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CHAPTER I 

 

INTRODUCTION 

 

“I think I'll take a bath in his blood”  
Mike Tyson  

 A previously healthy 23 year old man arrived at an emergency room at Vanderbilt 

University Medical Center with a complaint of decreased movement and weakness in his 

arms that lasted for nearly two weeks. He did not have a fever or upper respiratory tract 

infection and his skin looked normal. The symptoms included anxiety, low blood 

pressure and decreased reflexes. Magnetic resonance imaging revealed a 

retropharyngeal/epidural abscess (Figure 1A). The patient recovered after six weeks of 

treatment with parenteral antibiotics. About the same time a previously healthy 16 year 

old boy developed vomiting and fever in the middle of the night. Upon arrival to the 

hospital he collapsed in the parking lot. Due to deteriorating respiratory status, 

mechanical ventilation and eventually extracorporeal life support were initiated. The 

patient died from severe pneumonia on day 6 after arriving in the hospital (Figure 1B). 

Both of these cases were caused by the same infectious agent that until recently was 

associated exclusively with the hospital setting. The superbug of the hospital rooms is 

now on the loose. 

  

 

 

 

 

http://www.brainyquote.com/quotes/quotes/m/miketyson369873.html
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Figure 1. Common diseases caused by S. aureus
1
. A. Epidural abscess. B. Pneumonia. 

C.  Purpura fulminans. D. Endocarditis. E. Osteomyelitis.  

 

 

 

                                                 
1
 Images kindly provided by Dr. C. Buddy Creech 
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Staphylococcus aureus is a non-motile catalase positive Gram-positive coccus, 

which occurs in grape-like clusters due to alternating division planes and incomplete cell 

wall separation between daughter cells. S. aureus is a commensal organism colonizing 

the anterior nares of approximately thirty percent of the human population (67). Upon 

breakage of host protective barriers, S. aureus is capable of establishing infection by 

avoiding the immune system, adhering to cellular surfaces, and acquiring nutrients from 

host tissues.  S. aureus stands out due to its ability to produce an arsenal of virulence 

factors that enable it to invade and multiply within virtually any host tissue. Invasive 

infections caused by S. aureus include bacteremia, pneumonia, cellulitis, osteomyelitis, 

endocarditis and septic shock (Figure 1) (65, 66). The diverse ecological niches 

encountered by S. aureus necessitate a variety of systems devoted to the acquisition of 

nutrients during infection. Consistent with this, S. aureus succeeds in its ability to acquire 

iron within the host (9, 107, 120).  

S. aureus is an important human pathogen responsible for almost 300,000 

hospitalizations and 19,000 deaths each year in the USA alone. S. aureus infections are 

an increasing problem in developed countries, as the incidence of drug-resistant strains is 

steadily rising. In fact, invasive methicillin-resistant S. aureus (MRSA) infections are 

responsible for more deaths annually in the United States than AIDS (16, 65). Of invasive 

infections caused by methicillin resistant S. aureus (MRSA), 75.2 % result in bacteremia, 

6.3% result in endocarditis, and 13.3% result in pneumonia (64-66). The dynamics and 

characteristics of staphylococcal infections are even more alarming than the incidence 

data. For instance, there has been (i) no decrease in hospital associated infections despite 

continuous efforts to improve measures to prevent the spread of nosocomial diseases; (ii) 
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a dramatic increase in infection occurrence and pathogenicity of community associated 

strains of S. aureus (84); and (iii) unremitting emergence of antibiotic resistance of 

staphylococci (64, 84). While 60% of current S. aureus isolates are antibiotic resistant, 

only four new classes of antibiotics were introduced in the past forty years (27). These 

points demonstrate the need for the identification of novel targets for therapeutic 

intervention against staphylococcal infection. Dissecting one such mechanism, 

hemoglobin-derived iron acquisition, is the goal of this thesis.  

 S. aureus typically shifts from a commensal colonizer to invading pathogen upon 

breakage of the skin or mucosal barrier whereupon S. aureus employs virulence factors 

that allow it to survive within the host and cause considerable damage (75). The majority 

of these virulence factors are either secreted from the bacterial cell or anchored to the cell 

wall through the action of transpeptidases known as sortases (75, 81). The functions of 

cell wall anchored proteins include adherence, immune evasion, nutrient acquisition and 

resistance to antimicrobials: all processes important for survival of S. aureus in the 

context of infection (23, 24, 39, 41, 46, 47, 80, 83, 85, 89, 102, 103, 118).  The 

contribution of cell wall anchored proteins to the pathogenicity of S. aureus is evident 

through a decrease in the virulence of sortase mutants in animal models of infection (60, 

61, 81, 83, 129). Among the functions carried out by sortase-anchored proteins is the 

acquisition of iron (80), which is a vital nutrient that is concealed from invading bacteria 

by host iron sequestering proteins (13, 29). To understand the mechanisms S. aureus 

employs to acquire iron during infection one must understand the basics of vertebrate 

iron regulation.  
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Host iron metabolism and infection 

Iron is thought to be the most critical elemental nutrient in determining the 

outcome of host-pathogen interactions (96).  This is because the lack of available iron 

within vertebrates provides a nutritional barrier to colonization by microbial invaders. 

Due to the requirement for iron in numerous physiological processes its acquisition is an 

important task for all living organisms. Mammals have adapted to exploit the necessity of 

iron for microbial replication by sequestering it away from microbes that have breached 

the skin or mucosal layers (32). Pathogens in turn have evolved mechanisms to remove 

iron from the host and internalize it for their own uses (29). 

There are two primary reasons for the scarcity of free iron within vertebrate 

tissue. First, iron is insoluble at physiologic pH. Second, vertebrates take immense 

measures to carefully regulate iron homeostasis by sequestering it via host molecules 

with very high binding affinities. These measures both protect the host from iron toxicity 

and ensure that the concentration of free iron within tissues is orders of magnitude below 

that required to support bacterial growth and virulence. The active sequestration of 

nutrient metals in order to defend against microbial growth is a process termed nutritional 

immunity. It should be noted that the host is forced to maintain a certain level of 

bioavailable iron for cellular metabolic needs and thus employs intricate mechanisms to 

maintain iron balance. This is demonstrated by the observation that depriving cells of 

intracellular iron leads to rapid cell death  (37). Conversely, if dietary or genetic factors 

shift the balance to a condition of iron overload, mammals are less able to resist 

infections (12). Among the most well documented pieces of evidence supporting the role 

of iron in infections is that tuberculosis patients supplemented with iron are much more 
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susceptible to the pathogenesis of Mycobacterium tuberculosis, and individuals with iron 

overload diseases such as hemochromatosis routinely suffer reinfections (14, 95). 

Furthermore, animal models have revealed that S. aureus and other pathogens inactivated 

for iron acquisition systems display significantly reduced virulence (1, 17, 29, 98, 113, 

118).  Taken together, these findings underscore the importance of nutritional immunity 

in protecting against bacterial infections. 

In order to appreciate the sources of iron that are available to invading pathogens 

during infection, it is important to first understand the physiology of iron in a healthy 

vertebrate host. Under normal conditions 1-2 milligrams of iron enters the body of an 

adult human through absorption in the duodenum and small intestine. This process 

maintains the total amount of iron within a healthy adult at approximately 3-4 grams (44).  

Upon absorption, iron is bound by transferrin, which is secreted into the plasma and 

trafficked to tissues so that iron can be delivered throughout the body. In a healthy 

individual virtually all extracellular iron is bound by transferrin, accounting for about 

0.1% of total iron within the organism (37). Due to the high affinity of transferrin for iron 

and the fact that only about 30% of transferrin is iron saturated at any given time, the 

extracellular concentration of free iron within vertebrates is extremely low (106).  Upon 

cellular contact, transferrin-iron is taken up by cells via interaction with a transferrin 

receptor through clathrin-mediated endocytosis. Once endocytosed, iron is released from 

transferrin in a pH-dependent process mediated by the influx of protons into the 

endosomes. The vast majority of absorbed iron (~80%) is taken up by erythroid 

precursors in the bone marrow and incorporated into heme, which is bound by 

hemoglobin, the primary oxygen transport protein of vertebrates. In addition, a significant 
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amount of absorbed iron (~10%) is incorporated within heme into the oxygen storage 

protein myoglobin which is found within muscle cells known as myocytes (37). Excess 

intracellular iron is stored within the protein ferritin to protect against the reactivity of 

free iron. Ferritin can be found in the cytoplasm, nucleus, and mitochondria and its 

multimeric form can contain up to 4,500 atoms of iron (77). Finally, a small fraction of 

iron is bound by the antimicrobial protein lactoferrin found in secretions such as breast 

milk and tears. The remaining iron is used by different cell types and iron-binding 

proteins with roles in a variety of physiological processes. During infection, the primary 

sources of iron available to invading bacterial pathogens include transferrin-iron, heme-

iron bound to hemoglobin or myoglobin, and iron complexed to ferritin.  
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Iron regulation in Staphylococcus aureus 

  Iron is an essential nutrient required by virtually all organisms. In the case of S. 

aureus, this requirement is demonstrated by failure to proliferate in an iron-free 

environment due to an inability to carry out such vital processes as respiration, nucleotide 

metabolism, and coping with oxidative stress (13, 29). The success of S. aureus as an 

infectious agent relies on a diverse panel of virulence factors. It has become increasingly 

evident that the iron status of S. aureus and the production and function of many of these 

virulence factors are interconnected. These emerging findings suggest a paradigm 

whereby S. aureus senses iron availability and modifies its physiology to effectively 

colonize its host. One method by which S. aureus adapts to iron-starved environments is 

through iron-dependent alterations in gene expression mediated by the ferric uptake 

regulator (Fur). Fur is a ubiquitous transcription factor in bacteria that regulates gene 

expression in response to alterations in cellular iron status. Iron-bound Fur binds 

consensus DNA sequences located upstream of the transcriptional start sites of iron-

regulated genes and represses transcription. Repression is alleviated when iron is scarce 

as Fur releases from the DNA, allowing access to RNA polymerase (6). Over forty 

cytoplasmic proteins are negatively regulated by Fur in S. aureus, highlighting the 

complexity of the bacterial response to iron-deprivation (42). In addition to iron 

acquisition, many Fur-regulated proteins are involved in pathogenic functions such as 

biofilm formation, adhesion, evasion of the immune system and inhibition of wound 

healing, suggesting that iron-dependent regulation of these proteins has a considerable 

impact on the host-pathogen interaction (4, 7, 18, 19, 55, 58, 59, 90). The importance of 

Fur-mediated iron-dependent gene regulation during pathogenesis is demonstrated by the 
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significant attenuation of a fur mutant in a murine skin abscess model of S. aureus 

infection (54).    

 S. aureus is capable of acquiring iron from several different sources during 

infection. As described in detail in the next section, S. aureus expresses specific transport 

systems dedicated to heme-iron acquisition from host hemoglobin. Ferritin is an 

intracellular iron storage protein that is unlikely to be used as an iron source by 

extracellular bacteria such as S. aureus. Iron acquisition from transferrin is mediated 

primarily by secreted siderophores in S. aureus.  Rather than promoting growth by 

providing S. aureus with iron, lactoferrin exhibits a bacteriostatic effect on S. aureus in 

vitro. This growth inhibition is attributed to both its iron-chelating properties and serine 

protease activity (2, 22). Although it is not yet clear how lactoferrin functions in vivo 

during staphylococcal infection, it is not expected to be a viable iron source to S. aureus.    

 A number of reports support the relevance of iron availability to the clinical 

disease course of S. aureus infections. For example, in patients with tunneled dialysis 

catheters, dose of supplemented iron is associated with increased risk of developing 

infections, including S. aureus bacteremia (56). Further, the administration of iron 

sucrose results in non-transferrin-bound iron in the serum of hemodialysis patients and 

this increased iron concentration enhances the growth of S. aureus and the risk of 

developing sepsis (8, 52). Finally, S. aureus has become a leading cause of bacterial 

infections in individuals with thalassemia, a congenital defect that results in reduced 

hemoglobin synthesis and anemia. The most common treatment for these patients is 

injection of the iron chelator desferrioxamine. Unfortunately, treatment with 

desferrioxamine further increases the rate of infections in these patients, presumably due 
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to the ability of S. aureus to utilize desferrioxamine as an iron source (11, 97).  In light of 

the severity of S. aureus infections and the unremitting antibiotic resistance exhibited by 

this organism, continuous efforts to describe iron acquisition strategies and their role in 

the pathogenesis of S. aureus may be crucial to the development of future therapeutic 

agents.  

 

Heme-iron acquisition in S. aureus 

Most iron within the mammalian host is contained within the tetrapyrrole heme. 

Heme typically is not found in its free form but is instead bound to proteins that use it as 

a cofactor. The most abundant mammalian heme containing protein is hemoglobin (Hb) 

located within erythrocytes (28, 32, 122). Hemoglobin is a sufficient source of iron in 

vitro for many bacterial pathogens including S. aureus (29, 118).  In order to capture iron, 

staphylococci need to employ methods to overcome at least three lines of defense: i) 

release Hb from the erythrocyte; ii) remove heme from Hb and import it into the cell; and 

iii) release iron from heme inside the cytoplasm. 

To overcome the first line of defense and to access hemoglobin S. aureus lyses 

erythrocytes through the secretion of hemolytic toxins. Accordingly many of these toxins 

are upregulated in iron poor conditions (119). Upon erythrocyte lysis, to import heme S. 

aureus binds hemoglobin on the surface of the bacterial cell wall. The iron-containing 

heme co-factor is then extracted from hemoglobin and passed through the cell envelope 

into the cytoplasm. To release iron in the cytoplasm heme is degraded.  

