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OVERVIEW

The notion of amenability lies in the heart of the study of von Neumann algebras. In
this thesis we consider a question about amenable extensions inside certain II; factors.

The paper is consist of five chapters. The first chapter gives a brief introduction on
the basics of von Neumann algebras. The second chapter introduces amenability, starting
from amenable groups then to amenable von Neumann algebras. We also discuss amenable
extensions and maximal amenable subalgebras. The third chapter states the main theorems
of this paper and discuss the strategy. The last two chapters are devoted to the proofs of the
main theorems.
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Chapter 1

Introduction to von Neumann algebras

In this chapter, we will collect the basics of von Neumann algebras. von Neumann
algebras were introduced by John von Neumann in order to establish the mathematical
foundations for quantum mechanics. As we shall see, the theory has close connections
with many branches of mathematics such as measure theory, group representations, ergodic
theory, etc. The treatment is brief and most of proofs in this chapter are omitted, as they

can be found in many standard textbooks in this field, [Dix81, KR97a, KR97b, Tak03].



1.1 Bounded operators on Hilbert spaces

Throughout this paper, we always assume a linear space is over the complex numbers
C, unless explicitly stated otherwise.
An inner product space is a linear vector space V equipped withamap (-,-) : VxV — C

satisfying the following
* (x,x) > 0and (x,x) =0 if and only if x = 0;

e {ax+by,z) =a(x,z2) +b{(y,2);

s (5,y) = (x),

for any x,y,z € V and a,b € C. Such a map (-, ) is called an inner product on V.

An inner product space automatically becomes a normed space with the norm given by

]| == v/ (s x).

Definition 1.1.1. A Hilbert space is an inner product space (¢, (-,-)) such that with the
norm induced by the inner product as above, .7 is a complete norm space (i.e. a Banach

space).

A map between two vector spaces T : V| — V, is called a linear operator if T (ax+by) =

aT (x) +bT (y), for any x,y € V| and a,b € C.

Definition 1.1.2. A linear map T : 5] — 4 between two Hilbert spaces is bounded if

IT|:== sup | T(x)[] <eoe.
xe x| =1

The quantity defined above is called the operator norm or the uniform norm for T. We
denote by B(7#1,.74) the space of all bounded linear operators from .7 to .7%. In the case
of A4 = It = H, we simply write B(J).



One also defines a conjugate linear map called the adjoint, * : B(7¢) — B(5¢) by

(T(x),y) = (& T*(y),Vx,y € .

It is easy to see that B(.%) is closed under taking composition, addition, scalar multipli-
cation and adjoint. Moreover, (B(J¢),|| - ||) is a Banach space with ||T'S|| < ||T'||||S]| and
|T*T|| = ||T||> = || T*||? for all T, S € B(#). We call such an algebra with a norm and a *

operation satisfying all the above properties an abstract C*-algebra.



1.2 von Neumann algebras

The operator norm gives B(.7) a nice topology which is locally convex. However in

order to define von Neumann algebras, we need more topologies on B(5¢).

Definition 1.2.1. Let JZ be a Hilbert space, {7;}ic; C B(.%) a net of bounded operators
and T € B(J7).

We say that 7; — T in the weak operator topology (WOT), if

(Ti(x),y) = (T (x),y),Vx,y € I

We say that 7; — T in the strong operator topology (SOT), if

ITi(x) =T (x)|| = 0,vx € .

Remark 1.2.2. The closed unit ball (B(.7¢)); is compact under the weak operator topology.

Remark 1.2.3. When dim .5# = oo, the weak operator topology is strictly weaker than the
strong operator topology and the latter is strictly weaker than the uniform norm topology.

When dim .77 < oo, all three topologies coincide.

Definition 1.2.4. A self-adjoint subalgebra M of B(s¢) is called a von Neumann algebra

if M is closed under the weak operator topology and it contains the identity operator.

Given a subset A C B(.5¢), we define the commutant of Aby A’ := {B € B(J¢) : AB=
BA}. The bicommutant A" is given by A” := (A")’.

Being WOT-closed allows one to carry out spectral calculus, polar decompositions and
taking the least upper bound within the algebra itself. This is the key different feature
compared to C*-algebras. For example, projections are abundant in a von Neumann algebra
while there are unital C*-algebras which only contains trivial projections (e.g. the reduced

C*-algebra associated with a non-abelian free group). Why we prefer the WOT over the
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uniform topology can be further explained by the following theorem, the first fundamental

result in the development of the theory. It was shown, of course, by John von Neumann:

Theorem 1.2.5 (Bicommutant Theorem). Let M be a unital self-adjoint subalgebra of

B(F), for some Hilbert space 7. Then the following statements are equivalent:
1. M is SOT-closed;
2. M is WOT-closed;
3 M=M".
Another fundamental theorem is due to Kaplansky:

Theorem 1.2.6 (Kaplansky Density Theorem). Let M C B(¢) be a self-adjoint algebra
which contains the identity. Then any self-adjoint element in the closed unit ball of the SOT
(equivalently, WOT) closure of M, is in the SOT closure of the self-adjoint elements in the

closed unit ball of M.
Example 1.2.7. Here we give some examples of von Neumann algebras.
* B() is a von Neumann algebra. In particular, when 7 = C", B(¢) = M,,x,(C).

* Let (X, u) be a standard Borel probability space and let .7 = L?>(X,u). Each a €
L>(X, ) can be viewed as an element in B(.##) by point-wise multiplication: L,(f)(x) =

a(x)f(x), forall f € 5 andx € X. L”(X, ) is an abelian von Neumann algebra.

» IfA; C B(54),A, C B(#3) are two von Neumann algebras. One can form the direct

sum A} Ay C B(J] @ 76) in the obvious way.

 The tensor product A;®A; is the von Neumann algebra on J{®.75 generated by

A ®1and 1 ®A,.

* Let M C B(7) be a von Neumann algebra and let p € M, p’ € M’ be projections.

Then the reduced (resp. induced) von Neumann algebra pMp (resp. Mp') is the von
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Neumann algebra on p77 (resp. p' 7)) generated by pMp (resp. Mp'). One has the

nice relation that (pMp)' = M'p.

Example 1.2.8 (The group-measure-space construction). Let (X, 1) be a standard mea-
sure space and I' ~ (X, ) be a measure-class preserving action of a countable discrete

group I'. Then this induces an automorphism ¢ of the von Neumann algebra L (X, ) by

Define ## := L*(X,u)®¢*(T") and consider the representations 7 : L™ (X, u) — B(#) and

the unitary representation u : I' — U (J¢) given by

(a)(f © &) = o, ' (a)f © &,
ug(f®5h) = f® 8g*1h;

(1.2.1)

where {5, : g € '} is the canonical orthonormal basis of ¢*(T).
We denote by L”(X, i) x I the von Neumann algebra generated by 7(L*(X,u)) and

u(I"). This is the group-measure space construction due to Murray and von Neumann.

Example 1.2.9 (Group von Neumann algebras). As a special case of the above example,
if we take X to be a one-point space, then the resulting von Neumann algebra is called the

(left) group von Neumann algebra associated with I" and we denote it by L(T).



1.3 Type decompositions

The spectral theorem implies that the set P(M) of a von Neumann algebra generates
M. In fact, P(M) is a complete lattice. One of the main achievement in the early stage of
the theory is the type decomposition of von Neumann algebras, which is obtained by the

comparison theory of projections.

