DISTRIBUTED AND ADAPTIVE PARALLEL COMPUTING FOR
COMPUTATIONAL FINANCE APPLICATIONS

By

Pooja Varshneya
Thesis
Submitted to the Faculty of the
Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Computer Science

August, 2010

Nashville, Tennessee

Approved:
Dr. Douglas C. Schmidt

Dr. Aniruddha Gokhale

To my Dad and Akshat
for giving me strength to pursue my dreams.

| saw a man pursuing the horizon;
Round and round they sped.
| was disturbed at this;
| accosted the man.
"It is futile," | said,
"You can never -"

"You lie,"he cried,
And ran on.

- Stephen Crane

ACKNOWLEDGMENTS

| would like to express my sincere gratitude to my advisor Douglas C. Schmidt
for his constant encouragement, guidance and supportglthris work and my graduate
studies at Vanderbilt. He gave me the opportunity to workistributed Object Com-
puting(DOC) group and helped me hone my programming andngrgkills. | am also
grateful to Dr. Aniruddha Gokhale for his time and suppontewiewing this thesis.

| am greatly thankful to Zircon Computing LLC’s founders:ekhnder Mintz and An-
drew Kaplan for providing me with the opportunity to work dng project. | am greatly
indebted to Dr. Jai Balasubramanian, a former DOC group neeiad my mentor at Zir-
con Computing for helping me to formulate my ideas by prawgvaluable feedback and
by sharing his domain-knowledge in several brain-stornsegsions.

| would like to thank Dr. Larry Dowdy, Dr. Jerry Roth, Dr. Yuatue and Dr. Jules
White for their guidance during my graduate coursework.

On a personal note, i would like to thank my friends Vikasheptg Tripti, Aditya,
Samyuktha, Kamya and Poojitha who made Nashville a secome ior me.

| thank my mother and my sister, Swati for their unconditidose and support. A
special thanks to Akshat for imbibing discipline and focansme and for always being

there.

TABLE OF CONTENTS

Page
DEDICATION e e il
ACKNOWLEDGMENTS e e e e ii
LISTOFTABLES e e e e e e e e Vi
LISTOFFIGURES e e e Vil
Chapter
l. Introduction. 1
I.1. Classification of Parallel Computing 1
[.1.1. Multicore/Multiprocessor Computing 1
[.1.2. ClusterComputing 1
[.1.3. Cloudcomputing. 2
[.2. Motivation 2
Il. Background 5
II.1. Overview of the Binomial Option Pricing Model 5
Il.2. Overview of the HestonModel 7
[1. Message Passing Interface 10
H.1. OpenMPI 10
[11.1.1. OpenMPI Architecture 11
[11.1.2. OpenMPI Frameworks 12
l.2. MPIFeatures 13
[11.3. MPI Limitations 16
V. Zircon Adaptive High-Performance Computing Middlewar. 21
IV.1. Structure and Functionality of Zircon Parallel Contipg Mid-
dleware Software 23
IV.2. zEnabling using zFunctionAdapters and zPluginliles 24
IV.2.1. zFunction and zPluginLibraries 25
IV.3. Parallel Application Development using zNet APl 28
IV.4. zNet Infrastructure Patterns 29
IV.5. zNet APl 30
IV.5.1. ZBroker Client APl 30
IV.5.2. ZMessagingAPI 33
IV.5.3. ZPubSub APl 34

IV.6. Resolving Distributed and Parallel Application DgisiChallenges

with Zircon Middleware Software 36

V. Benchmarking ExperimentsandResults 39
V.1. ExperimentSetup 39

V.2. Experimentl 39

V.2.1. Objective 39

V.2.2. Experiment Description 39

V.23. Results L 41

V.3. Experiment2 43

V.3.1. Objective 43

V.3.2. Experiment Description 43

V33, Results 44

V4. Experiment3 47

V.4.1. Objective a7

V.4.2. ExperimentDescription 47

V43, Results 49

VI. RelatedWork 51
VIL. Conclusion 53
REFERENCES e e e e 58

LIST OF TABLES

Table

VII.1. Features comparison between OpenMPI and Zirconzo#

Vi

Figure

.1
.2.
l.3.

.4.

IV.1.
V.2
IV.3.
V.4
IV.5.

IV.6.

V.1.

V.2.

V.3.
V4.

V.5.

V.6.

V.7.

LIST OF FIGURES

Page
OpenMPI Architecture 11
OpenMPI Frameworks 12
Example of user-defined input data structure usingi@gpPI 17
Example of MPI derived datatype creation using Op&iM 18
Zircon Middleware Architecture L 22
Zircon Parallel Computing Middleware Software Compats 23
Example XML input file for zPluginBuilder 26
zEnabling a Serial Application with zFunction 27
Example of user-defined datatype declaration usingtzZNeI 31
Parallel Application Development with zFunction. 38
Serial Implementation of Binomial Option Pricing Apgdtion 40
Performance Results for OpenMPI and zNet based impiéatien of
Binomial Option Pricing Application running on a HPC cluste 42
OpenMPI implementation code for Heston calibratioplagation 45
zFunction Client code for Heston calibration applicat 46
Performance Results for OpenMPI and zFunction baseteimentation
of Heston Model Application runningona HPC cluster 47

Colocated zNet Application vs Shared Memory OpenMPpligation . . 48

Performance of zNet vs OpenMPI Implementation of Hestibration
application on a multi-core machine 49

Vil

CHAPTER |

INTRODUCTION

I.1 Classification of Parallel Computing

Analysts, scientist, engineers, and multimedia profesdgrequire massive process-
ing power to analyze financial trends, create test simulatimodel climate, compile code,
render video, decode genomes and other complex tasks.ufjlththese groups could use
specialized super computers, the custom development tichéha hardware costs are pro-
hibitive. In order to overcome these problems, currentdsdiocuses on using commodity
hardware and public clouds for large scale parallel andidiged applications.

In Sections I.1.1, 1.1.2 and 1.1.3 we describe three commonly used techniques for

parallel and distributed computing.

[.1.1 Multicore/Multiprocessor Computing

With evolution of chip-manufacturing technologies, mediie processors have become
a norm. Multicore processors can drastically improve aaplon performance by run-
ning multiple tasks (threads) at the same time to increaderpgance for heavy workload
scenarios, such as data mining, financial computationdhenatical analysis, graphical
simulations and web services. Muticore/multiprocessarinrges use concurrent program-

ming to boost application performance and throughput.

1.1.2 Cluster Computing

With the growing availability of multi-core/multi-procesr machines, it is also be-
coming increasingly easier to create a cluster of nodegugieap and readily available
common off-the-shelf (COTS) hardware. These clustersllystamprise of heterogenous

hardware, connected using GBit ethernet and can be quigkigreled or reduced in size

by adding or removing nodes at run-time. Such clusters carebeeasily created using
personal desktops and workstations and therefore, retheceost of computation by use

of readily available hardware and software resources.

1.1.3 Cloud computing

Clouds provide on-demand access to large pools of compotdtresources, system
software and storage on a datacenter that can be used byettsefaistheir computing re-
guirements. The datacenter hardware and software resoiarce aCloud Various cloud
providerse.g.Amazon EC2, Google AppEngine, Microsoft Azure and Eucalggirovide
their resources to the users in a "pay-as-you-go manner“ysers pay for the hardware
resources and the storage space only for the duration offime&hich the resources are
utilized. This form of cloud computing is known as Infragtiure as a Service (laaS) and
it is best suited for computation-intensive batch-proicegand business analytics jobs that
takes hours to finish.

With the advent of commodity multi-core processors, HPGtes and cloud comput-
ing systems, researchers and developers also need neakelganogramming techniques
that can maximize the utilization of such systems and ertablesers to transparently port

applications across different parallel computing platfer

.2 Motivation

Traditional parallel programming techniques, such as agspassingls] and shared
memory grid computing middlewar@&][have been applied by researchers in universities
and national labs to develop and deploy enterprise-scatdhiited and parallel applica-
tions. OpenMPI is one of the most widely used implementatmiMessage Passing Inter-

face (MPI) library used for cluster computing.

However, parallel application development remains a ehgiihg problem in the do-
main of large-scale development of distributed applicetjovhere traditional grid com-

puting technologies cannot be applied due to the followimitations:

e Complex programming models that do not have inherent sugpofeatures like
node-discovery, data dissemination, load-balancing andwrency control. Appli-
cations written using such techniques, do not scale wettdomplex mission-critical

systems.

 Traditional grid computing and cloud-computing techrgyés are not platform ag-
nostic. Every cloud provider uses a different API for apgiion development and
deployment which makes it hard for application developensdrt the applications

from one cloud provider to another or onto a private HPC elust

* There is a steep learning curve involved in mastering tipeseallel programming
paradigms, which increases the cost of parallel and dig>application develop-

ment.

These limitations are addressed by Zircon middleware swéywvhich is an adaptive
distributed computing middleware that enhances largestiatributed and parallel ap-
plications by creating adaptive, real-time, and distloutomputing on demand. Zircon

middleware software provides following capabilities tegarchers and developers:

» Configurable middleware whose pluggable services au®many tedious and error-
prone activities related to network programming, inclgdiandling different net-
work protocols, (de)marshaling, fault-tolerance, threaghtion and management,

and advanced load balancing across a network of computsdivers.
» A decentralized software architecture that has no singiliet f failure.

* A straightforward parallel programming model that alloseelopers of complex,

large-scale application®.g, computational finance and data processing applica-
tions) to design software that runs in a cluster of compuasri they are program-

ming for a single computer.

In this thesis, we benchmark the performance of OpenMPI antb@ middleware
software by parallelizing two CPU-intensive financial cartgiion applications using both
the technologies and find that Zircon middelware softwamaush easier to use and can
be quickly and effectively used to parallelize existingaeapplications, in comparison to
OpenMPI that requires complete rewriting of existing apgtiions for parallelization.

The remainder of this thesis is organized as follows: Chdptgives a background of
financial computation applications used for benchmark@itaptedll gives an overview of
MPI standard and OpenMPI. Chaptst discusses various features of Zircon middleware
software and explains its advantages over OpenMPI framlew@napterV describes the
benchmarking experiments conducted on OpenMPI and Zirdddleware software and
evaluates the results of these experiments. Chafitertompares Zircon software with
other parallel computing technologies. Chap#ér summarizes the accomplishments of

this work.

CHAPTER I

BACKGROUND

Financial industry is one of the fastest growing areas argdic computing. Compu-
tational finance applications involving massive simulasicare well suited for distribution
and parallelization. Unfortunately, the prohibitive effthat is needed to parallelize these
applications using traditional mechanisms has restritttedinancial industry’s movement
in this direction. Option pricing using model calibratioasd risk assessment are impor-
tant techniques that are increasingly becoming criticahaking timely trading decisions.
The computational intensity of such methods, however, gdigdimits the frequency with
which they can be used. Hence, there is a significant benatfit floosting the performance

of such computations.

