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To my Dad and Akshat
for giving me strength to pursue my dreams.

I saw a man pursuing the horizon;
Round and round they sped.

I was disturbed at this;
I accosted the man.
"It is futile," I said,
"You can never -"

"You lie,"he cried,
And ran on.

- Stephen Crane
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CHAPTER I

INTRODUCTION

I.1 Classification of Parallel Computing

Analysts, scientist, engineers, and multimedia professionals require massive process-

ing power to analyze financial trends, create test simulations, model climate, compile code,

render video, decode genomes and other complex tasks. Although these groups could use

specialized super computers, the custom development time and the hardware costs are pro-

hibitive. In order to overcome these problems, current trends focuses on using commodity

hardware and public clouds for large scale parallel and distributed applications.

In Sections I.1.1, I.1.2 and I.1.3 we describe three commonly used techniques for

parallel and distributed computing.

I.1.1 Multicore/Multiprocessor Computing

With evolution of chip-manufacturing technologies, multicore processors have become

a norm. Multicore processors can drastically improve application performance by run-

ning multiple tasks (threads) at the same time to increase performance for heavy workload

scenarios, such as data mining, financial computations, mathematical analysis, graphical

simulations and web services. Muticore/multiprocessor machines use concurrent program-

ming to boost application performance and throughput.

I.1.2 Cluster Computing

With the growing availability of multi-core/multi-processor machines, it is also be-

coming increasingly easier to create a cluster of nodes using cheap and readily available

common off-the-shelf (COTS) hardware. These clusters usually comprise of heterogenous

hardware, connected using GBit ethernet and can be quickly expanded or reduced in size
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by adding or removing nodes at run-time. Such clusters can bevery easily created using

personal desktops and workstations and therefore, reduce the cost of computation by use

of readily available hardware and software resources.

I.1.3 Cloud computing

Clouds provide on-demand access to large pools of computational resources, system

software and storage on a datacenter that can be used by the users for their computing re-

quirements. The datacenter hardware and software resources form aCloud. Various cloud

providerse.g.Amazon EC2, Google AppEngine, Microsoft Azure and Eucalyptus provide

their resources to the users in a "pay-as-you-go manner",i.e. users pay for the hardware

resources and the storage space only for the duration of timefor which the resources are

utilized. This form of cloud computing is known as Infrastructure as a Service (IaaS) and

it is best suited for computation-intensive batch-processing and business analytics jobs that

takes hours to finish.

With the advent of commodity multi-core processors, HPC clusters and cloud comput-

ing systems, researchers and developers also need newer parallel programming techniques

that can maximize the utilization of such systems and enablethe users to transparently port

applications across different parallel computing platforms.

I.2 Motivation

Traditional parallel programming techniques, such as message passing [15] and shared

memory grid computing middleware [3], have been applied by researchers in universities

and national labs to develop and deploy enterprise-scale distributed and parallel applica-

tions. OpenMPI is one of the most widely used implementations of Message Passing Inter-

face (MPI) library used for cluster computing.
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However, parallel application development remains a challenging problem in the do-

main of large-scale development of distributed applications, where traditional grid com-

puting technologies cannot be applied due to the following limitations:

• Complex programming models that do not have inherent support for features like

node-discovery, data dissemination, load-balancing and concurrency control. Appli-

cations written using such techniques, do not scale well forcomplex mission-critical

systems.

• Traditional grid computing and cloud-computing technologies are not platform ag-

nostic. Every cloud provider uses a different API for application development and

deployment which makes it hard for application developers to port the applications

from one cloud provider to another or onto a private HPC cluster.

• There is a steep learning curve involved in mastering theseparallel programming

paradigms, which increases the cost of parallel and distributed application develop-

ment.

These limitations are addressed by Zircon middleware software, which is an adaptive

distributed computing middleware that enhances large-scale distributed and parallel ap-

plications by creating adaptive, real-time, and distributed computing on demand. Zircon

middleware software provides following capabilities to researchers and developers:

• Configurable middleware whose pluggable services automate many tedious and error-

prone activities related to network programming, including handling different net-

work protocols, (de)marshaling, fault-tolerance, threadcreation and management,

and advanced load balancing across a network of computationservers.

• A decentralized software architecture that has no single point of failure.

• A straightforward parallel programming model that allowsdevelopers of complex,
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large-scale applications (e.g., computational finance and data processing applica-

tions) to design software that runs in a cluster of computersas if they are program-

ming for a single computer.

In this thesis, we benchmark the performance of OpenMPI and Zircon middleware

software by parallelizing two CPU-intensive financial computation applications using both

the technologies and find that Zircon middelware software ismuch easier to use and can

be quickly and effectively used to parallelize existing serial applications, in comparison to

OpenMPI that requires complete rewriting of existing applications for parallelization.

The remainder of this thesis is organized as follows: Chapter II gives a background of

financial computation applications used for benchmarking.ChapterIII gives an overview of

MPI standard and OpenMPI. ChapterIV discusses various features of Zircon middleware

software and explains its advantages over OpenMPI framework. ChapterV describes the

benchmarking experiments conducted on OpenMPI and Zircon middleware software and

evaluates the results of these experiments. ChapterVI compares Zircon software with

other parallel computing technologies. ChapterVII summarizes the accomplishments of

this work.
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CHAPTER II

BACKGROUND

Financial industry is one of the fastest growing areas of scientific computing. Compu-

tational finance applications involving massive simulations, are well suited for distribution

and parallelization. Unfortunately, the prohibitive effort that is needed to parallelize these

applications using traditional mechanisms has restrictedthe financial industry’s movement

in this direction. Option pricing using model calibrationsand risk assessment are impor-

tant techniques that are increasingly becoming critical inmaking timely trading decisions.

The computational intensity of such methods, however, generally limits the frequency with

which they can be used. Hence, there is a significant benefit from boosting the performance

of such computations.

II.1 Overview of the Binomial Option Pricing Model

In finance, an option [22] is defined as a contract that gives the buyer the right, but not

the obligation, to buy or sell an underlying asset at a specific price on or before a certain

date. There are primarily two kind of options:american options, that can be exercised at

any time between the date of purchase and the expiration dateandeuropean optionsthat

can only be exercised on the expiration date.

In this case study, we use binomial option pricing model for evaluating option prices for

american options. The binomial tree model was proposed by Cox, Ross and Rubinstein [13]

and it is a very popular technique used for risk-neutral option valuation.The binomial pric-

ing model traces the evolution of the option’s key underlying variables in discrete-time.

This is done by means of a binomial lattice (tree), for a number of time steps between the

valuation and expiration dates. Each node in the lattice, represents a possible price of the

underlying at a given point in time. Valuation is performed iteratively, starting at each of
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the final nodes (those that may be reached at the time of expiration), and then working

backwards through the tree towards the first node (valuationdate). The value computed

at each stage is the value of the option at that point in time. Option valuation using this

method is a three-step process: i) price tree generation, ii) calculation of option value at

each final node, and iii) sequential calculation of the option value at each preceding node.

The expected value for an option is calculated at each node using the option values from

the later two nodes (Option up and Option down) weighted by their respective probabilities

– "probability" p of an up move in the underlying, and "probability"(1− p) of a down

move. The expected value is then discounted atr, the risk free rate corresponding to the

life of the option.

The following formula to compute the expectation value is applied at each node:

Ct−∆t,i = e−r∆t(pCt,i+1+(1− p)Ct,i−1)

The parameters in the above equations represent the following:

• Ct,i is the option’s value for theith node at timet

•

p=
e(r−q)∆t −d

u−d

is chosen such that the related Binomial distribution simulates the geometric Brown-

ian motion of the underlying stock with parametersr andσ .

• q is the dividend yield of the underlying corresponding to thelife of the option. It

follows that in a risk-neutral world futures price should have an expected growth rate

of zero and therefore we can considerq= r for futures.

We implemented a parallel computing application to calculate option prices for 1000

american options, with heterogenous step sizes. Binomial tree option pricing model was

implemented using both OpenMPI and Zircon’s zNet API and theresults show that both
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implementations take∼7 minutes for calculating option prices for 1000 options using 32

servers.

II.2 Overview of the Heston Model

In this case study, we calibrate Heston [20] stochastic volatility model with 5 free pa-

rameters under the risk-neutral probability measure. The case study is based on the work

of Horn, Schneider, and Vilkov [21], who performed an extensive option pricing model

calibration exercise to gauge the size and direction of the parameter misevaluation effect

on hedging portfolio performance. As a base model for the analysis, we chose the Hes-

ton stochastic volatility model, implemented it using the NAG C library, and calibrated it

on a daily basis to observed option prices for a period of several years. Similar calibra-

tions of various asset-pricing models are common in finance,where speed and accuracy are

essential factors in risk management and portfolio optimizations.

The Heston [20] model assumes the following risk-neutral dynamics for theunderlying

stockSand its local variancev:

dSt = rStdt+
√

vtStdWS
t

dvt = κ(θ −vt)dt+σ
√

vtdWv
t

The parameters in the above equations represent the following:

• r is the risk free rate.

• θ is the long run variance mean; ast → ∞, the expected value ofvt → θ .

• κ is the rate at whichvt reverts toθ , or speed of mean-reversion.