Definition 1.3.1. Two projections p1, p» of a von Neumann algebra M are said to be equiv-
alent in M, if there is a partial isometry v € M, such that v*v = p; and vw* = p,. In this
case, p; is called the initial projection of v, and p; is called the final projection of v. When
P1, 2 are equivalent, we denote it as p; ~ys p2 or simply p ~ pa, if there is no confusion
on which von Neumann we are talking about.

If there is a projection p3 € M such that p3 < p; and p; ~ p3, then we say that p,

majorizes py and we write p; = pa. We write p; < p2 if p; = pa but p; = ps.

For a von Neumann algebra M, we denote by Z(M) := M N M’ the center of M. M is
called a factor if Z(M) = C. By a result of von Neumann, each separable von Neumann

algebra can be written as a direct integral of factors.

Definition 1.3.2. A projection p € M is said to be finite, if p ~ g < p implies that g = p.

Otherwise, it is said to be infinite. p is said to be abelian, if pMp is abelian.
Remark 1.3.3. It is easy to see that abelian projections are finite.

Definition 1.3.4. A von Neumann algebra M is said to be of type I, if any nonzero central
projection in M majorizes a nonzero abelian projection in M. If M has no nonzero abelian
projections and if every nonzero central projection majorizes a nonzero finite projection in
M, it is said to be of type I1. If M is of type Il and 1 is finite, then M is said to be of type II;.
If M is of type II with no nonzero finite central projections, then M is said to be of type Il-.

If M does not have finite projections, then it is of type I1I.

Now we are ready to state the main theorem.
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Theorem 1.3.5. Each von Neumann algebra can be uniquely decomposed into the direct

sum of von Neumann algebras of type I, type 111, type Il and type III.

Example 1.3.6. Now we exhibit examples of von Neumann algebras of each type.
* B(s7) is of type I since it is generated by minimal projections;
o L”(X,u) is of type I, since it is obviously abelian;

* All other examples of type II, Il. and III can be obtained via the group-measure-

space construction. However we omit the details here.



1.4 Type II; factors
Our primary interest lies in the study of type II; factors. One thing that makes them
particularly nice is the existence of a finite faithful normal trace.

Theorem 1.4.1. A factor M is of type 11 if and only if dimM = o and there exists a linear

functional © : M — C satisfying the following properties:

Finite: ©(1) < oo;

Tracial: t(xy) = t(yx),Vx,y € M;

* Positive: t(x*x) > 0,Vx € M;

Faithful: ©(x*x) = 0 implies that x = 0;

Normal: if {a;} C M is an increasing net of positive elements such that a; — a € M

in SOT, then t(a;) — t(a).
Such a 7 is called a trace on M.

Remark 1.4.2. * M is finite is equivalent to the existence of a trace on M.

* The trace 7 on a factor is unique up to a multiplicative scalar. It is said to be normal-

ized if (1) = 1. In this paper we always assume that the trace is normalized.

* A trace T on M gives rise to an inner product on M by

() = 1("x).

We let L2(M, 1) to be the Hilbert completion of M with this inner product. Then,
M can be faithfully represented on L?>(M) by left multiplication. Thus, under this
representation, elements of M can be both treated as vectors in the Hilbert space
L?>(M) and as bounded operators acting on L?(M). Given x € M, we will write |||

for the operator norm and ||x||» = /7 (x*x) for the norm in L?(M).
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Example 1.4.3 (II; factors coming from groups). In previous sections we introduced the
construction due to Murray and von Neumann called the group von Neumann algebras.

Note that for any countable discrete group I, there is a natural trace on L(I") given by
T(x) := (x0, O¢) ,

where e € I' is the identity element.
Moreover, each element x € L(I") can be write formally as an infinite linear combination

of the canonical unitary elements ug, g € I': x =} ,cragu, and we have that

T(x*x) = \/W

A group I' is ICC if any non-trivial element has infinite conjugacy class. It is not hard
to see that for an infinite group I', I is ICC if and only if L(T") is a II; factor.

Now we are ready to give the two examples of II; factors that are of particular interest:

* The hyperfinite II; factor: Let S, be the group of permutations on {1,--- ,n} and
let S to be the inductive limit of all §,,’s. It is easy to see that S.. is an ICC group

thus L(S..) is a II; factor.

Moreover, notice that L(S,) C L(Sw) is isomorphic to M,x,(C) and U,> L(S,) is
dense in L(S«) in the WOT. In other words, L(S) is the WOT closure of an in-
creasing sequence of finite dimensional algebras. We denote it by R and call it the

hyperfinite 11| factor.

* The free group factor: Let [, be the free group with n generators. If 2 < n < oo,

then F,, is ICC. The corresponding II; factor L(IF,) is called the free group factor.

The fundamental question of the theory of II; factors is to decide the isomorphism
problem of factors. As the first two examples introduced by the co-founders of the theory,

it is known that the hyperfinite II; factor and free group factors are not isomorphic.

10



1.5 Ultraproducts of II; factors

In the last section of the chapter, we recall the construction of ultraproducts of II;

factors.

Definition 1.5.1. Let N be the set of positive integers. An ultrafilter on N is a set @

consisting of subsets of N, such that

0 ¢ w;

IfA,BCNandB€ w,B CA,thenA € o,

If both A and B are in @, then ANB € w;
» Forany A C N, either A or N\A is in o.

o is said to be non-principal or free if @ contains all the subset of the form {n € N:n >ng}

for some ny.

Remark 1.5.2. In fact, the set of ultrafilters on N can be identified with the Stone-Cech

compactification B(N) of N. Free ultrafilters correspond to the points in (N)\N.

Definition 1.5.3. Let X be a topological space. A sequence (x;);>; in X is said to converge
along o to x € X, if for any open neighbourhood U of x, the set {i: x; € U} is in @. We
usually write it as

limx; = x.
w
Note that if X is Hausdorff, the such an x is unique.

Ultraproducts of general von Neumann algebras can be tricky to define. Fortunately in

the case of II; factors, things are nice.

Definition 1.5.4. Let (M, 7) be a II; factor and let ® € B(N)\N be a free ultrafilter. Let

[T.enM be the set { (x,), : sup,, ||x,|| < eo}. Let I be the norm-closed ideal of [T, M defined

11



Ip ={(xp)n € I;IM : liaf)onnHZ =0},
where ||x,|2 = /T(x*x). The ultraproduct of (M, 7) is defined to be M? : =[], M /1.

There is a natural trace T, on M® given by

To((Xn)n) = liar)n’r(xn).

Here is the basic results that we will use

Theorem 1.5.5. Let (M,7) be a II, factor and let ® € B(N)\N be a free ultrafilter. As

above we define the ultraproduct M®. Then
o M? is a type II; factor;

 Each projection p € M lifts to a sequence of projections (pn)n € [1,M. Similar

result also holds for every unitary in M.
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Chapter 2

Amenable subalgebras and extensions

Amenable groups were first introduced by von Neumann in his attempt to understand
the Banach-Tarski paradox. There are many equivalent definitions for amenability of
groups, either geometric, combinatorial or analytic. Roughly speaking, an amenable group
is a “small” group which is similar to the group of integers. The first examples of non-
amenable groups are groups which contains non-abelian free groups as subgroups. How-
ever, the question that whether every non-amenable group contains a free subgroup, took
mathematicians many years to answer.