S. aureus acquires iron from hemoglobin through the cooperative action of the 

iron-regulated surface determinant (Isd) system, which is conserved in many Gram 
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positive pathogens (Figure 2) (80, 87, 93, 98-100, 113, 114, 118, 131). The proteins of 

the Isd family were named in alphabetical order from A to I (80, 112). IsdA, IsdB, and 

IsdH are covalently anchored to the cell wall exposed to the surrounding of the bacterium 

(33, 80, 86, 118). IsdC is also a cell wall anchored protein but is completely embedded in 

the cell wall and hence not surfaced-exposed (80). IsdDEF comprise an ABC-type 

transporter expressed in the cytoplasmic membrane of the bacterium (80), and IsdG and 

IsdI are cytoplasmically localized (112).  

The expression of Isd proteins is tightly regulated by the cytoplasmic ferrous iron 

concentration through a canonical Fur box in their promoter region (33, 80, 86, 118). In 

high iron concentrations the ferric uptake regulator (Fur) binds to the Fur box repressing 

the transcription of downstream genes (29, 49). During infection, it is believed that the 

low level of available iron derepresses the expression of genes under Fur control, 

including isd. Cell wall anchored proteins contain an N-terminal signal peptide that is 

necessary for their translocation across the cytoplasmic membrane. Proximal to the C 

terminus of IsdA and IsdB is a LPXTG anchoring motif.  LPXTG motifs are recognized 

by a transpeptidase Sortase A for covalent anchoring to the pentaglycine cross bridge of 

newly synthesized peptidoglycan (81, 82, 108, 118).  IsdC is anchored by Sortase B, 

which recognizes a NPQTN motif of IsdC (80, 83). 
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Figure 2. Heme-iron acquisition in S. aureus. In order to acquire iron from hemoglobin 

during infection, S. aureus utilizes a group of proteins collectively known as the Iron-

regulated Surface Determinant (Isd) system. This process occurs in a step-wise fashion. 

(1) Cell wall anchored IsdB binds hemoglobin at the surface of the Gram-positive cell 

wall. (2) IsdB removes heme from the peptide portion of hemoglobin and passes it either 

directly to IsdC or to IsdA, which passes heme to IsdC. (3) IsdC then passes heme to the 

IsdDEF membrane transport system, (4) which pumps heme into the cytoplasm. (5) Once 

in the cytoplasm, heme is degraded by the heme oxygenases IsdG and IsdI to release iron.  
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The critical first step in this process of heme-iron acquisition is hemoglobin 

binding to its receptor IsdB on the surface of S. aureus and heme extraction from the 

protein portion of hemoglobin (33, 80, 92, 118). The staphylococcal cell wall is an 

extremely thick and rigid structure. It is improbable that any one protein transports a 

molecule through a 60 nm thick assembly or that Isd proteins covalently anchored to 

peptidoglycan migrate through the cell wall with their cargo. In this regard, IsdB must 

pass heme from Hb to another protein(s) in order to transport heme into the bacterium. It 

is predicted that IsdB removes heme from Hb and passes it to the surface exposed protein 

IsdA, or to IsdC which is embedded within the cell wall (87, 92, 131). Specifically it is 

predicted that IsdB physically interacts with IsdA and IsdC to pass heme through the cell 

wall.  IsdC in its turn interacts with IsdDEF to pass heme for transport through the 

membrane into the cytoplasm. This model for heme-iron transport is supported by the 

observations that: (i) isdABCDEF are genomically associated, (ii) IsdA, IsdB, IsdC, IsdD, 

and IsdE bind heme, and (iii)  Isd components are located in the cell wall, membrane and 

the cytoplasm according to their predicted function (46, 76, 80, 86, 109, 124).  Further, 

IsdB is required for hemoglobin binding and utilization as an iron source, while IsdA, 

IsdE, IsdG and IsdI are necessary for heme-iron utilization (46, 47, 70, 98, 118). In 

support of this model, heme transfer from Hb to IsdB to IsdA to IsdC to IsdE has been 

reconstructed in vitro (72, 87, 131).  

It should be noted that S. aureus genome encodes for another hemoglobin 

receptor called IsdH/HarA (33, 34, 91, 92). IsdH/HarA has been demonstrated to bind Hb 

with high affinity in vitro. However, deletion of IsdH does not affect S. aureus 

hemoglobin binding or iron acquisition from Hb. Further IsdH does not appear to 
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contribute to virulence in murine models of infection and is truncated in certain clinical 

isolates of S. aureus (118). A recent report implicated IsdH in immune evasion (127).  

In the cytoplasm heme is degraded by heme oxygenases IsdG and IsdI that are 

unique in their structure and function (87, 98, 100, 112, 131). IsdG and IsdI are the first 

members of newly identified family of IsdG heme oxygenases conserved in Gram 

positive bacteria. IsdG and IsdI are 64% identical, and are both regulated by Fur. IsdG, 

however is rapidly degraded in the absence of heme, while IsdI is stable irrespective of 

heme availability. Both enzymes are required for full virulence of S. aureus 

demonstrating the importance of fine tuning heme oxygenase activity during infection 

(98). IsdG and IsdI degrade heme to a novel molecule named staphylobilin (100). All 

other heme oxygenases across all kingdoms of life produce biliverdin as a byproduct of 

heme degradation. The biological function of staphylobilin is currently unknown. 

Despite this accumulating knowledge, numerous aspects of heme import 

including the mechanism and specificity of Hb recognition, the interactions between Isd 

proteins in vivo, and the role of Hb as an iron source during infections remain 

unexplored. This thesis primarily focuses on the role of IsdB in hemoglobin-derived iron 

acquisition of S. aureus in the context of infection. In Chapter II, we elucidate expression 

and surface localization of IsdB in iron-deplete and iron-replete conditions, establishing 

IsdB as a surface exposed iron-regulated protein. We provide evidence that IsdB co-

localizes and interacts with IsdA in support of their role as conduits of heme through the 

cell wall. We establish differential localization patterns of the Isd machinery depending 

on its level of expression. This phenomenon to our knowledge has not been previously 

reported for bacterial surface proteins. We identify the location of Isd deposition to the 
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cell wall at the site of cell division. This result explains how S. aureus ensures co-

localization of Isd proteins. Finally, we establish differential expression and contribution 

of Hb-derived iron acquisition depending on the site of infection.  

Understanding heme transfer through the cell wall represents an important 

contribution to a broader understanding of staphylococcal and Gram-positive physiology. 

The mechanism of transport of molecules across the cell wall has long been a mystery 

and describing the transport of this vital nutrient source provides clues to the fundamental 

process of substrate trafficking within Gram-positive bacteria.  

In Chapter III, I report on our discovery that S. aureus has adapted to bind human 

hemoglobin more efficiently than hemoglobin from other species. This is explained by 

the fact that hemoglobin sequence varies considerably across species. To focus our 

studies we investigated binding of human (hHb) versus mouse hemoglobin (mHb) in 

more detail. We report that enhanced binding of hHb allows for improved iron 

acquisition from hHb as compared to mHb. Enhanced iron utilization is explained by the 

fact that S. aureus IsdB binds hHb with higher affinity than mHb.  

Most S. aureus animal experiments are performed in mice. The importance of the 

Isd system to iron acquisition and staphylococcal pathogenicity has been demonstrated 

using murine models of infection (20, 81, 93, 118).  Our finding that mHb is a poorer iron 

source than hHb for S. aureus, suggests that murine models may underestimate the 

contribution of Hb utilization to human infections. To circumvent this limitation we have 

acquired hHb transgenic mouse strain (
H


H
) that expresses hHb. Increased susceptibility 

of 
H


H
 to S. aureus infection demonstrates translation of increased binding of hHb into 

enhanced infection, and establishes 
H


H
 mice as an improved model for S. aureus 
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infections. Finally, we demonstrate that certain polymorphisms within hHb found in the 

population affect hHb binding to S. aureus. These findings suggest that hHb 

polymorphisms may affect individual susceptibility to S. aureus infection. Notably, the 

Isd system is conserved throughout Gram-positive pathogens and it is conceivable that 

hHb polymorphisms affect the severity of numerous bacterial infections in humans (80, 

86, 91). Findings and methods described in this thesis lay the foundation for studies into a 

genetic component of an interaction between a vital host molecule and a deadly pathogen. 
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CHAPTER II 

 

SUBCELLULAR LOCALIZATION OF THE Staphylococcus aureus  

HEMOGLOBIN RECEPTOR IsdB 

 

“Location, location, location” 

Introduction 

The proposed model for heme-iron transport through the Isd system predicts that 

the protein constituents of the Isd system physically interact with each other to form a 

molecular conduit for heme transport through the cell wall.  However, the subcellular 

localization pattern of the Isd proteins has not been reported (93).  In addition, it is not 

known if proteins of the Isd system physically engage with one another within the 

bacterium.  Finally, the contribution of hemoglobin capture to staphylococcal virulence is 

incompletely defined. 

Upon extraction of heme from Hb in vitro, IsdB passes heme to IsdA (87, 131). In 

this chapter we demonstrate that IsdB co-localizes with IsdA to discrete sites within the 

staphylococcal cell wall, and these sites correspond to regions of hemoglobin capture.  

IsdAB localization and subsequent hemoglobin binding is regulated by iron availability, 

and appears to occur at the site of new cell wall formation. In support of this localization 

pattern, we demonstrate that IsdA and IsdB physically interact within the staphylococcal 

cell wall providing direct evidence that proteins of the Isd system act as a coordinated 

unit to mediate hemoglobin recognition and heme-iron acquisition.  Finally, we report 

that IsdB exhibits an organ-specific regulation pattern which corresponds to an organ-

specific requirement for IsdB during the pathogenesis of S. aureus.  Taken together, these 
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results expand our understanding of the mechanism and function of hemoglobin capture 

by Gram positive pathogens.   

 

Methods 

Bacterial strains and growth conditions. All experiments were carried out with S. aureus 

strain Newman, or with mutants generated in its background. The protein A knock-out 

mutant (spa) was generated through allelic replacement as previously described (5). 

Briefly, spa and approximately 1 kb of flanking DNA were cloned into pCR2.1. The 

primers used were: spa-51-AttB1: GGGGACAAGTTTGTACAAAAAAGCAGGCT-

TCGAAGTAAAATTGATGAGCG and spa-32-AttB2: 

GGGGACCACTTTGTACAAGAAAGCTGGGT-CAACCTGGAGGTGCACTTG. The 

plasmid was then digested with NruI and Bpu10I, which excised spa, treated with T4 

DNA polymerase to generate blunt ends and religated. The resulting construct was 

recombined into pKOR1 and used for allelic replacement in Newman (5). Strains 

inactivated for spaisdB, spaisdA and spaisdAB were generated by transducing the 

isdB::ermC, isdA::ermC or isdAB::ermC alleles into the spa background using 

bacteriophage -85 (80) to create spaisdB, spaisdA and spaisdAB. Strain 

inactivated for spaisdBisdH was generated by transducing spaisdB with the 

isdH::tetR allele (kindly provided by Dr. Eszter Nagy) to create spaisdBisdH  using 

similar techniques (33). All transductions were confirmed by PCR and/or 

immunoblotting. All S. aureus cultures were inoculated from a single colony and grown 

overnight (~15 hours) in 5 ml tryptic soy broth (TSB)  in 15 ml conical tubes at 37°C 

with shaking at 180 rpm unless noted otherwise.  
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Immunofluorescence. Bacteria were grown overnight in 5 ml TSB or TSB supplemented 

with 2,2-dipyridyl (DIP)  in 15 ml conical tubes at 37°C  with shaking at 180 rpm. 

Bacteria were sedimented at 3,000 g for 5 minutes and washed 3 times in 1 volume of ice 

cold phosphate-buffered saline (PBS) (pH 7.4). The following procedures were carried 

out at room temperature. One hundred and fifty l of bacteria were applied to poly-L-

lysine coated cover slip for 5 minutes. The cover slips were then floated on 2% 

formaldehyde in PBS for 20 minutes to fix the bacteria. Cover slips were then washed 

once with PBS and blocked in PBS + 3% (w/v) bovine serum albumin (BSA) for 1 hour. 

Cover slips were then incubated with BSA and primary antibody, washed 3 times with 

PBS, incubated in BSA with secondary antibody, washed 3 times, sealed to a slide by nail 

polish and visualized on an Olympus BX60 microscope. Pictures were taken with an 

Olympus DP71 camera using DP Controller and analyzed using DP Manager software. 

For simultaneous labeling of IsdB and hemoglobin the primary antibodies were added 

simultaneously followed by the secondary antibodies. For simultaneous labeling of IsdA 

and IsdB, IsdA antibody was biotinylated by EZ-Link NHS-PEO Solid Phase 

Biotinylation Kit. The labeling included 4 successive incubations: 1. Rabbit -IsdB. 2. -

rabbit-488. 3.  Rabbit biotinylated -IsdA. 4. Streptavidin-555. The antibodies and 

concentrations used for immunofluorescence were: Rabbit -IsdB 1:5,000; Rabbit -

IsdA 1:15,000 (80); Mouse -human hemoglobin (Santa Cruz) 1:250; Rabbit biotinylated 

-IsdA 1:50; Alexa Fluor 488 goat rabbit IgG (H+L) (green) 1:250; Alexa Fluor 488 

goat mouse IgG (H+L) 1:250; Alexa Fluor 555 goat rabbit IgG (H+L) (red) 1:250; 

streptavidin, Alexa Fluor 555 conjugate 1:250. 
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Fluorescently-activated cell sorting (FACS) assay. For FACS assays the cells were 

labeled similar to the method used for immunofluorescence, except bacteria were fixed 

and incubated with antibodies in solution as opposed to on cover slips. The antibodies 

and concentrations were similar to immunofluorescence with an exception of Hb 

labeling, where all antibodies were used at 1:1,000 dilution. The cells were fixed with 2% 

formaldehyde for the second time after labeling. FACS analysis was performed with 

FACSCalibur (BD) using Cell Quest Pro software. Mean fluorescence intensity was 

quantified with Flow Explorer 4.2.  

