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Chapter I

Introduction

1. Background and main results

In this thesis, we conduct a systematic study of the theory of parabolic differential equations on

manifolds with singularities. The majority of the material in this work is based on the author’s

recent manuscripts [80, 81]. The particular class of manifolds considered here is called singular

manifolds. Roughly speaking, a manifold (M, g) is singular if it is conformal to a uniformly regular

Riemannian manifold (M, g/ρ2), by which we mean a manifold whose local patches are of compa-

rable sizes, and all transit maps and curvatures are uniformly bounded. The conformal factor ρ

is called a singularity function for (M, g). The concept of singular manifolds used in this paper

and the concept of uniformly regular Riemannian manifolds were first introduced by H. Amann in

[4, 5].

Perhaps one of the most important motivations for such a theory stems from geometric analysis.

An interesting problem in geometry is whether one can find a “standard model” in each class of

metrics on some manifold, thus reducing topological questions to differential geometry ones. One of

the well-known representatives of this kind is the Yamabe problem. On a compact manifold (M, g),

this problem aims at finding a metric with constant scalar curvature, which is conformal to g.

If we already have a metric, as a natural question, one might want to ask how we can “drive” the

given metric into a “standard” one, or at least improve it. For example, the famous Ricci flow

deforms the metric tensor g of an m-dimensional compact closed manifold by the law:
∂tg = −2Ric(g) on MT ;

g(0) = g0 on M.

Here Ric(g) is the Ricci tensor of the metric g, and MT := (0, T ) ×M for T ∈ (0,∞]. The Ricci

flow tends to “flatten out”, or “round out”, a manifold, depending on its initial “shape”. Another

example of evolution of metrics is the Yamabe flow. As an alternative approach to the Yamabe
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problem, R. Hamilton introduced the normalized Yamabe flow, which asks whether a metric, driven

by this flow, converges conformally to one with constant scalar curvature. The normalized Yamabe

flow reads as follows. 
∂tg = (sg −Rg)g on MT ;

g(0) = g0 on M,
(I.1)

where Rg is the scalar curvature with respect to the evolving metric g, and sg is the average of

Rg. On an m-dimensional closed compact manifold (M, g0), an easy computation shows that the

normalized Yamabe flow is equivalent to the (unnormalized) Yamabe flow.
∂tg = −Rgg on MT ;

g(0) = g0 on M.
(I.2)

This parabolic equation has a history of its own. The concept of closed manifolds in this article

refers to manifolds without boundary, not necessarily compact. On closed compact manifolds,

global existence and regularity of solutions to equation (I.2) has been well studied. R.G. Ye [91]

proved that the unique solution to (I.2) exists globally and smoothly for any smooth initial metric.

Fix a background metric g̃ such that (M, g̃) is compact. In particular, we can take g̃ = g0. Let

g = u
4

m−2 g̃ for some u > 0. By rescaling the time variable, equation (I.2) is equivalent to
∂tu = u−

4
m−2Lg̃u on MT ;

u(0) = u0 on M
(I.3)

with a positive function u0. In addition, Lg̃u := ∆g̃u − m−2
4(m−1)Rg̃u is the conformal Laplacian

operator with respect to the metric g̃, and ∆g̃ denotes the Laplace-Beltrami operator with respect

to g̃. By the compactness of (M, g̃), uniform ellipticity of the operator u
− 4
m−2

0 Lg̃ is guaranteed.

That is why well-posedness is relatively easy in the compact case.

It was conjectured by R. Hamilton that the solution of the Yamabe flow (I.2) converges to a metric

with constant scalar curvature as t → ∞. B. Chow [20] commenced the study of Hamilton’s

conjecture and proved convergence in the case when (M, g0) is locally conformally flat and has

positive Ricci curvature. Later, this result was improved by R.G. Ye [91], wherein the author

removed the restriction on the positivity of the Ricci curvature by lifting the flow to a sphere, and

deriving a Harnack inequality. In the case that 3 ≤ m ≤ 5, H. Schwetlick and M. Struwe [78]
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showed that the normalized Yamabe flow evolves any initial metric to one with constant scalar

curvature as long as the initial Yamabe energy is small. In [13], S. Brendle was able to remove the

smallness assumption on the initial Yamabe energy. A convergence result is stated in [14] by the

same author for higher dimension cases.

Evolution equations, such as the Ricci flow and the Yamabe flow, driving metrics by their curva-

tures, comprise an important class of so-called geometric flows, or geometric evolution equations.

Geometric flows have been studied in depth on compact manifolds. However, many well established

analytic tools and strategies are limited, or even fail, in the case of non-compact manifolds, and in

particular, manifolds with singularities. In general, it is not known how to start some geometric

flows, even just for a short time, without imposing further conditions. For instance, the theory for

the Yamabe flow on non-compact manifolds is far from being settled. Even local well-posedness is

only established for restricted situations. Its difficulty can be observed from the fact that, losing

the compactness of (M, g0), equation (I.3) can exhibit degenerate and singular behaviors simulta-

neously. The investigation of the Yamabe flow on non-compact manifolds was initiated by L. Ma

and Y. An in [58]. Later, conditions on extending local in time solutions were explored in [59].

In [58], the authors showed that for a complete closed non-compact Riemannian manifold (M, g0)

with Ricci curvature bounded from below and with a uniform bound on the scalar curvature in the

sense that:

Ricg0 ≥ −Kg0, |Rg0 | ≤ C,

equation (I.2) has a short time solution on M × [0, T (g0)] for some T (g0) > 0. If in addition

Rg0 ≤ 0, then this solution is global. The proof is based on the widely used technique consisting

of exhausting M with a sequence of compact manifolds with boundary and studying the solutions

to a sequence of initial boundary value problems. Then uniform estimates for these solutions and

their gradients are obtained by means of the maximum principle on manifolds with Ricci curvature

bounded from below in the sense given above. The uniform boundedness of the scalar curvature

plays an indispensable role in the proof for local well-posedness, although this has not been pointed

out explicitly in [58]. Hence one approach to the investigation of geometric flows on non-compact

manifolds is trying to find curvature conditions, at least for local existence.

Another way to understand geometric flows, mainly in the case of manifolds with singularities, is

to generalize the ideas for (degenerate or singular) elliptic differential operators. One way to view
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manifolds with singularities is to consider the so-called ringed spaces, that is, to view a manifold

M as a pair consisting of a punctured manifold M \ {p} (by removing the singularity p) and a

subalgebra of differential operators degenerating at a specified rate near the singularity, rather

than just M itself, see [64]. These considerations lead to the study of degenerate or singular

differential operators on manifolds with singularities.

The study of differential operators on manifolds with singularities is motivated by a variety of appli-

cations from applied mathematics, geometry and topology. All of it is related to the seminal paper

by V.A. Kondrat’ev [54]. There is a tremendous amount of literature on pseudo-differential calculus

of differential operators of Fuchs type, which has been introduced independently by R.B. Melrose

[60, 61] and B.-W. Schulze [64, 75, 76, 77]. One branch of these lines of research is connected with

the so-called b-calculus and its generalizations on manifolds with cylindrical ends. See [60, 61].

Many authors have been very active in this direction. Research along another line, known as coni-

cal differential operators, was also initiated a long time ago. Operators in this line of research are

modelled on conical manifolds. The investigation of conical singularities was initiated by J. Cheeger

in [17, 18, 19], and then continued by many other authors. A comparison between the b-calculus

and the cone algebra can be found in [55]. The amount of research on pseudo-differential calculus

of differential operators of Fuchs type is enormous, and thus it is literally impossible to list all the

work.

To distinguish these two lines of research, for instance, we look at a compact Riemannian manifold

(M, g) with boundary (∂M, g∂M). R.B. Melrose deforms a collar neighborhood of ∂M into a cylin-

drical end by equipping ∂M with the singular metric (dt/t)2 + g∂M for t ∈ (0, 1]. Setting t = es

with s ∈ (−∞, 0], it is easy to see that this metric is indeed asymptotically cylindrical. On the

other hand, B.-W. Schulze uses the degenerate metric dt2 +t2g∂M. The associated Laplace-Beltrami

operators with respect to these two metrics are

((t∂t)
2 + ∆g∂M), and t−2((t∂t)

2 + ∆g∂M),(I.4)

respectively. Many efforts have been made to generalize research in these directions to more compli-

cated types of singularities, e.g., edge and corner pseudo-differential calculus. However, for higher

order singularities, the corresponding algebra becomes significantly more complicated, although

many ideas and structures can be extracted, e.g., from the calculus of boundary value problems,
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c.f. [56, 75, 77]. Therefore, a natural question to ask is whether we can find a general approach,

which is less sensitive to the geometric structure near the singularities, to analyzing differential

equations on manifolds with singularities.

In 2012, H. Amann [4, 5] introduced the geometric framework of singular manifolds and uniformly

regular Riemannian manifolds to study differential equations on non-compact manifolds and on

manifolds with singularities. To illustrate the geometric generality of these two concepts, we show

in Example III.6 that manifolds with cone, edge and corner ends are singular manifolds. Mean-

while, manifolds with asymptotically cylindrical ends are examples of uniformly regular Riemannian

manifolds. It is proved in [30] that the class of all closed uniformly regular Riemannian manifolds

coincides with the family of complete manifolds with bounded geometry, which reveals that the

concept of uniformly regular Riemannian manifolds extends one of the perhaps most extensively

studied class of non-compact manifolds.

If two real-valued functions f and g are equivalent in the sense that f/c ≤ g ≤ cf for some c ≥ 1,

then we write f ∼ g. From our description in the first paragraph, a singular manifold (M, g)

with singularity function ρ ∼ 1M is uniformly regular. Therefore, the family of uniformly regular

Riemannian manifolds is a subclass of singular manifolds. We will focus on the latter class in this

thesis.

The framework of singular manifolds, as we can observe from its definition, does not depend on the

order of the singularities or the specific geometric structure near the singularities. Moreover, func-

tion space theory, for instance, interpolation, embedding and trace theorems, is well established

for singular manifolds in [4, 5]. It is known that although most function spaces, like Sobolev-

Slobodeckii spaces, can be defined invariantly on non-compact manifolds, the corresponding func-

tion space theory does not hold in this generality. These preparations and the uniform structure of

singular manifolds enable us to build up the theory of parabolic differential equations on singular

manifolds, with singularities of arbitrarily high dimensions and of various structures.

To clarify the role of the differential operators in this article, we look at

A = ρ−λA,(I.5)

on a singular manifold (M, g). Here ρ ∈ C∞(M, (0, 1)) is a singularity function and λ > 0, or

ρ ∈ C∞(M, (1,∞)) and λ < 0. In (I.5), A is a uniformly ρ-elliptic operator. We consider a second
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order differential operator

Au := −div(~a · gradu) + C(∇u, a1) + a0u

as an example. By uniformly strongly ρ-ellipticity, we mean that the principal symbol of A fulfils

σ̂A(x, ξ) := (~a(x) · ξ|ξ)g∗ ∼ ρ2|ξ|2g∗ .

Here g∗ is the cotangent metric induced by g, ~a is a symmetric (1, 1)-tensor field on (M, g), and

the operation [u 7→ ~a · gradu] denotes center contraction. See Section 5.1 for the precise definition.

These operators, as we can immediately observe from the above relationship, can exhibit degenerate

or singular behaviors while approaching the singular ends. However, if we look at the localization

of the operator A in an atlas satisfying that the size of each local patch is proportional to the value

of ρ in that patch, then the local expressions of A have uniform ellipticity constants in all local

coordinates. That is why we call A “uniformly strongly elliptic.”

In [6], H. Amann built up the Lp-maximal regularity for second order uniformly strongly ρ-elliptic

operators. Given a densely embedded Banach couple E1
d
↪→ E0, an operator A is said to have

Lp-maximal regularity if for any J = [0, T ] and each f ∈ Lp(J ;E0), the equation
ut +Au = f, J ∈ T ;

u = 0,

has a unique solution u ∈ H1
p (J ;E0) ∩ Lp(J ;E1).

We generalize the concept of uniformly strong ρ-ellipticity to elliptic operators of arbitrary even

order acting on tensor bundles in Chapter 4. A linear operator

A :=
2l∑
r=0

C(ar,∇r·)(I.6)

of order 2l, where ar is a (σ+ τ + r, τ + σ)-tensor field, is said to be uniformly strongly ρ-elliptic if

its principal symbol satisfies that for each cotangent field ξ and every (σ, τ)-tensor field η, it holds

(C(a2l(x), η ⊗ (−iξ)⊗2l)|η)g ∼ ρ2l|η|2g|ξ|2lg∗ .(I.7)

Moreover, in Chapter 4, we show that this ellipticity condition can actually be replaced by a

weaker one, called normal ρ-ellipticity. But for the sake of simplicity, we still stay with uniformly

6



strong ρ-ellipticity stated above. In Chapter 4, by imposing some mild regularity condition on the

coefficients ar of A, called s-regularity, we are able to prove the following result.

Theorem I.1. Let s ∈ R+ \ N and ϑ ∈ R. Suppose that A is a 2l-th order linear differential

operator, which is uniformly strongly ρ-elliptic and s-regular. Then

A ∈ H(bcs+2l,ϑ(M, V σ
τ ), bcs,ϑ(M, V σ

τ )).

Here u ∈ bcs,ϑ(M, V σ
τ ) if ρϑu is a (σ, τ)-tensor field with little Hölder continuity of order s. The

precise definition of weighted little Hölder spaces will be presented in Section 2.2. An operator A

is said to belong to the class H(E1, E0) for some densely embedded Banach couple E1
d
↪→ E0, if

−A generates a strongly continuous analytic semigroup on E0 with dom(−A) = E1. By means of a

well-known result of G. Da Prato, P. Grisvard [65] and S. Angenent [9], this theorem implies that

the operator A enjoys the maximal regularity property in a Hölder framework, called continuous

maximal regularity. We refer the reader to Chapter 4 for the precise definition of continuous

maximal regularity.

In virtue of a theorem by G. Da Prato and P. Grisvard [65], S.B. Angenent [9], and P. Clément,

G. Simonett [22], continuous maximal regularity theory gives rise to local existence and uniqueness

for quasilinear or even fully nonlinear equations. To briefly illustrate the scope of the work in

Chapter 4, for example, we take a look at a model quasilinear bilaplacian problem on a singular

manifold (M, g) 
∂tu+ un∆2

gu = 0 on MT ;

u(0) = u0 on M.

Here ∆g is the Laplace-Beltrami operator with respect to g. This model is closely related to the

thin film equation. Suppose that U is a properly chosen open subset of some little Hölder space

bcs,ϑ(M). If for every u ∈ U the principal symbol of the operator un∆2
g satisfies

un(g∗(−iξ,−iξ))2 ∼ ρ4|ξ|4g∗ , ξ ∈ T ∗M,

then the above equation has a unique classical solution in weighted little Hölder spaces for any

u0 ∈ U . Similar results also hold true for differential operators acting on tensor fields. In addition,

it is worthwhile mentioning that Lp and continuous maximal regularity theories on uniformly regular

Riemannian manifolds are established by H. Amann, G. Simonett and the author, see [6, 82].

7



Maximal regularity theory has proven itself a powerful tool in the study of linear and nonlinear

evolution equations in recent decades, especially for higher order differential equations, see [1], [8]-

[10], [49], [50], [31]-[35], [57], [70], [72], [83] for example. In addition to proving well-posedness

results, in several examples of Chapter 7 and 8, we will present how to establish regularity of

solutions to parabolic equations on singular manifolds by means of maximal regularity theory. A

detailed discussion of this technique can be found in [79], where the author proved regularity of

solutions to the Ricci flow, the surface diffusion flow, and the mean curvature flow.

To line up with the aforementioned work on pseudo-differential calculus on manifolds with sin-

gularities, the author would like to point out that on an asymptotically cylindrical manifold, the

Laplace-Beltrami operator

((t∂t)
2 + ∆g∂M)

is uniformly strongly ρ-elliptic. Hence, the theory established in [6] and Chapter 4 can to some

extend be considered as a generalization of the work on b-calculus by R.B. Melrose [60, 61] and

his collaborators.

In contrast to the “uniformly strongly elliptic” operator A, by our choice of ρ and λ in (I.5), the

ellipticity constants of the localizations for the operator A in local coordinates blow up while

approaching the singular ends of the manifold (M, g). The rate of the blow-up of the ellipticity

constant is characterized by the power λ. For this reason, we will call such an A a (ρ, λ)-singular

elliptic operator. More precisely, a second order elliptic differential operator A is (ρ, λ)-singular if

its principal symbol satisfies

σ̂A (x, ξ) ∼ ρ2−λ|ξ|2g∗ ,

for any cotangent field ξ. To illustrate the behavior of the operator A , we consider the Euclidean

space RN as a singular manifold with ∞ as a singular end, and take A to be the Laplacian in (I.5).

Then the operator A , in some sense, looks like one with unbounded coefficients at infinity on Rm.

Our approach to (ρ, λ)-singular elliptic operators in Chapter 5 is based on the traditional strategy

of associating differential operators with densely defined, closed and sectorial forms. This method,

being utilized by many authors, has displayed its power in establishing Lp-semigroup theory for

second order differential operators on domains in Rm. See, for example, [25, 63, 67, 68] and the

references therein. To the best of the author’s knowledge, there are only very few papers on the
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generation of analytic semigroups for differential operators with unbounded diffusion coefficients in

Rm or in an exterior domain with regular boundary, among them [39, 44, 46, 62, 63]. In all these

articles, the drift coefficients have to be controlled by the diffusion and potential terms. In [63],

the authors use a form operator method to prove a semigroup result for operators with unbounded

coefficients in a weighted Sobolev space. The drawback of the method used in [63] is reflected by

the difficulty to precisely determine the domains of the differential operators. This is, in fact, one

of the most challenging tasks in the form operator approach. One of the most important features

of the work in Chapter 5 is that with the assistance of the theory of function spaces and differential

operators on singular manifolds established in [4, 5, 6], we can find a precise characterization for

the domains of the second order (ρ, λ)-singular elliptic operators.

A conventional method to render the associated sesquilinear form of an elliptic operator A densely

defined, closed and sectorial is to perturb A by a spectral parameter ω > 0. See [63, 68] for

instance. Then A generates a quasi-contractive semigroup. However, for a (ρ, λ)-singular elliptic

operator, e.g., the operator A in (I.5), because of the existence of the multiplier ρ−λ, we need to

perturb A by a weight function of the form ωρ−λ. This feature arising from our approach creates

an essential difficulty for a parabolic theory of differential equations on manifolds with singularities.

We take the conical Laplace-Beltrami

t−2((t∂t)
2 + ∆g∂M)

in (I.5) as an example. This operator is (ρ, 2)-singular elliptic. In order to prove that this operator

generates a contractive semigroup, we need to perturb it not by a constant ω, but actually by a

weight function ωt−2. More generally, in Section 5.1, by imposing some weak regularity assumption

on the coefficients of A , called (ρ, λ)-regularity, we shall prove the following result.

Theorem I.2. Suppose that the differential operator

A u := −div(~a · gradu) + C(∇u, a1) + a0u,

is (ρ, λ)-regular and (ρ, λ)-singular. For ω so large that the conditions (A3)-(A5) in Section 5.1

are satisfied, define Aω := A + ωρ−λ. Then

Aω ∈ H(W 2,λ′−λ
p (M, V σ

τ ), Lλ
′
p (M, V σ

τ )), 1 < p <∞,
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and the semigroup {e−tAω}t≥0 is contractive. Here σ = τ = 0, when p 6= 2.

Here Lλ
′
p (M, V σ

τ ) and W 2,λ′−2
p (M, V σ

τ ) are some weighted Sobolev spaces whose definition will be

given in Section 2.2. The extra condition on the perturbation term ωρ−λ is equivalent to a largeness

condition on the potential term a0 of the operator A in Theorem I.2. The commutator of weight

functions of the form ωρ−λ and differential operators is usually not a perturbation in the sense

of [41, 73]. Thus the extra term ωρ−λ, in general, cannot be removed by a “soft” method, like

the perturbation theory of semigroups. In some cases, e.g., the conic Laplace-Beltrami operator,

we find it more practical to put a control on the diffusion or drift term. This is a quite natural

condition which has been used in [39, 44, 46, 62, 63]. In all these articles, the growth of the drift

coefficients have to be controlled by the diffusion and potential terms.

In Section 5.2, we are able to remove the compensation condition ωρ−λ for a class of singular

manifolds called singular manifolds with Hλ-ends. To the best of the author’s knowledge, this

concept is introduced here for the first time. We will show that it is possible to create singular

manifolds with Hλ-ends with singularities of arbitrarily high dimension. To illustrate how to

construct such manifolds, we look at the following example of manifolds with “holes”. First, we

start with an m-dimensional complete closed manifold (M , g) with bounded geometry. Then we

remove finitely many Σj ⊂ M . Each Σj is an m-dimensional compact manifold with boundary.

Let

M := M \ ∪jΣj .

Since the boundary ∂Σj is not contained in M, the manifold (M, g) is incomplete. The resulting

manifold with “holes” is a singular manifold with Hλ-ends. On such a manifold (M, g) with “holes”,

as an example of the work in Chapter 5, we can show that the Laplace-Beltrami operator satisfies

∆g := divg ◦ gradg ∈ H(W 2,λ′−2
p (M), Lλ

′
p (M)), 1 < p <∞.

For general (ρ, λ)-singular elliptic operators, we have the following result.

Theorem I.3. Suppose that (M, g; ρ) is a singular manifold satisfying ρ ≤ 1,

|∇ρ|g ∼ 1, ‖∆ρ‖∞ <∞
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on Mr := {p ∈ M : ρ(p) < r} for some r ∈ (0, 1]. Moreover, assume that the set

Sr0 := {p ∈ M : ρ(p) = r0}

is compact for r0 ∈ (0, r). Let λ′ ∈ R, and λ ∈ [0, 1) ∪ (1,∞)

(a) Then (M, g; ρ) is a singular manifold with Hλ-ends.

(b) Furthermore, assume that the differential operator

A u := −div(ρ2−λgradu) + C(∇u, a1) + a0u

is (ρ, λ)-regular. Then

A ∈ H(W 2,λ′−λ
p (M, V σ

τ ), Lλ
′
p (M, V σ

τ )), 1 < p <∞.

Here σ = τ = 0 when p 6= 2.

2. Introduction to applications

We will apply Theorem I.1-I.3 to several well-known evolution equations in Chapter 6-8.

As an example in geometric analysis, we prove the following well-posedness result for the Yamabe

flow (I.2) on an m-dimensional singular manifold (M, g̃).

Theorem I.4. Suppose that u0 ∈ U sϑ := {u ∈ bcs,ϑ(M) : inf ρϑu > 0} with s ∈ (0, 1), and

ϑ = (m− 2)/2. Then equation (I.3) has a unique smooth local positive solution û with

û ∈ C(J(u0), U sϑ)

existing on J(u0) := [0, T (u0)) for some T (u0) > 0.

Under the conformal change g0 = u
4

m−2

0 g̃, we have

Rg0 = −4(m− 1)

m− 2
u
−m+2
m−2

0 Lg̃u.(I.8)

To show that in Theorem I.4 we may start with a metric with unbounded scalar curvature, we take

ρ = 1M for computational brevity, i.e., (M, g̃) to be uniformly regular. Then there is some C > 1

11



such that for any u0 ∈ U sϑ

1/C ≤ ‖u
−m+2
m−2

0 ‖∞ ≤ C, ‖Rg̃‖∞ ≤ C.

But at the same time, there are ample examples of u0 ∈ U sϑ with unbounded derivatives. In view of

formula (I.8), it is not hard to create g0 with unbounded scalar curvature. Therefore, the Yamabe

flow can admit a unique smooth solution while starting at a metric with unbounded curvature, and

these solutions evolve into metrics with bounded curvatures instantaneously.

As mentioned in Section 1.1, all previous well-posedness results concerning the Yamabe flow require

uniform boundedness of the scalar curvature. Evolving geometric flows, like the Yamabe flow,

along the class of metrics with unbounded curvatures is far more challenging and leads to many

unexpected phenomena. Indeed, its difficulty can be illustrated by an example in [43].

Example I.5 (G. Giesen, P.M. Topping [43]). Suppose that T2 is a torus equipped with an arbitrary

conformal structure and p ∈ T2. Let h be the unique complete, conformal, hyperbolic metric on

T2 \ {p}. Then there exists a smooth Ricci flow g(t) on T2 for t > 0 such that g(t) → h smoothly

locally on T2 \ {p} as t→ 0.

Hence a Ricci flow with unbounded curvature may pull “points at infinity” to within finite distance

in finite time. This phenomenon contrasts the classic situation, which means that while starting a

Ricci flow with an initial metric with bounded curvature and evolving it with bounded curvature,

any curve heading to infinity retains its infinite length. It is well known that in dimension two, the

Yamabe flow agrees with the Ricci flow. The above observation points out part of the difficulty

in evolving the Yamabe flow with a metric of unbounded curvature. This is why the result in

Theorem I.4 is quite unexpected.

Finally, based on [47], in every conformal class we can find a metric g̃ making (M, g̃) uniformly

regular. Hence, Theorem I.4 applies to every conformal class.

In addition to its application to geometric evolution equations, we also apply Theorems I.1-I.3 to

the heat equation and its two well-known relatives, namely, the porous medium equation and the

parabolic p-Laplacian equation, on singular manifolds. A detailed discussion of these equations will

be presented in Chapter 7.
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Another application of Theorems I.1-I.3 concerns parabolic degenerate boundary value problems

and boundary blow-up problems on domains with compact boundary. The order of the degeneracy

or singularity is measured by the rate of decay and blow-up in the ellipticity condition while

approaching the boundary. See Chapter 6 for a precise description. This result extends the work

in [40, 89]. Rooting from this theory, Theorem I.1-I.3 can thus be applied to parabolic equations

in Euclidean spaces. In Section 8.1, we prove a local existence and uniqueness theorem for a

generalized multidimensional thin film equation

(I.9)


∂tu+ div(unD∆u+ α1u

n−1∆uDu+ α2u
n−2|Du|2Du) = f on ΩT ;

u(0) = u0 on Ω

if the initial data u0 decays sufficiently fast to the boundary of its support. Here α1, α2 are two

constants, n > 0, and Ω ⊂ Rm is a sufficiently smooth domain. This generalized model was first

investigated by J.R. King in [52] in the one dimensional case. Later, a multidimensional counterpart

has been studied with periodic boundary conditions on cubes in [12]. An interesting waiting-time

phenomenon can be observed from our approach. The mathematical investigation of the thin

film equation was initiated by F. Bernis and A. Friedman in [11]. An intriguing feature of free

boundary problems associated with degenerate parabolic equations is the waiting-time phenomenon

of the support of the solutions. This phenomenon has been widely observed and studied by many

mathematicians. See [23, 27, 42, 48, 84] for example. The waiting-time phenomenon for the

case α1, α2 = 0, the original thin film equation, has been explored in several of the papers listed

above. Our result extends the results in the above literature for the generalized system (I.9). In

Section 8.2, a generalization of the parabolic Heston equation, an extensively studied model in

financial mathematics, is investigated.

