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CHAPTER I

INTRODUCTION

In the founding paper [Gro] M. Gromov defined the notion of hyperbolic groups and outlined a number

of research directions in this (now well established) area. As a subfield of geometric group theory, the hy-

perbolic groups are defined using the analogy between an algebraic objects – groups, and hyperbolic metric

spaces and manifolds. The analogy between fundamental groups of compact surfaces and tessellations of a

hyperbolic plane was surely known to Max Dehn, back in the wake of 20th century. Some of the early group

theory methods such as small cancellation and Bass-Serre theory of groups acting on trees may be viewed

now as early chapters of geometric (hyperbolic) group theory.

One of the most astounding facts about hyperbolic groups is often referred by saying that “ hyperbolic

groups are generic”. By that one means the hypothesis of Gromov, stating that almost every group is hyper-

bolic (one can find both formalization and proof of such statement in [Olsh1]). Another excellent example

of richness of the class of hyperbolic groups is that every (non-elementary group) G is SQ-universal, i.e.

every countable group can be embedded into the quotient of G. One of the results of this paper is a slight

strengthening of this SQ-universality property (see Corollary I.1.5).

At the same time, one can also say that hyperbolic groups are “easy to deal with”: the word problem

(i.e. the algorithmic problem, asking if a word, encoding an element of the group, actually represents the

identity element) is solvable in linear time.

In this dissertation we work with two very different classes of subgroups in a hyperbolic group G: normal

subgroups and quasiconvex subgroups. The first class of subgroups – normal– are embedded “nicely” in G

in the classical group theoretic sense, while the quasiconvex subgroups are embedded “hyperbolically” in

G as geometric objects. It is well known that a subgroup in G, which is both normal and quasiconvex, is

either finite or of finite index (see [Arzh]) and hence, not very interesting. In one way, the two types of

subgroups are “completing” each other in a hyperbolic group G: if H is a quasiconvex subgroup, then there

is a normal complement N intersecting H trivially ([Min], Lemma 3.8 or [GSS]).

I.1 Main results

In Chapter II we give basic definitions and properties which we will use later.

Chapter III is devoted to small cancellation constructions of the normal subgroups. In the first two

sections we present the small cancellation techniques by T. Delzant and A. Olshanskiy. One finds the

following Statement 5.3E in [Gro]:

There exists a constant m = m(k,δ ) such that for every k hyperbolic elements x1, . . . ,xk in a word

δ -hyperbolic group G the normal subgroup generated by xm1
1 , . . . ,xmk

k is free for all mi ≥ m.

Although not correct in full generality (as a counter-example in the appendix to [Delz] shows) the fol-

lowing theorems are true:

Theorem I.1.1. (Delzant [Delz], Theoremé I) Let G be a non-elementary δ -hyperbolic group. There
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exists an integer N such that for any elements f1, . . . , fn such that [[ fi]] = [[ f j]] ≥ 1000δ (where [[ f ]] =

limn→∞
| f n|

n ), the normal subgroup N ( f kN
1 , . . . , f kN

n ) is free for every k. Moreover, (for every k) the group

G/N ( f kN
1 , . . . , f kN

n ) is hyperbolic.

The Theorem I.1.1 is obtained in [Delz] from Theorem I.1.2 by arguing that for sufficiently large N

(independent of choice fi) the system of elements f N
1 , . . . , f N

n can be completed to that satisfying small

cancellation C′(µ) (see definition III.1.4).

Theorem I.1.2. (Delzant [Delz], Theorem é II) Let R be a finite set of elements satisfying the the small

cancellation condition C′(µ). A normal subgroup N (R) generated by R is free. The quotient G/N (R)

is hyperbolic.

However we think that the proof of Theorem I.1.2 requires some additional arguments. To be more

precise, the proof of the Theorem 2.1 (iii) [Delz] pp 677-678 (stating that if a (finite) system R satisfies

condition C′(µ), µ < 1/8 then the normal subgroup N (R) generated by R is free) is incomplete. We

provide a proof of essentially the same fact in somewhat different setting (in particular, the set R can be

infinite) using both techniques of Delzant (such as Lemmas III.1.6, III.1.10) and diagram techniques of A.

Olshanskiy from [Olsh], [Olsh93]. We would like to note that the Lemma III.4.10 of this paper provides

justification for the formula on top of page 678 of [Delz]. One may replace Theorem I.1.2 with the following

statement:

Theorem I.1.3. There exists µ0 > 0 such that for any µ < µ0 there are ε and ρ such that if R is a set of

geodesic words satisfying C̃(ε,µ,ρ)-condition (see Definition III.2.9) in the hyperbolic group G then:

(i) the normal subgroup N = N (R) is free;

(ii) if G is non-elementary and R is finite then G/N (R) is non-elementary hyperbolic.

As a corollary we get:

Theorem I.1.4. Let G be a non-elementary hyperbolic group. For any finite set of elements x1, . . . ,xm there

exists an integer N such that the normal closure N = N (xs1N
1 , . . . ,xsmN

m ) in G of elements xs1N
1 , . . . ,xsmN

m is

free for any integer si > 0 and the quotient G/N is non-elementary hyperbolic.

A stronger and more general version of the above statement, using the language of rotating families,

appeared recently (but after [Cha]) in the paper [DGO], theorem 2.13.

Let us note that in our result I.1.4, the choice of constant N depends on the elements x1, . . . ,xm rather

then being an absolute constant as in Theorem I.1.1. On the other hand we do not assume any significant

restrictions on the set of elements x1, . . . ,xm.

The following Corollary somewhat strengthens the Theorem proved by T. Delzant and A. Olshanskiy

independently (see [Delz], [Olsh95]) stating that every non-elementary hyperbolic group is SQ-universal.

Corollary I.1.5. Let G be a non-elementary hyperbolic group. Then:

(i) there exists a free normal subgroup N of G of rank greater than 1;

(ii) for any free normal subgroup N of rank greater than 1 and any countable group H there exists a

free subgroup M < N , M /G such that H embeds in quotient G/M.
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As an application of Theorem I.1.3 we also obtain:

Corollary I.1.6. Let G be a non-elementary hyperbolic group. Then there exist free normal subgroups of

infinite index A,B such that AB = G if and only if Z(G) = E(G).

We would like to mention the following

Open problem ([Kour], 15.69): Does every hyperbolic group G have a free normal subgroup N such

that the quotient G/N is a torsion group of bounded exponent?

The above problem is motivated by the result of Ivanov and Olshanskiy [IvOl] stating that for every non-

elementary hyperbolic group G there is a number n = n(G) such that the quotient group G/Gn is infinite.

In Chapter IV we discuss the growth of highly transitive actions of hyperbolic groups. We generalize

some results of [BO], where the authors discuss the notion of growth of actions of a group (monoid, ring)

on a set (module).

Let us denote the growth function of a transitive action of a group G generated by a finite set S on a set X

with respect to some base point o ∈ X by go,S(n) = #{o′ = og| |g| ≤ n} (see section IV.1). A distinguished

class of actions defined and studied in [BO] is that of actions of maximal growth. We observe that in case

of a non-amenable group G the growth of action of G on X is maximal if there exists c1 > 0 such that

c1 f (n)≤ go,S(n)

for every natural n, where f (n) is the growth of the group G itself (see remark IV.1.4). In general, the

notion of maximal growth depends on the choice of the generating set S of the group, thus throughout the

Chapter IV we assume that S is fixed. The author tends to consider the maximal growth action as a new

characterization for the finite radical of the hyperbolic group. One observes in remark IV.1.11 that the kernel

of arbitrary 2-transitive action of maximal growth by a hyperbolic group G is exactly the finite radical E(G).

In [BO] the authors construct some examples of actions by the free group of maximal growth and

satisfying additional properties, see for example corollary IV.1.9. The first result of our paper is the following

broadening of the aforementioned corollary:

Theorem I.1.7. Let G be a non-elementary hyperbolic group. Then there exist a set X and a transitive

action of G on X such that the growth of this action is maximal, each orbit of action by every element g ∈G

is finite and the stabilizer of every element x ∈ X is a free group.

One can observe that the above result follows from Theorem IV.1.10 in this paper.

The Theorem IV.1.10 stems from the technical result IV.2.8, which also allows us to generalize and

strengthen the result of Arzhantseva [Arzh] conjectured by M. Gromov [Gro].

The following Theorem and corollary generalize Theorem 1 in [Arzh] by removing the requirement on

the hyperbolic group to be torsion-free and formulating the necessary and sufficient conditions. We recall

the notation E(g) – a unique maximal elementary subgroup of hyperbolic group G containing g (it exists

whenever g is of infinite order, see section II.1). Recall also that there exists a unique finite maximal normal

subgroup E(G) in every non-elementary hyperbolic group G. We will call E(G) the finite radical1 of G.

1the term proposed by A. Olshanskiy.
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Theorem I.1.8. Let G be a non-elementary hyperbolic group and H be a quasiconvex infinite index sub-

group of G.

(i) Consider an element x in G of infinite order. Then the following are equivalent:

(a) there exists a natural number t > 0 such that the subgroup 〈H ,xt〉 (i.e. generated by H and xt)

is isomorphic to H ∗ 〈xt〉;
(b) E(x)∩H = {e}.

(ii) 2 An element x, satisfying part (i), exists if and only if H ∩E(G) = {e}.
(iii) If H ∩E(G) = {e} then for x and t described in part (i) the subgroup 〈H ,xt〉 is quasiconvex of

infinite index and the intersection E(G)∩〈H ,xt〉 is trivial.

Part (i) of Theorem I.1.8 follows also from a more general statement in [M-P](Corollary 1.12) and a

particular case when E(x)=E+(x) appears in Theorem 5 [Min]. We also formulate the following (somewhat

more general) result concerning arbitrary quasiconvex subgroups of infinite index.

Corollary I.1.9. Let G be a non-elementary hyperbolic group and H be a quasiconvex subgroup of infinite

index in G. Then there exists g ∈ G of infinite order such that 〈H ·E(G),g〉 ∼= H ·E(G) ∗E(G) 〈g,E(G)〉.
Moreover 〈H ·E(G),g〉 is a quasiconvex subgroup of infinite index.

The main results of this chapter concern the highly transitive actions of finitely generated groups (i.e. the

actions which are k-transitive for every k∈N) on infinite countable sets. The first result of this sort, known to

the author, is that finitely generated non-abelian free groups admit faithful highly transitive actions, [McD].

In recent years, similar results has been proved for several classes of groups, we summarized thm in the

following:

Theorem I.1.10. ([GaGl], [MoSt], [Kit]) The following groups admit a highly transitive faithful action

on infinite countable sets:

(i) the fundamental group of a closed orientable surface of genus > 1;

(ii) free products G∗H where at least G or H is not isomorphic to Z2;

(iii) The group of outer automorphisms of the free group Out(Fn) for n > 3.

Theorem I.1.11 is our main result of the chapter, it includes the case of fundamental groups of the

closed orientable surfaces of genus > 1 as well as some of the free products G∗H, described by I.1.10(ii).

Moreover, in some statistical sense (see [Olsh1]), almost every finitely presented group is hyperbolic. Thus,

almost every group satisfies conditions (i)–(iv) of the Theorem below.

Theorem I.1.11. Let G be a non-elementary δ -hyperbolic group. There exist a set X and an action of

maximal growth of G on X such that:

(i) each orbit of action by every element g ∈ G is finite;

(ii) the action is highly transitive;

(iii) the stabilizer of every point x ∈ X is an extension of E(G) by a free group;

(iv) the kernel of the action is the finite radical E(G) of G.

2While preparing this result for publication the author learned that a version of this statement has been presented by F. Dudkin
and K. Sviridov in a Group Theory seminar at IM SORAN (Novosibirsk) in November, 2011.
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We would also like to stress that if we assume (in the Theorem I.1.11) that the finite radical E(G) of the

group G is trivial, then the action is faithful and the stabilizer of every x ∈ X is a maximal free subgroup of

G (see also corollary IV.4.7).
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CHAPTER II

HYPERBOLIC SPACES AND GROUPS

II.1 Hyperbolic spaces

We recall some definitions and properties from the founding article of Gromov [Gro] (see also [Ghys]). Let

(X , | |) be a metric space. We sometimes denote the distance |x− y| between x,y ∈ X by d(x,y). We assume

that X is geodesic, i.e. every two points can be connected by a geodesic line. We refer to a geodesic between

some point x,y of X as [x,y]. For convenience we denote by |x| the distance |x− y0| to some fixed point y0

(usually the identity element of the group).

For a path γ in X we denote the initial (terminal) vertex of γ by γ− (γ+), denote by ‖γ‖ the length of

path γ and by |γ| the distance |γ+− γ−| . Recall that if 0 < λ ≤ 1 and c ≥ 0 then a path γ in X is called

(λ ,c)-quasigeodesic if for every subpath γ1 of γ the following inequality is satisfied:
‖γ1‖ ≤ 1

λ
|γ1|+ c.

We call the path γ geodesic up to c, if it is (1,c)-quasigeodesic.

Define a scalar (Gromov) product of x,y with respect to z by formula

(x,y)z =
1
2
(|x− z|+ |y− z|− |x− y|).

An (equivalent) implicit definition of the Gromov product illustrates its geometric significance:

(x,y)z +(x,z)y = |z− y| ; (II.1)

(x,y)z +(y,z)x = |z− x| ;

(y,z)x +(z,x)y = |x− y| .

A space X is called δ -hyperbolic if there exists a non-negative integer δ such that the following inequal-

ity holds:

(H1) ∀x,y,z, t ∈ X , (x,y)z ≥ min{(x, t)z,(y, t)z}−δ .

The condition (H1) implies (and in fact is equivalent up to constant) the following:

(H2) For every triple of points x,y,z in X every geodesic [x,y] is within the (closed) 4δ -neighborhood

of the union [x,z]∪ [y,z].
(H3) For every four points x,y,z, t in X we have |x− y|+ |z− t| ≤max{|x− z|+ |y− t| , |x− t|+ |y− z|}+

2δ .

We will need a few properties of hyperbolic spaces and Gromov products:

Lemma II.1.1. ([Delz], Lemma 1.3.3) Let K be a nonnegative real number, [x,y] and [x′,y′] – two segments

in a δ -hyperbolic space of length at least 2K + 20δ and suppose that |x− x′| ≤ K, |y− y′| ≤ K. Choose

6



points u and v on [x,y] at distance K + 2δ from x and y respectively. Then every point P on [u,v] is in the

6δ -neighborhood of the segment [x′,y′].

Lemma II.1.2. ([Ghys], Chapter 3, §17) For any three points x,y,z in a δ -hyperbolic space X , we have

d(x, [y,z])−δ ≤ 〈y,z〉x ≤ d(x, [y,z]).

We will use the following easy remark.

Remark II.1.3. Let X be a hyperbolic space. Then:

(i) In the notations of Lemma II.1.1 it is immediate that the segment [x,y] is within K + 2δ + 6δ -

neighborhood of [x′,y′].

(ii) Suppose γ is a path, geodesic up to some c≥ 0 in X , and o is an arbitrary point on γ. Then

(γ−,γ+)o ≤ c/2. (II.2)

Combining the previous inequality with Lemma II.1.2 we get that:

d(o, [γ−,γ+])−δ ≤ c/2. (II.3)

We recall the notion of the metric tree T ([Ghys], Chapter 2, §1). Let T ′ be a tree (i.e. graph without

cycles), we construct the geometric realization T in the following way. For every edge a of T ′ we choose a

real positive number l(a). Then there exists a unique (up to isometry) metric d on T maximal with respect

to the following condition: edge a is isometric to interval [0, l(a)] on the real line. Then T with the metric d

is a metric tree.

Various versions of the following Gromov’s Theorem provide an approximation of a finite set of geodesics

in hyperbolic space by metric trees:

Theorem II.1.4. ([Ghys], Chapter 2, Theorem 12) Let F be a δ -hyperbolic metric space. Suppose that

F = ∪n
i=1Fi, where each Fi = [w,wi] is a geodesic and n≤ 2k.

Then there exists a metric tree T and function Φ : F → T such that

(i)|[Φ(x),Φ(w)]|= |[x,w]| , ∀x ∈ F;

(ii)|x− y|−2(k+1)δ ≤ |Φ(x)−Φ(y)| ≤ |x− y| for all x,y ∈ F.

It is clear that if x is some vertex in a metric graph T in the Theorem above then either

(i) there exist some indexes i, j such that the images of Fi and Fj under Φ depart at x: Φ([w,wi])∩
Φ([w,w j]) = [Φ(w),x] (in this case we call vertex x a branching point), or

(ii) there exists some index i such that Φ(wi) = x or Φ(w) = x. In this case we call x a leaf (because it is

adjacent to a single vertex).

When we talk about an approximation tree for a set of vertices w,w1, . . . ,wn in the hyperbolic space X ,

we mean an approximation of the set F = ∪n
i=1Fi in the sense of the previous Theorem.

By a tripod we mean a metric tree with one branching point (center o) and three edges (pods).

Remark II.1.5. ([Ghys] Chapter 2, §1) Let x,y,z be some points in a δ -hyperbolic space X , and o1 be a point

on [x,y] at distance s≤ (y,z)x from x, o2 be on [x,z] at distance s from x. Then there exists a tripod T and a

map Φ : [x,y]∪ [x,z]−→ T such that:
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(i) a restriction of the map Φ on each segment [x,y], [x,z] is an isometry which sends x,y,z to different

ends of pods of T and Φ(o1) = Φ(o2);

(ii) Φ,T satisfies the previous Theorem.

Lemma II.1.6. ([Gro], [Ghys] p. 87) There exists a constant H = H(δ ,λ ,c) such that for any (λ ,c)-

quasigeodesic path p in a δ -hyperbolic space and any geodesic path q with conditions q− = p− and q+ =

p+, the paths p and q are within (closed) H-neighborhoods of each other.

II.2 Hyperbolic Groups

Let G be a finitely presented group with presentation gp(S|D). We assume that no generator in S is equal to

e in G. We consider G as a metric space with respect to the distance function |g−h| =
∣∣g−1h

∣∣ for every g

and h. We denote by |g| the length of a minimal (geodesic) word with respect to the generators S equal to g.

The notation (g,h) is the Gromov product (g,h)e with respect to the identity vertex e.

We denote the (right) Cayley graph of the group by Cay(G). The graph Cay(G) has a set of vertices G,

and a pair of vertices g1,g2 is connected by an edge of length 1 labeled by s if and only if g−1
1 g2 = s in G

for some s ∈ S±1. It is clear that Cay(G) may be considered as a geodesic space: one identifies every edge

of Cay(G) with interval [0,1] and chooses the maximal metric d which agrees with metric on every edge.

Define a label function on paths in Cay(G). From now on, by a path in Cay(G) we mean a path p = p1...pn,

where pi is an edge in Cay(G) between some group elements gi, gi+1 for every 1 ≤ i ≤ n. A label lab(p)

function is defined on any path p by equality lab(p) = lab(p1)...lab(pn), i.e. lab(p) is a word in alphabet

S±1.

Hence a unique word lab(p) is assigned to a path p in Cay(G). On the other hand for every word w in

alphabet S±1 there exists a unique path p in Cay(G) starting from the identity vertex with label w. Hence

there is a one-to-one correspondence between paths with initial vertex e (the identity vertex in G) and words

in alphabet S±1, so we will not distinguish between a word in the alphabet S±1 and it’s image in Cay(G), i.e.

a path starting from the identity vertex. Thus, when considering some words X ,Y,Z in the alphabet S±1, we

can talk about the path γ = XY Z in the Cayley graph of G originating in the identity vertex e. To distinguish

a path Y with initial vertex e from the subpath of γ with label Y we denote the latter as γY. We will talk about

values |X | ,‖X‖ for a word X in alphabet S±1 meaning these values on the corresponding paths in Cay(G).

Given elements x1, ...,xk in G we may write lab(p) = xt1
1 ...x

tk
k for some path p in Cay(G), ti ∈ Z if for some

geodesic words X1, ...,Xk representing elements x1, ...,xk we have lab(p) = X t1
1 ...X

tk
k .

For a point x in a metric space X and r ≥ 0 we denote by Br(x) a metric ball of radius r around x. For a

set D ⊂ X we denote by Br(D) a (closed) r-neighborhood of D in X (i.e. Br(D) = ∪x∈DBr(x)). We denote

the ball BR(e) in the Cayley graph Cay(G) by BR. Given a set D ∈Cay(G) we denote by #{D} a number of

vertices in D.

A group G is called δ -hyperbolic for some δ ≥ 0, if it’s Cayley graph is δ -hyperbolic. It is well known

that hyperbolicity does not depend on choice of a finite presentation of the group G (while δ does depend

on presentation).

We recall that a (sub)group is called elementary if it contains a cyclic group of finite index. For any
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element g ∈ G of infinite order in a hyperbolic group, there exists a unique maximal elementary subgroup

E(g) containing g (see [Gro], [Olsh93] Lemma 1.16). It is well known that for a hyperbolic group G

E(g) = {x ∈ G|∃n 6= 0 such that xgnx−1 = g±n in G},

and if a is an element in E(g) of infinite order then E(g) = E(a). We recall also that if G is a non-elementary

hyperbolic then the subgroup E(G) = ∩g{E(g)|g ∈G, order of g is infinite} is a unique maximal finite nor-

mal subgroup ([Olsh93], Prop.1). As agreed in the introduction, we will call E(G) the finite radical of a

non-elementary group G.

Definition II.2.1. A subset A is called K-quasiconvex in the metric space X if for any pair of points a,b ∈ A

every geodesic connecting a and b (in X) is within (closed) K-neighborhood of A. A subgroup H of a

hyperbolic group G is K-quasiconvex if it forms a K-quasiconvex subset in the graph Cay(G).

It is said that H is quasiconvex if it is K-quasiconvex for some K ≥ 0. Note also that the left multipli-

cation g→ ag induces an isometry of G and hence, for a K-quasiconvex subgroup H , the right coset aH

is K-quasiconvex for any a in G.

Lemma II.2.2. ([GMRS], Lemma 1.2) Let H be a K-quasiconvex subgroup of a δ -hyperbolic group G. If

the shortest representative of a double coset HgH has length greater than 2K + 2δ , then the intersection

H ∩g−1Hg consists of elements shorter than 2K +8δ +2 and, hence, is finite.

Proposition II.2.3. ([Arzh], Prop.1) Let G be a word hyperbolic group and H a quasiconvex subgroup of

G of infinite index. Then the number of double cosets of G modulo H is infinite.

Another important property that we are going to use is:

Lemma II.2.4. ([Min] Lemma 3.8) Assume H,K are subgroups of a δ -hyperbolic group G, H is quasicon-

vex, K is non-elementary and |K : (K ∩Hg)| = ∞ for every g ∈ G. Then there exists an element y ∈ K such

that E(y) = E(K)×〈y〉 and 〈y〉G∩H = e, where 〈y〉G is the set of conjugates of all elements of 〈y〉 and E(K)

is a unique maximal finite subgroup normalized by K.

We quote the following:

Theorem II.2.5. ([Mack], Theorem 6.4) Let G be a hyperbolic group and H be a quasiconvex subgroup of

infinite index in G. Then there exist C > 0 and a set-theoretic section s : G/H→ G such that:

(i) the section s maps each coset gH to an element g′ ∈ gH with |g′| minimal among all representatives

in gH;

(ii) the group G is within C-neighborhood of s(G/H).

The following Lemma summarize some properties of elementary subgroups of hyperbolic groups ([Gro];

[Ghys] p.150, p.154; [CDP] Pr. 4.2, Ch.10; [Olsh93] Lemma 2.2).

Lemma II.2.6. Let G be a hyperbolic group.
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(i) For any word W of infinite order in the hyperbolic group G there exist constants 0 < λ ≤ 1 and c≥ 0

such that any path with label W m in Cay(G) is (λ ,c)-quasigeodesic for any m.

(ii) Let E be an infinite elementary subgroup in G. Then there exists a constant K = K(E)≥ 0 such that

the subgroup E is K-quasiconvex.

(iii) If W is a geodesic word and p is a path with label W n then there exists K (independent of n) such

that the path p and the geodesic [p−, p+] are within K-neighborhoods of each other.