1.1 Overview of the Binomial Option Pricing Model

In finance, an optionZ2] is defined as a contract that gives the buyer the right, but no
the obligation, to buy or sell an underlying asset at a syppepiice on or before a certain
date. There are primarily two kind of optionamerican optionsthat can be exercised at
any time between the date of purchase and the expirationatiateuropean optionghat
can only be exercised on the expiration date.

In this case study, we use binomial option pricing model f@i@ating option prices for
american options. The binomial tree model was proposed ByRass and Rubinsteid §]
and it is a very popular technique used for risk-neutralaptialuation. The binomial pric-
ing model traces the evolution of the option’s key undegdyirariables in discrete-time.
This is done by means of a binomial lattice (tree), for a nunabéime steps between the
valuation and expiration dates. Each node in the lattigeresents a possible price of the

underlying at a given point in time. Valuation is performéetatively, starting at each of

the final nodes (those that may be reached at the time of éxpiyaand then working
backwards through the tree towards the first node (valuataia). The value computed
at each stage is the value of the option at that point in timptio@ valuation using this
method is a three-step process: i) price tree generatipoaliculation of option value at
each final node, and iii) sequential calculation of the aptialue at each preceding node.

The expected value for an option is calculated at each nadg tree option values from
the later two nodes (Option up and Option down) weighted byr tiespective probabilities
— "probability” p of an up move in the underlying, and "probabilityl — p) of a down
move. The expected value is then discounted #lte risk free rate corresponding to the
life of the option.

The following formula to compute the expectation value iplegal at each node:

Ciati=€ " (pGi1+(1-p)Cri1)

The parameters in the above equations represent the fatowi

* G, is the option’s value for thé" node at time

is chosen such that the related Binomial distribution sated the geometric Brown-

ian motion of the underlying stock with paramete@ndo.

* ¢ is the dividend yield of the underlying corresponding to lifes of the option. It
follows that in a risk-neutral world futures price should/e@n expected growth rate

of zero and therefore we can consides r for futures.

We implemented a parallel computing application to cakeutsption prices for 1000
american options, with heterogenous step sizes. Binom&aldption pricing model was

implemented using both OpenMPI and Zircon’s zNet API andréseilts show that both

implementations take-7 minutes for calculating option prices for 1000 optionsngs32

servers.

[1.2 Overview of the Heston Model

In this case study, we calibrate Hest@][stochastic volatility model with 5 free pa-
rameters under the risk-neutral probability measure. Hse study is based on the work
of Horn, Schneider, and Vilkov2[l], who performed an extensive option pricing model
calibration exercise to gauge the size and direction of Hrarpeter misevaluation effect
on hedging portfolio performance. As a base model for thdyaisa we chose the Hes-
ton stochastic volatility model, implemented it using th&®C library, and calibrated it
on a daily basis to observed option prices for a period of reéyears. Similar calibra-
tions of various asset-pricing models are common in finanbeye speed and accuracy are
essential factors in risk management and portfolio opttndns.

The Heston20] model assumes the following risk-neutral dynamics foruhderlying

stockSand its local variance:

d§ = rsdt+ S dW®
dv = k(6 —w)dt+ o/vdW’

The parameters in the above equations represent the fabowi

e r is the risk free rate.

6 is the long run variance mean; s> «, the expected value of — 6.

K is the rate at whichy; reverts to8, or speed of mean-reversion.

o is the volatility of the volatility, which determines the batility of .

E[dWSdW'] = pdt, is the instantaneous correlation between the stock andhatiie

ance processes.

We use a non-linear least squares technique in our caseclibsation to estimate five
model parameters (starting variance value, long-run nsgaeed of mean-reversion, corre-
lation between the processes and the volatility of votggiso that the theoretical prices get
close (in terms of some norm) to the observed ones. We caditita Heston model using
BID/ASK/MID prices of available call options for OEX, with aturities ranging from 14
to 180 days and with moneyness (strike/stock price) in thged80,120]. The observed
prices are taken from OptionMetricaMw. opt i onnet ri cs. con), with the usual data
filters appliede.g, we removed options with missing implied volatility, zend prices, and
zero open interest. The theoretical option prices are kot using the Fourier transform
technique and involve some numerical integration. We immgleted the calibration in C++
using the Standard Template Library (STL) and the NAG C Lipfa] minimization func-
tion nag_opt_bounds_no_derivg@]. NAG C Library provides many useful and efficient
functions to perform numerical analysis. For example,rthg opt_bounds_no_derive()
function is a comprehensive quasi-Newton algorithm forifigdan unconstrained mini-
mum of a function of several variables and a minimum of a fiomcof several variables
subject to fixed upper and/or lower bounds on the variableenkvith high-quality NAG
functions, however, we still needed additional tools aradfpims to speed-up Heston cal-
ibration computations to an acceptable level.

For example, the experiments reported 2d|[processed thousands of individual He-
ston calibrations and took several days for the computstiamich was far too long for
typical research and practical purposes. It is essentiahte calibration results for thou-
sands of models within minutes or even seconds for indlistpplications, such as risk
management, hedging, or portfolio optimization. Thesécations run numerous times,
especially for larger datasets.g, the original project reported ir2[l] used only five un-
derlying securities for calibrations, whereas there~a6¢000 individual securities in Op-
tionMetrics available for such analysis.

To speedup Heston calibrations, we created two paralteNsgsions of the NAG C

www.optionmetrics.com

library based implementation of Heston calibration amilan, one using the OpenMPI
high-performance computing library and another using&iradaptive high-performance
computing software platform and tools.

We calibrated the model to observed option prices 1,065siménere computation
time for each task varied from several seconds upto sevenaltes. Both the OpeMPI and
Zircon software based parallelized implementations afatgorithm, finished computation

in ~18 minutes using 32 servers.

CHAPTER IlI

MESSAGE PASSING INTERFACE

The Message Passing Interface Standard (MPI-B¥)] is a message passing library
specification designed by MPI Forum (MPIF), which has ovepd#icipating organiza-
tions, including vendors, researchers, softwarelibrayetbpers, and users. The goal of
the Message Passing Interface is to specify a portabldactefor writing message-passing
programs for distributed-memory multiprocessors, shanedhory processors, heteroge-
nous network of workstations, and a combination of all ttiEse MPI defines language-
independent semantics for an application programmingfaxte that can be used for devel-
oping portable distributed, parallel computing applicas. MPI library provides essential
features like creating logical process topology, poirptant communication, collective
communication, synchronization, dynamic process manageind support for derived

datatypes.

1.1 OpenMPI

Open MPI H] is an open source MPI implementation aiming to fully impkmthe
MPI-2 [16] standard. OpenMPI is an all-new, production quality inmpéatation of MPI-2
implementation, developed by a consortium of academieares and industry partners. It
aims to combine various features of previous MPlimplentema, namely FT-MPI14],
LA-MPI[18] and LAM/MPI [11] and become "the best MPI library availablel'7]. Open
MPI is designed to be portable to a large number of differéatfgrms, ranging from small
clusters to large supercomputers. It aims to support hggeeous network environments
in order to create multi-domain cluster systems. Its corepbthased architectureoffers
flexibility, easy extendibility, run-time configuration @wlynamic adaption to the environ-

ment.

10

Following section describes the architecture of OpenMPI.

[11.1.1 OpenMPI Architecture
User application

MPI Component Architecture (MCA)]

'

7~

{ N N £ N 7 N N

Framework

——
~ /

Framework | | Framework || Framework || Framework
\

Framework | | Framework
-

.

p.

- VAN AN VAN J/
all o all g g afl alf al|l g g all alf allal|l a all| aff a a
EIE|..]E|| E| E E[| E|l € E|I|E| E E[| EIl € E|I|E||E|.]E||E| E £
S|l © ol o] o ol ol ol o] o ol off o|]o|| e al| o o <)
oo [GRRRE] K] Ql|loo [GRRRS] K& Qol|loflo oo Q||O]O o

AT
~

Figure 111.1: OpenMPI Architecture

The OpenMPI design is centered around the MPI Componentitdathre (MCA).
OpenMPI is comprised of three main functional areas:
1. MCA: The backbone component architecture that provides mamageservices for

all other layers;

2. Component frameworks : Each major functional area in OpenMPI has a corre-
sponding back-end component framework, which manages lead&ach frame-
work provides a public interface that is used by externale¢dalit it also own its
internal services. An MCA framework uses the MCA servicesiitd and load com-

ponents at run timee. implementations of the framework’s interface.

3. Modules: Self-contained software units that provide implemeptatf framework

interfaces that can be deployed and composed with other le®dtrun-time.

11

Frameworks, components, and modules can be dynamic ar, &&tthey can be available

as plugins or they may be compiled statically into librages, libmpi.

l11.1.2 OpenMPI Frameworks

User application

MPI API

MPI Component Architecture (MCA)

)
~—

Open MPI (OMPI)

Open Run-Time Environment (ORTE)

Open Portable Access Layer (OPAL)

'Y
~_

Figure 111.2: OpenMPI Frameworks

Open MPI frameworks are broadly categorized as follows: @pen Portable Access
Layer (OPAL) frameworks, the Open Run-Time Environment {@Rframeworks, and the

Open MPI (OMPI) frameworks.

1. OPAL framework mainly provides utility and "glue"” code used by OMPIl and ORTE

frameworks.

2. ORTE framework provides support for different back-end run-time systelnsn-
ables high performance applications to run in heterogerausonments in a trans-

parent and scalable fashion.

3. OMPI framework provides implementation of MPI API.

12

1.2 MPI Features
MPI-2 [16] specification focuses on specifying a message-passiralglgsrogram-
ming model, in which data can be moved from the address sfageeoprocess to that
of another process through cooperative operations on eacegs. MPI library primarily

facilitates parallel application development using thesgfeatures:

1. Point-to-point communication allows processes to send and receive data and mes-
sages to one another. Point-to-point operations are &laila synchronous, asyn-
chronous and buffered modes and can lead to buffer overflowseif the length of
the received message is greater than the size of receivdfér.bDue to this rea-
son, it is the responsibility of application developer te@me that the receiver pro-
cesses allocate sufficiently large buffer to receive datasddge sent by the sender
process can be uniquely identified by the combination of géssage tag, commu-
nicator group-id and receiver process rank in the commtmrigaoup. MP1_Send()
andMPI_Receive(are the most commonly used point-to-point communicatioe{fu

tions.

2. Collective communication allows processes to communicate with all other pro-
cesses in a group. It involves functions suchvil_Bcast() which allows broad-
casting data from one member to all other members in a gidii, Gather()that
gathers data from all members of a group to one menNdet, Scatter (Jthat scat-
ters data from one member to all members of a groug\diAd Reduce()that applies
reduction operations such as sum, reduction, min or uderetkoperations on the
results collected from all other group members. The semsoficollective commu-

nication functions are similar to those of point-point coomitation.