3. Assumptions and notations

3.1. Geometric assumptions. Following H. Amann [4, 5], let (M, g) be a C∞-Riemannian

manifold of dimension m with or without boundary endowed with g as its Riemannian metric such

that its underlying topological space is separable. An atlas A := (Oκ, ϕκ)κ∈K for M is said to be
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normalized if

ϕκ(Oκ) =


Qm, Oκ ⊂ M̊,

Qm ∩Hm, Oκ ∩ ∂M 6= ∅,

where Hm is the closed half space R̄+ × Rm−1 and Qm is the unit cube at the origin in Rm. We

put Qmκ := ϕκ(Oκ) and ψκ := ϕ−1
κ .

The atlas A is said to have finite multiplicity if there exists K ∈ N such that any intersection of

more than K coordinate patches is empty. Put

N(κ) := {κ̃ ∈ K : Oκ̃ ∩ Oκ 6= ∅}.

The finite multiplicity of A and the separability of M imply that A is countable.

An atlas A is said to fulfil the uniformly shrinkable condition, if it is normalized and there exists

r ∈ (0, 1) such that {ψκ(rQmκ ) : κ ∈ K} is a cover for M.

Following H. Amann [4, 5], we say that (M, g) is a uniformly regular Riemannian manifold

if it admits an atlas A such that

(R1) A is uniformly shrinkable and has finite multiplicity. If M is oriented, then A is orientation

preserving.

(R2) ‖ϕη ◦ ψκ‖k,∞ ≤ c(k), κ ∈ K, η ∈ N(κ), and k ∈ N0.

(R3) ψ∗κg ∼ gm, κ ∈ K. Here gm denotes the Euclidean metric on Rm and ψ∗κg denotes the

pull-back metric of g by ψκ.

(R4) ‖ψ∗κg‖k,∞ ≤ c(k), κ ∈ K and k ∈ N0.

Here ‖u‖k,∞ := max|α|≤k ‖∂αu‖∞, and it is understood that a constant c(k), like in (R2), depends

only on k. An atlas A satisfying (R1) and (R2) is called a uniformly regular atlas. (R3) reads as

|ξ|2/c ≤ ψ∗κg(x)(ξ, ξ) ≤ c|ξ|2, for any x ∈ Qmκ , ξ ∈ Rm, κ ∈ K and some c ≥ 1.

In [30], it is shown that the class of uniformly regular Riemannian manifolds coincides with the

family of complete Riemannian manifolds with bounded geometry, when ∂M = ∅.

Assume that ρ ∈ C∞(M, (0,∞)). Then (ρ,K) is a singularity datum for M if

14



(S1) (M, g/ρ2) is a uniformly regular Riemannian manifold.

(S2) A is a uniformly regular atlas.

(S3) ‖ψ∗κρ‖k,∞ ≤ c(k)ρκ, κ ∈ K and k ∈ N0, where ρκ := ρ(ψκ(0)).

(S4) ρκ/c ≤ ρ(p) ≤ cρκ, p ∈ Oκ and κ ∈ K for some c ≥ 1 independent of κ.

Two singularity data (ρ,K) and (ρ̃, K̃) are equivalent, if

(E1) ρ ∼ ρ̃.

(E2) card{κ̃ ∈ K̃ : Oκ̃ ∩ Oκ 6= ∅} ≤ c, κ ∈ K.

(E3) ‖ϕκ̃ ◦ ψκ‖k,∞ ≤ c(k), κ ∈ K, κ̃ ∈ K̃ and k ∈ N0

We write the equivalence relationship as (ρ,K) ∼ (ρ̃, K̃). (S1) and (E1) imply that

1/c ≤ ρκ/ρ̃κ̃ ≤ c, κ ∈ K, κ̃ ∈ K̃ and Oκ̃ ∩ Oκ 6= ∅.(I.10)

A singularity structure, S(M), for M is a maximal family of equivalent singularity data. A singularity

function for S(M) is a function ρ ∈ C∞(M, (0,∞)) such that there exists an atlas A with (ρ,A) ∈

S(M). The set of all singularity functions for S(M) is the singular type, T(M), for S(M). By

a singular manifold we mean a Riemannian manifold M endowed with a singularity structure

S(M). Then M is said to be singular of type T(M). If ρ ∈ T(M), then it is convenient to set

[[ρ]] := T(M) and to say that (M, g; ρ) is a singular manifold. A singular manifold is a uniformly

regular Riemannian manifold iff ρ ∼ 1M.

We refer to [6, 7] for examples of uniformly regular Riemannian manifolds and singular manifolds.

A singular manifold M with a uniformly regular atlas A admits a localization system subordinate

to A, by which we mean a family (πκ, ζκ)κ∈K satisfying:

(L1) πκ ∈ D(Oκ, [0, 1]) and (π2
κ)κ∈K is a partition of unity subordinate to A.

(L2) ζκ := ϕ∗κζ with ζ ∈ D(Qm, [0, 1]) satisfying ζ|supp(ψ∗κπκ) ≡ 1, κ ∈ K.

(L3) ‖ψ∗κπκ‖k,∞ ≤ c(k), for κ ∈ K, k ∈ N0.

The reader may refer to [4, Lemma 3.2] for a proof.
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Lastly, for each k ∈ N, the concept of Ck-uniformly regular Riemannian manifold is defined

by modifying (R2), (R4) and (L1)-(L3) in an obvious way. Similarly, Ck-singular manifolds are

defined by replacing the smoothness of ρ by ρ ∈ Ck(M, (0,∞)) and altering (S1)-(S3) accordingly.

3.2. Notations. Let K ∈ {R,C}. N0 is the set of all natural numbers including 0.

For any interval I containing 0, İ := I \ {0}. Given any topological set U , Ů denotes the interior

of U .

For any two Banach spaces X,Y , X
.
= Y means that they are equal in the sense of equivalent

norms. L(X,Y ) denotes the space of all bounded linear operators from X to Y , and Lis(X,Y )

stands for the set of all bounded linear isomorphisms from X to Y .

For any Banach space E, we abbreviate F(Rm, E) to F(E), where F stands for any function space

defined in this article. The precise definitions for these function spaces will be presented in Section

2.

Given any Banach space X and manifold M , let ‖ · ‖∞, ‖ · ‖s,∞, ‖ · ‖p and ‖ · ‖s,p denote the

usual norm of the Banach spaces BC(M , X)(L∞(M , X)), BCs(M , X), Lp(M , X) and W s
p (M , X),

respectively.

We denote K-valued function spaces with domain U ∈ {M,Ω} by F(U) if Ω ⊂ Rm.
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Chapter II

Weighted function spaces on singular

manifolds

In this section, we define the weighted function spaces on singular manifolds, following the work of

H. Amann in [4, 5].

Let A be a countable index set. Suppose Eα is for each α ∈ A a locally convex space. We

endow
∏
αEα with the product topology, that is, the coarsest topology for which all projections

prβ :
∏
αEα → Eβ, (eα)α 7→ eβ are continuous. By

⊕
αEα we mean the vector subspace of

∏
αEα

consisting of all finitely supported elements, equipped with the inductive limit topology, that is,

the finest locally convex topology for which all injections Eβ →
⊕

αEα are continuous.

1. Tensor bundles

Suppose (M, g; ρ) is a singular manifold. Given σ, τ ∈ N0,

T στ M := TM⊗σ ⊗ T ∗M⊗τ

is the (σ, τ)-tensor bundle of M, where TM and T ∗M are the tangent and the cotangent bundle of M,

respectively. We write TστM for the C∞(M)-module of all smooth sections of T στ M, and Γ(M, T στ M)

for the set of all sections.

For abbreviation, we set Jσ := {1, 2, . . . ,m}σ, and Jτ is defined alike. Given local coordinates

ϕ = {x1, . . . , xm}, (i) := (i1, . . . , iσ) ∈ Jσ and (j) := (j1, . . . , jτ ) ∈ Jτ , we set

∂

∂x(i)
:=

∂

∂xi1
⊗ · · · ⊗ ∂

∂xiσ
, ∂(i) := ∂i1 ◦ · · · ◦ ∂iσ dx(j) := dxj1 ⊗ · · · ⊗ dxjτ
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with ∂i = ∂
∂xi

. The local representation of a ∈ Γ(M, T στ M) with respect to these coordinates is

given by

a = a
(i)
(j)

∂

∂x(i)
⊗ dx(j)(II.1)

with coefficients a
(i)
(j) defined on Oκ

We denote by ∇ = ∇g the Levi-Civita connection on TM. It has a unique extension over TστM

satisfying, for X ∈ T1
0M,

(i) ∇Xf = 〈df,X〉, f ∈ C∞(M),

(ii) ∇X(a⊗ b) = ∇Xa⊗ b+ a⊗∇Xb, a ∈ Tσ1τ1 M, b ∈ Tσ2τ2 M,

(iii) ∇X〈a, b〉 = 〈∇Xa, b〉+ 〈a,∇Xb〉, a ∈ TστM, b ∈ TτσM,

where 〈·, ·〉 : TστM× TτσM→ C∞(M) is the extension of the fiber-wise defined duality pairing on M,

cf. [4, Section 3]. Then the covariant (Levi-Civita) derivative is the linear map

∇ : TστM→ Tστ+1M, a 7→ ∇a

defined by

〈∇a, b⊗X〉 := 〈∇Xa, b〉, b ∈ TτσM, X ∈ T1
0M.

For k ∈ N0, we define

∇k : TστM→ Tστ+kM, a 7→ ∇ka

by letting ∇0a := a and ∇k+1a := ∇◦∇ka. We can also extend the Riemannian metric (·|·)g from

the tangent bundle to any (σ, τ)-tensor bundle T στ M such that (·|·)g := (·|·)gτσ : T στ M × T στ M → C

by

(a|b)g = g(i)(̃i)g
(j)(j̃)a

(i)
(j)b̄

(̃i)

(j̃)

in every coordinate with (i), (̃i) ∈ Jσ, (j), (j̃) ∈ Jτ and

g(i)(̃i) := gi1 ,̃i1 · · · giσ ,̃iσ , g(j)(j̃) := gj1,j̃1 · · · gjτ ,j̃τ .

In addition,

| · |g := | · |gτσ : TστM→ C∞(M), a 7→
√

(a|a)g

is called the (vector bundle) norm induced by g.
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We assume that V is a C-valued tensor bundle on M and E is a C-valued vector space, i.e.,

V = V σ
τ := {T στ M, (·|·)g}, and E = Eστ := {Cmσ×mτ , (·|·)},

for some σ, τ ∈ N0. Here (a|b) :=trace(b∗a) with b∗ being the conjugate matrix of b. By setting

N = mσ+τ , we can identify Fs(M, E) with Fs(M)N .

Recall that for any a ∈ V σ
τ+1

(a])
(i;k)
(j) := gkla

(i)
(j;l), (i) ∈ Jσ, (j) ∈ Jτ , k, l ∈ J1.

We have |a]|gτσ+1
= |a|gτ+1

σ
. For any (i1) ∈ Jσ1 and (i2) ∈ Jσ2 , the index (i1; i2) is defined by

(i1; i2) = (i1,1, · · · , i1,σ1 ; i2,1, · · · , i2,σ2).

Given any a ∈ V σ+1
τ ,

(a[)
(i)
(j;k) := gkla

(i;l)
(j) .

Similarly, we have |a[|gτ+1
σ

= |a|τgσ+1
.

Suppose that σ + τ ≥ 1. We put for a ∈ V and αi ∈ T ∗M, βj ∈ TM

(Gτσa)(α1, · · · , ατ ;β1, · · · , βσ) := a((β1)[, · · · , (βσ)[; (α1)], · · · , (ατ )]).

Then it induces a conjugate linear bijection

Gτσ : V → V ′, (Gτσ)−1 = Gστ .

Consequently, for a, b ∈ V

(a|b)g = 〈a,Gτσ b̄〉.

From this, it is easy to show

|Gτσa|gστ = |a|gτσ .(II.2)

Throughout the rest of this paper, unless stated otherwise, we always assume that
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• (M, g; ρ) is a singular manifold.

• ρ ∈ T(M), s ≥ 0, 1 < p <∞ and ϑ ∈ R.

• (πκ, ζκ)κ∈K is a localization system subordinate to A.

• σ, τ ∈ N0, V = V σ
τ := {T στ M, (·|·)g}, E = Eστ := {Cmσ×mτ , (·|·)}.

In [4, Lemma 3.1], it is shown that M satisfies the following properties:

(P1) ψ∗κg ∼ ρ2
κgm and ψ∗κg

∗ ∼ ρ−2
κ gm, where g∗ is the induced contravariant metric.

(P2) ρ−2
κ ‖ψ∗κg‖k,∞ + ρ2

κ‖ψ∗κg∗‖k,∞ ≤ c(k), k ∈ N0 and κ ∈ K.

(P3) For σ, τ ∈ N0 given, then

ψ∗κ(|a|g) ∼ ρσ−τκ |ψ∗κa|gm , a ∈ TστM,

and

|ϕ∗κb|g ∼ ρσ−τκ ϕ∗κ(|b|gm), b ∈ TστQ
m
κ .

For K ⊂ M, we put KK := {κ ∈ K : Oκ ∩K 6= ∅}. Then, given κ ∈ K,

Xκ :=


Rm if κ ∈ K \ K∂M,

Hm otherwise,

endowed with the Euclidean metric gm.

Given a ∈ Γ(M, V ) with local representation (II.1) we define ψ∗κa ∈ E by means of ψ∗κa = [a
(i)
(j)],

where [a
(i)
(j)] stands for the (mσ×mτ )-matrix with entries a

(i)
(j) in the ((i), (j)) position, with (i), (j)

arranged lexicographically.

2. Definitions of weighted function spaces

For the sake of brevity, we set L1,loc(X, E) :=
∏
κ L1,loc(Xκ, E). Then we introduce two linear maps

for κ ∈ K:

Rcκ : L1,loc(M, V )→ L1,loc(Xκ, E), u 7→ ψ∗κ(πκu),

and
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Rκ : L1,loc(Xκ, E)→ L1,loc(M, V ), vκ 7→ πκϕ
∗
κvκ.

Here and in the following it is understood that a partially defined and compactly supported tensor

field is automatically extended over the whole base manifold by identifying it to be zero outside its

original domain. We define

Rc : L1,loc(M, V )→ L1,loc(Rm), u 7→ (Rcκu)κ,

and

R : L1,loc(Rm)→ L1,loc(M, V ), (vκ)κ 7→
∑
κ

Rκvκ.

In the rest of this section we assume that k ∈ N0. In the first place, we list some prerequisites for

the Hölder and little Hölder spaces on X ∈ {Rm,Hm} from [5, Section 11]. Given any Banach space

F , the Banach space BCk(X, F ) is defined by

BCk(X, F ) := ({u ∈ Ck(X, F ) : ‖u‖k,∞ <∞}, ‖ · ‖k,∞).

The closed linear subspace BUCk(X, F ) of BCk(X, F ) consists of all functions u ∈ BCk(X, F ) such

that ∂αu is uniformly continuous for all |α| ≤ k. Moreover,

BC∞(X, F ) :=
⋂
k

BCk(X, F ) =
⋂
k

BUCk(X, F ).

It is a Fréchet space when equipped with the natural projective topology.

For 0 < s < 1, 0 < δ ≤ ∞ and u ∈ FX, the seminorm [·]δs,∞ is defined by

[u]δs,∞ := sup
h∈(0,δ)m

‖u(·+ h)− u(·)‖∞
|h|s

, [·]s,∞ := [·]∞s,∞.

Let k < s < k + 1. The Hölder space BCs(X, F ) is defined as

BCs(X, F ) := ({u ∈ BCk(X, F ) : ‖u‖s,∞ <∞}, ‖ · ‖s,∞),

where ‖u‖s,∞ := ‖u‖k,∞ + max|α|=k[∂
αu]s−k,∞.

The little Hölder space of order s ≥ 0 is defined by

bcs(X, F ) := the closure of BC∞(X, F ) in BCs(X, F ).
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By [5, formula (11.13), Corollary 11.2, Theorem 11.3], we have

bck(X, F ) = BUCk(X, F ),

and for k < s < k + 1

u ∈ BCs(X, F ) belongs to bcs(X, F ) iff lim
δ→0

[∂αu]δs−[s],∞ = 0, |α| = [s].

Now we are ready to introduce the weighted Hölder and little Hölder spaces on singular manifolds.

Define

BCk,ϑ(M, V ) := ({u ∈ Ck(M, V ) : ‖u‖k,∞;ϑ <∞}, ‖ · ‖k,∞;ϑ),

where ‖u‖k,∞;ϑ := max0≤i≤k‖ρϑ+i+τ−σ|∇iu|g‖∞. We also set

BC∞,ϑ(M, V ) :=
⋂
k

BCk,ϑ(M, V )

endowed with the conventional projective topology. Then

bck,ϑ(M, V ) := the closure of BC∞,ϑ in BCk,ϑ(M, V ).

Let k < s < k + 1. Now the Hölder space BCs,ϑ(M, V ) is defined by

(II.3) BCs,ϑ(M, V ) := (bck,ϑ(M, V ), bck+1,ϑ(M, V ))s−k,∞.

Here (·, ·)θ,∞ is the real interpolation method, see [1, Example I.2.4.1] and [57, Definition 1.2.2].

BCs,ϑ(M, V ) equipped with the norm ‖ · ‖s,∞;ϑ is a Banach space by interpolation theory, where

‖·‖s,∞;ϑ is the norm of the interpolation space in definition (II.3). For s ≥ 0, we define the weighted

little Hölder spaces by

(II.4) bcs,ϑ(M, V ) := the closure of BC∞,ϑ(M, V ) in BCs,ϑ(M, V ).

We denote by D(M, V ) the space of smooth sections of V that is compactly supported in M. The

weighted Sobolev space W k,ϑ
p (M, V ) is defined as the completion of D(M, V ) in L1,loc(M, V ) with

respect to the norm

‖ · ‖k,p;ϑ : u 7→ (
∑k

i=0 ‖ρϑ+i+τ−σ|∇iu|g‖pp)
1
p .
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Note that W 0,ϑ
p (M, V ) = Lϑp (M, V ) with equal norms. In particular, we can define the weighted

spaces Lϑq (M, V ) for q ∈ {1,∞} in a similar manner.

Analogously, the weighted Besov spaces are defined for k ∈ N by

Bk,ϑ
p (M, V ) := (W k−1,ϑ

p (M, V ),W k+1,ϑ
p (M, V ))1/2,p.(II.5)

The weighted Sobolev-Slobodeckii spaces are defined as

W s,ϑ
p (M, V ) := (W k,ϑ

p (M, V ),W k+1,ϑ
p (M, V ))s−k,p,(II.6)

for k < s < k + 1, where (·, ·)θ,p is the real interpolation method [85, Section 1.3].

Whenever ∂M 6= ∅, we denote by F̊s,ϑp (M, V ) the closure of D(M̊, V ) in Fs,ϑp (M, V ) for F ∈ {B,W}.

In particular,

W̊ s,ϑ
p (M, V ) = W s,ϑ

p (M, V ), 0 ≤ s < 1/p.

See [4, Theorem 8.3(ii)].

In the special case that (M, g) is uniformly regular, since ρ ∼ 1M, the definition of any weighted space

Fs,ϑ(M, V ) is actually independent of the weight ϑ. In this case, all spaces are indeed unweighted.

We thus denote these spaces simply by Fs(M, V ).

3. Basic properties

In the following context, assume that Eκ is a sequence of Banach spaces for κ ∈ K. Then E :=∏
κEκ. For 1 ≤ q ≤ ∞, we denote by lϑq (E) := lϑq (E; ρ) the linear subspace of E consisting of all

x = (xκ) such that

‖x‖lϑq (E) :=


(
∑
κ
‖ρϑ+m/q

κ xκ‖qEκ)1/q, 1 ≤ q <∞,

sup
κ
‖ρϑκxκ‖Eκ , q =∞

is finite. Then lϑq (E) is a Banach space with norm ‖ · ‖lϑq (E).

For F ∈ {bc, BC,Wp, W̊p}, we put Fs :=
∏
κ F

s
κ, where Fsκ := Fs(Xκ, E). Denote by

lϑ∞,unif(bc
k)
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the linear subspace of lϑ∞(BCk) of all u = (uκ)κ such that ρϑκ∂
αuκ is uniformly continuous on Xκ

for |α| ≤ k, uniformly with respect to κ ∈ K. Similarly, for any k < s < k + 1, we denote by

lϑ∞,unif(bc
s)

the linear subspace of lϑ∞,unif(bc
k) of all u = (uκ)κ such that

lim
δ→0

max
|α|=k

ρϑκ[∂αuκ]δs−k,∞ = 0,

uniformly with respect to κ ∈ K.

In the sequel, we always assume F ∈ {bc, BC,Wp, W̊p}, unless stated otherwise. Define

Lϑ : lϑ
′+ϑ
q (Fs)→ lϑ

′
q (Fs)) : (uκ)κ 7→ (ρϑκuκ)κ,

where q = “∞, unif” for F = bc, or q = ∞ for F = BC, or q = p for F ∈ {Wp, W̊p}. Then the

following result follows immediately from the definition of weighted lq spaces.

Lϑ ∈ Lis(lϑ
′+ϑ
q (Fs), lϑ

′
q (Fs)), with (Lϑ)−1 = L−ϑ.(II.7)

Proposition II.1. R is a retraction from lϑq (Fs) onto Fs,ϑ(M, V ) with Rc as a coretraction. Here

q = “∞,unif” for F = bc, or q =∞ for F = BC, or q = p for F ∈ {Wp, W̊p}.

Proof. In [4, 5], a different retraction and coretraction system between the spaces Fs,ϑ(M, V )

and lb(F
s) is defined as follows.

Rϑ;c
q,κ := ρϑ+m/q

κ Rcκ, and Rϑq,κ := ρ−ϑ−m/qκ Rκ;

and

Rϑ;c
q : L1,loc(M, V )→ L1,loc(Rm), u 7→ (Rϑ;c

q,κu)κ,

Rϑ∞ : L1,loc(Rm)→ L1,loc(M, V ), (vκ)κ 7→
∑
κ

Rϑq,κvκ.

We have the following relationship between these two retraction and coretraction systems:

Rϑ;c
q = Lϑ+m/q ◦ Rc, Rϑq = R ◦ L−ϑ−m/q.
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Now the assertion follows straight away from (II.7), [4, Theorems 6.1, 6.3, 7.1, 11.1] and [5, Theo-

rems 12.1, 12.3, formula (12.7)]. �

In the sequel, (·, ·)0
θ,∞ and [·, ·]θ denote the continuous interpolation method and the complex

interpolation method, respectively. See [1, Example I.2.4.2, I.2.4.4] for definitions.

Proposition II.2. Suppose that 0 < s0 < s1 <∞, 0 < θ < 1 and ϑ ∈ R. Then

(lϑq (Fs0), lϑq (Fs1))θ
.
= lϑq (Fsθ)

.
= [lϑq (Fs0), lϑq (Fs1)]θ

holds for s0, s1, sθ /∈ N for F ∈ {bc, BC,Wp}, or s0, s1, sθ /∈ N + 1/p for F = W̊p. When F = bc,

(·, ·)θ = (·, ·)0
θ,∞, when F = BC, (·, ·)θ = (·, ·)θ,∞, or when F ∈ {Wp, W̊p}, (·, ·)θ = (·, ·)θ,p. Here

ξθ := (1− θ)ξ0 + θξ1 for any ξ0, ξ1 ∈ R.

Proof. When F ∈ {Wp, W̊p}, the assertion with weight ϑ = 0 follows from [5, Lemmas 11.10,

11.11] and [1, Proposition I.2.3.2]. The rest of the statement is a consequence of (II.7) and [1,

Proposition I.2.3.2].

When F ∈ {bc, BC}, the assertion with weight ϑ = −1/p follows from [3, formula (3.4.1), Theo-

rem 3.7.1, Corollary 4.9.2] and [85, Theorem 1.18.1]. (II.7) implies the remaining assertions. �

Proposition II.3. Suppose that 0 < s0 < s1 <∞, 0 < θ < 1 and ϑ ∈ R. Then

(Fs0,ϑ(M, V ),Fs1,ϑ(M, V ))θ
.
= Fsθ,ϑ(M, V )

.
= [Fs0,ϑ(M, V ),Fs1,ϑ(M, V )]θ

holds for s0, s1, sθ /∈ N for F ∈ {bc, BC,Wp}, or s0, s1, sθ /∈ N + 1/p for F = W̊p. When F = bc,

(·, ·)θ = (·, ·)0
θ,∞, when F = BC, (·, ·)θ = (·, ·)θ,∞, or when F ∈ {Wp, W̊p}, (·, ·)θ = (·, ·)θ,p.

Proof. The assertion is a direct consequence of Propositions II.1 and II.2. �

Let Vj = V
σj
τj := {T σjτj M, (·|·)g} with j = 1, 2, 3 be K-valued tensor bundles on M. Let ⊕ be the

Whitney sum. By bundle multiplication from V1 × V2 into V3, denoted by

m : V1 ⊕ V2 → V3, (v1, v2) 7→ m(v1, v2),

we mean a smooth bounded section m of Hom(V1 ⊗ V2, V3), i.e.,

m ∈ BC∞(M,Hom(V1 ⊗ V2, V3)),(II.8)
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such that m(v1, v2) := m(v1 ⊗ v2). (II.8) implies that for some c > 0

|m(v1, v2)|g ≤ c|v1|g|v2|g, vi ∈ Γ(M, Vi) with i = 1, 2.

