationship between linear measurements and area.  This 

understanding of area as an n+1-dimensional, derived unit requiring the coordination of two n-

dimensional quantities, in turn could help students make sense of commonly problematic areas 

such as the relationship between area and volume.
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4 CHAPTER IV 

BACKGROUND OF THE STUDY AND ANALYTICAL PROCEDURES 

The previous chapter served to explicate an empirically testable conceptualization of 

PCK.  I began by noting that mathematics content knowledge alone is not PCK.  Moreover, any 

intervention in which PSTs are expected to develop new mathematics content knowledge will 

not necessarily assist PSTs in developing PCK.  As described above, PSTs must be presented 

with opportunities within which they can transform their (new) content knowledge into a form 

that is recognized by the PST as pedagogically powerful.  In addition, the PSTs must develop a 

sense of the ways in which such mathematical understandings might develop.  It is my conjecture 

that mathematical and pedagogical knowledge of this sort is necessary, but not sufficient for a 

teacher to have the possibility of developing didactic models around mathematical topics.   

The Setting for the Study 

This study took place in a course titled Computers, Teaching and Mathematical 

Visualization, a required course for sophomore and junior mathematics majors pursuing 

secondary mathematics licensure (henceforth the pre-service teachers or PSTs). Table 4-1 

describes the overall organization of the course.  I will briefly discuss each segment of the 

course. 
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Table 4-1: Course Overview: Computers, Teaching and 

Mathematical Visualization 

Weeks Topics 

1 Problematizing the teaching and learning of mathematics 

2-3 
Variables and rate 

Introduction to understanding mathematics 

3-5 Introduction to Graphing and Covariation 

5-12 Applications and Extensions of Covariation 

13-16 Geometry and Proof 

  

Problematizing the Teaching and Learning of Mathematics 

The PSTs read and discussed The Teaching Gap (Stigler & Hiebert, 1999).  In the book, 

Stigler and Hiebert present characterizations of teaching in Japan, Germany, and the United 

States that are drawn from their work on the Third International Mathematics and Science Study 

[TIMMS].  The book begins by noting the staggering statistics about the performance of 

American 8
th

 grade students in mathematics.  For example, on a basic algebra problem (Figure 

4-1a) less than 75% of US students answered the question correctly while 90% of Japanese 

students answered it correctly.  On the geometry problem shown in Figure 4-1b, 17% of US 

students correctly answered the question, while 69% of the Japanese students answered it 

correctly. 
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Figure 4-1: (a) Algebra Problem and (b) Geometry Problem 

from 8th Grade TIMMS Study 

As a way to investigate results such as these, the TIMSS study set out to better 

understand what teaching in these countries might look like.  Based on analysis of videotapes of 

hundreds of classrooms from the three countries, the researchers developed generalizations of the 

kinds of teaching that take place in each country.  They characterize US classrooms as focusing 

on learning terms and practicing procedures and note that, for the most part, content coverage in 

US classrooms consist of a great deal of “review,” with little student participation beyond giving 

short answers to questions.  In contrast, Japanese classrooms consist of structured problem 

solving with more active involvement in the learning process.  Through reading The Teaching 

Gap and the ensuing class discussions, the PSTs were positioned to reconsider their images of 

teaching and learning mathematics.  It is worthwhile mentioning that the characterization of 

teaching in Japan is largely consistent with teaching mathematics for understanding as discussed 

previously. 
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Variables and Rate:  Introduction to Understanding Mathematics 

Thompson & Thompson (1994) give a detailed analysis of the interactions of Bill, an 

experienced middle school teacher who took part in 6 months of professional development 

focusing on supporting students’ development of quantitative reasoning, and Ann, a sixth-grade 

student in another teacher’s class. Bill spent three sessions working one-on-one with Ann, 

teaching her about the concept of rates, which had been a recent focus of development sessions.  

Videotapes for the three one-on-one sessions between Bill and Ann, a high-achieving middle 

school student, were the focus of two university class sessions and one writing assignment. 

Though Bill was an experienced mathematics teacher with an impressive “grasp of 

curricular goals and pedagogical principles” (Thompson & Thompson, 1994), he had significant 

difficulty speaking conceptually about rates.  Thompson & Thompson (1994) suggest that this 

difficulty was a result of Bill’s lack of understanding of the subtleties involved in understanding 

the concept of rate conceptually. Bill had a “packed” understanding of division and 

proportionality (Thompson & Thompson, 1996). In the third video, an experienced mathematics 

educator takes over instruction of Ann.  The educator conceives of the purpose of the instruction 

as to assist Ann in developing a “speed schema” that is detailed by the following “conceptual 

curriculum for speed,” an image of speed that entailed conceiving of the following: 
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Speed is the quantification of motion; 

Completed motion involves two completed quantities – distance traveled and 

amount of time required to travel that distance (this must be available to students 

both in retrospect and in anticipation); 

Speed as a quantification of completed motion is made by multiplicatively 

comparing distance traveled and amount of time required to go that distance; 

There is a direct proportional relationship between distance traveled and amount 

of time required to travel that distance.  That is, if you go m distance units in s 

time units at a constant speed, then at this speed you will go a/b !m distance units 

in a/b ! s time units  (Thompson & Thompson, 1994, p. 5).  

In simplest terms, this understanding of speed can be summarized as when given information 

about any two of distance, speed, or time on a given interval, we also know something about the 

third quantity. The educator’s interaction with Ann was therefore guided by his knowledge of the 

following three (complementary) ideas: 

Division is an appropriate calculation to evaluate the size of a whole piece when a 

quantity is partitioned into a number of equal sized pieces; 

Constant speed implies a bi-directional, proportional correspondence between 

segments of accumulated distance and accumulated time; 

Total time as a number of seconds can be imagined also as a partition of total time 

into a number of equal-sized partitions (Thompson & Thompson, 1996, p. 17).  

The PSTs viewed the two videos from Bill’s work with Ann and one video of the 

mathematics teacher educator’s work with Ann and compared and contrasted the instructional 

actions of Bill (and Ann’s responses) with the instructional actions of the experienced 

mathematics educator (and Ann’s responses).  The PSTs then reflected on and analyzed Ann’s 

learning and the conceptual development that was supported by the instructional materials. 
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Introduction to Graphing and Covariation 

Approximately three weeks of the course were devoted to an introduction to graphing and 

covariation.  The purpose of this instructional unit was to help the PSTs develop a more 

structural understanding of the concept of function as covariation of quantities, as discussed in 

the Chapter II (see The Concept of Function). This segment of the course and the majority of the 

next section will be the focus of this study and discussed in detail in the following chapters.   

Applications of the Concept of Function 

The longest segment of the course involved the instructor presenting the PSTs with 

opportunities to further develop their conceptions of functions and to experience the utility of the 

covariational conception of function.  This phase of the course consisted of 11 problem sets 

covering a wide array of mathematical topics, including mathematical modeling, families of 

functions, trigonometry, polar coordinates, rates of change, and calculus.  Each of the problem 

sets consisted of 6-10 problems.  The problems were discussed briefly and ways of thinking that 

might be helpful in solving the problem were discussed.   The PSTs then worked at home, either 

individually or in small groups, on a subset of the problems.  At the following class session, PST 

solutions to assigned problems were the topic of a class discussion.  The instructor envisioned 

each of the problems as didactic objects; the purpose of the problem was not to see if the PSTs 

could or could not answer it correctly.  Each problem was thought to be something that the 

students could engage with and that a discussion about their thinking would result in a 

productive mathematical conversation.  This study analyzes the PSTs’ work and classroom 

discussions regarding many of the problems assigned in this section. 
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Geometry and Proof 

The course ended with a 3-week discussion of geometry and proof.  The mode of 

instruction was similar; there were three problem sets that focused on constructions and 

highlighted relationships and dependencies within the constructions. These constructions were 

assigned for multiple purposes.  First, they allowed the PSTs to explore and understand the 

importance of relationships and dependencies using the dynamic features of Geometer’s 

Sketchpad.  Second, they were designed to present an opportunity for the students to begin to 

learn to understand geometry rather than to do geometry. As was true in the entire course, the 

focus was on the students understanding the problems and proceeding logically through sensible 

steps. 

Assessment in the Course 

There were three types of written assignments that served to focus instruction and to 

evaluate the PSTs’ progress in the course.  For each of the problem sets, a write-up was 

submitted to the instructor following the class discussion of the problems.  In addition, there 

were two in-class exams.  Finally, there were three out-of-class projects, each with a write-up 

that was submitted to the instructor.  These projects consisted of (1) designing instruction on 

polar coordinates and teaching a school student; (2) designing a plan for instruction on linear 

functions by identifying cognitive objectives and designing activities that help students develop 

the identified ways of thinking; and (3) revising a textbook section. 

Overview of the Study and the Participants 

This study focused primarily on the class sessions that took place during weeks 3-10 of 

the course (Introduction to Graphing and Covariation and Applications and Extensions of 
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Covariation). The author was a participant-observer in the class for the duration of the study.  

The course was taught by an experienced mathematics educator who was also a graduate faculty 

member with whom the author had a prior working relationship.  In an effort to maintain the 

integrity of the study and to reduce any “contamination” of the data as a result of this academic 

relationship, communication between the course instructor and the author was avoided 

throughout the data gathering process – communication was kept to brief discussions regarding 

administrative issues (what was planned for the day, when particular items would be due, etc).  

The author and the instructor met and discussed the analysis of the data approximately once per 

month after data collection. 

 Three of the four PSTs enrolled in the class participated in the study (data from the PST 

who did not participate was not analyzed as a result of inconsistencies in the PST’s participation 

in the course)9.  The three participants were each mathematics and secondary education double 

majors.  Two were juniors and one was a sophomore. Each of the participants described him or 

herself as liking mathematics and considered himself or herself successful or very successful in 

mathematics. 

Each of the participants also had a pre-existing association with the instructor – in 

addition to teaching this course, the instructor was also active in the secondary mathematics 

teacher education program.  Though this factor added a level of complexity to any analysis of the 

interactions between the PSTs and the instructor, it is not believed that the PSTs felt any 

additional pressure to succeed or to respond in any particular way (that is, any more than they 

would with any classroom teacher).  The analysis of students’ mathematical and pedagogical 

                                                 

9
 The small number of participants in this study was not by choice. For a number of years, the course that this study 

was conducted in routinely had an enrollment of 8-12. 
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understandings that follows will cite multiple data sources to ensure that the effect of this pre-

existing association on the results is minimized. 

Data and Methodology 

Data Corpus 

Data collected for this study came from a wide variety of sources. I briefly describe each 

below. 

Initial Assessment. At the beginning of the course, the PSTs completed an initial 

assessment, which was analyzed to better understand the participants’ conceptions of 

function at the beginning of the study.  

Videotaped class sessions. Each class session from weeks 3 through 8 was videotaped 

(a total of 16 class sessions). 

Interviews. PSTs were interviewed once at approximately week 8 of the course and 

then again after they had taught their lesson to their high school student. 

Video of Instruction. The PSTs’ teaching of their lesson to their high school student 

(as part of Project #1) was videotaped. 

Assignment Write-Ups. For each of the problem sets, each PST submitted write-ups of 

specified problems. 

Instructional Plan and Reflective Essay. As part of Project #1 the PSTs designed a 

lesson on polar coordinates. In addition, once they had taught their lesson, they were 
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assigned the task of writing a reflective essay that highlighted what happened during their 

instruction, what their high school student learned, and why each was important. 

 

Methodology 

The methodology for this study was based on the Simon’s Teacher Development 

Experiment [TDE] (Simon, 2000).  This methodology has its roots in the constructivist teaching 

experiment (Cobb & Steffe, 1983; Steffe & Thompson, 2000; Thompson, 1979), which involves 

researchers “working at the edge of their [and their participants] evolving knowledge” (Simon, 

2000, p. 336).  The TDE is conducted from (and builds on) the “emergent perspective,” from 

which learning can be described as both individual psychological development and the 

development of the social practices of a group:   

The basic relation posited between students’ constructive activities and the social 
processes in which they participate in the classroom is one of reflexivity, in which 
neither is given preeminence over the other.  In this view, students are 
considered to contribute to the evolving classroom mathematical practices as 
they reorganize their individual mathematical activities.  Conversely, the ways in 
which then make these reorganizations are constrained by their participation in 
the evolving classroom practices (Cobb, 2000). 

Though my focus was on the individual development of the PSTs, the emergent 

perspective reminded me that a good part of this learning takes place in the social setting 

of the classroom, and understanding and explaining these social interactions that result in 

the (either desired or unexpected) individual development was vital to this study.  

Additionally, the emergent perspective gives this study the theoretical ammunition to 

examine the relationships between the PSTs participation in the classroom intervention 

(the classroom intervention) and their design and enactment of their own lessons and 

interactions with students.  Consistent with the emergent perspective, I did not focus 
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specifically on the individual development of particular PSTs or the development of 

social processes of the group of PSTs. Understanding the relationship between the 

participation in particular social practices and the individual development of PCK was a 

primary focus of this study. 

Secondly, the TDE is concerned not only with the mathematical development of the 

participants. It is also specifically concerned with better understanding teachers’ professional 

development.  Simon describes this aspect of the TDE as a “whole-class teaching experiment in 

the context of teacher development” (p. 345).  As a result, the TDE is an attempt to understand 

the relationship between the development of PSTs in a university course setting coupled with the 

learning and development that takes place in their work with students in school settings.  

Analytical Techniques 

The analysis for this study took place in two major phases:  ongoing and retrospective. 

Analysis of each of the phases of the study ultimately had as its goal the development of 

characterizations of the PSTs’ understandings of mathematics and mathematics teaching in the 

context of a particular event.  These characterizations can be described as understandings (or 

“models”) of how the students might be thinking. These models were created by observing 

students’ actions, individually and collectively, and by examining the artifacts they generated in 

order to develop hypotheses about the meanings and understandings they had so as to explain 

why each student acted as he or she did. The retrospective analysis provided the additional level 

of analysis by focusing not only on verifying the hypotheses developed throughout the study but 

for developing and verifying or refuting hypotheses about the relationship between these two 

aspects of mathematics teacher understanding.   
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The development of such models of student understanding is a theory-building activity — 

a process of examining the available data and interpreting students’ actions and their generated 

artifacts in order to generate coherent and viable hypotheses (Clement, 2000; Glaser & Strauss, 

1967; Steffe & Thompson, 2000).  Ultimately, the goal of this study was to develop a grounded 

theory:   

A grounded theory is one what is inductively derived from the study of the 
phenomenon it represents.  That is, it is discovered, developed, and provisionally 
verified through systematic data collection and analysis of data pertaining to that 
phenomenon.  Therefore, data collection, analysis, and theory stand in reciprocal 
relationship with each other.  One does not begin with a theory, then prove it.  
Rather, one begins with an area of study and what is relevant to that area is 
allowed to emerge (Strauss & Corbin, 1990). 

Ongoing Analysis 

Ongoing analysis took place throughout the duration of the study.  The classroom 

instruction segment of the study entailed the creation of field notes for each of the classroom 

sessions.  These field notes included detailed descriptions of the events and interactions that took 

place in the classroom and also included methodological notes, which indicated evaluations of 

the data collection methods, any changes to the plan for the study and data collection, and the 

rationale for such changes.  In addition, the field notes included theoretical notes10, or attempts to 

tie the observations to the relevant theoretical constructs as well as patterns in the data indicative 

of issues of possible theoretical importance.  Finally, the field notes included any relevant 

personal notes, including my personal reactions to the experiences in the field.  Immediately 

following each class session, the video from the session was viewed, the field notes annotated, 

and a theoretical memo for the session was generated.  This theoretical memo included (i) a 

                                                 

10
 I would like to thank Dr. Deborah Rowe for her contribution to the development of my methods of analysis. This 

came, in large part, from her course notes for EDUC 3912: Methods of Qualitative Research, Spring 2002.  
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discussion of what happened in the session; (ii) events or interactions of theoretical importance; 

(iii) examination of previously generated hypotheses; (iv) new hypotheses; (v) changes to the 

study design or data gathering procedure and a rationale for such a change.  Ongoing analyses 

for the other phases of the study were done similarly.  Though field notes were not generated, I 

viewed each piece of data (interview video or student generated artifact) and created a theoretical 

memo for it.  The recursive nature of the theoretical memos both organized the data and is 

consistent with grounded theory (Glaser & Strauss, 1967).   

Retrospective Analysis 

The retrospective analysis allowed me to further understand the relationships between the 

results of the first and second research questions – of ultimate interest for the field of 

mathematics education is the relationship between how teachers (might) understand a 

mathematical concept and the impact of this understanding on their instruction. The analysis took 

place in three levels.  

Analysis from a global perspective. At the end of the data generation, I viewed the entire 

data corpus chronologically, further annotating the theoretical memos and revising the 

hypotheses generated throughout the data collection.  This phase of analysis served to help me 

get a sense of the data corpus in its entirety.  Additionally, segments of theoretical importance 

with respect to the development of teachers’ understandings of functions, covariation, and 

pedagogy were identified.   

Line-by-line analysis.  Segments identified in the previous phase were coded for issues of 

theoretical importance.  Particular attention was paid to (a) the rationale for instructional activity 
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and (b) students’ activity and understandings.  Previously generated hypotheses were revised and 

refined. 

Pattern-seeking.  This level of analysis is an adaptation of the constant comparative 

method described by Glaser & Strauss (1967) and refined by Cobb and Whitenack (1996).  

Initially, the retrospective analysis was guided by the tentative conjectures from (a) the review of 

the literature discussed in the previous section and (b) the revisable conjectures from the analyses 

conducted during the ongoing analysis.  This analysis involved comparing the previously 

generated conjectures about the development of study participants with the entire data corpus (in 

chronological order).  Throughout this phase of retrospective analysis, conjectures made about 

ways the PSTs have come to understand functions and its implications on the way they conceive 

of and enact mathematics instruction were tested and, as necessary, revised while analyzing 

subsequent episodes. Much like the recursive nature of the analyses conducted during the 

experiment, this phase of analyses further tested and revised conjectures against the entire data 

corpus.  With respect to this phase of analysis, McClain notes that “this constant comparison of 

conjectures with data results in the formulation of claims or assertions that span the data set but 

yet remain empirically grounded in the details of specific episodes” (McClain, 2002a, p. 1545-

1550). 



 

 

 

 

 

PART TWO 

PRE-SERVICE TEACHERS’ EMERGENT 

UNDERSTANDINGS OF COVARIATION 



 

 57 

Introduction 

In the chapters of Part II, I analyze the development of a particular understanding of the 

concept of function among the PSTs in this study. The PSTs took part in instruction designed 

with the intent that they develop a coherent understanding of function as covariation of quantities 

and that they develop an understanding of the implications of that understanding on the teaching 

and learning of the majority of the concepts in secondary and college mathematics. Part II begins 

with an analysis of an initial assessment, which gave insight to how the PSTs thought about 

functions and functional situations before instruction began. I then present an analysis of the 

PSTs’ participation in the instructional sessions that took place throughout weeks 3 – 8 of the 

course. These class sessions were centered around three “problem sets” that were both the foci 

for classroom discussions and homework for the students to work on independently or in groups. 

The chapters of Part II will consist of an activity-by-activity analysis of the PSTs’ 

understandings of covariation; I use the instructional trajectory to organize the narrative account 

of the PSTs’ developing understandings of covariation. In order to see the PSTs’ growth, it is 

necessary to look at the details of how they engaged with the instructional activities. 

The two segments of the MTED 2800 instructional trajectory that this study focused on 

were an introductory phase and an application phase. Both of those phases were further 

subdivided into two activities. This organization is depicted in Table II-1 below. Interviews with 

the PSTs took place near the end of the application phase. 
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Table II-1: Introductory and  

Application Phases of Instruction 
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Introductory Phase 
1. Introduction to Graphing 

2. Introduction to Covariation 

Application Phase 
1. Functions and Models 
2. Graphs and Graphing 
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5 CHAPTER V 

PRE-SERVICE TEACHERS’ INITIAL CONCEPTIONS OF FUNCTION 

Initial Assessment 

It was conjectured prior to instruction that the PSTs would have some form of a 

correspondence conception of a function, though how entrenched these conceptions would be 

was not known. In this section, I discuss the PSTs’ initial conceptions of function, as evidenced 

from an initial questionnaire they completed prior to instruction. A selection of questions from 

the initial questionnaire is shown in Figure 5-1. 

 

Figure 5-1: Selection of Items from Initial Assessment 
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Based on the initial questionnaire, the PSTs’ understandings and conceptions of function 

can be described as fitting within two broad categories: (1) an attempt to recite a memorized 

definition (akin to the set theoretic, correspondence definition of a function as a mapping) and 

(2) function as something you “plug a number into to get the output.” In each of these categories, 

the PSTs believed that key characteristic of a function is that it is one-to-one. 

Memorized Definitions of an “Association”  

Each of PSTs’ responses to the question about their personal definition of a function 

indicated that they knew that there were two numbers involved, but could not clearly explain 

how what one number had to do with the other. Though a number of different words describing 

the association were used (relationship, correspondence, equation)
 
this was not the key aspect of 

their definition. Rather than focus on the relationship, their definitions focused on the “one-to-

oneness.” Below are examples of the PSTs personal definition11 of function (Question 1): 

KN: A function is a relationship between two sets of variables such that every 

variable in the first set corresponds to only one variable in the second set. 

DH: To me, a function is an equation that for every “y” value only has one 

associated “x” value. 

Though SS does not specify the one-to-oneness in her definition of function, she does rely on it 

throughout the questionnaire. For example, in answering Question #2, which deals with judging 

the validity of various definitions of functions, she refers to a linear function and notes that the 

function allows her to “plug in x and get out exactly one y.”  

                                                 

11 Though SS does not specify the one-to-oneness in her “definition” of function, she does rely on it throughout the 

questionnaire. 
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These definitions seem to rely on the notion of a mapping, a rule, or a correspondence. 

These ideas of mappings can be imagined as the act of “pairing” one element from a set with one 

element from a second (the same or possibly a different) set. There is no sense that the variables 

represent values of quantities, nor that the elements in the set are particular values of that 

quantity. In addition, there is no sense that the quantities can vary, and the function, rather than 

“doing something” to a number, describes how one quantity behaves over a subset of sequential 

values of the second quantity – in short, for these PSTs, with respect to functions, nothing is 

varying. 

Functions as “Things You Plug Numbers In To” 

Two of the three PSTs (SS & DG) had an underlying understanding of functions as 

something you “plug numbers in to”. SS highlighted this aspect of a function in her explanation 

of her personal definition of a function (Question 1): 

SS: A function is an equation that has variables in it. These variables (x, t, v, …) 

can be substituted with data to produce another set of data. 

DH, in an attempt to explain whether something “whose function values are all equal to teach 

other” was a function (question 4) noted: 

DH: [It can be a function, for example] f(x) = 1 is a function. No matter what x-

value you plug in, all of the y-values, or function values, will be the same, 1. 

This notion of a function fits with traditional instruction, where function problems are often of 

the form “given a function f(x), find f (a),” where a is some number or some algebraic expression 

containing numbers and variables. 
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Embedded Assumptions about “Function” Problems 

A second aspect of the participants’ conceptions of function, which emerged from 

analysis of the data, was the fact that, regardless of the particulars of the problem given, PSTs 

had a tendency to answer the questions in a particular way. First, they would describe key 

characteristics of the graph, function, equation, etc. They would then call on the “vertical line 

test” or some analytic version of it to determine functionness. Though this way of thinking was 

apparent throughout the initial questionnaire, it was most apparent in Question 3 (Given various 

descriptions of “relationships,” participants were asked to determine if each was or was not a 

function). For example, for y =
3x

2
+ 2x

x !1
 (Question 3a) the PSTs concluded that it was a 

function: 

KN: This is an asymptotic function 

DH: This equation is not continuous at x= 1 (there will be a hole in the graph). 

Pictures indicating the asymptote and the application of the “vertical line test” accompanied their 

explanations. Similarly, for Question 3c, a piecewise defined function, KN noted 

KN: [It is a] function. This is piecewise. For every odd integer, there is only one y-

value. For every integer there is only one y-value.  

For Question 3d, given the equation 4
22
=+ yx , DH drew a picture of a circle and commented 

DH: [It is] not a function. This is the equation of a circle with radius 4. As I said 

before, there cannot be multiple y-values [when] given one x-value, and a circle 

has 2 y-values for every x-value. 

For the same problem, SS solved the equation for both x x = 4 ! y
2( )  and y y = 4 ! x

2( ) , as 

shown below (incorrectly) in Figure 5-2. 
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Figure 5-2: SS's (incorrect) figure for  

Problem 3d, 
  x

2
+ y

2
= 4  

Discussion of Initial Conceptions 

PSTs’ responses to the initial questionnaire indicate that their understanding of the idea 

of function was very poorly structured. First, they knew that a function is some sort of an 

association between two numbers, however they did not have any sense of the significance of 

that association. Second, they knew that if given a value they could use the function to find the 

corresponding function value. Evidence indicates that their initial conceptions were more 

advanced than an action conception, because they talk about evaluating a function “in general” 

(see SS’s comment on Page 61). To see why this understanding is “more advanced,” it is helpful 

to compare the SS’s comments with a student who when presented with a function, needs to be 

given an x-value (or a number of x-values) to make sense of the function; the PSTs regularly 

spoke of plugging in “some x-value,” not a specific ones. In addition, KN, in explaining why a 

function as a “computational process” was not a good definition of function, noted that a 

function is not a “producer of values,” but a relationship between quantities. Despite this, there is 

evidence that the PSTs were not reasoning covariationally. First, the PSTs showed no clear 

understanding as to what the variables were; KN (in (1)) defined a function as a relationship 

Vertical line 

test disproves 
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between two sets of variables, not sets of elements. Further there is no notion of the fact that the 

values of the variables vary. There is no indication that the PSTs had developed an image of 

variables as either values of a quantity or a variable magnitude. The relationship they described 

was solely an input-output relationship between elements in the domain and elements in the 

range. Though they may have been able to “connect the dots” in a graph, there was no evidence 

that they were conscious of the fact that the quantity represented by the variable x varies, say 

from 1 to 2. It should be noted that these PSTs’ understandings of functions is consistent with the 

K-14 mathematics curriculum, which places no emphasis on covariation (Thompson, 1994b).  

Traditional Images of Functions 

Despite the fact that PSTs did possess understandings of functions as associations and 

functions as things you plug numbers in to, these ideas were not the focus of the PSTs’ responses 

to the items on the questionnaire. Rather, they focused on the fact that for something to be a 

function, it must be one-to-one. Each of the PSTs, when asked about their personal definition of 

a function, highlighted the fact that there can be no more than one output for every input and 

drew pictures of functions, some of which passed the vertical line test and some of which did 

not. Thus for these PSTs, the question dealing with their understanding of the concept of 

function conjured up an image of particular problems or tasks associated with functions.  

This notion is consistent with the two major images that dominate high school and 

university discussions of function: a mapping definition and a “function machine” definition. 

The “mapping” image of a function involves two sets of elements, the domain and the range, and 

lines connecting an element in the domain to exactly one element in the range (each line is to 

represent the functional relationship or the “mapping” between a particular element in the 
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domain and the range). An example of mapping diagram of a function that maps 1 to 2, 2 to 3, 3 

to 4, 4 to 5, and 5 to 1 is shown below in Figure 5-3.  

 

Figure 5-3: Mapping diagram of a function. 

A function machine image of a function involves imagining a “machine” that converts elements 

from the domain into an element in the range. The following is a typical description of a function 

machine: 

Another way to understand a function is as a machine. A machine has an input 
and an output. There is a relationship that exists between the input and output. 
The output depends on the input. The machine receives the input and transforms 
it into the output. For example, a toaster is a machine. When bread is input in the 
machine the output is toast. A washer is a machine. When dirty clothes are input 
into the machine the output is clean clothes. An oven is a machine. When raw 
meat is input into the machine the output is cooked meat. Some machines are 
complex. The human body, for example, is the most complex and sophisticated 
machine known. Think of the myriad of physical, emotional, mental, social, and 
spiritual inputs needed to have healthy persons. The output is nothing less than 
the whole of civilization across time and geographical boundaries!12 

                                                 

12
 Quoted from “Function Machine” handout, available at http://score.kings.k12.ca.us/lessons/ functions.html. 
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It comes as no surprise that the PSTs were not attuned to the relationships between varying 

quantities, for these images depict functions as a “black box” that transforms inputs to outputs 

via some (known or unknown) process. I am aware that it is likely that curriculum designers, 

textbook authors, and classroom teachers see mathematical significance in these “black box” 

images of function, but we cannot assume that PSTs do. Our sophisticated meanings and 

understandings of inscriptions can complicate the task of making sense of our students 

understandings (McClain, 2002b). I am not claiming that these inscriptions cannot embody deep 

mathematical ideas. Rather I am claiming that these common inscriptions do not highlight the 

aspects of functions that I am focusing on and therefore it makes sense that the PSTs have not 

developed understanding of these aspects. 

PSTs’ Assumptions About Tasks 

The second observation regarding the PSTs’ understanding of functions was the fact that 

they seemed to have a routine approach for answering questions that dealt with functions. First, 

they described key aspects of the graph of the function and then used the vertical line test to 

determine if the graph of the function was a function. This indicates two things. First, the PSTs, 

as a result of their experiences, have developed a notion of the types of problems asked about 

functions and as a result, think of functions as things to describe the shape of or to things to 

classify. A result of this is the PSTs’ assumption that functions are graphs, for the aspects of the 

functions that are being organized are visible from their graph and not from their equation. 

Second, there is little thought given to the particulars of the function in question. It is as if the 

PSTs’ primary agenda is to classify the graph (function or not function; linear or non-linear, 

etc.). This notion will arise throughout this study, for it is taken as evidence of the PSTs not 
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focusing on the variable quantities and how they covary but rather on broad characteristics of the 

graph.  



 

 68 

6 CHAPTER VI 

INTRODUCTION TO GRAPHING AND COVARIATION 

The intent of this segment of instruction was that the PSTs begin to develop an 

articulated, imagistic understanding of functions as covariation of quantities. It was not the intent 

that the PSTs slightly modify their current conceptions of function, but rather for them to take 

part in activities that would allow them to develop a variety of experiences that would (i) serve 

as an impetus for the development of a new or significant refinement of their current conception 

of function and (ii) serve as an experiential base from which the PSTs might abstract aspects of a 

covariational conception of function. 

As indicated previously, the introductory phase consisted of two activities: Introduction 

to Graphing and Introduction to Covariation. 

Introduction to Graphing 

TI13 held the stance that inherent in the desired understanding of graphing was the idea of 

recording values of quantities that are varying simultaneously. This was the broad goal of the 

instructional activity that was introduced briefly at the end of session 3 and continued through 

session 4. An overview of this set of activities is shown below in Table 6-1.  

 

                                                 

13
 Henceforth, I will use TI to refer to the instructor. 
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Table 6-1: Overview of Activity 1: Introduction to Graphing 

Lesson/Date Activity 1: Introduction to Graphing Approx. Duration 

3    9/7 

Part 1: Keeping track of One Quantity 

Part 2: Keeping track of Two Quantities & 

Coordination of the Quantities 

11 min 

28 min 

4    9/9 Part 3: Reflection on Introduction to Graphing Activities 12 min 

 

This activity was designed to help the PSTs (a) envision a graph as being a collection of 

points; (b) envision the collection of points as being generated by keeping track, simultaneously, 

of two quantities whose values vary; and (c) envision that the coordinates of every point in a 

graph represents, at once, values of two quantities. The progression began with TI walking a 

distance and the PSTs keeping track of particular attributes of TI’s motion. The activity involved 

the PSTs modeling the time that elapsed during TI’s walk and the total distance that he had 

walked first separately, then together, and then finally in a coordinated manner. TI believed that 

the PSTs would develop the notion of a variable quantity (either distance walked or elapsed 

time) through the actual physical activity of modeling each quantity. This modeling served two 

purposes. First, it foregrounded the fact that a variable is, in fact, a measurable quantity. Second, 

the PSTs were also physically modeling a measurable quantity that is varying (or at least can 

vary) and thus they were developing experiences with variable quantities. Finally, through 

coordinating the behaviors of the two variable quantities, the PSTs were developing experiences 

that would enable them to begin to develop a covariational conception of function. Pictorial 

depictions of these activities are shown below in Figure 6-1 through Figure 6-3. 

Activity 1, Part 1: Keeping Track of One Quantity 

The first activity involved the PSTs using the length of a vertical segment to model the 

distance traveled by TI. The PSTs defined their segment by locating a starting point on their desk 
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as one endpoint and using the location of their left forefinger finger as the other endpoint (Figure 

6-1). The PSTs were told to move their finger such that this vertical distance would represent the 

total distance traveled by TI during his walk. In the second activity, the PSTs were to use the 

length of a horizontal segment to model the time that TI had been walking. They defined their 

segment by their original starting point as one endpoint and the location of their right forefinger 

as the other, with the distance between the starting point and right finger representing the elapsed 

time at every moment of the teacher’s walk (Figure 6-2). The purpose of this activity was to help 

the PSTs develop an experiential sense of variables (what the PSTs were keeping track of) as 

quantities that can vary.  

 

 

Figure 6-1: Keeping track of distance traveled 

 

Figure 6-2: Keeping track of elapsed time 
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Summary of Instruction 

The only difficulty the PSTs experienced in this activity was when TI reversed direction. 

Every student failed to note that his total distance traveled was still increasing. Instead, they 

adjusted their vertical segments to indicate that his total distance traveled began to decrease. TI 

clarified what the PSTs were supposed to track and noted the fact that he purposely made the 

quantity that they were tracking one that they could not perceive directly – they had to 

conceptualize it.  

A similar difficulty occurred when the PSTs were asked to keep track of the elapsed time: 

During his walk TI stopped momentarily, standing stationary. One PST stopped moving his 

finger, indicating that he was using that finger to follow TI’s movement instead of using it to 

track time. TI pointed this out, and noted that the elapsed time had not stopped.  

Discussion of Part 1 

At the beginning of each of the segments of Part 1, the PSTs’ attention was focused on a 

limited view of the motion that they were tracking. They were initially focused on the aspects of 

the motion that were visually perceptible – for example when tracking the distance TI had 

walked, the PSTs were tracking the movement of TI not the distance that he had walked. In order 

to keep track of and model these variable quantities, the PSTs needed to focus on non-visible 

attributes of the motion, not the actual movement of TI. After a few tries, the PSTs were able to 

model the behavior of each of the two quantities, indicating that the PSTs were at least 

unconsciously paying attention to a variable magnitude quantity – precisely the understanding of 

the idea of variable that is one of the main aims of the introduction to graphing activities. 
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Activity 1, Part 2: Keeping Track of Two Quantities 

Part 2 served as an opportunity for the PSTs to coordinate the behavior of the two 

quantities they had been tracking in Part 1 by keeping track of total distance with their left hand 

and elapsed time with their right hand simultaneously. This was done in two steps: at first simply 

letting both fingers model the varying quantities (Figure 6-3a) as they had done in Part 1, but 

moving both fingers at the same time; and second, coordinating the two by keeping the 

“distance” finger directly above the “time” finger (Figure 6-3b). The intent of Part 2 was 

twofold: (1) that the PSTs develop an experiential base for thinking about simultaneous variation 

of two quantities, and (2) that the PSTs actions would give TI an opportunity to relate the idea of 

covariation and the idea of a graph. TI anticipated accomplishing this by (a) asking the PSTs to 

imagine their distance finger covered in fairy dust, so that it left a trace of its locations at every 

moment of tracking (see callout in Figure 6-4) and (b) orchestrating a discussion about what each 

particle of fairy dust represented. 
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Figure 6-3: (a) Keeping track of elapsed time and distance 

traveled together; (b) Keeping track of elapsed time and 

distance together in a coordinated manner 

Summary of Instruction 

After a few attempts, each of the PSTs was able to trace out the covariation of the 

distance traveled and the time elapsed (Figure 6-4). TI then related their previous activities and 

the PSTs’ developing notion of variables to the idea of a graph. In Excerpt 6-1, we see TI helping 

the PSTs develop an image of the graph as emerging from keeping track of the varying 

quantities. He then used this image of the graph as a didactic object to support reflective 

discourse on what composes a graph (points) and what the coordinates of each point on a graph 

represent (values of each quantity at the same moment). 
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Figure 6-4: PSTs modeling the covariation 

Excerpt 6-1 (Session 3, 09/07/04) 

1. TI: OK, are you getting a sense of where this is going? What have you 

just made? 

2. SS: A graph. 

3. DH: A graph.  

4. TI: You've made a graph, didn't you? … By keeping track of how much 

time that I!ve traveled simultaneously with how far I!ve traveled. Now 

let!s make it more concrete that you!ve made a graph. … 

Unbeknownst to you I have put a little cup of fairy dust in front of each 

of your places. Now you know what tinker bell does when she flies 

through the air. … She leaves a trail, right. (pause) What!s that trail 

made of? 