Hemoglobin binding. For hemoglobin binding assays, overnight cultures were spun down 

for 5 minutes at 3,000 g and resuspended in 1 volume PBS (pH 7.4) containing 0.5 M 

hemoglobin (Sigma) for immunofluorescence and 1 M hemoglobin for FACS analysis. 

They were then incubated at room temperature for 0.5 hour on a rotisserie, washed in 

PBS and labeled for hemoglobin as described in the immunofluorescence section. 

Fluorescent hemoglobin binding assay. Human hemoglobin was conjugated to a 

fluorescent molecule with DyLight 549 Microscale Antibody Labeling Kit (Pierce) in 

borate buffer (pH 8.5) according to the manufacturer’s recommendations. Forty l of the 

overnight cultures grown in TSB + 1mM DIP were resuspended in 40 l borate buffer 

containing 4 M labeled hemoglobin, and incubated at room temperature for 30 minutes. 

The samples were then washed 3 times in borate buffer and fixed with 2% formaldehyde 

in PBS in a 100 l volume. The cells were attached to cover slips and visualized. In 

competition assays unlabeled hemoglobin was added at 12 M, while BSA was added at 

50 M. 
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Trypsin treatment. S. aureus overnight cultures were resuspended in 1 volume of PBS + 

250 g/ml trypsin (Sigma). The suspension was incubated at 37°C with shaking for 1 

hour. Cells were then washed 3 times with PBS containing 1 mM phenylmethylsulphonyl 

fluoride (PMSF) followed by incubation at 37°C with shaking in TSB + 1 mM DIP + 1 

mM PMSF. Aliquots were taken after 0, 5, 15, 30 and 60 minutes of incubation, 

immediately placed on ice and washed with ice cold PBS 3 times. Once all the samples 

were collected they were processed for immunofluorescence. 

Immunogold labeling and electron microscopy. For immunogold labeling the primary 

antibody concentrations and incubation times were the same as for immunofluorescence. 

Bacterial cells were attached to poly-L-lysine coated Nickel Formvar grids. The samples 

were fixed with 2% formaldehyde in sodium cacodylate buffer. The secondary antibody, 

6 nm Colloidal Gold-Affinipure Goat -rabbit IgG (H+L), was used at 1:50 dilution.  

Blocking and antibody labeling were carried out in TBS (pH 7.1) + 3% BSA.  After all 

labeling and washing steps, the grids were briefly washed 3 times with double deionized 

water. Samples were viewed using an FEI CM12 transmission electron microscope (FEI, 

Hillsboro OR).  

Immunoblotting. Immunoblotting was performed using nitrocellulose membranes. 

Membranes were blocked in 5% milk made in TBS + 0.1% Tween 20 (TBST) from 1 

hour to overnight. They were then incubated in milk plus primary antibody, washed 3 

times with TBST, incubated in milk plus secondary antibody, and washed 3 times in 

TBST. Membranes were visualized using an Odyssey
 
infrared imaging system (LI-COR), 

which was also used to quantify intensities of the blots. The antibodies used for 
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immunoblotting were rabbit-IsdB (1:10,000), rabbit-IsdA (1:25,000), and Alexa 

Fluor 680 goat -rabbit IgG (H+L) (1:25,000). 

 Immunoprecipitation.  Immunoprecipitation was carried out using the Protein A Seize X 

kit (Pierce). Agarose beads were crosslinked to -IsdB according to the manufacturer’s 

recommendations. Briefly, 35 l of -IsdB antiserum was bound to 200 l of the beads 

and crosslinked by 25 l DSS. Overnight S. aureus cultures were resuspended in 1ml 

TSM (100 mM Tris pH 7.0, 500 mM sucrose, 10 mM MgCl2) containing 20 g 

lysostaphin and incubated at 37°C for 1 hour. PMSF was added to 100 M upon 

completion of incubation. The protoplasts were pelleted at 16,000 g for 2 minutes. 200 l 

of the supernatant was mixed with 200 l PBS (400 l total) and loaded onto a column 

containing 50 l agarose protein A beads crosslinked to -IsdB. The samples were 

incubated at 4°C overnight on a rotisserie. The beads were then washed 5 times with PBS 

and bound proteins were eluted 3 times with low pH in 150 l volumes for each elution. 

The elutions were pooled together (Elution 1). The beads were then transferred to a 

microfuge tube and boiled for 5 minutes in 100 l 4% (w/v) sodium dodecyl sulfate 

(SDS), 0.5M Tris pH 8.0. This fraction was added to the pooled fractions eluted with low 

pH (Elution 2). The samples were normalized before loading onto 12% SDS-PAGE. The 

immunoprecipitation of rIsdA (15 M) with rIsdB (7.5 M) (80), was carried out in a 

similar manner, with omission of elution 2. The proteins were mixed and incubated at 

37°C for 0.5 hour prior to immunoprecipitation.      

Systemic mouse infections. Six to eight week old C57BL/6J mice were infected 

retroorbitaly with ~10
7
 colony forming units (CFU) grown to mid-log phase and 

resuspended in sterile PBS. Ninety six hours post infection the mice were euthanized with 
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forced inhalation of CO2. The hearts and livers were removed post-mortem and 

homogenized in 1 ml PBS for further processing. For immunofluorescence and 

quantification of IsdA and IsdB, the homogenized organs of 4 infected mice were 

transferred to microfuge tubes and centrifuged at 1,000 g for 1 minute. The supernatant 

was transferred to another tube and centrifuged for 3 minutes at 16,000 g. The 

supernatant was decanted and the pellet was resuspended in 1 ml PBS and spun again at 

16,000 g for 3 minutes. The supernatant was removed and the pellet was resupended in 

200 l TSM. Twenty ls were removed to determine the CFU/ml of the samples. Twenty 

g lysostaphin was added to the remaining suspension (100 g/ml lysostaphin final 

concentration) and incubated at 37°C for 1 hour.  PMSF was added to 1 mM and the 

samples were frozen at -20°C. The following morning the CFUs/ml were quantified, and 

normalized samples were assessed for relative amount of IsdB and IsdA in the infected 

organs by quantitative immunoblotting. For immunofluorescence, the samples were not 

treated with lysostaphin, but rather prepared to visualize using a fluorescent microscope. 

CFUs/ml were quantified by serial dilutions in PBS and plating on TSA. Each group 

included at least 9 mice. 
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Results 

IsdB surface expression is regulated by iron availability. Proteins of the Isd system are 

likely to be targeted to the same subcellular locale in order to ensure efficient acquisition 

of heme-iron. To test the hypothesis that the cell wall anchored Isd proteins are proximal 

to each other, we chose to use immunofluorescence. Proteins of the Isd system are up-

regulated in low iron conditions, therefore we grew S. aureus in tryptic soy broth (TSB) 

supplemented with the iron chelator 2,2-dipyridyl (DIP). IsdB expression on the 

staphylococcal surface was evaluated using IsdB-specific rabbit antiserum (-IsdB) and a 

secondary antibody conjugated to a fluorophore. As expected for these conditions the 

primary antibody bound to the surface of S. aureus (Figure 3A). To control for non-

specific binding of -IsdB, we tested antibody binding to isdB grown in TSB + DIP, 

and wild type S. aureus grown in iron sufficient TSB, a growth condition that is not 

permissive to IsdB expression (80, 118). -IsdB bound to S. aureus in all of these 

conditions indicating significant non-specific binding in these experiments (Figure 3A-

C). 
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Figure 3. Creation of a Protein A-deficient strain for specific labeling of S. aureus 

surface exposed proteins. A-F. S. aureus strains were grown overnight in TSB with 1 

mM of iron chelating agent 2,2-dipyridyl (DIP) where indicated. Bacteria were 

subsequently labeled with rabbit IsdB antibody and Alexa Fluor 488 goat rabbit 

IgG (H+L). G. Bacteria grown under the same conditions and labeled similarly to A-F 

were subjected to FACS analysis to determine mean fluorescence intensity (MFI). Error 

bars represent standard error. Asterisks denote statistically significant differences in 

relation to spa + DIP as determined by Student’s t test (P < 0.05). 
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S. aureus protein A is a cell wall factor that non-specifically binds the constant 

regions of immunoglobulin G (41). We reasoned that Protein A might be responsible for 

the non-specific labeling observed upon staining with -IsdB (40). To circumvent this 

issue, we created a S. aureus strain inactivated for the gene encoding protein A (spa) 

and analyzed IsdB expression.  Immunoblotting demonstrated that inactivation of spa 

does not affect the expression of IsdB (data not shown). spa expressed IsdB on the 

surface when grown in iron deplete conditions, whereas IsdB was not detectable when 

spa was grown in iron-sufficient conditions (Figure 3D-E). In addition, spaisdB did 

not elaborate an IsdB signal regardless of the iron status of the bacterium (Figure 3F). To 

quantify the effects of spa deletion on IsdB detection, we performed a fluorescently-

activated cell sorting (FACS) assay on S. aureus grown in both iron-sufficient and iron-

deplete conditions (Figure 3G). These experiments confirmed that IsdB is expressed on 

the surface of S. aureus in an iron-dependent manner, and alterations in iron status lead to 

an approximately 19-fold change in IsdB surface expression as measured by FACS.  

Taken together, these results establish that iron restriction increases the expression and 

surface anchoring of IsdB. 
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The subcellular distribution of IsdA and IsdB is regulated by iron availability. In 

order to determine how iron availability affects localization of the Isd system on the 

surface of S. aureus, we grew spa overnight in TSB supplemented with varying 

concentrations of DIP. As expected, we were unable to detect IsdB on the surface of S. 

aureus grown in iron-sufficient conditions (Figure 4A). Bacteria grown in increasing 

concentrations of iron chelator exhibited a commensurate increase in IsdB expression and 

surface anchoring (Figure 4C).  Further, addition of excess iron to medium containing 

DIP suppressed IsdB expression, eliminating the possibility that IsdB up-regulation was 

induced by DIP independently of its iron chelating activity (Figure 4A and C). During the 

course of these experiments, it was noted that the distribution pattern of IsdB on the 

surface of staphylococci is affected by the iron status of the organism.  More specifically, 

at 250 M DIP IsdB localizes to discrete puncta throughout the cell surface, whereas S. 

aureus grown at 1 mM DIP distributes IsdB in a uniform circumferential pattern around 

the cell wall (Figure 4A).  A similar pattern of IsdB expression and surface localization 

was observed upon iron starvation induced by a different iron chelator (ethylenediamine-

di(o-hydroxyphenylacetic acid) (data not shown).   
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Figure 4. Iron availability influences the expression and localization of IsdB and 

IsdA on the staphylococcal surface.  spa was grown overnight in medium 

supplemented with the indicated concentrations of DIP. Bacteria were subsequently 

labeled with rabbit IsdB (A)  or rabbit IsdA (B)  antibodies followed by Alexa 

Fluor 488 Goat rabbit IgG (H+L). Quantification of relative amounts of IsdB (C) and 

IsdA (D) expressed on the surface of spa was determined by FACS. Asterisks denote 

statistically significant difference in relation to spa grown in plain TSB (-) as 

determined by Student’s t test (P < 0.05). In fluorescent images green color was increased 

by 100% in A and by 25% in B. 
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To determine if this iron-dependent localization pattern was specific to IsdB, we 

analyzed IsdA expression and distribution using antisera specific for IsdA (Figure 4B and 

D).  We found that IsdA was expressed at low levels when grown in iron-sufficient 

conditions and its expression increased upon iron starvation. Furthermore, we found that 

the distribution pattern of IsdA mirrored that of IsdB.  When exposed to intermediate iron 

stress (100 M DIP), IsdA localized to distinct puncta around the cells.  In contrast, IsdA 

was evenly distributed around the cell wall in maximally iron starved S. aureus (Figure 

4B). These results indicate that both the expression and subcellular distribution of IsdA 

and IsdB are regulated by iron availability, and that the Isd system localizes to discrete 

regions within the cell in conditions of moderate iron stress.   
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Hemoglobin capture by S. aureus is iron-regulated and IsdA/IsdB/IsdH-dependent. 

The expression and surface distribution of IsdB is regulated by iron (Figure 3), and IsdB 

has been shown to bind hemoglobin (34, 80, 118). In order to determine the effect that 

iron availability and IsdB expression have on hemoglobin binding to the surface of S. 

aureus we analyzed hemoglobin binding to spa grown in iron-replete or iron-deplete 

conditions.  These experiments revealed that spa grown in iron-replete conditions did 

not bind detectable levels of hemoglobin (Figure 5A). However, when grown in the 

presence of the iron chelating agent DIP, S. aureus exhibited a dose-dependent increase 

in hemoglobin binding (Figure 5B, C). Hemoglobin binding to the staphylococcal surface 

was localized to discrete puncta, reminiscent of the iron-dependent distribution pattern 

observed for IsdB and IsdA (Figure 4A, B). To assess whether the observed iron-

dependent hemoglobin binding was mediated by IsdB, we measured hemoglobin binding 

to spaisdB (Figure 5E-G). These experiments revealed that iron-starved spaisdB is 

deficient in binding hemoglobin as compared to spa (Figure 5G). To confirm that the 

punctate binding distribution of hemoglobin was not an artifact of antibody-based 

detection, we incubated bacteria with fluorescently labeled hemoglobin (Figure 6). This 

assay confirmed that hemoglobin binding to S. aureus is IsdB-dependent and specific as 

fluorescently labeled hemoglobin could be outcompeted by excess non-labeled 

hemoglobin. 
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Figure 5. Iron- and Isd-dependent hemoglobin binding to the surface of S. aureus. 

spa (A-D) or spaisdB (E-G) were grown overnight in TSB supplemented with the 

indicated concentrations of DIP. Bacteria were then incubated in PBS with human 

hemoglobin and washed with PBS. Cells were subsequently labeled with mouse 

hemoglobin IgG followed by Alexa Fluor 488 goat mouse IgG (H+L). I. 