Its point-wise extension from Γ(M, V1 ⊕ V2) onto Γ(M, V3) is defined by:

m(v1, v2)(p) := m(p)(v1(p), v2(p))

for vi ∈ Γ(M, Vi) and p ∈ M. We still denote it by m. We can prove the following point-wise

multiplier theorems for function spaces over singular manifolds.

Proposition II.4. Let k ∈ N0. Assume that the tensor bundles Vj = V
σj
τj := {T σjτj M, (·|·)g} with

j = 1, 2, 3 satisfy

σ3 − τ3 = σ1 + σ2 − τ1 − τ2.(II.9)

Suppose that m : V1 ⊕ V2 → V3 is a bundle multiplication, and ϑ3 = ϑ1 + ϑ2. Then [(v1, v2) 7→

m(v1, v2)] is a bilinear and continuous map for the following spaces.

(a) BCt,ϑ1(M, V1)× Fs,ϑ2(M, V2)→ Fs,ϑ3(M, V3), where t > s ≥ 0 for F ∈ {bc,Wp, W̊p}.

(b) BCk,ϑ1(M, V1)× Fk,ϑ2(M, V2)→ Fk,ϑ3(M, V3), where k ∈ N0 for F ∈ {Wp, W̊p}.

(c) Fs,ϑ1(M, V1)× Fs,ϑ2(M, V2)→ Fs,ϑ3(M, V3) for F ∈ {bc, BC}.

Proof. The statement follows from [5, Theorem 13.5]. �

Proposition II.5. For F ∈ {bc, BC,Wp, W̊p}, we have

fϑ : [u 7→ ρϑu] ∈ Lis(Fs,ϑ
′+ϑ(M, V ),Fs,ϑ

′
(M, V )), (fϑ)−1 = f−ϑ.

Proof. By (S3) and (S4), we infer that ρ := (ζ ψ
∗
κρ
ϑ

ρϑκ
)κ ∈

⋂
k l∞(BCk), where ζ is defined

in (L2). Then it follows from the point-wise multiplication results in [2, Appendix A2] and [86,

Corollary 2.8.2] that for u = (uκ)κ and any s ≥ 0

[u 7→ (ζ
ψ∗κρ

ϑ

ρϑκ
uκ)κ] ∈ L(lϑ

′
q (Fs)),
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where q =∞ for F = BC, or q = p for F ∈ {Wp, W̊p}. Given u ∈ Fs,ϑ
′
(M, V ),

‖ρϑu‖Fs,ϑ′ = ‖RRcρϑu‖Fs,ϑ′ ≤ C‖R
cρϑu‖lϑ′q (Fs)

= ‖ρLϑRcu‖lϑ′q (Fs) ≤ C‖ρ‖l∞(BCk)‖R
cu‖

lϑ
′+ϑ
q (Fs)

≤ C(ρ, ϑ, s)‖u‖Fs,ϑ′+ϑ .

Now the open mapping theorem implies that the asserted result holds for F ∈ {BC,Wp, W̊p}.

Given any u ∈ bcs,ϑ′+ϑ(M, V ), there exists (un)n ∈ BC∞,ϑ
′+ϑ(M, V ) such that

un → u, in BCs,ϑ
′+ϑ(M, V ).

We already have

‖ρϑu‖s,∞;ϑ′ ≤ C‖u‖s,∞;ϑ′+ϑ,

and (ρϑun)n ∈ BC∞,ϑ
′
(M, V ). By the conclusion for Fs = BCs, we infer that as n→∞

‖ρϑ(u− un)‖s,∞;ϑ′ ≤ C‖u− un‖s,∞;ϑ′+ϑ → 0.

We have established the asserted result for weighted little Hölder spaces in view of the defini-

tion (II.4). �

Proposition II.6. For F ∈ {bc, BC,Wp, W̊p}, σ, τ ∈ N0 and ϑ ∈ R,

∇ ∈ L(Fs,ϑ(M, V σ
τ ),Fs−1,ϑ(M, V σ

τ+1)).

Proof. The case s ∈ N and F ∈ {BC,Wp, W̊p} is immediate from the definition of the weighted

function spaces. When F = bc, the integer case can be proven by a density argument as in the

proof for Proposition II.5. The non-integer case follows from [5, Theorem 16.1]. �

Let ĝ = g/ρ2. Then (M, ĝ) is a uniformly regular Riemannian manifold. We denote the (σ, τ)-tensor

fields with respect to ĝ by V̂ = V̂ σ
τ . The definitions of the corresponding weighted function spaces

Fs
′,ϑ′(M, V̂ ) do not depend on the choice of ϑ′ in this case. We denote the unweighted spaces by

Fs
′
(M, V̂ ). The reader may refer to [79] for the precise definitions for these unweighted spaces on

uniformly regular Rimannian manifolds.
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Proposition II.7. For F ∈ {bc, BC,Wp, W̊p}, it holds that

Fs(M, V̂ )
.
= Fs,−1/p(M, V )

Proof. The assertion follows from Proposition II.1 and [79, Propositions 2.1, 2.2]. �

4. Surface divergence

Proposition II.8. For F ∈ {bc, BC,Wp, W̊p}, we have

[a 7→ a]] ∈ L(Fs,ϑ(M, V σ
τ+1),Fs,ϑ+2(M, V σ+1

τ )).

[a 7→ a[] ∈ L(Fs,ϑ(M, V σ+1
τ ),Fs,ϑ−2(M, V σ

τ+1)).

Proof. We only prove the second assertion. The first one follows in an analogous manner. For

any X ∈ TM,

∇Xa[ = ∇X〈g, a〉 = 〈∇Xg, a〉+ 〈g,∇Xa〉 = 〈g,∇Xa〉 = (∇Xa)[.

The third equality follows from the metric preservation of the Levi-Civita connection. This implies

∇(a[) = (∇a)[.

By induction, we have

∇k(a[) = (∇ka)[.

Then the statement for the case s ∈ N0 is an immediate consequence of the definitions of the cor-

responding function spaces. The non-integer case follows by interpolation theory, Proposition II.3

and Definitions (II.3), formula (II.6) when F ∈ {BC,Wp, W̊p}. When F = bc, the assertion follows

from a density argument and Definition (II.4) as in the proof for Proposition II.5. �

We denote by Cσ+1
τ+1 : V σ+1

τ+1 → V σ
τ the contraction with respect to position σ + 1 and τ + 1, that is

for any (i) ∈ Jσ, (j) ∈ Jτ and k, l ∈ J1 and p ∈ M

Cσ+1
τ+1a := Cσ+1

τ+1a
(i;k)
(j;l)

∂

∂x(i)
⊗ ∂

∂xk
⊗ dx(j) ⊗ dxl := a

(i;k)
(j;k)

∂

∂x(i)
⊗ dx(j)
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in every local chart. Recall that the surface divergence of tensor fields with respect to g is the map

(II.10) div = divg : C1(M, V σ+1
τ )→ C(M, V σ

τ ), a 7→ Cσ+1
τ+1(∇a).

Suppose that ∂M 6= ∅. Since T (∂M) is a subbundle of codimension 1 of the vector bundle (TM)∂M

over ∂M, there exists a unique vector field n in (TM)∂M of length 1 orthogonal to T (∂M), and

inward pointing. In every local coordinate, ϕκ = {x1, · · · , xm}

n =
1√

g11|∂Oκ
∂

∂x1
.

Put V ′ := V τ
σ . Let C : V σ+σ1

τ+τ1 × V
′ → V σ1

τ1 denote the complete contraction. For any a ∈ V σ+σ1
τ+τ1

and b ∈ V ′, the complete contraction (on the right) is defined by

C(a, b) = a
(i;i1)
(j;j1)b

(j)
(i)

∂

∂x(i1)
⊗ dx(j1),

with (i) ∈ Jσ ,(i1) ∈ Jσ1 , (j) ∈ Jτ ,(j1) ∈ Jτ1 , in local coordinates. The complete contraction

(on the left) is defined in an analogous manner. Note that the complete contraction is a bundle

multiplication.

Theorem II.9. For any a ∈W 1,−ϑ
2 (M, V ′) and b ∈ W̊ 1,ϑ

2 (M, V σ+1
τ )

−
∫
M

〈divb, a〉 dVg =

∫
M

〈b,∇a〉 dVg.

Proof. By the divergence theorem and the density of the spaces D(M, V ′) and D(M̊, V σ+1
τ ) in

W 1,−ϑ
2 (M, V ′) and W̊ 1,ϑ

2 (M, V σ+1
τ ), it suffices to show that

div(C(b, a)) = 〈divb, a〉+ 〈b,∇a〉,(II.11)

for any a ∈ D(M, V ′) and b ∈ D(M̊, V σ+1
τ ). Definition (II.10) yields

div(C(b, a)) = div(a
(j)
(i) b

(i;k)
(j)

∂

∂xk
) = ∂k(a

(j)
(i) b

(i;k)
(j) ) + Γllka

(j)
(i) b

(i;k)
(j) ,
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for (i) ∈ Jσ, (j) ∈ Jτ . By [4, formula (3.17)] and (II.10)

〈divb, a〉

= a
(j)
(i)∂k(b

(i;k)
(j) ) + (

σ∑
s=1

Γiskhb
(i1,··· ,h,··· ,iσ ;k)
(j) −

τ∑
t=1

Γhkjtb
(i;k)
(j1,··· ,h,··· ,jτ ) + Γkkhb

(i;h)
(j) )a

(j)
(i) ,

and

〈b,∇a〉 = (∂ka
(j)
(i) )b

(i;k)
(j) + (

τ∑
t=1

Γjtkha
(j1,··· ,h,··· ,jτ )
(i) −

σ∑
s=1

Γhkisa
(j)
(i1,··· ,h,··· ,iσ))b

(i;k)
(j) .

This proves (II.11). �

Corollary II.10. For any a ∈W 1,−ϑ+2σ−2τ
2 (M, V ) and b ∈ W̊ 1,ϑ

2 (M, V σ+1
τ )

−
∫
M

(divb|a)g dVg =

∫
M

(b|grada)g dVg.

Proof. In [5, p. 10], it is shown that for any X ∈ TM and a ∈ V

∇X(Gτσa) = Gτσ(∇Xa).

Therefore,

∇Gτσa = (Gτ+1
σ (∇u))[.

Now it is an easy task to check

∇Gτσu = (Gτ+1
σ (gradu)[)[ = Gτσ+1(gradu).(II.12)

This implies the asserted result. �

Proposition II.11. div ∈ L(Fs+1,ϑ(M, V σ+1
τ ),Fs,ϑ(M, V σ

τ )) for F ∈ {BC,Wp, W̊p}.

Proof. Given any a ∈ Fs,ϑ(M, V σ+1
τ ), it is easy to see that

‖RcCσ+1
τ+1a‖lϑq (Fs) ≤ C‖Rca‖lϑq (Fs(Eσ+1

τ+1 ))

with ψ∗κ(πκa
(i;k)
(j;k)) in the ((i), (j)) position. Here q = ∞ for F = BC, or q = p for F ∈ {Wp, W̊p}.

Combining with Proposition II.1, it implies that

Cσ+1
τ+1 ∈ L(Fs,ϑ(M, V σ+1

τ+1 ),Fs,ϑ(M, V )).
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Using Proposition II.6, we can now prove the asserted result. �

5. Spaces of negative order

For any u ∈ D(M, V ) and v ∈ D(M, V ′), we put

〈u, v〉M :=

∫
M

〈u, v̄〉 dVg.

Then we define

(II.13) W−s,ϑp (M, V ) := (W̊ s,−ϑ
p′ (M, V ′))′

by mean of the duality pairing 〈·, ·〉M. It is convenient to denote by W̊−s,ϑp (M, V ) the closure of

D(M̊, V ) in W−s,ϑp (M, V ). Then

W̊ t,ϑ
p (M, V ) = W t,ϑ

p (M, V ), t < 1/p.(II.14)

We refer the reader to [4, Section 12] for more details. Given u ∈ F−s,ϑ(M, V ) with F ∈ {Wp, W̊p}

and v ∈ D(M̊, V τ+1
σ )

〈∇u, v〉M := −
∫
M

〈u,div(v̄)〉 dVg.(II.15)

Theorem II.9 shows for u ∈ F−s,ϑ(M, V σ+1
τ ) and v ∈ D(M̊, V ′)

〈divu, v〉M = −
∫
M

〈u,∇v̄〉 dVg.

By means of Proposition II.6 and II.11, it is not hard to prove the following proposition.

Proposition II.12. Suppose that F ∈ {Wp, W̊p}. Then

∇ ∈ L(F−s,ϑ(M, V ),F−s−1,ϑ(M, V σ
τ+1)),

and

div ∈ L(F−s,ϑ(M, V σ+1
τ ),F−s−1,ϑ(M, V )).
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Let 〈·|·〉2,ϑ′ be the inner product in Lϑ
′

2 (M, V ), that is,

〈u|v〉2,ϑ′ :=

∫
M

ρ2ϑ′+2τ−2σ(u|v)g dVg.(II.16)

Proposition II.13. Suppose that F ∈ {Wp, W̊p} and s ∈ R. Then

[u 7→ ρ2τ−2σGτσu] ∈ Lis(Fs,ϑ(M, V ),Fs,ϑ(M, V ′)).

Proof. The statement follows from Proposition II.5, an analogue of the proof for Proposi-

tion (II.8) and the open mapping theorem. �

In virtue of Proposition II.5 and II.13, now one readily checks that

(W̊ s,ϑ
p (M, V ))′ϑ′

.
= W−s,2ϑ

′−ϑ
p′ (M, V ),(II.17)

where (W̊ s,ϑ
p (M, V ))′ϑ′ is the dual space of W s,ϑ

p (M, V ) with respect to 〈·|·〉2,ϑ′ .
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Chapter III

Examples of singular manifolds

1. Singular manifolds of pipe and wedge type

As was shown by the examples in [7], we can find manifolds with singularities of arbitrarily high

dimension. Among them, a very important family is the singular manifolds of pipe and wedge type.

Following [7], throughout we write J0 := (0, 1] and J∞ := [1,∞), and assume J ∈ {J0, J∞}.

We denote by R(J) the set of all R ∈ C∞(J, (0,∞)) with R(1) = 1 such that R(α) := lim
t→α

R(t)

exists in [0,∞] if J = Jα with α ∈ {0,∞}. We write R ∈ C (J) if

(i) R ∈ R(J), and R(∞) = 0 if J = J∞;

(ii)
∫
J

dt/R(t) =∞;

(iii) ‖∂kt R‖∞ <∞, k ≥ 1.

(III.1)

The elements in C (J) are called cusp characteristics on J .

The following results from [7] are the cornerstones of the construction of singular manifolds of pipe

and wedge type.

Lemma III.1. [7, Theorem 3.1] Suppose that ρ is a bounded singularity function on (M, g), and ρ̃

is one for (M̃, g̃). Then ρ⊗ ρ̃ is a singularity function for (M× M̃, g + g̃).

Lemma III.2. [7, Lemma 3.4] Let f : M̃ → M be a diffeomorphism of manifolds. Suppose that

(M, g; ρ) is a singular manifold. Then so is (M̃, f∗g; f∗ρ).

Lemma III.3. [7, Lemma 5.2] Suppose that R ∈ C (J). Then R is a singularity function for

(J, dt2).

Assume that (B, gB; b) is a d-dimensional singular submanifold of Rd̄ with singularity function b,

and R ∈ C (J). The (model) (R,B)-pipe P (R,B) on J , also called R-pipe over B on J , is defined
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by

P (R,B) = P (R,B; J) := {(t, R(t)y) : t ∈ J, y ∈ B} ⊂ R1+d̄.

It is a (1+d)-dimensional submanifold of R1+d̄. An R-pipe is an R-cusp if R(α) = 0 with α ∈ {0,∞}.

The map

φP = φP (R) : P → J ×B : (t, R(t)y)→ (t, y)

is a diffeomorphism, the canonical stretching diffeomorphism of P .

We assume that

b is bounded.(III.2)

Then the above three lemmas imply the following result.

Lemma III.4. Assume that (III.2) is fulfilled. Then

(P (R,B), φ∗P (dt2 + gB);φ∗P (R⊗ b))

is a singular manifold.

Assume that (Γ, gΓ) is a connected uniformly regular Riemannian manifold without boundary.

Then the (model) Γ-wedge over the (R,B)-pipe, P (R,B), is defined by

W = W (R,B,Γ) := P (R,B)× Γ.

If Γ is a one-point space, then W is naturally identified with P . Thus every pipe is also a wedge.

Lemma III.5. Assume that (III.2) is fulfilled. Then

(W (R,B,Γ), φ∗P (dt2 + gB) + gΓ;φ∗P (R⊗ b)⊗ 1Γ)

is a singular manifold.

In the following examples, (B, gB) always denotes a compact closed C∞-Riemannian manifold.

Example III.6. (a) Suppose M is a cone, i.e., M = ([0, 1]×B)/({0}×B). We equip M with

the conventional metric g = dt2 + t2gB. Then (M, g; ρ) is a singular manifold of wedge

type.
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(b) Suppose M is an edge manifold, that is, (M, g; ρ) = (P (t, B)× Rd, dt2 + t2gB + gd;φ
∗
P (t⊗

1B)⊗ 1Rd). Then (M, g; ρ) is a singular manifold of wedge type.

(c) Let [t 7→ T (t)], [r 7→ R(r)] ∈ C (J0) be two cusp characteristics on J0, i.e., (J0, dt
2;T ) and

(J0, dr
2;R) are two singular manifolds. In order to avoid possible confusion, we denote

the canonical stretching diffeomorphisms of the pipes generated by T and R by φPT and

φPR , respectively.

Suppose M is a (T,R)-corner manifold. More precisely, (M, g; ρ) =

(P (T, P (R,B)), φ∗PT (dt2 + φ∗PR(dr2 + gB));φ∗PT (T ⊗ φ∗PR(R⊗ 1B))).

Then (M, g; ρ) is a singular manifold of wedge type.

In some references, the authors equip an edge with the metric g = dt2/t2 +gB +gΓ/t
2, which makes

(M, g) uniformly regular. This case has been studied in depth in [6].

2. Manifolds with holes

In this section, we construct another interesting class of manifolds, that is, manifolds with holes.

Given any compact submanifold Σ ⊂ (M, g), the distance function is a well-defined smooth function

in a collar neighborhood UΣ of Σ. The distance ball at Σ with radius r is defined by

BM(Σ, r) := {p ∈ M : distM(p,Σ) < r}.

Lemma III.7. Suppose that (M , g) is a uniformly regular Riemannian manifold, and

Σ = {Σ1, · · · ,Σk}

is a finite set of disjoint m-dimensional compact manifolds with boundary such that Σj ⊂ M̊ . Put

M := M \ ∪kj=1Σj

and

Bj,r := B̄M (∂Σj , r) ∩M, j = 1, · · · , k.
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Then we can find a singularity function ρ satisfying

ρ|Bj,r
∼ distM (·, ∂Σj),

for some r ∈ [0, δ), where δ < diam(M ) fulfils that Bi,δ ∩Bj,δ = ∅ for i 6= j, and

ρ ∼ 1, elsewhere on M.

Then (M, g) is a singular manifold.

Proof. This lemma immediately follows from [7, Theorem 1.6]. �

Manifolds satisfying the conditions in Lemma III.7 are called singular manifolds with holes. We

will show in Proposition V.22 below that the singularity function can actually be chosen to satisfy

ρ|Bj,r
= distM (·, ∂Σj).

More generally, by [7, Theorem 1.6], we indeed have the following result.

Lemma III.8. Suppose that (M , g) is a uniformly regular Riemannian manifold, and

Σ = {Σ1, · · · ,Σk}

is a finite set of disjoint compact closed submanifolds of codimension at least 1 such that Σj ⊂ ∂M

if Σj ∩ ∂M 6= ∅. Put M := M \ ∪kj=1Σj and

Bj,r := B̄M (Σj , r) ∩M, j = 1, · · · , k.

Then we can find a singularity function ρ satisfying

ρ|Bj,r
∼ distM (·,Σj),

for some r ∈ [0, δ), where δ < diam(M ) fulfils that Bi,δ ∩Bj,δ = ∅ for i 6= j, and

ρ ∼ 1, elsewhere on M.

Then (M, g) is a singular manifold.
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Chapter IV

Continuous maximal regularity for

normally ρ-elliptic operators

Throughout this chapter, we always assume that (M, g; ρ) is a singular manifold without boundary.

Following [82], letting l ∈ N0, A : C∞(M, V ) → Γ(M, V ) is called a linear differential operator of

order l on M if we can find a = (ar)r ∈
∏l
r=0 Γ(M, V σ+τ+r

τ+σ ) such that

A = A(a) :=

l∑
r=0

C(ar,∇r·).(IV.1)

Recall C(·, ·) denotes complete contraction. Making use of [4, formula (3.18)], one can check that

for any l-th order linear differential operator so defined, in every local chart (Oκ, ϕκ) there exists

some linear differential operator

Aκ(x, ∂) :=
∑
|α|≤l

aκα(x)∂α, with aκα ∈ L(E)Q
m
κ ,(IV.2)

called the local representation of A with respect to (Oκ, ϕκ), such that for any u ∈ C∞(M, V )

ψ∗κ(Au) = Aκ(ψ∗κu).

Proposition IV.1. Let t > s ≥ 0, ϑ ∈ R and F ∈ {bc, BC,Wp}. Suppose that A = A(a) with

a = (ar)r ∈
∏l
r=0BC

t(M, V σ+τ+r
τ+σ ). Then

A ∈ L(Fs+l,ϑ(M, V ),Fs,ϑ(M, V )).

Proof. The assertion is a direct consequence of Propositions II.4 and II.6. �
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Corollary IV.2. Let s ≥ 0, ϑ ∈ R and F ∈ {bc, BC}. Suppose that A = A(a) with a = (ar)r ∈∏l
r=0 bc

s(M, V σ+τ+r
τ+σ ). Then

A ∈ L(Fs+l,ϑ(M, V ),Fs,ϑ(M, V )).

Given any angle φ ∈ [0, π], set

Σφ := {z ∈ C : |argz| ≤ φ} ∪ {0}.

A linear operator A := A(a) of order l is said to be normally ρ-elliptic if there exists some constant

Ce > 0 such that for every pair (p, ξ) ∈ M × Γ(M, T ∗M) with |ξ(p)|g∗(p) 6= 0 for all p ∈ M, the

principal symbol

σ̂Aπ(p, ξ(p)) := C(al, (−iξ)⊗l)(p) ∈ L(TpM
⊗σ ⊗ T ∗pM⊗τ )

satisfies

S := Σπ/2 ⊂ ρ(−σ̂Aπ(p, ξ(p))),(IV.3)

and

(ρl(p)|ξ(p)|lg∗(p) + |µ|)‖(µ+ σ̂Aπ(p, ξ(p)))−1‖L(TpM⊗σ⊗T ∗pM⊗τ ) ≤ Ce, µ ∈ S.(IV.4)

The constant Ce is called the ρ-ellipticity constant of A. To the best of the author’s knowledge,

this ellipticity condition is the first one formulated for elliptic operators acting on tensor fields on

manifolds with singularities.

We can also introduce a stronger version of the ellipticity condition for A. A is called uniformly

strongly ρ-elliptic if there exists some constant Ce > 0 such that for all (p, ξ, η) ∈ M×Γ(M, T ∗M)×

Γ(M, T στ M) the principal symbol satisfies

σ̂Aπ(p, ξ(p))(η(p)) ≥ Ceρl(p)|η(p)|2g(p)|ξ(p)|lg∗(p).

Here σ̂Aπ(p, ξ(p))(η(p)) := (C(al, η ⊗ (−iξ)⊗l)(p)|η(p))g(p). In [6], H. Amann has used the uni-

formly strong ρ-ellipticity condition to establish an Lp-maximal regularity theory for second order

differential operators acting on scalar functions.
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We can readily check that a uniformly strongly ρ-elliptic operator A must be normally ρ-elliptic. If

A is of odd order, then by replacing ξ with −ξ in (IV.3), it is easy to see that ρ(σ̂Aπ(p, ξ(p))) = C.

This is a contradiction. Therefore, every normally ρ-elliptic operator is of even order.

We call a linear operator A := A(a) s-regular if

ar ∈ bcs(M, V σ+τ+r
τ+σ ), r = 0, 1, · · · , l.(IV.5)

This reveals the existence of some constant Ca such that

‖ar‖s,∞ ≤ Ca, r = 0, 1, · · · , l.(IV.6)

We consider how (IV.5) affects the behavior of the localizations Aκ. Given any linear differential

operator A of order 2l, by an analogy of Proposition II.1, we infer that

(ψ∗κar)κ ∈ l∞,unif(bc
s(Qmκ , E

σ+τ+r
τ+σ )), r = 0, 1, · · · , 2l,

or equivalently

(ψ∗κ(ar)
(i)
(j))κ ∈ l∞,unif(bc

s(Qmκ )), (i) ∈ Jσ+τ+r, (j) ∈ Jτ+σ, r = 0, 1, · · · , 2l.

By [4, formula (3.18)], the coefficients of Aκ, i.e., aκα, are linear combinations of the products

of (ar)
(i)
(j) and possibly the derivatives of the Christoffel symbols of the metric g. Thus [4, for-

mula (3.19)] shows that

(aκα)κ ∈ l∞,unif(bc
s(Qmκ ,L(E))), |α| ≤ 2l.(IV.7)

Given any Banach space X, a linear differential operator of order l

A := A(x, ∂) :=
∑
|α|≤l

aα(x)∂α

defined on an open subset U ⊂ Rm with aα : U → L(X) is said to be normally elliptic if its

principal symbol σ̂Aπ(x, ξ) :=
∑
|α|=l

aα(x)(−iξ)α satisfies

S := Σπ/2 ⊂ ρ(−σ̂Aπ(x, ξ))
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and there exists some Ce > 0 such that

(|ξ|l + |µ|)‖(µ+ σ̂Aπ(x, ξ))−1‖L(X) ≤ Ce, µ ∈ S,(IV.8)

for all (x, ξ) ∈ U × Ṙm, where Ṙm := Rm \ {0}. The constant Ce is called the ellipticity constant of

A. As above, one can check that A must be of even order.

Proposition IV.3. A linear differential operator A := A(a) of order 2l is normally ρ-elliptic iff

all its local realizations

Aκ(x, ∂) =
∑
|α|≤2l

aκα(x)∂α

are normally elliptic on Qmκ with a uniform ellipticity constant Ce in condition (IV.8).