5. DH: Lots of points  

6. TI: Yeah. … Lots of little “fairy dust” particles. Yes. (pause) What does 

each one of those particles represent? 

7. SS: How far she has gone in a certain time.  

8. TI: Yes. Where she was at a certain moment in time. It just stays right 

there [points to a particular location on the imaginary graph] … and 

you come up and you get your I eyeglass out and you look at it and 

can say that tinker bell was right here at whatever moment of time it 

took her to get right here. … So now you reach out and put your 
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distance finger into the fairy dust bowl. So that you have fairy dust on 

the end of your finger–  

9. DH: – Are we still doing the time finger too?  

10. TI: Now do that with both fingers together. Distance always staying above 

the time finger, all right? Here goes. [TI walks]  

All right. Now can you imagine the graph you just made out of fairy 

dust. … So you see this line, this line that we normally thought about 

being swept out. And being solid. … When we think about it as being 

composed of fairy dust particles, it!s clear that that line won!t hold any 

weight. You can!t put something on top of it. It!s ephemeral. (pause) 

What does each particle of fairy dust represent … In the graph that 

you!ve just made? 

11. DH: The total distance you!ve traveled at that point in time.  

12. TI: Yes. The total distance I!ve traveled at that particular moment in time. 

So each particle is two-dimensional. Each particle records two pieces 

of information. How far I travel, and the amount of time I!ve taken to 

travel that far. 0. 

In the above excerpt, we see TI shifting the discussion from modeling the scenario to a 

discussion about what the modeling has to do with the idea of a graph. The PSTs (lines 2 & 3) 

were quick to notice that their fingers were tracing a graph of TI’s distance traveled as a function 

of the elapsed time. In lines 4-8, TI returned to the notion of creating a graph and proceeded 

through an activity where a graph was created from fairy dust as the PSTs tracked values of 

distance and time simultaneously. The PSTs appeared to make this shift fairly easily, however 

DH’s comment brings this notion into question.  By asking if she is to move her “time” finger as 

well (line 9), DH was indicating that though she may be aware of the fact that the scenario 

involves two quantities, in this activity her attention is focused on only one quantity (the distance 

traveled).  
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Activity 1, Part 3: Reflections on Introduction to Graphing 

As homework, the PSTs reviewed a lesson description and rationale that TI had created 

for the activities in which they had participated (Activity 1, Parts 1 & 2). Class session 4 began 

with a discussion of the lesson summary.  

Summary of Discussion 

The discussion centered on two main characteristics of the lesson (as planned and as 

enacted – the PSTs all felt that the lesson plan accurately depicted the activities and discussions 

they had taken part in in the previous lesson). The first topic of discussion was whether the 

PSTs’ future students would “like” the activities and whether middle or high school students 

would see the activities as too childish. The second topic was about the PST’s interpretations of 

the importance of the lesson. Excerpt 6-2 contains a segment of this discussion. 

Excerpt 6-2 (Session 4, 09/09/04) 

[TI poses a question about the importance of the lesson]  

1. SS:  I mean it!s a good visual with like moving your fingers and, pretty 

much any kid can do that. [SS moving her fingers, coordinated in the 

air – the vertical finger staying directly above the horizontal finger 

(Figure 6-5a)]. … And like see how it!s changing.  

… (discussion about the ages of students) 

2. DH: Well, I think [it!s important to] … draw this graph in the air. [DH is 

moving two fingers in front of her in an uncoordinated manner (Figure 

6-5b)] You know, having … drawing it on paper is a more concrete 

version. Kids are like, “math is done on paper”. Whereas, if they!re 

doing it in the air and trying … and trying to just make these 

relationships, it!s not like you!re doing a graph. 

3. TI: OK, anything else? (pause) Where do you see this going? Do you see 

any long-term payoff?  

4. SS:  You mean like for the student who!s taught this? 

5. TI:  Right … any long term payoff in terms of what you as a teacher could 

leverage and use thematically in your instruction.  
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6. SS:  I fell like you wouldn!t have to … I mean with something like this … 

and then being able to grasp a lot deeper what!s going on, I mean 

what!s really going on, not just like “ooh, I can draw the graph” but 

truly understanding the graph. Then you wouldn!t have to explain it as 

much. 0. 0} 

 

 

Figure 6-5: Modeling quantities (a) in coordinated manner 

(2-dimensions) and (b) in an uncoordinated manner 

(each in 1-dimension) 

In the above excerpt, we see further evidence of DH not thinking in terms of the 

covariation of quantities. In line 2, we get a glimpse of her mental image of the activity involving 

moving her fingers to “try to make the relationships.” Her movement of her fingers in one 

dimension is evidence that she has not yet developed a means of coordinating the variations of 

the two quantities. She envisioned two varying quantities, not two quantities covarying.  

Excerpt 6-2 also indicates that the PSTs’ were focusing on “visualizing” the graph (line 

1) and “understanding” graphs (line 6). Of interest is the question of what it was that they were 

visualizing and understanding.  
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Discussion of Introduction to Graphing 

Thus far, I have claimed that the PSTs’ attention in the Introduction to Graphing 

activities was on the behavior of individual quantities. At least one of the PSTs had yet to 

develop a mechanism to coordinate the behavior of the quantities (or – at a minimum – the 

coordination of the quantities was not the salient aspect of the activity); in order to reason 

covariationally, the PSTs must develop imagery that involves the coordination of the variable 

quantities. This coordination is difficult to develop, for the PSTs likely have two competing 

images of variables, functions, and graphs. The first involves varying quantities and the graph as 

a collection of correspondence points, each representing particular coordinated values of the two 

varying quantities (consistent with the Introduction to Graphing instruction). The second 

involves the notion of a point moving along a graph much like a wooden bead moves along 

sculpted metal wires in children’s toys. In the latter, the point is moving along a specific path and 

understanding the graph involves understanding the shape of the path, which does not rely on 

developing a scheme for coordinating the two variable quantities.  This latter image, one which 

the PSTs have developed over years of traditional school mathematics instruction, appeared to 

dominate DH’s reasoning about variable quantities: her attention was on trying to fit her fingers 

to the envisioned curve and not on trying to understand the curve as a result of the variation of 

the quantities that are modeled by the movements of her fingers. This notion of competing 

images and a graph defining a point (as opposed to the graph being a locus of points) will arise 

repeatedly in subsequent sections. 
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§ 

Introduction to Covariation 

The instructional activity that followed the introduction to graphing was titled 

Introduction to Covariation. This segment of instruction was designed to provide experiences 

that would assist the PSTs in their transition to covariational reasoning. The activities called 

upon a relationship that does not fit the traditional “function” characteristics of having an 

independent and a dependent variable14. The PSTs related two distances that varied 

independently of each other (i.e. neither was “dependent” on the other). The overall instructional 

objective was to have the PSTs interact with a computer generated environment designed to 

focus attention on (i) varying quantities and (ii) the way those quantities vary together 

(covariation). It was believed that this set of instructional activities would foreground issues of 

variable quantities and graphs as a record of the covariation. The introduction to covariation was 

the focus in parts of three classroom sessions and one written assignment. An overview of this 

instructional segment is presented in Table 6-2 below. 

                                                 

14 Though there was, in reality, an independent variable and two dependent variables, the quantities that were being 

tracked were independent of each other. 
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Table 6-2: Overview of Activity 2: Introduction to Covariation 

Lesson/Date Activity 2 Approx. Duration 

3    9/7 

 

Part 1: Introduction to Cities A&B 

Part 2: Discussion of Introduction to 

Covariation Homework 

11 min 

5 min 

 

4    9/9 

Part 3: Imagining behavior of varying 

quantities: Arrangement 1 

Part 4: Imagining behavior of varying 

quantities: Arrangement 2 

Part 5: Imagining the arrangement: 

Arrangement (b) 

8 min 

 

6 min 

 

5 min 

Overview of Cities A&B15 

A simple Geometer’s Sketchpad [GSP] sketch, titled Cities A & B, was used as the 

setting for the PSTs to explore variables and covariation. The dynamic sketch involved a model 

of a car on a straight road that passes near two cities (see Figure 6-6a). PSTs could choose to 

make the sketch generate a horizontal line segment to represent the distance between the car and 

City B and a vertical line segment (with the same origin as the horizontal one) to represent the 

distance from the car to City A (Figure 6-6a). Additionally, the PSTs could make the sketch 

show the path traced out by the correspondence point – the point whose coordinates represent 

the distance from the car to City A and the car to City B – for all possible locations of the car 

(Figure 6-6a). This sketch was created specifically so that the resulting “graph” was created by 

keeping track simultaneously of values of the varying quantities. TI believed that this would help 

alleviate the PSTs of their tendency to think of graphs as simply points that are found by 

substituting a value of x to get a corresponding value of y. 

                                                 

15
 The reader is encouraged to see Saldanha & Thompson (1998) for more information regarding these instructional 

activities. 
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Figure 6-6: Cities A & B Geometer's Sketchpad Sketch, (a) 

with horizontal and vertical line segments representing 

quantities and (b) with a locus of “correspondence points”  

The plan for the Cities A & B instruction consisted of four levels (Saldanha & 

Thompson, 1998).  The first level, called Engagement, was designed to allow the PSTs to “begin 

‘making sense’ of the simulation and building the idea of covariation” (Saldanha & Thompson, 

1998).  The second level, called Move to Representation was designed to help focus the PSTs’ 

attention on the behavior of an individual quantity (this was really two activities – one for the 

distance from the car to City A and one for the distance from the car to City B).  This was 

accomplished through tasks that presented the PSTs with configurations of the car and cities and 

asking them to use enactive modeling to predict the behaviors of the distances from the car to 

each of the cities (Figure 6-8a and Figure 6-8b) as the car moved along the road and then to 

predict the graph they would make by tracking the distances simultaneously (as in Introduction 

to Graphing).  As part of these tasks, the PSTs were to imagine the behavior of the quantities, 

conjecture about the graph of the covariation, test the conjecture, and finally to revise their 

conjecture.  The third level involved predicting the arrangement of the cities given a graph of the 

correspondence point, and again asked the PSTs to conjecture, test, and revise their conjectures.  

The fourth level was aimed at helping the PSTs examine general properties of the graph of the 
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correspondence point to help “internalize the simulation, so that they can engage in the 

simulation by thought experiments, and later so that they can think about properties of covarying 

quantities” (Saldanha & Thompson, 1998).   

The activity’s design highlighted the problematic aspects of the Introduction to Graphing 

activities: rather than focus on the movement of the car along the road, the PSTs needed to focus 

their attention on “imaginary” segments that represented the distance between the car and the 

cities. Again, the PSTs had to pay attention to an attribute not initially obvious or visible in the 

setting. 

Activity 2, Part 1: Introduction to Cities A & B.  

At the end of class session 3, approximately 10 minutes was spent orienting the PSTs 

towards the Cities A & B activities. This activity was to serve two purposes. First, the activity 

was envisioned to help the PSTs become familiar with the computer application. Second, it 

would allow TI to begin to focus the PSTs’ attention on the variable quantities and thus provide 

the PSTs with a firm background to work on the activities at home. Figure 6-7, below, shows the 

activities that were projected onto a screen at the front of the room. 
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Figure 6-7: Excerpt from Activity 2, Cities A&B 

Summary of Instruction 

Instruction began with the PSTs imagining and describing the behavior of the length of 

the segment from the car and City A (#1-4 in Figure 6-7). In response to questions 1 through 4, 

the PSTs’ first inclination was to discuss global characteristics of the situation. For example, 

when explaining the behavior of the “distance to City A” (Figure 6-8b), KN noted that the 

distance is “going to get shorter then longer.” To see why this makes sense, the reader should 
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imagine the pictures in Figure 6-8(a & b) below as dynamic sketches. In particular the point 

labeled “car” is free to move along the “road” and as it does, the length of the dashed line, 

representing the distance between the car and the city is changing. The horizontal and vertical 

lines are constructed so that they are exactly the same length as the dashed line, but in a 

particular location and orientation. As the car moves along the road, the vertical (and horizontal) 

segment does get shorter and then get longer. 

 

Figure 6-8: (a) Sketch showing horizontal bar representing the 

distance to B and (b) showing vertical bar representing the 

distance to A 

TI probed the PSTs about when the distance ceased getting shorter and began getting 

longer, an attempt to shift the PSTs’ attention from global characteristics (bigness and smallness) 

to a specific description of the situation. The following excerpt describes that interchange and 

what followed. 
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Excerpt 6-3 (Session 4, 09/09/04) 

[On the screen is the cities A&B 
sketch and only the vertical bar 
labeled City B is shown (Figure 
6-9, right).  TI is moving the car 
along the road and the height of 
the vertical bar is changing as the 
distance from the car to City A is 
changing.]  

1. TI:   It!s going to get shorter and longer.  Where will it stop getting shorter 

and start getting longer?  

2. KN:   When the line connecting the car and the city is perpendicular.   

3. TI:   Okay.  And is the same true for the 

distance between the car and City B?  

(pause)  All right, so I!ll go ahead and 

… [TI hides the horizontal bar and 

shows the vertical bar, which 

represents the distance between the 

car and City A.  He then moves the car 

along the road and the length of the 

bar changes accordingly.  See Figure 

6-10.].  Now is that distance varying in 

the way you anticipated?   

4. DH:   Well yes, but why is one horizontal and vertical – 

5. SS:   – If you graph them together it!s just like – one is horizontal and one is 

vertical. 

6. DH:   Oh 

7. TI:   You could put it together as well.  OK, now 

I!m going to show A again. … [TI shows both 

vertical bar – representing the distance 

between the car and city A – and the 

horizontal bar – representing the distance 

between the car and City B simultaneously.  

He then moves the car along the road and 

the lengths of the bars change accordingly.  

See Figure 6-11]  Now, you see, now what 

do you see about the distances? 

Figure 6-9:  Distance 
from B Varies 

Figure 6-10:  Distance from A 
varies 

Figure 6-11:  Both distances 
vary 
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8. SS:   How they relate to each other?  

9. TI:  OK. (pause)  Prior to even how they relate … is the fact that they!re 

even varying simultaneously.  … Now if you talk about how they 

relate, SS, how would you talk about how they relate?   

10. SS:   I don!t know.  It just seems like problems I!ve seen where they ask 

questions like that what point are you the same distance from A and 

B. … At what point are you the farthest from A and the closest to B? 

…  Which is like – (pause)  That!s what I recall.  Problems like that. 

This is a much more visual presentation.   

11. TI:   Now that!s in the context of getting an answer to a question … now 

have I asked any questions?  … So just what do you notice?  What do 

you notice about the way they vary?  

12. SS:   They both decrease and increase again  

13. TI:   OK, they both decrease and increase again.  Anything else?  [TI 

animates car moving along road.  As a result, the vertical segment 

(Distance from A) and the horizontal segment (Distance from B) vary 

accordingly.]  What do you notice about the way those distances are 

varying together? … Are they getting longer and shorter in the same 

way?  …  DH?  Try describing what you see.   

14. DH:   I see that both of them at different times, but when they turn around to 

go the other direction it slows down.  They!re not doing it at the same 

time, but when the distance from A, right about there, it!s changing 

directions it slows down and then speeds up.  And then B is doing the 

same thing.  It!s going away and then coming back.  And it!s almost 

topped it goes back a little bit, but when it turns around its slowing 

down. 

15. TI:   Anybody else?   

16. DH:   Are they doing the same things at different times?   

17. SS:   You put the cities so they!re doing exactly the same things, but 

switched.   But … at this moment [each is] like just a mirror image of 

the [other] distance.  

18. DH:  It looks like they!re going through the exact same pattern just starting 

at a different time. 0. 

All of the PSTs were in agreement with KN’s utterance in line 2 that the distance 

between the car and a city changes from decreasing to increasing when the car is at the 

intersection of the perpendicular from the city to the road. (In fact, line 10, SS recognized this as 
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a “traditional” problem and before thinking about the situation, indicated that the answer was 

going to be “when it was perpendicular.”) The PSTs were aware of the location along the road 

where one characteristic of the quantity in question changes. For purposes of clarity, I will call 

this point a one-dimensional landmark (the need for “one-dimensional” as a modifier will be 

explained later). In line 7, TI moved the discussion to the relationship between the quantities, 

making the logical assumption that the PSTs would be able to make sense of the one-

dimensional landmark for the second quantity (distance to City B). The PSTs’ initial inclination, 

as evidenced in lines 13-18, was to compare the behaviors of individual quantities, rather than to 

focus on the covariation of quantities.  

 TI then intervened and proposed the following example of how one might begin to think 

about the way the distances vary together: 

As the car starts from that end, while the distance to City B gets shorter, the 

distance to City A gets shorter faster. And as it passes perpendicular, the 

distance from City B increases while the distance from City A continues to 

decrease, until the car gets directly opposite City A and then they both increase 

simultaneously. (TI, 09/07/04) 

The reader should notice the qualitative differences between TI’s description of how the 

distances vary together and the PSTs’ explanations in the above excerpt. Rather than being 

focused on how the behavior of the two quantities compare, TI focused on key landmarks (where 

the line segment between the car and the city is perpendicular to the road) and then on what 

happened to one quantity as the values of the second quantity vary within the particular sub-

interval of the road. 

The class continued with the PSTs trying to explain the behavior of the quantities, 

however their explanations were still grounded in the individual behavior of the quantities, rather 

than the way they covary. For example, SS described the way the distances vary together: 
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OK, so for instance, both City A City B distances are decreasing, once [the car] 

hits city B perpendicular, then it starts, umm, [increasing] for City B and City A … 

decreasing all the way until it!s perpendicular to City A and then they both 

increase again the rest of the distance. (SS, 9/7/04) 

The PSTs’ attention at this point, as evidenced in Excerpt 6-3 by SS’s quote above, was on the 

behavior of the individual quantities – the PSTs are still comparing them. The class session 

ended with TI asking the PSTs to track the distance between the car and City A with the 

horizontal finger and the distance between the car and City B with the vertical finger, as they had 

done in the introduction to graphing activities. After some practicing, the PSTs were able to 

model (in the air, with their fingers) the behavior of the two quantities. However, it was quite 

obvious that their attention was not on the covariation of quantities, but rather on the overall 

shape of the graph. For example, in response to the arrangement of the cities and the road (Figure 

6-12a), the PSTs had generated (with their fingers) a graph similar to the one shown in Figure 

6-12b. 

 

Figure 6-12: A "U-Shaped" Graph 

TI the asked the PSTs what they had just created. The PSTs’ replies were focused on the “shape 

of the graph”, as indicated by responses like “looked like a parabola” or “kind of V shaped.” 

Their attention was no longer focused on the fact that the curve was the result of tracking the 
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quantities’ values as they varied simultaneously. Rather, their focus had returned to the “shape” 

of the graph.  

Discussion of Part 1 

In this activity, the PSTs first explored the Cities A & B GSP sketch. They were able to 

describe the behavior of the two distances individually and, with a bit of help from TI, were able 

to describe the covariation of the quantities. Their description was consistent with the graph that 

the GSP sketch generated as the collection of correspondence points. Once the graph was 

displayed, however, the PSTs’ attention returned to the graph’s shape and was no longer focused 

on the behavior of the quantities whose covariation produced the graph. It must be noted that the 

fact that it was or was not a parabola is not my purpose in discussing this classroom interaction. 

More important was the fact that their attention had shifted from the quantities that were varying 

to global characteristics of a graph. This indicates that the PSTs were not thinking of “shape” as 

an emergent property of the coordination. At this point, the PSTs’ inclination was not to 

understand the behavior, but rather was to still to classify the graph – this inclination had not 

changed from their initial assessment.  

Part 2: Class Discussion of Introduction to Covariation Homework 

Overview of Class Discussion 

The PSTs indicated that they did not have any problems with Level 1, but that they had 

“a lot of trouble” with the rest of the assignment. When asked by TI to work through the first 

arrangement from Level 2 of the introduction to covariation activities (Figure 6-13), the PSTs’ 

inclination was to use their fingers to model the behavior of each of the quantities. Though they 

were able to model the behavior of the quantities individually (they were able to model the 
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distance from the car to City A, similar to the behavior of the vertical line segment in Figure 

6-8b), they were unable to coordinate the two and thus trace out the curve with their fingers.  

 

Figure 6-13: Excerpt from Introduction to Covariation 

Assignment (Level 2) 

The PSTs believed that their main problem with this assignment was the fact that they 

were not “coordinated enough” to move the two fingers at once. SS even likened this activity to 

“the old pat your head and rub your tummy thing” (9/9/04), indicating the fact that she thought 

she knew what she was supposed to be doing, but could not physically do the two things at once. 

DH described her similar experiences:  

Level one was fine but the same problem I was encountering in class, when we 

were trying to … figure out like, whatever it was … trace the movement, I forget 

whether it was … trace the movement … but when I got to level two, I know what 

was supposed to happen but I kind of have a lot of trouble physically making my 

fingers do it (DH, 09/09/04). 

Discussion of Part 2 

Analysis of the PSTs’ engagement with Activity 1, Part 1 and Part 2 indicated that DH 

could, in fact, describe the behavior of each of the quantities separately, but had yet to make 
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sense of how one might describe how the quantities covary. The traditional interpretation of the 

PSTs’ trouble would be that they have the prerequisite knowledge; they just need to learn to put 

the two together. In light of the common conception of mathematics as “building blocks” – that 

once one possesses the requisite building blocks, they should be able to understand the next topic 

– it is notable that the PSTs had significant trouble taking that next step. TI accepted their 

explanations of “rub tummy-pat head” difficulties, but also offered that he suspected that their 

problem was conceptual, not physical. 

Activity 2, Part 3: Imagining the Behavior of Varying Quantities (Arrangement 1) 

TI had expected that the PSTs would not be completely successful in working through the 

Introduction to Covariation activities at home and TI had expected to devote a significant 

portion of the class-time to the PSTs working through the activities as a group. The instructional 

purpose of this activity was to have the PSTs engage as a group with the GSP sketch and to have 

them use each other (and TI) as a resource and to question and discuss each other’s developing 

understanding of variables and covariation in relation to the presented scenario. As a first 

activity, the PSTs were presented with the task of describing the graph generated by the 

correspondence point from Arrangement 1 (Figure 6-14). A static picture (not dynamic sketch) 

of the arrangement was projected at the front of the classroom. 

 

Figure 6-14: Level 2, Arrangement 1 
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Summary of Instruction 

DH began the conversation: 

Well I think the first step is … is how we did it. You know A goes this way [moves 

left hand vertically] and B goes this way [moving right hand along table]. I found 

that I was able to do these things [moves her fingers as in Figure 6-15a] and the 

second step was putting them on top of each other [moves her fingers as in 

Figure 6-15b] (DH, 09/09/04).  

Two things are evident from this brief extract. First, at this point, DH has not made the 

connection between the modeling of the quantities and covariation – the task was not as much 

about covariation as it was about “putting them on top of each other.” In addition, her gestures, 

which are depicted in Figure 6-15a and Figure 6-15b, indicate that she had yet to make full sense 

of the connection between graphing in the Cartesian plane and the variable quantities.  

 

Figure 6-15: DH's Attempts to Model the Covariation 

KN then initiated a shift in the discourse while attempting to describe the first of the three 

arrangements (Figure 6-14). Rather than comparing the varying quantities, he began to speak of 

the way one quantity behaved with respect to another:  
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Well it seems like they would just [moves hands up and down; left and right, 

apparently uncoordinated, similar to DH in Figure 6-15b]. As it!s getting closer to 

A, it!s getting farther away from the … almost in all cases and vice versa (KN, 

09/09/04).  

Though he was unable to coordinate his fingers with respect to the motion he was describing, 

there was a definite shift in the nature of his description. The previous day, aside from following 

TI’s description, the PSTs’ descriptions all hinged on comparing qualitative features of the 

behavior of the two quantities – they described the graph, not the covariation. In KN’s comment, 

we see the beginning of the PSTs being attuned to how one quantity behaves with respect to the 

other. The following interchange ensued in response to KN’s comment: 

Excerpt 6-4 (Session 4, 09/09/04) 

1. DH:   But there!s like it looks like when you!re 

exactly perpendicular to the line of the car 

and you!re at city A, it!s not exactly at the 

end [See Figure 6-16].  Doesn!t it look that 

way to you? 

2. KN:   Yes.  

3. DH:   So, I mean like it!s … at … if the car!s 

moving downward that way at first [from upper-right to lower-left], like 

it!s getting …  it!s moving farther and farther away from B and closer 

to A until right when it hits perpendicular and then it gets a little farther 

from A and it!s still farther away from B. 

4. KN:   Right.  

5. DH:   But if it was perpendicular, it would never get farther from A, so it must 

be a little bit in from the end.  

6. KN:   Yes. 0. 

The activity ended with the PSTs using KN’s reasoning to predict what the graph would 

look like and TI using the actual Geometer’s Sketchpad sketch to generate the graph. 

City B

City A

Car

Figure 6-16:  Is City A 
Perpendicular at the Road? 
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Discussion of Part 3.   

In this activity, and especially in Excerpt 6-4, we see DH focusing on specifying the 

relationship that KN had described previously.  In line 1, we see her attention on whether City A 

is located “at the end of the road.”  By this, she means whether a line segment drawn from City 

A to the end of the road will be perpendicular to the road.  The significance of this statement is 

that she is focused on the implications of whether there is a “hook” at the end of the graph or not 

(Figure 6-17).  Her attention, thus, was not on the behavior of either quantity, but on a 

characteristic of the relationship between the two quantities.  In particular, she was aware that if 

one focused on the car moving from the upper-right endpoint of the road towards the lower-left 

endpoint of the road, the distance from the car to City B would always be decreasing.  She was 

attempting to convince the class that City A was “not exactly at the end of the road,” because as 

the car approached the end of the road, the distance from the car to City B would still be 

increasing, but the distance from the car to City A would get smaller until it reaches 

perpendicular and then it will begin to increase, with the distance from City B still increasing 

(line 3).  She claims that City A cannot be at the end of the road, because if it were, as the car 

approached the end of the road, the distance from the car to City B would be increasing, while 

the distance from the car to City A will get smaller and smaller until it reaches a minimum value 

when the car is located at the end of the road – it would never increase. 
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Figure 6-17:  A "Hook" at the End of the Graph 

 Activity 2, Part 4: Imagining the Behavior of Varying Quantities (Arrangement 2) 

Part 4 was very similar to Part 3, except that it involved the second arrangement from 

level 2, shown below in Figure 6-18. An image of this arrangement was projected at the front of 

the class throughout the discussion16. 

City B

City A

Car

 

Figure 6-18: Arrangement 2 

                                                 

16 
Again, the figures projected on the screen at the front of the classroom were static pictures, not dynamic sketches 

which allow quantities to be varied within the sketch.  
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Summary of Instruction 

Part 4 began with the PSTs trying to predict and explain the graph resulting from the 

second arrangement. In the excerpt below, we see the development of a more advanced notion of 

covariational reasoning: 

Excerpt 6-5 (Session 4, 09/09/04) 

1. DH:  So … at the same time, if B is starting 

like … far away [at the top right of 

Figure 6-18] and it goes in and out … it 

looks like it changes at about halfway 

[DH is referring to a location about 

halfway along the road – see arrow in 

Figure 6-19].  

2. KN:  Right.  

3. DH:  Like it takes halfway … And so when 

B goes down and [then starts going] 

up … A!s going, it goes, it still goes 

up. 

4. KN:  It just goes down and up … uh oh [He has a problem locating when A 

turns around].  

5. SS:  B goes … 

6. DH:  What I!m confused about is the … OK so B!s still moving farther even 

after A turns around and is starting to go away from. 

7. SS:  You!ve got to go there and back [indicates far 

from starting point, moving closer and then 

farther away with her fingers on the table]. One 

changes about halfway and the other changes a 

little after that [see Figure 6-20]. 

8. DH:  So you!ve got to go like this [changes direction 

of B finger, decreasing then increasing] and 

then like this [changes direction of A finger, 

decreasing then increasing]. 

Figure 6-19: Right About Halfway 

Figure 6-20: SS: They 
both go "down than up." 
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9. SS:  So when it!s closest to A, it!s almost the closest to B, so your finger 

better get over there. 

10. DH:  So A turns around before B turns around. 

11. KN:  Yes. 

12. DH:  So, it!s like A turns around and then B turns around… Oh. [The PSTs 

are all generating fairly accurate graphs with their fingers.] 0. 

In line 1, we see a shift in the discourse from talking about distances or lengths of line segments 

to speaking of a “location” on the road, which corresponds to an instance where there was a 

change in the coordinated behavior of the quantities. Though the PSTs had previously referred to 

this point as being “where the city is perpendicular to the road,” it appears this location had taken 

on more significance than simply where one quantity, a particular distance, stopped decreasing 

and started increasing. DH introduced this notion that something important happens “at about 

halfway” (line 1). This halfway point was essential for her to coordinate the covariation of the 

two quantities. For example, her thought process seemed to go something like this: If the car 

started at the upper-right end of the road, as it moved towards the other end of the road, both the 

distance from the car to City B and the distance from the car to City A are decreasing. Once the 

car reaches the halfway point, about where City B is perpendicular to the road, the distance 

between the car and city B began to increase while the distance between the car and city A still 

decreased. As the car reached the point on the road where City A is perpendicular, the distance 

between the car and City B remained increasing while the distance between the car and City A 

began to increase. Figure 6-21(a-c) below depicts the three regions she seemed to be 

envisioning. 
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Figure 6-21: Three regions. In (a), both distances are 

decreasing. In (b) the distance to city B is increasing while the 

distance to city A is still decreasing. 

In (c) both distances are increasing. 

KN described his similar thought process: 

As the car passes the point in which the line from the car to City B is 

perpendicular to the road, the distance from [the car to] City B stops decreasing 

and starts increasing. The distance from City B continues to increase, and the 

distance from City A continues to decrease until the car reaches the point where 

the line connecting it to City A is perpendicular to the road. After that point, both 

distances increase until the car reaches the end of the road (KN, Introduction to 
Covariation Assignment Write-up). 

Discussion of Part 4 

The reasoning that the PSTs displayed was significant because it was no longer in terms 

of the behavior of one quantity. Each region was significant because of the way one quantity 

varied with respect to how the second quantity varied. This two-dimensional “landmark” was not 
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just when the city was perpendicular to the road, it was significant because it was a location 

where there was a noteworthy change in the way the quantities covary. 

The reader will notice that this abstraction of the notion of a landmark was essential in 

order to make sense of the covariation. Without it, the two quantities appeared to relate in a 

somewhat random manner. Thus, in order to make sense of the covariation, the PSTs first needed 

to develop a way of organizing the covariation and one such way is through the abstraction of 

attributes of the behavior of two individual quantities into a two-dimensional landmark that, in 

addition to information about the behavior of each of the quantities individually, gives 

information about the relationship that exists between the two quantities. 

 Two additional comments must be made about the PSTs’ developing knowledge. First, 

the reasoning described above was not limited to DH. As a homework assignment, the PSTs had 

to write-up solutions to the introduction to covariation homework assignment. In that write-up, 

all three PSTs – DH, SS, and KN – included the idea of two-dimensional landmarks in their 

discussion of how the two quantities co-vary. Once this way of thinking was presented by DH, it 

became the way of reasoning through the rest of the problems on this assignment. This is likely 

because the PSTs understood the behavior of each of the individual quantities and they simply 

lacked a means by which to organize the covariation. Once they were presented with a means, it 

was easily assimilated into the schemes that they brought to these problems. Second, this way of 

thinking made it possible for the PSTs to coordinate the two quantities and therefore physically 

coordinate their fingers representing the variable quantities. This, in turn, enabled the PSTs to 

visualize the behavior of the quantities as they covaried. It appears that their struggle earlier in 

the assignment was not in the physical coordination but, again, in developing a means to 

organize the relationship between the quantities. 
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Part 5: Imagining the Arrangement (Arrangement b) 

Part 5 involved the reverse situation from that in parts 3 and 4. Rather than being given 

an arrangement and asked to explain what the graph would look like, the activity involved being 

given a graph depicting the covariation of the two quantities, and being asked to create an 

arrangement that would result in the given graph. For each of the graphs shown below in Figure 

6-22, the PSTs were asked to (a) explore possible arrangements (locations of City A and City B 

that would result in such a graph) without a computer, (b) justify their prediction (out loud), (c) 

test their prediction by using GSP to locate City A and City B while the graph is showing, and 

(d) evaluate their prediction in light of their test (and analyze it if they were off). The activities in 

part 5 were envisioned to help the PSTs further develop their covariational reasoning skills. 

Specifically, they highlighted the importance and utility of the idea of a landmark and analyzing 

the graph on sub-intervals of the road on which there was some sort of predictable variation. 

Throughout the entire discussion, an image of Figure 6-22 was projected at the front of the room. 
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Figure 6-22: Part 5 – Introduction to Covariation 

Summary of Instruction  

The PSTs were able to use covariational reasoning to describe a situation that would 

result in such a graph. The following excerpt is taken from the classroom discussion regarding 

the graph in the upper-right hand corner of Figure 6-22: 

Excerpt 6-6 (Session 4, 09/09/04) 

1. KN:  B is going to be–  

[KN traces the graph using two fingers, as in Figure 6-23]  

2. TI: –KN, show the others what you!re doing.  
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Figure 6-25: DH's Description of 
Individual Behavior 

3. KN:  Well … I!m just tracing the graph with my finger. 

4. TI:  You!re doing more than that.  

5. KN:  In, well … I!m seeing where the– (pause) Am I 

doing more than that? 

6. TI:  Because you have two fingers involved. You!re 

not just tracing the graph with one finger–  

7. KN:  –right, I!m tracing the graph with both fingers.  

8. SS:  Wait, well…  

[Long pause as each student begins to trace with both fingers, one 

horizontally along the table and the second moving vertically above 

the first] 

9. DH:  It means that they turn around at exactly the 

same point. To have those sharp points. Don!t 

they have to?  

10. KN:  No, the sharp point at the bottom – I!m starting 

from the right of the graph – I don!t know why 

but... So you go down and B!s still getting closer 

and closer, and then it gets a little farther away 

from B. So B has to be somewhere close to the 

end of the road. And, as B gets closer, A gets 

closer and then farther away. 

11. SS:  Oh! Because B!s like this [moves horizontal 

finger left, then right – see Figure 6-24]. And at the same time– 

12. DH:   –so B!s getting closer, closer, closer, 

farther and A!s getting closer, closer, 

farther, farther, farther [Figure 6-25]. 

13. KN:  A!s closer to the middle, but not–  

14. DH:  –not exactly at the middle.  

15. KN:  A!s close to the middle, but a bit to the 

left. 

16. TI:  So you said City B is far from the end?  

17. DH:  Well, no. 

18. KN:  City B is close to the mid– 

Figure 6-23: KN Tracing 
the Graph 

Figure 6-24: SS: B Gets 
Smaller then Larger 
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Figure 6-26: Proposed 
Arrangement 

19. SS:  - and A is like close to, like three-quarters the way.  

20. TI:  All right. And …  

21. KN:  City A!s between the midpoint and City B. Is that right? 

22. TI:  Like that [TI displays Figure 6-26 as the 

proposed arrangement]? 

23. DH:  Oh, it would have to be a little farther. 

Like… [TI shows result of proposed 

arrangement - Figure 6-27] … Yeah, like 

that.  

24. KN:  Cool. 0. 

 

 

 

 

 

In this excerpt, the PSTs began to call upon covariational reasoning in an effort to make 

sense of the graph. By tracing the graph with not one, but two fingers, the PSTs were relating the 

problem of determining the arrangement to their previous work in Parts 3 and 4. As in their 

previous attempts at explaining covariation, the PSTs describe the behavior of the individual 

quantities, however, in addition to talking about the behavior of individual quantities, the PSTs 

are beginning to reason in terms of how one quantity varies with respect to the other. For 

example, in line 10 we see KN referring to the relationship between the behavior of the distance 

from the car to City B with respect to the distance from the car to City A: “As B gets closer, A 

gets closer and then farther away.” Further, we see indications of covariational reasoning in both 

SS and DH. In line 11, SS is obviously about to speak about how the distance from the car to 

City A varies as the distance from the car to City B gets smaller and then gets larger (see Figure 

City B

City A

Car

Dist from A

Dist from B

Corresp. Pt.

Figure 6-27: Result of 
Proposed Arrangement 
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6-24). Finally, in line 12 and Figure 6-25, we see DH attempting to coordinate the variation of 

the two quantities. Once the PSTs’ attention is focused on the covariation of the quantities, the 

conversation shifts to attempting to locate where on the road the cities might be17 (lines 13-21).  

Conversation about part 5 ended with the PSTs predicting that City B would have to be 

near the end of the road and City A would have to be near the middle (with both actually being 

on the road). TI then created an arrangement similar to the one that had been proposed (Figure 

6-26). After confirmation that that was their conjectured arrangement, the resulting graph was 

displayed (Figure 6-27) and the PSTs “tinkered” with the location of the cities to result in a more 

accurate graph. 