(iv) Let g,h be elements of infinite order such that E(g) 6= E(h). Then the Gromov products (gm,hn),

(gu,gv), (hu,hv) are bounded by some constant C depending on g,h only provided uv < 0.

Following [Olsh93], we call a pair of elements x,y of infinite order in G non-commensurable if xk is not

conjugate to ys for any non-zero integers k,s.

Lemma II.2.7. ([Olsh93], Lemmas 3.4, 3.8) There exist infinitely many pairwise non-commensurable ele-

ments g1,g2, ... in a non-elementary hyperbolic group G such that E(gi) = 〈gi〉×E(G) for every i.

We will say (adopting the terminology from [Min2006]) that the element g ∈ G is G-suitable if E(g) =

E(G)×< g > .

Let W be a word, and let us fix some factorization W ≡W i1
1 W i2

2 ...W ik
k for some words W1, ...,Wk. Consider

a path q with label W in Cay(G).

Consider all vertices oi which are the terminal vertices of initial subpaths pi of q such that lab(pi) =

W i1
1 ...W im−1

m−1W s
m, where m ≤ k and s = 0, ..., im. Following [Olsh93], we call vertices {oi} phase vertices of

q relative to factorization W i1
1 W i2

2 ...W ik
k of the lab(q). We enumerate distinct phase vertices along the path q

starting from o0 = q−; the total number of such vertices is (|i1|+ ...+ |ik|+1).

Assume we have a pair of paths q, q̄ in Cay(G) with phase vertices oi and ō j where i= 1, ..., l, j = 1, ...,m

for some positive integers l,m. We call a shortest path between a phase vertex oi and some phase vertex ō j

of q̄ a phase path with initial vertex oi. We may also talk about phase vertices of subpaths p of q meaning

these vertices oi which belong to p.

Definition II.2.8. [Olsh93] Let the words W1, ...,Wl represent some elements of infinite order in G. Fix

some A≥ 0 and an integer m to define a set Sm = S(W1, ...,Wl,A,m) of words

W = X0W m1
1 X1W m2

2 ...W ml
l Xl where |m2| , ..., |ml−1| ≥ m,

such that ‖Xi‖ ≤ A for i = 0, ..., l and X−1
i WiXi /∈ E(Wi+1) in G for i = 1, ..., l− 1. If l = 1 we assume that

|m1| ≥ m.

Lemma II.2.9. ([Olsh93], Lemma 2.4) There exist λ > 0, c≥ 0 and m > 0 (depending on K,W1,W2, ...,Wl)

such that any word W ∈ Sm is (λ ,c)-quasigeodesic. If Wi ≡Wj for all i, j then the constant λ does not

depend on A, l.

Consider a closed path p1q1 p2q2 in Cay(G). Let q1 = x1t1x2t2...xltl where lab(xi) = Xi and lab(ti) =

W mi
i for some W = X0W m1

1 X1W m2
2 ...W ml

l Xl ∈ Sm. Similarly, we let q−1
2 = x1t1...xlt l where lab(xi) = X i and

lab(t i) = W mi
i for some W = X0W m1

1 X1W m2
2 ...W ml

l X l ∈ Sm. Define phase vertices oi and o j on q1 and q2
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relative to factorizations X0W m1
1 X1W m2

2 ...W ml
l Xl and X0W m1

1 X1W m2
2 ...W ml

l X l. As in [Olsh93], We say that

paths ti and t j are compatible if there exists a phase path vi with lab(vi) = Vi between a phase vertex of ti
and t j such that there exist natural numbers a,b satisfying (ViW jV−1

i )a =W b
i .

Lemma II.2.10. ([Olsh93], Lemma 2.5) Provided the conditions for q1 and q2 hold, and |p1| , |p2|<C for

some C, there exists an integer m and an integer k, where |k| ≤ 1 such that ti and t̄i+k are compatible for

any i = 2, ..., l−1 provided that |m2| , ..., |ml−1| , |m2| , ..., |ml−1| ≥ m and for i = 1 (resp. i = l) if |m1| ≥ m,

(resp. |ml| ≥ m). Moreover ti is not compatible with t̄ j if j 6= i+ k.
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CHAPTER III

ON THE GENERATORS OF THE KERNELS OF HYPERBOLIC GROUP PRESENTATIONS

III.1 T. Delzant’s small cancellation

In this section we recall some definitions and Lemmas from [Delz], but with certain modifications. We

would like to formulate all the statements in the language of (geodesic) and cyclically reduced words rather

then group elements and cyclically reduced group elements (element g of the group G is called a cyclically

reduced element if g has a minimal length in it’s conjugacy class in G). The proofs of these Lemmas can be

repeated while changing the terminology.

We first recall the following Lemmas:

Lemma III.1.1. ([Delz], Lemma 1.2.1) Let V,W be geodesic words in G; their scalar product is an integer

or 1
2 times integer. If V ≡ AB such that |A| = [〈V,W 〉1] and C is defined by equality AC = W in G then the

path AC is geodesic up to constant 2δ (we denote by [x] a maximal integer smaller or equal to x).

Lemma III.1.2. ([Delz] Lemma 1.5.1) Let V be a geodesic word in G which is shortest in it’s conjugacy

class and of length no less than 20δ . Assume that W is conjugate to V. Then there exists a geodesic word U

and a cyclic conjugate V ′ of V such that W =UV ′U−1 and the path UV ′U−1 is geodesic up to 10δ .

Let us mention the following property of metric trees with finite number of vertices. If a metric tree T

is a union of n segments ∪n
i=1[l0, li] originating from a fixed vertex w0, it is easy to see that an addition of a

new segment [l0, ln+1] to T can increase the number of edges by at most 2. To be more precise we can prove

by induction on n that |E(T )| ≤ 2n−1, where E(T ) is a set of edges in T.

The Proposition below provides a ”pull-back” of the tree approximation T for the set F in the situation

of Theorem II.1.4 in the original hyperbolic space X . It will be formulated for hyperbolic groups. In order to

formulate this Proposition we need to add some edges of zero length to E(T ). The reason for this adjustment

is that a trivial edge in T may correspond to a nontrivial group word (”edge in the pullback tree”) in the

Proposition III.1.3. For every k≤ n we consider a subtree Tk = Φ(∪k
s=1[w0,ws]). For every i≤ n, if Φ(wi) ∈

Ti−1, then we add to the set of edges E(T ) a new edge of zero length [Φ(wi),Φ(wi)]. The inequality |E(T )| ≤
2n−1 still holds if we take into account edges of zero length. We choose an (arbitrary) orientation on every

edge α ∈ E(T ). When we consider a segment [Φ(wi),Φ(w j)] = αε1
s1
. . .αεm

sm
(αsi ∈ E(T )) in Proposition

III.1.3 such that a zero length edge was defined for i (for j), we assume that αs1 is the edge [Φ(wi),Φ(wi)]

(respectively, αsm is the edge [Φ(w j),Φ(w j)]). After described conventions, we may formulate the following:

Proposition III.1.3. ([Delz] Lemma 1.3.2) Let g0,g1, . . . ,gn be elements in G, n ≤ 2k and let Φ, T be the

corresponding approximation tree and function provided by Theorem II.1.4. Denote by E(T )= {α1, . . . ,α2n−1}
the set of edges of T. Let W be a geodesic word such that W = g−1

0 g1 in G. Then there exist geodesic words

A1, . . . ,A2n−1 in G satisfying the following properties:

(i)||αi|− |Ai|| ≤ 2δ (k+1)+2.
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(ii) If the geodesic [Φ(gi),Φ(g j)] is a path αε1
s1
. . .αεm

sm
in the tree T, then g−1

i g j = Aε1
s1
. . .Aεm

sm
in G ,

εi =±1 and Aε1
s1
. . .Aεm

sm
is geodesic up to n(2δ (k+1)+2).

(iii) The word Aε1
s1
. . .Aεm

sm
defined in (ii) for g−1

0 g1 is geodesic and W ≡ Aε1
s1
. . .Aεm

sm
.

Small Cancellation Properties on the Cayley Graph of Hyperbolic Groups
The following definitions can be found in [LSch]. We call the set of words R symmetrized if it is a set

of freely cyclically reduced words in alphabet S±1, i.e.

(i) R ∈R =⇒ R−1 ∈R,

(ii)R ∈R,R≡ R1R2 =⇒ R2R1 ∈R.

We will sometimes talk about cyclic word R meaning R or one of it’s cyclic conjugates. Denote by G1

the factor group G/N (R) of G by the normal closure (in G) of the set R. For a pair of words X ,Y in the

alphabet S±1 let us denote by X ≡ Y a letter-by-letter equality of X and Y.

Definition III.1.4. Let R be a symmetrized set of geodesic words in the δ -hyperbolic group G and µ < 1/8.

Assume furthermore that every R ∈R is a cyclically reduced element of G. The family R satisfies a small

cancellation condition C′(µ) if:

(i) For every words A,B in G , |A| , |B| ≤ 100δ , ∀R1,R2 ∈ R, if 〈AR1B,R2〉 > µmin(|R1| , |R2|), then

R2 = AR1A−1 in G;

(ii) minR∈R(|R|)≥ 5000δ/(1−8µ).

The previous definition is essentially the same as that in [Delz], 2.1 up to some adjustment of constants

(the difference between them is that b = 1 in [Delz]).

Definition III.1.5. [Delz] We say that a geodesic word U of G contains more then half of a relation if there

exists R≡ r1r2 from R such that

(i) R≡ r1r2 is geodesic, |r1| ≥ |r2|+60δ and

(ii) U equals to the word U1r1U2 in G, which is geodesic up to 50δ .

We denote the set of all geodesic words U which do not contain more then half of a relation by U .

Lemma III.1.6. ([Delz], Lemma 2.2) Consider the set X of words URU−1 geodesic up to 10δ in G such

that U does not contain more then half of a relation from R. Then every element g in the normal closure

N (R) is a product of words from X .

The proof of the Lemma III.1.6 follows immediately from the remark below.

Remark III.1.7. (i) Suppose that a geodesic word U contains more then half of a relation (i.e. U =U1r1U2

for some geodesic words U1,U2,r1 satisfying Definition III.1.5). Then

URU−1 = (U1r1r2U−1
1 )[(U1r−1

2 U2)R(U1r−1
2 U2)

−1](U1r1r2U−1
1 )−1 in G and, evidently,∣∣U1r−1

2 U−1
2

∣∣ , |U1|< |U | .
(ii) Suppose that R ∈ R, and URU−1 is not geodesic up to 10δ . Then by Lemma III.1.2 there exists

R′ ∈R (so |R|= |R′|) and a geodesic word V such that URU−1 =V R′V−1 in G and V R′V−1 is geodesic up

to 10δ .
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Figure III.1: Cancellation Tree

-ai bi
X Y Z
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b j

V

6
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We introduce some notation and conventions. Let g be an element in the normal closure of R, choose n

minimal such that

g =U1R1U−1
1 . . .UnRnU−1

n with UiRiU−1
i ∈X .

Then we denote: g0 = 1, g1 =U1R1U−1
1 , . . . ,gn = g. Also we set ai = gi−1Ui and bi = aiRi = giUi.

Assume that for some indices i < j the approximation tree T for vertices ai,bi,a j,b j is of shape on the

Figure III.1 (T is provided by Gromov’s Theorem II.1.4 where w = ai,k = 2, n = 3). For convenience we

label vertices of the tree on Figure III.1 by corresponding group elements. Proposition III.1.3 provides us

with with five geodesic words X ,Y,Z,U,V such that Ri = XY Z, where XY Z is geodesic and R j =U−1Y−1V,

where U−1Y−1V is geodesic up to 3(2 · 3δ + 2) = 18δ + 6. We label edges of the tree T with X ,Y,Z,U,V

for convenience of the reader. Note that Φ and T determine the exponents of X ,Y,Z,U,V in equalities for

Ri, R j uniquely.

The following Lemma is an application of the small cancellation, we provide a proof of it (following

[Delz]) for future references.

Lemma III.1.8. ([Delz], Lemma 2.3) Suppose that a fixed element g is equal to a word W =U1R1U−1
1 . . .UnRnU−1

n

in G and that for some indices i < j the tree approximation of vertices ai,bi,a j,b j in Cay(G) (with geodesic

words X ,Y,Z,U,V provided by Proposition III.1.3) has the shape on Figure III.1.

(i) Assume that n is a minimal possible number among all words W equal to g. Then the following

inequality holds:

|Y | ≤ µmin(|Ri| ;
∣∣R j
∣∣)+10δ +3. (III.1)

(ii) If the equality (III.1) is violated then n is not minimal and the following equality holds in G:

Ui+1Ri+1U−1
i+1 . . .U j−1R j−1U−1

j−1 =UiRiU−1
i . . .U jR jU−1

j . (III.2)

Proof Assume that the inequality (III.1) does not hold. In notations used in Figure III.1 we have Ri =

XY Z and XY Z is geodesic, R j = U−1Y−1V, where the right-hand side is geodesic up to 3(2 · 3δ + 2) =

18δ + 6. We consider the conjugate R′i = Y ZX of Ri, which is also geodesic: |R′i| ≥ |Ri| (since Ri is a

cyclically reduced geodesic word), but on the other hand |R′i| ≤ |Y |+ |Z|+ |X | = |Ri| . Consider also the

conjugate R′j = YUV−1 of R−1
j which is geodesic up to 3(2 · 3δ + 2) = 18δ + 6 (we have

∣∣R j
∣∣ ≤ ∣∣∣R′j∣∣∣ ≤

|Y |+ |U |+ |V | ≤
∣∣R j
∣∣+18δ +6).
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By Lemma III.1.2, there exists a geodesic word R′′ = AR′jA
−1 cyclically conjugate to R j such that

2 |A|+ |R′′| ≤
∣∣∣R′j∣∣∣+10δ and |R′′|=

∣∣R j
∣∣ . Now the computation

2 |A|+
∣∣R′′∣∣≤ ∣∣R′j∣∣+10δ ≤

∣∣R j
∣∣+28δ +6

implies that |A| ≤ 14δ +3. We also have that R′′ ∈R: it is a cyclic conjugate of R j.

By definition of hyperbolicity, we have that

(R′i,R
′
j)≥ min((Y,R′j),(R

′
i,Y ))−δ .

Both Gromov products on the right side of the last equation are not greater than |Y | and the second is actually

equal to |Y | because R′i = Y ZX is geodesic. So (R′i,R
′
j) ≥ (Y,R′j)− δ = |Y | − δ − (1,R′j)Y , where the last

equality follows from (Y,R′j)1 +(1,R′j)Y = |Y | . Since R′j = YUV−1 is geodesic up to 18δ + 6 we have by

inequality (II.2) that 〈1,R′j〉Y ≤ 9δ +3 and finally

(R′i,R
′
j)≥ |Y |−10δ −3.

We hence obtained that (AR′′A−1,R′i)≥ µmin(|Ri| ;
∣∣R j
∣∣) and by the condition C′(µ) we get that A−1R′′A =

YUV−1 = R′i = Y ZX . Thus UV−1 = ZX , hence Z−1U = XV and so bi
−1a j = a−1

i b j, which in turn is equiv-

alent to U−1
i g−1

i g j−1U j = U−1
i g−1

j−1g jU j and hence g−1
i g j−1 = g−1

i−1g j. Rewriting the last equality in the

explicit form, we get precisely equation (III.2).

The left-hand side of the last equality contains fewer elements of X contrary to the minimality of

number n for g. Contradiction. 2

The following definition utilizes the Lemma

Definition III.1.9. [Delz] A word (or, equivalently, a path in Cay(G)) U1R1U−1
1 . . .UnRnU−1

n is called

reduced if for every pair of indices i < j such that the approximating tree for ai,bi,a j,b j is of shape on

Figure III.1, the inequality (III.1) holds. If for a pair of indexes i < j the tree approximation is of shape on

Figure III.1, the inequality (III.1) is violated, then we call i < j a reducible pair of indexes.

Note that if we switch the labels a j and b j on Figure III.1, the pair i < j will no longer be a reducible

pair. The following corollary summarizes [Delz] Lemma 2.4.

Lemma III.1.10. Suppose G is hyperbolic and R satisfies C′(µ), µ ≤ 1/8. Let γ = ∏
n
i=1UiRiU−1

i be a

reduced path in Cay(G), UiRiU−1
i ∈X and denote by γ̄ some geodesic between γ−,γ+. Then there exist

an index 1 ≤ i0 ≤ n, a subsegment x of geodesic segment γRi0 such that x is in 30δ -neighborhood of γ̄ and

|x| ≥ (1−3µ) |Ri0 |−1500δ . 2

III.2 Diagrams and small cancellation

Suppose we are given a hyperbolic group G with a combinatorial presentation G = gp(S|D). For technical

purposes we assume that D contains all relations of the group G.
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For ε ≥ 0 a subword U is called an ε-piece of a word R in a symmetrized set R with respect to G if

there exists a word R′ ∈R such that

(i) R≡UV, R′ ≡U ′V ′ for some U ′,V ′,V ;

(ii) U ′ = YUZ in G for some words Y,Z where ‖Y‖ ,‖Z‖ ≤ ε;

(iii) Y RY−1 6= R′ in the group G.

We say that the system R satisfies the C(ε,µ,ρ)-condition (with respect to G) for some ε ≥ 0, µ ≥
0, ρ ≥ 0 if

(i)‖R‖ ≥ ρ for any R ∈R;

(ii) any word R ∈R is geodesic;

(iii) for any ε-piece of any word R ∈R the inequalities ‖U‖ ,‖U ′‖< µ ‖R‖ hold (using notations of the

definition of the ε-piece).

Definition III.2.1. Consider a finite, two dimensional complex ∆ with directed edges such that:

(i) The underlying topological space of complex M is a disc with a boundary P.

(ii) For any path in ∆ there defined a label function φ(∗). If x is an edge in ∆, φ(x) ∈ S∪ S−1 ∪ 1

and φ(x−1) = φ(x)−1. For a path q in ∆, q = q1...qn, where qi is an edge for every i, we define φ(q) =

φ(q1)...φ(qn). If q is a simple closed path we choose a base vertex o and read off the labels of edges in the

clockwise direction.

(iii) A boundary label of any 2-cell of M is either an element of R (then we call it an R-face) or has a

label D where D = 1 in the hyperbolic group G (D-face).

We call the triple (M,φ(∗),P) a (disc) diagram ∆ with respect to gp(S|D ∪R) with a boundary path P.

Similarly we may define notions of annular or spherical diagrams.

For convenience we often fix a base point o of the diagram ∆ – a vertex on one of the boundary compo-

nents of ∆. We may also choose a base point o1 on the boundary of a face Π and write ∂o1Π = r where r is

a simple closed boundary path of Π with a initial (terminal) vertex o1.

Consider a path γ in ∆ as a path in the underlying topological space M. We say that γ is a simple path

in ∆ if for every open set U in M containing γ there exists a homotopy (in U) from γ to a simple curve

γ ′ = γ ′(U). A simple closed path γ in ∆ bounds a subdiagram ∆1 with boundary ∂∆1 = γ consisting of all

edges, vertices and faces which are inside the simple closed curve γ ′= γ ′(U) for every open set U containing

γ. Subdiagrams ∆1,∆2 are called disjoint if for every neighborhood of ∂∆1 ∪ ∂∆2 (in the underlying space

for ∆) there exists a homotopy inside U of ∂∆1 to a simple γ1 such that ∆2∩ γ1 = /0.

The following operations (and their inverses) are referred to as elementary transformations of diagram

∆ over G1:

1. Let Π1,Π2 be D-faces in ∆ with a common boundary subpath p. Then we can erase p making Π1,Π2

into a single D-face.

2. Let p be a simple path in ∆. Then we cut the diagram ∆ along p (i.e. consider the path pp−1 as a

new boundary component) and glue in a D-face labeled by φ(p)φ(p)−1.

It is clear that elementary transformations define an equivalence relation on the set of all reduced dia-

grams over G1. We say that ∆ is equivalent to ∆′ if there exists a finite sequence of elementary transforma-

tions starting from ∆ and ending with ∆′.
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Definition III.2.2. ([Olsh93]) Let Π1,Π2 be different R-faces of a diagram ∆ having boundary labels R1,R2

reading in a clockwise direction, starting from vertices o1,o2 respectively. Suppose also that there exists a

simple path t in ∆ such that t− = o1, t+ = o2. Call Π1,Π2 opposite (with respect to the path t) if the following

equality holds:

φ(t)−1R1φ(t)R2 = 1 in G. (III.3)

If a diagram ∆ contains no opposite faces then we call it reduced.

Lemma III.2.3. (van Kampen, see [Olsh93]) Let w0 be an nonempty word in the alphabet S. Then w0 = 1

in G1 if and only if there exists a reduced disc diagram over gp(S|D ∪R) with boundary label equal to w0.

Let p be a path in ∆ over G, define ‖p‖= ‖φ(p)‖ and |p|= |φ(p)| . We call a path p geodesic if ‖p‖= |p|
(recall that |p| equals the distance |p+− p−| in G).

One can define a map φ ′ (see [Olsh93], §5) from a disc diagram ∆ over G with the base point o to Caley

graph Cay(G). Set φ ′(o) = 1, where 1 is the identity vertex of Cay(G). For an arbitrary vertex a in ∆ we

define φ ′(a) to be the vertex of Cay(G) labeled by the geodesic word φ(p) where p is a path in ∆ connecting

o and a (it follows from the van Kampen Lemma that φ ′(a) does not depend on the choice of p). If p is an

edge in ∆ labeled by s ∈ S±1, then define φ ′(p) to be the edge labeled by s in Cayley graph Cay(G) with

vertices φ ′(p−),φ ′(p+). If φ(p)≡ 1 for an edge p of ∆ then φ ′(p) = φ ′(p−) = φ ′(p+). One can verify that
|p|= |φ ′(p)| , ‖p‖= ‖φ ′(p)‖ for any path p in diagram ∆ over G ([Olsh93], Lemma 5.1).

When ∆ is a diagram over G1 we still use functions ‖p‖ , |p| , where p is a path in ∆.

In the following remark we translate some hyperbolic properties of Cay(G) into the context of diagrams

over G.

Remark III.2.4. (i) Suppose ∆ is a reduced diagram over G, p1 and p2 are disjoint paths in ∆, vertices (pi)±

are on the boundary ∂∆. Then there exists a diagram ∆′ equivalent to ∆, such that ∂∆′ = ∂∆, vertices (pi)±

are connected by a geodesic path p′i for i = 1,2, and paths p′1, p′2 are disjoint. Furthermore, a point x of the

path p′i is on ∂∆′ if and only if it is an initial or terminal vertex of p′i.

(ii) Suppose Γ is a diagram over G, ∂Γ= p1q1 p2q2, where qi are geodesic in G and ‖pi‖≤K, |qi| ≥ 2K+

20δ for i = 1,2 and some K ≥ 0. Then (after elementary transformations) there exists a subdiagram Γ′ in Γ

with boundary ∂Γ′ = p′1q′1 p′2q′2 such that ‖p′i‖ ≤ 6δ , q′i are geodesic subpaths of qi and |(q1)+− (q′1)+| =
|(q1)−− (q′1)−|= K +2δ . In particular,

∣∣q′1∣∣= |q1|−2K−4δ .

(iii) If a subdiagram Γ satisfies the conditions of part (ii), then every vertex x of q1 is at distance not

greater than K +8δ from q2 (i.e. there exists a vertex y on q2 such that |x− y| ≤ K +8δ ).

Proof (i) Consider the map φ ′ from diagram ∆ to Cay(G). For i = 1,2 we pick a geodesic in Cay(G)

with label P′i between vertices φ ′(pi±) in Cay(G). We apply an elementary transformation of type (ii) to

pi: cut ∆ along pi to get a new boundary component pi p̃i, φ(p̃i) = φ(pi)
−1 in G and glue inside a D-face

Πi with boundary pi p̃i. Then apply the inverse type (ii) to Πi: replace it with a pair of faces Πi1,Πi2 with

common subpath p′i labeled by P′i (∂Πi1 = pi p′
−1
i , ∂Πi2 = p′i p̃i). We have constructed the desired diagram
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∆′. It remains to notice that no vertex belongs to both closed paths p1 p̃1 and p2 p̃2 since pi, p̃i are copies of

disjoint paths pi in ∆. Also, all vertices of p′i except for p′i± are interior in a subdiagram bounded by pi p̃i,

and the remark is proved completely.