Proof. We first assume that A := A(a) is normally ρ-elliptic. In every local chart (Oκ, ϕκ),

by definition we have

σ̂Aπ
κ(x, ξ) =

∑
|α|=2l

aκα(x)(−iξ)α = ψ∗κC(a2l, (−iξM)⊗2l)(p)

with (x, ξ) ∈ Qmκ × Ṙm and p = ψκ(x). Here ξM is a 1-form satisfying ξM|Oκ = ξjdx
j . By [82,

formula (3.2)] and (IV.3), we conclude S := Σπ/2 ⊂ ρ(−σ̂Aπ
κ(x, ξ)). For every µ ∈ S, η, ς ∈ Eστ

with ς = (µ+ σ̂Aπ
κ(x, ξ))η, and ξ ∈ Ṙm, one computes

(|ξ|2lgm + |µ|)|(µ+ σ̂Aπ(x, ξ))−1ς|gm = (|ξ|2lgm + |µ|)|η|gm

≤ Cρτ−σκ (C ′ρ2l(p)|ξM(p)|2lg∗(p) + |µ|)|dψκ(x)η|g(p)(IV.9)

≤Mρτ−σκ (ρ2l(p)|ξM(p)|2lg∗(p) + |µ|)|dψκ(x)η|g(p)(IV.10)

≤MCeρ
τ−σ
κ |(µ+ C(a2l, (−iξM)⊗2l)(p))dψκ(x)η|g(p)(IV.11)

≤M ′Ceρ
τ−σ
κ ρσ−τκ |ψ∗κ(µ+ C(a2l, (−iξM)⊗2l)(p))dψκ(x)η|gm(IV.12)

= M ′Ce|(µ+ σ̂Aπ
κ(x, ξ))η|gm = M ′Ce|ς|gm .

In (IV.9), we have adopted (S4) and (P3). In (IV.10), the constant M = C max{C ′, 1} is indepen-

dent of the choices of κ and x. (IV.11) follows from (IV.4), and (IV.12) is a direct consequence of

(P3).

The “if” part follows by a similar argument. �
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Proposition IV.4. Let F ∈ {bc, BC}, s ∈ R+ \ N and ϑ ∈ R. Suppose that A = A(a) is a

2l-th order linear differential operator, which is normally ρ-elliptic and s-regular with bounds Ce

and Ca defined in (IV.4) and (IV.6). Then there exist ω = ω(Ce,Ca), φ = φ(Ce,Ca) > π/2 and

E = E(Ce,Ca) such that S = ω + Σφ ⊂ ρ(−A) and

|µ|1−i‖(µ+ A)−1‖L(Fs,ϑ(M,V ),Fs+2li,ϑ(M,V )) ≤ E, µ ∈ S, i = 0, 1.

Proof. With the convention b = “∞,unif” for F = bc, and b =∞ for F = BC, we set

E0 := Fs,ϑ, Eθ := Fs+2l−1,ϑ, E1 := Fs+2l,ϑ,

and

lϑb (E0) := lϑb (Fs), lϑb (Eθ) := lϑb (Fs+2l−1), lϑb (E1) := lϑb (Fs+2l).

(i) Define h : Rm → Qm: x 7→ ζ(x)x. Here ζ is defined in (L2). It is easy to see that h ∈

BC∞(Rm,Qm). Let

Āκ(x, ∂) :=
∑
|α|≤2l

āκα(x)∂α :=
∑
|α|≤2l

(aκα ◦ h)(x)∂α.

It is not hard to check with the assistance of (IV.7) that the coefficients (āκα)κ satisfy

(āκα)κ ∈ l∞,unif(bc
s(L(E))), |α| ≤ 2l,

and by Proposition IV.3 that Āκ are all normally elliptic with a uniform ellipticity constant for all

κ ∈ K. In virtue of [2, Theorems 4.1, 4.2 and Remark 4.6], these two conditions imply the existence

of some constants ω0 = ω0(Ce,Ca), φ = φ(Ce,Ca) > π/2 and E = E(Ce,Ca) such that

S0 := ω0 + Σφ ⊂ ρ(−Āκ), κ ∈ K,(IV.13)

and

|µ|1−i‖(µ+ Āκ)−1‖L(Fs(E),Fs+2li(E)) ≤ E, µ ∈ S0, i = 0, 1, κ ∈ K.(IV.14)

Let Ā : lϑb (E1)→ E: [(uκ)κ 7→ (Āκuκ)κ]. First, it is not hard to verify by means of the point-wise

multiplication results in [2, Appendix A2] that

(IV.15) Ā ∈ L(lϑb (E1), lϑ∞(E0)).
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By Proposition II.2 and the well-known interpolation theory, for any s < t /∈ N,

lϑ∞,unif(bc
t+2l)

d
↪→ lϑ∞,unif(bc

s+2l).

Hence for any u ∈ lϑ∞,unif(bc
s+2l), we can choose

(un)n := ((un,κ)κ)n ⊂ lϑ∞,unif(bc
t+2l)

converging to u in lϑ∞(bcs+2l). Since s is arbitrary, we see that the estimate (IV.15) still holds when

s is replaced by t, i.e.,

Āun ∈ lϑ∞(bct) ↪→ lϑ∞,unif(bc
s).

What is more, Āun =: vn → Āu in the lϑ∞(BCs)-norm. Since lϑ∞,unif(bc
s+2l) is a Banach space, it

yields Āu ∈ lϑ∞,unif(bc
s). Therefore

(IV.16) Ā ∈ L(lϑb (E1), lϑb (E0)).

For any µ ∈ S0, it is easy to see that µ + Ā : Fs+2l → lϑ∞(E0) is a bijective map. We write the

inverse of µ+ Ā as (µ+ Ā)−1 and compute for u := (uκ)κ ∈ lϑb (E0)

‖(µ+ Ā)−1u‖lϑ∞(BCs+2l) = sup
κ∈K

ρϑκ‖(µ+ Āκ)−1uκ‖s+2l,∞ = sup
κ∈K
‖(µ+ Āκ)−1ρϑκuκ‖s+2l,∞

≤ E sup
κ∈K
‖ρϑκuκ‖Fs(E) = E‖u‖lϑb (E0).(IV.17)

In the case F = bc, (IV.17) only shows that for each u ∈ lϑ∞,unif(bc
s) and µ ∈ S (µ + Ā)−1u ∈

lϑ∞(BCs+2l). It remains to prove (µ + Ā)−1u ∈ lϑ∞,unif(E1). This can be answered by a density

argument as in the proof for (IV.16).

Hence S0 ⊂ ρ(−Ā). Similarly, one checks

|µ|‖(µ+ Ā)−1‖L(lϑb (E0)) ≤ E, µ ∈ S0.
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(ii) Given any u ∈ E1(M, V ) and µ ∈ S, one computes

[Rcκ(µ+ A)− (µ+ Āκ)Rcκ]u = ψ∗κ(πκ(µ+ A)u)− (µ+ Āκ)ψ∗κ(πκu)

= ψ∗κπκ(µ+ Āκ)ψ∗κu− (µ+ Āκ)ψ∗κ(πκu)

= ψ∗κπκĀκψ
∗
κu− Āκψ

∗
κ(πκu)

= −
∑
|α|≤2l

∑
0<β≤α

(
α

β

)
āκα∂

α−β(ζψ∗κu)∂β(ψ∗κπκ) =: Bκu.

Note that ζ ≡ 1 on supp(ψ∗κπκ) for all κ ∈ K. Define for any u ∈ C∞(M, V )

Bu := (Bκu)κ.

Similar to the computation for (IV.16), we can easily check

BR ∈ L(lϑb (Eθ), l
ϑ
b (E0)).

By Proposition II.2, we have

lϑb (Eθ)
.
= (lϑb (E0), lϑb (E1))θ,

where either (·, ·)θ = (·, ·)0
θ,∞ for F = bc, or (·, ·)θ = (·, ·)θ,∞ for F = BC, and θ = 1− 1/(2l).

It follows from interpolation theory and (II.7) that for every ε > 0 there exists some positive

constant C(ε) such that for all u ∈ lϑb (E1)

‖BRu‖lϑb (E0) ≤ ε‖u‖lϑb (E1) + C(ε)‖u‖lϑb (E0)

Given any u ∈ lϑb (E0) and µ ∈ S0,

‖BR(µ+ Ā)−1u‖lϑb (E0) ≤ε‖(µ+ Ā)−1u‖lϑb (E1) + C(ε)‖(µ+ Ā)−1u‖lϑb (E0)

≤E(ε+
C(ε)

|µ|
)‖u‖lϑb (E0).

Hence we can find some ω1 = ω1(Ce,Ca) ≥ ω0 such that for all µ ∈ S1 := ω1 + Σφ

‖BR(µ+ Ā)−1‖L(lϑb (E0)) ≤ 1/2,

which implies that S1 ⊂ ρ(−Ā−BR) and

‖(I + BR(µ+ Ā)−1)−1‖lϑb (E0) ≤ 2.
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Now we compute for any u ∈ lϑb (E0) and µ ∈ S1

|µ|‖(µ+ Ā + BR)−1u‖lϑb (E0) =|µ|‖(µ+ Ā)−1(I + BR(µ+ Ā)−1)−1u‖lϑb (E0)

≤E‖(I + BR(µ+ Ā)−1)−1u‖lϑb (E0)

≤2E‖u‖lϑb (E0),

where I = idlϑb (E0), and a similar computation yields

‖(µ+ Ā + BR)−1u‖lϑb (E1) ≤ 2E‖u‖lϑb (E0).

One readily checks

Rc(µ+ A)u = (µ+ Ā)Rcu+BRRcu = (µ+ Ā + BR)Rcu.

For µ ∈ S1, we immediately have

R(µ+ Ā + BR)−1Rc(µ+ A) = R(µ+ Ā + BR)−1(µ+ Ā + BR)Rc = idE1(M,V ).

Therefore, µ+ A is injective for µ ∈ S1.

(iii) Given u ∈ C∞(E) := C∞(Rm, E), we define

Cκu := [(µ+ A)Rκ − Rκ(µ+ Āκ)]u.

An easy computation shows that for each u ∈ C∞(E)

ψ∗κCκu =
∑
|α|≤2l

āκα∂
α(ψ∗κπκu)− ψ∗κπκ(

∑
|α|≤2l

āκα∂
αu) =

∑
|α|≤2l

∑
0<β≤α

(
α

β

)
āκα∂

α−β(ζu)∂β(ψ∗κπκ).

It is obvious that Cκ ∈ L(Fs+2l−1(E),Fs(M, V )). Moreover, with u = (uκ)κ, it is a simple matter

to verify as for (IV.16) that

[u 7→ (ψ∗κCκuκ)κ] ∈ L(lϑb (Eθ), l
ϑ
b (E0)).

Define C : lϑb (Eθ)→ E1(M, V ): [u 7→
∑
κ
Cκuκ]. Then given any u ∈ lϑb (E1)

(µ+ A)Ru = R(µ+ Ā)u+ RRcCu = R(µ+ Ā + RcC)u.
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It follows in an analogous way to the proof for Proposition II.1 that

[u 7→
∑
κ

ϕ∗κ(ζuκ)] ∈ L(lϑb (E0), E0(M, V )).

In view of Cu =
∑
κ
ϕ∗κ(ζψ∗κCκuκ), we obtain

C ∈ L(lϑb (Eθ), E0(M, V ))

and thus

RcC ∈ L(lϑb (Eθ), l
ϑ
b (E0)).

Now it is not hard to verify via an analogous computation as in (ii) that there exists some ω2 =

ω2(Ce,Ca) ≥ ω1 such that S2 := ω2 + Σφ ⊂ ρ(−Ā− RcC) and

|µ|1−i‖(µ+ Ā + RcC)−1‖L(lϑb (E0),lϑb (Ei))
≤ 2E, µ ∈ S2, i = 0, 1.

Then we have

(µ+ A)R(µ+ Ā + RcC)−1Rc = R(µ+ Ā + RcC)(µ+ Ā + RcC)−1Rc = idE0(M,V ).

Thus, µ + A is surjective for µ ∈ S1, and R(µ + Ā + RcC)−1Rc is a right inverse of (µ + A).

Furthermore,

|µ|1−i‖(µ+ A)−1‖L(E0(M,V ),Ei(M,V ))

=|µ|1−i‖R(µ+ Ā + RcC)−1Rc‖L(E0(M,V ),Ei(M,V )) ≤ CE, µ ∈ S1, i = 0, 1.

This completes the proof �

Recall that an operator A is said to belong to the class H(E1, E0) for some densely embedded

Banach couple E1
d
↪→ E0, if −A generates a strongly continuous analytic semigroup on E0 with

dom(−A) = E1. By the well-known semigroup theory, Proposition IV.4 immediately implies

Theorem IV.5. Let s ∈ R+\N and ϑ ∈ R. Suppose A satisfies the conditions in Proposition IV.4.

Then

A ∈ H(bcs+2l,ϑ(M, V ), bcs,ϑ(M, V )).
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Remark IV.6. Note that the embedding BCs+2l,ϑ(M, V )
d
↪→ BCs,ϑ(M, V ), in general, does not

hold. So we cannot formulate a similar statement to Theorem IV.5 for weighted Hölder spaces.

For some fixed interval I = [0, T ], γ ∈ (0, 1), and some Banach space X, we define

BUC1−γ(I,X) := {u ∈ C(İ , X); [t 7→ t1−γu] ∈ C(İ , X), lim
t→0+

t1−γ‖u(t)‖X = 0},

‖u‖C1−γ := sup
t∈İ

t1−γ‖u(t)‖X ,

and

BUC1
1−γ(I,X) := {u ∈ C1(İ , X) : u, u̇ ∈ BUC1−γ(I,X)}.

Recall that in the above definition İ = I \ {0}. Moreover, we put

BUC0(I,X) := BUC(I,X) and BUC1
0 (I,X) := BUC1(I,X).

In addition, if I = [0, T ) is a half open interval, then

C1−γ(I,X) := {v ∈ C(İ , X) : v ∈ BUC1−γ([0, t], X), t < T},

C1
1−γ(I,X) := {v ∈ C1(İ , X) : v, v̇ ∈ C1−γ(I,X)}.

We equip these two spaces with the natural Fréchet topology induced by the topology of the spaces

BUC1−γ([0, t], X) and BUC1
1−γ([0, t], X), respectively.

Assume that E1
d
↪→ E0 is a densely embedded Banach couple. Define

E0(I) := BUC1−γ(I, E0), E1(I) := BUC1−γ(I, E1) ∩BUC1
1−γ(I, E0).(IV.18)

For A ∈ H(E1, E0), we say (E0(I),E1(I)) is a pair of maximal regularity of A, if

( ddt +A, γ0) ∈ Lis(E1(I),E0(I)× Eγ),

where γ0 is the evaluation map at 0, i.e., γ0(u) = u(0), and Eγ := (E0, E1)0
γ,∞. Symbolically, we

denote this property by

A ∈Mγ(E1, E0).

Now following a well-known theorem by G. Da Prato and P. Grisvard [65] and S. Angenent [9] and

the proof of [82, Theorem 3.7], we have
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Theorem IV.7. Let γ ∈ (0, 1], s ∈ R+ \ N and ϑ ∈ R. Suppose that A satisfies the conditions in

Proposition IV.4. Then

A ∈Mγ(bcs+2l,ϑ(M, V ), bcs,ϑ(M, V )).

Remark IV.8. In order to prove the statement in Theorem IV.7, it suffices to require (M, g; ρ) to

be a C2l+[s]+1-singular manifold.
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Chapter V

Singular equations of second order

Throughout this chapter, we always assume that (M, g; ρ) is a singular manifold, possibly with

boundary. Since Wp(M, V ) = W̊p(M, V ) when ∂M = ∅, in this chapter, we always focus on the

space W̊p(M, V ).

1. Singular elliptic operators with large potential terms

Let σ, τ ∈ N0 and λ′ ∈ R. Suppose that A : C∞(M, V ) → Γ(M, V ) is a second order differential

operator defined as follows.

A u := −div(~a · gradu) + C(∇u, a1) + a0u,(V.1)

with ~a ∈ C1(M, T 1
1 M), a1 ∈ Γ(M, TM) and a0 ∈ CM, for any u ∈ C∞(M, V ) and some λ ∈ R. Here

grad = gradg, ∇ = ∇g, and div = divg. We put for all ω ≥ 0

Aωu := A u+ ωρ−λu.

Center contraction [u 7→ ~a · gradu] is defined by the relationship

· : V 1
1 × V σ+1

τ → V σ+1
τ : (a, b) 7→ a · b,

and in every local chart for p ∈ M, we have

(a · b)(p) := {alk
∂

∂xl
⊗ dxk(p)} · {b(i;h)

(j)

∂

∂x(i)
⊗ ∂

∂xh
⊗ dx(j)(p)}

:= alkb
(i;k)
(j)

∂

∂x(i)
⊗ ∂

∂xl
⊗ dx(j)(p)

with (i) ∈ Jσ, (j) ∈ Jτ and l, k, h ∈ J1. Here we write a differential operator in divergence form,

which will benefit us in giving a precise bound for the constant ω.
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1.1. L2-theory. We impose the following assumptions on the coefficients of A and the com-

pensation term ωρ−λ.

(A1) A is (ρ, λ)-regular, by which we means that ~a ∈ BC1,λ−2(M, T 1
1 M) is symmetric and

a1 ∈ Lλ∞(M, TM), a0 ∈ Lλ∞(M).

(A2) A is (ρ, λ)-singular elliptic. More precisely, there exists some Cσ̂ > 0 such that

(~a · ξ|ξ)g(p) ≥ Cσ̂ρ2−λ|ξ|2g(p), ξ ∈ V σ+1
τ , p ∈ M.

(A3) ω > ωA , where ωA ∈ R satisfies for some C1 < 2

essinf(Re(ρλa0) + ωA ) > 0;(V.2)

ρλ−1|(2λ′ + 2τ − 2σ)~a · grad log ρ+ a1|g ≤ C1

√
Cσ̂(Re(ρλa0) + ωA );(V.3)

ρλ−1|(2λ′ − λ+ 2τ − 2σ)~a · grad log ρ+ a1|g ≤ C1

√
Cσ̂(Re(ρλa0) + ωA ).(V.4)

We may replace the compensation term ωρ−λ by a largeness condition for the potential term a0,

which can be stated as follows.

(A3’) Re(ρλa0) is so large that there exists some C1 < 2 and ωA < 0 such that

essinf(Re(ρλa0) + ωA ) > 0;

ρλ−1|(2λ′ + 2τ − 2σ)~a · grad log ρ+ a1|g ≤ C1

√
Cσ̂(Re(ρλa0) + ωA );

ρλ−1|(2λ′ − λ+ 2τ − 2σ)~a · grad log ρ+ a1|g ≤ C1

√
Cσ̂(Re(ρλa0) + ωA ).

Note that in (A3’) only negative values ωA are admissible, which is different from (A3).

Throughout, we assume that the singular data [[ρ]] and the constant λ satisfy
‖ρ‖∞ ≤ 1, λ ≥ 0, or

‖ρ‖∞ ≥ 1, λ ≤ 0.
(V.5)

Note that the case λ = 0 has been studied in [6]. The results in [6] are similar to those established

in Chapter 4. In this case, no restriction for ‖ρ‖∞ is required.
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Given λ′ ∈ R, let X := W̊
1,λ′−λ/2
2 (M, V ). Then we can associate with Aω a form operator aω with

D(aω) = X, defined by

aω(u, v) = 〈~a · gradu|gradv〉2,λ′ + 〈C(∇u, (2λ′ + 2τ − 2σ)~a · grad log ρ+ a1)|v〉2,λ′

+ 〈(a0 + ωρ−λ)u|v〉2,λ′

for all u, v ∈ X. Recall that 〈·|·〉2,λ′ is the inner product in Lλ
′

2 (M, V ), see (II.16).

Lemma V.1. For any σ, τ, σ′, τ ′ ∈ N0, it holds that

(a) |~a · ξ|gτσ+1
≤ |~a|g11 |ξ|gτσ+1

, ξ ∈ V σ+1
τ .

(b) (a|b)gτσ ≤ |a|gτσ |b|gτσ , a, b ∈ V σ
τ .

(c) |C(a, b)|gτσ ≤ |a|gσ′
τ ′
|b|
gτ+τ

′
σ+σ′

, a ∈ V τ ′
σ′ , b ∈ V

σ+σ′

τ+τ ′ .

Proof. Statement (a) can be verified via direct computation. Statements (b) and (c) follow

from identity (II.2) and [6, formula (A5)]. �

Proposition V.2. aω is continuous and X-coercive. More precisely,

(Continuity) there exists some constant M such that for all u, v ∈ X

|aω(u, v)| ≤M‖u‖X‖v‖X ;

(X-Coercivity) for ω large enough, there is some M such that for any u ∈ X

Re(aω(u, u)) ≥M‖u‖2X .

Proof. (i) By [6, formula (5.8)], we have

grad log ρ ∈ BC1,2(M, TM).(V.6)

Proposition II.4, (A1) and Lemma V.1 then imply that

~a · grad log ρ = C(~a, grad log ρ) ∈ BC1,λ(M, TM).

50



For any u, v ∈ X,

|aω(u, v)|

≤
∫
M

ρ2λ′+2τ−2σ|~a · gradu|g|gradv|g dVg

+

∫
M

ρ2λ′+2τ−2σ|(2λ′ + 2τ − 2σ)~a · grad log ρ+ a1|g|∇u|g|v|g dVg

+

∫
M

ρ2λ′+2τ−2σ(ρλa0 + ω)|ρ−λ/2u|g|ρ−λ/2v|g dVg

≤ ‖ρλ−2~a‖∞(

∫
M

|ρλ′+1−λ/2+τ−σ|∇u|g|2 dVg)1/2(

∫
M

|ρλ′+1−λ/2+τ−σ|∇v|g|2 dVg)1/2

+ ‖ρλ−1|(2λ′ + 2τ − 2σ)~a · grad log ρ+ a1|g‖∞

(

∫
M

|ρλ′+1−λ/2+τ−σ|∇u|g|2 dVg)1/2(

∫
M

|ρλ′−λ/2+τ−σ|v|g|2 dVg)1/2

+ ‖ρλa0 + ω‖∞(

∫
M

|ρλ′−λ/2+τ−σu|2g dVg)1/2(

∫
M

|ρλ′−λ/2+τ−σv|2g dVg)1/2

≤M(ω)‖u‖X‖v‖X .

This proves the continuity of aω.

(ii) Given any u ∈ X, we have

Re(aω(u, u))

≥ Cσ̂
∫
M

|ρλ′+1−λ/2+τ−σ|gradu|g|2 dVg

− C1

∫
M

√
Cσ̂(Re(ρλa0) + ωA )|ρλ′−λ/2+τ−σu|g|ρλ

′+1−λ/2+τ−σ∇u|g dVg

+

∫
M

(Re(ρλa0) + ω)|ρλ′−λ/2+τ−σu|2g dVg

≥ (1− C2
1

4
)Cσ̂

∫
M

|ρλ′+1−λ/2+τ−σ|∇u|g|2 dVg + (ω − ωA )

∫
M

|ρλ′−λ/2+τ−σu|2 dVg

≥M(ω)‖u‖2X

for all ω > ωA and some M(ω) > 0. In the second line, we have adopted Lemma V.1 and (V.3). �
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Proposition V.2 shows that aω withD(aω) = X is densely defined, sectorial and closed on Lλ
′

2 (M, V ).

By [51, Theorems VI.2.1, IX.1.24], there exists an associated operator T such that −T generates a

contractive strongly continuous analytic semigroup on Lλ
′

2 (M, V ), i.e., ‖e−tT ‖
L(Lλ

′
2 (M,V ))

≤ 1 for all

t ≥ 0, with domain

D(T ) := {u ∈ X,∃!v ∈ Lλ′2 (M, V ) : aω(u, φ) = 〈v|φ〉2,λ′ , ∀φ ∈ X}, Tu = v,

which is a core of aω. T is unique in the sense that there exists only one operator satisfying

aω(u, v) = 〈Tu, v〉2,λ′ , u ∈ D(T ), v ∈ X.

On the other hand, by (II.12) and definition (II.15), we can get

〈Aωu|v〉2,λ′ = aω(u, v), u, v ∈ X.

So by the uniqueness of T , we have

Aω|D(T ) = T.

Therefore, −Aω generates a contractive strongly continuous analytic semigroup on Lλ
′

2 (M, V ) with

domain D(Aω):

D(Aω) := {u ∈ X,∃!v ∈ Lλ′2 (M, V ) : aω(u, φ) = 〈v|φ〉2,λ′ , ∀φ ∈ X}, Aωu = v.

In the rest of this subsection, our aim is to show that D(Aω)
.
= W̊ 2,λ′−λ

2 (M, V ). Define

Bωu := −div(ρλ~a · gradu) + C(∇u, ρλa1) + (ρλa0 + ω)u.

(A1)-(A2) imply that

ρλ~a ∈ BC1,−2(M, T 1
1 M), ρλa1 ∈ L∞(M, TM), ρλa0 ∈ L∞(M),

and

(ρλ~a · ξ|ξ)g(p) ≥ Cσ̂ρ2(p)|ξ|2g(p), ξ ∈ V σ+1
τ , p ∈ M.

By [6, Theorem 5.2], we obtain

Bω ∈ H(W̊ 2,λ′−λ
2 (M, V ), Lλ

′−λ
2 (M, V )).(V.7)
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Note that although [6, Theorem 5.2] is only formulated for scalar functions, this theorem can be

easily generalized to arbitrary tensor fields.

For any u ∈ D(M, V ), one checks that

ρ−λBωu = Aωu− λC(∇u,~a · grad log ρ) =: Aωu+ Pλu.(V.8)

It follows from Propositions II.4, II.6 and (V.6) that

Pλ ∈ L(W̊ 1,λ′−λ
2 (M, V ), Lλ

′
2 (M, V )).

Combining with Proposition II.5, we have

ρλPλ ∈ L(W̊ 1,λ′−λ
2 (M, V ), Lλ

′−λ
2 (M, V )).

Let Bω := Bω − ρλPλ. By well-known perturbation results of analytic semigroups and Defini-

tion (II.6), we infer that

Bω ∈ H(W̊ 2,λ′−λ
2 (V ), Lλ

′−λ
2 (V )).(V.9)

Then for ω > ωA , the previous discussion on Aω and (V.4) show that −Bω generates a contractive

strongly continuous analytic semigroup on Lλ
′−λ

2 (V ). Then, together with (V.7), this implies that

for ω sufficiently large,

Bω ∈ Lis(D(Bω), Lλ
′−λ

2 (V )) ∩ Lis(W̊ 2,λ′−λ
2 (V ), Lλ

′−λ
2 (V )).