Discussion of Part 5 

It is important to note that in the conversation shown in Excerpt 6-6, we see the PSTs 

attempting to figure out where key changes in the variation of the quantities occur. As the PSTs 

are discussing what appears to be one-dimensional landmarks (for example, see lines 11 and 12), 

they are in fact thinking about the covariation of quantities, as evidenced by their (at least 

attempt to) physically coordinate the two “distance” fingers. It may be helpful, as they speak 

about the location of B (or A), to imagine the PSTs moving their coordinated fingers back and 

forth over the graph in order to make sense of “the trip” and the location of the cities (as is 

shown in the embedded figures). It is this way of thinking that enabled them to present an 

acceptable arrangement that yielded an appropriate graph. 

This activity also helped the PSTs generalize their work in parts 3 and 4: they were not 

just thinking of a particular graph. At the end of part 5, the PSTs, without any difficulty, began 

                                                 

17
 In actuality, they are speaking of where along the road would the segment from the car to the city be 

perpendicular to the road. 
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talking about what might happen to a graph as locations of either city were changed. The PSTs 

had naturally moved to a higher level of reflection involving imaging and predicting changes in 

graphs as a result of changing initial conditions.  

PSTs’ Write-Ups of Introduction to Covariation 

As an assignment for session 5, the PSTs were asked to “write-up” their responses to the 

entire Introduction to Covariation Assignment. These write-ups were to contain fairly detailed 

solutions to the problems as well as too include discussions about how the PSTs were thinking 

about the problems.  

An excerpt from SS’s write-up of part 5 is shown below in Figure 6-28 (The reader 

should refer to Figure 6-22 for the graphs the PSTs were analyzing). In Figure 6-28, SS referred 

to locations along the road (for example “2/3 of the way”). There are indications in her 

discussions of arrangements that she had thought of these locations as two-dimensional 

landmarks. First, in (A) she referred to “while B’s distance changes” (at the middle of the road) 

“A’s distance was constantly going up.” In (B), she noted that she should have made a better 

prediction of the location of B because “A changed directions before B.” This comment pointed 

to the fact that she was aware of two specific locations on the road (2/3 of the way and 3/4 of the 

way). In addition, her rationale for rejecting her initial arrangement was that she knew that “A 

changed directions before B,” indicating that the she was aware that between those two locations, 

A was decreasing while B was increasing.  
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Figure 6-28:  Excerpt from SS's Write-Up 

 KN described his thought process for Activities 4c-4f in general: 

The easiest way I found to solve these problems was using my fingers as visual 

aids. I put my finger of my right hand on the table to track the horizontal 

coordinates (distance from B). I put my finger from my left hand in the air directly 

above that finger to track the vertical coordinates (distance from A). I then traced 

the graphs in the air with my left finger, keeping my right finger directly beneath 

my left finger. By noticing when each finger changes direction, you can determine 

where the car passes each city. For instance, if your finger in the air goes down 

then up while tracing the graph, this indicates the car was getting closer to City A 

then passed it and started getting farther away. If that happened halfway through 

tracing the graph, the car passed City A when it got to the midpoint of the road. If 

it did it towards the end of drawing the graph, the car passed City A towards the 

end of the road. What was hard was to do the same for City B. It was important to 

think about the two varying separately and then think about what would happen if 

you moved them together. It was in that way, that you can make sense of when A 
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is increasing and B is decreasing, when both are increasing, etc. (KN, 

Introduction to Covariation Write-up). 

In his description of how to think about these problems, we see his image of the situation 

involving tracking the two quantities with his fingers. He claimed that it was necessary to think 

about the two fingers moving together to “make sense of when A is increasing and B is 

decreasing, when they both are increasing, etc.” In his comments, KN is focusing on where A 

changes direction in an attempt to determine the behavior of the quantities on the specified sub-

intervals of the road.  

Summary of Phase I 

In the introduction to graphing activities, the PSTs initially struggled with the task of 

keeping track of quantities that were not visually perceivable. The PSTs were quickly able to 

track the behavior of the quantity in question by focusing their attention on non-visible attributes 

of the motion (as opposed to the motion). The PSTs did so by physically modeling the behavior 

of the quantities with their fingers. Once the focus of the classroom instruction shifted explicitly 

from the quantities to the graph, however, the PSTs’ conceptual attention was no longer on the 

quantities but rather on visualizing the shape of the graph. It appeared that at some point in the 

progression, the PSTs’ attention shifted from the covariation of quantities to the graph that was 

the result of the covariation. This shift in the PSTs’ attention came when the PSTs became 

conscious of the fact that their activity resulted in a “graph,” something that these undergraduate 

mathematics majors feel as if they understand thoroughly and completely. At that point, the PSTs 

returned to their understanding of a function as correspondence and the points as being traced by 

one “finger” (Silverman, 2004b). This in no way means that they are not aware that in tracing 

points along the curve, there are corresponding values of a variable quantity, rather it simply 
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means that the focus of their attention has shifted from the quantities that are varying to points 

that are moving in the plane. After taking part in the Introduction to Graphing activities, which 

consisted of developing a sense of a variable quantity through physically modeling (a) one 

quantity, (b) a second quantity, and finally (c) the two together, and the discussion surrounding 

these activities, the PSTs did pay attention to the way quantities varied and attempted to make 

sense of the implications of this variation (and ultimately the covariation). 

It was apparent in the beginning of the “Introduction to Covariation” activities that the 

PSTs were attempting to focus their attention on the varying quantities, however they lacked a 

means for organizing the covariation. Towards the end of the introduction to covariation 

activities, we saw the notion of a two-dimensional landmark emerge from the PSTs’ activities 

trying to physically model the relationships in the City A & B assignment. At the end of Phase I, 

the PSTs in this class have begun to develop a technique of organizing the covariation of 

quantities, however this method of organization is not yet a way of thinking for them. In the next 

section, I focus on the next phase of the course, which involved a number of instructional 

activities designed to further reinforce the PSTs’ developing understanding of functions as 

covariation of quantities and to help them come to see the utility in this “new” way of thinking. 
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7 CHAPTER VII 

APPLICATIONS OF COVARIATIONAL REASONING 

Phase II of this study took place during the 6 class sessions that followed Activities 1 and 

2. The class sessions were primarily devoted to discussing two problem sets, both of which 

contained a number of what appeared to be standard school-mathematics problems. 

The first problem set, titled “Models and Functions,” consisted of seven word problems 

from a number of mathematical topics (distance-rate-time, proportionality, right triangles, etc.). 

The second problem set, titled “Functions and Graphs,” was comprised six of problems (not 

word problems). Table 7-1 below gives an overview of Phase II.  

Table 7-1: Overview of Phase II 

Dates Problem Sets # of Class Sessions 

9/14, 21, 23 
Problem Set #1: 

Models and Functions 
2.5 

9/16, 28, 30 
Problem Set #2:  

Functions and Graphs 
2.5 
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Problem Set #1: Models and Functions 

Table 7-2 shows a breakdown of the class activities for Problem Set #1, which is shown 

in Figure 7-1. For each problem in Problem Set #1, students were to  

a.  draw a labeled diagram of the situation; 

 

b.  list the functions that describe how quantities covary; 

 

c.  for each function definition, state what each variable and expression represents about 

the situation; and 

 

d.  explain what the behavior of the function's graph shows you about dynamic aspects of 

the situation. 

 

  

Figure 7-1: Problem Set #1 
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Table 7-2: Overview of Problem Set #1(Activity 3) 

Session Date Problem Set #1 Approx. Duration 

5 9/14 
Part 1: Introduction to Modeling – The Lone 

Ranger Problem 
6 min 

  
Part 2: Example of Modeling – Problem 1: The 

Community Building Problem 
16 min 

7 9/21 
Part 4: Student presentations – Problem 2: The 

Drinking Problem 
43 min 

8 9/23 
Part 4: The Community Building Problem 

Revisited 
14 min 

  Part 5: The Drinking Problem Revisited 11 min 

  
Part 6: Student work on Problem 3: The A-Frame 

Barn Problem 
10 min 

 

Problem Set #1: Part 1 (The Lone Ranger Problem) 

The 9/14 session began with a discussion of ongoing projects and administrative items. 

The rest of the time was spent on introducing The Lone Ranger Problem (Figure 7-2) and in a 

detailed discussion of the kind of reasoning behind the example solution contained in the 

handout (Figure 7-3). Students had not examined the sample solution prior to this discussion.  

 

The Lone Ranger Problem 

It is 1873 in Territorial New Mexico. The Lone Ranger is chasing a desperate bank robber 

over the desert. Both are on horseback, and the bank robber got an 11-mile head start. 

The bank robber's horse can run steadily at 16 miles per hour. The Lone Ranger's horse 

can run steadily at 19 miles per hour. The bank robber is heading for the Mexican border, 

for if he can cross the border he will be safe. The town that they started from is 49 miles 

from the border. Will the Lone Ranger catch the bank robber? 

Figure 7-2: The Lone Ranger Problem 
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Summary of Instruction 

TI began the conversation on The Lone Ranger Problem by focusing the students’ 

attention on the quantities involved in the situation. An excerpt of this conversation is shown 

below. 0 

Excerpt 7-1 (Session 5, 09/14/04) 

1. TI:  All right, so, here!s an example problem [referring to the Lone Ranger 

problem]: Here!s the setting [reads text of The Lone Ranger Problem]. 

Now it is this part here that I want you to focus on [directions (b) and 

(c)]. It is important to be very clear about what!s varying and how the 

things that are varying are related to one another. … And there are 

some things that aren!t varying. OK, what is one of the things that are 

not varying in the situation? 

2. DH:  The distance to the border. 

3. TI:  Well, the distance from where to the border? 

4. KN:  The town. 

5. SS:  Yeah. 

6. TI:  Right. The town to the border. … Right. Because their distance to the 

border does vary.  

7. SS:  Their speed doesn!t differ. 

8. TI:  OK, they!re rock solid horses. 

9. SS:  Well, apparently … since they!re going 16 and 19 respectively. 

10. TI:  So we know what!s not varying. What is varying? 

11. SS:  The distance from the robber to the border. 

12. KN:  Right, the distance to the border. 

13. DH:  There are two distances varying, the robber!s and the Lone Ranger!s. 

14. TI:  That!s right. There are two distances varying.  

One of the themes of these problems is that in understanding the 

problem you will need to find one quantity that all of the other 

quantities can vary with respect to= 
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15. KN:  =time. 

16. TI:  Time for what? … The amount of time it takes me to get home? 

17. KN:  The elapsed time. 

18.  TI: Well, there are actually two elapsed times. … The lone ranger started 

after the robber, right? …  

19.  TI: Now, this [Figure 7-3] is written as if you wrote it. You see I have given 

[detailed descriptions for each of the solution requirements (a) through 

(d)]. So this is an expanded solution to a problem … where you!re 

saying what everything stands for, and how to interpret … where the 

graph comes from and how to interpret it. 0. 

In lines 1-9, we see the students’ attention on understanding the specifics of the situation 

– they were quick to mention not only the fixed distance between the town and the border, but 

also the unrealistic “rock solid” horses who can travel miles at a constant speed. In lines 10-14, 

TI asked the students about which quantities were varying and they correctly noted that there 

was more than one quantity varying: the elapsed time, the distance the robber has traveled, and 

the distance the Lone Ranger has traveled. With regard to elapsed time, TI pointed out that there 

is not a universal “elapsed time”. Rather, each agent has an elapsed time. TI then oriented the 

discussion to the crux of approaching problems from a covariational perspective: determining 

which quantity to track in order to effectively produce a solution to the given problem.  
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Figure 7-3: Sample Solution to Lone Ranger Problem 

Discussion of Part 1 (The Lone Ranger Problem)  

In his solution, TI described the independent variable x as the number of hours that have 

elapsed since the lone ranger began chasing the robber and not as an unknown. All of the other 

quantities being investigated were then written as functions of the independent variable. These 

functions represent two things simultaneously. First, they are a rule for calculating a particular 
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value of a quantity (in this case, distances), at a particular value of the independent variable 

(Lone Ranger’s elapsed time). Second, the function can represent a variable quantity (or a 

quantity which has already varied), when it is considered over the domain of all admissible 

values of the independent variable. It is in this way that the Applications of Covariation activities 

are related to the Introduction to Covariation activities: much like the “distance to A” and 

“distance to B” in Cities A & B, the covariation of the Lone Ranger’s elapsed time (x) and his 

distance from town after chasing the robber for x hours (f(x))18 can be used to draw conclusions 

about the scenario and, further, to justify them.  

This example extended the covariational theme, begun in Cities A and B, to settings that 

the students viewed as routine mathematics. This way of thinking included (a) determining one 

variable that each of the other quantities could be expressed in terms of, (b) tracking the 

covariation of the quantities of interest (i.e. graphing them), and (c) analyzing the resulting graph 

and making conclusions about the scenario.  

Problem Set #1: Part 2 (The Community Building Problem) 

The Community Building Problem (Figure 7-4) was discussed immediately following the 

Lone Ranger problem. The purpose of this discussion was to orient the students’ towards 

identifying the variable and constant quantities and to focus on covariation.  

                                                 

18 One can also track the covariation of the elapsed time and the robber’s distance from town after the lone 

ranger has been chasing the robber for x hours (g(x)) or the border’s distance from town x hours after the lone ranger 

began chasing the robber (h(x)). 
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The Community Building Problem 

A community group has 2000 perimeter-feet of prefabricated wall to build the 

superstructure for a single-story, rectangular convention hall. The hall needs to 

be further subdivided by two walls through its interior so that the hall is made of 

three huge rectangular rooms. What outer dimensions will give the convention 

hall as much floor space as is possible?  

Figure 7-4: The Community Building Problem 

Summary of Instruction 

The discussion began with TI again asking the students about which quantities varied and 

which did not. The ensuing conversation is shown below in Excerpt 7-2. 

Excerpt 7-2 (Session 5, 09/14/04) 

1. TI:  Let!s try thinking about this one together [TI projects The Community 

Building problem at the front of the class]. OK? … So what!s varying, 

what!s staying the same? And how are things related? 

2. DH:  Well, the one thing that!s not changing is the total amount of wall. 

They have 2000 pre-fabricated feet of wall. 

3. TI:  All right …  

4. SS:  It is, like, a “maximize” calculus problem. 

5. DH:  Umm. We need some function, like f(x) = 2000 … we have y equals, 

we have 2000 feet of wall, so y = 

2000. 

6. TI:  Now we can do this using “f of x” 

notation, but for the moment let!s just 

use y, all right? [TI Graphs the graph 

of y = 2000 (Figure 7-5)].  

7. SS:  And, we need some function to 

maximize … a function to represent 

the area … like length times width 

and solve for one of them. 

8. DH:  So we could call the length of one side x 

and= 

Figure 7-5: Graph of y = 2000 
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9. TI:  =now let!s slow down. Is there anything else that!s staying the same? 

0. 

Excerpt 7-2 provides insight into the students’ envisioned solution method for The 

Community Building Problem as well as their situated understandings of function. In line 4, we 

see SS classify the problem as a “maximize” problem similar to those she encountered her 

calculus class. This is significant because in traditional calculus classes, maximization and 

minimization problems involve finding a value of x and are done without explicit attention to 

quantities or covariation. In line 8, her desire to “solve for one of the sides” affirms the fact that 

she is speaking about solving an equation and looking for an unknown as opposed to tracking 

covariation of quantities, the objective of the lesson. In line 5, we see DH introduce the idea of a 

function, though she does not appear to mean function in the spirit of the instruction in Phase I. 

She was using function notation to represent a particular value of the amount of pre-fabricated 

wall material – both y and f(x) represented the constant amount of wall material available (2000 

feet). 

TI then moved the conversation on to the variables involved in the situation. At first, the 

conversation was centered on lengths of the sides and the perimeter of the community building. 

It was apparent that there were differing interpretations about the problem scenario: in one, DH 

assumed that the fixed amount of wall material implied that the perimeter of the community 

building would be constant; in the other, SS and DH were aware of the relationships between 

area and the exterior and interior walls of the community building. TI used this confusion to 

highlight the importance of understanding the problem and of a dynamic sketch and image of the 

situation. To emphasize the utility of a sketch, TI projected a Geometer’s Sketchpad [GSP] 

sketch depicting the problem scenario on the screen at the front of the room (Figure 7-6). In the 

figure, each vertical and horizontal line represented a wall that needed to be created from the 



 

 118 

given amount of wall material. The dynamic GSP sketch allowed the user to drag the dot in the 

upper-left hand corner and adjusts the figure to meet the requirements of the problem (i.e. the 

community building is to remain a rectangle and the two interior walls remain parallel to the 

same set of the exterior walls).  

 

 

Figure 7-6: Diagram of Community Building Problem 

Before dragging the dot in the corner, TI asked the students to think about what was 

varying and what stayed the same: “Think about changing the diagram. How could this diagram 

be different and still fit the problem?” The following conversation occurred in response to this 

question: 

Excerpt 7-3 (Session 5, 09/14/04) 

1. SS:  You could partition it, like, horizontally, if you wanted, I guess. Well, 

wait, what do you mean? 

2. TI:  Well given that this is the way that the building is arranged, how could 

this diagram be different and still fit the conditions of the problem. 

Could it be taller? 

3. All:  Yeah. 

4. DH:  But you said given as this diagram? 0. 



 

 119 

TI’s intent with this question was to focus the students’ attention on the dynamic nature of the 

situation and to help them use this variability to decide a likely candidate for the independent 

variable. Despite the fact that throughout the previous activities (Introduction to Graphing and 

Introduction to Covariation) and the previous problem (The Lone Ranger Problem) the students 

were able and willing to discuss the variable quantities, in Excerpt 7-3 both DH and SS spoke as 

if the diagram was a static picture.  

TI’s goal for the discussion was to help the PSTs understand the problem as being 

fundamentally dynamic. This understanding would consist of recognizing (1) the lengths of the 

two sides of the community building, as well as the area of the community building, as variable 

quantities, (2) that all but one of the variables could be written in terms of an independent 

variable, and (3) that by understanding how the area of the building covaries with the 

independent variable, one can make conclusions about the solution of the problem. TI was able 

to guide the classroom discussion toward this goal by focusing on the variability of the variables.  

Excerpt 7-4 (Session 5, 09/14/04) 

1. TI:  OK, so what!s varying? 

2. SS:  The area. 

3. TI:  You know that the area is varying, but that!s kind of like saying – 

4. DH:  –the length of Side 1 and the length of Side 2.  

5. TI:  OK, the length of Side 1 and the length of Side 2. 

6. DH:  Because the dividers have to be the same length as side 1.  

7. TI:  All right… 

8. DH:  So basically you have 4 Side 1!s and 2 Side 2!s.  

9. TI:  OK. … And where are those sides coming from? 
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10. SS:  Where are they coming from? They!re like the outer-thing of the wall.  

11. DH:  They!re like coming from the 2000 perimeter. 

12. TI:  They!re coming from the 2000 linear feet of material.  

13. DH:  So basically you!d have 2000 = 4x +2y. 

14. TI:  4 times Side 1 plus 2 times Side 2.  

15. TI:  Now, as we do that, … What can you think of as the independent 

variable here. If you!re going to model something with functions, then 

something!s got to be an independent variable, and something!s got to 

be a dependent variable.  

16. DH:  I always like to make Side 1 the 

independent variable.  

17. TI:  All right, and that!s the way it works in 

this diagram. Because if I drag Side 

1, the diagram adjusts (Figure 7-7) 

but if I move Side 2, it just moves the 

whole diagram, it moves everything 

[the building moves, but the walls 

remain the same length]. So, in this 

diagram, Side 1 is the independent 

variable. So if I change the length of 

Side 1, say I make it longer … What 

is going to happen?  

18. SS:  It is going to get taller and thinner. 

19. KN:  Side 2 is going to get smaller. 

20. SS: Well, yeah, I mean, you!re changing it [the length of Side 1], so Side 2 

changes and then the figure can get taller and skinner, squat and 

fattier, like, that!s what you!re trying to figure out. Where is it going to 

give you the biggest area?” 0. 

In Excerpt 7-4, the class agreed on using Side 1 as the independent variable and noted 

that the two relationships involved were (a) four times the length of Side 1 [S1] plus two times 

the length of Side 2 [S2] must equal the 2000 feet of wall material available and (b) the area of 

the room will be equal to S1 times S2. These two relationships can be formalized to the 

following two functions: y = ! (2000 – 4x) and A = xy, or A = x((2000 – 4x)/2) with x 

Figure 7-7: Varying One Side of the 
Community Building 
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representing the length of Side 1 and y representing the length of Side 2. In lines 18 and 19, SS 

and KN referred to the situation and described what would happen to the length of Side 2 as the 

length of Side 1 varied. In their comments, we see the students’ reference to the “smooshing” of 

the room, indicating their awareness of the variability of the lengths of the walls. In addition, 

SS’s comment (line 20) indicates that she had an awareness of the relationship between these 

lengths and the changing area of the room.  

 

 

Figure 7-8: Graph of Covariation of Side 1 and Area of 

Community Building 

TI graphed the equation y = ! ! (2000 – 4x) ! x on a computer graphing utility and 

projected the graph at the front of the room (Figure 7-8). Little time was spent on discussing the 

origin of this equation; it was assumed that the students understood that the two equations  

 
x: 440.625 
y: 52324.2 
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y = ! (2000 – 4x) and A = xy could be combined to get the equation whose graph is shown in 

Figure 7-8. TI envisioned that this graph would be a productive setting for the students to make 

connections between the previous instruction (Introduction to Graphing) and The Community 

Building Problem. To help make this connection, TI used the trace feature of the graphing utility 

(when one “clicks” on the graph, the program highlights the specified point with crosshairs and 

displays the x- and y- coordinates of a point that can be dragged along the curve – see crosshairs 

and magnifying glass in Figure 7-9). TI then orchestrated the following conversation: 

Excerpt 7-5 (Session 5, 09/14/04) 

1. TI:  OK, let me ask you this. What does that point right there [TI clicks on 

a point on the graph. See Figure 7-9a] tell us? …. Can you read that? 

It says x is 437.5 and y is 54687.5 … What does that tell us? 

2. DH:  When the length of side 1 is that length, the total area is 54687.5 

3. TI:  All right… And now what does that point tell us. [TI clicks on a 

different point on the graph. See Figure 7-9b.] 

4. SS:  When the side is 360.625, the area has gotten a lot bigger, like all the 

way up to 100524. 

5. TI:  All right. … So and then [in each of the students! written solutions to 

the problems] you would say how to interpret the graph. … In terms of 

what the graph has to do with the problem of figuring out how to 

construct a building with maximum floor area.  

6. TI: And again, you can just come up here [indicates solution to Lone 

Ranger Problem] for an example of the kind of detail that you are to 

go into. 0. 
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Figure 7-9 (a & b): Specific Points on Graph of  

Side 1 and Area 

Excerpt 7-5 is of consequence because we see SS begin to speak of quantities varying: in 

line 4, she indicates that she is not just focused on the value of the side of the room and the area 

of the room, but that she is paying explicit attention to the fact that the area is changing. This 

observation, though trivial on the surface, indicates that a conceptual “moment of attention” on 

the variation of the quantities that had previously been lacking in the discussion of this problem. 

TI closed this session by summarizing their work in the session and relating their work on 

the Community Building problem to their prior work in Activity 2 (Introduction to Graphing). 

He used the features of GSP to calculate the area of the community building Figure 7-10 and 

noted: 

So, here!s the old finger and fairy dust. OK? Here!s the length of side 1 [moves 

cursor over the heavy vertical line in Figure 7-10], and here!s the area [indicates 

the area calculation in Figure 7-10]. As I change the length of side 1, the area 

changes. See this is the finger and fairy dust. All right. Now one of the things that 

you!ll do once we get into geometer!s sketchpad is you!ll have an assignment 

where your assignment is to create illustrations like this to help your students 

understand a problem, not to solve it, but to understand it (TI, 09/14/04). 
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Figure 7-10: Introducing the Area in the GSP Sketch 

TI concluded this class with a comment about an important theme running through the problems 

in Activity 3: helping the PSTs understand the problem in a way that attention to covariation can 

help them reason logically through a problem. 

Discussion of Part 2 (The Community Building Problem).  

Prior to this instruction, the PSTs had spent more than two class sessions focusing on 

variables and graphs as tracking the covariation of variables, however when presented with a 

problem to apply their understanding, they reverted back to their previous strategies. In Excerpt 

7-2, despite TI’s question about variables, the PSTs were quick to propose following the 

common procedure for “maximize” problems from algebra or calculus classes that includes 

identifying the function to be maximized and finding the extrema (using differentiation or a 

formula for the vertex). The students’ comments indicate that they saw few connections (and saw 

little need to make connections) with the ideas of variables and covariation. This will be a 

recurring theme in this study.  

In the same excerpt, we saw DH introduce the word function when attempting to 

represent the constant amount of wall material. With respect to her use of the word function, it is 
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important to note that when functions are viewed as representing covariation of quantities, a 

constant function is pathological: in the case of f(x) = 2000, we can think of x as varying, but it is 

awkward to think of 2000 as varying. Thus, rather than thinking in terms of functions as a 

relationship between variables, it is more likely that she was thinking about representing the 

quantity 2000 graphically. To do so, she needed to assign some variable to be 2000 since that is 

how you graph a constant – you put “y =” or “f(x) =” in front of it. 

Though the PSTs were quick to accept the diagram proposed by TI (Figure 7-6), Excerpt 

7-3 indicates that their understanding of the diagram was different from TI’s. In contrast to TI’s 

image of the diagram as a dynamic depiction of the problem scenario, the PSTs viewed the 

diagram as a static drawing. In light of the PSTs’ predisposition to solving equations to find an 

unknown, we can conjecture as to their use of the diagram: it helps them define the equations 

containing their unknown. Their thinking might go something like this: First, the four vertical 

segments of wall are the same length and the two horizontal segments are the same length, and 

thus the entire amount of wall material (2000 feet) must be equal to 4x + 2y. So our first 

equation is 2000 = 4x + 2y. Second, the figure appears to be a rectangle, and since the area of a 

rectangle is length times width, the area of the community building (A) is given by a second 

equation, A = xy. Given these two equations, one can then use any of the techniques of solving 

systems of equations (linear combination, substitution, graphing, or matrix algebra) to solve the 

problem. It is worthwhile to mention that this way of thinking is consistent with the way in 

which school mathematics texts typically present and discuss solutions to word problems. In a 

survey of a number of algebra texts, I found that diagrams were regularly employed as a tool to 

assist in the assigning of unknowns and the generating equations to be solved, not for reasoning 

about the problem scenario, understanding the variables at play, and formulating the 
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relationships between the variables. Thus, the interpretation of the figure as a static drawing is 

further evidence that to the PSTs, The Community Building Problem was not yet about 

covariation of quantities. 

Throughout the discussion, TI continually attempted to focus the PSTs’ attention on the 

variability of the lengths of the sides. His efforts were successful midway through Excerpt 7-4 

when the PSTs began to speak about how changes in the length of one side would affect the 

length of the other side. This is evident in the PSTs’ comments that when you lengthen the 

vertical wall, the room “becomes tall and thin” and as you shorten the length of the vertical wall, 

the room “smooshes and becomes short and squat.” TI used this attention to variability to relate 

their work on this problem with the activities in Part I. The PSTs’ focus on solving equations and 

static diagrams brings into question if the PSTs saw the relationship between the dynamic sketch 

and the “fingers and fairy dust” from activity 2. 

The final sentence in Excerpt 7-5 is worth discussing because it highlighted the way in 

which TI believed the class discussions relate to the teaching and learning of high school 

mathematics. A recurring theme throughout the course was that through focusing on 

understanding the problem (the variables and the way in which those variables covary), one 

could proceed through a problem and determine appropriate solution methods in ways that make 

sense to them. There is no evidence, at this point, that the PSTs had come to understand this big-

picture idea. 

Problem Set #1: Part 3 (The Drinking Problem) 

As homework, TI assigned The Drinking Problem (Figure 7-11), the second problem 

from Problem Set #1. This problem is interesting in that it would not typically be thought of as a 
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problem involving variable quantities – there are the “givens” and the unknown. TI’s intent with 

this problem was to help the PSTs realize that, though they could solve the problem by executing 

a memorized procedure, they could also think of it from the perspective of covarying quantities. 

 

The Drinking Problem 

Bob drank 2/3L of water in 5/7 minute. In how many minutes will he drink 3/8L of 

water? 

Figure 7-11: The Drinking Problem 

SS’s “Physics” Solution 

SS prefaced her solution with the fact that it was more of a “physics” solution than a 

“mathematical” one. She also noted that her solution was not very clear and described it as “just 

multiplying it out to figure out how long it would take him to drink one liter” (SS, 9/21/04). 

Upon being pressed to explain what she did, she explained that her reasoning involved using a 

“known” to find the rate at which Bob was drinking water and then using this rate to find the 

unknown time it took him to drink the 3/8 L. She wrote the following solution on the board: 
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Drank = 2/3 L  Time = 5/7 m 

Drank = 3/8 L  Time = ? m 

How long to drink a L? 

 

2 L

3
÷

5 min

7
=

2 L

3
!

7

5 min
=

14

15

L

min
= liters per min  

 
 

If 
3

8
L,

3 L

8
÷

14 L

15 min
=

3 L

8
÷

15 min

14 L
=

45

112
min = # of minutes  

Figure 7-12: SS's Solution to the Drinking Problem 

Though her thought process of finding the rate at which Bob was drinking apeared insightful, her 

actions indicate that her understandings were about conversions of units. Rather than finding a 

rate and understanding its significance with regard to how one quantity changed in relation to the 

other, she was simply trying to find a number that had appropriate units. For example, in Figure 

7-12 (calculation 1) we first see her calculation of the rate, which she described as “flipping and 

multiplying.” In calculation 2, she described her process as “wanting to show that liters were on 

the top in one and on the bottom in the other so that they would cancel.”  

TI questioned SS about why she performed the calculations shown in Figure 7-12 and the 

following conversation ensued: 

Excerpt 7-6 (Session 7, 09/21/04) 

1. TI:  Now, you!re trying to find a value for something [in your calculations in 

Figure 7-12]. So what … every number is a number of something … 

and every time you calculate, you!re finding a value of something. So 

what are you starting with, what are you doing with it, and what are 

you finding? 

1 

2 
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2. SS:  I figured [inaudible] you wanted it down to one simple thing. Which is 

your rate, and so I tried to simplify it using this data here. 

3. TI:  And what were you going to do with that rate?  

4. SS:  And then apply it to the second one [calculation 2]. So that (pause) 

because … like … here [first line in Figure 7-12], I know all the 

information and here [second line in Figure 7-12] where there is an 

unknown … so I know they apply to each other. Because they have 

the same rate. So, if I can find the rate for the first one, then I can 

apply it to this one. 

5. TI:  So 2 Liters. 

6. SS:  2/3 of a liter, but I wanted to show that liters was on the top, because 

that!s what happens is like, here and here, you can cancel 

7. DH:  I have a good way to show that. Instead of doing the division signs, 

you basically make a table and then you have 2 on the top, thirds [on 

the bottom] and then you can cancel out on each table section. 

8. SS:  That would be a good way to do it. 

9. TI:  Well, I think these are actually small details. 

10. SS:  So that way you could show liters per minute… So that!s like it is like 

very visual to show that, like, liters is on the bottom. And this is liters 

times minutes. Then when you figure it out, it will be liters per minute. 

Because its! really helpful. This is what they mean by visualization of 

the procedures they already know.  

11. KN:  Do you know that 45-112ths is the answer just because it is in terms 

of minutes. It seems like you!re trying to find an answer, just trying to 

find some answer that!s in minutes. Because you know that!s what 

you!re trying to find. 

12. SS:  Well, like, OK. I know that if I got it in minutes, then it would be the 

correct one. ONE SOLUTION. 0. 

We see that though SS could solve the problem, she articulated little understanding as to why she 

performed the calculations she did. In the excerpt, “2/3 L ÷ 5/7 min” was a calculation to be 

performed because she knew that the units of the rate had to be in liters per minute, not because 

of any significance of the constituent or resultant quantities. Similarly, she spoke of “applying” 

the rate because it has an unknown (line 4), again with emphasis on the units not on the meaning 
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of the quantity. In response to KN’s comment about her calculations being geared towards 

finding some number with the right units, not a number with a particular significance, she 

clarified “I know that if I got it in minutes, then it [was] correct” (line 12), but does not attempt 

to explain the significance of the solution in terms of what was known about the scenario. It 

appears that she was correct that she had approached this problem using dimensional analysis, a 

traditional physics technique in which which students perform operations on the given numbers 

in order to generate a quantity which has the desired units19. 

Discussion of SS’s Solution 

SS’s solution was grounded in the manipulations of numbers and units in order to solve 

for an unknown with the correct units. Though SS could probably explain the meaning of 14/15 

L/min in terms of the behavior of the quantities, this thought was not important in her solution of 

the problem. In line 7, we see DH’s attention on manipulating units – rather than questioning the 

rationale for SS’s calculations, she attempts to provide an additional way to keep track of the 

units. In line 10, SS provides a reason for her attention to dimensional analysis: “Then when you 

figure it out, it will be liters per minute. Because it is really helpful. This is what they mean by 

visualization of the procedures they already know.” Thus, for SS, the important aspects of a 

solution method are that it helps students easily remember the steps in a procedure; that is what it 

meant to understand. To her, DH’s table method was a way to help the students visualize the 

procedure. This stands in stark contrast with TI’s intent, which was to help the PSTs visualize the 

                                                 

19 Dimensional analysis, which involves performing the operations indicated in a formula used to solve a 

problem on the units (e.g. in E = mc
2
, the units on the amount of energy in a particular amount of matter is equal to 

kg !(m / s)
2

, where the units of mass are in kg and the units of the speed of light are in m/s. Often, this technique is 

used by students as a method to find solutions by blindly performing operations on the given quantities, provided the 

operations on the units work out in to the correct unit. 
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variables and relationships and reason with them en route to making sense of what a solution 

might look like. 

DH’s Multiplicative Reasoning Solution 

DH’s approach involved using a double number line to figure out how long it would take 

Bob to drink 3/8 L of water. The double number line was discussed briefly in class sessions 2 

and 3 (prior to Activity 1) in the context of discussing a rate schema (Thompson & Thompson, 

1996; Thompson & Thompson, 1994).  

Excerpt 7-7 (Session 7, 09/21/04) 

1. DH: So I said, first of all, we need to find a common denominator for the 

number of liters we!re talking about. So, we have 2/3 is the starting 

value and 3/8 liters is the, like, what we!re looking for, basically the 

time it took. The common denominator for both of those is 24 and then 

[I found equivalent fractions with the common denominator 24] and 

then got 16/24 and 9/24.  

From there, I was able to 

make a number line and 

broke it up into 24 parts 

[Figure 7-13]. So, each of 

these tick marks 

represents 1/24th of a 

liter and this liter 

represents 24-24ths. 

2. TI:  24-24ths of what?  

3. DH:  Of, um, 1 Liter. So … I 

labeled this number line 

as liters of water drunk by 

Bob. And then I made 

another number line 

[Figure 7-14] right below 

that, and called it elapsed 

time and its measured in 

minutes. 

4. SS:  So they correspond 

exactly to each other. Kind of like the- 

Figure 7-13: DH's First Number Line 

Figure 7-14: DH's Double Number Line 
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5. DH:  - yeah, well, we know 

that in 5/7 of a minute, 

he drank 2/3 of a liter of 

water and what I 

converted to 24ths I 

know that in 5/7 of a 

minute he drank 16-

24ths. So right at this 

tick mark, is where 5/7 

is going to be because 

we know that it is how 

much water bob drank in 5/7 of one minute (Figure 7-15). 

6.   And so then, I broke [the 5/7 of a minute] up into 5 parts and I marked 

out each 1/7 of a minute. The next thing I said was OK, we want to 

find out how many liters drunk every 1/7 of a minute. And this is where 

I did something very 

similar to SS!s. I said 

he drunk 2/3 of a liter 

in 5/7 of a minute, in 

order to find how 

much he drank in 1/7 

of a minute, we!re 

going to need to 

divide this by five - 

that!s how many 1/7 of 

a liter there are in 5/7 

of a liter. I got that in 

every 1/7th of a minute, Bob drinks 2/15 liters (Figure 7-16).  

7.   So then I was able to create an equation that says, OK, if 2/15 is 

drank every 1/7 of a minute, then multiplying that by 7 will get the 

number of liters drank in 1 minute. And then I created equations that 

said f(x) = 14/15 x, and this is how many liters of water bob drinks 

after x minutes. And our other equation, we know that f(x) = 3/8 and 

we know that this is how many liters of water Bob drinks. We want to 

find out how long it takes him to drink this much water in liters. So, I 

solved the two equations for each other. And I got the same answer 

as SS, 45/112 min, which is about equal to 0.4 minutes to drink 3/8 of 

a liter. 0. 