Quantification of the relative amount of human hemoglobin bound to the surface of 

indicated strains, grown in presence of 1 mM DIP where indicated, determined by FACS. 

Error bars represent standard error. The symbols denote statistically significant 

differences as determined by Student’s t test (P < 0.05) in relation to: * spa (no DIP), # 

spa (DIP), § spaisdB (no DIP), ψ spaisdB (DIP). 
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Figure 6. Hemoglobin-549 binding to the surface of Staphylococcus aureus.  spa (A) 

or spaisdB (B) was grown overnight in TSB supplemented with 1 M 2,2-dipyridyl. 

Bacteria were then incubated in borate buffer with 4 M human hemoglobin conjugated 

to DyLight 549 fluorophore and washed with borate buffer. C, D. spa were grown and 

processed as in A. In addition to fluorescent hemoglobin, samples were incubated with 12 

M unlabeled hemoglobin (C) or 50 mM  bovine serum albumin (D). In fluorescent 

images brightness and contrast was increased by 75% and red color was increased by 

25%. 
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Despite the reduction in hemoglobin binding, spaisdB was capable of binding 

detectable levels of hemoglobin in an iron-dependent manner (Figure 5E, G). To confirm 

this observation we measured relative hemoglobin binding to spa and spaisdB grown 

in high or low iron with FACS (Figure 5I). We observed that iron-starved spaisdB 

displayed a significant decrease in hemoglobin binding when compared to ∆spa.  

However, iron-starved spaisdB bound hemoglobin at levels higher than iron-replete 

spaisdB, suggesting the presence of an iron-regulated IsdB-independent hemoglobin 

binding activity (Figure 5G, I). To date, IsdH and IsdA are the only staphylococcal 

proteins other than IsdB that have been shown to bind hemoglobin (24, 33, 91). To 

investigate whether IsdH was responsible for the residual levels of hemoglobin binding 

detected in spaisdB, we inactivated isdH in both the spa and spaisdB backgrounds 

(creating spaisdH and spaisdBisdH respectively) and measured the ability of these 

strains to bind hemoglobin. When grown in iron-deplete conditions, spaisdH bound 

hemoglobin at reduced levels compared to spa. Accordingly, spaisdBisdH bound 

hemoglobin at lower levels than spaisdB, suggesting that IsdH is at least partially 

responsible for the observed secondary binding activity. To assess whether IsdA 

contributes to capturing hemoglobin at the staphylococcal surface we created a strain 

lacking isdA and isdB in the ∆spa background (spaisdAB) and tested the ability of 

spaisdAB to bind hemoglobin. These experiments revealed that iron-starved 

spaisdAB exhibited decreased hemoglobin binding when compared to spa and 

spaisdB. Further, spaisdAB displayed decreased levels of hemoglobin binding as 

compared to S. aureus grown in iron-replete conditions, suggesting that IsdA contributes 

to hemoglobin binding in both iron-replete and iron-deplete conditions (Figure 5I). As a 
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control for the specificity of the -hemoglobin antisera, we found that no strains stained 

positive for antibody binding in the absence of hemoglobin addition (data not shown). 

These results indicate that IsdB is the primary hemoglobin receptor on the surface of S. 

aureus in iron-starved environments, however IsdH and IsdA also contribute to 

hemoglobin capture.  

We next sought to determine whether hemoglobin bound to the surface of 

staphylococci co-localizes with IsdB. To determine the relative localization of IsdB and 

hemoglobin, we grew spa overnight in iron-deplete conditions and labeled the two 

molecules simultaneously on the surface of staphylococci with fluorophores emitting at 

distinct wavelengths. Both IsdB and hemoglobin displayed iron-dependent patterns of 

localization similar to that seen when labeled individually (Figures 7A, 4A, and 5C). At 1 

mM DIP, IsdB is diffusely distributed on the surface, whereas hemoglobin binding is 

punctate. Nevertheless, hemoglobin and IsdB co-localize on the surface, and hemoglobin 

binding is maximal in regions of the cell surfaces where IsdB is more abundant (Figure 

7A, B). Both IsdB and hemoglobin fluorescent labeling are specific as indicated by the 

absence of the appropriate fluorescence when one of the primary antibodies is omitted 

(Figure 7C, D).  Cumulatively, these results suggest that hemoglobin binding to the 

surface of S. aureus is mediated by IsdB and occurs at distinct foci throughout the cell 

wall.   
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Figure 7. Hemoglobin co-localizes with IsdB on the surface of S. aureus. A. spa was 

grown overnight in TSB supplemented with 1 mM DIP. Bacteria were then incubated 

with human hemoglobin and washed with PBS. Cells were then simultaneously labeled 

with rabbit IsdB and mouse hemoglobin antibodies followed by Alexa Fluor 488 

goat rabbit and 555 goat mouse IgG (H+L). B. Close-up of A, the arrows point to 

locations on the cell surface where hemoglobin is bound. To control for antibody cross-

reactivity either mouse hemoglobin (C), or rabbit IsdB (D) antibodies were omitted. 

In fluorescent images green color was increased by 25% and red by 75%. 
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IsdA and IsdB form a complex at discrete regions within the cell wall. IsdB is capable 

of removing heme from hemoglobin and transferring it to IsdA in vitro (87, 131). In order 

for this process to occur in vivo, IsdA and IsdB, which are restrained to their anchoring 

site, are likely to be in direct proximity to each other. To test whether IsdA and IsdB co-

localize on the surface of S. aureus, we labeled the proteins simultaneously and viewed 

their localization using immunoflourescence. IsdB was detected using -IsdB 

counterstained with secondary-488 antibody, while IsdA was detected using biotinylated 

-IsdA counterstained with streptavidin-555. These experiments revealed that IsdB and 

IsdA labeling co-localize on the surface of S. aureus (Figure 8A), suggesting that IsdA 

and IsdB are deposited proximally to each other within the cell wall. To improve the 

resolution of this assay we sought to determine the initial anchoring sites of IsdA and 

IsdB within the cell wall. To achieve this, we first treated staphylococci with trypsin, 

which effectively digested both IsdA and IsdB on the surface of staphylococci as 

indicated by the absence of their labeling following treatment (Figure 8B). The cells were 

then washed, resuspended in iron-deficient medium and allowed to recover for 15 

minutes. This assay enables the visualization of proteins that are newly deposited to the 

cell wall, thus identifying the location of their anchoring. These experiments revealed that 

IsdA and IsdB are both deposited to the same location on the surface of staphylococci 

(Figure 8C). In addition, IsdA exhibits a slightly more diffuse localization pattern 

possibly due to its less stringent regulation (Figure 4). Among a total of 97 cells observed 

in this analysis, 81 cells (84%) deposited IsdA and IsdB at the same location.   To 

confirm that IsdA and IsdB engage one another at these discrete anchoring sites, we 

performed immunoprecipitation (IP) of IsdB from cell wall lysates. Both IsdA and IsdB 
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were precipitated by -IsdB consistent with IsdAB complex formation occurring in the 

cell (Figure 8D). IP of lysates from spaisdB did not result in the precipitation of IsdA 

confirming that IsdA pull-down requires IsdB. In further support of a physical interaction 

between IsdA and IsdB, recombinant IsdA was immunoprecipitated with recombinant 

IsdB by an -IsdB antibody following incubation of these two proteins (Figure 8D). 

These results indicate that IsdA and IsdB co-localize on the surface of staphylococci and 

that their co-localization is achieved through anchoring to the same site within the cell 

wall. Further, these data suggest that IsdA and IsdB physically interact to promote 

hemoglobin capture during infection.  
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Figure 8. IsdA and IsdB co-localize and interact on the cell wall of S. aureus. A. spa 

was grown overnight in TSB supplemented with 1 mM DIP. Bacteria were then 

sequentially labeled with rabbit IsdB, Alexa Fluor 488 goat rabbit IgG (H+L), 

biotinylated rabbit IsdA, and streptavidin Alexa Fluor 555 conjugate. B, C. Cells from 

the same culture were subjected to trypsin digestion, washed, resuspended in TSB + 1 

mM DIP, and incubated. Aliqouts were taken after 0 (B)  or 15 (C)  minutes and labeled 

as in A. D. Top: spa or spaisdB were grown overnight in TSB + 1 mM DIP. The cell 

wall proteins were solubilized by lysostaphin. IsdB was pulled down with Seize X 

Protein A Immunoprecipitation Kit and rabbit IsdB antibody. Input (IN), non-

precipitated flow through (FT), and eluted proteins (E1, E2) were subjected to SDS-

PAGE, transferred onto nitrocellulose and immunoblotted with IsdA antibody. 

Bottom: Recombinant rIsdA and rIsdB were combined and incubated at 37°C for 30 

minutes.   Immunoprecipitation was performed as in top panel and input (IN) and elution 

(E) are shown. 

 

 

 

 

 

 

 



39 

 

Newly formed IsdA and IsdB are anchored to the cell wall at the site of cell division. 

It has been shown that cell wall proteins in Gram positive bacteria are destined for two 

primary anchoring locations (15, 31). One destination is the site of cell division where 

new cell wall is rapidly synthesized, while the other is distant from the cell division site. 

In order to precisely determine the cell wall destinations of IsdA and IsdB, we utilized 

electron microscopy to localize immunogold labeled IsdA and IsdB. Bacteria were grown 

in iron-deplete medium, treated with trypsin, and recovered in iron-deplete medium.  

Aliquots were taken before or immediately following trypsinization, and at different time 

points after recovery. Bacteria were attached to nickel formvar grids and labeled with -

IsdB or -IsdA antibodies followed by -rabbit antibodies conjugated to 6 nm gold 

beads. Consistent with data acquired using immunofluorescence (Figure 4A and B), both 

IsdA and IsdB were distributed throughout the cell surface when S. aureus was grown in 

maximally iron-starved conditions (Figs. 9A, B, and 10A, B). Gold beads were not 

detectable on the surface of spaisdB and spaisdA indicating the specificity of the 

labeling procedure (Figs. 9C and 10C). Further, gold beads were not detected following 

trypsin treatment of wild type S. aureus grown under iron-deficient conditions, indicating 

that IsdA and IsdB are removed from the cell wall by trypsin digestion (Figures 9D and 

10D). Cells which were allowed to recover for 5 minutes following trypsinization 

displayed IsdB and IsdA deposition on the cell walls (Figures 9E-L).  Specifically, we 

observed localization of newly synthesized IsdA and IsdB to the site of cell division 

(Figure 9I, J and K).  In addition to localization at the site of new cell wall formation, 

IsdA was found more diffusely throughout the staphylococcal cell (Figure 9I, J, and L). 

Bacteria which were allowed to recover for longer periods of time displayed 



40 

 

progressively more diffuse localization patterns of IsdA and IsdB, with uniform 

circumferential distribution following 60 minutes of recovery in iron-deficient medium 

(Figure 10E-H). These data confirm that IsdA and IsdB are co-localized within the cell 

wall and establish the site of cell division as their common deposition location.  However, 

it should be noted that the site of cell wall division does not appear to be the exclusive 

site of deposition for IsdA. 

 

IsdA and IsdB exhibit organ-specific patterns of expression. Strains lacking IsdB 

exhibit decreased colonization of murine kidneys and spleen in systemic models of 

infection, and mice immunized with IsdB are protected against staphylococcal infection 

(68, 115, 118). These observations imply that IsdB is expressed within the vertebrate 

host.  To test this directly, we monitored IsdB expression in a murine model of infection.  

C57BL/6J mice were infected with spa. After 96 hours the mice were sacrificed, and 

hearts were removed and homogenized with PBS. The homogenates were subjected to a 

series of centrifugations to remove larger mammalian cells and cellular debris. The 

resulting suspension was labeled with -IsdB antibody. Using this protocol we recovered 

staphylococcal cells which bound -IsdB antibody indicating expression of IsdB on their 

surface. Heart tissue from an uninfected mouse processed in the same way did not stain 

positive for IsdB (Figure 11A).  These experiments demonstrate that IsdB is expressed 

during staphylococcal infection. 
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Figure 9. IsdA and IsdB are anchored at sites of nascent cell wall formation. spa 

was grown overnight in TSB supplemented with 1 mM DIP. Cells were treated with 

trypsin, washed, resuspended in TSB + 1mM DIP and incubated. Aliquots were taken at 

different time points, washed, attached to nickel formvar grids and sequentially labeled 

with indicated primary antibodies and secondary 6 nm Colloidal Gold-Affinipure Goat 

rabbit IgG (H+L). A, B. Non-trypsinized spa labeled for IsdB. C.  Non-trypsinized 

∆spa∆isdB labeled for IsdB. D. Trypsinized ∆spa labeled for IsdB. E-L. spa upon 

trypsin treatment and 5 minute recovery in TSB, labeled for IsdB (E-H) or IsdA (I-L). 
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Figure 10. IsdA and IsdB distribution on the cell wall of Staphylococcus aureus. spa 

was grown overnight in TSB supplemented with 1 M 2,2-dipyridyl. Cells were treated 

with trypsin, washed, resuspended in TSB + 1 M 2,2-dipyridyl and incubated at 37°C. 