Now we infer that D(Bω)
.
= W̊ 2,λ′−λ

2 (V ). Observe that D(Bω) is invariant for ω > ωA . Thus for

all ω > ωA , the operator −Bω generates a contractive strongly continuous analytic semigroup on

Lλ
′−λ

2 (V ) with domain W̊ 2,λ′−λ
2 (V ).

Theorem V.3. Suppose that the differential operator

A u := −div(~a · gradu) + C(∇u, a1) + a0u,

is (ρ, λ)-regular and (ρ, λ)-singular elliptic, and the constant ω satisfies (A3). Define Aω := A +

ωρ−λ. Then

Aω ∈ H(W̊ 2,λ′−λ
2 (M, V ), Lλ

′
2 (M, V )) ∩ Lis(W̊ 2,λ′−λ

2 (M, V ), Lλ
′

2 (M, V )),
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and the semigroup {e−tAω}t≥0 is contractive.

Proof. By Propositions II.4, II.6, II.11 and Lemma V.1, we obtain

Aω ∈ L(W̊ 2,λ′−λ
2 (M, V ), Lλ

′
2 (M, V )).

This implies together with the definition of D(Aω) that

W̊ 2,λ′−λ
2 (M, V ) ↪→ D(Aω).

We have shown that for ω > ωA ,

Aω = ρ−λBω ∈ Lis(W̊ 2,λ′−λ
2 (M, V ), Lλ

′
2 (M, V )).(V.10)

Now by (V.10), we can establish

D(Aω)
.
= W̊ 2,λ′−λ

2 (M, V ).

The asserted statement thus follows. �

Corollary V.4. Suppose that A is (ρ, λ)-regular and (ρ, λ)-singular elliptic, and satisfies (A3’).

Then

A ∈ H(W̊ 2,λ′−λ
2 (M, V ), Lλ

′
2 (M, V )) ∩ Lis(W̊ 2,λ′−λ

2 (M, V ), Lλ
′

2 (M, V )),

and the semigroup {e−tA }t≥0 is contractive.

1.2. Lp-theory for scalar functions. In this subsection, we assume that V = C. The aim

of this subsection is to prove that the differential operator Aω generates a contractive strongly

continuous analytic semigroup on Lλ
′
p (M) with 1 < p <∞ for large ω.

We first show the following Riesz-Thorin interpolation theorem for the weighted Lp-spaces with

1 ≤ p ≤ ∞.

Lemma V.5. Let 1 ≤ p0 < p1 ≤ ∞, θ ∈ (0, 1), and ϑ ∈ R. Define 1
pθ

= 1−θ
p0

+ θ
p1

. Then for every

f ∈ Lϑp0(M) ∩ Lϑp1(M),

‖f‖Lϑpθ ≤ ‖f‖
1−θ
Lϑp0
‖f‖θLϑp1 .
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Proof. Observe that the operator fϑ defined in Proposition II.5 is indeed an isometry from

Lϑp (M) to Lp(M) for 1 ≤ p ≤ ∞. Then we have

‖f‖Lϑpθ = ‖ρϑf‖Lpθ
≤ ‖ρϑf‖1−θLp0

‖ρϑf‖θLp1 = ‖f‖1−θ
Lϑp0
‖f‖θLϑp1 .

�

The adjoint, A ∗ω (λ′), of Aω with respect to L
λ′/2
2 (M) can be easily computed as follows.

A ∗ω (λ′)u = −div(~a · gradu)− C(∇u, 2λ′~a · grad log ρ+ ā1) + (b(λ′,~a) + ωρ−λ)u,

where with ~a := (~a, a1, a0)

b(λ′,~a) := ā0 − div(λ′~a · grad log ρ+ ā1)− λ′(λ′~a · grad log ρ+ ā1|grad log ρ)g.

Here ā0, ā1 are the complex conjugate of a0, a1, and we have used the equality

〈C(∇u, a)|v〉2,λ′/2 = −〈u|C(∇v, ā)〉2,λ′/2 − 〈u|(divā+ λ′(ā|grad log ρ)g)v〉2,λ′/2

for a ∈ C1(M, TM) and u, v ∈ D(M̊).

The adjoint, Aω(λ′) := (A ∗ω (λ′))∗, of A ∗ω (λ′) with respect to L2(M) is

Aω(λ′)u = −div(~a · gradu) + C(∇u, 2λ′~a · grad log ρ+ a1) + (b̃(λ′,~a) + ωρ−λ)u,

where

b̃(λ′,~a) := a0 + div(λ′~a · grad log ρ)− λ′(λ′~a · grad log ρ+ a1|grad log ρ)g.

We impose the following conditions on the compensation term ωρ−λ.

(A4) ω > ωA , where ωA ∈ R satisfies for some C1 < 2

essinf(Re(ρλb(λ′,~a) + ωA ) > 0;

ρλ−1|2λ′~a · grad log ρ+ a1|g ≤ C1

√
Cσ̂(Re(ρλb(λ′,~a)) + ωA );

essinf(Re(ρλb̃(λ′,~a) + ωA ) > 0;

ρλ−1|2λ′~a · grad log ρ+ a1|g ≤ C1

√
Cσ̂(Re(ρλb̃(λ′,~a)) + ωA ),
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and

(A5) ω > ωA , where ωA ∈ R satisfies for some C1 < 2

essinf(Re(ρλb̃(λ′ − λ,~a) + ωA ) > 0;

ρλ−1|(2λ′ − λ)~a · grad log ρ+ a1|g ≤ C1

√
Cσ̂(Re(ρλb(λ′,~a)) + ωA );

ρλ−1|(2λ′ − λ)~a · grad log ρ+ a1|g ≤ C1

√
Cσ̂(Re(ρλb̃(λ′ − λ,~a)) + ωA ).

We can also formulate an analogue of (A3’) for the largeness of the potential term a0 to replace

the compensation condition (A4) and (A5).

Then the discussion in Section 5.1.1 and (A4) imply that−A ∗ω (λ′) and−Aω(λ′) generate contractive

strongly continuous analytic semigroups on L2(M) for all ω satisfying (A4).

Definition V.6. Let q ∈ [1,∞] and ϑ ∈ R. A strongly continuous semigroup {T (t)}t≥0 on Lϑ2 (M)

is said to be Lϑq -contractive if

‖T (t)u‖0,q;ϑ ≤ ‖u‖0,q;ϑ, t ≥ 0, u ∈ Lϑ2 (M) ∩ Lϑq (M).

Theorem V.7. Suppose that the differential operator

A u := −div(~a · gradu) + C(∇u, a1) + a0u,

is (ρ, λ)-regular and (ρ, λ)-singular elliptic. For ω satisfying (A3)-(A5), define Aω := A + ωρ−λ.

Then

Aω ∈ H(W̊ 2,λ′−λ
p (M), Lλ

′
p (M)) ∩ Lis(W̊ 2,λ′−λ

p (M), Lλ
′
p (M)), 1 < p <∞,

and the semigroup {e−tAω}t≥0 is contractive.

Proof. (i) By Proposition II.1, it is not hard to verify that u ∈ X implies (|u|− 1)+signu ∈ X

and

∇((|u| − 1)+signu) =


∇u, |u| > 1;

0, |u| ≤ 1.

(V.11)
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Here it is understood that

signu :=


u/|u|, u 6= 0;

0, u = 0.

Now following a similar proof to step (ii) of Proposition V.2, we get

Re(aω(u, (|u| − 1)+signu)) ≥ 0, ω > ωA .

By [67, Theorem 2.7], the semigroup {e−tAω}t≥0 is L∞-contractive.

Similarly, based on (A4), we can show that {e−tA ∗ω (λ′)}t≥0 and {e−tAω(λ′)}t≥0 are L∞-contractive

as well. By a well-known argument, see [25, Chapter 1.4], this implies that for each 1 < p <

∞, {e−tA ∗ω (λ′)}t≥0 and {e−tAω(λ′)}t≥0 can be extended to contractive strongly continuous analytic

semigroups on Lp(M) with angle

θp ≥ θ(1− |2/p− 1|),

where θ is the smaller one of the angles of the semigroups on L2(M) generated by {e−tA ∗ω (λ′)}t≥0

and {e−tAω(λ′)}t≥0.

(ii) Pick v ∈ Lλ′2 (M) ∩ Lλ′1 (M) and u ∈ L2(M) ∩ L∞(M). We then have

|〈e−tAωv|u〉2,λ′/2| = |〈v|e−tA
∗
ω (λ′)u〉2,λ′/2| = |〈ρλ

′
v|e−tA ∗ω (λ′)u〉2,0|

≤ ‖v‖
Lλ
′

1
‖e−tA ∗ω (λ′)u‖L∞

≤ ‖v‖
Lλ
′

1
‖u‖L∞ .(V.12)

We have thus established the Lλ
′

1 -contractivity of the semigroup {e−tAω}t≥0. It is then an immediate

consequence of Lemma V.5 that {e−tAω}t≥0 is Lλ
′
p -contractive for 1 ≤ p ≤ 2.

(iii) Now we modify a widely used argument, see [25, Chapter 1.4], for weighted Lp-spaces. Choose

u ∈ Lλ′2 (M) with supp(u) ⊂ K with K ⊂ M satisfying Vg(K) <∞. Then

lim
t→0+

‖χKe−tAωu‖Lλ′1 = lim
t→0+

〈ρ−λ′χK ||e−tAωu|〉2,λ′

= 〈ρ−λ′χK ||u|〉2,λ′ = ‖u‖
Lλ
′

1
(V.13)
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by the strong Lλ
′

2 -continuity of {e−tAω}t≥0. On the other hand, we also have

‖e−tAωu‖
Lλ
′

1
≤ ‖u‖

Lλ
′

1
.

This together with (V.13) implies that

lim
t→0+

‖χM\Ke
−tAωu‖

Lλ
′

1
= 0.

Now one can compute that

lim
t→0+

‖e−tAωu− u‖
Lλ
′

1
≤ lim

t→0+
‖χK(e−tAωu− u)‖

Lλ
′

1

≤ lim
t→0+

‖e−tAωu− u‖
Lλ
′

2
µ(K)1/2 = 0.

The set of such u contains D(M) and thus is dense in Lλ
′

1 (M). This establishes the strong continuity

of {e−tAω}t≥0 on Lλ
′

2 (M) ∩ Lλ′1 (M). Lemma V.5 then implies the strong continuity of {e−tAω}t≥0

on Lλ
′

2 (M) ∩ Lλ′p (M) for 1 ≤ p ≤ 2.

By (II.17), Lλ
′
p (M) is reflexive for 1 < p < ∞. The strong continuity of {e−tAω}t≥0 on Lλ

′
2 (M) ∩

Lλ
′
p (M) for 2 < p < ∞ now follows from [45, Theorem 1.4.9] and the strong continuity of

{e−tA ∗ω (λ′)}t≥0 on Lq(M) with 1 < q < 2.

(iv) Assume that {e−tAω}t≥0 is analytic on Lλ
′

2 (M) with angle φ. We define

Hz := ρλ
′
e−Aωh(z)ρ−λ

′
, on S := {z ∈ C : 0 ≤ Rez ≤ 1},

where h(z) := reiθz with r > 0 and |θ| < φ. Then given any u ∈ L2(M) ∩ L1(M) and v ∈

L2(M) ∩ L∞(M), we have

|〈Hzu|v〉2,0| ≤ ‖Hzu‖L2‖v‖L2 ≤ ‖eAωh(z)ρ−λ
′
u‖

Lλ
′

2
‖v‖L2

≤ ‖ρ−λ′u‖
Lλ
′

2
‖v‖L2 ≤ ‖u‖L2‖v‖L2(V.14)

for z ∈ S. Similarly, one can verify that 〈Hzu|v〉2,0 is continuous on S and analytic inside S̊.

Moreover,

|〈Hzu|v〉2,0| ≤ ‖u‖L1‖v‖L∞ , if Rez = 0.
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By the Stein interpolation theorem, see [25, Section 1.1.6], we conclude that for all 0 < t < 1,

u ∈ Lλ′2 (M) ∩ Lλ′1 (M) and 1
p = 1− t+ t

2 ,

‖ρλ′u‖Lp ≥ ‖Htρ
λ′u‖Lp = ‖ρλ′e−Aωh(t)u‖Lp = ‖e−Aωh(t)u‖Lλ′p .

Therefore, {e−tAω}t≥0 can be extended to a contractive strongly continuous analytic semigroup on

Lλ
′
p (M) with angle φ(2− 2/p) for 1 < p < 2.

When 2 < p < ∞, the analytic extension of {e−tAω}t≥0 follows from a duality argument as in

(V.12).

(v) In order to determine the domain of Aω, we apply a similar discussion to the proof for Theo-

rem V.3. We consider the adjoint, B∗ω(λ′ − λ), of Bω = Bω − ρλPλ with respect to L
(λ′−λ)/2
2 (M),

i.e.,

B∗ω(λ′ − λ)u = −div(ρλ~a · gradu)− ρλC(∇u, (2λ′ − λ)~a · grad log ρ+ ā1) + ρλb(λ′,~a)u,

and the adjoint, Bω(λ′ − λ), of B∗ω(λ′ − λ) with respect to L2(M), i.e.,

Bω(λ′ − λ)u =− div(ρλ~a · gradu) + ρλC(∇u, (2λ′ − λ)~a · grad log ρ+ a1)

+ ρλb̃(λ′ − λ,~a)u.

Following Step (i)-(iv), under Assumptions (A3) and (A5), we can show that Bω generates a

contractive strongly continuous analytic semigroup on Lλ
′−λ
p (M) for any 1 < p < ∞. By [6,

Theorem 5.2], for ω large enough,

Bω ∈ H(W̊ 2,λ′−λ
p (M), Lλ

′−λ
p (M)) ∩ Lis(W̊ 2,λ′−λ

p (M), Lλ
′−λ
p (M)).

An analogous argument to the proof for Theorem V.3 and the discussion prior to this proof yields

that

Aω = ρ−λBω ∈ H(W̊ 2,λ′−λ
p (M), Lλ

′
p (M)) ∩ Lis(W̊ 2,λ′−λ

p (M), Lλ
′
p (M)).

�

Remark V.8. The proof of L∞-contractivity for unweighted Lp-spaces in [67, Theorem 2.7] sug-

gests that there seems to be a more straightforward way to prove Lλ
′
∞-contractivity.
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In fact, we can show that {e−tAω}t≥0 is Lλ
′
∞-contractive if for any u ∈ X

(i) (|u| − ρ−λ′)+signu ∈ X, and

(ii) Reaω(u, (|u| − ρ−λ′)+signu) ≥ 0.

However, Condition (ii), in general, does not hold for all u ∈ X.

Remark V.9. When the tensor field V 6= C, it requires much more effort to establish the Lp-

semigroup theory for the differential operator

A u := −div(~a · gradu) + C(∇u, a1) + a0u.

The author is not aware of how to obtain the Lλ
′
∞-contractivity of the semigroup {e−tAω}t≥0.

Instead, one needs to go through the local expressions of Aω and establish a similar contractivity

property for these local expressions, and then prove generation of analytic semigroups of the local

expressions. However, the drawback of this technique is reflected by the fact that it is hard to

determine the precise bound for the constant ω. Indeed, we only know that for ω sufficiently large,

Aω ∈ H(W̊ 2,λ′−λ
p (M, V ), Lλ

′
p (M, V )) ∩ Lis(W̊ 2,λ′−λ

p (M, V ), Lλ
′
p (M, V )),

for 1 < p <∞, and the semigroup {e−Aω}t≥0 is bounded on Lλ
′
p (M, V ). Because it is hard to apply

this result, a rigorous proof for this assertion will not be stated in this article.

2. Singular elliptic operators on singular manifolds with Hλ-ends

2.1. Differential operators on singular manifolds with property Hλ. In the first sub-

section, we will exhibit a technique to remove the “largeness” assumption on the potential term or

the compensation term ωρ−λ.

Suppose that (M, g; ρ) is a singular manifold, possibly with boundary. Without loss of generality,

we assume that M is connected. Before beginning the discussion of any particular model, we first

consider a variant of the operator A defined in (V.1), i.e.,

A u := −div(~a · gradu) + C(∇u, a1) + a0u.
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Put v := e−zhu for some z = a+ ib ∈ C with |z| = 1, and h ∈ C2(M,R). Then

A u =− div(~a · grad(ezhv)) + C(∇ezhv, a1) + ezha0v

=− div(ezh~a · gradv)− zdiv(~a · (ezhv ⊗ gradh)) + ezhC(∇v, a1)

+ zezhC(∇h, a1)v + ezha0v

=ezh{A v − 2zC(∇v,~a · gradh)

− [zdiv(~a · gradh) + z2(~a · gradh|gradh)g − zC(∇h, a1)]v}.(V.15)

In the sequel, we let ~a := ρ2−λg[, which means that we will consider differential operators of the

following form

A u := −div(ρ2−λgradu) + C(∇u, a1) + a0u

with ρ and λ satisfying (V.5). Assume that A is (ρ, λ)-regular.

Define

Ahv := A v − 2zρ2−λC(∇v, gradh)− [zdiv(ρ2−λgradh) + z2ρ2−λ|gradh|2g − zC(∇h, a1)]v.(V.16)

By (V.15), we thus have Ah = e−zh ◦A ◦ ezh.

A function h ∈ C2(M,R) is said to belong to the class Hλ(M, g; ρ) with parameters (c,M), if

(Hλ1) M/c ≤ ρ|gradh|g ≤Mc;

(Hλ2) M/c ≤ ρλdiv(ρ2−λgradh) ≤Mc.

Observe that if h ∈ Hλ(M, g; ρ) with parameters (c, 1), then Mh ∈ Hλ(M, g; ρ) with parameters

(c,M).

Definition V.10. A singular manifold (M, g; ρ) is said to enjoy property Hλ, if there exists some

h ∈Hλ(M, g; ρ).

We impose the following additional assumptions on (M, g; ρ), and on the constant z = a+ ib.

(H1) (M, g; ρ) satisfies property Hλ. Hence there is an h ∈Hλ(M, g; ρ) with parameters (c,M).

(H2) a = Rez ∈ (− 1

2Mc3
, 0), and |z| = 1.
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Let Az := −zdiv(ρ2−λgradh)− z2ρ2−λ|gradh|2g + zC(a1,∇h) + a0. By (H1), one can check that the

operator Ah is (ρ, λ)-regular and (ρ, λ)-singular elliptic with Cσ̂ = 1. Moreover, (H1) implies

ρ2|gradh|2g/(Mc3) ≤ ρλ|div(ρ2−λgradh)|.

Lemma V.1(c) yields

ρλ|C(∇h, a1)| ≤ ρ|gradh|g‖a1‖∞;λ.

Note that (H2) gives b2 − a2 − a
Mc3

> 1. We then have

ρλRe(Az) = ρ2(b2 − a2)|gradh|2g − aρλdiv(ρ2−λgradh) + ρλ(aC(∇h, a1) + Re(a0))

≥ ρ2(b2 − a2 − a

Mc3
− c

M
‖a1‖∞;λ)|gradh|2g + ρλRe(a0)

> C0ρ
2|gradh|2g − ωA(V.17)

for some C0 > 1 and ωA < 0 by choosing M sufficiently large and the real part of z, i.e., a,

satisfying (H2) accordingly. This shows that

ρ|2zgradh|g = 2ρ|gradh|g <
2√
C0

√
ρλRe(Az) + ωA .

For any λ′ ∈ R, let

I(λ′, λ, τ, σ) := {2λ′ + 2τ − 2σ, 2λ′ − λ+ 2τ − 2σ}.

By choosing M large enough and making z = a+ ib satisfying (H2), it holds that

ρλ−1| − 2zρ2−λgradh + tρ2−λgrad log ρ+ a1|g

<
2√
C1

√
ρλRe(Az) + ωA(V.18)

for all t ∈ I(λ′, λ, τ, σ) and some ωA < 0, C1 ∈ (1, C0). Therefore, ωA < 0 satisfies (V.2)-(V.4).

We consider the following condition.

(H3) M is sufficiently large such that (V.17) and (V.18) hold.

Summarizing the above discussions, for z = a + ib and M satisfying (H2) and (H3), we conclude

from Theorem V.3 with ω = 0 that

Ah ∈ H(W̊ 2,λ′−λ
2 (M, V ), Lλ

′
2 (M, V )) ∩ Lis(W̊ 2,λ′−λ

2 (M, V ), Lλ
′

2 (M, V )),(V.19)
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and the semigroup {e−tAh}t≥0 is contractive.

For any function space Fs,ϑ(M, V ) defined in Section 2.2, the space

ezhFs,ϑ(M, V ) := {u ∈ L1,loc(M, V ) : e−zhu ∈ Fs,ϑ(M, V )}

is a Banach space equipped with the norm ‖ · ‖ezhFs,ϑ , where

‖u‖ezhFs,ϑ := ‖e−zhu‖Fs,ϑ .

It is easy to see that

ezh ∈ Lis(e−zhFs,ϑ(M, V ),Fs,ϑ(M, V )).(V.20)

Theorem V.11. Suppose that (M, g; ρ) is a singular manifold with property Hλ, and we choose

h ∈ Hλ(M, g; ρ) with parameters (c,M). Let λ′ ∈ R, ρ and λ satisfy (V.5). Furthermore, assume

that the differential operator

A u := −div(ρ2−λgradu) + C(∇u, a1) + a0u

is (ρ, λ)-regular. Then, for any constant z = a+ ib and M fulfilling (H2) and (H3), we have

A ∈ H(ezhW̊ 2,λ′−λ
2 (M, V ), ezhLλ

′
2 (M, V )) ∩ Lis(ezhW̊ 2,λ′−λ

2 (M, V ), ezhLλ
′

2 (M, V )),

and the semigroup {e−tA }t≥0 is contractive.

Proof. (V.19) implies that S := Σθ ⊂ ρ(−Ah) so that

|µ|1−k‖(µ+ Ah)
−1‖

L(Lλ
′

2 (M,V ),W̊ 2k,λ′−kλ
2 (M,V ))

≤ E, µ ∈ S, k = 0, 1,

for some θ ∈ [π/2, π) and E > 0. By (V.20) and A = ezh ◦Ah ◦ e−zh, it holds that S ⊂ ρ(−A ) and

for all µ ∈ S and k = 0, 1

|µ|1−k‖(µ+ A )−1‖
ezhL(Lλ

′
2 (M,V ),ezhW̊ 2k,λ′−kλ

2 (M,V ))

= |µ|1−k‖(µ+ ezh ◦Ah ◦ e−zh)−1‖
L(ezhLλ

′
2 (M,V ),ezhW̊ 2k,λ′−kλ

2 (M,V ))
≤ E′.

Then the assertion follows from the well-known semigroup theory. �
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Remark V.12. Because the choice of the constant z and M is not unique, it seems that the

assertion in Theorem V.11 is not well formulated.

However, as is shown in Section 5.2.3 below, this is indeed not a problem. In Theorem V.26,

we will generalize the result in Theorem V.11 to singular manifolds with Hλ-ends, which roughly

speaking, means that a manifold satisfies property Hλ close to the singularities and is uniformly

regular elsewhere.

As we will see in Theorem V.27 and Corollary V.29 below, for most of the practical examples,

once an h ∈Hλ(M, g; ρ) with parameters (c, 1) is fixed, we will see that the space ezMhW̊ s,ϑ
p (M, V )

actually coincides with the weighted Sobolev-Slobodeckii space W̊ s,ϑ+aM
p (M, V ), for any z = a+ ib

and M fulfilling (H3) and (H4).

Note that aM ∈ (− 1
2c3
, 0) in fact only depends on the constant c. Since the weight λ′ is arbitrary,

in Theorem V.11, we actually have that for any λ′,

A ∈ H(W̊ 2,λ′−λ
2 (M, V ), Lλ

′
2 (M, V )) ∩ Lis(W̊ 2,λ′−λ

2 (M, V ), Lλ
′

2 (M, V )).

The result in Theorem V.11 thus parallels to those in Section 5.1.

2.2. Singular manifolds with Hλ-ends.

Definition V.13. An m-dimensional singular manifold (M, g; ρ) is called a singular manifold with

Hλ-ends if it satisfies the following conditions.

(i) G = {G1, · · · , Gn} is a finite set of disjoint closed subsets of M. Each (Gi, g; ρi) is an

m-dimensional singular manifold satisfying property Hλ.

(ii) G0 is closed in M, and (G0, g) is an m-dimensional uniformly regular Riemannian mani-

fold.

(iii) {G0} ∪G forms a covering for M. ∂0Gi := G0 ∩Gi ⊂ ∂G0 ∩ ∂Gi.

(vi) Let ρi := ρ|Gi. Either of the following conditions holds true

ρi ≤ 1, i = 1, · · · , n; or ρi ≥ 1, i = 1, · · · , n.

Gi are called the Hλ-ends of M.
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In the following, we will present several examples of singular manifolds with Hλ-ends, and show

how to construct such manifolds in a systematic way.

The proof for the following lemma is straightforward.

Lemma V.14. Suppose that (M, g; ρ) has property Hλ, h ∈ H (M, g; ρ) with parameter (c,M),

and (B, gB) is a uniformly regular Riemannian manifold. Then (M × B, g + gB; ρ ⊗ 1B) also has

property Hλ, and

h⊗ 1B ∈Hλ(M×B, g + gB; ρ⊗ 1B)

with parameter (c,M).

Lemma V.15. Let f : M̃ → M be a diffeomorphism of manifolds. Suppose that (M, g; ρ) has

property Hλ, and h ∈H (M, g; ρ) with parameters (c,M).

Then so does (M̃, f∗g; f∗ρ), and f∗h ∈H (M̃, f∗g; f∗ρ) with parameters (c,M).

Proof. It is a simple matter to check that (f−1(Oκ), f∗ϕκ)κ∈K forms a uniformly regular atlas

for M̃ and

(f∗ϕκ)∗f
∗h = ψ∗κh, (f∗ϕκ)∗(f

∗g) = ψ∗κg.

As a direct consequence, we have the identities

(f∗ϕκ)∗gradf∗gf
∗h = ψ∗κgradgh,

and

(f∗ϕκ)∗divf∗g((f
∗ρ)2−λgradf∗gf

∗h) = divg(ρ
2−λgradgh).

