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CHAPTER I 

INTRODUCTION 

Cavitation 

Cavitation refers to the formation and collapse of cavities, or bubbles, in a liquid 

as a result of pressure changes. Cavitation often occurs spontaneously in a liquid 

volume by convection to a region of low pressure or by acoustic excitation. Cavitation 

bubbles are generally formed at nucleation sites, which include impurities, particles, or 

micro-bubbles within the liquid volume or particular geometric irregularities on solid 

surfaces1. The collapse of cavitation bubbles is often violent, producing momentary 

extremes of pressure and temperature, and emitting shock waves and light2. This 

phenomenon is undesirable and destructive to devices such as pumps, hydrofoils, and 

propellers. However, these events are put to constructive use in industrial applications 

such as ultrasonic cleaning and drilling, in medical applications including the destruction 

of kidney stones by shock wave lithotripsy and the insertion of large molecules into living 

cells by sonoporation, and in chemical applications including mixing and sonochemistry.  

Spherical bubble dynamics 

We now follow Brennen1 for a brief overview of simplified bubble dynamics, 

though we will depart slightly from his notation to suit our purposes. We assume a 

spherical bubble with time varying radius ܴሺݐሻ centered on a 1D coordinate system with 

radial coordinate ݎ. We assume the liquid incompressible and the pressure in the bubble 

uniform, then solve the Navier-Stokes equations for the liquid with appropriate boundary 
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conditions at the bubble wall and far-field to arrive at the incompressible Rayleigh-

Plesset equation 

 
ሾ݌஻ െ ஶ݌ ሿ ൌ ௅ߩ ൬ܴ ሷܴ ൅

3
2

ሶܴ ଶ൰ ൅ ߤ4
ሶܴ

ܴ
െ
ߪ2
ܴ

 (1)

where ݌஻ሺݐሻ is the pressure in the bubble, ݌ஶሺݐሻ is the far-field liquid pressure, ߩ௅ is the 

liquid density, ߤ is the dynamic viscosity of the liquid, ߪ is the coefficient of surface 

tension of the liquid, and over-dots indicate differentiation with respect to time. 

A cavitation bubble generally contains a mixture of gases, which we here simplify 

by dividing into two species – vapor and gas. The pressure inside the bubble is 

஻݌  ൌ ௏݌ ൅ (2) ீ݌

where ݌௏ is the partial pressure of the vapor and ீ݌ is the partial pressure of the gas. 

During all but the fastest bubble dynamics, the vapor freely crosses the bubble 

wall by evaporation and condensation, and the heat capacity of a thin lamella of liquid 

surrounding the bubble is large compared to the latent heat of condensation of the entire 

mass of vapor contained within. As a result, latent thermal effects are negligible and we 

assume the pressure of the vapor remains a constant function of far-field liquid 

temperature only, i.e. 

௏݌  ൌ ௩ሺ݌ ஶܶሻ (3)

where ݌௩ is the saturated vapor pressure of the liquid at the ambient temperature of the 

liquid far from the bubble ஶܶ.  

The gas is generally soluble in the liquid but non-condensable. Over long times, 

the average gas pressure within the bubble will be a function of the concentration of 

dissolved gas in the liquid by Henry’s law, 

ீ݌  ൌ ݇ுܿஶ (4)

where ݇ு is Henry’s constant and ܿஶ is the concentration of gas dissolved in the liquid 

far from the bubble. However, the time scale of this equilibrium is limited by the diffusion 
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of the gas in the liquid, which is slow. During a typical bubble oscillation period or a 

single collapse event, transport of gas across the bubble wall is negligible, and the mass 

of gas inside the bubble can be considered fixed. 

To develop a simple approximation for spherical bubble dynamics, we assume 

the gas is ideal and follows a polytropic process path, so that its partial pressure is 

 
ீ݌ ൌ ଴ீ݌ ൬

ܴ଴
ܴ
൰
ଷ௞

 (5)

where ீ݌଴ and ܴ଴ are the gas pressure and bubble radius at the initial reference state 

and ݇ is the polytropic exponent, which may vary from 1 in the isothermal limit to ߛ, the 

ratio of specific heats, in the adiabatic limit assuming constant specific heats. 

Given an initial condition and a function ݌ஶሺݐሻ, we are now prepared to solve 

equation (1) for bubble radius evolution ܴሺݐሻ. Note that we have made many 

assumptions which are violated in the final stages of any physical energetic collapse, 

such as the incompressible liquid and ideal gas assumptions. Nevertheless, this simple 

theory illustrates the basic energy focusing phenomenon and relevant scaling relations. 

Collapse and energy focusing 

Energy focusing during cavitation collapse is most concisely illustrated by a 

simple example. We assume a bubble which is initially at rest at radius ܴ ൌ ܴ଴ and 

contains a small quantity of gas ீ݌଴ ≪  ௩ at temperature ଴ܶ is then subjected to a step݌

increase in far-field drive pressure to some large value ݌ஶ∗ ≫  ௩. Since the pressure݌

inside the bubble remains negligible until it is very small, the total kinetic energy of the 

collapse will be equal to the work done on the collapsing cavity by the far-field pressure 

 
ܧ ൌ ൬

4
3
൰ܴ଴

ଷ݌ஶ∗  (6)

Integrating equation (1) and neglecting small terms, we find that the total collapse 

time2 will be 
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஼்ݐ  ൌ 0.915ට

ಽோబ
మ

௣ಮ
∗  (7)

 

and the collapse will come to a halt at stagnation radius, interior pressure and interior 

temperature1 

 ܴ௦௧௔௚ ൌ ܴ଴ ൬
଴ீ݌

∗ஶ݌ ሺ݇ െ 1ሻ
൰ (8)

 
௦௧௔௚݌ ൌ ଴ீ݌ ൬

∗ஶ݌ ሺ݇ െ 1ሻ
଴ீ݌

൰

௞
௞ିଵ

 (9)

 
௦ܶ௧௔௚ ൌ ଴ܶ ൬

∗ஶ݌ ሺ݇ െ 1ሻ
଴ீ݌

൰ (10)

If we assume that the gas is air and the collapse is fast compared to thermal diffusion so 

that the bubble wall is adiabatic, we may estimate that ݇ ≅ 1.4. We thus observe directly 

that the stagnation pressure scales with ݌ஶ∗
ଷ.ହீ݌଴

ିଶ.ହ. That is strong scaling, and suggests 

that extreme pressures might be reached with appropriate initial conditions. As we shall 

see below, it is not uncommon to observe stagnation pressures of tens of kilobar in a 

simple event. 

To illustrate conceptually the energy focusing phenomenon that occurs here, we 

consider the flow of energy. The far-field driving pressure does work on the cavity, 

adding a finite quantity of kinetic energy to the imploding incompressible fluid flow while 

the pressure of the bubble interior is negligible. The collapse then proceeds unhindered 

until the pressure of the bubble interior becomes significant. It does not come to a halt 

until the entire collapse energy has been transferred to the bubble interior by work done 

on the interior by the bubble wall. So the ultimate energy density is simply the ratio of the 

collapse energy to the volume of the bubble at stagnation. If the quantity of gas in the 

bubble is small, then the stagnation radius (and volume) may be very small indeed. 

Thus, the stagnation pressure (a unit of energy density) may become arbitrarily large. 
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It should be understood that, in the real case, the liquid is not incompressible. 

This does limit the energy focusing since a fraction of the collapse energy is converted to 

enthalpy in the liquid without being deposited in the bubble interior as described in the 

preceding paragraph. 

Single bubble sonoluminescence 

The phenomenon of cavitation collapse has been most carefully studied in the 

context of context of single-bubble sonoluminescence (SBSL)3–6 in which a bubble is 

driven to periodic expansion and collapse by an acoustic standing wave. On each 

collapse, the bubble contents are compressed and heated, emitting light and a shock at 

stagnation. 

A defining characteristic of the SBSL mechanism is that a single bubble oscillates 

in quasi-equilibrium. This is convenient for experimental observation – the bubble 

remains stationary for hours, repeatedly collapsing at about 20 kHz, allowing 

measurements to be integrated over long periods of time. However, this also means that 

the experimental parameters are coupled in complex ways and have limitations imposed 

by the equilibrium. For example, the quantity of gas inside the bubble is driven by 

diffusive equilibrium and equation (4), and is thus coupled to the concentration of gas 

dissolved in the liquid, Henry’s constant for the liquid / gas pair, the ambient 

temperature, and both the amplitude and frequency of the acoustic wave (which drive 

the dynamics and average size of the bubble). Outside certain bounds, the bubble will 

either dissolve completely or grow without bound and become dynamically unstable. 

The equilibria and instabilities which govern the SBSL parameter space include 

diffusive, chemical, harmonic, and shape effects, and are exhaustively itemized by 

Brenner et. al.5. In practical devices, these generally confine SBSL to bubbles with 

maximum radius of ~50 m driven by ultrasonic excitation with frequency of ~20 kHz and 
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amplitude of 1-2 bar, leading to collapse energies of about 50 nJ and stagnation radius 

of ~1m. These events generally produce a picosecond7,8 burst of light and emit a strong 

shock wave2,9–14 into the liquid at stagnation. 