(ii) We consider φ ′(Γ), and apply Lemma II.1.1 to the pair of geodesic paths φ ′(q1), φ ′(q2) in Cay(G)

to find the subpath q′′1 of φ ′(q1) such that |(q′′1)±−φ ′((q′1)±)| = K + 2δ and vertices (q′1)± are in 6δ -

neighborhood of geodesic φ ′(q2). Define a subpath q′′2 of φ ′(q′1) so that the inequality |(q′′1)±− (q′′2)±| ≤ 6δ

holds. It remains to choose a subpath q′i on qi satisfying equality φ ′(q′i) = q′′i . Now apply part (i) to two pairs

of points (q′2)+,(q
′
1)− and (q′1)+,(q

′
2)− in Γ which provides paths p′i and observe that the path p′1q′1 p′2q′2

bounds the desired diagram Γ′.

(iii) Follows from remark II.1.3 and properties of the mapping φ ′. 2

We will need the following:

Lemma III.2.5. Suppose we have a diagram ∆ consisting of cells Π1,Π2, a simple path t between them

such that Π1,Π2 is pair of opposite cells with respect to a path t. Then, for any vertices o1,o2 on ∂Π1,∂Π2

respectively, there exists a path s1ts2 such that φ(s1ts2) = Pφ(a) in G, where |a| ≤ 1
2 |∂Π2| , P is a geodesic

word and |P| ≤ |t|+ 8δ , si is a subpath of ∂Πi (i = 1,2), a is a subpath of ∂Π2 and s1− = o1,s2+ = o2.

Moreover, the following equality holds in G:

(Pφ(a))−1
φ(∂o1Π1)(Pφ(a))φ(∂o2Π2) = 1 in G. (III.4)

Proof. We denote r1 to be the boundary path ∂t−Π1, r2 to be the boundary path ∂t+Π2. By definition of

an opposite pair (bounded by r1tr2t−1) and the van-Kampen Lemma, there exists a diagram Γ over G with

boundary r1tr2t−1
1 , where φ(t1) = φ(t). Since each path ri is geodesic, by Remark III.2.4 (iii) the distance

between a vertex on r1 and r2 is not greater than |t|+ 8δ , hence there exists a vertex o′1 on r2 such that
|o1−o′1| ≤ |t|+8δ .

Consider a subpath of the form s1t ′s′2 on ∂Γ, where s1 is a subpath of r±1
1 , s′2 is a subpath of r±1

2 ,

(s1)− = o1, (s′2)+ = o′1, t ′ is either t or t1.

Let P be a geodesic word equal in G to the label of the path s1t ′s′2, so |P| ≤ |t|+8δ . Now we consider

s1t ′s′2 as a subpath of boundary ∂∆, so t ′ is t. We choose a path a on ∂Π2 between o′1 and o2 satisfying

inequality |a| ≤ 1
2 |∂Π2| . Define the path s2 to be s′2a after elimination of returns, hence φ(s′2a) = φ(s2) in

a free group generated by S. Since the boundary labels of ∆ and Γ are the same, we may consider the path

s1t ′s′2 as a path s1ts′2 in ∆. We have that φ(s1ts′2) = P in G, and so the following first two equalities hold in

the free group generated by S while the last one holds in G:

φ(s1ts2) = φ(s1t ′s′2s) = φ(s1ts′2)φ(a) = Pφ(a).

To establish (III.4), we observe that the path (s−1
1 ∂o1Π1s1)t(s2∂o2Π2s−1

2 )t−1 coincide with (∂t−Π1)t(∂t+Π2)t−1

after the elimination of returns. Thus

φ((s−1
1 ∂o1Π1s1)t(s2∂o2Π2s−1

2 )t−1) = (∂t−Π1)t(∂t+Π2)t−1 = 1 in G,
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Figure III.2: ε−Contiguity
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which after conjugation provides φ−1(s1ts2)φ(∂o1Π1)φ(s1ts2)φ(∂o2Π2) = 1 in G providing (III.4).2

The following notion of ε-contiguity subdiagram will be used extensively. Let ∆ be a diagram over G1.

Let u1 and u2 be a pair of paths in ∆ with subpaths q1 and q2 respectively, such that there exists a pair of

simple paths p1, p2, |p1| , |p2| ≤ ε and suppose that a path p1q1 p2q2 bounds a disc diagram Γ which does

not contain any R-faces (see Figure IV.1). Then we call Γ an ε-contiguity subdiagram between paths u1 and

u2. When we talk about the contiguity subdiagram Γ between u1 and u2 we use the formula ∂ (u1,Γ,u2) =

p1q1 p2q2 to define notation for arcs of Γ. In this case q1,q2 are referred to as contiguity arcs and p1, p2 as

side arcs of the ε-contiguity subdiagram Γ. We usually consider contiguity subdiagrams between a pair of

R-faces or between an R-face and a boundary path (i.e. u1 is the boundary path of R-face Π1 and u2 is the

boundary path of R-face Π2 or is a subpath of the boundary of ∆). If u1 is the boundary of an R-face Π1,

u2 is a path of a boundary of an R-face Π2 with ε-contiguity diagram Γ described above then we define the

degree of contiguity of Π1 to Π2 to be (Π1,Γ,Π2) =
‖q1‖
‖Π1‖ (or, if u2 is a boundary subpath of ∆, the degree

of contiguity of Π1 to the boundary subpath u2 to be (Π1,Γ,u2) =
‖q1‖
‖Π1‖ ).

The next two Lemmas provide the basic connection between the notions of small cancellation and dia-

grams over hyperbolic groups.

Lemma III.2.6. (i)([Olsh93], Lemma 5.2) If the symmetized system R satisfies the C(ε,µ,ρ)-condition,

then for any reduced diagram ∆ and any ε-contiguity subdiagram Γ of a face Π1 to another face Π2 the

following inequalities hold:

‖q1‖< µ ‖∂Π1‖ , ‖q2‖< µ ‖∂Π2‖ ,

where ∂ (Π1,Γ,Π2) = p1q1 p2q2 for any reduced diagram ∆ over G1.

(ii) Suppose a diagram ∆ has a pair of R-faces Π1,Π2 and an ε-contiguity subdiagram Γ (∂Γ =

p1q1 p2q2) such that

max{(Π1,Γ,Π2),(Π2,Γ,Π1)} ≥ µ.

Then Π1,Π2 are opposite with respect to each of the paths p1, p2.

Note that part 2 of the above Lemma is an immediate corollary of small cancellation property 2.

Lemma III.2.7. ([OlOsSa], Lemma 4.6) For any hyperbolic group G there exists µ0 > 0 such that for any

0 < µ ≤ µ0 there are ε ≥ 0 and ρ (it is suffice to choose ρ > 106ε

µ
) with the following property:

Let the symmetized system R satisfy the C(ε,µ,ρ)-condition and furthermore let ∆ be a reduced disc

diagram over G1 whose boundary ∂∆ is decomposed into geodesic sections q1, . . . ,qr, where 1 ≤ r ≤ 12.
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Figure III.3: C(ε,µ,ρ) => C′(2µ)
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q1 aR1

aR1b

R2
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q2

p1

r21

Then, provided ∆ has an R-face, there exists a reduced diagram ∆′ equivalent to ∆, an R-face Π in ∆ and

disjoint ε-contiguity subdiagrams Γ1, . . . ,Γr (some of them can be absent) of Π to q1, . . . ,qr respectively

such that

(Π,Γ1,q1)+ · · ·+(Π,Γr,qr)> 1−23µ.

The following Lemma is a special case of that in [Olsh93]:

Lemma III.2.8. ([Olsh93], Lemmas 6.7, 7.4) Let G be a non-elementary hyperbolic group. There exists

µ0 > 0 such that for any 0 < µ ≤ µ0 there exists ε ≥ 0 such that for every N > 0 there exists ρ > 0 with the

following property:

if R is finite and satisfies C(ε,µ,ρ) then G1 is a non-elementary hyperbolic group and W = 1 in G1 if

and only if W = 1 in G for every word W with ‖W‖ ≤ N.

Definition III.2.9. We say that a system R of geodesic words satisfies the C̃(ε,µ,ρ)-condition if R is sym-

metrized, satisfies C(ε,µ,ρ)-condition and consists of words which represent cyclically reduced elements

in G.

III.3 Condition C′(µ) and connection to C(ε,µ,ρ)-condition

Remark III.3.1. Suppose the system of geodesic words R satisfies C̃(ε,µ,ρ)-condition, µ < 1/100, ε ≥
ε0 ≥ 6δ , ρ > 500δ

µ(1−8µ) . Then R satisfies C′(2µ).

Proof Take arbitrary words R1,R2 ∈R. We denote by M the minimum min(|R1| , |R2|). To check the

condition C′(2µ) we assume that 〈aR1b,R2〉> 2µM for some a,b ∈ G such that |a| , |b| ≤ 100δ .

We denote by W a geodesic equal to aR1b, by ν a path R2 and by γ a path aR1b in the Cayley graph

Cay(G).

Consider vertices o2 on ν and o3 on the geodesic W at distance [2µM] from identity vertex 1. By

Remark II.1.5 (part 1), we have that Φ(o2) = Φ(o3) and (by part 2) |o2−o3| ≤ 4δ . Now we may apply

Lemma II.1.1 (for K = 100δ ) to segments γR1,W and hence there exists a subsegment [u,v] of W such that
|u− e| ≤ 102δ , |v− γ+| ≤ 102δ and [u,v] is within 6δ -neighborhood of γR1. Vertex o3 lies on [u,v] because

on one hand |o3− e|= [2µM]> 2K +20δ and on the other hand

|o3− γ+| ≥ |R1|− |a|− |b|− [2µM]≥ (1−3µ)M > 2K +20δ .
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We get that o3 is within 6δ -neighborhood of some vertex o1 on path γR1.

We consider two subsegments [e,o2] and [(γa)+,o1] of ν and γR1 respectively and apply Lemma II.1.1

to get that there exists a subsegment q2 of R2 between e and o2 such that

|q2| ≥ [2µM]−200δ −4δ >
3
2

µM+20δ

which is within 6δ -neighborhood from γR1. Now define q1 to be a subsegment of γR1 with |q1−−q2−| , |q1+−q2+| ≤
6δ .

We have that
|qi|>

3
2

µmin(|R1| , |R2|) for i=1,2. (III.5)

Define p1 (p2) to be a geodesic path between q2−,q1− (q1+,q2+), see Figure III.3. To justify the Figure

III.3, we must show that
∣∣(γa)+− (q1)−

∣∣< ∣∣(γa)+− (q1)+
∣∣ (this inequality follows from [Olsh93] Lemma

1.10, but we include the argument here). By triangle inequality and definition of q1, we have that

∣∣(γa)+− (q1)−
∣∣≤ |a|+ |p1|+ |e− (q1)−| ≤ 100δ +6δ +102δ = 208δ ;

on the other hand,

∣∣(γa)+− (q1)+
∣∣≥ |e− (q2)+|− |p2|− |a|= |e− (q2)−|+ |q2|− |p2|− |a| ≥

102δ +
3
2

µM+20δ −100δ −6δ > µM ≥ 500δ

and hence we got
∣∣(γa)+− (q1)−

∣∣< ∣∣(γa)+− (q1)+
∣∣ , as desired.

We denote labels of qi and pi as Qi and Pi respectively. Define four subpaths ri j, i, j ∈ {1,2} by equal-

ities γR1 = r11r12, ν = r21r22 and (r11)+ = (p1)+, (r21)+ = (p1)−. Define words Ri j,Q′,Q′′ by equalities

lab(ri j) = Ri j, R12R11 ≡ Q1Q′, R22R21 ≡ Q2Q′′. We have that Q2 = P1Q1P−1
2 , ‖Pi‖ ≤ 6δ , and taking into

account the inequality (III.5) we conclude by C̃(ε,µ,ρ)-condition that P1R12R11P−1 = R22R21, which in

turn is equivalent to (R21P1R−1
11 )(R11R12)(R11P−1

1 R−1
21 ) = R21R22. It remains to observe that a = (R21P1R−1

11 )

and so aR1a−1 = R2.2

Corollary III.3.2. Suppose R satisfies C̃(ε,µ,ρ)-condition and n≥ 1,

n

∏
k=1

UkRkU−1
k = 1 in G, where UkRkU−1

k ∈X . (III.6)

Then (i) There exists a reducible pair i < j in the sense of Definition III.1.9 and

Ui+1Ri+1U−1
i+1 . . .U j−1R j−1U−1

j−1 =UiRiU−1
i . . .U jR jU−1

j in G. (III.7)

(ii) For every reducible pair i < j in (III.6), there exists a van-Kampen diagram ∆′ over G with the

boundary γ ′ labeled by the word

U1R1U−1
1 . . .UnRnU−1

n and a subdiagram Γ in ∆′ with boundary p1q1 p2q2 such that q1 is a subpath of γ ′Ri,
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q2 is a subpath of γ ′R j, |pi| ≤ 11δ + 3 and max( |q1|
|Ri| ,

|q2|
|R j|) ≥ 2µ − 10δ+3

ρ
. The only vertices of paths pi that

are on the boundary of ∆ are initial and terminal vertices pi±.

(iii) Consider the diagram ∆′ from part (ii) and let ν ′ be any of the four paths given by the formula

ν ′ = γ ′(U±1
i )s1 p−1

1 s2γ ′(U±1
j ), where s1 is a subpath of γ ′Ri, s2 is a subpath of γ ′R j. Then

φ((γ ′Ui)
±1s1 p−1

1 s2(γ ′U±1
j )) =

j−c

∏
k=i+d

UkRkU−1
k in G,

where c,d take values 0 or 1 depending on the path ν ′ and (c,d) 6= (0,0). Moreover, depending on values c

and d, the word H ≡∏
j−d
k=i+cUkRkU−1

k conjugates UiRiU−1
i to U jR±1

j U−1
j , namely:

H−1UiRiU−1
i H =U jRe

jU
−1
j , where e ∈ {±1}.

Proof By Remark III.3.1, C̃(ε,µ,ρ)-condition implies the condition C′(2µ). The product ∏
n
k=1UkRkU−1

k

equals to identity in G so by Lemma III.1.10 it is not reduced in the sense of Definition III.1.9. Hence there

exists a reducible pair i < j (in particular, we have that |Ri| =
∣∣R j
∣∣) such that the approximation tree for

ai,bi,a j,b j is of shape on Figure III.1 and by Lemma III.1.8 the corresponding geodesic word Y satisfies:

|Y | ≥ 2µM+10δ +3, where M = |Ri| . (III.8)

Lemma III.1.8 also provides the equation (III.2) and thus (i) is proved.

Diagram ∆′ over G with boundary γ ′ labeled by ∏
n
k=1UkRkU−1

k exists by van-Kampen Lemma. Consider

the map φ ′ : ∆′ 7−→Cay(G). We denote φ ′(γ ′) as γ ′′ (a path in Cay(G) with label ∏
n
k=1UkRkU−1

k ). We adopt

notations from the definition of a reducible pair i< j and Figure III.1. Consider a geodesic path α in Cay(G)

starting from ai with label XY Z (hence it ends at bi) and a geodesic up to 18δ +6 path β in Cay(G) starting

from a j with label U−1Y−1V ( it ends at b j). By definition of X ,Y,Z,U,V, we have (αY )−1 =β Y−1. From

the fact that XY Z is geodesic, it follows from Remark II.1.3 (ii) that there exists a subpath q′1 of γ ′′Ri such

that: ∣∣
αY−−q′1−

∣∣ , ∣∣αY+−q′1+
∣∣≤ δ , (III.9)

which implies that: ∣∣q′1∣∣≥ |Y |−2δ . (III.10)

Similarly, we consider the path β geodesic up to 18δ + 6 and apply again Remark II.1.3 (ii) to obtain

that there exists a subpath q′2 of γ ′′R j such that:

∣∣
αY−−q′2+

∣∣ , ∣∣αY+−q′2−
∣∣≤ (9δ +3)+δ , (III.11)

and hence : ∣∣q′2∣∣≥ |Y |−20δ −6. (III.12)

The inequalities (III.9), (III.11) imply also that
∣∣q′1−−q′2+

∣∣ , ∣∣q′1+−q′2−
∣∣≤ 11δ +3.

Consider subpaths q1 of γRi and q2 of γR j in the boundary ∂∆′ such that φ ′(qi−) = q′i−, φ ′(qi+) = q′i+.
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Figure III.4: Standard Diagram
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The Remark III.2.4 implies that (after some elementary transformations) there exists a subdiagram Γ in ∆′

with boundary p1q1 p2q2, vertices of pi are interior except for initial and terminal ones and |pi| ≤ 11δ +3.

Equations (III.10), (III.12), (III.8) provide that:

max( |q1|
|Ri| ,

|q2|
|R j|)≥

|Y |−20δ−6
M ≥ 2µM+10δ+3−20δ−6

M ≥ 2µ− 10δ+3
M . Part (ii) is proved.

To justify part (iii) we look at each of the 4 options for the path ν ′. For example, if ν ′=(γ ′Ui)s1 p−1
1 s2(γ ′U−1

j )

then φ ′ maps the vertex ν− = (γ ′Ui)− of ∆′ to the vertex gi−1 = ∏
i−1
k=1UkRkU−1

k in Cay(G), ν ′+ = (γ ′U−1
j )+

to the vertex g j = ∏
j
k=1UkRkU−1

k in Cay(G). Hence lab(φ ′(ν ′)) = g−1
i−1g j = ∏

j
k=iUkRkU−1

k .

A direct computation using the relation (III.7) yields that for every possible value of c and d the word

H conjugates UiRiU−1
i to U jR±1

j U−1
j . For example, H ≡Ui+1Ri+1U−1

i+1 . . .U jR jU−1
j conjugates UiRiU−1

i to

U jR−1
j U−1

j :

Ui+1Ri+1U−1
i+1 . . .U jR jU−1

j U jR−1
j U−1

j (Ui+1Ri+1U−1
i+1 . . .U jR jU−1

j )−1 =

Ui+1Ri+1U−1
i+1 . . .U j−1R j−1U−1

j−1(Ui+1Ri+1U−1
i+1 . . .U jR jU−1

j )−1 =

UiRiU−1
i . . .U jR jU−1

j (Ui+1Ri+1U−1
i+1 . . .U jR jU−1

j )−1 =UiRiU−1
i ,

where the last inequality holds by (III.7). It remains to notice that by relation (III.7), in the word H the

parameters c = d = 0 may be replaced by c = d = 1. 2

Definition III.3.3. For every reducible pair i < j consider the diagram ∆′ from Corollary III.3.2, identify

each edge of γ ′Us with corresponding edge of γ ′U−1
s and fill in the R-faces Πs to get a van-Kampen diagram

∆ over G1 which has a (11δ +3)-contiguity subdiagram Γ such that max{(Πi,Π j),(Π j,Πi)} ≥ 2µ− 10δ+3
ρ

.

We will refer to a described diagram ∆ as a standard diagram for relation (III.6). We denote the image of γ ′

in ∆ by γ.

By definition, the standard diagram is a spherical diagram, but for convenience we draw it on Figure

III.4 as a disc diagram with boundary label 1.
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Remark III.3.4. According to the identifications made in the definition of the standard diagram ∆, any of the

four paths ν ′ in ∆′ corresponds to a closed path in ∆ with label ν = (γUi)r1 p1r2(γU−1
j ), where ri correspond

to si. One can observe that different paths ν ′ have different images in ∆, but we will not use this fact later.

Note that the subpaths (γ ′Ui)
±1 and (γ ′U j)

±1 of ν ′ in ∆′ correspond respectively to subpaths γUi and γU j of

ν .

III.4 Generators of a free normal subgroup in G

In this section we assume that the set R satisfies C̃(ε,µ,ρ)-condition, where the parameters ε,µ,ρ are

chosen according to Lemma III.2.7 and satisfy inequalities ε > ε0 = 19δ +3, µ < 1/100, ρ > 500ε

6µ(1−8µ) .

It is well known (see [Gro]2.2A) that a hyperbolic group contains only finitely many conjugacy classes

of torsion elements. So, given a group G, we may choose the constant ρ to be larger then the length of

shortest representative in each conjugacy class of torsion elements. Thus we will assume in the sequel that

for values of ρ large enough:

Remark III.4.1. The set R consists of elements of infinite order.

Definition III.4.2. We call a (reduced) diagram ∆ an octagon diagram if ∂∆ = l1 j1 . . . l4 j4, where li are

geodesic in G, and ‖ ji‖ ≤ ε.

Definition III.4.3. Consider an octagon reduced diagram ∆ with boundary ∂∆ = l1 j1 . . . l4 j4 and pick a

number 0 < κ < 1. We say that an arc li satisfies the condition U∆(κ) if for every diagram ∆′ equivalent

to ∆ and every R-face Π in ∆′ such that there is a contiguity subdiagram Γ between Π and li, we have the

inequality (Π,Γ, li)< κ.

It is clear that if li has a subpath l which is a boundary arc of some subdiagram ∆1 of ∆ then l satisfies

U∆1(κ) as well.

Lemma III.4.4. Let ∆ be an arbitrary octagon diagram and φ(l1) =U ∈U , then (in notations of Definition

III.4.2) l1 satisfies U∆(
1
2 +

1
5 µ).

Proof Note that by definition of ρ we have that 2ε+34δ

ρ
< 1

5 µ. We suppose that there exists an octagon

diagram ∆, with boundary arc l1, φ(l1)=U ∈U . Assume that (after elementary transformations) there exists

an R-face Π in ∆ and a corresponding subdiagram Γ between Π and l1 with boundary ∂ (Π,Γ, l1)= p1q1 p2q2

such that (Π,Γ, l1)≥ 1
2 +

2ε+34δ

ρ
.

Now we may apply Remark III.2.4(ii) to the diagram Γ and conclude that (after elementary transforma-

tions) there exists a subdiagram Γ′ of Γ with boundary p′1q′1 p′2q′2 such that q′i are subpaths of qi and:

∣∣p′i∣∣≤ 6δ ,
∣∣q′1∣∣= |q1|−2ε−4δ . (III.13)

By definition of q′1, we have |q′1| = |q1| − 2ε − 4δ ≥ 1
2 |∂Π|+ 30δ and it’s complement q′3 (∂Π = q′1q′3)

satisfies |q′3| ≤ 1
2 |∂Π|−30δ . Thus the condition (i) of definition III.1.5 is satisfied.
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Figure III.5: Bond Between u and v

∆1∆2

u1p2u
p1u

qu

qΠu

ab

v

q2 q1

qΠv

p2v

qv

p1v

Π

We define paths l′, l′′ such that l1 = l′q′2l′′. The equality U = φ(l1)= φ(l′p′1q′1 p′2l′′) holds in G, moreover,

by inequalities (III.13), we have:

∣∣l′∣∣+ ∣∣p′1∣∣+ ∣∣q′1∣∣+ ∣∣p′2∣∣+ ∣∣l′′∣∣≤ ∣∣l′∣∣+2
∣∣p′1∣∣+ ∣∣q′2∣∣+2

∣∣p′2∣∣+ ∣∣l′′∣∣≤ |l1|+4 ·6δ .

Hence the condition (ii) of definition III.1.5 is checked for the factorization

φ(l′p′1)φ(q
′
1)φ(p′2l′′) of the word U.

By Definition III.1.5, the word U does contain more then half of a relation and thus U /∈U contrary to

our assumption. 2

Definition III.4.5. Consider a reduced octagon diagram ∆ with boundary l1 j1 . . . l4 j4. Denote for sim-

plicity of notation u = l1 and v−1 = l3, a = j3l4 j4, b = j1l2 j2 and define the base point of ∆ to be o =

(l1)−. Consider an R-face Π and disjoint contiguity subdiagrams Γu,Γv of Π to boundary arcs u,v, de-

fine boundary arcs of Γu,Γv by ∂ (Π,Γu,u) = p1uqΠu p2uqu, ∂ (Π,Γv,v) = p1vqΠv p2vqv and define q1, q2 by

equality ∂Π = q−1
Πvq1q−1

Πuq2 (see Figure III.5). We say that a subdiagram ∆0 = ∆0(∆,Π) with a bound-

ary path p2uqu p1uq2 p2vqv p1vq1 (u,v)-bond (through Π) if both values (Π,Γu,u),(Π,Γv,v) are greater

than µ. We define subdiagrams ∆1 = ∆1(∆,Π), ∆2 = ∆2(∆,Π) of ∆ with boundaries u1 p−1
2u q1 p−1

1v v−1
1 a and

u2bv−1
2 p−1

2v q−1
2 p−1

1u respectively, where u1 (v1) is an initial subpath of u (v) and v2 (u2) is a terminal subpath

of v (u) (recall that the orientation of the boundary is clockwise).