DH’s solution involved finding the constant rate at which Bob drank. She set up the 

equation f (x) = (14/15)x to represent the number of liters of water that Bob drinks after x minutes 

and g(x) = 3/8 to represent the number of liters that Bob is to drink (the specified amount we 

Figure 7-15: 5/7 min. on DH's Double Number Line 

Figure 7-16: DH!s Double Number Line (with 5/7 
of a minute divided into 5 parts) 
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want to know how long it will take him to drink). Finally, she found the solution by solving the 

equation f(x) = g(x) for x to yield an answer of x = 45/112.  

Discussion of DH’s Solution  

DH included a diagram depicting a “double number line” in discussing her solution. 

While this resembled TI’s earlier use of a double number line in describing a “speed schema” as 

a way of thinking about the concept of rate, DH did not specifically say that this was her 

motivation. The speed schema involved understanding that: 

speed is the quantification of motion 

completed motion involves two completed quantities – distance traveled and 

amount of time required to travel that distance (this must be available to 

students both in retrospect and in anticipation); 

speed is a quantification of completed motion and is made by multiplicatively 

comparing distance traveled and amount of time required to go that distance; 

there is a direct proportional relationship between distance traveled and amount of 

time required to travel that distance. That is, if you go m distance units in s 

time units at a constant speed, then at this speed you will go 
 

a

b

!m  distance 

units in 
 

a

b

! s  time units. (Thompson & Thompson, 1994, p. 5). 0. 

In her solution, we see DH thinking in terms of “rates” as described in the speed schema. 

Of interest, however, is the method she employs to find a solution to the problem. In her 

approach, she solves the equation (14/15)x = 3/8. Her goal in solving this problem was to find an 

equation that contained an unknown which she could determine. DH drew her double number 

line along with her discussion of her solution, but her calculations could have been performed 

without it. She employed the double number line more as a means of recording her calculations 

than as a tool for reasoning about covariation “And so then, I broke [the 5/7 of a minute] up into 

5 parts and I marked out each 1/7 of a minute” (line 7). Her calculation of the amount of water 
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Bob drank in 1/7 of a minute was grounded in the speed schema, not in reasoning with the 

quantities depicted by the double number line. She did not discuss how her double number line 

could be used to help one better understand why the equation (or more specifically, why 

 3 / 8 ÷14 / 15 ) was an appropriate calculation. The imagery involved in understanding why this 

was an appropriate calculation involves a segment that intially connects 0 L and 0 minutes and 

that connects endpoints of segments on each so that the length of the liter segment is always 

14/15 the length of the time segment. The final calculation would then involve determining how 

many 1/7ths of a minute there are in 3/8ths of a minute, which would tell how many 2/15ths of a 

liter he would drink in 3/8ths of a minute.  

KN’s “Graphical” Solution  

KN approached the problem differently from the other two and was aware of it. Before 

discussing his solution, he commented on the others’ solutions: 

The reason most people have problems drawing a graph is because most graphs 
you think of like minutes and liters [draws coordinate axis with elapsed time on 
the x-axis and amount drank on the y-axis]. When I did mine, I did liters and 
minutes [the opposite way, amount drank on the x-axis and elapsed time on the 
y-axis], because we know how many liters he drank and we’re trying to find the 
time. So I had minutes be the y-coordinate. So he drank 2/3 of a liter in 5/7 of a 
minute. That’s 14/15 liters per minute. So that means in one minute, he can drink 

15/14 of a liter [writes “14/15 liters per minute = x” on the board]. So then I had 

my equation f(x) = 15/14 x. This equation told me the amount of time it would 
take someone to drink a given amount of water [KN draws the graph in Figure 
7-17 as he explains the equation and his calculation], so then I plugged in at the 
liters 3/8, and got about 0.402 (KN, 9/21/04). 
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Figure 7-17: KN's Graph 

The following conversation took place in response to KN’s comment. 

Excerpt 7-8 (Session 7, 09/21/04) 

1. SS:  Wait … wouldn!t it be 14/15x? 

2. KN:  If it was liters per minute, but we are trying to … this is for any given 

amount of liters x.  

3. SS:  Yeah, but your original equation is 14/15 liters per minute. So why 

would it suddenly change. 

4. DH:  Because his x is liters, not minutes. 

5. TI:  Its minutes per liter.  

6. KN:  14 L in 15 min. You also know it would take 15 minutes to drink 14 

liters, so you kind of ask yourself, how many liters is he going to drink 

in 15 minutes. 

7. SS:  I just don!t see the algebra. How!d you switch it around like that? 

8. TI:  Because his graph is going to be in minutes per liter. 

9. SS:  Yes, I understand that, but he changed, like that one equation says 

14/15 of a liter per minute and then he writes 15/14 liter in a minute 
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10. KN:  14/15 liters in a minute so that!s how many liters in one minute? So 

you cross multiply… [14/15 liters per min = x min /liter]. 

11. SS: Wait, can I please do something? [She writes 14/15 liters per minute  

= x min per liter " x = 15x = 14 " x = 14/15 on board] 

12. TI:  I don!t think you meant x is 15/14ths, I think that you meant is= 

13. KN:  =Right, I just did that pretty quickly to explain= 

14. TI:  =No, not even that, just that the rate of change of time with respect to 

capacity is 15/14ths. 

15. KN:  OK to be honest, I didn!t set up that ratio. I just  

16. TI:  You didn!t? 

17. SS:  OK, because that was just really bothering me. Because it was like, 

visually thinking. 

18. DH:  It is 14/15ths liters per minute, so I know in one minute it has to be 

15/14ths of a liter. I just kind of made that up as I was going along. 0. 

DH’s solution involved treating the number of liters being drank as an independent variable and 

determining the amount of time it would take Bob to drink a given amount of water. He used this 

rate as the slope of a line that would tell him the amount of time it would take to drink some 

amount of water. While doing so, he drew and referred to the graph shown in Figure 7-17: he 

indicated the point which represented drinking 2/3 of a liter in 5/7 of a minute, the unknown 

amount of time it would take to drink 3/8 of a liter, and waved his hand along the line when 

referring to the amount of time it would take someone to drink a given amount of water. 

Though a great deal of confusion arose about DH is specifying the rate of change of 

minutes with respect to the number of liters drunk, he was clear in his conception that they varied 

together and that the answer to the question amounted to answering the question, “At what 

moment in time will Bob have drunk 3/8 L of water when he drinks at the rate of 15/14 min/L?” 

Lines 13-18 indicate that when he solved this problem, he did not set up equations; he just 

reasoned about the quantities.  
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Discussion of KN’s Solution.  

KN exhibited a more advanced understanding of the situation than the other two students. 

His solution method also highlights the relationship between rates and covariation. First, his 

focus was determining which quantity to track in order to best think about the problem. His 

decision to make the amount of water drank the independent variable was quite sensible. In fact, 

a logical interpretation of his rationale “because we know how many liters he drank and we’re 

trying to find the time” is that he was thinking in terms of covariation: he knew through what 

interval to vary the amount of water drunk and he needed to determine through what interval the 

elapsed time would vary. He then used his understanding of the way in which quantities 

accumulate to describe the rate at which the time changes with respect to a change in the amount 

of water drank. This is significant because reasoning in terms of accumulation is an indicator of 

one’s attention to the variability in a quantity: when one thinks of a quantity accumulating, they 

are inherently thinking about the values of that quantity changing. 

KN is correct that his interpretation of the problem, with the amount drank being 

recorded on the x-axis and the elapsed time on the y-axis, involved an uncommon use of time as 

a dependent variable. As a result, the other students are quick to suggest that the rate should be 

14/15 not 15/14 and there was a long discussion about why the rate of 15/14 is acceptable. 

Ultimately, the problem was in the fact that SS was unable to think in terms of a rate of minutes 

per liter, regardless of the fact that the axes drawn on the whiteboard depicted a coordinate 

system with liters on the horizontal axis and time on the vertical axis. Her attention was on 

manipulating symbols, not on what the 15/14 min/L represented. 

Follow-up Discussion on The Drinking Problem.  

We have seen in the previous sections that though each of the students was able to 

“solve” the drinking problem, not one of the three was able to explain why it was that they were 
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doing the calculations they were doing and what they had to do with the problem. Each of the 

students’ initial inclinations were simply to answer the question, and it was as if they thought 

that putting all the details on the board for public consumption, their thinking about the problem 

would be self-evident. 

TI closed the class session by describing what might guide his explanation of the problem 

and solution: 

I first would note that the students will not think about a dynamic situation. They!ll 

just think “OK, we!re told about 2/3 of a liter and 5/7 of a minute, 1 L OK, so we 

need to find out one thing, an amount of water. Now what do I do with those 

numbers to find it?” You were very clearly thinking about an amount of water 

varying with time, correct? … So, you were … so there!s also the possibility of 

thinking about how much water he drank at 1/64th of a minute and 2/13ths of a 

minute. For him to drink 2/3 of a liter, he had to start drinking zero. So, that was 

one aspect that!s different about presenting a solution as a student and 

presenting a solution as a teacher. That you have to make sure that the students 

are inside the big picture. What is that you imagine going on and how do your 

actions fit with what!s going on (TI, 9/21/04). 

Thus, TI’s purpose in an explanation of the problem was to orient the PSTs (a) to think about the 

problem situation and understand how they might logically proceed and (b) to introduce how 

covariation can be employed to understand and solve the problem. It was believed by TI that 

with their background in reasoning about quantities, this example would help them as they 

engage with the rest of the problems in Problem Set #1. 

Problem Set #1: Part 4 (The Community Building Problem Revisited) 

Description of Part 4.  

TI returned to The Community Building Problem one week after the initial discussion of 

The Community Building Problem and after the PSTs had spent time out of class thinking about 

The Community Building Problem and the rest of the problems in Problem Set #1. Though not 

instructed specifically to do so, they worked on the problems as a group. 
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TI prefaced the conversation with the following: “Now, I don’t want you to, I’m going to 

go around and ask you to talk about what you did about the problems. I don’t want you to give 

blow-by-blow details. Let’s talk about how you thought about the problem so that it became 

sensible to take a particular approach” (TI, 9/23/04). In short, TI intended the discussion to be 

about how one might think about the problem so that the solution methods (i.e. in the case of the 

Community Building Problem, graphing the equation, finding the vertex of the parabola and 

recognizing the significance of both the x- and y-coordinate) would seem like a sensible thing for 

someone to want to do. 

Summary of Instruction  

As they had in their previous discussion of The Community Building Problem, the PSTs’ 

first inclination was to draw a diagram of the situation on the board and to label the sides of the 

diagram (Figure 7-18). This time, though, they were focused on the variability of the sides of the 

building: “We decided to made side 1 and side 2 the variables. In this problem we said that 

they’re the things that are going to be varying. So we know that they’re not going to be, oh 

what’s the word? Umm … static” (DH, 9/23/04). This comment indicates that the PSTs were 

conscious of the fact that the variables depicted in the diagram could vary. The conversation then 

shifted to tracking an independent variable and how the figure changed as the independent 

variable changed.  
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S2

S1

 

Figure 7-18: Students' Suggested Diagram 

Excerpt 7-9 (Session 8, 09/23/04) 

1. KN:  We can think of one of the sides as the independent variable, so when 

you change that, it directly affects the length of side 2. … the 

dependent variable. 

2. TI:  And why? 

3. KN:  Because … 

4. SS:  [quietly] You can find all possible values? I don!t know. 

5. TI:  No, I mean why must … Say what you said again, KN. 

6. KN:  Assign say side one to be the independent variable and then as you 

move, if you make side one longer, side 2 has to decrease… side 2 

changes because the two vary together. 

7. TI:  All right, the two vary together, but why, if you make side 1 longer, 

why shouldn!t side 2 get longer too? 

8. KN:  Because there!s a fixed amount of wall that we!re working with.  As 

you move part of the wall from one side you!re taking it away from the 

other. 

9. TI:  Yeah. So if you move part of the wall from this part [vertical walls], you 

have to take it away from that part [horizontal walls]. So that!s the kind 

of talk I was looking for. Very qualitative. Not, “Here!s what you have 

to do to solve it.” But how can I think about this so that it makes sense 

with regard to the description of the setting. 0. 
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In comparison to their prior reasoning about The Community Building Problem (Part 2), in the 

above excerpt, we see a shift in the way the PSTs thought about the problem. Rather than 

focusing on the diagram as a static source of formulas to be combined and solved, the solution 

entails viewing the diagram as a dynamic representation of the scenario (line 6). In addition, 

when questioned about why when one side gets larger the other side must get smaller, KN relates 

the behavior of the sides to the constraints of the problem (line 8). Thus, their dynamic 

representation embodies the way in which the lengths of the two sides of the community building 

covary. 

TI then returned the conversation to the ultimate question regarding maximizing the area 

of the community building. Using the dynamic image of the room as a guide, DH proposed 

considering a set of values for S1 (and the corresponding set of values of S2) and thinking about 

the area of the room over that range. In the following excerpt, TI guides the PSTs through a 

qualitative description of why we know there will be a maximum area given the constraints in 

the amount of wall material available. 

Excerpt 7-10 (Session 8, 09/23/04) 

1. TI: We haven!t talked about how the area varies. So how do we have to 

think about this to even … to even think that there might be a place 

where, in fact, you have the largest area? 

2. DH:  You have to think in the range from Side 1 being a length of zero to 

the range of Side 2 being a length of zero and everything in between. 

And as Side 1 increases, … Umm… 

3. TI:  Start off with Side one of length zero. What!s the area? 

4. DH:  Zero. 

5. TI:  As you increase the length of Side 1, what happens to the area? 

6. DH & KN: It increases? 
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7. TI:  Will it just continue to increase forever? 

8. ALL:  No. 

9. TI:  Why not? 

10. DH:  Because eventually Side 2 will get close to zero.  

11. TI:  Right. So Side 2 will get close to zero. In fact, you can make it so that 

Side 2 is zero. So if its zero here, and zero there [TI indicates two 

points in the air] and its getting bigger at the beginning as you make 

Side 1 bigger, then what must it also do. 

12. KN:  Reach a maximum. 

13. TI:  It must get smaller at some point. Right? To get back to zero. So, if it 

gets bigger, getting larger than zero and then at some point it starts 

getting smaller and starts going back to zero, at some point it is as big 

as its going to get. 0. 

This excerpt is significant in that we see a marked change in the PSTs reasoning – we now see 

the PSTs reasoning in terms of the covariation of quantities over a given range. In lines 2-12, we 

see DH reasoning about the covariation of Side 1 and the area of the community building – 

focusing on Side 1 as the independent variable and on the interval from when Side 1 is zero to 

when Side 2 is zero. Ultimately, in line 12, KN notes that since the area will be zero initially 

(when Side 1 equals zero) and at some point in the future (when Side 2 equals zero), the area 

must reach a maximum value somewhere between when Side 1 equals zero and Side 2 equals 

zero (in essence, she is applying Rolle’s Theorem). It is significant in that they are reasoning 

about the covariation of the quantities without the aide of the graph of Side 1 vs. the area of the 

room as in Part 2 (Figure 7-8). Rather, they are imagining what would happen as the quantities 

covary.  

Discussion of Part 4 (The Community Building Problem Revisited)  

Any discussion of this part must be prefaced by the fact that the PSTs knew how to solve 

this problem prior to instruction, and therefore, it is important to clarify in what ways the PSTs 
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have developed. The PSTs’ initial inclinations, as discussed early in Part 2, indicate that they did 

not understand how to think about this problem in a way that emphasized understanding the 

situation, the variables at play, and how covariation can be used as a tool for understanding the 

logic of standard solution methods. In short, they knew how to solve the problem, but they did 

not have an image of the situation that would guide them in helping others see a solution method 

as a sensible, logical approach to the problem. In Part 4, we saw the PSTs developing ability to 

visualize the covariation of quantities. It is believed that this way of thinking will enable the 

PSTs to have qualitatively different kinds of conversations about maximizing or minimizing with 

their students.  

Problem Set #1: Part 5 (Bob’s Drinking Problem Revisited) 

Immediately following the discussion of The Community Building Problem in Part 4, TI 

revisited The Drinking Problem. He presented the students with the same task as he had in Part 

4: “How can we think about the [The Drinking Problem] in a way that it will support modeling it 

with a function and thinking, in fact, that there is a solution?”  

Summary of Instruction  

TI introduced this segment of instruction with the following excerpt: 

Excerpt 7-11 (Session 8, 09/23/04) 

1. DH: At zero minutes, Bob has drunk zero liters of water. We know that he 

is drinking the water and after a period of 5/7 of a minute, he has 

drunk a total of 2/3 of a liter of water. So somewhere in there, at one 

of the points (time, amount of water drank), we know he drank 3/8 of a 

liter, we just don!t know where along here [indicates the horizontal 

axis]. 

2. KN:  And he drank the water at a constant rate. 

3. TI:  And he drank the water at a constant rate…  
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4. KN:  Right. 

5. TI:  That!s why its called a model. We!re not saying he really did, but we!re 

going to assume that he did. But what you said, though, was good. 

Somewhere along that, somewhere during the time that he was 

drinking water, in order for him to get to 2/3 of a liter, he had to have 

consumed 3/8 of a liter. 

6. DH:  Since he!s drinking at a constant rate, we can use that kind of like rise 

and run and think how far over we!d have to run in order to rise in 

order to get a rise of 3/8 L and be on the line. 

7. TI:  Now suppose that the question was about 3/4 of a liter? Then he 

wouldn!t have actually – if he drank 2/3 L, he wouldn!t have actually 

gotten to 3/4 L. So then how would you think about it? 

8. KN:  He continues drinking at this rate, how long will it take him to- 

9. TI:  - right, yeah. So, if he were to continue drinking at that rate, so now 

you see you!re making the connection very explicit between the 

situation, the idea of rate of change, the idea that he!s accumulating 

water as time goes on. 0. 

In this excerpt, we see the PSTs’ reasoning about relationships between variable 

quantities. In line 1, when DH notes that it happens “somewhere in there,” she is envisioning a 

number of possible corresponding pairs of elapsed time and amount drunk and one of those 

possible pairs satisfying the given conditions. In line 2, KN notes “he drinks water at a constant 

rate,” which was the final piece in thinking about this problem conceptually. DH follows this line 

of thinking by drawing an analogy between the constant rate and slope of the line - she notes that 

they just need to “think how far over we’d have to run in order to rise in order to get a rise of 3/8 

L and be on the line” (line 6). It is also significant to note that the PSTs have begun to think 

about The Drinking Problem in a way that allows them to consider the problem of finding how 

long it would take for Bob to drink some amount greater than the given 2/3 of a liter. Without 

reasoning about quantities and proportionality, this problem tends to be significantly more 

difficult. 
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Discussion of The Drinking Problem  

In Excerpt 7-11, we see a significant shift in the way in which the PSTs thinking about 

The Drinking Problem. In Part 3, none of the PSTs were able to reason through the problem. 

They were all were able to set up and solve equations, but their discussions in Part 3 indicated 

that they still struggled when trying to discuss a coherent, conceptual understanding of the 

solution and their method. In contrast, we now see the PSTs reasoning about the covariation of 

quantities, and accordingly speaking about how one might approach the problem in a way that 

makes sense. This way of thinking went something like this: At the start, Bob has drunk zero 

liters of water. Bob drinks water at a constant rate and can drink 2/3 of a liter in 5/7 of a minute. 

Since this is a constant rate, for any fractional part of 5/7 of a minute, he will drink the same 

fractional part of 2/3 of a liter. Therefore, if we know how much of a fraction of 2/3 L 3/8 L is, it 

will take him the same fractional part of 5/7 of a minute to drink 3/8 L of water. It is this way of 

thinking that both allows a solution method to emerge from understanding the problem, and, 

more importantly, gives meaning to the calculations that the PSTs were performing in  

Part 2. 

It is also worthwhile to note that reasoning about quantities in this way also allows one to 

consider the problem of determining how much time it would take if Bob were to drink some 

amount greater than the given 2/3 of a liter. KN noted that the reasoning for this problem would 

be very similar: “if he continues drinking at that rate, how long would it take him to drink a 

specified amount of water.” This realization indicates that the PSTs are beginning to develop a 

Key Developmental Understanding of function: through envisioning the quantities that are 

covarying according to a specific relationship and through understanding that relationship, KN 

found reasoning through a related problem fairly easy and straightforward.  
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Also in this excerpt, we see the first occurrence of the PSTs describing the relationships 

between the quantities at play and how those relationships give insight towards how and why one 

might solve the problem without significant intervention by TI.  

Problem Set #1: Part 6 (The A-Frame Barn Problem) 

Description of Part 5 

The A-Frame Barn Problem was the final problem discussed in class. This problem, at its 

core, is very similar to The Community Building Problem, however there are additional 

intricacies that needed to be dealt with in order to specify a relationship between one variable 

quantity and the volume of the room. The text of the problem is shown in Figure 7-19. 

 

The A-Frame Barn Problem 

An A-frame barn is to be built so that it is 30 ft high, 40 ft wide and 60 ft long. A 

rectangular room is to be built inside the barn so that its ceiling abuts the roof. 

What dimensions will maximize the volume of the room? 

Figure 7-19: The A-Frame Barn Problem 

In this problem, students are presented with the dimensions of the structure (Figure 7-20) 

and they need to figure out how this information relates to the dimensions of the room.  
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Figure 7-20: The A-Frame Barn 

Summary of Instruction 

The discussion of The A-Frame Barn Problem began with SS drawing a figure similar to 

Figure 7-20 on the board to be sure that she “understood where everything was.” She then 

presented her method, which involved the reduction of the number of variables: “So I tried to 

reduce it to two variables. I was trying to look at one side, like a 2-D side. Like a triangle side 

and then maximizing the intersection” (SS, 9/23/04). Her reasoning was an attempt to reduce the 

number of variables in the problem, and ultimately construct a graph that would track the two 

varying quantities. Unfortunately, the “variable” she had removed from the scenario was a 

constant (60 feet) and not a variable (Figure 7-21). Despite this fact, her comment was, in 

essence, a suggestion to look at the face of the barn, which was an important step in the PSTs’ 

discussion of the problem. 
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Figure 7-21: SS's "Reduction of Variables" 

TI suggested using SS’s diagram, but pushed the PSTs to think about the variables in the 

problem: “OK, remember, we’re going to try to vary one thing, but what is it that we want to 

vary as a result of varying that one thing?” The following excerpt details the conversation that 

followed: 
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Excerpt 7-12 (Session 8, 09/23/04) 

1. SS:  Wait, is this just like that other problem where it is like 

… like the height could be zero and the area would be 

zero and then later, the width could be zero and the 

area would be zero again. And the problem is, like, 

realizing that there!s a maximum somewhere in the 

middle [SS moves her fingers in air, tracing the area 

varying with one finger along the desk and one in the 

air – Figure 7-22]. That!s where the solution is going 

to be [indicates the top of the parabola]. 

2. TI:  OK … Yeah so the height of the room could be 

zero, the width of the room could be zero. 

Increasing the width of the room from 0, the area will increase, but 

then for it to get back to zero, it will have to, at some point, start 

decreasing. Now, what!s varying. What variables can we think of as 

varying that will, in fact, vary the area of that room!s face. 

3. SS:  The width and the length of the room. 

4. TI:  The width and the length. OK, now can we vary one of those. 

5. DH:  By varying one of them, the other, by default varies.  

6. TI:  In what way?  

7. DH:  Well, if you make the width smaller, the height is going to have to get 

taller. 

8. TI:  Why? 

9. SS:  Because it has to abut the roof= 

10. TI:  =right, because of the constraints of the problem.  

11. SS:  You can!t have the width stay at a length of 20 or something and the 

height go out the ceiling.  

12. TI:  Right. It is supposed to be a rectangular face and if they didn!t vary 

together, it couldn!t stay together. So, if I move this point then, in fact, 

I get the two varying together [PT moves “corner” of room – yellow 

point in Figure 7-23]. Now what is it … OK now in terms of developing 

a model, what about that point [the yellow point in Figure 7-23] are we 

going to … we have to quantify it. What about that point are we going 

to track? 0. 

Figure 7-22:  SS tracing 
her finger in the air. 
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In this excerpt, we see the first evidence of the PSTs relating their understanding of one problem 

to a different problem. SS was correct when she noted that this problem was very similar to The 

Community Building Problem (line 1). The similarity she noticed was not in the surface 

characteristics of the problems (that they were both about maximizing rooms) – she recognized 

the similarity in the way the variables covary: “like the height could be zero and the area would 

be zero and then later, the width could be zero and the area would be zero again. And the 

problem is, like, realizing that there’s a maximum somewhere in the middle” (line 1). SS’s 

explanation and gestures indicate that her reasoning about covariation gave insight into a 

solution and solution method for the problem – though she did not give an answer for the 

problem, her reasoning clearly indicated the direction one might go in order to find a solution. 

 

Hgt

Width

 

Figure 7-23: GSP Sketch of The A-Frame Barn 

In the remainder of Excerpt 7-12, we see the PSTs reasoning about the variables and 

relationships between variables in the problem. With little guidance from TI, the PSTs realized 

that the relationships between the variables arise as a result of the constraints of the problem 

(lines 5-11). At the end of, TI initiated a conversation that served to transition from a discussion 
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of qualitative features of the situation to a mathematical model. The PSTs chose to define that 

the height of the room would be a variable (y in Figure 7-24). They had trouble deciding whether 

to define the second variable as the width of the room or half of the width of room. From the 

video data, it is not clear why the PSTs chose to define the second variable (x in Figure 7-24) as 

half of the width of the room, but as this simplifies the next step, TI accepted this definition. 

Eventually, a diagram similar to Figure 7-24b was agreed upon as an acceptable diagram of the 

situation. Despite having this resource, the students were still unsure of how to proceed.  

After a few minutes of silence, TI proposed using similar triangles, and almost in unison, 

the students responded “Oh!” With that missing piece of information, the PSTs were able to 

propose a way to model The A-Frame Barn Problem with functions: 

Excerpt 7-13 (Session 8, 09/23/04) 

DH: So we need to set up a ratio and then we can use that ratio to express one of the 
variables in terms of the other. And then the area, which is length times width 
could be expressed as a function of just one variable. 

 

In the quote, DH is proposing using the property of similar triangles that the lengths of 

corresponding sides of similar triangles are always in the same proportion. Mathematically, this 

would be expressed as 
30

x
=

y

20 ! x
, where y represents the height of the room and x represents 

half of the width of the room. The height of the room could then be expressed as a function of 

the width: y =
60 ! 30x

20
=
6 ! 3x

2
, and the area of the room could then be expressed as a function 

of only one variable: A(x) = 2x ! y = 2x !
6 " 3x

2
= 6x " 3x

2 .  
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Figure 7-24: Variables in the A-Frame Barn Problem 

TI then stopped the conversation before the PSTs generated an equation for area of the 

room in terms of the width of the room. The activities concluded with the following excerpt:  

Excerpt 7-14 (Session 8, 09/23/04) 

1. TI: Now, with this one, there were some technicalities … given that if we 

know half the width of the room, then we can calculate the height. So 

that took some … it was detail work. But what!s the crux of solving this 

problem? 

2. DH:  Reducing it down to a number of variables that we can deal with and 

trying to think about how what you want varies as a function of 

something you know. 

3. TI: Right, Imagining how its going to work, what varies, and then trying to 

think of how you can think of that varying as a function of one thing 

varying. 0. 

Discussion of The A-Frame Barn Problem 

In their discussion of The A-Frame Barn Problem, we see the PSTs focusing on the 

variables in the scenario in a largely independent manner. With only “little nudges” by TI, we 

see the PSTs thinking about the variables at play, figuring out a way of expressing the 

relationships so that the quantity of interest can covary with a single quantity, and generating a 
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function from which a solution could be derived (through minimal calculations like taking the 

derivative or averaging the roots). 

The most significant comment that must be made about the PSTs’ work on The A-Frame 

Barn Problem, was encapsulated by DH’s comments in Excerpt 7-13 and Excerpt 7-14. Her 

comments indicate that she was developing an image of the utility of covariation in making sense 

of how to think about applied mathematics problems. 

Additional Problem from Problem Set #1 

There were four additional problems from Problem Set #1 that were not discussed in 

class. These problems consisted of two geometry problems, a distance-rate-time problem, and a 

cost-minimizing problem (see Figure 7-1 for the entire problem set). As a result of a number of 

problems regarding the PSTs’ work as data, the student work on these problems will not be 

analyzed in depth. Regardless, the PSTs’ work does shed light on how prevalent the ways of 

thinking discussed in the previous sections are (albeit, possibly anecdotally).  

SS’s problem write-ups can be described as defining unknowns, writing equations, and 

solving for unknowns. Her explanations consisted of trying to explain clearly each of the steps of 

her solution. In addition, for each of her solutions, she attempted to relate the answer she had 

found to the graph of the equations she had used. The explanation of this relationship consisted 

of comments like “graph the possibilities and see where the minimum value lies,” and “Graphing 

the lengths of the sides in this problem showed that there was an obvious maximum value. At 

this maximum value, there were the values for y and x.” Her solutions do not hinge on 

understanding quantities and the relationships between quantities, but rather solving for 



 

 154 

unknowns and relating the now known maximum or minimum value to the graph of the quantity 

being maximized or minimized.  

DH generated figures and tables in order to answer the questions. Her graphs were not 

dynamic (they were generated using computer drawing tools) and as a result served as more of a 

means of justifying her solutions than as a tool for reasoning about the variables at play and the 

problem. She often noted the fact that she was attempting to focus on the covariation, but that 

she lacked a means of inscription for the covariation. As an example of this, she used tables to 

express function values for two different functions of the same independent variable. She then 

added the function values together and plotted (by drawing circles on a computer drawing 

application) different values of the sum of the two values. With regards to these tables, DH 

explained that she was aware of the covariation, but she just proceeded anyway: 

And when I was doing this problem, since that’s just so natural, I didn’t even think 
about it. So essentially I was just looking at two points, because it is just, 
because I just assume I know that there’s going to be a connection between 
these two points. So I probably wasn’t thinking of it as anything other than the 
two static points (DH, Problem Set #1 Write-Up). 

Thus, though DH was not reasoning in terms of covariation of quantities, she understood that 

covariation was working in the background. 

Though tables of values may, in some cases, indicate covariational reasoning, there is no 

evidence that DH was thinking in terms of variable quantities. Another interpretation is that she 

was looking for a value of the sum, which was the greatest, not imagining running through the 

independent variable and keeping track of the dependent variable, which was the sum of two 

functions. Much like SS, the majority of DH’s text and inscriptions focused on justifying 

answers. 

 KN’s covariational reasoning was by far the most advanced of the students. He was the 

only student to speak of the variability of the independent variable over an interval and the 
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resulting variability of the dependent variable, though he only did so on one problem. He 

described his function as representing “The cost of the trip for any given x. … Since the speed 

limit is between 40 mph and 65 mph, we know we can only focus on that part of the graph. … 

Since between 40 mph and 65 mph, we see the cost decreasing and then increasing, we can know 

that the minimum cost will be around 65 mph.”  

Summary of Problem Set #1 

There are a number of issues that emerged from the analysis of the data from problem set 

#1. First, in each of the problems, with the exception of the final problem attempted in class, the 

PSTs’ initial inclination with respect to these problems was to generate equations to be solved. 

Despite the fact that they had success in understanding the relationships between varying 

quantities and answering fairly technical questions regarding the way the quantities in Chapter 6 

(Cities A & B) co-varied, it was not until the final problem that they even considered the fact that 

one could think about the quantities at play in order to better understand the problem. Further, 

the notion of how one might approach the problem was not apparent in the conversations.  

The PSTs’ written solutions to the problems further highlight this issue. Though the PSTs 

were eventually able to reason through the problems discussed in class, when it came to their 

write-ups of the problems discussed in class (as well as those that were not discussed in class), 

the salient characteristics of their solutions remained “finding unknowns”. It was as if on each 

problem, the PSTs needed to start from the beginning with labeling unknowns and solving 

equations. At this point, the data indicates that the PSTs needed an external “nudge” by TI to 

think about the situations presented in terms of covariation of quantities.  



 

 156 

This is a theme that will recur throughout the discussion of the next set of activities: when 

engaging with each problem, the PSTs tended to begin with this approach. Once they were 

reminded that variables vary (What are the quantities that are varying in this situation? What 

happens as each of them vary?) and to slow down (variables vary a little at a time), they were 

able to reason through the problems. This is one of the interesting emergent themes in this study: 

We have seen evidence that the PSTs can reason about the situations in terms of simultaneous 

covariation of quantities; what is of interest is the fact that they tended not to. 

Problem Set #2:  Functions and their Graphs 

The in-class activities devoted to Problem Set #2 were very similar in form to that of 

those in Problem Set #1. TI introduced the problems by discussing the “big ideas” of how one 

might think about problems of this sort and reminded the PSTs to remember that “variables 

vary” and to “slow down” and then the PSTs went to work on the problems. The problems in 

Problem Set #2, however, differed significantly from Problem Set #1. In Problem Set #2, the 

problems were more mathematically abstract and did not involve modeling of real world 

phenomena. Rather they involved problems where the mathematics itself was to be a context 

within which to investigate the covariation of quantities. 

Table 7-3 describes the class sessions devoted to discussion of problems from this set. In 

addition to the in-class activities listed in the table, I will discuss the PSTs’ written solutions to 

additional problems at the end of this section. The full text of Problem Set #2 is shown below in 

Figure 7-25. 
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Table 7-3: Breakdown of Activity 4: Problem Set #2 

Session Date Activity 
Approx. 

Duration 

9 9/28 
Part 1: Types of Explanations: Explaining the 

behavior of f (x) = sin x + 0.01 sin(100x)  
41 min 

  
Part 2: Problem # 1: Families of Polynomial 

Functions (The Quadratic). 
18 min 

  
Part 2: Problem # 1(cont’d): Families of Polynomial 

Functions (The Cubic) 
6 min 

10 9/30 Part 3: Problem #2: Intro to “Mod” functions 14 min 

  Part 4: Student work on Problem 2: f (x) = x2 mod2  13 min 

  Part 5: Student work on Problem 2: f (x) = x3 mod2  6 min 

 

 

Figure 7-25: Excerpt from Problem Set #2 
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Problem Set #2: Part 1 (Exploring the behavior of f (x) = sin x + 0.01 sin(100x) ) 

TI proposed the task of explaining the behavior of the function 

f (x) = sin x + 0.01 sin(100x)  (Figure 7-26). This problem is traditionally difficult for students 

for two reasons. First, the graph (Figure 7-26) that appears, at first glance, to be a typical sine 

graph, is not (the callout in Figure 7-26 shows some of the complexity of this function). Second, 

the rules for dilations and contractions of periodic functions that permeate trigonometry 

instruction in traditional school mathematics20 are not easily applicable to this problem. For these 

reasons, TI envisioned this problem as further problematizing the PSTs’ understanding of 

functions. This problem also served to highlight the fact that understanding functions does not 

happen as a result of memorizing properties or formulas; more important is a way of thinking 

about functions from which the properties and formulas emerge. 

The task was posed in the context of discussing the nature of good or poor explanations 

in mathematics. TI noted that there are two broad classifications of mathematical explanations21. 

A Type I explanation provides descriptions without discussing the reasoning behind what was 

done. It fails to give us a sense of why things work the way they do. A Type II explanation 

describes both how a function behaves and also why it behaves the way it does. This discussion 

was another attempt to shed light on the utility of covariation – explanations in terms of how one 

variable varies with respect to a second variable are inherently a Type II explanation.  

Throughout the entire discussion, a graph of the function was projected at the front of the 

room (Figure 7-26).  

                                                 

20 For example, in f (x) = sin bx, the (b) term will affect period. The period of the function is determined by 

the formula P = 2"/b. 
21 TI discusses the nature of Type I and Type II explanations at the following web-page: 

http://pat-thompson.net/MTED2800/Explanations/ExplanationAnalBad.htm 
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Summary of Instruction 

In response to TI’s request to explain the behavior of the function, the following 

interchange took place: 

Excerpt 7-15 (Session 9, 09/28/04) 

1. DH:  Well, it is bumpy and not curvy because it is absolute value, so every 

value that!s negative one in the negative graph is going to be one. 

2. TI:  It is reflected up, all right. 

3. SS:  Yeah, the absolute value has to do something with that. 

4. KN:  That makes sense. 0. 

 

 

Figure 7-26: Graph of f(x) = sin(x) + 0.01|sin(100x)| 

In this brief interchange, we see that the PSTs’ initial inclination was to describe broad global 

characteristics of the function, as it had been in their initial attempts at explaining The 

Community Building Problem and The Drinking Problem. Initially, the PSTs did not see this 
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problem as being about covariation. 

In an effort to shift the conversation to the covariation of quantities, TI projected a 

sample Type II explanation at the front of the classroom (Figure 7-27). TI believed the figure and 

the explanation could serve as a didactic object for shifting the PSTs’ attention to the way the 

quantities varied. TI then initiated the conversation shown in Excerpt 7-16.  

 

Figure 7-27: Part of a “Good” Explanation of f(x) = sin(x) + 

0.01|sin(100x)| 

Excerpt 7-16 (Session 9, 09/28/94) 

1. TI:  OK, now what about this business of starting with 100x being negative 

2"? Why is it 100x instead of x? 

