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CHAPTER I 

 

INTRODUCTION 

 

Rationale 

 

The study of dynamic biological systems is perhaps the most captivating of all scientific 

endeavors due to the observed robustness of the biological organism.  The genetic 

networks that underpin these organisms must hold the keys to understanding their 

emergent behavior.  However, quantitative techniques for interrogating these networks 

are currently in their infancy.  Specifically, there exists a lack of sensitive and robust 

assays for measuring nucleic acids.  There is also a lack of mathematical models 

pertaining to the population dynamics and asynchronous growth of organisms.  These 

two complications make studying dynamic biological systems at the gene expression 

level impervious.  Thus, the overall goal of this dissertation is to develop tools and 

techniques to be used to measure the quantitative behavior of biological systems at the 

gene expression level. 

 

NCR Background 

 

The specific system that provides the motivation for this work is an ostensibly simple 

stress response circuit in baker’s yeast, Saccharomyces cerevisiae, that regulates the 

organism’s genetic response to nitrogen limitation called nitrogen catabolite repression 

(NCR), see Figure 1.1.  The circuitry of the network has been well studied for the last 40 
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years and comparatively much is known about its function; however, little is known 

about its dynamics 9,10.  In order to study the dynamics at the same level of sophistication 

at which mathematical models have been formulated, accurate quantitative biophysical 

and biochemical techniques are required at molecular dimensions and on physiological 

timescales. 

 

It is of widespread interest to measure the genetic response of an organism to stress.  The 

NCR circuitry of Saccharomyces cerevisiae provides a challenging but tractable 

opportunity.  Minimal mathematical models of the NCR circuit predict that the mitotic 

cell cycle will drive the expression of the GLN3-URE2p subcircuit causing their 

corresponding mRNA and protein species to oscillate in phase5,6.  The measurement of 

such signals is important to further our understanding of the relationship between the 

organization of genetic circuitry and the dynamic responses that it is capable of 

transducing.  That is, we are trying to understand the structure theorems that underpin 

what adaptation has forged into robust and responsive pathways working with the 

limitations imposed by biophysics.  Understanding such theorems and their limitations 

will improve the understanding of the robustness of biological systems, help us build 

fault tolerant computer networks, design adaptive nano devices, and design more efficient 

bioprocesses.  
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Figure 1.1: The NCR circuit.  The square blocks represent mRNA of the respective NCR 
gene.  The rounded block represents the transcribed protein of the URE2 gene.  Green 
arrows indicate up-regulation and blunted red arrows represent down-regulation at the 
level of transcription.  Dashed lines represent a weaker response.  Blue lines represent 
repression that is not at the transcription level. 
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The existence of regulatory loops, time delays, and complex transport phenomena has 

brought mathematical modeling and analysis to the forefront of systems biology.  To 

date, many signal transduction motifs have been identified in well studied regulatory 

networks and also by large-scale screens 10.  Carefully considered and important results 

about model identification for motifs and general reaction terms have appeared in the 

literature 4,21,22.  General results for pattern forming circuits have also been published 12.  

Numerical screens have been performed suggesting that biologically adapted circuits 

possess exceptional robustness 24.  Rigorous analyses have been performed on these 

circuits to understand the mathematical origins of robustness 3.  The majority of these 

results come from systems that are relatively data poor.  Whether or not these models and 

the information contained within them survive the test of time depends crucially on the 

ability to make careful measurements at the molecular level and on physiological 

timescales. 

 

History of Biological Measurement 

 

Unfortunately, many if not most traditional biophysical techniques were not developed 

with dynamics in mind and do not have the power to effectively interrogate the dynamics 

of genetic regulatory systems.  It is important to realize that scientific progress typically 

hinges upon technological advancement.  For example, the crowning achievement of the 

1950's was the discovery of the structure of DNA that required the chemistry of 

crystallography, the physics of diffraction, and the mathematics of group theory to 

accomplish.  Over the next decade, the tenets of the Central Dogma of Biology were 

established and gave biology its first real logical molecular underpinnings.  Interestingly, 
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up until the early 1980's sophisticated studies of yeast physiology and biochemistry were 

routine 7,17,25.  However, the focus on the gene as the fundamental unit of biological 

explanation led to a roughly 25 year change of focus toward static gene discovery and a 

near abandonment of individual and population physiology.  Paradoxically perhaps, the 

ascendancy of genomics has now reintroduced the desire to understand individual and 

population physiology at the molecular level.  Armed with molecular information and 

powerful computers, there has been a steady increase in literature involving the modeling 

of pathways, circuits, organelles, and even whole cells 20.  In fact, it is the reductionists’ 

dream to build a computational model of a cell that would respond to stimuli as real cells 

do.  Systems biologists from all disciplines have fully embraced this goal.  This endeavor 

has exposed several experimental obstructions.  We and many others have been forced to 

focus on the problem of measurement.  For example, the basic biology lab staple of 

Southern Blotting was developed in the 1980’s and has been used countless times to 

provide evidence for the existence of a particular gene in a cell line; however, the 

technique lacks the sensitivity to detect subtle changes in gene expression.  These subtle 

changes are often expected to be essential to the functional dynamics of gene regulatory 

networks6. 

 

Steps of Gene Expression Measurement 

 

Faced with the need to produce quantitative measurements of the NCR circuitry 

dynamics, but realizing that currently available techniques fall short of the needed 

quantitative accuracy, we began to analyze the measurement process step by step.  

Quantitation of gene expression from regulatory networks can be separated into three 
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steps: nucleic acid harvesting through cell disruption (CHAPTER II), cell cycle 

synchronization/population modeling (CHAPTERS III, IV, & V), and nucleic acid 

quantification (CHAPTER VI).  The inaccuracy of any of these processes impact the 

accuracy of gene expression data.  In fact, depending on experimental design, other 

processes may be involved whose accuracy may also be essential to the overall accuracy 

of gene expression data.  For example, an additional step such as reverse transcription is 

commonly used to convert harvested RNA into DNA prior to nucleic acid quantitation.  

However, this dissertation will focus on the three steps mentioned above. 

 

Cell Disruption 

 

Cell disruption is perhaps the most commonly overlooked source of quantitative error in 

studies where biomolecules are quantified from single cells.  It fact, the measurement of 

biomolecules is directly proportional to the number of cells disrupted.  This dependency 

lends the process to errors since samples are typically taken in a time-course and are 

disrupted independently.  Variations in the percentage of disrupted cells from sample to 

sample produces an inherent error in the end quantitation.  One could imagine that 

particular cells may be more likely to disrupt than others, possibly due to replicative age 

or cell cycle position.  Therefore, gene expression dependent on age or the cell cycle may 

be inaccurately quantified from obtaining a biased pool of nucleic acids through typical 

cell disruption protocols.  Many use internal controls such as actin to normalize disrupted 

samples, but this process could be logically circular if variations in the standard exist.  

CHAPTER II of this dissertation provides an in-depth analysis of cell disruption and the 
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process of harvesting nucleic acids from yeast.  Modifications to traditional techniques 

are proposed in order to provide more reliable and uniform cell disruption. 

 

Cell Cycle Synchrony 

 

Cell cycle dependence is also a complication in quantifying gene expression values.  The 

cell cycle poses a significant problem for the following reason.  As yeast age, their 

volume grows.  There is a volume checkpoint required of newly budded daughter cells to 

enter the cell cycle that immediately and completely dephases mothers and daughters 

making the culture notoriously asynchronous.  The quantitative phase shift depends on 

the specific growth conditions, but in rich media it is approximately 11 minutes, or 1/12th 

of the total cell cycle time.  This small difference will within three cell cycles drive the 

entire population to stationary asynchrony that will obscure any periodic signal.  In 

addition, since all age classes are mixed in a stationary culture, one cannot discern age 

differences in gene expression – an entirely open and fascinating subject.  Furthermore, at 

stationary state, cells are expected to be uniformly distributed around the cell cycle with 

respect to time.  Thus, if a particular gene is expressed in sinusoidal form around the 

cycle, but a pool of nucleic acids are harvested from a population of cells distributed 

uniformly around the cycle, a constant signal instead of the dynamic signal of the 

individual cell will be detected. 

 

Common techniques for achieving cell cycle synchrony in yeast produce a mere 3 to 4 

synchronous cycles, results from which are typically far short of validating mathematical 

models for gene network dynamics.  Additionally, many of these techniques, such as 
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alpha factor arrest, starvation, and elutriation could likely produce a stress response 

related to the gene under study, leading to a measurement influenced by the measurement 

process itself.  For this reason, this dissertation focuses on alternative techniques capable 

of producing extended cell cycle synchrony without invasive methods (CHAPTER III), 

possibly providing the missing link to obtaining more useful information about the 

expression patterns of cell cycle dependent genes.  This technique utilizes continuous 

volume filtration on synchronous yeast populations as a mechanism for maintaining 

synchrony.  

 

A further alternative for extending cell cycle synchrony is to exploit autonomous cell 

cycle oscillations that have been reported in the literature for over four decades 8,13,14,18,23.  

Many of the details of the feedback mechanism(s) that underlie these oscillations are still 

poorly understood.  These oscillations provide an interesting research opportunity as well 

as a vehicle for producing synchrony.  A potential disadvantage is that these oscillations 

have only been achieved by carefully controlling the environment (dilution rate, pH, 

dissolved oxygen, nutrients, etc.) within the bioreactor.  This dependency means that the 

environmental variables are limited in their flexibility during experiments while 

preserving culture synchrony.  This restriction potentially limits the ability to learn about 

the dynamics of the NCR circuitry.  CHAPTER IV of this dissertation focuses on the 

development of using these oscillations as a tool for measuring synchronous gene 

expression, particularly those genes of the NCR circuitry. 

 

The autonomous oscillations described in Chapter IV are typically considered an 

obstruction within the bio-manufacturing industry 15.  In fact, just as these oscillations 
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can be utilized by scientists to measure synchronous gene expression, as described in 

Chapter IV, they could also be utilized by engineers as a mechanism of persistent 

synchronous production of cell cycle dependent bio-materials.  Downstream 

bioprocessing costs constitute over 75% of the total cost of production for bio-materials1.  

These costs are generally associated with purifying a desired product away from 

undesired biological material, the ambient bio-complexity.  By utilizing systems that 

permit synchronous production of bio-products, rather than the typical asynchronous 

production, the product concentration within the effluent of the bioreactor can be 

enriched relative to the biocomplexity.  Chapter V of this dissertation focuses on 

developing these ideas. 

 

Polymerase Chain Reaction (PCR) 

 

Since many genes, including those of the NCR circuit, are believed to be cell cycle 

dependent, there is a vast research effort to detect expression levels from single cells in 

order to avoid population convolution of the measured signal 16.  The only readily 

available technique for quantifying of nucleic acids at the single cell level is the 

Polymerase Chain Reaction (PCR).  The advantage of PCR over other existing 

techniques is the ability to exponentially amplify small signals into a detectable range.  

Unfortunately, the PCR process also amplifies any error created in sample preparation.  

Additionally, problems with DNA contamination become increasingly more important as 

samples become more dilute.  Thus, the two largest problems of using quantitative PCR, 

exponential amplification of error and DNA contamination, are most prevalent within the 

realm of DNA concentrations expected within a single cell. 
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Although the literature has been flooded with PCR studies in virtually every realm of 

biology, very few studies have investigated the quantitative nature of the technique itself 

2,11,19.  Over the past two decades, PCR has been used countless times to quantify nucleic 

acids, yet the vast majority of studies seem to avoid the topics of accuracy and 

reproducibility.  Furthermore, no study of which we are aware has investigated the 

quantitative nature of PCR for the realm of dilute nucleic acid concentrations pertaining 

to single cell measurements.  For this reason, a section of this dissertation focuses on 

nucleic acid quantitation using PCR, with specific emphasis on dilute nucleic acid 

concentrations (CHAPTER VI). 

 

The research presented in this dissertation focuses on the development of new tools and 

techniques to make quantitative measurements on subtle changes in gene expression 

patterns.  Cell disruption and the harvesting of nucleic acid molecules are explored and a 

quantitative model for a specific protocol is developed.  Two separate strategies for 

combating cell cycle dependence of gene expression are explored.  These two techniques 

have separate advantages and defects, and these are discussed later.  Lastly, the direct 

quantitation of nucleic acids is explored through an analysis of reproducibility and 

accuracy of PCR. 
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CHAPTER II 

 

RELIABLE CELL DISRUPTION IN YEAST 

 

Introduction 

 

Yeast is an important eukaryotic model system whose physiology, regulation, and 

adaptation is beginning to be understood in quantitative terms 1,2,3,4,7,17,26,28,29.  As systems 

biology is evolving ever more sophisticated mathematical models, the need and desire for 

precise quantitative measurements is increasing.  It is a consequence, perhaps of some 

cosmic conservation that while yeast genetics are relatively straightforward, their 

biochemistry is complicated by their thick cell wall that can withstand extreme pressures 

of greater than 300 MPa 8.  This fact complicates the procedures to isolate and analyze 

intracellular macromolecules and metabolites.   

 

There has been a long-standing tradition in biochemistry and molecular biology to 

normalize measured quantities, such as mRNA, with constitutive internal controls.  Actin, 

for instance, is thought to be a housekeeping gene and is often used to normalize the 

loading and comparison of samples.  A problem with this practice is that without a known 

gold standard this approach leads to circular reasoning.  What if actin levels are instead 

oscillating?  Then anything that appears as constant compared to actin, is not actually 

constant, but rather oscillating.  As methods of detection increase in resolution, the 

problem of normalization becomes only more apparent.  Our ultimate goal is to resolve a 

conjecture that certain yeast mRNA concnetrations are oscillating periodically with the 
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cell cycle as predicted by a mathematical model 2,7.  There is growing evidence for and 

renewed interest in periodic gene expression and its relation to the cell cycle as well as to 

ultradian rhythms whose causes remain uncertain 12,16,18,24.  As this interest grows, so 

does the need for logically sound and quantitative protocols for normalization.  

 

In order to convincingly demonstrate the precise dynamical behavior of a given mRNA 

species from a culture of yeast cells, it is important to demonstrate a logically and 

practically sound method for normalization between sample variations.  Many recent 

papers have discussed both the theoretical and practical issues surrounding the 

normalization problem 5,11,15,25.  Because the use of internal controls is inherently circular, 

we are drawn to the logical clarity of external controls 28.  In this practice, a known 

quantity of foreign RNA is introduced into the sample during extraction.  The single 

assumption of this practice is that the introduced species is indistinguishable from the 

other RNA molecules from the point of view of the remainder of the extraction process.  

The practice depends on a single parameter: how much external control does one add to 

each sample? 

 

Typically, in a time course, independent samples will contain different numbers of cells.  

With the use of a coulter counter, it is possible to directly measure the total volume of 

cells in a sample.  It seems natural and reasonable that an external control proportional to 

the total volume of disrupted cells be used to normalize mRNA expression.  Thus, a 

logical goal would be to spike yeast samples with a quantity of external RNA control that 

is proportional to the total sample volume.  If, however, the volume of cells disrupted by 

a method for RNA extraction is not a constant and reproducible fraction of the total cell 
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volume, then this practice cannot work.  We consulted the literature for data describing a 

method to quantitate cell disruption and found none.  This problem is typically of the 

nature of laboratory folklore, and we found unreferenced statements similar to the 

following: 

 ‘ Disintegration of yeast cells has been estimated by protein concentration in the 
supernatant’ 22. 
 

It is important to observe that disruption for the purpose of biochemical isolation is 

related to cell wall integrity and not cell vitality.  This work demonstrates that the dye 

aniline blue, that specifically binds β 1,3-Glucan, clearly distinguishes disrupted cells13,14.  

In typical yeast disruption protocols, cells suspended in a phenol chloroform mixture are 

disrupted by beating them against glass microbeads on a vortex mixer.  The protocol 

suggests beating for 10 minutes.  The data taken in this study demonstrate that 10 minutes 

is sufficient to disrupt roughly 57% +/- 13, while disruption greater than 94% +/-3 

requires 30 minutes.  Furthermore, agitation times short of 30 minutes are shown to be 

insufficient to uniformly disrupt cells across all phases of the cell cycle.  

 

Because the percentage of cells disrupted at time t is a monotonically increasing function 

and the damage sustained by a cell over time is cumulative, it is reasonable to suspect 

that this process is modeled by a cumulative distribution function.  The data generated in 

this study are used to demonstrate that the percentage of cells disrupted by the protocol 

after t minutes of agitation is well modeled by a Weibull distribution as shown below in 

Equation (2.1),  

                                                     
β

α
)(

1)(
t

etF
−

−=                                Equation (2.1) 
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This distribution has found extensive application in engineering problems involving 

fatigue, fracture, and reliability modeling 19.  The shape parameter β allows one to 

capture processes that have time-dependent, non-constant failure rates.  The data 

collected in this study show a decreasing failure rate that is consistent with the 

observation of cell cycle phase dependent disruptability.  

 

Materials and Methods 

 

Yeast cells of Saccharomyces cerevisiae strain LHY3865 (mat a- URA, LEU, bar1∆) 

were grown in YNB media without ammonia or amino acids and with 100 mg/L leucine, 

20 mg/L uracil, 0.2% glutamine, and 2% glucose at 30 °C.  Batch cultures were grown 

with agitation at 225 rpm in a New Brunswick Innova 44 orbital incubator/shaker.  

Continuous cultures were grown in a New Brunswick BioFlow 110 3.0 L bioreactor with 

a dilution rate of D=0.35 hr-1, the pH was maintained at 5.3 standard units by sparging 

CO2, and the culture was aerated with a Rushton-type impeller run at 225 rpm.   RNA 

quality was determined with an Agilent bioanalyzer 2100 Expert System. 

 

Disruption Assay 

Cells were harvested from batch cultures or from continuous cultures from the bioreactor 

at OD600=0.6 and pelleted by centrifugation at 12,000 rpm for 2 minutes.  A scaled down 

Ambion RiboPure assay (kit #1926) was performed according to the described protocol 

with the following modifications: the reactions were performed in 0.2 mL PCR tubes and 

the reagents were scaled down 25-fold (19 µL of lysis buffer, 2 µL of 10% SDS, and 19 

µL of phenol chloroform mixture (60:40) per reaction).   
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The lysis mixture was added to a PCR tube containing approximately 30 µL of cold 

zirconia beads (supplied within the Ambion kit).  Each PCR tube was fit inside a 1.5 mL 

Epindorf tube, placed in a vortex adapter, and agitated for the specified time.  The lysate 

was rinsed from the PCR tube with several washes of phosphate buffered saline (PBS) to 

ensure that all cells, particularly damaged cells, were washed free from the beads.  The 

lysate was pelleted by centrifugation for 5 minutes at maximum speed (15,000 rpm).  The 

RNA enriched supernatant was removed for subsequent analysis, while the remaining cell 

pellet was resuspended in 250 µL of GIBCO 1x PBS (#14040-133).  Aniline blue Sigma 

(#415049) was added to the cell lysate at concentration of 1 mg/mL.  The stained lysate 

was analyzed using a conventional microscope equipped with a DAPI filter.   

 

Scoring Algorithm 

The aniline blue dye robustly illuminates the cell wall allowing interrogation of 

individual cell wall integrity.  Stained cells were scored as intact or disrupted by visual 

inspection with the following criteria:  A disrupted cell has sustained sufficient damage to 

spill its intracellular contents to the void.  The decision process is illustrated in Figures 

2.1-2.3.  Typically, cells judged as disrupted had collapsed intracellular compartments or 

holes within the cellular membrane comprising at least 20% of the surface area of the 

cell.  Cells with minimal damage to their cellular membrane were scored as intact.  Cells 

with substantial damage often exhibited collapsed intracellular compartments allowing 

them to be clearly scored as disrupted, see for instance Figure 2.1-E and Figure 2.2 (all 

but E) and Figure 2.3-C. Individual cells were scrutinized in several focal planes to 

ensure accuracy (see Figure 2.2).  Cells were scored 100 at a time. Each estimate of the 

fraction disrupted was computed from no less than 9 independently prepared slides. 
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Figure 2.1: The panels illustrate the visual scoring algorithm designed to determine cell 
disruption.  Cells were labeled with aniline blue.  The cell in image (A) is completely 
intact.  The cells in image (B) appear to have small nicks in their cell wall, but these are 
deemed insufficient to spill their intracellular contents.  The budded cell is considered as 
a single cell because no septum has yet formed.  The cell in image (C) has sustained more 
pronounced damage, but is deemed intact because its contents appear to remain 
intracellular.  Of the two cells in image (D), the mother cell is disrupted.  The daughter is 
considered her own cell and remains intact.  The cell(s) of image (E) are considered 
disrupted as their cell walls are cleaved and they have released their contents to the void. 
In the final frame (F), one of the two cells is deemed as disrupted.  
 
 



19 

 
 

 

Figure 2.2: This panel of images illustrates the importance of the focal plane in 
determining cell disruption by the scoring algorithm.  Images A-D shows four different 
focal planes for the same cell.  Accordingly, this cell was classified as disrupted.  The 
images in E-F support the same conclusion for a different cell.  In our counting 
procedure, cells were scrutinized 100 at a time and each cell was individually examined 
for defects to ensure accuracy. 
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Figure 2.3: The images in this panel are taken along a time course of disruption and are 
representative of the process.  Image (A) shows cells subjected to 2 minutes of disruption.  
All of the cells in this image were deemed intact.  Image (B) is taken after 10 minutes of 
disruption, the standard time suggested by the protocol.  Two of the five cells were 
scored as disrupted.  Image (C) is taken after 20 minutes of disruption.  Six of the nine 
cells in the field were scored as disrupted.  Image (D) shows cells after 30 minutes of 
disruption and all of the cells in this frame were scored as disrupted. 
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Cell Cycle Synchronization 

Yeast cells were arrested through the addition of 3x10-5 M α-factor mating pheromone 

(Sigma #63591) and were incubated for 3 hours.  Cells were subsequently released from 

arrest by pelleting followed by three washes with fresh pre-conditioned media, free of α-

factor, containing 0.1 mg/mL Pronase E (Sigma # P-6911).  The preconditioned media 

was prepared by allowing LHY3865 yeast cells to grow within the media for 4 hours at 

OD600 = 0.4 before being removed by a 0.2 µm filter.  The synchronized cells were 

grown in the bioreactor as described above and were harvested at six time points pre-

determined to correspond to critical points within the cell cycle.  The time points were 

determined from preliminary experiments using microscopy to establish the timing of 

standard cell cycle morphological landmarks characteristic of cell cycle transition 9,10.  

Briefly, these landmarks are the following: G1 is marked by the separation of a parent and 

daughter cell, the beginning of S and end of G1 is marked by bud emergence, the 

beginning of the M phase is marked as the emergence of bud necking.  It is widely 

accepted that the S portion of the cell cycle is 20-30 minutes for Saccharomyces 

cerevisiae.  For the strain used in this study, we have determined S to be approximately 

30 minutes by analyzing volume growth measurements. 
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Results 

 

The disruption of the yeast cells by mechanical agitation was visualized because the dye 

aniline blue clearly stains the cell walls of budding yeast such that it was possible to 

monitor and score cell breakage as described above.  It was an important consideration to 

find a dye that did not simply stain for cell vitality, but allowed us to assay cell wall 

integrity since mechanical agitation is designed to liberate the intracellular contents of 

cells through rupture. 

 

Since we know of no protocol or device that is capable of directly measuring the degree 

to which the intracellular contents of a cell are free for extraction, an indirect 

measurement was utilized.  The staining procedure and the scoring protocol that was 

employed produced consistent and reproducible results.  This judgment is based on 

several independent observations.  First and foremost, cellular disruption through 

mechanical agitation is a cumulative process and the fraction of disrupted cells as a 

function of time should be modeled by a cumulative distribution function.  We found that 

our data are well modeled by a Weibull distribution.  Second, the relative recovery of 

well mixed intracellular species should be proportional to the relative volume of 

disrupted cells. We also found this to be true.  

 

The data in Table 2.1 summarize the results of six independent experiments. Each of the 

individual data points describing the degree of disruption is the result of considering over 

900 independent cells.  These data were used to produce the graph in Figure 2.4 that 

shows how the variance decreases with agitation time and how the data are well 
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described by a Weibull distribution with scale parameter α=10.97 min and shape β=0.77.  

The significance of the shape parameter is that unlike an exponential or Poisson process, 

the Weibull process with β < 1 implies a nonconstant disruption rate that is decreasing 

with time.  Fewer cells are being disrupted per unit time as the agitation time increases.  

The data can also be accurately modeled by an exponential function.  Fitting the data to a 

single parameter exponential function provides a similar value for the time constant, α,  

of 11.65 min.  The cells described by the data in Table 1 were harvested at OD600=0.6 

near mid-log phase.  The same quantitative results were observed for cells at lower 

OD600=0.4 and higher OD600=1.0 densities, and also with another strain of 

Saccharomyces cerevisiae BY4743(data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

 

 

 

 

 

 

 

Table 2.1:  Data and statistics summarizing the percentage of cells disrupted from six 
identical and independent (iid) experiments.  Each individual entry is the result of 
inspecting at least 900 aniline stained yeast cells.  The average values and their standard 
deviations (SD) are plotted in Figure 2.4.  Among other things, these data indicate that 30 
minutes is sufficient to reproducibly disrupt greater than 90% of cells with a coefficient 
of variation (CV) of less than 4%. 
 

                    

Time 
(min) 

Fraction disrupted (iid) samples 1-6 Average SD CV 

2 0.230 0.375 0.346 0.374 0.215 0.060 0.267 0.124 0.463 

10 0.657 0.628 0.644 0.636 0.504 0.332 0.567 0.128 0.226 

20 0.853 0.838 0.863 0.832 0.720 0.594 0.783 0.106 0.136 

30 0.945 0.957 0.962 0.963 0.888 0.897 0.935 0.034 0.036 
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Figure 2.4: The best fit Weibull distribution to the cell disruption data tabulated in Table 
2.1.  The corresponding best fit parameters are α=10.97 min and β=0.77. 
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The data in Table 2.2 describe the quantitative yield of RNA recovered from 6 

independent experiments.  The high quality of the extracted RNA is inferred in part from 

the RIN (RNA Integrity Number) that were determined through bioanalysis21.  All of the 

samples had RIN numbers between 9.8 and 10.  The 260:280 ratios of all the samples lie 

between 2.11 and 2.29 and the 260:230 ratios lie between 2.0 and 2.47.  Thus, the quality 

of the extracted RNA does not decrease with increasing agitation times.  The data in 

Table 2.2 clearly indicate that the quantity of extracted RNA increases with disruption 

time.  In order to demonstrate that the yield is proportional to fraction of cells disrupted, 

the ratio of the yield of RNA, Y, is plotted relative to the fraction of disrupted cells, F, as 

counted by the disruption assay developed in this study (see Figure 2.5).  Finally, we 

observe that the variance in yield is markedly decreased with 30 minutes of disruption.  

These observations support the notion proposed above that the scoring method employed 

is at least consistent.   
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Table 2.2: RNA yield is shown as a function of disruption time.  The results from six 
independent and identical experiments are shown. 

       

Time(min) RNA yield (ng/µL) 

2 86.2 89.5 140.8 146.3 178.6 191.1 

10 202.9 228.6 258.1 283.5 290.1 305.6 

20 328.8 357.6 372.4 480.2 483.2 492.7 

30 543.3 557.1 558.1 564.9 566 605.7 
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In addition to exploring the behavior of stationary batch cultures, we explored the degree 

of disruption as a function of the cell cycle phase and agitation time.  The cell cycle data 

are summarized in Table 2.3 and are plotted in Figure 2.6.  The data show that agitated 

yeast cells are most likely to break in M-phase and that the degree of disruption 

approximates a saw tooth function around the cell cycle, with a linear increase in 

disruptability from G1 to M and then back again.  It has previously been observed that 

cells are heartiest in G1
20.  The observed cell cycle dependent disruptability is consistent 

with the observation that FKS1 expression is cell cycle dependent and peaks in G1
23.  

FKS1 encodes a subunit of β 1,3-glucan synthase6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

 

 

 

 

Figure 2.5: The recovered yield of RNA is proportional to the fraction of disrupted cells.  
The recovered yield of RNA from six independent experiments, see Table 2.2, were 
divided by their respective fraction disrupted and normalized by the total average RNA 
yield per fraction of disrupted cells.  The means and standard deviations are plotted along 
with the best fit line.  The best fit slope is 0.008 and the intercept is 0.83.  These data 
indicate that the yield of mRNA is directly proportional to the fraction disrupted. 
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Table 2.3:  Data summarizing the percentage of cells disrupted as a function of disruption 
time and as a function of the cell cycle.  The data are plotted in Figure 2.6. 

          

 Time (min) 

Cell Cycle 
Phase 2 10 20 30 

G1 Release 0.118 0.357 0.478 0.929 

G1 0.192 0.296 0.604 0.965 

G1-S trans 0.277 0.513 0.652 0.905 

S 0.265 0.541 0.832 0.973 

S-G2 trans 0.384 0.688 0.929 0.957 

M 0.462 0.708 0.947 0.945 

M-G1 trans 0.214 0.441 0.611 0.904 
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Figure 2.6: Cell disruption as a function of the cell cycle and agitation time.  For a given 
agitation time less than 30 minutes, cell disruptability grows throughout the cell cycle and 
is maximized in M-phase.  Thirty minutes agitation is sufficient to achieve uniform 
disruption.  The intervals between cell cycle phases are plotted as equidistant for 
convenience.  The blue curve shows the results for 2 minutes of agitation, the green curve 
is 10 minutes, the cyan curve is 20 minutes, and the red curve is 30 minutes. 
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The marked difference in disruptability is consistently and reproducibly seen for agitation 

times less than 30 minutes.  At and beyond 30 minutes of agitation, cells from the 

different phases of the cell cycle suffer similar amounts of disruption at greater than 90%, 

in agreement with the batch culture data.  Finally, we observe that the phase dependent 

disruptability is consistent with the calculated nonconstant and decreasing disruption rate 

implied by β < 1 as discussed previously.  The phase dependent disruptability would 

explain why the data are better fit by the Weibull distribution with shape parameter 

β=0.773 than with an exponential distribution. 

 

Conclusions 

 

Understanding how the expression of arbitrary genes are related to and regulated by the 

cell cycle is a central question being pursued vigorously by systems biologists and has 

direct implications for diseases like cancer.  The most important conclusion that can be 

drawn from these data is that disrupted populations, unless they are completely broken, 

can be biased depending on the length and degree of agitation.  Supernatants from 

disrupted batch cultures of yeast will be biased at least with respect to the cell cycle 

unless the cells are agitated long enough.  This bias could in fact be exploited to an 

advantage for the selective harvest of bio-molecules.  The results of this study indicate 

that for shorter disruption times, cells in the M- phase of the cell cycle are most likely to 

be disrupted, promoting selective harvest of biomolecules from these cells.  