For an arbitrary reduced octagon diagram ∆, ∂∆= l1 j1 . . . l4 j4, where li are geodesic in G, ‖ ji‖≤ ε, there

exist a pair of (possibly empty) sets V = {Π1, . . .Πm} of R-faces and Σ(∆) = {Γ1,u,Γ1,v, . . . ,Γm,u,Γm,v} of

disjoint ε-contiguity subdiagrams, where Γi,u,Γi,v are contiguity subdiagrams such that ∆0(Πi) = Πi∪Γiu∪
Γiv is a (u,v)-bond. We call a pair (V,Σ(∆)) a system of bonds between u and v.

Remark III.4.6. (i) It is clear that in a non-empty system of (u,v)-bonds (V,Σ(∆)) for a reduced diagram

∆ there exists a unique face Π in V such that the associated (see definition III.4.5) paths u1 and v1 are the
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longest. Moreover, any other face Π′ ∈V belongs to ∆1(Π).

(ii) For every face Π in V we have that

|u1| ≤ |u|− (Π,Γu,u) |∂Π|+2ε, |v1| ≤ |v|− (Π,Γv,v) |∂Π|+2ε. (III.14)

The following remark will allow us to extend systems of bonds of subdiagrams ∆i to the diagram ∆.

Remark III.4.7. Consider a reduced octagon diagram ∆ over G1 and assume that there is a (u,v)-bond

∆0(Π) = Π∪Γu∪Γv in ∆ satisfying (Π,Γu,u),(Π,Γv,v) ≥ µ and two systems of (ui,vi)-bonds (Vi,Σ(∆i))

in ∆i = ∆i(Π,∆), i = 1,2. Then the sets V = V1∪V2∪{Π} and Σ(∆) = Σ(∆1)∪Σ(∆2)∪{Γu,Γv} comprise

the system of (u,v)-bonds (V,Σ(∆)) in ∆. 2

Lemma III.4.8. Let ∆ be a reduced octagon diagram with at least one R-face with boundary ∂∆ =

a j1u j2b j3v−1 j4, where u,v,a satisfy the condition U∆(
1
2 +

µ

5 ), b satisfies U∆(µ) and | jk| ≤ ε for every

k.

(i) Then ∆ has a non-empty system of (u,a)-, (v,a)- or (u,v)-bonds.

(ii) Assume in addition that ∆ does not have (u,a)- or (v,a)-bonds. Then, for the set V consisting of

all R-faces, there exists a system of (u,v)-bonds (V,Σ(∆)) such that for every R-face Π in ∆ there exist

subdiagrams Γu,Γv ∈ Σ(∆) satisfying:

(Π,Γu,u)+(Π,Γv,v)> 1−26µ; (III.15)

max[(Π,Γu,u),(Π,Γv,v)]>
1
2
−13µ; (III.16)

min[(Π,Γu,u),(Π,Γv,v)]>
1
2
−27µ. (III.17)

Proof (i) On the one hand we may consider an R-face Π satisfying Lemma III.2.7 such that (Π,Γa,a)+

(Π,Γb,b) + (Π,Γu,u) + (Π,Γv,v) > (1− 23µ)− 4·3ε

|∂Π| (note that (Π,Γ ji , ji) |∂Π| ≤ 3ε because | ji| ≤ ε).

Together with condition on b it means that

(Π,Γa,a)+(Π,Γu,u)+(Π,Γv,v)> (1−24µ)− 4 ·3ε

|∂Π|
(III.18)

On the other hand each summand on the left-hand side of (III.19) is smaller than 1
2 +

µ

5 . Hence at least

two of them are larger than 12µ.

(ii) We continue the considerations in the proof of part (i). We cannot have (Π,Γa,a) ≥ µ because

at least one of the other summands in (III.18) is larger thn 12µ and we would get a (u,a)- or (v,a)-bond

involving a which is impossible. Hence we get that

(Π,Γu,u)+(Π,Γv,v)> (1−25µ)− 4 ·3ε

|∂Π|
(III.19)

and so the inequality (III.15) holds for Π. The inequality
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max[(Π,Γu,u),(Π,Γv,v)]>
1
2
− 25

2
µ− 2 ·3ε

|∂Π|

follows immediately since µ < 1/100, while for

min[(Π,Γu,u),(Π,Γv,v)]>
1
2
−26

1
5

µ

it is enough to recall that |qu| , |qv| < (1
2 +

1
5 µ) |∂Π| . We have proved the formulas (III.15)–(III.17) for the

face Π satisfying Lemma III.2.7, taking into account that (by definition of ρ): 4·3ε

|∂Π| ≤
4·3ε

ρ
< 1

5 µ.

When n = 1, the diagram ∆ has a single R-face Π and we are done by the argument above.

We induct on a number n of R-faces in the octagon diagram ∆ with base n = 1. If n > 1 we consider

subdiagrams ∆i = ∆i(∆,Π) for the face Π (we follow notations of Definition III.4.5 here). It is clear that

diagrams ∆i satisfy the induction assumption. Each has a number of R-faces strictly less than n because

neither contains the face Π, the arcs piu, piv on the boundary of ∆i are not longer than ε. The boundary arcs

qi of ∆i satisfy the condition U∆i(µ) by Lemma III.2.6 because they are boundary arcs of the R-face Π in

the reduced diagram ∆. As we mentioned before the proof of the Lemma, conditions U∆i(µ) for qi imply

that there are no bonds involving qi in ∆i. The induction assumption is now checked for ∆i, hence there

exist systems of (ui,vi)-bonds (Vi,Σ(∆i)) in ∆i satisfying the conclusion of the Lemma. Finally we are in

position to apply the Lemma III.4.7 to ∆ relative to the bond ∆0(Π): we obtain a system of (u,v)-bonds

(V,Σ(∆)) such that V contains all R-faces and the set Σ(∆) is comprised of Σ(∆i) for i = 1,2 and Γu,Γv.

The inequalities (III.15)–(III.17) hold for every R-face in ∆ except for the face Π by induction assumption,

and for the face Π we have obtained them above.2

We denote words URU−1 by AR,U . If u is a path in some diagram ∆, we write AR,u for AR,φ(u).

Definition III.4.9. Define a weight of a word AR,U by ψ(AR,U) = |R|+4 |U | .

Lemma III.4.10. Let ∆ be a reduced diagram over the group G1 with boundary u j1a j2v−1, where u,v,a sat-

isfy the condition U∆(
1
2 +

µ

5 ), | ji| ≤ ε for i= 1,2 and there are no (u,a)– or (v,a)-bonds. Then φ(u j1a j2v−1)=

∏
n
i=1 AR j,U ′j in G, where max1≤ j≤nψ(AR j,U ′j)< 4max(|u| , |v|).

Proof We proceed by induction on the number n of R-faces in ∆. The conclusion of the Lemma holds

for k = 0 because φ(u j1a j2v−1) = 1 in G and there are no AR,U ’s.

Assume that the Lemma is true for n−1. Consider a face Π satisfying the Remark III.4.6. By Lemma

III.4.8(ii), the R-face Π of ∆ is in the set V for some system of (u,v)-bonds (V,Σ(∆)), and inequalities

(III.15)–(III.17) hold for Π. We recall the inequality (III.16) and assume that

(Π,Γu,u)> (
1
2
−13µ), (III.20)

in the other case proof is the same.

By the choice of Π, we have that every other R-face of ∆ is in the subdiagram ∆1 (∆i = ∆i(∆,Π)) and

the subdiagram ∆2 is a diagram over G (we are using notations from Definition III.4.5 and the reader can

refer to Figure III.5 in the sequel of the proof). We consider a system of (u,v)-bonds provided by Lemma
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III.4.8. Denote a subdiagram of ∆ consisting of ∆2,∆0 by ∆′. It contains a single R-face Π, so we get the

following equations in the group G:

φ(∂u1+∆
′) = φ(∂u1+∆0) = φ(p−1

2u (∂p2u−Π)p2u). (III.21)

Now notice that paths ∂u−∆ and u1(∂u1+∆′)u−1
1 (∂u−∆1) coincide after the elimination of returns in the

latter path, so their labels are equal in the free group generated by S. We get that

φ(∂u−∆) = φ(u1(∂u1+∆
′)u−1

1 (∂u−∆1)) = φ(u1(∂u1+∆
′)u−1

1 )φ(∂u−∆1), (III.22)

and taking into account (III.21),

φ(u1 p−1
2u )φ(∂(p2u)−Π)φ(u1 p−1

2u )
−1

φ(∂u−∆1) = 1 in G1,

where the number of faces in the diagram ∆1, bounded by the path u1 p−1
2u q−1

1 p−1
1v v−1

1 , is n− 1. For conve-

nience we denote φ(∂(p2u)−Π) by R1. By induction assumption, we have the following equality in G for the

boundary of ∆′:

φ(u1 p−1
2u q−1

1 p1vv−1
1 ) =

n

∏
i=2

AR j,u j ,

where for every 1 < j ≤ n we have ψ(AR j,u j)< 4max(|u1| , |v1|).
By Remark III.4.6 part (ii), we have that max(|u1| , |v1|) < max(|u| , |v|). By inequalities (III.14) and

(III.20), we have
∣∣u1 p−1

2u

∣∣≤ |u|−(Π,Γu,u) |∂Π|+2ε +ε < |u|−(1
2−13µ) |∂Π|+3ε < |u|− 1

4 |∂Π| , hence

ψ(AR1,u1 p−1
2u
) = |∂Π|+4

∣∣u1 p−1
2u

∣∣< |∂Π|+4 |u|− |∂Π|= 4 |u| .2

Remark III.4.11. Let ∆ be a reduced octagon diagram with boundary ∂∆ = l1 j1 . . . l4 j4. Assume that φ(l1)

is a subword of some R ∈R and |l1| ≤ 1
2 |R| . Then l1 satisfies U∆(

1
2 +

µ

5 ).

Proof Suppose on the contrary, there exists an R-face Π and a contiguity subdiagram Γ such that

(Π,Γ, l1) ≥ 1
2 +

µ

5 , ∂ (Π,Γ, l1) = p1q1 p2q2. Then, by C̃(ε,µ,ρ)-condition, R and φ(∂Π) are conjugate so
|∂Π|= |R| . Hence we get

1
2
|∂Π| ≥ |l1| ≥ |q1|−2ε ≥ (

1
2
+

µ

5
) |∂Π| ,

which is a contradiction. 2

For technical reasons we introduce a notation

NR,U = gp〈AR′,U ′ | ψ(AR′,U ′)< ψ(AR,U)〉.

We say that AR′,U ′ is equivalent (≈) to AR,U if and only if ψ(AR′,U ′) = ψ(AR,U) and there exists a word

H in NR,U such that HAR′,U ′H−1 = AR,U in G. To prove that the relation ≈ is a correctly defined equivalence

it is enough to notice that NR,U = NR′,U ′ whenever ψ(AR′,U ′) = ψ(AR,U). It is clear that equivalence classes

with respect to ≈ are finite.
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Definition III.4.12. Let A be a maximal set of words AR,U where R ∈R, U ∈U such that

(i) AR,U /∈ NR,U ;

(ii) if AR′,U ′ ≈ A±1
R,U , then at most one of them belongs to A .

Lemma III.4.13. (i) Suppose that some geodesic word U contains more then half of a relation, then for

every R ∈R we have that AR,U ∈NR,U .

(ii) If URU−1 is not geodesic up to 10δ then there exists a geodesic up to 10δ word V R′V−1 such that

AR,U = AR′,V in G and ψ(AR,U)> ψ(AR′,V ).

(iii) A is a subset of X from Lemma III.1.6.

(iv) A generates N (R), moreover every AR,U is a product of elements of A ±1 with weights not larger

then ψ(AR,U).

Proof Pick some word AR,U .

(i) Assume that U contains more then half of a relation, then (using notations and statement of Remark

III.1.7(i)) we have

AR,U = Ar1r2,U1AR,U1r−1
2 U2

A−1
r1r2,U1

, where U =U1r1U2, r1r2 ∈R, (III.23)

and the following inequalities hold:

|r1|+ |U1|+ |U2| ≤ |U |+50δ , |r1| ≥ |r2|+60δ . (III.24)

It follows from III.1.7(i) that ψ(AR,U1r−1
2 U2

)< ψ(AR,U). Now we use inequalities (III.24) to estimate:

ψ(Ar1r2,U1) = |r1r2|+4 |U1|= |r1|+ |r2|+4 |U1| ≤

2 |r1|+4 |U1|= 2(|r1|+ |U1|)+2 |U1| ≤

≤ 2(|U |+50δ )+2(|U |+50δ −|r1|)≤ 4 |U |+200δ −ρ < 4 |U | .

Hence AR,U is equal to the product (III.23) such that both ψ(Ar1r2,U1) and ψ(AR,U1r−1
2 U2

) are strictly less

then ψ(AR,U) and we conclude that AR,U ∈NR,U . Contradiction with Definition III.4.12. Hence, if AR,U ∈A

then U does not contain more then half of a relation.

(ii) Suppose that AR,U is not geodesic up to 10δ . The Remark III.1.7 (ii) implies that then there exists

R′ ∈R and a geodesic word V such that URU−1 = V R′V−1 in G. By the same remark, the word V R′V−1

is geodesic up to 10δ and |R| = |R′| and so |U | > |V | . Thus we have got inequality ψ(AR,U) > ψ(AR′,V )

contradicting the choice AR,U ∈A again.

(iii) Follows from (i) and (ii) by definition of X in Lemma III.1.6.

(iv) By Lemma III.1.6, if g ∈N then g = ∏
n
s=1UsRsU−1

s for some UsRsU−1
s ∈X . Hence it is enough

to show that every AR,U ∈X is equal to a product of elements of A . We proceed by induction on possible

values of k = ψ(∗) on the set X .

If AR0,1 ∈X has minimal weight ψ(AR0,1), we have that NR0,1 = {1} and so AR0,1 /∈NR0,1. By maxi-

mality of the set A , the exists a word AR′,U ′ ∈A such that AR0,1 ≈ A±1
R′,U ′ which implies that AR0,1 = A±1

R′,U ′
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in G.

Now pick AR,U ∈X such that ψ(AR,U) = k. There are two cases.

CASE 1. AR,U ∈NR,U . In this case AR,U is a product of words AR′,U ′ such that ψ(AR′,U ′)< ψ(AR,U) and

we are done by the induction assumption.

CASE 2. AR,U /∈ NR,U . Consider all words AR′,U ′ such that AR′,U ′ ≈ AR,U . Clearly, AR′,U ′ /∈ NR,U =

NR′,U ′ . By maximality of the set A , there exists a word AR′,U ′ ∈ A and by Corollary III.3.2 (iii) we have

that there exists H ∈ NR,U such that HA±1
R′,U ′H

−1 = AR,U in G. By induction assumption, H is a product of

elements of A with weights smaller then ψ(AR,U), while ψ(AR,U) = ψ(AR′,U ′). 2

Lemma III.4.14. Let ∆ be a reduced diagram over the group G1 with boundary upav−1 where |p| ≤ ε,

φ(u),φ(v) ∈U , φ(a)−1A′ ≡ R ∈R for some word A′ and |φ(a)| ≤ 1
2 |R| .

(i) Suppose that there exist an R-face Π and contiguity subdiagrams Γa,Γv such that (Π,Γa,a),(Π,Γv,v)≥
µ. Then AR,v /∈A ±1.

(ii) Suppose that there exist an R-face Π and disjoint contiguity subdiagrams Γa,Γu such that (Π,Γa,a),(Π,Γu,u)≥
µ. In addition assume that φ(p)A′φ(a)−1φ(p)−1 = R′ in G for some R′ ∈R. Then AR′,u /∈A ±1.

Proof (i) We define arcs of Γa,Γv by equalities ∂ (Π,Γv,v) =

p1vqΠv p2vqv, ∂ (Π,Γa,a) = p1aqΠa p2aqa and define q1, q2 by equality ∂Π = q−1
Πvq1q−1

Πaq2. We also define

v1,v2 by equality v = v1q−1
v v2 (see Figure III.6).

Consider a subdiagram ∆′ with boundary p−1
2v q−1

2 p−1
1a a2v−1

2 . Observe that q2 satisfies U∆′(µ) by Lemma

III.2.6 (because it is a boundary subpath of the R-face Π in the reduced diagram ∆), |p1v| , |p1a| ≤ ε and

a2,v2 satisfy U∆′(
1
2 +

µ

5 ) (they are subpaths of a,v and a satisfies U∆(
1
2 +

µ

5 ) by Lemma III.4.11). Choose

(a2)− as a base point of ∆. By Lemma III.4.8, there exists a system of (a,v)-bonds (V,Σ(∆′)) such that V

contains all R-faces of ∆′ and (assuming there are R-faces in ∆′), by Remark III.4.6, there exists a face

Π′ such that the diagram ∆2(Π
′,∆′) does not have R-faces. The face Π′ is in V so in order to simplify the

notation we assume that Π′ = Π and ∆′ itself is a diagram over G (i.e. it does not contain R-faces).

Consider an R-face Π̄ disjoint from ∆ and glue Π̄ and ∆ together along a. Define ∂ Π̄ = a−1a′ so that

φ(a−1a′)≡ R. Since (Π,Γa,a)≥ µ we have that Π,Π̄ comprise a pair of opposite faces with respect to p1a

hence

φ((∂(p1a)+Π)p−1
1a (∂(qa)+Π̄)p1a) = 1 in G. (III.25)

Now notice that φ(p1a) = φ(a2v−1
2 qv p1vqΠvq−1

2 ) in the group G because it bounds the diagrams ∆′ and

Γv over G. We plug in the latter expression into the equation (IV.2) and then conjugate by φ(p1vqΠvq−1
2 ) to

obtain

φ(p1v[qΠvq−1
2 (∂(p2a)+Π)q2q−1

Πv ]p
−1
1v q−1

v v2[a−1
2 (∂(qa)+Π̄)a2]v−1

2 qv) = 1 in G.

The paths in the square brackets are equal after elimination of returns to ∂(p1v)+Π and ∂v+Π̄ respectively.

Denote R′ = φ(∂(p1v)+Π), recall that R = φ(∂v+Π̄). Thus we have obtained that AR′,p1vAR,q−1
Π

v2
= 1 in G and,

conjugating by v1, we get:

AR′,v1 p1vAR,v = 1 in G. (III.26)

But on the other hand we have that |R| = |R′| (because they are labels of opposite R-faces in ∆) and,
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Figure III.6: To the Proof of Lemma III.4.14
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using inequality (III.14),

|v1 p1v| ≤ |v1|+ |p1v|= |v|− |qv|− |v2|+ |p1v| ≤

≤ |v|− ((Π,Γv,v) |∂Π|−2ε)+ ε < |v| .

Hence we get ψ(AR′,v1 p1v)< ψ(AR,v) and so AR,v /∈A ±1.

Proof of part (ii) repeats part (i) with obvious changes in notation. 2

Recall that in the beginning of section 5 we chose constants ε,µ,ρ according to Lemmas III.2.7, III.2.8.

Hence part (ii) of Theorem I.1.3 follows immediately from aforementioned Lemmas (and is due to Olshan-

skiy [Olsh93]). We prove part (i) below:

Theorem III.4.15. The subgroup N = N (R) is freely generated by the set A .

Proof A generates N by Lemma III.4.13(iv).

We have to show that the set A generates N freely. We define a partial short-lex ordering on all words

in alphabet A ±1. Let W = Aε1
R1,U1

. . .Aεk
Rk,Uk

(εi ∈ ±1), W ′ = Ãε ′1
R′1,U

′
1
. . . Ãεk′

R′k′ ,U
′
k′
, we say that W �W ′ if either

(i) k > k′ or

(ii) length of W is equal to length of W ′ (k = k′) and there exists m0≤ k such that ψ(ARm,Um) =ψ(ÃR′m,U ′m)

for any m < m0 and ψ(ARm0 ,Um0
)> ψ(ÃR′m0

,U ′m0
).

Let W (A ) ≡ Aε1
R1,U1

. . .Aεn
Rn,Un

be a nontrivial freely reduced word (in alphabet A ) such that W = 1 in

G, assume that it is minimal with respect to the above ordering � . We are in position to apply Corollary

III.3.2 and consider the corresponding standard diagram ∆ for the word W, a reducible pair of indexes i < j,

the standard contiguity subdiagram Γ between Πi and Π j with |p1| < 11δ + 3. We apply Lemma III.2.5
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to faces Πi,Π j, path p1 and vertices o1 = (γUi)+,o2 = (γU j)+. It provides the path s1 p1s2 in ∆ such that

φ(s1 p1s2) = Pφ(a) in G with |P| ≤ 11δ +3+8δ , |a| ≤ 1
2

∣∣∂Π j
∣∣ , a is a subpath of ∂Π j and (using formula

(III.4)) provides the equality (Pφ(a))−1Rεi
i (Pφ(a))Rε j

j = 1 in G or, equivalently,

P−1Rεi
i P[φ(a)Rε j

j φ(a)−1] = 1 in G, (III.27)

where the the word [φ(a)Rε j
j φ−1(a)] is a cyclic conjugation of Rε j

j so Rε j
j ≡ φ−1(a)A′ for some A′.

We have that the path γUis1 p1s2(γU j)
−1 is closed in the standard diagram ∆ by Remark III.3.4 and we

have chosen s1 p1s2 so that

φ(γUis1 p1s2γU−1
j ) =UiPφ(a)U−1

j . (III.28)

Consider a reduced diagram ∆̃ with boundary upa1v−1 such that φ(u) = Ui, φ(p) = P, φ(a1) = A, where

A = φ(a), a ∈ ∆, φ(v) = U j. We will show that in fact it satisfies conditions of Lemma III.4.10. We first

check conditions of Lemma III.4.14: we have that paths u,v are in U , thus they satisfy condition U
∆̃
(1

2 +
µ

5 )

by Lemma III.4.4 and so does the path a1 by Lemma III.4.11. We also have that φ(v)Rε j
j φ−1(v) ∈A ±1 by

definition of v and Rεi
i = PA′φ−1(a1)P−1 by equation (III.27), so Lemma III.4.14 provides us that there are

no (u,a1)- or (v,a1)-bonds in ∆̃. We have just checked the conditions of Lemma III.4.10 for the diagram ∆̃

and conclude that:

φ(ua1sv−1) =
k

∏
m=1

AR′m,U ′m in G,

where max1≤m≤kψ(AR′m,U ′m)< 4max(|u| , |v|).
The last relation together with (III.28) implies that φ(γUis1 p1s2γU−1

j ) belongs to at least one of the

groups NRi,Ui ,NR j,U j . By Corollary III.3.2(iii), we have that φ(γUis1 p1s2γU−1
j ) = H in G (where H ≡

∏
j−c
k=i+d Aεk

Rk,Uk
, (c,d) 6= (0,0), c,d ∈ {0,1}) and that

H−1Aεi
Ri,Ui

H = Ae
R j,U j

in G for some e ∈ {±1}. (III.29)

Suppose that ARi,Ui � AR j,U j , then both words H and AR j,U j belong to NRi,Ui . Hence ARi,Ui ∈NRi,Ui , contra-

diction.