Theoretical predictions of the conditions produced inside the bubble during these 

stagnation events vary widely depending on the assumptions made and the physical 

mechanisms which are modeled. The most significant unknown is whether or not shock 

waves form in the bubble interior during the stagnation event. A highly cited study by Wu 

and Roberts15 and supported by others16,17 finds that a converging shock wave reflects at 

the bubble center, generating peak pressures and temperatures above 10 Mbar and 10଻ 

K in a small central region of the bubble. If this result is physical, it would be 

extraordinary indeed, since these conditions could initiate nuclear fusion reactions18 in 

deuterium. However, other studies19,20 find that the predicted occurrence of the 

converging shock is sensitive to the model assumptions and may not occur. In this case, 

the bubble interior would behave isentropically, resulting in peak pressures and 

temperatures less than 100 kbar and a few 10ସ K as predicted by equations (9) and (10).  

Note that the dynamics of the shock wave which forms in the liquid outside the 

bubble are largely insensitive to the dynamics inside the bubble. Regardless of whether 

the bubble interior develops shocks or remains isentropic, the stagnation event is very 

short compared to acoustic times in the liquid at distances on the order of the stagnation 

radius. Thus, the liquid behaves essentially the same at distances beyond a few 

stagnation radii and cannot be used to infer the interior dynamics. 

Experimental measurements of the stagnation temperature and pressure during 

SBSL are difficult. The picosecond time scales challenge the fastest detectors and the 

sub-micron length scales are below the practical imaging resolution at visible 

wavelengths. As a result, the stagnation conditions are generally inferred from time-
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integrated emission spectra and from observation of the shock wave emitted in the 

liquid. Measurements of temperature21–25 generally lie in the vicinity of 10ସ K, with 

several studies suggesting evidence for a hot bubble core26–29 at up to a few 10ହ K. 

Measurements of pressure13,14,25 are generally in the range of 1-60 kbar. Taken as a 

whole, these measurements are generally inconclusive as to whether or not shock 

waves form inside the collapsing bubble, and this is a topic of debate in the literature. 

SBSL variants and upscaled cavitation collapses 

Many attempts have been made to avoid the parameter space limitations 

imposed by SBSL in order to produce larger or more energetic collapses. These 

generally fall into two classes, which I will refer to as SBSL variants and single-shot 

methods, respectively. 

SBSL variants are all based on an oscillating bubble and are subject to the same 

equilibria as SBSL, but with modified geometry, drive frequency, or acoustic waveform, 

or with the addition of transient perturbations designed to intensify one particular 

collapse cycle. Thomas et. al.30,31 used an array of 8 piezo transducers to add a positive 

pressure spike to the sinusoidal drive waveform of an SBSL bubble, and reported a 

“brightness gain”. Several groups32–36 used multiple acoustic harmonics to modify the 

acoustic waveform and reported increased light emission. Several groups37–39 reported 

stable oscillating bubbles in perodically accelerated fluid columns at greatly reduced 

driving frequency compared to typical SBSL, resulting in much larger bubbles and 

dramatically “brighter” light emission.  Gaitan et. al.40 conducted SBSL events at high 

ambient pressures and acoustic amplitudes, likewise reporting “brighter” events. 

Single-shot methods differ from SBSL variants in that a bubble is nucleated or 

inserted into an acoustic field by some external means. As a result, its contents and 

dynamics are not governed by the diffusional, chemical, and inertial equilibria which act 
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over long time periods and many oscillation cycles, so most of the parameter limitations 

of SBSL can be avoided. The dynamics of interest occur during the first one or two 

collapse cycles, and the subsequent breakup or dissolution of the bubble is of no 

consequence. Lauterborn et. al.12,41,42 use low energy laser breakdown to nucleate a 

bubble in a resonant acoustic field which has an amplitude greater than would normally 

allow a stable bubble, and report increased “luminescence yield”. Kappus et. al.43 inject 

a large bubble with a needle and drive it to collapse with a 2.5 bar plane wave, reporting 

an asymmetric collapse and a long (150 ns), high power (100 W) luminescence emission 

with a temperature of about 10ସ K. Several groups44–48 have used high energy laser 

breakdown in liquids at a static pressure of 1 bar or more to initiate a cavitation event, 

generally with poor symmetry governed by the shape of the laser breakdown plasma, 

which provides all the energy for the event. These events produce weak luminescence 

at relatively low temperature. 

Each of these methods clearly produces modified dynamics and larger or longer 

stagnation events, but no study reports a measured stagnation energy density higher 

than found in typical SBSL. Many of these studies characterize the increase in collapse 

intensity by reporting an increase in the power, energy or photon count of the emitted 

light. However, it is not clear whether changes in light output are due to changes in the 

temperature, size, or duration of the stagnation plasma. To illustrate this, consider a 

spherical plasma of fixed mass, temperature T, and radius R. Blackbody radiant power 

scales with ܶସܴଶ, while energy density scales with ܴܶିଷ. Clearly, light output is 

uncorrelated to energy density. 

In addition, while each of these methods avoids some of the limitations of SBSL, 

some limitations remain and new limitations are introduced. In all the methods of the first 

class, SBSL variants, the process begins with a stable SBSL bubble. This means that 

the gaseous contents of the bubble are determined by the same diffusional and chemical 
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equilibria as SBSL. The acoustic drive conditions are perturbed to provide more energy 

to the event, but the quantity and species of the gas inside the bubble cannot be directly 

controlled. The single-shot methods do not necessarily have this limitation, but all those 

described above introduce a new limitation – asymmetry. As many of the cited studies 

show, any bubble that receives a significant amount of its energy from laser breakdown, 

or is driven by a plane wave instead of a spherically symmetric one, will have significant 

asymmetry during collapse. This leads to a large, disorganized stagnation event of long 

duration. Such an event may emit a comparable or even greater amount of light than a 

symmetric collapse of similar energy, but the energy density is significantly lower. 
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CHAPTER II 

ENERGETIC CAVITATION COLLAPSE 

Motivation 

The energy focusing that occurs during controlled cavitation collapse is of 

interest both to basic science and to the industrial and scientific applications described in 

the first section. If the stagnation energy density could be scaled to greater values than 

observed to date, which seems plausible if the appropriate initial conditions can be 

generated, the phenomenon could find new applications in the study of high energy 

density plasmas49 (generally defined as those which exceed 1 Mbar of pressure). These 

conditions are relevant to planetary and astrophysics, and to the dynamics of inertial 

confinement fusion implosions. It is even conceivable50 that the event could be employed 

to generate fusion reactions, resulting in a nanosecond pulsed neutron point source 

valuable for imaging. 

High energy density plasmas can generally be produced only in massive 

facilities51–53 which require megajoules of energy and have repetition rates on the order 

of one per hour or day. The ability to probe these conditions at high rep-rate in a tabletop 

device could lead to acceleration of progress in the field. The object of the present work 

is to probe the limits of energy focusing that might be achieved with cavitation collapse, 

and to demonstrate the production of a high energy density plasma in a tabletop device. 

Theory 

We outline here a simple theory1,2,5,54 of energetic cavitation collapse (ECC) 

designed to be implemented in a physical device and maximize energy focusing at 

arbitrary scale. As described above, we assume a spherical bubble of radius ܴ ൌ ܴ଴ is 
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initially stationary in an infinite liquid with uniform density ଴ and temperature ଴ܶ. The 

bubble contains saturated vapor at equilibrium with the liquid at pressure ݌௏଴ ൌ ݂ሺ ଴ܶሻ 

and a small quantity of non-condensable gas at partial pressure ீ݌଴ ≪  ௏଴. This bubble݌	

is then driven to collapse by a step increase in far-field liquid pressure to some large 

value ݌∗ ≫  ௏଴.  The collapse energy and time are given by equations (6) and (7). A݌

stagnation event brings the collapse to a halt when the interior pressure becomes 

comparable to the inertial forces by isentropic and shock compression. 

To compare experimental measurements with theory, we shall require a 

simplified but accurate model for the bubble radius evolution during the collapse. As we 

shall discuss further below, strong collapses accelerate to velocities above the sound 

speed in the liquid, and liquid compressibility effects become important. This invalidates 

equation (1). The entire bubble radius evolution of even very energetic collapses can be 

modeled quite accurately by the theory of Gilmore55 which includes liquid compressibility 

to second order. However, for the experimental purposes here, it simpler to divide the 

collapse into distinct regimes: acceleration, incompressible coasting, transition, 

compressible coasting, stagnation, and shock emission.  

Acceleration occurs while the bubble radius proceeds from ܴ଴ to ܴ଴/3 (losing 

96% of its volume). During this phase, the applied pressure does work on the bubble 

and the energy of the fluid flow increases. This is followed by the incompressible 

coasting phase, where the total kinetic energy is roughly constant and the liquid can be 

assumed incompressible. Total kinetic energy2 is given by  

ܧ  ൌ 2଴ܷ
ଶܴଷ (11)

where ܷ ൌ ሶܴ  is the bubble wall velocity, and the bubble radius as a function of time is 

given by  



 

12 
 

 
ܴ௜ ൌ ቆ

ܧ
଴
ቇ
ଵ ହ⁄

ሺݐ௜ െ ሻଶ/ହ (12)ݐ

 

(subscript ݅ denotes incompressible). Then there is a transition phase where the liquid 

compressibility becomes increasingly significant. 