2. KN:  It seems like they already figured out the interval was length "/100. 

And then plugged 100x in instead of x. 

3. SS: Does it have something to do with the amplitude and the period? 

4. TI:  Perhaps. What!s the period of sine? 

5. KN:  2". 

6. TI:  And what!s that with respect to? What has to vary by 2" for sine to 

repeat? 

7. DH:  What has to vary by 2"? The graph has to vary by 2", right? 
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8. TI:  Yeah. So that!s the idea that it is periodic, isn!t it? If you say the period 

is 2" then that means that– 

9. DH:  –the graph goes through one cycle. 

10. TI:  It begins repeating itself every interval- at the end of every interval of 

2". Now, what!s varying? What is it that varies for the, for sine to have 

a period of 2"?  

11. DH:  x? 

12. SS:  Do you want to say x or theta or something like that? 0. 

In this excerpt we see the PSTs’ struggling to make sense of periodic functions in terms 

of covariation of quantities. In line 2, we see KN relating TI’s question to the formula for 

calculating the period described previously (P = 
2!

b
), though KN either made a calculational 

error (the period is actually "/50) or he was considering a two-period length interval. SS’s 

comment about the amplitude and period (line 4), the two common “buzz-words” in 

trigonometry further verifies the claim that the students initially referred to formulas for answers 

about the behavior of the function.  

 In the remainder of the excerpt, the students appear not to understand TI’s questions 

about the specifics of periodic functions. Though they understood the definition of, and how to 

find, the period and the amplitude, in line 7, DH was unsure how to answer TI’s question (“What 

has to vary by 2" in order for the function to be periodic?). While TI’s focus was on the 

quantities that would result in the observed periodicity, DH was focused on periodicity as a 

characteristic of the graph (lines 6 and 8) – not of the covariation of quantities. At the end of the 

excerpt, we see both DH and SS guessing that it is an independent variable that varies by 2". 

Both the intonation of DH’s comment (line 10) and the wording of SS’s comment (line 11) 

indicate that they did not necessarily understand why this was significant.  
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TI recognized that the PSTs were struggling and asked them to try to explain their 

difficulties.  

Excerpt 7-17 (Session 9, 09/28/04) 

1. TI:  OK. What!s hard about this?  

2. DH:  I!m not used to thinking about it this way. 

3. TI:  OK, that!s true, but we!ve done a lot of stuff that you weren!t used to. 

4. DH:  That wasn!t easy either. [Smiles]. But with these problems, I thought I 

knew about trig functions like sine and cosine. But the way you!re 

asking, I really don!t know how to answer. 

5. SS:  Like I used to know, we used to have in other classes, we!d have an 

equation like you knew part of the equation meant what. Like … the 

period of the function and the number in front of x, we!d know how 

many cycles. And I guess I just can!t totally compare that to what 

we!re doing. 0. 

Excerpt 7-17 sheds some important light on the PSTs struggle to answer TI’s questions. 

The excerpt indicates that TI had succeeded at problematizing trigonometry for DH and SS. In 

particular, we see SS noting an incongruity between her understanding of trigonometry and the 

way TI was pushing her to think. TI believed this to be a catalyst for developing deeper, more 

conceptual understandings of functions.  

In an attempt to help the PSTs relate periodicity to their understanding of covariation, TI 

chose to focus the conversation on the relationship between the quantity being tracked on the 

coordinate axis (values of x) and the argument of the sine function (100x in 

f (x) = sin x + 0.01 sin(100x) ). TI believed that the PSTs must understand two specific ideas 

about how the quantities vary in this situation to make sense of the graph. First, the PSTs needed 

to keep track of two quantities, x, which was recorded along the horizontal axis, and 100x, the 

argument of the sine function. The crux of this situation to TI was that the PSTs come to realize 
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that as x varies, 100x varies by 100 times that amount. Second, the PSTs needed to understand 

that, with respect to trigonometric functions, the function values repeat themselves whenever the 

argument of the trigonometric function varies by 2". 

Excerpt 7-18 (Session 8, 09/24/04) 

1. TI:  Let!s say we have sine of something. [Writes sin ( ) on the board.] 

What about this? You know that!s going to have a period of 2", right. 

And what!s going to vary by 2"?  

2. KN:  x? 

3. TI:  How about if we say whatever goes in there [indicates inside the 

parentheses with an arrow]? If whatever is in here … if this [points to 

parentheses] changes by 2", then sine is going to start repeating 

itself, right?  

[DH shakes head, indicating she is not following].  

4. TI:  No, DH? 

5. DH:  I just don!t understand what you!re saying. 

6. TI:  Sine … OK, what kinds of things do you need to put in there so we 

can actually evaluate sine? … A number. (pause) That!s the only thing 

you can put in there to actually evaluate sine. So, if I put, if I write u 

[places a U above the parentheses] what am I, isn!t it taken for 

granted that u stands for a number? If I write, 20u [writes 20u], isn!t it 

taken for granted that 20u stands for a number? So when this number 

varies by 2" … Here!s a number [pointing to 20u]. How much does 

that have to vary for sine to repeat itself?  

7. KN:  Well, we just said it has to vary by 2".  

8. TI:  That!s right. But it is 20u that has to vary by 2", not u. Suppose that I 

write 157y [inside the parentheses]. How much does 157y have to 

vary by in order for sine to repeat itself? 

9. DH:  2". 

10. TI:  2". How much does y have to vary so that sine repeats itself?  

11. DH:  157 over 2" … or  

12. KN:  Oh, now I see where the "/100 comes from…it is the other way 

around. 
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13. DH:  Oh, right … 2"/157. 

14. TI:  Yeah. So now, look back here [to the original problem]. … So you 

have 100x being -2" … that!s like saying start at u being -2", or 157y 

or something. It is just the thing you!re going to evaluate sine at – 

make that -2". OK, now, in principle, you call that the argument of the 

function, whatever you evaluate the function at, that!s its argument. 

So, in that case, what is the argument of sine? 

15. DH:  157y. 

16. TI:  And what!s the argument for sine in this example? 

17. DH:  100x. 

18. TI:  All right, so how much does 100x have to change by in order for 

[sin(100x)] to start repeating itself? 

19. DH:  2". 

20. TI:  So, then x has to change by how much? 

21. DH:  "/50.0. 

This excerpt clearly shows the students making connections between the graph and the equation 

– in the end DH had reasoned through the covariation and deduced that the period of the function 

would be "/50. Rather than relying on formulas, she did so by focusing on understanding the way 

in which the quantities covaried. 

TI continued this line of discussion, but shifted his purpose to help the PSTs develop an 

image of how a multiplier in the argument affects the period of the function. To accomplish this 

goal, he had the PSTs physically act out the three quantities at play in order to assist the PSTs in 

developing imagery that will assist them in making sense of why the graph behaves as it does. 

This activity relied on physical modeling of quantities (as was introduced in Chapter 6 and 

recurred throughout the activities of Chapter 7). In this case, the modeling consisted of one PST 

tracking x with his finger moving horizontally along the desk. A second PST tracked 100x with 

their fingers in a similar manner. Finally, the final PST was responsible for tracking |sin (100x)| 
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vertically. As a final exercise, the teacher noted that the graph of f(x) = |sin (100x)| could be 

generated by keeping track of the values of x with the horizontal finger and sin (100x) with the 

coordinated vertical finger (Figure 7-28). The following excerpt details how the PSTs came to 

think about the behavior of the function. 

 

Figure 7-28: Modeling the Behavior in Part 2 

Excerpt 7-19 (Session 9, 09/28/04) 

1. TI:  All right so let me ask this, suppose I move an inch. How much do you 

[KN, modeling 100x] have to move?  

2. KN:  100 inches. 

3. TI:  All right, so as I move [my finger – representing x], you move yours 

[representing 100x] and you two, DH & SS, think about what sine is 

doing. So, if this distance [indicates a distance of approximately one 

foot] is ", then what!s it going to do when KN moves that far? What!s 

sine going to do? 

4. DH:  Do you mean when 100x moves that far? 

5. TI:  Yes, he!s got 100x. So … when he goes from zero to ".  

6. DH:  It is going to go through half a cycle.  

7. TI:  It is going to go through half a cycle. Right. Now, DH and SS, 

remember, you!re keeping track of sin 100x in relation to my value of 

x. All right? Now, I move a teeny tiny bit. OK, now what has sine done, 

with regards to his argument?  
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8. DH: It has gone up and down a lot of times … times.  

9. TI: OK, so let!s go back to our function
f (x) = sin x + 0.01 sin(100x)

. You 

tell me. … What are you adding to sin x? 

10. SS:  Tiny, tiny numbers, between zero and 0.01 and back to zero. 

11. TI:  Tiny numbers.  

12. DH:  So for the large negative numbers, the tiny numbers are going to 

make the points on the graph slightly less negative – you!re adding 

small positive numbers to the sine. 

13. TI:  Right. 

14. DH:  So you!ll get a version of the sine curve with bumps … OK. And the 

bumps will bounce back [off of the sine curve] when … every "/50?  

15. SS: Like every "/50, [the graph of sine] has little peaks 

added to it. So it is still doing the sine, but its got a 

little bit extra, like you!re adding the absolute value of 

sine to it [Figure 7-29]. 

16. TI:  Does this help you imagine what!s going on? (pause) 

Remember, graphs are all about covariation.  

17. DH:  Finally, it clicked. … So as x varies every "/50, 

what!s being added to the sine starts at zero, gets 

up to 0.01, and then back to zero. 0. 

In this excerpt, we see the PSTs’ developing a sense of the relationship between the 

independent variable (x) to values of the argument of the sine function (100x). This sense was 

developed through the physical modeling of the quantities, which was helpful in that the PSTs 

began to develop an image of the sine function as being a function of an argument that is not 

necessarily the independent variable. The physical modeling of the quantity “the argument” 

allowed the PSTs to see both what the sine function was being evaluated at and how this quantity 

related to the independent variable. 

In Excerpt 7-19, we also see DH presenting a conceptual understanding of why the graph 

behaves as it does. Her explanations rely on the notion of a landmark. In line 16, we see DH 

Figure 7-29: SS 

Demonstrating the 
Absolute Value of Sine 
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organizing the covariation by sub-dividing an interval of x-values into sub-intervals on which 

there is predictable behavior of |0.01 sin(100x)|. She then describes the behavior of f(x) on these 

sub-intervals.  

Discussion of Activity 4, Part 1.  

The PSTs’ work on this problem highlights the fact that students with formal preparation 

in mathematics and who ostensibly understand particular mathematical content still may struggle 

to understand the content in a way that supports conceptual discussions. When the PSTs first 

encountered the problem, their initial inclination was to describe the shape of the graph (the 

“bumpyness”) and to refer to the formulas that they believed described the salient features of the 

graph.  

When pushed to reason in terms of the quantities, the PSTs experienced significant 

difficulty. One way of explaining their struggle, which is consistent with KN’s comment 

regarding the period or “interval” (Excerpt 7-16, line 7), is that they envisioned a periodic 

function as a graph. They were aware of the fact that this graph has certain characteristics (for 

example, the distance from one “peak” to the next “peak” is the period, which can be calculated 

by the formula discussed previously). What is clear about this conceptualization of a periodic 

function is that there is nothing varying – one can run his or her finger along the graph and trace 

out the points on that graph, but it is the graph that has permanence. The graph is not generated 

by the covariation of quantities, it simply is. When one understands a periodic function in this 

way, there is no need to concern oneself with the quantities which vary and which are 

represented on the coordinate axes. This understanding is consistent with the focus of traditional 

trigonometry instruction, which involves calculating the period, amplitude, and phase-shift of the 

graph of a trigonometric function – not the period, amplitude, and phase-shift of the function that 

relates an independent variable to the dependent variable. 
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When TI pushed the PSTs to think about and explain the difficulties they had with this 

problem, they noted the differences between what they thought trigonometry was and what TI 

was asking them to think about (Excerpt 7-17). The excerpt indicates that the PSTs have two 

competing understandings of function – the school math (characterized by the memorization of 

both classes of graphs organized by physical characteristics and formulas that describe 

characteristics of the graphs) and the covariation – that they are yet to reconcile. The initial 

discussion (Excerpt 7-15 and Excerpt 7-16) demonstrates the fact that at this point, the school-

math understanding is primary for the PSTs. 

There are two possible reasons that the school-math understanding was primary. First, the 

PSTs have spent 4 or more years studying mathematics from this perspective and therefore it is 

only natural for them to try to explain the function describing broad characteristics of the graph 

and using formulas to specify what they thought to be the salient aspects of the function. Second, 

as was evidenced in the class discussions, thinking in terms of covariation requires one to 

imagine the variation of a third quantity (100x, in this example), which is not directly evident in 

the graph. Much like their work in Cities A & B (Activity 2), the PSTs needed to pay attention to 

quantities that were not visually perceptible. TI helped the PSTs develop an image of how the 

quantities related, having them model the variation of 100x, and this image enabled the PSTs to 

begin to describe how the quantities covaried. It is important to mention that despite the fact that 

the students did not have an image that would support their explanations, their initial inclination 

was not to develop one. Rather, they returned to describing the shape of the graph. This result 

further indicates the fact that the PSTs’ understandings of function are compartmentalized. They 

understood that they could use covariation in order to make sense of word-problems (Activity 3), 

however, that way of thinking did not permeate their initial work described in this section. 
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Again, the PSTs needed a “nudge” from TI before they considered turning to covariation as an 

explanatory mechanism.  

 Finally, at the end of this section, both SS and DH (Excerpt 7-19, lines 10-17) provided a 

Type II explanation of why the graph behaves as it does that is couched in the language of 

covariation and in understanding the behavior of each part of the function independently. Thus, 

this section highlights the fact that standard mathematics problems can serve as didactic objects 

that are conceived of as helping students develop an understanding that will support the ability to 

take part in conceptual conversation. Ultimately, the goal of this study is to understand if this 

knowledge can support PSTs’ engagement in such a conversation. 

Problem Set #2: Part 2 (Families of Polynomial Functions) 

The first problem from Problem Set #2 that was discussed in class dealt with families of 

polynomial functions. TI anticipated that this problem would provide an occasion for the PSTs to 

further explore functions as covariation and learn to apply that understanding. In addition, TI 

anticipated that the discussions would provide an environment within which the PSTs could 

further develop their understanding of functions as a KDU by highlighting the implications of 

understanding functions as covariation. He anticipated that the PSTs would look at the family of 

graphs generated by f(x) = x
2
 + nx as if a single graph was physically pushed so that its vertex 

followed a path in the plane. He also anticipated that the PSTs would see the family of graphs 

generated by f(x) = x
3
 + nx as if a single graph is systematically bent and twisted. Neither 

explanation is mathematical, and both explanations are rooted in viewing graphs as primary 

objects of experience instead of as emerging from quantities’ covariation. When viewed as 

primary objects, the graphs generated by the two families of functions (Figure 7-30) cannot be 



 

 170 

seen as behaving according to one underlying principle. When viewed covariationally, the two 

families’ graphs can be seen as behaving identically.   

    

Figure 7-30: Families of graphs from f(x) = x
2
+nx  

and from g(x) = x
3
+nx 

The text of The Families of Polynomials Problem is shown in Figure 7-31. 

 

Families of Functions 

Explain the behavior of the families of functions in (a) f(x) = x 2 + nx and (b) g(x) = 

x 3 + nx so that your explanation of why the functions in (a) behaves as they do 

for varying values of n is the basis for explaining why the functions in (b) behave 

as they do for varying values of n. 

Figure 7-31: Problem #1 – Families of Polynomial Functions 

In the previous session (class session 8), as an introduction to Problem Set #2, TI 

provided two “hints” to guide the PSTs as they considered Families of Polynomial Functions. 

First, he suggested that the PSTs think of the function f(x) = x
2
 + nx as the sum of two functions 

(f
 
(x) = x

2
 and g(x) = nx). Second, he provided dynamic animation, using Graphing Calculator22 to 

assist the PSTs in exploring the behavior of the family of functions. Using the graphing software, 

students can create animations by specifying through what interval n is to vary and the increment 

                                                 

22 Graphing Calculator is a powerful graphing package developed by Pacific Technology. It is available on 

the web at www.pacifict.com. 
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of variation in each frame. Figure 7-32 is meant to illustrate the dynamic animation of f(x), with 

each of the graphs as frames of the animation (to imagine the animation, consider each of the 

frames displayed in rapid succession).  

 

 

Figure 7-32: Graphs of f(x) = x
2
 + nx for n = -2, -1, 0 , 1, 2 

The Quadratic 

Despite the fact that the PSTs had looked at this problem for homework, they were 

confused by the problem. DH felt the difficulty she was experiencing with the problem did not 

have to do with following TI’s hint and considering the function as the sum of two smaller 

functions:  

Well, it wasn!t that. I could think of it as sums of functions, but it was hard to 

describe it – there are so many things to describe in the graph. Say … say like 

where the vertex is in the different graphs, but then how does that explain it? … I 

just don!t know (DH, 09/28/04).  

SS experienced a similar frustration, indicating that she could describe how the vertex “jumped” 

from the fourth to the third quadrants, but thought that that was not the kind of explanation TI 

was looking for. As has been mentioned numerous times, the PSTs’ initial inclination was to 

describe global characteristics of the graph (i.e. the jumping vertex) and not to turn to covariation 

as a means to explain the behavior which results in the graph. 

TI’s goal in the next segment was to shift the students’ attention to the quantities varying. 

Before they could do so, they needed to be able to visualize x
2
 + nx as a variable quantity created 
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by taking the sum of x
2
 and nx for every real number x. TI’s envisioned trajectory consisted of 

helping the PSTs develop an image of the x
2
 + nx as consisting of the sum of two “sub-

functions,” and that by understanding the behavior of the sub-functions and how the two are 

composed to get f, the students could explain the behavior of f in terms of covariation. As with 

the previous problem, we have two intermediate results that provide insight into the behavior of 

f, but do not show up directly in the graph of f.  

TI began by generating graphs of the two sub-functions of f, f(x) = x
2
 and g(x) = nx 

(Figure 7-33). The graphing utility automatically defines n to be a parameter that can be varied 

(via a “slider” which can be seen at the bottom center of Figure 7-33) independently of the 

variables x and f(x). The conversation began with the students explaining what was meant by 

TI’s hint to think of the functions as a sum. The following excerpt describes the ensuing 

conversation.  

 

 

Figure 7-33: Graphs of f(x) = x
2
 and g(x) = nx for n = –1 

The Slider 
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Excerpt 7-20 (Session 9, 09/28/04) 

1. TI:  How would we show … how would you see the sum of those two 

functions on that graph? 

2. DH:  You!d pick an x-value and find the y-value for both x2 and nx. [pause] I 

mean in this case it would be y = -x [because n = -1]. Add those two 

values together and make a new point. 

3. TI:  Right, and then go up or down that far. OK, imagine that. Right here… 

[TI points at the x-axis at approximately x = -1.5; Figure 7-34] Where!s 

the sum? 

4. KN:  It is going to be above both of them.  

5. TI:  Right, now tell me what!s going to happen, 

kind of trace out the value of the sum as I 

move the pointer [TI moves pointer from x = -

1.5; Figure 7-34].  

6. KN:  It!s getting smaller and smaller. 

7. DH:  And there [she indicates between -1 and -0.5] 

it is going to be between the two of them.  

8. TI:  Is it going to be between the two? 

9. KN:  At -1, it is going to be double. 

10. TI:  At -1 its going to be at 2. 

11. DH:  Oh, oh, yeah, adding two positives.  

12. KN:  Right, they!re both positive. So it is coming down, it is still above the 

blue line.  

13. TI: And now where is it [TI points to a very small negative number]? 

14. DH:  It is almost at zero.  

15.   [DH moves her fingers in a coordinated manner as TI 

moves the pointer; Figure 7-35] 

16. TI:  It is almost at zero [just to the left of x = 0]. Now  

[at x = 0]?  

17. DH: It is at zero. 

18. TI: Now [at approximately 0.25] where is it? 

Figure 7-34: PSTs imagining 

the sum at x = -1.5  
and as x varies 

Figure 7-35: DH 

Imagining the Behavior 
of f(x) 
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19. SS:  It will be kind of around zero there too. 

20. DH:  But it will be more negative than it will be positive.  

21. KN:  Yeah, the line goes down more rapidly than the parabola goes up.  

22. All:  [Indicate affirmative]. 

23. TI:  So, it is going to be below. 

24. DH:  So as soon as the distance between the x-axis and y=x and the y = nx 

are equal, that!s where it will have a sum of zero. Instead of it being 

more negative than it is positive, it changes to being more positive 

than it is negative. And somewhere in there, in the middle there- 

25. TI:  - OK. So, and that happens right here, right [TI indicates x = 1]. So 

where will the vertex be? 

26. KN:  To the left of one. Between zero and 1. If you go to x = 1, y = x2 = 1 

and y = -x equals -1, so if you add those together, you!ll get the point 

(1,0). So somewhere in-between, there must be a point where the 

sum of the two is at a minimum. 

27. SS:  Since the vertex will be between the two roots. 

28. TI:  So you get … so the vertex is somewhere between 0 and 1. 0. 

In the excerpt, we see the PSTs predict the location of the vertex of f for n = -1 

[henceforth f-1(x)]. They are able to do so with the assistance of TI who helps the PSTs focus 

their attention on understanding the behavior of the two sub-functions. He then instructed them 

to imagine the value of the sum for particular values of x (line 3) and moved the pointer along 

the x-axis and asked the PSTs to imagine the sum as x varied (lines 5-17). In line 15, we see DH 

spontaneously invoking “fingers and fairy dust” to help her imagine the result of the covariation. 

In lines 20 and 21, we see DH and KN conclude that the values of f-1 will be negative to the right 

of x = 0 because “it will be more negative than it will be positive” (line 20). Similarly, DH 

concluded that at x = 1, f-1(x) would equal zero because “that’s where it [the two sub-functions] 

will have a sum of zero” (line 23). Finally, DH and SS use reasoning similar to Rolle’s Theorem 

to conclude that the vertex will be between x = 0 and x = 1.  



 

 175 

TI then moved the classroom discussion on to f-0.5(x), and walked the PSTs through a 

similar discussion. The salient aspects of the discussion included identifying the values of x for 

which f-0.5(x) = 0 (when x
2
 and -0.5x are both positive and when fn(x) = -fn(x)23) and dividing x-

axis into three regions with cut-points at the zeroes of f-0.5(x) (Figure 7-36). As was the case with 

n = –1, on the left-most interval, when both sub-functions are positive, f-0.5 is also positive. On 

the middle interval, between the zeroes, -0.5x is more negative than x
2
 and therefore f-0.5 is 

negative. Finally, on the right-most interval, x
2
 is more positive than -0.5x and therefore f-0.5 is 

positive. The PSTs were able to appropriately identify the behavior of f-0.5 as x varied through 

each of the three intervals.  

 

 

Figure 7-36: Graph of y = x
2
 and y = – 0.5x 

                                                 

23 We would technically need four intervals, including when both sub-functions are negative. However, in 

this particular case, x
2
 is never negative. 
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In the midst of the conversation about the behavior of f -0.5, TI initiated a shift from a 

conversation about the zeroes and the vertex of f -0.5 to a conversation about the location of the 

vertices of the family of functions fn. 

Excerpt 7-21 (Session 9, 09/28/04) 

1. KN:  Somewhere around there it looks like it is going to start coming back 

up. 

2. TI:  Right about there it looks like its going to be= 

3. SS:  =oh, close to the axis. 

4. KN:  So … somewhere between 0 and [x = -0.5, the second zero of f -0.5], 

is the vertex – its going to reach a minimum because as x gets bigger, 

the x2 increases more while the -0.5x keeps decreasing the same. 

And then after here [x = -0.5], it starts going up more rapidly. 

5. TI:  So compare these two. Where was the vertex here [moves slider to 

n=-1.0]? 

6. KN:  Between zero and one. 

7. TI:  Between zero and one. Somewhere about here, right? What about the 

vertex here [moves slider to n=-0.5]? 

8. SS:  Farther to the left. 

9. TI:  Why? 

10. DH: Well, we know that the second line is decreasing slower than the first 

line. So it!ll take less time for the x2 to overtake the line. 

11. TI: Right. So if you compare the two, the vertex of this one [n = -0.5] is 

farther to the left. 

12. DH:  And higher. 

13. TI:  Right, it is still below the axis, but somewhere closer to the axis. It is 

somewhere close to the line, correct? 

14. All:  [Agreement]. 

15. TI:  Down here [with n = 0.5], where is the vertex in this one in relation to 

the others?  
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16. KN:  In the top one, the vertex is farther along the x axis 

17. TI:  So it is farther to the left. 

18. KN:  And it is also up – because the shorter line wins out, the farther up it!ll 

go. 

19. TI:  So as we go from -1 to -1/2, the vertex goes from down here to up 

here [indicating locations with finger]. And as we go from -1/2 to 1/2, 

the vertex goes from here to here. OK. Are you guys starting to get a 

sense for why, how this family of functions behaves? 0. 

In line 1, we see DH locating the vertex by imagining the behavior of f -0.5 by considering 

the sum of the two constituent sub-functions. Her explanation is guided by the idea of locating a 

landmark that will occur when the positive values of x
2
 become larger than the negative values of 

-0.5x (line 4). TI then shifts the conversation to comparing the behavior of the family of 

functions. It is in this context that we begin to see covariational reasoning emerge. For example, 

in line 10, DH notes that it will take less time for x
2
 to overtake -0.5x than –x.  

Discussion of Activity 2, Part 2 – The Quadratic 

At the beginning of the discussion of the Families of Functions discussion, we saw DH 

confused about what it meant to “explain” the behavior of the families of functions: “there are so 

many things to describe in the graph” (DH, 09/28/04). In both DH’s and SS’s comments, we saw 

them focusing on the graph and describing what they saw: when viewing the animation, they saw 

the vertex jumping and the rest of the points moving accordingly. It seems sensible to ask “aside 

from the jumping of the vertex, what else could I describe?” It should be noted that descriptions 

of this type are Type I explanations, explanations that do not give any reasoning beyond 

describing what happens. Thus, this section further verifies the claim describing functions in 

terms of the covariation of quantities is not the default way of thinking for these PSTs. 

TI was able to “nudge” the PSTs towards reasoning about quantities as a means for 

explaining the behavior of the function. In Excerpt 7-20, we saw a transition from the PSTs 
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answering TI’s questions about particular points on f to them imagining the behavior of f by 

reasoning about the covariation in the constituent sub-functions. By doing so, the PSTs were able 

to identify the two zeroes of the f as x-values where f went from increasing to decreasing as a 

result of the values of the sub-functions attaining equal but opposite values. The students then 

used the information about the roots of the f to determine the approximate location of the vertex. 

This location of the vertex was grounded in pointwise analysis of the function. 

In Excerpt 7-21, we see the beginning of the PSTs’ shift to describing the behavior of fn 

over an interval. In describing the behavior of the vertex as n varies from -1 to 0/5, we see the 

PSTs reasoning about how the values of fn vary throughout the three regions shown in Figure 

7-36 and how that can be used to better approximate the location of the vertex. Prior to the 

excerpt, the PSTs had decided that the landmarks occur when the two sub-functions are equal, 

but opposite (or zero), and that the behavior of the functions on the first and third regions was 

predictable. To fully explain the function, they focused their attention on the behavior of the 

function on Region II (Figure 7-36). DH’s explanation of the relationship of the location of the 

vertices in f-1 and f-0.5 is particularly insightful: “… we know that the second line is decreasing 

slower than the first line. So, it’ll take less time for x
2
 to overtake the line.” I interpret this 

utterance as indicating her focus on the covariation of quantities: by taking less time, DH is 

imagining an interval of x and thinking about how much the values of x
2
, -0.5x, and -x will 

change on that interval. In line 19, TI believes that the PSTs are able to generalize from the 

situation: as the coefficient of x (the parameter) gets closer to zero, it will take less time for x
2
 to 

overtake the linear function and therefore the vertex of fn will be closer to the origin. A similar 

argument was used to explain why, as n approaches zero, the vertex of fn approaches y = 0: 

“Because the shorter line wins out, the farther up it’ll go” (line 18). In this case, since the 
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landmark (the vertex) gets closer to x = 0, the linear function has decreased less on the interval 

from x = 0 to the x-coordinate of the vertex. Since it has decreased less before the quadratic wins, 

the vertex will be closer to the x-axis.  

As a result of TI’s nudging, the PSTs took part in conceptual conversations about the 

behavior of the families of polynomial functions. In particular, the students had developed 

important understandings of why quadratic polynomials – polynomials of the form p(x) = ax
2
 + 

bx + c – behave as they do. This is a topic that a traditional high school mathematics curriculum 

devotes a significant amount of time to, but one that is often reduced to the quadratic formula 

and finding points via the “vertex formula.”  

As with a number of instructional tasks in the course, the crux of this problem was that 

understanding the behavior of complicated functions can be aided by reasoning through sub-

functions that do not show up in the final graph and by reasoning about the behavior of functions 

“microscopically”—examining the behaviors of functions over very small intervals and then 

larger intervals comprising them. With respect to the PSTs’ final explanations, DH commented 

“Oh. Is that all? I was trying to describe the whole graph” (DH, 09/28/04). Taken against the 

background of her initial comment (page 171), I interpret this as her realization that the goal of 

an explanation was not to describe the shape of the graph, but why, in terms of the behavior of 

quantities, did the graph have the significant features it did. This comment, as well as a number 

of the PSTs’ utterances in Excerpt 7-21 indicate that they had the capacity to reason about 

functions in terms of the covariation of quantities. But, again, their initial work on this problem 

indicates that they were not inclined to reason in terms of covariation spontaneously. 

The Cubic 

The ultimate purpose of this activity was that it provide a setting within which the PSTs 

could begin to develop an appreciation for both the conceptual and pedagogical power of a 
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covariational understanding of functions. When viewing the two families’ behaviors without 

covariation, one sees them as unrelated and therefore requiring unrelated principles to explain 

them. When viewing the two families’ behaviors within a covariational perspective, the two 

families exhibit the same underlying principle—we are adding a linear function to another 

function, and the linear function has the same effect in both cases. As such, the final 6 minutes of 

class session 9 was spent discussing Part (b) of the Families of Functions Problem, where the 

PSTs were to use their explanation of the quadratic to understand the behavior of the cubic 

function g(x) = x
3
 + nx. Excerpt 7-22 and Excerpt 7-23 give the reader a sense of the short 

discussion. 

Excerpt 7-22 (Session 9, 09/28/04)  

[The discussion is about g(x) with n = 1.  

Figure 7-37] 

1. TI:  Just run through the covariation and tell me what 

the sum is going to look like.  

2. DH:  Well starting all the way at the left, the cubic is 

more negative than the line -  

3.  KN:  - they!re both negative, so it!ll be below both of the 

graphs. 

4. DH:  And it is moving … Oh, none of them are positive. 

5. SS:  So it will be negative until -1 since when it hits x = -1, it is -2, we know 

that much, and it crosses through zero. 

6. KN:  So as it goes from -1 to 0, it is increasing at a slower rate than it was 

before that. 

7. SS:  Yeah, until it passes zero and then it does the same thing, but 

positively.  

8. TI:  So … but go ahead and describe what we!re going to get and then tell 

me why it is going to look that way. 

Figure 7-37: Graph of 
g(x) for n = 1 
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9. DH:  We!re going to end up having a graph that is increasing at a slower 

rate. 

10. TI:  But why? 

11. KN:  Because the cubic is increasing fast then 

slowly and we!re adding negative numbers to it 

that are increasing. 

[TI displays graph; Figure 7-38]  

12. TI:  Does it agree? 0. 

 

Excerpt 7-23 (Session 9, 09/28/04) 

1. TI:  So now if I make n = -1, what!s the 

resulting graph going to look like [the 

graph of x3 and –x are shown in Figure 

7-39]? 

2. SS:  It is still going to be negative starting 

on the left. Because it!s so, because 

both x3 and –x both are very negative.  

3. TI:  Well that doesn!t describe very much. 

Just saying that it is going to be very 

negative… 

4. KN:  We know it has to be above the x3 

graph, because we!re talking x 

approaching zero from the negative side.  

5. SS:  You mean “above” like as in more positive than x3? 

6. KN:  Yeah for each x point, it will be greater.  

7. TI:  So where out there is it going to balance, so that – 

8. SS:  – at -1. That!s Where they both will cross 0 so the sum is zero. 

9. TI:  So it looks like the sum will be zero at -1. What about farther to the left 

of -1? 

10. SS:  It is going to be negative.  

… 

Figure 7-39: Graph of g(x)  
for n = -1 

Figure 7-38:  
Graph of x 3 
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11. TI:  All right, so it is going to come up until -1, and then what!s it going to 

do? 

12. DH:  It!s more positive – so it will go up. 

13. DH:  But then it is approaching zero. 

14. TI:  But then it is zero at zero. Right. And then what? 

15. DH:  Then it is more negative than it is positive. 

16. TI:  It is more negative than it is positive.  

17. DH:  It will be negative until it crosses at 1. 

18. KN:  And then it will keep going [up]. So it will kind of do that [traces 

increasing “cubic shape” with hand]. 0. 

In these excerpts, we see the PSTs’ explanations of the cubic using the same reasoning as 

they had for the quadratic. For both n = 1 (Excerpt 7-22) and n = -1 (Excerpt 7-23) we see the 

students determining the zeroes of the polynomial (where the values of the two constituent 

functions are equal, but with opposite signs so that the sum is zero). They use these zeroes as 

landmarks to organize their analysis of the covariation. For example, in Excerpt 7-22, line 5, we 

see SS note that for x < -1, g will be negative and below both of the sub-functions. In line 6, KN 

notes that there will be a vertex between x = -1 and x = 0. In both the excerpts, we see evidence 

of the PSTs explaining behavior of the function by analyzing the rate of change in g in terms of 

the rates of change in the sub-functions. This type of reasoning enabled the PSTs to understand 

why when n = 1 (in fact, when n is positive) the graph will be always increasing and when n = -1 

(when n is negative) the graph will have a local maxima and a local minima.  

Though there was not time to push the generalization in class, TI believed that the PSTs 

could imagine this behavior.   He projected an image of g(x) and for different values of n and 

moved through each n in succession (-5 < x < 3), asking the students to imagine each as a frame 

of a movie (Figure 7-40). He ended the class with the following comment: 
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So there’s n = -5, n= -4, -3, -2, -1, 0, 1, 2, 3, … Is that what you saw when you 
played the movie before. In principle, is this any different from x2 + nx? So it is by 
looking at them in terms of covariation that they become the same. When you 
look at them in terms of “gee, somebody’s picking that one up and moving it 
around, and they’re taking this one and bending it and stretching it, they look very 
different in terms of their behavior. But when you look at it in terms of covariation, 
it is the same thing. So that’s the total explanation (TI, 09/28/04).  

 

 

Figure 7-40: The Cubic as Frames of a Movie 

(n = -3,-2,-1,0,1, 2) 

Discussion of Activity 2, Part 2 – The Cubic 

The class discussion of the family of cubic polynomials presents further evidence that the 

PSTs have developed the ability to reason about functions via covariation. Their technique was 

to determine landmarks for the given function and then to use covariation to analyze the behavior 

of the function between the landmarks. Thus, we are presented with further evidence that the 

PSTs were developing a KDU of functions – a particular understanding of function that enables 

them to find similar, yet conceptually more difficult problems accessible. In this case, their 

understanding of function enabled them to explain the behavior of both quadratic and cubic 

polynomials. 

Student Work on Activity 2, Part 2 (Families of Polynomial Function) 

As homework, the PSTs wrote-up their solutions to the Families of Polynomial Functions 

problem. Their write-ups provide insight into the ways in which the PSTs were thinking about 

functions. In each PST’s work, he or she (1) determined what the characteristics of a landmark 
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might be; (2) found the landmark(s); and (3) described how the quantities co-varied between the 

landmarks. This approach to explaining the behavior of functions was very similar to the means 

for explaining the behavior of the correspondence point in Cities A & B (Activity 2) and in the 

applied problems of Activity 3, however, with this activity, we see the PSTs applying their 

understanding of function as covariation in a more abstract setting. Once TI had helped them 

determine the characteristics of the landmark for the Families of Functions problem (i.e. where 

the sum of the two sub-functions was zero), they were able to use their knowledge to explain the 

behavior of each of the functions and the family of functions. 

Though each of the PSTs’ work showed this kind of reasoning about the behavior of the 

polynomial functions, the write-ups were qualitatively different: one treated n as a parameter 

while another treated n as another variable. The difference between the two is that a parameter is 

a quantity that is fixed before the independent and dependent variables can be tracked. When n is 

a parameter, there are a number of different graphs, or cases, which correspond to each value of 

n. When n is thought of as another variable, the complexity of the explanations necessarily 

increases significantly – what is really being described is a function of two variables:  

f(x,n) = x
2
 + nx. 

In the following, I give brief examples of the PSTs’ written explanations of the behavior 

of the quadratic family. The PSTs’ explanations of the cubic were very similar to their 

explanations of the quadratic. 