3. One sided communicatioroperationdVPI_Put() MPI_Get() andMPI_Accumulate()
have been recently added to MPI-2 specification in orderke talvantage of fast

communication offered by shared memory and special putigetations available

13

in some hardware architectures. These functions allow tenvates, remote reads
and remote update operations by making a window of a pracessmory available
for remote access to other processes in a group. Howevapfieation developer
needs to take care of synchronizing this communicatiorgusicks as the specifica-
tion does not guarantee that these operations have takemyiél a synchronization

point.

. Communicators, groups and virtual topologyfunctions allows application devel-
opers to define ordered collection of processes and assiggaeuranks to each
process in a communicator group. Communicators provideafipgopriate scope

for all communication operations in MPI and are divided it kinds: intra-

communicators for operations within a single group of psses and inter-communicators

for operations between two groups of processes. Groupsedgfscope for process
names in point-to-point and collective communication agiens. A group is al-
ways associated with a communicator objed?] _Comm_create(an be used to
create new communicatdviPl_Comm_group(deturns handle of global group from
MPI_COMM_WORLDMPI_Group_incl()forms a new group as a subset of global
group andMPl_Comm_free(and MPI_Group_free()can be used to free up new

communicator and group.

A virtual topology provides a convenient naming mechanismtfie processes of
a group (within a communicator), and additionally may asdise runtime system
in mapping the processes onto physical processors and tayshelp to improve
communication performance on a given machine. The comratiarcpattern of a
set of processes can be represented using graph and cattgsitogies. The func-
tionsMPI_Graph_create()MPI_Dims_create(andMPI1_Cart_Create(jare used to

create general (graph) virtual topologies and Cartesipoltgies.

14

5. Derived datatypesallow users to define user-defined datatypes for sendingogata
tween processes in addition to predefined MPI datatypesasigtiPl_INT, MPl_CHAR,
MPI_DOUBLE, etc MPI functions such aBPI_Type_create_struct()
MPI_Type_contiguous§ndMPI_Type_Vector(¢an be used to create MPI datatypes

for data-structures like structs, arrays and vectors.

6. MPI environment managementfunctions are used for initializing and terminating
the MPI environment and for getting and setting varioushattes related to MPI
implementation and execution environment (such as ernodlivay). MPI1_Init() and
MPI_Finalize()are used to initialize and terminate MPI execution envirentnVar-
ious functions likeMPl_Comm_size()MPI_Comm_rank()MPIl_Wtime() etc are

used to query the runtime environment for its properties.

7. Dynamic process managemenis a feature of MPI-2 that allows for the creation
and cooperative termination of processes after an MPI egipbin has started. It pro-
vides a mechanism to establish communication between thly ceesated processes
and the existing MPI application. It also provides a meckanio establish com-
munication between two existing MPI applications, even nvbae did not "start"
the otherMPI_Comm_spawn@ndMPI_Comm_spawn_multiplefjjnctions can be
used to start several different MPI processes and estatadisimunication with them
by placing them in the same MPI_COMM_WORLD and returningraerncommu-

nicator.

8. MPI11/O provides a high-level interface that supports partitigronfile data among
processes and allows complete transfers of global datatstes between process
memories and files by using the existing derived datatypetiomality. It also sup-
ports features such as asynchronous I/O, strided accesgbspntrol over physical
file layout on storage devices using functions sucM®&$_File iread()

MPI_File_seekMPI_File_sync() and so on.

15

Complete list of MPI functions implemented in OpenMPI carfdiend at

WWW. open- npi . or g/ doc/ v1. 4.

I11.3 MPI Limitations

Although MPI-2 provides a rich library for developing eficit message passing ap-
plications, the specification does not support any abstrasfor resource management,
load balancing and fault-tolerance and leaves it for thdiegmmon developers to customize
these features for each application. These limitationsemaldifficult for application de-
velopers to parallelize serial applications to run transptly on hundreds or thousands
of distributed computation servers in a scalable fashio®l Mfrastructure typically al-
locates required number of processor nodes to an applicatiostartup and distributes
the task amongst them based on user’s load-balancing desgementation. This re-
sults in resource wastage in case of typical applicatioashihve a combination of both
serial and parallel computation phases. During serial edatjpn phase of such applica-
tions, multiple nodes allocated to this application remader-utilized. MPI-2 specifica-
tion have added dynamic process management functions pmdugynamic spawning of
new process at run-time, but it requires application deyei® to hard-code these error-
prone mechanisms into the message-passing applicatioasneed-to-need basis. Due
to the steep learning curve involved in learning MPI prograng, the cost of parallel
application development using MPI is quiet high. Thereftinere is a need for an easy-to-
program/use/manage high-performance computing middéeplatform that can alleviate
these limitations and allow application developers to foon business logic development
for parallel applications.The remainder of this sectiosalbes some of these key design
requirements for such a middleware framework:

Requirement 1: Automatic discovery and addressing of hetergenous remote com-

putation servers for distributed computing. As described above, MPI does not support

16

www.open-mpi.org/doc/v1.4

automatic discovery of new computation servers added guha runtime of an applica-
tion and also does not support interoperability betweerntenasd slave processes running
on different operating systems such as Windows, Linux arldriSo In MPI terminology,
master process is the client component that distributepatation requests to slave/server
processes for parallel computation. The task distribugioeh collection of results for mul-
tiple computation requests sent to heterogenous comepnatagérvers should be handled
transparently by the middleware. The middleware should sigpport dynamic addition
of computation servers at runtime for computation speedhgpceletion of computation
servers in case of resource restraint in a cluster of computening multiple jobs in par-
allel.

Requirement 2: Easy to use programming frameworks for remoé distributed
computation. Distributed computations involves sending input datarémuest process-
ing (e.g, the input for Heston calibration application stored in aput file) in an external

format that be can transferred via the network to remote caatipn servers.

struct optionsdata

{
int day;
int optid;
double strike ;
double maturity;
double price;
double stock;
double rate;

Figure 111.3: Example of user-defined input data structure using OpenMPI

In message-passing programs, developers have to use MrIspeone and tedious

data packing and unpacking functions or derived datatyptacdsion functions for send-

ing and receiving input data in user-defined formats. Thimmgeates source code de-

velopment activities for parallel applications and highlis the need for simpler parallel

17

programming frameworks. For example, figliie3 shows the definition of a simple user-
defined data structure in C/C++ and figlile4 shows the corresponding code for defining

the same user-defined data-structure in MPI.

static void
create_options_datatype (MPI_Datatype &od_data_type)
{
optionsdata test_options_data;
int od_blocklengths[7] = {1, 1, 1, 1, 1, 1, 1};
MPI_Datatype od_types[7] = {MPL_INT, MPIL_INT, MPI_DOUBLE
MPI_DOUBLE, MPI_DOUBLE,
MPI_DOUBLE, MPI_DOUBLE};

MPI_Aint od_displacements[7];

MPI_Aint od_start _address;
MPI_Aint od_end_address;

MPI_Get_address (&(test_options_data), &od_start aasy);

MPI_Get_address (&(test_options_data.day),
&od_end_address);

od_displacements[0] = od_end_addressod_start_address;

MPI_Get_address (&(test_options_data.optid),
&od_end_address);

od_displacements[1l] = od_end_addressod_start_address;

MPI1_Get_address (&(test_options_data. strike),
&od_end_address);

od _displacements[2] = od_end_addressod_start_address;

MPIl_Get_address (&(test_options_data.maturity),
&od_end_address);

od_displacements[3] = od_end_addressod_start_address;

MPI_Get_address (&(test_options_data. price),
&od_end_address);

od _displacements[4] = od_end_addressod_start_address;

MPI_Get_address (&(test_options_data.stock),
&od_end_address);

od_displacements[5] = od_end_addressod_start_address;

MPI_Get_address (&(test_options_data.rate),
&od_end_address);

od _displacements[6] = od_end_addressod_start_address;

MPI_Type_create_struct (7, od_blocklengths, od_disglments , od_types,

&od_data_type);
MPI_Type_commit (&od_data_type);

Figure 111.4: Example of MPI derived datatype creation using OpenMPI

18

Requirement 3: Efficient distribution of remote computation requests for effective
resource management across the networkn message passing programs, application de-
velopers have to repetitively implement different schedpand request distribution algo-
rithms for different applications. Parallel computingrfreworks should support intelligent
request scheduling and distribution algorithms for regussemination across various
computation servers. Efficient request dissemination lsheosures that (1) all hardware
resources are utilized efficiently, (2) remote computatiare not impeded by load imbal-
ance across computation servers, and (3) clients are eHi&loin heterogeneous hardware
and software capabilities.

Requirement 4: Fault tolerance and application transparert fault detection and
recovery. When remote computation servers execute complex applicaglculations,
hardware failures can disrupt the calculations. Thesestypdailures must be handled
resiliently by the parallel computing framework since bthte compute server(s) and com-
munication links may be rendered unavailable. Developmgee code for providing fault
tolerance could involve writing code for detecting fauitientifying the requests that were
being computed by the failed server, resending those régjtesn alternate server, and
taking rejuvenation actions such as restarting the fai@gess using checkpoints. MPI
provides the infrastructure for developing such applarej however, it is a tedious and
error-prone process to write fault-tolerance infrasuuetcode for every application and
makes it difficult for application developers to quickly plelize existing applications.

Requirement 5: Concurrency management Computational finance applications,
such as the heston calibration and binomial option pricaigudation in our case study, are
often highly computation intensive. These applications tteerefore benefit greatly from
proper concurrency management where all the cores in a-ouarki processor are utilized
efficiently for optimizing calculations. Programming tkeesoncerns requires application
developers to manage concurrency explicitly, even in MBEdaapplications, by creating

threads and synchronizing those threads with message$o@sd This process must be

19

repeated for every platform since thread programming Akterdrom platform to plat-
form, e.g, differences in the thread APl between Windows and Linurally, application
developers should develop source code in a platform-agnmosinner so that application
requests could be optimized depending on the availabifigirgle-vs- multi-core proces-

SOrs.

20

CHAPTER IV

ZIRCON ADAPTIVE HIGH-PERFORMANCE COMPUTING MIDDLEWARE

The Zircon Middleware Softwaré[from Zircon Computing] provides an adaptive
high-performance computing middleware that addressefdirthtations of OpenMPI as
described in chaptdtl. Zircon middleware software automatically deploys a distied
computing infrastructure across (potentially) heteragers hardware platforms and oper-
ating systems, maps compute-intensive applications t@bgi@rocessors, manages their
execution, and dynamically equalizes the workload in rieaétto fit available resources.
Application developers can thus exploit the processinggravailable to them, including
newer technologies, such as multi-core processors and clwmputing systems, as well as
traditional desktops and servers. Zircon software drayablyiimproves performance with
little learning curve and configuration effort, and runsreksssly over local-area networks;
wide-area networks; public, private, or hybrid cloud dgphents; and/or in dedicated data
centers.