 

It is not yet clear how the expression of genes are linked quantitatively to the cell cycle; 

however, it is clear that experimental designs will impact the results and hence the 
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interpretation of the data.  Thus, every effort must be made to understand and properly 

control quantitative assays of gene expression, protein, lipid, or metabolite levels.  We 

were not able to find data of the type reported here in the current and past literature nor 

were we able to find it in manufacturer’s technical reports.  

 

This study demonstrates that for a popular commercial method, 30 minutes of mechanical 

agitation is sufficient to disrupt cells uniformly with respect to the cell cycle and 

reproducibly with a coefficient of variation that is less than 4% and such that greater than 

90% of the total cell volume is disrupted.  Additionally, the results show that this period 

of time does not affect the yield nor the quality of recovered total RNA.  This work also 

demonstrates that the Weibull cumulative distribution function provides a reasonable 

model to describe the process of yeast cell disruption by mechanical agitation. 
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CHAPTER III 

 

EXTENDING CELL CYCLE SYNCHRONY THROUGH AN ANALYSIS OF 
VOLUME GROWTH AND VOLUME FILTRATION USING A 

STRUCTURED LESLIE MODEL 
 

Introduction 

 

Unlike the simple volume symmetric division of E. coli
38, an initially synchronous 

culture of budding yeast becomes asynchronous and stationary very rapidly.  While 

stable, synchronous, autonomous oscillations have been observed and are of enormous 

interest, they do not occur generically and are far from understood4,27,31,40.  Population 

synchrony is often monitored by tracking the percent of a culture that is budded as a 

function of time.  The physiological factors influencing the rapid decay of cell cycle 

synchrony in budding yeast were investigated three decades ago.  It was found that new 

daughter cells take longer to traverse the mitotic cycle than their mothers because of a 

volume asymmetry at division.  That is, daughter cells at the time of division, are smaller 

in volume than their mothers.  Furthermore, as mothers age, they give rise to 

progressively smaller daughters on average, compounding the problem48.  Currently there 

is renewed interest in the physiology of replication in relation to aging and the 

asymmetric partitioning of biomolecules between mother and daughter cells1,2,3.   

 

As yeast are now routinely the subject of expression analysis, synchronous growth and 

division has important and largely unexplored implications for attaching meaning to 

commonly measured population signals15,40.  Our interest in developing a model for the 

volume growth and population synchrony of budding yeast stems from our previous work 
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on an ostensibly simple gene regulatory circuit involved in nitrogen catabolite repression 

(NCR).  An analysis of a minimal model of the NCR-circuit indicates that the 

components of the system oscillate in phase with the cell cycle6,7.  In order to understand 

how a cellular oscillation is observable at the population level, and further, how one 

could engineer an experiment to convincingly demonstrate periodic oscillation at the 

cellular level from a population measurement, we undertook the development of the 

structured population model of yeast growth and division to be described in this chapter.  

 

The central observations of this study can be summarized as follows.  Theoretically, 

volume symmetric division leads to persistent synchrony.  Each strain of budding yeast 

has a characteristic mean daughter-mother division volume asymmetry, some more and 

some less pronounced.  Parenthetically, this asymmetry is an inversely proportional 

function of growth rate30.  As the asymmetry between mother and daughter division 

volume increases, synchrony decays in a predictable way.  For a given strain of yeast 

growing exponentially in a bioreactor, continuously filtering out the smallest and largest 

cells extends the synchrony of the apparently asymmetric system.  With judicious choices 

of filtration cutoff volumes, synchrony can be extended by an order of magnitude.  The 

filtration process can be conceived of as a means to restore partial symmetry.  While it is 

true that continuous filtration will skew the population of cells under observation, it can 

be accomplished without inducing a generic stress response within the yeast.  This trade 

off may be useful for certain experiments.  

 

The cell cycle synchrony of a population of yeast, its persistence, decay, and control are 

essentially and ontologically dynamical systems phenomena.  There is a long and fruitful 
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history associated with the modeling of population growth.  Budding yeast and their 

mitotic cell cycle continue to be an interesting and important area of mathematical cell 

biology.  We make no formal attempt to review this enormous literature but restrict our 

attention to those models which we are aware that have dealt with volume growth and the 

effects of a mixed population of cells growing with potentially different growth rates.  

The mixed mother-daughter model was developed based on the mathematical results of 

branching processes to explain the variations in the G1 phase of the cell cycle17,28,36.  This 

model was used to derive a stationary distribution of mothers and daughters as a function 

of the cell cycle.  A model developed by Hartwell and Unger in 1977 and expanded on by 

Lord and Wheals in 1980, considered the properties of an asynchronous population 

growing exponentially18,30.  A central result of their pioneering work was to derive a 

formula for the replicative age distribution at stationarity that depends on only two 

parameters: the culture growth rate and the parental doubling time.  The formulas and 

analysis derived by Lord and Wheals have continued to underpin current models of cell 

cycle dynamics and division11.  An admitted limitation of their work however is that it 

explicitly assumes that the growth rates among the age classes are the same.  Their paper 

presented compelling evidence to support this claim.  There is also a wealth of evidence 

to the contrary and evidence that older mothers grow larger with each division14,48.  Age 

structured models that take into account this finer, but important, level of detail were 

proposed and utilized to analyze population signals of a critical protein in search of the 

still elusive link between size control and division25,43.  

 

Population balance models that extend that of Hartwell and Unger have been proposed to 

explore the links between metabolism and the cell cycle during asynchronous as well as 
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synchronous growth.  These models were extensively reviewed by Bellgardt in 19944.  

Recently, sophisticated population balance models have been constructed that take into 

account the mass changes that accompany growth and division and that can vary among 

distinct age classes9.  The Leslie model presented here is a discrete version of the 

continuous population balance model, although the focus is explicitly on volume as 

opposed to mass.  The obvious advantage of this class of model is that it naturally allows 

variations among age classes since they are explicitly represented.  An important reason 

for utilizing and exploring a volume and age structured model is that it captures the 

effects that influence synchrony.  Since it is a dynamical systems model, it can be used to 

directly examine the dynamical phenomena of synchrony and the effects of filtration as a 

control mechanism, which is the goal of this study. 

 

There is a long history of elutriation as a means of preparing and examining yeast sub-

populations in the biological literature44.  There is also a long history of filtration and 

sedimentation as a means to separate and control the growth of micro-organisms in the 

chemical engineering literature12,45,47.  These two literatures are now converging as 

systems biology has hit its stride and seeks to leverage every available technology to 

examine and understand the physiology of networks.  As described in this chapter, the 

main result of the modeling work suggests that continuous volume filtration can maintain 

the synchrony of an initially synchronous population for 20 to 30 cycles: An order of 

magnitude improvement. This theoretical result can be put into practice utilizing current 

microfluidic techniques at every population scale of investigation from the 

nanophysiometer up to the bioreactor.  
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The Leslie Model 

 

In a culture of budding yeast, the mitotic cell cycles of distinct cells need not be in phase 

with each other.  We want to model the dynamics of the mitotic cell cycles of a 

population of budding yeast growing in a bioreactor.  A description of the dynamics 

requires a model describing the rate at which individuals progress through the mitotic cell 

cycle.  The vital rates correspond to growth, division, aging, and death.  We describe the 

vital rates through a consideration of two variables, cell volume and replicative age, with 

the aid of a Leslie matrix.  Leslie models are an important and well studied class of 

structured population models.  Structured population models are commonly used to 

describe the life cycle of an organism or process.  A comprehensive review of their 

mathematical properties is presented by Caswell10.  While we wish to highlight certain 

aspects of the model for its utility, we in no way want to obscure or jeopardize the 

biological punchline: Continuous volume filtration can extend cell cycle synchrony.  A 

heuristic understanding of our model can be obtained without recourse to equations 

through the process flow diagram in Figure 3.1.  Figure 3.1 is analogous, but not 

identical, to those described by Vanoni in 1983 and Hatzis in 200619,43.  
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Figure 3.1:  Graphical representation of the Leslie process model that involves growth 
within each age class, division with concomitant birth of new daughters, and replicative 
aging of mothers.  Each age class, Pk, consists of a series of volume intervals, represented 
as the open circles.  The volume intervals within each age class can be annotated with 
milestones and cell cycle phases.  The milestones of bud emergence (B.E.) and mean 
division volume (M.D.V) are shown.  The arrows between volume interval indicate the 
processes of growth and division.  The division process can produce a single volume or a 
distribution of volumes as indicated by the bell shaped curves. 
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Variables 

The model is organized around two variables, replicative cell age and the volume of an 

individual yeast cell.  Each variable is described below. 

 

1. Replicative cell age. As a yeast cell buds during the mitotic cell cycle, a chitinous bud 

scar is permanently formed on the mother cell.  The bud scars can be visualized with 

calcoflour white staining, and like the rings of a tree, can be used to determine a 

replicative age33.  Each generation can be quantitatively identified with the equivalence 

class of those yeast that carry precisely the same number of bud scars.  Traditionally, 

generations, or bud scar equivalence classes, have been denoted by P0,P1,P2…,Pk,…Pn. 

Replicative age has been identified as a variable that directly impacts synchrony48.  

Replicative age is a discrete variable that we will index by k, the number of bud scars. 

 

2. The volume of an individual yeast cell.  Cell volume has been observed to increase 

monotonically with time until division, within a given age class, and thus is often used as 

a proxy for progression through the mitotic cell cycle.  The volume of a budded cell is 

taken as the total volume of both mother cell and the bud until division, at which point 

they become distinct.  The results of this chapter confirm that volume is intimately 

connected with synchrony.  Volume is consistently expressed in units of cubic microns 

throughout this chapter.  

 

Volume and Intervals of Time 

Yeast cells of a given replicative age k, are observed to grow in volume between well 

defined limits.  The minimum and maximum volumes naturally delimit and define 
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intervals, I(k):= [ kV , kV ].  We consider the temporal evolution of the system at a 

sequence of equally spaced times, ts:=to+s∆t.  The volume intervals, I(k), are partitioned 

into subintervals I(i,k):= )()],1(),,([ kIkiVkiV ⊂+ , with ),()( kiIkI i∪= , i=0,1,…nk, 

where kVkV =:),0( , and kk VknV =+ :),1(  and nk is the maximal number of age classes.  

The partitions are chosen according to the growth law within each age class, such that 

any cell with volume in the interval I(i,k) now, would have a volume in I(i+1,k), 

precisely ∆t later.  The unit of time is minutes, and we have taken ∆t=1 throughout this 

chapter.  The state of the yeast population at time ts is described by a vector,  

ρ(i,k)(ts) := number of cells of generation k with volume ),( kiIv ∈ . 

 

Each of the ρ(i,k)(ts) cells living in I(i,k) at time ts are faced with the following 

possibilities: 

1. The cell dies 

2. The volume of the cell increases 

3. The cell divides 

The details of each of these possibilities are described below.  

 

Cell Death 

The probability of cell death is denoted by di,k.  Mortality curves have been measured for 

several strains of yeast under a variety of conditions14,32,35.  These data can be used to 

determine an age class specific death rate.  Some studies observe that the death rate on 

average amounts to 10-10/cell generation
30. 
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Volume Growth 

The probability of growth is denoted by gi,k, and the fraction of cells that survive and 

grow is )1(: ,,, kikiki dg −=κ .  Volume growth has been measured and is generally 

considered to increase exponentially with time, which we assume for all of the 

experiments and analyses in this chapter.  The age class specific growth rate is denoted 

λk.  The volume intervals are conveniently described by 

                                            ],[),0( t

kk
keVVkI
∆= λ  

                                        ]),(),,([),( tkekiVkiVkiI
∆= λ                         Equation (3.1) 

                                           ]),,([),( kkk VknVknI =  

Cell Division 

All cells do not divide precisely at the same volume.  The probability that division occurs 

is denoted kikic ,, 1: κ−= .  The importance of including sloppy size control in models of 

growth and division has been discussed in the literature 48.  We have implemented a 

variety of distributions.  Two of the most natural are a Poisson process37, modeling 

division as time to failure, and a Brownian process using a normal distribution.  As will 

be described in the results section, this choice makes little or no qualitative difference.  

The mean of ci,k, for fixed k, is referred to as the mean division volume and denoted as k-

MDV.   

 

We assume that the division of a cell of volume v in age class Pk results in a cell of age 

class P0 with volume v' and a cell of age class Pk+1 with volume v''.  Furthermore, v = v' + 

v''.  We sometimes denote the division process as Pk→ Pk+1.  It has been experimentally 

observed that after a cell has budded, the ensuing volume growth is concentrated almost 



45 

entirely in the bud48.  This implies that there is a conditional probability distribution for v' 

that depends on the size and age of the mother.  Let µi,j,k be the probability that after a cell 

division, Pk→ Pk+1, we get a cell of age class P0 with volume in I(i,0) from a dividing cell 

in I(j,k).  The mean of µi,j,k, for fixed k, is referred to as the mean emergent daughter 

volume and denoted as k-MEDV.  Let, νi,j,k, represent the probability that a parent cell of 

volume I(j,k+1) emerges from a division in I(i,k).  The mean emergent parent volume is 

denoted as k-MEPV.  Generally, the distribution of division volumes has been observed 

to be normal 21,46.  

 

Given these definitions, we can present the projection formula that updates the population 

in time.  

             ∑+−= −+
ki

skikilsls tkictltl
,

,,,0,11 ))(,())(0,1())(0,( ρµρκρ             Equation (3.2) 

     ∑ >−+−= −+
i

smimilsmls mtmicvtmltml 0);)(1,())(,1())(,( ,,,,11 ρρκρ  Equation (3.3) 

The first summand in each equation represents the volume growth contribution while the 

second summation term represents the density coming from division.  The term 

))(,(, ski tkic ρ  represents the fraction of dividing cells in volume interval I(i,k) and 

))(,(,,, skikil tkic ρµ  is the fraction of those that end up in the volume interval I(l,0).  The 

first equation represents daughters and is distinguished because every division results in a 

daughter. In the higher age classes, m > 0, density from division arrives from only one 

source, namely the age class Pm-1. 
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Milestones 

The parameters of the model that we have described in the previous three subsections, 

such as kV , λk , di,k , gi,k , k-MDV, k-MEDV, and k-MEPV, are experimentally measurable 

quantities associated to a particular strain of yeast that often depend on growth 

conditions. We refer to these parameters as general volume milestones.  

 

An experimentally important measure of cell cycle synchrony is the percent of cells in the 

culture that are budded, also known as the bud index.  This quantity can be computed 

from ρ(i,k)(ts), given an age class dependent, bud emergence cumulative distribution 

function, Bi,k.  That is, 0 ≤ Bi,k  ≤ 1, is a monotonically increasing function of i, for each k, 

and describes the probability that the cells in I(i,k) are budded.  The function is monotone 

because once a cell has budded, it remains that way until it divides.  The mean of the bud 

emergence distribution for fixed k, is denoted as k—BE. The bud index at time ts is the 

normalized inner product:  

                                  BI(ts)= 
∑

∑

ki

s

ki

kis

tki

Btki

,

,

,

))(,(

))(,(

ρ

ρ

                            Equation (3.4) 

Careful measurements of bud emergence have been made and reveal that the cumulative 

distribution function of buddedness relative to volume is derived from an underlying 

normal distribution46.  

 

Bud emergence is also a hallmark at the end of the G1 phase and the beginning of the S-

phase of the cell cycle.  Likewise, other cell cycle phases can be demarcated within each 

age class.  This annotation enhances the power and utility of the Leslie model.  As 

discussed above, the general outline of the process flow in the Leslie model is similar to 
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that previously outlined by Hatzis and Vanoni,  although there are some qualitative 

differences19,43.  In their process, it is tacitly assumed that the k-MEDV forms a 

monotonically increasing series as a function of k.  We make no such assumptions.  The 

model can be implemented with measured or arbitrary values.  In fact, the data described 

by Woldringh et al. indicate that k-MEDV forms a monotonically decreasing series as a 

function of age class k48.  

 

We have utilized the volume milestones of two strains in this work.  To the best of our 

knowledge, the most comprehensive set of milestones have been measured in the diploid 

strain X2180.  For this strain, the model was parameterized with yeast physiology data 

derived from experiments performed over the past four decades3,9,18,22,23,35,36,46,48.  Among 

these, the data of Woldringh et al. are particularly comprehensive and well suited for our 

modeling48.  The volume milestones and their description are summarized in Table 3.1. 

 

Table 3.1: Volume milestones and growth parameters for the strain X2180. 
 

       

Age(k) Vk kV  λk BE MDV MEDV 

0 14 75 0.0062 38.5 70.7 28.5 

1 40 85 0.0061 46.8 75 24.4 

2 48 87 0.0044 56.1 82.4 24.2 

3 56 94 0.0047 63.9 88.9 22.3 

4-13 64 125 0.0047 76.3 95 22.2 
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Additionally, we have utilized the haploid, α-factor sensitive strain LHY3865, which is 

much larger than X2180, and for which we have measured many, but not all, of the 

volume milestones, see Table 3.2.  

 

 

 

 

 

 

 

Table 3.2: Volume milestones and growth parameters for the strain LHY3865. 
 

       

Age(k) Vk kV  λk BE MDV MEDV 

0 30.0 105.0 0.0054 59.0 98.0 46.0 

1 45.0 105.0 0.0049 69.5 97.5 43.0 

2 53.0 104.0 0.0049 68.9 96.6 36.5 

3 60.0 115.0 0.0049 78.8 110.4 36.5 

4 73.0 140.0 0.0049 95.7 134.1 36.5 

5 97.0 185.0 0.0049 155.0 179.1 36.5 

6-13 129.0 190.0 0.0049 155.0 179.1 36.5 
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The behavior of the model can be investigated with arbitrary parameters.  For instance, 

we were interested to examine how the mother to daughter volume asymmetry impacts 

synchrony, with all other factors being equal.  For this part of the study, we used a data 

set that has no analog in nature that we are aware of, but was constructed to coincide with 

realistic volume values and exponential growth rates.   

 

Table 3.3: Growth parameters for studying the impact of the daughter to mother 
volume asymmetry on the decay of synchrony. 
 

       

Age(k) Vk kV  λk BE MDV MEDV 

0-13 40 110 0.0047 60 100 50 

              

 

Initial Conditions 

In order to compare the dynamics of our model with data, we considered several natural 

initial conditions.  For instance, most experiments that follow the bud index oscillations 

start from an initially synchronized population of cells.  Historically, various 

experimental methods have been used to synchronize yeast.  These include metabolic 

starvation, elutriation, and pheromone blocks44.  Perhaps the most common of these is the 

use of mating pheromones like α-factor that arrest cells in G1 prior to the cdc28 delimited 

start.  Computationally, we created an initial condition to mimic this population of cells 

by pruning the time invariant population density of each class such that no cells exist 

outside of the terminal 20% of the G1 volume intervals prior to the mean bud emergence.  

The pruned population density was then renormalized.  We will refer to this distribution 

as the α-factor initial condition. 
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In the late 1960's, Helmstetter had the ingenious insight to create what is now referred to 

as the baby machine
20.  The concept can be made to work with virtually any dividing 

cells, but was conceived for yeast.  Cells are adhered to a membrane and perfused with 

media.  As the cells divide, the daughters fall into a receptacle.  The collected P0 cells can 

be re-adhered to a fresh membrane and the process iterated, with or without pheromones, 

limited only by imagination.  In this way, one can experimentally create and subsequently 

analyze coherent populations.  Other clever ways of preparing and separating cells also 

exist29,34.  

 

With the help of a baby machine, we collected coherent P0 cells and analyzed these cells 

through a Coulter counter to measure their volume distribution.  We  refer to such data as 

a baby initial condition. 

 

Filtration 

The main objective of this study was to observe the behavior of a population of yeast 

undergoing continuous filtration.  Here we wish to formally define what we mean by 

filtration.  Figure 3.2 depicts how the process works. 
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Figure 3.2: Schematic representation of a volume filtration process.  The vertical red lines 
indicate the lower and upper volume filters.  The horizontal lines represent the volume 
grids of each age class ascending in age from the top of the page.  All cells whose volume 
is below the lower cutoff are removed from the system as well as those whose volume is 
larger than the upper cutoff.  The cells with volumes in between the two red stripes 
remain in the system.  Filtration acts to symmetrize the age classes and restore mother to 
daughter volume parity as best as possible.  There is a parallel between the extended 
synchrony achieved via two stage filtration and that described in Figure 3.4. 
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Two volumes are specified, V* and V
*, and together these define a volume interval, 

)(),(: *

* kIUVVF κ⊂= .  In Figure 3.2, the vertical red lines indicate the volumes V* and 

V
* and how they intersect the various intervals I(k).  All cells, regardless of age, whose 

volume lies outside of F are removed from the system at every timestep.  

 

      0))(,(),(),( *

* =⇒≥≤ stkiVkiVorVkiV ρ        Equation (3.5) 

 

This is intended to mimic what a perfect volume filter might do to a real yeast culture. In 

engineering practice this would be called a two stage filtration because each of the two 

defining inequalities would be implemented by a separate filter and the process is 

performed in series.  

 

Materials and Methods 

 

Yeast cells of Saccharomyces cerevisiae strain LHY3865 (mat a- URA, LEU, bar1∆) 

were grown in YNB media without ammonia or amino acids and with 100 mg/L leucine, 

20 mg/L uracil, 0.2% glutamine, and 2% glucose at 30° C.  Batch cultures were grown 

with agitation at 225 rpm in a New Brunswick Innova 44 orbital incubator/shaker.  

Continuous cultures were grown in a New Brunswick BioFlow 110 3.0 L bioreactor with 

a dilution rate of D=0.35 hr-1, air was sparged through the reactor at a rate of 500 

mL/min, and the culture was agitated with a Rushton-type impeller run at 225 rpm.  
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Cell Cycle Synchronization 

A 750 mL yeast culture was arrested at a cell density of OD600=0.8 through the addition 

of 3x10-5 M α-factor mating pheromone (Sigma # 63591) and was incubated for 3 hours. 

Cells were subsequently released from arrest by pelleting followed by three washes with 

fresh pre-conditioned media, free of α-factor, containing 0.1 mg/mL Pronase E (Sigma # 

P-6911).  The pre-conditioned media was prepared by allowing LHY3865 yeast cells to 

grow within the media for 4 hours at OD600 = 0.4 before being removed by a 0.2 µm 

filter. The synchronized cells were then resuspended in 1.5 L of preconditioned media 

and grown in the bioreactor as described above.  0.5 mL samples were taken from the 

bioreactor at a time interval of 3 minutes and were immediately frozen in 50% glycerol 

by the addition to an ethanol-dry ice bath.  For batch experiments, samples were taken at 

a time interval of 10 minutes for the first 90 minutes of the experiment and then every 20 

minutes for the remainder of the experiment. 

 

Bud Index Analysis 

Samples were analyzed using a conventional microscope for bud index.  Each data point 

consisted of more than 100 different analyzed cells.  Samples were vortexed briefly and 

then sonicated for 1 minute prior to analysis to minimize cell clumping in order to ease 

analysis.  10 µL of each sample was then pipetted onto a glass slide to be analyzed with a 

microscope.  Cells were individually interrogated using multiple focal planes and a 100X 

objective.  Yeast cells were only considered budded if a septum did not separate the 

mother from the daughter cells. 
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Cell Volume Measurement and Baby Machine Construction 

The baby machine consisted of a nitrocellulose filter supported by a stainless steel mesh 

sandwiched between two glass funnels approximately 3 inches in diameter20.  The 

apparatus was supported by a ring stand and the inlet line was connected to a ½” ID PVC 

hose which is used to feed pre-conditioned medium.  The outlet line was connected to a 

vacuum source protected by a water trap which was used to collect the harvested babies 

(daughter yeast cells).  Prior to use, a Millepore nitrocellulose membrane was cut to fit 

the inside diameter of the funnel.  This membrane was then coated in poly-d-lysine by 

filtering through 50 mL of 20 µg/mL poly-d-lysine at a rate of 1 mL/sec.  The filter was 

then rinsed by running 100 mL of sterile DI water through the filter at a rate of 1 mL/sec.  

A 50 mL culture was then loaded onto the filter and profused through the filter via 

gravity, at a rate much less than 1 mL/sec.  The filter was then inverted and 

preconditioned media is profused through the filter at a rate of 1mL/sec.  The media 

profused through the filter was collected in the water trap of the vacuum source which 

was stored on ice so that the daughter yeast cells remain quiescent.  

 

Daughter yeast cells were subjected to volume measurement using a Beckman Multisizer 

Coulter Counter.  The volume distribution of older yeast generations was determined 

using an alternative method.  This method involved time lapse microscopy.  Yeast cells 

were loaded into MatTek dishes (#P35G0-10-C) and imaged over 8 hours (3+ cell 

cycles).  The images were analyzed using cross-sectional area as a proxy for cell volume.  

The results could be used as approximate milestones for higher generations. 
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Results 

 

Bud Index Dynamics 

We define synchrony as the number of consecutive bud index oscillations whose 

amplitude is at least 60% of maximum.  That is, the amplitude varies between less than 

20% budded and greater than 80% budded.  The Leslie model qualitatively as well as 

quantitatively captures the dynamics of two different yeast strains with very different 

volume milestones.  Figure 3.3 shows good agreement between the Leslie model and the 

experiments described by Woldringh et al. with strain X218048.  We have made careful 

measurements of the bud index oscillations for the α-factor sensitive strain LHY3865, 

both in batch and in a continuous fermentation.  The data shown in Figure 3.3 are typical 

of those described in the literature over the past 4 decades8.  The LHY3865 cells are 

initially synchronized with the mating pheromone α-factor that arrests unbudded cells in 

G1.  The agreement of fine structural features between the experiment and simulation, 

such as the breadth at the top of the oscillation, indicates that the model is capturing the 

essential features of budding yeast volume growth and division.  The model predictions 

tend to fit batch data (top panel of Figure 3.3) more accurately than continuous data 

(bottom panel of Figure 3.3).  This is likely due to the fact that the volume milestones for 

yeast growth and division were determined from batch experiments. 
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Figure 3.3: Experimental measurements of bud index synchrony and comparison with 
simulation.  The top figure shows that the Leslie model captures the essential bud index 
oscillations of the X2180 strain.  The experimental data are from Woldringh et al.48.  The 
initial condition for the experimental data was prepared by elutriation.  We were able to 
reconstruct the initial condition computationally from their data set48.  The bottom figure 
shows the good agreement between simulation and experiment for the LHY3865 strain, 
grown in a continuously operated bioreactor and synchronized with α-factor. 
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Using the bud index experimental data, we have performed a sensitivity analysis to 

determine how the individual milestones affect the congruence between model and 

system dynamics.  The results indicate that the milestones of the daughter generation are 

the most sensitive and the sensitivity decays monotonically with age.  How well the 

model dynamics fit the data is most sensitive to the mean division volume of the daughter 

generation, followed by the mean bud emergence milestone.  In general, a 10% change in 

the milestones produced less than a 10% change in the overall fit between model 

dynamics and experimental time series.  This indicates that the basic processes of the 

model robustly capture the dynamical phenomena associated with bud index oscillations.  

 

Stationary Properties 

The model parameterized with the X2180 milestones reproduces the measured stationary 

values within the measured deviations where available, see Table 3.4.  The measured 

quantities were the fractions (F) of daughters (D), parents (P), budded (B) and unbudded 

(U).  It has been observed that a quantitative relationship exists of the form (1-P(G1))/τD = 

η, where P(G1) is the percentage of cells in the G1 phase, τD is the observed population 

doubling time, and η is a constant36.  This expression would be unremarkable save for the 

fact that η=1.1 hrs was observed over a wide range of growth rates, suggesting some 

universality.  The observed population doubling time is in reality a population weighted 

average over all the generations and we have computed this quantity from the model 

using two natural ensemble averages that produce nearly the same value of η=1.2 hrs that 

is in close agreement with the experimental value for which no standard deviation was 

reported.  
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Table 3.4: Comparison of stationary properties of the model with experiment for the 
X2180 strain.  The experimental data are reproduced from Table 1 of Woldringh et al. 
with the exception of the last two entries that are taken from Slater et al.36,48. 
F(D),F(P),F(B),F(U) are the fractions of daughters, parents, budded and unbudded 
respectively. 

   

Property 
Model 

Prediction 
Experiment 

F(D) 61 60.3 +/- 1.8 

F(P) 39 39.7 +/- 1.7 

F(B) 63 66.9 +/- 4.0 

F(U) 37 33.1 

F(B)<τ> 1.2 1.1 

<F(B)τ> 1.2 1.1 

      

 

Decay of Synchrony with Division Asymmetry 

As described in the introduction, it has been well known that the volume asymmetry 

between mothers and daughters has a profound effect on the decay of synchrony of 

initially synchronized populations of budding yeast.  Since budding yeast display a 

bewildering array of strain variation, we felt it legitimate and interesting to ask how the 

amplitude of the bud index oscillation decays as a function of inherent volume 

asymmetry between mothers and daughters at division.  This volume asymmetry has a 

constant mean value for each strain of yeast.  Essentially, this value is MEPV - MEDV, 

when it does not vary with k.  From the bud index curve, we computed the envelope of 

the oscillation and fit the amplitude decay.  As expected from the theory, the decay is 

exponential10.  The initial rates of decay are described in the top panel of Figure 3.4, 

while the number of corresponding synchronous cycles are shown in the bottom panel.  

The data show that the number of cycles of synchrony declines dramatically with volume 

asymmetry as expected.  When the daughter to mother volume ratio is 80%, the number 

of synchronous cycles has decayed from infinity to one for the X2180 milestones.   
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Figure 3.4:  The decay of synchrony as a function of the daughter to mother volume ratio. 
As the asymmetry grows, the synchrony decays.  Synchrony is computed from the 
oscillations of the bud index as a function of time, starting from a population of daughter 
cells narrowly distributed in G1.  In the completely symmetric case of equal volume 
division the system is perfectly periodic, but this is a degenerate case.  In general, 
solutions decay exponentially to a unique equilibrium.  The top panel describes the initial 
rate of decay of the amplitude of the bud index oscillation in arbitrary units.  The bottom 
panel shows how the division asymmetry and the exponential decay lead to a rapid decay 
in the number of synchronous cell cycles that can be observed. 
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Volume Filtration 

We examined two filtration strategies.  Figure 3.2 describes the general filtering scheme.  