• σ is the volatility of the volatility, which determines the volatility of vt .

• E[dWS
t dWv

t ] = ρdt, is the instantaneous correlation between the stock and thevari-

ance processes.
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We use a non-linear least squares technique in our case studycalibration to estimate five

model parameters (starting variance value, long-run mean,speed of mean-reversion, corre-

lation between the processes and the volatility of volatility) so that the theoretical prices get

close (in terms of some norm) to the observed ones. We calibrate the Heston model using

BID/ASK/MID prices of available call options for OEX, with maturities ranging from 14

to 180 days and with moneyness (strike/stock price) in the range [80,120]. The observed

prices are taken from OptionMetrics (www.optionmetrics.com), with the usual data

filters applied,e.g., we removed options with missing implied volatility, zero bid prices, and

zero open interest. The theoretical option prices are calculated using the Fourier transform

technique and involve some numerical integration. We implemented the calibration in C++

using the Standard Template Library (STL) and the NAG C Library [1] minimization func-

tion nag_opt_bounds_no_derive()[2]. NAG C Library provides many useful and efficient

functions to perform numerical analysis. For example, thenag_opt_bounds_no_derive()

function is a comprehensive quasi-Newton algorithm for finding an unconstrained mini-

mum of a function of several variables and a minimum of a function of several variables

subject to fixed upper and/or lower bounds on the variables. Even with high-quality NAG

functions, however, we still needed additional tools and platforms to speed-up Heston cal-

ibration computations to an acceptable level.

For example, the experiments reported in [21] processed thousands of individual He-

ston calibrations and took several days for the computations, which was far too long for

typical research and practical purposes. It is essential tohave calibration results for thou-

sands of models within minutes or even seconds for industrial applications, such as risk

management, hedging, or portfolio optimization. These calibrations run numerous times,

especially for larger datasets,e.g., the original project reported in [21] used only five un-

derlying securities for calibrations, whereas there are∼6,000 individual securities in Op-

tionMetrics available for such analysis.

To speedup Heston calibrations, we created two parallelized versions of the NAG C

8
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library based implementation of Heston calibration application, one using the OpenMPI

high-performance computing library and another using Zircon adaptive high-performance

computing software platform and tools.

We calibrated the model to observed option prices 1,065 times, where computation

time for each task varied from several seconds upto several minutes. Both the OpeMPI and

Zircon software based parallelized implementations of this algorithm, finished computation

in ∼18 minutes using 32 servers.
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CHAPTER III

MESSAGE PASSING INTERFACE

The Message Passing Interface Standard (MPI-2) [16] is a message passing library

specification designed by MPI Forum (MPIF), which has over 40participating organiza-

tions, including vendors, researchers, softwarelibrary developers, and users. The goal of

the Message Passing Interface is to specify a portable interface for writing message-passing

programs for distributed-memory multiprocessors, shared-memory processors, heteroge-

nous network of workstations, and a combination of all these.The MPI defines language-

independent semantics for an application programming interface that can be used for devel-

oping portable distributed, parallel computing applications. MPI library provides essential

features like creating logical process topology, point-to-point communication, collective

communication, synchronization, dynamic process management and support for derived

datatypes.

III.1 OpenMPI

Open MPI [4] is an open source MPI implementation aiming to fully implement the

MPI-2 [16] standard. OpenMPI is an all-new, production quality implementation of MPI-2

implementation, developed by a consortium of academic, research and industry partners. It

aims to combine various features of previous MPIimplementations, namely FT-MPI [14],

LA-MPI [ 18] and LAM/MPI [11] and become "the best MPI library available" [17]. Open

MPI is designed to be portable to a large number of different platforms, ranging from small

clusters to large supercomputers. It aims to support heterogeneous network environments

in order to create multi-domain cluster systems. Its component-based architectureoffers

flexibility, easy extendibility, run-time configuration and dynamic adaption to the environ-

ment.
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Following section describes the architecture of OpenMPI.

III.1.1 OpenMPI Architecture

Figure III.1: OpenMPI Architecture

The OpenMPI design is centered around the MPI Component Architecture (MCA).

OpenMPI is comprised of three main functional areas:

1. MCA : The backbone component architecture that provides management services for

all other layers;

2. Component frameworks : Each major functional area in OpenMPI has a corre-

sponding back-end component framework, which manages modules. Each frame-

work provides a public interface that is used by external code, but it also own its

internal services. An MCA framework uses the MCA services tofind and load com-

ponents at run timei.e. implementations of the framework’s interface.

3. Modules: Self-contained software units that provide implementation of framework

interfaces that can be deployed and composed with other modules at run-time.
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Frameworks, components, and modules can be dynamic or static, i.e. they can be available

as plugins or they may be compiled statically into librariese.g., libmpi.

III.1.2 OpenMPI Frameworks

Figure III.2: OpenMPI Frameworks

Open MPI frameworks are broadly categorized as follows: TheOpen Portable Access

Layer (OPAL) frameworks, the Open Run-Time Environment (ORTE) frameworks, and the

Open MPI (OMPI) frameworks.

1. OPAL framework mainly provides utility and "glue" code used by OMPI and ORTE

frameworks.

2. ORTE framework provides support for different back-end run-time systems.It en-

ables high performance applications to run in heterogenousenvironments in a trans-

parent and scalable fashion.

3. OMPI framework provides implementation of MPI API.

12



III.2 MPI Features

MPI-2 [16] specification focuses on specifying a message-passing parallel program-

ming model, in which data can be moved from the address space of one process to that

of another process through cooperative operations on each process. MPI library primarily

facilitates parallel application development using thesekey features:

1. Point-to-point communication allows processes to send and receive data and mes-

sages to one another. Point-to-point operations are available in synchronous, asyn-

chronous and buffered modes and can lead to buffer overflow errors if the length of

the received message is greater than the size of receiver’s buffer. Due to this rea-

son, it is the responsibility of application developer to ensure that the receiver pro-

cesses allocate sufficiently large buffer to receive data. Message sent by the sender

process can be uniquely identified by the combination of its message tag, commu-

nicator group-id and receiver process rank in the communicator group.MPI_Send()

andMPI_Receive()are the most commonly used point-to-point communication func-

tions.

2. Collective communication allows processes to communicate with all other pro-

cesses in a group. It involves functions such asMPI_Bcast() which allows broad-

casting data from one member to all other members in a group,MPI_Gather()that

gathers data from all members of a group to one member,MPI_Scatter ()that scat-

ters data from one member to all members of a group andMPI_Reduce()that applies

reduction operations such as sum, reduction, min or user-defined operations on the

results collected from all other group members. The semantics of collective commu-

nication functions are similar to those of point-point communication.

3. One sided communicationoperationsMPI_Put(), MPI_Get(), andMPI_Accumulate()

have been recently added to MPI-2 specification in order to take advantage of fast

communication offered by shared memory and special put/getoperations available
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in some hardware architectures. These functions allow remote writes, remote reads

and remote update operations by making a window of a process’s memory available

for remote access to other processes in a group. However, theapplication developer

needs to take care of synchronizing this communication using locks as the specifica-

tion does not guarantee that these operations have taken place until a synchronization

point.

4. Communicators, groups and virtual topologyfunctions allows application devel-

opers to define ordered collection of processes and assigns unique ranks to each

process in a communicator group. Communicators provide theappropriate scope

for all communication operations in MPI and are divided intotwo kinds: intra-

communicators for operations within a single group of processes and inter-communicators

for operations between two groups of processes. Groups define a scope for process

names in point-to-point and collective communication operations. A group is al-

ways associated with a communicator object.MPI_Comm_create()can be used to

create new communicator,MPI_Comm_group()returns handle of global group from

MPI_COMM_WORLD, MPI_Group_incl()forms a new group as a subset of global

group andMPI_Comm_free()and MPI_Group_free()can be used to free up new

communicator and group.

A virtual topology provides a convenient naming mechanism for the processes of

a group (within a communicator), and additionally may assists the runtime system

in mapping the processes onto physical processors and thus may help to improve

communication performance on a given machine. The communication pattern of a

set of processes can be represented using graph and cartesian topologies. The func-

tionsMPI_Graph_create(), MPI_Dims_create()andMPI_Cart_Create()are used to

create general (graph) virtual topologies and Cartesian topologies.
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5. Derived datatypesallow users to define user-defined datatypes for sending databe-

tween processes in addition to predefined MPI datatypes suchas MPI_INT, MPI_CHAR,

MPI_DOUBLE,etc. MPI functions such asMPI_Type_create_struct(),

MPI_Type_contiguous()andMPI_Type_Vector()can be used to create MPI datatypes

for data-structures like structs, arrays and vectors.

6. MPI environment managementfunctions are used for initializing and terminating

the MPI environment and for getting and setting various attributes related to MPI

implementation and execution environment (such as error handling). MPI_Init() and

MPI_Finalize()are used to initialize and terminate MPI execution environment. Var-

ious functions likeMPI_Comm_size(), MPI_Comm_rank(), MPI_Wtime(), etc. are

used to query the runtime environment for its properties.