Aliquots were taken at different time points, washed, attached to nickel formvar grids and 

sequentially labeled with indicated primary antibodies and secondary 6 nm Colloidal 

Gold-Affinipure Goat -rabbit IgG (H+L). A, B. Non-trypsinized spa  labeled for IsdA. 

C.  Non-trypsinized spaisdA labeled for IsdA. D. Trypsinized spa labeled for IsdA. 

E-H.  spa upon trypsin treatment and 15 (E, G) and 60 (F, H) minute recovery in TSB 

+ 1 M DIP.  
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To quantify the relative expression levels of IsdB and IsdA during infection, we 

infected mice with wild type S. aureus. After harvesting and processing the organs as 

described above, we normalized the samples to colony forming units (CFU) of infecting 

S. aureus (see methods). Following normalization, cell wall lysates were immunoblotted 

for the presence of IsdA and IsdB. As depicted in Figure 11B, we detected IsdA both in 

livers and hearts of infected mice, but not in the organs of uninfected animals. In contrast, 

IsdB was detected in the hearts, but not the livers of infected mice. Quantification of the 

band intensities from the samples of individual mice indicated lower levels of IsdA and 

IsdB expression in the livers of infected mice when compared to the hearts of the same 

animals (Figure 11C).  These experiments demonstrate that IsdB and IsdA are 

differentially expressed across organs. 

To establish the contribution of IsdB to S. aureus virulence in hearts and livers, 

we infected mice with either wild type or isdB. We observed a significant decrease in 

virulence of isdB in the hearts demonstrated by a reduction in CFU of invading bacteria 

by almost two orders of magnitude (Figure 11D). Consistent with the undetectable level 

of IsdB expression in murine livers, strains lacking IsdB colonized this organ as 

efficiently as wild type (Figure 11D). Together, these results demonstrate that S. aureus 

requires IsdB for growth in the murine heart and accordingly induces its expression when 

colonizing this organ. However, IsdB is not expressed during liver colonization and 

hence is dispensable for colonization in this host environment. This discrepancy in IsdA 

and IsdB expression and contribution to infection is potentially due to differences in iron 

availability within the heart and livers of mice.  
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Figure 11. IsdB is expressed within the hearts of infected animals and contributes to 

cardiac colonization.  A. C57BL/6J mice were retroorbitaly infected with 10
7
 CFU of 

spa in 100 l PBS, and sacrificed 96 hours post-infection. Hearts and livers were 

removed and homogenized in 1 ml sterile PBS. Bacteria were then partially separated 

from the mammalian cells by centrifugation, washed and immunofluorescently labeled 

with IsdB. B. Wild type S. aureus recovered from the organs of C57BL/6J mice was 

separated from the mammalian cells as in A, normalized to 1x10
5
 CFUs, lysed with 

lysostaphin to release cell-wall proteins which were separated on SDS-PAGE gel, and 

transfered onto nitrocellulose membrane. The membrane was immunoblotted with 

IsdA and IsdB antibodies. C. Relative amount of IsdA and IsdB in the infected 

organs was quantified based on immunoblot intensity. Error bars represent standard error. 

Asterisks denote statistically significant differences as determined by Student’s t test (P < 

0.05). D. Organ colonization was estimated based on CFU quantification by serial 

dilution and plating on TSA. The horizontal bars represent the mean, boxes represent 

standard deviation. Asterisks denote statistically significant differences as determined by 

Student’s t test (P < 0.05). Each group included at least 9 mice. 
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Discussion 

Here we demonstrate subcellular co-localization and interaction of IsdA and IsdB, 

which function together to provide nutrient heme-iron to S. aureus during infection. In 

Gram positive bacteria, the thick cell wall poses an additional obstacle to the transport of 

iron (99, 114). To acquire iron during infection S. aureus utilizes the Isd system, which 

allows it to bind hemoglobin, remove and transport  heme across the cell wall and 

membrane into the cytoplasm, where  heme is degraded to release iron (114). The 

properties of individual factors constituting the Isd system have been investigated; 

however the mechanics of their cooperation remain to be established. Recent studies have 

shown that recombinant IsdB (rIsdB) is capable of removing heme from hemoglobin and 

passing it to rIsdA in solution (87, 131).  In vivo, IsdA and IsdB are predicted to be 

located in direct proximity to each other in order to remove and pass heme iron.  Testing 

this model has proven difficult due to the inherent complexities associated with 

performing protein localization studies in S. aureus. Few reports on the localization of S. 

aureus proteins have been published to date due to the small size of staphylococcal cells 

and the non-specific binding of IgG by Protein A. 

Here we demonstrate that IsdA and IsdB expression and localization is regulated 

by iron availability. In conditions under which their expression is limited, IsdA and IsdB 

are concentrated to distinct puncta located throughout the cell surface. One possible 

explanation for this organized localization pattern is that under these conditions the Isd 

proteins are produced in successive waves of expression and are therefore anchored to the 

cell wall periodically. Another mechanism through which punctate localization could be 

achieved is suggested by the location of IsdA and IsdB deposition at the sites of cell 
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division, possibly through a single secretion portal. Because cell division is periodical, it 

is possible that when the cell starts dividing this portal “opens”, and all synthesized IsdB 

swiftly gets incorporated into the cell wall. A “pause” follows, during which the IsdB 

levels are exhausted and it is not incorporated into the cell wall, accounting for the 

interruptions in its distribution.  Although these models are speculative at this point, the 

proteins of the Isd system provide excellent tools to test these models, because their 

expression levels are easily manipulated by iron availability. Notably, another report has 

demonstrated punctuate distribution of a hemoglobin receptor on the surface of Bacillus 

cereus (30). 

We have shown that IsdA and IsdB are deposited at the same location on the cell 

wall of S. aureus. This might ensure that IsdA and IsdB, which function together in heme 

import, are proximal to each other. Notably, some IsdA is deposited on the cell wall at 

locations distant from IsdB, which might be due to the fact that IsdA has functions 

distinct from heme-iron acquisition such as resistance to antimicrobials and adherence to 

the host epithelium (22-24).  Studies have indicated that not all cell wall proteins of Gram 

positive bacteria are destined for the same site, suggesting differential localization of 

surface proteins depending on their function (15, 31, 105). In keeping with this, the 

specific deposition of IsdB at the cell division site can be attributed to the YSIRK/GS 

sequence found within its signal peptide domain, which primes cell wall anchored 

proteins to the sites of cell division (15, 31). In contrast, IsdA does not encode for 

YSIRK/GS within its signal peptide and is anchored to sites both within and outside of 

the sites of cell division. These facts suggest that additional factors which contribute to 

the localization of cell wall anchoring are yet to be determined.  It is possible that IsdA 
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anchoring is not restricted to the site of cell division due to its higher basal level of 

expression. In addition to spatial proximity, the possibility that IsdA/IsdB interact in vivo 

is supported by the observation that IsdA co-immunoprecipitates with IsdB.   

A primary function of the Isd system is to capture hemoglobin for use as a 

nutrient iron source. We have found that hemoglobin binding to the surface of S. aureus 

depends on iron availability and the presence of IsdB. Surprisingly, staphylococci which 

are maximally iron starved and therefore display IsdB uniformly throughout the cell 

surface, bind hemoglobin at discrete locales. It is possible that in order to effectively bind 

hemoglobin, multiple tightly packed molecules of IsdB are employed or that IsdB 

requires another factor to bind Hb, and this factor is only present at these locales.  

Additionally, we observed an iron-dependent IsdB-independent hemoglobin binding 

activity conferred by IsdA and IsdH, consistent with their in vitro hemoglobin binding 

activity (24, 33, 91). Interestingly, spaisdAB was impaired in its ability to bind 

hemoglobin when grown in iron rich medium compared to spa. This indicates that IsdA 

binds minimal levels of hemoglobin in iron-sufficient conditions, potentially providing S. 

aureus with a mechanism to acquire low levels of heme when the organism is not in an 

iron-starved state.     

Levels of IsdA and IsdB expressed by S. aureus isolated from the hearts of 

infected mice are lower than those of “maximally starved” bacteria grown in TSB + 1 

mM DIP (data not shown).  By comparing the expression pattern of IsdB from S. aureus 

grown in iron-deplete media to that of IsdB from S. aureus removed from infected 

animals, we can estimate that S. aureus experience a level of iron starvation within the 

heart similar to that seen upon growth in TSB + 250 M DIP.   Furthermore, IsdB is not 
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uniformly localized on the surface of bacterial cells removed directly from infected 

organs. These results suggest that the punctate localization of IsdB observed in our in 

vitro experiments is recapitulated during staphylococcal infection. 

Consistent with the observation that IsdB is detected by S. aureus in the hearts but 

not the livers of infected mice, isdB is impaired in colonizing the heart while this strain 

colonizes livers at levels equivalent to wild type. Expression of IsdA is also lower in 

murine livers as compared to hearts. Taking into consideration the varying degrees by 

which iron impacts the regulation of IsdB and IsdA, we suggest that the heart provides an 

environment with less available iron than that found in the liver. This idea is supported by 

the fact that the liver is the major storage site for iron in vertebrates (43, 45). Further, 

liver is a common site of S. aureus–induced abscess formation and iron overload is 

associated with increased susceptibility to staphylococcal liver infection (21, 111). It has 

recently been shown that S. aureus recovered from murine airways bind considerable 

hemoglobin, suggesting that the respiratory tract is an iron-poor environment similarly to 

the heart (123). In addition, we have found that S. aureus is iron deficient when inside 

murine kidney abscesses (98).  Thus, monitoring expression of Isd proteins and 

hemoglobin binding across murine organs can be used to predict the level of iron 

restriction experienced by S. aureus during the course of an infection.  Heme-iron 

acquisition systems have been considered viable targets for novel antimicrobials and anti-

staphylococcal vaccines (68, 115).  The differential expression of these systems across 

organs should be taken into consideration when designing future therapeutic and 

preventive regimens.  
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CHAPTER III 

 

SPECIFICITY FOR HUMAN HEMOGLOBIN ENHANCES Staphylococcus aureus 

INFECTION 

 

I was a vampire, and she had the sweetest  

blood I’d smelled in eighty years. 

Edward Cullen, Midnight Sun 

Introduction 

Capture of hemoglobin by the hemoglobin receptor IsdB is a critical step in heme-

iron acquisition (80, 93, 118).  This process is required for pathogenesis as demonstrated 

by the decreased proliferation of S. aureus strains inactivated for isdB in murine models.  

Notably, the primary amino acid sequence of hemoglobin differs across species and 

variation within hemoglobin primarily localizes to surface exposed residues that are 

likely recognized by IsdB (Figure 12A). Further, nearly a thousand polymorphisms 

within the human hemoglobin (hHb) sequence have been identified to date (50). This 

suggests that interspecies variation and variation within hHb may impact iron capture, the 

host range, and severity of infection caused by S. aureus. Here we report that S. aureus 

IsdB preferentially recognizes human hemoglobin as compared to hemoglobin derived 

from other animal species. This preferential recognition results in enhanced bacterial 

proliferation and increased susceptibility of mice carrying hHb to staphylococcal 

infection. We show that preference for hHb is not confined to human isolates of S. aureus 

and is characteristic for animal isolates as well. Further, we demonstrate that certain hHb 

variants are differentially recognized by S. aureus. Finally, we identify tyrosine 165 

within IsdB as an essential residue for both hHb and mHb binding and heme as a 

regulator of Hb binding. 
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Figure 12. Sequence conservation and binding by S. aureus of hemoglobin derived 

from different species. A. Hemoglobin amino acid conservation based on alignment of 

human, mouse, baboon, bovine, horse, pig, rabbit and rat sequences prepared with 

Lasergene 6 software. Blue indicates little conservation, while red represents absolute 

conservation. Surface-exposed residues are marked with black horizontal bars. Residues 

that are divergent between mouse and human hemoglobin are marked with asterisks. B. 

Binding of animal hemoglobin (supplemented at 50 g/ml) to the cell wall of S. aureus 

expressed in percent of bound human hemoglobin. Means and statistical significance 

were calculated based on logarithmically transformed fractions. Error bars represent 

confidence intervals (0.05; asterisks denote quantities of bound Hb statistically 

different from bound hHb (Student’s two-tailed t-test, P<0.05).  The graphs resulted from 

at least three independent experiments. 
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Methods 

Bacterial strains and growth conditions. All experiments were carried out with S. aureus 

strain Newman (35), or with mutants generated in its background, unless indicated 

otherwise. The following strains of other bacteria were used for growth assays: 

Acinetobacter baumannii 17978, Pseudomonas aeruginosa PAO1, E. coli DH5, 

Staphylococcus lugdunensis HKU09-01, Staphylococcus simulans TNK3, 

Staphylococcus epidermidis NRS6, Bacillus cereus 569, Bacillus anthracis Sterne, 

Staphylococcus haemolyticus NRS9, Corynebacterium diphtheriae C7(-) and Shigella 

flexneri SC560 (an M90T derivative with a icsA::Sp
r
 mutation). All cultures were 

inoculated from a single colony and grown overnight (~20 hours) in 5 ml RPMI 

(Thermo) medium supplemented with 1% casamino acids (RPMI + CA) in 15 ml conical 

tubes at 37°C with shaking at 180 rotations per minute (rpm) unless noted otherwise. The 

isogenic variant lacking isdB (isdB) has been described previously (80). A 

complementing plasmid containing Newman isdB (pOS1-isdB) has also been previously 

described (118). Alanine substitution mutations within isdB at positions Y165 and Y440 

were generated using Pfu mutagenesis and confirmed by sequencing.  In order to 

maintain the plasmids, the complemented strains were grown in the presence of 

chloramphenicol (10 g/ml). RN6390isdB has been described previously (117). Strains 

inactivated for isdB in RN4220 and USA300 were generated by transducing the 

isdB::ermC allele from Newman isdB using bacteriophage-85 (80). To generate a 

complementing plasmid containing isdB from RF122, isdB and its promoter were PCR-

amplified from the chromosome of RF122 with IsdB-5_RF122-PstI (GGGGCTGCAG-

ATAAATCATAATCACACTCATAAC) and IsdB-3_RF122-BamHI (CCCCGGATCC-
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ACAGGCTACCTCATCCACC) primers. To generate a complementing plasmid 

containing isdB from ST398, isdB and its promoter were PCR-amplified from the 

chromosome of ST398 with IsdB-5_ST398-NsiI (GGGGATGCAT-

TAAATAAATCTTCGTCACACTC) and IsdB-3_ST398-BamHI CCCCGGATCC-

ATCGGAATACCTCATCTGCC) primers. The PCR reactions were digested with PstI 

(NsiI for ST398 isdB) and BamHI and cloned into pOS1 digested with PstI and BamHI. 