Zircon high-performance computing middleware supportedlcomputing and com-
munication models required by many mission-critical aggdions that need high perfor-

mance, as shown in figut¥.1 and described below:

» Application function parallelism, such as the capabilities provided by computa-
tion grids to transparently run applications in a clustes@ivers as if they are pro-
grammed for a single computer. The zFunction function peisin API and sup-
porting tools hide many low-level network programming cems and unexpected

complexities, simplifying fine-grained application paetization.

» Application executable parallelism such as the capabilities provided by data cen-

ters and clouds to launch applications on demand. The zEx@ation execution

21

Application Domrains

Document _F‘ro:e.sslng Portfolic Risk Analysis Text Mining Online Trading
@ Sy .
+
—— N
™ = zExec EE in!u’llﬂ'r Ei g
::::::I.l::: zNet Services J zFunction Tools -E g
e . g g
— ; [N &
— — B
k | TCE zNet Service Delivery Platform . zEngi a
Cooperating §
Tasks ADAPTIVE Communication Environment (ACE) 5
Communication g
Supported Operating Systems (e.g., Linux, Windows, Solaris, etc.) i
3

h.'-l-‘
(&) - W e

Symmaetric
Multi-core Chips Mulﬁpmcessnrs Blade Clusters Cloud Computing

Figure IV.1: Zircon Middleware Architecture

parallelism service can runs any executable in a clustezrokss as a set of parallel

jobs, thereby simplifying coarse-grained applicatiorafiatization.

» Service delivery platforms such as the capabilities provided by distributed com-
puting environments that support cooperating business taa distributed infras-
tructure patterns, such as Messaging, Broker, and Pubi&liescriber 12]. The
zNet API provides a C++ interface to the zNet service dejiygatform that handles
service discovery, reliable multicast communicationuesj workload equalization,

and request dispatching.

Requests from applications that use these models can rumocmegsors and cores
in a collocated and/or distributed manner, with the choiteadlocation or distribution
largely transparent to application clients and servenxasi software runs on most general-

purpose and real-time operating systems since it is impisdeatop the open-source

22

ADAPTIVE Communication Environment (ACERp, 27], which is portable C++ host
infrastructure middleware that shields Zircon softwamarfroperating system dependen-

cies.

IV.1 Structure and Functionality of Zircon Parallel Comput ing Middleware
Software

This section describes the structure and functionalityiwfoh Software, which is adap-
tive distributed middleware for accelerating the perfoneeof complex compute-intensive

applications in a networked environment.

Run Time

Launch Time

zPluginLibary

zPluginLibary
®
ZNet

zPluginLibary

Net’

Figure IV.2: Zircon Parallel Computing Middleware Software Components

FigurelV.2 shows the following key components of Zircon middleward\safe:
e Test Configuration Environment (TCE), is a application configuration utility that

discovers, validates, and manages all applications in logeent. It manages the compute

23

servers, clients, and monitoring utilities and providesitfdresses and multicast addresses
for distributed execution environment.

e zNet, which is an optimized load balancing framework linked vittle client appli-
cations and hence resides in the client address space. atéetatically distributes com-
putations to all the available servers, transparently ljgdizzes executions in a scalable,
reliable, and resource-efficient fashion, and improvefopeance by orders of magnitude
compared with conventional programming techniques.

e zEngine which is a computational server container that is instizdied launched on
(potentially heterogeneous) target machines. This is timtainer in which parallelized
computations actually run. A zEngine uses the underlyingraing system scheduling
mechanismsi (., core-aware thread creation, synchronization, and manegg to maxi-
mize processor utilization by executing an instance of alfized function on each core
(acommon practice is to start as mafgnginanstances on each host as there are processor
cores).

e zPluginbuilder, is a utility that is used to adapt serial client librarietiparalleliz-
able plug-in libraries that can parallelize complex comapions using zNet middleware.

e zAdmin, which is a utility for managingife., monitoring, installing, starting, and
stopping) the resources, and applications in the systérrajtaphically or via a command-

line.

IV.2 zEnabling using zFunctionAdapters and zPluginLibraries
Any serial legacy application that performs complex catiohs on large data-sets can
be parallelized using zFunction. Parallelizing a serigliaption (which we calkEnabling
involves steps to link the application to Zircon middlewtrat transparently encapsulates
the concerns of distributed and parallel processing froptiegtions.
The zEnablingprocess shields application developers from low-levetithgtion con-

cerns, such as discovery, addressing, (de)marshalingsexqand replies, and deals with

24

variabilities in the underlying network protocol stack(s) that applications can integrate
with any platform and programming language seamlesdinabledapplication contains
an equivalenzFunctionAdaptez _F for every parallelizable functioR. Client application
developers only need to replace calld-twith calls toz_F for parallelization.

The zFunctionAdapter_F is a client-side proxy that transparently dispatches asyn-
chronous requests to the zEngines, thereby providing mgaplistributed, and high per-
formance computing on demand for client applications. zkioan makes use of the zPlug-
inBuilder tool forzEnablinguser libraries.

The input to the zPluginBuilder tool is &ML file as shown in figurdéV.3, describing
the functionF, its input parameters, its output parameters, and theitotaf the library
that contains the definition of the functién(shown in the middle section of figut¥.4).

The output is a library (called the zPluginLibrary) with zfetionAdapter implemen-
tation z_F conforming to the same interface as the original funcfforrhe generated
zPluginLibrary is linked by both the client application aslixas the zEngine (see the right
side of the figurdV.4). On the server, the zPluginLibrary simply delegates this caade
from the client-side zPluginLibrary (on behalf of the cliepplications) to the functiok
defined in the library created by the service developersh/imninimal amount of devel-
opment effort, therefore, zFunction users obtain a veesagtioduction-quality parallelized

application that can be deployed in a network of parallel gotimg nodes.

IV.2.1 zFunction and zPluginLibraries

zFunction hides the low-level distributed computing cansdrom application devel-
opers, encapsulate all these details and provides a zbuarctF for every parallelizable
functionF. z_F’s interface is very similar to that of the function Fdahus the client appli-
cation developer can simply replace a call to F with a call te. However, unlike F itself,
z_F is asynchronous, meaning that it returns as soon as ihiiased a request, without

waiting for the results.

25

<?xml version="1.0" standalone="yes"?>

funani"

<Module>
<l— Linux —>
<Platform Name="Linux"
OutlncludeDir="$(ZNET_ROOT)/ plugin/include"
OutLibDir="$(ZNET_ROOT)/ plugin/lib™"
HeaderPath="$(ZNET_ROOT)/"
HeaderFile="F.h"
LibName="F"
LibPath="$(ZNET_ROOT)/ lib"
LinkWithPlugin="1"
/>
<zFunctionAdapter Name="F" Description="example
<OQutput Name="retval" DataType="double"
Description="return value" />
<lnput Name="od" DataType="optionsdata"
Description="optionsdata as input" />
</zFunctionAdapter>

<Struct Name="optionsdata">

<Field

<Field

<Field

<Field

<Field

<Field

<Field

</ Struct>

</Module>

Name="day" DataType="int"
Description="output file name" />
Name="optid" DataType="int"
Description="option id" />
Name="strike" DataType="double"
Description="strike price" />
Name="maturity" DataType="double"
Description="maturity" />
Name="price" DataType="double"
Description="bid, ask and mid price" />
Name="stock" DataType="double"
Description="number of stocks" />
Name="rate" DataType="double"
Description="rate" />

Figure 1V.3: Example XML input file for zPluginBuilder

26

>

Serial Application Development| Building the zPluginLibrary | Deploying the zPluginLibrary

(1) Q Ol
Interface zEnabled Client
.
Client App <EX®> Definition | g
— File z_echof..
main() — (3) e o)
F(.) ’
! zPluginLibrary
®
- zNet
ink R
MF_Uiser Library

F(.)
{

Ilbusiness logic

}

zPluginLibary

zNet®

Figure IV.4: zEnabling a Serial Application with zFunction

The zFunction z_F acts as a client-side proxy and transppdispatches asynchronous
requests to theEnginesthereby providing adaptive, distributed, and high perfance
computing on demand for client applications. Since a zRancatall z_F is meant to be a
drop-in replacement for the invocation of its correspogdiarial function call to F, the in-
terface for the zFunction z_F must be straightforwardlyw@dxie from that of the function
F. This need necessitates the generation of custom zFaruttde for each application, and
zFunction provides thePluginBuildertool for this purpose.

The input to the zPluginBuilder tool is &ML file describing the function F, its input
parameters, its output parameters, and the location oiitfay that contains the definition
of the function F (shown in the middle section of figlive4). The outputis a library (called
the zPluginLibrary) with zFunction implementation z_F conforming to the santeriface
as the original function F. The generated library also exfees the original library defining

the function F and is auto-loaded binginglbased on the location of the library specified

27

in the XML file). The generatedPluginLibraryis linked by both the client application as
well as thezEnging(see the right side of figuri&/.4).

The zPluginLibrarythat is linked by both the client and the server applicatieeive
two purposes. On the client side, thBluginLibraryinitiates the zFunction adaptive dis-
tributed computing middleware zNet to provide scalabldéicient, parallel, and highly
available distributed communication between the clients the servers in an application
transparent manner. On the server side,zriginLibraryjust delegates the calls made
from the client-sidePluginLibrary(on behalf of the client applications) to the function F
defined in the library created by the service developers.

Thus, with a minimal amount of development effort, zFunttisers obtain a versatile,

production-quality parallelized application ready to leplkbyed on any network.

IV.3 Parallel Application Development using zNet API

The zNet API provides a real-time, high-performance conmgugnvironment that en-
ables rapid development of zNet-enabled distributed [ghreadmputing applications and
cooperating service tasks by simplifying and automating #istributed programming
tasks, including service discovery, dynamic load balageiuith real-time feedback, con-
nection management, binary data transfer protocols,bielienulticast communication,
flow control, parameter (de)marshaling, event/requestultgtexing, fault detection and
recovery, service activation and management, concurrandysynchronization. zNet en-
ables collaboration between distributed services in calied and distributed HPC environ-
ments and is optimized for high-speed messaging, computatnd transactional services.
These capabilities make zNet well-suited for missionigaltand time-sensitive applica-
tions. Itis also well-suited for retrofitting legacy apg@ltons to exploit the power of multi-

core processaors.

28

IV.4 zNet Infrastructure Patterns

zNet API supports the following distribution infrastruotuypatterns for distributed par-

allel application development:

» The Broker [12] pattern which enables decoupled application components com-
munication using twoway method invocations. zNet provideth synchronous and
asynchronous twoway method invocation interfaces. Midltglient/server sessions
can be created and started from within a single zNet-enagplication process. The
participating components can reside in (1) the same pro@sdifferent processes

on the same computer, or (3) remote computers.