7. Dynamic process managementis a feature of MPI-2 that allows for the creation

and cooperative termination of processes after an MPI application has started. It pro-

vides a mechanism to establish communication between the newly created processes

and the existing MPI application. It also provides a mechanism to establish com-

munication between two existing MPI applications, even when one did not "start"

the other.MPI_Comm_spawn()andMPI_Comm_spawn_multiple()functions can be

used to start several different MPI processes and establishcommunication with them

by placing them in the same MPI_COMM_WORLD and returning an intercommu-

nicator.

8. MPI I/O provides a high-level interface that supports partitioning of file data among

processes and allows complete transfers of global data structures between process

memories and files by using the existing derived datatype functionality. It also sup-

ports features such as asynchronous I/O, strided accesses,and control over physical

file layout on storage devices using functions such asMPI_File_iread(),

MPI_File_seek, MPI_File_sync(), and so on.
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Complete list of MPI functions implemented in OpenMPI can befound at

www.open-mpi.org/doc/v1.4.

III.3 MPI Limitations

Although MPI-2 provides a rich library for developing efficient message passing ap-

plications, the specification does not support any abstractions for resource management,

load balancing and fault-tolerance and leaves it for the application developers to customize

these features for each application. These limitations makes it difficult for application de-

velopers to parallelize serial applications to run transparently on hundreds or thousands

of distributed computation servers in a scalable fashion. MPI infrastructure typically al-

locates required number of processor nodes to an application on startup and distributes

the task amongst them based on user’s load-balancing designimplementation. This re-

sults in resource wastage in case of typical applications that have a combination of both

serial and parallel computation phases. During serial computation phase of such applica-

tions, multiple nodes allocated to this application remainunder-utilized. MPI-2 specifica-

tion have added dynamic process management functions to support dynamic spawning of

new process at run-time, but it requires application developers to hard-code these error-

prone mechanisms into the message-passing applications ona need-to-need basis. Due

to the steep learning curve involved in learning MPI programming, the cost of parallel

application development using MPI is quiet high. Therefore, there is a need for an easy-to-

program/use/manage high-performance computing middleware platform that can alleviate

these limitations and allow application developers to focus on business logic development

for parallel applications.The remainder of this section describes some of these key design

requirements for such a middleware framework:

Requirement 1: Automatic discovery and addressing of heterogenous remote com-

putation servers for distributed computing. As described above, MPI does not support
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automatic discovery of new computation servers added during the runtime of an applica-

tion and also does not support interoperability between master and slave processes running

on different operating systems such as Windows, Linux and Solaris. In MPI terminology,

master process is the client component that distributes computation requests to slave/server

processes for parallel computation. The task distributionand collection of results for mul-

tiple computation requests sent to heterogenous computation servers should be handled

transparently by the middleware. The middleware should also support dynamic addition

of computation servers at runtime for computation speedup and deletion of computation

servers in case of resource restraint in a cluster of computers running multiple jobs in par-

allel.

Requirement 2: Easy to use programming frameworks for remote distributed

computation. Distributed computations involves sending input data forrequest process-

ing (e.g., the input for Heston calibration application stored in an input file) in an external

format that be can transferred via the network to remote computation servers.

s t r u c t o p t i o n s d a t a
{

i n t day ;
i n t o p t i d ;
double s t r i k e ;
double m a t u r i t y ;
double p r i c e ;
double s t o c k ;
double r a t e ;

} ;

Figure III.3: Example of user-defined input data structure using OpenMPI

In message-passing programs, developers have to use MPI’s error-prone and tedious

data packing and unpacking functions or derived datatype declaration functions for send-

ing and receiving input data in user-defined formats. This complicates source code de-

velopment activities for parallel applications and highlights the need for simpler parallel
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programming frameworks. For example, figureIII.3 shows the definition of a simple user-

defined data structure in C/C++ and figureIII.4 shows the corresponding code for defining

the same user-defined data-structure in MPI.

s t a t i c vo id
c r e a t e _ o p t i o n s _ d a t a t y p e ( MPI_Datatype &o d _ d a t a _ t ype )
{

o p t i o n s d a t a t e s t _ o p t i o n s _ d a t a ;
i n t o d _ b l o c k l e n g t h s [ 7 ] = {1 , 1 , 1 , 1 , 1 , 1 , 1 } ;
MPI_Datatype od_ types [ 7 ] = {MPI_INT , MPI_INT , MPI_DOUBLE,

MPI_DOUBLE, MPI_DOUBLE,
MPI_DOUBLE, MPI_DOUBLE } ;

MPI_Aint o d _ d i s p l a c e m e n t s [ 7 ] ;

MPI_Aint o d _ s t a r t _ a d d r e s s ;
MPI_Aint od_end_add ress ;

MPI_Get_address (&( t e s t _ o p t i o n s _ d a t a ) , &o d _ s t a r t _ a d d re s s ) ;

MPI_Get_address (&( t e s t _ o p t i o n s _ d a t a . day ) ,
&od_end_add ress ) ;

o d _ d i s p l a c e m e n t s [ 0 ] = od_end_add ress− o d _ s t a r t _ a d d r e s s ;
MPI_Get_address (&( t e s t _ o p t i o n s _ d a t a . o p t i d ) ,

&od_end_add ress ) ;
o d _ d i s p l a c e m e n t s [ 1 ] = od_end_add ress− o d _ s t a r t _ a d d r e s s ;
MPI_Get_address (&( t e s t _ o p t i o n s _ d a t a . s t r i k e ) ,

&od_end_add ress ) ;
o d _ d i s p l a c e m e n t s [ 2 ] = od_end_add ress− o d _ s t a r t _ a d d r e s s ;
MPI_Get_address (&( t e s t _ o p t i o n s _ d a t a . m a t u r i t y ) ,

&od_end_add ress ) ;
o d _ d i s p l a c e m e n t s [ 3 ] = od_end_add ress− o d _ s t a r t _ a d d r e s s ;
MPI_Get_address (&( t e s t _ o p t i o n s _ d a t a . p r i c e ) ,

&od_end_add ress ) ;
o d _ d i s p l a c e m e n t s [ 4 ] = od_end_add ress− o d _ s t a r t _ a d d r e s s ;
MPI_Get_address (&( t e s t _ o p t i o n s _ d a t a . s t o c k ) ,

&od_end_add ress ) ;
o d _ d i s p l a c e m e n t s [ 5 ] = od_end_add ress− o d _ s t a r t _ a d d r e s s ;
MPI_Get_address (&( t e s t _ o p t i o n s _ d a t a . r a t e ) ,

&od_end_add ress ) ;
o d _ d i s p l a c e m e n t s [ 6 ] = od_end_add ress− o d _ s t a r t _ a d d r e s s ;
M P I _ T y p e _ c r e a t e_s t r uc t ( 7 , o d _ b l o c k l e ng t hs , od_d isp lacemen ts , od_ types ,

&o d _ d a t a _ t ype ) ;
MPI_Type_commit (& o d _ d a t a _ ty pe ) ;

}

Figure III.4: Example of MPI derived datatype creation using OpenMPI
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Requirement 3: Efficient distribution of remote computation requests for effective

resource management across the network. In message passing programs, application de-

velopers have to repetitively implement different scheduling and request distribution algo-

rithms for different applications. Parallel computing frameworks should support intelligent

request scheduling and distribution algorithms for request dissemination across various

computation servers. Efficient request dissemination should ensures that (1) all hardware

resources are utilized efficiently, (2) remote computations are not impeded by load imbal-

ance across computation servers, and (3) clients are shielded from heterogeneous hardware

and software capabilities.

Requirement 4: Fault tolerance and application transparent fault detection and

recovery. When remote computation servers execute complex application calculations,

hardware failures can disrupt the calculations. These types of failures must be handled

resiliently by the parallel computing framework since boththe compute server(s) and com-

munication links may be rendered unavailable. Developing source code for providing fault

tolerance could involve writing code for detecting faults,identifying the requests that were

being computed by the failed server, resending those requests to an alternate server, and

taking rejuvenation actions such as restarting the failed servers using checkpoints. MPI

provides the infrastructure for developing such applications, however, it is a tedious and

error-prone process to write fault-tolerance infrastructure code for every application and

makes it difficult for application developers to quickly parallelize existing applications.

Requirement 5: Concurrency management. Computational finance applications,

such as the heston calibration and binomial option pricing calculation in our case study, are

often highly computation intensive. These applications can therefore benefit greatly from

proper concurrency management where all the cores in a multi-core processor are utilized

efficiently for optimizing calculations. Programming these concerns requires application

developers to manage concurrency explicitly, even in MPI based applications, by creating

threads and synchronizing those threads with messages, andlocks. This process must be
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repeated for every platform since thread programming APIs differ from platform to plat-

form, e.g., differences in the thread API between Windows and Linux. Ideally, application

developers should develop source code in a platform-agnostic manner so that application

requests could be optimized depending on the availability of single-vs- multi-core proces-

sors.
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CHAPTER IV

ZIRCON ADAPTIVE HIGH-PERFORMANCE COMPUTING MIDDLEWARE

The Zircon Middleware Software [9] from Zircon Computing [5] provides an adaptive

high-performance computing middleware that addresses thelimitations of OpenMPI as

described in chapterIII . Zircon middleware software automatically deploys a distributed

computing infrastructure across (potentially) heterogeneous hardware platforms and oper-

ating systems, maps compute-intensive applications to a pool of processors, manages their

execution, and dynamically equalizes the workload in real time to fit available resources.