Once the fully developed compressible flow is established10 the bubble radius is 

given by 

 ܴ௖ ൌ ௖ݐ௖ሺܣ െ ሻ௡೎ (13)ݐ

(subscript ܿ denotes compressible). For water, Hunter10 finds that ݊௖ ൌ 0.555 and ܣ௖ is a 

constant which depends on collapse energy. The stagnation event then occurs at a 

radius which depends on gas content and symmetry. Finally, a shock wave is emitted, 

shown by Hunter to have radius 

 ܴ௦ ൌ ݐ௦ሺܣ െ ௦ሻ௡ೞ (14)ݐ

where ܣ௦ and ݊௦ are constants while the shock is strong (subscript ݏ denotes shock). 

Each of these three forms includes a time offset (ݐ௜, ݐ௖, and ݐ௦) which corresponds to a 

hypothetical instant of zero radius. These times are unphysical and only indirectly related 

to one another. 

The sequence of events designed to approximate ECC and demonstrated here 

is: 1. In degassed water held at its vapor pressure, a bubble is nucleated by laser 

breakdown. 2. The bubble coasts to its maximum radius of ~2 mm in ~1 ms and contains 

primarily vapor. During this slow, decelerating growth, spherical symmetry is stabilized 

by inertial, viscous, and surface tension effects1. 3. Piezoelectric drivers supply a 

symmetric pressure step function, driving the bubble to collapse. 4. The collapse 

stagnates, emitting light for a few nanoseconds. 5. A strong shock carries away most of 

the collapse energy. 6. The bubble disintegrates into a cloud of micro-bubbles on 
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rebound as a result of the Rayleigh-Taylor instability1. 7. Continuously circulating fluid 

carries away the contaminating bubbles and the process can be repeated. 

Apparatus 

A flattened, top, cross-section schematic view of the device designed to conduct 

ECC events54 and arranged for spatial streak imaging is shown in Figure 1. The central 

vessel (black) is heavy stainless steel, has an inner radius of about 25 mm and is fitted 

with four 25 mm diameter fused silica optical windows. Degassed, deionized, room 

temperature water fills the vessel. A photo is shown in Figure 2. 

 

 

Figure 1. ECC apparatus schematic. 
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Figure 2. ECC apparatus photo. The green point of light at the vessel center is the 
nucleation laser breakdown. The horizontal red line that intersects it is the 100 mW 
backlight laser used to illuminate the bubble for high speed imaging. This image was 
taken before the device was reconfigured to install the circulation system. 

 

A closed circulation system shown in Figure 3 continuously draws from the 

bottom of a quiescent fluid column with its free surface held at the vapor pressure by a 

vacuum pump. A circulation pump is situated about one meter below the vessel and 

raises the liquid pressure to 1 bar, causing any micro bubbles to shrink or dissolve. The 

liquid enters the bottom of the vessel through an 18 mm diameter sintered metal filter 

with 2 m porosity which eliminates turbulence, filters out remaining micro bubbles, and 

provides a pressure drop back to vapor pressure.  The liquid exits the vessel at the top, 

and is returned to the top of the quiescent fluid column. The elevation of the return outlet 
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is varied to precisely control the pressure in the vessel, which is maintained just above 

the level which causes spontaneous cavitation, i.e. at or slightly below the vapor 

pressure (~2.3 kPa). 

 

 

Figure 3. Circulation system schematic. 

 

The output of a Continuum Surelite III doubled YAG was passed through a 

variable attenuator consisting of a rotatable half wave plate and thin film polarizer, then 

clipped with a 1 mm diameter aperture to further reduce the pulse energy and select a 

high quality portion of the beam. The remaining 1 mm diameter beam was spatially 

filtered and expanded 20X to about 20 mm in diameter, then focused with an aspheric 

objective lens through a custom spherical dome vacuum window, resulting in a focusing 

angle of about 30 degrees and a presumed diffraction limited spot of about 3 m at the 

vessel center. The bubble was nucleated with a 9 ns, ~1 mJ pulse at 532 nm, just above 

the breakdown threshold in water56. It was found that these parameters produced the 
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most spherical bubble. Smaller focusing angles, short pulses, or larger pulse energies all 

create an oblong plasma and asymmetric bubble. It is also desirable to minimize the 

laser pulse energy to minimize the creation of non-condensable plasma recombination 

products. Pulse energy was varied in the range of 1-5 mJ to produce an expanding 

bubble with 2-5 J of kinetic energy which grows to a maximum radius of 1-2 mm radius 

in 0.5-1 ms. Asymmetry was less than 1% during the growth phase as measured by 100 

kHz imaging with a CMOS camera. 

The pressure pulse was provided by a symmetric array of 8 piezo-electric 

elements (PZT) custom designed for pulsed operation (Piezomechanik PIA1000/10/60 

VS20 VAg). Each active PZT element is 10 mm in diameter by 60 mm in length, and 

enclosed in a stainless steel sleeve. The PZT material is a ceramic, and does not have 

significant tensile strength. Under pulsed operation, large tensile stresses will occur 

during the resonant ringing after the pulse. To protect against this, the enclosure is 

designed to apply a compressive preload to the PZT element with a stack of Bellville 

washers. The PZT elements were coupled to the water via 16 mm diameter o-ring 

sealed aluminum pistons. A brass seismic mass was placed behind each PZT element 

to provide a reaction force so that acoustic pulse energy was not lost. 

The dimensions of the PZT elements were determined by an optimization study 

which considered the acoustic pulse amplitude, duration, and rise time, and the resulting 

power consumption and bubble collapse time. A schematic of the piezo-acoustic driver 

coupling is shown in Figure 4a. The aluminum piston is impedance matched to the PZT 

and acoustically passive, so it is neglected here. Throughout the following discussion, 

the subscripts M, P, and W refer to the seismic mass, PZT element, and water, 

respectively. ܮ refers to the axial length of each element, ܦ to the diameter, and 

ܣ ൌ  ௉ௐ refer to the interfaces at theܫ ெ௉, andܫ ,஺ெܫ .ଶ/4 to the cross-sectional areaܦߨ

air/seismic mass, seismic mass/PZT, and PZT/water boundaries respectively. 
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Figure 4. Schematic of the piezo-acoustic driver coupling. 

 

Electrically, the PZT element acts as a capacitor which stores charge ܳ ൌ  ܸܥ

where ܥ is the capacitance and ܸ is the applied voltage. Mechanically, the effective 

length of the PZT element changes by a fraction proportional to ܳ. These PZT elements 

are designed to operate in a pulsed mode, where they are charged quickly compared to 

the acoustic time, the time required for a longitudinal wave to travel the axial length of 

the element, given by ݐ஺ ൌ  ௉/ܿ௉ where ܿ is the sound speed. In this mode, the materialܮ

is effectively “pressurized” to a stress proportional to ܳ, then relaxes acoustically. 

Figure 4b shows the initial wave propagation shortly after the PZT is charged to 

pressure ݌ଷ ∝ ܳ. Compression waves propagate into the water and seismic mass, and 

rarefaction waves propagate into the PZT. The seismic mass is designed to have a 
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length which satisfies ݐ஺ ൌ  ெ௉ and reflectsܫ ெ/ܿெ so that the wave which originates atܮ2

from ܫ஺ெ does not arrive at ܫ௉ௐ until 2ݐ஺. 

An xt diagram for the first four acoustic times is shown in Figure 4c, with 

numbered regions of uniform pressure (the first six correspond to Figure 4b) separated 

by boundaries and wave trajectories. A system of equations can be written by applying 

continuity and force balance at each interface. For example, ݑଶ ൌ ௉ܣଶ݌ ଵ andݑ ൌ  ,ௐܣଵ݌

where ݑ is particle velocity and ݌ is pressure.	The isentropic wave relation57 ∆ݑ ൌ  ݖ/݌∆

also applies across each wave, where ݖ ൌ  .is the acoustic impedance of the material ܿߩ

Solving this system with appropriate initial conditions (ݑ଴ ൌ ଷݑ ൌ ଺ݑ ൌ 0 and ݌଴ ൌ ଺݌ ൌ 0) 

we find 

 
ଷ݌ ൌ ଵ݌ ൬

௉ݖ
ௐݖ

൅
ௐܣ
௉ܣ

൰ (15)

଼݌  ൌ ଵ݌ ൫ܣெݖெ െ ௣ݖ௉ܣ ൯/ሺܣெݖெ ൅ ௉ሻ (16)ݖ௉ܣ

From equation (16) we see that if the area and impedance of the seismic mass are large 

compared to the piezo element, then ଼݌ ൎ  ଵ and this pressure is maintained at the݌

water interface until 2ݐ஺. After that time the pressure at the water interface will become 

negative, and the solution becomes invalid since the water is likely to cavitate and 

violate the continuity assumption. 

To satisfy the conditions discussed above, the seismic mass was constructed of 

37 mm diameter brass, a material chosen for its large impedance and relatively low 

sound speed among metals (this allows it to be relatively short). 