» The Messaging 2] pattern, which enables services and applications to interact by
exchanging oneway messages. Applications and servicesseanNet to exchange
messages with explicitly named receivers via reliable andiest effort" delivery
semantics. zNet can also notify senders when reliable mgessae dispatched to re-
ceivers. Moreover, zNet can exchange any native or custtatyl@e on the network,
as long as developers provide C++ insertion and extract@nators to encode/de-

code those data types using the OMG Common Data Represenf@DR) standard.

» The Publisher-Subscriber [L2] pattern, which enables services and applications to
interact by exchanging events asynchronously in a oneaoyngonfiguration. Ap-
plications and services can use zNet to exchange eventehédle and/or "best
effort” delivery semantics. zNet can also provide subscshvith the last published
event upon subscription, thereby supporting operatioreninronments dominated
by infrequent publishing and fleeting subscribers. More@/idet can exchange any
native or user-defined data type on the network, as long asajss provide C++
insertion and extraction operators to encode/decode thaisgypes using the OMG

Common Data Representation (CDR) standard.

29

IV.5 zNet API

zNet API contains several APIs that are based on the patiesagssed in sectiofv.4

and are used for distributed parallel application develepm

IV.5.1 ZBroker Client API

This API facilitates the development of client applicasamsing the Broker pattern.
When participating tasks reside over remote computersyayanethod invocations be-
tween the ZBroker-enabled tasks are governed by the zNei Badéancer, which zNet
creates automatically when the client-side API is used bgplication. The zNet Load
Balancer optimizes workload across heterogeneous nesviiaged on real-time feedback
from processing services that are part of the zNet compwiviyonment. ZBroker can
run each twoway method invocation session between paatingptasks concurrently with-
out waiting or depending on any other session within the sameess. For each session,
ZBrokercaches requests on the client-side network and resubraitsiftassociated server
task becomes unavailabl&Brokerensures that the client of each session receives replies,
even when there are faults in its associated server task.

For distributed deliveryZBrokertransmits native and/or user-defined data types across
the network, using C++ insertion and extraction operatorericode/decode those data
types. FigurdV.5 shows an example of user-defined data structure declafatiarse by
ZBroker API For collocated delivery, this encoding/decoding stepnitied and all data
types are passed directly to other threads for processimgpoth cases there is no need
to inherit application tasks from any ZBroker-specific belsesses since ZBroker handles
the transfer of data in its native form. To define the C++ itiserand extraction operators
to ZBroker, application developers simply declare the data type (Wwhimuld be a struct
or a class along with the C++ insertion and extraction opesat data type name, and
an optional DLL that hosts the data type via @ _EVENTID_DECLARE_NAME(TYPE,
NAME, DLL_NAME)macro.

30

struct optionsdata
{
int day;
int optid;
double strike;
double maturity;
double price;
double stock;
double rate;

1

inline bool operator<< (ACE_OutputCDR& strm const optionsdata& s)
{

return (strm << s.day) &&
(strm << s.optid) &&
(strm << s.strike) &&
(strm << s.maturity) &&
(strm << s.price) &&
(strm << s.stock) &
(strm << s.rate);

}

inline bool operator>> (ACE_InputCDR& strm, optionsdatas)
{

return (strm >> s.day) &&
(strm >> s.optid) &&
(strm >> s.strike) &&
(strm >> s.maturity) &&
(strm >> s.price) &
(strm >> s.stock) &&
(strm >> s.rate);

Figure IV.5: Example of user-defined datatype declaration using zNet API

31

Communications irZBrokerare based on types, which allows tasks to exchange in-
stances of any native or user-defined type via the tempkedzBroker::z_call() API
and by thezBroker::Clientclass. Any such instances can be treated as an input/output
(inout) type. WherZBroker::z_call()is invoked, its template data argument serves as an
inout parameter, which is usually represented as a steiatitin some members designated
as input data and some as storage for expected output replies

TheZBroker APIlprovides the following features:

» Dynamic load balancing of asynchronous and synchronous imcations which

routes calls to the least loaded servers.

» Sticky engine which allows direct calls to desired servers that bypasst’gNLoad

Balancer and Routing algorithms.

* Remote and local callsZBroker::z_call()method can be used for asynchronous re-
mote method invocations a@Broker::|_call() method can be used for asynchronous
local in-process invocations that optimizes in-processroanication by avoiding
marshaling and copying of parameter daBroker::z_sync_call(and

ZBroker::l_sync_call(methods are their synchronous counterparts.

» Barrier and callback. To process the results of asynchronous operations, zNet
provides two mechanisms—barrier synchronizegs ZBroker::process_allfhethod

and asynchronous callbacks—that support a wide range 6€afpns.

» Stream processing. ZBroker supports multi-threadedltrggacessing callbacks,
with high/low watermark that can be set usiiBroker::hwm()andZBroker::lwm()
methods, to process streams of high frequency data, withreaefined size of the
request data set. Low and high watermark determine the memiand minimum

number of requests that can stay in the client/server requesie.

TheZBroker APIconsists of the following components:

32

1. ZBroker Client APl that facilitates development of client applications usihg

Broker pattern.

2. ZBroker Server API that supports the binding of global functions and methods of

user-defined components to the data types passed from ¢ine silile of zNet.

IV.5.2 ZMessaging API

This API facilitates the development of client and serveplimations using the Mes-
saging pattern, which structures software systems whasess interact by exchanging
oneway messages. Applications using zMessaging can eyelaany native or user-defined
data type with named receivers on the network, as long asagers provide C++ insertion
and extraction operators to encode/decode those dataugpesthe OMG Common Data
Representation (CDR) standard.

ZMessaging::SenddopcatesZMessaging::Receivenstances by their unigue names
and then sends oneway messages to them. To process onewsagesefom th&Mes-
saging::Senderthe ZMessaging::Receivasrovides mechanisms for registering message
handler functions/methods that are dispatched autonfiigtipaZMessagingA ZMessag-
ing::Sendemses an internal queue for outgoing messages, which arneeeiby dedicated
thread. This queue can be made persistent, thereby prguidimsactional support for mes-
sages. If a persiste@AMessaging::Sendanstance fails, all messages currently stored in its
gueue will be recovered into the queue of the MEMiessaging::Sendenstance initialized
with the name used by the failed sender.

The ZMessaging::Sendeand ZMessaging::Receivaran be started independently. If
aZMessaging::Receivaargeted byZMessaging::Sendas not yet on-line, th&Messag-
ing::Sendercan load messages in its queue (up to a high water mark) asrdgtto con-
nect and send them. This activity is conducted by a dedi¢htedd servicing an outbound

qgueue. In case of failure of established connectionZiMlessaging::Sendewill attempt

33

reconnection logic with constant interval of 5 sec and alsawvipes disconnect callback
hook for custom logic usingMessaging::Sender::register_disconnect_clok€thod.

The ZMessaging API provides the following features:

» Configurable delivery policies where messages can be sent via reliable and/or "best

effort” delivery semantics usingMessaging::Sender::sendf)ethod.

» Automatic acknowledgements where senders can be notified when reliable mes-

sages are dispatched to their named receivers.

» Selective subscription where receiver functions and/or methods can be registered

to process specific data types uskigessaging::Receiver::register_handler()

» Dynamic service (re)configuration where services can be added and/or removed at
runtime usingZMessaging::Receiver::start(YMessaging::Receiver::stop@Mes-

saging::Sender::start(indZMessaging::Sender::stop()

» Transparent failover, with automatic reconnection if a receiver crashes.

TheZMessaging APtonsists of the following components:

1. ZMessaging Sender APIlthat facilitates development of event publishing compo-

nents using the Messaging pattern.

2. ZMessaging Receiver APlthat facilitates development of service objects that pro-

cess one way messages sent by clients.

IV.5.3 ZPubSub API

This API facilitates the development of client/server aations using the Publisher-
Subscriber pattern, which structures software systems&lkomponents interact by ex-
changing events asynchronously in a one-to-many configaraiPubSultommunication

is based on types so that any object of native or user-defypaidan be multicasted to

34

a set of services running in the pool. This functionalityupgorted on the client side by
publishing an event usingPubSub::publish_eventfhethod that triggers an action or by
publishing data usingPubSub::publish_cachef)ethod that enables the zNet distributed
cache. ZPubSubenables client tasks to optimize the transmission of larg¥aa infre-
guently changing input data objects via a "send-once-usesa-multiple-calls” caching
architecture. Instead of transmitting data with every esqiuthe client publishes it to all
services only when the value of the data changes, theranynaliing redundant communi-
cation since the servers store the published data. Seragyawents that subscribe to data
cache usingZPubSub::subscribe_cachefjethod, can asynchronously access the cached
data usingZPubSub::get_cachefpethod. Server components can also register custom
event processing methods usisgbscribe_event@nethod, which gets dispatched auto-
matically by zNet when an event of given type is publishedpligations usingZPubSub

can exchange any native or user-defined data type on the mketaslong as developers
provide C++ insertion and extraction operators to encaaa/de those data types using the
OMG Common Data Representation (CDR) standard.

TheZPubSub APprovides the following features:

Data publishing, where common data is broadcast across all services (ardsaisc

synchronized).

» Event publishing, where events are broadcast to all the services, whicheirsgg

function execution across all services.

» Configurable delivery policies where events can be published via reliable and/or
"best effort” delivery semantics usiPubSub::publish_eveni§hd
ZPubSub::publish_cacheif)ethods.

 History-aware subscriptions whereZPubSulzan provide any new subscribers with

35

the cached version of the last published event or data ugmstaption usingZPub-
Sub::subscribe_event@nd ZPubSub::subscribe_cachef)ethods thereby support-
ing operations in environments dominated by infrequentiphimg and fleeting sub-

scribers.

ZPubSub APtonsists of the following sections:

1. ZPubSub Client API that facilitates development of publishing client appticas

using the Publisher-Subscriber pattern.

2. ZPubSub Server API that facilitates development of servers applications finat

cesses asynchronous events sent by the client and use cathddr computations.

A complete listing of all zNet API methods can be foundaaw. zi r conp. com

downl oads/ docs/ htmm _znet/i ndex. htm .

IV.6 Resolving Distributed and Parallel Application Desigh Challenges with
Zircon Middleware Software

We now describe how the zFunction components shown in fijuteaddress the key
distributed and parallelize application design requiretesummarized in Chaptdtl .

Resolving requirement 1: Providing an information servicefor automatic discov-
ery and addressing of remote computation servers for distbuted computing. The
Configuration EnvironmenfTCE) acts as an information service for Zircon middleware
framework and bootstraps all the applications in the netwadkll other components in
the Zircon software deployment (including the clients amel zEngines that perform the
remote computations) register with the TCE at startup. phigess allows TCE to iden-
tify network settings such as the host IP addresses, netsulmket identification, multicast
addresses. TCE employs a handshaking protocol that powietevork information to all
Zircon middleware components, so that applications cannconicate with each other at

runtime without collaborating with TCE.