As we mentioned in Chapter 1, the hyperfinite II; factor is one of the first examples
introduced by Murray and von Neumann. Gradually experts realize that it is closely re-
lated to other notions such semi-discreteness, Schwartz’s property P and injectivity. In-
deed, Connes’ fundamental work on the classification of injective von Neumann algebras
[Con76] shows that they are equivalent. Moreover, Connes’ result implies that for an ICC
group I', L(T') = R if and only if I" is amenable. Thus, he suggests the name amenability
for those von Neumann algebras. Thanks to Connes, amenable von Neumann algebras are
well understood. Thus, in order to study non-amenable von Neumann algebras, it is natural
to consider their amenable subalgebras.

In this chapter we discuss questions related to amenable extensions. In particular, we

give a brief review on the history of maximal amenable subalgebras.
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2.1 Amenable groups

Definition 2.1.1. (Amenable groups) Let I" be a countable discrete group. 1" is amenable

if one of the following equivalent conditions are satisfied:

* There is a mean ¢ on X (that is, a finitely additive probability measure on 2%) which

is invariant under left multiplication;

* The left regular representation A : I' — U (¢2(I")) admits non-trivial almost-invariant

vectors;

* There is a net {F; }c of finite subsets of I, such that

FA¢F;
lim| ing l|

=0,VgeT,
"R §

where A here means taking symmetric difference in set theory. Such a net is called a

Faner net.

* Any continuous action I' ~ X on some compact Hausdorff space X admits an invari-

ant Radon probability measure.

Example 2.1.2. (Examples of amenable groups) From the definition it is easy to see
that finite groups and abelian groups are amenable. Moreover, amenability is closed under
taking subgroups, quotients and inductive limits. In particular, S. is amenable. One can

also show that amenability is closed under extension, thus all solvable groups are amenable.

Example 2.1.3. (Paradoxical decomposition and non-amenable groups) A group I'
is said to admit a paradoxical decomposition, if there exists group elements g1,- -, gn,
hy,---hy in I, for some n,m € N, and mutually disjoint subsets Ay,--- ,A,,B,---, By, of
I, such that U; <<, 8idi = U< j<mhjBj =T

It is straightforward to see that existence of paradoxical decompositions is an obstruc-

tion for amenability. Tarski showed that being non-amenable is equivalent to the existence

14



of paradoxical decompositions.

Let’s now show that the free group with two generators is non-amenable. Suppose that
a, b are the generators for [F,. Then let A be the set of elements which starts with an @ on
the left, in its reduced form. Similarly we can define A_,B,,B_. Clearly these four sets

are mutually disjoint. Note that

Fz :A+ UaA_ :BJrUbB,

Therefore, I, is non-amenable.
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2.2 Amenable von Neumann algebras

Definition 2.2.1. Let B C A be an inclusion of unital C*-algebras. A conditional expectation
from A onto B is a complete positive map E : A — B such that E(bxb;) = b1 E(x)b, for all
x€A,b; € B,i€{1,2}.

Let M be a finite von Neumann algebra acting on a Hilbert space #. M is called
hyperfinite, or approximately finitely dimentional (AFD), if M is the WOT closure of an
increasing net of finite dimentional von Neumann subalgebras. M is said to be injective, if
there is a conditional expectation from B(.##") onto M. A hypertrace for M is a state ¢ on

B() such that @(mx) = @(xm), for all x € B(J) and m € M.

Theorem 2.2.2 (Connes, [Con76]). AFD, injectivity and the existence of a hypertrace (and

many other conditions) are equivalent for von Neumann algebras.
We follow Connes’ suggestion and call those von Neumann algebras amenable.

Remark 2.2.3. Type I von Neumann algebras are amenable. R is the unique separable
amenable II; factor, up to isomorphism. In particular, all ICC amenable groups give rise to

the same II; factor R.
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2.3 Amenable extensions

Now we consider the following question: given an amenable subalgebra A C M inside
a II; factor, how can we amenably extend A within M? The following partial answer is

well-known:

Proposition 2.3.1. If M is a finite von Neumann algebra and A C M is an amenable subal-
gebra. If u is an element from the normalizer Ny (A) = {u € UM) : uAu* = A} of A inside

M, then the von Neumann algebra generated by u and A is amenable.

Proof. Since A is injective, there is a conditional expectation E : B(L>(M,t)) = A which
extends the 7-preserving conditional expectation from M onto A. Define a state ¢ on
B(L*(M)) by
: 1 i, ki 2
@(x) =Lim,~ Y (E(u'xu™)),Vx € B(L*(M)).
Mo<i<n—1

Then one checks that ¢ is a hypertrace for A and ¢ 0 Ad(u) = ¢. Thus ¢ gives a hypertrace

for the von Neumann algebra generated by A and u. [

Remark 2.3.2. Note that in the above amenable extension, one has to add normalizing
unitaries one at a time. However, that are cases when we can add the entire normalizer all at
once. Indeed, Ozawa and Popa [OP10] showed that the free group factors are strongly solid,
meaning that for any diffuse amenable subalgebra of a free group factor, its normalizer
again generators an amenable subalgebra. Many more examples are shown to be strongly

solid [Sinl11, Houl0O, HS10, Avs11].

17



2.4 Maximal amenable subalgebras

Since amenable algebras are closed under inductive limits, Zorn’s lemma implies that
there always exists maximal amenable subalgebras. Fuglede and Kadison [FK51] showed
that for any II; factor, there always exists a maximal hyperfinite subfactor, thus answered
a question of Murray and von Neumann about the double relative commutant. Later on,
during a conference at Baton Rouge in 1967, Kadison asked a series of famous questions

about von Neumann algebras (see for example [Ge03]). Among them is the following:
Question. Is every self-adjoint element in a II; factor contained in a hyperfinite subfactor?

Popa answered this question in the negative, by showing that the generator masa in the
free group factor is maximal amenable, [Pop83a].

If (M, 7) is a finite von Neumann algebra with a faithful normal tracial state T and @
is a free ultrafilter, we’ll write M as the ultraproduct of (M, 7). The key insight of Popa
[Pop83a] is that the inclusion A C M, where M = L(F,) with n > 2 and A the generator
masa, satisfies the asymptotic orthogonality property, which we define below:

Since Popa, there are many results considering maximal amenable subalgebras. Ge
[Ge96, Theorem 4.5] showed that any diffuse amenable finite von Neumann algebra can be
realized as a maximal amenable subalgebra of the free group factor. Shen [She06] showed
that the ),cyA is maximal amenable inside &), cyM, where A is the generator masa in
the free group factor M, thus gave an example of a maximal masa in a McDuff-1I; factor.
Cameron, Fang, Ravichandran and White [CFRW10] proved that the radial masa in the
free group factor is maximal amenable. Brothier [Bro14] gave an example in the setting of
planar algebras. Boutonnet and Carderi [BC13] showed that the subalgebra coming from
a maximal amenable subgroup in a hyperbolic group, is maximal amenable. Houdayer
[Houl4a] showed that the factors coming from free Bogoljubov actions contains concrete
maximal amenable masa’s, see also [Houl5]. All these results use Popa’s AOP approach.