It remains consider the case when ψ(ARi,Ui) = ψ(AR j,U j). By equation (III.29), ARi,Ui ≈ Ae
R j,U j

and since

they are both in A we have that Ui ≡ U j, Ri ≡ R j. Thus we can glue together the paths u and v of the

boundary of ∆̃ and obtain a diagram with boundary pa1 (we will also call it ∆̃). For every R-face Π in ∆̃ we

now have that (Π,Γp, p)≤ 3ε because |p| ≤ ε and (Π,Γa1 ,a1)≤ 1
2 +

1
5 µ thus

(Π,Γa1 ,a1)+(Π,Γp, p)≤ 1
2
+

µ

5
+3ε < 1−23µ,

which contradicts Lemma III.2.7. Hence there are no R-faces in ∆̃ and H = φ(pa1) = 1 in G. But the

word H ≡∏
j−c
k=i+d ARk,Uk is a subword of W which is strictly shorter then W so W � H and H = 1 in G. By

minimality of W, we have equality H ≡ 1 which can only happen if i+1 = j so Aεi
Ri,Ui

Aεi+1
Ri+1,Ui+1

is a subword
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of W, Ui ≡U j, Ri ≡ R j and by the relation (III.7) in G:

UiR
εi
i U−1

i Ui+1Rεi+1
i+1U−1

i+1 ≡UiR
εi
i U−1

i UiR
εi+1
i U−1

i = 1,

which is equivalent to Rεi+εi+1
i = 1 in G and, taking into account the Remark III.4.1, we have that εi+εi+1 =

0. Hence Aεi
Ri,Ui

Aεi+1
Ri+1,Ui+1

≡ Aεi
Ri,Ui

A−εi
Ri,Ui

is a subword of W. Contradiction with choice of W. 2

In order to deduce Theorem I.1.4 we will use the following remark.

Remark III.4.16. (i) ([Swe] Theorem 13) For every element x in a hyperbolic group G there exists n > 0 and

a straight word Yx (i.e. a word Yx such that Y s
x is geodesic for every s) such that Yx is conjugate to xn.

(ii) Given a set of geodesic words words X1, . . . ,Xm we will denote by Rn =R(X s1
1 , . . . ,X sm

m ,n) a system

of all cyclic permutations of R±1
i where Ri ≡ X sin

i . If X1, . . . ,Xm are straight pairwise non-commensurable

words in G, then for every µ > 0, ε ≥ ε0 and ρ > 0 there exists a number n > 0 such that Rn satisfies

C(ε,µ,ρ)-condition independent of a choice of non-zero integers s1, . . . ,sm.

(iii) If Y is a straight word in G then for every integer m the word Y m has a minimal length in it’s

conjugacy class.

Proof of part (ii) up to minor modifications repeats the proof of Lemma 4.1 in [Olsh93] which states the

same property for m = 1.

Part (iii). Assume that Y s = T ZT−1 for some T and that |Z| ≤ |Y s|−1 then for every k we have that

k |Z|+ k ≤ k(|Y s|−1)+ k = k(|Y s|) =
∣∣Y sk

∣∣≤ 2 |T |+
∣∣Zk
∣∣≤ 2 |T |+ k |Z| ,

which implies that k ≤ 2 |T | . Contradiction.2

Proof of Theorem I.1.4. Let us first consider a set of pairwise non-commensurable elements x1, . . . ,xm

of infinite order. By remark III.4.16 (i), for each xi there exists a straight word Ȳxi conjugate to xni
i for some

ni > 0. Define n0 = ∏1≤i≤m ni. Clearly words Yx1 ≡ Ȳ n0
x1
, . . . ,Yxm ≡ Ȳ n0

xm
are pairwise non-commensurable

and, by parts (ii) and (iii) remark III.4.16, there exists an integer K > 0 such that the system RK =

R(Y s1
1 , . . . ,Y sm

m ,K) satisfies C̃(ε,µ,ρ)-condition for any choice of positive s1, . . . ,sm. By Theorem I.1.3,

the group N (RK) is free and the quotient G/N (RK) is non-elementary hyperbolic.

Now consider an arbitrary set of elements x1, . . . ,xm in G. If some of the elements xi have finite orders

ni1 , . . . ,niq we define n0 = ni1 . . .niq and replace the set x1, . . . ,xm with xn0
1 , . . . ,xn0

m (which after deletion of

identity elements contains only the elements of infinite order). Hence we can assume that all elements

x1, . . . ,xm are of infinite order. For every pair xi,x j (i < j) define a pair of nonzero integers ki j,k ji such that

xki j
i is conjugate to xk ji

j if xi,x j are commensurable and let ki j = k ji = 1 if the pair xi,x j is not commensurable.

Define K0 = ∏1≤i, j≤m ki j and let K0 = 1 if m = 1. We show by induction on m that

there exists an integer N such that N =N (xs1K0N
1 , . . . ,xsmK0N

m ) is free for any choice of integers s1, . . . ,sm.

We have showed that the statement holds if the elements x1, . . . ,xm are pairwise non-commensurable and

in particular if m = 1. Hence, in order to prove the induction step, we may assume that (after reenumeration

of xi’s) x1 is commensurable to x2. Using the normality of N and the fact that for every x ∈ G a subgroup

33



generated by xa,xb is the equal to the one generated by xgcd(a,b) we get that

N (xs1K0N
1 ,xs2K0N

2 , ...,xsmK0N
m ) = N (x

k12s1
K0
k12

N
1 ,xs2K0N

2 , ...) =

N (x
k21s1

K0
k12

N
2 ,xs2K0N

2 , ...) = N (x
gcd(k21s1

K0
k12

,s2K0)N
2 ,xs3K0N

3 , ...,xsmK0N
m ).

Thus N is generated by m−1 elements and we may apply the induction assumption completing the proof

of Theorem I.1.4.2

We recall the notions of an SQ-universal group and a CEP-subgroup. A group G is said to be SQ-

universal if every countable group K embeds in a quotient of G. Let H be a subgroup of G, then H is said

to have a congruence extension property (CEP) if for every subgroup K, K /H there exists a subgroup K1,

K1/G, such that K1∩H =K. It is easy to see that if the group G has a free infinitely generated CEP-subgroup

then G is SQ-universal (see, for example, Proposition [Olsh95]).

Proof of Corollary I.1.5 (i) If G is non-elementary, there exists a pair of non-commensurable straight

words X1,X2 in G (see for example [Olsh93], Lemma 1.14). By Remark III.4.16, there exists a number

n such that R = R(X1,X2,n) satisfies the small cancellation property C̃(ε,µ,ρ)-condition for sufficiently

small µ and hence N (R) is a free group by Theorem I.1.4. The rank N (R) is greater than 1 because

X1,X2 are non-commensurable.

(ii) It is a result of Olshanskiy [Olsh95] that

(*) inside every non-elementary subgroup of G there exists a free countably generated CEP-subgroup

in G (Theorem 4, [Olsh95]);

Consider a free normal subgroup N in G of rank greater than 1. There exists a free infinite rank CEP-

subgroup N1 in G, N1 < N by (*). Hence for every countable group H there exists M1 /N1 such that

H ∼= N1/M1. By congruence extension property, the (normal in G) subgroup M = MG
1 satisfies M∩H = M1,

so H embeds in G/M. Clearly M = MG
1 is free (being a subgroup of a free group N ), and thus (ii) is proved.

2

III.5 Proof of corollary I.1.6

We will often deal with paths which are geodesic up to 10δ , so we set, using Lemma II.1.6, the constant

h = H(δ ,1,10δ ).

Lemma III.5.1. Let X1R̄1X−1
1 = R1 in G, where R1 is a (λ ,c)-quasigeodesic in G and the path X1R̄1X−1

1

is geodesic up to 10δ . We choose the constant H = H(δ ,λ ,c) according to Lemma II.1.6. Consider an

arbitrary factorization R̄1 ≡UV for some words U,V. Then there exists a cyclic conjugate R2 of R1 such

that X(VU)X−1 = R2 in G and |X | ≤ H +h.

If we assume that R̄1 is a shortest element in the conjugacy class of R1, then |R̄1| ≥ λ ‖R1‖−c−2(H+h).

Proof We consider the paths X1R̄1X−1
1 and R1 in Cay(G). Combining together Lemma II.1.6 and defi-

nition of h before this Lemma we get that the paths X1R̄1X−1
1 and R1 are within (H +h)-neighborhoods of

each other and hence we may consider a geodesic ν between a vertex of the path R1 and the vertex with
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label equal to X1U such that lab(ν) = X , |X | ≤H +h. Vertex ν− provides the factorization R1 ≡U1V1 of R1

and we have that X(VU)X−1 =V1U1 in G and thus define R2 ≡V1U1, it is an element of R.

If we assume now that R̄1 is shortest in the conjugacy class of R1, we get that |R̄1| = |UV | = |VU | ≥
|V1U1|−2 |X | ≥ λ ‖V1U1‖− c−2 |X | = λ ‖R1‖− c−2 |X | ≥ λ ‖R1‖− c−2(H +h), which proves the last

assertion of the Lemma. 2

Lemma III.5.2. Let R be a system of words satisfying the C(ε,µ,λ ,c,ρ)-condition, choose H = H(δ ,λ ,c)

according to Lemma II.1.6. Assume that ε = ε0+2(H+h) for some ε0 > 0 and that λρ > c+4H+2h+16δ .

Then there exists a system R̄ such that N (R̄) = N (R) and for any positive number k, satisfying λρ ≥
k+1

k (c+ 4H + 2h+ 16δ ), the condition C̃(ε0,µ0,ρ0) holds for R̄, where µ0 = µ(1+k)
λ

and ρ0 = λρ − c−
2(H +h).

Proof We define an equivalence relation ≈ on the set of freely reduced words over S±1: words W1 and

W2 are equivalent if and only if W1 is conjugate to W2 or W−1
2 . Then we consider a set {R1, . . . ,Rm, . . .}

of representatives of equivalence classes of R with respect to ≈ . By Lemma III.1.2, there exist geodesic

words R̄i,Xi such that XiR̄iX−1
i = Ri, where R̄i is geodesic up to 10δ and is shortest in the conjugacy class of

Ri. Finally we define R̄ to be the closure of {R̄1, . . . , R̄m, . . .} with respect to cyclic conjugates and inverses.

Clearly N (R) = N (R̄).

It remains to check that R̄ satisfies C̃(ε0,µ0,ρ0)-condition. Let R̄i ≡UiVi for i = 1,2, U2 = YU1Z for

some |Y | , |Z| ≤ ε0. Assume that |U1| ≥ µ0min(R̄1, R̄2).

By Lemma III.5.1 and the definition of R̄, there exist Ri ∈ R and (geodesic) words Xi such that

XiR̄iX−1
i = Ri and |Xi| ≤ H + h. By Remark II.1.3, the path pi = XiR̄iX−1

i in the Cay(G) is within the

H + h + 8δ neighborhood of a geodesic qi joining the ends of pi and, by Lemma II.1.6, qi is in the

H-neighborhood of Ri. Hence we can define geodesic words Yi,Zi, i = 1,2, of lengths not greater than

2H + h + 8δ and factorizations Ri ≡ CiDiEi such that the following equalities hold in G: X1Y1 = C1,

X2Y−1
2 =C2,C1D1Z1 = X1U1 and X2U2Z2 =C2D2. We have obtained that (Y2YY1)D1(Z1ZZ2) = D2. Now we

estimate the length of D1 using quasigeodesicity of R1: |D1| ≥ |U1|− |Y1|− |Z1| ≥ |U1|−2(2H +h+8δ )≥
µ0 |R̄i| − (4H + 2h + 16δ ) ≥ µ0(λ ‖Ri‖− c− (4H + 2h + 16δ )) ≥ µ(1+k)

λ
λ ‖Ri‖− µ(1+k)

λ
(c + 4H + 2h +

16δ ) = µ ‖Ri‖+µ[k‖Ri‖− (1+k)
λ

(c+4H +2h+16δ )]≥ µ ‖Ri‖ .
By the small cancellation condition on R, we conclude that (Y2YY1)(D1E1C1)(Y2YY1)

−1 = D2E2C2 and

so Y (Y1D1E1C1Y−1
1 )Y−1 = Y−1

2 D2E2C2Y2 in G implying that Y R̄1Y−1 = R̄2. 2

We say that a set of elements {x1, . . . ,xn} satisfy the condition (I) relative to some element g of infinite

order if

(a) xi /∈ E(g) for every i;

(b) xi is in the centralizer of E(G) in G: xi ∈CG(E(G));

(c) if an equality axi = xib holds in G for some a,b ∈ E(g), then a = b ∈ E(G);

(d) if a,b ∈ E(g) and axi = x jb, then i = j.

Lemma III.5.3. ([Olsh93], Lemma 3.7)1 Let g be an element such that E(g) =< g >×E(G). Then for any

integer l ≥ 1, one can find elements x1, . . . ,xl ∈ G satisfying the condition I relative to the element g.
1Our formulation is less general then that in [Olsh93]. One can observe that in our case the condition (I)(c) follows from

(I)(a)-(b).
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Let us consider a set of geodesic words W1, . . . ,Wk which represent respectively elements g1, . . . ,gk,

satisfying Lemma II.2.7. For every 1 ≤ i ≤ k we can choose a sequence of geodesic words X0i, . . . ,Xli

satisfying Lemma III.5.3 relative to Wi. Define a set Rl,m as a closure with respect to taking inverses and

cyclic conjugates of words R1, ...,Rk, where Ri ≡ X0iW m
i . . .XliW m

i for i = 1, . . . ,k.

Lemma III.5.4. ([Olsh93], Lemma 4.2) There exists λ > 0 such that for every µ > 0 there exists l > 0 and

c≥ 0 such that for any ε ≥ 0, ρ > 0 there are m0 > 0 such that the system Rl,m satisfies the C(ε,µ,λ ,c,ρ)-

condition if m≥ m0.

We will denote the center CG(G) of the group G by Z(G).

Proposition III.5.5. Assume that G is a hyperbolic group and Z(G) = E(G). Let g be an element in G

satisfying Lemma II.2.7 and consider an element y such that y /∈ E(g). Then for any integer l ≥ 1, one can

find elements x1, . . . ,xl ∈ G such that each set {x1, . . . ,xl} and {yx1,x2, . . . ,xl} satisfies the condition (I)

relative to the element g.

Proof We take an element g satisfying Lemma II.2.7 and a set X = {x1, . . . ,xl+1} satisfying Lemma

III.5.3 relative to g. We only need to check the conditions of property (I) involving yx1.

(a) Assume that yx1 ∈ E(g), then yx2 /∈ E(g). Indeed, if yx1,yx2 ∈ E(g), then x−1
2 x1 ∈ E(g). Thus

x1 = x2b for some b ∈ E(g), which contradicts the condition (d) of (I) for X .

Hence, if yx1 ∈ E(g), we can redefine X to be {x2,x1,x3 . . . ,xl+1} and thus each set {x2,x1,x3 . . . ,xl+1}
and {yx2,x1,x3 . . . ,xl+1} satisfies (I)(a).

Condition (b) holds because CG(E(G)) = G.

(c) Assume that the equality ayx1 = yx1b holds for some a,b ∈ E(g). If the element a is of finite order,

then a ∈ E(G) = Z(G) by the choice of g and thus a = b. If a is of infinite order, then ayx1 /∈ E(a) = E(g)

because yx1 /∈ E(a) = E(g), which contradicts the choice of b ∈ E(g).

(d) We can observe that an equality ayx1 = xb, where x∈ {x2, . . . ,xl+1} can hold for at most one element

xi. Assume on the contrary, that both equalities

a1yx1 = x2b1,a2yx1 = xib2

hold for some a j,b j ∈ E(g). Then we have a−1
1 x2b1 = a−1

2 xib2 and the equality x2b1b−1
2 = a1a−1

2 xi contra-

dicts property (I) for X .

Hence we may choose a set x′1, . . . ,x
′
l satisfying the Lemma by eliminating at most one element from

X . 2

For each k, we can choose elements W1, . . . ,Wk satisfying Lemma II.2.7, Proposition III.5.5 allows us

to pick sequences of words {X0i, . . . ,Xli} for every 1 ≤ i ≤ k and any l > 0 such that both {X0i, . . . ,Xli}
and {siX0i, . . . ,Xli} satisfy the condition (I) relative to Wi. In addition to the set Rl,m, we consider a set of

relations SRl,m which is a closure of the relations siRi for 1≤ i≤ k under inversion and cyclic conjugation.

Clearly, SRl,m also satisfies Lemma III.5.4. We will need the following, slightly stronger, Corollary:

Corollary III.5.6. ([Olsh93], Lemmas 4.2) There exists λ > 0 such that for every µ > 0 there exists l > 0

36



and c ≥ 0 such that for any ε ≥ 0, ρ > 0 there are m0 > 0 and {X0i, . . . ,Xli} for every 1 ≤ i ≤ k such that

each system Rl,m and SRl,m satisfies the C(ε,µ,λ ,c,ρ)-condition if m≥ m0.

Proof repeats that of Lemma III.5.4 [Olsh93] with minor modifications. First, as in Lemma III.5.4, we

may choose λ > 0 depending only on W1, . . . ,Wk. Then we choose l (after µ) so that

λ µ(l +1)
mini ‖Wi‖
maxi ‖Wi‖

> 6.

Similarly to III.5.4, there exists c, depending on Wi,X ji,siX0i such that Rl,m and SRl,m consist of (λ ,c)-

quasigeodesics for all sufficiently large m(c does not depend on m).

Finally, one chooses m0 (after ε,ρ) such that

λ µ(l +1)m0mini ‖Wi‖− c−2ε ≥ 6m0maxi ‖Wi‖

and such that Rl,m, SRl,m consist of (λ ,c)-quasigeodesics. 2

Remark III.5.7. Let G be a hyperbolic group. Then:

(i) if s is an element of finite order then there exists an element t ∈ G such that both t and stm are of

infinite order for any m≥ m0 for some number m0.

(ii) the group G is generated by elements of infinite order.

Proof (i) Let t be an element satisfying Lemma II.2.7. Assume that for every m > 0 the element (stm)

is of finite order. Since a hyperbolic group can have only finite number of conjugacy classes of torsion

elements, we can take K > 0, independent on m, such that (stm)K = 1 in G for every m. We have that values

(t−ms−1,stm) are unbounded as m→∞ and hence the values of (t−m,stm) are also unbounded which implies

that s ∈ E(t). But if s is in E(t) then st is of infinite order. Contradiction; the elements (stm) have infinite

order for all sufficiently large m.

Let s1, . . . ,sk be a generating set for the group G, consider an element t satisfying Lemma II.2.7. By

part (i), there exists m > 0 such that sitm is of infinite order for every generator si of finite order. If we

replace si ∈ S with a pair t ′ = tm, s′i = sitm whenever si is of finite order and keep si ∈ S otherwise. Then the

generating set S satisfies (ii). 2

Proof of Corollary I.1.6 Assume first that Z(G) = E(G) and consider the generators s1, . . . ,sk of G. By

Remark III.5.7 we may assume that the orders of all generators are infinite. We consider a set of pairwise

non-commensurable geodesic words W1, . . . ,Wk such that E(Wi) = E(G)× < Wi > in G (see conventions

before the Lemma III.5.4).

For every l > 0 and 1≤ i≤ k, we choose a sequence of geodesic words {X0i, . . . ,Xli} satisfying Propo-

sition III.5.5 relative to Wi. We apply Lemma III.5.6 to the sets Rl,m, SRl,m. Hence we may choose con-

sequently λ > 0, µ < λ

200 , l > 0, c > 0, ε = ε0 + 2(2H(λ ,c) + h) where ε0 ≥ 19δ + 3 and ρ such that

ρ > 1
λ
(c+ 2H + 2h+ 500ε0

6 2µ

λ
(1−8 2µ

λ
)
) such that both Rl,m and SRl,m satisfy C(ε,µ,λ ,c,ρ) for some m. By

Lemma III.5.2 there are sets Rl,m and SRl,m which generate the same normal subgroups as Rl,m, SRl,m re-

spectively and satisfy C̃(ε0,µ0,ρ0) for ρ0 = λρ−c−2H−2h and µ0 =
2µ

λ
. By the choice of constants above

we have that ε0 ≥ 19δ +3, µ0 < 1/100, and ρ0 ≥ 500ε0

6 2µ

λ
(1−8 2µ

λ
)

and hence we may apply Theorem III.4.15 to
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conclude that both normal subgroups A =N (Rl,m) =N (Rl,m) and B =N (SRl,m) =N (SRl,m) are free.

By Lemma III.2.8 each subgroup A and B has an infinite index in G.

Clearly AB = BA 3 si = (siRi)(Ri)
−1 for every 1≤ i≤ k, hence AB = G.

Now assume that AB = G for some free normal subgroups A,B in G. For every normal subgroup N in

G we have that [N,E(G)] ≤ N ∩E(G), so [A,E(G)] = 1 and [B,E(G)] = 1 because the intersection of free

subgroup with torsion subgroup is trivial. Hence E(G)≤CG(A)∩CG(B) =CG(AB) = Z(G). The inclusion

Z(G)≤ E(G) is immediate. 2
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CHAPTER IV

HIGHLY TRANSITIVE AND PERIODIC ACTIONS OF MAXIMAL GROWTH OF HYPERBOLIC

GROUPS

IV.1 Actions of Maximal Growth

Let G be a group generated by a finite set S and suppose that G acts on a set X from the right:

xe = x, (xg1)g2 = x(g1g2) in G for all x ∈ X ; g1,g2 ∈ G.

We assume that the action is transitive (i.e. X = oG, where o is some element from X). Consider the set

Bn(o) of elements og ∈ X such that g ∈ G and |g| ≤ n. Then the growth function of the right action of G on

X is fo,S(n) = #{Bn(o)}. Let o′ = og0 ∈ G and denote |g0| by C. It is clear that Bn(o′)⊂ Bn+C(o) and hence

fo,S(n+C)≥ fo′,S(n).

Recall that the action of G on X is called k-transitive for some natural number k, if for any two ordered

k-tuples (x1, ...,xk), (y1, ...,yk) of distinct elements in X there exists an element g ∈ G such that xig = yi for

every i, 1≤ i≤ k. The action is said to be highly transitive if it is k-transitive for every natural k.

Consider a set F of functions from N0 to N0. A pair f ,g ∈F is said (see [BO], §1.4) to satisfy the

relation f ≺ g if there exists a non-negative integer C such that f (n) ≤ g(n+C) for every n ∈ N0. Clearly

the relation ≺ is transitive and reflexive. Functions f ,g ∈F are said to be equivalent ([BO], §1.4) if f ≺ g

and g≺ f . According to the discussion above, growth functions of transitive action of G on X with respect

to different base points o,o′ are equivalent.

One can observe that the notion of equivalence of functions, which we discuss here, is stronger then that

used for study of asymptotic invariants. It is easy to see that the pairs 2n and 3n are not equivalent in the

sense of definition above and neither are the functions 2n, 3n. We would also like to note that there exists a

transitive action of a finitely generated free group which has maximal growth with respect to one finite set

of generators and does not have maximal growth with respect to the other.

If the group G acts from the right on X = G, we get the usual growth function and denote it by f (n);

clearly the growth of any action of G is bounded by the usual growth function of G: fo,S(n)≤ f (n) for any

o ∈ X .

If H is a stabilizer of o, then every element x ∈ X is in one-to-one correspondence with a coset Hg in G

such that x = og and the right actions of G on X and on H\G are isomorphic.

Definition IV.1.1. ([BO], §2) Let f (n) be a growth function of G relative to a finite generating set S and

consider a transitive action of G on a set X . Then the growth of the action is called maximal if the function

fo,S(n) is equivalent to f (n).

In this paper we discuss the growth of actions of hyperbolic groups which are known to be non-amenable

(see remark IV.1.2). We recall that a group G is called amenable if there exists a finitely additive left invariant
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probability measure on G (see [Gre]).

Remark IV.1.2. Every non-elementary hyperbolic group is non-amenable.

Proof If G is a non-elementary hyperbolic group, then it contains a free non-cyclic subgroup F2 ([Gro],

[Ghys], p. 157). But a free group of rank greater then one is non-amenable (see [Gre] 1.2.8). On the other

hand, a subgroup of an amenable group is amenable ([Gre], Theorem 1.2.5). Hence G cannot be amenable.2

The famous Fölner amenability criterion ([Gre]) yields the following:

Corollary IV.1.3. For every non-elementary hyperbolic group G there exists ε > 0 (depending on G only)

such that #{BR+1} ≥ (1+ ε)#{BR} for any R.

Remark IV.1.4. Let G be a non-amenable group with growth function f (x) relative to a finite generating set

S. Assume G acts on X with respect to some base point o ∈ X ; denote the growth function of this action by

go,S(x). Then there exists c1 > 0 such that the inequality go,S(n)≥ c1 f (n) holds for all natural n if and only

if the action has maximal growth.