Per manufacturer specifications, the PZT material has a density of 7.8 g/cm3, 

sound speed of 2600 m/s, and at 1000 V (the maximum allowable potential) develops a 

stress of about 300 bar. Water at STP has a density of 1 g/cm3 and sound speed of 1450 

m/s. Given the piezo and water (piston) diameters stated above, the bracketed quantity 

in equation (15) evaluates to 16.5, and the amplitude of the acoustic pulse in the water is 
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about 18 bar. At this drive pressure, a bubble of the maximum achievable radius (about 

2 mm) will collapse in 43 s as given by equation (7). Thus the length of the PZT 

elements was set at 60 mm, so that 2ݐ஺ ൌ 46 s and the pressure remains positive 

throughout the duration of the collapse. The 8 piezo elements at these dimensions have 

a combined capacitance of about 1.4 F. A 200 A current pulser was selected to charge 

them to 1000 V in about 9 s, a fraction of the collapse time. 

With the physical system assembled, the pressure response at the center of the 

water filled vessel was measured with an uncalibrated fast transducer (Kistler 601A) in 

the absence of a bubble. The rise time was found to be 3 s, shorter than expected, and 

the duration of the positive pulse 95 s, longer than expected, probably due to 

confinement and reverberation of the pulse within the steel vessel. The amplitude of the 

pulse was found to be linearly proportional to the charging voltage as expected. At 1000 

V it had a magnitude of about 22 bar, inferred from observed bubble collapse times and 

equation (7). This pressure is also slightly higher than expected. 

Diagnostics 

The primary diagnostic was stroboscopic and streak imaging with collimated 

laser backlight and a dark-field objective configuration. The illustrative diagram in Figure 

5 (not to scale) shows representative rays of the collimated backlight deflected by the 

bubble and density gradients10 of the compressible collapse phase. The labeled rays in 

this figure will be discussed further below. The infinity corrected plan-apochromatic 

objective has a focal length of ଴݂ ൌ 40 mm, a numerical aperture of 0.23, and resolves 

about 2  m. Imaging lenses of various focal lengths ௜݂ in the range of 300-1000 mm 

were used to achieve various magnification M in the range of 7.5-25. The spherical-

dome vacuum window shown in Figure 1 is designed to be optically passive and is not 

shown in Figure 5.  
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Figure 5. Diagram of imaging optics. 

 

Figure 1 shows the diagnostic arrangement for streak imaging. In this case, the 

backlight was provided by continuous illumination with a 660 nm, 100 mW diode laser 

(Coherent OBIS). The primary dark-field image was focused onto the slit of a streak 

camera (Hamamatsu C7700). A second intensified camera (ICCD) was used to 

continuously monitor the stagnation location and ensure that it remained centered in the 

focal plane of the streak camera slit. 

For stroboscopic imaging the backlight was pulsed and the streak camera was 

replaced with an ICCD camera which was gated to collect several exposures on a single 

image. For slow dynamics the backlight was provided by the Coherent OBIS modulated 

with a Stanford Research DG645 delay generator, an arrangement capable of producing 

2 ns pulses at up to 10 MHz. To capture fast dynamics, the backlight was provided by a 

Coherent Chameleon Ultra II Ti:Saphire oscillator producing about 600 W at 700 nm in 

140 fs pulses at 80 MHz. 
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Figure 6. Schematic of diagnostics arranged for spectral streak imaging with a custom 
refractive spectrometer, shown roughly to scale with representative rays at 280 nm (solid 
blue lines) and 700 nm (dashed red lines).  

 

A time resolved spectral diagnostic was assembled by coupling the streak 

camera to a custom refractive spectrometer as shown in Figure 6 and recording the self-

emission luminescence of the stagnation plasma. The light is collected with a 50 mm 

diameter aluminum off-axis parabolic mirror (a) with a focal length of 50.8 mm and off-

axis angle of 90, giving an effective focal length of 101.6 mm and a collection aperture 

of about f/2. The collimated light is dispersed with a 60 mm, 90 fused silica prism (b), 

then focused with a second aluminum off-axis parabolic mirror (c), 60 mm square with 

focal length 275 mm and effective focal length 279 mm. Finally, it is directed toward the 

streak camera slit by a planar aluminum mirror (d). This configuration fit the spectrum 

280-700 nm on the 12 mm streak slit. Refraction was chosen over diffraction to 
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maximize efficiency and avoid the overlap of diffractive orders. This spectrometer was 

calibrated with the known dispersion relation of fused silica, a HgAr atomic line lamp 

(Oriel), and a calibrated deuterium/halogen broadband source (Avantes). The dispersion 

calibration was accurate to about 1 nm. The spectral sensitivity calibration is specified at 

10% overall, but local errors of up to 26% are suspected below 430 nm, as discussed 

below in the Figure 14 caption. 

A second, simpler time resolved spectral diagnostic was employed for verification 

as well as for continuous spectral monitoring during experiments in which the 

spectrometer was not installed. This diagnostic consisted of two photomultiplier tubes 

(PMT, Hamamatsu R9880U) with 100 nm bandpass filters centered at 330 and 780 nm. 

This allowed continuous monitoring of luminescence intensity and temperature with 1 ns 

time resolution. This signal also gave an accurate indication of the stagnation time. This 

was compared to the known arrival time of the drive pressure pulse to calculate the total 

collapse time ்ݐ஼ for each event. 

A second 1 mW CW backlight laser (not shown in Figure 1) partially blocked by 

the bubble and focused onto a photodiode provided a radius vs. time signal used to 

anticipate the stagnation event and provide a trigger signal for the other diagnostics. It 

was possible to predict the stagnation moment with accuracy of about 20 ns. 
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CHAPTER III 

EXPERIMENTAL RESULTS 

Parameter study 

We will begin the discussion of experimental results with a parameter study 

which explores the limits of the apparatus and spans two orders of magnitude in collapse 

energy. This study employs simple, low resolution diagnostics. In the subsequent 

section, we will present a more detailed analysis of a typical event with fixed parameters 

corresponding to the largest, most energetic event which can be reliably produced. Such 

an event yields the highest resolution diagnostic data. 

With the apparatus described here, the primary parameters available for variation 

include the energy of the nucleation laser pulse, time delay between nucleation and 

application of the pressure pulse (i.e. bubble growth time), and the voltage applied to the 

piezos. Together, these effectively control the initial bubble radius ܴ଴ and the drive 

pressure ݌ஶ∗ . These in turn determine the single physically relevant parameter, collapse 

energy ܧ, given by equation (6). Practical considerations including gravitational effects 

and the real temporal profile of the acoustic pulse necessitated that the bubble growth 

time be held between 500 and 1000 s and the collapse time between 35 and 45 s for 

consistent results. For example, at longer growth times, buoyancy induced asymmetry 

would perturb the growth, at shorter collapse times the rise time of the acoustic pulse 

would become significant, and at longer collapse times the duration of the acoustic pulse 

is insufficient. Thus the variable parameters were chosen to keep within these 

boundaries while producing a broad range of collapse energies. 

 



 

24 
 

 

Figure 7. Stroboscopic imaging of the incompressible coasting collapse phase backlit 
with 2 ns pulses at 1.25 kHz (800 ns interframe time). The saturated region in the center 
is due to laser backlight which is weakly refracted through the center of the bubble. It is 
off center due to a slight angular misalignment of the laser relative to the imaging optics 
– this does not represent asymmetry of the bubble itself. 

 

Figure 7 shows a typical “slow” stroboscopic image taken during the 

incompressible coasting collapse phase. To quantify collapse energy from such an 

image, the radius vs. time data can be fit to equation (12). Such fits are shown in Figure 

8a for about 30 calibration events. Fits are also shown for collapse energy (b) along with 

drive pressure (c) and initial radius (d) calculated from equations (6) and (7) with the 

measured collapse energy and time. The root-mean-squared error (rmse) is given for 

each fit. In all subsequent experiments, the collapse energy was determined from the fit 

shown in Figure 8b, given the applied voltage and measured collapse time. 
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Figure 8. Radius vs. time fits (a) to data taken from slow stroboscopic images (dots) for 
about 30 calibration events. Fits give analytical relations for collapse energy (b), drive 
pressure (c), and initial radius (d). Note that the units for voltage and collapse time used 
in the fits are kV and s respectively. 

 

Once the collapse energy had been calibrated, about 100 events were recorded 

at various energies with two luminescence diagnostics. The first was direct imaging with 

an ICCD camera, from which the full-width half-max (FWHM) radius of the emitting 

region could be measured. One of two different filters was used on this camera, either 

an RG 590 long-pass filter to image red light with wavelength longer than 590 nm, or a 

UG 11 band pass to image UV light in the range 250-380 nm. The dominating 

uncertainty in this measurement is the unknown magnification of the images by 

refraction in the time-varying density gradients in the liquid surrounding the bubble. As 

discussed in Section IV, this uncertainty may be on the order of 20%. 
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The second diagnostic was the pair of PMTs with 100 nm bandpass filters 

centered at 330 and 780 nm, respectively. Figure 9 shows typical data collected with 

these PMTs. By measuring instantaneous spectral power at two wavelengths, and 

assuming that the source is a spherical blackbody, it is possible to calculate both the 

temperature and radius of that source22. 