Very recently a new method via the study of centralizers of states, is developed by
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Boutonnet and Carderi [BC15]. In particular, they are able to show that the subalgebra
coming from the upper-triangular matrix subgroup of SL(3,7), is maximal amenable inside

L(SL(3,7Z)). See Ozawa’s remark [Ozal5] for an application of this new approach.
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Chapter 3

Unique maximal amenable extensions

Given an amenable subalgebra inside a diffuse non-amenable II; factor, how many
ways one can amenably extend it? In this direction, Jesse Peterson conjectures that there is
a unique maximal amenable extension for any diffuse amenable subalgebra in a free group
factor. At present this conjecture seems very far-fetched however we do get some partial
answers. In this chapter, we will state the main results in this thesis, that for the radial masa
in a free group factor and for the cup subalgebra in a planar II; factor, unique amenable
extension results can be obtained. The main technique of the proofs will also be explained

and the proofs will occupy the last two chapters.
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3.1 Main results

One central theme in the theory is the study of the free group factors ((MvN43], [Voi96],

[Ge98], [Oza04], [OP10]). One of the motivating questions of this paper is a conjecture by

J. Peterson (see the end of [PT11]):

Conjecture. For the free group factor, any diffuse amenable subalgebra is contained in a

unique maximal amenable subalgebra.

Houdayer’s result on Gamma stability of free products [Houl5, Theorem 4.1] implies
that the generator masa satisfies Peterson’s conjecture. The proof again is relying on the
AOP. See also Ozawa’s proof [Ozal5] via the centralizer approach.

One subalgebra of the free group factor under intense study is the radial masa. So let
M = L(Fy) with 2 < N < o be the free group factor with finitely many generators and
denote by C the von Neumann subalgebra of M generated by @ := } oc, |o|=1 Ug- Note
that @ is only well-defined for free groups with finitely many generators. It was proved by
Pytlik [Pyt81, Theorem 4.3] that C is a masa in M, called the radial masa or the Laplacian
masa. Moreover, Rddulescu [Rdd91, Theorem 7] showed that C is singular and Cameron,
Fang, Ravichandra and White [CFRW 10, Corollary 6.3] proved that it is maximal amenable
inM.

Recall that a result of Popa [Pop83b, Corollary 4.3] shows that generator masa’s coming
from different generators cannot be unitarily conjugate inside M. This implies that the
radial masa C cannot be unitarily conjugate with the generator masa A inside M. However,
whether they are conjugate via some automorphism, is still unknown.

One of the main results of this paper is the following:

Theorem A. [Wenl6] Let M = L(Fy) with2 < N < oo and let C C M be the radial masa.
Then every amenable subalgebra of M having diffuse intersection with C, must be contained

inC.
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This is the first example of such disjointness for an maximal amenable subalgebra
which is not known to be in a free position.

Another new class of examples is constructed with Jones planar algebras [Jon99]. If
& is a subfactor planar algebra, then we can associate to it a II; factor M [GJS10]. This
II; factor is isomorphic to an interpolated free group factor L(F;) where ¢ is a linear com-
bination of the index and the global index of & [Dyk94, Rad94, GJS11, Har13]. This
factor admits a generic abelian subalgebra A C M that we call the cup subalgebra. Brothier

previously proved that the cup subalgebra is maximal amenable [Bro14].

Theorem B. [BWI16] The cup subalgebrais the unique maximal amenable extension for

any diffuse subalgebra of itself.
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3.2 Strong AOP and maximal amenable extensions

The approach taken in this paper is to show a stronger version of Popa’s AOP (see

[Pop83al).

Definition 3.2.1 (s-AOP). Let A C M be an inclusion of finite von Neumann algebras.
We say that the inclusion satisfies the strong asymptotic orthogonality property (s-AOP
for short), if for any free ultrafilter @ on N and for any diffuse subalgebra B C A, (x,), €

B'NM®SA® and y,y, € M SA, we have that yy (x,), L (X,)ny2-

From s-AOP one can easily conclude unique maximal extension results, by the follow-
ing theorem. The proof is inspired by [Pop83a, Lemma 3.1, Theorem 3.2] and [CFRW 10,
Lemma 2.2, Corollary 2.3]:

Theorem 3.2.2. Let M be a strongly solid Il; factor and A C M a singular masa in M.
Assume in addition that for any diffuse von Neumann subalgebra B C A and any free ull-
trafilter w, the following holds:

forany (x;)x € BM®SA® and for any y1,y, € MSA, we have that yy (xi)i L (x)ky2-

Then any amenable subalegbra of M containing B, must be contained in A.

Proof. As shown by [CFRW10, Lemma 2.2, Corollary 2.3], AOP and singularity imply
that A is maximal amenable in M.

Let B C Q C M be an amenable subalgebra. By solidity of M, A C B'(\M is amenable.
Since A is maximal amenable, we conclude Q' Q C B'NM C A.

Let z be the maximal central projection of Q such that Qz is type II;. Now suppose that
z#0.

Since Qz is amenable and of type II;, Popa’s intertwining theorem ([Pop06, Theorem
A.1]) easily implies that there is a unitary u € (Qz)'((Qz)?, such that Eqe(u) = 0. For a
proof, see [CFRW10, Lemma 2.2].

Now let C be amasa in Qz which contains Bz. Again by solidity and maximal injectivity,

C C Az. Since Qz is of type II;, there exists two non-zero projections pi,p2 € C and a
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partial isometry v € Qz, such that w* = p|,v*v = ps,pip» = 0. Then we have E4(v) =
Ea(p1vpa) = p1Es(v)p2 = 0 so that vu L uv. However we also know that viu = uv, hence
v = 0. This contradicts that py, py # 0.

Thus, Q has to be of type I. Let C be a masa in Q containing B. Again C C A. By
Kadison’s result [Kad84], C is regular in Q. Both A and Q lie in the normalizer of C, so
they together generate an amenable algebra containing A. By maximal amenability of A, it

follows that Q C A. [

Ozawa and Popa [OP10] showed that free group factors are strongly solid and singu-
larity for the subalgerbas are known. Therefore, our main task is to prove s-AOP for those

examples we mentioned in the last section. This will be achieved in the last two chapters.
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Chapter 4
Unique maximal extension for the radial masa

4.1 Preliminaries

This chapter is based on the paper [Wen16].

LetI'=Fy41,N € N. Write K := 2N + 1 for later use. Denote by @, = Y e |¢|=n Ug>
forn =1,2,3,--- and let wy = u,. Let M = L(I") be the free group factor and let C =
{w}" C M be the radial masa. {®,},>0 forms an orthogonal basis for L?(C).

Let .%; be the finite-dimensional subspace of J# := L?(M) spanned by all words of
length i and we denote by Q; the orthogonal projection from .7 onto .%#;. For & € _#; and

n,m € N{J{0}, we define the following

g L Qi—i—m—i—n(a)néwm)
CUL K(n+m)/2

Ridulescu [R3d91] discovered that there is a nice decomposition of .7 © L*(C) =
GB,ZI J¢; into a direct sum of C-C-bimodules, each .77 has a distinguished unit vector éi,
which is from %), for some / (i) € N, such that 7% is generated by &' as a C-C-bimodule.

Moreover, by [R4d91, Lemma 3, Lemma 6], for those i with /(i) > 2, we have that
{5,’;7m}n7m20 forms an orthonormal basis for 7. For those i with /(i) = 1 (there are finitely
many such i’s), {é;i,m}n,mzo is no longer an orthonormal basis for .77, however for any

i,j > 1, the linear mapping 7; ; : 5 — J¢}, given by
Tl}j( rlz7m> = r{,m’

extends uniquely to an invertible bounded operator. Furthermore, there is a universal con-
stant C; > 0 such that

I <61,V j > 1
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Remark 4.1.1. Recall that in a separable Hilbert space, a sequence of vectors {v,} forms
a Riesz basis (for the basics of Riesz basis, see, e.g. [ChrO1]), if {v;} is the image of
some orthonormal basis under some bounded invertible operator. It is also equivalent to
the fact that there exists some A, B > 0 such that for any (c,) € 2, AY |ca|> < |[Ecovall <
BY |c,|?. In this case, every vector x in the Hilbert space has a unique decomposition

x = Y ¢,V for some (c,) € £2. It follows that {5,’1 forms a Riesz basis for

Jn}izl,n,mzo
L>(M)S L?(C). Consequently, for any x € L>(M) © L?(C), there is a unique decomposition
X = Y1 nm>0dy m&h , for some (ail»m)n,mj € (2. We call {&} , }i>1nm>0 the Ridulescu
basis for L>(M) © L*(C).