Proof We first show the ”only if” part. By corollary IV.1.3, there exists ε > 0 such that the recursive

formula f (n+1) ≥ (1+ ε) f (n) holds for every n. We choose a natural C satisfying c1(1+ ε)C ≥ 1. Then,

applying the recursive formula C times we get:

go,S(n+C)≥ c1 f (n+C)≥ c1(1+ ε)C f (n)≥ f (n).

Now assume that the action has maximal growth, i.e. go,S(n+C)≥ f (n) for some natural number C≥ 0

and every natural n. It is clear from definition of go,S that go,S(n+C) ≤ (2#{S})C× go,S(n) and hence for

c1 = (2#{S})−C the inequality go,S(n)≥ c1 f (n) holds.2

We recall the notion of exponential growth rate of a group G with respect to the set of generators S:

λ (G,S) = limn→∞
n
√

f (n), where f (n) is a growth function of G.

Let S be a finite generating set in G and let N be an infinite normal subgroup of G. We denote the image

of S under the canonical homomorphism G→ G/N by S. The following Theorem is often summarized by

saying that the hyperbolic groups are ”growth tight”:

Theorem IV.1.5. [AL] Let G be a non-elementary hyperbolic group and S any finite set of generators for

G. Then for any infinite normal subgroup N of G we have λ (G,S)> λ (G/N,S).

The next corollary restates the above Theorem in terms of maximal growth.

Corollary IV.1.6. Assume G is a hyperbolic group acting on some set X from the right with maximal growth.

Then the kernel of this action is a finite normal subgroup.

Proof Let N be the kernel of the action on X . For any point o ∈ X we have that oNg = og for all g ∈ G

and hence the growth function of the action go,S satisfies:

go,S(n)≤ fG/N(n) for every n ∈ N, (IV.1)
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where f (n) is the growth function of G/N with respect to images S of generators S of G. If f (n) is the

growth function of G with respect to S and the growth of the action is maximal, then there exists c1 > 0 such

that go,S(n)≥ c1 f (n) for every n ∈ N. Hence, using (IV.1) and the last inequality, we have:

λ (G/N,S) = limn→∞
n
√

f (n)≥ limn→∞
n
√

go,S(n)≥ limn→∞
n
√

c1 f (n) = λ (G,S),

which, by Theorem IV.1.5, can only hold when N is finite. 2

Throughout this paper we will mainly discuss properties of left cosets. The connection between the right

and left cosets is established by the following observation:

Remark IV.1.7. The right coset Hg intersects the ball BR in G if and only if the left coset g−1H intersects

BR.2

The abundance of examples of actions of maximal growth is evident from the following:

Proposition IV.1.8. Let G be a hyperbolic group and H be a quasiconvex subgroup of infinite index in G.

Then the natural right action of G on H\G has maximal growth.

Proof We first consider left cosets G/H. By Theorem II.2.5, there exists C > 0 and the section s such

that the group G is in BC(s(G/H)). Hence for every g ∈ BR there exists g ∈ s(G/H) such that |g−g| ≤C.

By definition of s, |g| ≤ |g| and thus g ∈ BR. We get that BR ⊂ ∪g∈BR∩s(G/H)BC(g), which implies:

f (R) = #{BR} ≤ #{BC}×#{s(G/H)∩BR}. (IV.2)

If g1,g2 ∈ s(G/H)∩BR then (because the map s is a section) g1H 6= g2H. We get that #{s(G/H)∩BR} ≤
#{gH|gH ∩BR 6= /0} and the remark IV.1.7 provides #{gH|gH ∩BR 6= /0}= #{Hg−1|Hg−1∩BR 6= /0}, thus

#{s(G/H)∩BR} ≤ #{Hg−1|Hg−1∩BR 6= /0}. (IV.3)

Evidently the sets {Hg−1|Hg−1∩BR 6= /0} and {Hg|∃g1 : Hg1 = Hg & |g1| ≤ R} contain the same cosets,

and, by definition of the growth function fH,G/H(R) of natural right action of G on G/H: #{Hg|∃g1 : Hg1 =

Hg& |g1| ≤ R}= fH,G/H(R). Using inequalities (IV.2), (IV.3) and the last equality we get:

f (R)≤ #{BC}×#{s(G/H)∩BR} ≤ #{BC}×#{Hg|∃g1 : Hg1 = Hg & |g1| ≤ R}

≤ #{BC}× fH,G/H(R).

By remark IV.1.4, the action has maximal growth.2

In [BO] the authors provide examples of maximal growth actions of free groups satisfying some addi-

tional properties.

Recall that in [Sta] a subgroup H of a group G is said to satisfy the Burnside condition if for any a ∈ G

there exists a natural number n 6= 0 such that an is in H. One of the main results of the aforementioned paper

is the following:
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Corollary IV.1.9. ([BO], corollary 6) Any finitely generated subgroup H of infinite index in the free group

F of rank greater than 1 is contained as a free factor in a free subgroup K satisfying the Burnside condition.

One can choose K with maximal growth of action of F on K\F. It follows that there exists a transitive action

of F, with maximal growth and with finite orbits for each element g ∈ F, which factors through the action of

F on H\F.

The following Theorem generalizes the corollary 6 of [BO] from free groups to non-elementary hyper-

bolic ones:

Theorem IV.1.10. Let G be a non-elementary hyperbolic group with growth function f (n). Then for any

0 < q < 1 there exists a free subgroup H in G satisfying the Burnside condition and such that the growth

fH\G(n) of the (transitive) right action of G on H\G satisfies fH\G(n)≥ q f (n). In particular, the growth of

such action is maximal.

Consequently, for every non-elementary hyperbolic group G there exists a transitive action of G with

maximal growth such that the orbit of action of any element g ∈ G is finite.

Remark IV.1.11. Let G be an infinite group acting 2-transitively on some infinite set X .

(i) If N is a finite normal subgroup in G, then N is in the kernel of the action.

(ii) Assume that G is a non-elementary hyperbolic group and that the growth of action on X is maximal.

Then the kernel of this action is the finite radical E(G).

Proof (i) The action is 2-transitive and thus is imprimitive, i.e. there are no non-trivial block partitions

(see [Rot], pp. 256-258). On the other hand, one easily checks that for any x ∈ X the set N x is a block: if

g ∈ G and gN x∩N x 6= /0,

then N (gN x∩N x) = N x and, because #{gN x} = #{N x}, we have that gN x = N x. Using the

finiteness of N x again, we have that N x 6= X and thus N x = {x} for every x.

(ii) The kernel N of action is a normal subgroup, thus we use the condition that the growth of action

is maximal and Proposition IV.1.8 to obtain that N is finite. By definition of finite radical, we have N ≤
E(G). It remains to apply part (i).2

IV.2 Proof of Theorem IV.1.10

Throughout this paragraph we assume that the group G is non-elementary hyperbolic. The following Lemma

summarizes some geometric properties that we will need later.

Lemma IV.2.1. Let a,b,c,d be points in a δ -hyperbolic space X .

(i)Assume that (a,c)b,(b,d)c ≤M. If we take Q such that (a,d)b ≤ Q then |a−d| ≥ |a−b|+ |b− c|+
|c−d|−2M−2Q. Moreover, if |b− c|> 2M+δ , then we can choose Q = M+δ .

Assume that the point d is on the segment [a,b] and

(ii) d ∈ BM1([a,c]) for some M1 ≥ 0. Then

|d−b| ≥ (a,c)b−δ −M1 and (IV.4)

42



|a− c| ≥ |a−b|+ |b− c|−2 |d−b|−2δ −2M1. (IV.5)

(iii) that (b,c)a−5δ > |a−d| . Then d ∈ B4δ ([a,c]).

(iv) the vertex d is at least D > 0 away from each point a,b. Then

|d− c| ≤ max{|a− c| , |b− c|}+2δ −D.

Proof (i) By definition of Gromov product and conditions of part (i), we get that

|a−d|= |a−b|+ |b−d|−2(a,d)b = |a−b|+(|b− c|+ |c−d|−2(b,d)c−2(a,d)b)≥

≥ |a−b|+ |b− c|+ |c−d|−2M−2Q.

It remains to show the second claim in part (i). If |b− c|> 2M+δ , then by (II.1):

(c,d)b = |b− c|− (b,d)c > 2M+δ −M. (IV.6)

By inequality (IV.6) and definition (H1) of δ -hyperbolic space, we have

(c,d)b > M+δ ≥ (a,c)b +δ ≥ min{(a,d)b,(c,d)b},

which implies that (a,d)b ≤M+δ .

(ii) Let d′ be a point on [a,c] at distance at most M1 from d. Then, by (H1) and definitions of d,d′:

(d,c)b =
1
2
(|b−d|+ |b− c|− |c−d|) = 1

2
(|a−b|− |a−d|+ |b− c|− |c−d|) =

=
1
2
(|a−b|+ |b− c|− |a− c|)+ 1

2
(|a− c|− |a−d|− |c−d|)≥

≥ (a,c)b +
1
2
(|a− c|− [

∣∣a−d′
∣∣+ ∣∣d−d′

∣∣]− [
∣∣d−d′

∣∣+ ∣∣c−d′
∣∣]) = (a,c)b−

∣∣d−d′
∣∣ .

We obtain the first claim of part (ii) using definition (H1) and the expression for (d,c)b above:

|d−b|= (d,a)b ≥ min{(d,c)b,(a,c)b}−δ ≥ (a,c)b−δ −
∣∣d−d′

∣∣ ,
and apply it to obtain the second claim:

|a− c|= |a−b|+ |b− c|−2(a,c)b ≥ |a−b|+ |b− c|−2(|d−b|+
∣∣d−d′

∣∣+δ ).

(iii) Assume d /∈ B4δ ([a,c]), then d ∈ B4δ ([b,c]) by (H2). We apply part (ii) to the points b,a,c,d with

M1 = 4δ and obtain that |a−d| ≥ (b,c)a−δ −4δ . Contradiction.

(iv) By definition (H3), we have that

|d− c|+ |b−a| ≤ max{|a− c|+ |b−d| , |b− c|+ |a−d|}+2δ , hence
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|d− c| ≤ max{|a− c|+(|b−d|− |b−a|), |b− c|+(|a−d|− |b−a|)}+2δ ≤

≤ max{|a− c| , |b− c|}+2δ +max{|b−d|− |b−a| , |a−d|− |b−a|} ≤

≤ max{|a− c| , |b− c|}+2δ −D.2

Lemma IV.2.2. Consider subgroups H1 and H2 in a finitely generated group G. If there exists M ≥ 0 such

that #{BM(H1)∩BM(H2)}= ∞ then #{H1∩H2}= ∞.

The Lemma is equivalent to the statement: if #{H1∩H2}< ∞ then the set BM(H1)∩BM(H2) is finite

for every non-negative M.

Proof Assume that #{BM(H1)∩BM(H2)} = ∞ for some M ≥ 0, then there exist infinite sequences of

elements {h1i} ⊂H1 and {h2i} ⊂H2 such that
∣∣h−1

1i h2i
∣∣= |h1i−h2i| ≤ 2M for every i ∈ N. We denote the

element h−1
1i h2i by li. Since |li| ≤ 2M and the geometry of Cay(G) is proper, there exists an element l ∈ G

and a subsequence {i j}, j ∈ N such that li j1
= li j2

= l in G for any j1, j2 ∈ N and thus h−1
1s h2s = h−1

1k h2k in G

for every s,k ∈ {i j}. We obtained that h1kh−1
1s = h2kh−1

2s belongs to H1∩H2 for every s,k ∈ {i j}. For every

fixed k, lims→∞

∣∣h1kh−1
1s

∣∣≥ (lims→∞

∣∣h−1
1s

∣∣)−|h1k|= ∞ which implies that the intersection H1∩H2 does not

belong to a ball BR for any R≥ 0 and thus is infinite. 2

Corollary IV.2.3. Let H be a K-quasiconvex subgroup and assume that for infinitely many distinct natural

numbers si and some z1,z2 ∈G the elements z1xsiz2 belong to H . Then there exists n 6= 0 such that z1xnz−1
1 ∈

H .

Proof We denote |z1|+|z2| by C. We have that z1xsiz−1
1 (z1z2)∈H and hence the distance d(z1xsiz−1

1 ,H )

is bounded by C for infinitely many distinct si. In other words the intersection 〈z1xz−1
1 〉∩BC(H ) is infinite

and by Lemma IV.2.2 the intersection 〈z1xz−1
1 〉∩H is also infinite.2

Lemma IV.2.4. Let H be a K-quasiconvex subgroup in a δ -hyperbolic group G and let E be an infinite

elementary subgroup in G. Then the following assertions are equivalent:

(i) for any number M > 0 we have E 6⊂ BM(H );

(ii)#{E ∩H }< ∞;

(iii) There exists M > 0 (depending on E and H only) such that (x,h)< M for any x ∈ E, h ∈H .

Proof We first show that (ii) implies (i). If the intersection E ∩H is finite then, by Lemma IV.2.2, we

have #{BM(E)∩BM(H )}< ∞ for any M ≥ 0. In particular, #{E ∩BM(H )}< ∞ and hence E 6⊂ BM(H )

for any M ≥ 0.

Now we show that (iii) implies (ii). Let x be an element of E and |x|> 2M. We have

|x−h|= |x|+ |h|−2(x,h)≥ |x|−2M > 0,

hence x /∈H and so the intersection E ∩H belongs to the ball B2M(e) which is a finite set.

It remains to show that (i) implies (iii). Since E is infinite virtually cyclic we can choose an element x

in E of infinite order and thus E is of finite index in E(x). Hence

there exists a constant M0 such that E(x)⊂ BM0(〈x〉). (IV.7)
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Let Kx = K(〈x〉) be a constant provided by Lemma II.2.6(iii).

Assume (iii) does not hold, i.e. for every M ≥ 0 there exist y ∈ E, h ∈H , satisfying (y,h) > M +M0.

Then, by (IV.7), y = xta for some a ∈ E, |a| ≤M0, t 6= 0 and

(xt ,h)≥ (xta,h)−M0 > M+M0−M0 = M. (IV.8)

Hence for every M > 0 there exists an integer t and an element h ∈H such that (xt ,h)> M.

Now we fix an arbitrary t and choose M so that |xt | < M−Kx − 5δ . We may assume without loss

of generality that t ≥ 0. Then by (IV.8), there exist t ′ ≥ t and h ∈H such that (xt ′ ,h) > M. By Lemma

II.2.6(ii), vertices xm are within Kx-neighborhood of [e,xt ′ ] for any 0 ≤ m ≤ t ′. In particular, there exists a

vertex b ∈ [e,xt ′ ] such that |xt −b| ≤ Kx and thus |b| ≤ M− 5δ < (xt ′ ,h)− 5δ . By Lemma IV.2.1(iii), we

have that b ∈ B4δ ([e,h]) and, because H is K-quasiconvex, b ∈ B4δ+K(H ). Finally, we get that xt belongs

to B4δ+K+Kx(H ) for every t contrary to (i). 2

In Lemma IV.2.5 and Theorem IV.2.8 we follow in part the line of argument from [Arzh] (in particular

we apply Lemma 13[Arzh]).

Lemma IV.2.5. Let x be an element of infinite order in G and choose a constant M1 ≥ 0. Then there exist

a natural number m and a number M2 ≥ 0 such that for any element h in G satisfying conditions |h|< 2M1

and h /∈ E(x) and any |t| , |s| ≥ m the following inequality holds:

∣∣xthxs
∣∣≥ ∣∣xt

∣∣+ |h|+ |xs|−M2.

Proof For a pair of integers s, t we consider a closed path p1q1 p2q2 in Cay(G), where the path p1 starts

from e and lab(p1) = x−t , the path q1 is geodesic and ends at vertex hxs, the path p2 satisfies lab(p2) = x−s

and q2 is geodesic with lab(q2) = h−1. We define phase vertices ai on p1 and phase vertices b j on p−1
2

relative to the natural factorizations x−t and xs respectively (i = 0, ...,−t and j = 0, ...,s).

Step 1. We take constants λ ,c,Kx =K(〈x〉) provided by Lemma II.2.6 for the cyclic group 〈x〉 and define

C = max{2Kx +
1
2
|x| ,Kx +2M1}+8δ .

Let us denote by yi a phase path connecting vertex ai with some phase vertex b j of p2. Assume that |yi| ≤C

for some i. We define subpaths p′1, p′2 of paths p1, p2, where the path p′1 connects a0 to ai and p′2 connects

b j to b0. Considering the closed path p′1yi p′2q2, we have

| j| |x| ≥
∣∣h−hx j

∣∣≥ ∣∣xi
∣∣−|h|− |yi| ≥ λ |x| |i|− c−2M1−C,

which implies that | j| ≥ λ |i||x|−c−C−2M1
|x| ≥ λ |i|− c1, where c1 =

c+C+2M1
|x| .

Since we have fixed the constant C, we may apply Lemma II.2.10 to the closed path p′1yi p′2q2 to obtain

an integer m0 such that if we choose a number i0 satisfying λ |i0|− c1 ≥ m0 and hence |i0| ≥ m0 then there

exists a phase path yi′ , |i′| ≤ i0 such that lab(yi′) ∈ E(x). If the vertex b j′ is the end vertex of yi′ , we get that

x−i′ lab(yi′)x− j′h = e in G and hence h ∈ E(x), contradiction. We obtained that there exists i0 depending on
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Figure IV.1: Step I of IV.2.5

e

h

yi

p′2

p′1

x j

x−i

x−t

hxs

x and C, such that
|yi0 |>C. (IV.9)

Step 2. We show now that ai0 ∈ B8δ+Kx(q1). By Lemma II.2.6, ai ∈ BKx([e,x
−t ]) and using twice the

condition (H2), we get that ai0 belongs to B8δ+Kx(q2∪ [h,hxs]∪q1).

Clearly ai0 /∈ B8δ+Kx(q2): since |yi0 | is minimal, i.e. |yi0 | ≤
∣∣ai0−b j′

∣∣ for every j = 0, ...,s, we get for

j′ = 0 that
|yi0 | ≤ |ai0−b0|= |ai0−h| ≤ d(ai0 ,q2)+ |q2| ≤ 8δ +Kx + |h|<C

contrary to (IV.9).

Similarly, ai0 /∈ B8δ+Kx([h,hxs]). Otherwise we may consider a vertex z on [h,hxs] at distance at most

8δ +Kx from ai0 and choose a vertex z′ on p2 at distance no more than Kx from z. Finally, there exists a

phase vertex b j′ on p2 such that
∣∣b j′− z′

∣∣ ≤ |x|/2. Using the minimality of |yi0 | we obtain the estimate for

the length of phase path:

|yi0 | ≤ |ai0− z|+
∣∣z− z′

∣∣+ ∣∣z′−b j′
∣∣≤ (Kx +8δ )+Kx + |x|/2≤C,

which again contradicts (IV.9). The claim of Step 2 is proved.

Step 3. Let us choose some |t| , |s| ≥ |i0| . We choose z on [e,x−t ] such that

|ai0− z| ≤ Kx. (IV.10)

By Step 2, the vertex ai0 is in the set B8δ+Kx(q1) and hence z ∈ B8δ+2Kx(q1). Applying Lemma IV.2.1

(ii) to vertices e,x−t ,hxs,z we get using (IV.5), |h|< 2M1:

|q1| ≥
∣∣xt
∣∣+ |hxs|−2 |z|−2δ −2(8δ +2Kx)≥

∣∣xt
∣∣+(|h|+ |xs|−4M1)−2 |z|−2δ −2(8δ +2Kx).
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Inequality (IV.10) implies that
∣∣xi0
∣∣+Kx ≥ |z| and we conclude that

|q1| ≥
∣∣xt
∣∣+ |h|+ |xs|−2(

∣∣xi0
∣∣+Kx)+2(9δ +2Kx) =

∣∣xt
∣∣+ |h|+ |xs|− (4M1 +2

∣∣xi0
∣∣+6Kx +18δ ).

It remains to define the constant M2 (depending only on 〈x〉, M1, H ) to be 4M1 + 2
∣∣xi0
∣∣+ 4Kx + 18δ

and define m = |i0| . 2

Lemma IV.2.6. ([Arzh], Lemma 13) Let n≥ 1, r0 ≥ 48δ and elements hi,gi ∈ G (1≤ i≤ n) satisfy :

|gi|> 15r0, (1≤ i≤ n), |h1g1| ≥ |h1|+ |g1|− r0, (IV.11)

|gi−1higi| ≥ |gi−1|+ |hi|+ |gi|−2r0(1 < i≤ n). (IV.12)

Then the following assertions are true:

(i) One has

|h1g1...hngn| ≥ |h1g1...hn−1gn−1|+ |hn|+ |gn|−5r0.

In particular one has (by induction) h1g1...hngn 6= e in G.

(ii) Let p be a path in Cay(G) labeled by h1g1...hngn. Then the path p and any geodesic [p−, p+] are

contained within 4r0-neighborhood of each other.

For technical reasons we introduce a the following corollary (related to the Lemma quoted above).

Corollary IV.2.7. Let H be a quasiconvex subgroup of infinite index and r0 ≥ 0 be a constant. Assume

that for every r ≥ r0 there exists a finite set F = F (r) of elements of G such that the number #{F} is

independent of r and:

(A0) F ∩F−1 = /0.

Moreover, for every f1, f2 ∈F±1 and h ∈H :

(A1) | f1|> 15r;

(A2) |h f1| ≥ |h|+ | f1|− r0;

(A3) | f1h f2| ≥ | f1|+ |h|+ | f2|−2r0, unless h = e and f1 = f−1
2 .

Then (i) the conclusion of previous Lemma holds for every path labeled by h1 f1...hn fn unless there exists

i such that hi = e and fi−1 = f−1
i , where f1, ..., fn ∈F±1;

(ii) the group H1 = 〈H ,F 〉 is isomorphic to H ∗(∗g∈F < g>) and is (4δ +4r+max{K,maxg∈F |g|/2})-
quasiconvex in G.

Proof (i) Follows immediately from the above Lemma IV.2.6.

(ii) If the equality h1 f1...hn fn = e holds in G (where fi ∈F , n≥ i≥ 1) then there exists an index i≤ n

such that hi = e for some and fi−1 = f−1
i and exactly one of the elements fi−1, f−1

i belongs to F . Thus the

group generated by H and f1, ..., fn is isomorphic to H ∗ 〈 f1〉 ∗ ...∗ 〈 fn〉.
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Consider an element h= h1 f1...hn fnhn+1 in G, where f1, ..., fn ∈F and if hi = e for i≤ n then fi−1 fi 6= e

(hn+1 can be the identity e). Define a path pp′ in Cay(G) where the subpath p starts from e and is labelled by

h1 f1...hn fn in Cay(G) and the path p′ labeled by hn+1. By (H2) and Lemma IV.2.6(ii), we have that [e, p′+]⊂
B4δ+4r0(p∪ p′). In turn, every vertex v of p∪ p′ is either within K-neighborhood of H1 = 〈H , f1, ..., fn〉
(if v is a vertex of a subpath labeled by hi) or at most maxg∈F (r) |g|/2 away from 〈H , f1, ..., fn〉 (if v

is a vertex of the subpath labeled by fi). We conclude that every vertex z ∈ [e, p′+] is within 4δ + 4r +

max{K,max{K,maxg∈F (r) |g|/2} from a vertex in H1. Hence H1 is (4δ +4r+max{K,max{K,maxg∈F (r) |g|/2})-
quasiconvex. 2

Theorem IV.2.8. Let G be a non-elementary hyperbolic group and H be a K-quasiconvex subgroup of

G. Consider an element x in G of infinite order such that E(x)∩H = {e}. Then there exists a number r0

(depending on H and x only) such that

(i) (xs,h)< r0
2 for any h ∈ H and s ∈ Z and

(ii) for any r ≥ r0 there exists t ′ > 0 such that for every t ≥ t ′ and g = xt the subgroup H1 = 〈g,H 〉 is

(4δ +4r+max{K, |g|/2})-quasiconvex, of infinite index and canonically isomorphic to 〈g〉∗H . Moreover,

the inequalities of Lemma IV.2.6 hold for r; fi ∈ 〈g〉\{e} and hi ∈H .