KN’s Explanation of the Quadratic: Slides of a movie. KN divided his explanation into 

three segments n = -1, -0.5, and 1. For each n, he then discussed how the quantities covaried. 

Below is his explanation for n = -1:
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 1 

n = -1: 2 

Both h(x) and k(x) lie above the x-axis when x is less than 0. So the sum of the 3 
two equations is bigger than either equation and therefore f(x) lies above both 4 
graphs when x is less than zero. As x approaches 0 from the left, f(x) begins to 5 
flatten out because h(x) flattens out. At x = 0, both functions equal 0, so there 6 
sum is also 0 and f(x) crosses the x-axis at x = 0. As x becomes positive, the line 7 
k(x) is farther below the x-axis than the curve h(x) is above the x-axis, so f(x) is 8 
negative. When x is approximately .5, the graph of h(x) starts increasing faster 9 
than k(x) decreases. This is the vertex of f(x). When x = 1, h(x) is as far above 10 
the x-axis as k(x) is below the x-axis, so their sum is 0 and f(x) = 0. When x is 11 
greater than 1, h(x) is always farther above the x-axis than k(x) is below the x- 12 
axis, so f(x) is above the x-axis. The slope of f(x) starts increasing as x increases 13 
because the slope of h(x) increases while the slope of k(x) stays constant. 14 

Figure 7-41: KN's Written Explanation 

KN located the landmarks and then described the way in which the quantities covary 

between the landmarks. In his explanation, he approximates the location of the vertex as a result 

of the covariation. He notes that since “The graph of h(x) starts increasing faster than k(x) 

decreases” (line 9), the vertex has to be at approximately 0.5. He concludes his discussion by 

noting “In sum, as n increases from –infinity to 0, the vertex of f(x) moves in the positive y 

direction and in the negative x direction until n = 0. At that point, f(x) = x
2
. When n increases 

from 0 to infinity, the vertex of f(x) moves into the third quadrant and gets farther away from 

both axes” (KN, PS2 Write-up). 

DH’s Explanation of the Quadratic: A Function of Two Variables 

Rather than consider values of n separately, DH chose to divide the explanation up into a 

number of cases: when n was very negative, when n was near -1, when n = 0, and when n 

approaches infinity. As an example of her explanation, Figure 7-42 shows her explanation for the 

case when n is near -1.  

 1 
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For n near -1, the y values of the graph of y = x2 + nx are still positive until we 2 
reach x = 0. It is at this point that the distance between the y = x2 graph and the y 3 
= nx graph are equidistant from the x-axis. (This is where the values of the two 4 
equations are both zero.) Thus, we know that the graph of y = x2 + nx is zero and 5 
the graph crosses the x-axis. Using the same logic as above, the two graphs are, 6 
again, equidistant from the x-axis when x = -n. (This is the point where the graph 7 
of y = x2 + nx crosses over the x-axis again.) Thus, we know that there is a vertex 8 
somewhere between x = 0 and x = -n.  9 

Figure 7-42: DH's Written Explanation 

In her explanation, DH attempted to describe the behavior of the quadratic polynomial in 

terms of two variables. In her explanation, we see that she has noted that the vertex of fn will 

occur sometime between x = 0 and x = n (lines 6-7). Rather than imagining snapshots for 

particular values of n, she is imagining both n and x varying at the same time, and therefore she 

is imagining movie “clips.” To understand the clips, however, one needs to analyze them frame-

by-frame, and DH does not do so. As a result, her explanations are still a bit vague.  

In addition to her lack of explaining clearly why the graph behaved as it did for n defined 

on different regions, DH often appeared to lose track of what she was explaining, often 

erroneously speaking of n when she meant x, and vice versa. This fact also indicates the 

complexity of analyzing functions of more than one variable. 

Discussion of Student Work on Activity 2, Part 2. 

The student work shown in this section shows two things. First, it further verifies the 

claim that the three PSTs had each developed the ability to reason about the behavior of 

functions via covariation. This in no way implies that all three PSTs had the same level of 

sophistication and coherence in their reasoning. Rather, they all were focused on identifying 

landmarks and analyzing the behavior of the function in the regions bound by those landmarks. 

Despite the fact that each PSTs concluded his or her explanation with a line similar to DH’s: 



 

187 

“When we put it all together, we get a picture of a family of graphs that appear to “bounce” 

across the coordinate axes” (DH, PS2 Write-Up), the classroom conversations and written 

explanations provide evidence that they were not simply observing the vertex bouncing, but had 

developed some sense of how analyzing the covariation can help explain the vertex’s location for 

any n. 

There were differences in their explanations, both in the organization and detail. KN was 

the most organized and detailed. As he explained, he described why the function behaved as it 

did for a number of “frames” and then generalized the behavior of the family for all n. In 

essence, his explanation was an argument justifying his observations. DH’s explanations could 

be described as a description of the images that she had in mind when she tried to explain the 

behavior of the family of functions. SS’s contribution was significantly less detailed and less 

organized than the other two, and the reason for this is not clear.  

Post-Instruction Interview 

Each of the PSTs took part in a post-instruction interview within 5 days of the end of the 

Families of Polynomial Functions discussion. The five interview questions that will be discussed 

in this section were chosen because they were asked of each PST (some of the latter questions 

from the interview protocol were not discussed with all PSTs). In this section, I discuss themes 

that emerged in the PSTs’ responses to the interview questions shown in Figure 7-43.  
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1. On the first day of class, you were asked to give your personal definition. We 

all know that a function is defined mathematically as “a mapping which assigns 

each element in the domain to at most one element in the range,” but how would 

you adjust your personal definition of function to take account what you have 

learned the past few weeks? Can you see developing an understanding of 

function such as this as being a worthwhile instructional goal? What insight might 

provide that the traditional understanding/definition might not? 

2. We have talked about variables varying. Using that logic, how can you explain 

the fact that in the equation 2x – 1 = 0, x does not appear to vary—it is 1/2?  

3. How would you characterize the instructional sequence thus far through the 

course. What was the instructional purpose of the introduction to graphing 

(fingers and fairy dust) activity? What about the families of functions problem? 

 Figure 7-43: Selection of Post-Instruction Interview Questions 

Definitions and Images of Functions 

The first interview question involved the PSTs reviewing their personal definitions of 

function from the initial assessment and commenting on both their prior definition and how, if at 

all, that definition had changed. A theme that emerged throughout the conversations about their 

personal definition of function was that though their definition of function had not changed, they 

felt that the meaning that they ascribe to a function had been deepened significantly. Each of the 

students felt that the salient characteristic of a function was the unambiguousness of the mapping 

from one set to a second set. In Excerpt 7-24 KN described his “deeper understanding” of 

functions24. 

                                                 

24 The “JS” in the transcript refers to the author, who was also the interviewer. 
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Excerpt 7-24 (KN Post-Instruction Interview, 09/28/04)  

1. JS:  And the first question is the idea of a function, which was on the first 

day of class, you were asked a question, give your personal definition 

of a function. 

2. KN:  Um, I don!t think it is changed as much as now I really understand it 

more. As before, I knew that was the definition, because that!s what I 

was told was the definition, but now I know why that!s the definition.  

3. JS:  So why? 

4. KN:  So why is that the definition? 

5. JS:  Yeah. 

6. KN:  Ok, maybe, let me rephrase what I just said. Maybe I don!t know 

exactly why that!s the definition of a function, but, um... 

7. JS:  It is not an easy question. 

8. KN:  It is not an easy question, that!s for sure. 

9. JS:  No. 

10. KN:  I Just think, ok, the definition is about the same, you know, with an 

independent variable and a dependent variable and the vertical line 

test, but I guess I just have a better sense of functions and how they 

relate to other math topics.  This would allow me to improve my 

explanations of functions, I think.  

In this excerpt, we see that KN believed that functions were still about independent 

variables, dependent variables, and the vertical line test (line 10), and that the significant 

difference in his understanding of function was that he now knew why it was the definition (line 

2) and he would now be able to explain it better (line 10). When pushed to explain what it was he 

knew better, he was not able to specify. He stated that he had a better “sense” of functions.  

DH spoke of a similar extension of her definition of function: 

Yeah, I think that my general definition of a function has not changed. I still think 

of a function as a mapping, but now I see that there may be more to it. What I 

said the first day of class is probably more conservative than what we have been 

talking about. Everything we!ve been talking about, about using different 

coordinate systems, paying attention to the way the fact that each point 

represents two values, and how r cosine two theta really is a function, it is just not 
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a function of x and y...I knew all that, but it wasn!t the important stuff. Now my 

understanding of functions is more inclusive. It really is more than the vertical line 

test. It has more to do with what we see when we see functions. Now rather than 

a graph being like a picture, I see where it comes from – like the bars on the 

Cities A&B diagram (DH, 09/28/04). 

In addition, we see her mention something similar to KN’s “sense of functions.” I 

interpret her comment to indicate that rather than seeing functions as a picture – or, using TI’s 

analogy from Activity 1: Introduction to Graphing, a piece of wire – she envisioned the graph in 

conjunction with the quantities which covary to result in the graph. Though there is no data 

available to address the question of whether she believed the graph to be pre-eminent or the 

result of tracking the covariation, both DH and KN’s developing image of covariation is a first 

step towards it. 

SS was not able to give as detailed of an explanation as the other two PSTs, but she did 

feel that her definition of functions had changed:  

From this class I believe it is more than just the vertical line test. It is broader, yet 

more defined. Functions are covariation of variables, like a relationship between 

variables. I feel like looking at how the variables vary is important in my 

understanding (SS, 09/29/04). 

From SS’s statement, it is evident that she has identified variation and relationships 

between variables as a significant aspect of understanding functions. This is a significant shift 

from her responses on the initial questionnaire, which described functions as equations that can 

be used to produce a new set of data.  

The interview data strengthens our conclusion that there had been a significant change in 

the PSTs’ personal definition of function. Whereas on the initial assessment, the PSTs’ focus was 

on the idea of a mapping and the unambiguousness of that mapping, in DH and KN’s responses, 

we see a shift to the importance of understanding functions as more than an abstract definition or 

a mapping from a class of equations to a picture. We also see emphasis on variability, developing 
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an image of the relationship between the quantities, and understanding functions as a unifying 

idea in mathematics. 

Functions and the Purpose of Instruction 

The reasons for the PSTs’ desire to move beyond an abstract definition of function 

varied. For example, KN mentioned that if a student were to only understand functions in terms 

of the set-theoretic, mapping definition, they would not really know what a function was. Below, 

he claims that “the point of all this” is to understand physical phenomena, like walking, and from 

understanding the physical phenomena, ideas like the unambiguous mapping emerge as logical. 

KN: Right. The way I would think about it is if I tried to explain to someone else 

before what a function was using that definition, I don!t think they!d know what it 

was. 

JS: So what wouldn!t they understand? 

KN: Like so what? What!s the point of all this? It is a nice little picture, but if 

you!re talking in terms of someone walking, and they can!t be in two places at 

once, that!s something that everybody!s familiar with and that will help you 

remember. The little, you know, the figurative, nothing can be mapped to two 

different points, is kind of abstract. If you!re just trying to explain to someone a 

function just using the definition, just explaining the definition, isn!t enough. 

Because, a definition is just a definition. It doesn!t have to do with what a function 

really is (KN, 09/28/04). 

His comments indicate that he believed that when ideas emerge in context, they have deeper 

meaning for persons having them. It is significant that he mentioned that when someone walks 

“they can’t be in two places at once.” This statement is an analog for the injective requirement 

for functions, however it has significant instructional implications. When one sees the injective 

requirement to emerge in explanations of observable, real world phenomena, the way in which 

they would teach that topic is likely to be different.  

KN also noted that it is important for the students to understand what a function really is. 

DH and SS also discussed the importance of understanding functions: 
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Well, it is just, as a math student, it just gets me away from the idea that certain 

equations represent certain pictures. Like y equals x squared is some u-shaped 

figure, instead of y equals x squared to, ok, as x increases, y increases, so...by 

so much. I mean, it is important to be able to answer the question “Why does a 

parabola look like that?” with something more than “it just does, it is a quadratic” 

(DH, 09/28/04). 

Yeah, the point is to understand why the graph looks like it does. Like in the 

families of functions, I could describe it, but it took a while to explain why it looked 

the way it did. That kind of understanding of functions is really important (SS, 

09/29/04). 

By understanding, the PSTs are referring to being able to give explanations of the sort that they 

had been asked to give in the class. When asked by the interviewer to specify what was 

important about the explanations, they gave two types of responses: (i) broad and vague 

descriptions of understanding as important and (ii) descriptions of understanding as being 

generative. The predominant description was type (i), which was typified by SS’s comment “I 

mean like with being able to grasp a lot deeper what’s going on, I mean what’s really going on, 

not just like “ooh, I can draw the graph,” but truly understanding the graph” (SS, 09/29/04). Two 

examples of a type (ii) description are given below.25 

Uh...but, I think that it gives you a much better conceptual idea of what!s going 

on, so...you...I mean, it goes back to the understanding why. Like, it does help 

me like, the whole … tracing your finger like distance from something or the … 

um, I thought that was very helpful … like … Understanding. You know when 

something just clicks, and you!re like I!ve been told this and I!ve memorized it, 

and I could spit it out to you (pause) but it doesn!t mean I!m gonna have it launch 

a memory, doesn!t mean I can apply it to other things or build upon that. But 

when it is represented this way, you, it is just, it builds a deeper understanding 

and better understanding, and I feel like, I feel like I could go into deeper 

problems based off of that way rather than [the other way] (SS, 09/29/04). 

                                                 

25
 Ellipses (…) indicate hesitations, not omitted text 
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The important thing was to see graphs instead of as pictures as relationships, 

#cause if you!re shown a graph, you!re like oh it is some curve thing, but if you!re 

doing it with your fingers, you!re like if x increases, then the y value increases. So 

you just see it as more of a relationship than as a picture. This kind of 

understanding allows you to work on other problems in a similar way – like in the 

families of functions problem (KN, 09/28/04). 

Though there was a mix of type (i) and type (ii) comments, the comments that referred to the 

idea of an understanding of function as being generative (KN and SS above), indicate that the 

PSTs’ understanding of functions were developing into key pedagogical understandings of 

function as covariation of quantities. 

Continuing Confusions 

Though there are indications that the PSTs conception of function had shifted more 

towards understanding functions as covariation, and there are indications that the PSTs were at 

least partially aware of the utility of their developing understanding, the PSTs’ understandings of 

function were by no means stable. In discussing her developing understanding of function, SS 

noted the fact that the word itself is confusing and commonly used with a number of different 

meanings. 

Functions, function, FUNCtion. The problem here is that people use the word 

function for multiple things, not just– (pause) Ok, I!m like this is the true problem 

is that we were all raised with the word function [uses hands to make quotation 

marks] is used for lots of different things, not the true- (pause) So then I!m like, 

what truly is a true function. I guess I!ve just had no time to process all of this 

(SS, 09/29/04). 

Though she is correct, that “function” is commonly used as a synonym for “equation,” this quote 

raises questions about her current conception of function. Though previously in the interview, 

she had mentioned that variables varying and covariation were important, we see that she 

believes that she does not understand what is and is not important about functions. 

In her comment (page 189), DH explained that her understanding of functions now 

includes a number of mathematical ideas that she previously had thought of as separate as related 
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ideas. Interestingly, she also noted that her definition of function had not changed. She later 

clarified this apparent contradiction by discussing how these new aspects of function would 

affect her teaching: 

Though it was important for me to learn about why functions look the way they 

do, I!m not sure how important it is for my students. I mean, I need to be able to 

explain it, but the students are tested on things like the “Which relation is a 

function?” or “What graph is a function?” I!m not sure how this would help them 

with those questions (DH, 09/28/04). 

Thus, her understanding of function had changed, but she was unsure of the salient issues with 

regards to functions. More specifically, she was unsure of the pedagogical implications of her 

developing understandings. In both DH’s and SS’s comments, the conflict between the two 

understandings of function (school-math and covariation), which had been hinted at throughout 

this analysis, is made evident. It is worth noting that DH seemed to envision herself teaching a 

curriculum as presented instead of as something that she could modify. The assessments that she 

envisioned being given to her students were unaligned with her emerging understanding of the 

role of covariation in providing a foundation for students’ understandings of function. 

The PSTs confusions about relationships among the ideas of variable, function, and 

equation was evident in their responses to Question #2 from Figure 7-43: We have talked about 

variables varying. Using that logic, how can you explain the fact that in the equation 2x
 
– 1 = 0, 

x does not appear to vary—it is 1/2? The PSTs’ responses to the question are shown below: 

For this static situation, x is equal to one half. I mean, the reason they!re 

variables, is that it just stands for … it stands for a constant. And what we!re 

talking about with the change in variable in a function is that at every infinite point 

along a graph, at that point, the variables stand for a particular constant, but 

throughout the entire graph, they represent a number of constants (DH, 

09/28/04). 
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Well, it is not variable in that situation. In this case, it is an unknown. In this case 

“variable” is really a misnomer. If you plotted the function and got the graph, there 

would be variables. Maybe it has to do with if there are two variables, like x and y 

(KN, 09/28/04). 

 

This is kind of confusing. X is a variable, but in this case it is just a number. 

Maybe this isn!t a function.  [JS: Does it pass the vertical line test?] 

Oh. Yeah it does. I don!t know. Is it possible to be both a variable and a number? 

I don!t know. This highlights the problem I!ve been having in this class. I don!t 

understand the point of math. I mean, in all my years of like learning math, it has 

come very easily to me, and like, so I never had any trouble, so I was like sure 

whatever. I!m just really confused. (SS, 09/29/04). 

 

The significance of these PST statements is twofold. First, it shows that they had yet to 

develop ideas of variable, function, and equation as a coherent scheme. It seems they were 

untroubled by the understandings they had developed through doing mathematics because in 

doing mathematics they could compartmentalize their understandings around patterns of activity 

in response to different types of performance-requests—Find x, Show the graph, Solve for x, etc. 

Second, SS’s comment reveals a principle source of disequilibrium for PSTs in this course: They 

were being asked to develop understandings of variable, function, and equation that cut across 

their existing compartments.
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1 CHAPTER VIII 

ANALYSIS OF PSTS’ PLANNING FOR, AND TEACHING, A LESSON 

The final phase of the study was designed to analyze the relationships between PSTs’ 

understandings of mathematics and their developing pedagogical thinking. PSTs planned and 

taught a lesson on functions in polar coordinates. The project’s objective was that they would use 

their understanding of the concept of function to help their high school student (HSS) understand 

and reason through the assessment questions shown in Figure 8-1. In the guidelines for the 

project, and in his explanation of the project, TI focused on helping the HSSs understand 

mathematics, not memorizing procedures or rules. The written instructions for the project 

included the following passage:  

Design your lesson so that it will not only help your student answer the questions 

about the graph and function, but also so that your student will understand the 

questions and their solutions. Focus your instruction so that your student sees his 

or her solutions to the questions as making sense as opposed to remembering 

what he or she should say (Project Assignment Sheet).  

The course project consisted of five parts: interviewing the HSS, conceptualizing the 

lesson, planning the lesson, teaching the lesson, and writing a reflective essay. An overview of 

the project with the planned dates is shown below in Table 8-1. 

Table 8-1: Overview of Project 

Dates Description of Project 

 Before 9/14 Interview HSS 

9/16 Conceptualizing Paper Due/Discussed in Class 

9/26—9/27 Meetings with Instructor to Formalize Plan 

9/30 Plan for Instruction Due 

Before 10/5 Teach Lesson 

10/19 Project Reflective Due 
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Figure 8-1: Assessment Questions for HSSs 

The PSTs were assigned a high school sophomore at a comprehensive, independent 

college-preparatory school as their HSS. The HSSs were compensated for their participation in 

this study. In this chapter, the PSTs’ HSSs will be referred to as follows26: DH’s HSS was Joe, 

KN’s HSS was Jamie, and SS’s HSS was Nick. 

                                                 

26
 HSSs are referred to by pseudonyms. 
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Activities Prior to Lesson on Functions of Polar Coordinates 

PSTs’ Interviews with their High School Student 

Each PST interviewed his or her HSS. The purpose of the interview was twofold: to help 

the PSTs develop an understanding of their HSS’s mathematical background and to help develop 

a positive rapport with the HSS. In the discussion that follows, I use the PSTs’ write-ups as the 

primary source of data. I viewed the interviews in their entirety and will comment on the 

accuracy (and at times, the inaccuracy) of the PSTs’ comments. It is important to remember that 

of interest to this study is what the PSTs thought to be important, and ultimately not what the 

HSSs were able to do or say. 

This interview was conducted at the beginning of Phase II of instruction and a summary 

of the interview was submitted to the course instructor on 09/16/2004.  

Highlights of the Interview and PST Write-ups 

The PSTs were given an interview protocol designed to support productive conversations 

with their HSS.  The interview protocol consisted of three questions addressing the HSS’s beliefs 

about what a function was and its importance to mathematics in general.  The final four 

questions dealt with the HSS’s understandings of functions – they were asked for a conventional 

definition of a function, to compare and evaluate a set of seven possible definitions of function 

(none of which were entirely incorrect), and to discuss an applied functional situation involving 

linear motion.  The entire interview protocol can be found in Appendix A. 

The main theme that emerged in the interviews and the PST write-ups was what counts 

as an acceptable definition of function? Each of the PSTs noted that their HSS had some 

understanding of functions. Both Jamie’s (KN) and Joe’s (DH) initial understandings of function 

were as “a thing you plug a number in to to get another number out.” Both KN and DH noted 
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that this kind of an understanding of function, though not technically incorrect, was insufficient. 

KN explained that this understanding of function was not adequate because, though it did 

provide insight into particular points on the graph, it does not highlight the fact that functions are 

any kind of relationship between variable quantities.  

Each of the PSTs noted his or her HSS’s knowledge of the vocabulary of functions: the 

HSSs regularly referred to terms like domain, range, independent variable, and dependent 

variable as all “having to do with the functions.” SS was the only PST who thought that her HSS 

was able to correctly and confidently discuss the significance of each—KN and DH felt that their 

HSSs knew the correct words but did not understand their meaning or their importance. Both KN 

and DH felt that their HSSs had rudimentary understandings of functions and used the rest of the 

interview to understand the specifics of their HSS’s understandings of function. 

Eventually, each of the HSSs mentioned what the PSTs thought to be the more formal 

and specific definition of a function: “for every input, there can be no more than one output.” 

Both DH and KN questioned whether their HSSs really understood the importance of this 

uniqueness clause in the traditional definition of function. Their main concern was that both 

Jamie and Joe recalled that a function must be a unique mapping in the context of discussing the 

graph of a function. DH noted that when she presented Joe with a velocity-time graph “it was 

like a light-bulb went off in his head and he remembered the vertical line test as a way to 

determine [whether a graph was a function or not]”. A similar event occurred when KN 

presented Jamie the graph of a circle and asked whether it was a function. She responded that it 

was not and drew two U-shaped graphs to explain why not: she noted that only the horizontal 

one passed the vertical line test, “because [in the horizontal one], for every x-value there would 

be more than one y-value.”  
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Though Joe and Jamie both were able to say “for every input, there can be no more than 

one output,” DH and KN noted that when asked to explain further, their HSSs turned to a 

graphical inscription as an aide. They believed that their HSSs’ understandings of functions were 

limited to the idea of the vertical line test and a graph—DH even commented that “Joe seemed 

more confident about questions where he was given the actual graph—he felt that questions 

about relationships were too abstract.”  

In DH’s write-up, she believed that Joe’s understanding of function was largely grounded 

in graphs and pictures:  

Excerpt 8-1 (DH: Interview Write-up, 09/14/04) 

I can see that Joe has an idea of what a function looks like if he is given a graph 

(because he can use devices like the vertical line test to test for a function) but he 

seems to understand little about the real-world applications. … I can see that the 

way Joe leaned about functions was probably looking at examples of graphs of 

functions, but [he] never really got a good working definition or explanation of 

what a function is and how to define it in a way that would be useful. 

By working definition, I interpret DH to mean an image of functions that would enable Joe to 

engage with a wide array of functional situations, including applied situations. KN noted that 

Jamie had created her own definition of function: “a formula, algebraic expression, or equation 

that expresses a certain relation between two quantities such that the quantities in the first set 

correspond to exactly one element in the second set.” With regard to this definition, KN believed 

that her definition might have helped Jamie describe the technicalities of the definition of a 

function, but that it would likely not help her understand how functions relate to applied 

situations, like using a function to track the distance walked as a function of elapsed time. In his 

interview with Jamie, KN commented that if thought about distance as a function of time: “We 

know that the you can’t be in more than one place at the same time … that’s all that functions are 



 

 201 

about. They say that if I walk for a given amount of time, I can’t have walked two different 

distances” (KN, Interview with Jamie, 09/12/04). In these examples, we see KN and DH had 

come to value a more imagistic working definition of function. 

Both KN and DH noted that their HSSs had a rudimentary definition and understanding 

of function, however as evidenced above, they felt that that their HSSs’ understandings of 

function needed to be improved in a number of ways. First, they believed that the HSSs needed 

to understand functions as more than output generators. Second, they believed that the HSSs 

needed to understand that functions were not just graphs that pass the vertical line test. They 

needed to understand what the vertical line test means, especially with respect to real-world 

applications of functions. Finally, Both KN and DH hinted at the idea of developing a “working 

definition” or image of functions. It is important to mention that neither KN nor DH specified 

what this working definition might be. I suspect that they did not specify one because, at that 

time, they were unable to clearly give one themselves. 

In contrast, to KN and DH, SS felt her HSS had a solid understanding of function and the 

related vocabulary. She felt he had answered the questions with confidence and was able to give 

good examples and justifications for why each was or was not a function. Though it was 

apparent, through a careful viewing of the interview video, that Nick’s understanding of 

functions as output generators and as manifestations of the vertical line test was slightly more 

advanced than that of Jamie and Joe, SS did not analyze his responses to the interview questions 

critically—she simply described his answers. Thus, we are not provided with significant insight 

as to what she believes constitutes a sufficient understanding of function—possibly with the 

exception of the obvious fact that she values his being able to say “for every x there is exactly 

one y.”  
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Writing and Discussing Conceptual Narratives 

The second part of the course project involved each of the PSTs writing two narratives 

describing (1) how they imagined their respective HSS would reason about the assessment 

questions (Figure 8-1) before taking part in instruction (which was to be designed in part 3 of the 

course project) and (2) how they imagined their respective HSS would reason about the 

assessment questions, were he or she to understand the ideas perfectly. The assignment was 

clarified by TI on the assignment sheet: “By narrative I mean a semi-transcript of what you 

imagine you’d hear if your HSS were to think out loud while reasoning about the questions.” 

These narratives provide us with insight into the aspects of understanding of functions that are 

particularly salient to the PSTs. The narratives were completed out of class concurrently with 

Problem Set #1 and were discussed in class on 9/16/04.  

Uniqueness of the Mapping 

In response to assessment question (a), each of the PSTs believed that before instruction, 

their HSS would respond that the graph in Figure 8-1 did not represent a function. For KN and 

DH, this belief was grounded in the assumption that the HSSs would rely solely on the vertical 

line test as the means to determine whether a graph was a function or not. SS believed her HSS 

would reason similarly, though rather than use the term vertical line test, she believed Nick 

would note that “it is making too many values for each x.”  

DH believed that, after instruction, her HSS would be more comfortable with explaining 

the definition of a function. She presented the following as an acceptable answer to question (a): 

Excerpt 8-2 (DH: Written Narrative, 09/16/04) 

Yes, this graph does represent a function. Even though my previous instinct to 

use the “vertical line test” to test for functionality, I realize that that method only 
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works for functions graphed in rectangular coordinates. As this graph represents 

a function in polar coordinates, the “vertical line test” does not apply. However, I 

now understand that what the vertical line test is essentially testing for is to see if 

there is more than one value for y for every [any] given x. In this case, we want to 

check to make sure that there is only one value of r for every !. When examining 

every value for ! (0 $ # $ 2") it becomes clear that for every given ! there is, in 

fact, only one value of r. Therefore, this graph does, in fact, represent a function. 

SS’s envisioned response was very similar. KN discussed an acceptable answer a bit 

differently—he presented it in terms of a conversation. He envisioned presenting his HSS with 

three questions: (1) Does the graph represent a function? (2) How can you say it is a function 

since it doesn’t pass the vertical line test? and (3) Could you develop a test comparable to the 

vertical line test? His anticipated responses to (1) and (2) were very similar to DH’s (above). His 

response to (3) is of special interest: 

Excerpt 8-3 (KN: Written Narrative, 09/16/04) 

KN: So could you develop a test comparable to the vertical line test for polar 

functions? 

Jamie: Yes, instead of drawing vertical lines, draw lines coming out of the origin 

in every direction. If it passes through the graph at more than one point, then 

there is not exactly one length r for every angle measure theta. The polar 

equation would therefore not be a function.  

The “angle line test” is a bit misleading because multiple points that appear to lie along a ray 

whose base is at the origin do not necessarily mean that those points all are located at the same 

angle—two points that appear to be on the same ray may actually be located by different angle 

measures (!1 = d radians and !2 = d + 2"n radians). However, KN’s attempt does show evidence 

of his thinking critically about the mathematics involved in the problem. 

Variables and Variability 

Assessment question (b) dealt with the HSSs identifying the variables involved in the 

situation. Each of the PSTs anticipated that, before instruction, their HSS would have difficulty 
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with the letters r and !. They believed that their HSSs would be “used to” x’s and y’s. In 

addition, each PST believed that his or her HSS would note that both r and ! are variables 

because the output values for r change when you change the input values for !. DH envisioned 

being able to orchestrate the following conversation with her HSS (after her lesson with him): 

Excerpt 8-4 (DH: Written Narrative, 09/16/04) 

11. DH:  Can you tell me what variables are? 

12. Joe:  A variable is the thing you are looking for in an equation. 

13. DH:  Right. Now, does the variable always stay the same? Does it always 

represent the same number? 

14. Joe:  No. 

15. DH:  Good. So, essentially, we can say that variables vary, right? They 

change? 

16. Joe:  Yeah 

17. DH:  OK, so this question is basically just asking for the variables in this 

problem. 

18. DH:  Oh, ok. Well, you have the x-axis here (points to horizontal axis) and 

the y-axis here (points to vertical axis), and I!ve really only seen 

graphs that use x and y as the coordinates, so I guess x and y are the 

variables. Therefore, x and y are what!s varying to make this graph. 0. 

In her simulated transcript, we see that two understandings of variable are at odds. When Joe 

spoke of a variable as “the thing you are looking for in an equation” (line 2), he referred to the 

common practice of solving for an unknown. It appears that the shift from variable as unknown 

to variable as truly variable was transparent to DH.  

After instruction, DH and SS believed their HSSs’ responses to question (b) would be 

unproblematic. In their narratives, they simply wrote that they would be able to specify r and ! 

as the variables. KN simply omitted discussing possible HSS responses to the question. 
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The Graphs’ Appearances 

Questions (c) - (e) deal with explaining why the graph of r = cos(2!) and the graphs of r 

= cos(n!) look the way they do. The common belief among PSTs was that the HSSs would not 

understand the question, but would nonetheless be able to answer it. Each PST believed that his 

or her HSS would comment about the shape (“it looks like a flower”) and would guess as to the 

relationships between the coefficient of ! and the graphs (“it will get bigger” or “there will be 

more petals”). 

In contrast, the PSTs believed that, after instruction, their HSSs would be able to describe 

why the graph looks as it does. The PST responses and explanations of what this description 

would consist of, however, varied significantly. SS simply stated that Nick would be able to 

explain that with even numbers in front, “the whole graphed rose will have 2 times as many 

petals as the number in front” and described a similar rule for odd numbers. DH envisioned that 

Joe would comment that rather than thinking of the graph as being traced out from left to right, 

you need to imagine “a particle moving along the path of the graph. [Then] we would see its 

exact distance from the center (r) at every given value of !.” With respect to questions (d) and 

(e), she believed that she would have to remind him “if you were looking at a regular cosine 

graph, what does it mean to have that number in front of !?” before he was able to explain how 

the graph changes as n is varied. KN imagined his HSS as thinking about plotting a number of 

points “for every angle between 0 and 2".” With regards to the behavior of r = cos(n!), he 

anticipated the following response: 
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Excerpt 8-5 (KN: Written Narrative, 09/16/04) 

Cos(2#), 0 < # < 2", has values ranging between cos(0) and cos(4"). Those 

values correspond to the length of r. Therefore, r equals 1 at 4 different points (0, 

", 2", and 3"). That is why the graph has four separate “petals”. Cos(#) 0 < # < 

2" would have values ranging between cos(0) and cos(2"). In that range, r 

equals 1 only once. So there would only be one “petal”. 

Three different interpretations of what it means to understand the family of functions appeared in 

the PSTs’ narratives. SS believed that understanding this family of functions is about 

establishing a pattern between the coefficient of ! and the number of petals on the graph. DH 

believed the salient issues were developing imagery that would support understanding graphing 

functions in polar coordinates. KN believed his HSS would identify critical points on the graph 

(i.e. when r = 1) and use that to understand why the graph looks as it does.  

Initial Lesson Plans and Individual Meetings with TI 

The PSTs were to draft a lesson plan and then discuss it individually with TI. In the 

meetings, TI planned to assist the PSTs in thinking about how the big ideas of variability and 

covariation could be used as the basis for teaching polar coordinates. The PSTs also met with TI 

to ensure that they had planned adequately before interacting with the HSSs. Only DH came to 

the meeting having thought about the lesson27; KN and SS had simply expected to “talk about 

functions in general” and possibly to “use a calculator to show [the HSSs] stuff.” As a result, 

rather than giving insight into the PSTs thinking about functions, this discussion of what 

                                                 

27
 It is worthwhile to mention that since the individual meetings ended up not being an appropriate setting to approve 

the students’ lessons, they each had to send an electronic copy of the lesson plan to TI. TI required that they improve 

their lesson plans prior to teaching their HSS. 
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transpired between the PSTs and TI in the individual meetings serves as a base line against 

which we will analyze the PSTs’ final instructional plan and instruction.  

Each of the conversations began with TI asking the PST where they would like to begin, 

to which each of the PSTs proposed introducing polar coordinates by highlighting their 

relationship to rectangular coordinates.  TI then asked each PST what polar coordinates, and 

more generally what any coordinate system, was for.  Only KN, after significant thought, was 

able to propose that a coordinate system was for locating points (TI had to remind DH and SS of 

this).  The following excerpt indicates SS’s confusion about the nature of coordinate systems: 

Excerpt 8-6 (SS Meeting with TI, 09/21/04) 

1. TI: So what are polar coordinates? 

2. SS:  It!s the relationship between an angle and a radius. 

3. TI:   Uh-huh. 

4. SS:  It!s different than like x and y. 

5. TI:  What are they for? 

6. SS:  What do you mean? Like, why graph in polar coordinates? 

7. TI:  What are polar coordinates for? 

8.  SS:  Um, graphing...Graphing in a different dimension, a motion...It!s a 

much simpler way to graph things that involve cosine and sine and 

theta...I mean, it!s obviously a little confusing at first, but once you get 

used to visualizing polar coordinates, you can see the motion of 

something distance-wise. 0. 

The conversation shown in Excerpt 8-6 was typical of the PSTs’ initial comments regarding the 

nature and purpose of polar coordinates and graphs of functions in polar coordinates.  Though 

the PSTs were likely able to work with polar coordinates and generate graphs of polar 

coordinates via memorized procedures, formulas, and algorithms, their comments indicate that 
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there was little understanding of polar coordinates (and coordinate systems in general) – 

especially understanding in a way that would support conceptual teaching of polar coordinates. 

TI led each of the PSTs through a similar conversation that he anticipated would help 

them come to see how covariation could be used to make sense of functions of polar coordinates 

and polar graphs. He believed that this understanding would support the development of lesson 

plans (and ultimately instruction) that focused on the idea that understanding function as 

covariation could support understanding functions of polar coordinates and ultimately 

understanding why polar graphs behave as they do. 

Instructor’s Agenda for Lesson Planning Meetings 

TI appeared to have an agenda for the individual meetings. Responses from one who 

understands polar coordinates in the way TI envisions might respond are given in italics. Each of 

the PSTs ultimately produced responses similar to those in italics after being unable to answer 

them initially.  

What are polar coordinates for? Polar coordinates, like in any coordinate system, are simply a 

way of locating points.  

How are locations described using polar coordinates? Polar coordinates are similar to 

rectangular coordinates, but rather than locating points by distances from the x- and y-axes, 

they are located by an angle from the positive x-axis and a distance from the origin.  

How are measuring an x-coordinate and measuring a !-coordinate similar? In rectangular 

coordinates, we imagine x varying along a number line. A similar image with polar 

coordinates would be a ray, with initial point at located at the origin, whose direction varies 

counter-clockwise from the positive x-axis. As the angle varies, the corresponding distance 
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from the origin can be located. The difference is like the difference between how taxi-drivers 

and air-traffic controllers map locations. 