Sometimes it will be convenient to use the following convention: we write ,im for all

n,m € Z, where we define 5,’”" = 0 whenever n <0 orm < 0.

The key computation in [CFRW10] is that when considering the AOP in the case of
the radial masa, the Rddulescu basis plays the same role as the canonical basis for the
generator masa case. However, in our approach, the Rddulescu basis suffers from a lack of
right modularity. Instead, {®,& @, }, after proper normalization, is the more natural basis
to work with.

We collect some relations between a)néi w,, and 6,’;7,"’5, due to Réadulescu, in the follow-
ing lemma:

Lemma 4.1.2 (Lemma 2, 6 in [Rad91]). The following statements hold for all n,m > 0:
(DIFU) > 2, then @& = K58}, — K™ (&, o+ &0, )+ K478, o
(2) If 1(i) = 1, then there is some 6 = o (i) € {—1, 1} such that

n+m _ - n+m—2

2 érlz,m —-K ( rlz,mfz + grlsz,m + G‘Sléfl,mfl)

k o m=2k ; . . _
+ Z (—o)'K 2 (Gérlz—k—hm—k—i—l + 08k imik—1t 252—k,m—k> ;
k>2

0.8 0y =K
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(3) For all i, j > 1, the linear mapping S; ; : 76; — J¢; given by
Sij (On&' @) = &’ Oy, Yn,m > 0,

is well-defined and extends to an invertible bounded operator between the two subspaces,

with sup; ; HS?.EJ-1 | < Ca, for some uniform constants 0 < Cy < oo.
; &' oy . : 5 5
Lemma4.1.3. {1, , = o [ forms a Riesz basis for L=(M) © L*(C).
i>1,n,m>0

Therefore, for any x € L>(M) S L*(C), there is a unique decomposition x = Yis1am>0 b;vmn,’;m

i 2
where (bn7m)i21’n7m20 € -

Proof. By (3) of the previous lemma, it suffices to prove the conclusion for some fixed
i > 1 with[(i) > 2.
Fix i > 1 with /(i) > 2 and (@pm)nm € ¢*. We will omit the superscript i, since no

confusion will appear. Using part (1) of the previous lemma, we have

m—2 2, —om—2
Z AnmMnm = Z nm (gn’m_gnm _én m_|_§n m )

2
n,m>0 n,m>0 K K K
o Z (a _ Gnmt2 Ant2m n an+2,m+2> 5

~ n,m K K K2 n,m

= <a B an.,m+z) 1 (a _ an+2,m+2> ¢
= n,m K K n+2,m K n,m;

hence by repeated use of the triangle inequality, we have




The other side of the inequality is easy, since each a, , only appears at most four times.

Thus there is a B > 0, such that

H ;SBZ\ammP,

So we are done. O]

Remark 4.1.4. Because both HTi] || and HS !| are uniformly bounded, there is a Cy > 0

such that HTilH < Cy HSiIH < Cp, and for any (ci, ,) € (2,

—Zum\ < Y i< Y el

0; J,m nm>0,i>1 i,n,m
1 . . . .
C_ Z ‘Ciz,mlz < H Z C;Lmnrlzm”% <G Z ‘dt,m’z
0 in.m n,m>0,i>1 in.m

For each k € N, define Ly, L} : L>(M) 6 L*(C) — L*(M) © L*(C) as follows

i i A i i
Ly Z ApmSnm | = Z An.mSn,ms
i>1,n,m>0

i>1,n<k,m>0

/ i
Lk Z bn mnnm . Z b mnn Jmo
i>1,n,m>0 i>1,n<k.m>0

i.e. Ly (resp. Ly) is the left “projection” onto the span of {ﬁ,’lm}lnm (resp. {n,’;m}i’n?m)
with the first subscript no larger than k. However one should be warned that they are merely
idempotents, instead of projections, due to the presence of those i’s with /(i) = 1. We can
also define Ry, R; for the right “projections” in the similar fashion. All these idempotents

are bounded operators. Let Ly \V R := Ly + Ry — LRy, L, VR := L, + R, — L\R) .
Lemma 4.1.5. L; is right C-modular, Yk > 0.

Proof. Since {®,},>0 forms an orthogonal basis for L*(C) and {n} m}iz1nm=0 is a Riesz

basis for L*(M) & L*(C), it is sufficient to show that Lj (1}, ,,@) = L, (1} ) @
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The definition of the n,"l./m’s clearly implies that r[,"l’m(x)l € span{nl’;.k}kzo, that is, mul-
tiplying @; on the right does not change neither the upper nor left index of n,"hm, thus

L,(n} ,,0) = Li(n}, ,) @y and the proof is complete. O
We will need the following result from [CFRW10]:

Lemma 4.1.6 (Lemma 4.3, Theorem 6.2 in [CFRW10]). Given (x;);, € M® & C?, if for
every ko € N, we have that limy_,, H (Li, V Ri) (xk) H2 = 0, then for any yy,y, € L*(M) ©

L*(C), y1 (x)k L (xi)ey2-
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4.2 Proof of Theorem A

Now we state the key technical result in this chapter.

Proposition 4.2.1. [s-AOP for the radial masa]

Let I =y, be a non-abelian free group with finitely many generators and M = L(T")
the corresponding group von Neumann algebra. Denote by C the radial masa of M and
suppose that B C C is a diffuse von Neumann subalgebra. Then for any (x;), € B M® &
C? and yi,y» € M ©C, where o is a free ultrafilter, we have that yy(x;)r L (xx)ky2 in

L2(M®).

We will break the proof into several lemmas.
Let (xx)x € BNM®©C? and y;,y, € M S C be given. For each k, we can assume x; €

MoSC C L*(M)SL*(C),||x|| < 1 and write its decompositions with respect to {§£7m}i>] >0

i . )
and { Mim }iz Lm0’ respectively:

_ ik gi ik i
Xk = Z Ay mSn,m = Z bn,mnn,mv

i>1,n,m>0 i>1,n,m>0

i,k

where both (ai;m and (bilkm> are from ¢2.

)izl,n,mzo i>1,n,m>0

Since B is diffuse, we can choose a sequence {uy}; in the unitary group of B, which
;i

[|eoif |2

over, for any fixed Ny > 0, w, ®,, will be supported on those w;’s with i > Ny, provided that

converges to 0 weakly. Recall that { } is an orthonormal basis for L2(C). More-
i>0

|m —n| > Np. We first need to approximate each u; using finite linear combinations of @;’s.