Application developers can thus exploit the processing power available to them, including

newer technologies, such as multi-core processors and cloud computing systems, as well as

traditional desktops and servers. Zircon software dramatically improves performance with

little learning curve and configuration effort, and runs seamlessly over local-area networks;

wide-area networks; public, private, or hybrid cloud deployments; and/or in dedicated data

centers.

Zircon high-performance computing middleware supports three computing and com-

munication models required by many mission-critical applications that need high perfor-

mance, as shown in figureIV.1 and described below:

• Application function parallelism , such as the capabilities provided by computa-

tion grids to transparently run applications in a cluster ofservers as if they are pro-

grammed for a single computer. The zFunction function parallelism API and sup-

porting tools hide many low-level network programming concerns and unexpected

complexities, simplifying fine-grained application parallelization.

• Application executable parallelism, such as the capabilities provided by data cen-

ters and clouds to launch applications on demand. The zExec application execution
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Figure IV.1: Zircon Middleware Architecture

parallelism service can runs any executable in a cluster of servers as a set of parallel

jobs, thereby simplifying coarse-grained application parallelization.

• Service delivery platforms, such as the capabilities provided by distributed com-

puting environments that support cooperating business tasks via distributed infras-

tructure patterns, such as Messaging, Broker, and Publisher/Subscriber [12]. The

zNet API provides a C++ interface to the zNet service delivery platform that handles

service discovery, reliable multicast communication, request workload equalization,

and request dispatching.

Requests from applications that use these models can run on processors and cores

in a collocated and/or distributed manner, with the choice of collocation or distribution

largely transparent to application clients and servers. Zircon software runs on most general-

purpose and real-time operating systems since it is implemented atop the open-source
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ADAPTIVE Communication Environment (ACE) [26, 27], which is portable C++ host

infrastructure middleware that shields Zircon software from operating system dependen-

cies.

IV.1 Structure and Functionality of Zircon Parallel Comput ing Middleware
Software

This section describes the structure and functionality of Zircon Software, which is adap-

tive distributed middleware for accelerating the performance of complex compute-intensive

applications in a networked environment.

Figure IV.2: Zircon Parallel Computing Middleware Software Components

FigureIV.2 shows the following key components of Zircon middleware software:

• Test Configuration Environment (TCE), is a application configuration utility that

discovers, validates, and manages all applications in a deployment. It manages the compute
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servers, clients, and monitoring utilities and provides IPaddresses and multicast addresses

for distributed execution environment.

• zNet, which is an optimized load balancing framework linked withthe client appli-

cations and hence resides in the client address space. zNet automatically distributes com-

putations to all the available servers, transparently parallelizes executions in a scalable,

reliable, and resource-efficient fashion, and improves performance by orders of magnitude

compared with conventional programming techniques.

• zEngine, which is a computational server container that is installed and launched on

(potentially heterogeneous) target machines. This is the container in which parallelized

computations actually run. A zEngine uses the underlying operating system scheduling

mechanisms (i.e., core-aware thread creation, synchronization, and management) to maxi-

mize processor utilization by executing an instance of a parallelized function on each core

(a common practice is to start as manyzEngineinstances on each host as there are processor

cores).

• zPluginbuilder, is a utility that is used to adapt serial client libraries into paralleliz-

able plug-in libraries that can parallelize complex computations using zNet middleware.

• zAdmin, which is a utility for managing (i.e., monitoring, installing, starting, and

stopping) the resources, and applications in the system either graphically or via a command-

line.

IV.2 zEnabling using zFunctionAdapters and zPluginLibraries

Any serial legacy application that performs complex calculations on large data-sets can

be parallelized using zFunction. Parallelizing a serial application (which we callzEnabling)

involves steps to link the application to Zircon middlewarethat transparently encapsulates

the concerns of distributed and parallel processing from applications.

ThezEnablingprocess shields application developers from low-level distribution con-

cerns, such as discovery, addressing, (de)marshaling requests and replies, and deals with
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variabilities in the underlying network protocol stack(s), so that applications can integrate

with any platform and programming language seamlessly.zEnabledapplication contains

an equivalentzFunctionAdapterz_F for every parallelizable functionF. Client application

developers only need to replace calls toF with calls toz_F for parallelization.

The zFunctionAdapterz_F is a client-side proxy that transparently dispatches asyn-

chronous requests to the zEngines, thereby providing adaptive, distributed, and high per-

formance computing on demand for client applications. zFunction makes use of the zPlug-

inBuilder tool forzEnablinguser libraries.

The input to the zPluginBuilder tool is anXML file as shown in figureIV.3, describing

the functionF, its input parameters, its output parameters, and the location of the library

that contains the definition of the functionF (shown in the middle section of figureIV.4).

The output is a library (called the zPluginLibrary) with zFunctionAdapter implemen-

tation z_F conforming to the same interface as the original functionF. The generated

zPluginLibrary is linked by both the client application as well as the zEngine (see the right

side of the figureIV.4). On the server, the zPluginLibrary simply delegates the calls made

from the client-side zPluginLibrary (on behalf of the client applications) to the functionF

defined in the library created by the service developers. With a minimal amount of devel-

opment effort, therefore, zFunction users obtain a versatile, production-quality parallelized

application that can be deployed in a network of parallel computing nodes.

IV.2.1 zFunction and zPluginLibraries

zFunction hides the low-level distributed computing concerns from application devel-

opers, encapsulate all these details and provides a zFunction z_F for every parallelizable

functionF. z_F’s interface is very similar to that of the function F, and thus the client appli-

cation developer can simply replace a call to F with a call to z_F. However, unlike F itself,

z_F is asynchronous, meaning that it returns as soon as it hasinitiated a request, without

waiting for the results.
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<?xml ve rs ion=" 1 .0 " s tanda lone=" yes " ?>
<Module>

< !−− L inux −−>
< P l a t f o r m Name=" Linux "

O u t I n c l u d e D i r=" $ (ZNET_ROOT) / p l u g i n / i n c l u d e "
OutL ibDi r=" $ (ZNET_ROOT) / p l u g i n / l i b "
HeaderPath=" $ (ZNET_ROOT) / "
H e a d e r F i l e="F . h "
LibName="F"
L ibPa th=" $ (ZNET_ROOT) / l i b "
L inkWi thP lug in=" 1 "

/ >

< z F u n c t i o n A da p t e r Name="F" D e s c r i p t i o n =" example f u n c t io n " >
<Outpu t Name=" r e t v a l " DataType=" doub le "

D e s c r i p t i o n =" r e t u r n v a l u e " / >
< I n p u t Name=" od " DataType=" o p t i o n s d a t a "

D e s c r i p t i o n =" o p t i o n s d a t a as i n p u t " / >
< / z F u n c t i o n A da p t e r>

< S t r u c t Name=" o p t i o n s d a t a ">
< F i e l d Name=" day " DataType=" i n t "

D e s c r i p t i o n =" o u t p u t f i l e name" / >
< F i e l d Name=" o p t i d " DataType=" i n t "

D e s c r i p t i o n =" o p t i o n i d " / >
< F i e l d Name=" s t r i k e " DataType=" doub le "

D e s c r i p t i o n =" s t r i k e p r i c e " / >
< F i e l d Name=" m a t u r i t y " DataType=" doub le "

D e s c r i p t i o n =" m a t u r i t y " / >
< F i e l d Name=" p r i c e " DataType=" doub le "

D e s c r i p t i o n =" b id , ask and mid p r i c e " / >
< F i e l d Name=" s t o c k " DataType=" doub le "

D e s c r i p t i o n =" number o f s t o c k s " / >
< F i e l d Name=" r a t e " DataType=" doub le "

D e s c r i p t i o n =" r a t e " / >
< / S t r u c t >

< / Module>

Figure IV.3: Example XML input file for zPluginBuilder
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Figure IV.4: zEnabling a Serial Application with zFunction

The zFunction z_F acts as a client-side proxy and transparently dispatches asynchronous

requests to thezEngines, thereby providing adaptive, distributed, and high performance

computing on demand for client applications. Since a zFunction call z_F is meant to be a

drop-in replacement for the invocation of its corresponding serial function call to F, the in-

terface for the zFunction z_F must be straightforwardly derivable from that of the function

F. This need necessitates the generation of custom zFunction code for each application, and

zFunction provides thezPluginBuildertool for this purpose.

The input to the zPluginBuilder tool is anXML file describing the function F, its input

parameters, its output parameters, and the location of the library that contains the definition

of the function F (shown in the middle section of figureIV.4). The output is a library (called

thezPluginLibrary) with zFunction implementation z_F conforming to the same interface

as the original function F. The generated library also references the original library defining

the function F and is auto-loaded byzEngine(based on the location of the library specified
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in the XML file). The generatedzPluginLibraryis linked by both the client application as

well as thezEngine(see the right side of figureIV.4).