�

The following examples show that we can construct a family of singular manifolds with Hλ-ends

in a great variety of geometric constellations. In particular, we can find manifolds with Hλ-type

singularities of arbitrarily high dimension.

Let J0 := (0, 1] as in Chapter 3. We will introduce some subsets of the class C (J0), which is very

useful for constructing examples of singular manifolds with Hλ-ends. We call a cusp characteristic
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R ∈ C (J0) a mild cusp characteristic if R satisfies (III.1) and (V.21) below.

Ṙ ∼ 1J0 .(V.21)

If R further satisfies

|R̈| <∞,(V.22)

then we call it a uniformly mild cusp characteristic. We write R ∈ CU (J0).

Example V.16. R(t) = t, R(t) = 4
π arctan t, R(t) = log(1 + (e− 1)t), R(t) = 2t/3 + sin(π2 t)/3 are

examples of uniformly mild cusp characteristics.

Lemma V.17. Suppose that R ∈ CU (J0) and λ ∈ [0, 1) ∪ (1,∞). Then (J0, dt
2;R) is a singular

manifold with Hλ-end.

Proof. First, by [7, Lemma 5.2], (J0, dt
2;R) is a singular manifold. We set

h(t) = sign(1− λ) logR(t).(V.23)

Then R(t)|ḣ(t)| = Ṙ(t) ∼ 1J0 on J0, and

Rλ(t)
d

dt
(R2−λ(t)ḣ(t)) = |1− λ||Ṙ(t)|2 + sign(1− λ)R(t)R̈(t) ∼ 1Ic ,

where Ic := (0, c] for c small enough. Then the assertion follows from the fact that ([c, 1], dt2) is

uniformly regular for any c > 0. �

Remark V.18. We can actually show that (J0, dt
2;R) is a singular manifold with property Hλ

with

h(t) := sign(λ− 1)

1∫
t

ds/R(s) ∈Hλ(J0, dt
2;R),

as long as R is a mild cusp characteristic. But for the sake of practical usage, we will see in

Section 5.2.3 below that (V.23) benefits us more in establishing the correspondence of the space

ezhW̊ s,ϑ
p (M, V ) with weighted Sobolev-Slobodeckii spaces.

Suppose that R ∈ CU (J0), (B, gB) is a uniformly regular Riemannian submanifold of Rd−1, and

(Γ, gΓ) is a compact connected Riemannian manifold without boundary. We call (M, g) a uniformly

66



mild Γ-wedge over P (R,B), if there is a diffeomorphism f : M → W (R,B,Γ) such that g =

f∗(φ∗P (dt2 + gB) + gΓ).

Proposition V.19. Let λ ∈ [0, 1) ∪ (1,∞). Assume that (M, g) is a uniformly mild Γ-wedge over

P (R,B). Then (M, g) is a singular manifold with Hλ-end.

Proof. Lemma III.5 implies that

(M, g; f∗(φ∗P (R⊗ 1B)⊗ 1Γ))

is a singular manifold. We define

h(t) := sign(1− λ) logR(t).

Put Ic := (0, c] and Mc := f−1(P (R|Ic , B)×Γ). It follows from Lemmas III.1, V.14, V.15, and V.17

that for c > 0 sufficiently small, (Mc, g) has property Hλ with

f∗(φ∗P (h⊗ 1B)⊗ 1Γ) ∈Hλ(Mc, g; f∗(φ∗P (R|Ic ⊗ 1B)⊗ 1Γ)).

�

Remark V.20. As before, in fact, we only need to require R to be a mild cusp characteristic. Let

h(t) := sign(λ− 1)
1∫
t

ds/R(s). Then (M, g) has property Hλ with

f∗(φ∗P (h⊗ 1B)⊗ 1Γ) ∈Hλ(M, g; f∗(φ∗P (R⊗ 1B)⊗ 1Γ)).

Example V.21. Proposition V.19 implies that the following manifolds enjoy property Hλ.

(a) A cone manifold (M, g; ρ) = (P (t, B), dt2 + t2gB;φ∗P (t ⊗ 1B)) enjoys property Hλ for

λ ∈ [0, 1) ∪ (1,∞).

(b) An edge manifold (M, g; ρ) = (P (t, B) × Rd, dt2 + t2gB + gd;φ
∗
P (t ⊗ 1B) ⊗ 1Rd) enjoys

property Hλ for λ ∈ [0, 1) ∪ (1,∞).

Proposition V.22. Suppose that (M, g) is a singular manifold with holes. More precisely, (M , g)

is a uniformly regular Riemannian manifold. Σ = {Σ1, · · · ,Σk} is a finite set of disjoint m-

dimensional compact manifolds with boundary such that Σj ⊂ M̊ . Put M := M \ ∪kj=1Σj and

Bj,r := B̄M (∂Σj , r) ∩M, j = 1, · · · , k.
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Then we can find a singularity function ρ satisfying

ρ|Bj,r
=: ρj = distM (·, ∂Σj),

for some r ∈ [0, δ), where δ < diam(M ) fulfils that Bi,δ ∩Bj,δ = ∅ for i 6= j, and

ρ ∼ 1, elsewhere on M.

Moreover, (M, g; ρ) is a singular manifold with Hλ-ends for λ ∈ [0, 1) ∪ (1,∞).

Proof. By Lemma III.7, (M, g) is a singular manifold. We will show that ρj := distM (·, ∂Σj)

is a singularity function for Bj,r and

hj := sign(1− λ) log ρj ∈Hλ(Bj,r, g; ρj)

for sufficiently small r. By the collar neighborhood theorem, there exists an open neighborhood

Vj,ε of ∂Σj in the closure of M in M , i.e., M̄, and a diffeomorphism fj such that

fj : Vj,ε → ∂Σj × [0, ε), f∗j g|Vj,ε = g|∂Σj + dt2,

for some ε > 0. Note that ρj is a well defined smooth function in Vj,ε for ε sufficiently small. Let

T⊥∂Σj denote the normal bundle of ∂Σj in M̄. At every point p ∈ ∂Σj , there exists a unique

νp ∈ T⊥p ∂Σj such that

Tpfjνp = e1 ∈ T0R.

Then, f−1
j (p, t) = expp(tνp), where expp is the exponential map at p. Therefore,

f∗j ρj(p, t) := tβj(p), in ∂Σj × [0, ε),

for some βj ∈ C∞(∂Σj) and βj ∼ 1∂Σj . Because of the compactness of ∂Σj , by choosing ε small

enough, we can easily show that

|∇ρj |g ∼ 1Vj,ε , |∆ρj | <∞, in Vj,ε.

Here ∆ is the Laplace-Beltrami operator with respect to the metric g defined by ∆ = ∆g :=

div ◦ grad. Since Bj,r ⊂ Vj,ε for r small enough, in view of

ρjgradhj = sign(1− λ)gradρj ,
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and

ρλj div(ρ2−λgradhj) = sign(1− λ)ρj∆ρj + |1− λ||gradρj |2g,

we immediately conclude that hj satisfies (Hλ1) and (Hλ2) in Bj,r for r small enough.

Because |∇ρj |g ∼ 1 in Bj,r for r small enough, we can infer from the implicit function theorem

that

Sj,r0 := {p ∈ M : distM (p, ∂Σj) = r0} ∩M

is a compact submanifold for some r0 ∈ (0, r). By the tubular neighborhood theorem, we can easily

show that (Bj,r0 , g) and (M \ ∪kj=1B̊j,r0 , g) are all manifolds with boundary.

By [7, Corollary 4.3], (∂Σj , g|∂Σj ) is uniformly regular. In particular, taking βj as a singularity

function, (∂Σj , g|∂Σj ;βj) can be considered as a singular manifold. By Lemmas V.14 and V.15, we

conclude that for r sufficiently small (Bj,r0 , g; ρj) is a singular manifold with boundary Sj,r0 .

Based on the collar neighborhood theorem, we can find an open neighborhood Uj,ε ⊂ Bj,r of Sj,r0

in M \ ∪kj=1B̊j,r0 such that there is a diffeomorphism

φj : Uj,ε → Sj,r0 × [0, ε), φ∗jg|Uj,ε = g|Sj,r0 + dt2,

with φj(Sj,r0) = Sj,r0 × {0}. We choose a function ξ ∈ BC∞([0, ε), [0, 1]) such that

ξ|[0,ε/4] ≡ 0, ξ|[ε/2,ε) ≡ 1.

Put ξj,0 := φ∗j (1Sj,r0 ⊗ ξ). Similarly, we can find ξj,j ∈ BC∞(Uj,ε, [0, 1]) such that

ξj,j |φ−1
j (Sj,r0×[0,ε/2]) ≡ 1, ξj,j |φ−1

j (Sj,r0×[3ε/4,ε)) ≡ 0.

We define ξi ∈ C∞(M, [0, 1]) with i = 0, · · · , k as follows. For j = 1, · · · , k,

ξj(p) =


1, p ∈ Bj,r0 ,

ξj,j , p ∈ Uj,ε,

0, elsewhere,

and ξ0(p) =


0, p ∈ Bj,r0 ,

ξj,0, p ∈ Uj,ε,

1, elsewhere.

Put ρ := ξ01M +
∑k

j=1 ξjρj . Then it is not hard to see that ρ is a singularity function for (M, g)

such that ρ ∼ 1 on M \ ∪kj=1B̊j,r0 and ρ|Bj,r0
= ρj . Therefore, (M \ ∪kj=1B̊j,r0 , g) is a uniformly

regular Riemannian manifold.

69



Summarizing the above discussions, we have proved that (M, g; ρ) is a singular manifold with Hλ-

ends. �

From the above proof, it is easy to see that the following corollary holds.

Corollary V.23. Suppose that (M , g) is a uniformly regular Riemannian manifold with compact

boundary. Let λ ∈ [0, 1) ∪ (1,∞). Put M := M̊ and

Br := B̄M (∂M , r) ∩M, j = 1, · · · , k.

Then there exists a singularity function ρ satisfying

ρ|Br =: ρj = distM (·, ∂M ),

for some r > 0, and

ρ ∼ 1, elsewhere on M.

Moreover, (M, g; ρ) is a singular manifold with Hλ-ends.

Remark V.24. More generally, we can take Σ = {Σ1, · · · ,Σk} to be a finite set of disjoint

compact closed submanifolds of codimension at least 1 such that Σj ⊂ ∂M if Σj ∩ ∂M 6= ∅. In [7,

Theorem 1.6], it is shown that M := M \ ∪kj=1Σj is a singular manifold. Indeed, we can prove that

this is a singular manifold with Hλ-ends. The proof is quite similar to that for Proposition V.22,

but more technical. To keep this thesis at a reasonable length, we will not present a proof herein.

Remark V.25. In Proposition V.22, we can also allow Σ = {p1, · · · , pk} to be a finite set of

discrete points in M̊ . Then

(M, g; ρ) := (M \ ∪ki=1B̄M (pi, r), g; ρ)

is still a singular manifold. Here ρ is defined in the same way as in Proposition V.22.

An estimate for ∆ρj can be obtained from the fact that for r sufficiently small

∆ρj(p) =
m− 1

ρj(p)
+O(ρj(p)), in Bj,r.

See [21, formulas (1.134), (1,159)]. Taking hj = log ρj , we have

ρλj div(ρ2−λ
j gradhj) = ρj∆ρj + (1− λ)|gradρj |2g = m− λ+O(ρ2

j ),
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since |gradρj |g = 1. We immediately have

sign(m− λ)hj ∈Hλ(Bj,r, g; ρ)

for sufficiently small r and λ ≥ 0 with λ 6= m.

Therefore, (M, g; ρ) is indeed a singular manifold with Hλ-ends.

2.3. Lp-theory on singular manifolds with Hλ-ends.

Theorem V.26. Suppose that (M, g; ρ) is a singular manifold with Hλ-ends. Let λ′ ∈ R, ρ and λ

satisfy (V.5). Furthermore, assume that the differential operator

A u := −div(ρ2−λgradu) + C(∇u, a1) + a0u

is (ρ, λ)-regular. Then, for any constant z = a + ib and M satisfying (H2) and (H3) on all the

Hλ-ends Gi with i = 1, · · · , n, we have

A ∈ H(ezhW̊ 2,λ′−λ
2 (M, V ), ezhLλ

′
2 (M, V )).

Proof. Without loss of generality, we may assume that ∂0Gi 6= ∅ for i = 1, · · · , n. It is not

hard to see that ∂0Gi is a component of ∂Gi.

(i) Based on the collar neighborhood theorem, we can find an open neighborhood Ui of ∂0Gi in Gi

such that there is a diffeomorphism

φi : Ui → ∂0Gi × [0, 1), φ∗i g|Ui = g|∂0Gi + dt2,

with φi(∂0Gi) = ∂0Gi × {0}, and

ρi|Ui ∼ 1Ui , i = 1, · · · , n.

We choose functions ξ, ξ̃ ∈ BC∞([0, 1), [0, 1]) such that

ξ|[0,1/2] ≡ 1, ξ|[3/4,1) ≡ 0; ξ̃|[0,1/4] ≡ 0, ξ̃|[1/2,1) ≡ 1.
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Set π̂i,0 := φ∗i (1∂0Gi ⊗ ξ) and π̂i,i := φ∗i (1∂0Gi ⊗ ξ̃). We define π̃j ∈ C∞(M, [0, 1]) with j = 0, · · · , n

as follows. For i = 1, · · · , n,

π̃i(p) =


1, p ∈ Gi \ Ui,

π̂i,i, p ∈ Ui,

0, elsewhere,

and π̃0(p) =


1, p ∈ G0,

π̂i,0, p ∈ Ui,

0, elsewhere.

For j = 0, · · · , n, we set

πj =
π̃j√∑n
i=0 π̃

2
i

.

Then (π2
j )
n
j=0 forms a partition of unity on M, and πj ∈ BC∞,0(M).

Put Ĝ0 := G0 ∪
⋃n
i=1 Ūi, which is uniformly regular. Define

W̊
s,ϑ
2 (M, V ) :=

n∏
j=0

W̊ s,ϑ
2 (Xj , V ),

where Xj := Gj for j = 1, · · · , n, and X0 := Ĝ0. It is understood that on X0, the singularity func-

tion can be taken as 1X0 , and thus the definition of weighted function spaces on X0 is independent

of the choice of the weight ϑ. We further introduce two maps:

Λc : W̊ s,ϑ
2 (M, V )→ W̊

s,ϑ
2 (M, V ) : u 7→ (πju)nj=0,

and

Λ : W̊
s,ϑ
2 (M, V )→ W̊ s,ϑ

2 (M, V ) : (uj)
n
j=0 7→

n∑
j=0

πjuj .

By Proposition II.4, we immediately conclude that Λ is a retraction from the space W̊
s,ϑ
2 (M, V ) to

W̊ s,ϑ
2 (M, V ) with Λc as a coretraction.

(ii) We show that there exists some h ∈ C2(M) such that hi := h|Gi ∈ Hλ(Gi, g; ρi) with uniform

parameters (c,M) for i = 1, · · · , n, and h0 := h|G0 ∈ BC2(G0).

Since Gi has property Hλ, we can find hi ∈ Hλ(Gi, g; ρi) with uniform parameters (c,M) on all

Hλ-ends Gi for i = 1, · · · , n. Note that for u ∈ C2(M), it follows from [6, formula A.9] and (II.12)

that

|∆u| = |Cσ+1
τ+1∇gradu| = |∇gradu|g = |grad2u|g = |∇2u|g.
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Therefore, (Hλ1) and (Hλ2) actually imply that hi ∈ BC2,0(Gi).

Since ∂0Gi is a compact submanifold of M, by the tubular neighborhood theorem, we can find an

closed neighborhood Ũi of ∂0Gi in M such that Ũi∩Gj = ∅ for j 6= 0, i, and there is a diffeomorphism

φ̃i : Ũi → ∂0Gi × [−1, 1], φ̃∗i g|Ũi = g|∂0Gi + dt2,

with the convention φ̃i : Ũi ∩ Gi → ∂0Gi × [0, 1), and ρi|Ũi ∼ 1Ũi for i = 1, · · · , n. By a similar

construction as in Step (i), we can find ξ, ξ̃ ∈ BC∞([−1, 1], [0, 1]) with

ξ|[−1,−1/2] ≡ 1, ξ|[−1/4,1] ≡ 0; ξ̃|[−1,−3/4] ≡ 0, ξ̃|[−1/2,1] ≡ 1.

Set ξi,0 := φ̃∗i (1∂0Gi ⊗ ξ) and ξi,i := φ̃∗i (1∂0Gi ⊗ ξ̃). Then we define

ξi :=


ξi,i, on Ũi;

1, on Gi \ Ũi;

0, elsewhere,

and ξ0 :=


ξi,0, on Ũi;

0, on Gi \ Ũi;

1, elsewhere.

The compactness of ∂0Gi and [7, Corollary 4.3] imply that ∂0Gi is uniformly regular. Therefore, we

find for ∂0Gi a uniformly regular atlas Âi := (Ôκ,i, ϕ̂κ,i)κ∈Ki , and a localization system (π̂κ,i)κ∈Ki .

We set

Oκ,i = φ̃−1
i (Ôκ,i × [−1, 1]), ϕκ,i = (ϕ̂κ,i, id) ◦ φ̃i,

and πκ,i := φ̃∗i (π̂κ,i ⊗ 1[−1,1]). Then (π2
κ,i)κ∈Ki forms a partition of unity on Ũi.

Let ψκ,i = [ϕκ,i]
−1. We define

Rci : BCk(Mi)→ BCk(U), u 7→ (ψ∗κ,i(πκ,iu))κ∈Ki ,

and

Ri : BCk(U)→ BCk(Mi), (uκ)κ∈Ki 7→
∑
κ∈Ki

ψ∗κ,i(πκ,iuκ).

Here BCk(U) :=
∏
κ∈Ki BC

k(Uκ) and

Uκ =


Rm−1 × [−1, 1], if Mi = Ũi;

Rm−1 × [0, 1], if Mi = Ũi ∩Gi.
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Then alike to Proposition II.1, we can show that Ri is a retraction from BCk(U) to BCk(Mi) with

Rci as a coretraction.

By a well-known extension theorem, there exists a universal extension operator

E ∈ L(BCk(Rm−1 × [0, 1]), BCk(Rm−1 × [−1, 1])).

Set E ∈ L(BCk(Rm−1 × [0, 1]),BCk(Rm−1 × [−1, 1])) and

Ei := Ri ◦E ◦ Rci , i = 1, · · · , n.

Note that (Gi ∪ Ũi, g; ρ) is a singular manifold. Then

Ei ∈ L(BCk,0(Gi), BC
k,0(Gi ∪ Ũi)), i = 1, · · · , n, k ∈ N0.

Here we adopt the convention that Eiu(p) = u(p) for any point p ∈ Gi \ Ũi. Put h̃i := Eihi. We

thus have h̃i ∈ BC2,0(Gi ∪ Ũi). Now we define

h = ξ01M +
n∑
i=1

ξih̃i.

Then h ∈ C2(M) satisfies the desired properties.

(iii) One can verify that for j = 0, · · · , n and any u ∈ D(M, V )

πjAhv =Ah(πjv) + 2ρ2−λC(∇v, gradπj)

+ [div(ρ2−λgradπj)− C(∇πj , a1) + 2zρ2−λC(∇πj , gradh)]v

= : Ah(πjv) + Bjv,(V.24)

where the operator Ah is defined in (V.16). Note that ρ|∪nj=0supp(|∇πj |g) ∼ 1, and thus

gradπj ∈ BC∞,ϑ(M, TM)

for any ϑ ∈ R. Based on these observations and Propositions II.4, II.6, II.11, and [4, Corollaries 7.2,

12.2], we infer that

Bj ∈ L(B̊
1,λ′−λ/2
2 (M, V ), Lλ

′
2 (Xj , V )), j = 0, · · · , n.(V.25)
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Set Ahj := Ah|Xj . (V.19) and [6, Theorem 5.2] yield

Ahj ∈ H(W̊ λ′−λ
2 (Xj , V ), Lλ

′
2 (Xj , V )), j = 0, · · · , n.

Put Āh := (Ahj )
n
j=0 and

E1 := W̊
2,λ′−λ
2 (M, V ), E0 := Lλ

′
2 (M, V ).

Then there exist some θ ∈ [π/2, π), ω0 ≥ 0 and E > 0 such that S0 := ω0 + Σθ ⊂ ρ(−Āh) and

|µ|1−k‖(µ+ Āh)
−1‖L(E0,Ek) ≤ E, k = 0, 1, µ ∈ S0.

Put

B := (Bj)
n
j=0 ∈ L(B̊

1,λ′−λ/2
2 (M, V ), E0).

From Definition (II.5), it is not hard to show that

B̊
1,λ′−λ/2
2 (M, V )

.
= (E1, E0)1/2,2.

Then by (V.25), we have

BΛ ∈ L(B̊
1,λ′−λ/2
2 (M, V ), E0).

Combining with interpolation theory, we infer that for every ε > 0 there exists some positive

constant C(ε) such that for all u = (uj)
n
j=0 ∈ E1

‖BΛu‖E0 ≤ ε‖u‖E1 + C(ε)‖u‖E0 .

Given any u ∈ E0 and µ ∈ S0,

‖BΛ(µ+ Āh)
−1u‖E0 ≤ε‖(µ+ Āh)

−1u‖E1 + C(ε)‖(µ+ Āh)
−1u‖E0

≤E(ε+
C(ε)

|µ|
)‖u‖E0 .

Hence we can find some ω1 ≥ ω0 such that for all µ ∈ S1 := ω1 + Σθ

‖BΛ(µ+ Āh)
−1‖L(E0) ≤ 1/2,

which implies that S1 ⊂ ρ(−Āh −BΛ) and

‖(I + BΛ(µ+ Āh)
−1)−1‖L(E0) ≤ 2.
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Now one can easily verify that

|µ|1−k‖(µ+ Āh + BΛ)−1‖L(E0,Ek) ≤ 2E, k = 0, 1, µ ∈ S1.

(iv) (V.24) shows that

Λc(µ+ Ah)u = (µ+ Āh)Λ
cu+ BΛΛcu = (µ+ Āh + BΛ)Λcu.

For any µ ∈ S1, this yields

Λ(µ+ Āh + BΛ)−1Λc(µ+ Ah) = Λ(µ+ Āh + BΛ)−1(µ+ Āh + BΛ)Λc = id
W̊ 2,λ′−λ

2 (M,V )
.

This proves the injectivity of µ+ A for µ ∈ S1.

(v) On the other hand, one can also view Bj as an operator from B̊
1,λ′−λ/2
2 (Xj , V ) to Lλ

′
2 (M, V ).

Then

Bj ∈ L(B̊
1,λ′−λ/2
2 (Xj , V ), Lλ

′
2 (M, V )).

Let Bu :=
∑n

j=0 Bjuj for u = (uj)
n
j=0. Following an analogous argument as in (iii), we infer that

there exists some ω2 ≥ ω1 such that S2 := ω2 + Σθ ⊂ ρ(−Āh + ΛcB) and

|µ|1−k‖(µ+ Āh − ΛcB)−1‖L(E0,Ek) ≤ 2E, k = 0, 1, µ ∈ S2.(V.26)

We further have

(µ+ Ah)Λ(µ+ Āh − ΛcB)−1Λc = Λ(µ+ Āh − ΛcB)(µ+ Āh − ΛcB)−1Λc = id
Lλ
′

2 (M,V )
.

Thus, µ+ A is surjective for µ ∈ S2. Moreover, together with (V.26), we have

|µ|1−k‖(µ+ Ah)
−1‖

L(Lλ
′

2 (M,V ),W̊ 2k,λ′−λ
2 (M,V ))

≤ E′, k = 0, 1, µ ∈ S2

for some E′ > 0. Now the asserted statement follows from the well-known semigroup theory and a

similar argument to the proof for Theorem V.11. �

The following theorem is the main result of this thesis.

Theorem V.27. Suppose that (M, g; ρ) is a singular manifold satisfying ρ ≤ 1,

|∇ρ|g ∼ 1, ‖∆ρ‖∞ <∞
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on Mr := {p ∈ M : ρ(p) < r} for some r ∈ (0, 1]. Moreover, assume that the set

Sr0 := {p ∈ M : ρ(p) = r0}

is compact for r0 ∈ (0, r). Let λ′ ∈ R, and λ ∈ [0, 1) ∪ (1,∞).

(a) Then (M, g; ρ) is a singular manifold with Hλ-ends.

(b) Furthermore, assume that the differential operator

A u := −div(ρ2−λgradu) + C(∇u, a1) + a0u

is (ρ, λ)-regular. Then

A ∈ H(W̊ 2,λ′−λ
p (M, V ), Lλ

′
p (M, V )), 1 < p <∞.

Here V = C if p 6= 2, or V = V σ
τ with σ, τ ∈ N0 if p = 2.

Proof. (i) For M > 0, we set

h(p) = Msign(1− λ) log ρ(p), p ∈ M.(V.27)

A direct computation shows that

ρgradh = Msign(1− λ)gradρ,

and

ρλdiv(r2−λgradh) = Msign(1− λ)ρ∆ρ+M |1− λ||gradρ|2g.

Together with (S3) and (S4), one can then easily show that h ∈ BC2,0(M), and

h ∈Hλ(Mr1 , g; ρ)(V.28)

with parameters (c,M) for some r1 ≤ r sufficiently small.

By the implicit function function theorem, Sr0 is a compact submanifold. Then the assertion that

(M, g; ρ) is a singular manifold with Hλ-ends is simply a consequence of the tubular neighborhood

theorem.
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(ii) The retraction-coretraction system defined in the proof for Theorem V.26 allows us to decom-

pose the problem into generation of analytic semigroup on every Hλ-end, and then to glue the

complete operator together by the perturbation argument used therein.

We thus can reduce the assumptions on the manifold (M, g; ρ) to only assuming (M, g; ρ) to be a

singular manifold with property Hλ, and property H0 if λ 6= 0. Moreover,

h = Msign(1− λ) log ρ ∈Hλ(M, g; ρ), h0 = M log ρ ∈H0(M, g; ρ),

both with parameter (c,M).

The reason to include the extra assumption that (M, g; ρ) has property H0 will be self-explanatory

in Step (v) below, while we determine the domain of the Lλ
′
p (M)-realization of the operator A .