Lemma 4.2.2. For each fixed Ny, there exists a sequence {Sy }r>1 of non-empty, disjoint,
finite subsets of NU {0} and a sequence of strictly increasing natural numbers {ny }y>1,
such that in the decomposition with respect to {@;};i>o0, the supports of elements from
{onw, : m € Si;n < No} and the supports of elements from {®,®, : m € Sj,n < Np}
are disjoint, whenever i, j > 1,i # j. Moreover, there exists a sequence {vi}y in C, with

. 1
vk € span{@; : i € Sg} such that ||vi|| <2 and ||vik — up,||2 < 2
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Moreover, one can construct {vi},{Sx} such that there is a sequence {Fy} of strictly
increasing natural numbers such that Ly (vix) = Ly, (vi (L’Fi+1 — Ly, ) (x)>, for all x €

LX(M)o L*(C).

Proof. Throughout this lemma, for any x € C, we always consider the Fourier expansion
of x with respect to {®;}i>0. Moreover, if x =Y ;~¢a;@; and F C NU {0}, we will use the
notation Pr(x) := Y ;cr a; ;.

We construct {Si}, {n;} and {v;} inductively. Since span{®, },>¢ is a weakly dense *-
subalgebra of C, Kaplansky Density Theorem implies that there exists a sequence {z; } of
elements in C, whose Fourier expansions are finitely supported, such that ||z|| < 3/2 and
g — zie| |2 < 4ik For each k, suppose that z; is supported on {@;}ic7,, where T, C NU{0}
is some finite subset. Letn; =1, v; =z; and S} =T1. Then ||v;|| <2 and ||v; —uy, ||2 < 1/2
and v; € span{w; :i € S;}.

Now suppose that Sy,---,S; and ny, - - - ,n; have already been chosen. Then there exists
a finite subset Fi;; C NU {0}, such that J;<;<; Si C Fy41 and for any S € NU {0} \Fj,
we always have that in the decomposition with respect to { @; } >0, the supports of elements
from { @, @, : m € U1 <;<xSi,n < Ny} and the supports of elements from { @, @, : m € S,n <
No} are disjoint (for example, one can let Fpy) = {0,1,--- ,maxUj<;<x Si +3No}). Now
since u; — 0 weakly, there is a natural number ny | > ny, such that with respect to the basis
{@i}i>0, the Fourier coefficient of z,,,, has absolute value less than - for each

A Fiegr [ o]
0<i<Fiy1. LetSpy = Tnk+1\Fk+1,Vk+1 = PSk+1 (anﬂ). Then

Vit =ty [l2 < Hvkﬂ — Lnig Hz + Han+1 — Ungiy Hz

= |’P(Tnk+1\sk+l)(z’1k+l)H2 + Han+1 — Uy HZ
= HPFkH (Z”kH)HZ + Han+1 = Uniyy Hz
Fal N2 1
< (22k|Fk+l|) +4k+1
1

Sﬁa
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and an easy estimate of the ¢'-norm gives us

i1l < llzegr |l +

The last statement can be achieved by letting the supports of {v;}; mutually far away.
For example, choose the gap between §; and §; to be greater than 3Ny and let F be the

collection of elements of NU {0} between min,cg, |n| — Ny and max,cs, || + No. O

Thus by taking a subsequence if necessary, we may assume that {v;} is a sequence in
C, such that vy € span{w; : i € Sy } for some finite subset Sy C N, ||vi|| <2, [|vik —ug|]2 < %
and vy L vjoy, for all i, j > 1,i # j and all 0 < k < Nj and there is a sequence {Fj} of
strictly increasing natural numbers such that Ly (vix) = Ly, (vi (L}}H ~ Ly, ) (x)), for all

x € L>(M)S L*(C).
Lemma 4.2.3. lim;_,, HL;VO (xx) H2 =0.

Proof. Fix a small € > 0. First choose some large N < N, such that 225.\2 v, Ivi— uil3 < e

4|, ‘2C§ +1
and Ny N < €. Then we have
Ny . Ny

Jim, 3 (L (w50, L (vie)) = fim 3 (Lhy (50, L (165)) —¢

N2 / /
= k]gr;) i:ZNl <LN0 (xkui),LNO (xku,-)> — &

N2 / /
= k]grclo i_ZI’Vl <LN0 (xk)ul',LNo (xk)ui> —&

. 2
= (N2 =Ny) lim [|Zy, (xc) [, — €.

The second line uses the assumption that (x;); € BN M® and the third line uses the fact

that Ljvo is a right-C modular map, i.e.

Ly, (xa) = Ly, (x)a,Vx € L*(M) & L*(C),Va € C.
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Meanwhile,

N Ny
ZN <L§V0 (v,-xk) ’L;VO (v,-xk)> = ZN <L§V0 (V,‘ (L};Hl —L}:i) (xk)> 7L;Vo (v,- (L}FHI —L};l) (xk)>>
I=IV] =N
112 2 / / / /
< HLNOH Z <Vi <LF;'+1 _LFl> (xk)avi <LFi+1 _LFz> (xk)>
i=N,
2 112 2 / / 2
< Y el Pl | (2, — ) ()
i=N;
2 B 2
<4lLh )" X o )3 bl
i=N1  j21,Fi+1<n<F;1,m>0
.12
<aligl’co X e

J21,0<n<Fy, m>0
< 4|y PR I3 < 4Ly, P 2.
4)|Ly, IIPC5 +1

2
LSVO(X’JHz S TN,

trarily small. Thus the proof for Lemma 4.2.3 is complete. [

Therefore, we conclude that limy_, ‘ < € can be made arbi-

Lemma 4.2.4. limy_,, || Ly, (xx)|, = 0.

Proof. We use the relations between n,"lym and é,’lm, as stated above in Lemma 4.1.2 and

Lemma 4.1.3.

. . ik g ik ogi -
First, since xx = Y.i>1 (i) >2,n,m>0 ammé,’l’m B Li>1,1()=1,n,m>0 an7m§é7m, it suffices to con-

sider separately the part with i’s such that /(i) > 2 and the part with i’s such that /(i) = 1.

For the i’s with /(i) > 2, recall that n,im = ,’,m —K! ( ri,m—z + é,i_z,m> -I-K*zé,’;_z,m_z
bil,m—O—Z . biH—Z,m + b£z+2,m+2

% z 7 Therefore

i i
so that ay, ,,, = by, ,,, —
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Ly, Y b | = ) @y

i>1,1({)>2,n,m>0 5 i2L1(i)>2,No>n>0,m>0

i>1,1(i)>2,Ng>n>0,m>0

<16

Lk

n,m

i>1,1(i)>2,Ng+2>n>0,m>0

< 16Co || Ly, 12 )

i>1,1({)>2,n,m>0

and the last term goes to 0 as k — w, by the previous lemma.

‘2
ik ik ik
nm+2 bn+2,m bn+2,m+2
K K K?
2
ik
bmm’
2
n,mnn,m )
2

Now consider the i’s with /(i) = 1. As there are only finitely many such i’s, we may

restrict our attention to a single fixed i.