The zPluginLibrarythat is linked by both the client and the server applicationsserve

two purposes. On the client side, thezPluginLibraryinitiates the zFunction adaptive dis-

tributed computing middleware zNet to provide scalable, efficient, parallel, and highly

available distributed communication between the clients and the servers in an application

transparent manner. On the server side, thezPluginLibraryjust delegates the calls made

from the client-sidezPluginLibrary(on behalf of the client applications) to the function F

defined in the library created by the service developers.

Thus, with a minimal amount of development effort, zFunction users obtain a versatile,

production-quality parallelized application ready to be deployed on any network.

IV.3 Parallel Application Development using zNet API

The zNet API provides a real-time, high-performance computing environment that en-

ables rapid development of zNet-enabled distributed parallel computing applications and

cooperating service tasks by simplifying and automating key distributed programming

tasks, including service discovery, dynamic load balancing with real-time feedback, con-

nection management, binary data transfer protocols, reliable multicast communication,

flow control, parameter (de)marshaling, event/request demultiplexing, fault detection and

recovery, service activation and management, concurrencyand synchronization. zNet en-

ables collaboration between distributed services in collocated and distributed HPC environ-

ments and is optimized for high-speed messaging, computation, and transactional services.

These capabilities make zNet well-suited for mission-critical and time-sensitive applica-

tions. It is also well-suited for retrofitting legacy applications to exploit the power of multi-

core processors.
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IV.4 zNet Infrastructure Patterns

zNet API supports the following distribution infrastructure patterns for distributed par-

allel application development:

• The Broker [12] pattern which enables decoupled application components com-

munication using twoway method invocations. zNet providesboth synchronous and

asynchronous twoway method invocation interfaces. Multiple client/server sessions

can be created and started from within a single zNet-enabledapplication process. The

participating components can reside in (1) the same process, (2) different processes

on the same computer, or (3) remote computers.

• The Messaging [12] pattern , which enables services and applications to interact by

exchanging oneway messages. Applications and services canuse zNet to exchange

messages with explicitly named receivers via reliable and/or "best effort" delivery

semantics. zNet can also notify senders when reliable messages are dispatched to re-

ceivers. Moreover, zNet can exchange any native or custom data type on the network,

as long as developers provide C++ insertion and extraction operators to encode/de-

code those data types using the OMG Common Data Representation (CDR) standard.

• The Publisher-Subscriber [12] pattern , which enables services and applications to

interact by exchanging events asynchronously in a one-to-many configuration. Ap-

plications and services can use zNet to exchange events via reliable and/or "best

effort" delivery semantics. zNet can also provide subscribers with the last published

event upon subscription, thereby supporting operations inenvironments dominated

by infrequent publishing and fleeting subscribers. Moreover, zNet can exchange any

native or user-defined data type on the network, as long as developers provide C++

insertion and extraction operators to encode/decode thosedata types using the OMG

Common Data Representation (CDR) standard.
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IV.5 zNet API

zNet API contains several APIs that are based on the patternsdiscussed in sectionIV.4

and are used for distributed parallel application development.

IV.5.1 ZBroker Client API

This API facilitates the development of client applications using the Broker pattern.

When participating tasks reside over remote computers, twoway method invocations be-

tween the ZBroker-enabled tasks are governed by the zNet Load Balancer, which zNet

creates automatically when the client-side API is used by anapplication. The zNet Load

Balancer optimizes workload across heterogeneous networks based on real-time feedback

from processing services that are part of the zNet computingenvironment.ZBrokercan

run each twoway method invocation session between participating tasks concurrently with-

out waiting or depending on any other session within the sameprocess. For each session,

ZBrokercaches requests on the client-side network and resubmits them if associated server

task becomes unavailable.ZBrokerensures that the client of each session receives replies,

even when there are faults in its associated server task.

For distributed delivery,ZBrokertransmits native and/or user-defined data types across

the network, using C++ insertion and extraction operators to encode/decode those data

types. FigureIV.5 shows an example of user-defined data structure declarationfor use by

ZBroker API. For collocated delivery, this encoding/decoding step is omitted and all data

types are passed directly to other threads for processing. In both cases there is no need

to inherit application tasks from any ZBroker-specific baseclasses since ZBroker handles

the transfer of data in its native form. To define the C++ insertion and extraction operators

to ZBroker, application developers simply declare the data type (which could be a struct

or a class along with the C++ insertion and extraction operators), data type name, and

an optional DLL that hosts the data type via theTC_EVENTID_DECLARE_NAME(TYPE,

NAME, DLL_NAME)macro.
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s t r u c t o p t i o n s d a t a
{

i n t day ;
i n t o p t i d ;
double s t r i k e ;
double m a t u r i t y ;
double p r i c e ;
double s t o c k ;
double r a t e ;

} ;

i n l i n e boo l o p e r a t o r << ( ACE_OutputCDR& strm ,cons t o p t i o n s d a t a& s )
{

re turn ( s t rm << s . day ) &&
( s t rm << s . o p t i d ) &&
( s t rm << s . s t r i k e ) &&
( s t rm << s . m a t u r i t y ) &&
( s t rm << s . p r i c e ) &&
( s t rm << s . s t o c k ) &&
( s t rm << s . r a t e ) ;

}

i n l i n e boo l o p e r a t o r >> ( ACE_InputCDR& strm , o p t i o n s d a t a&s )
{

re turn ( s t rm >> s . day ) &&
( s t rm >> s . o p t i d ) &&
( s t rm >> s . s t r i k e ) &&
( s t rm >> s . m a t u r i t y ) &&
( s t rm >> s . p r i c e ) &&
( s t rm >> s . s t o c k ) &&
( s t rm >> s . r a t e ) ;

}

Figure IV.5: Example of user-defined datatype declaration using zNet API
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Communications inZBrokerare based on types, which allows tasks to exchange in-

stances of any native or user-defined type via the template-basedZBroker::z_call()API

and by theZBroker::Clientclass. Any such instances can be treated as an input/output

(inout) type. WhenZBroker::z_call()is invoked, its template data argument serves as an

inout parameter, which is usually represented as a structure with some members designated

as input data and some as storage for expected output replies.

TheZBroker APIprovides the following features:

• Dynamic load balancing of asynchronous and synchronous invocations, which

routes calls to the least loaded servers.

• Sticky engine, which allows direct calls to desired servers that bypass zNet’s Load

Balancer and Routing algorithms.

• Remote and local calls.ZBroker::z_call()method can be used for asynchronous re-

mote method invocations andZBroker::l_call()method can be used for asynchronous

local in-process invocations that optimizes in-process communication by avoiding

marshaling and copying of parameter data.ZBroker::z_sync_call()and

ZBroker::l_sync_call()methods are their synchronous counterparts.

• Barrier and callback. To process the results of asynchronous operations, zNet

provides two mechanisms–barrier synchronizerse.g. ZBroker::process_all()method

and asynchronous callbacks–that support a wide range of applications.

• Stream processing. ZBroker supports multi-threaded result processing callbacks,

with high/low watermark that can be set usingZBroker::hwm()andZBroker::lwm()

methods, to process streams of high frequency data, with no predefined size of the

request data set. Low and high watermark determine the maximum and minimum

number of requests that can stay in the client/server request queue.

TheZBroker APIconsists of the following components:
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1. ZBroker Client API that facilitates development of client applications usingthe

Broker pattern.

2. ZBroker Server API that supports the binding of global functions and methods of

user-defined components to the data types passed from the client side of zNet.

IV.5.2 ZMessaging API

This API facilitates the development of client and server applications using the Mes-

saging pattern, which structures software systems whose services interact by exchanging

oneway messages. Applications using zMessaging can exchange any native or user-defined

data type with named receivers on the network, as long as developers provide C++ insertion

and extraction operators to encode/decode those data typesusing the OMG Common Data

Representation (CDR) standard.

ZMessaging::SenderlocatesZMessaging::Receiverinstances by their unique names

and then sends oneway messages to them. To process oneway messages from theZMes-

saging::Sender, theZMessaging::Receiverprovides mechanisms for registering message

handler functions/methods that are dispatched automatically by ZMessaging. A ZMessag-

ing::Senderuses an internal queue for outgoing messages, which are serviced by dedicated

thread. This queue can be made persistent, thereby providing transactional support for mes-

sages. If a persistentZMessaging::Senderinstance fails, all messages currently stored in its

queue will be recovered into the queue of the nextZMessaging::Senderinstance initialized

with the name used by the failed sender.

The ZMessaging::SenderandZMessaging::Receivercan be started independently. If

a ZMessaging::Receivertargeted byZMessaging::Senderis not yet on-line, theZMessag-

ing::Sendercan load messages in its queue (up to a high water mark) and attempt to con-

nect and send them. This activity is conducted by a dedicatedthread servicing an outbound

queue. In case of failure of established connection, theZMessaging::Senderwill attempt
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reconnection logic with constant interval of 5 sec and also provides disconnect callback

hook for custom logic usingZMessaging::Sender::register_disconnect_cbk()method.

The ZMessaging API provides the following features:

• Configurable delivery policies, where messages can be sent via reliable and/or "best

effort" delivery semantics usingZMessaging::Sender::send()method.

• Automatic acknowledgements, where senders can be notified when reliable mes-

sages are dispatched to their named receivers.