Emergent Issue: Implicit Assumptions of Covariation 

As noted in their conceptual narratives, each PST felt that his or her HSS would have 

difficulty with the variables r and !. As a result, they felt that their first objective for instruction 

would be to help their HSSs understand how r and ! are defined. For example, in her meeting 

with TI, DH commented: “I know I will have to show him that ! is the angle between the x-axis 

and the r is the distance from the origin. I’ll probably give him a number of points in polar 

coordinates and ask him to plot them.” Though the different PSTs had slightly different ways to 

explain what r and ! were, they all arrived at the meeting believing once they did, that they could 

then move to graphing polar functions. 

When TI attempted to focus their attention on covariation, DH and KN both proposed the 

idea of creating a table to help organize the corresponding values of r and !. They felt that, once 

they had a table, their HSSs could graph the function. Consequently, they did not see a need for 

their HSSs to focus on the argument of the cosine function; for each n they would simply 

generate a table of values of the polar coordinates, graph them, and connect the points with a 

smooth curve. I showed in previous chapters that the PSTs had the ability to reason about 

covariation of quantities, and therefore it seems likely that to them this table was a way of 

organizing their covariation. For example, in Excerpt 8-5, we saw that KN was aware of the 

argument of the cosine’s impact on the covariation: he notes that as ! varies from 0 to 2", the 

argument of cosine varies from 0 to 4", and thus as ! varies from 0 to 2", the values of the 

function will vary from 1 to 0 to -1 to 0 to 1 twice, resulting in 4 petals. In contrast to then, when 
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discussing their planned instruction, KN and DH move directly from calculating coordinates to 

plotting points.  

It seems that KN and DH had implicitly assumed that the HSSs would be aware of the 

covariation that KN and DH understood implicitly. TI noted this, commenting that, traditionally, 

HSSs look at a table of values and see the values in each column varying one at a time (i.e., they 

will find a pattern in the “x” column and then find a pattern in the “y” column). He intended to 

push the PSTs to think about how they could help their HSSs to come to understand how the 

quantities vary together. To do so, he proposed the following analog for the “fingers and fairy 

dust” from Introduction to Graphing and Covariation (Chapter 6): Use a pencil, ruler or other 

rigid, straight object to represent the varying direction determined by the angle !. Then for each 

!, use your finger to model r, the distance from the origin. Finally, use the same fairy dust to 

create the graph as a record of the covariation.  

Each PST came to the following broad instructional goals for his or her lesson plan28: (1) 

Help the HSSs understand the importance of a coordinate system, how the polar coordinate 

system locates points, and the fact that a point can be located using both rectangular and polar 

coordinates; (2) Help the HSSs understand functions and graphs as records of covariation, 

beginning in rectangular coordinates and moving to polar coordinates; (3) Help the HSSs 

understand sine and cosine functions and how changing the argument affects the covariation. TI 

believed that if the above three points were accomplished, and if the HSSs could reason through 

                                                 

28
 The similarity of the students’ goals and the relative congruence of the goals to the TI’s agenda suggests that it 

was TI who brought them to that point and that they may not have arrived their spontaneously. 
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why f(x) = cos(nx) behaves as it does in rectangular coordinates, then they could explain why f(#) 

= cos(n#) behaves as it does in polar coordinates. 

The PSTs were required to get their lesson plans approved by TI prior to working with 

their HSS. DH and KN each wrote a plan in semi-narrative form. They included what they (as 

teacher) would say or do, the kinds of responses they expected their HSSs to give, and how they 

would build on the HSS’s thinking. SS’s lesson plan was significantly shorter than the others and 

focused solely on what the teacher would do.  

Lessons on Functions Graphed in Polar Coordinates 

In this section, I will describe each PST’s lesson with only occasional commentary on it. 

I will provide commentary and analysis on them individually and collectively after describing all 

three. 

As would be expected from the relative uniformity of the conversations with TI, each of 

the PSTs had the following as the goals of instruction: (i) understand covariation and understand 

functions in terms of covariation; (ii) understand the purpose of coordinate systems in general 

and polar coordinates in particular; (iii) review sine and cosine functions and understand the 

periodicity of trigonometric functions; (iv) physically modeling the quantities and tracking the 

correspondence point within a polar coordinate system. Though the PSTs’ plans shared the big 

ideas, the ways in which they planned to help their HSSs achieve the goals and the order in 

which they addressed (i) – (iv) varied greatly. 
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Highlights of SS’s Lesson 

Covariation 

SS planned to use the Introduction to Graphing and Covariation activities (Chapter 6) as 

the first activity with Annie29. She began instruction by asking Annie if she had ever heard of 

covariation and Annie said that she had not. The following conversation then took place. 

Excerpt 8-7 (SS's Lesson, 11/22/04) 

1. SS:  So what we!re going to do is we!re going to … well, my first “mini-goal” 

is to help you understand covariation. So, think about this situation … 

about like somebody walking. They!re going from point A to point B … 

so they!re spanning a certain distance, correct? And they!re spanning 

that distance over a certain amount of time. OK, so what happens is 

… the idea of covariation is that its not just an equation, where there 

are variables, but it is like something that!s actually a concept going 

on. What are the variables in this situation?  

2. A: Time and distance. 

3. SS:  Right. So you have the guy, and he!s walking along from point A to 

point B. What would his distance look like, the total distance he!s 

traveled, if you were to move your finger along. Like, from this point on 

the desk to this point on the desk. Like what would it look like … you 

can just draw it in the air.  

4. A:  A straight line? 

5. SS:  Well, how would it look? Let!s look at just the distance? Would it 

speed up or would it be constant? 

6. A:  It would be constant. 

7. SS:  And what about the time, like, let!s say he does it in x minutes. Like 

how would you track the time? Like physically do it with your finger. 

Like this [SS moves her finger vertically in the air]. Like here!s me [SS 

stands against wall]. Track me as I walk from this wall to the door. 

[Annie tracks the distance vertically.] 

                                                 

29
 After many attempts to schedule a time with Nick, SS chose to work with a different student, Annie, who was a 

student at an after-school program that SS worked in. Though she did not have an opportunity to assess Annie’s 

understanding of function, she was familiar enough with her that the initial conversation was comfortable. 
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8. SS: Good. So you see how the two variables are varying? That!s 

covariation—both variables are varying. 0. 

In Excerpt 8-7, we are provided with insight into SS’s reconstructed understanding of the 

Introduction to Graphing and Covariation activities. In line 3, we see SS asking Annie what the 

walker’s distance would look like if she were to move her finger along the desk. In contrast to 

TI’s support during activities that SS had taken part in30, SS was not focused on Annie 

understanding what a particular location of the distance finger or a particular location of the time 

finger represented. Rather than having the goal of developing an image of distance as a varying 

quantity that was represented by a line segment between the starting point and her finger, for SS, 

the salient aspects of this activity is the physical activity. In addition, in line 9, we see the salient 

aspects of the instruction to SS were the variability of the variables, not how the variables varied 

with respect to each other. This led to a problem when she attempted to have Annie model the 

covariation.  Finally, in line 19 we see SS’s primary instructional technique: SS felt as if once 

her HSS “saw” the variables varying, she understood it. 

                                                 

30
 This instruction was detailed in Chapter 6. 
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Excerpt 8-8 (SS's Lesson, 11/22/04) 

1. SS:  OK, so that!s your total time. Now, we!re going to 

track distance and time together. So try to move them 

together as I walk. 

2. A:  So like this [Figure 8-2]? 

3. SS:  OK. But remember to track the distance as you!re 

doing the time. So your [distance] hand will move 

[horizontally]. So this finger will constantly stay on 

top of the other finger. Like this [SS demonstrates 

moving fingers] 

[Annie moves fingers, one horizontally and the other directly above, 

without SS walking]   

4. SS: Good. Now do them together. 

… 

5. SS:  So do you know what you!ve created? You made a graph. 

6. A: Oh, yeah. 

7. SS: Does that make sense? Like how something would vary, it creates a 

graph because these things vary. Like if there was no time movement, 

it!s the time movement that keeps this [the distance finger] moving 

along the graph. 

8. A:  Right. 

9. SS: So, isn!t that neat? You can use covariation to get a sense of what the 

graph looks like.  

In Excerpt 8-8, we see that SS’s goal for instruction was to have the HSS see that the graph is 

created because things vary. While this is true, the fact that the quantities vary does not explain 

why a graph looks the way it does or how one graph might differ from another graph. The 

variability of quantities is necessary for understanding functions as covariation, but it is not 

sufficient. In line 11, we also get a glimpse into SS’s intent for the activity: to get a better sense 

Figure 8-2: Annie 

tracking distance and 
time together 
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of what the graph looks like. Thus, for SS, the activity was grounded in the fact that the graph 

already exists and that covariation can be used to discover characteristics of the graph. 

Polar Coordinates 

SS’s instructional segment on polar coordinates began with SS trying to explain how 

polar coordinates are used:  

Excerpt 8-9 (SS’s Lesson, 11/22/04) 

Polar coordinates are … another way of graphing things varying. Instead of 

linearly, like, for instance, an air traffic controller. You know that radar screen—

the circle and the thing that goes “beep, beep, beep.” That!s polar coordinates. 

The rings are distance from the center and over here [she points to their previous 

distance-time graph] we were looking at distance in the x-direction. The line that 

was circling was the angle, called theta. You see? 

SS then proceeded to define r and ! in a standard way and mentioned that polar coordinates are 

just another way to locate points. She then took Annie through an activity that involved graphing 

a point given its polar coordinates. It is worth noting that SS’s descriptions in Excerpt 8-7, of the 

resemblance between polar coordinates and an air traffic controller’s radar screen, are quite 

vague, disconnected, and unoperationalized. It is hard to see how they could help someone who 

doesn’t already understand polar coordinates. 

Understanding the Cosine Function 

SS then moved on to discussing the cosine function, which Annie did not remember 

having learned. SS began by drawing two 30-60-90 right triangles, one oriented with the 30
o 

angle at the lower left and one with the 60
o
 angle at the lower left. She then reminded Annie of 

the rules for sine and cosine of an angle in a right triangle: sine is opposite over hypotenuse and 

cosine is adjacent over hypotenuse. Using right triangle trigonometry, they generated the table of 

values shown in Figure 8-2. 
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! sin! cos! 

0 0 1 

30o 
 

1

2
 

 

3

2
! 0.866  

60o 

 

3

2
! 0.866  

 

1

2
 

90o 1 0 

   
Figure 8-3: Table of Values Generated by SS and Annie 

SS then moved on to graphing sin(#) in polar coordinates. SS had Annie move her forearm to 

represent # (the angle) and her finger along her forearm to represent r (the distance from the 

origin). She began by asking Annie to locate the first two polar points (0,0) and (30
o
, !) from 

their table for sin (#). They then modeled what happens between the two points (Figure 8-4) by 

“connecting the dots” while moving their forearms. This discussion continued as they made their 

way through one full revolution by 30
o
 increments. 

 

 

Figure 8-4: SS and Annie "Graphing" Sin #  
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SS continued by having Annie do the same activity for sin! (the second column in the table they 

had generated), sin(2!), and sin(3!). Each time, they made a table, modeled the points using their 

forearm and finger, and discussed what the graph would look like. At this point, Annie did 

appear to understand SS’s lesson as designed: she appeared comfortable generating points and 

connecting the dots. 

It was in the context of polar coordinates that SS brought up the notion of a function. In 

her interview with SS, Annie showed familiarity with the vertical line test. She was able to 

explain that the vertical line test meant that to be a function, the graph could not have more than 

one y-value for any x-value. Annie displayed the same familiarity during this lesson. In an 

attempt to explain functions of polar coordinates, SS noted that “it is able to appear to have two 

y-values for a particular x-value, but it can still be a function because the object’s radii changes 

as ! changes. So it really is the same, but in this case it can’t have more than one r for every !.” 

She then showed Annie why each of the sine functions they had graphed was actually a function, 

“because as you move your arm around, your finger is only at one point.” 

Families of Functions 

SS spent very little time discussing cos(n!) as a family of functions graphed in polar 

coordinates. Rather than using the explanation of one graph to provide insight to how she might 

explain another, SS began each graph anew. Once they had the graphs of the cos!, cos(2!), and 

cos(3!) drawn in polar coordinates (Figure 8-5), SS asked Annie what she thought the graph of 

cos(4!) would look like. When Annie was unable to predict, they quickly went over what the 

graphs of cos(4!) and cos(5!) would look like. SS drew Annie’s attention to the “petals” on the 

graph and suggested that she look for a pattern in the number of petals and the coefficient.  There 
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was no evidence that this technique for predicting the shape of the graph of cos(n!) involved the 

analysis of quantities covarying. 

 

 

Figure 8-5: Graphs of sin# , sin(2#), and sin(3#) 

Summary of Annie’s Performance on Assessment Task 

In her write-up, SS claimed that Annie had answered all of the assessment items 

correctly, but her “correct” answers were not necessarily indicative of Annie’s understanding of 

functions of polar coordinates as an instance of covariation of quantities – in fact in light of SS’s 

instruction, this seems fairly unlikely.  On assessment item (a), Annie answered that the graph 

did represent a function but did not explain why she thought it so.  For item (b), Annie indicated 

that the variables, r and ! were varying, but again gave no explanation as to why she thought this 

was so.  Annie omitted item (c) and used item (d) to answer item (e):  she generated a table of 

values, plotted the corresponding points, and connected the points for cos(#), for item (d), part 

(i), and cos(4#), for item (d), part (ii), and then generalized a pattern from the number of petals in 

the graphs.  There was no evidence that Annie used what she knew about cos(2#) (or sin(n!), for 

that matter) to inform her work on cos (#) and cos (4#).  These responses indicate both that 
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Annie’s answers to parts (a) and (b) were likely not grounded in covariation of quantities and 

Annie understood polar graphs and equations to be about generalizing patterns from visible 

characteristics in the graphs as opposed to understanding functional relationships between 

varying quantities. 

Highlights of DH’s Lesson 

Due to technical problems, the audio recording of DH’s work with Joe was extremely 

poor. As a result, my discussion of her lesson is grounded in both the video-recordings and an 

audio recording of an ad hoc, hastily-arranged conversation with DH about her lesson with Joe. 

The conversation took place approximately 9 hours after her lesson with Joe. My purposes in 

having this conversation was to ensure I understood both what she had planned to do and how 

the lesson unfolded. The emphasis was on her plan and her actions, and not on what Joe had 

learned.  

Polar Coordinates 

DH’s first goal for instruction was to help Joe generalize his understanding of the 

rectangular coordinate system to the polar coordinate system. She began by helping Joe unpack 

his understanding of the rectangular coordinate system by asking him to plot several points and 

explain how he knew their location. She then asked Joe to think about a radar screen and 

described how it is used to determine the location of a plane:  

Have you ever seen a radar screen that has this “arm”/radius extending from a 

central point on the screen? Notice how the “arm” moves in a circle. Here we 

have an example of a polar coordinate system. Rather than measuring the 

plane!s location as position in the x direction and position in the y direction, this 

system can measure the distance the plane is from a fixed point (r) and the angle 

(!) the plane is from a fixed horizontal axis (what you are used to calling the “x-

axis”), and this is measured in (r, !). 
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DH then gave Joe a number of polar points to graph. After each point was plotted, DH asked Joe 

to explain why he located it where he did.  

It was in the context of discussing the plotting of these points that DH planned to help Joe 

understand the fact that there can be more than one point in polar coordinates that gets plotted at 

the same place in the plane. This was also the setting that she planned to use to help Joe 

understand what it means for a function of polar coordinates to be a unique mapping. Two of the 

points she had Joe graph were (",4) and (3",4). DH questioned Joe as to why she had plotted 

(3",4) on top of (",4), and after a brief pause and a confused look, she continued: “OK, what was 

the r and what was the angle for each of the points you plotted?” Joe noticed that they had the 

same r but not the same angle. DH then responded: 

So, you can have two different points that look the same in polar coordinates. It 

seems a bit confusing, but we can look at it this way: if these two points were on 

a graph and we wanted to know whether or not they fit the description for a 

function, we could say that for every value of ! there is only one value of r. In this 

case, we have only one value of r for each !. Yes, we have the same r value, but 

that is okay because there are not multiple values of r for one particular value of 

!. If we had ! = "/2, and we had both r = 4 and 5, then it wouldn!t be a function.  

After asking Joe if he understood, she moved on to the cosine function. 

Cosine Functions 

The next phase of DH’s lesson involved helping Joe understand the cosine function. 

Though Joe had seen trigonometric functions in class, he was not able to recall anything 

particular about them, so DH needed to start from the beginning. She used a progression that was 

very similar to SS’s, though she chose to use angles in radians31 and she used three right triangles 

(two 30-60-90 triangles and a 45-45-90) to help him see the cosine of "/6, "/4, and "/3. Using 

                                                 

31
 SS did not explain the significance of radians, she simply explained that an angle of "/2 was the same as a 90

o
 

angle. 
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the triangles as a reference, Joe and DH generated a unit circle (Figure 8-6) and discussed the 

significance of each of the points on the unit circle (the first coordinate is the cosine of the angle 

and the second coordinate is the sine of the angle). 

 

Figure 8-6: Unit Circle Generated by Joe and DH 

Together, they generated the following table of values of ! and r =2cos! (from 0 to "), 

using the unit circle. This table, which is shown in Figure 8-7, was used in her instruction on 

covariation. 
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Figure 8-7: DH's Table of Values of r = 2cos#  

Covariation 

The segment on covariation was steeped in DH’s developing image of covariation. 

Throughout the course, DH had focused on tables of values as an important tool in understanding 

the way quantities covary. Though, she had initially focused on tables as a list of ordered pairs 

(as she had done in The Drinking Problem, Chapter 7), DH had come to use the table as a means 

of organizing instances of covariation. Her technique with Joe involved recording points of 

interest (where the graph appears to stop increasing and start decreasing or where the graph 

appears to cross the x-axis) in a table and then helping Joe reason about how the quantities 

covaried between those points. She began by referring to Figure 8-7 and noted “it is not just that 

we see ! varying from 0 to "/6. We can use the table to help us see that as ! varies from 0 to "/6, 

r varies from 2 to 3  … They both happen at the same time.” She then plotted the points (0, 2) 

and ("/6, 3 ) and connecting the two points with a smooth line while repeating her statement 
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“as ! varies from 0 to "/6, r varies from 2 to 3 .” Joe was able to graph the r = cos(2!) for 0 $ ! 

$ " using the same technique. In her lesson plan, DH referred to this method as using tables 

effectively to understand covariation and graph functions. 

DH had Joe “graph” r = 2cos! using the data from Figure 8-7. She did so by drawing a 

ray at a specified angle and asking Joe to plot the corresponding r value. Every time she plotted 

an additional point, she had Joe explain that as ! varied from u to v, r varied from a to b. She 

believed this approach would help him understand covariation as well as the fact that with this 

polar function, there is only one r-value for every !, despite the fact that it did not pass the 

vertical line test. 

Families of Functions 

In order to understand the behavior of the family of cosine functions, DH had Joe 

generate tables of values and graph y = cos ! and y = cos(2!) on the same Cartesian plane. Her 

plan was to help Joe see that “the first graph goes through one complete cycle in the allotted time 

frame whereas the graph of cos(2!) goes through two complete cycles in the same allotted time 

frame.” Joe did note that there are twice as many “humps” in cos(2!) as there are in cos !, but 

was not comfortable predicting what the graph of cos3! would look like. Joe did predict that 

there would be n-times as many humps for y = cos(n!) once they had graphed y = cos(3!). DH 

closed the lesson by restating Joe’s comments in more formal language: “So what you’re saying 

is that cos(n!) will go through n times as many complete cycles as y = cos!.” Joe’s 

generalization appeared to be an empirical abstraction. He looked for patterns across cases and 

not for an underlying principle by which they all behaved. 
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Summary of Joe’s Performance on Assessment Task 

Joe was able to answer the first three assessment tasks correctly, however DH mentioned 

in her reflective essay that she was unsure if he was remembering what they had done as part of 

instruction or if he was making sense of the problem and reasoning in terms of covariation.  For 

example, he struggled to describe why the graph of r = cos(2!) behaves as it does (item (c)).  

Once DH hinted that he might want to “break it up into smaller pieces,” Joe was able to use the 

language of covariation to describe how the values of r varied over intervals of !.  For the final 

two items, DH noted  “Joe was at quite a disadvantage, as we had not really had sufficient time 

to go over the idea of periodic functions” (DH, Reflective Essay, 10/18/04).  Joe’s answers to 

items (e) and (f) consisted of an attempt to conjecture about the relationship between the 

coefficient and the shape of the graph:  he proposed that cos(4!) might be “two times as big” as 

cos (2!)32.  Though his answer was incorrect, it is more interesting to note that DH had accepted 

his answer to item (c), while believing that he was unprepared to answer items (d) and (e).  If Joe 

was unprepared to discuss the behavior of the periodic functions cos(#) and cos(4#), it seems 

unlikely that his discussion of cos(2#) could have been anything more than repeating what DH 

had said about cos(2#) a few minutes before.  Thus, we see that DH has not yet made sense of 

the fact that a graph behaves the way it does because of the specific way in which the quantities 

in question covary – she thinks it is possible to understand how a function behaves by observing 

characteristics of graphs without first making sense of the covariation. 

                                                 

32
 What he was envisioning was a graph that had for each value of ! an r that was twice that of the r for cos(2!).  It 

is important to note that his image of this consisted of a picture, not the underlying covariation of quantities. 
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Highlights of KN’s Lesson 

Covariation 

KN began his lesson by focusing on covariation. He presented Jamie with the following 

problem: “The tuition at Vanderbilt doubles every year for two years, then stays the same for two 

years, then decreases by half for the next two years.” In Excerpt 8-10, he has Jamie physically 

model the function. After Jamie had modeled the tuition function in the air, KN had her do the 

same thing at the whiteboard, with her right hand moving along the x-axis (which he had drawn) 

and a marker in her left hand. He then commented “So what you basically just did … is you 

showed how two different variables varied together. You showed as time goes on, the cost does 

something according to time. So the cost is dependent on the time.” 

Excerpt 8-10 (KN's Lesson, 10/4/04) 

10. KN:  OK, I want you to do this … you!re going to put your right finger on the 

desk and this is going to trace time as time goes on. [KN moves right 

finger along the desk.] 

11. J: OK. 

12. KN: And put your left finger on the table and this is going to trace the cost. 

[KN moves his left finger vertically above the desk.] So as time goes, 

then trace the cost with your left hand. And keep your left hand above 

your right hand. 

[Jamie moves fingers as in Figure 8-8] 0. 
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Figure 8-8: Jamie Modeling Tuition Function 

KN then asked Jamie to use her work on the tuition function as a model to explain how y 

varies as x varies, where y = x
2
. She responded: “OK, when x is negative and the negative 

number gets smaller, y decreases, but as x turns to positive, the graph increases.” He accepted her 

response and explained the point of the exercise: “The point is that when someone says ‘draw y = 

x
2
’, you just draw a U-shaped thing, right? The point is to get you to notice how the two 

variables, how y and x vary together. It isn’t just a picture … it’s … as x increases, when x is 

negative, y decreases until it gets to zero. And you can do the same thing with your fingers.”  

Sine and Cosine Functions 

KN found Jamie to be much less familiar with trigonometric functions than he anticipated 

and drew a sine graph (in rectangular form) as an introduction to sine and cosine functions. Since 

Jamie was not familiar with the graphs, he also labeled (0, 0), (0, "), (0, 2") as the important 

points on the graph and asked her to label the remaining important points33 (the labeled graph is 

shown in Figure 8-9). He then helped Jamie label the important points on the graph and then 

                                                 

33
 It is important to mention that KN was having Jamie label the points using the established pattern on the graph, 

not her understanding of how sin! behaves. 
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asked her to describe the covariation in the same way as she had for the college tuition function 

and for y = x
2
. Jamie gave an acceptable explanation by observing the points labeled on the graph 

and noting “as it varies from 0 to "/2, the graph varies from 0 to 1.” KN consistently corrected 

her use of “it” and “the graph” to the more proper x and y. After they had described the behavior 

of the sine, he drew the cosine graph and asked her to label the important points and describe the 

behavior. He concluded his instruction on sine and cosine graphs by formalizing the ideas of the 

dependent and independent variables, the domain and the range, and periodicity in a fairly 

traditional manner.  

 

 

Figure 8-9: Jamie and KN's Sine Graph 

Families of Functions 

Once they had the graphs of sin x and cos x, KN asked Jamie to explain what the graph of 

y = sin(2x) might look like. In order to do so Jamie created a table of values and graphed the 

function. Jamie noted that the graph of sin(2x) hits the x-axis twice as many times as sin(x) and 

KN revoiced her comment: “So what you’re saying is that the frequency, the number of times the 

graph goes up and down in a given amount of time, doubles.” She was able to correctly predict 

that the graph of sin(nx) would have a frequency n times as great as sin(x), however this 

prediction was based on empirical abstraction across the graphs as opposed to an understanding 

of the way in which x and nx covary – i.e. that nx varies n-times as rapidly as x does. 
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Polar Coordinates 

KN asked Jamie to plot five points and focused her attention on how she knew to locate 

each point where she did. He noted that she was using “a system with rules” to determine where 

to locate the points. He then commented that polar coordinates were another system that could be 

used to locate points, described how to locate points using distance from a fixed point and 

direction from that point, and asked her to give the polar coordinates for the five points she had 

already plotted using rectangular coordinates. Once he believed that Jamie understood how to 

use polar coordinates to locate points, he had her calculate and plot a number of points that 

satisfy the equation r = !. He then explained that she could use this graph to show the 

covariation: “as ! increases from 0, r increases from 0. And as ! continues to increase, so does 

r.” Once he had this graph, he explained that though it appears that this graph was not a function, 

in polar coordinates, a function cannot have more than one r for any !. Jamie then explained why 

this graph was actually a function in polar coordinates, referring back to her table to convince 

herself that there was only one r for any particular !. 

KN’s final objective was to help Jamie understand how to graph trigonometric functions 

in polar coordinates. He did so by generating a table of values for r = sin!, constantly referring 

back to the previously generated table of values for y = sin x. and having Jamie plot the points. 

Excerpt 8-11 gives part of the conversation. 

Excerpt 8-11 (KN's Lesson, 10/4/04) 

1. KN: OK, Jamie, where would we plot the first point? 

2. J: When # = 0, it!s zero. So I!d plot it at the origin. 

3. KN: Right. When # = 0, r = sin0, which is 0. 

4. J: OK, (pause) and when # = "/4, the radius equals - 2 / 2 . 
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5. KN: And I!ll figure out what that is … Because I don!t know what 2 / 2  is. 

Do you? 

6. J: No. 

7. KN: OK, it!s like 0.7.  

8. J: OK.  

9. KN: So what does 0.7 mean? 

10. J: It!s the length of the radius. 

11. KN: So at that angle, there!s a point that is 0.7 away from the origin. Plot 

that point. 

12. J: So, like over here [Jamie indicates a location close to (45o, 2 / 2 )]? 

13. KN:  Good. 

14.   [They work their way from # = 0 to # = 2" in a similar manner.] 

15. KN: So, what would the graph look like? 

16. J: Like this? [Jamie connects the dots.] 

17. KN:  OK, good. Now how do you know that there will be all these points in 

here [KN indicates the portion of the graph between (0,0) and ("/4, 

2 / 2 ); Region A (red) in Figure 8-10]? 

18.  J: Well, I just connected the two points. 

19. KN:  But how do you know that there will be points in there? How do you 

know that there is a point on the graph in between the two points? 

[Long pause; no answer from Jamie.] Remember in all these graphs 

back here, I!ve asked you to explain how y varies as x varies, so in 

this case, we!d say that as # varies from 0 to "/4, the r varies from 0 to 

2 / 2  or about 0.7.  

[…]  

20.  So how do you know what that these points will be in here? [KN 

indicates the portion of the graph between ("/5, 2 / 2 ) and ("/2, 1), 

which is Region B (green) in Figure 8-10]? You!ve said it several 

times today. 

21. J: Because as # varies from 45o to 90o, the r varies from 0.7 to 1. 

22. KN: Good. 0. 
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Figure 8-10: KN and Jamie Graphing r = cos!  

Summary of Jamie’s Performance on Assessment Task 

Jamie responded correctly to the first three assessment items, however much like Joe and 

Annie, her responses lacked enough explanation to make conclusions about the understandings 

behind her answers.  She was unable to answer items (d) and (e) correctly, but her response to 

item (d) is particularly interesting.  She began by creating a table of values, using the same 

values of the independent variable as she had used for cos(2!) (Figure 1-11), and plotted the 

points.   Next to the table, she noted that she did not know how to graph the function because she 

did not know what happened between the points.  Thus, Jamie had developed an understanding 

that it was important to understand what happened between landmarks, but she had yet to make 

sense of where to look for this information – had she been reasoning in terms of covariation, she 

would have turned to the functional relationship for this information.  As it stands, it appears 

that, to her, the values in this table were points and not simultaneous values of covarying 

quantities. 
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# cos(4#) 
0 1 
"/4 -1 
"/2 1 
3"/4 -1 

. 

. 

. 

. 

. 

. 
Figure 8-11:  Jamie's Table of Values for Cos(4#) 

Emergent Issues in the Instruction. 

The similarities in DH, KN, and SS’s instruction goes beyond the main topics that each 

had discussed in their meeting with TI—there was a striking similarity in the understanding of 

functions and covariation that the PSTs drew upon while creating and teaching their lessons.  

Each PST wanted their HSS to physically model the covariation of quantities much as they had 

done in the Introduction to Graphing and Covariation activities. They did deviate from the 

Introduction to Graphing and Covariation instructional sequence in one significant way: Rather 

than understanding how the quantities varied and using the graph to record and keep track of the 

variation (and ultimately covariation) of the quantities, their attention was on understanding the 

graph by focusing on how a point on the graph might vary along the graph (much like a wooden 

bead moves along sculpted metal wires in children’s toys). For example, in Excerpt 8-7, we see 

SS asking Annie to use her fingers to model time and distance without attention being paid to the 

significance of each quantity or the importance of the landmarks. Further, her explanation of the 

importance of covariation was “Like how something would vary, it creates a graph because these 

things vary. Like if there was no time movement … it’s the time movement that keeps this [the 

distance finger] moving along the graph.” (Excerpt 8-8, line 8). In this lesson segment, SS’s 
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actions suggested an unawareness of the need for tight coherence in Annie’s thinking of what she 

(Annie) was modeling by coordinating her fingers. Annie seemed not to understand what her 

fingers’ locations represented, nor how moving her fingers was supposed to be constrained by 

the behaviors of the represented quantities. I suspect that Annie would have ended with a similar 

understanding of SS’s point had SS gone straight to having Annie move one finger through the 

air, then proclaiming, “See, you’ve traced a graph.” 

In DH and KN’s instruction, we saw them helping their HSSs calculate important points 

and then, for each region between these important points, asking their HSSs to physically model 

(using fingers and fairy dust or an analog) and reason about how one quantity varied as the other 

varied. Both the activities that they orchestrated and the way in which they (and their HSSs) 

described why the graph appeared as it did (DH on Page 222, KN and Jamie in Excerpt 8-11) 

were very similar to the activities and descriptions detailed in Chapter 6. There was, however, 

one significant difference: In their work with the HSSs, their descriptions of the graph were 

grounded in points that lie on the graph. Thus, though they did appear to be reasoning about 

quantities, they were really reasoning about how the graph looked between particular points on 

it. For example, consider Figure 8-12. The PSTs helped the HSSs calculate and plot points of 

interest (purple in Figure 8-12) and then reasoned about how black point behaved between the 

purple points. Their reasoning could be described as follows: since we know the black point is 

moving between the points (0,0) and ("/2, 1), we know that as x varies between 0 and "/2, the y 

has to vary between 0 and 1. The instructional conversations that the PSTs orchestrated were 

grounded in helping their HSSs reason about graphs and to speak about how the x- and y-

coordinates (or r- and !-coordinates) change between specific points on the graph. But their 

attention, nevertheless, was on the “space” in a quadrant that lay between two (purple) points. 
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Put another way, their image of the covariation of x and y (or of r and !) was driven by their 

anticipation of the graph’s shape. The graph’s shape did not emerge from the covariation of two 

quantities.  This claim is supported by the HSSs’ inability to reason through assessment item (d) 

–without the graph the HSSs could not construct the covariation.  
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Figure 8-12: Keeping Track of the Variation of the Black Point 

In Excerpt 8-11, we saw KN helping Jamie understand why there will be points between 

(0,0) and ("/4, 2 /2) and between ("/4, 2 /2) and ("/2, 1) (the red and green regions in Figure 

8-10). He helped her see that we are assured of having the “in-between” points because of 

covariation, namely the fact that they know that “as ! varies from 45
o
 to 90

o
, the r varies from 

0.7 to 1” (Excerpt 8-11, line 21). It is important to mention that it is unlikely that KN believes 

that it is simply because “as ! varies from 45
o
 to 90

o
, the r varies from 0.7 to 1” that he is 

guaranteed the in-between points; his explanation is grounded in his own understanding of 

covariation. In chapter 6, I showed that he had developed the imagery that would scaffold his 

statement. When KN spoke of the variables varying, he was likely envisioning two quantities 
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covarying and the corresponding movement of the correspondence point. However, in his 

instruction it was a point on the graph, not the variable quantities and the correspondence point, 

that was the salient issue.  

Post-Instruction Assignments 

The final part of the project involved the PSTs writing reflective essays for TI about their 

work with their HSS. Each PST had a video of their instruction as a reference for their essay. 

This reflective essay was due approximately three weeks after their lesson. Follow-up interviews, 

which focused on their instruction and reflective essay, were held approximately one week after 

they turned in their essay. The class revisited trigonometry and polar coordinates during the time 

in which they wrote their essays, and then moved on to a unit on rates of change. In addition to 

the content covered in the sequel to their project, TI spent a considerable amount of class time 

making the logic of his lessons explicit. He orchestrated class discussions about the particular 

mathematical understandings that served as a background for the instructional activities in which 

the PSTs were taking part. He also focused PSTs attention on “sub-goals” of instruction and the 

purposeful sequencing of these activities.  

There were two crosscutting ideas in PSTs’ reflective essays and their follow-up 

interviews—the importance of covariation and the importance of deep understanding of 

mathematics. 

The Importance of Covariation 

In their reflective essays, each of the PSTs indicated that they felt that they should have 

spent more time helping their HSSs understand covariation. This is despite the fact that they had 

specifically mentioned covariation in their initial lesson plans as one of the few key ideas that 
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they wanted their HSSs to understand. PSTs’ comments provide us with insight as to their 

reasons for the perceived inadequacy. 

I wrote in my project report that I needed to spend more time on building up to 

covariation. When I tried to have Jamie track the two variables with her fingers. I 

started by asking her to track the two variables together, with one on top of the 

other. What I realize now was that I moved too fast through this … it would have 

been really important for her to track the variables independently first. I think I 

rushed through this because I was so comfortable with tracking the two different 

things at once—I could almost do it in my head. I thought she would be able to 

catch on very quickly (KN, Follow-Up Interview, 11/3/04). 

I realize now that I could have slowed down when explaining about the 

relationship between independent and dependent variables and their covariation 

in relation to functions. As this was a really core concept that I needed to solidify 

with Joe in order for him to have the possibility of giving the kind of answers I 

wanted him to for the assessment question (DH, Reflective Essay, 10/18/04). 

What I learned was that I took a lot for granted. First, there was the simple idea 

that Joe didn!t know what the symbols, like theta, were. More importantly, though, 

I think I really rushed through covariation when it was probably the most 

important thing we could have talked about. In order for Joe to have answered 

the assessment questions—even for him to understand polar functions—he 

needed to understand that there were variables that were varying and the graph 

was tracking how those variables covaried. My problem was that I rushed 

through helping him understand what was going on—that there was an angle, or 

an arc-length, that was varying and as it varied, sin(!) varied in some way related 

to the variation of !. I understood most of this—well maybe not the angles and 

arc-lengths—but it didn!t come across in my lesson. I think I had just spent so 

much time thinking and doing covariation that it was, kind of, understood. I guess 

I didn!t think I needed to spend that much time on it. (DH, Follow-Up Interview, 

11/3/04). 

Thus, for DH and KN, the idea of covariation had become transparent to them. KN later 

described it as a “mindset” that he used to approach problems, but not something he was 

conscious of. SS was also aware that she skimmed over ideas that she now realized were 

fundamental to Annie having a chance to understand what SS was trying to teach. It seems that 

all three realized that many of their students’ difficulties stemmed from an inadequate 

understanding of covariation, and the PSTs realized that they should have provided this in their 

teaching. 
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The Importance of Deep Understanding of Mathematics 

Both DH and KN noted that as a result of their work with their HSS, they recognized the 

importance of focusing on mathematical understandings in their planning. Though they had 

written their lesson plans in narrative form, they felt that the narrative they described was more 

of a discussion with someone with similar understandings to their own as opposed to a HSS’s 

understandings. In his essay, KN noted that  

I realize now that when I taught the lesson, I did not even have a good 

understanding of [how you measure the argument of a trigonometric function]. I 

did not anticipate her having this problem … this proves to me how important it is 

for a teacher to have a deep understanding of the subject matter being taught 

(KN, Reflective Essay, 10/18/04). 