36

www.zircomp.com/downloads/docs/html_znet/index.html
www.zircomp.com/downloads/docs/html_znet/index.html

Resolving requirement 2: Providing easy to use programmindgrameworks for re-
mote distributed computation. Zircon middleware framework provides an easy-to-use
utility called the zPluginBuilder that automatically geaes zPluginLibraries that serve
as adapters between the generic Zircon middleware andfispgi@nt/server applications.
These adapters emit efficient (de)marshaling code thatemZircon middleware to trans-
parently support remote communication across heterogsr@atforms and networks. Ap-
plications can be easily parallelized either by using zinglrapabilities of Zircon mid-
dleware or by use of zNet API that requires minimal code ckarfgr converting a serial
application into a parallel application.

Resolving requirement 3: Providing effective resource maagement of remote
computation servers When zEnabled client requests are sent to a server poa@orzir
middleware software’s intelligent load-balancer is usedwvenly distribute work amongst
existing computation servers in real-time, as shown in &du16. By spreading computa-
tions evenly across all the available servers, zFunctioxinmaes resource allocation for
critical applications and also ensures that hardware ressiare utilized to their fullest.

Resolving requirement 4: Providing application-transparent multi-layer fault tol-
erance Zircon middleware also ensures that application exectgspective of hardware
failures, and transparently provides fault recovery aid\var by re-executing requests on
servers that are still operational. As shown in figl/&, Zircon middleware keeps track
of the execution history of each request and to which zEniieeequest has been sent to.
When a zEngine failure is detected, it automatically resehd request to a new or a reju-
venated zEngine and ensures that the computations arerpedarrespective of hardware
failures.

Resolving requirement 5: Providing implicit scalability using core-aware multi-
threading. Zircon middleware software performs parallelization ye@uting multiple
instances of an application’s parallelizable functiondianeously in zEngine processes

running on different machines on a network. Zircon softwamvides implicit concurrency

37

Service-Oriented Serial Application zEnabled Application

Client-Side Server-Side
®
| { ZNet
0 = % Load Balancer,
e i=N | P v
[| - —— | |} T
ClientApp || L | |/zEnabled App M il En ”l
?a\n() h‘ll ;ﬂﬂin() T Result
(for(,..kN) g R Zorl...i<Ni I\III Al Delivc?ry‘]
.) o | e Tres e
) ! i=3 }z _process_all()
e ed — (N

zPluginLibary

zNet®

-Finished Executing

[terati : [terations

o R]

F(..) ’ F(..)
WD Vel N T VY
EO 1234 N E0 1234 N

Figure IV.6: Parallel Application Development with zFunction

support and automatically creates threads for distrigutaguests to different servers and
also synchronizes those threads using messages and lookswul@-core machines, Zir-
con middleware software runs multiple instances of appbo&g parallelizable function
in multiple worker threads on a single zEngine process inreatih-safe manner and thus

provides highly efficient utilization of multi-core macleis with minimum overhead.

38

CHAPTER V

BENCHMARKING EXPERIMENTS AND RESULTS

We developed some financial computation applications, ssriteed in chaptedl, in
order to benchmark the runtime performance of OpenMPI antbdiparallel computing
middleware software. We developed parallel implementatiof binomial option pricing
and Heston model calibration applications in order to tesirtperformance on multicore
machines and in high performance computing (HPC) clus&rgunultiple servers. In the

rest of this chapter, we describe all the experiments andrigsults in detail.

V.1 Experiment Setup
All experiments were run on upto 8 Intel-Xeon 1520 seried-puacessor/dual-core
(for a total of upto 32 cores) 1.86 GHz machines running orbi6&Red-Hat Enterprise

Linux v2.6 and connected using Gigabit Ethernet.

V.2 Experiment 1
V.2.1 Objective
The objective of this experiment is to compare the performeasf OpenMPI and zNet

APl in a HPC cluster environment and highlight the impact fhicent load-balancing

algorithms for performance speed-up.

V.2.2 Experiment Description

For this experiment, we developed binomial option pricipglecation that evaluates
option prices for 1000 american options.

As shown in figure/.1, the serial implementation of binomial option pricing apation

invokes the option pricing algorithm in a loop fordifferent options in a serial order and

39

/1l binomial option pricing algorithm
double option_price_call_american_binomial (...)

{
Lo

/I functor that invokes option pricing algorithm
struct Invoke OP_Call
{
void operator () (Binomial_Option_Pricing_Request &iter)

{

iter.option_price =
option_price_call_american_binomial (iter.cur_stogkice,
iter.strike_price ,
iter.risk_free_rate ,
iter.volatility ,
iter.t,
iter.n_steps);

}
1
/1l main

int main(int argc, charxx argv)

{

/!l Read input

/I Calculate option prices

std :: for_each (requests.begin (),
requests.end (),
Invoke _OP_Call ());

/I process results

return O;

Figure V.1: Serial Implementation of Binomial Option Pricing Application

40

all function invocations are independent of each other.r@foee, this application can be
parallelized by running multiple invocations of binomiaitmn pricing algorithm in a loop.

We developed parallel implementation of this applicatismg OpenMPI in which all
requests to binomial option pricing algorithm were equdlistributed asynchronously
amongst all the server processes uditigl_Send(Jand MPI_Receive(methods in &or
loop and then all results were collected in a sectamdoop.

However, the processing time for each binomial option prar@putation request varied
from a few milliseconds upto 25 seconds, which gave us a llalggterogenous request
set. In order to optimize performance for heterogenous, leedalso developed a load-
balancing OpenMPI implementation of binomial option prgciapplication. In this load-
balanced implementation, we usdst-in-first-outscheduling for request allocation, so
that more requests are sent to least-loaded servers fer #tJ utilization.

In zNet based implementation, we parallelized the apptioaby usingZBroker API
Instead of invokingoption_price_call_american_binomialijinction directly as shown in
serial implementation in figurd/.1, parallelized implementation usg8roker::z_call()to
asynchronously distribute the calls to all the running ees\in a load-balanced fashion
using Broker pattern. The results are later automaticalliected by the zNet’s response

processing threads.

V.2.3 Results

In this experiment, all the three above-mentioned paratiplementations of binomial
option pricing application were run using four, eight, skt and thirty-two servers to
compute prices for 1000 binomial options.

The results of this experiment are shown in figM@. The results show that the

1openMPI's implementation of MPI_Send() and MPI_Receifefktions uses buffering for small-sized
messages i.e. MPIl_Send() call do not need to block if a nragdMiP1_Receive call is not posted. It copies
data into a buffer and returns control to the program. Howéwmelarge-sized messages, it tries to send and
receive data synchronously

41

zNet vs MPI Performance

4000

3500 -

3000 -

2500 -

2000 -

1500 -

1000 -
o]

4 8 16 32

Time taken (in secs)

¥ zNet 3112 1593.59 836.904 472.083

® OpenMPI without load-
balancing

Load balanced OpenMPI| 3073.78 1565.53 812.121 430.176

3538.35 2186.09 1162.45 694.035

Number of cores

Figure V.2: Performance Results for OpenMPI and zNet based implementation of
Binomial Option Pricing Application running on a HPC cluster

load-balanced implementations of zNet APl and OpenMPIgoerfbetter than the non-
load balanced implementation using OpenMPI. The resufklight the fact that load-
balancing mechanisms are required to improve system peafoce, in case of largely
heterogenous computation requests set. In the figiethe results also show that both
load-balanced OpenMPI implementation and zNet API basgdeimentation have com-
parable performance. In zNet implementation, developersal need to write any code
for load-balancing the application and it is transparehéindled by the zNet middleware.
However, in case of OpenMPI, users need to write code foremphting load-balancing
which requires good understanding of load-balancing #&lymis and also increases the de-
velopmenttime. The results highlight the ease-of-usef@&gprogramming of zNet APl in

comparison to OpenMPI.

42

V.3 Experiment 2
V.3.1 Objective
The objective of this experiment is to compare the perforceast OpenMPI and Zir-
con’s zFunction in a HPC cluster environment and highligletibenefits of Zircon’s zEn-

abling feature for quick parallelization of serial appticas.

V.3.2 Experiment Description

For this experiment, we developed a load-balanced, panmaifgementation of Heston
calibration application using OpenMPI and parallelizedademplementation of Heston
calibration application using Zircon software’s zFunotaapability.

As described in sectioh.2, the Heston calibration application uses an optimization
routine that minimizes a 5-dimensional objective functfone dimension for each param-
eter in the Heston model). The optimization routine is impated by using the NAG C
library’s nag_opt_bounds_no_deriveginimization function to run 100 iterations of the
objective function and find the minima. The maximum numbeiterations is capped to
100, so the model calibration is considered to have failedafprocedure does not con-
verge by that point. The differences among the calibrati@uems’ convergence proper-
ties contribute to significant fluctuations in the calcuat’ execution times, making the
modelsheterogeneoy®.g, model calibration time can vary from 1 millisecond up to 105
seconds. The sequential implementation of the Hestonra#tim application read input
data and calibrated 1,065 models~#9 hours by invoking thealibrate_heston(junction
1,065 times in a loop. Altalibrate _heston(junction invocations runs independent of each
other, so application’s performance can be improved sianfiy by processing multiple
invocations in parallel. Heston calibration applicati@es historical option pricing data to
calibrate the parameters. So, application performancéeduarther improved by broad-
casting historical option pricing input data to all the s¥s/at start-up, instead of repeatedly

sending it to every request.

43

We developed load-balanced parallel implementation otdétesalibration application
using OpenMPI that distributed atlalibrate _heston(function invocations amongst all
servers in a load-balanced manner. We used OpenMPI’s tie#ezommunication func-
tion MPI_Bcast ()in order to broadcast input data vector to all the servergurei V.3
shows how the master process distributes all requests iacdaldalanced manner to slave
processes in OpenMPI based parallel implementation ofddesdlibration application.

For zFunction based implementation of Heston calibratmplieation, we usedPlug-
inBuilderin order to generate function adaptors éatibrate _heston(junction library. In
this implementation, input data is broadcasted to the seraszCachedata and this in-
formation is provided in the XML file which is given as an ingotzPluginBuilder No
code changes are required in user library for special hagdif zCachedata. Whenever
zCachedata is required by the user library, zZNet middleware takes of providing it to
the user library from the cache. The client application igified to publishzCachedata
at start-up and invoke_calibrate hestonfunction for request processing, insteactaf-
ibrate_heston(junction. FigureV.4 shows the code for zFunction client application. We
deployed user library imEnginesunning on the HPC server using the zAdmin utility and

started theClientfor sending remote computation requests.

V.3.3 Results

In this experiment, both the zFunction and OpenMPI baseallphimplementations of
Heston calibration application were run using four, eigitteen and thirty-two servers to
calibrate 1065 models.