In a two stage filtration process, we impose both an upper and a lower volume limit (see 

Figure 3.2).  All cells whose volume lies in between these limits are retained in the 

system, a bioreactor, and the rest are continuously removed.  In the one stage filtration 

process, there is only a lower volume limit and all cells smaller than this are removed and 

those that are larger remain.  

 

The main two stage filtration results of this study are presented in Figures 3.5 and 3.6. 

After inspecting the volume-time diagram constructed in Woldring et al.48, we 

conjectured that it would be possible to emulate the symmetry of near equal volume 

division by filtering out cells that were too small or too large.  We reasoned that this 

would have the abstract effect of making all the age class grids nearly the same.  In large 

part, this hypothesis was conceived from the fact that the data show that a judicious 

choice of filtration parameters we could extend the synchrony from 1 cell cycle to close 

to 20 cell cycles in the X2180 strain and from 3 to 30 in the LHY3865 strain.  Figure 3.7 

shows the bud index profiles associated with several of the filtration parameters that 

describe the range from no filtering to the best that we have been able to observe at 17 

cycles for the X2180 milestones.  
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Figure 3.5:  Synchrony computed as a function of two stage filtration for strain X2180 
milestones.  The data indicate that there is an optimal ridge of values that produce 
extended synchrony.  As expected, the optimal values are achieved for combinations that 
produce age classes that are close in volume extent, as illustrated in Figure 3.2.  The 
volume filtration was accomplished by using two volume cutoff limits.  All cells below 
the minimum volume limit are removed from the system as are all cells that lie above the 
maximum volume limit.  The system is populated by cells that lie in between these two 
limits, see Figure 3.2.  The number of cycles achieved for a particular filtration was 
computed from bud index profiles, see Figure 3.7 for several examples. 
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Figure 3.6:  Synchrony computed as a function of two stage filtration for strain 
LHY3865 milestones.  The data are both more complicated and show greater achievable 
synchrony than strain X2180.  This strain shows more variation with the upper filtration 
limit. 
 

 

 

 



63 

 

 

 

 

 

 
 
Figure 3.7: Bud index oscillations of strain X2180 milestones for a series of filtration 
parameters.  At top left is the bud index profile for an unfiltered system.  Clockwise are 
filtered systems that achieve 6, 16, and 10 periodic oscillations before the system decays 
to the trivial equilibrium.  These were achieved with the following filtration limits, given 
in units of cubic microns: [34,91], [30,90], and [30,71] respectively.  At bottom right the 
figure indicates that there is no qualitative difference between using a deterministic bud 
emergence value versus using a bud emergence distribution. 
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Equivalently, Figure 3.8 shows the bud index oscillations of the LHY3865 milestones 

subject to one and two stage filtration.  The upper panels show the results of one stage 

filtration.  Figure 3.9 codifies the behavior of the single stage filtration of the LHY3865 

milestones.  This figure is annotated with the k-mean daughter emergence volumes.  The 

data show that the position of these milestones relative to the filtration volume limit 

determines the range of extended synchrony.  The fact that there exists a broad volume 

range near the top of the peak ensures that the one stage filtration should in practice 

produce robust results.  
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Figure 3.8: Bud index oscillations of strain LHY3865 milestones with one and two stage 
filtration.  The top two panels correspond to single stage filtration while the bottom two 
panels are for two stage filtration.  The two panels on the right represent the best overall 
synchrony achievable with the respective methods.  Only consecutive oscillations that 
remain completely outside of the dotted lines are counted.  For instance the lower left 
panel is considered to produce 13 consecutive cycles.  Clockwise from the top left the 
corresponding filtration parameters, given in units of cubic microns, are: 39, 42, [37,100] 
and [33,178].  
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Figure 3.9: One stage filtration results for strain LHY3865 milestones.  All cells below 
the filtration value were continuously removed from the system and synchrony is 
measured with respect to the number of successive cycles of the bud index oscillation that 
maintains at least 60% of its total amplitude.  Because single one filtration is practically 
easier to accomplish, we investigated the optimal conditions in order to inform 
experimental investigation.  The short vertical rays on the horizontal axis indicate the k-
mean daughter volumes emerging from the successive generations, Pk.  These are 
observed to be the key milestones that influence synchrony and its extension via a single 
stage filtration scheme. 
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Invariant Density 

For the general volume parameters and growth kinetics of budding yeast, like those 

detailed in Woldringh et al. and summarized in Tables 3.1 and 3.2, the population density 

generically reaches a unique, non-trivial stationary state13,48.  This behavior is observed 

experimentally.  As a consequence of the primitivity of the Leslie Matrix and the Perron-

Frobenious theorem, the invariant density can be recovered from the model as the L1-

normalized eigenvector corresponding to the unique largest eigenvalue of the matrix.  

The state of the system at asynchronous exponential growth is described by Xet tαρ =)( , 

where α is the population growth rate, and X is the eigenvector that, when normalized in 

the L1 norm, represents the time invariant probability density of observing a yeast cell of 

a given volume and age.  Figure 3.10 describes the properties of the invariant density, X, 

computed for the X2180 milestones.  As the figure shows, the invariant population 

distribution within each age class is smoothed through the use of a distribution of 

emergent mother and daughter volumes upon division.  We examined a family of normal 

distributions and the qualitative features are insensitive to the specific details, such as the 

value of σ.  
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Figure 3.10: A concise description of the invariant population density distribution for 
the strain X2180 milestones. Volume units are cubic microns.  Shown clockwise from 
upper left are the P0, P6 and P13 invariant density distributions.  The daughter distribution 
shows the effect of birth and renewal as it is the only age class that exhibits bimodality.  
The inflection point indicated in the daughter density appears at the age distribution 
weighted average of the k-mean daughter birth volumes for k > 0.  The density of 
successively higher generations is a decaying exponential distribution in volume.  
Changing the width, σ, of the division distributions, µ and ν, has only a qualitative 
smoothing effect on the invariant density.  The lower left panel shows the age distribution 
of the model as compared with the experimental data of Beran et al. and with the age 
distribution formula derived by Lord and Wheals5,30. 
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The stationary daughter distribution exhibits an inflection point at the population 

weighted average of the k-MEDV from all age classes with k > 0.  Because of the birth of 

new daughters coming from all age classes, the daughter distribution is the only 

generation to exhibit bimodality.  A local maximum appears just ahead of the 0-MEDV 

milestone that results from the P0→P1 division.  The daughter density distribution decays 

with increasing volume after the global maximum as a linear combination of two 

exponentials.  The structure of the invariant density is similar to those hypothesized in 

earlier work3,30,36.  

 

The invariant density within the parent age classes, Pk for k > 0 are similar to each other 

in that they achieve a global maximum that decays exponentially with increasing volume.  

For all age classes other than the daughter generation, the invariant density is 

indistinguishable from the function A•21-θ, where the constant A is arbitrary and the 

simple linear function θ=(λ-λ0)/(λ1-λ0) rescales the volume interval into the unit interval. 

This agrees well with the theory described previously in the literature3,30,36,41.  

 

Age Distribution 

Since replicative age can be distinguished through bud scar analysis, it is possible to 

determine the age distribution of a culture of yeast.  For instance, if we select a cell at 

random from a culture of X2180 cells during asynchronous exponential growth in a 

bioreactor, we will have a less than 1 in 3 chance of observing a P1 and about a 1 in 6 

chance of finding a P2.  
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It is of interest to understand how each age class is weighted during oscillations as well as 

when the density becomes stationary5,16,30,43.  The age distribution of a symmetrically 

dividing organism decays like the geometric series 
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.  For budding yeast, the age 

distribution is more complicated.  Lord and Wheals derived a simple formula based on 

the culture doubling time and the doubling time of the parents, P30. 

 

The age distribution computed using the X2180 milestones, shown at the lower left in 

Figure 3.10, shows excellent agreement with the experimental data of Beran et al. for a 

strain of Saccharomyces cerevisiae grown in a bioreactor at comparable dilution rates5.  

The formula of Lord and Wheals was fit by least squares to the Leslie model data through 

the variable P.  The best fit value of P=88.3 minutes is however uninterpretable in 

relation to the X2180 parameters.  For instance, the average maximum doubling time of 

the parent generations is calculated as 136.6 minutes, while the average minimum 

doubling time time is 96.8 minutes.  These latter two values should realistically bookend 

the mean doubling times.  

 

Based on a consideration of population flux and flux transit time, we have been able to 

derive a recurrence relation that explains the observed non-geometric decay of the age 

distribution in terms of the growth parameters that extends previous work in the 

literature16,30. 

 

Given the general exponential decay of the age distribution, we have contented ourselves 

to represent 14 generations computationally.  Experimentally, mortality curves for 



71 

replicative age have been measured for some strains of budding yeast14,32,34.  It has been 

observed that some yeast can survive upwards of 60 divisions.  From the decline in the 

age distribution, we have observed that practically, 20-40 generations or more, need not 

be represented in the model to precisely capture the dynamics of the system.  We know of 

no experimental data sets that have completely characterized more than the first 8 age 

classes.  The precise connection between senescence and replicative aging is currently 

uncertain and is an interesting area of intense activity.  

 

Conclusions 

 

The Leslie model captures the dynamics of bud index oscillations and their decay.  The 

measured data and the predicted bud index oscillations agree well for two different sets of 

strain milestones, one haploid and one diploid, of different volume extents and growth 

rates.  The different strains of yeast display quantitatively different behavior with regard 

to their decay of synchrony as we have defined it.  The X2180 strain exhibits 1 

synchronous cycle while the LHY3865 strain displays 3.  The Leslie model captures this 

difference, instilling confidence in the model predictions of synchrony.  The strain 

milestones in both cases contain measurement error and are incomplete especially in 

generations higher than the fourth age class.  Despite the measurement errors, the 

agreement of the model and experimental data exposes the robustness of the processes 

and ability of the Leslie model to capture the essentials of the asymmetric growth and 

division process.  These claims are supported by the results of a sensitivity analysis. 
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It is theoretically known that volume symmetric division is a degenerate case that leads to 

persistent synchrony13,42.  Several well known avenues allow the manipulation of the 

division volume asymmetry.  Lord and Wheals observed, as have many others, that age 

class growth rates depend linearly on the culture doubling time and estimated that there 

exists a growth rate that if achievable would produce balanced and presumably 

synchronous growth30.  Growth rates are most typically affected through variation of 

nitrogen or carbon source.  Drugs such as hydroxyurea can induce nearly symmetric 

division35.  It is well known that strain variations influence division volume asymmetry.  

We have explicitly examined the relationship between division volume asymmetry and 

the number of synchronous cycles of bud index oscillations.  Our intentions in doing so 

are two-fold.  First, we imagine that if a legitimate relationship exists, then it may be 

possible through a judicious mutation to create strains of yeast with pre-defined 

synchrony.  Second, we see a direct relationship between the control of synchrony 

through continuous volume filtration and the natural synchrony that results from volume 

symmetric division.  What this means is that a volume filter is seen in the abstract as a 

mechanism for restoring partial symmetry to an underlying volume asymmetric system.  

For instance, consider Figure 3.2.  The volume grids of the different generations are not a 

priori commensurate; however, the volume grids that live between the filter cutoffs are 

more so.  Those cells that are far from the symmetry conditions are removed from the 

system, leaving the remainder more synchronous.  The intrinsic asymmetry that volume 

filtration cannot influence are the volume milestones such as k-MEDV, k-BE and k-

MDV.  These however, can be influenced by mutation and or nutrients.  The combination 

of mutation, media composition, and continuous volume filtration is therefore expected to 
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be able to produce budding yeast that remain synchronous for long periods of time 

starting from a homogeneous initial condition.     

 

We have explored both one and two stage filtration.  We explored one stage filtration and  

because it is far simpler to implement in practice and it appears to produce results that 

could be observed with even a crude filtration device.  The results indicate that robust 

windows of volume can be used to control synchrony.  An example can be seen in the 

one stage results in Figure 3.9, there is a broad peak around 41 µm3, approximately 4 µm3 

in width, that produces a roughly 4 fold extension in synchrony.  This result, if correct, 

implies that even a crude filtration device should produce observable changes.  

 

Continuous filtration is a control mechanism that will alter the population structure 

relative to an unfiltered population.  The effected parameters are the volume distributions 

and the overall age distribution.  The changes to the age distribution can be analyzed with 

the model.  We believe continuous filtration can be accomplished experimentally without 

inducing a general stress response in the individual cells of the population.  

 

Beyond specific application of volume filtration explained here, we observe the Leslie 

model can be used to explore a much broader range of questions that are of continuing 

interest in yeast physiology and in the larger picture of systems biology.  For instance, as 

has been observed previously, the model can be used to investigate how signals from 

single cells manifest themselves at the population level19,43.  With the addition of volume 

filtration, it will be possible to study cell cycle dependent protein expression more 

extensively. 
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A use that has been little explored to date is how a signal such as a gene expression 

profile, periodic in the cell cycle, manifests itself at the population level.  When signals 

are routinely evaluated by grinding up large numbers of cells and pooling their mRNA, 

such questions seem reasonable.  For example, Chapter 2 demonstrated that how one 

grinds up the cells has quantifiable effects that depend on the cell cycle39.   

 

Any extensive quantity that varies in a single cell with the cell cycle can be examined 

with this model.  For example, oxygen consumption, glucose uptake, or mRNA 

production of the population can be studied given measured or putative data from single 

cells.  Conversely, it is also possible to use the model to deconvolve population ensemble 

averages into individual cell signals.  

 

Finally, a physiological component that has not been included into the current model are 

the putative asymmetric effects that are now emerging in the study of chronological aging 

and senescence1.  It is well known that aging occurs in organisms such as E. coli and 

fission yeast that undergo morphogenically symmetric division38.  Given the success of 

the Leslie model in matching the dynamics of the bud index oscillations for a few cell 

cycles, it is tempting to suggest that deviations between the Leslie model and the 

dynamics of yeast with a variety of aging phenotypes may provide new and otherwise 

difficult to attain insight into the rate and effects of senescence. 
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CHAPTER IV 

 

COMMUNICATION, CLUSTERING, AND ENVIRONMENTAL 
OSCILLATION IN POPULATIONS OF BUDDING YEAST 

 

Introduction 

 

The periodic oscillation of physiologically relevant variables during yeast growth and 

division has been reported and studied for over 40 years 6,8,12.24,28,31,32,33,45,50.  The 

physiologically observed variables have covered the full range of biological complexity 

and include dissolved oxygen, pH, carbon and nitrogen sources such as glucose, ethanol 

and ammonia, second messengers such as cAMP, the expression level of mRNA's, the 

activity of metabolic enzymes, and indices of growth and division such as the percentage 

of cells budded and DNA content.  

 

The observed oscillations are of broad interest in biology 24,31,33,45 and chemical 

engineering 12,15,18 for a number of reasons.  The control of oscillation and the regulation 

of yeast metabolism has been an important theme in the chemical engineering literature 

devoted to the efficient management of bioprocesses.  Oscillations are also of interest 

because they expose questions regarding the coordination of the cell cycle and 

metabolism and the possible existence of clocks and pacemakers 33.  Such oscillations 

and their classification have been investigated and described with regard to intercellular 

communication 15,30,35,38,39. 
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Autonomous oscillations are far from universal, however, and are only routinely 

observed in a few strains and within relatively narrow ranges of operating parameters.  

Apart from the non-universality, two central questions remain unanswered: a full 

understanding of the feedback mechanism that keeps the oscillations entrained and the 

relationship between the oscillations and cell cycle progression. 

 

Why have questions concerning these oscillations remained challenging for so long?  For 

one, our notions of causality are predicated on temporal precedence and these are 

confounded by the periodic repetition in feedback loops: for example, the chicken and the 

egg.  A far less ethereal complication arises when population results are ascribed to 

individual organisms.  Often the linear sequence of cell cycle phases are used as abscissa 

for graphs of the oscillations of environmental variables 11.  

 

Issues are further complicated because organization can easily be obscured by projection.  

For instance, imagine a room filled with rows of people, three people per row, equally 

spaced apart.  Depending on the placement of a light source, the shadow that the room 

full of people cast on a wall may well obscure their internal organization into rows of 

three, while others will reveal it. 

 

Just as the people are organized within the hypothetical room, yeast populations in a 

bioreactor or in a colony display a high degree of organization.  Aspects of this 

organization are revealed by considering the population density as a function of different 

variables.  In a well mixed planktonic culture, it has been observed that a stratification 

based on cell cycle position and replicative age provides discrimination.  Typically, an 
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extensive property such as cell volume or mass has been used as a proxy for cell cycle 

position 3,13,20,22,34,48.  

 

The vast majority of operating conditions produce stationary, asynchronous, 

exponentially growing cultures.  Under the assumption of stationary, asynchronous, 

exponential growth, the population structure of a budding yeast culture is described by a 

continuous population density that declines exponentially with cell cycle position from 

G1 to M, and geometrically with age 26.  Little is known about time periodic population 

structures.  Most experimental studies that have described population structure have been 

related to the effort to understand the coordination of yeast volume growth and the 

sensing mechanisms that gates entry to start of the cell cycle 30,49.  The experimental 

studies of population structure have been limited by the arduous nature of the biophysical 

characterizations required for which standard, high accuracy methodology does not exist.  

An advantage of theory and computation is that it is straightforward and it can produce 

population density profiles as a function of arbitrary variables 44. 

 

This chapter is concerned with an analysis of repeatedly observed experimental results in 

light of new mathematical results on the nature of the population structure that develops 

as a result of generic models of communication.  The described population structure 

provides a proper translation between individual behavior and population measurements.  

We propose that this population structure of autonomously oscillating yeast cultures can 

be exploited to scientific advantage.  For example, the measurement of cell cycle 

dependent gene expression has been a persistent challenge to understanding the link 

between genetic networks and biological physiology.  We present results regarding the 
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expression profiles for two genes, GLN3 and DAL80, that are essential to the function of 

Nitrogen Catabolite Repression (NCR) in Saccharomyces cerevisiae.  These results 

provide supportive evidence to previously developed theoretical predictions 2.  We also 

provide experimental evidence that the population structure can be, albeit within 

limitation, controlled to potential advantage. 

 

Maintenance of Synchrony 

Cell cycle synchrony in budding yeast is typically measured from a time series of the 

percentage of the cells in the population that are budded.  Buds emerge at or near the G1 

to S transition and persist until division occurs.  The bud site accumulates chitin that 

remains as a permanent scar that can be stained to provide a quantitative experimental 

measure of replicative age.  Bud index and age distributions are usually manually counted 

under a microscope and are labor intensive to obtain, although an automated fiber optic 

system has been described 25.  The bud index can be affected in two ways.  It can rise as 

cells become budded and it can decline as budded cells divide and/or as newly divided 

cells dilute the total population.  In a dense and well-mixed culture, the dilution rate 

should have no effect on the bud index since removal through dilution is an unbiased 

linear process.   

 

Cell density, or the number of cells per unit volume of culture, can be measured using a 

Coulter counter.  Cell density can be affected in 3 ways.  First, cell density can increase 

by clusters of cells passing through the M-G1 transition.  Second, cells can be removed 

from continuous culture through dilution.  Third, cells can die and disintegrate, but the 

rate that this occurs has been shown to be negligible 16,37,41. 
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Strains of budding yeast exhibit an age-dependent volume growth variation that strongly 

dephases cell cycle synchrony 44,49 under most nutrient conditions and at most dilution 

rates.  Daughter cells are smaller at division than their mothers and consequently have a 

longer G1 traverse.  Even a small, but systematic difference in the way an age class of 

yeast traverses the cell cycle will eventually lead a culture to dephase.  Typically no more 

than three consecutive decaying cycles of bud index synchrony can be achieved 4,46 in the 

absence of autonomous oscillation.  Therefore, the maintenance of synchrony in an 

actively growing culture requires the existence of some mechanism to counteract the 

natural forces that tend to dephase cell cycle synchrony during growth and division 44.  

Similar reasoning appears in slightly different language in Keulers et al.23. 

 

Oscillatory behavior in yeast is typically grouped into two or three classes whose 

designations differ depending on the author 15,38.  A description of the population 

structure within any of these classes remains an open and fundamental question.  It is 

speculated that the rapid NADH oscillations produced during anaerobic glycolysis in-vivo 

could not be observed in the absence of strict population synchrony.  Mixing experiments 

support, but do not conclusively prove this assertion 38.  It has been demonstrated that 

acetaldehyde acts as a synchronizing agent in this oscillation 9.  We have further 

investigated the effects of acetaldehyde on yeast by injecting acetaldehyde into both 

asynchronous and synchronous cultures and found that acetaldehyde can be used to both 

dephase synchronous cultures and entrain asynchronous cultures. 
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In two often cited papers 15,32, whose origin can be traced to a single paper 40 that cites a 

negative result without data, it is claimed that short period aerobic oscillations in the 

IFO0233 strain occur without cell cycle oscillations.  Such counter intuitive claims 

require overwhelming evidence, and to our knowledge no data supporting these claims 

have been published.  In contrast, we present data that indicate short period oscillations, 

identical to those reported, are accompanied by sizeable bud index oscillations, see 

Figure 4.1.  
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Figure 4.1:  Dissolved oxygen (bold blue line) and bud index (thin black line) for yeast 
strain IFO0223.  The presence of bud index oscillations demonstrate that the high 
frequency, 40 minute, oscillation of the IFO0223 strain is linked to the cell cycle, 
contrary to popular belief. 
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Several feedback mechanisms have been proposed for the maintenance of cell cycle 

synchrony.  Mechanisms involving metabolite feedback that operate on growth rate are 

particularly elegant 18.  Oscillating metabolite concentrations produce oscillating growth 

rates and these can act to locally stabilize synchronous trajectories like a focusing 

billiard.  Based on solid experimental evidence 29,50, it has been suggested that during 

long period aerobic oscillations, a burst of glycolysis follows from the liberation of 

glucose from glycogen and trehalose at the G1-S boundary 11,29.  The ethanol produced by 

the population entering S-phase is proposed to enhance the growth rate of cells in G1.  

Whether or not this proposition is true, it is an example of what we will call an Advance 

model.  In this model, an agent secreted by a part of the population in one particular 

phase of the cell cycle advances the cell cycle progression of those cells earlier in the 

cycle.  In the opposite case of a Delay mechanism, cells would slow or stop their cell 

cycle progression in response to a secreted factor or metabolite.  In an extreme case of a 

delay mechanism, that might adequately be called Blocking, where the progression of 

cells would stop.  Such is the response of budding yeast to pheromones such as α-factor, 

which stop cell cycle progression at the G1-S boundary.  We observe that advances or 

delays can be affected by a large number of mechanisms involving communication-the 

end result of which are oscillations.  The existence of intercellular communication to 

control the metabolic state of the organism has been well documented for a wide variety 

of organisms and growth conditions 4,7,10,19,27. 

 

Oscillations have been observed to exist in dilution rate windows 21.  This observation 

has been interpreted with respect to the interplay between the age-dependent growth rates 

of daughters and parents within the population 6.  Since the population density within 



87 

progressively older generations decays geometrically, typically only the first two or three 

generations have a measurable impact.  Cultures exhibiting oscillations, while planktonic, 

are dense and well-mixed and phase-resetting experiments with a variety of molecules 

suggest that intercellular communication is at least part of the feedback mechanism that 

stabilizes the oscillations 31. 

 

In this chapter, we report experimental results on oscillations in cultures of the strain IFO 

0233 and Cen.PK 113.  Our main contribution is to interpret these data in light of 

mathematical results that demonstrate that generically Advance or Delay models organize 

the population density into non-stationary multimodal distributions to produce temporally 

coherent or pseudo-synchronized groups, that we call clusters.  The cell cycle progression 

of the clusters produces the observed environmental oscillations.   

 

Clustering 

We have observed that for various forms of communication among cells, which result in 

either advances or delays, there is robust clustering of cells within the cell cycle.  

Clustering is defined as the temporal pseudo-synchronization of large sub-populations 

within the cell cycle.  In other words, a cluster is significant groups of cells passing 

through cell-cycle milestones, such as budding or division, at nearly the same time.  A 

cluster is akin to a group of cars moving along a multilane highway with comparable 

speed. 

 

The fact that advances or delays can cause spontaneous polarization in subpopulations 

was already appreciated by Muller et al. in their work on the dynamics of population 
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structure 29.  Our contribution is to demonstrate the existence of clusters through the 

concordance of experiment and mathematical theory.  The robustness of the clustering 

mechanism is observed in at least the following three ways.  First, clustering occurs 

across a wide variety of mathematical models, from extremely general to highly specific.  

Second, it is generated by the very large class of advance or delay feedback mechanisms 

and from arbitrary initial conditions.  Finally, the appearance of clustering in response to 

these feedback mechanisms is insensitive to noise.  These attributes are essential for 

observability.  

 

We have considered several realizations of cell-cycle models, supposing only that the 

appearance of a thresholded population of cells in one cell cycle phase, S, affects the 

growth of cells in another, R.  That is, if the integrated population density in the S phase 

is larger than T, then the cells in the R phase are either advanced or delayed depending on 

the operative feedback mechanism.  We have labeled these two phases in analogy with 

the hydrogen sulfide evolution models of short term oscillatory control 33: S for the DNA 

synthesis phase of the cell cycle and R for the responsive phase.  The specific number of 

clusters that form depends on the widths of the S and R phases and on the particular 

feedback mechanism.  Of key importance is the necessity that if clustering occurs, then 

there are an integer number of clusters.  This observation explains the periodic-looking 

behaviors seen in autonomous oscillations with periods that are integer divisors of the 

cell-cycle length.  

 

In the literature 45,47,50 and in the experimental data described below, the bud index 

oscillates with the same period as dissolved oxygen.  Our data also include a 
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measurement of the cell density as a function of time that also oscillates with the same 

period.  A significant contribution of our work is the interpretation of these data in terms 

of cell cycle clustering and mathematical theory.  These data provide two points at which 

one can strobe the population structure of the system with respect to the cell cycle, which 

we believe elucidate the population structure of the system.  The anti-phase relationship 

between the bud index and the cell density unequivocally indicate the existence of 

clusters in accord with the mathematical results.  

 

Models of Growth and Division 

We have analyzed the dynamics of populations of budding yeast given various generic 

forms of feedback between the cells.  In all of these cases that we have considered, the 

feedback can be interpreted as resulting from communication among the cells.  In fact, 

the structure of the feedback was chosen as a generalization of the physiologically 

observed mechanisms operative in real yeast cultures.  In all of these cases, feedback 

resulted in a non-stationary, multimodal population density that contained clusters.  

Clustering has also been hypothesized to result from feedback of a form different than 

what we have considered 51.  The generality and naturality of these results provide strong 

evidence that clustering exists in nature and is a robust phenomenon.  

 

Advance and Delay Models 

The results of our analysis are summarized starting from the most general models that are 

devoid of all but the most basic features.  The cell cycles of many strains of budding 

yeast are well known to differ in range and duration according to replicative age 49.  In 

the most basic models, we ignore these distinctions in order to simplify the analysis.  
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These details are reintroduced in later models.  Let S and R represent portions of the cell 

cycle as described previously.  Typically, we assume that the R phase precedes the S 

phase in the normal cell cycle progression.  Let ρS(t) and ρR(t) represent the total 

population of cells in those respective phases of the cell cycle and τ represent a threshold 

of cells required for efficient communication.  Since the system is dynamic, these 

quantities may vary with time t. 

 

An advance model corresponds to the following rule: If the fraction of cells in S exceeds 

some threshold ρS(t)>τ, then all cells currently in R, ρR(t), are instantaneously promoted 

to the beginning of S, where they resume normal growth. 

 

A delay model corresponds to the rule: If the fraction of cells in S exceeds some threshold 

ρS(t)>τ, then cells at the beginning of S are blocked from entry into the S-phase.  The 

blocked cells resume normal growth when the condition ρS(t)>τ becomes false at some 

time t. 

 

These rules may appear too strict to be realistic.  However, we note that the mating 

pheromone α-factor behaves as a delay model as described.  Either of these rules will 

cause the population to become more dense in certain portions of the cell cycle and less 

dense in others.  The introduction of this type of modal, wave-like structure within an 

actively growing and dividing population represents a form of synchrony.  We call a 

group of synchronized cells a cluster.  If the number of cells in a cluster is large enough 

to exceed the threshold of the model, we call it a critical cluster.  The number and the 

size of the population clusters within a yeast culture will translate directly into 
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measurable properties.  For instance, the cell density profile will increase each time a 

cluster of cells passes through the M-phase, and the bud index must increase each time a 

cluster passes into S-phase.  Mathematically, we have begun to characterize the number 

of clusters that a particular feedback will produce.  Therefore the following theorems 

have practical and measurable significance.  

 

In Boczko et al. 1, the interested reader can find proofs of the following theorems that 

give an upper bound on the number of critical clusters that can form. 

 

Theorem 4.1 In an advance model, no more than  1)( −+ SR  critical clusters can 

persist. 

 

Theorem 4.2 In a delay model, no more than 
1

S
− 

 
 critical clusters can persist. 

 

Here  x  denotes the largest integer less than or equal to x and  x  denotes the smallest 

integer larger or equal to x.  Also, |S| signifies the temporal length of the S phase.  

 

It can be shown that not only the number of clusters is bounded above, but in certain 

circumstances, it is also bounded below.  This means that clusters must form.  

 

Theorem 4.3 In a delay model, if the cells are initially homogeneously distributed about 

the cell cycle and the density exceeds twice the threshold, T, then exactly 
1

S
− 

 
 clusters 

will develop and persist. 
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Leslie Model Simulations 

At the greatest level of detail, we have considered models of budding yeast growth and 

division that are parameterized with experimental data and that are stratified with respect 

to cell cycle progression and age.  The data used to parameterize the model include age 

class dependent growth milestones, such as the average size of a cell at bud emergence 

and the variance in that value.  Such data are available in the literature for some strains 49, 

and we have made measurements for others.  We have shown that these models can 

capture the complexity of yeast growth dynamics and account for strain variations 

therein44.  

 

In every case that we have examined, the simulation data clearly indicate that there exist 

open intervals of the threshold value in which synchronous cell cycle oscillations become 

stable in either advance or delay models.  An examination of the population density 

shows that clustering occurs and that the cell cycle progression of the clusters with time 

is responsible for the oscillations.  
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Materials and Methods 

 

Continuous Culture 

The haploid strain Cen.PK 113-7D (mat a) of budding yeast was cultivated in a 3 L New 

Brunswick Scientific Bioflow 110 reactor equipped with two Rushton type impellers, 

operated at 550 rpm.  Air was sparged at a rate of 900 mL/min.  Temperature was 

maintained at 30 °C and pH was automatically controlled with 2 N sodium hydroxide.  