When questioned about this comment in the follow-up interview, he clarified his thoughts: 

I did understand everything in my lesson plan, but in my plan I kind of glossed 

over the idea of what a radian was. I now understand what a radian is 

[conceptual foundations of radian measure had been covered in class] and why it 

is important when graphing trigonometric functions. But more important, I think, is 

the idea that when preparing for lessons, I realize now that it is important to plan 

what you want students to learn and what they need to know in order to learn it, 

rather than what you are going to ask them to do or how you are going to teach 

them. Had I thought about this before teaching Jamie, I think some of my 

weaknesses would have been evident and I could have worked on them (KN, 

Follow-Up Interview, 11/3/04) 

DH made a similar observation about her instruction on families of trigonometric 

functions: 

I think he saw that y = cos(2x) goes through 2 complete cycles in the same 

period that it takes for y = cos(x) to complete only one cycle, but I know he does 

not understand that this happened because the argument varies by 2". For all he 

is concerned the graph does that because I told him it does (DH, Reflective 

Essay, 10/18/04). 

I really thought I understood polar coordinates and functions before my lesson. I 

thought I planned a good lesson. I think I tried to do too much, though. I spent all 

this time teaching him about plotting points and graphs and stuff, but like, I think 

the important thing was understanding the covariation. And understanding trig 

functions. If he could understand what the independent variable is and what sine 

represents … and trace out how they vary … those were the big ideas (DH, 

Follow-Up Interview, 11/30/04) 
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In thinking about my plan and my lesson, I think that the … I really needed to 

understand the logic of the lesson better. I mean, I wasn!t prepared for him not to 

know how to graph cosine functions. I wasn!t prepared to teach him about cosine 

functions and how to graph them—I was just going to have him compare the 

graphs and find the relationship. Now I see that understanding the cosine 

function is really important because the big ideas are periodic functions and the 

argument varying by 2". Now, after the past few classes, my lesson logic would 

include understanding the cosine function in terms of an angle, which is an arc 

length, and the x- or y-coordinate of a point on a circle centered at the origin (DH, 

Follow-Up Interview, 11/3/04). 

In these excerpts, we see that, upon reflection, the PSTs have recognized that some of 

their instructional difficulties stem from their lack of understanding of the mathematical ideas 

they were teaching. They also indicate that they now understand that their understanding needs 

to be structured much like a “logic of the lesson” that they had been discussing in class. Later in 

his interview, KN described this lesson logic as consisting of nested understandings of 

mathematics: “Two things are important. First there is what you want the HSS to understand—

the big idea—and second there is the order in which they need to learn the things that are 

necessary for them to understand it” (KN, Follow-Up Interview, 11/3/04). 

Discussion of Instruction 

In this chapter, I documented the PSTs’ participation in an instructional activity that took 

place over approximately five weeks. Their conceptual narratives, which were completed 

towards the middle of Phase I of instruction, provided insight into what the PSTs understood to 

be the key aspects of instruction. These key aspects, which included the uniqueness of the 

mapping, variables and variability, and the appearance of the graphs, are consistent with the 

PSTs’ initial assessment and their experiences in the course. These three themes also appeared in 

their instructional plans. However, in their plans they included an understanding of covariation 

as an additional goal of instruction. Though they included covariation in their plans, the majority 
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of the emphasis throughout their instruction was on the first three: teaching an analog for the 

vertical line test, defining r and !, and plotting points to get a better sense of what the graph 

looks like.  

The PSTs’ pedagogical conceptualization of mathematical ideas can be characterized 

through analyses of their lesson plans and instruction:  

# Coordinate systems are used to locate points, and the important thing for HSSs to 

know about coordinate systems are the variables that are used to represent the 

coordinates of a location and a rule for determining the specific coordinates. Once 

they know the rule, they need to practice locating the points until they get 

comfortable with it.  

# The sine and cosine functions are periodic functions, which means that the graph 

repeats itself. The important things for HSSs to know are values of sine and 

cosine of 30-60-90 and 45-45-90 right triangles.  

# Families of functions are groups of functions that have the same sort of shape. 

The “shape” is determined by finding and plotting points.  

# Covariation is everything that goes on between the points that you plot. 

These pedagogical understandings are not consistent with the PSTs’ understandings of 

functions and graphs discussed in detail in Chapters 6 and 7. It is important to note that their 

pedagogical conceptualization of the mathematical concept can only be understood when it is 

examined through the lens of their current understandings (mathematical, pedagogical, and 

otherwise). In other words, it is not necessarily the case that the PSTs think that the 

conceptualizations discussed in the previous paragraph are the only important issues in 

understanding the ideas. Rather, the pedagogical conceptualizations are the result of the 
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assimilation of the course content and assignments onto their current schemes for understanding 

mathematics. For example, creating a table of values was the way that the PSTs had organized 

the coordinated values of the variable quantities. They learned to use the table as a tool to reason 

about the way in which the variables covary. It, therefore, makes sense for them to think that if 

they were to help their HSSs understand tables of values, they would see functions and graphs as 

they do.  

I argued in previous chapters that the PSTs had developed a key developmental 

understanding of functions as covariation of quantities. In this chapter, we see evidence of the 

fact that a key developmental understanding of function is not sufficient for developing 

instruction focused on understanding functions as covariation of quantities. This result was not 

unexpected. In Chapter 2, I suggested that PSTs may need to develop a key pedagogical 

understanding. I said, 

A key developmental understanding is a particular understanding of a 
mathematical idea that facilitates understanding a variety of additional 
mathematical topics. A key pedagogical understanding involves an individual’s 
awareness of the pedagogical implications of those key developmental 
understandings of important mathematical ideas.   

A key pedagogical idea is one way of thinking about particular understandings of mathematics 

content that can support the development of instructional environments where HSSs can engage 

in productive mathematical conversations. 

Though there was no evidence in PSTs’ lesson plans or instruction indicating that they 

had developed key pedagogical understandings, their reflective essays and the follow-up 

interviews showed some indications of progress. Specifically, the PSTs came to understand 

covariation in a different way. Rather than focusing on covariation as something to do, both KN 

and DH noted that it was something that they needed to build up through focusing on the 

variation of the individual quantities and then moving to the coordination of the variation. They 
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both indicated that approaching the lesson with an emphasis on covariation of quantities would 

have enabled them both to help their HSSs be more successful on the assessment and also reduce 

the amount of material their HSS needed to know. Their understanding of covariation indicates a 

shift in their pedagogical conceptualization of covariation. Rather than the thing you use to make 

sense of what goes on between points you’ve plotted, they needed to come to understand 

covariation as a way of thinking about the situation and had begun to realize that that way of 

thinking needs to be developed carefully (first with the notion of variables varying 

independently, then in a coordinated manner, then as producing a graph as a record of the 

covariation). The paradoxical nature of this finding should be noted: It took significant effort, 

both on TI’s and the PSTs’ part, for the PSTs to become conscious of the instructional 

development that they, themselves, had experienced first hand.  

Follow-Up with PSTs 

As already mentioned, TI placed a great deal of emphasis on understanding the logic of a 

lesson. What he meant by this was that in designing instruction, a teacher’s focus needs to be on 

two things: what the teacher wants the HSS to understand and how the teacher envisions 

positioning the HSS to develop this understanding. Thus, planning for instruction is about the 

continual interplay between what the teacher asks the HSSs to do and the pedagogical purpose of 

those activities.  

In service of having the PSTs realize that objective, TI assigned the following task: 

Design a lesson logic, which includes the activities the HSSs will take part in and the rationale 

for those activities, to teach the point-slope formula and point-point formula (TI, November 11, 

2004). Their completed lesson logic is shown below in Figure 8-13.  
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Step Action Reason 

1. Give the students a point in the xy-plane and a 
rate of change. [Note: Here it may be helpful 
to give them this rate of change in a context 
they are familiar with. If they have 
encountered rates of change when talking 
about the distance a car travels over some 
amount of time, refer back to such an example 
so students can relate this to their prior 
knowledge about the subject of rate of 
change.] Now, ask the students to find a 
second point where the rate of change 
between these two points is the given rate of 
change. 

This forces students to think about the 
relationship between the x and y coordinates. 
They need to think “If I am given a rate of 
change, this means that when x increases by 
some amount, y increases by the rate of 
change times however much x increased by.” 

2. Ask different students in the class the point 
that they chose and have them explain how 
they found it. Most likely, different students will 
find different points that satisfy the above 
instructions.  

This emphasizes the fact that many different 
pairs of points can share the same rate of 
change between them.  

3. Assume that at least one of the students found 
his or her point by finding the value of y when 
x increased by 1. Ask students what would 
happen if x changed by 2, 4, ! or by 1/100 
instead of by 1. 

This helps students to see that there are many 
points that satisfy the scenario. 

4. Ask the students if they have found all the 
points that satisfy the above scenario that the 
rate of change between their new point and 
the initial point is the given rate of change. If 
not, ask them where the other points are that 
do satisfy the scenario. 

Students should see that any point on the line 
determined by their two points would also 
satisfy the relationship. The students should 
see that since a line is made up of an infinite 
number of points, then an infinite number of 
points satisfies the scenario.  

5. We now want the students to talk in more 
general terms. Ask them what would happen 
if, given some rate of change, you increased x 
by an arbitrary amount. Have them formalize 
this in an equation. 
 

By getting away from thinking only in terms of 
whole number intervals, they should see that 
to find the change in the y-value, you can 
multiply the change in the x-value by the rate 
of change. The students would come up with 
the equation "y = (rate of change)·"x. 
 

6. Ask students to think about what they would 
do if somebody else did exactly what they just 
did (started with an initial point and a rate of 
change and found a series of points that all 
share the same rate of change), and told the 
students two of their points, and the students 

This gets the students thinking about their 
method. It moves them away from thinking in 
terms of “there is a set formula for finding the 
rate of change or a line” and, instead, gets 
them to think of the relationship between 
change in x and change in y and the rate of 
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were asked how they could use this 
information to figure out what rate of change 
the other person started with. 

change of the associated line. 

7. Ask the students how they found the rate of 
change between those two points. The 
students should be able to tell you that to find 
the rate of change, you simply divide the 
change in y by the change in x. 

By seeing that the (rate of change) = "y / "x, 
the students will be able to see why both the 
point-point and point-slope formulas work. 

 […] […] 

12. Ask the students what the change in x is and 
what the change in y is between these two 
points. They should see that the change in x is 
(x-2) while the change in y is (y-3). 

 This step is to get them to see even though x 
and y do not have particular values, you can 
still discuss how much their values change 
over any interval. 

13. Using the equation they came up with 
earlier—"y = (rate of change)·"x—have them 
plug in their values of "x and "y that they just 
found. They will get the equation (y-3) = 3·(x-
2). 

Now the students will see that the line drawn 
on the board can be symbolized using an 
equation.  

14. Ask the students what you would need then, to 
write an equation for any line. They should see 
that all is needed is the slope of that line and a 
point on that line.  

This gets the students to understand the point-
slope formula for a line. 

15.  Ask the students how you would write an 
equation for a line if you were instead given 
just two points that were on the line. Since the 
students already know how to find the slope 
from two points on a line (Steps 6&7), they 
should see how to do this. 

This gets the students to understand the point-
point formula for a line. 

Figure 8-13: PSTs' Lesson Logic for Equations of Lines 

In this lesson logic, we see a number of significant shifts in the PSTs’ mathematical and 

pedagogical understandings. In contrast to their lesson plans on polar functions that were content 

driven, this lesson logic was centered around HSS’s understanding. Each of the reasons describe 

the particular way that they desire their HSSs to be thinking. For example in step 1, we see that 

the desired understanding of a rate of change is in terms of proportionality: “They need to think 

If I am given a rate of change, this means that when x increases by some amount, y increases by 

the rate of change times however much x increased by.” Their logic also is focused on 



 

 243 

generalizing: in step 4, the action involves asking about all the points that satisfy a given 

relationship and their rationale is that they desire their HSSs to come to think about a line 

emerging from considering all the points that satisfy the given relationship.  

The striking differences between the PSTs work with their HSS and in the lesson logic 

raises the question of what might have transpired in the weeks between the two – the lesson logic 

task was assigned almost a month after my interviews with DH and KN.  Unfortunately, data 

from the instruction that took place during this time was not collected and any claims about the 

mechanisms for their development are largely speculative.  During this period the class 

continued to stress ideas rooted in covariation, which included average rate of change, Riemann 

sums, and the fundamental theorem of calculus from a covariational perspective. It seems that 

the students needed more time to fully understand the content and to explore additional related 

mathematical topics before they could fully make sense of the implications of functions as 

simultaneous covariation of quantities.   Additionally, throughout the remainder of the course, 

the instructor explicitly focused classroom discussions on the logic of the lesson and 

incorporated that focus into their daily work – in addition to completing the assignments, 

classroom time was devoted to unpacking what one needed to know and understand in order to 

answer the questions in the desired way and possible instruction which might position students to 

develop such understandings. 

TI envisioned these classroom discussions involving the de-construction of mathematical 

ideas as a vehicle for developing content knowledge that would support conceptual instruction 

guided by the PSTs’ own mathematical understandings. The creation of this lesson logic required 

the PSTs to understand mathematical ideas, but also required them to break down those 

understandings into smaller cognitive objectives that, were HSSs to develop them, would result 
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in a high likelihood of their coming to understand the mathematics in the desired ways. For 

example, rather than showing or telling the HSSs that given a constant rate of change that an 

arbitrary change in x, the change in y could always be determined, they constructed a sequence of 

activities (steps 1-4 of Figure 8-13) that would help the HSSs to understand that this idea as a 

consequence of the understandings they abstracted from their activity.  

In Chapter 2, I discussed a conceptual analysis of understanding function as covariation 

of quantities. This included (i) A variable is a measurable quantity of variable magnitude; (ii) A 

function is a relationship between the two variables; and (iii) The graph of a function results by 

keeping track of the simultaneous covariation of quantities. In Chapters 6 and 7, I presented 

evidence that the PSTs had developed covariational conceptions of function. In particular, the 

evidence indicated that they had come to reason in terms of (i) and (ii) and were developing a 

sense of (iii). The lesson logic presented in Figure 8-13 indicates that the PSTs had come to 

understand (iii) more deeply during the 4 weeks between the end of this study and the generation 

of the lesson logic. Moreover, the lesson logic provides us with evidence that the PSTs have 

developed an awareness of a similar conceptual analysis of functions as covariation of quantities. 

Their conceptual development, which focused on the variability of the quantities (lines 3, 12, 

13), the relationship between two variables (lines 1, 2), and the graph as resulting from tracking 

the simultaneous covariation (lines 4, 6), is evidence of this awareness and indicative of a 

developing key pedagogical understanding. 
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2 CHAPTER IX 

SUMMARY AND CONCLUSIONS 

This final chapter highlights the study’s key findings as well as its contributions, 

implications and limitations. I will also provide an overview of the three phases of the study as 

the findings, contributions and implications are grounded in an examination of the PSTs across 

phases. 

Summary of Findings 

Research Question #1: Pre-Service Teachers Understandings of Function 

The instructional phase of this study had as its goal to understand three pre-service 

teachers’ developing understanding of function as simultaneous covariation of quantities. The 

setting for the study was an instructional sequence that employed simultaneous covariation of 

quantities as a vehicle to assist the PSTs in developing an understanding of function that enabled 

them to engage with a wide array of problems dealing with applied and abstract functional 

situations. This instructional sequence was envisioned as positioning the PSTs to develop a Key 

Developmental Understanding [KDU] of function. In Chapter II, I discussed Simon’s (2002) idea 

of a KDU as a way to think about the mathematical understandings that a mathematics course for 

pre-service teachers [PSTs] would ideally engender. These KDUs include a (i) conceptual 

advance that enables one to find different, yet conceptually related ideas and problems 

understandable, solvable and sometimes even trivial and (ii) a fundamental transformation of 
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one’s understanding that necessitates a shift in the way the individual interprets the world around 

them.  

The instructional phases of the study (Chapters VI and VII) were designed to study the 

PSTs’ understandings of function and better understand both if and how KDUs of function might 

be developed. Activity 1 was intended to help the PSTs develop imagery that would support their 

development of a covariational conception of function. The PSTs progressed through activities in 

which they physically modeled quantities, first separately, then together, and finally in a 

coordinated manner. The PSTs were ultimately able to model the variable quantities but 

struggled to model the covariation. Analysis of Activity 1 indicated that though they were able to 

imagine the variation of the two quantities, they lacked a means of coordinating the variation. In 

addition, analysis indicated that one reason for their difficulty in coordinating the quantities was 

an incongruity between their existing understanding of functions and graphs (as solid wires that 

points move along) and the desired understanding of functions and graphs (graphs as resulting 

from tracking the values of covarying quantities). Once the PSTs realized that the activity of 

modeling the quantities resulted in a traditional distance-time graph, their understanding of the 

focus of the activity shifted from coordinating the variation of the quantities to making their 

fingers vary in a particular way.  

Activity 2 provided the PSTs with situations within which they needed to represent 

covariation of two quantities in a graph and interpret graphs in terms of the constituent 

quantities. Though for the majority of the problems the PSTs’ initial inclination was to speak of 

global characteristics of the graph (bigger/smaller, fatter/skinnier), towards the end of the activity 

we saw a significant shift in the PSTs’ thinking. Once KN introduced the idea of reasoning about 

the covariation of quantities in terms of two-dimensional landmarks (a way of reasoning about 
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the covariation that, interestingly, the instructor had introduced on at least two previous 

occasions), this means of organizing the covariation of quantities became part of the public 

discourse and was regularly called upon in class and as part of their written work by the each of 

PSTs.  

In Activity 3, we saw a stable pattern emerge in the way in which the PSTs engaged with 

the word problems. For all but the last problem discussed in class, the PSTs began by generating 

and graphing equations and attempting to solve for the unknowns. Analysis of their solution 

methods indicated that they used graphs to check the internal validity of their calculation of the 

unknown and the graphs provided little support for their understanding of the situation or 

explaining the significance of the calculations and the solution. Only after nudges by the 

instructor did they turn to analyzing the covariation. Throughout Activity 3, the PSTs 

consistently showed that they had developed understandings of functions and covariation that 

enabled them to reason through the applied problems, but their initial inclination was not to do 

so. 

Activity 4 engaged PSTs in activities designed to further focus their attention on the 

utility of analyzing situations in terms of covariation of quantities. In the problems of Activity 4, 

traditional understandings of trigonometric functions and polynomials were insufficient for 

answering the questions asked. Though again, the PSTs’ initial inclination was to reason in terms 

of equations, formulas, and static graphs, the PSTs were able to apply covariational reasoning to 

each of the scenarios and discuss why the graphs behaved as they did. In Chapter VII, I claimed 

that this was evidence of the possibility that standard mathematics problems could serve as 

didactic objects that are conceived of as helping HSSs develop understandings that will support 

the ability to take part in conceptual conversation.  
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In returning to the question of whether the PSTs had developed a key developmental 

understanding of function as covariation of quantities, the preceding analysis of the instructional 

phase of this study provides contradictory results. First, a KDU involves a conceptual advance. 

Throughout Chapter VII, we saw evidence of such a conceptual advance: rather than functions 

and graphs being ancillary accoutrements to memorized procedures for finding an unknown, the 

PSTs came to use functions and graphs as tools for reasoning about how the quantities in 

question covary, about what solutions might be, and ultimately about why particular solution 

techniques were appropriate for achieving the desired outcome. This way of reasoning allowed 

the PSTs to reason through a variety of problems dealing with applied functional situations.  

As to the question of whether the PSTs have experienced “a fundamental transformation” 

of their understanding that necessitated a shift in the way the individual interprets the world 

around them, the results are not as simple. They have clearly transformed the way they can 

interpret the situations in the world around them, however, even towards the end of the 

instructional phase, their tendency was not to interpret situations in terms of covariation of 

quantities. With regards to this, I conclude that they have transformed the way in which they 

understand functions, but at this point the transformation consists of an incomplete 

accommodation of their new understanding of function on to their existing conceptual structures. 

At the conclusion of Chapter VII, I claimed that the PSTs’ new understanding highlights the fact 

that standard mathematics problems can serve as didactic objects that are conceived of as helping 

HSSs develop an understanding that will support the ability to take part in conceptual 

conversation. In other words, the PSTs developed the capacity to speak conceptually about the 

covariation that arises in a variety of functional relationships. However, the incomplete 

accommodation indicates that that this understanding is likely not yet a KDU. 
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Research Question #2: Understanding the Relationships Between PSTs’ Understanding of 

Covariation and Teaching for Understanding of Functions 

This study is grounded in the belief that how a teacher understands a mathematical 

concept will influence the instructional conversations that a teacher envisions as assisting his or 

her students in developing a consistent, and ideally similar, understanding. Though it could not 

be concluded that the PSTs developed a KDU of function, it would seem likely that the PSTs’ 

new mathematical understandings of functions would exhibit themselves in their work with the 

HSSs. Chapter VIII affirms this notion, despite the fact that the PSTs’ instruction on functions 

and covariation is significantly different from the course instruction.  

With regards to the idea of a key pedagogical understanding, we saw that the PSTs’ goals 

for their teaching revolved around showing their HSSs the mathematical ideas that they felt to be 

particularly important as opposed to helping their HSSs come to understand the mathematical 

ideas in a particularly powerful way. As a result, we do not have sufficient evidence to make 

claims about the development of KPUs. Instead, I use the term pedagogical conceptualizations of 

mathematical ideas to refer to mathematical understandings that have pedagogical implications 

yet do not meet the criteria of a KPU. 

Analysis of the PSTs’ lesson plans and instruction shed light on their pedagogical 

conceptualizations of the mathematical ideas: Coordinate systems are used to locate points, and 

the important thing for HSSs to know about coordinate systems are the variables that are used to 

represent the coordinates of a location and a rule for determining the specific coordinates. Once 

they know the rule, they need to practice locating the points until they get comfortable with it. 

The sine and cosine functions are periodic functions, which means that the graph repeats itself. 

The important things for HSSs to know are values of sine and cosine of 30-60-90 and 45-45-90 

right triangles. Families of functions are groups of functions that have the same sort of shape. 
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The “shape” is be determined by finding and plotting points. Covariation is everything that goes 

on between the points that you plot. These understandings served as a basis for the PSTs’ work 

with their HSSs. 

What should be noted about these understandings is that when viewed from the 

perspective of the PSTs, these understandings make sense. Their instruction was grounded in 

showing the HSSs what they had learned to do as opposed to what they had come to understand. 

The inclination to show HSSs the seemingly salient aspects of a mathematics understanding is a 

common practice among developing teachers – Simon, Tzur and their colleagues (1998, 2000) 

have dubbed this the teacher possessing a “perception-based perspective” of teaching and 

learning mathematics. This perception- based perspective has as one of its key tenets that 

“Students learn mathematics by direct perception of mathematical objects, principles, and the 

relationships between them” (Heinz, Kinzel, Simon, & Tzur, 2000, p. 102). 

This tendency to focus on demonstrating objects, principles and relationships does not 

shed light on the incongruity between the mathematical understandings PSTs discussed in 

Chapters VII and VIII and those described above. As noted in the previous section, at the time of 

the lesson plan and their instruction, the PSTs were still in disequilibrium with respect to their 

understanding of functions: they were still trying to accommodate their current existing 

conceptual structures to incorporate the new understanding of functions. What we see in their 

instruction is what they have come to see as the salient aspects of using covariation to make 

sense of functional situations. These salient aspects are remnants of their ongoing 

accommodation. The PSTs’ goals for instruction, the instructional tasks chosen, and the 

instructional conversations they orchestrated were clearly grounded in the sense they had made 

of the mathematical content.  
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Contributions and Implications 

In Chapter II, I began by proposing the construct of a key developmental understanding 

as a way to think about goals for the mathematical development of PSTs and key pedagogical 

understandings as abstractions of a KDU that entails (a) a teacher being aware of the pedagogical 

utility of the KDU and (b) an understanding of how the KDU might develop from PSTs’ existing 

understandings. The study was then designed to understand the complexities of the development 

of a KDU and the relationships between the PSTs understandings of functions and their planning 

and enacting of instruction.  

Despite the fact that the PSTs did not fully develop a KDU of functions as covariation, 

they did develop an understanding of function that supported their ability to speak conceptually 

about functional relationships in terms of simultaneous covariation of quantities. The first 

significant finding of this study is that this understanding, though most definitely necessary, is 

not sufficient for a teacher to have the ability to conceive of instruction that would enable their 

HSSs to develop an understanding consistent with the teacher’s own understanding. A common 

interpretation of this inability would be that the PSTs had not developed sufficient pedagogical 

knowledge (knowledge of teaching that would support a conception-based perspective of 

teaching (Simon, Tzur, Heinz, & Kinzel, 2000; Simon et al., 1998)) or pedagogical content 

knowledge (instructional methods particular to teaching the content). However, this study 

documents the fact that the ways in which one understands content, particularly what one 

understands to be the salient aspects of the content, has an impact on the kinds of instruction and 

instructional conversations a teacher has the possibility of employing. Had the PSTs developed a 

more robust understandings involving particular instructional strategies for teaching functions of 

polar coordinates, their instruction would likely not be significantly different unless this new 

understanding influences their understandings of what it means to understand polar coordinates. 



 

 252 

In short, this study affirms the belief that rather than teaching the way one was taught, 

one teaches what they know—an individual’s understandings of mathematical content and their 

pedagogical conceptualizations of the content are the lens through which all instructional 

activities are conceptualized. When viewed in this light, the two enduring debates in teacher 

education, (i) how much content knowledge and (ii) what other kinds of knowledge are 

necessary for teaching for understanding, seem a bit misguided. First, when (i) and (ii) are 

investigated, they are done so using measures inconsistent with the kinds of mathematical 

understanding detailed in this study. For example, the numerous studies that note that 

mathematics teachers often do not understand fractions (or any other sophisticated mathematical 

idea) and demonstrate that there is a shift in the practices of teachers who take part in in-service 

development centered on developing fractional content knowledge or pedagogical content 

knowledge.  

The results of this study indicate that unless new mathematical understandings and 

pedagogical conceptualizations of those understandings are developed, the underlying goals of 

instruction (what the teachers want their students to learn) will likely remain the same. Few 

researchers, particularly Peg Smith and her colleagues at the University of Pittsburgh and Pat 

Thompson and Kay McClain at Vanderbilt University and Arizona State University, take the 

time to better understand the question of how might we want our teachers to come to understand 

a mathematical topic that will support teaching with understanding. More work is needed to 

better understand and develop particularly powerful pedagogical conceptualizations of 

mathematics. 

A second significant finding of this study deals with the tremendous difficulty that the 

PSTs had in developing key developmental understandings of function and related pedagogical 
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conceptualizations of that understanding. Under the best of possible scenarios, including the 

teacher being an experienced mathematics teacher educator who began investigating students’ 

understandings of functions more than a decade and a small class of significantly above average 

students, the fact that the students struggled to develop a coherent understanding highlights the 

fact that the development of these understandings is a truly difficult task. The difficulty of the 

task emphasizes that one significant impediment to the quality of teacher education is the fact 

that it is a vicious cycle: it is an extremely difficult task for teachers to develop an understanding 

of functions (or any mathematical concept) that is inconsistent with their prior understandings. 

This points to the need for teachers to develop, while students themselves, understandings of 

mathematics that can develop into key developmental and key pedagogical understandings. 

Thus, the study is a call for the need for the introduction of key developmental understandings of 

mathematics content as goals for mathematics instruction in elementary school and high school. 

Finally, this study contributes to the development of a conceptual framework for thinking 

about ways to support the development of content knowledge for conceptual teaching. In Chapter 

II, I proposed a developmental notion of content knowledge for teaching, which was grounded in 

research in educational psychology and mathematics education, as such a framework. This study 

concluded that the PSTs had not developed key developmental or key pedagogical 

understandings, but that fact does not necessarily diminish the importance of the framework. 

This study verifies the notion that, first and foremost, a good teacher of mathematics must not 

only understand mathematics, but they must understand it in a particular way. This study also 

indicates that these mathematical understandings are not enough, for the pedagogical 

conceptualization of the mathematics and the salient aspects of both the mathematical ideas and 

mathematics instruction tend to be transparent to those who have learned them. Thus, awareness 
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of the salient aspects of their own development needs to be incorporated into a refined 

developmental trajectory of content knowledge for conceptual teaching.  

The usefulness of a developmental notion of content knowledge for teaching as a 

framework for thinking about and investigating phenomena is worthwhile, but the study also 

sheds some light on the more critical question for teacher educators: What kinds of instruction 

can support the development of key pedagogical understandings? Though the ultimate purpose 

of this study was to investigate this question, the data gathered did not align itself well with 

answering it. At the end of Chapter VIII, I discussed two post-instruction assignments that 

showed the students had developed an awareness of the pedagogical power of their 

understanding and had developed small insights into its developmental nature. Classroom data is 

not available to further investigate the mechanisms through which these more advanced 

pedagogical conceptualizations developed, but there are two possibilities. First, between their 

work with their HSS and the two post-instruction assignments, the students had taken part in 

almost four weeks of classroom instruction dealing with trigonometry and rates of change from a 

covariational perspective. Thus, the possibility that the PSTs needed (a) more time to fully 

understand both the content and the implications of the content and (b) that the students needed 

to explore additional related mathematical ideas in order for the pedagogical power of functions 

as simultaneous covariation of quantities to become part of their developing understandings. 

Second, throughout the remainder of the course, the instructor explicitly focused classroom 

discussions on the logic of the lesson and incorporated that focus into their daily work. This 

study indicates that these three instructional moves (prolonged engagement, focusing on related 

ideas that emphasize the utility of a mathematical understanding, and a focus on unpacking 

mathematical understandings) are likely candidates for effective instructional techniques for the 
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development of content knowledge for conceptual teaching. Further investigation into the 

specific nature of the instruction is needed. 

Limitations of the Study 

The first obvious limitation of the study was the sample size. Had the research questions 

being investigated in this project involved understanding if the instruction was effective or not, 

the small number of HSSs and the resulting lack of reliability of the results would have 

overshadowed any attempts by the researcher to insure the internal and external validity of the 

data. The effectiveness of the instruction, however, was not the ultimate purpose of this 

investigation. The goal of this study was to understand the intricacies and ultimately refine the 

proposed developmental model of content knowledge for teaching. The study did so by 

documenting the difficulties three PSTs experienced while taking part in instruction specifically 

designed for this purpose. Though a larger group of PSTs would have likely increased the 

likelihood of replicating the specific results documented in this study, that fact does not dismiss 

the difficulties that this group of three atypical students experienced: DH, KN, and SS, who each 

graduated in the top 10% of their high school classes, gained admittance to a highly selective 

private university, and are mid-way through undergraduate programs in mathematics and 

mathematics education, experienced significant difficulty developing coherent mathematical 

understandings and pedagogical conceptualizations of mathematics. Under the best of possible 

circumstances, the difficulties these students faced highlights the notion that developing 

understandings of the sort described in this study is a difficult endeavor. The work with these 

three students has served to illuminate possible improvements to the developmental trajectory of 

content knowledge for teaching – follow up research on this is needed.  
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A second limitation of the study was the nature and availability of the data. The three 

major sources of data analyzed in this study included whole-class discussions, students written 

work, and individual interviews with the PSTs. By its very nature, the data from whole-class 

discussions both extensive and incomplete – much was said in the classroom discussions, but 

students often did not articulate their ideas and ways of thinking. Triangulation of whole class 

discussions and the students written work was therefore essential to ensure the credibility of the 

claims. PSTs’ work often did not provide specific discussion of the way in which the PSTs 

conceptualized and approached the issues at hand. As a result, the majority of the claims made in 

this dissertation are grounded in interpretations of conversations and written work. The large-

scale findings discussed in this chapter are themes that emerged across the entire study, however 

following Saldanha (2003), the individual analyses detailed in Chapters VI through VIII “should 

be taken as viable rather than hard claims about [the PSTs’] understandings and underlying 

images and conceptual operations.”  

Finally, the emergent nature of the study resulted in limitations for the results reported in 

this document. As planned, to gain insight into the relationships between PSTs’ mathematical 

understandings and their developing pedagogy, the PSTs were interviewed twice, once at the end 

of instruction and once after their work with their HSS. Retrospective analysis indicated that 

additional data regarding the development of the PSTs’ mathematical understandings would have 

likely been a valuable resource – more frequent interviews would have allowed for making 

substantive claims about individual PSTs’ development. In addition, as tends to happen in 

investigations involving human interactions, retrospective analysis indicated that there was a 

significant shift in the ways in which the students came to think about teaching functions and 

related ideas. Unfortunately, this significant shift happened after the collection of data from class 
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discussions ended. As previously noted, little data was available to make sense of what, 

specifically, facilitated this development. Additional work is needed to better understand the 

significant aspects of the instructional sequence the students took part in and the impact of 

unpacking students’ developing mathematical understandings via focusing on the logic of a 

lesson. 
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APPENDIX A 

Understandings of Function 

PST Interview with HSS 

 

Name of Vanderbilt Student:  __________________________________________ 

Name of USN Student:  _______________________________________________ 

Date of Interview:  ___________________________ 

 
1) In what grade or math class did you first hear the word function used mathematically? Did the 

idea of function make sense?  Please explain. 

2) Explain the idea of function as if to a person who is unfamiliar with the word and its meaning.  

3) Is the idea of function important in mathematics?  Please explain. 

4) State the conventional mathematical definition of function. Why do you think it is stated this 

way? 

5) Which of the following six definitions of function do you believe are acceptable?  For each, state 

briefly why you think it is acceptable or why you think it is unacceptable. 

a) A function is a correspondence between two sets that assigns to every element in the first set 

exactly one element in the second set. 

b) A function is a computational process that produces some value of one variable (e.g., y) 

from any given value of another variable (e.g., x). 

c) A function is a dependence relation between two variables (e.g., y depends on x). 

d) A function is a rule that connects the value of x with the value of y. 

e) A function is a computational process that produces some value of one variable (e.g. y) from 

any given value of another variable (e.g., x). 

f) A function is a formula, algebraic expression, or equation that expresses a certain relation 

between quantities. 

g) A function is a collection of numbers in a certain order that can be expressed as a graph. 

 

6) Which of the above definitions in 5 (a – g) would you classify as “best?”  Why?  Which of these 

definitions are confusing?  How would you describe your confusion? 

7) Consider the following statement: “Each morning it takes me 18 minutes to walk 1.2 miles from 

my house to school.” 

a) What variables are in the description of this situation?   

b) Does the following scenario depicted in the above sentence entail a function?  Why or why 

not?
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APPENDIX B 

PST Awareness of Pedagogical Purpose 

Interview with PST 

 

1. What is “covariation” all about?   

What was TI’s purpose for you studying it?  Talk about the conceptual development thus 

far.  What were the important ideas?  Did you learn them?  TO what do you attribute 

your developing knowledge?  What might the “logic of the lesson” for this part of the 

course look like?  I.e. what is TI trying to help you understand and how is he 

accomplishing it. 

 
2. Cross-Cutting Ideas 

In class, you all have mentioned that there was some sort of “cross-cutting” features of 

the problems you encountered in this course?  What, if anything, do they all have in 

common? 

Have available copies of the problem sets for their reference. 
 

3. Unpacking the Activities 

What was the purpose of the Fingers Activity?  Did it work?  It was hard in the 

beginning, is it still hard?  Why was it hard? Explain the behavior of x
2
 mod x (on 

desktop).  How are the fingers and fairy dust related to understanding the “mod” 

function?  What was key to thinking about the “mod” function?  What about with the idea 

of “smoothness?”  Let’s say a student was able to draw the graph of y = sin x using their 

fingers.  Is that a conceptual advance over traditional instruction?  Why or why not? 

 

4. Assessing Extension and Application of Covariational Reasoning 

Explain the behavior of y = sin (e
x
) and y = e

sin x
.  What would be helpful?  [Expect  

reliance on graphs.  When unsure, revert to tracing graph, not focusing on quantities – 

have graphs and table of values ready.] Focus on interpretations of inscriptions (are they 

tracking quantities or tracing graph). Does this activity have anything to do with Cities 

A&B? 

 

5. Revisiting Parametric Equations 

Given graph of the parametrically defined function x = t cos t and y = 2t, with 0 < t < 3!, 

examine function questions from miniproject. 

 

Design a 75-minute lesson that will enable a high school student to make sense of 

functions graphed in parametric equations and graphs of parametric equations. An 

assessment item that you will give your student is given above. Design your lesson so that 

it will not only help your student answer the questions about the graph and function, but 

also so that your student will understand the questions and their solutions. Focus your 

instruction so that your student sees his or her solutions to the questions as making sense 

as opposed to remembering what he or she should say.  What would they need to know… 
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