The results of the experiment are shown in figMB. The results show that both
the OpenMPI implementation as well as zFuntion impleméatave comparable per-
formance. Minor differences in the total run-time of the lagation using OpenMPI and
zFunction can be attributed to the heterogeneity of theestguoad. ZFunction enables

quick parallelization of serial applications, while OpeRMequires application re-write

44

static int master (...)

{

I/l Get communicator size , process rank
MPI_Comm_size (MPI_COMM WORLD, &n_tasks);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

/!l Read input

/!l Broadcast size of input data

MPI_Bcast (&v_optionsdata_size, 1, MPLINT, 0, MPl COMNORLD);

MPI_Bcast (&v_optionsdata.front (), v_optionsdata_size
od_data_type, 0, MPI.COMM WORLD);

for (int m = 0; m < cal_range; ++m)

{

MPI_Send (&call _data, 1, call _data_type, rank,
CALL_DATA TAG, MPI_COMM _WORLD);

}

/I Send the next request to first available worker process
while (count_day <= end_day)

{
/Il Wait for response
MPI_Recv (¶m_calib_SV, 1, sv_data_type ,
MPI_ANY_SOURCE, SV_DATA TAG, MPI_COMM WORLD,
&status);
/l process result
/I Send the next request to worker process that sent response
MPI_Send (&call_data, 1, call _data_type , status.MPl_BOH,
CALL_DATA TAG, MPI_COMM WORLD);
++count_day;
}

/I Wait for all responses
while (reply_count < num_requests)

{
MPI_Recv (¶m_calib_SV_2, 1, sv_data_type ,
MPI_ANY_SOURCE, SV_DATA TAG, MPI_COMM WORLD,
&status);
/Il process result
}
}
return O;

}

Figure V.3: OpenMPI implementation code for Heston calibration application

45

int main(int argc, charxx argv)

{
std ::vector<optionsdata> v_optionsdata;
/I Read input
[/l Initialize the zFunction computation environment.
if (z_init (argc, argv) < 0)
return —1;
/I Broadcast input data
z cache_vector_optionsdata (v_optionsdata);
for (int m = 0; m < cal_range; ++m)
{
z_calibrate_heston (...);
}
[/l Wait for all request to finish
z_process_all ();
/!l process results
/I Terminate zFunction computation environment.
z_fini ();
return O;
}

Figure V.4: zFunction Client code for Heston calibration application

46

zFunction vs MPI Performance in HPC
cluster
10000
g 8000
=
< 6000 -
g
® 4000 -
£
E 2000 - —.
N i
4 8 16 32
H zNet 8166.9 4216 2135.05 1123
OpenMPI 8266.21 421878 217851 1197
Number of cores

Figure V.5: Performance Results for OpenMPI and zFunction based implementation
of Heston Model Application running on a HPC cluster

for parallelization. The results of this experiment shoattime zFunction is a highly effec-
tive, efficient and easy-to-use technique for parallefizerial applications with minimal
code modifications, in contrast to OpenMPI which incurs gdardevelopment cost for

parallel application development.

V.4 Experiment 3
V.4.1 Objective

The objective of this experiment is to compare the perforreasf OpenMPI and zNet

APl in shared memory environment using multi-core machines

V.4.2 Experiment Description

For an OpenMPI job/application, when we stagprocesses on a mutli-core machine
with n cores, OpenMPI automatically starts ussigBTLfor communication. Thesm
BTL (shared-memory Byte Transfer Layer) is a low-latency, fighdwidth mechanism

for transferring data between two MPI processes via shaexdary. For this experiment,

a7

we used the same load-balanced OpenMPI implementationvéhatd developed for ex-
periment 2 and ran it by starting multiple server processes single multi-core machine.

In general, the number of slave processes is equal to theerushbores on a machine.

Colocated Zircon Implementation
VS.
Shared Memory Mode MPI

Multiple
Processes

MP| o]

F(..) N MeLINT
L4 MPIFINI

)
P Run

i
Slave 2
¢

Colocated Clie

Master
—

. Master
main()
{
}
MP! Run

F(..) |
zNet © |

Figure V.6: Colocated zNet Application vs Shared Memory OpenMPI Application

We developed colocated implementation of Heston calibmagipplication using Zir-
con’s zNet API. Colocated parallelization enables appitices to run in a single process
and handle multiple requests in parallel in multiple workkeeads in the same process,
which is best suited for applications that run on a standahonlti-core machine. In this
implementation of the Heston calibration application, zhetz_init() method is invoked
to initialize and start the zNet runtime, which internallyasvns multiple worker threads
that run thecalibrate _heston(function in parallel. The zNdt call() method forwards cal-
ibration requests to worker threads that process the regjugzarallel on multiple cores on
a standalone machine. Figwe shows how the zNet based implementation distribute the
work into multiple worker threads, while the OpenMPI basegbliementation distributes

the requests to multiple slave processes.

48

V.4.3 Results

zNet vs MPI Performance on multi-core
machine
18000
. 16000 -
8 14000 -
3
£ 12000 -
E 10000 -
£ 8000 - ——
£ 6000 - ——
g M zNet
E 4000 - ——
= 2000 - — OpenMPI
0 -
2 4
‘ B zNet 16339.6 8194.33
| OpenPI 16397 10162
Number of cores

Figure V.7: Performance of zNet vs OpenMPI Implementation of Heston calibra tion
application on a multi-core machine

In this experiment , both the colocated zNet implementadioth OpenMPI implemen-
tation of Heston calibration application were run usingleraae? and quad-core machines
to calibrate 1065 models. The results of the experiment ag/shn figureV.7 demon-
strate that the colocated zNet implementation of Hestoibredion application is faster
compared to the OpenMPI implementation. MPI implementagiovides parallelization
by starting multiple slaves/worker processes, while thetzZAP| based implementation
provides parallelization by running multiple worker thdea When we ran the experiment
on a quad-core machine, we started 4 MPI slaves process arfel inllster process that
distributed the requests amongst all slave processes.eWinhing the same experiment
using zNet implementation, we started the application asgesprocess with 4 worker

threads. The overhead of running multiple processes iehitjan the overhead of running

20One processor was disabled to simulate dual-core machivelme for some experiments.

49

multiple threads in the same process and due to this reaNehrantime is able to provide

better utilization of computation resources in comparisn®penMPI.

50

CHAPTER VI

RELATED WORK

This chapter compares and contrasts Zircon software witleratelated techniques
available for parallel application development and depiet.

Aspect-Oriented Programming (AOP) Recent work has focused on using ACH|[
to separate parallelization concerns from applicatiogifipesource codell9, 24, 28]. Such
research provide a strong motivation for efforts that airmiake parallel programming
more intuitive and less error-prone, as there is a strongug#img in the roles played by
domain experts (who write application specific code) analperprogramming experts
(who write source code that deal with parallel programmiogoerns). However, the pro-
grammers are unnecessarily exposed to AOP technologyhdfuit such research is used
to provide the range of capabilities that Zircon middlewsoéware offers (capabilities
such as fault-tolerance, advanced load balancing, dieettdansfer), newer technologies
are required that support composition of aspects. In cenytzarcon middleware software
provides the benefits of parallel programming in a simple mearfthat is easier to code);
but is also highly sophisticated in the capabilities it pdes.

Grid computing middleware. Many projects have explored the idea of utilizing dis-
tributed computing architectures to accelerate compleutations on top of under-utilized
network of processors or clusters. Some well-known exasiptdude the SETI@Hom@&]
and BOINC [7] projects, which employ under-utilized networked proocesgo perform
computational tasks. Likewise, Frontiewgw. f ront i er. com) provides grid software
for utilizing available processors to accelerate paralbglications. In general, in these ap-
proaches the client nodes communicate via a centralizetenrazde to submit jobs, which

can increase latency, incur contention that causes peafwwenbottlenecks, and yields a

51

www.frontier.com

single point of failure. In contrast, Zircon software prdes a highly optimized middle-
ware infrastructure for communication, as well as a set ofstdor rapid development,
generation, and deployment of parallel software in deediméd networked environments.
Middleware for accelerating financial engineering applicaions. Prior work has also
focused on developing and/or applying grid architectures grid applications for finan-
cial services applications. For examplg5] discusses practical experiences associated
with data management and performance issues encountedV@hoping financial ser-
vices applications in the IBM Bluegene supercompu@r [Likewise, PicsouGrid 10|
is a fault-tolerant and multi-paradigm grid software atetiure for accelerating financial
computations on a large scale grid. Other grid-based sygsteciude Platform Comput-
ing (wwv. pl at f or m com), DataSynapseww. dat asynapse. comn), and Microsoft
HPC (mwwv. m cr osof t. coml hpc), which provide distributed software environments
for financial computations. Zircon middleware softwardets from these technologies in
its ease of use and integration, its real-time performaitsability to handle both small as
well as large scale computations, its support for portathitectures and platforms, and
its advanced parallel programming features such as agiplietansparent fault-tolerance,

load balancing, and implicit shared-memory thread prognarg.

52

www.platform.com
www.datasynapse.com
www.microsoft.com/hpc

CHAPTER VII

CONCLUSION

OpenMPI is the most commonly used standard API widely usetthéyarallel appli-
cation development community for developing parallel catimg applications that can ef-
ficiently utilize the hardware capabilities of multi-cor@nmines, HPC clusters and clouds.
However, in addition to OpenMPI, high-performance commpyitlusters have to use third
party tools in order to perform cluster management acigisuch as job scheduling, re-
source monitoring, load-balancing and server deploymeltts not possible to quickly
parallelize existing serial applications using OpenMRicaese OpenMPI developers have
to handle multiple issues related to distributed and ndéywoogramming like synchroniza-
tion, concurrency, load-balancing, fault-detection agxbrery on a need-to-need basis for
every application, which increases the cost of paralleliegiion development.

This work compares the capabilities of OpenMPI frameworthvdircon middleware
software by developing some benchmark parallel compupptj@tions and highlights the
advantages of Zircon middleware software, which is betiéed for parallel applications
development due to its feature advantages as shown in Tald, in comparison to

OpenMPI.

Table VII.1: Features comparison between OpenMPI and Zircon Software

Features Zircon Software OpenMPI

Real-Time Scala; Applications can be scaled toNode allocation for an appli
bility run on multiple nodes at run-cation has to be done before

time. startup and new nodes canrot

be added at run-time.

53

Platform

pendence

Inde-

Zircon software is imple-
mented atop ADAPTIVE
Communication Environ
ment(ACE) which is a
portable C++ host infras
tructure middleware an
therefore can run on mogs
general-purpose and reg
time operating systems.g.
Windows XP, OS X, Linux
and Solaris. It can run appl
cations using mixed operatin

system environments.