 

 

Figure 9. Typical luminescence emission as measured with two PMTs with 100 nm 
bandpass filters centered at 330 and 780 nm. The time resolution is about 1 ns. The 
oscillation observed after the peak is likely due to electrical ringing, and is not physical. 

 

For an estimate of the temperature uncertainty of this type of measurement, 

consider the sensitivity of blackbody temperature to the ratio of spectral intensity at 

these two discrete wavelengths. This ratio can be expressed by 

 

ܴ஻ ൌ
ఒଵሺܶሻܤ

ఒଶሺܶሻܤ
ൌ ൬

ଶߣ
ଵߣ
൰
ହ

	
ቆ݁

௛௖
ఒమ௞ಳ் െ 1ቇ

ቆ݁
௛௖

ఒభ௞ಳ் െ 1ቇ
	 (17)

where ܤ is spectral intensity, ܴ஻ is the ratio of spectral intensity at the two wavelengths, 

 is wavelength, ݄ is the Plank constant, ܿ is the speed of light, ݇஻ is the Boltzmann ߣ
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constant, and ܶ is temperature. Solving numerically, one finds that in the temperature 

range of 6000-14000 K, the partial derivative ߲ܶ/߲ܴ஻ ൎ 1000 K. Assuming that the 

spectral intensity calibration of the detectors is accurate to േ10%, the temperature 

uncertainty is about േ220 K. At lower temperatures this uncertainty increases rapidly. At 

5000 K it is about േ400 K and at 4000 K it is about േ810 K. 

 

 

Figure 10. Luminescence data over two orders of magnitude in collapse energy, 
including FWHM emitting radius ܴ௘ (a) measured by the ICCD camera with two different 
filters and by the PMT method, the FWHM luminescence duration (b), and the peak and 
time-averaged blackbody temperatures ஻ܶ஻ (c). 

 

Figure 10a shows the measured luminescence radius over two orders of 

magnitude in collapse energy. Measurements by the two methods (ICCD camera at 
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different wavelengths and the dual PMT blackbody method) are consistent. The clear 

trend shows that at higher collapse energy the luminescence radius (and implicitly the 

stagnation radius) is greater. This likely indicates that more vapor is trapped in higher 

energy collapses. This is consistent with the hypothesis that vapor condensation ceases 

as a result of thermal or diffusive mechanisms58 when the bubble wall velocity reaches a 

given threshold. For higher energy collapses, this limiting velocity is reached at larger 

radius, trapping more vapor. 

Figure 10b shows the measured luminescence duration as a function of collapse 

energy, indicating that higher energy collapses have longer luminescence duration. It is 

interesting to note that the PMT fit of Figure 10a divided by the fit of Figure 10b gives a 

constant with a magnitude of about 3.7 m/ns (equivalent to km/s). This suggests that 

the plasma cools by an acoustic process, and that the sound speed (directly related to 

the thermodynamic state) in the stagnation plasma is roughly independent of collapse 

energy. This conclusion is bolstered by the temperature data shown in Figure 10c. This 

data shows only a weak trend with collapse energy. It is plotted against emission radius 

instead, with which it shows a clearer, though still mild, trend. Combined with qualitative 

observation of the plasma images, this suggests that the strongest indicator of plasma 

temperature is collapse symmetry. Less symmetric collapses produce a larger but less 

organized and lower temperature plasma. Collapses with good symmetry produce a 

stagnation temperature which is nearly independent of collapse energy. Unfortunately, 

“good symmetry” is difficult to define, especially since only 2D images are available of 

the 3D event. Here it is loosely defined as those collapses in which the stagnation 

plasma appears symmetric within about 10% in a time-integrated 2D image. 

From the above discussion we extract two hypotheses. (i) Vapor condensation 

ceases at a given bubble wall velocity threshold, trapping the remaining vapor. Before 

this occurs, the bubble interior is composed simply of saturated vapor at equilibrium with 
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the liquid, and its pressure is a function of liquid temperature only [equation (3)]. (ii) The 

thermodynamic state of the stagnation plasma is roughly independent of collapse 

energy. 

These two hypotheses can be shown to be consistent by the following scaling 

argument. Rearranging equation (11)  and substituting the threshold velocity ௖ܷ௦ (the 

fixed velocity at which condensation stops) 

 
ܴଷ ൌ

ܧ
଴ߨ2 ௖ܷ௦

ଶ  (18)

we find that, during the incompressible coasting collapse phase, the bubble wall reaches 

௖ܷ௦ at a radius ܴ௖௦ which is proportional to ܧଵ ଷ⁄ . If this saturated vapor is then 

compressed to a fixed stagnation density which is independent of ܧ, then the stagnation 

radius must also be proportional to ܧଵ ଷ⁄ . Indeed, this is precisely the scaling shown by 

the data of Figure 10a, which spans two orders of magnitude in collapse energy. 

This gives strong evidence that, for the pure vapor bubbles studied here, all 

collapses are essentially self-similar, with the only independent parameter being 

collapse energy ܧ. This parameter determines the radius ܴ௖௦ at which condensation 

stops, and thus determines the mass of trapped vapor ݉௏ ൌ ௩ߩ
ସగ

ଷ
ܴ௖௦ଷ 	 where ߩ௩ is the 

saturated vapor density. From that point on we see by again re-arranging equation (11) 

and substituting the critical velocity and mass of trapped vapor that 

ܧ 
݉௏

ൌ
3
2

଴
௩ߩ

௖ܷ௦
ଶ  (19)

so that the ratio of energy to trapped mass is essentially fixed. Thus the stagnation state 

can be expected to be the same for a collapse of any energy. 

This conclusion is in contrast to SBSL events, in which the fixed quantity and 

species of non-condensable gas in the bubble interior yield additional independent 

parameters. 
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It will now be of interest to estimate the value of the critical velocity ௖ܷ௦. 

Unfortunately, this cannot be done with the experimental results alone, which reveal the 

stagnation radius, but not its density (and mass). In the simulation chapter below we will 

estimate the stagnation density and find that the critical velocity is about ௖ܷ௦ ൎ 59 m/s, 

much lower than might have been expected5,58, i.e. roughly the sound speed in the 

vapor, ~400 m/s. 

Typical high energy event 

I now present a more detailed analysis of a typical maximum energy event54, 

which is driven with 1000 V and has a measured collapse time of 35 s. The collapse 

energy is ܧ ൌ 57 mJ, as given by Figure 8. The maximum radius and effective driving 

pressure for this collapse are then ܴ଴ ൌ 1.8 mm and ݌∗ ൌ 22 bar, as calculated from 

equations (6) and (7). Note that this maximum radius cannot be directly observed with 

the high magnification optics required to resolve the stagnation dynamics, but is 

consistent with observations of similar bubble nucleation events at low magnification. 

Stroboscopic images of the final stages of such a typical event are shown in 

Figure 11. These 8 exposure images illustrate typical collapse symmetry, and show that 

low order shape perturbations grow slowly during collapse. This diagnostic was used to 

tune the individual PZT charging voltages for optimum collapse symmetry. A qualitative 

threshold symmetry was observed below which a liquid jet forms, creating an off-center, 

asymmetric stagnation plasma with longer, cooler light emission. Note that symmetry did 

vary from shot to shot, and that shots with the best symmetry were selected for analysis 

in this section. 
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Figure 11. Stroboscopic imaging of a typical event backlit with 140 fs pulses at 80 MHz 
(12.5 ns inter-frame time). The ICCD camera is gated to collect 8 superimposed 
exposures. The collapsing bubble (a) is primarily in the transition phase between 
incompressible and compressible coasting. The reflected shock and slowly rebounding 
bubble (of a different but similar event) are imaged in (b). Scale bars are 100 m. 

 

 

Figure 12. Spatial streak imaging data. A representative single shot spatial streak image 
which begins during the transition collapse phase (a) has regions labeled which 
correspond to the rays in Figure 5. Features illuminated by the low intensity laser 
backlight are rendered in “cold” colors blue and cyan (below 700 counts). The plasma 
emission can be distinguished by its far greater intensity, rendered in “hot” colors yellow, 
red, magenta, and white (1000-4096 counts).  A similar image entirely in the supersonic 
collapse phase (b) has time resolution of about 1 ns. The bubble and shock radii are 
fitted with models ܴ௖ and ܴ௦ (white dotted and dash-dot lines). 
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A single shot spatial streak image which begins during the transition collapse 

phase is shown in Figure 12a, and is labeled to aid interpretation. The bubble wall is 

accurately imaged by rays similar to g (see also Figure 5) which are moderately 

deflected by total internal reflection from the bubble wall at glancing incidence. The 

density discontinuity at the reflected shock is opposite, with higher density behind the 

shock, so total internal reflection of incident rays does not occur. As a result, the shock 

appears in the image as a shadow where glancing rays are strongly refracted (not 

depicted in Figure 5). 