• Selective subscription, where receiver functions and/or methods can be registered

to process specific data types usingZMessaging::Receiver::register_handler()

• Dynamic service (re)configuration, where services can be added and/or removed at

runtime usingZMessaging::Receiver::start(), ZMessaging::Receiver::stop(), ZMes-

saging::Sender::start()andZMessaging::Sender::stop()

• Transparent failover, with automatic reconnection if a receiver crashes.

TheZMessaging APIconsists of the following components:

1. ZMessaging Sender APIthat facilitates development of event publishing compo-

nents using the Messaging pattern.

2. ZMessaging Receiver APIthat facilitates development of service objects that pro-

cess one way messages sent by clients.

IV.5.3 ZPubSub API

This API facilitates the development of client/server applications using the Publisher-

Subscriber pattern, which structures software systems whose components interact by ex-

changing events asynchronously in a one-to-many configuration. ZPubSubcommunication

is based on types so that any object of native or user-defined type can be multicasted to
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a set of services running in the pool. This functionality is supported on the client side by

publishing an event usingZPubSub::publish_event()method that triggers an action or by

publishing data usingZPubSub::publish_cache()method that enables the zNet distributed

cache. ZPubSubenables client tasks to optimize the transmission of large and/or infre-

quently changing input data objects via a "send-once-use-across-multiple-calls" caching

architecture. Instead of transmitting data with every request, the client publishes it to all

services only when the value of the data changes, thereby eliminating redundant communi-

cation since the servers store the published data. Server components that subscribe to data

cache usingZPubSub::subscribe_cache()method, can asynchronously access the cached

data usingZPubSub::get_cache()method. Server components can also register custom

event processing methods usingsubscribe_event()method, which gets dispatched auto-

matically by zNet when an event of given type is published. Applications usingZPubSub

can exchange any native or user-defined data type on the network, as long as developers

provide C++ insertion and extraction operators to encode/decode those data types using the

OMG Common Data Representation (CDR) standard.

TheZPubSub APIprovides the following features:

• Data publishing, where common data is broadcast across all services (and access is

synchronized).

• Event publishing, where events are broadcast to all the services, which triggers

function execution across all services.

• Configurable delivery policies, where events can be published via reliable and/or

"best effort" delivery semantics usingZPubSub::publish_event()and

ZPubSub::publish_cache()methods.

• History-aware subscriptions, whereZPubSubcan provide any new subscribers with
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the cached version of the last published event or data upon subscription usingZPub-

Sub::subscribe_event()andZPubSub::subscribe_cache()methods thereby support-

ing operations in environments dominated by infrequent publishing and fleeting sub-

scribers.

ZPubSub APIconsists of the following sections:

1. ZPubSub Client API that facilitates development of publishing client applications

using the Publisher-Subscriber pattern.

2. ZPubSub Server API that facilitates development of servers applications thatpro-

cesses asynchronous events sent by the client and use cacheddata for computations.

A complete listing of all zNet API methods can be found atwww.zircomp.com/

downloads/docs/html_znet/index.html.

IV.6 Resolving Distributed and Parallel Application Design Challenges with
Zircon Middleware Software

We now describe how the zFunction components shown in figureIV.1 address the key

distributed and parallelize application design requirements summarized in ChapterIII .

Resolving requirement 1: Providing an information servicefor automatic discov-

ery and addressing of remote computation servers for distributed computing. The

Configuration Environment(TCE) acts as an information service for Zircon middleware

framework and bootstraps all the applications in the network. All other components in

the Zircon software deployment (including the clients and the zEngines that perform the

remote computations) register with the TCE at startup. Thisprocess allows TCE to iden-

tify network settings such as the host IP addresses, networksubnet identification, multicast

addresses. TCE employs a handshaking protocol that provides network information to all

Zircon middleware components, so that applications can communicate with each other at

runtime without collaborating with TCE.
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Resolving requirement 2: Providing easy to use programmingframeworks for re-

mote distributed computation. Zircon middleware framework provides an easy-to-use

utility called the zPluginBuilder that automatically generates zPluginLibraries that serve

as adapters between the generic Zircon middleware and specific client/server applications.

These adapters emit efficient (de)marshaling code that enables Zircon middleware to trans-

parently support remote communication across heterogeneous platforms and networks. Ap-

plications can be easily parallelized either by using zEnabling capabilities of Zircon mid-

dleware or by use of zNet API that requires minimal code changes for converting a serial

application into a parallel application.

Resolving requirement 3: Providing effective resource management of remote

computation servers. When zEnabled client requests are sent to a server pool, Zircon

middleware software’s intelligent load-balancer is used to evenly distribute work amongst

existing computation servers in real-time, as shown in figure IV.6. By spreading computa-

tions evenly across all the available servers, zFunction maximizes resource allocation for

critical applications and also ensures that hardware resources are utilized to their fullest.

Resolving requirement 4: Providing application-transparent multi-layer fault tol-

erance. Zircon middleware also ensures that application execute irrespective of hardware

failures, and transparently provides fault recovery and failover by re-executing requests on

servers that are still operational. As shown in figureIV.6, Zircon middleware keeps track

of the execution history of each request and to which zEnginethe request has been sent to.

When a zEngine failure is detected, it automatically resends the request to a new or a reju-

venated zEngine and ensures that the computations are performed irrespective of hardware

failures.

Resolving requirement 5: Providing implicit scalability using core-aware multi-

threading. Zircon middleware software performs parallelization by executing multiple

instances of an application’s parallelizable function simultaneously in zEngine processes

running on different machines on a network. Zircon softwareprovides implicit concurrency
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Figure IV.6: Parallel Application Development with zFunction

support and automatically creates threads for distributing requests to different servers and

also synchronizes those threads using messages and locks. On multi-core machines, Zir-

con middleware software runs multiple instances of application’s parallelizable function

in multiple worker threads on a single zEngine process in a thread-safe manner and thus

provides highly efficient utilization of multi-core machines with minimum overhead.
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CHAPTER V

BENCHMARKING EXPERIMENTS AND RESULTS

We developed some financial computation applications, as described in chapterII , in

order to benchmark the runtime performance of OpenMPI and Zircon parallel computing

middleware software. We developed parallel implementations of binomial option pricing

and Heston model calibration applications in order to test their performance on multicore

machines and in high performance computing (HPC) clusters using multiple servers. In the

rest of this chapter, we describe all the experiments and their results in detail.

V.1 Experiment Setup

All experiments were run on upto 8 Intel-Xeon 1520 series dual-processor/dual-core

(for a total of upto 32 cores) 1.86 GHz machines running on 64-bit Red-Hat Enterprise

Linux v2.6 and connected using Gigabit Ethernet.

V.2 Experiment 1

V.2.1 Objective

The objective of this experiment is to compare the performance of OpenMPI and zNet

API in a HPC cluster environment and highlight the impact of efficient load-balancing

algorithms for performance speed-up.

V.2.2 Experiment Description

For this experiment, we developed binomial option pricing application that evaluates

option prices for 1000 american options.

As shown in figureV.1, the serial implementation of binomial option pricing application

invokes the option pricing algorithm in a loop forn different options in a serial order and
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/ / b i nom ia l o p t i o n p r i c i n g a l g o r i t h m
double o p t i o n _ p r i c e _ c a l l _ a m e r i c a n _ b i n o m i a l ( . . . )
{

. . . .
} ;

/ / f u n c t o r t h a t i n v o k e s o p t i o n p r i c i n g a l g o r i t h m
s t r u c t Invoke_OP_Cal l
{

vo id o p e r a t o r ( ) ( B i n o m i a l _ O p t i on_P r i c i ng_R e que s t & i t e r )
{

i t e r . o p t i o n _ p r i c e =
o p t i o n _ p r i c e _ c a l l _ a m e r i c a n _ b i n o m i a l ( i t e r . c u r _ s t o c k _p r i c e ,

i t e r . s t r i k e _ p r i c e ,
i t e r . r i s k _ f r e e _ r a t e ,
i t e r . v o l a t i l i t y ,
i t e r . t ,
i t e r . n _ s t e p s ) ;

}
} ;

/ / main
i n t main ( i n t argc , char ** a rgv )
{

/ / Read i n p u t
. . .

/ / C a l c u l a t e o p t i o n p r i c e s
s t d : : f o r _ e a c h ( r e q u e s t s . beg in ( ) ,

r e q u e s t s . end ( ) ,
Invoke_OP_Cal l ( ) ) ;

. . .

/ / p r o c e s s r e s u l t s
. . .

re turn 0 ;
}

Figure V.1: Serial Implementation of Binomial Option Pricing Application
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all function invocations are independent of each other. Therefore, this application can be

parallelized by running multiple invocations of binomial option pricing algorithm in a loop.

We developed parallel implementation of this application using OpenMPI in which all

requests to binomial option pricing algorithm were equallydistributed asynchronously1

amongst all the server processes usingMPI_Send()andMPI_Receive()methods in afor

loop and then all results were collected in a secondfor loop.

However, the processing time for each binomial option pricecomputation request varied

from a few milliseconds upto 25 seconds, which gave us a largely heterogenous request

set. In order to optimize performance for heterogenous load, we also developed a load-

balancing OpenMPI implementation of binomial option pricing application. In this load-

balanced implementation, we usedfirst-in-first-outscheduling for request allocation, so

that more requests are sent to least-loaded servers for better CPU utilization.