Overnight cultures were grown in YPD media with shaking.  20 mL were inoculated into 

a reactor containing 850 mL of synthetic media with the following composition: 10 gm/L 

anhydrous glucose (Sigma # G71528), 5 gm/L ammonium sulfate (Sigma # A2939), 0.5 

gm/L magnesium sulfate heptahydrate (Sigma M2773), 1 gm/L of Yeast Extract (Becton, 

Dickinson and Company Cat 288620), 2 gm/L potassium phosphate (Sigma # P5379), 0.5 

mL per mL of 70 % v/v sulfuric acid, 0.5 mL of antifoam A (Sigma # 10794), 0.5 mL of 

250 mM calcium chloride, and 0.5 mL of mineral solution A, see Table 4.1.  For nitrogen 

switching experiments, the appropriate nitrogen source was substituted for ammonium 

sulfate in the exact same amount.  No other media component was altered during these 

experiments. 
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Table 4.1: Composition of the mineral solution used to prepare culture media for 
CEN.PK 113-7D. 
 

  

Mineral Solution A 

FeSO4• 7 H2O 40 gm/L 

ZnSO4• 7 H2O 20 gm/L 

CuSO4• 5 H2O 10 gm/L 

MnCl2 • 4 H2O 2 gm/L 

75% H2SO4 20 mL/L 
    

 

The culture was subsequently grown in batch mode for 12-16 hours until it reached a cell 

density of approximately 5x109 cells/mL.  Continuous culture ensued with a dilution rate 

of 0.088 hr-1.  Samples were taken from the reactor and flash frozen using dry ice.  The 

haploid strain IFO0223 (mat a) require slightly different conditions.  Overnight cultures 

were grown in YPD with shaking.  20 mL were inoculated into the reactor described 

above, containing 900 mL of the media previously described 31 with the exception that 

we used 0.5 mL/L of Antifoam A.  The reactor was perfused with wet air at rate of 200 

mL/min, kept at pH of 3.4, and maintained an agitation speed of 750 rpm.  The reactor 

was operated in batch mode for 16-20 hours.  Operation was switched to continuous 

mode at a dilution rate of 0.085 hr-1.  Autonomous oscillations were obtained after 

switching to continuous mode following various hallmarks.  These hallmarks include 

switching at the dissolved oxygen minimum, switching after the dissolved oxygen 

rebounded to 100% saturation, and following four hours of starvation.  The cultures of 

IFO0223 typically achieved a maximal density of approximately 3x108 cells/mL.   
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Measurement of Bud Index and Cell Density 

Samples were collected at 15 minute intervals and immediately frozen in an ethanol-dry 

ice bath.  Buds were counted with a 100X objective on a conventional Nikon TE-2000 

microscope.  A minimum of 300 cells were scored at each time point.  Cells without buds 

were considered to be within the G1 phase of the cell cycle. 

 

Cell samples were thawed in a 4 ºC sonicating water bath for 5 minutes and vortexed 

briefly.  1 µL of sample was resuspended in 10 mL of Isoton Diluent II(Beckman Coulter 

# 8546719) and vortexed. The cell density of three independent 0.5 mL samples were 

measured using a Beckman Multisizer Coulter counter. The sizing threshold was 2-8 µm. 

 

Gene Expression Measurements 

The gene expression profiles were measured during the autonomous oscillations using 

luciferase reporter constructs.  The cloning process including primer sequences, shuttle 

vectors, and cloning sites is described in Appendix B.  Cells were grown in media 

containing 5 µM luciferin (Gold Biotech # LUCK-500-SPO) and continuously removed 

from the reactor using a peristaltic pump, measured using a PMT (Photomultiplier Tube), 

and were subsequently returned to the bioreactor.  The residence time for cells outside the 

reactor was approximate 20 seconds.  Data were recorded at 1 minute time intervals at a 

frequency of every other minute. 
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Results 

 

Existence of Clusters 

Figure 4.2 shows three successive dissolved oxygen oscillations and the periodic 

extension of one cycle of bud index oscillation.  Two oscillations occur within a 7.8 hour 

period that approximately corresponds to the doubling time imposed by the dilution rate.  

Over the course of an oscillation, the bud index percentage falls to 4%, and in a time span 

of less than 1 hour rises to 50%.  The sharpest part of this increase occurs within a time 

span of 20 minutes.  This is by definition a cluster: a significant percentage of cells that 

arrive at a common milestone, the S phase, at approximately the same time.  

 

The fact that the bud index reaches 50% and it occurs twice within the culture doubling 

time shows that half of the cells enter S-phase as a cluster, while the other half remain 

unbudded and reside in G1.  In the subsequent oscillation, the other half of the population 

density enters S-phase again as a cluster.  The population density is organized into two 

clusters.   

 

These conclusions are reiterated and refined by data in Figure 4.3 that describes a three 

and a quarter hour oscillation and a time series of the cell density.  The bud index can rise 

only as cells pass into the S-phase, while the cell density can rise only as cells exit their 

cell cycle from the M-phase during division.  The phase relationship of the density data to 

the bud index data is extremely informative.  We draw the following conclusions.  
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Figure 4.2: A 3 hour and 40 minute dissolved oxygen oscillation (thin blue line) and bud 
index measurements (thick black line) for yeast strain Cen.PK 113-7D.  The dilution rate 
of the bioreactor was set to 0.087 hr-1 such that two waves of budding occur during one 
cell cycle time period.  Time in the figure is represented as hours:minutes:seconds.  The 
data in the figure span a time period of 12 hours. 
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First, as the bud index rises to its maximum, the cell density is purely in decline.  From 

the slope of this decline we calculate a dilution rate that is within less than 8% error of 

the dilution rate set in the experiment.  This value is well within the deviation and 

statistical noise of the measurements and is strong evidence that no cell division is taking 

place as a cluster passes into the S-phase.  The subsequent drop in bud index from its 

maximum value corresponds to a rise in cell density, indicating that loss of buds is due to 

cell division of that cluster.  

 

Second, the phase relation between the cell density maximum and the subsequent bud 

index minimum indicate that there exists a short period of time when both clusters coexist 

in the G1 phase.  Given the sampling rate, we can estimate this time to be on the order of 

15 minutes.  The magnitude of the bud index minimum, from 4% to 8%, is further 

indication of this temporal coexistance.  The phase relation between these events 

represents the timing and spacing between the cell clusters, such that as the tail of the 

dividing cluster is passing through M-phase and all of its cells are returning to a G1 

phase, the second cluster's leading edge is passing into the S-phase and is begging to bud.  

 

Third, the close temporal interplay between the bud index minimum and the cell density 

maximum contains more information.  The cells at the cell density maximum must be in 

early G1.  These same cells cannot begin to bud within the next 15 minutes.  However, 

the cells at the bud index minimum are doing just that, indicating the existence of 

multiple clusters of cells.  The fact that two oscillations occur within one dilution rate 

doubling time testifies to the interleaving of two clusters. 
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Figure 4.3: Bud index (bold black line, triangles), cell density (bold green line, squares), 
and dissolved oxygen (thin blue line) for a 3 hour and 15 minute oscillation.  The data 
indicate two waves of division and budding nearly perfectly out of phase with each other 
per cell cycle.  Error bars represent one standard deviation over three independent 
measurements.  Time in the figure is represented as hours:minutes:seconds.  The data in 
the figure span 390 minutes. 
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The temporal width of the bud index curve from its global maximum to the following 

global minimum indicates the width of the group of daughter cells that emerge within the 

daughter generation, P0, due to the cell divisions.  The ratio of that temporal width to the 

width from minimum to following maximum is approximately 7/4.  The latter width is an 

upper bound on the time it takes a cluster to pass into S-phase.  There are several 

conceivable mechanisms that could effect this change.  Since all cells do not bud at 

precisely the same cell cycle position or volume, the simultaneity induced by the 

dispersion in the budding process could account for some or all of the effect.  We believe 

that this narrowing is at least in part an indication of the feedback mechanism that 

produces the clustered population structure by reducing the temporal variance within the 

daughter population by 57% (4/7) over the course of its G1 traverse.  While dilution will 

progressively whittle away at a cluster of cells throughout their cell cycle traverse, it 

cannot theoretically alter the width of the cluster at half-height.  More data are required to 

further sharpen these deductions. 

 

The symmetry of the bud index and cell density curves contain meaning.  The fall in the 

bud index is not as sharp as its rise.  Simulations indicate that the trailing tail is due to the 

fact that the different age classes do not divide in unison.  This observation is supported 

by the fact that the cell density appears to have three peaks, as also seen in simulations.  

Another observation is that the sharp rise in the bud index curve to its maximum could be 

indicative of a blocking mechanism near the G1-S boundary.  A blocking mechanism 

would cause cells to pile up along the leading edge of a cluster, while leaving a trailing 

tail, as observed. 
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From the data in Figures 4.2 and 4.3, we can construct the following description.  At the 

low point of the bud index, one cluster of newly divided cells from the previous trailing 

tail are entering the early G1 phase.  Simultaneously, the second cluster is leaving G1 and 

entering the S-phase in the consecutive bud index upswing.  The cluster entering S-phase 

is highly coherent relative to the length of the cell cycle.  The sharp rise in the bud index 

indicates that the cluster has a fairly sharp leading edge.   

 

As the bud index declines from its maximum value, the long tail indicates a loss of 

coherence.  This is either due to dispersion in the division times of individual cells or the 

staggered division of different age classes due to variations in the lengths of their cell 

cycles, or a combination of both.  In about 1 hour, approximately 30% of the cells, or 

60% of the cluster must undergo division since that is the only way to leave the budded 

state.  The other cells in the cluster must divide in the following hour by the same 

reasoning.  This brings us back to the state with about 4% budded in a time period ~ 3.9 

hours, or half the dilution doubling time.  During this time period, the other half of the 

cells began and ended in the unbudded state, which must be G1, and therefore must have 

been in G1 during the whole period.  The next rise in bud index level can only be ascribed 

to these cells since the cells in the first cluster have clearly not had time to pass all the 

way through the G1 phase and bud again.  The second group of cells then enters S-phase 

as a strongly coherent cluster in the same way as the previous one.  This leaves only a 

description of what happens to the cells during G1.  From the decline in bud index level 

described above, the cell cluster enters G1 in a cluster that has a fairly sharp leading edge 

with 60% of its cells within 30 minutes of each other, while the remaining 40% lag 
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behind by as much as an hour.  Then as the cells pass through G1, coherence is apparently 

restored, resulting in a fairly tight cluster of cells that enter S-phase again.  

 

Our hypothesis, consistent with the data, is that the cell cluster that is approaching the G1-

S boundary is secreting a synchronizing agent that acts on the cluster entering G1.  It is 

not clear if the feedback is only sensed by daughter cells or by cells in G1 of all ages.  It is 

possible that cohesion established among daughter cells is maintained well enough with 

age that the system as a whole remains cohesive, coupled with the fact that successive 

generations decay in population density geometrically.  The fact that the population 

structure is robustly altered by pH in a way that is qualitatively different from dilution 

indicates that communication is involved.  Figure 4.4 demonstrates the effect of media 

pH at a constant dilution rate. 
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Figure 4.4: The effect of pH on the period of dissolved oxygen oscillations.  The pH was 
increased using 2 N NaOH.  The increase in pH is believed to affect inter-cellular 
communication and therefore alter the feedback mechanism producing the oscillations. 
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We have also examined the effects of acetaldehyde on an apparently asynchronous 

culture.  Figure 4.5 depicts an initially asynchronous culture that we are compelled to 

believe was entrained by periodic injection of acetaldehyde.  In this case, after 3 periodic 

injections of acetaldehyde, the system began oscillating autonomously.  However, we 

must acknowledge the fact that these oscillations have been known to spontaneously 

occur, leading to the possibility that the acetaldehyde entrainment was only a 

coincidence.  Acetaldehyde is a likely metabolic signal since it can be directly converted 

into ethanol and subsequently used an energy source.  It has also been shown that 

acetaldehyde can be used to phase reset the period of the dissolved oxygen oscillations 31.  

We speculate that only a fraction of cells within an asynchronous culture is responsive to 

pulses of acetaldehyde.  For example, cells within G1 may respond rapidly to increased 

nutrients, whereas cells within the S-phase, currently pre-occupied with DNA synthesis, 

do not respond.  A response of a fraction of the cells within a culture, which causes them 

to accelerate through a portion of the cell cycle is an example of an Advance model and 

would inherently begin the formation of clusters of cells. 
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Figure 4.5:  An asynchronous culture that was entrained into metabolic oscillations after 
the periodic addition of 1 mM acetyladehyde.  Time in the figure is represented as 
hours:minutes:seconds.  The figure spans a total time period of approximately 37 hours. 
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While our aim is to understand the population structure, we remark in conclusion on the 

connection between the population dynamics and the metabolic dynamics encoded in the 

dissolved oxygen oscillation.  The phase of the dissolved oxygen oscillation relative to 

the bud index is consistent with G1 phase oxidative metabolism and the supposed 

bonfire11 of storage carbohydrates that precedes start (the beginning of the mitotic cell 

cycle) in slowly growing aerobic cultures 11,29,30,50.  Since G1 is the only phase without 

buds, the bud index minimum and cell density maximum indicate that from 85%-95% of 

the cells are in G1 prior to the large downswing in dissolved oxygen.  The minimum in 

the bud index occurs as a cohort of newly divided cells appear as a uniform cluster in the 

G1 phase.  At the same time, the leading edge of the second cluster reaches bud 

emergence.  At the dissolved oxygen minimum, slightly more than half of the cluster has 

budded, and the cell density profile shows only loss due to dilution, indicating that all cell 

division has ceased. 

 

Factors Consistent with Clustering 

The hypothesis of 2 clusters, as described above, is consistent only with cell-cycle 

lengths that are either nearly the same over the first few generations or if the daughter cell 

cycles are approximately twice as long as those of the parents.  If it were otherwise, a 

cluster would become incoherent at cell division because generations with significantly 

shorter cell cycles would “get ahead” of its cluster.  With more than 2 clusters, this 

problem could be remedied by the cells in the faster generation falling roughly into 

another temporally advanced cluster.  For instance, if parent generations had cell cycle 

temporal lengths that were roughly 2/3 of the cycle length for daughter cells, then 3 

clusters could be supported.  Or, if the ratio was 3/4, then 4 clusters could be supported.   
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For the above description to be valid, the cells must spend more than half of their time in 

the G1 phase.  Otherwise, the two or more cluster picture, or any more dispersed profile, 

would not result in a bud index oscillation from nearly 0% to 50%.  It has long been 

appreciated that metabolic alterations in cell cycle length prolong or contract G1 
5,17,42.  

This is consistent with the experiment, in which the normal cell cycle is prolonged from 2 

hours to nearly 8 hours.  Integration of the bud index time-series over 1 oscillation period 

and dividing by the period gives, averaged over time, the cells are found in the budded 

state 27% of the time.  Taking into account the exponential decay of numbers of cells 

across the cell cycle, we find the average budding time to be 1/3 of the cell cycle.  

Precisely, we calculate the average time of bud emergence tb from 
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Accordingly, bud emergence takes place at 5.2 hours into the cell cycle (total length of 

7.8 hours).  This confirms that the G1 phase is significantly stretched. 

 

Gene Expression Measurements 

Given that we now understand that the population structure behind the metabolic 

oscillations impose persistent pseudo-cell cycle synchrony through clustering, these 
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oscillations provide a mechanism at which to make cell cycle dependent measurements.  

Cell cycle dependent measurements are typically confounded by population convolution 

introduced by asynchronous cultures.  Synchronous cultures, on the other hand, provide 

the opportunity to detect single cell, cell cycle dependent phenomena.  We first 

demonstrate this scenario by using a well accepted cell cycle dependent promoter called 

POL1.  POL1 encodes for a subunit of DNA polymerase, the enzyme responsible for 

DNA replication during the S-phase of the cell cycle as the cell begins recruiting 

machinery for DNA replication.  POL1 is believed to be most strongly expressed during 

the G1 to S- phase transition of the cell cycle.  Figure 4.6 depicts POL1 expression during 

a 3.75 hour oscillation.  Notice that the peak of the POL1 expression corresponds to the 

end of the rise of the dissolved oxygen profile.  It is at this point that we believe a cluster 

is passing from G1 into the S phase of the cell cycle.  This claim is supported by the data 

within Figure 4.3, which demonstrate that the bud index peaks here as well. 

 

Having demonstrated the utility of the pseudo cell cycle synchrony imposed by metabolic 

oscillations, by analysis of POL1 expression, other more esoteric promoters could be 

investigated.  We are particularly interested in the expression profiles of genes associated 

with NCR in yeast.  Previous mathematical analysis of the connectivity of the NCR 

genetic circuitry produced the hypothesis that the expression of the genes GLN3 and 

DAL80 would oscillate in phase with the cell cycle 2.  Figure 4.7 depicts the expression 

profile of GLN3 measured under two separate nitrogen sources, ammonia and arginine.  

The first, and most trivial, observation that can be made from the GLN3 expression data 

is that the oscillations persist under arginine as the sole nitrogen source.  Within the 40 

years of literature surrounding these oscillations, we are unaware of any data 
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demonstrating the existence of oscillations under any nitrogen source other than 

ammonia.  In fact, we have been able to maintain the oscillations under a variety of 

nitrogen sources including allantoin, glutamate, and glutamine (data not shown).  The 

data also indicate that GLN3 is periodic in nature during both ammonia and arginine 

nitrogen sources.  Interestingly, the expression profile under ammonia is bimodal, 

perhaps due to the existence of two clusters within the system, whereas under arginine 

feed, the expression profile appears periodic, but uni-modal.  Upon nitrogen switching, 

the system responds quickly, indicating that nitrogen is either the limiting or the near 

limiting substrate of the culture.  Another distinct feature in the GLN3 expression profile 

is the delta pulse shaped signal just after switching to arginine.  This feature, although 

currently a mystery, may indicate key features regarding the regulation of the NCR 

circuitry. 

 

Figure 4.8 depicts the expression profile for DAL80 during the autonomous dissolved 

oxygen oscillations.  The expression profile supports the claim that DAL80 periodically 

oscillates in phase with the cell cycle.  However, DAL80 appears to be relatively 

unaffected by nitrogen source.  The only notable characteristic change upon switching 

from glutamine to arginine is the development of a tail at the end of the expression 

profile.  This tail, indicated by the black arrow in Figure 4.9, does not exist under 

glutamine, a relatively good nitrogen source, but becomes increasingly more noticeable 

under a relatively poor nitrogen source such as arginine. 
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Figure 4.6: POL1 expression (green line) during autonomous dissolved oxygen 
oscillations (blue line).  The data indicate cell cycle dependent expression, which peaks 
during the upswing of a dissolved oxygen oscillation.  Time is shown as 
hours:minutes:seconds.  The figure spans a time period of approximately 22.5 hours.  
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Figure 4.7:  GLN3 expression (green line) during autonomous dissolved oxygen 
oscillations (blue line) under ammonia and arginine nitrogen sources.  The nitrogen 
source is indicated by the color of the horizontal axis.  Red represents ammonia as the 
nitrogen source, whereas blue represents arginine.  The data support the claim that GLN3 
is periodic with respect to the cell cycle.  Time is shown as hours:minutes:seconds.  The 
figure spans a time period of approximately 36.5 hours.  
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Figure 4.8: The expression profile of DAL80 (green line) during autonomous dissolved 
oxygen oscillations (blue line) under two different nitrogen sources, glutamine and 
arginine.  The nitrogen source is represented by the color of the horizontal axis.  Red 
represents glutamine and blue represents arginine.  The data support the claim that 
DAL80 is periodic with respect to the cell cycle.  Time is shown as 
hours:minutes:seconds.  The figure spans a time period of approximately 29 hours. 
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Conclusions 

 

Bud index data along with the cell density data for the Cen.PK strain conclusively show 

that clustering occurs.  The experimental evidence supports the conclusion that 2 

independent critical clusters exist with each containing roughly half the total cells.  

Further, the clustering of the population density and its subsequent cell cycle progression 

accounts for the observed dissolved oxygen oscillations.  We have demonstrated that 

clustering, a form of cell cycle synchrony, can be exploited to obtain cell cycle dependent 

gene expression measurements over many cell cycles.  The measurement of periodic 

GLN3 and DAL80 expression profiles support the predictions of mathematical theory 

that have otherwise remained untested.  The utility of this system for cell cycle dependent 

measurement appears endless.   

 

Mathematical analyses demonstrate that advance and delay feedback mechanisms can 

initiate clustering over a wide range of parameter values and initial conditions.  The 

conclusion is that clustering is a robust phenomenon that can arise from intercellular 

communication. 

 

What remains unresolved are the specific details of the feedback mechanism that entrains 

the cells.  While oxygen has been shown to be a regulator of quorum sensing molecules 

43, and interesting hypotheses have been developed for why it might act in that capacity in 

the Cen.PK oscillations 45, its involvement in the hierarchy of cause and effect has not 

been convincingly elucidated.  We have raised the potentially contentious point that the 

so called short period aerobic oscillations in the IFO0223 strain that have been reported 
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to appear in the absence of cell cycle oscillations when the cells are grown in limiting 

glucose or ethanol, is unsubstantiated by the published data.  We do not believe this 

unsubstantiated conclusion, which has gone unchallenged for too long in the literature.  

We have provided bud index data that clearly show that oscillations occur within the 

window of dilution rates for which it has been claimed otherwise without data, see Figure 

4.1.  It is time that this issue is resolved, lest it remain to further confound an already 

complex problem. 

 

The connection between cell cycle synchrony and metabolic synchrony is a topic of great 

interest.  Based on the evidence and our point of view, we speculate that the causal and 

logical connections are these.  Actively dividing cells must be progressing through their 

cell cycle.  Secreted byproducts of metabolism accumulate in the culture media and at a 

high enough cell density that the metabolic response of the cells to their presence induces 

advances and/or delays in their cell cycle progression, which depends on the cell cycle 

position of the receiving cell.  The existence of this feedback mechanism causes a 

population structure to emerge that is characterized by clusters of cells that progress 

through the cell cycle together.  If the cell cycles of the generations are comparable then 

an overall population synchrony can be observed as oscillations in environmental 

variables.   
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CHAPTER V 

 

PERIODIC FERMENTOR YIELD AND ENHANCED PRODUCT ENRICHMENT 
FROM AUTONOMOUS OSCILLATIONS 

 

Introduction 

 

Because yeast and other fungi are genetically tractable, double rapidly, and have the 

ability to post-translationally modify proteins as required for their efficacy as human 

drugs, they have become an increasingly attractive platform for bioprocessing.  Yeast are 

being used to manufacture insulin and hydrocortisone as pharmaceuticals10,18,27,29, and to 

produce invertase and amylase for the biofuels industry7,31.  Despite the evolved 

efficiency and robustness of cellular processes, most of the biotechnological processes 

that utilize living cells operate at modest efficiencies 3, 23.  In fact, single steps of the bio-

production process have been shown to be less than 50% efficient 18, whereas the highly 

developed commodity chemical industry routinely operates at efficiencies greater than 

90%.  

 

Inefficiencies arise in protein purification and isolation24.  For example, products of 

interest may be produced, but not secreted from the cell.  Harvesting cellular proteins is 

challenging.  While the cell cycle itself is relatively well understood in yeast, only a 

limited understanding of its quantitative impact on bioprocess-related parameters exists.  

For instance, yeast cell disruption has only recently been shown to have strong cell cycle 

dependence25.  During and following cell disruption, protein products may be degraded 

due to the liberation of normally sequestered proteases.  Protease knockout strains have 
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been extensively utilized for this reason12.  Moreover, many proteins share primary 

through quaternary structural similarities that can confer upon them similar physical-

chemical properties that confound their separation and efficient isolation.  Most proteins 

perform their biological functions in complexes; and accordingly, have adapted surface 

interaction domains.  These adaptive features work against efficient isolation.   

 

For the purposes of this chapter, the protein background that a protein product of interest 

is expressed among is designated, its ambient biocomplexity.  The larger and more 

diverse this background, the higher is its’ ambient biocomplexity.  The confounding 

effects of proteins that are physically and chemically similar to the desired product 

motivate this definition.  The more proteins in an admixture that are physically and 

chemically similar to the desired product, the more steps will be required to isolate the 

product away from its mimics or contaminating biomolecules.  It stands as self-evident 

that increased ambient biocomplexity can only reduce bioprocess efficiency.  This 

chapter is concerned with exploring optimal strategies to reduce a desired products 

ambient biocomplexity and consequently increasing its efficient harvest by maximizing 

its enrichment ratio relative to impurities. 

 

Many proteins can be and are produced in a cell cycle dependent manner.  The cyclin 

genes that regulate cell cycle progression are an example.  Currently, a detailed 

proteomic catalog of the type and magnitude of expressed yeast proteins as a function of 

the cell cycle is not available.  It has been shown that total protein production increases 

throughout the cell cycle 1,32.  As a consequence, the lowest biocomplexity might occur 

near the beginning of the G1 phase of the cell cycle.  Such data suggest that 
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biocomplexity might fluctuate as a function of the cell cycle or could be manipulated to 

do so.  

 

In an asynchronously doubling culture, cell cycle dependent products are produced 

asynchronously, although continuously.  It has been observed that periodically harvesting 

a periodic product can improve yield relative to continuously harvesting from an 

asynchronous culture16.  Conventional methods to produce cell cycle synchrony include 

metabolic blocks involving starvation, mating pheromones such as alpha-factor, chemical 

treatment such as nocodozole, and the preparation of homogeneous initial populations by 

physical means such as elutriation 33.  Typically only 3-4 decaying cycles of synchrony 

can be achieved with these methods.  In Chapter 3, we developed theoretical continuous 

filtration methods that guarantee the maintenance of synchrony over 30 consecutive cell 

cycles, but these are not yet generally implemented26.  None of these methods are cost-

effective however, and likely the reason why synchronous yeast cultures are rarely used 

in industry. However, there is another option. 

 

A few strains of yeast exhibit sustained oscillations under a limited variety of 

conditions22.  Autonomously oscillating systems are attractive for at least three reasons.  

First, the oscillations reflect a form of cell cycle synchrony whose population structure 

we believe we understand.  This level of understanding allows for the opportunity to 

interleave expression out of phase with ambient biocomplexity.  The population 

synchrony induced via autonomous oscillations ensures that the synchronous fabrication 

of products occurs with no additional cost.  The value of synchronous production of 

products has been demonstrated with Bacillus subtilis
9
.  Finally, since autonomous 
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oscillations are stable, often for months, costs associated with quality controlling lots can 

be reduced, as well as costs associated with production interruptions and restarts incurred 

during batch processing.  

 

Microbial oscillations have generally been regarded with trepidation due to their 

perceived instability 17.  Forty years of data and experience show that in fact autonomous 

oscillations are highly controllable 4,5,6,8,11,15,19,30,34.  In fact, we show that they can be 

used to great advantage.  We show that regardless of a product’s ambient biocomplexity 

there exists an expression profile that produces an accumulation of the product that 

dramatically improves product yield and its enrichment ratio.  Moreover, we show how to 

utilize parallel, phased, periodic sampling to create continuous enrichment in a scheme 

we have dubbed “CLOCKS”.  We believe this point of view is novel.  These 

developments are important since down-stream processing costs account for over 75% of 

cost of manufacturing a drug that in turn translates into 1525% of the retail cost of a bio-

product2.  Enrichment of bio-products within the effluent of fermenters directly increases 

their value exponentially, see Appendix A.  Appendix A of this dissertation demonstrates 

that nominal increases in the concentration of a bio-product can lead to dramatic 

increases in the monetary value of a product.  Non-growth associated products, such as 

the production of alpha amylase from Bacillus licheniformis 
21, are not subject to the 

analysis that we present.  Non-growth assosciated products are produced during the 

stationary phase of the growth curve during which cells become arrested in the cell cycle 

and are therefore no longer subject to cell cycle dependent production of bioproducts. 
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Materials and Methods 

 

Autonomous Oscillations 

The haploid (mat a) strain CEN.PK 113-7D of Saccharomyces cerevisiae were cultivated 

in a 3L New Brunswick Scientific Bioflow 110 reactor equipped with two Rushton type 

impellers, operated at 550 rpm.  Air was sparged in at a rate of 900 mL/min. Temperature 

was maintained at 30 °C and pH was automatically controlled with 2 N sodium 

hydroxide. 

 

Overnight cultures were grown in YPD media with shaking.  20 mL were innocculated 

into a reactor containing 850 mL of synthetic media with the following composition: 10 

gm/L anhydrous glucose (Sigma #G71528), 5 gm/L ammonium sulfate (Sigma # A2939), 

0.5 gm/L magnesium sulfate heptahydrate (Sigma # M2773), 1 gm/L of Yeast Extract 

(Becton, Dickinson and Company Cat # 288620), 2 gm/L potassium phosphate ( Sigma # 

P5379), 0.5 mL per L of 70% v/v sulfuric acid, 0.5 mL of antifoam A (Sigma # 10794), 

0.5 mL of 250 mM calcium chloride, and 0.5 mL per L of mineral solution A, see Table 

4.1. 

 

The culture was grown in batch for 12-16 hours to a cell density of approximately 5x109 

cells/mL.  Continuous culture ensued with a dilution rate of 0.095 hr-1.  Samples were 

taken from the reactor and flash frozen using dry ice. 
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Measurement of Cell Density 

Cell samples were thawed in a chilled (4 °C) sonicating water bath for 5 minutes and 

vortexed briefly.  A 1 µL sample was resuspended in 10 mL of Isoton Diluent (Beckman 

Coulter # 8546719) and vortexed.  The cell density of three independent 0.5 mL samples 

was measured using a Beckman Multisizer Coulter counter.  The sizing threshold was 2-

8µm. 

 

Measurement of Bud Index 

Samples were collected at 15 minute intervals and immediately frozen in an ethanol-dry 

ice bath.  Buds were counted with a 100X objective on a conventional Nikon TE-2000 

microscope.  A minimum of 300 cells were scored at each time point.  Cells without buds 

were considered to be within the G1 phase of the cell cycle. 