Proof By Lemma IV.2.4(iii), there exists M > 0 such that (xs,h)< M for any h ∈ H and s ∈ Z, hence

|hxs|= |h|+ |xs|−2(xs,h)≥ |h|+ |xs|−2M. (IV.13)

Now we consider an arbitrary element xm1hxm2 . If |h|> 2M+δ , then apply Lemma IV.2.1(i) to vertices

e, xm1 , xm1h, xm1hxm2 in Cay(G):

|xm1hxm2 | ≥ |xm1 |+ |h|+ |xm2 |−4M−2δ . (IV.14)

Lemma II.2.6(iv) provides a constant M′ ≥ 0 such that the following inequality holds provided m1m2 ≥ 0:

|xm1xm2 | ≥ |xm1 |+ |xm2 |−2M′. (IV.15)

By Lemma IV.2.5, there exist a natural number m and a non-negative constant M2 such that for any |m1| , |m2| ≥
m the following inequality holds:

|xm1hxm2 | ≥ |xm1 |+ |h|+ |xm2 |−M2 (IV.16)

for every h 6= 1, |h|< 2M+2δ . Now we choose

r0 = max{2M+δ ,M2/2,48δ ,M′}, (IV.17)

and then for any r ≥ r0 we choose t ′ satisfying |t ′| ≥ m so that the inequality

∣∣xt
∣∣> 15r, holds for every t, |t| ≥

∣∣t ′∣∣ . (IV.18)
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Note that the choice of r0 in (IV.17) and inequality (IV.13) proves part (i) of our Theorem.

We can observe now that the corollary IV.2.7 holds for H ,r0,r,F (r) = {xt}. The condition (A0) is

immediate, condition (A1) holds by the choice of t, (A2) is satisfied by (IV.13) and (A3) is justified because

(IV.14)–(IV.16) hold.

Thus the group generated by H and g is isomorphic to H ∗ 〈g〉 and the group H1 = H ∗ 〈g〉 is

(4δ + 4r +max{K, |g|/2})-quasiconvex. All conclusions of the Theorem are checked for H1 except the

infiniteness of index. It only remains to observe that the subgroup H2 = 〈H ,g2〉 has infinite index in

〈H ,g〉 and hence in G. It satisfies the all of the conditions of the Theorem and hence the conclusion holds

for the same constant r and g = x2t .2

Let us consider a path p in Cay(G) starting at vertex a and ending with b with label h1 f1...hn fnhn, i.e.

ah1 f1...hn fnhn = b in G, where fi ∈F±1(r), hi ∈H and if hi = e for 1 < i ≤ n then fi−1 fi 6= e. We shall

denote:
a0 = a, b1 = ah1,

ai = ah1...hi fi for 1 < i≤ n, bi = ah1 f1...hi, for 1 < i≤ n.
(IV.19)

Lemma IV.2.9. Assume that H , r0 and a set F (r) (where r ≥ r0) satisfy the corollary IV.2.7. In the

notations (IV.19) we have that (a,bi+1)ai ≤
r0
2 +δ for any i≥ 1.

Proof The definition (H3) for a,bi,ai,bi+1 reads:

|ai−a|+ | fihi+1| ≤ max{|bi−a|+ |hi+1| , |bi+1−a|+ | fi|}+2δ . (IV.20)

The corollary IV.2.7 permits us to apply the inequalities of Lemma IV.2.6(i) and (A2) to the left side of

(IV.20):
|ai−a|+ | fihi+1| ≥ (|ai−1−a|+ |hi|+ | fi|−5r0)+(| fi|+ |hi+1|− r0),

applying (A1) we obtain

|ai−a|+ | fihi+1| ≥ (|ai−1−a|+ |hi|)+ |hi+1|+(2 | fi|−6r0)> |bi−a|+ |hi+1|+24r0.

By(A2) and the conditions on r0 in Lemma IV.2.6:

|ai−a|+ | fihi+1|> |bi−a|+ |hi+1|+24r0 > |bi−a|+ |hi+1|+2δ . (IV.21)

Hence we may rewrite (IV.21) as

|ai−a|+ | fihi+1| ≤ |bi+1−a|+ | fi|+2δ

and thus (using (A2) again):

|bi+1−a| ≥ |ai−a|+ | fihi+1|− | fi|−2δ ≥ |ai−a|+ | fi|+ |hi+1|− r0−| fi|−2δ =

= |ai−a|+ |hi+1|−2δ − r0, which, by (H1), implies that (a,bi+1)ai ≤
r0
2 +δ .2
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Lemma IV.2.10. Assume that H , r0 and a set F (r) (where r ≥ r0) satisfy the corollary IV.2.7. In the

conventions above (see (IV.19)), assume that

(i) ai ∈ BR for some i > 1. Then a1 belongs to BR+2δ−2r.

(ii) bi+1 ∈ BR for some i > 1. Then a1 belongs to BR.

Proof (i) By Lemma IV.2.6(ii), there exists b′ ∈ [a,ai] such that

∣∣b′−a1
∣∣≤ 4r0. (IV.22)

Using inequalities (A2) and (A1) of corollary IV.2.7, we have

∣∣b′−a
∣∣≥ |a−a1|−

∣∣b′−a1
∣∣≥ | f1|+ |h1|− r0−4r0 ≥ 10r. (IV.23)

Similarly, we may inductively apply Lemma IV.2.6(i) to the subpath of p connecting a j,ai for j < i:

∣∣a j−ai
∣∣≥ ∣∣a j−ai−1

∣∣+ |hi|+ | fi|−5r0 >
∣∣a j−ai−1

∣∣+15r−5r0 ≥ 10r(i− j), (IV.24)

and apply it in order to estimate (for i > 1):

∣∣b′−ai
∣∣≥ |a1−ai|−

∣∣a1−b′
∣∣≥ 10r(i−1)−4r0 ≥ 6r.

The inequalities (IV.23) and (IV.24) allow to apply Lemma IV.2.1(iv) to a, ai, e, b′ (with D = 6r) and

get that |b′− e| ≤ max{|a− e| , |ai− e|}+2δ −6r. Since a,ai ∈ BR we have that |b′− e| ≤ R+2δ −6r. We

use the previous inequality together with (IV.22) to conclude that: |a1− e| ≤ |a1−b′|+ |b′− e| ≤ 4r0 +R−
6r+2δ ≤ R+2δ −2r.

(ii) The inequality (IV.24) provides that |ai−a| ≥ 10r > r0
2 + 6δ + 1; on the other hand Lemma IV.2.9

implies that r0
2 +6δ +1≥ (a,bi+1)ai +5δ +1. Thus we can choose a vertex d on a geodesic [a,ai] satisfying

inequalities:

(a,bi+1)ai +5δ +1≥ |d−ai| ≥ (a,bi+1)ai +5δ .

Then, by Lemma IV.2.1(iii), d belongs to B4δ ([a,bi+1]) and using Lemma IV.2.9 we get

d(ai, [a,bi+1])≤ |d−b|+4δ ≤ (a,bi+1)ai +5δ +1+4δ ≤ r0

2
+10δ +1.

By (H2), segment [a,bi+1] belongs to the 4δ -neighborhood of union [e,a]∪ [e,bi+1] which is a subset of BR

because a,bi+1 ∈ BR. Hence

|ai− e| ≤ d(ai, [a,bi+1])+4δ +R≤ R+
r0

2
+14δ +1

and, by part (i) of this Lemma, we conclude that a1 belongs to BR−r+16δ+1 ⊂ BR.2

Lemma IV.2.11. Let H be a K-quasiconvex subgroup in a hyperbolic group G. Take some a ∈ BR and

h ∈H such that ah /∈ BR. Then either (a−1,h)≤ 13δ +K or there exists b1 ∈ aH ∩BR such that b1h1 = ah

and |h1|< |h| for some h1 ∈H .
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Proof Assume that (a−1,h)> 13δ +K. We choose a vertex d on the segment [a,ah] such that |d−a|=
K+8δ . By Lemma IV.2.1(iii), d ∈B4δ ([e,a]) and we can choose d′ ∈ [e,a] to satisfy the inequality |d−d′| ≤
4δ . Then we have

|d− e| ≤
∣∣e−d′

∣∣+ ∣∣d−d′
∣∣≤ (|e−a|−

∣∣a−d′
∣∣)+4δ ≤ R−

∣∣a−d′
∣∣+4δ ≤

≤ R−|a−d|+4δ +4δ ≤ R−K.

By quasiconvexity of H , there exists b1 ∈ aH , |b1−d| ≤ K and hence b1 ∈ BR. By the choice of b1,

we have that b−1
1 ah = h1 ∈H and

|b1−ah| ≤ |b1−d|+ |d−ah| ≤ |b1−d|+(|a−ah|− |d−a|)≤ K +(|h|−K−8δ )< |h| .2

Lemma IV.2.12. Assume that H , r0 and a set F (r) (where r ≥ r0) satisfy the corollary IV.2.7. We adopt

notations (IV.19) and let a,b be vertices in BR and ah1gh2 = b in G for some h1,h2 ∈H , g ∈ F±1(r).

Assume furthermore that (a−1,h1)≤ 13δ +K and that b1 /∈ BR. Then

|h1| ≤ K +
r0

2
+15δ .

Proof Definition (H1) and (A2) yield:

r0

2
≥ (a1,a)b1 ≥ min{(a,b)b1 ,(a1,b)b1}−δ ≥ min{(e,a)b1 ,(e,b)b1 ,(a1,b)b1}−2δ . (IV.25)

Consider the last two Gromov products on the right-hand side of (IV.25). We have:

(e,b)b1 =
1
2
(|b1|+ |b−b1|− |b|) =

1
2
(|b1|− |b|)+

1
2
|b−b1| ,

by the conditions of this Lemma, |b1|> R≥ |b| and using (A1) and (A2) we conclude

(e,b)b1 ≥ 0+
1
2
(|g|+ |h2|− r0)≥

1
2
|g|− r0

2
> 7r ≥ 7r0.

Similarly,

(a1,b)b1 =
1
2
(|g|+ |b−b1|− |h2|)≥

1
2
(|g|+(|g|+ |h2|− r0)−|h2|)≥ |g|−

r0

2
≥ 14

1
2

r0.

Now we may rewrite (IV.25) as r0
2 ≥ (e,a)b1−2δ . Note that (e,b1)a = (a−1,h1)≤ 13δ +K and thus, by

definition of the Gromov product (II.1):

|h1|= (e,a)b1 +(b1,e)a ≤ (
r0

2
+2δ )+(K +13δ ).2

In the following Lemma, we denote〈H ,F (r)〉 by H1. In order to estimate the number of H1-cosets

in the ball BR from below, we define MR = {aH | aH ∩BR 6= /0} and QR = {aH ∈MR|∃b ∈ BR, bH 6=
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aH & bH1 = aH1}.

Lemma IV.2.13. Assume that H , r0 and a set F (r) (where r ≥ r0) satisfy the corollary IV.2.7. Then for

any k ∈ N and all sufficiently large r the following inequality holds: #{QR}
#{BR} ≤

1
2k for any R > 0.

Proof Recall that the number #{F}= #{F (r)} is a constant independent of r. We use corollary IV.1.3

to choose c so that that 2k+1#{F}(#{BK+r0+15δ}2#{BR−c})≤ #{BR} and r so that:

r ≥ max{c/7,2(K +
r0

2
+17δ )}. (IV.26)

Let aH belong to QR, then there exist b ∈ BR, b /∈ aH , and elements hi ∈H (i = 1, ...,k) such that

ah1 f1... fkhk+1 = b in G, where fi ∈F±1. By Lemma IV.2.10, we have that either b1 = ah1 or a1 = ah1 f1

or ah1 f1h2 belongs to BR. Hence we can assume that b = ah1gh2, where h1,h2 ∈H , g ∈ F±1. Clearly

aH 6= bH , otherwise ah1gh2 = ah and g ∈H , contradiction.

We may also assume that a,h1 are chosen so that |h1| is minimal with respect to all factorizations a′h′ =

ah1 in G where a′ ∈ aH ∩BR. Similarly, we may assume that b,h2 are chosen so that for any b′ ∈ bH ∩BR

and h′ ∈H the equality b′h′−1 = bh−1
2 implies that |h′| ≥ |h| . According to the choice we made, if h1 6= e

(h2 6= e) then b1 = ah1 /∈ BR (respectively a1 = ah1g /∈ BR). Now we are in position to apply Lemma IV.2.11

to the pairs a,ah1 and b,bh−1
2 , which provides that (a−1,h1) ≤ K + 13δ , (b−1,h−1

2 ) ≤ K + 13δ , and then,

by Lemma IV.2.12, we conclude that

|hi| ≤ K +
r0

2
+15δ , for i = 1,2. (IV.27)

If hi = e for i = 1 or 2 then the corresponding inequality in (IV.27) holds trivially.

We have that b1,a1 ∈ BR+K+
r0
2 +15δ

. Since |g| > 15r, we can fix a factorization g = g1g2 in G for every

g ∈F such that |g1|+ |g2|= |g| and |g1| , |g2| ≥ 15r
2 . Let b′ = ah1g1 if g ∈F and b′ = ah1g−1

2 if g−1 ∈F ,

we will call b′ a middle point of the path p starting at a with label h1gh2.

Applying Lemma IV.2.1(iv) to vertices b1,a1,b′, we obtain that |b′− e| ≤ (R+K+ r0
2 +15δ )+2δ− 15r

2 .

As we choose r according to (IV.26) we obtain:

b′ ∈ BR−7r. (IV.28)

We have obtained that if a coset a′H belongs to QR then there exist a ∈ a′H ∩BR, b ∈ BR, h1,h2 ∈H

and g ∈F±1 such that the equation ah1gh2 = b holds in G together with conditions (IV.27) and (IV.28).

Hence the number of elements in QR is not greater then the number of paths with label h1gh2 in Cay(G)

such that the middle point b′ of each path satisfies (IV.28):

#{QR} ≤ #{of h1gh2 satisfying (IV.27)}×#{BR−7r} ≤ 2#{F}#{BK+
r0
2 +15δ

}2×#{BR−7r}. (IV.29)

Due to our choice of r in (IV.26) we finally get

#{QR} ≤ 2#{F}#{BK+
r0
2 +15δ

}2#{BR−7r} ≤
1
2k #{BR}.2
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Corollary IV.2.14. Let H be a free K-quasiconvex subgroup in G. Then for any k ∈ N and any x ∈ G of

infinite order either:

(i) there exists t 6= 0 such that xt ∈H , or

(ii)there exists t such that for g = xt the group 〈H ,g〉 is quasiconvex and canonically isomorphic to the

free product H ∗ 〈g〉. Moreover #{QR}
#{BR} ≤

1
2k for any R > 0.

Proof Assume that (i) does not hold, so xt ∈H implies t = 0. By Lemma IV.2.2, we have that for

every M ≥ 0 the number of vertices in BM(〈x〉)∩BM(H ) is finite. There exists M0 ≥ 0 such that E(x) is in

M0-neighborhood of 〈x〉, hence BM(E(x))∩BM(H )⊂ BM+M0(〈x〉)∩BM+M0(H ) and hence #{BM(E(x))∩
BM(H )} is finite thus #{E(x)∩H }< ∞. Since H is free, the last inequality means that E(x)∩H = {e}.
It remains to define F (r) = {xt} so that |xt | ≥ 15r and apply the previous Lemma.2

Remark IV.2.15. (i)Let H be an infinite quasiconvex subgroup of G of infinite index. Then there exists an

element x ∈ G of infinite order such that it is non-commensurable with any element of H .

(ii)Part (i) implies that no infinite index subgroup satisfying the Burnside condition in a non-elementary

hyperbolic group is quasiconvex.

Proof (i) Follows from A. Minasyan’s Lemma II.2.4 for K = G. 2

Theorem IV.2.16. For every non-elementary δ -hyperbolic group G and any 0 < q < 1 there exists a free

subgroup H satisfying the Burnside condition and such that #{aH| aH∩BR 6= /0}
#{BR} ≥ q.

Proof We choose a sequence {ki}i∈N such that

Σ
∞
i=1

1
2ki

< 1−q. (IV.30)

Let {x j}, j ∈ N be a list of all elements of infinite order in G. We fix notations Hi = 〈xt1
1 , ...,x

ti
i 〉 for

some positive numbers ti ∈ N which we will determine later. We define H = ∪∞
i=1Hi, it clearly satisfies the

Burnside condition. Then we denote Mi
R = {aHi| aHi∩BR 6= /0} and Qi

R = {aHi| ∃b ∈ BR such that aHi 6=
bHi & aHi+1 = bHi+1}.

We set H0 = {e} and thus M0
R = BR. Lemma IV.2.14 (applied to H0, x1 and k1) provides that there exists

t1 > 0 such that H1 = 〈 f1〉 (where f1 = xt1
1 ) is cyclic, quasiconvex and #{Q0

R}
#{BR} ≤

1
2k1

for any R > 0. It provides

the following estimate for M1
R:

#{M1
R} ≥ #{M0

R}−#{Q0
R} ≥ (1− 1

2k1
)#{BR}.

Now we assume by induction that a free quasiconvex subgroup Hi = 〈xt1
1 , ...,x

ti
i 〉 has been constructed

by repeated application of Lemma IV.2.14 and Mi
R satisfies inequality

#{Mi
R} ≥ (1− 1

2k1
− 1

2k2
− ...− 1

2ki
)#{BR}. (IV.31)

If 〈xi+1〉 ⊂ BM(Hi) for some M ≥ 0 then, by Lemma IV.2.4, there exists ti+1 > 0 such that xti+1
i+1 ∈Hi and

we can set Hi+1 = Hi, finishing the induction step (Mi+1
R = Mi

R).
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Assume now that 〈xi+1〉 6⊂ BM(Hi) for any non-negative M, then, by Lemma IV.2.4, we have #{E(x)∩
Hi} < ∞ and hence (because Hi is free) E(x)∩Hi = {e}. We choose ti+1 appplying Lemma IV.2.14 to

Hi,xi+1,ki+1 and using the induction assumption (IV.31):

#{Mi+1
R } ≥ #{Mi

R}−#{Qi
R} ≥ (1− 1

2k1
− 1

2k2
− ...− 1

2ki
)#{BR}−#{Qi

R} ≥

≥ (1− 1
2k1
− 1

2k2
− ...− 1

2ki+1
)#{BR},

and, by (IV.50):

#{MR} ≥ (1−Σ
∞
i=1

1
2ki

)#{BR}> q#{BR}.2

Proof of Theorem IV.1.10 By the remark IV.1.7, the number of left cosets intersecting Bn is equal to

the number fH\G(n) of right ones. We can now fix some 0 < q < 1 and using Theorem IV.2.16 find a group

H such that fH\G(n)≥ q f (n). Thus, by remark IV.1.4, the growth of action of G on H\G is maximal. 2

IV.3 Proof of Theorem I.1.8 and corollary I.1.9

The proof of the claim that the element g is G-suitable (i.e. E(g) = 〈g〉×E(G)) in the Lemma below is

similar to that in [Olsh93] and to that in Lemma 3.8 in [Min2005], which we will apply. However, we write

up the proof completely because the the entire statement does not follow from these considerations.

Lemma IV.3.1. Let G be a non-elementary hyperbolic group and H be a quasiconvex subgroup of infinite

index in G. Assume there exists an element y ∈H such that E(y) = 〈y′〉×E(G) for some y′ ∈G and take an

element x ∈ G ( it exists by remark IV.2.15) of infinite order which is non-commensurable with any element

in H . Then

(i) there exist k1,k2 > 0 such that for every s > 0 the element g = yk1sxk2s is G-suitable and non-

commensurable with any element of H ;

(ii) for every C0 ≥ 0 there exists s0 > 0 such that for every s≥ s0, every a,b ∈ BC0 and every t 6= 0:

a(yk1sxk2s)tb /∈H .

Proof (i) We define a subgroup H1 = 〈y〉, which is quasiconvex by Lemma II.2.6(ii). Since H1∩E(x) =

{e}, there exists a constant r0 ≥ 0 such that (xt ,ys)< r0
2 for all t,s ∈Z by Theorem IV.2.8. By part (ii) of the

same Theorem and r = r0, there exists t ′> 0 such that 〈xt ′ ,y〉 ∼= 〈xt ′〉∗〈y〉. We denote x1 = xt ′ so the subgroup

〈x1,y〉 is free quasiconvex and inequalities of Lemma IV.2.6 hold for H1,x1 and r = r0. In particular, for

every reduced word w in 〈x1,y〉, the corresponding path in Cay(G) with label w is within 4r0-neighborhood

of a geodesic connecting its ends.

By Lemma IV.2.4, there exists M ≥ 0 such that (xs,h)< M for every s ∈ Z, h ∈H . Choose t > 0 such

that |xs
1|> 4r0 +K +2M for every |s| ≥ t and denote x2 = xt

1. We have that for any non-zero m:

d(xm
2 ,h)≥ |xm

2 |+ |h|−2M ≥ |xm
2 |−2M > 4r0 +K. (IV.32)
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Figure IV.2: Lemma IV.3.1
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Let element w = ys0xt1
2 ys1 ...xtn

2 ysn satisfy si, ti, tn 6= 0 for i = 1, ...,n− 1 and assume that w ∈H . Then ev-

ery phase vertex of w is in (4r0 +K)-neighborhood of H , which contradicts inequality (IV.32) because

d(ys0xt1
2 ,y

s0) = d(xt1
2 ,e) > 4r0 +K. We conclude that an element w of the free group H2 = 〈x2,y〉 is com-

mensurable with an element of H if and only if w = ys for some integer s. We have proved the first part of

(i): for sufficiently large k1,k2 and every s 6= 0 the element yk1sxk2s is not commensurable with any element

of H .

Now we consider an element ykxk
2 for sufficiently large k and will show that the group E(ykxk

2) is equal

to 〈ykxk
2〉×E(G). Let z be an element of E(ykxk

2), i.e. the equality z(ykxk
2)

mz−1 = (ykxk
2)

m′ holds in G for

some m =±m′ 6= 0. We choose a constant

M0 > 2 |z|+8r0 +26δ +(3k+1)(max{|y| , |x2|})

and a natural number s divisible by m such that
∣∣(ykxk

2)
s
∣∣ ≥ M0. We consider a closed path p1q1 p2q2 in

Cay(G) such that lab(p1) = lab(p2) = z, lab(q1) = (ykxk
2)

s, and lab(q−1
2 ) = (ykxk

2)
s′ , where s′ = ±s. For

convenience we denote the initial vertices of p1,q1, p2,q2 by a,b,c,d respectively. We choose a vertex u on

[b,c] at distance |z|+5δ in Cay(G) from the vertex b. Then, using (H2), u is in 4δ -neighborhood of some u1

on [a,c]∪ [a,b] and, by the choice of u, is actually on [a,c]. Using (H2) again, and taking into account that

|u1− c| ≥ |b− c|− |z|−5δ −4δ ≥M0−|z|−9δ > |z|+5δ

we obtain that there exists u′ on [a,d] satisfying |u′−u1| ≤ 4δ . Hence

∣∣u′−u
∣∣≤ 8δ . (IV.33)

Similarly we can choose v on [b,c] at distance |z|+5δ from the vertex c and a vertex v′ on [a,d] such that

∣∣v′− v
∣∣≤ 8δ . (IV.34)

Since q1 and [b,c] are within 4r0-neighborhood of each other, we find phase vertices u,v on q1 relative to
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the factorization ykxk
2...y

kxk
2 of lab(q1) such that

|u−u| , |v− v| ≤ 4r0 +
1
2

max{|y| , |x2|}. (IV.35)

Similarly we find phase vertices u′,v′ on q2 such that

∣∣u′−u′
∣∣ , ∣∣v′− v′

∣∣≤ 4r0 +
1
2

max{|y| , |x2|}. (IV.36)

Now we consider a closed path p′1q′1 p′2q′2, where q′1,q
′
2 are subpaths of q1 and q2 respectively and

p′1 = [u′,u], p′2 = [v′,v]. According to inequalities (IV.33)–(IV.36) above:

|pi| ≤ 8r0 +max{|y| , |x2|}+8δ , where i = 1,2. (IV.37)

Note that

∣∣q′1∣∣= |u− v| ≥ |u− v|− |u−u|− |v− v| ≥ |q1|− |u− c|− |v− c|− |u−u|− |v− v| ,

and using the definitions of u,v and (IV.35) we get:

∣∣q′1∣∣≥M0−2 |z|−10δ −8r0−max{|y| , |x2|}> 3k max{|y| , |x2|}. (IV.38)

We consider q′1 = t1...tn, where either lab(t2i−1)= yk, lab(t2i)= xk
2 for every 1< 2i≤ n−1 or lab(t2i−1)=

xk
2, lab(t2i) = yk for every 1 < 2i≤ n−1. By the estimate on q′1 above, we have that n≥ 4.