In zNet based implementation, we parallelized the application by usingZBroker API.

Instead of invokingoption_price_call_american_binomial()function directly as shown in

serial implementation in figureV.1, parallelized implementation usesZBroker::z_call()to

asynchronously distribute the calls to all the running servers in a load-balanced fashion

using Broker pattern. The results are later automatically collected by the zNet’s response

processing threads.

V.2.3 Results

In this experiment, all the three above-mentioned parallelimplementations of binomial

option pricing application were run using four, eight, sixteen and thirty-two servers to

compute prices for 1000 binomial options.

The results of this experiment are shown in figureV.2. The results show that the

1OpenMPI’s implementation of MPI_Send() and MPI_Receive()functions uses buffering for small-sized
messages i.e. MPI_Send() call do not need to block if a matching MPI_Receive call is not posted. It copies
data into a buffer and returns control to the program. However for large-sized messages, it tries to send and
receive data synchronously
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Figure V.2: Performance Results for OpenMPI and zNet based implementation of
Binomial Option Pricing Application running on a HPC cluster

load-balanced implementations of zNet API and OpenMPI perform better than the non-

load balanced implementation using OpenMPI. The results highlight the fact that load-

balancing mechanisms are required to improve system performance, in case of largely

heterogenous computation requests set. In the figureV.2, the results also show that both

load-balanced OpenMPI implementation and zNet API based implementation have com-

parable performance. In zNet implementation, developers do not need to write any code

for load-balancing the application and it is transparentlyhandled by the zNet middleware.

However, in case of OpenMPI, users need to write code for implementing load-balancing

which requires good understanding of load-balancing algorithms and also increases the de-

velopment time. The results highlight the ease-of-use/ease-of-programming of zNet API in

comparison to OpenMPI.
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V.3 Experiment 2

V.3.1 Objective

The objective of this experiment is to compare the performance of OpenMPI and Zir-

con’s zFunction in a HPC cluster environment and highlight the benefits of Zircon’s zEn-

abling feature for quick parallelization of serial applications.

V.3.2 Experiment Description

For this experiment, we developed a load-balanced, parallel implementation of Heston

calibration application using OpenMPI and parallelized serial implementation of Heston

calibration application using Zircon software’s zFunction capability.

As described in sectionII.2, the Heston calibration application uses an optimization

routine that minimizes a 5-dimensional objective function(one dimension for each param-

eter in the Heston model). The optimization routine is implemented by using the NAG C

library’s nag_opt_bounds_no_derive()minimization function to run 100 iterations of the

objective function and find the minima. The maximum number ofiterations is capped to

100, so the model calibration is considered to have failed ifthe procedure does not con-

verge by that point. The differences among the calibration models’ convergence proper-

ties contribute to significant fluctuations in the calculations’ execution times, making the

modelsheterogeneous, e.g., model calibration time can vary from 1 millisecond up to 105

seconds. The sequential implementation of the Heston calibration application read input

data and calibrated 1,065 models in∼9 hours by invoking thecalibrate_heston()function

1,065 times in a loop. Allcalibrate_heston()function invocations runs independent of each

other, so application’s performance can be improved significantly by processing multiple

invocations in parallel. Heston calibration application uses historical option pricing data to

calibrate the parameters. So, application performance canbe further improved by broad-

casting historical option pricing input data to all the servers at start-up, instead of repeatedly

sending it to every request.
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We developed load-balanced parallel implementation of Heston calibration application

using OpenMPI that distributed allcalibrate_heston()function invocations amongst all

servers in a load-balanced manner. We used OpenMPI’s collective communication func-

tion MPI_Bcast ()in order to broadcast input data vector to all the servers. Figure V.3

shows how the master process distributes all requests in a load-balanced manner to slave

processes in OpenMPI based parallel implementation of Heston calibration application.

For zFunction based implementation of Heston calibration application, we usedzPlug-

inBuilder in order to generate function adaptors forcalibrate_heston()function library. In

this implementation, input data is broadcasted to the servers aszCachedata and this in-

formation is provided in the XML file which is given as an inputto zPluginBuilder. No

code changes are required in user library for special handling of zCachedata. Whenever

zCachedata is required by the user library, zNet middleware takes care of providing it to

the user library from the cache. The client application is modified to publishzCachedata

at start-up and invokez_calibrate_heston()function for request processing, instead ofcal-

ibrate_heston()function. FigureV.4 shows the code for zFunction client application. We

deployed user library inzEnginesrunning on the HPC server using the zAdmin utility and

started thezClientfor sending remote computation requests.

V.3.3 Results

In this experiment, both the zFunction and OpenMPI based parallel implementations of

Heston calibration application were run using four, eight,sixteen and thirty-two servers to

calibrate 1065 models.

The results of the experiment are shown in figureV.5. The results show that both

the OpenMPI implementation as well as zFuntion implementation have comparable per-

formance. Minor differences in the total run-time of the application using OpenMPI and

zFunction can be attributed to the heterogeneity of the requests load. ZFunction enables

quick parallelization of serial applications, while OpenMPI requires application re-write
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s t a t i c i n t maste r ( . . . )
{

/ / Get communicator s i z e , p r o c e s s rank
MPI_Comm_size (MPI_COMM_WORLD, &n _ t a s k s ) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank ) ;

/ / Read i n p u t
. . .

/ / B roadcas t s i z e o f i n p u t da ta
MPI_Bcast (& v _ o p t i o n s d a t a _ s i z e , 1 , MPI_INT , 0 , MPI_COMM_WORLD ) ;
MPI_Bcast (& v _ o p t i o n s d a t a . f r o n t ( ) , v _ o p t i o n s d a t a _ s i z e,

od_da ta_ type , 0 , MPI_COMM_WORLD ) ;

f o r ( i n t m = 0 ; m < c a l _ r a n g e ; ++m)
{

. . .
MPI_Send (& c a l l _ d a t a , 1 , c a l l _ d a t a _ t y p e , rank ,

CALL_DATA_TAG, MPI_COMM_WORLD ) ;
}

/ / Send t h e n e x t r e q u e s t t o f i r s t a v a i l a b l e worker p r o c e s s
whi le ( coun t_day <= end_day )

{
/ / Wait f o r response
MPI_Recv (&param_cal ib_SV , 1 , sv_da ta_ type ,

MPI_ANY_SOURCE , SV_DATA_TAG, MPI_COMM_WORLD,
&s t a t u s ) ;

/ / p r o c e s s r e s u l t
. . .

/ / Send t h e n e x t r e q u e s t t o worker p r o c e s s t h a t s e n t response
MPI_Send (& c a l l _ d a t a , 1 , c a l l _ d a t a _ t y p e , s t a t u s . MPI_SOURCE ,

CALL_DATA_TAG, MPI_COMM_WORLD ) ;
++coun t_day ;

}

/ / Wait f o r a l l r e s p o n s e s
whi le ( r e p l y _ c o u n t < num_reques ts )

{
MPI_Recv (&param_cal ib_SV_2 , 1 , sv_da ta_ type ,

MPI_ANY_SOURCE , SV_DATA_TAG, MPI_COMM_WORLD,
&s t a t u s ) ;

/ / p r o c e s s r e s u l t
. . .

}
}

. . .
re turn 0 ;

}

Figure V.3: OpenMPI implementation code for Heston calibration application
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i n t main ( i n t argc , char ** a rgv )
{

s t d : : vec to r < o p t i o n s d a t a > v _ o p t i o n s d a t a ;

/ / Read i n p u t
. . .

/ / I n i t i a l i z e t h e z F u n c t i o n compu ta t i on env i ronmen t .
i f ( z _ i n i t ( argc , a rgv ) < 0)

re turn −1;

/ / B roadcas t i n p u t da ta
z _ c a c h e _ v e c t o r _ o p t i o n s d a t a ( v _ o p t i o n s d a t a ) ;

f o r ( i n t m = 0 ; m < c a l _ r a n g e ; ++m)
{

z _ c a l i b r a t e _ h e s t o n ( . . . ) ;
}

/ / Wait f o r a l l r e q u e s t t o f i n i s h
z _ p r o c e s s _ a l l ( ) ;

/ / p r o c e s s r e s u l t s
. . .

/ / Te rm ina te z F u n c t i o n compu ta t i on env i ronmen t .
z _ f i n i ( ) ;

re turn 0 ;

}

Figure V.4: zFunction Client code for Heston calibration application
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Figure V.5: Performance Results for OpenMPI and zFunction based implementation
of Heston Model Application running on a HPC cluster

for parallelization. The results of this experiment show that the zFunction is a highly effec-

tive, efficient and easy-to-use technique for parallelizing serial applications with minimal

code modifications, in contrast to OpenMPI which incurs a larger development cost for

parallel application development.

V.4 Experiment 3

V.4.1 Objective

The objective of this experiment is to compare the performance of OpenMPI and zNet

API in shared memory environment using multi-core machines.

V.4.2 Experiment Description

For an OpenMPI job/application, when we startn processes on a mutli-core machine

with n cores, OpenMPI automatically starts usingsmBTLfor communication. Thesm

BTL (shared-memory Byte Transfer Layer) is a low-latency, high-bandwidth mechanism

for transferring data between two MPI processes via shared memory. For this experiment,
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we used the same load-balanced OpenMPI implementation thatwe had developed for ex-

periment 2 and ran it by starting multiple server processes on a single multi-core machine.