(iii) Take h as in (V.27) and z = a + ib, M satisfying (H2) and (H3) in Section 5.2.1. In Theo-

rem V.26, we have shown that

A ∈ H(ezhW̊ 2,λ′−λ
2 (M, V ), ezhLλ

′
2 (M, V )).

We have ezh = ρsign(1−λ)zM = ρsign(1−λ)aMρsign(1−λ)bMi. By (V.6) and Proposition II.8, we infer

that

∇ log ρ ∈ BC1,0(M, T ∗M),

which implies

∇ρsign(1−λ)bMi = sign(1− λ)bMiρsign(1−λ)bMi∇ log ρ ∈ BC1,0(M, T ∗M).

Combining with |ρsign(1−λ)bMi| ≡ 1, we thus have

ρsign(1−λ)bMi ∈ BC2,0(M).

By Propositions II.4, II.5 and the fact that ezhe−zh = e−zhezh = 1M, we infer that

ezh ∈ Lis(W̊ s,ϑ
p (M, V ), W̊ s,ϑ+sign(λ−1)aM

p (M, V )), 1 < p <∞, 0 ≤ s ≤ 2.

A similar argument to Theorem V.11 yields

A ∈ H(W̊
2,λ′−λ+sign(λ−1)aM
2 (M, V ), L

λ′+sign(λ−1)aM
2 (M, V )).
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Since λ′ is arbitrary and sign(λ− 1)aM ∈ (−1/2c3, 1/2c3), it implies that

A ∈ H(W̊ 2,λ′−λ
2 (M, V ), Lλ

′
2 (M, V )), λ′ ∈ R.

(iv) Now we look at the general case 1 < p <∞ and suppose that V = C. Recall that the adjoint,

A ∗(ϑ), of A with respect to L
ϑ/2
2 (M) is

A ∗(ϑ)u = −div(ρ2−λgradu)− C(∇u, 2ϑρ2−λgrad log ρ+ a1) + b(ϑ,~a)u,

where with ~a = (~a, a1, a0) and

b(ϑ,~a) := ā0 − div(ϑρ2−λgrad log ρ+ a1)− ϑ(ϑρ2−λgrad log ρ+ a1|grad log ρ)g.

To simplify our usage of notation in the following computations, we first focus on the case λ > 1.

The remaining case follows easily by symmetry. Recall that when λ > 1, we can set

h(p) = −M log ρ(p), p ∈ M, M > 0.

Let A ∗h (ϑ) := e−zh ◦ A ∗(ϑ) ◦ ezh. Since A ∗(ϑ) is (ρ, λ)-regular and (ρ, λ)-singular elliptic, by

choosing z = z(ϑ) = a+ ib and M = M(ϑ) satisfying (H2) and (H3), we have

A ∗h (ϑ) ∈ H(W̊ 2,−λ
2 (M), L2(M)) ∩ Lis(W̊ 2,−λ

2 (M), L2(M)).

We have thus established

A ∗(ϑ) ∈ H(W̊ 2,aM−λ
2 (M), LaM2 (M)) ∩ Lis(W̊ 2,aM−λ

2 (M), LaM2 (M)),

and the semigroup {e−tA ∗(ϑ)}t≥0 is contractive. Note that

aM ∈ (−1/2c3, 0) ⊂ (−1, 0)

only depends on c. Henceforth, we always take α := aM = −1/4c3.

For the adjoint, A (ϑ; 2α), of A ∗(ϑ) with respect to Lα2 (M), we can show similarly that

A (ϑ; 2α) ∈ H(W̊ 2,α−λ
2 (M), Lα2 (M)) ∩ Lis(W̊ 2,α−λ

2 (M), Lα2 (M)),

and {e−tA (ϑ;2α)}t≥0 is contractive. Let Ah(ϑ; 2α) = e−zh ◦A (ϑ; 2α) ◦ ezh.
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The L∞-contractivity of {e−tAh}t≥0, {e−tA
∗
h (ϑ)}t≥0 and {e−tAh(ϑ;2α)}t≥0 can be built up by a similar

argument to Section 5.1.2. It yields for any u ∈ Lα2 (M) ∩ Lα∞(M)

‖e−tA u‖Lα∞ = ‖e−tA ezhe−zhu‖Lα∞

= ‖ezhe−tAhe−zhu‖Lα∞(V.29)

≤ ‖e−tAhe−zhu‖L∞ ≤ ‖e−zhu‖L∞ ≤ ‖u‖Lα∞ .

(V.29) follows from Ah = e−zh ◦A ◦ ezh and

e−zhe−tA ezhv = e−zh lim
n→∞

[
n

t
(
n

t
+ A )−1]nezhv = lim

n→∞
e−zhezh[

n

t
e−zh(

n

t
+ A )−1ezh]nv

= lim
n→∞

[
n

t
(
n

t
+ e−zh ◦A ◦ ezh)−1]nv = lim

n→∞
[
n

t
(
n

t
+ Ah)

−1]nu = e−tAhv.

A similar argument applies to {e−tA ∗(ϑ)}t≥0 and {e−tA (ϑ;2α)}t≥0 as well. Thus we have established

the Lα∞-contractivity of the semigroups {e−tA }t≥0, {e−tA ∗(ϑ)}t≥0, and {e−tA (ϑ;2α)}t≥0.

Now we make use of the duality argument in Step (ii) of the proof for Theorem V.7 again. For any

u ∈ Lϑ−α2 (M) ∩ Lϑ−α1 (M) and v ∈ Lα2 (M) ∩ Lα∞(M), it holds

|〈e−tA v|u〉2,ϑ/2| = |〈v|e−tA
∗
u〉2,ϑ/2| = |〈ρϑv|e−tA

∗
u〉2,0|

≤ ‖ρϑv‖L−α1
‖e−tA ∗u‖Lα∞

≤ ‖v‖Lϑ−α1
‖u‖Lα∞ .

Taking ϑ = λ′+α, the above inequality proves that {e−tA }t≥0 is indeed Lλ
′

1 -contractive. Applying

this duality argument to {e−tA ∗(ϑ)}t≥0 and {e−tA (ϑ;2α)}t≥0 repeatedly with respect to 〈·|·〉2,α, we

can then obtain the Lα1 -contractivity of these two semigroups. Similarly, we have

|〈e−tA v|u〉2,ϑ/2| ≤ ‖v‖Lϑ−α∞ ‖u‖Lα1 .

Hence, by Lemma V.5 {e−tA }t≥0 is indeed Lλ
′
p -contractive for all 1 ≤ p ≤ ∞. After carefully

following the proof for Theorem V.7, one can show that {e−tA }t≥0 can be extended to a contractive

strongly continuous analytic semigroup on Lλ
′
p (M) for 1 < p <∞.

(v) To determine the domain of the realization of A on Lλ
′
p (M), we look at the operator

Bu := −div(ρλ~a · gradu) + C(∇u, ρλa1) + ρλa0u+ λC(∇u, ρλ~a · grad log ρ).
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We have computed in Section 5.1.1 that A = ρ−λB. Since in Step (ii), we assume that (M, g; ρ) has

property H0, following an analogous discussion to Step (iii)-(iv), we can show that −Bω := −B−ω

generates a contractive strongly continuous analytic semigroup on Lλ
′−λ
p (M) with domain D(Bω)

for 1 < p < ∞ and any ω ≥ 0. In particular, D(Bω) is independent of ω. On the other hand, by

[6, Theorem 5.2], for ω sufficiently large and λ′ ∈ R, 1 < p <∞

Bω ∈ H(W̊ 2,λ′−λ
p (M), Lλ

′−λ
p (M)) ∩ Lis(W̊ 2,λ′−λ

p (M), Lλ
′−λ
p (M)).

Therefore, we indeed have D(B)
.
= W̊ λ′−λ

p (M) and

B ∈ H(W̊ 2,λ′−λ
p (M), Lλ

′−λ
p (M)) ∩ Lis(W̊ 2,λ′−λ

p (M), Lλ
′−λ
p (M)).

Now it follows from a similar argument to the proof for Theorem V.3 that

A ∈ H(W̊ 2,λ′−λ
p (M), Lλ

′
p (M)) ∩ Lis(W̊ 2,λ′−λ

p (M), Lλ
′
p (M)), λ′ ∈ R, 1 < p <∞.

�

We say u, v ∈ RM are Ck-equivalent, which is denoted by u ∼k v, if

u ∼ v, |∇iu|g ∼ |∇iv|g, i = 1, · · · , k.

Definition V.28. An m-dimensional singular manifold (M, g; ρ) is called a singular manifold with

holes and uniformly mild wedge ends if it fulfils the following conditions.

(i) (M , g) is an m-dimensional uniformly regular Riemannian manifold, and

Σ = {Σ1, · · · ,Σk}

is a finite set of disjoint m-dimensional compact manifolds with boundary such that Σj ⊂

M̊ . Put G0 := M \ ∪kj=1Σj and

Bj,r := B̄M (∂Σj , r) ∩G0, j = 1, · · · , k.

Furthermore, the singularity function ρ satisfies

ρ ∼2 distM (·, ∂Σj) in Bj,r(V.30)
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for some r ∈ (0, δ), where δ < diam(M ) and Bi,δ ∩Bj,δ = ∅ for i 6= j, and

ρ ∼ 1, elsewhere on G0.

(ii) G = {G1, · · · , Gn} is a finite set of disjoint m-dimensional uniformly mild wedges. More

precisely, there is a diffeomorphism fi : Gi → W (Ri, Bi,Γi) with Ri ∈ CU (J0). Let

Ir := (0, r] and

Gi,r := f−1
i (φP (Ir ×Bi)× Γi), i = 1, · · · , n.

Moreover, the singularity function ρ satisfies

ρ ∼2 f
∗
i (φ∗P (Ri|Ir ⊗ 1Bi)⊗ 1Γi) in Gj,r(V.31)

for some r ∈ (0, 1], and

ρ ∼ 1, elsewhere on Gi.

(iii) {G0} ∪G forms a covering for M. ∂0Gi := G0 ∩Gi ⊂ ∂G0 ∩ ∂Gi.

One can easily see that (V.30) and (V.31) imply that

|∆ρ| <∞ in Bj,r and Gj,r.(V.32)

The following corollary does not directly stem from Theorems V.26 and V.27. But using the ideas

in their proofs, we can prove this corollary without difficulty.

Corollary V.29. Suppose that (M, g; ρ) is a singular manifold with holes and uniformly mild wedge

ends. Let λ′ ∈ R, and λ ∈ [0, 1) ∪ (1,∞). Furthermore, assume that the differential operator

A u := −div(ρ2−λgradu) + C(∇u, a1) + a0u

is (ρ, λ)-regular. Then

A ∈ H(W̊ 2,λ′−λ
p (M, V ), Lλ

′
p (M, V )), 1 < p <∞.

Here V = C if p 6= 2, or V = V σ
τ with σ, τ ∈ N0 if p = 2.
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Proof. If Si,r := {p ∈ Gi : ρ(p) = r} is compact for small r and all i = 1, · · · , n, then by

Theorem V.27 the asserted result will be true. However, in general, Si,r might not be compact.

Nevertheless, looking into the proofs for Theorem V.26 and Theorem V.27, the compactness of Si,r

will only be responsible for Step (i) and (ii) in the proof for Theorem V.26.

Firstly, we take h := sign(1− λ) log ρ. Then h ∈ C2(M) satisfies

h ∈Hλ(Bj,r, g; ρ) and h ∈Hλ(Gi,r, g; ρ)

with parameters (c, 1) for some r > 0, following from (V.32) and a similar argument to the proofs

for Propositions V.19 and V.22. Furthermore,

h ∈ BC2(M \ (
k⋃
j=1

B̊j,r ∪
n⋃
i=1

G̊i,r)).

Thus the properties of h listed in Step (ii) of the proof for Theorem V.26 are all satisfied.

Next, we prove the existence of the retraction-coretraction system defined in Step (i) of the proof

for Theorem V.26. For any r ∈ (0, 1), picking (r0, r] with r0 > 0, we can construct a collar

neighborhood of Si,r on Gi by

Ui := f−1
i (φ−1

P (Bi × (r0, r])× Γi).

Moreover, we choose ξ, ξ̃ ∈ BC∞((r0, r], [0, 1]) such that

ξ|
[
r+r0

2
,r]
≡ 1, ξ|

(r0,
r+3r0

4
]
≡ 0; ξ̃|

(r0,
r+r0

2
]
≡ 1, ξ̃|

[
3r+r0

4
,r]
≡ 0.

Now we can define π̂i,0 := f∗i (φ∗P (1Bi ⊗ ξ)⊗ 1Γi), and π̂i,i := f∗i (φ∗P (1Bi ⊗ ξ̃)⊗ 1Γi). The rest of the

proof just follows from a similar argument to Step (i) of the proof for Theorem V.26. �

Remark V.30. In view of Remarks V.24 and V.25, the assertion in Corollary V.29 remains true if

we replace the condition of singular manifolds with holes by removing a finite set of disjoint compact

submanifolds {Σ1, · · · ,Σk} or discrete points {p1, · · · , pk} from a uniformly regular Riemannian

manifold (M , g). Here Σi ⊂ ∂M if Σi ∩ ∂M 6= ∅, or pi ∈ M̊ .

Remark V.31. From our proofs in Section 5.1 and 5.2, it is a simple matter to check that we

do not require the singular manifold (M, g; ρ) to enjoy smoothness up to C∞. Indeed, in order to

prove all the results in Chapter 5, it suffices to require (M, g; ρ) to be a C2-singular manifold.
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Chapter VI

Domains with compact boundary as

singular manifolds

Suppose that Ω ⊂ Rm is a Ck-domain with compact boundary for k > 2. Then Ω satisfies a uniform

exterior and interior ball condition, i.e., there is some r > 0 such that for every x ∈ ∂Ω there are

balls B(xi, r) ⊂ Ω and B(xe, r) ⊂ Rm \ Ω such that

∂Ω ∩ B̄(xi, r) = ∂Ω ∩ B̄(xe, r) = x.

For a ≤ r, we denote the a-tubular neighborhood of ∂Ω by Ta. Let

d∂Ω(x) := dist(x, ∂Ω), x ∈ Ω,

i.e., the distance function to the boundary. We define d : Ω→ R+ by

(VI.1) d = d∂Ω if Ω is bounded, or


d = d∂Ω in Ω ∩ Ta,

d ∼ 1 in Ω \ Ta
otherwise.

Then we have the following proposition.

Proposition VI.1. Let β ≥ 1. Suppose that Ω ⊂ Rm is a Ck-domain with compact boundary and

k > 2. Then (Ω, gm; dβ) is a Ck−1-singular manifold.

Proof. The case of k = ∞ is a direct consequence of [7, Theorem 1.6]. When k < ∞, one

notices that, to parameterize Ta, we need to use the outward pointing unit normal of ∂Ω, which

is Ck−1-continuous. By a similar argument to [7, Theorem 1.6], we can then prove the asserted

statement. �
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Given any finite dimensional Banach space X, by defining the singular manifold (M, g; ρ) by

(Ω, gm; dβ), we denote the weighted function spaces defined on Ω by Fs,ϑβ (Ω, X), i.e.,

Fs,ϑβ (Ω, X) = bcs,ϑ(M, X), F ∈ {bc, BC,Wp}.

In particular, we set Fs,ϑ(Ω, X) := Fs,ϑ1 (Ω, X).

In view of Remark IV.8, we have the following continuous maximal regularity theorem for elliptic

operators with higher order degeneracy on domains.

Theorem VI.2. Let γ ∈ (0, 1], s ∈ R+ \ N, ϑ ∈ R, β ≥ 1 and k = 2l + [s] + 2. Suppose that

Ω ⊂ Rm is a Ck-domain and the differential operator

A :=
∑
|α|≤2l

aα∂
α

satisfies

(a) for any ξ ∈ Sm−1

S := Σπ/2 ⊂ ρ(−σ̂Aπ(x, ξ)),

and for some Ce > 0

(d2lβ(x) + |µ|)‖(µ+ σ̂Aπ(x, ξ))−1‖L(X) ≤ Ce, µ ∈ S;

(b) aα ∈ bcs,−|α|β (Ω,L(X)).

Then

A ∈Mγ(bcs+2l,ϑ
β (Ω, X), bcs,ϑβ (Ω, X)).

Remarks VI.3.

(a) Condition (a) in Theorem VI.2 can be replaced by the following condition. For any ξ ∈

Sm−1 and η ∈ X,

〈σ̂Aπ(x, ξ)η, η〉X ∼ d2lβ|η|2X .

Here 〈·, ·〉 is the inner product in X. So the result in Theorem VI.2 corresponds to the

case of degenerate boundary value problems with strong degeneration. This generalizes
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the results of [40, 89] to unbounded domains and elliptic operators with order higher than

two.

(b) In Theorem VI.2, taking X to be any infinite dimensional Banach space is also admissible.

Next, we make use of the theory established in Chapter 5 to prove an existence and uniqueness

result for second order degenerate boundary value problems with weak degeneration, or second

order boundary blow-up problems.

Given any Banach space X, s ∈ (0, 1), and any perfect interval J , we denote by

Cs(J,X)

the set of all u ∈ C(J,X) such that u is Hölder continuous of order s.

Assume that Ω ⊂ Rm is a C3-domain with compact boundary. Take ρ = d. Let J = [0, T ],

ΩT := (0, T ]×M, and Ω0 := {0} ×M. We consider the following initial value problem.
ut + A u = f on ΩT ;

u = u0 on Ω0.
(VI.2)

Here

A u = −a∆u+ a1 · ∇u+ a0u,

and the coefficients (a, a1, a0) satisfy for some s ∈ (0, 1) and λ ∈ (0, 1) ∪ (1,∞)

a1 ∈ Cs(J ;BC0,λ(Ω, T0Rm)), a0 ∈ Cs(J ;Lλ∞(Ω));(VI.3)

and if λ = 2

a ∈ Cs(J ;R+);(VI.4)

or if λ 6= 2

a ∈ Cs(J,BC2,λ−2(Ω)), for every t ∈ J, a(t)
1

2−λ ∼2 d.(VI.5)

Observe that (VI.3) can be equivalently stated as

dλ−1a1 ∈ Cs(J ;BC(Ω,Rm)), dλa0 ∈ Cs(J ;L∞(Ω)).
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By (VI.4) and (VI.5), we can verify that when λ 6= 2, (Ω, gm; a
1

2−λ ) is a C2-singular manifold with

Hλ-ends. When λ = 2, we take the singular manifold to be (Ω, gm, d). In both cases, the conditions

in Theorem V.27 are satisfied.

Now we conclude from Remark V.31 and [1, Theorem II.1.2.1] that

Theorem VI.4. Suppose that Ω ⊂ Rm is a C3-domain with compact boundary. Let s ∈ (0, 1),

λ ∈ (0, 1)∪ (1,∞), λ′ ∈ R and 1 < p <∞. Assume that the coefficients (a, a1, a0) of the differential

operator

A u = −a∆u+ a1 · ∇u+ a0u

satisfy (VI.3)-(VI.5). Then given any

(f, u0) ∈ Cs(J ;Lλ
′
p (Ω))× Lλ′p (Ω),

the initial value problem (VI.2) has a unique solution

u ∈ C1+s(J \ {0};Lλ′p (Ω)) ∩ Cs(J \ {0};W λ′−λ
p (Ω)).

The case λ = 0 corresponds to normally ρ-ellipticity and thus is covered by Theorem VI.2.

Remark VI.5. Based on (VI.5), we can readily observe that the principle symbol of A satisfies

σ̂A (x, ξ) = a(t)|ξ|2 ∼ d2−λ|ξ|2, λ 6= 2.

Therefore, (VI.2) can either be a degenerate boundary value problem or be a boundary blow-

up problem. This supplements to the results in [40, 89] with weak degeneration case, i.e., λ ∈

(0, 1) ∪ (1, 2), or with boundary singularity case, i.e., λ > 2.
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Chapter VII

Applications to geometric analysis

1. The Laplace-Beltrami operator

Suppose that (M, g; ρ) is a singular manifold. Recall that the Laplace-Beltrami operator with

respect to g is defined by

∆ = ∆g := divg ◦ gradg = div ◦ grad.

One readily checks that ∆ is (ρ, λ)-regular and (ρ, λ)-singular elliptic with Cσ̂ = 1, λ = 2.

Let MT := (0, T ] × M, and M0 := {0} × M. Then Theorem V.27, Corollary V.29 and [1, Theo-

rem II.1.2.1] imply the following existence and uniqueness theorem for the heat equation.

Theorem VII.1. Suppose that either (M, g; ρ) is a singular manifold with holes and uniformly

mild wedge ends, or (M, g; ρ) satisfies the conditions in Theorem V.27. Let λ′ ∈ R and J = [0, T ].

Then for any

(f, u0) ∈ Cs(J ;Lλ
′
p (M))× Lλ′p (M),

with some s ∈ (0, 1), the boundary value problem
ut −∆u = f on MT

u = 0 on ∂MT

u = u0 on M0

(VII.1)

has a unique solution

u ∈ C1+s(J \ {0};Lλ′p (M)) ∩ Cs(J \ {0}; W̊ λ′−2
p (M)).

In the case of L2-spaces, making use of [71, Theorem 1.6], we have the following corollary.
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Corollary VII.2. Under the conditions in Theorem VII.1, let V = V σ
τ be a tensor field on M and

1 < p <∞. Then for any

(f, u0) ∈ Lp([0, T ];Lλ
′

2 (M, V ))× B̊1,λ′−1
2 (M, V ),

the boundary value problem (VII.1) has a unique solution

u ∈ Lp([0, T ]; W̊ ,λ′−2
2 (M, V ))×W 1

p ([0, T ];Lλ
′

2 (M, V )).

Remark VII.3. A similar result can also be formulated for the wave equation on singular mani-

folds with holes and uniformly mild wedge ends, or singular manifolds satisfying the conditions in

Theorem V.27. We refer the reader to [69] for the corresponding semigroup theory for hyperbolic

equations.

2. The porous medium equation

We consider the porous medium equation on a singular manifold (M, g; ρ) without boundary, which

reads as follows.

(VII.2)


∂tu−∆un = f ;

u(0) = u0

for n > 1. On Euclidean spaces, J.L. Vázquez [87, 88] proved existence and uniqueness of non-

negative weak solutions of Dirichlet problems for the porous medium equation. In a landmark article

[24], P. Daskalopoulos and R. Hamilton showed existence and uniqueness of smooth solutions for

the porous medium equation, and the smoothness of the free boundary, namely, the boundary of

the support of the solution, under mild assumptions on the initial data. In the past decade, there

has been rising interest in investigating the porous medium equation on Riemannian manifolds.

See [16, 26, 53, 66, 90, 92] for example. To the best of the author’s knowledge, research in this

direction is all restricted to the case of complete, or even compact, manifolds. The result that we

state in this section is the first one concerning existence and uniqueness of solutions to the porous

medium equation on manifolds with singularities.

Let

P (u) := −nun−1∆, Q(u) := n(n− 1)|gradu|2gun−2.
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A direct computation shows that equation (VII.2) is equivalent to
∂tu+ P (u)u = Q(u) + f ;

u(0) = u0.

Given any 0 < s < 1, put ϑ = −2/(n− 1). In the current context, V = R, thus we abbreviate the

notation bcs
′,ϑ(M,V ) to bcs

′,ϑ(M) for any s′ ≥ 0. Let

E0 := bcs,ϑ(M), E1 := bc2+s,ϑ(M), E1/2 := (E0, E1)0
1/2,∞.

Then by Proposition II.3, E1/2
.
= bc1+s,ϑ(M). Let

U1+s
ϑ := {u ∈ E1/2 : inf ρϑu > 0},

which is open in E1/2.

For any β ∈ R, define Pβ : U1+s
ϑ → L1,loc(M) : u 7→ uβ. One readily checks that [82, Proposition 6.3]

still holds true for singular manifolds. Hence by [82, Proposition 6.3] and Proposition II.5, we obtain

[u 7→ uβ] = [u 7→ ρ−βϑPβ(ρϑu)] ∈ Cω(U1+s
ϑ , bc1+s,βϑ(M)).(VII.3)

In view of (P2), we infer that Rcg∗ ∈ l2∞(BCk(E2
0)) for any k ∈ N0. Then Proposition II.1 yields

g∗ ∈ BC∞,2(M, V 2
0 ).(VII.4)

One may check via Proposition II.4, (VII.3) and (VII.4) that

un−1g∗ ∈ bc1+s(M, V 2
0 ), u ∈ U1+s

ϑ .

On account of the expression ∆gv = C(g∗,∇2v), it is then a direct consequence of Corollary IV.2

and [15, Proposition 1] that

P ∈ Cω(U1+s
ϑ ,L(E1, E0)).(VII.5)

In the above, ∇ := ∇g, where ∇g is Levi-Civita connection of g. Given any ϑ′ ∈ R, by Proposi-

tions II.6 and II.8, one obtains

(VII.6) grad ∈ L(BCk+1,ϑ′(M, V σ
τ ), BCk,ϑ

′+2(M, V σ+1
τ )).
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A density argument as in the proof for Proposition II.5 yields

grad ∈ L(bck+1,ϑ′(M, V σ
τ ), bck,ϑ

′+2(M, V σ+1
τ )).

Interpolation theory and definition (II.3) implies that (VII.6) also holds for Hölder spaces of non-

integer order. Applying the density argument as in the proof for Proposition II.5 once more, we

establish the assertion for weighted little Hölder spaces of non-integer order, that is, for any s′ ≥ 0

grad ∈ L(bcs
′+1,ϑ′(M, V σ

τ ), bcs
′,ϑ′+2(M, V σ+1

τ )).(VII.7)

We have the expression |gradu|2g = C(∇u, gradu). Since complete contraction is a bundle multipli-

cation, we infer from Propositions II.4, II.6 and (VII.7) that

[u 7→ |gradu|2g] ∈ Cω(U1+s
ϑ , bcs,2ϑ+2(M)).(VII.8)

Proposition II.4, (VII.3) and (VII.8) immediately imply

Q ∈ Cω(U1+s
ϑ , E0).(VII.9)

Given any u ∈ U1+s
ϑ , one verifies that the principal symbol of P (u) fulfils

−nC(un−1g∗, (−iξ)⊗2) = nρ2(ρϑu)n−1|ξ|2g∗ ≥ n(inf ρϑu)n−1ρ2|ξ|2g∗ ,

for any cotangent field ξ. Hence for any u ∈ U1+s
ϑ , P (u) is normally ρ-elliptic. It follows from

Theorem IV.7 that

P (u) ∈Mγ(E1, E0), u ∈ U1+s
ϑ .(VII.10)

Theorem VII.4. Suppose that u0 ∈ U1+s
ϑ := {u ∈ bc1+s,ϑ(M) : inf ρϑu > 0} with 0 < s < 1, and

ϑ = −2/(n− 1). Then given any

f ∈ bcs,ϑ(M),

equation (VII.2) has a unique local positive solution

û ∈ C1
1/2(J(u0), bcs,ϑ(M)) ∩ C1/2(J(u0), bc2+s,ϑ(M)) ∩ C(J(u0), U1+s

ϑ )
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existing on J(u0) := [0, T (u0)) for some T (u0) > 0. Moreover,

û ∈ C∞(J̇(u0)×M).