 

Calculation of Yield 

Yield was computed by solving the mass balance for substrate:  

 

                 

dt

dS
SSD

X
SXY

F −−

=
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µ

                               Equation (5.1) 

Where Y represents the yield of cells per unit of substrate, µ is the population growth rate, 

X is the cell density, S is the substrate concentration, SF is the concentration of the 

substrate in the feed, and D is the dilution rate.  A similar equation can be derived to 

represent the yield of cells in terms of the dissolved oxygen content: 
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                            Equation (5.2) 

The population growth rate, µ, was determined from cell biomass and cell number data 

assuming the model.  

 

                              D
dt

dX

X
+=

1
µ                                     Equation (5.3) 

 

Table 5.1: Parameter values used to evaluate Equations (5.1), (5.2), and (5.3).   
 

   

Parameter Values 

Parameter Value Units 

SF,Glucose
15 20 Gm/L 

SF,Glucose[current exp.] 10 Gm/L 

SF,Oxygen 7.6 Mg/L 
   

 

The data of Heinzle et al.15 were linearly interpolated to account for differences in 

sampling times and frequency.  All numerical manipulations were performed using 

Mathematica version 5.2 from WolframResearch.  The dissolved oxygen trace was 

recorded every 12 seconds.  The dissolved oxygen measurements displayed both high 

frequency measurement noise and rapid oscillation.  Five measurements per minute were 

averaged to produce a data set of 391 measurements covering one cell cycle.  These data 

points were fit with a cubic spline using the Interpolation function.  The analytical 

derivative of the interpolation was contaminated with high frequency noise.  Two options 

were considered:  Further smooth the raw oxygen data or smooth the derivative.  Since 
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the derivative correctly captured the global features of the oxygen oscillations, and 

further smoothing of the raw data could lead to small temporal shifts of relevant features, 

we present the latter solution.  Comparison of the methods showed no qualitative 

difference.  The dissolved oxygen derivative data were smoothed using a Gaussian kernel 

in the ‘ListConvolve’ function of Mathematica, with a standard deviation corresponding 

to a 2.5 minute time window and no overhangs.  

 

The cell density is a slowly varying function of the cell cycle. The density data were 

collected every 15 minutes and were not contaminated with high frequency noise.  The 

data were interpolated with a cubic spline.  The growth rate was calculated according to 

Equation 5.3, using the analytical derivative of the interpolating function.  A dilution rate 

of 0.095 hr-1, and an oxygen feed of 100 percent were assumed using the yield formula in 

Equation (5.2)  

Results 

 

Analysis of Fermentor Yield 

Yield describes the gain in a product per unit input.  Yield coefficients have been an 

important benchmark of fermentor efficiency for over 30 years 8.  The yield of cell mass 

in terms of glucose substrate, YX/S , and dissolved oxygen, YX/O2, were computed from 

the data of Heinzel et al. 15 for the yeast strain LBGH-1022, see Figures 5.1 and 5.2.  The 

yield, YX/O2 , was calculated independently for the strain Cen.PK from data collected in 

our laboratory, see Figure 5.3 .  The combined results indicate that the yield oscillates 

with a period equal to that of the dissolved oxygen.  We are unaware of any published 
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results of this nature.  Since substrate concentration is linked to growth rate, large 

substrate oscillations are likely to entrain cell cycle synchrony 16 and oscillating yield.  

The magnitude of the yield is influenced by the phase of the substrate oscillation relative 

to that of product/biomass, with the largest amplitude occurring when the signals are 

perfectly out of phase.  In the case of the Heinzle et al. data15, the glucose profile is 

nearly in phase with the biomass, whereas the oxygen profile is far out of phase, as 

shown in Figure 5.1.  As a result, YX/O2 is larger in amplitude than YX/S.  Many 

compounds, such as ethanol, glycogen, NADPH, and acetaldehyde, have been shown to 

oscillate during long period aerobic oscillations in several strains 15, 34.  Therefore, it is 

expected that the yield with respect to these compounds oscillates periodically as well.   
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Figure 5.1: Bioprocess data from Heinzle et al 15.  The dissolved oxygen concentration 
(thin blue line) peaks before the glucose concentration (bold green line).  The biomass 
(red squares) peaks roughly in phase with the substrate glucose.  The biomass data are 
scaled to accommodate the data within the same figure.  
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Figure 5.2: The time-dependent biomass yield relative to glucose consumption computed 
from the data of Heinzle et al15, shown in Figure 5.1, using equations (5.1) and (5.3).  The 
blue data points and dashed black line represent the yield of biomass relative to the 
glucose concentration.  The green data points and trace represent the biomass yield with 
respect to oxygen concentration.  These data imply product yield oscillation.  
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Figure 5.3: Complex, periodic, biomass yield oscillation as a function of dissolved 
oxygen consumption.  YX/O2 (green) computed using data shown in Figure 5.5 and 
Equation (5.3) as described in the text.  In this case, YX/O2 is not dimensionless and has 
the units of % DO2 per cell.  Dissolved oxygen is shown in dashed blue.  Time is shown 
as hours:minutes:seconds elapsed since culture inception.  The figure spans a total of 390 
minutes. 
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Population Structure, Biocomplexity and the Product Enrichment Ratio 

An analysis of the bud index and cell number time series demonstrates that autonomous 

oscillations in strain Cen.PK 113-7D are integrally linked to the cell cycle, see Figures 

5.4 and 5.5.  The link being that the cell population is divided into temporally coherent 

clusters of cells that travel around the cell cycle almost exactly out of phase with regard 

to bud emergence and division, see Figure 5.6.  Figure 5.4 demonstrates that during the 

low portion of a dissolved oxygen oscillation nearly all of the cells exist within the G1 

portion of the cell cycle.  This follows a maximum in the cell density, indicating that a 

wave of cell division has just ended, see Figure 5.5.  With no new increase in cell 

number, the percent of cells within G1 subsequently falls to 50%, indicating that one of 

the two clusters has passed into the S-phase of the cell cycle.  The steepness of the 

transition indicates the temporal cohesion of the cell population that comprises half the 

total number of cells.  Since each culture doubling time is marked by exactly two 

oscillations in the bud index and the cell density, it is concluded that the population 

structure under autonomous oscillations is as depicted in Figure 5.6.  
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Figure 5.4:  Autonomous oscillations of Cen.PK 113 in a 3L bioreactor operated at 
D=0.088 hr-1.  Dissolved oxygen, as the percentage of saturation, is shown in blue.  The 
fraction of cells in the G1 phase of the cell cycle, are plotted as red triangles.  The red 
shaded regions represent a maximal G1 harvesting window within the oscillation.  As 
described in the text, this harvesting window may represent a minimum in total 
biocomplexity.  The complement of the bud index data represents the percentage of cells 
in G1 

13,14.  The bud index data were recorded over the central dissolved oxygen 
oscillation and its periodic extension is shown. 
 

 

 

 



133 

 

 

 

 

0

10

20

30

40

50

60

91:55:12 93:07:12 94:19:12 95:31:12 96:43:12 97:55:12 99:07:12

Time (min)

%
 D

O
2

3.00E+08

3.20E+08

3.40E+08

3.60E+08

3.80E+08

4.00E+08

4.20E+08

C
e
lls

/m
L

 

Figure 5.5: Cell density time series.  Cell density (pink squares) was measured at regular 
15 minute intervals across two 3.5 hour dissolved oxygen oscillations that together 
constitute a doubling time under an imposed dilution rate of D=0.095 hr-1.  Cell density 
as measured with a Coulter counter changes as a function of division and dilution.  The 
data indicate a concerted division event precedes each wave of respiration.  Error bars 
represent the standard deviation of the measurement.  Time is shown as 
hours:minutes:seconds elapsed since culture inception.  The figure spans a total of 390 
minutes. 

 

 

 

 



134 

 

 

 

 
 
Figure 5.6: Population structure and biocomplexity of autonomous oscillations.  Two 
clustered cell populations are arranged around a schematic of the budding yeast cell cycle 
in accordance with the data from Figures 5.4 and 5.5.  Cell cycle progression is 
clockwise, with cell division punctuating the M to G1 transition.  A model of 
biocomplexity is indicated through shading according to the data of Alberghina et al. 1,32. 
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Figure 5.7 depicts a phase portrait of biomass versus glucose (substrate) concentration.  

The oscillatory nature of the system produces a counter clockwise orbit in the phase plane 

space, that has been annotated with respect to suspected total bio-complexity.  The 

annotation is based on the observation that biomass increases exponentially around the 

cell cycle.  The G1 portion of the cell cycle may be a time of low biocomplexity.   

 

The term ambient biocomplexity of a product is meant to highlight the problem that 

product separation costs dominate bioproduction.  In any scheme to isolate a product 

from an admixture, each successive step is designed to enrich the product relative to 

background.  In the case of a protein product, it is reasonable to equate the ambient 

biocomplexity with the total protein content of the cell.  Some work indicates that the 

internal protein complexity of a cell increases with cell cycle position 1,32.  Isolation of a 

protein product from a cell sample at a time of its lowest biocomplexity is by definition 

guaranteed to maximize its enrichment ratio and minimize costs.  We present a 

theoretical analysis that illustrates that periodic systems can be managed to produce a 

product of interest out of phase with its biocomplexity.  This analysis is based on our 

experimental understanding of the population structure that becomes entrained during 

autonomous oscillations.  
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Figure 5.7: Phase portrait of a periodic orbit.  Biomass (X) versus glucose concentration 
(S) corresponding to the Heinzle et al. data of Figure 4.  The red lower shaded region 
encompasses the G1 period that is characterized by increasing, but low total 
biocomplexity, see also Figure 6.  The yellow upper shaded region encompasses the 
highest biocomplexity.  The arrows indicate increasing time.  
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Accumulation of Biocomplexity 

Let p(t,s) represent a population density stratified according to time t and cell cycle 

position s.  Suppose that the cells of the population are producing a protein or an 

admixture of proteins in a cell cycle dependent manner.  Let the function f(s) specify a 

single cell production profile that depends only on the cell cycle position, s.  See for 

instance the sketch in the top panel of Figure 5.8.  It is well known, and has been 

repeatedly shown, that the vast majority of transcripts are cell cycle dependent 30.  Given 

the single cell production f(s), and the population density, p(t,s), the instantaneous 

production is given by their inner product: 

                                                      ∫= dssfstptI )(),,()(                     Equation (5.4) 

Furthermore, the products, F, will accumulate within a reactor with dilution rate D, 

according to a mass balance equation.  

                                                           )()( tFDtI
dt

dF
−=                      Equation (5.5) 

Given the assumption that the population density is a periodic function of time, see 

Figures 5.4, 5.5, and 5.6, we show that the function F is asymptotically periodic. 

 

Demonstration of Asymptotic Periodicity 

Let the population density be periodic with period T.  This means that  p(t+T,s)=p(t) for 

all s.  From this it follows that I(t) is periodic with period T:  

I(t+T) = <p(t+T,s),f(s)> = <p(t,s),f(s)> =I(t). 

where we have used the inner product notation to represent the integrals from Equation 

(5.4).  Now consider the function F(t).  Using the well known variation of parameters 

solution of equation (5.5) we have that  
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an asymptotically periodic with period T. 
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Furthermore, we demonstrate that regardless of the phase profile of the accumulation 

function F, we can design a product expression function g(s), to create a product, G, that 

is maximally out of phase with the complexity produced by f.  The conclusion is two-

fold.  First, ambient biocomplexity F will oscillate; second, that regardless of the ambient 

biocomplexity we can design a production scheme that is maximally out of phase with it.  

This implies that we can maximally enhance the enrichment ratio of G relative to F.  

 

It has been suggested in the literature that the total protein complexity of the cell 

increases exponentially with the cell cycle 1,32.  Therefore, as a demonstration of 

enrichment ratio enhancement we consider the case where ambient biocomplexity is 

represented as an increasing exponential function over the cell cycle, see Figure 5.8.  We 

compute the evolution of a population of yeast cells with a Leslie type model that is the 

discrete analog of the popular population balance equations.  The Leslie model is 

extremely flexible in that it allows us to represent a finite but arbitrary number of age 

classes, is easily parameterized with experimental data of yeast growth relevant 

parameters, and is computationally tractable.  We have previously shown that the Leslie 

models that we have employed reproduce the dynamics observed in experimental time 

series 26.  A brief description of the model and model parameters is provided below. 
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Leslie model of Yeast Growth and Division 
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Figure 5.8:  The top schematic represents the process of yeast growth and division.  Each 
age class is represented by a bold horizontal line and corresponding residence time, τ.  
The age classes are organized by replicative age, with the daughter cells, denoted P0, as 
the first grid.  Higher generation parent cells are listed below.  Each cell division can be 
characterized by producing a daughter cell back at the beginning of the P0 grid and a 
parent of the next highest age class.  This process can be represented by a Leslie matrix 
as shown by the bottom panel. 
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The Leslie model26 used to calculate yeast growth and division encodes as a 

mathematical object, the process flow depicted at the top of Figure 5.8.  The process flow 

has age descending from daughter cells with no scars, P0, at the top to cells with 

arbitrarily many scars, Pn, at the bottom.  Cells belonging to each of these age classes 

traverse their separate cell cycles, shown as the horizontal thick black lines.  The time it 

takes a cell of age, k, to traverse their cell cycle is τk.  The values of τ used are shown in 

Table 5.3, along with the temporal position of bud emergence.  The thin black lines with 

arrows indicate the directions of possible flux due to cell divisions.  Each arrow 

corresponds to a 1 in the matrix representation of the process at the bottom of Figure 5.8.   

 

Given an initial population distribution, the matrix model is iterated to produce the 

dynamics.  Typically, such a system would produce asynchronous exponential growth. 

Autonomous oscillations result from an additional feedback.  We have introduced a delay 

model to produce population oscillation.  In the delay model, a threshold, TR, is 

introduced.  Once the density of cells in the S-phase of the cell cycle reaches TR or above, 

any cells in a 10% strip proximal to S become delayed in their cell cycle progression.  In 

the simulations described in Figure 5.10, TR  was 20 % of the total culture density.  The S 

phase is delimited on the left by bud emergence (BE) as described in Table 5.2.   
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Table 5.2: Parameters used in the Leslie model simulations.  The parameters are listed in  
order of replicative age.  Cell cycle duration and progression can be described in terms of 
time.  Parameters are described in units of minutes. 

     

Leslie Model Parameters 

Age Class τ BE S-Phase End G2-Phase End 

P0 522 261 362 457 

P1 483 241 302 423 

P2 437 219 273 383 

P3 398 199 249 349 

P4 347 174 217 304 

P5-9 277 138 173 242 
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Simulations generated from the Leslie model are shown in the bottom panel of Figure 

5.9, corresponding to the single cell expression profiles shown in the upper panel.  The 

ambient biocomplexity is depicted in the upper panel of Figure 5.9, by the red cell cycle 

expression profile and in the bottom panel by the red accumulation signal.  All of the 

cells in the population are assumed to be expressing the single cell expression profiles in 

a cell cycle dependent manner as outlined by the equations above and in the Appendices 

to produce the corresponding accumulation profiles.  The green and blue single cell 

expression profiles in the upper panel and their matching accumulation signals in the 

bottom panel, represent different choices for the desired product.  As the simple square 

well expression profile is shifted along the cell cycle from green to blue, a maximum 

enrichment ratio occurs in the product relative to the ambient biocomplexity.  This occurs 

when the accumulation profile of the ambient biocomplexity (red) is maximally out of 

phase with the accumulation profile of the product (blue to green).  

 

The series of simulations shown in Figure 5.9 amount to the equivalent of design 

equations.  The theory shows that punctate expression profiles, such as the green and blue 

in the top panel of Figure 5.9, tile the spectrum of possible phases.  Therefore, if the 

ambient biocomplexity can be measured or accurately modeled then a promoter design 

equation can be produced to circumvent it.  The product or the product producing cells 

would then be harvested during appropriately chosen time windows within this periodic 

oscillation when the enrichment ratio is largest.  Time windows corresponding to low 

complexity are shown in the bottom panel.  Periodic harvesting is only the beginning of a 

far more comprehensive scheme.  
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Periodic harvesting can also be managed to produce a continuous and enriched product 

concentration from multiple oscillating fermentors.  For example, let T be the length of an 

oscillation.  Assume that the harvesting windows have duration γ, that is an integral 

divisor of the cell cycle period, n γ = T. Consider an entire period of the cell cycle tiled 

with n, equal time windows of the duration of γ.  This concept is illustrated in Figure 

5.10.  Given n-reactors, each of which is sequentially out of phase by an amount gamma, 

the product accumulation can occur with maximal enrichment continuously.  Imagine the 

autonomous, periodic oscillation, as a clock and the reactors as the numbers on a clock 

face.  When the harvesting portion of the trajectory enters a given reactor its effluent is 

collected into an ancillary reactor or collection vessel.  As the harvesting trajectory leaves 

a reactor it enters the next reactor in the sequence by design.  Much has been made of the 

relationship of the autonomous oscillations to ultradian rhythms and clocks19.  This 

continuous harvesting scheme brings that analogy to life as an engineering tool.  We 

might consider the initialism: Continuous Long-term Oscillating Collection Scheme: 

CLOCKS.  
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Figure 5.9: Maximization of the enrichment ratio.  The upper panel shows single cell 
expression profiles as a function of a single cell cycle.  The red curve represents a model 
of ambient biocomplexity that increases exponentially along the cell cycle.  The green 
and blue punctate expression patterns represent different choices for product expression.  
We call these promoter models.  The bottom panel shows the normalized accumulation of 
these signals in a population.  The population dynamics have been simulated by the 
Leslie model as previously described.  The bottom panel shows that as the punctate 
windows of the promoter models are shifted, they tile the possible phases of the 
oscillation, see arrows in the top and bottom panels.  Of the promoter models, there exists 
one that is maximally out of phase with the biocomplexity, highlighted by the dashed 
vertical black line.  The bold blue intervals along the abscissa correspond to a choice of 
harvesting windows, induced by imposing a complexity threshold indicated by the dashed 
horizontal line.  
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Figure 5.10:  The CLOCKS harvesting scheme.  Suppose that the duration of an optimum 
harvesting window, γ, is one quarter of an oscillation.  Then four systems prepared out of 
phase tile a period.  This is shown in (A).  Since a periodic oscillation can be thought of 
as a clock face, the sequence of color-coded reactors correspond to the color-coded clock 
face in (B).  The maximum enrichment ratio is depicted to occur at the peak of the 
oscillation shown to run through the system of reactors as a black curve.  As the signal 
passes through the reactors, currently the blue reactor, the systems are bled in sequence as 
shown on the clock face.  The sequence of windows, blue, yellow, green, red, blue..., 
is reiterated in (C) to indicate that in this scheme, product is continuously being harvested 
with a maximum enrichment ratio from the reactors in sequence.  
 

 

 

 

 



147 

Conclusions 

 

Downstream processing costs constitute the majority of the cost in product formation and 

accounts for over a 10-fold increase in the price of biomanufactured goods2.  Therefore, 

methods and methodologies of product enrichment are directly relevant to bioprocessing 

cost.  We have argued that the ambient biocomplexity of a product within an admixture is 

the dominant contribution to processing cost.  Our data and ideas imply that product 

enrichment can be achieved by co-opting the properties of autonomously oscillating yeast 

systems to minimize biocomplexity.  

 

We have demonstrated that autonomously oscillating systems exhibit periodic oscillation 

in yield.  We have shown that through an understanding of the population structure of 

periodically oscillating systems we can increase product enrichment by interleaving 

product accumulation with the accumulation of its biocomplexity.  Furthermore, we have 

described a novel phased, parallel, periodic harvesting method that is the direct 

engineering analogy of ultradian oscillations themselves: A continuous clock.  

 

The ability to interleave product expression with that of its ambient biocomplexity rests 

on two pillars.  The first is that the population structure of autonomous oscillations is 

marked by two observable and temporally coherent cell populations that traverse the cell 

cycle periodically.  The second is the general flexibility afforded by the ability to 

genetically engineer cell cycle specific promoter expression.  In mathematical 

abstraction, we have provided the proof of principle.  What remains is a practical 

demonstration, towards which the following issues exist.  Promoters are not all of equal 
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strength, and while phase is the dominant issue, the production of product above a 

necessary threshold may be challenging to engineer as a function of the cell cycle.  If the 

cell is producing biomolecular mimics of the desired product at a rate several orders of 

magnitude larger at the maximum phase difference then, for that product, the interleaving 

strategy will have limited effect.  The cell cycle and its implications for bioprocess 

control has already been recognized.  Yeast have been engineered to produce amylase 

during the M phase of the cell cycle 31.  It has been shown that heat shock arrest of the 

cells in M-phase, coupled with M-phase expression increased the yield of product.  It 

remains to be seen if autonomously oscillating populations can outperform those in heat 

shock.  

 

Product enrichment from autonomous oscillations could also be used as a mechanism for 

simultaneous production of multiple products.  If two or more products were produced in 

different phases of the cell cycle, each product could be harvested during separate time 

windows and subjected to potentially different downstream processing.  This idea could 

lead to savings on production equipment by eliminating the need for multiple 

fermentation setups. 

 

Periodic sampling from autonomously oscillating systems was previously proposed as a 

means to increase yield above that provided by an equilibrium 16.  It could be argued that 

the value of such periodic sampling for product may be offset by the idle time of down-

stream processing equipment as opposed to continuous harvesting of a slightly smaller 

amount.  This intermitant feed of crude products to downstream processing equipment 

could be problematic for a continuous process that is not amenable to continual shut-
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down and start-up of equipment.  However, the CLOCKS strategy that consists of a 

simple parallel array of oscillating systems whose phases are prepared to tile a period, as 

described in Figure 5.9, completely and elegantly overcomes these obstacles.   

 

The physical chemistry of proteins is relatively well understood, and mature algorithms 

for their analysis exist along with large databases of known structures28.  It is currently an 

active research interest in both basic science and in industry to develop theoretical tools 

to predict protein-protein interactions from an admixture20.  With a solid understanding of 

cell cycle related protein expression it should be possible over the course of the next 

decade to predict and manipulate the ambient biocomplexity of yeast.  
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CHAPTER VI 

 

QUANTITATIVE PCR FOR DILUTE SOLUTIONS OF DNA 

 

Introduction 

 

Real-time PCR (rt-PCR) is the most widely accepted tool for quantitative gene expression 

analysis 6,13,26.  Rt-PCR is commonly used as a quantitative assay in a variety of clinical 

and research areas including the study of genetically modified foods, vaccine efficacy, 

and systems biology 1,2,5,20.  However, few studies have emerged regarding the robustness 

and reproducibility of using real-time PCR as a quantitative assay.  The notable 

advantage of rt-PCR over more traditional techniques such as riboprotection assays is the 

ability to amplify extremely small, typically undetectable, signals to a measurable range.  

This promotes the ability for one to quantitatively measure gene expression signals from 

small populations, or even single cells.  Coincidentally, this range of low DNA 

concentration is also where rt-PCR is most quantitatively unreliable since minute errors 

in sample preparation are exponentially amplified within the process.  This error 

amplification process can be demonstrated with the following equation: 

 

                                    n2εξ =                                         Equation (6.1) 

 

where ξ is the total amount of amplified error after n amplification cycles and ε is the 

initial amount of error. 
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Arguably, the most common method of PCR data analysis is based on some form of 

determining the Ct or Cp (cycle threshold or crossing point) value from reaction 

amplification curves.  This process typically involves using a pre-determined horizontal 

fluorescence threshold value of which the crossing point (Cp) of the reaction 

amplification curve is computed 19.  For absolute quantitation, a standard curve of Ct 

values is generated from known concentrations of DNA 2,18.  This curve, typically in the 

form of a linear regression, can be used to determine DNA concentration of unknown 

samples.  For relative quantification, such as in the ∆∆Ct Method, the relative change in 

Cp values for the target genes are compared to that of a reference or housekeeping gene 

14.  This analysis assumes that the housekeeping gene is constant throughout the analysis 

and that the efficiencies of the two separate reactions are nearly identical.  Despite the 

differences between absolute and relative quantitation methodologies, the important point 

to note is that both assays rely heavily on the robustness and reliability of the Ct values.  

More sophisticated methods for relative quantitation have emerged that utilize reference 

to multiple controls or housekeeping genes, providing additional statistical infrastructure 

to minimize the variances within Ct values 17.  These methods may in fact be more 

trouble than their worth since many housekeeping genes have shown to be non-constant 8.  

Others have developed statistical algorithms or mathematical models to minimize 

variances associated with Ct values 4,9,12,13,14,18,20,22,26.  However, the root of quantitative 

error in all of these practices is the error introduced through variations in the Ct values, 

that may be minimized but not eliminated through statistics.  For this reason, we base our 

analysis of rt-PCR variations on Ct values, with the intentions of developing an 

understanding of the robustness of the Ct values. 
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Recently, reports of statistical analysis of Ct values have appeared; however, these 

analysis are confined to only a few orders of magnitude in sample concentration and in 

only one study are more than a few replicates analyzed 13, 20, 26.  Furthermore, these 

studies are generally performed at DNA concentrations within the “sweet” spot of PCR, 

Ct values ranging between 16 and 24, naturally avoiding possible conflict with assay 

reproducibility.  Due to the lack of extensive experimental data, these reports provide 

little, if any, analysis regarding the overall reproducibility and robustness of the PCR 

process.  Typically, these reports focus on developing statistical methods for achieving 

more accurate results using only a few replicates over a narrow DNA concentration 

range.  In this study, 184 replicates were performed for DNA concentrations ranging over 

nine orders of magnitude with the intentions of generating an extensive data set that could 

be used to evaluate the robustness and reproducibility of rt-PCR.  The large data set 

provides opportunity for statistical analysis that can be used to determine the value of 

performing sample replicates and the results of the analysis can serve as a benchmark for 

evaluating the comparative accuracy of novel PCR strategies. 

 

Several novel and promising methods for performing quantitative PCR have appeared in 

the literature, of which we have attempted many 3,15,16,21.  We are particularly interested 

in these methods because of the potential ability to accurately quantify gene expression 

values from single cells.  We are unaware of any conventional method of PCR capable of 

accurately quantifying dilute solutions of DNA, as would be obtained from single cells.  

Novel methods for performing PCR may have advantages compared to conventional 

PCR.  Perhaps the most interesting of these techniques involves the amplification of 

single molecules of DNA immobilized within a gel 16.  This strategy is conceptually 
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similar to the historic process of determining the microbial cell density in a solution by 

plating the microbes on an agar gel and subsequently counting of the number of grown 

colonies after some time period.  This type of assay is an endpoint analysis which avoids 

dependence on the kinetics of the process itself.  We have noticed that the kinetics of rt-

PCR is far less reproducible for dilute samples of DNA (see Figure 6.1) making an 

endpoint analysis a highly attractive PCR platform.  However, we have been unable to 

achieve reproducible results using the gel immobilization technology, despite using 

several different supermixes and gel types such as agarose, acrylamide, and gelatin. 

 

Another promising technology for performing PCR is coined emulsion PCR 
24.  This 

technology exploits the compartmentalization of micelles in an emulsion, permitting 

thousands of independent reactions to occur simultaneously within a single tube, with 

each reaction confined to its own micelle.  The advantage of this method is the ability to 

run nano-liter sized reactions individually encapsulated within hydrophobic oil such that 

even a single piece of DNA within a micelle produces a relatively high DNA 

concentration, in theory minimizing mass transfer limitations.  This method has shown 

promise for amplifying complex genetic libraries 24.  We attempted to perform 

quantitative endpoint PCR using reversed micelles; however, problems abound, 

especially regarding the detection of amplified micelles using spectroscopy. 

 

There exists one method that appears to lack the technological difficulty associated with 

running PCR reactions within gels or emulsions.  In this method, reactions are performed 

within the aqueous phase, similar to conventional methods, but are scaled down in size 

such that each reaction only receives one piece of DNA.  Of course this method relies 



157 

heavily on the ability to successfully amplify DNA solutions containing only one or a few 

copies of DNA.  In fact, it has been demonstrated that PCR can be used to reliably 

amplify single copies of DNA 25.  Since the reaction matrix is identical to conventional 

PCR methods, many of the problems related to mass transfer are avoided.  Originally, 

this method was published using a microchamber array, where each reaction received 

only nanoliters of supermix with only a alight probability of containing a piece of DNA 

15.  We have attempted this method in our laboratory using PDMS 

(polydimethylsiloxane) and glass chips, but have been unable to generate reliable data for 

two reasons.  The first problem stems from the effects of hydrophobicity at the nano 

scale.  Despite our attempts at using several different materials for chip fabrication, the 

majority of micro-wells could never be reproducibly filled.  Secondly, regardless of the 

adhesive used to seal the chip, evaporation during thermocycling resulted in nearly half 

of the filled wells completely evaporating during the process. 

 

Although technological hurdles remain that have prevented us from pursuing PCR 

reactions on the nano scale, the concept of developing an endpoint PCR assay to quantify 

gene expression is still within reach.  To avoid many of these obstructions, we 

implemented this technique on a larger scale using a 384 well plate format.  Plate assays 

are broadly valuable to scientists for use in high-throughput assays 10,27 as biological 

equipment such as spectrophotometers and even PCR machines have been developed to 

utilize this format.  More importantly, assays on the plate format scale avoid 

technological hurdles associated with micro-fluidics and nano-scale measurement.  The 

disadvantage of the plate format, compared to nanoscale formats, is the lack of resolution.  

Nano-scale formats can provide higher assay resolution since thousands of reactions can 
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be perfomed within a fraction of the space required for a plate.  This higher density 

permits quantitation of more concentrated samples, since the resolution of the endpoint 

analysis is directly proportional to the number of reactions performed in a single assay.  

The 384 well plate format significantly limits sample concentration range; however, the 

format can still be used as a platform for evaluating the usefulness of the endpoint 

strategy compared to traditional rt-PCR.   

 

The first part of this study involves a statistical analysis of an extensive rt-PCR data set 

extending over nine orders of magnitude in sample concentration.  The analysis identifies 

both strengths and weaknesses of traditional methods and outlines the effect of running 

replicates of identical samples.  This analysis can also serve as a benchmark for 

comparison to the new technology of using PCR as an endpoint analysis.  The relative 

errors associated with various quantiles of the distributions of Ct data are computed by 

converting variances in Ct values into DNA concentrations using a Ct Method standard 

curve, see Figure 6.3.  A statistic, that we call the misclassification probability, is 

developed and used to evaluate the quantitative ability of PCR as a function of sample 

concentration.  The analysis of misclassification answers the following question: What is 

the probability of obtaining a particular Ct value that was then classified to an incorrect 

DNA concentration?  The misclassification probability can be computed directly from Ct 

data and used as a statistic for evaluating the robustness of the Ct Method.  This 

probability can be simply represented as the probability of two separate events: 1. 

choosing a particular Ct value and 2. misclassifying that particular Ct value to a class of 

Ct values with the incorrect DNA concentration.  This second probability is conditional 
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since some Ct values may be unique to a particular DNA concentration and would 

therefore have no probability of misclassification.   