We focus our quantitative analysis on Figure 12b, which lies entirely in the 

compressible collapse regime. The fitted parameter values are ܣ௖=17.20.2 m/ns0.58, 

݊௖=0.580.03, ܣ௦=19.20.2 m/ns0.68, and ݊௦=0.680.03. The fits shown are not quite 

symmetric. For both the bubble and shock, the top and bottom portion were fit 

independently (with a common centerline and time offset), and the values reported 

represent an effective average. The fits were conducted manually, and the uncertainties 

listed represent the parameter variation which caused an obvious (but subjective) 

degradation of the fit quality. Other potential sources of uncertainty include imaging 

system spatial calibration (1%) and streak camera temporal calibration (less than 1%). 

However, it should be understood that the primary uncertainty is the magnification of the 

streak images by refraction in the time-varying density gradients in the liquid surrounding 

the bubble. As discussed in Section IV, this uncertainty may be on the order of 20%. 
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Figure 13. The fits from Figure 12b plotted along with the luminescence intensity at the 
bubble center (top). The zero of time is set to the hypothetical moment of zero shock 
radius ts , which also corresponds with the onset (10% of peak) of plasma emission. The 
hypothesized converging shock and bubble rebound are sketched for illustration. The 
bottom plot shows the magnitude of the derivatives of these fits. 

 

Figure 13 shows the bubble and shock fits ܴ௖ and ܴ௦ along with the plasma 

emission (luminescence) intensity at the centerline of the image. The bubble and shock 

intersect at a radius of 28 m, which brings the collapse to a halt. The remainder of the 

bubble fit is dotted to indicate that it is unphysical. The apparent rise-time of the plasma 

emission is roughly 1 ns, equal to the resolution of the measurement, and it begins 

slightly before the bubble and shock intersect. In Figure 12b it appears that the emission 

begins at the center of the bubble and propagates outward with time. From these 

observations I suggest that the plasma emission is initiated by the reflection of a 

converging compression wave which leads the bubble wall and steepens into a shock as 

predicted by Wu and Roberts15. The presumed approximate form of the converging 

shock and the rebounding bubble are also sketched in Figure 13. (Neither are visible in 

the data, though the final ~40 m quasi-static radius of the bubble is).  
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Figure 13 also shows the velocity magnitude of the bubble wall and the reflected 

shock wave, which crosses into the liquid at 1.8 ns. At that instant, the liquid is moving 

inward at ܴ௖=7 km/s and the shock outward at ܴ௦=11 km/s, so the velocity of the shock 

relative to the upstream fluid is ݑ௦=18 km/s. The shock is unsupported by any energy 

source so it has the character of a blast wave49 (shock compression followed 

immediately by a rarefaction), and the hot emitting plasma in the bubble interior 

quenches quickly after the shock enters the liquid. Likewise, as it enters the liquid the 

shock nearly reverses the inward flow, but the trailing rarefaction almost immediately 

decelerates it back to near zero in the lab frame. This is predicted by Wu and Roberts15 

and observed here by the nearly stagnant bubble radius after the wave passes. 

Unfortunately, the fluid velocity immediately behind the shock front is not directly 

measured. However, we may apply an approximate theory in the strong shock limit49 

since the ratio of pre-shock (~100 kbar) to post-shock (~Mbar) pressure is roughly 10. 

The post-shock pressure is then ݌௦ ൌ ଴ݑ௦
ଶ or 3.2 Mbar. A conservative lower bound for 

the shock pressure can be found from exact theory49 by recognizing that the particle 

velocity ݑ௣ ൐ 7 km/s since the liquid is certainly arrested if not reversed. This lower 

bound is then ଴ݑ௦ݑ௣ ൌ 1.3 Mbar. 

It bears re-emphasis that the primary uncertainty in the velocity measurements is 

the magnification of the streak images by refraction in the time-varying density gradients 

in the liquid surrounding the bubble. As discussed in Section IV, this uncertainty may be 

on the order of 20%, which would lead to uncertainty of up to 69% in the pressure 

estimates above. 

Another interesting feature of the spatial streak data is the disturbance in the 

shock wave at about 25 ns after stagnation and 130 m radius observed in both panels 

of Figure 12 (labeled *). This feature may result from a second shock wave, also 
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predicted by Wu and Roberts15, which overtakes the first. However, the simulations 

presented in the next chapter do not predict such a wave, and instead suggest that this 

feature may be related to phase change (freezing) of the liquid. 

Figure 14 shows time-resolved luminescence emission spectra collected with 

streak imaging. The rise and fall times of the luminescence are slightly longer than in 

Figure 12, probably as a result of reduced symmetry. (Symmetry could not be monitored 

while collecting spectral data.) Still, the temperature peaks very early in the event as the 

reflected shock forms. Intensity peaks later as the radiating shock propagates outward to 

larger radius. A peak temperature between 10,000 and 14,000 K is typical of all 

symmetric collapses at various collapse energies. (Collapses with somewhat reduced 

symmetry do not exhibit this initial temperature peak, but do still exhibit the “plateau” 

temperature of around 7000 K. See Figure 10 and discussion.) Both temperature and 

intensity drop abruptly when the shock crosses the bubble wall into the cool liquid. A 

slow exponential decay in temperature and intensity follows as the hot bubble contents 

cool. These observations are consistent with the shock focusing mechanism discussed 

above. 

The uncertainty in the temperature measurements shown in Figure 14 is similar 

to that discussed in the context of equation (17), or about േ220 K in the temperature 

range of 6000-14000 K. It should be noted that the spectrometer was not calibrated for 

absolute spectral intensity, so this data cannot be used to infer the radius of a blackbody 

emitter. 
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Figure 14. Single-shot, time-resolved spectroscopy of the stagnation luminescence has 
resolution of about 1 ns. Zero time is defined at 10% peak intensity, so this time scale 
corresponds roughly to Figure 13 (though it is a separate event.) Instantaneous spectra 
(solid lines) at several times (a) are shown with blackbody fits (dashed lines). The raw 
spectral data (not shown) are very smooth; the obvious deviations from the fits at 
wavelengths below 430 nm result from known imperfections in the calibration provided 
by the manufacturer of the deuterium/halogen reference lamp. (b) shows fitted 
blackbody temperature as a function of time, along with intensity at three representative 
wavelengths. 
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CHAPTER IV 

SIMULATION AND MECHANISMS 

Model 

Numerical simulations were conducted to gain an understanding of the physical 

mechanisms at work during ECC and to quantify the thermodynamic conditions 

generated. Numerous detailed simulations of cavitation collapse exist in the literature15–

17,19,20. However, these do not apply here for two primary reasons. First, all of these 

studies have focused on typical SBSL conditions. As discussed above, such collapses 

have 50 nJ of energy and stagnate at bubble wall pressures below 100 kbar. In contrast, 

ECC events have a million times more energy (here, 57 mJ), and measurements show 

that the stagnation pressure may exceed 3 Mbar at the bubble wall. Second, with the 

exception of Moss16, all of these studies make assumptions which will be shown here to 

be entirely invalid. These include the modeling of the liquid with the Rayleigh-Plesset 

equation and the bubble interior as a van der Waals gas. 

Here we model both the liquid and the gas with the full 1D compressible Navier 

Stokes equations and realistic equations of state. As above, we consider a spherical 

bubble of radius ܴ centered on the origin of a spherical coordinate system. The 

equations of motion are: 

ߩ߲ 
ݐ߲

൅
1
ଶݎ

߲
ݎ߲

ሺݎݑߩଶሻ ൌ 0 (20)

 ߲
ݐ߲
ሺݑߩሻ ൅

1
ଶݎ

߲
ݎ߲

ሺݑߩଶݎଶሻ ൅
݌߲
ݎ߲

ൌ 0 (21)

ܧ߲ 
ݐ߲

൅
1
ଶݎ

߲
ݎ߲

ሾሺܧ ൅ ଶሿݎݑሻ݌ ൌ 0 (22)



 

38 
 

where ݎ is the radial coordinate, ߩ is density, ܧ ൌ
ଵ

ଶ
ଶݑߩ ൅  ݁ ,is the total energy density ݁ߩ

is the internal energy, ݑ is the radial component of velocity, and ܷ ൌ ,ሺܴݑ  ሻ is the bubbleݐ

wall velocity. We employ a moving mesh finite-difference method with 1000 nodes inside 

the bubble and 2000 outside. 

The equation of state of the liquid was modeled with the Tait form9  

݌  ൅ ܤ
ܤ

ൌ ൬
ߩ
଴ߩ
൰
௡
 (23)

with values of ܤ ൌ 3 kbar, ݊ ൌ 7 and ߩ଴ ൌ 0.996	g/cm3. This equation is accurate to 

about 100 kbar. The specific heat was assumed constant, ܿ௣ ൌ ݃݇/ܬ	4187 ∙  The .ܭ

bubble interior was assumed to contain only water vapor, and was modeled with the 

SESAME tabular equation of state59 which is maintained by Los Alamos National 

Laboratory. It includes chemical and electronic contributions and is valid across the 

entire state space encountered here. 