For some o € {1,—1}, we have that

" y "
an;ObH I = Zb ik 5rlz;;,m _ grlz,;—z N Gérlz—;m—l
+Z>Z§ Kl ( rlzklfl,mfl+1 + Gén I 1+2§n L l)
= bzljn — 25—2,," _ bil:km'i‘z + Gbn—H Jm+1
mm \ K K K
+Z>Zé Kl < ;{(I—H—Lm—ﬁ—l 1+Gbn+[ 1m+l+1+2bn+l m+l>

9
n,m:

Therefore, for any fixed € > 0,Ny > 0, we find a large integer N7 >> Ny, to be specified
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later, and we let Ky = N1 — Np. By the triangle inequality,

1/2

1/2 ik ik 2
ik 2 e Piiam bumio Gbn—H m+1
Z |an7 m| < Z bri m- - +
’ ' K K K
n<Ny,m>0

N\ 12
+ Z Kl ‘Gbn—kl—&-l m+1—1 + c;bn-kk 1,m+k+1 + 2bn+k m+k‘
n<Ny, m>0

2<I<Ky

1/2
2
+ Z ‘Gbn-‘rl—H m—+I1—1 + Gbn—i—l 1,m+I+1 + 2bn+l m-H’ :
n<Ny, m>0

I>Ky +1

We estimate the third term in the above inequality first:

| N\ 12
) i ( » >O‘Gbn+l+lm+l 1 Hob, lm+l—|—l+2bn+lm+l’ )
n 0,m=

: N\ /2
ik ik
= Z F( >0’Gbn+l+1,m+l—1+Gbn+l—1,m+l+1+2bn+l m—Q—l‘ )
n,m

I>Kp+1 n,m>0

1 4Cy
< Y 4G all, < :
e K KK(K—1)

hence we can choose N large enough so that Ky is large, such that the third term is less

than /3, for any «.
Now we estimate the first and the second terms. To this end, we choose a large ko =
N 1/2

i,k .

nm’ ) is less

than €/3. Thus both the first and the second term can be bounded above by €/3. Combine

ko(N1,€), such that for any k > kg, we have that 4CyKy <Zm>0’n<N1 11

all these pieces together, we conclude that

1/2
LNo(za:;,km ) SCO( y \af;,’in|2> e
2

n,m>0 n<Ny,m>0

when k is close enough to @. Since € > 0 is arbitrary, we are done. [
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Proof of Proposition 4.2.1. The same proof for Lemma 4.2.4 shows that limy_, ¢, ||Rn, (x¢) ||, =

0. So Lemma 4.1.6 applies. [

Remark 4.2.5. In fact, the same conclusion as in Proposition 4.2.1 holds, if we replace the

assumption “B C C diffuse” by “B C C?® diffuse”.
Theorem 4.2.6. The radial masa satisfies Peterson’s conjecture.

Proof. Ttis shown in [OP10] that L(Fy),N > 2 is strongly solid, and the fact that the radial
masa is singular is shown in [Rad91](another proof can be found in [SS03]). Therefore,

Theorem 3.2.2 and Proposition 4.2.1 imply the result. 0

Remark 4.2.7. One can also use [Houl4b, Theorem 8.1] and Proposition 4.2.1 to conclude

Theorem 4.2.6.
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4.3 Some remarks

In fact, one can state a more general structural result for the inclusion C C L(Fy41).

Theorem 4.3.1. Let M = L(Fy1) be a free group factor with 1 < N < oo and let C C M
be the radial masa. If Q C M is a von Neumann subalgebra that has a diffuse intersection

with C, then there exists a sequence of central projections e, € Z(Q),n > 0 such that
* ¢00 CC;

e Foralln> 1, e,Q is a non-amenable 11, factor such that e,(Q' "M®) = e,(Q' "M

is discrete and abelian (even contained in C).

Proof. Let ¢g € Z(Q) be the maximal projection such that epQ is amenable. Then Qe &
C(1 —ep) is amenable and has a diffuse intersection with C so it is contained in C by
Theorem 4.2.6. Moreover, Q(1 — eg) has a discrete center, by solidity of M. This gives a
sequence of central projections {e,},>1 such that for all n > 1, ¢,Q is a non-amenable II;
factor.

Now fix n > 1. By [loal5, Lemma 2.7], one can find a central projection e € Z((e,Q)' N

e,Me,) such that
s e((enQ) NeyMey) = e((e,Q) N (enMey,)®) is discrete;
o (en—e)((e,0) N(enMey,)?) is diffuse.

By [Pet09, Proof of Theorem 4.3], the fact that (e, — e)((€,Q) N (enMe,)?) is diffuse
implies that (e, — e)Q is amenable. Since e,Q has no direct summand, this forces e = e,,.
Finally, (QNC)’ N M is amenable, again by solidity. As it contains C, it has to be equal

to C. In particular O'NM C (QNC) ' NMNC. So the last part of the theorem is true. [

Remark 4.3.2. In [Houl$5, Theorem 3.1], Houdayer showed the general situation for free
products of o-finite von Neumann algebras, which contains the strong-AOP for the gen-
erator masa in a free group factor as a special case. Also, the strong-AOP as in Proposi-

tion 4.2.1 means that for any diffuse subalgebra B of the radial masa C, the inclusion C C M
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has the AOP relative to B, in the sense of [Houl4b, Definition 5.1]. The unique maximal
injective extension for any diffuse subalgebra of the generator masa is first shown by Hou-
dayer [Houl5, Theorem 4.1]. A proof via the study of centralizers is obtained by Ozawa

[Ozal5].

Remark 4.3.3. Note that the disjointness result as in Theorem 4.2.6 is not true for arbitrary
maximal amenable masa of a Il factor. For instance, if the inclusion A C M has some nice
decomposition, then A does not have the uniqueness property as the generator masa in the

above corollary. We give some such examples:

e Let M = Ay %4,A; be the amalgamated free product with A; amenable, and A diffuse,
Ao # A;, i = 1,2, then Ag can be contained in different maximal amenable subalge-

bras.

* Let M{,M, both be the free group factor and A; C M, the corresponding gener-
ator masa, { = 1,2. Then A = Aj®A; is a maximal injective subalgebra inside
M = M;®M,. However, many other injective subalgebras could contain the diffuse

subalgebra A} ® 1.

* Let A < T be a singular subgroup in the sense of Boutonnet and Carderi ([BC15,
Definition 1.2]) and suppose I' acts on a finite diffuse amenable von Neumann al-
gebra Q. Then Q x A is maximal injective inside Q x I', by [BC15, Theorem 1.3].
However again there are lots of different injective subalgebras containing Q but are

not contained in Q X A.

Remark 4.3.4. We would like to mention an example in the ultra-product setting. Let A C
M be a singular masa inside a separable II; factor. Then for any free ultrafilter @, o7 := A®
is a maximal injective masa in .# := M®, a result due to Popa ([Pop14, Theorem 5.2.1]).
However, it is well known that any two separable abelian subalegebras in a ultraproduct of
II; factors are unitarily conjugate ([Pop83b, Lemma 7.1]). In particular, A is both contained

in a maximal injective masa and a maximal hyperfinite subfactor of .7 .
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Chapter 5
Unique maximal extension for the cup

5.1 Preliminaries

This chapter is based on the joint work with Arnaud Brothier [BW16].

5.1.1 Planar algebras

A planar algebra is a collection of complex x-algebras &2 = (£ : n > 0) on which the
set of shaded planar tangles acts. See [Jon99, Jon12] for more details. We follow similar
conventions that was used in [CJS14] for drawing a shaded planar tangle. We decorate
strings with natural numbers to indicate that they represent a given number of parallel
strings. The distinguished interval of a box is decorated by a dollar sign if it is not at the
top left corner. We do not draw the outside box and will omit unnecessary decorations. The
left and right traces of a planar algebra are the maps 7; : 2 — Py and 7, P — 933[

defined for any n > 0 such that

7(x) = and 7,(x) = for any x € ZF.

Suppose that 22 = C. The planar algebra is called spherical if the two traces agree on each
element of &7. We say that & is non-degenerate if the sesquilinear forms (x,y) — 7;(xy*)
and (x,y) — T,(xy*) are positive definite. A subfactor planar algebra is a planar algebra such
that each space @ni is finite dimensional, f@g—L = C, & is spherical and non-degenerate.