 

The misclassification frequency was computed from the following formula: 

 

                misclass
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nT

ji

choose

ji

misclass
PPIP ,

,

,

,)( ⋅=∑                      Equation (6.2) 

where Pmisclass
(I) is the probability of misclassifying a particular Ct value.  choose

jiP ,  is the 

probability of obtaining a given Ct value from a sample (class), while misclass

jiP ,  is the 

conditional probability of misclassifying that particular Ct value.  T is the entire spectrum 

of Ct values over all samples, n represents the number of Ct values in each age class, i 

represents the selected Ct value, i, within class I, and j represents all other Ct values 

within class I.  We intend for the total misclassification probability of a given DNA 

concentration to represent a proxy for the robustness of the Ct method, where lower 

misclassification probabilities represent higher robustness.  

 

Materials and Methods 

 

Rt-PCR results were generated using linearized double stranded EC3 plasmid DNA 

containing the ybdO gene.  The plasmid was linearized by digestion with the restriction 

enzyme BamH1 prior to PCR.  The primer sequences used were the following: 5'-AAT 

TAT TCT AAA ACC AGC GTG TC-3' (F) and 5'-TTT GGG ATT GAA TCA CTG TTT 

C-3'.  The PCR supermix was prepared as described in Karsai et al.11, with the exception 

that we used Qiagen HotStarTaq Cat # 203203, Roche dNTP’s Cat# 13583000, DMSO 
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Sigma # D8418 at 2%, and Sybr Green (Sigma # 86205) at 5-times the recommended 

concentration.  Primers were used at a concentration of 1 µM.  All samples were run on 

the 384 well plate platform using an Applied Biosystems 7900HT thermocycler and the 

SDS 2.3 software.  The Ct value threshold was set at 5.0 RFU (Relative Fluorescence 

Units) for all samples.  The DNA concentrations of concentrated stocks were measured 

using a Nano-Drop 100 spectrophotometer prior to use.  Subsequent dilutions were 

performed using sterile, nuclease-free water from Ambion # AM9937. 

 

The thermo-cycling program used was as follows:  

1. 2’ at 50ºC  Initial Warmup Phase 

2. 15’ at 95ºC  Initial TAQ Activation Step 

3. 1’ at 95ºC  DNA Denaturation 

4. 1’ at 50ºC  Primer Annealing 

5. 1’ at 72ºC  DNA Extension 

6. 0.25’ at 80ºC Fluorescence Measurement 

Steps 3-6 were repeated forty times. 

 

Preparation of Identical Replicates 

Careful consideration was taken so that each sample loaded onto the plate would be 

statistically independent, but identical in composition.  To ensure this condition, PCR 

supermix was prepared in large well-mixed batches within a 14-mL conical tube.  This 

approach ensures that all samples within a batch contain similar concentrations of 

reagents, despite pippetting errors.  Samples were prepared and run 4 at a time.  Each 

sample consisted of 184 replicates and 8 negative controls, requiring exactly half of a 384 
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well plate.  All of the components except for DNA were loaded into a 14 mL conical tube 

in the following order: 800 µL PCR buffer, 5.6 mL of nuclease free water, 160 µL 

DMSO, 320 µL MgCl2 (Qiagen Cat # 124113012), 160 µL of a primer mix (a 1:1 mix of 

the forward and reverse primer stored at a concentration of 50 µM each), 160 µL Sybr 

Green (100X stored in DMSO), 160 µL of dNTPs, and lastly 80 µL of Taq polymerase.  

We noticed that the order that these are added affects the reproducibility of the assay.  

This mixture was vortexed at high speed for 1 minute.  335 µL of supermix was then 

removed to be used as a negative control and placed into a 1 mL epindorf tube and 25 µL 

of water was added.  This mixture was then briefly vortexed to ensure well mixing.  The 

remaining 7.105 mL of supermix was then split equally four ways into 2 mL cryostat 

tubes, and 134 µL of water plus the amount of desired DNA was added to each cryostat 

tube.  Each tube was then briefly vortexed.  For each reaction contained within a single 

well of the plate, 10 µL of the respective reaction mix was loaded into a well of the 384 

well plate. 

 

TAQ Polymerase Pre-Wear 

The PCR supermix was prepared as described above but without any template DNA.  

Samples were pre-worn by thermocycling the supermix as described in steps 3 through 6.  

Samples were pre-worn at intervals of 5 cycles from 5 to 40 cycles.  After the pre-wear 

phase, 108 copies of DNA were added and the samples were run as described above.  The 

relative efficiency was computed by the average derivative over the amplification curve. 
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Bead Plate Filling Experiments 

Experiments were performed using 20 µm latex beads from Beckman Coulter 

(#PN6602798) using flat bottom 96 well plates from Becton Dickinson Labware.  96 well 

plates were used in place of 384 well plates for ease of analysis.  Various dilutions of 

beads were prepared using a Beckman Multisizer Coulter Counter 2.  25 µL of each 

dilution was loaded into each well of the 96 well plate.  Wells of the plate were then 

analyzed using conventional microscopy and a Nikon TE-2000 microscope and the 

number of beads in each well was recorded. 

 

Misclassification Analysis 

The probability of misclassification was computed using the Mathematica 6.0 script 

provided in Appendix B.  The misclassification data computed from Equation 6.2 were fit 

to the following three parameter Hill’s function model. 

                       
kk

k

Db

ba
IP

+
=)(                                   Equation (6.3) 

where D is 1+log(# DNA copies per sample), a represents the saturation value of 

misclassification probability which occurs as the value of D approaches 1, b represents 

the value of D corresponding to half the saturation probability, and k controls the 

steepness of the probability curve.  The larger the value of k, the steeper the probability 

curve. 
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Results 

 

Ct values generated from nearly 2,400 real time PCR reactions are shown in Figure 6.1.  

This figure demonstrates that the reliability of the Ct method as a proxy for sample 

concentration diminishes as sample concentration decreases.  Distinct step functions of Ct 

values occur for sample concentrations greater than 12,000 copies of DNA per reaction, 

whereas for sample concentration below 12,000 copies, the mean of the Ct values for 

each sample concentration becomes less distinct.  Although the tight bands of data for 

higher DNA concentrations rapidly diffuse into smears of data as the DNA concentration 

approaches zero, a simple t-test (data not shown) shows that the sample mean for each of 

the replicates of each class is statistically different as long as the entire cohort of data for 

each DNA concentration is used.  In every sample, no Ct values were recorded for the 

respective 8 negative controls, indicating neglible contamination levels for each sample. 

 

The same observation can be made by analyzing the raw data distributions (binned at 0.1 

Ct) as shown in Figure 6.2.  The Ct value distributions of higher DNA concentrations are 

punctate and distinct, whereas the low concentration distributions are disperse and 

overlapping.  The transition from punctate Ct values to disperse values occurs over the 

100-10,000 copy number range.  However, the distributions do not show a completely 

monotone behavior as shown in the 106 copy distribution.  This could be due to 

experimental error or non-monotone behavior within the PCR process. 
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Figure 6.1: Ct values binned in order of decreasing DNA concentration.  Each DNA 
concentration obtains Ct values from 184 identical replicates.  DNA concentrations range 
over nine orders of magnitude. 
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Figure 6.2: The data distribution functions for each class of Ct values associated with a 
particular DNA concentration.  DNA concentrations are represented by color. 
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The entire set of Ct values for all DNA concentrations can be used to generate a standard 

curve as shown in Figure 6.3 as would be typically done using only a few replicates 1,2,20.  

This standard curve was subsequently used to convert variances in Ct values into 

variances of DNA concentrations.  This permits the analysis of the variance associated 

with using quantiles of Ct value data as depicted in Figure 6.4.  In this case, the 80%, 

60%, and 20% inner quantiles of the entire class of Ct data were determined and the 

standard curve was used to convert the variance of Ct values into the variance of DNA.  

The variance of predicted DNA concentrations could then be used to compute the relative 

error associated with each sample.  Interestingly, Figure 6.4 shows that the expected 

relative errors for samples greater than 106 copies per reaction in concentration is less 

than 1%, demonstrating the enormous power of running many replicates of PCR samples.  

On the other hand, samples containing less than 105 copies of DNA per reaction have 

relative errors greater than 100%, making reliable quantitation from single samples 

virtually impossible.  This analysis explains why others have found quantitation of dilute 

solutions of DNA difficult 7,23.  One should notice that the linear trend of Figure 6.4 is 

likely imposed by the normalization process, which involves dividing the actual errors by 

the perceived DNA concentration of each sample.  For this reason, the actual error 

associated with each sample was computed for the 60% quantile and plotted in Figure 

6.5.  This figure demonstrates that the actual error follows a nearly linear trend as well.  

Higher DNA concentrations, 109 copies, display a variance in DNA concentration of 

about 100 molecules (10-7 %) and can be quantified with miraculous precision by 

utilizing the large number of replicates used in this study.  However, more dilute samples, 

less than 105 copies, display enormous error making accurate quantitation of sample 

concentration far less reliable. 
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Figure 6.3: Average Ct values and ± 1 standard deviation error computed from the data of 
Figure 6.1.  The black line is a least-squares linear regression of the data similar to those 
typically used in absolute gene expression quantitation. 
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Figure 6.4: The relative error associated with each DNA concentration.  Errors were 
computed using the range of Ct values associated with each quantile and the linear 
regression formula of Figure 6.3.  The relative error of each DNA concentration was then 
computed by dividing the error by the perceived DNA concentration. 
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Figure 6.5:  The actual error associated with each sample concentration using the 60% 
quantile of the data depicted in Figure 6.1.  Variances in Ct values were converted to 
variances in DNA concentration using the linear regression in Figure 6.3. 
 

 

 

 

 

 



170 

Ct data can also be used to compute misclassification probability.  We have developed a 

Mathematica script, see Appendix B, that computes the misclassification frequencies 

associated with each DNA concentration.  This algorithm can also be used to mimic the 

process of running multiple independent sample replicates.  In this process, multiple Ct 

values are chosen from a class of Ct data, their average is computed, and lastly the 

average Ct value is used for misclassification analysis.  The total probability of 

misclassification for each class of Ct values is represented as the sum of the 

misclassification probability for each Ct value with that particular class.  After computing 

the misclassification probabilities, the results were subsequently fit to a three parameter 

Hill’s function.  This allows an enormous amount of data to be represented in a simple 

tabular form as shown in Table 6.1.  Figure 6.6 represents the misclassification 

probability for the data of Figure 6.1.   
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Table 6.1: Parameter values obtained from the least-squares fit to the Hill’s function 
model, Equation (6.3), to the probability of misclassification data computed from 
Equation (6.2).  These values were obtained from the ‘FindFit’ algorithm of Mathematica 
6.0. 
 

    

Hill's Function Parameter Values 

# of averaged 
replicates 

a b k 

1 0.52 4.46 9.58 

3 0.59 4.08 6.80 

6 0.58 3.92 6.91 

8 0.54 3.89 7.71 

12 0.45 3.60 9.40 
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Figure 6.6: The misclassification frequency for each DNA concentration computed from 
Equation (6.2).  These data can be modeled by a three parameter Hill’s function, see 
Equation (6.3) shown in red.  0 represents no probability of misclassification and 1 
represents that misclassification is certain. 
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The experimental data and Hill’s function model in Figure 6.6 show that for 

concentrations of DNA greater than 106 copies, the chance of misclassification is 

virtually zero.  However, for concentrations less than 1,000 copies of DNA, the chance of 

misclassification is roughly 50%, making the process ironically similar to coin flipping.  

The transition from low to high misclassification probabilities occurs rapidly over 2 to 3 

orders of magnitude in sample concentration.  Ironically, the upper portion of this 

transition corresponds to a Ct value of 26 to 28 cycles, which is the upper limit of the vast 

majority of reported Ct values within scientific literature.  There is a long standing 

tradition of running replicates of rt-PCR samples to minimize errors.  Typically, reactions 

are performed in triplicate and the end result is considered to be the average Ct value of 

the independent samples.  The misclassification probability can also be used to analyze 

the benefit of running sample replicates.  This analysis was implemented by randomly 

choosing multiple Ct values and averaging them prior to misclassification analysis.  The 

misclassification probabilities were then fit to Equation (6.2) as was done in the case of 

running a single sample.  Analysis of these functions demonstrates an advantage to 

running independent replicates of identical samples, as shown in Figure 6.7.  

Surprisingly, the effects of running replicates are not dramatic until at least twelve 

replicates are used.  The decrease in misclassification probability for running 3, 6, 8 and 

12 replicates is marginal, see Figures 6.7 and 6.8.   
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Figure 6.7:  The probability of misclassification of Ct values was computed from 
Equation (6.2) and modeled using the three parameter Hill’s function of Equation (6.3).  
In each case, simulations were performed by randomly choosing n, the number of 
identical replicates, Ct values from a given class.  These values were then averaged to 
obtain the Ct value used for determining misclassification frequency. 
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Even running 12 independent replicates produces a misclassification frequency greater 

then 0.3 for samples more dilute than 1,000 copies per sample.  In some cases, sample 

size limitations may make running many replicates impossible.  This situation would be 

typically encountered when analyzing the gene expression from a single cell.  For 

example, say 100 RNA molecules are harvested from a single cell for gene expression 

analysis and are subsequently transformed into 100 DNA molecules via reverse 

transcription.  If these molecules were split into 12 replicates, each sample would contain 

approximately 8 molecules of DNA, making each sample subject to enormous error (see 

Figure 6.4).  Since we and others have interests in the idea of measuring gene expression 

from single cells, we have implemented strategies utilizing alternative formats for 

performing PCR on dilute samples with the intentions of developing an accurate and 

robust assay. 

 

Samples run under the alternative format were prepared identically to those prepared for 

traditional rt-PCR.  However, in this case, the DNA concentration of the supermix was 

such that each sample only had a probability of receiving a piece of DNA.  Of course, 

there also exists the probability that a particular reaction obtains multiple pieces of DNA.  

This issue will be discussed later in this chapter.  In the alternative format, samples are 

assayed by whether or not a particular reaction crosses a minimum fluorescence threshold 

before 40 cycles.  By measuring TAQ polymerase efficiency, we have obtained data 

indicating that reactions containing DNA will amplify before 40 cycles if they are going 

amplify at all, see Figure 6.8.  Figure 6.8 shows results from 16 samples identical in 

composition, but pre-worn through thermal cycling for various time periods.  The data 

indicate that after 40 cycles of thermal cycling, the vast majority of amplification ability 
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of TAQ polymerase is lost.  Thus, we set the cycle threshold at 40 cycles for the endpoint 

PCR assay.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



177 

 

 

 

 

 

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45

# of Pre-Wear Cycles

R
e
la

ti
v
e
 E

ff
ic

ie
n

c
y

 
Figure 6.8: Relative TAQ polymerase efficiency as a function of thermo-cycling pre-
wear.  The horizontal axis represents the number of cycles each sample was thermo-
cycled prior to the addition of sample DNA.  0 represents the case where fresh TAQ 
polymerase was used without pre-wear.  The relative efficiency is represented as the 
average derivative of relative fluorescence with respect to change in cycle number over 
the amplification curves.  Error bars represent ± 1 standard deviation over three 
independent experiments. 
 

 

 

 

 



178 

Results from 16 independently prepared supermixes containing as few as 5 molecules of 

DNA and as many as 184 pieces of DNA are shown by the green triangles in Figure 6.9.  

Each supermix was spread evenly over 184 wells of a 384 well plate so that each well 

had only a probability of obtaining DNA.  The perceived DNA concentration is plotted 

on the horizontal axis and the number of un-amplified wells is plotted on the vertical axis.  

Interestingly, the data are monotone and saturate at a DNA concentration of 

approximately 200 copies.  Since the steepness of the slope of the experimental data is in 

essence the sensitivity of the assay, DNA concentrations below 50 copies of DNA are 

subject to little resolving power.  However, DNA concentrations between 50 and 200 

copies appear to occur within a region of reasonable sensitivity, see the green triangles in 

Figure 6.9. 

 

The process of plate filling can be modeled as a random process.  We chose to do this 

using a Mathematica 6.0 script using the ‘Random Integer’ function, see Appendix D.  

The result from this simulation is shown in of Figure 6.9.  It is fairly obvious that the raw 

data (green triangles) do not fit the theoretical model.  However, if the perceived DNA 

concentrations are skewed by a multiplicative factor of 2.4, the data fit the theory 

reasonably well.  The normalized data are represented by the red dots in Figure 6.9.  It is 

conceivable that such an error may be generated through serial dilutions, see Table 6.2.  

This table demonstrates the errors encountered when performing 1:100 serial dilutions 

with a 200 nL carry-over.  In our experiments, some of the serial dilutions were prepared 

by placing 1 µL of a concentrated DNA stock into 99 µL of nuclease free water.  It is 

feasible that an additional 200 nL is carried over through material wetting of the pipette 

tip from the concentrated DNA stock into the new dilution.  In the test case shown in 
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Table 6.2, an error factor of 2.2 is obtained as the end result.  However, this error does 

not account for pippetter error (2-5%), human error, measurement error of the 

spectrophotometer (2.5%), or DNA adsorption onto the surface of the pipette tip.  All of 

these errors could increase the overall error factor.   

 

The inherent error of the plate filling process can also be investigated via simulation.  

Figure 6.10 represents the standard deviation in terms of the number of DNA molecules 

obtained by repetitive simulation of the plate filling process.  These simulations indicate 

that variations in the plate filling process are minimal for low DNA concentrations and 

maximize near the point where the number of DNA molecules on the plate equal the 

number of wells on the plate.  In fact, variations in the plate filling process decrease as 

DNA concentration decreases for samples containing fewer molecules of DNA than there 

are wells on the plate.  It is notable that the plate filling process is extremely robust since 

the maximal error of the plate filling process is approximately 4 molecules of DNA.  The 

sensitivity of the assay can also be described by the slope of the plate filling curve in 

Figure 6.9.  This slope is maximized for a single molecule and decays as the number of 

molecules on the plate increases.  Since the assay sensitivity is maximized for lower 

DNA concentrations, say 100 molecules or less, the robustness and accuracy of the 

endpoint PCR assay should be maximized for case where the number of molecules in the 

DNA solution is equivalent to half the number of wells on the plate or less.  The assay is 

most sensitive in this region because the probability of a well containing multiple copies 

of DNA is low.  As the number of DNA molecules in the sample increases, the 

probability of a well containing multiple copies of DNA also increases.  Since the assay 
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cannot distinguish a well that contains a single copy of DNA from one that contains 

multiple copies, wells containing multiple copies introduce variability into the assay. 

 

 

 

 

 

 

 

 

Table 6.2: A test case demonstrating the compiled error through serial dilutions.  Four 
serial dilutions are shown.  In each case, 1 µL of a concentrated stock with 200 nL of 
incidental carry-over is placed into 99 µL of water.  The end result is an error fold of 2.2.  
This analysis does not include systematic pippetting error, human error, or errors in 
measurement of the initial stock concentration. 

   

Perceived Conc. Actual Conc. Error Fold 

1000000000 1000000000 1.0 

10000000 12000000 1.2 

100000 144000 1.4 

1000 1728 1.7 

10 22 2.2 
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Figure 6.9:  The number of amplified wells as a function of the number of DNA 
molecules spread over 184 wells.  The green triangles represent experimental data.  The 
solid blue line is the theoretical prediction for modeling plate filling as a random process.  
The red dots represent the data normalized by a multiplicative factor of 2.4 to make the 
data more accurately fit theoretical predictions. 
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Figure 6.10:  The standard deviation of the plate filling process in terms of the number of 
empty wells.  These results were obtained by performing 1,000 simulations of the plate 
filling process using the algorithm in Appendix D. 
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Although the theoretical model for plate filling could not be directly verified for DNA, 

the model could be experimentally tested using larger, detectable objects such as silicon 

beads.  Dilutions of 20 µm beads were prepared in the same manner as for DNA 

solutions.  The beads were then loaded into 96 well, flat bottom plates and the plates were 

analyzed using conventional microscopy to determine the number of empty wells (wells 

that did not contain any beads).  The data and random plate filling model is shown in 

Figure 6.11.  In this case, the theoretical model accurately captures the dynamics of the 

plate filling process.  However, in nearly every case, the experimental data fall below the 

theoretical predictions.  This is likely due to human error.  It is unlikely that a non-

existent bead could be counted while visually surveying each well.  However, it is likely 

that some fraction of beads is overlooked during the analysis, since the field of view of a 

microscope objective is much smaller than the total area of a well.  This requires the total 

area of a well to be systematically panned so that the entire surface area of a well can be 

analyzed during viewing, leading to the possibility that some areas may be overlooked 

during analysis.  Overlooking a bead could have two separate affects on the data.  If the 

overlooked bead is within a well with beads which were noticed, the overlooked bead 

would simply shift that particular data point to the left, moving it further away from the 

theory, see Figure 6.11.  However, if the overlooked bead was within a well that is scored 

as empty, the data point would be shifted upward, moving it closer to the theoretical 

curve.  Nevertheless, there appaears to be a systematic error within the process since 

nearly all data points lie below the theoretical curve and seem to have the same shape as 

the theoretical predictions. 
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Figure 6.11:  The plate filling process for a 96 well plate.  Experimental data, shown by 
the red dots, were obtained using 20 µm beads and the theoretical prediction, solid blue 
line, was obtained using the algorithm in Appendix D. 
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Conclusions 

 

Our data indicate that the robustness of the Ct Method for analyzing rt-PCR data is 

strongly dependent on the sample concentration.  An analysis of Ct value variance 

demonstrates that the variation of Ct values is larger than the sample DNA concentration 

for sample concentrations less than 105 copies per reaction.  On the other hand, samples 

containing more than 107 copies per reaction can be quantified with extremely high 

accuracy, see Figure 6.4.  The data within this study indicate that the misclassification 

probability is nearly 0 for sample concentrations greater than 107 copies per reaction, but 

is larger than 0.3 for samples less than 103 copies per reaction.  The number of replicates 

performed can decrease the chance of misclassification, but only marginally for samples 

containing less than 103 molecules of DNA.  In general, it appears that the number of 

replicates should be increased for more dilute samples of DNA.  However, if the original 

DNA sample, obtained from a cell lysate, contains only 1,000 DNA molecules or less, 

splitting the sample to perform replicates will likely only decrease the accuracy of the Ct 

Method and increase the probability of misclassification.  The data of this study indicate 

that for DNA samples containing less than 1,000 molecules of DNA, the Ct method will 

likely not provide accurate results, see Figure 6.4, 6.5, and 6.6. 

 

The process of using an endpoint PCR analysis shows significant promise, especially for 

dilute samples of DNA.  Statistical simulations show the process of plate filling can be 

performed such that the number of empty wells can provide a robust statistic for endpoint 

PCR quantitation.  Experimentally, this process was demonstrated using silicon beads.  

However, experimental data for plate filling with DNA and monitoring by PCR 
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amplification did not fit theoretical predictions.  We believe this failure stems from 

dilution errors and the inability to accurately quantify concentrated stock solutions of 

DNA.  In most cases, the number of amplified wells was over-predicted by theoretical 

models.  It appears that the perceived DNA concentration of serial diluted stocks were 

about 2.4 –fold off.  Since, a minimum of 4 pippetting steps were required in the creation 

of these stocks, such an error is conceivable.  Typical pippetting errors range from 2 to 

5%, but this does not account for any additional material carried over on the outside of 

the pipette tip due to material wetting.  For example, if 200 nL of sample volume is 

carried over on the outside of the tip during a 1 µL pippetting step, a 20% error is 

introduced at every step.  Another concern is DNA adsorption onto the surface of pipette 

tips.  This would promote the transfer of additional DNA molecules beyond the perceived 

amount calculated assuming well-mixing. 

 

This study has demonstrated that the Ct Method is extremely powerful tool for 

quantifying concentrated samples of DNA, but will likely provide inaccurate results for 

samples containing less than 1,000 copies of DNA per reaction.  The original intent of 

this study was to evaluate the usefulness of an alternative method, which we call endpoint 

PCR analysis, compared to the Ct Method.  However, the two processes are completely 

different in nature, making it difficult to derive a fair statistic for comparing the two 

processes.  Based on the experimental data of this study, samples containing less than 

1,000 copies of DNA would be more accurately quantified using endpoint analysis based 

on the fact that our data show the Ct Method produces errors greater than the sample 

concentration in this realm. 
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CHAPTER VII 

 

CONCLUSIONS 

 

 This dissertation work focuses on developing quantitative techniques to improve 

the quality of biological measurement.  Currently, there is a vast interest in interrogating 

the genetic circuitry of living organisms.  However, most techniques of biological 

measurement were not developed with the concept of accurate quantitation in mind.  

Thus, there is a demand for novel quantitative measurement strategies and comprehensive 

studies that evaluate the accuracy and reproducibility of existing techniques.   

 

The work presented here focuses on developing quantitative techniques to robustly 

harvest and measure biological molecules that drive genetic circuits.  By applying 

engineering intuition empowered by mathematical and biological concepts, advances 

were made on many of the problems that plague the accuracy of traditional biological 

measurements.  In fact, it was only by interdisciplinary approaches that such advances 

were made.  Notable advances were made in a variety of areas including: reliable cell 

disruption, cell cycle synchrony modeling, and reliable gene expression quantitation via 

PCR.  These improvements have vast utility that span many areas of study such as gene 

expression analysis, yeast physiology, and industrial bioprocesses.  Chapters IV and V of 

this dissertation demonstrate the widespread value of this work by describing how a 40-

year old biological phenomena could be exploited to make accurate cell cycle dependent 

gene expression measurements and increase the efficiency of industrial bioprocesses. 
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The principal findings of this research are: 

• A traditional protocol for cell disruption produces a mere 57% disruption, while 

an extension to the protocol can produce over 90% disruption. 

• Cell disruption via bead beating is a cell cycle dependent process.  Ignoring this 

cell cycle dependence will impact the accuracy of cell cycle dependent biological 

measurement.  Recognizing the cell cycle dependence of the process permits its 

efficient use for the selective harvest of cell cycle dependent biological molecules. 

• The dynamics cell cycle synchrony of Saccharomyces cerevisiae can be 

accurately captured using an age and volume structured Leslie model.  

• Continuous volume filtration can extend cell cycle synchrony through judicious 

selection of filtration parameters. 

• Autonomous oscillations during continuous yeast cultures are integrally linked 

to the population structure of the culture and are therefore a mechanism of 

persistent cell cycle synchrony. 

• Bud index oscillations and cell density measurements can be used to unveil the 

population structure during autonomous oscillations.  The population structure 

may elucidate the mechanisms driving autonomous oscillations ultimately leading 

to advancements in understanding intercellular communication and cell cycle 

control. 

• Autonomous oscillations can be exploited to measure cell cycle dependent gene 

expression.  These oscillations also have enormous potential within industry for 

the synchronous production of biological molecules. 

• The reliability of the Ct Method for the quantitation of gene expression depends 

crucially on the concentration of DNA within the sample. 
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• The misclassification probability is a useful statistic for evaluating the reliability 

of Ct data. 

• Endpoint PCR has the potential for quantifying subtle gene expression profiles. 

• The process of plate filling single molecules is robust and suitable for use in 

endpoint assays used for quantitation. 

 

Future Work 

 

Much of this work has yet to come to complete fruition.  For example, the utility of the 

endpoint PCR assay needs further investigation.  This dissertation demonstrates that this 

assay may be empowered to more accurately quantifying subtle gene expression profiles.  

However, the assay needs a more rigorous evaluation that relies heavily on the ability to 

create accurate dilute DNA standards, which is currently technologically difficult.  

Perhaps future technological breakthroughs in this area will permit the full demonstration 

of the advantage of endpoint PCR quantitation.   

 

We have investigated the idea of using single cells as carriers of DNA in order to 

alleviate the difficulties in accurately preparing dilute suspensions of DNA.  With the use 

of a Coulter counter, accurate stocks of dilute suspensions of cells can be prepared.  If 

these cells are haploid yeast, then each cell will contain exactly one copy of a particular 

gene per cell.  Individual yeast cells can also be easily visualized once loaded onto a 

plate, unlike single DNA molecules.  However, the use of cells as carriers of DNA 

introduces a new problem.  The TAQ polymerase and primers need acess to the DNA 

inside the cells in order to efficiently amplify the DNA.  Thus, the cells must be 



193 

efficiently and robustly disrupted.  We have performed numerous experiments of this 

nature, and verified that yeast cells prepared as spheroplasts, cells lacking cell walls, can 

be efficiently disrupted inside the plate.  However, PCR reactions still tend to fail unless 

several cells are confined to a single well of the plate.  This may be due to inefficient 

disruption of the nuclear membrane or supercoiling of the DNA, both of which would 

inhibit TAQ polymerase from gaining access to the DNA.  Another potential problem 

may be deoxyribonucleases (DNAses) or proteases released during the disruption which 

may damage the DNA or the TAQ polymerase enzyme.  This problem needs to be further 

investigated with the use of different cell types, protease and DNAse inhibitors, and 

different primer sets. 

 

The complete value of the Leslie model has not been fully demonstrated.  This model 

could be used to deconvolve population signals, potentially answering countless 

questions regarding cell cycle and age dependent gene expression profiles.  

Understanding the behavior of these expression profiles in concordance with physiology 

will encourage understanding the adaptive control and robustness of the living organism.  

We have theoretically demonstrated with the Leslie model that autonomous oscillations 

could be used to increase the efficiency of cell cycle dependent bioprocesses.  The 

luciferase gene expression data for POL1, DAL80, and GLN3 also indicate that periodic 

and cell cycle dependent production of proteins during autonomous oscillations is reality.  