The initial conditions for the simulation were determined from the known values 

for the typical case: initial radius ܴ଴ ൌ 1.8 mm and far-field pressure ݌ஶ∗ ൌ 22 bar. The 

ambient temperature is assumed to be ଴ܶ ൌ 293 K. Furthermore, it was assumed that 

the bubble initially contains only saturated vapor, which condenses freely and remains in 

thermal equilibrium with the liquid until the bubble reaches some radius ܴ௖௦. At that 

instant, condensation stops, the remaining vapor is trapped in the bubble, and the 

bubble wall is assumed adiabatic. 

In practice, it was not necessary to simulate the initial part of the collapse when 

ܴ ൐ ܴ௖௦. During this early, slow part of the collapse, the liquid can be assumed 

incompressible and the interior is saturated vapor which simply remains at constant 

temperature and pressure. Instead, the simulation was begun at ܴ ൌ ܴ௖௦ and the velocity 

and pressure fields in the liquid were initialized with the analytical incompressible 

solution2. 
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The value of ܴ௖௦, the radius at which condensation stops, was determined by an 

iterative process given the measured stagnation radius. Several simulations were run 

varying ܴ௖௦ until the correct stagnation radius was observed. The stagnation radius 

measured from the streak image (Figure 13) was ܴ௦௧௔௚ ൌ 28 m. However, as will be 

seen below, we infer that the streak image is magnified by a factor of 1.35 as a result of 

refraction in the density gradients of the liquid surrounding the bubble during the final 

stages of collapse. Consequently, the true stagnation radius is ܴ௦௧௔௚ ൌ 21 m. With this 

value it was found that condensation stops at ܴ௖௦ ൌ 1.2 mm when the bubble wall 

velocity is 59 m/s, trapping 30% of the original vapor. This is much earlier than might be 

expected based on prevailing theories5,58. The reason for this is not known. 

For comparison and validation, completely separate, simple calculations were 

conducted for the collapse of an empty cavity with the same initial conditions using both 

the Rayleigh-Plesset (equation (1)) and Gilmore55 analytical models. These models have 

both been widely assumed valid in the context of SBSL1,5. However, we show here that 

the Rayleigh-Plesset equation fails dramatically in the final stages of an energetic 

collapse, while the Gilmore model, which includes liquid compressibility terms to second 

order, is much more accurate. 

Results 

Figure 15 shows bubble wall velocity vs. radius for the final simulation. All three 

models agree at radii above 300 m. After that time, the Rayleigh-Plesset (RP) equation, 

which does not account for liquid compressibility, diverges dramatically from the other 

two. This is to be expected since the velocities exceed the sound speed in water at STP, 

ܿ଴ ൌ 1450 m/s. 
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Figure 15. Bubble wall velocity vs. radius as calculated with the Rayleigh-Plesset (RP) 
and Gilmore models for an empty cavity, and with the full simulation, which includes the 
vapor inside the bubble. The experimental measurement (green long-dash lines) is 
shown twice: as measured (thin), and corrected for the inferred magnification (heavy). 

 

Note that a form of the RP equation popular in SBSL work1,5,60–62  

 
ሾ݌஻ െ ሿ	ஶ݌ ൌ ௅ߩ ൬ܴ ሷܴ ൅

3
2

ሶܴ ଶ൰ ൅ ߤ4
ሶܴ

ܴ
െ
ߪ2
ܴ
൅
ܴ
ܿ଴

݀
ݐ݀
ሺ݌஻	ሻ (24)

does include a correction for liquid compressibility (the final term). However, that 

correction only models the acoustic radiation from the bubble wall as a result of pressure 

changes inside the bubble. This accurately models the energy carried away by the shock 

wave which is emitted during the stagnation event, but does not account for the 

conversion of kinetic energy to enthalpy in the liquid due to inertial pressure earlier in the 

collapse10. Even if the bubble contents are modeled and this compressibility correction is 

included, it begins to affect the solution only after the internal pressure becomes 

significant (here below about 40 m). Clearly, the RP equation is an inadequate model 

for this case, while the Gilmore model compares quite well with the full simulation. 

The raw experimental measurement (thin green long dash) shown in Figure 15 

clearly does not match any of the models well. As discussed earlier, we suspect that the 
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experimental images may be magnified as a result of refraction in the density gradients 

in the surrounding liquid. If we assume this magnification to have a value of 1.35 

(constant during this portion of the bubble collapse), we find that the correspondingly 

corrected experiment (heavy green long dash) matches the full simulation quite well. Up 

to this point in the collapse we have good confidence in the full simulation, since shock 

waves have not yet occurred (producing pressures which may exceed the limits of the 

Tait state equation). As a result, we assume that this magnification is physical. We will 

investigate this assumption below with optical ray tracing and the calculated density 

gradients. 

 

 

Figure 16. Radius vs. time plot for the full simulation bubble wall (solid line), interior 
shock (thin dash line), and exterior shock (thin dash-dot line) compared to the 
experimental measurement bubble wall (heavy green long dash line) and shock (heavy 
green short dash line). 

 

Figure 16 shows a radius vs. time plot of the full simulation compared to the 

corrected experiment, giving very good agreement. Note that the experimental 

magnification has been applied only to the bubble, not the shock, since it quickly moves 
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outside the region of peak density gradients (as seen below) and is not significantly 

magnified. 

 

 

Figure 17. Velocity, pressure, density, and temperature in the bubble interior (thin lines) 
and exterior liquid (heavy lines) at discrete times corresponding to (a) -8.8, (b) -3.3, 
(c) -2.9, and (d) -0.47 ns from the moment of minimum radius. 
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Figure 17 shows the results of the simulation for the bubble interior. 

Thermodynamic profiles are shown at discrete times chosen to illustrate the interior 

shock wave (also seen in Figure 16) which mediates the stagnation event. These 

“snapshots” are taken as the converging compression wave begins to form (a), shortly 

before it reflects from the bubble center (b), shortly after the reflection (c), and shortly 

before the shockwave crosses into the liquid, bringing the collapse to a halt. 

Several features of this solution are worth noting. First, a well defined shock 

wave does indeed form inside the bubble. Second, during the transit of the shock wave 

(a-c), the state inside the bubble is highly non-uniform spatially. However, once the 

shock enters the liquid (shortly after time d) the state throughout the bubble is quite 

uniform except for a moderate hot spot at the center. Third, the final, uniform state 

corresponds to a pressure of about 1 Mbar, density of nearly 3 g/cm3, and temperature 

of 3600 K. 

 

 

Figure 18. Simulated temperature in the bubble interior, showing the volumetric mean of 
the entire interior, the central region (10% radius, i.e. 1% projected area and 0.1% of 
total volume), and the center point. 
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Note that temperatures above 10,000K are observed only in a small region at the 

center of the bubble. Figure 18 shows the evolution of the mean temperature in the 

entire interior compared to the central hot spot. It is interesting that the simulated value 

at the singular center point is the best match for the experimental data of Figure 14b 

(which is spatially averaged, and shows that temperature peaks at 13,000 K and 

exceeds 7,000 K for about 10 ns). On one hand this might be expected since blackbody 

emissive power scales with ܶସ. In the simulation at ݐ ൌ 0 the center temperature is 

greater than the mean by a factor of 3.4, yielding 140 times greater intensity. This high 

temperature region might be expected to overwhelm the low temperature background. 

However, this reasoning is suspect for two reasons. First, as is made clear in Figure 18, 

the hot region is less than 1% of the projected area, and 0.1% of the total bubble 

volume. Second, the spectral power measurements (PMT data reported in Figure 9 and 

Figure 10) are consistent with blackbody emission at greater than 10,000 K at the full 

stagnation radius. This conflict currently remains unexplained. 

To examine the importance of the equation of state for the bubble interior, the 

problem was also solved with a simplified vapor state equation in place of the more 

complete model discussed above. A van der Waals form was chosen, as has often been 

employed in earlier work15,20. In this solution, the stagnation density was smaller by a 

factor of ~5 and the hot spot temperature peak 2 orders of magnitude higher. This 

highlights the necessity of a realistic equation of state for the bubble interior. 

We also note a related point regarding the modeling of the liquid. In a highly cited 

study, Wu and Roberts15 simulated a typical SBSL collapse using the RP equation (24) 

for the liquid and a van der Waals gas for the interior. This predicted a focusing shock 

with a temperature peak approaching 107 K. We reproduced their results, and then 

replaced the RP liquid model with the full equations (17-20) employed here, retaining the 

van der Waals gas interior. This variation produced no interior shocks and a peak 
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temperature of 8000 K, 3 orders of magnitude lower! This result is presented in its 

entirety in Appendix A. Clearly, both a reasonable equation of state for the interior and 

accurate modeling of the liquid compressibility are essential for understanding the 

stagnation dynamics. 

 

 

Figure 19. Profiles of velocity, pressure, density, and temperature in the liquid at discrete 
times corresponding to (a) -35, (b) -16, (c) -6.4, (d) -1.3, (e) 0.0, and (f) 6.5 ns from the 
moment of minimum radius. Short-dash (red) line is the value at the bubble wall, and 
long-dash (blue) line is the shock envelope. 