Cloning was confirmed with sequencing of the inserts. isdB Y165A mutation within the 

chromosome of S. aureus  Newman was generated by PCR amplifying isdB from pOS1-

isdB Y165A using IsdB-5'-AttB1 (GGGG ACAAGTTTGTACAAAAAAGCAGGCT - 

ATGAACAAACAGCAAAAAGAATT) and IsdB-3'-AttB2 (GGGG 

ACCACTTTGTACAAGAAAGCTGGGT – TTATTAGTTTTTACGTTTTCTAGG) 

primers. PCR was recombined into pKOR1 vector and mutagenesis was carried out as 

described previously (5). Mutation was confirmed by PCR. 

 Purification of human and mouse hemoglobin from fresh blood. Erythrocytes were 

sedimented by centrifugation (1,500 x g, 20 minutes, 4°C) from fresh human or mouse 

blood supplemented with anticoagulant. Erythrocytes were then washed 3 times with 3 

volumes of ice cold saline (0.9% NaCl). Hemoglobin was released from erythrocytes by 

gently resuspending red blood cells in 1.5 volumes of 10 mM Tris-HCl (pH8.0) and 20% 

toluene (v/v) overnight on a rotisserie at 4°C. Hemolysate was separated from insoluble 

cellular debris (pellet) and membranes (toluene, upper layer) by a single centrifugation 

(20,000 x g, 1 hour, 4 C°). Hemolysate was then passed through a 0.4 m filter. 

Hemoglobin was purified using an HPLC anion exchange column (Varian, PL-SAX 

1000Å 8m, 150mm x 4.6mm). The mobile phase A was 10 mM Tris-HCl (pH 8.0) and 
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mobile phase B was 10 mM Tris-HCl (pH 8.0) + 0.5 M NaCl. A 0-100% gradient of 

solvent B was run over 2 minutes at 2.0 ml/min flow rate. The eluant was monitored 

based on absorption (: 410 nm and 280 nm). Purified hemoglobin was dialyzed twice at 

4°C against phosphate buffered saline (PBS). Final hemoglobin concentrations were 

measured by Drabkin’s reagent (Sigma). Purified hemoglobin was stored in liquid 

nitrogen. 

S. aureus hemoglobin binding assay. Hemoglobin was either purified from blood (Figure 

13) or purchased (Sigma) (Figure 12). S. aureus was grown overnight in RPMI + CA 

supplemented with 0.5 mM of the iron chelator  2,2-dipyridyl (iron deplete) or 100 M 

FeCl3 (iron replete). Bacterial numbers were normalized to an optical density at 600 nm 

(OD 600) of 2.0. One ml of each culture was sedimented by centrifugation (3,000 x g, 10 

minutes), resuspended in 1 ml of PBS containing the indicated concentrations of 

hemoglobin and incubated at 37°C for 0.5 hour with shaking at 180 rpm. Heme, where 

added was purchased from Sigma (51280). Upon completion of incubation, bacteria were 

washed 3 times with 1 ml of ice cold PBS, resuspended in 30 l of 4% sodium dodecyl 

sulfate (SDS) 0.5M Tris-HCl (pH 8.0) and boiled for 5 minutes to release bound 

hemoglobin. S. aureus was then sedimented by centrifugation (16,000 x g, 5 minutes) and 

the supernatant containing hemoglobin was collected. Solubilized hemoglobin was 

subjected to 15% SDS-PAGE. Gels were silver stained (GE Healthcare Kit) and the 

relative abundance of bound hemoglobin was estimated based on the density of 

hemoglobin bands quantified by the Odyssey infrared imaging system (LI-COR) at 800 

nm. 
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Immunoblotting of cell wall IsdB. Cell walls were solubilized by incubation of S. aureus 

in 20 g/ml lysostaphin for 0.5 hour at 37°C. Cell wall proteins were separated by 12% 

SDS-PAGE and transferred onto nitrocellulose membranes. Membranes were blocked 

with 5% milk made in TBS with 0.1% Tween
 
20 (TBST) from 1 h to overnight. The 

membranes were then incubated
 
in milk plus primary rabbit

 
anti-IsdB (1:10,000), washed 

three times with TBST,
 
incubated in milk plus 0.1% sodium dodecyl sulfate plus 

secondary Alexa Fluor 680 goat anti-rabbit IgG (H+L) (1:25,000), and washed three
 

times in TBST. Membranes were visualized using an Odyssey infrared
 
imaging system 

(Li-Cor).  

IsdB–hemoglobin affinity measurement. Purification of recombinant IsdB has been 

previously described (80). Hemoglobin was biotinylated using EZ-Link NHS-LC-LC-

Biotin (Pierce) at 1:2 protein:biotin ratio according to manufacturer’s recommendations. 

Unbound biotin was removed with Zeba™ Desalt Spin Columns (Pierce 89889). Binding 

kinetics were measured with an Octet QK (ForteBio, Inc., Menlo Park, CA) apparatus. 

Briefly, streptavidin high binding capacity FA biosensors (ForteBio 18-5019) were 

loaded with biotinylated hemoglobin at 25 g/ml. Upon washing in PBS the sensors were 

transferred to rIsdB solution (5 – 10,000 nM) to allow association between rIsdB and 

hemoglobin. The sensors were then transferred to PBS to measure dissociation. 

Dissociation constants were calculated using Origin 7.5 SR6 software (OriginLab Corp., 

Northampton, MA) based on data acquired from three experiments using an automated 

curve fitting prompted by the Octet 4 software (ForteBio). 

Growth in liquid medium. Single colonies of S. aureus were inoculated into RPMI + CA 

supplemented with 0.5 mM of the iron chelator ethylenediamine-di(o-
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hydroxyphenylacetic acid) (EDDHA, LGC Standards GmbH) and grown overnight.  

EDDHA was used in place of 2,2-dipyridyl due to the fact that EDDHA is less toxic to S. 

aureus in growth assays.  One ml of overnight cultures was normalized to OD600 of 3.0, 

bacteria were sedimented (3,000 x g, 10 minutes), and resuspended in 1 ml NRPMI + 0.5 

mM EDDHA. NRPMI was prepared in advance by treating RPMI + CA with Chelex 100 

(Sigma) according to the manufacturer’s recommendations and supplementing the 

resulting ion-deficient medium with 25 M ZnCl2, 25 M MnCl2, 100 M CaCl2 and 1 

mM MgCl2. The resulting suspension of S. aureus was subcultured (1:100) into 1 ml of 

NRPMI + 0.5 mM EDDHA + hemoglobin at indicated concentrations. One ml cultures 

were incubated at 37°C in 15 ml conical tubes on a rotating wheel. OD600 measurements 

were taken at indicated time-points by mixing 10 l aliquots of the culture with 90 l 

PBS in 96 well plates. The number of colony forming units per milliliter of culture were 

quantified by serial dilution and plating on tryptic soy agar. 

Growth on solid medium. Single colonies of bacteria were inoculated into RPMI + CA + 

EDDHA (500 M for S. aureus strains and P. aeruginosa, 250 M for B. anthracis, and 

S. lugdunensis, 100 M for A. baumannii, S. haemolyticus, S. simulans, E. coli, and S. 

flexneri, 25 M for S. epidermidis, 10 M for B. cereus and none for C. diphtheriae) and 

grown overnight. Overnight cultures were spread with cotton swabs on NRPMI agar 

(NRPMI + 1.2% Bacto Agar) supplemented with EDDHA (500 M for S. aureus strains, 

P. aeruginosa, B. anthracis, S. lugdunensis, and B. cereus, 100 M for A. baumannii, S. 

haemolyticus, S. simulans, E. coli, S. flexneri,  and S. epidermidis). C. diphtheriae were 

grown on RPMI + CA agar supplemented with 1 M EDDHA. Sterile Whatman (d = 7 

mm) disks were impregnated with 10 l PBS-hemoglobin (1 mg/ml), placed onto agar 
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and incubated at 37°C. Pictures were taken at a 72 hour time point except: USA500 at 96 

hours, B. cereus at 14 hours, B. anthracis at 20 hours. Growth was measured by 

quantifying the distance between the edge of the disk and the edge of the zone of growth. 

Systemic mouse infections. Seven week old C57BL/6J or human hemoglobin transgenic 


H


A
 mice that were hemizygous for the transgene (104), but had no knock-outs or 

deletions, were infected retroorbitaly with ~10
7
 CFU grown to mid-log phase in tryptic 

soy broth and resuspended in sterile PBS. Ninety-six hours post infection the mice were 

euthanized with forced inhalation of CO2. The hearts and livers were removed post 

mortem and homogenized in 1 ml sterile PBS. Organ suspensions were serially diluted, 

plated on tryptic soy agar and incubated overnight at 37°C. The following morning the 

numbers of CFU/organ were quantified. Animal experiments were approved by the 

institutional animal care and use committee of Vanderbilt University. 

Expression of recombinant human hemoglobin.  pHb0.0 plasmid (a gift of Dr. John 

Olson) encoding hHb genes was transformed into E. coli strain BL21(DE3) and 

maintained by supplementation of tetracycline to Luria Bertani (LB) growth medium at 5 

g/ml (126). pHUG21 (a gift of Dr. Doug Henderson) harboring Plesiomonas 

shigelloides heme transport system was co-transformed in order to enhance rhHb 

expression and maintained by supplementation of ampicillin at 25 g/ml. Five milliliter 

overnights were sub-cultured into 1L LB containing antibiotics and iron chelator 

ethylenediamine-di-(o-hydroxyphenyl
 
acetic acid) to 6.25 g/ml. Cultures were incubated 

with shaking at 225 rotations per minute at 37°C until OD600 reached ~0.4. At that point 

the temperature was switched to 16°C and cultures were cooled for 1 hour. rhHb gene 

expression was then induced by the addition of isopropyl β-D-1-thiogalactopyranoside 
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(IPTG) to 40 g/ml. Heme was supplemented to 15.6 M. rhHb expression was allowed 

to continue at 16°C overnight. In the morning the bacteria were sedimented by 

centrifugation at 8,000 g for 10 minutes and frozen at -80°C. The pellet was thawed on 

ice and resuspended in 20 ml ice cold PBS containing 10 mM imidazole, 2 Mini 

Complete Protease Inhibitor tablets (Roche), 5 mM MgCl2 and 1 mg/ml lysozyme. The 

pellets were homogenized with a glass homogenizer and incubated at room temperature 

for 15 minutes with gentle rocking. Bacteria were lysed by passage through a French 

press twice at 1,200 psi. Soluble fraction was separated by centrifugation at 100,000 g for 

45 minutes. The supernatant was passed twice through 0.45 m filter, loaded onto 1.5 ml 

of Ni-NTA beads (Qiagen) and incubated at room temperature for 15 minutes to allow 

Hb binding to the beads. Unbound protein was run off and the beads were washed with 

PBS containing 10 mM imidazole. Hb was eluted with 500 mM imidazole and dialized 

twice against PBS. Hb concentration was measured using Drabkin’s reagent. Substitution 

mutations within hemoglobin genes were generated using Pfu mutagenesis and confirmed 

by sequencing.  
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Results 

S. aureus preferentially recognizes human hemoglobin. Many bacterial pathogens 

acquire nutrient iron from hemoglobin during infection.  Interspecies variation in the 

primary amino acid sequence of hemoglobin suggests that bacterial pathogens may 

differentially recognize hemoglobin from distinct animals. Due to the extensive use of 

mice as animal models of S. aureus infections, we sought to compare the efficiencies 

with which S. aureus recognizes human (hHb) and mouse (mHb) hemoglobin. 