However, the true value of this system for bioprocessing needs to be investigated more 

thoroughly through experimentation.  The degradation rate of the specific proteins 

products both inside the cell and in the media needs to be determined.  If the protein 

product will simply accumulate inside the cell with minimal degradation, then it is likely 
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that the oscillations in product concentration, induced by the population structure of the 

autonomous oscillations, will be negligible. 
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APPENDIX A 

 

LESLIE MODEL MATLAB CODE 

 

Params = ReadParams('Input.txt'); 
GrowthRates = dlmread(Params.GrowthRatesFile); 
VolumeIntervals = dlmread(Params.VolumeIntervalsFile); 
VolumeMilestones = dlmread(Params.VolumeMilestonesFile); 
SizeGrowthRates = size(GrowthRates); 
SizeVolumeIntervals = size(VolumeIntervals); 
SizeVolumeMilestones = size(VolumeMilestones); 
if (Params.NumberOfGenerations ~= SizeGrowthRates) 
    error('number of generations and number of growth rates do not match') 
end 
if (Params.NumberOfGenerations ~= SizeVolumeIntervals(1)) 
    error('number of generations and number of volume intervals do not match') 
end 
if (Params.NumberOfGenerations ~= SizeVolumeMilestones(1)) 
    error('number of generations and number of volume milestone sets do not match') 
end 
for i=1:Params.NumberOfGenerations 
NumberOfTimeIntervals(i,1)=[ceil((1/GrowthRates(i,1))*log(VolumeIntervals(i,2)/VolumeIntervals(i,1)))+
1]; 
end 
for i=1:Params.NumberOfGenerations 
    for j=1:NumberOfTimeIntervals(i,1) 
        VolumeValues(i,j)=VolumeIntervals(i,1)*exp((j-1)*GrowthRates(i,1)); 
        SineValues(i,j) = sin((2*pi/(NumberOfTimeIntervals(i,1) - 1)) * (j - 1)); 
    end 
end 
NewParentVolume(1) = VolumeMilestones(1, 3); 
Period(1) = log(VolumeMilestones(1, 2)/NewParentVolume(1)) / GrowthRates(1,1); 
for i=2:Params.NumberOfGenerations 
    NewParentVolume(i) = VolumeMilestones(i-1, 2) - VolumeMilestones(i-1, 3); 
    Period(i) = log(VolumeMilestones(i, 2)/NewParentVolume(i)) / GrowthRates(i,1); 
end 
N = ceil(Period); 
for i=1:Params.NumberOfGenerations 
    for j=1:N(i) 
        SineValues2(i,j) = sin((2*pi/(Period(i) - 1)) * (j - 1)); 
    end 
end 
  
if (Params.CalcGeneExpression == 1) 
    for i=1:Params.NumberOfGenerations 
        MeanBirthIndex = ClosestVolumeIndex(i, NewParentVolume(i), GrowthRates, VolumeIntervals); 
        P = NumberOfTimeIntervals(i,1) - MeanBirthIndex; 
        for j=1:MeanBirthIndex 
            SineValues_GrowthInterval(i,j) = 0; 
        end 
        for j=(MeanBirthIndex+1):NumberOfTimeIntervals(i,1) 
            SineValues_GrowthInterval(i,j) = sin(((2*pi/(P)) * (j-1)) - ((2*pi/P)*MeanBirthIndex) ); 
        end 
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    end 
end 
for i=1:Params.NumberOfGenerations 
DivisionVolumeIndex(i,1)=ClosestVolumeIndex(i,VolumeMilestones(i,2),GrowthRates,VolumeIntervals); 
MeanBudPointIndex(i,1)=ClosestVolumeIndex(i,VolumeMilestones(i,1),GrowthRates,VolumeIntervals); 
end 
if (Params.ParentSpread == 1) 
    for i=1:(Params.NumberOfGenerations - 1) 
        MeanMotherVolume = VolumeMilestones(i,2)-VolumeMilestones(i,3); 
        MeanParentIndex(i+1) = 
ClosestVolumeIndex(i+1,MeanMotherVolume,GrowthRates,VolumeIntervals); 
        SumPPWeight = 0; 
        for j=1:(MeanBudPointIndex(i+1,1) - 1) 
            PPWeight(i+1,j) = exp(-(VolumeValues(i+1,j) - 
VolumeValues(i+1,MeanParentIndex(i+1)))^2/(Params.ParentSpreadSigma)^2); 
            SumPPWeight = SumPPWeight + PPWeight(i+1,j); 
        end 
        for j=1:(MeanBudPointIndex(i+1,1) - 1) 
            PPWeight(i+1,j) = PPWeight(i+1,j)/SumPPWeight; 
              if (PPWeight(i+1,j) < eps) 
                PPWeight(i+1,j) = 0.0; 
            end 
        end 
    end 
end 
TenPercentWidth = ones(Params.NumberOfGenerations,1); 
for j=1:Params.NumberOfGenerations 
    TenPercentWidth(j,1) = (VolumeIntervals(j,2) - VolumeIntervals(j,1))/10; 
end 
TenPctStart = ones(Params.NumberOfGenerations,1); 
for j=1:Params.NumberOfGenerations 
    TenPctStart(j,1) = ClosestVolumeIndex(j, (VolumeValues(j,MeanBudPointIndex(j,1)) - 
TenPercentWidth(j,1)), GrowthRates, VolumeIntervals); 
end 
StaticData.GrowthRates = GrowthRates; 
StaticData.VolumeIntervals = VolumeIntervals; 
StaticData.NumberOfTimeIntervals = NumberOfTimeIntervals; 
StaticData.VolumeValues = VolumeValues; 
StaticData.VolumeMilestones = VolumeMilestones; 
StaticData.DivisionVolumeIndex = DivisionVolumeIndex; 
StaticData.MeanBudPointIndex = MeanBudPointIndex; 
if (Params.ParentSpread == 1) 
    StaticData.PPWeight = PPWeight; 
end 
StaticData.SineValues = SineValues; 
StaticData.TenPercentWidth = TenPercentWidth; 
StaticData.TenPctStart = TenPctStart; 
StaticData.ParentEmergentVolume = NewParentVolume';  
for i=1:Params.NumberOfGenerations 
    Generations(i) = struct('State', zeros(StaticData.NumberOfTimeIntervals(i,1),1), 'Update', 
zeros(StaticData.NumberOfTimeIntervals(i,1),1), 'Promote', 
zeros(StaticData.NumberOfTimeIntervals(i,1),1), 'NewDaughters', 
zeros(StaticData.NumberOfTimeIntervals(1,1),1)   ); 
end 
if (Params.SaveData == 1) 
    SaveParams(Params); 
    SaveStaticData(StaticData, Params); 
end 
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    for j=1:Params.NumberOfGenerations 
        XXa=1:1:StaticData.NumberOfTimeIntervals(j); 
        pdfNormaldist=round(normpdf(XXa,StaticData.MeanBudPointIndex(j),100)*10000/(2^j)); 
        for i=1:StaticData.NumberOfTimeIntervals(j) 
        Generations(j).State(i,1)=pdfNormaldist(i); 
        end 
    end 
    SumALL=0; 
    for j=1:Params.NumberOfGenerations 
       SumALL = SumALL+sum(Generations(j).State); 
    end 
    for j=1:Params.NumberOfGenerations 
       Generations(j).State = Generations(j).State/SumALL; 
    end 
clear GrowthRates VolumeIntervals NumberOfTimeIntervals VolumeValues VolumeMilestones 
DivisionVolumeIndex MeanBudPointIndex PPWeight SizeGrowthRates SizeVolumeIntervals 
SizeVolumeMilestones SineValues SineValues_GrowthInterval SineValues2 MidPoint SumDist 
InitialSigma NewParentVolume i; 
disp(strcat('Job Name -- ', blanks(4), Params.JobName)) 
tic; 
Die=zeros(1,1); 
GraveYard = zeros(StaticData.NumberOfTimeIntervals(Params.NumberOfGenerations,1),1); 
PBNJ=zeros(1,Params.NumberOfTimeSteps); 
PBNJ_cdf=zeros(1,Params.NumberOfTimeSteps); 
if (Params.CalcGeneExpression == 1) 
    GeneExpression = zeros(Params.NumberOfTimeSteps, 1); 
end 
M = 1;  
N = 1; 
if (Params.ShowPopulationPlots == 1) 
    hFigGens = figure('Name', 'Generations Evolving'); 
    if (Params.NumberOfGenerations <= 6) 
        M = 2; 
        N = 3; 
    else 
        Factors = factor(Params.NumberOfGenerations); 
        HowManyFactors = size(Factors,2); 
        switch HowManyFactors 
            case 2 
                M = Factors(1); N = Factors(2); 
            case 3 
                M = Factors(1)*Factors(2); N = Factors(3); 
            case 4 
                M = Factors(1)*Factors(2); N = Factors(3)*Factors(4); 
        end 
    end 
    clear Factors HowManyFactors 
end   
TotalPopulationTimeSeries = zeros(Params.NumberOfTimeSteps, 2); 
O2Consumption = zeros(Params.NumberOfTimeSteps,1); 
O2Concentration = zeros(Params.NumberOfTimeSteps,1); 
O2Concentration(1)=8; 
DaughterPopulationTimeSeries = zeros(Params.NumberOfTimeSteps, 2); 
ParentPopulationTimeSeries = zeros(Params.NumberOfTimeSteps, 2); 
SingleElementTimeSeries = zeros(Params.NumberOfTimeSteps, 2); 
SingleElementOrigValue = Generations(1).State(100,1); 
P0_in_timeseries = zeros(Params.NumberOfTimeSteps, 2); 
P0_out_timeseries = zeros(Params.NumberOfTimeSteps, 2); 
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PK_in_timeseries = zeros(Params.NumberOfTimeSteps, Params.NumberOfGenerations); 
PK_out_timeseries = zeros(Params.NumberOfTimeSteps, Params.NumberOfGenerations); 
GridPopulation_timeseries = zeros(Params.NumberOfTimeSteps, Params.NumberOfGenerations); 
PopGrowthTimeSeries=zeros(Params.NumberOfTimeSteps,Params.NumberOfGenerations+1); 
recordstart=0; 
DensityalongVolume_timeseries=zeros(max(StaticData.NumberOfTimeIntervals),Params.NumberOfGener
ations,Params.NumberOfTimeSteps); 
PreTotal=ComputeTotalPopulation(Generations, Params); 
CycleCount=0; 
resetcount=0; 
for i=1:Params.NumberOfTimeSteps 
    if (mod(i,50)==0) 
      fprintf('%d -th timesteps\n', i) 
    end 
    TotalPopulationTimeSeries(i,1) = i; 
    TotalPopulationTimeSeries(i,2) = ComputeTotalPopulation(Generations, Params);  
    DaughterPopulationTimeSeries(i,1) = i; 
    DaughterPopulationTimeSeries(i,2) = sum(Generations(1).State);     
    ParentPopulationTimeSeries(i,1) = i; 
    ParentPopulationTimeSeries(i,2) = ComputeParentPopulation(Generations, Params);  
    if(Params.Normalize==0)         
       POPTimeSeries(i,1)= TotalPopulationTimeSeries(i,2); 
       for j=2:Params.NumberOfGenerations+1 
          POPTimeSeries(i,j)=sum(Generations(j-1).State); 
       end 
    end 
   for j=1:Params.NumberOfGenerations 
        GridPopulation_timeseries(i,j) = sum(Generations(j).State); 
    end 
    PBNJ(:,i)=FractionBudded(Generations,StaticData,Params);       
    PBNJ_cdf(:,i)=FractionBuddedWithCDF(Generations,StaticData,Params);     
        H2SAmount = 0.0;                   
    for j=1:Params.NumberOfGenerations     
       SPhaseStart = StaticData.MeanBudPointIndex(j,1);  
       SPhaseEnd = StaticData.MeanBudPointIndex(j,1) + Params.CellSPhaseWidth;  
       SPhaseEnd = round((1/2 + 15/31)*StaticData.NumberOfTimeIntervals(j,1)); 
       H2SAmount = H2SAmount + sum(Generations(j).State(SPhaseStart:SPhaseEnd)); 
    end 
    SFAmount = 0.0;                 
    for j=1:Params.NumberOfGenerations 
       SFAmount = SFAmount + sum(Generations(j).State(1:StaticData.MeanBudPointIndex(j,1))); 
    end 
    spankingORblocking=0;  
    if ((Params.H2SEntrainment == 1)&&(spankingORblocking==1)&&(H2SAmount >= 
Params.H2SThreshold)) 
        [Generations] = H2SCellPhaseEntrainment(Generations, StaticData, Params);     
    end 
    if ((Params.H2SEntrainment == 1)&&(spankingORblocking==0)&&(H2SAmount >= 
Params.H2SThreshold)&&(i>7000)) 
       for j=1:(Params.NumberOfGenerations - 1) 
           if (Params.DivideWithCDF == 1) 
               [Generations(j).Update, Generations(j).NewDaughters, Generations(j+1).Promote] = 
Growth_With_CDF_blocking(j, Generations(j).State, Params, StaticData);   
           else 
               [Generations(j).Update, Generations(j).NewDaughters, Generations(j+1).Promote] = 
growth_blocking(j, Generations(j).State, Params, StaticData);            
           end 
       end   
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    else                                     
       for j=1:(Params.NumberOfGenerations - 1) 
          if (Params.DivideWithCDF == 1) 
             [Generations(j).Update, Generations(j).NewDaughters, Generations(j+1).Promote] = 
Growth_With_CDF(j, Generations(j).State, Params, StaticData) 
else 
             [Generations(j).Update, Generations(j).NewDaughters, Generations(j+1).Promote] = growth(j, 
Generations(j).State, Params, StaticData);           %%%%%%%% 'growth.m' %%%%%%%% 
          end 
       end                                    
    end    
    if (Params.DivideWithCDF == 1) 
        [Generations(Params.NumberOfGenerations).Update, 
Generations(Params.NumberOfGenerations).NewDaughters, GraveYard] = 
Growth_With_CDF(Params.NumberOfGenerations, Generations(Params.NumberOfGenerations).State, 
Params, StaticData); 
    else 
        [Generations(Params.NumberOfGenerations).Update, 
Generations(Params.NumberOfGenerations).NewDaughters, GraveYard] = 
growth(Params.NumberOfGenerations, Generations(Params.NumberOfGenerations).State, Params, 
StaticData); 
    end 
        Generations(1).State = Generations(1).Update; 
    for j=1:Params.NumberOfGenerations 
        Generations(1).State = Generations(1).State + Generations(j).NewDaughters; 
    end 
    for j=2:Params.NumberOfGenerations 
        Generations(j).State = Generations(j).Update + Generations(j).Promote; 
    end 
    for j=1:Params.NumberOfGenerations 
      for k=1:StaticData.NumberOfTimeIntervals(j,1) 
        DensityalongVolume_timeseries(k,j,i)=Generations(j).State(k); 
      end 
    end 
        PreTotal=TotalPopulationTimeSeries(i,2); 
        if (Params.FilterBySize == 1) 
            if (Params.DelayFilter == 1) 
                if (i > Params.FilterDelayTime) 
                    for j=1:Params.NumberOfGenerations 
                       [Generations(j).State]= Filter(j, Generations(j).State, Params, StaticData);  
                    end 
                end 
            else 
                for j=1:Params.NumberOfGenerations 
                    Generations(j).State = Filter(j, Generations(j).State, Params, StaticData); 
                end 
            end 
        end 
    for j=1:Params.NumberOfGenerations 
         for k=1:StaticData.NumberOfTimeIntervals(j) 
            if (Generations(j).State(k) < eps) 
                Generations(j).State(k) = 0.0; 
            end 
        end 
    end 
    TotalPopulation = ComputeTotalPopulation(Generations, Params); 
    [Ti,ADi] = IntegrateDensities(Generations, Params); 
    if (i>7000) 
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       for j=1:Params.NumberOfGenerations 
      GridFraction=zeros(1,StaticData.NumberOfTimeIntervals(j)); 
          if (sum(Generations(j).State)~=0) 
         for k=1:StaticData.NumberOfTimeIntervals(j) 
                GridFraction(k)=(Generations(j).State(k))/sum(Generations(j).State); 
                Generations(j).State(k)=Generations(j).State(k)-
TotalPopulation*0.00163*ADi(j)*GridFraction(k); 
             end 
          end 
       end         
    end 
    if (TotalPopulation < eps) 
      fprintf('!!! *** All cells are dead at %d-th timesteps *** !!! \n', i) 
        break 
    end 
    if (Params.Normalize == 1) 
                if (TotalPopulation > eps) 
            for j=1:Params.NumberOfGenerations 
                Generations(j).State = Generations(j).State / TotalPopulation; 
            end 
        else 
            break 
        end 
    end  
    P0_in = 0; 
    for rrr=1:Params.NumberOfGenerations 
        P0_in = P0_in + sum(Generations(rrr).NewDaughters); 
    end 
    P0_in_timeseries(i,1) = i; 
    P0_in_timeseries(i,2) = P0_in; 
    P0_out_timeseries(i,1) = i; 
    P0_out_timeseries(i,2) = sum(Generations(2).Promote);  
    for rrr=1:(Params.NumberOfGenerations - 1) 
        PK_out_timeseries(i,rrr) = sum(Generations(rrr+1).Promote); 
    end 
    PK_out_timeseries(i,Params.NumberOfGenerations) = sum(GraveYard);  
    PK_in_timeseries(i,1) = P0_in; 
    for rrr=2:Params.NumberOfGenerations 
        PK_in_timeseries(i,rrr) = sum(Generations(rrr).Promote);  
    end 
    if (Params.CalcGeneExpression == 1) 
        G1 = 0.0; 
        G2 = 0.0; 
        for j=1:Params.NumberOfGenerations 
            for k=1:StaticData.NumberOfTimeIntervals(j) 
                G1 = G1 + (Generations(j).State(k) * StaticData.VolumeValues(j,k) * 
StaticData.SineValues(j,k)); 
                G2 = G2 + (Generations(j).State(k) * StaticData.VolumeValues(j,k)); 
            end 
        end 
        if (TotalPopulation > eps) 
            GeneExpression(i,1) = G1/G2; 
        else 
            GeneExpression(i,1) = 0.0; 
        end 
    end 
    for j=1:Params.NumberOfGenerations 
        for k=1:round(StaticData.MeanBudPointIndex(j)/2) 
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       O2Consumption(i) = O2Consumption(i)+(1/40)*Generations(j).State(k); 
        end  
    for k=round(StaticData.MeanBudPointIndex(j)/2)+1:StaticData.MeanBudPointIndex(j) 
       O2Consumption(i) = O2Consumption(i)+Generations(j).State(k); 
        end    
        for k=StaticData.MeanBudPointIndex(j)+round((1/4)*StaticData.NumberOfTimeIntervals(j)-
StaticData.MeanBudPointIndex(j)):StaticData.MeanBudPointIndex(j)+round((1/2)*StaticData.NumberOfT
imeIntervals(j)-StaticData.MeanBudPointIndex(j)) 
       O2Consumption(i) = O2Consumption(i)+(1/40)*Generations(j).State(k); 
        end  
    end  
    if (i>1) 
       O2Concentration(i)=O2Concentration(i-1)+1.0015*(8-O2Concentration(i-1)) - O2Consumption(i-
1)/150 - 0.0015*(7-O2Concentration(i-1));  
    end 
    if (mod(i,Params.PlotFrequency)==0) 
        if (Params.ShowPopulationPlots == 1) 
           for j=1:Params.NumberOfGenerations 
                subplot(M,N,j); 
                kk = j; 
plot(StaticData.VolumeValues(kk,1:StaticData.NumberOfTimeIntervals(kk,1)),Generations(kk).State(:,1)); 
                title(strcat('P', int2str(j))); 
                xlabel('Vol'); 
                yy = [0 max(Generations(kk).State)]; 
                hLine = line([StaticData.VolumeMilestones(kk,1) StaticData.VolumeMilestones(kk,1)], yy, 
'LineWidth',1,'Color',[1 0 0 ]); 
                hLine = line([StaticData.VolumeMilestones(kk,2) StaticData.VolumeMilestones(kk,2)], yy, 
'LineWidth',1,'Color',[0 0.75 0 ]);                 
                if (Params.FilterBySize == 1) 
                    hLine = line([Params.FilterMinSize Params.FilterMinSize], yy, 'LineWidth',1,'Color','black'); 
                    hLine = line([Params.FilterMaxSize Params.FilterMaxSize], yy, 'LineWidth',1,'Color','black'); 
                end 
           end         
            if (Params.SaveData == 1) 
                SaveFigureByIndex(hFigGens, i, Params); 
            end 
        end 
    end  
     if ((PBNJ(i)>=0.8)&(resetcount==0)) 
        CycleCount=CycleCount+1; 
        resetcount=1; 
    end 
    if ((resetcount==1)&(PBNJ(i)<0.8)) 
        resetcount=0; 
    end 
end  
fid=fopen('NumberOfCycles_alongFilterWvolumes.dat','a+'); 
fprintf(fid,'%d %d %d \n',Params.FilterMinSize, Params.FilterMaxSize, CycleCount); 
fclose(fid); 
fidc=fopen('NumberOfCycles_alongFilterWOvolumes.dat','a+'); 
fprintf(fidc,'%d \n',CycleCount); 
fclose(fidc); 
figure 
plot(1:Params.NumberOfTimeSteps,PBNJ); 
hold on; 
line([1 Params.NumberOfTimeSteps],[0.2 0.2],'Color','r'); 
hold on; 
line([1 Params.NumberOfTimeSteps],[0.8 0.8],'Color','r'); 
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if (Params.CalcGeneExpression == 1) 
    hFigGene = figure('Name', strcat('Gene Expression Plot -- ', Params.JobName)); 
    plot(GeneExpression); 
    title(strcat('Gene Expression -- ', Params.JobName)); 
    xlabel('Time (minutes)'); 
    if (Params.SaveData == 1) 
        SaveFigureByName(hFigGene, 'GeneExpression', Params) 
    end 
end 
if (Params.SaveData == 1) 
    SaveDynamicData(Generations, PBNJ, PBNJ_cdf, Params) 
    SaveStateSnapshotWithVolume(Generations, i, StaticData, Params) 
    if (Params.CalcGeneExpression == 1) 
       SaveGeneExpression(GeneExpression, Params); 
    end 
end 
if (Params.ShowPopulationPlots == 1) 
    close(hFigGens) 
end 
if (Params.CalcGeneExpression == 1) 
    close(hFigGene) 
end 
dlmwrite(strcat(Params.JobName,'/ts_total_population.dat'), TotalPopulationTimeSeries, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/O2consumption.dat'), O2Consumption, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/O2concentration.dat'), O2Concentration, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/ts_daughter_population.dat'), DaughterPopulationTimeSeries, 
'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/ts_single_element.dat'), SingleElementTimeSeries, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/ts_P0_rate_in.dat'), P0_in_timeseries, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/ts_P0_rate_out.dat'), P0_out_timeseries, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/ts_PK_rate_out.dat'), PK_out_timeseries, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/ts_PK_rate_in.dat'), PK_in_timeseries, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/ts_grids_population.dat'), GridPopulation_timeseries, 'delimiter', '\t') 
dlmwrite(strcat(Params.JobName,'/ts_grids_DensityalongVolume.dat'), DensityalongVolume_timeseries, 
'delimiter', '\t') 
if (Params.Normalize==0) 
  dlmwrite(strcat(Params.JobName,'/ts_grids_population_nonNOR.dat'), POPTimeSeries, 'delimiter', '\t') 
end 
DeltaP = PK_in_timeseries - PK_out_timeseries; 
dlmwrite(strcat(Params.JobName,'/ts_deltaPK_in-out.dat'), DeltaP, 'delimiter', '\t') 
[T,P] = IntegrateDensities(Generations, Params); 
dlmwrite(strcat(Params.JobName,'/Age_distribution.dat'), P) 
fid=fopen('AD_alongTauD_H2Son.dat','a+'); 
fprintf(fid,'Daughter BudEmergencyVolume %f\n', StaticData.VolumeMilestones(1,1)); 
for i=1:Params.NumberOfGenerations 
  fprintf(fid,' %f\n', P(i,1)); 
end 
fclose(fid); 
if ((Params.Normalize==0)&(Params.NumberOfTimeSteps>4000)) 
  DoublingTime=zeros(1,Params.NumberOfGenerations+1); 
  alphaP=zeros(1,Params.NumberOfGenerations+1); 
  for i=1:Params.NumberOfGenerations+1 
     LinearFitP=polyfit(4000:size(POPTimeSeries,1), 
log(POPTimeSeries(4000:size(POPTimeSeries,1),i)'),1); %'    
     alphaP(i)=LinearFitP(1,1);    
     DoublingTime(i)=log(2)/alphaP(i); 
  end 
  dlmwrite(strcat(Params.JobName,'/POPgrowthrates.dat'), alphaP, 'delimiter', '\t') 
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  dlmwrite(strcat(Params.JobName,'/POPdoublingtimes.dat'), DoublingTime, 'delimiter', '\t') 
end 
if ((Params.H2SEntrainment == 1)&&(spankingORblocking==1)) 
   amplitude=max(PBNJ(Params.NumberOfTimeSteps-500:Params.NumberOfTimeSteps))-
min(PBNJ(Params.NumberOfTimeSteps-500:Params.NumberOfTimeSteps)); 
   fid=fopen('amplitudes_spank_10per_S_equilini.dat','a+'); 
   fprintf(fid,'%f %f\n', Params.H2SThreshold, amplitude); 
   fclose(fid); 
end                           
if ((Params.H2SEntrainment == 1)&&(spankingORblocking==0)) 
   amplitude=max(PBNJ(Params.NumberOfTimeSteps-500:Params.NumberOfTimeSteps))-
min(PBNJ(Params.NumberOfTimeSteps-500:Params.NumberOfTimeSteps)); 
   fid=fopen('amplitudes_block_10per_S_equilini.dat','a+'); 
   fprintf(fid,'%f %f\n', Params.H2SThreshold, amplitude); 
   fclose(fid); 
end  
recordcount=zeros(Params.NumberOfGenerations,1); 
for j=1:Params.NumberOfGenerations 
   for i=2400:Params.NumberOfTimeSteps 
      if ((DensityalongVolume_timeseries(1,j,i)==0)) 
          pre=0; 
      for k=1:StaticData.NumberOfTimeIntervals(j,1) 
         if ((pre==0)&&(DensityalongVolume_timeseries(k,j,i)~=0)) 
             recordcount(j,1)=recordcount(j,1)+1; 
                 pre=DensityalongVolume_timeseries(k,j,i); 
         elseif ((pre~=0)&&(DensityalongVolume_timeseries(k,j,i)==0)) 
             pre=0; 
             end 
          end 
       break; 
       end 
   end 
end 
if ((Params.H2SEntrainment == 1)&&(spankingORblocking==0)) 
   fidc=fopen('NumberOfClumps_block_10per_0p3th_S_equilini.dat','a+'); 
   fprintf(fidc,'R = 10percent  and  S-phase width = %d\n', Params.CellSPhaseWidth); 
   for j=1:Params.NumberOfGenerations 
      fprintf(fidc,' %d\n', recordcount(j,1)); 
   end 
   fclose(fidc); 
end 
if ((Params.H2SEntrainment == 1)&&(spankingORblocking==1)) 
   fidc=fopen('NumberOfClumps_spank_10per_0p3th_S_equilini.dat','a+'); 
   fprintf(fidc,'R = 10percent  and  S-phase width = %d\n', Params.CellSPhaseWidth); 
   for j=1:Params.NumberOfGenerations 
      fprintf(fidc,' %d\n', recordcount(j,1)); 
   end 
   fclose(fidc); 
end 
for i=1:Params.NumberOfTimeSteps 
  inTOT(i)=sum(PK_in_timeseries(i,:)); 
  outTOT(i)=sum(PK_out_timeseries(i,:)); 
end 
tau = zeros(Params.NumberOfGenerations+1, 1); 
if (Params.NumberOfTimeSteps>3000)  
    FITin=polyfit(Params.NumberOfTimeSteps-
3000:Params.NumberOfTimeSteps,log(inTOT(Params.NumberOfTimeSteps-
3000:Params.NumberOfTimeSteps)),1); 
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    FITout=polyfit(Params.NumberOfTimeSteps-
3000:Params.NumberOfTimeSteps,log(outTOT(Params.NumberOfTimeSteps-
3000:Params.NumberOfTimeSteps)),1); 
    tau(Params.NumberOfGenerations+1)=(FITin(2)-FITout(2))/FITout(1);                            
    for i=1:Params.NumberOfGenerations-1 
        FITin=polyfit(Params.NumberOfTimeSteps-
2000:Params.NumberOfTimeSteps,log(PK_in_timeseries(Params.NumberOfTimeSteps-
2000:Params.NumberOfTimeSteps,i)'),1); 
        FITout=polyfit(Params.NumberOfTimeSteps-
2000:Params.NumberOfTimeSteps,log(PK_out_timeseries(Params.NumberOfTimeSteps-
2000:Params.NumberOfTimeSteps,i)'),1); 
        tau(i)=(FITin(2)-FITout(2))/FITout(1); 
    end 
    tau(Params.NumberOfGenerations)=tau(Params.NumberOfGenerations-1); 
    dlmwrite(strcat(Params.JobName,'/taus.dat'), tau, 'delimiter', '\t') 
end 
toc; 
 
 
 

*NOTE: Sub-routine code not included. 
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APPENDIX B 

 

LUMINESCENCE REPORTER MATERIALS AND METHODS 

 

The plasmid pGL3-ADH1term was generated by replacing the SV40 late terminator of 

pGL3-Basic (Promega) with the S. cerevisiae ADH1 terminator from pFA6a-GFP(S65T)-

HIS3MX 2.  The ADH1 terminator was PCR amplified from pFA6a-GFP(S65T)-

HIS3MX using the forward primer TTCATCTCTAGAGGCGCGCCACTTCTAAAT 

that contained an XbaI site overhang and the reverse primer 

GGACGAGGCAAGCTAAAC that annealed shortly downstream from the terminator 

and a BglII site.  The PCR product was digested with XbaI and BglII and ligated into 

pGL3-Basic which had been digested with XbaI and BamHI to remove its SV40 late 

terminator.   

 

The PEST sequence from CLN2 of S. cerevisiae was amplified by PCR from genomic 

DNA of strain SEY6210 3 using the forward primer 

GAATAAGCTTGCATCCAACTTGAACATT that contained a HindIII site overhang 

and the reverse primer GAAGTTCTAGACTATATTACTTGGGTATTGCC that 

contained an XbaI site overhang.  These sites were used to clone the PEST PCR product 

into pFA6a-GFP(S65T)-HIS3MX for maintenance (designated pFA6a-CLN2PEST).   