 

Figure 19 shows the simulation results for the liquid with the full model. The liquid 

in the vicinity of the bubble wall is compressed isentropically to above 100 kbar before 

being shock compressed to about 1 Mbar. Note that the liquid within a radius of about 

100 m is compressed to greater than 25 kbar before the arrival of the outgoing shock 

wave. These regions are thus super-cooled with respect to the equilibrium ice VII solid 

state63–65 as shown in Figure 20, which gives the equilibrium phase diagram for water in 
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this regime along with the isentrope for water compressed from STP. It is possible that 

this phase boundary may be responsible for the irregularity in the shock wave at about 

25 ns after stagnation and 130 m radius observed in all streak data and seen in both 

panels of Figure 12 (labeled *). Fast homogeneous nucleation might be expected within 

the smaller ~50 m radius region in which the pressure exceeds 70 kbar, providing 

nucleation sites for the adjacent region with pressure in the range of 25-70 kbar. 

However, there is no direct evidence to support this hypothesis, and it seems equally 

likely that the dynamic strain due to fluid motion might prevent solidification. This 

question certainly seems to merit further consideration in future work. 

 

 

Figure 20. Calculated isentrope for liquid water starting from ambient conditions. The 
thick lines indicate the known phase boundaries of ice VI and VII. The dash–dot line 
indicates the lowest pressure observation of heterogeneous freezing whereas the 
dashed line shows the metastable limit observed in this work [above which 
homogeneous freezing occurs within a few ns]. Figure and caption from Dolan et. al.63 
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Figure 21. Ray trace showing a few representative rays at a time instant 11 ns prior to 
the moment of minimum radius. Parallel rays (solid) are incident from the left and 
refracted by the calculated density profile in the liquid and/or reflected from the bubble 
surface. Rays which are deflected by 5-20 are projected back to the object plane (heavy 
red dashed lines) to reconstruct a virtual image. 

 

Finally, we revisit the inferred magnification of the streak image, determined 

above to be 1.35 by comparison of the experiment with the R vs. t data from the 

simulation. Now we use the time-resolved density profiles from the simulation to perform 

a ray tracing analysis and evaluate the plausibility of this magnification assumption. We 

employ the gradient index ray-tracing algorithm of Sharma66 and assume that the index 

of refraction is linear with density as suggested by Zel’dovich67, i.e. ݊ ൌ 1 ൅  ߩ0.334

where ߩ has units of g/cm3. The bubble is illuminated by parallel rays. Rays which are 

deflected by 5-20 are collected by the objective (as illustrated in Figure 5), so those 

which meet this criteria are projected back to the object plane to reconstruct the image. 

Figure 21 shows a typical trace. By repeating this analysis at a range of time instants, 

the streak image can be virtually reconstructed. This analysis successfully reconstructs 

both the bubble and the “wings” in the streak image, corresponding to the regions 

labeled a, b, c, and g in Figure 12a. 
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This ray tracing analysis shows that the magnification increases from a value of 

1.1 to 1.2 during the time frame that the collapsing bubble is visible in Figure 12b. This is 

somewhat less than the value of 1.35 assumed above. However, the relationship 

between refractive index of refraction and density employed here is a coarse 

assumption, which may account for the discrepancy. Nevertheless, this analysis does 

confirm qualitatively that the magnification is greater than one. In the end, uncertainty of 

about 20% in the true value of the magnification does remain. This uncertainty directly 

affects the inferred value of ܴ஼ௌ, the radius at which condensation stops, and the 

resulting quantity of vapor which is trapped in the collapse. 
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CHAPTER V 

CONCLUSIONS AND FUTURE 

In the present work I have demonstrated for the first time the production of a 

directly observable high energy density plasma in a tabletop cavitation collapse device. 

The stagnation conditions have been quantified with both direct measurements and 

simulation, which are in reasonable agreement. The maximum energy event drives a 1.8 

mm radius vapor bubble in water at 22 bar for a collapse energy of 57 mJ. The 

stagnation plasma is about 21 m in diameter with a spatially uniform pressure of 1-3 

Mbar, density of about 3 g/cm3, and temperature of 3500-7000 K. However, a central hot 

spot reaches temperatures well above 10,000 K. The cold liquid water in the vicinity of 

the bubble is isentropically compressed to pressures exceeding 100 kbar during the 

collapse, sub-cooled with respect to the ice VII solid state, and subsequently shock 

compressed to about 1 Mbar. 

This result opens a new opportunity for the study of dynamically compressed 

materials, high energy density plasmas, and the fundamental dynamics of energetic 

spherical implosions. It is easy to imagine the introduction of different liquids and gases 

or even solid particles or surfaces into the event for study at high pressure. However, if 

accurate state measurements are to be made, further work will be needed to interpret 

the data with high precision. In particular, uncertainty remains with respect to the optical 

magnification of the event as viewed through the density gradients of the highly 

compressed surrounding liquid. 

It is important to note that no evidence has been found for production of the 

extreme temperatures (~107 K) predicted in earlier work by others and required to initiate 

thermonuclear fusion reactions. However, the limits of energy focusing for this type of 
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event have not yet been reached. If a similar collapse event were conducted in a low 

vapor pressure liquid such as glycerin, the bubble would contain orders of magnitude 

less vapor, thus collapsing to smaller radius and dramatically higher energy density. 

There are practical challenges to such an experiment related to the high viscosity of this 

liquid, but I believe these are tractable. In a more extreme variant, one might imagine 

using a needle injected gas bubble in mercury. The high density and acoustic 

impedance of this liquid would allow dramatic increases in both drive and stagnation 

pressures. Of course, mercury is opaque and diagnostics would be difficult. However, 

imaging of gross bubble dynamics might be achieved by GHz ultrasound, and if fusion 

neutrons were indeed produced, they would easily escape for detection. Such an 

experiment would be expensive and challenging, and justified only if detailed theory and 

simulation showed promise. 
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APPENDIX A 

FAILURE OF THE RAYLEIGH-PLESSET MODEL 

In SBSL simulation work it has often been assumed5,15,17,19,20,68,69 that the liquid 

may be accurately modeled by a modified Rayleigh-Plesset ODE [e.g. equation (24)] 

which includes a first-order correction for liquid compressibility. Here we show that this 

assumption fails, and that the Gilmore equation55, accurate to second-order, is much 

more accurate. 

To address this question, the simulation of Wu and Roberts15 case (1) was first 

reproduced precisely. This simulation used equation (24) for the liquid, and a van der 

Walls equation of state for the bubble interior, and will be referred to as the RP solution. 

Two additional solutions were then calculated for comparison, identical in all respects, 

except that the liquid was modeled with (i) the Gilmore ODE equation55, using the Tait 

state equation (23) for the water (Gilmore solution), and (ii) the full Navier-Stokes PDEs, 

equations (20), (21), and (22), using the same water state equation (full solution). 

The radius vs. time plots for these three simulations are shown in Figure 22. The 

first solution matches Wu and Robert’s result exactly, showing the collapse brought to a 

halt by primary and secondary reflected shock waves. The second two solutions show 

an identical stagnation radius, but do not exhibit shock wave formation. Clearly, the 

Gilmore solution gives a better approximation of the full solution than does the RP 

solution. 
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Figure 22. Bubble wall radius vs. time for Wu and Roberts case (1), modeling the liquid 
with the RP equation (dashed) as in the original work, the Gilmore equation (solid blue), 
and the full Navier-Stokes equations (heavy red). In the RP case, a converging 
compression wave which leads the bubble wall steepens into a shock wave (dash-dot) 
and mediates the stagnation event. The converging compression wave is observed in 
the other two cases but does not steepen into a shock. 

 

Figure 23 shows the state of the bubble interior in the RP and full solutions 

shortly after the reflection of the primary converging wave. Note that these two solutions 

use identical parameters and state equations for the bubble interior, yet the RP solution 

predicts stagnation pressure which is greater by an order of magnitude and temperature 

greater by more than two orders of magnitude! How can changing the model for the 

liquid have so great an effect on the bubble interior? 
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Figure 23. State of the bubble interior after the converging wave has reflected from the 
bubble center and propagated about half way back to the bubble wall, in the original RP 
solution (solid) and in the full solution (dashed). The times listed are relative to the 
instant of minimum bubble radius, which occurs when the wave reaches the bubble wall. 
Profiles of the velocity (u), density (), pressure (p), and temperature (T) are shown. 

 

The answer to this question is addressed in Figure 24, which shows that the RP 

solution develops a much higher bubble wall velocity (and acceleration), which clearly 

promotes the formation of shock waves in the bubble interior. The reason for this is that 

the first-order approximation of the RP equation accounts for the radiation of acoustic 

energy into the liquid as a result of pressure changes at the bubble wall (i.e. the energy 

carried away by the shock wave), but does not account for the kinetic energy converted 

to enthalpy earlier in the collapse as the liquid is compressed by inertial forces. 
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Figure 24. Bubble wall velocity vs. radius for the three different solutions. 

 

The conclusion which can be drawn from this result is that the effects of liquid 

compressibility must be modeled accurately in order to capture the dynamics of the 

bubble interior. The Rayleigh-Plesset ODE fails to do so. While the Gilmore equation 

does give a very good approximation, it seems that the use of the full Navier-Stokes 

PDEs is justified where practical. 
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