Proof. In virtue of (VII.5), (VII.9) and (VII.10), [22, Theorem 4.1] immediately establishes

the local existence and uniqueness part. The short term positivity of the solution follows straight-

away from the continuity of the solution. To argue for the asserted regularity property of the

solution û, we look at v := ρϑû. By multiplying both sides of equation VII.2 with ρϑ, we have
∂tv − ρϑ∆ρ2−ϑvn = ρϑf ;

v(0) = ρϑu0.

One checks

ρϑ∆ρ2−ϑvn =nρ2vn−1∆v + n(n− 1)ρ2|gradv|2gvn−2

+ 2n(2− ϑ)ρ2(grad log ρ|gradv)gv
n−1

+ (2− ϑ)[ρ∆ρ+ (1− ϑ)|gradρ|2g]vn.

Let ĝ = g/ρ2. Recall that (M, ĝ) is a uniformly regular Riemannian manifold. Put U1+s := {v ∈

bc1+s(M) : inf v > 0}. By [6, formula (5.15)],

ρ2|gradv|2g = |gradĝv|2ĝ.

We have

(grad log ρ|gradv)g = (grad log ρ|gradĝv)ĝ.

It follows from [6, formula (5.8)] that ρ2grad log ρ ∈ BC1,0(M, TM). By Proposition II.7,

ρ2grad log ρ ∈ BC1(M, T̂M).

[82, formula (5.6)] implies vn−1 ∈ bc1+s(M) for all v ∈ U1+s. It is immediate from (S3) that

ρ ∈ BC∞,−1(M). By Propositions II.4-II.8 and II.11, we can show that

ρ∆ρ+ (1− ϑ)|gradρ|2g ∈ BC1(M).

Put

P (v) := −nρ2vn−1∆,
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and

Q(v) :=ρϑ∆ρ2−ϑvn + P (v)v

=n(n− 1)ρ2|gradv|2gvn−2 + 2n(2− ϑ)ρ2(grad log ρ|gradv)gv
n−1

+ (2− ϑ)[ρ∆ρ+ (1− ϑ)|gradρ|2g]vn.

Then by the above discussion, we infer that

P ∈ Cω(U1+s,L(bc2+s(M), bcs(M))), Q ∈ Cω(U1+s, bcs(M)).

For each v ∈ U1+s, we can check that P (v) is normally elliptic in the sense of [82, Section 3].

Applying the parameter-dependent diffeomorphism technique in [79], we can establish

v ∈ C∞(J̇(u0)×M),

which in turn implies

û ∈ C∞(J̇(u0)×M).

�

Remark VII.5. It is clear Theorem VII.4 still holds true for the fast diffusion case of the porous

medium equation (the plasma equation).

Before concluding this section, we comment on the Cauchy problem for the porous medium equation

and its waiting-time phenomenon. Since our conclusion for the porous medium equation, to some

extend, can be viewed as a simpler version of the corresponding theory of the thin film equation in

Section 8.1, we will only state our results without providing proofs. More details can be found in

Section 8.1.

Remark VII.6. Suppose that supp(u0) =: Ω ⊂ Rm is a C4-domain with compact boundary, and

u0 ∈ U1+s
ϑ := {u ∈ bc1+s,ϑ(Ω) : inf dϑu > 0} with 0 < s < 1, ϑ = −2/(n − 1). We know from

Proposition VI.1 that (Ω, gm; d) is a C3-singular manifold, where d is defined in (VI.1). Then by
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Theorems VI.2 and VII.4, for every f ∈ bcs,ϑ(Ω), the equation
∂tu+ ∆un = f on Ω;

u(0) = u0 on Ω,

has a unique solution on J(u0) = [0, T (u0))

û ∈ C1
1/2(J(u0), bcs,ϑ1 (Ω)) ∩ C1/2(J(u0), bc2+s,ϑ

1 (Ω)) ∩ C(J(u0), U1+s
ϑ ).(VII.11)

Furthermore, by identifying û, f, u0 ≡ 0 in Rm \ Ω, û is indeed a strong L1-solution of the Cauchy

problem 
∂tu+ ∆un = f on Rm;

u(0) = u0 on Rm

in the sense of [88, Definition 9.1], except that the interval of existence [0,∞) in [88, Definition 9.1]

is replaced by J(u0). This solution is unique by [88, Theorem 9.2]. Another observation from

(VII.11) is that û enjoys the so-called waiting-time property, that is,

supp[û(t, ·)] = supp[û(0, ·)], t ∈ (0, T (u0)).

3. The Yamabe flow

Suppose that (M, g0; ρ) is a singular manifold without boundary of dimension m for m ≥ 3. The

Yamabe flow reads as

(VII.12)


∂tg = −Rgg;

g(0) = g0,

where Rg is the scalar curvature with respect to the metric g. g0 is in the conformal class of the

background metric g0 of M, i.e., [g0].

We seek solutions to the Yamabe flow (VII.12) in [g0]. Let c(m) := m−2
4(m−1) , and define the conformal

Laplacian operator Lg with respect to the metric g as:

Lgu := ∆gu− c(m)Rgu.
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Let g = u
4

m−2 g0 for some u > 0. It is well known that by rescaling the time variable equation

(VII.12) is equivalent to 
∂tu

m+2
m−2 =

m+ 2

m− 2
L0u;

u(0) = u0,

where L0 := Lg0 and u0 is a positive function. See [59, formula (7)]. It is equivalent to solving the

following equation:

(VII.13)


∂tu = u−

4
m−2L0u;

u(0) = u0.

A well-known formula of scalar curvature in local coordinates yields

Rg =
1

2
gkiglj(gjk,li + gil,kj − gjl,ki − gik,lj).

(P2) implies that

RcRg0 ∈ l2∞(BCk(R)),

for any k ∈ N0. By Proposition II.1, we infer that

Rg0 ∈ BC∞,2(M).(VII.14)

Put

P (u)h := −u−
4

m−2 ∆g0h, Q(u) := −c(m)u
m−6
m−2Rg0 .

Given any 0 < s < 1, we choose 0 < α < s, γ = (s− α)/2. Let ϑ = (m− 2)/2 and

E0 := bcα,ϑ(M), E1 := bc2+α,ϑ(M), Eγ := (E0, E1)0
γ,∞.

Then by Proposition II.3, Eγ
.
= bcs,ϑ(M). Put

U sϑ = {u ∈ Eγ : inf ρϑu > 0}.

In view of (VII.14), it follows from an analogous discussion as in (VII.5) and (VII.9) that

P ∈ Cω(U sϑ,L(E1, E0)), Q ∈ Cω(U sϑ, E0).(VII.15)
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A similar computation as in (VII.10) yields

(VII.16) P (u) ∈Mγ(E1, E0), u ∈ U sϑ.

Theorem VII.7. Suppose that u0 ∈ U sϑ := {u ∈ bcs,ϑ(M) : inf ρϑu > 0} with 0 < s < 1, and

ϑ = (m − 2)/2. Then for every fixed α ∈ (0, s), equation (VII.13) has a unique local positive

solution

û ∈ C1
1−γ(J(u0), bcα,ϑ(M)) ∩ C1−γ(J(u0), bc2+α,ϑ(M)) ∩ C(J(u0), U sϑ)

existing on J(u0) := [0, T (u0)) for some T (u0) > 0 with γ = (s− α)/2. Moreover,

ĝ ∈ C∞(J̇(u0)×M, V 0
2 ).

In particular, if the metric g0/ρ
2 is real analytic, then

ĝ ∈ Cω(J̇(u0)×M, V 0
2 ).

Proof. Local existence and uniqueness follows directly from (VII.15), (VII.16), and [22, The-

orem 4.1]. The regularity part follows by a similar way to the proof of Theorem VII.4. �

Remark VII.8. The initial metric g0 = u
4

m−2

0 g0 in the above theorem can have unbounded scalar

curvature. To make this already long paper not any longer, we will give more details on this

observation elsewhere.

4. The evolutionary p-Laplacian equation

In this section, we investigate the well-posedness of the following evolutionary p-Laplacian equation

on a singular manifold (M, g; ρ).

(VII.17)


∂tu− div(|gradu|p−2

g gradu) = f ;

u(0) = u0.

Here 1 < p < ∞ with p 6= 2, and grad = gradg, div = divg. This problem has been studied

extensively on Euclidean spaces. The two books [28, 29] contain a detailed analysis and a historical

account of this problem. There are several generalizations of the elliptic p-Laplacian equation on
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Riemannian manifolds. But fewer have been achieved for its parabolic version above. See [26] for

instance.

One computes

div(|gradu|p−2
g ∇u) = |gradu|p−2

g ∆u+ (p− 2)|gradu|p−4
g C((gradu)⊗2,∇2u)

= |gradu|p−4
g C(|gradu|2g∗ + (p− 2)(gradu)⊗2,∇2u).

Let

~a(u) := −|gradu|p−4
g (|gradu|2g∗ + (p− 2)(gradu)⊗2).

For any 0 < s < 1, we put ϑ = p/(2− p) and

E0 := bcs,ϑ(M), E1 := bc2+s,ϑ(M), E1/2 := (E0, E1)0
1/2,∞.

Proposition II.3 implies E1/2
.
= bc1+s,ϑ(M). Let

U1+s
ϑ := {u ∈ E1/2 : inf ρϑ+1|gradu|g > 0}.

This is an open subset of E1/2.

We infer from (VII.3) and (VII.8) that

[u 7→ |gradu|p−2
g ] ∈ Cω(U1+s

ϑ , bcs,−2(M)),

and from [5, Example 13.4(b)], Propositions II.4 and II.8 that

[u 7→ |gradu|p−4
g (gradu)⊗2] ∈ Cω(U1+s

ϑ , bcs,0(M, V 2
0 )).

In virtue of (VII.4) and Proposition II.4, we have

[u 7→ ~a(u)] ∈ Cω(U1+s
ϑ , bcs,0(M, V 2

0 )).(VII.18)

The principal symbol can be computed as in Section 7.2.

C(~a(u), (−iξ)⊗2)(p) =|gradu(p)|p−2
g(p)|ξ(p)|2g∗(p) + (p− 2)|gradu(p)|p−4

g(p)[C(gradu, ξ)(p)]2

=|gradu(p)|p−2
g(p)|ξ(p)|2g∗(p) + (p− 2)|gradu(p)|p−4

g(p)(∇u(p)|ξ(p))2
g∗(p).
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For p > 2, one checks for any ξ ∈ Γ(M, T ∗M)

C(~a(u), (−iξ)⊗2)(p) ≥ |gradu(p)|p−2
g(p)|ξ(p)|2g∗(p) ≥ (inf ρϑ+1|gradu|g)p−2ρ2(p)|ξ(p)|2g∗(p),

and for 1 < p < 2

C(~a(u), (−iξ)⊗2)(p) ≥ |gradu(p)|p−2
g(p)|ξ(p)|2g∗(p) + (p− 2)|gradu(p)|p−2

g(p)|ξ(p)|2g∗(p)

= (p− 1)|gradu(p)|p−2
g(p)|ξ(p)|2g∗(p)

≥ (p− 1)(sup ρϑ+1|gradu|g)p−2ρ2(p)|ξ(p)|2g∗(p),

holds for all u ∈ U1+s
ϑ . In the second step, we have used the Cauchy-Schwarz inequality. Therefore,

C(~a(u),∇2·) is normally ρ-elliptic for every u ∈ U1+s
ϑ .

Theorem VII.9. Suppose that u0 ∈ U1+s
ϑ := {u ∈ bc1+s,ϑ(M) : inf ρϑ+1|gradu|g > 0} with 0 < s <

1, and ϑ = p/(2− p). Then given any

f ∈ bcs,ϑ(M),

equation (VII.17) has a unique local solution

û ∈ C1
1/2(J(u0), bcs,ϑ(M)) ∩ C1/2(J(u0), bc2+s,ϑ(M)) ∩ C(J(u0), U1+s

ϑ )

existing on J(u0) := [0, T (u0)) for some T (u0) > 0. Moreover,

û ∈ C∞(J̇(u0)×M).

Proof. The assertion follows in a similar way to the proof of Theorem VII.4. �
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Chapter VIII

Further applications to degenerate

boundary value problems or boundary

blow-up problems

1. The thin film equation on domains

Suppose that Ω ⊂ Rm is a C6-domain with compact boundary. Then by the discussion in Chapter 6,

(Ω, gm; dβ) with β ≥ 1 is a singular manifold, where d is defined in (VI.1). We consider the following

thin film equation with n > 0 and degenerate boundary condition. Physically, the power exponent

is determined by the flow condition at the liquid-solid interface, and is usually constrained to

n ∈ (0, 3]. Since the other choices of n make no difference in our theory, n ∈ [3,∞) is also included

herein.

(VIII.1)


∂tu+ div(unD∆u+ α1u

n−1∆uDu+ α2u
n−2|Du|2Du) = f on ΩT ;

u(0) = u0 on Ω.

Here α1, α2 are two constants, and D denotes the gradient in Rm. An easy computation shows that

div(unD∆u+ α1u
n−1∆uDu+ α2u

n−2|Du|2Du)

= un∆2u+ (n+ α1)un−1(Du|D∆u)gm + α1u
n−1(∆u)2

+ [α1(n− 1) + α2]un−2|Du|2∆u+ α2(n− 2)un−3|Du|4

+ 2α2u
n−2(∇2uDu|Du)gm .

For any 0 < s < 1, take ϑ = −4/n

E0 := bcs,ϑβ (Ω), E1 := bc4+s,ϑ
β (Ω), E1/2 = (E0, E1)0

1/2,∞.
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Then E1/2
.
= bc2+s,ϑ

β (Ω). Let U2+s
ϑ := {u ∈ E1/2 : inf dβϑu > 0}. For any u ∈ U2+s

ϑ and v ∈ E1, we

define

P (u)v :=un∆2v + (n+ α1)un−1(Du|D∆v)gm + α1u
n−1∆u∆v

+ [α1(n− 1) + α2]un−2|Du|2∆v + α2(n− 2)un−4|Du|4v

+ 2α2u
n−2(∇2vDu|Du)gm .

It follows from a similar argument as in Section 7.2 that

P ∈ Cω(U2+s
ϑ ,L(E1, E0))

and for every u ∈ U2+s
ϑ , the principal symbol of P (u) can be computed as

σ̂P (u)(x, ξ) = un(x)(gm((−iξ), (−iξ)))2

= d4β(x)(dϑu)n(x)|ξ|4 ≥ (inf dϑu)nd4β(x)|ξ|4.

Thus P (u) is normally ρ-elliptic.

Theorem VIII.1. Given any β ≥ 1, suppose that u0 ∈ U2+s
ϑ := {u ∈ bc2+s,ϑ

β (Ω) : inf dβϑu > 0}

with 0 < s < 1, ϑ = −4/n. Then for every f ∈ bcs,ϑβ (Ω), equation (VIII.1) has a unique local

solution

û ∈ C1
1/2(J(u0), bcs,ϑβ (Ω)) ∩ C1/2(J(u0), bc4+s,ϑ

β (Ω)) ∩ C(J(u0), U2+s
ϑ )

existing on J(u0) := [0, T (u0)) for some T (u0) > 0. Moreover,

û ∈ C∞(J̇(u0)× Ω).

Proof. The proof is essentially the same as that for Theorem VII.4 except that we use Theo-

rem VI.2 instead of Theorem IV.7. �

In the case α1 = 0, we can admit lower regularity for the initial data.

Corollary VIII.2. Given any β ≥ 1, suppose that u0 ∈ U1+s
ϑ = {u ∈ bc1+s,ϑ

β (Ω) : inf dβϑu > 0}

with 0 < s < 1, ϑ = −4/n. Then for every f ∈ bcs,ϑβ (Ω), equation (VIII.1) has a unique local
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solution

û ∈ C1
3/4(J(u0), bcs,ϑβ (Ω)) ∩ C3/4(J(u0), bc4+s,ϑ

β (Ω)) ∩ C(J(u0), U1+s
ϑ )

existing on J(u0) := [0, T (u0)). Moreover,

û ∈ C∞(J̇(u0)× Ω).

In some publications, a more general form of the thin film equation is considered with un replaced

by Ψ(u) = un + δu3 with δ ≥ 0 and n ∈ (0, 3]. The term δu3 is sometimes omitted because it is

relatively small compared to un for n < 3 near the free boundary supp[u(t, ·)].

(VIII.2)


∂tu+ div(Ψ(u)D∆u+ α1u

n−1∆uDu+ α2u
n−2|Du|2Du) = f on ΩT ;

u(0) = u0 on Ω.

For any u ∈ U2+s
ϑ , it is easy to check that u3 ∈ bc2+s,3ϑ

β (Ω) ↪→ bc2+s,nϑ
β (Ω). Now the computations

shown above for equation (VIII.1) still hold for the new system undoubtedly.

Corollary VIII.3. Suppose that the conditions in Theorem VIII.1 are satisfied. Then equation

(VIII.2) has a unique local solution

û ∈ C1
1/2(J(u0), bcs,ϑβ (Ω)) ∩ C1/2(J(u0), bc4+s,ϑ

β (Ω)) ∩ C(J(u0), U2+s
ϑ )

existing on J(u0) := [0, T (u0)) for some T (u0) > 0. Moreover,

û ∈ C∞(J̇(u0)× Ω).

Remark VIII.4. We may observe that the solution û obtained in Theorem VIII.1 is actually a

solution to the following initial value problem with conditions on the free boundary ∂[supp(u)].

Indeed, assume that supp(u0) = Ω̄ and Ω is a C6-domain with compact boundary. Let Ω(t) :=
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supp[u(t, ·)]. If the initial data u0 satisfies the conditions in Theorem VIII.1, then

(VIII.3)



∂tu+ div(unD∆u+ α1u
n−1∆uDu+ α2u

n−2|Du|2Du) = f in Ω(t);

u = 0 on ∂Ω(t);

un
∂∆u

∂ν
= 0 on ∂Ω(t);

u(0) = u0 in Ω

has at least one classical solution. The third condition reflects conservation of mass. This is a

generalization of the problem studied in [23, 48]. The existence of a solution can be observed from

the fact that the solution û to the first and fourth lines satisfies

û(t, ·) ∈ bc4+s,ϑ
β (Ω) ∩ U2+s

ϑ , t ∈ J̇ .

Hence, for t ∈ J̇ there are two continuous positive functions c(t) < C(t) such that

(VIII.4) c(t) ≤ dβϑ(x)û(t, x) ≤ C(t), x ∈ Ω,

and

d(ϑ−1)β(x)ûn(t, x)|D∆û(t, x)|gm ≤ C(t), x ∈ Ω.

The second inequality follows from (VII.3), (VII.7) and that ∆ ∈ L(bc4+s,ϑ
β (Ω), bc2+s,2+ϑ

β (Ω)). The

above two inequalities imply that for every t ∈ J̇ , as x→ ∂Ω

|û(t, x)| ≤ C(t)d−βϑ(x)→ 0, ûn(t, x)|D∆û(t, x)|gm ≤ C(t)d(1−ϑ)β(x)→ 0.

The fact that û(t, ·) > 0 on Ω is a consequence of (VIII.4). Therefore,

(VIII.5) supp[û(t, ·)] = Ω(t) = Ω, t ∈ J,

and û is indeed a solution to equation (VIII.3). If we seek solutions in the class

C1
1/2(J(u0), bcs,ϑβ (Ω)) ∩ C1/2(J(u0), bc4+s,ϑ

β (Ω)),

then û is actually the unique solution. Note that the solution to equation (VIII.3) is, in general,

not unique unless a third condition is prescribed on the free boundary ∂[supp(u)]. A conventional

supplementary condition is to set the contact angle to be zero.
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By identifying û, f, u0 ≡ 0 on Rm \ Ω, û is nothing but a weak solution to the Cauchy problem
∂tu+ div(unD∆u+ α1u

n−1∆uDu+ α2u
n−2|Du|2Du) = f on RmT ;

u(0) = u0 on Rm

belonging to the class C1/2(J ;W 2
1 (Rm)) for β ∈ [1, n/(2n − 4)] when n ∈ (2, 3], or for all β ≥ 1

while n ∈ (0, 2] in the sense that for all φ ∈ C0(J̊ ;W 2
∞(Rm))∫

J×Rm

{u∂tφ−∆udiv(unDφ) + α1u
n−1∆u(Dφ|Du)gm + α2u

n−2|Du|2(Dφ|Du)gm} = −
∫

J×Rm

fφ.

To prove this statement, one first observes that, by the uniform exterior and interior ball condition,

for some sufficiently small a > 0 there is some a-tubular neighborhood of ∂Ω, denoted by Ta, such

that Ta can be parameterized by

Λ : (−a, a)× ∂Ω→ Ta : (r, p) 7→ p + rνp,

where νp is the inward pointing unit normal of ∂Ω at p. By the implicit function theorem, there

exists some C5-function Θ such that

Λ−1 : Ta → (−a, a)× ∂Ω, Λ−1(x) = (d(x),Θ(x)),

where d is defined in (VI.1), and Θ(x) is the closest point on ∂Ω to x.

To verify that û ∈ C1/2(J ;W 2
1 (Rm)), it suffices to check the integrability of û near ∂Ω. Since

u ∈ C1/2(J, bc4+s,ϑ
β (Ω)), there exists a positive function P ∈ C1/2(J) such that

d(2+ϑ)β(x)|∇2û(t, x)| ≤ P (t), x ∈ Ω, t ∈ J̇ .

Then ∫
Ta

|∇2û(t, x)| dx ≤ P (t)

∫
Ta∩Ω

d−(2+ϑ)β(x) dx ≤MP (t)

a∫
0

∫
∂Ω

r−(2+ϑ)β dµ dr,

which is finite iff n ∈ (0, 2], or β ∈ [1, n/(2n − 4)] and n ∈ (2, 3]. The last line follows from the

compactness of ∂Ω and [74, formula (25)]. The argument for lower order derivatives of û is similar.
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What is more, (VIII.5) states that the support of û has the global small term waiting-time property

for all dimensions, that is, there exists some T ∗ > 0 such that

(VIII.6) supp[u(t, ·)] = supp[u(0, ·)], t ∈ (0, T ∗).

To the best of the author’s knowledge, this is the first known result for the generalized thin film

equation (VIII.1). This result also supplements those in [23, 48, 84] for the case dimension m ≥ 4

with n ∈ (0, 3] and to domains without the external cone property with n ∈ [2, 3]. For any y ∈ ∂Ω,

Ω is said to satisfy the external cone property at y if for some θ ∈ (0, π/4) there is an infinite cone

C(y, θ) with vertex y and opening angle θ such that

supp[u0] ∩ C(y, θ) = ∅.

See [48, Theorem 4.1] for more details. A domain Ω is said to enjoy the external cone property if

it satisfies this property at every y ∈ ∂Ω. Note that any u0 ∈ U2+s
ϑ fulfils the flatness condition of

the initial data in [48, Theorem 4.1].

2. Generalized Heston operator

Let Ω = R× R+. One can readily check that

(M, g; ρ) := (Ω, g2; y), g2 = dx2 + dy2,

is a singular manifold with uniformly mild wedge end.

Let J := [0, T ]. Consider the following initial value problem.
ut + A u = f on ΩT

u(0) = u0 on Ω0.
(VIII.7)

Here with α < 2 and z = (x, y)

A (t, z)u(t, z)

: = −∂i(yαaij∂ju(t, z)) + yα−1bj(t, z)∂ju(t, z) + yα−2c(t, z)u(t, z),

where bj(t, z) := bj0(t, z) + ybj1(t, z), and c(t, z) := c0(t, z) + yc1(t, x) + y2c2(t, z). We impose the

following assumptions on the coefficients.
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(GH1)

(aij) =
1

2

 1 %σ

%σ σ2

 , σ > 0, −1 < % < 1,

(GH2) bji , ci ∈ Cs(J ;L∞(Ω)) for some s ∈ (0, 1).

This problem corresponds to the case λ = 2− α in (V.1).

While α = 1, bji ≡ const, c0 ≡ 0, c1, c2 ≡ const, A is called the Heston operator. (VIII.7)

generalizes the Heston model in the following sense. It does not only exhibit degeneracy along

the boundary, but boundary singularities may also appear. When α > 0, the diffusion term is

degenerate. Whereas α < 0 corresponds to the situation that boundary singularities show for the

highest order term.

The Heston operator has been studied in [36, 37, 38] and the references therein. In this section,

we focus on the case α 6= 1. The study of this kind of problem is new since the Schauder approach

in the aforementioned articles relies on the particular choice the degeneracy factor y.

One can check by direct computations that after a change of spatial variables and rescaling of the

temporal variable. Equation (VIII.7) can be transformed into
ut + Â u = f on ΩT

u(0) = u0 on Ω0.

Here

Â (t, z)u(t, z) :=− ∂j(yα∂ju(t, z)) + yα−1(b̂j0(t, z) + yb̂j1(t, z))∂ju(t, z)

+ yα−2(ĉ0(t, z) + yĉ1(t, x) + y2ĉ2(t, z))u(t, z),

where b̂ji , ĉi ∈ Cs(J ;L∞(Ω)). By Corollary V.29,

Theorem VIII.5. Suppose that Ω = R × R+. Let s ∈ (0, 1), α ∈ (−∞, 1) ∪ (1, 2), λ′ ∈ R and

1 < p <∞. Assume that (GH1) and (GH2) are satisfied. Then given any

(f, u0) ∈ Cs(J ;Lλ
′
p (Ω))× Lλ′p (Ω),
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the equation (VIII.7) has a unique solution

u ∈ C1+s(J \ {0};Lλ′p (Ω)) ∩ Cs(J \ {0};W λ′+α−2
p (Ω)).
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