 

Gene SOEing 1,5 was used to fuse the PEST sequence from pFA6a-CLN2PEST to the 3’ 

end of the luciferase ORF of pGL3-ADH1term just prior to the stop codon.  Gene SOEing 

was performed as described by Wersh et al 5.  Specifically, the luficerase component of 
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the fusion was generated from pGL3-ADH1term using the forward primer 

GCTAGCCCGGGCTCGAGATC and the reverse primer 

AATGTTCAAGTTGGATGCCACGGCGATCTTTCC.  The forward primer annealed 

upstream from the luciferase start codon and included an XhoI site.  The reverse primer 

included an overhang with homology to the 5’ end of the PEST sequence.  The PEST 

portion of the fusion was generated from pFA6a-CLN2PEST using the forward primer 

GGAAAGATCGCCGTGGCATCCAACTTGAACATTTCG and the same reverse 

primer that was used to amplify the PEST sequence from the genomic source mentioned 

above.  The forward primer contained an overhang with homology to the 3’ end of 

luciferase, and the reverse primer contained an XbaI site overhang.  The two PCR 

products were gel-purified (Qiagen), mixed in equimolar (10 nM) concentrations, and 

were fused using 10 rounds of PCR without primers.  The Luc-PEST fusion was 

amplified by a final PCR reaction involving flanking primers (i.e. the XhoI-containing 

forward primer of the previous luciferase-generating PCR and the XbaI-containing 

reverse primer of the previous PEST-generating PCR) and cloned into pGL3-ADH1term 

using XhoI and XbaI, replacing the original luciferase ORF to create the plasmid pGL3-

PEST-ADH1term.   

 

The region of DNA containing the luciferase-PEST fusion and the ADH1 terminator was 

amplified by PCR from pGL3-PEST-ADH1term using the forward primer 

AAGTAACTGCAGATGGAAGACGTCAAAAACATAAAGAAAGGCCCG and the 

reverse primer GACGATAGTCATGCCCGGG.  The forward primer annealed at the 

beginning of the start codon of luciferase and included a mismatch that mutated the 

fourth amino acid from adenine to valine introducing an AatII site there.  The forward 
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primer also included a PstI overhang.  The reverse primer annealed downstream of 

ADH1term and a SalI site.  This PCR product was cloned into the yeast shuttle vector 

pRS3154 using PstI and SalI to create the versatile destabilized-luciferase expression 

vector pRS315-Luc(A4V)PEST for S. cerevisiae.  A similar luciferase expression vector 

(pRS315-Luc(A4V)) without the PEST sequence was constructed in the same way by 

using pGL3-ADH1term as the PCR template instead of pGL3-PEST-ADH1term.   

 

Promoters of interest (POL1, GLN3, and DAL80) were amplified by PCR using yeast 

genomic template from strain SEY 6210 and primer pairs that targeted nearly all of the 

intergenic region upstream of the gene of interest.  The forward primers contained an 

overhang that included either the PstI or XmaI restriction site.  The reverse primers 

contained an overhang that included an AatII site and the first 4 amino acids of luciferase.   

Specific primers used to amplify the promoters are listed in Table B.1.  The resulting 

PCR products (promoters) were individually cloned into pRS315-Luc(A4V)PEST and/or 

pRS315-Luc(A4V) to make complete luciferase reporter constructs that could be 

maintained in yeast.  The “promoter-Luc(PEST)-terminator” portion of the constructs 

were also moved to other pRS expression vectors (e.g. pRS314, pRS303, pRS306, 

pRS424) when different selection markers were needed or when the luficerase reporter 

needed to be stably integrated into the host’s genome or over expressed on 2-micron 

plasmids 4.  These rearrangements were made with PstI or XmaI and SalI.   

 

The yeast integration vectors pRS303 and pRS306 were modified for selection on G418 

antibiotic by introducing the kanamycin resistance gene from pFA6a-KanMX6 2.  This 

was done in a three step process.  First, the Kan resistance gene was cloned from pFA6a-
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KanMX6 into pRS315-PGPH1-Luc(A4V)PEST using NotI and BamHI, creating pRS315-

PGPH1-Luc(A4V)PEST-Kan.  This plasmid served as a backbone for the introduction of 

several promoters of interest by swapping out the GPH1 promoter with the one of interest 

using XmaI and AatII.  Then the entire region containing the Kan resistance gene, 

promoter of interest, destabilized luciferase, and the ADH1 terminator was cloned into 

either pRS303 or pRS306 using NotI and SalI or EcoRI and SalI.  This pRS315-Kan 

intermediate was necessary at first due to an inconvenient AatII site in pRS303 and 

pRS306 that prevented the direct introduction of promoters of interest into them.  This 

was later overcome by removing the native AatII site from pRS303 and pRS306 by 

digesting the plasmids with AatII, blunting the digestion with Klenow fragment, and 

ligating the blunt ends back together.   

 

Table B.1: A list of primer sequences used for the development of luminescent 
constructs.  Each primer contains appropriate cloning sites. 

   

Promoter Primer Sequence (5' to 3') 

Forward Primer AAGTAACTGCAGTGCATTTTTCTTAAAGAAATATAAC 
POL1 

Reverse Primer ATGATTGACGTCTTCCATTTTCCACTGTTTATTATATGCCT 

Forward Primer AAGTAACCCGGGCAATACGAGCAGCAAAGAAATTG 
GLN3 

Reverse Primer ATGATTGACGTCTTCCATTTGTTTGTTGGTGGGGGAAAAG 

Forward Primer AAGTAACCCGGGCACCCTTGTTTATCTATCCTAC 
DAL80 

Reverse Primer ATGATTGACGTCTTCCATTCTCTTATATATAATATGATATAATATAATG  
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APPENDIX C 

 

DEVELOPMENT OF ACTIVITY BASED COST FUNCTIONS 
FOR CELLULASE, INVERTASE, 

AND OTHER ENZYMES 
 

Abstract 

 

As enzyme chemistry plays an increasingly important role in the chemical industry, cost 

analysis of these enzymes becomes a necessity.  In this paper, we examine aspects that 

affect the cost of enzymes based upon enzyme activity.  The basis for this study stems 

from a previously developed objective function that quantifies the tradeoffs in enzyme 

purification via the foam fractionation process 1.  A generalized cost function is 

developed from our results that could be used to aid in both industrial and lab scale 

chemical processing.  The generalized cost function shows several non-obvious results 

that could lead to significant savings.  Additionally, the parameters involved in the 

operation and scaling up of enzyme processing could be optimized to minimize costs 1, 2, 

3.  We show that there are typically three regimes in the enzyme cost analysis function: 

the low cost pre-linear region, the moderate cost linear region, and high cost power-law 

region.  The overall form of the cost analysis function appears to robustly fit the power 

law form. 
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Introduction 

 

Since the rapid development of the chemical industry in the 1940’s, the chemical industry 

has morphed from a commodity chemical market into a specialty chemical market where 

bio-related products and processes have become increasingly important.  Enzymes are 

now commonly used as catalysts to produce products such as proteins, sugars, and lipids 

as well as processing tools to enhance more traditional products, such as paper pulp.  In 

fact, enzyme industry sales are expected to increase to 2.2 billion dollars by 2010 4.  It 

has been predicted that the kinetics of cost reduction for industrial enzymes will control 

the extent of how the enzyme market will grow 5.  Thus, cost analysis of enzymes is 

becoming an important factor for engineers and scientists dealing with mainstream bio-

products. 

The price of enzymes is often controlled by the method of production and more 

importantly the purification method 6.  Many enzymes can be isolated from common 

plants and microorganisms while others must be harvested from animals, particularly 

mammals such as pigs, rabbits, and even humans.  Generally, enzymes isolated from 

common plants are less costly than those isolated from animals.  Likewise, enzymes that 

require little purification are less costly.  Some enzymes require additional processing 

beyond traditional standard processing which includes foam fractionation, salting out, 

and liquid-liquid extraction 7.  These additional processing steps can become extremely 

costly and can lead to increased market cost of the enzyme.  These processing steps often 

include standard gel chromatography and/or HPLC (High Performance/Pressure Liquid 

Chromatography).   
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In this study, we will explore whether an objective function, relating enzyme activity to 

cost, can be developed to establish the cost function of cellulase and other enzymes.  We 

will determine the cost increase of crude cellulase (in terms of activity per mass) 

following processing used to enhance the purity and concentration of this protein.  We 

shall start with a more generalized objective function comprised of measurable 

purification process responses to create our cost model and reduce that model to the 

specific cost function for this study.  A previously developed objective function 

quantifies the tradeoff between maximizing the enzyme concentration in a separation 

process such as a foam fractionation process and minimizing the loss of enzyme mass and 

enzyme activity in that process 1 is shown below. 

                                             Φ = (AR)
a
 (MR)

b
 (ER)

c                                      Equation (C.1) 

            where       AR = activity recovery = Afoam/Ai  

                         MR = mass recovery = Mfoam/Mi  

                                     ER = enrichment recovery = Cfoam/Ci  

Typically, a is positive, b is negative, and c is positive.  b and c will be both positive in 

the case where Φ is a generalized, desired performance factor.  On the other hand, as we 

shall see in the results section, where MR is replaced by purchase mass and Φ is replaced 

by $/mg, b becomes negative.  Here we explore whether a generalized relationship 

between cost, activity, and recovered mass alone can characterize a cost function, and if 

so, determine the appropriate coefficients. 

This approach to the development of cost-based processing can result in the lowering of 

product cost at each processing step by selecting the control variables which can 

maximize the respective Φ or minimize the cost based functions at each step.  In a foam-
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fractionation process, in particular, these control parameters are typically the pH and the 

foaming-gas superficial velocity 1.  In this approach, it is convenient to define Φ as a 

generalized value (or price) function.  In this study, we define price as the price published 

in leading biochemical catalogs used in this study.  Additional processing to generate 

higher purity enzyme will result in incremental increases in the value of Φ which can be 

represented as the first derivative of the objective function with respect to activity.  In 

particular, in this study, we shall compare the catalog values to a parameter fitted model 

for industrial enzymes to determine whether there are general trends and quantitative 

similarities between classes of enzymes.  Our goal is to develop an objective function 

based on market values, making the model most useful from the purchasing (consumer) 

point of view.  However, the model could also be used from a manufacturing point of 

view to determine whether the production of certain products would be profitable by 

determining the economic value of a potentially new product prior to investment in 

production.  In the initial part of this study, we will assume the second and third terms of 

the objective function model (Equation (C.1)), Φ, are constant and can be lumped into a 

new parameter γ.  This permits the model to be simplified to the following equation, 

where the activity term is defined as activity per unit mass, as is often expressed in 

enzyme sales catalogs. 

                               Φ = γ(A)
a
                                     Equation (C.2) 

With this framework, our underlying assumption for the remainder of the work is that for 

a given enzyme, the processing cost is captured by the power law framework and, by 

difference production (fermentation) costs are included within the constant γ.  This is a 

good assumption since the majority of industrial enzymes are produced in a microbial 

environment or directly harvested from plants.  These enzymes are often processed 
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directly for activity, which requires increasingly larger costs in order to reach higher 

activity.  Enzymes generally used for medical applications, which are produced in a 

mammalian cell line or from animals, may tend to deviate from this assumption.  

Additionally, the cost specialty enzymes which are produces in only small quantities for 

R&D purposes may be dictated by investment cost.  We shall focus on industrial 

enzymes here. 

 

The cost of storage for enzymes can also influence the cost of these chemicals at the 

customer level.  It can be readily established that significant savings (greater than 25%) 

can be achieved by simply buying in bulk from an enzyme supplier.  However, bulk 

storage costs of these enzymes are not negligible considering that most enzymes must be 

kept at -20°C.  The additional cost of storage resulting from bulk purchases needs to be 

considered by engineers and scientists in industry.  Thus, we present a slightly modified 

cost function, Φ, that accounts for the cost effects of buying in bulk quantity and the 

resulting enzyme storage. 

                         Φ =γ (A)
a
δ(1/M)

b
(1+α*t)                           Equation (C.3) 

where   Φ= enzyme cost in $/mg 

M=mass purchase amount 

t=storage time in weeks 

a and b are dimensionless constants 

γ, δ, and α have appropriate dimensions 

Two key observations can be made regarding this improved cost function.  First, the cost 

per unit mass is directly proportional to activity and inversely proportional to the amount 

of mass purchased.  This observation is fairly trivial knowing that if a customer wants a 
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higher activity per unit mass product, it will cost more and the more purchased will 

warrant a decrease in price per unit.  Secondly, the parameter b must be negative and 

range from [-1,0] knowing that the price per unit should decrease as more product is 

purchased.  The larger the absolute value of b, the more discount a consumer will receive 

for buying in bulk.  Thus, the parameter b and the storage cost function (third term) must 

be balanced to attain the most cost effective purchase amount for a given purchase.  α has 

the units of 1/weeks (inverse time) and the parameters γ and δ have units dependent on 

the values of the coefficients a and b and the units activity and mass is expressed, 

respectively.  Of course, activity and the mass purchase amounts could be expressed in 

dimensionless form to generalize Equation (C.3).  It is also important to notice that the 

parameters γ and δ can be lumped into one single parameter.  However, for our purposes 

it is easier to now look at the two parameters separately so that we can investigate the 

proposed model terms individually.  The first term can be investigated as an independent 

activity dependent cost function, while the second term can be investigated to determine 

the effects of mass purchase amount on the cost function.  This framework will allow us 

to empirically determine whether the simple models shown in Equation (C.2) and 

Equation (C.3) can accurately relate enzyme activity and purchase amount to cost for 

industrial enzymes. 
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Materials and Methods 

 

The enzyme market was investigated for the following enzymes: cellulase, invertase, 

collagenase, papain, alpha-amylase, and elastase.  The market was surveyed by 

determining the cost per mg of enzyme from Fisher Scientific, Sigma-Aldrich, Carolina 

Biochemical, and Worthington Biochemical, and Elastin Products Company 8, 9, 10, 11, 12.  

If these suppliers sold a particular enzyme in different allotment sizes, the cost per mg 

was averaged over all allotments to determine an average price per mg from that 

particular supplier.  This averaging was introduced here to reduce the market scattering of 

the data in order to enable us to more clearly observe the trend of enzyme activity on 

cost.  Data was also collected for invertase from an available industrial market report 13.  

Only enzymes that were sold in allotments in terms of mass were considered (those sold 

in terms of enzyme units were ignored).  The activity per mg of each product was 

recorded along with the respective cost per mg.  When the supplier gave an activity 

range, the lower limit of the range was selected to be the finite activity used in this study.  

Only enzymes that had reported activities with similar units were compared.  A complete 

list of the data collected is shown in Table C.1.  The activity units between different 

enzymes varied because the enzyme activity was generally expressed as the amount of 

substrate utilized per unit time, however, the amount of substrate and time often varied 

between enzymes.  A complete list of activities for enzymes used in this study is also 

shown in Table C.1. 

 

The data for price per mg for each enzyme was then plotted versus the corresponding 

activity per mg, and subsequent least-squares regression analysis was then performed.  
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When more data were available for the lower activity purity range, the high purity data 

was weighted such that the number of high purity and low purity data points had 

equivalent power in the regressions, meaning each data set consisted of the same number 

of data points in the upper and lower purity range.  If this normalization is not performed, 

the low purity data points will not allow the regression function to capture the dynamics 

associated with the high purity enzyme.  Since data cannot be homogenously sampled 

over the entire activity domain, some form of normalization is necessary in order to fit 

the data over the entire activity domain.  Performing a regression on the raw data, simply 

provides an excellent fit to the more numerous low range activity data points, but 

completely misses the scarce high activity range data.  For the alpha amylase data, the 

regression technique was modified to compensate for an excessive number of data points 

available in the low purity regime.  These data points were so low in the activity domain 

that they were not allowing the regression function to capture the dynamics associated 

with the high purity enzyme.  In other words, the numerous data points for amylase in the 

low activity range were controlling the dynamics of the regression in the high activity 

range such that the regression did not fit the moderate to high activity data points.  Thus, 

the three lowest data points were not included in the regression to provide the best 

qualitative fit to the data over the entire activity domain.  All regression analysis was 

performed with Microsoft Excel Version XP using the built in least squares algorithm.  

Several regressions were attempted including power law, exponential, polynomial, and 

linear fits.  Power law regressions seemed to fit the best across all enzymes.  This 

regression expression also passes through point (0,0).A similar algorithm was used to 

determine the enzyme cost as a function of purchase amount.  The data for pricing and 
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mass were normalized to cost per mg and inverse mass in order to suit the regression type 

limitations of Microsoft Excel. 
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Table C.1: A list of raw data collected from available market reports, vendors, and 
industrial sources. 

Enzyme 
Activity 
(U/mg) 

Price 
($/mg) Supplier Activity Unit Definition 

20 0.00005 13 

100 0.01018 10 

200 0.05700 10 
Invertase 

300 0.50600 10 

1 Unit hydrolyzes 1 µmole of 
saccharose per min at 
pH=4.65 and T= 25°C 

1.5 0.00072 10 

3 0.00097 10 Papain 

12 0.64983 10 

1 Unit hydrolyzes 1 µmole of 
N-benzoyl-L-arganine-ethyl 
ester per min at pH=6.2 and 

T= 25°C 

3 1.04333 11 

8 4.00000 11 

18 1910.0 12 
Elastase 

18 1928.7 9 

1 Unit cleaves 1 µmole of N-
succinly-L-alanyl-L-alanyl-
L-analine-p-nitanilide per 

min at pH=8.0 and T= 25°C 

1.5 0.00023 10 

20 0.09240 10 

30 0.00250 10 

150 0.41700 10 

380 0.16800 10 

500 8.28000 10 

Alpha 
Amylase 

1000 97.200 10 

1 Unit liberates 1 mg of 
maltose from starch in 3 min 

at pH=6.9 and T= 20°C 

1 0.00223 10 

6 0.00500 9 

25 0.02650 11 

45 0.10800 11 

Cellulase 

50 0.91000 8 

1 Unit releases .01 mg of 
glucose per hour from 

microcrystalline cellulose at 
pH=5.0 and T= 37°C 
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Results 

 

We found that there appears to be a generalized model for enzyme cost per mg in terms 

of enzyme activity.  From the analyzed data, this simple two parameter model follows a 

power law trend as depicted in the previously described Equation (C.2).  Here it is found 

that a is approximately 3.7 +/- 0.6 and tends to vary only slightly from enzyme to 

enzyme.  The parameter a describes the separation (purification) cost of these enzymes, 

since an increase in activity results in a power law growth in the cost function (the rate at 

which is controlled by the value of the parameter a).  γ is dependent on the method of 

enzyme production and can vary greatly between enzymes, as shown in Table C.2.  

Indeed, higher production cost, such as mammalian cell culture, will result in a larger 

value for γ, whereas lower production cost, such as observed in enzymes isolated from 

plants, generally results in a lower value for γ.  This can be seen in Table C.2 below, 

which shows elastase, which was isolated from a pig pancreas has a γ value of .005, 

whereas cellulase, isolated from a fungus has a γ value of 3.00E-08.  The generalized 

behavior of the enzymes quantified by γ and a is depicted in Figures C.1-C.5. 
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Table C.2:  A list of parameter values and regression R2 values for the simplified two 
parameter price per mass versus activity per mg objective function model given in 
Equation (C.2).  The data used to compute these parameters and generate the subsequent 
plots were collected from references 6-10.   

Parameter Values 

 A γ R2 
Papain 3.48 8.00E-05 0.92 

Elastase 4.32 0.005 0.95 
Invertase 3.29 3.00E-09 0.99 
Cellulase 4.18 3.00E-08 0.77 

Alpha Amylase 3.45 3.00E-09 0.81 

 

The equation relating the bulk price per mg is: 

                    Φ =δ (M)
b                                            Equation (C.4) 

where b=-0.2 and δ= 2.049 per mg1.2 for papain (Figure not shown). 

The negative parameter value for b depicts the savings achieved by purchasing in bulk.  

Significant savings can be achieved when buying bulk enzymes; but this gain may be 

offset by storage costs.  We have not quantified the tradeoffs associated with buying bulk 

and storage requirements , in Equation (C.3).  We expect that the parameters for capital 

costs of storage will vary greatly from facility to facility. 

Figure C.6 further elaborates on the enzyme cost relationship by segregating the enzyme 

activity domain into three regimes characterized by the method of separation.   
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Figure C.1: Least squares regression fit of invertase data provided in Table C.1 to 
Equation (C.2).  The bulk industrial point denoted on the plot was obtained from 
reference 13. 
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Figure C.2: Least squares regression fit of papain data provided in Table C.1 to Equation 
(C.2).   
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Figure C.3: Least squares regression fit of elastase data provided in Table C.1 to Equation 
(C.2).  The bulk industrial point denoted on the plot was obtained from reference 13. 
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Figure C.4: Least squares regression fit of alpha amylase data provided in Table C.1 to 
Equation (C.2).  The most costly purification method utilized in the processing of each 
data point is indicated where available. 
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Figure C.5: Least squares regression fit of cellulase data provided in Table C.1 to 
Equation (C.2).  The bulk industrial point denoted on the plot was obtained from 
reference 13. 
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Figure C.6:  The generalized function used was y=4*10-6*x3.7, where x is the activity per 
mg and y is the cost per mg of the generalized enzyme.  The parameter values used, 
γ=4*10-4 and a=3.7 were chosen arbitrarily, but lie within the realm of the parameters 
fitted to the collected data, see Table C.2. 
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We now further interpret the possible meaning, in terms of separation cost, of Equation 

(C.3).  To do this analysis we break up the enzyme activity domain into three parts: the 

low activity-prelinear region, the moderate activity linear region, and the high activity 

exponential region.  We do this based on a general consensus seen within all the collected 

data that the activity (and price) of each enzyme correlates with the separation techniques 

used.  This correlation can be most easily seen for actual amylase data in Figure C.4. 

 

The initial low activity pre-linear region, is characterized by little change in cost per mg 

as activity per mg is increased.  This region appears to be characterized by low purity 

enzymes harvested from plants (or other readily available sources such as fermentation 

broths) and purified via traditional low cost processes such as foam fractionation or 

salting out.  These purification processes can be extended at little cost to generate 

increased enzyme activity.  Since the additional processing within this region requires 

little additional capital cost and only modest operating costs, the change in enzyme cost 

per mg may be marginal.   

 

The second region, the moderate activity region (linear), is characterized by nearly a 

linear change, over the narrow band of the 4*10-6*x3.7 function, in cost per mg as activity 

is increased.  This region is generally characterized by moderately pure enzymes that 

have been purified by more costly processing than the pre-linear region.  It appears that 

the majority of enzymes considered in this domain are purified via gel chromatography.  

The capital and operating costs of this processing are typically higher than the costs 

associated with foam fractionation and salting out processes7.  Additional processing, for 

additional enzyme activity in this middle region where there is moderate activity, requires 
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larger chromatography columns or larger affinity gels whose costs tend to increase 

linearly in price.  

 

The third domain is characterized by the observable (empirical) power law growth in 

enzyme cost per mg with respect to activity.  This domain extends to the highest purity of 

the desired enzyme and is generally comprised of enzymes that require expensive 

processing.  The overall processing is thus generally a combination of salting out, foam 

fractionation, and multi-stage gel chromatography, but often includes a final purification 

step, which is generally HPLC.  The capital and operating costs for HPLC are 

significantly higher than that of the other mentioned purification processes.  Additional 

purification through HPLC generally requires running a sample multiple times on 

additional columns.  During each step of HPLC, a large fraction of the enzyme is lost due 

to the inefficiencies of the process, making the increased cost per mg behave like a power 

law function when several steps are used in series. 

 

The derivative of the generalized cost function shows the incremental change in cost as 

activity is increased.  This derivative function, represented as y=1.5*10-5*x2.7 leads to 

some key observations.  For example, the power law exponent is still larger than one.  

This observation holds for every enzyme analyzed in this study, which increases our 

confidence in the analysis these enzymes.  Even with a power greater than one, the cost 

will only change minimally with activities smaller than unity.  Above unity, there will be 

a small region where price will increase only marginally as a function of activity.  

However, regardless of the value of the pre-exponential parameter, at some threshold 
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where the activity per mass is greater than unity, the enzyme cost will begin increasing 

significantly and exponentially as a function of enzyme activity. 

 

Conclusions 

 

The significant conclusion and most interesting observation of this study is that there 

appears to be one simple function that estimates the cost of an enzyme in $ per mg as a 

function of activity, Φ =γ (A)
a, where a appears to be a generalizable exponent of the 

order 3.7.  The generalizable function appears to fit best over the low to moderate activity 

range, but often under-predicts enzyme cost in the high activity range.  This implies that 

there may not be a simple two parameter model that accurately captures the dynamics of 

enzyme activity related to cost over the entire activity domain.  Additional data in the 

moderate to high activity range is needed to further characterize the limitations of 

Equations (C.2).  However, the function developed in this analysis is still useful as an 

estimation tool where little or no real data may be known. 

 

The generalizable function can furthermore be analyzed in terms of three characteristic 

domains describing the enzyme cost with respect to activity.  These domains can be 

useful when purchasing enzymes for industrial or laboratory purposes.  For example, if a 

low purity enzyme is being purchased, it is logical to purchase the enzyme at that purity 

equivalent to the end of the pre-linear phase of the generalized enzyme curve, denoted by 

the critical point located near an activity per mass ratio of 0.5 on the generalized enzyme 

cost function plot (Figure C.6), giving the buyer the most amount of active enzyme at a 

very low cost.  A complimentary strategy for high purity enzymes would be to choose the 
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activity of the upper end of the moderate activity linear range (the lower end of the high 

activity exponential domain).  If processing costs is dependent on enzyme impurities, the 

cost of processing can be compared to the cost of increasing enzyme activity, by using 

Equation (C.2) in a manner to minimize overall costs.  Since the parameter a generally 

ranges between 3-4 between enzymes, a two-fold increase in activity is generally 

associated with an eight-fold increase in cost. 

 

Since the parameters determined within this study were empirically computed from 

current market prices, these parameters are likely to change over long time-scales given 

the dynamic nature of any economic market.  The enzymes used for this analysis are 

generally widely used proteins that, therefore, have fairly stable, well-developed markets.  

Enzymes used in small quantities for less industrial purposes may not follow similar 

trends since market fluctuations can be significant.  This allows the industrial enzyme 

enzymes to be best suited for this type of study since their market will be less dynamic 

than other enzymes that are still within market development.  However, economies of 

scale will still play a factor, especially in enzymes that are expected to see a wide 

increase in use and production scale-up such as cellulase.  These changes will likely 

result in a scaling factor that will linearly decrease the value of γ.  This observation is 

drawn from analyzing scale-up cost for typical bioprocessing operations involved in 

enzyme purification which show linear cost reductions as scale increases 14.  Similarly, 

this observation can be made by looking at typical equipment scale-up cost.  One of the 

most common protein purification methods is liquid chromatography 15.  

Chromatography columns tend to scale up linearly since the capital cost for the column is 

minimal compared to the high resin cost, which is required in directly proportional 
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amounts to column throughput.  Scale-up of enzyme production is generally sublinear, 

but the data presented in this analysis demonstrates that purification costs tend to 

dominate overall product cost15.  Regardless of changes in scaling due to market growth 

and scale-up, the functional forms determined for the relationship of enzyme activity and 

purchase amount to price should hold.  The independent variables within Equation (C.2) 

were shown to be directly related to the process variables for enzyme production.  

Although the model under-predicts enzyme cost for the high activity range, Equation 

(C.2) still provides a useful tool for engineers to estimate enzyme cost based on activity. 
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APPENDIX D 

 

MATHEMATICA SCRIPT FOR COMPUTING THE PROBABILITY 
OF MISCLASSIFYING CT VALUES 

 

Functions 
<<Statistics`DiscreteDistributions` 
<<Graphics`Graphics` 
<<Graphics`MultipleListPlot` 
<<Statistics`DataManipulation` 
 
{\pard{{\f1 }}} 
These functions take a List of data ( L_ ) and an interval size (q_) and make a histogram 
H 
f[L_,z_,q_]:=Count[Map[Ceiling[(#-Min[L])/q]&,L],x_?(#<=z&)] (* Set L , cut into q 
size intervals *) 
Bc[L_,z_,q_]:=f[L,z,q]-f[L,(z-1),q]/;z>1  (* 0 and 1 are an exceptional case *) 
Bc[L_,z_,q_]:=f[L,z,q]/;z==1   (* bin counts *) 
H[L_,q_]:=Interpolation[Join[{{Min[L]-q,0},{Min[L],0}},Table[{Min[L]+(q/2) + j 
q,Bc[L,j,q]/Length[L]},{j,0,Ceiling[10 (Max[L]-Min[L])]-
1}],{{Max[L],0},{Max[L]+q,0}}],InterpolationOrder→1] 
Read Data 
SetDirectory["/data/PCR"]; 
Fn=RotateLeft[FileNames["sample*.txt"],4]; 
ReSample[k_,t_]:=Module[{l=Length[L],i,j,S,q,m,n,Data,R={},M,in, Pmiss={}}, 
   
  (* k = number of PCR runs taken together  
  L = original ct value data set 
  t = number of iterations of resampling  
  S = set of resampled mean values 
  *) 
   
  For[j=1,j≤Length[Fn], 
   { 
    Data=Import[Fn[[j]],"List"]; 
    Clear[U]; 
    U=DiscreteUniformDistribution[Length[Data]]; 
    S={}; 
    For[i=1,i≤t, 
     { 
      RA=RandomArray[U,k]; 
      AppendTo[S,Mean[Map[Data[[#]]&,RA]]]; 
      }; 
     i++ 
     ]; 
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    m=(Max[S]-Min[S]); 
    q=m/Ceiling[10 m]; 
    AppendTo[R,{H[S,q],{Min[S],Max[S]}}] 
    }; 
   j++ 
   ]; 
   
  For[j=1,j≤Length[Fn],  
   { 
    M={}; 
    msc=0; 
    For[i=R[[j]][[2,1]],i≤R[[j]][[2,2]], 
      
     { 
      (* Compute Misclassification *) 
       
      in=Drop[Range[Length[Fn]],{j}]; 
      While[Length[in]>0, 
       { 
        n=in[[1]]; 
        in=Drop[in,1]; 
        msc+=R[[n]][[1]][i]; 
        } 
       ]; 
       
      If[(R[[j]][[1]][i]+msc)>0,AppendTo[M, R[[j]][[1]][i] msc/(R[[j]][[1]][i]+msc)]]; 
       
      msc=0; 
       
      }; 
     i+=0.1 
     ]; 
     
    AppendTo[Pmiss,Plus@@M]; 
     
    M={}; 
     
    }; 
   j++ 
   ]; 
  Pmiss 
  ] 
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APPENDIX E 

 

PLATE FILLING MODEL 

 

Map[Mean[Table[Length[Complement[Range[1,96],RandomInteger[{1,96},#]]],{1000}]
]&,Range[0,600]]//N 
 
Map[StandardDeviation[Table[Length[Complement[Range[1,184],RandomInteger[{1,18
4},#]]],{1000}]]&,Range[0,600]]//N 
 