In general, the number of slave processes is equal to the number of cores on a machine.

Figure V.6: Colocated zNet Application vs Shared Memory OpenMPI Application

We developed colocated implementation of Heston calibration application using Zir-

con’s zNet API. Colocated parallelization enables applications to run in a single process

and handle multiple requests in parallel in multiple workerthreads in the same process,

which is best suited for applications that run on a standalone multi-core machine. In this

implementation of the Heston calibration application, thezNetz_init() method is invoked

to initialize and start the zNet runtime, which internally spawns multiple worker threads

that run thecalibrate_heston()function in parallel. The zNetl_call() method forwards cal-

ibration requests to worker threads that process the requests in parallel on multiple cores on

a standalone machine. FigureV.6 shows how the zNet based implementation distribute the

work into multiple worker threads, while the OpenMPI based implementation distributes

the requests to multiple slave processes.
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V.4.3 Results

Figure V.7: Performance of zNet vs OpenMPI Implementation of Heston calibra tion
application on a multi-core machine

In this experiment , both the colocated zNet implementationand OpenMPI implemen-

tation of Heston calibration application were run using dual-core2 and quad-core machines

to calibrate 1065 models. The results of the experiment as shown in figureV.7 demon-

strate that the colocated zNet implementation of Heston calibration application is faster

compared to the OpenMPI implementation. MPI implementation provides parallelization

by starting multiple slaves/worker processes, while the zNet API based implementation

provides parallelization by running multiple worker threads. When we ran the experiment

on a quad-core machine, we started 4 MPI slaves process and 1 MPI master process that

distributed the requests amongst all slave processes. While running the same experiment

using zNet implementation, we started the application as a single process with 4 worker

threads. The overhead of running multiple processes is higher than the overhead of running

2One processor was disabled to simulate dual-core machine behavior for some experiments.
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multiple threads in the same process and due to this reason, zNet runtime is able to provide

better utilization of computation resources in comparisonto OpenMPI.
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CHAPTER VI

RELATED WORK

This chapter compares and contrasts Zircon software with other related techniques

available for parallel application development and deployment.

Aspect-Oriented Programming (AOP). Recent work has focused on using AOP [23]

to separate parallelization concerns from application specific source code [19, 24, 28]. Such

research provide a strong motivation for efforts that aim tomake parallel programming

more intuitive and less error-prone, as there is a strong decoupling in the roles played by

domain experts (who write application specific code) and parallel programming experts

(who write source code that deal with parallel programming concerns). However, the pro-

grammers are unnecessarily exposed to AOP technology. Further, if such research is used

to provide the range of capabilities that Zircon middlewaresoftware offers (capabilities

such as fault-tolerance, advanced load balancing, direct data transfer), newer technologies

are required that support composition of aspects. In contrast, Zircon middleware software

provides the benefits of parallel programming in a simple manner (that is easier to code);

but is also highly sophisticated in the capabilities it provides.

Grid computing middleware. Many projects have explored the idea of utilizing dis-

tributed computing architectures to accelerate complex calculations on top of under-utilized

network of processors or clusters. Some well-known examples include the SETI@Home [8]

and BOINC [7] projects, which employ under-utilized networked processors to perform

computational tasks. Likewise, Frontier (www.frontier.com) provides grid software

for utilizing available processors to accelerate parallelapplications. In general, in these ap-

proaches the client nodes communicate via a centralized master node to submit jobs, which

can increase latency, incur contention that causes performance bottlenecks, and yields a
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single point of failure. In contrast, Zircon software provides a highly optimized middle-

ware infrastructure for communication, as well as a set of tools for rapid development,

generation, and deployment of parallel software in decentralized networked environments.

Middleware for accelerating financial engineering applications. Prior work has also

focused on developing and/or applying grid architectures and grid applications for finan-

cial services applications. For example, [25] discusses practical experiences associated

with data management and performance issues encountered indeveloping financial ser-

vices applications in the IBM Bluegene supercomputer [6]. Likewise, PicsouGrid [10]

is a fault-tolerant and multi-paradigm grid software architecture for accelerating financial

computations on a large scale grid. Other grid-based systems include Platform Comput-

ing (www.platform.com), DataSynapse, (www.datasynapse.com), and Microsoft

HPC (www.microsoft.com/hpc), which provide distributed software environments

for financial computations. Zircon middleware software differs from these technologies in

its ease of use and integration, its real-time performance,its ability to handle both small as

well as large scale computations, its support for portable architectures and platforms, and

its advanced parallel programming features such as application-transparent fault-tolerance,

load balancing, and implicit shared-memory thread programming.
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CHAPTER VII

CONCLUSION

OpenMPI is the most commonly used standard API widely used bythe parallel appli-

cation development community for developing parallel computing applications that can ef-

ficiently utilize the hardware capabilities of multi-core machines, HPC clusters and clouds.

However, in addition to OpenMPI, high-performance computing clusters have to use third

party tools in order to perform cluster management activities such as job scheduling, re-

source monitoring, load-balancing and server deployments. It is not possible to quickly

parallelize existing serial applications using OpenMPI because OpenMPI developers have

to handle multiple issues related to distributed and network programming like synchroniza-

tion, concurrency, load-balancing, fault-detection and recovery on a need-to-need basis for

every application, which increases the cost of parallel application development.

This work compares the capabilities of OpenMPI framework with Zircon middleware

software by developing some benchmark parallel computing applications and highlights the

advantages of Zircon middleware software, which is better suited for parallel applications

development due to its feature advantages as shown in TableVII.1, in comparison to

OpenMPI.

Table VII.1: Features comparison between OpenMPI and Zircon Software

Features Zircon Software OpenMPI

Real-Time Scala-

bility

Applications can be scaled to

run on multiple nodes at run-

time.

Node allocation for an appli-

cation has to be done before

startup and new nodes cannot

be added at run-time.
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Platform Inde-

pendence

Zircon software is imple-

mented atop ADAPTIVE

Communication Environ-

ment(ACE) which is a

portable C++ host infras-

tructure middleware and

therefore can run on most

general-purpose and real-

time operating systemse.g.

Windows XP, OS X, Linux

and Solaris. It can run appli-

cations using mixed operating

system environments.

OpenMPI is a low-level im-

plementation of MPI stan-

dard. It is currently supported

on Linux, OS X, Solaris and

Windows. However, it does

not have support for interop-

erability in mixed operating

system environments
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Programming

Simplicity

Zircon Software can deploy

binary versions of client li-

braries on a cloud/cluster of

nodes and execute the com-

putations in parallel. It au-

tomatically distributes the re-

quests to different servers in

a load-balanced manner and

collects results from all the

servers. It shields application

developers from the complex-

ity of distributing their appli-

cations and thus makes dis-

tributed computing easy and

affordable for its users.

OpenMPI implementations

require rewrite of existing

implementations in a master-

slave fashion, where master

process distributes requests

and data to slave processes

and collects results from

them. OpenMPI implemen-

tation does not have any

support for load-balancing

and fault-tolerance which

makes it harder and tedious

to develop applications using

OpenMPI.

CPU Utilization Zircon Software provides bet-

ter CPU utilization when run-

ning applications in colocated

mode as it processes com-

putation requests in worker

threads.

OpenMPI has no concept of

threads and each application

component runs as a different

process, even on multicore

machines, which has higher

overhead in comparison to

running multiple threads in a

process.
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Dynamic Load

Balancing

Zircon software’s load

balancer transparently dis-

tributes the workload across

all the servers and ensures

that all available servers are

fully utilized. Application

developers do not need to

implement any load balanc-

ing mechanisms within the

application logic.

In OpenMPI, application

developers need to imple-

ment load-balancing within

the applications which re-

quires rewriting existing

applications.

Fault Tolerance Zircon software automati-

cally detects node failures

and provides immediate

failover and recovery by

re-executing requests on

active servers.

OpenMPI runtime environ-

ment has no inherent support

for fault-tolerance and the

active jobs/applications stops

execution, in case of server

failure. Developers can de-

sign fault-tolerant programs

by catching error codes and

implementing fault-recovery

mechanisms in their applica-

tions, which an error-prone

and tedious process.
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Service Discov-

ery

Zircon software can auto-

detect the server nodes

and distribute computation

requests to active servers.

Client application need not

provide any server informa-

tion on startup.

OpenMPI applications can-

not auto detect servers. All

servers for an OpenMPI

job/application have to be al-

located by resource managers

on start-up. OpenMPI ap-

plications cannot detect any

new servers added during the

runtime of the application.

Monitoring Tools Zircon software contains a

utility called zAdmin that can

be used for real-time monitor-

ing of resources.

OpenMPI does not provide

any such tools.

Zircon middleware software is best-suited for computationintensive financial appli-

cations that have highly heterogenous work-loads and have real-time scalability, load-

balancing and fault-tolerance requirements. These applications can greatly benefit by the

use of Zircon middleware software that has the plug-in capabilities to add computation re-

sources at run-time to speed-up performance and is very easyto configure, program and

use.
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