Now we use (IV.33), (IV.34) and (IV.38) to obtain:

∣∣q′2∣∣= ∣∣u′− v′
∣∣≥ ∣∣u′− v′

∣∣− ∣∣u′−u
∣∣− ∣∣v′− v

∣∣≥ |u− v|−
∣∣u′−u

∣∣− ∣∣v′− v
∣∣− ∣∣u′−u

∣∣− ∣∣v′− v
∣∣

≥M0−16δ −2 |z|−10δ −8r0−max{|y| , |x2|}> 3k max{|y| , |x2|}.

We consider (q′2)
−1 = t ′1...t

′
n′ , where lab(t2i) = yk′ , lab(t2i+1) = xk′

2 for every 1 < 2i < n′− 1 or lab(t2i) =

xk′
2 , lab(t2i+1) = yk′ for every 1 < 2i < |n′|−1 where k =±k′. By the estimate on q′1 above, n′ ≥ 4.

We can now apply Lemma II.2.10 to the closed path p′1q′1 p′2q′2 with upper bound on |p′i| provided by

(IV.37) and obtain a constant m0 such that for every k≥m0 the paths t2 and t3 are compatible with t ′i and t ′i+1

respectively (for some unique i). Let us denote for convenience lab(t2) =W k
2 , lab(t3) =W k

3 , lab(t ′i) =W k′
i ,

lab(t3) =W k′
i+1, where the sets {W2,W3}, {W i,W i+1} and {x,y} are all equal. Lemma II.2.10 also provides

that there exist compatibility paths v2 and v3 with labels V2,V3 such that:

V−1
2 W r

2V2 =W s
i , V−1

3 W r′
3 V3 =W s′

i+1, (IV.39)

for some r,s,r′,s′ > 0. Because x2 and y are non-commensurable, the equalities (IV.39) are only possible

if W2 ≡W±1
i and W3 ≡W±1

i+1. Moreover, one of the exponents is positive because y is not conjugate with

y−1 and thus lab(q2)
−1 = (ykxk

2)
m and W2 ≡W i and W3 ≡W i+1. Now by definition of compatible paths,
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we have that V2 ∈ E(W2) and V3 ∈ E(W3). Consider a path v connecting the terminal vertex of t2 with the

terminal vertex of t ′i . We also consider a pair of paths q1v2q2 and q3v3q4 each of which has the same initial

and terminal vertices as the path v. Reading off their labels provides the following inequalities in G:

lab(v) =W s1
2 V2W s2

2 =W s3
3 V3W s4

3

for some exponents si ∈Z. Hence lab(v)∈E(W2)∩E(W3) =E(x2)∩E(y) =E(G). We obtained that z=

lab(p1) is equal to either (ykxk
2)

s′ lab(v)−1(ykxk
2)
−s′′ or (ykxk

2)
s′yklab(v)−1((ykxk

2)
s′′yk)−1 =(ykxk

2)
s′ lab(v)−1(ykxk

2)
−s′′

for some non-negative numbers s′,s′′. In both cases z ∈ E(G)× 〈(ykxk
2)〉. We computed the maximal el-

ementary subgroup E(ykxk
2) for all sufficiently large k: E(ykxk

2) = E(G)× 〈(ykxk
2)〉. Since x2 is a power

of x we conclude that there are k1 = k and k2 > 0 and divisible by k such that for every s 6= 0 we have

E(yk1sxk2s
2 ) = E(G)×〈(yk1sxk2s

2 )〉. We have shown the second part of (i).

(ii) By the way of contradiction we assume that the inclusions ai(yk1sixk2si)tibi = hi ∈H hold for in-

finitely many distinct numbers si ∈ N, some ti > 0 and ai,bi ∈ BC0 . Because BC0 is finite there are a,b ∈ BC0

such that the equality a(yk1sixk2si)tib = hi holds for infinitely many natural numbers si and ti 6= 0.

By the choice of x1 in part (i) of the Lemma, the path qi with label (yk1sixk2si)ti starting at a is within 4r0-

neighborhood of the geodesic [a,a(yk1sixk2si)ti ] which in turn is in the C0 +8δ -neighborhood of the geodesic

q′i = [e,a(yk1sixk2si)tib]. Hence vertices ayk1si and ayk1sixk2si are within 4r0 +C0 + 8δ -neighborhood of q′i.

Because H is K-quasiconvex and lab(q′i) = hi ∈H we have

d(ayk1si ,H ),d(ayk1sixk2si ,H )≤ 4r0 +C0 +8δ +K,

hence a subpath q̄i of qi with label xk2si is within C1 = 4r0 +C0 + 8δ +K-neighborhood of H in Cay(G).

Thus there exist elements z1i,z2i ∈ BC1 such that z1ixk2siz2i ∈H for infinitely many distinct natural numbers

si. Because the balls in Cay(G) are finite, there are z1,z2 ∈ BC1 such that z1xk2siz2 ∈H hold for infinitely

many si.

It follows from remark IV.2.3 that z1xnz−1
1 ∈H for some n 6= 0. Contradiction with the choice of x in

(i).2

Lemma IV.3.2. Let G be a non-elementary hyperbolic group and H be a quasiconvex subgroup of infinite

index in G such that E(G)∩H = {e}, then there exist a G-suitable element g ∈ G and a number t0 > 0

such that for every t ≥ t0 the group 〈H ,gt〉 is quasiconvex of infinite index and is canonically isomorphic

to H ∗ 〈gt〉.

Proof By Lemma II.2.7, there exists a G-suitable element y ∈ G. We have either

(I) #{E(y)∩H }< ∞,

or (II) #{E(y)∩H } is infinite.

Take an element yka ∈ E(g) and assume yka ∈H for some k ∈ Z and a ∈ E(G), then we have (yka)n =

yknan for every n (because a commutes with y). Note that for a non-zero k the equality ykn1an1 = ykn2an2

holds in G if and only if n1 = n2.

Hence in case (I) we have that k = 0 and thus E(y)∩H ⊂ E(G)∩H = {e} and we may apply Theorem

IV.2.8 to find t > 0 and obtain the canonical isomorphism 〈H ,yt〉 ∼= H ∗ 〈yt〉.
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Thus we only need to consider case (II) when yka ∈H for some non-zero k. Replacing y with yka we

may assume that y is in H . By remark IV.2.15, there exists an element x of infinite order such that x is

non-commensurable with any element of H . Replacing x with its non-zero power if necessary, we may

assume that x commutes with E(G).

We can choose a (sufficiently large) k so that the conclusion of the Lemma IV.3.1 holds for H and

g = ykxk
2. We have that E(g)∩H = {e} for g = ykxk

2, and now the result follows from Theorem IV.2.8.2

Proof of Theorem I.1.8 (i) The sufficiency is provided by Theorem IV.2.8. Assume that there exists

an element x of infinite order and t 6= 0 such that 〈H ,xt〉 ∼= H ∗ 〈xt〉. Take h ∈ E(x)∩H , then there exist

n 6= 0 and n′ =±n such that h−1xnhxn′ = e in G. Thus h−1xtnhxtn′ = e in G which imlpies h = e.

(ii) The sufficiency follows from Lemma IV.3.2. To show the necessity it is enough to notice that if the

element x satisfying part (i) exists then E(G)∩H ≤ E(x)∩H = {e}.
(iii) Denote the subgroup E(G)∩ (H ∗ 〈xt〉) by K, it is a finite subgroup in H ∗ 〈xt〉. By Kurosh sub-

group Theorem, K is conjugate to a subgroup in H . On the other hand K is normal in H ∗ 〈xt〉 and thus

K < H , i.e. E(G)∩H ∗ 〈xt〉 ≤ E(G)∩H = {e}2.
Proof of corollary I.1.9
Consider a canonical homomorphism φ : G→ G = G/E(G). It is clear that E(G) = {e}: the subgroup

E(G) is finite normal, hence the subgroup φ−1(E(G)) is finite normal and thus φ−1(E(G))≤ E(G). Homo-

morphism φ is a quasi-isometry because E(G) is finite. Thus H = φ(H ) is quasiconvex of infinite index

in G. We can apply Lemma IV.3.2 to H ,G and find some y such that E(y) is infinite cyclic and obtain the

isomorphism 〈H ,y〉 ∼= H ∗ 〈y〉. Consider some preimage y of y. Clearly,

φ
−1(〈H ,y〉) = 〈H ·E(G),y〉 ∼= H ·E(G)∗E(G) 〈y,E(G)〉.2

IV.4 Maximal growth highly transitive actions of hyperbolic groups

Consider a pair of ordered sets U = {u1, ...,uk} and V = {v1, ...,vk} such that uiH = u jH if and only

if i = j and viH = v jH if and only if i = j. We take a constant C0 such that U ,V ⊂ BC0 . Having fixed

U ,V , some auxiliary element g ∈ G and a natural number s0, we fix some t 6= 0 and denote fi = v−1
i gs0tui

for i = 1, ...,k, ui ∈U ,vi ∈ V .

Lemma IV.4.1. Let H be a K-quasiconvex subgroup of infinite index in a hyperbolic group G with the

trivial finite radical E(G) = {e}. For any k > 0 and any pair of ordered sets U ,V there exist an element

g ∈ G,a number r0 ≥ 0, a natural number s0 such that for any r ≥ r0 there exist a natural number t and the

set F (r) = { f1, ..., fk} satisfying the conditions (A0)–(A3) and hence corollary IV.2.7.

Proof We apply Lemma IV.3.2 to H : there exists an element y such that E(y) is infinite cyclic and

the group H1 = 〈H ,y〉 is quasiconvex of infinite index and is isomorphic to H ∗ 〈y〉 in G. Then we take

an element x in G which is non-commensurable with any element of H1 (see remark IV.2.15). By Lemma

IV.3.1, for sufficiently large s there exists an element g= yk1sxk2s which is non-commensurable with elements

of H , E(g) = 〈g〉 and such that

for every t1 6= 0 and all a,b ∈ BC0 we have agt1b /∈H . (IV.40)
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We will define r0, s0 and t so that the system F (r) satisfies the conditions (A0)− (A3).

Take an element a∈ BC0 . Element g is non-commensurable with any element of H and hence agma−1 /∈
H for any m 6= 0. We obtained that H ∩E(aga−1) =H ∩〈aga−1〉= {e} and thus we may apply Theorem

IV.2.8 and get r0(a)≥ 0 and s0(a)> 0 such that there exist numbers r0(a)≥ 0 and s0(a)≥ 0:∣∣∣h(aga−1)s0(a)·t
∣∣∣≥ |h|+ ∣∣∣(aga−1)s0(a)·t

∣∣∣− r0(a) for any t ∈ Z. (IV.41)

We now fix constants r1 ≥ r0(a) for every a ∈ BC0 and s1 = ∏a∈BC0
s0(a). Hence, for every b ∈ BC0 and

every t ∈ Z we have:

∣∣hags1tb
∣∣≥ ∣∣hags1ta−1∣∣−2C0 ≥ |h|+

∣∣ags1ta−1∣∣−2C0− r1 ≥ |h|+
∣∣ags1tb

∣∣−4C0− r1.

One obtains that the following inequality holds:

∣∣hags1tb
∣∣≥ |h|+ ∣∣ags1tb

∣∣−4C0− r1. (IV.42)

Now notice that if s1 divides s0 and fi = v−1
i gs0tui then for ε ∈ {±1}, h∈H and arbitrary t 6= 0 we have

that

( f ε
i ,h)≤ r1/2+2C0. (IV.43)

We consider the expression f ε1
i h f ε2

j , where ε1,ε2 ∈ {±1}.
Case I. Assume that |h| ≥ 2r1 +4C0 +δ . Then we have, by Lemma IV.2.1(i):∣∣∣ f ε1

i h f ε2
j

∣∣∣≥ ∣∣ f ε1
i

∣∣+ |h|+ ∣∣∣ f ε2
j

∣∣∣−2(r1/2+2C0)−2(r1/2+2C0 +δ ). (IV.44)

Case II. Now let |h|< r1 +4C0 +δ . By definition of elements fi, f j, we can rewrite f ε1
i h f ε2

j as

β1gs0tε1α1hα2gs0tε2β2 for some α1,β1 ∈ {u±1
i ,v±1

i } and α2,β2 ∈ {u±1
j ,v±1

j }. Using our assumption on h we

get that |α1hα2| ≤ r1 +6C0 +δ .

Assume that α1hα2 /∈ E(g). Then by Lemma IV.2.5, there exist M1 and a natural number m0 (both

depending on r1 +6C0 +δ , H and g only) such that if s0 ≥ m0 then for all t ∈ Z:

∣∣gs0tε1α1hα2gs0tε2
∣∣≥ ∣∣gs0tε1

∣∣+ |α1hα2|+
∣∣gs0tε2

∣∣−M1. (IV.45)

Thus ∣∣∣ f ε1
i h f ε2

j

∣∣∣≥ ∣∣gs0tε1α1hα2gs0tε2
∣∣−2C0 ≥

∣∣gs0tε1
∣∣+ |α1hα2|+

∣∣gs0tε2
∣∣−M1−2C0 ≥

≥
∣∣ f ε1

i

∣∣+ |h|+ ∣∣∣ f ε2
j

∣∣∣−8C0−M1;

and we get the estimate: ∣∣∣ f ε1
i h f ε2

j

∣∣∣≥ ∣∣ f ε1
i

∣∣+ |h|+ ∣∣∣ f ε2
j

∣∣∣−8C0−M1. (IV.46)

It remains to consider the subcase when α1hα2 ∈ E(g) = 〈g〉. By the choice of element g, the equality
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α
−1
1 gt0α

−1
2 = h ∈H may hold if and only if t0 = 0 and thus

α1hα2 = e in G. (IV.47)

If ε1ε2 = 1 we choose a constant M(g) according to Lemma II.2.6(iv) and obtain that∣∣∣ f ε1
i h f ε2

j

∣∣∣= ∣∣β1g2s0t
β2
∣∣≥ ∣∣g2s0t

∣∣−2C0 ≥
∣∣gs0t

∣∣+ ∣∣gs0t
∣∣−M(g)−2C0;

hence: ∣∣∣ f ε1
i h f ε2

j

∣∣∣≥ ∣∣ f ε1
i

∣∣+ |h|+ ∣∣∣ f ε2
j

∣∣∣−8C0−M1. (IV.48)

If ε1ε2 =−1, then the expression f ε1
i h f ε2

j is either v−1
i gs1tuihu−1

j g−s1tv j or u−1
i g−s1tvihv−1

j gs1tu j and thus

α1 = ui and α2 = u−1
j or α1 = vi and α2 = v−1

j . From equality (IV.47) we get that uih = u j or, respectively,

vih = v j. Hence i = j and thus fi = f j, h = e and the expression f ε1
i h f ε2

j is trivial.

We can now choose the constant r0 = max{r1 +δ , M1
2 , M(g)

2 }+4C0. Then choose a natural number s0 so

that it is divisible by s1 and satisfy s0 ≥ m0.

Finally, we choose the number t so that the condition (A1) is satisfied for F (r).

The condition (A0) holds because if fi = f−1
j then gs0tu jv−1

i gs0t = v ju−1
i . It is a contradiction with the

length estimate of the left-hand side of the last equality by means of (IV.45):

∣∣gs0tu jv−1
i gs0t

∣∣≥ ∣∣gs0t
∣∣+ ∣∣u jv−1

i

∣∣+ ∣∣gs0t
∣∣−M1 ≥ 30r0 +2C0−M1 > 2C0.

The condition (A2) holds because the formula (IV.42) holds for all a,b ∈ BC0 . The condition (A3) holds

by formula (IV.44) if |h| ≥ 2r1 +4C0 +δ , and by (IV.46) and (IV.48) otherwise.2

Theorem IV.4.2. Let G be a non-elementary hyperbolic group with trivial finite radical E(G) = {e} and let

H be a quasiconvex subgroup H of infinite index in G. If {u1H , ...,ukH } and {v1H , ...,vkH } is a pair

of ordered k-tuples of pairwise distinct cosets, then for every l ∈ N there exists a quasiconvex subgroup of

infinite index H1 such that:

(i) H1 ≥H and H1 is of infinite index in G;

(ii) there exists an element g1 such that g1uiH1 = viH1 for every i = 1, ...,k;

(iii) #{QR}
#{BR} ≤

1
2l for any R > 0, where QR = {aH | ∃b ∈ BR such that aH 6= bH & aH1 = bH1}.

Proof Because the index of H is infinite in G we can choose some auxiliary elements u0,v0 such

that u0H 6= uiH , v0H 6= viH for every i = 1, ...,k. We apply Lemma IV.4.1 to U = {u0, ...,uk}, V =

{v0, ...,vk}. There exist an element g ∈ G, number r0 ≥ 0, number s0 such that for any r ≥ r0 there exist

t = t(r) and the set F0(r) = {v−1
0 gs0tu0, ...,v−1

k gs0tuk} and hence (by corollary IV.2.7) the group H0 is

quasiconvex and the following isomorphism is canonical:

H0 ≡H ∗ (∗g∈F0(r) < g >). (IV.49)

Consider a group H1 ≤H0 defined by H1 = 〈H ,F (r)〉, where F (r) = {v−1
1 gs0tu1, ...,v−1

k gs0tuk}. Be-

cause of canonical isomorphism (IV.49), subgroup H1 is of infinite index in H0 and hence in G. Conditions
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(A0)− (A3) hold for F (r) because F (r)⊂F0(r). Thus, by corollary IV.2.7, H1 is quasiconvex of infinite

index and (i) is checked for all sufficiently large r.

The following computation shows that the condition (ii) holds for g1 = gs0t :

viH1 = vi(v−1
i gs0tuiH1) = gs0tuiH1

To conclude the proof we observe that Lemma IV.2.13 holds for all sufficiently large r, showing (iii). 2

We are ready to generalize the following statements of Bahturin and Ol’shanskii.

Corollary IV.4.3. [BO] Any finitely generated subgroup H of infinite index in the free group F of rank

r > 1, is contained as a free factor in a subgroup K of infinite index in F such that the right action of F on

F/K is highly transitive. In particular, K is a maximal subgroup in F. One can choose K in such a way that

the growth of the action of F on F/K is maximal.

Corollary IV.4.4. [BO] Any finitely generated subgroup H of infinite index in a free group F of rank r > 1, is

a free factor in a Burnside subgroup K of infinite index such that the action of F on F/K is highly transitive.

One can choose K so that the growth of the action of F on F/K is maximal.

It is a natural next step to generalize these corollaries to the class of hyperbolic groups. In particular,

this question was asked by Z. Sela after the presentation of [BO] by A. Olshanskiy (“Models and Groups”,

Istambul 2009).

By remark IV.1.7, the growth functions of action of left action of G on G/H is equal to the growth

function of right action of G on H\G. By Proposition IV.1.8, for every quasiconvex subgroup H of infinite

index there exists c1 > 0 such that

#{M0
R} ≥ c1#{BR}, for all R≥ 0,

where M0
R = {aH | aH ∩BR 6= /0}.

Proposition IV.4.5. Let G be a non-elementary δ -hyperbolic group with trivial finite radical E(G) = {e}
and let H be a quasiconvex subgroup H of infinite index in G. Pick a number 0 < q < 1. There exists a

subgroup H ≥H such that the natural left action of G on G/H is faithful, highly transitive and
#{aH| aH∩BR 6= /0}

#{BR} ≥ c1q.

The proof is analogous to that in IV.2.16.

Proof We choose a sequence {li}i∈N such that

Σ
∞
i=1

1
2li

< c1(1−q). (IV.50)

We will define an increasing sequence of quasiconvex subgroups H0 = H ≤H1 ≤ ... and set H =

∪∞
i=1Hi.
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As in Theorem IV.2.16, we denote Mi
R = {aHi| aHi∩BR 6= /0} and Qi

R = {aHi| ∃b∈BR such that aHi 6=
bHi & aHi+1 = bHi+1}. Hence we have:

#{Mi+1
R } ≥ #{Mi

R}−#{Qi
R}.

Assume that Hi has been defined and

#{Mi
R} ≥ (c1−

1
2l1
− 1

2l2
− ...− 1

2li
)#{BR}. (IV.51)

Note that the inequality above holds trivially for i= 0. If umHi = unHi (or vmHi = vnHi) for 1≤m< n≤ k,

then we set Hi = Hi+1 and the equation IV.52 holds trivially. If umHi 6= unHi and vmHi 6= vnHi for every

m,n such that 1≤ m < n≤ k, then, by Theorem IV.4.2, there exist a quasiconvex subgroup Hi+1 of infinite

index and an element gi such that Hi+1 ≥Hi, for every m = 1, ...,k the equality giumHi+1 = vmHi+1 holds

and #{Qi
R}

#{BR} ≤
1

2li
for any R > 0. Hence we have:

#{Mi+1
R } ≥ #{Mi

R}−#{Qi
R} ≥ (c1−

1
2l1
− 1

2l2
− ...− 1

2li+1
)#{BR} (IV.52)

and thus
#{aH| aH ∩BR 6= /0}

#{BR}
≥ limi→∞#{Mi+1

R } ≥ (c1−Σ
∞
i=1

1
2li

)#{BR}> qc1#{BR}.

It is clear that the action is highly transitive. Choose a pair of k-tuples (u1H, ...,ukH) and (v1H, ...,vkH)

such that umH 6= unH, vmH 6= vnH for all 1 ≤ m < n ≤ k. The k-tuples (u1, ...,uk) and (v1, ...,vk) were

enumerated by some integer i and, because Hi ≤ H, we have umHi 6= unHi and vmHi 6= vnHi. By the

choice of Hi+1, there exists gi such that giumHi+1 = vmHi+1 holds for every m≤ k and thus giumH = vmH,

as desired. 2

The following Theorem can now be deduced from Proposition IV.4.5.

Theorem IV.4.6. Let G be a non-elementary δ -hyperbolic group and H be a quasiconvex subgroup of

infinite index in G. Then there exists a subgroup H containing H such that the natural right action of G on

H\G is highly transitive and has maximal growth. Moreover, the kernel of any action of maximal growth is

equal to the finite radical E(G).

Proof We consider the quotient φ : G→ G/E(G) and the image H of the subgroup H under this

quotient. The corollary above implies that there exists a subgroup H of G such that the action of G on H\G
is faithful, highly transitive and has maximal growth. One can define the subgroup H = φ−1(H) in G and

the action of G on H\G. 2

Corollary IV.4.7. Let G be a non-elementary δ -hyperbolic group with trivial finite radical E(G) = {e}. For

any number q, 0 < q < 1 there exists a subgroup H such that:

(i) H satisfies the Burnside condition;

(ii) the natural left action of G on G/H is faithful, highly transitive and for every R≥ 0:
#{aH| aH∩BR 6= /0}

#{BR} ≥ q.

(iii) the subgroup H is a free and maximal subgroup in G.
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The Theorem I.1.11 follows from the above corollary in the same way as did Theorem IV.4.6 from

Proposition IV.4.5.

The Proof of (i)-(ii) is similar to that in IV.2.16 and IV.4.5, we only need to alternate applications of

Theorem IV.4.2 and corollary IV.2.14. The action is faithful by remark IV.1.11(ii): it is of maximal growth

and E(G) = {e}.
(iii) Because the stabilizer of any point of a 2-transitive group action is a maximal subgroup in the group

G (see [Rot], pp. 256-258), we have that H is maximal. When constructing H, we start from a trivial

subgroup, hence on every step of the inductive construction we have that the quasiconvex subgroup Hi is

free. 2

The following corollary follows immediately from that above.

Corollary IV.4.8. Let G be a non-elementary δ -hyperbolic group with trivial finite radical E(G) = {e}.
Then G has a free maximal subgroup (of infinite index).
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