Hemoglobin was purified from fresh human or mouse blood and incubated with iron-

starved S. aureus expressing the Isd system. Bound hemoglobin was then eluted and the 

relative amounts of hHb and mHb associated with the surface of S. aureus were 

compared. These experiments revealed that S. aureus binds hHb more effectively than 

mHb across a range of concentrations (Figures 13A). To test whether this preferential 

binding is dependent on IsdB we measured relative quantities of hHb and mHb bound by 

an isogenic isdB mutant (isdB). S. aureus isdB fails to bind increased quantities of hHb 

compared to mHb and this phenotype is fully complemented by providing a full length 

copy of isdB in trans (Figures 13B, C). These results demonstrate that S. aureus has 

evolved to bind hHb through IsdB with increased efficiency compared to mHb. The hHb 

preference of S. aureus is evident amongst hemoglobins from a variety of animal species 

suggesting that S. aureus has evolved to most efficiently recognize hemoglobin from its 

human host (Figure 12B).  
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Figure 13. S. aureus displays increased binding of hHb as compared to mHb. Iron-

starved S. aureus strain Newman were incubated with hemoglobin at the indicated 

concentrations and washed. Captured hemoglobin was eluted, subjected to SDS-PAGE, 

and silver stained. Bound hemoglobin was quantified based on the relative intensity of 

Hb bands. Relative quantities of cell-wall bound hemoglobin are expressed as percent of 

hHb bound by wild type (A), isdB (B), and isdB + pisdB (C). Representative silver 

stained gels of solubilized human (H) and mouse (M) hemoglobin eluted from the cell 

wall of S. aureus are on the right.  “Loading” refers to non-hemoglobin banding patterns 

which were used as a loading control to confirm equal loading. Means and statistical 

significance were calculated based on logarithmically transformed fractions. Error bars 

represent confidence intervals (0.05; asterisks denote quantities of bound mHb 

statistically different from hHb supplemented at the same conditions (Student’s two-

tailed t-test, P<0.05). Each graph is a result of three independent experiments. 
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The IsdB-dependent requirement for the preferential binding of hHb to the surface 

of S. aureus suggests that IsdB binds hHb with an increased affinity as compared to mHb. 

To test this hypothesis, we measured the affinity of recombinant IsdB (rIsdB) for hHb 

and mHb by biolayer interferometry (Figure 14). In support of our in vivo findings, the 

KD of the rIsdB-hHb interaction (5.5 x 10
-8

 M) is significantly stronger than the KD of the 

rIsdB-mHb interaction (9.8 x 10
-7

 M).  Notably, this calculated affinity for the interaction 

of IsdB and hHb is consistent with previously published findings (34). This result 

indicates that the preferential binding of hHb to the cell wall of S. aureus is achieved 

through a stronger interaction with the Hb receptor IsdB.  
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Figure 14. Real-time, label-free protein association or dissociation as detected by 

biolayer interferometry signal. Signal of rIsdB-hHb (A) and rIsdB-mHb (B) 

interactions. Numbers below the graphs represent critical steps in the experiments: 1. 

Streptavidin sensors are placed into wells containing biotinylated hemoglobin for 900 

seconds. Increase in signal indicates loading of hemoglobin. 2. Sensors are transferred 

into buffer to wash off unbound hemoglobin and establish a baseline (300 seconds). 3. 

Sensors are transferred to wells containing indicated concentrations of rIsdB (900 

seconds). Increase in signal indicates association of rIsdB with hemoglobin. 4. Sensors 

are transferred into buffer, decrease in signal indicates dissociation of rIsdB from 

hemoglobin (900 seconds). 
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S. aureus has evolved to acquire nutrient iron from hHb more efficiently than from 

mHb. In iron-limiting conditions such as those encountered during infection (93, 98), 

hemoglobin is a preferred source of iron that is sufficient to provide S. aureus with iron 

necessary for growth (113, 118). Therefore, we sought to determine whether preferential 

binding of hHb correlates with an improved ability to utilize hHb as an iron source. To 

test this hypothesis we measured the capacity of hHb and mHb to support S. aureus 

proliferation in an otherwise iron-deficient medium. Iron-starved S. aureus were 

inoculated into medium containing either hHb or mHb as a sole source of iron and 

bacterial replication was monitored over time as a function of either optical density or 

enumeration of colony forming units.  S. aureus supplemented with mHb displayed a 

significant delay in growth as compared to hHb supplementation (Figure 15A, B). These 

results reveal that S. aureus more efficiently utilizes hHb as an iron source as compared 

to mHb. The enhanced growth of S. aureus in the presence of hHb is dependent on IsdB, 

as indicated by isdB exhibiting similar growth rates on either hHb or mHb (Figure 15C, 

D). Notably, isdB does not display an altered growth pattern when non-hemoglobin 

sources of iron are available (118).  

To further evaluate the efficiency of hHb-iron utilization, we monitored the ability 

of S. aureus to grow on solid medium where either hHb or mHb was the sole iron source.  

S. aureus was spread on iron-deficient medium containing discs impregnated with either 

mHb or hHb. The zone of growth around the disks was recorded as a measure of the 

ability of S. aureus to utilize Hb as an iron source. Growth around disks containing hHb 

was observed by 24 hours and continued to expand over the course of the experiment.  In  
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contrast, growth was not detectable around the mHb containing disc until approximately 

72 hours after inoculation (Figure 15E). These findings demonstrate that S. aureus has 

evolved to acquire nutrient iron from hHb more efficiently than from mHb, and the 

enhanced recognition of hHb is mediated by the hemoglobin receptor IsdB.  
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Figure 15. hHb promotes S. aureus replication in iron-limiting conditions. Growth of 

S. aureus Newman wild type (A, B) or isdB (C, D) in liquid medium supplemented with 

5 g/ml hemoglobin as a sole source of iron was measured based optical density at 600 

nm (OD600) (A, C)  or colony forming units per milliliter of liquid (B, D) over 72 hours 

(cfu/ml). The graphs represent a mean of three independent experiments. Error bars 

represent standard deviation; asterisks denote values upon hHb supplementation 

significantly different from values upon mHb supplementation at the same time point 

(Student’s two-tailed t-test, P<0.05).  E. Petri dishes containing iron-restrictive agar were 

streaked with bacterial cultures. Disks impregnated with 10 g of hemoglobin were 

placed on top of the agar and S. aureus growth surrounding the disks was monitored over 

72 hours. Opaque gray zones around disks indicate zone of growth. The images are a 

representative of five independent experiments. 
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Human hemoglobin exacerbates S. aureus infection in a murine model. Hemoglobin 

binding is a prerequisite for heme-iron acquisition during infection and as such, plays a 

critical role during S. aureus infection (93, 118). In order to test whether the increased 

specificity for hHb benefits S. aureus during infection, we examined the susceptibility of 

transgenic 
H


A
 mice that express normal adult human hemoglobin to systemic 

staphylococcal infection (104). S. aureus were inoculated intravenously into wild type or 


H
β

A
 mice and the infection was allowed to proceed for 96 hours. Following this time 

course, mice were sacrificed, organ tissues were removed and homogenized, and bacterial 

counts were enumerated. In accordance with an increased ability of S. aureus to utilize 

hHb as an iron source, 
H
β

A
 mice were more efficiently colonized as compared to 

wildtype animals (Figure 16, top). The presence of human hemoglobin does not affect 

infection by isdB as demonstrated by the similar susceptibility of wildtype and 
H


A
 

mice to ΔisdB (Figure 16, bottom). Thus, the increased susceptibility of 
H


A
 mice to 

systemic S. aureus infection is fully dependent on hemoglobin binding by IsdB. These 

results demonstrate that the enhanced specificity of S. aureus for hHb translates into 

increased colonization and establishes 
H
β

A
 as a humanized mouse that exhibits 

increased susceptibility to S. aureus infections. Importantly, 
H


A
 mice express 

approximately equal levels of both hHb and mHb suggesting that the effects observed 

here may underestimate the contribution of hHb to staphylococcal infection in humans. In 

addition, total Hb concentration does not differ between 
H


A
 and wild type animals 

therefore variations in susceptibility are not due to hemoglobin abundance (data not 

shown).  Knock-in mice that express exclusively hHb have been previously generated. 

However, hHb knock-in mice are notoriously difficult to breed and are therefore 
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unsuitable for infection models, which require high numbers of subjects in order to 

evaluate statistical significance (130).   

 

Preference for human hemoglobin varies across pathogens. The experiments 

described above were performed using S. aureus Newman, a commonly studied 

laboratory strain. To assess the ability of other laboratory and clinically relevant S. 

aureus isolates to acquire iron from mHb and hHb we tested the Hb preference of a panel 

of staphylococcal strains. As demonstrated in Figure 17A, all tested S. aureus isolates 

display increased binding of hHb as compared to mHb. Isogenic isdB mutants of 

clinically relevant USA300 and the common laboratory strains RN4220 and RN6390 lost 

the ability to bind increased quantities of hHb as observed with strain Newman (Figures 

17B and 13B). In support of the role of IsdB in increased hHb binding, S. aureus do not 

differentiate between hHb and mHb when grown under iron-replete conditions that 

prohibit isdB expression (Figure 17C). Further, disk diffusion assays demonstrated 

increased proliferation using hHb as a sole iron source as compared to mHb for all tested 

S. aureus strains (Figure 17D). These results demonstrate that the preferential utilization 

of hHb as an iron source by IsdB is conserved among tested S. aureus isolates.  
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Figure 16. Mice expressing human hemoglobin exhibit increased susceptibility to S. 

aureus. Number of colony forming units (CFU) of S. aureus Newman isolated from 

organs of systemically infected C57BL/6J and 
H


A
 mice 96 hours post-inoculation as 

determined by serial dilution. Data were logarithmically transformed prior to statistical 

analyses. Horizontal bars represent the average values of CFU/organ, boxes represent 

standard deviation. Asterisks denote significantly different values (Student’s two-tailed t-

test, P<0.05). The graphs represent combined data acquired from multiple independent 

experiments. 
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Numerous bacterial pathogens express hemoglobin receptors and utilize 

hemoglobin as an iron source during infection (29). In keeping with this, we evaluated 

the ability of a number of bacterial species to grow in the presence of hHb and mHb.  

Many organisms that do not express hemoglobin receptors were unable to proliferate in 

the presence of either hHb or mHb, including Escherichia coli DH5Staphylococcus 

haemolyticus, Staphylococcus epidermidis and Shigella flexneri (data not shown). In 

contrast, Staphylococcus lugdunensis, Staphylococcus simulans and Corynebacterium 

diphtheriae displayed a preference for hHb similar to S. aureus (Figure 17E). Finally, 

Acinetobacter baumannii, Pseudomonas aeruginosa, Bacillus anthracis and Bacillus 

cereus utilized mHb and hHb with equal efficiency. These results demonstrate that the 

preferential utilization of hHb as an iron source is conserved across some bacterial 

pathogens while others do not discriminate between hHb and mHb. 
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Figure 17. Bacterial pathogens vary in preference of hHb over mHb. A., B. and C. 

Binding of hHb and mHb by S. aureus strains was assessed as in Figure 1. Petri dishes 

containing iron-restrictive agar were streaked with strains of S. aureus (D), and other 

bacterial pathogens (E). Disks impregnated with 10 g of hHb or mHb were placed on 

top of the agar and bacterial growth surrounding the disks was measured. The graphs 

depict growth on mHb as a percentage of growth on hHb in the same conditions (growth 

on hHb = 100%). The graphs represent a mean of three to four independent experiments. 

Means and statistical significance were calculated based on logarithmically transformed 

fractions. Error bars represent confidence intervals (0.05; asterisks denote growth on 

mHb that is statistically different from growth on hHb supplemented at the same 

conditions (Student’s two-tailed t-test, P<0.05). 
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Animal isolates of S. aureus display hHb preference. S. aureus causes infections in 

numerous species. Because human isolates of S. aureus uniformly display preference for 

hHb, we investigated whether isolates from other species preferentially bind Hb derived 

from their host. To this end we have acquired isolates from bovine (RF122), pig (ST398 

and t337), mouse (DAK), rat (ALR), and primate (NPRC3, NPRC6, and NPRC53) hosts. 

All of the above isolates, as well as all sequenced strains of S. aureus, carry full-length 

isdB. Surprisingly, all tested strains displayed preferential cell wall binding of hHb over 

Hb derived from the host they were isolated from (Figure 18A, B and data not shown). 

To confirm that hHb preference was due to IsdB-mediated binding, we have cloned isdB 

from RF122 and ST398 into the pOS1 expression vector, which was then transformed 

into Newman isdB.  RF122 and ST398 isdB expressed in Newman isdB background 

conferred increased binding of hHb to the cell wall of the bacterium (Figures 18C and 

13C). These results indicate that animal isolates of S. aureus display increased binding of 

hHb through interaction with IsdB. 
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Figure 18. Animal isolates of S. aureus display increased binding of hHb as 

compared to Hb of their host. Iron-starved S. aureus strain Newman were incubated 

with hemoglobin at the indicated concentrations and washed. Captured hemoglobin was 

eluted, subjected to SDS-PAGE, and silver stained. A. and B. Silver stained gels of 

solubilized human (H), bovine (B) and pig (P) hemoglobin eluted from the cell wall of 

indicated strains of S. aureus. C. Relative quantities of human (hHb), bovine (bHb) and 

pig (pHb) hemoglobin bound by Newman isdB carrying a plasmid with isdB from an 

animal isolate. Hb was supplemented at 10 g/ml.  Bound hemoglobin was quantified 

based on the relative intensity of Hb bands. Means and statistical significance were 

calculated based on logarithmically transformed fractions. Error bars represent 

confidence intervals (0.05; asterisks denote quantities of bound Hb statistically 

different from hHb supplemented at the same conditions (Student’s two-tailed t-test, 

P<0.05). Each graph is a result of three independent experiments. 
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Human hemoglobin variants are differentially recognized by S. aureus. We have 

demonstrated that S. aureus has adapted to bind hHb with a higher affinity than Hb 

derived from other mammals. Importantly, hHb is highly diverse across the human 

population with numerous polymorphisms identified to date. Certain substitutions found 

within hHb result in debilitating diseases such as sickle cell anemia, while others are not 

associated with disorders. To generate a subset of hHb variants, we have acquired a 

plasmid that allows expression and purification of recombinant hHb (rhHb) from E. coli. 