OpenMPI is a low-level im-
plementation of MPI stan
dard. Itis currently supporte
on Linux, OS X, Solaris ang
- Windows. However, it doe
0 not have support for interop
sterability in mixed operating

Isystem environments

)

\"2J

54

Programming

Simplicity

Zircon Software can deplo

binary versions of client li-
braries on a cloud/cluster ofimplementations in a mastey-

nodes and execute the comslave fashion, where master

putations in parallel. 1t au

y OpenMPI implementation

4

require rewrite of existing

- process distributes requests

tomatically distributes the re-and data to slave processes

qguests to different servers

a load-balanced manner andhem. OpenMPI implemen
collects results from all the tation does not have any

servers. It shields applicationsupport for

developers from the comple
ity of distributing their appli-

cations and thus makes di

tributed computing easy andOpenMPI.

affordable for its users.

nand collects results from

load-balancing
-and fault-tolerance which
makes it harder and tedious

sto develop applications using

CPU Utilization

Zircon Software provides bet-OpenMPI has no concept of

ter CPU utilization when run
ning applications in colocate
mode as it processes cor
putation requests in worke

threads.

+ threads and each application
dcomponent runs as a different
nprocess, even on multicore
rmachines, which has higher
overhead in comparison to
running multiple threads in a

process.

55

Dynamic Load

Balancing

Zircon software’s load
balancer transparently dis
tributes the workload acros
all the servers and ensur
that all available servers ar
fully utilized. Application
developers do not need f
implement any load balanc
ing mechanisms within th

application logic.

In OpenMPI, application

p¢he applications which re

equires rewriting existing
applications.
(o]

117

Fault Tolerance

Zircon software automati
cally detects node failure

and provides immediat

failover and recovery Dby

re-executing requests @

active servers.

sment has no inherent suppg
efor fault-tolerance and th

active jobs/applications stog

failure.
sign fault-tolerant program
by catching error codes an
implementing fault-recovery
mechanisms in their applica
tions, which an error-pron

and tedious process.

56

s-developers need to imple

sment load-balancing within

- OpenMPI runtime environt

D

nexecution, in case of server

Developers can de-

14
1

t

=

S

=
1

D

Service Discov- Zircon software can autg-OpenMPI applications carn

ery detect the server nodesot auto detect servers. All

and distribute computatiopnservers for an OpenMRB

requests to active serversjob/application have to be a

Client application need naqtlocated by resource managers

provide any server informa-on start-up. OpenMPI ap
tion on startup. plications cannot detect any
new servers added during the

runtime of the application.

]

Monitoring Tools | Zircon software contains aOpenMPI does not provid
utility called zAdmin that can any such tools.

be used for real-time monito

ing of resources.

Zircon middleware software is best-suited for computaiiensive financial appli-
cations that have highly heterogenous work-loads and heaktime scalability, load-
balancing and fault-tolerance requirements. These aiaits can greatly benefit by the
use of Zircon middleware software that has the plug-in céipiab to add computation re-
sources at run-time to speed-up performance and is veryteasynfigure, program and

use.

57

[1]

[2]

REFERENCES

NAG C Library Description, . http://ww. nag. co. uk/ nuneric/ CL/
cl descri ption. asp.

Nag nag_opt_bounds_no_deriv (e04jbc) function doautat@n, . ht t p: / / www.
ori gi nl ab. cont pdf s/ nagcl 07/ manual / pdf / e04/ e04j bc. pdf .

[3] OpenMP Home Page,www. opennp. or g.

[4] OpenMPI Home Page,htt p: / / www. open- npi . org.

[5] Zircon Home Pageht t p: // www. zi r conp. com

[6]

[7]

[8]

et. alAllen, F. Blue gene: a vision for protein science using afi@pesupercomputer.
IBM Syst. J.40(2):310-327, 2001. ISSN 0018-8670.

David P. Anderson. Boinc: A system for public-resour@enputing and storage.
In GRID '04: Proceedings of the 5th IEEE/ACM International \W&mop on Grid
Computingpages 4-10, Washington, DC, USA, 2004. IEEE Computer 80¢&BN
0-7695-2256-4. doi: http://dx.doi.org/10.1109/GRID020L4.

David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofslkand Dan Werthimer.
Seti@home: an experiment in public-resource comput@gmmun. ACM45(11):
56—61, 2002. ISSN 0001-0782. doi: http://doi.acm.ordl185/581571.581573.

[9] Jaiganesh Balasubramanian, Alexander Mintz, Andrewpl&a Grigory Vilkov,

[10]

[11]

Artem Gleyzer, Antony Kaplan, Ron Guida, Pooja Varshnepd, Bouglas Schmidt.
Adaptive parallel computing for large-scale distributed garallel applications. In
Proceedings of the Workshop on Data Dissemination for Lacge Complex Crit-
ical Infrastructures (DD4LCCIL)in conjunction with EDCC 2010, Valencia - Spain,
2010.

Sebastien Bezzine, Virginie Galtier, Stephane Viall@ancoise Baude, Mireille
Bossy, Viet Dung Doan, and Ludovic Henrio. A fault tolerantianulti-paradigm grid
architecture for time constrained problems. applicatmotion pricing in finance.

In E-SCIENCE '06: Proceedings of the Second IEEE Internati@uanference on e-
Science and Grid Computingage 49, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2734-5. doi: http://dx.doi.org/M009/E-SCIENCE.2006.7.

Greg Burns, Raja Daoud, and James Vaigl. LAM: An Opers@uEnvironment for
MPI. In Proceedings of Supercomputing Symposipages 379-386, 1994. URL
http://ww. | am npi.org/downl oad/fil es/| am papers.tar.gz.

58

http://www.nag.co.uk/numeric/CL/cldescription.asp
http://www.nag.co.uk/numeric/CL/cldescription.asp
http://www.originlab.com/pdfs/nagcl07/manual/pdf/e04/e04jbc.pdf
http://www.originlab.com/pdfs/nagcl07/manual/pdf/e04/e04jbc.pdf
www.openmp.org
http://www.open-mpi.org
http://www.zircomp.com
http://www.lam-mpi.org/download/files/lam-papers.tar.gz

[12] Frank Buschmann, Kevlin Henney, and Douglas C. Schnidttern-Oriented Soft-
ware Architecture: A Pattern Language for Distributed Caripg, Volume 4 Wiley
and Sons, New York, 2007.

[13] John C. Cox, Stephen A. Ross, and Mark Rubinstein. @@®iocing: A Simplified
Approach.Journal of Financial Economicgl, 1979.

[14] Graham E. Fagg, Edgar Gabriel, Zizhon Chen, Thara Amgséteorge Bosilca, An-
tonin Bukovsky, and Jack J. Dongarra. Fault tolerant comoation library and
applications for high performance computing. IimLos Alamos Computer Science
Institute Symposiunpages 27-29, 2003.

[15] MPI Forum. Message Passing Interface Forum. www.ropith.org.
[16] MPI Forum. MPI Standard 2.0. www-unix.mcs.anl.govimp000.

[17] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thamgskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan KambaduganBBarrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.Ham, and Timothy S.
Woodall. Open mpi: Goals, concept, and design of a next génarmpi implemen-
tation. Inin Proceedings, 11th European PVM/MPI UsersO Group Meetpages
97-104, 2004.

[18] Richard L. Graham, Sung eun Choi, David J. Daniel, Né¥haDesai, Ronald G.
Minnich, Craig E. Rasmussen, L. Dean Risinger, and MitcheSWkalski Introduc-
tion. A network-failure-tolerant message-passing sysfenterascale clusters. In
International Journal of Parallel Programmingages 77-83, 2003.

[19] Bruno Harbulot and John R. Gurd. Using aspectj to sépatancerns in parallel
scientific java code. IAOSD '04: Proceedings of the 3rd international conference o
Aspect-oriented software developmearages 122—-131, New York, NY, USA, 2004.
ACM. ISBN 1-58113-842-3. doi: http://doi.acm.org/10.51976270.976286.

[20] Steven Heston. A closed-form solution for options watlochastic volatility with
applications to bond and currency optior®eview of Financial Studie$:327-343,
1993.

[21] David Horn, Eva Schneider, and Grigory Vilkov. Hedgimgtions in the presence of
microstructural noiseSSRN eLibrary2007.

[22] J. C. Hull. Options, Futures and Other DerivativeBrentice-Hall, 1999.

[23] Gregor Kiczales, John Lamping, Anurag Mendhekar, €Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oedrffrogramming. liPro-
ceedings of the 11th European Conference on Object-Oddntegramming pages
220-242, June 1997.

59

[24] Marcio E. F. Maia, Paulo H. M. Maia, Nabor C. Mendoncagd &ossana M. C. An-
drade. An aspect-oriented programming model for bag-skggrid applications. In
CCGRID '07: Proceedings of the Seventh IEEE Internatiory@hSosium on Cluster
Computing and the Gridpages 789—-794, Washington, DC, USA, 2007. IEEE Com-
puter Society. ISBN 0-7695-2833-3. doi: http://dx.dajd0.1109/CCGRID.2007.
19.

[25] Thomas Phan, Ramesh Natarajan, Satoki Mitsumori, aaxa Y4I. Middleware and
performance issues for computational finance applicatoonblue gene/l.Parallel
and Distributed Processing Symposium, Internatio@aB71, 2007. doi: http://doi.
ieeecomputersociety.org/10.1109/IPDPS.2007.370561.

[26] Douglas C. Schmidt and Stephen D. Hust@a+ Network Programming, Volume 1.:
Mastering Complexity with ACE and Patterrsddison-Wesley, Boston, 2002.

[27] Douglas C. Schmidt and Stephen D. Hust@w+ Network Programming, Volume
2. Systematic Reuse with ACE and FrameworRgldison-Wesley, Reading, Mas-
sachusetts, 2002.

[28] J.L. Sobral. Incrementally developing parallel apgtions with aspectj.Parallel
and Distributed Processing Symposium, Internatio®a®5, 2006. doi: http://doi.
ieeecomputersociety.org/10.1109/IPDPS.2006.1639352.

60

	Dedication
	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Classification of Parallel Computing
	Multicore/Multiprocessor Computing
	Cluster Computing
	Cloud computing

	Motivation

	Background
	Overview of the Binomial Option Pricing Model
	Overview of the Heston Model

	Message Passing Interface
	OpenMPI
	OpenMPI Architecture
	OpenMPI Frameworks

	MPI Features
	MPI Limitations

	Zircon Adaptive High-Performance Computing Middleware
	Structure and Functionality of Zircon Parallel Computing Middleware Software
	zEnabling using zFunctionAdapters and zPluginLibraries
	zFunction and zPluginLibraries

	Parallel Application Development using zNet API
	zNet Infrastructure Patterns
	zNet API
	ZBroker Client API
	ZMessaging API
	ZPubSub API

	Resolving Distributed and Parallel Application Design Challenges with Zircon Middleware Software

	Benchmarking Experiments and Results
	Experiment Setup
	Experiment 1
	Objective
	Experiment Description
	Results

	Experiment 2
	Objective
	Experiment Description
	Results

	Experiment 3
	Objective
	Experiment Description
	Results

	Related Work
	Conclusion
	REFERENCES