The modulus of a subfactor planar algebra is the value of a closed loop.
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5.1.2 Construction of a II; factor

We recall a construction due to Jones et al. [JSW10]. Consider the direct sum Gr&? =

@B,>0 P, that we equipped with the following Bacher product and involution:

min(2n,2m) a
w= Y “, ande:,wherexe Prandye 2.
a=0

Consider the linear form 7 : Gr&? — C that sends x € Q’J to itself and O to any element
in 22 if n # 0. The vector space Gr&? endowed with those operation is an associative
x-algebra with a faithful tracial state. Let H be the completion of Gr& for the inner
product (x,y) — t(xy*). The left multiplication of Gr% on H is bounded and defines a
x-representation [GJS10, JSW10]. Let M be the von Neumann algebra generated by Gr&?
inside B(H). It is an interpolated free group factor [GJS11, Har13]. We define another

multiplication on Gr &2 by requiring that if x € &, and y € &, then

— -~
xoy— GQ,H_m.

Denote by x*" the n-th power of x for this multiplication. Remark, ||a e b|, = ||a|2||p

25
foralla € &, and b € &,,. Therefore, this multiplication is a continuous bilinear form for
the L?-norm || - ||2 of M. We extend this operation on L?>(M) x L?(M) and still denote it by

5.1.3 The cup subalgebra

Let U be the unity of the x-algebra &2;", viewed as an element of M [GJS10]. LetA C M

be the von Neumann subalgebra generated by U. We call it the cup subalgebra.
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5.2 Proof of Theorem B

Proposition 5.2.1. Let (A, 1) be a tracial von Neumann algebra and B C A a diffuse subal-
gebra. Denote by L? (A) the Gelfand-Naimark-Segal completion of A for the trace t. Con-
sider a sequence & = (&, : n > 0) of unit vectors of the coarse bimodule L*(A) @ L*(A).
Suppose that for any b € B we have lim,,_se ||b- &, — &, -b||2 = 0. Then, if p € B(L*(A)) is

a finite rank projection, then 1im,_c, ||(p @ 1)&,||2 = limy—e0 || (1 ® p)&ull2 = 0.

Proof. Let A,B,&, and p as above. It is sufficient to prove the proposition when p is a rank
one projection. Let ) € L*(A) be a unit vector such that p = Pn 1s the rank one projection
onto Cn. Consider 0 < € < 1 and a natural number [ such that 16/(/+ 1) < €. Denote

£

by &, the quantity (o0t T)

i) for any n > 0. Since B is diffuse, there exists a sequence of

unitaries (u,), in B such that lim,,_.(u, - {1, &) = 0 for any {;, &, € L?(A). Hence, there
exists a subsequence (v;), such that [(vy - 1,V M) < Emax(n,m) for any natural numbers

n # m. By [? , Proposition 2.3] and by taking a subsequence if necessary we have,

1 1
2=201&l7 2 Y Py @ D&lI> =2 Y [{vi-m,v;-m)], forany n>0.

i=0 i,j=0

Hence,

1 1 1
Y (Pon @ D& <242 Y Enani ) <2+2)(2i+1)g <2+€/4, forany n > 0.

Let A : B — B(L*(A) ® L*(A)) be the left action of B on the coarse bimodule L*(4) ®
L*(A). Observe, py.n®1 = A(v;)o(pn®1)oA(v;)* and v; is a unitary, for any i > 0.

Therefore, ||(py;.n ® 1)&,|| = ||(pn @ 1)V - &,|| for any n,i > 0. By assumption, there exists
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N > 0 such that for any n > N and i < I we have ||v} - &, — &, -v}|| < /4. Therefore,

[(pn @ )Gl = l[(py @ 1) (8- vi)
< (pn @ )i -G = Gn-vi) I+ [ (pn @ 1) (vi - &)

< /44 ||(pyn ®@1)&,| forany n > N,i < 1.

‘We obtain

1
ZH P @ &I < Z (€2/16+€/2/|(pyn @ 1)&ull + | (pvyn @ D&al|?)

<(I+1)(e/16+€/2)+(2+¢€/4) forany n > N.

(pn @ 1)&|*> < e/16+¢€/2+ (2+¢€/2)e/16 < € for any n > N. The same
proof shows that there exists M > 0 such that for any n > M we have ||(1® pn)&,||> < €

This proves the proposition. U

Fix a subfactor planar algebra & with modulus 6 > 1 and denote by A C M its asso-
ciated cup subalgebra. Consider the subspace V,, C &5 n > 0 of elements that vanishes
when they are capped off on the top left corner and vanished when they are capped off on
the top right corner. Let V C L?(M) be their orthogonal direct sum. By [JSW10, Theorem

4.9], the following map is an isomorphism of A-bimodules:

¢:L*(A) @ (L*(A)QVRL*(A)) — L*(M),a+b@v®&c—sa+bevec.

This implies that the A-bimodule L>(M) & L?(A) is isomorphic to an infinite direct sum of
the coarse bimodule. We identify L?(M) with ¢ ~!(L2(M)).
Consider the finite dimensional subspace L,, = Span(U* : k < m) C A for m > 0, where

U*0=1€ Z;. Denote by L;, the orthogonal complement of L, inside L?(A) for any m > 0.
Lemma 5.2.2. Let m > 0 and x EMﬂLL®V®Lrﬁ, yeMNL,®V &L,. Then xy €
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L-®V ®L,y, and yx € L, ®V @ L. In particular, xy L yx.

Proof. Consider x =U*% eveU* and y = U* eweU*, where s,t < m+1 <k,l and v,w €
VN Gr&2. We have that

s+1

Xy = Z 6[l/2] Uok ove Uo(l—O—s—i) oe U.[,

i=0

where [i/2] =i/2if i is even and i/2 —1/2 if i is odd. Observe, L;- is equal to the closure of
Span(U®* : k > m+1). Therefore, xy € L;- ® V ® L,, and similarly yx € L, ® V ® L;-. The
space MﬂLﬁ RV Ly, (resp. MNL, QV ®L,Jn-) is the weak closure of Span(U’k evel:
kJd>=m+1,ve VNGr?) (resp. Span(U* eweU* : 5.t < m,w e VNGr)). This

concludes the proof by a density argument. [
We are ready to prove the s-AOP of the inclusion of the cup subalgebra.
Proposition 5.2.3. The inclusion of the cup subalgebra A C M has s-AOP.

Proof. Let & be a subfactor planar algebra, A C M its associated cup subalgebra, and
B C A a diffuse subalgebra. Consider x € M® © A® in the relative commutant of B and
y € MSA, where o is a free ultrafilter on N. Let us show that xy | yx. Observe, Gr & is
a weakly dense *-subalgebra of M. Therefore, we can assume that y € Gr&? by Kaplansky
density theorem. This implies that there exists m > 0 such thaty € GrZ NL,, ®V ® L,,.
Let (x,), be a representative of x in the ultrapower M“. We can assume that for any n > 0
we have x, € L?>(M) © L*(A). Let p € B(L?*(A)) be the orthogonal projection onto L,,. It is
a finite rank projection. Therefore, by Proposition 5.2.1, (p® 1)x = (1 ® p)x = 0. Hence,
we can assume that x, € L% QV ®L$ for any n > 0. Lemma 5.2.2 implies that x,y L yx,

for any n > 0. This implies that xy L xy. 0

Thus, by Theorem 3.2.2, we complete the proof of Theorem B.
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