Due to the fact that mHb is bound by S. aureus with a decreased affinity compared to 

hHb, we have chosen to test hHb variants with substitutions in the residues that are: a) 

different between hHb and mHb and are b) on the outer, external face of the molecule 

(Figure 19 A,B). With an exception of the -globin V20E substitution that is associated 

with mild erythrocytosis (increase in RBC count), none of the selected variants are 

known to cause abnormalities. A number of substitutions found within the human 

population resulted in decreased binding of rhHb to the cell wall of S. aureus (Figure 

19C). In particular, we observed a pronounced reduction in binding of -globin A5D 

variant to the surface of S. aureus. Notably, mHb also contains an aspartate at the 

position 5. This indicates that aspartate instead of alanine at position 5 of mouse -globin 

is at least in part responsible for the decreased affinity of IsdB to mHb as compared to 

hHb. These results indicate that certain hHb variants found in the human population are 

bound by S. aureus with a decreased efficiency compared to the most prevalent allele. 
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Figure 19. S. aureus differentially binds hHb variants. A. and B. Residues within 

recombinant hHb (rhHb) that were selected for mutagenesis are depicted in blue. One of 

the two  (A) or  (B) chains of the Hb tetramer is depicted in red. wt refers to the most 

prevalent variant of Hb. C. Iron-starved S. aureus strain Newman were incubated with 

Hb at 2.5 g/ml and washed. Captured hemoglobin was eluted, subjected to SDS-PAGE, 

and silver stained. 
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Tyrosine Y165A is required for Hb binding by IsdB. We have established that IsdB is 

a cell wall anchored, surface exposed receptor that is adapted to bind hHb with increased 

efficiency compared to Hb derived from other species. To test whether IsdB interacts 

with hemoglobin from different species through the same mechanism, we have generated 

a mutant IsdB with a conserved tyrosine 165 residue substituted for alanine (isdB 

Y165A). This residue has been shown to contribute to Hb binding by IsdH (92). Cell wall 

expression of a isdB Y165A eliminates hemoglobin binding, establishing this residue as 

critical for both hHb and mHb recognition by IsdB (Figure 20A). IsdB Y165A is 

expressed at the same amount as wt IsdB from the pOS1 vector (Figure 20A, bottom 

insert). To confirm the role of Y165 in Hb binding, we generated a chromosomal Y165A 

mutation in Newman and assessed the ability of this mutant to bind Hb. IsdB expressed 

from the chromosome carrying Y165A mutation was deficient in binding Hb, although its 

expression level was not altered (Figure 20B,C). These results demonstrate the absolute 

requirement of the conserved tyrosine 165 within IsdB  for Hb binding to the cell wall of 

S. aureus. 
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Figure 20. Tyrosine-165 is required for Hb binding activity of IsdB. A. Iron-starved 

S. aureus strain Newman isdB harboring the indicated plasmids were incubated with 

hemoglobin at 10 g/ml. Captured hemoglobin was eluted, subjected to SDS-PAGE, and 

silver stained. Bound hemoglobin was quantified based on the relative intensity of Hb 

bands. Relative quantities of cell-wall bound hemoglobin are expressed as percent of hHb 

bound. Insert below panel is an image of an anti-IsdB immunoblot, demonstrating cell 

wall IsdB expression. Means and statistical significance were calculated based on 

logarithmically transformed fractions. Error bars represent confidence intervals (0.05. 

* denotes quantities of bound mHb statistically different from hHb, # denotes quantities 

that are significantly different from hHb and mHb bound by isdB + pisdB (wt) 

supplemented at the same conditions (Student’s two-tailed t-test, P<0.05). Each graph is 

a result of three independent experiments. B. Silver stain of hHb bound by Newman wt, 

isdB, and Newman carrying Y165A mutation within chromosomal isdB. Hemoglobin 

was supplemented at indicated concentrations. C. Anti-IsdB immunoblot, demonstrating 

cell wall IsdB expression by Newman wt, isdB, and Newman carrying Y165A mutation 

within chromosomal isdB. SpA is protein A, used here as a loading control. 
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Heme regulates Hb binding by S. aureus. IsdB contains distinct putative hemoglobin 

and heme-binding domains (92). Upon binding of Hb, IsdB extracts heme and 

subsequently passes it to IsdA or IsdC (87, 131). The mechanism of hemoglobin release 

upon heme extraction, however, has not been elucidated. To test whether heme binding 

regulates Hb binding in IsdB, we cultured S. aureus in iron poor conditions in the 

presence of heme. S. aureus grown in the presence of as little as 2 M heme was unable 

to bind hemoglobin (Figure 21A). Notably the expression levels of IsdB on the cell wall 

were not affected by the presence of heme in the growth medium (Figure 21B). Other 

changes in the expression profile of S. aureus induced by heme might have affected its 

affinity for Hb. To eliminate this possibility we have cultured S. aureus in the absence of 

heme and supplemented heme together with Hb. The concentrations of heme above 0.5 

M were inhibitory to Hb binding to the cell wall of S. aureus (Figure 21C). To test 

whether heme inhibition occurred through specific binding to IsdB, we have expressed an 

IsdB mutant predicted to be deficient in heme binding (Y440A). Heme-binding-deficient 

IsdB is not sensitive to heme inhibition of Hb binding (Figure 21C). These results suggest 

that IsdB-Hb interaction is regulated by the heme status of IsdB. 
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Figure 21. Heme regulates Hb binding to the cell wall of S. aureus. A. S. aureus were 

grown overnight in the presence of indicated concentration of heme. S. aureus were then 

incubated with hemoglobin at 2.5 g/ml. Captured hemoglobin was eluted, subjected to 

SDS-PAGE, and silver stained. Note: the band in heme-grown cultures is likely a S. 

aureus protein up-regulated by heme. B. Anti-IsdB immunoblot, demonstrating cell wall 

IsdB expression by S. aureus grown in the presence or absence of heme. C. Iron-starved 

S. aureus strain Newman were incubated with hemoglobin at 2.5 g/ml and heme at 

indicated concentrations. Captured hemoglobin was eluted, subjected to SDS-PAGE, and 

silver stained. D. Iron-starved S. aureus strain Newman isdB harboring plasmids with 

wt or Y440A isdB were incubated with hemoglobin at 10 g/ml. Captured hemoglobin 

was eluted, subjected to SDS-PAGE, and silver stained. 
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Discussion 

Herein, we demonstrate that human hemoglobin is a factor that impacts the host 

susceptibility to S. aureus through its interaction with the hemoglobin receptor IsdB. The 

significant affinity of IsdB for human hemoglobin permits the efficient utilization of hHb 

as an iron source leading to increased colonization and disease. Importantly, all tested 

clinically relevant strains display increased iron acquisition from hHb. By exploiting 

these observations, we have established 
H


A
 mice as an improved murine model for 

studies into the pathogenesis of staphylococcal infections.  

Our results reveal that a variety of distinct pathogens display an enhanced ability 

to utilize hHb as an iron source, while others do not exhibit hemoglobin preference 

(Figure 4D). Notably, bacteria that primarily associate with humans (S. aureus, S. 

lugdunensis, S. simulans, C. diphtheria) display preference for hHb over mHb, whereas 

environmental bacteria that infect numerous hosts (A. baumannii, P. aeruginosa, B. 

anthracis and B. cereus) grow at comparable levels on hHb and mHb. In this regard, S. 

aureus IsdB binds hHb with a much stronger KD value (5.5 x 10
-8

 M) than the B. 

anthracis hemoglobin binding protein IsdX1 (7.3 x 10
-6

 M) (78). This supports the 

hypothesis that S. aureus IsdB is optimized to bind hHb in order to acquire iron and 

colonize humans.  

Much of what has been learned regarding the pathogenesis of S. aureus infection 

has been obtained from murine models of infection. However, due to inherent differences 

between mice and humans, murine infection models do not perfectly recapitulate human 

disease.  To improve on this shortcoming, significant effort has been devoted to the 

development of humanized mouse models that more accurately reflect human disease 
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(71, 110). To date, few humanized mouse models have been established that exploit non-

immune host factors (57, 69, 116). Our findings add the human hemoglobin expressing 

mouse to the list of humanized animals that are valuable tools for modeling infection.  

Moreover, these findings demonstrate that humanized mouse models can be created that 

exploit the nutrient requirements of bacterial pathogens. Importantly, many bacterial 

pathogens utilize hemoglobin as an iron source; therefore human hemoglobin expressing 

mice may be valuable for studies into a variety of infectious diseases (29). 

We have found that animal isolates of S. aureus preferentially bind human 

hemoglobin through the interaction with IsdB similarly to human isolates. This could be 

explained by the fact that strains of S. aureus that associate with animals have their 

origins in humans and have switched  their host in a single jump (48, 52, 74). In support 

of this notion animal isolates can readily infect humans as demonstrated by transmission 

of ST398 from pigs to humans. Human ST398 infections lead to a significant increase in 

community acquired infections in Europe and spread of the isolate to the United States 

(38).  It is therefore possible that all S. aureus strains preferentially recognize human 

hemoglobin due to the fact that all strains of S. aureus were at one point associated with 

humans. Interestingly, rabbit hemoglobin is recognized by S. aureus nearly as well as 

human hemoglobin. In parallel are observations that other S. aureus virulence 

determinants interact with human and rabbit factors with an increased specificity as 

compared to other animals. Examples include increased binding of rabbit and human 

IgGs by S. aureus protein A, enhanced cell lysis by -toxin and  Panton-Valentine 

leukocidin, and  fibrinogen coagulation by coagulase (26, 53, 73, 101, 125).  
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Numerous polymorphisms are identified within hHb. Many of these 

polymorphisms are located on the outer face of the Hb tetramer within residues that are 

potentially recognized by IsdB and may therefore affect IsdB-Hb interaction. We have 

chosen to initially focus on polymorphisms in amino acids that are different between hHb 

and mHb, due to the difference in the affinity of IsdB for these two hemoglobins. Here 

we demonstrate that single amino acid changes corresponding to hHb polymorphisms 

may affect the ability of S. aureus to bind hHb. The change in the affinity to hHb may 

potentially translate into altered ability of S. aureus to acquire iron and infect the carrier 

of the hHb polymorphism. Encouraged by these results we will extend our studies into 

other variants of hHb. As discussed in the future directions, we will utilize a bacterial 

two-hybrid system to screen other hHb variants to identify those that are differentially 

recognized by IsdB. Notably, at least one hHb polymorphism is known to affect 

resistance to infectious disease. Valine substituted for glutamate in the -chain of hHb 

renders hHb unavailable to Plasmodium species, conferring its carrier resistance to 

malaria (3). This is a classic example of how a substitution within a host molecule affects 

the pathogen-host interaction. Together these findings raise the exciting possibility that 

hHb polymorphisms may have implications regarding individual susceptibility to 

bacterial infections (50). 

 Until this work residues involved in the IsdB-Hb interaction have not been 

identified. Here we demonstrate the requirement of tyrosine 165 to hemoglobin binding 

by isdB. Introduction of Y165 alanine substitution leads to an elimination of hHb and 

mHb binding by S. aureus similar to knocking out IsdB. We have confirmed the critical 

role of Y165 in Hb binding when IsdB is expressed from either plasmid or chromosome. 
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To our knowledge this is the first report of a successful single amino acid substitution 

within a chromosomal gene of S. aureus. These results lay the groundwork for further 

investigation of the mechanism of IsdB-Hb interaction. 

Upon binding of holo-Hb (heme-bound), IsdB extracts heme and passes it to IsdA 

and IsdC (87, 131). The mechanism of Hb release, however, remains to be elucidated.  

The Hb receptor in B. anthracis was found to bind apo-Hb (heme-free) with a lower 

affinity than holo-Hb (78). This allows B. anthracis to release apo-Hb upon heme 

extraction. In contrast, apo-Hb  binds to the cell wall of S. aureus, as efficiently as holo-

Hb (preliminary data not shown). Here we report that heme inhibits Hb binding to S. 

aureus. We propose that upon heme extraction from hemoglobin, heme-bound IsdB 

lowers its affinity to Hb. In other words, the heme status of IsdB and not Hb determines 

the affinity of interaction. In support of this hypothesis, IsdB that is predicted to be 

deficient in heme binding, is not inhibited in its ability to bind Hb by the addition of 

heme. Further experiments are warranted to test the hypothesis and are described in the 

future directions.  
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CHAPTER IV 

 

CONCLUSIONS 

 

“Blood is a very special juice”  
Johann Wolfgang von Goethe, Faust  

Summary 

 S. aureus is the deadliest infectious agent in the United States (65). In addition to 

the toll on human life, S. aureus, is responsible for an estimated 14 billion dollars in 

health-care costs due to health-care associated infections alone (88). The data in the 

developing world are not readily available, but the burden of S. aureus infections in third 

world countries is likely as substantial as in the U.S. More alarming is the increase in 

incidence of S. aureus infections in recent three years (62). A number of characteristics 

allow S. aureus to stand out as a successful pathogen. First, S. aureus is endowed with an 

impressive arsenal of virulence factors that damage host tissues and manipulate the 

immune system. Second, S. aureus has the capacity to invade and proliferate within 

virtually any tissue of the host. Third, S. aureus is rapidly acquiring antibiotic resistance 

to all current antimicrobials, frequently without fitness costs that are typically associated 

with resistance. Fourth, newly emerging strains are more virulent and antibiotic resistant 

than the preceding isolates. These strains are not confined to the hospital setting and 

frequently infect otherwise healthy individuals. These points emphasize the importance 

of identifying novel targets for future antimicrobial development. 

 One such target is iron acquisition which is absolutely required for the 

survival and replication of bacteria. Therefore, antimicrobial therapies which inhibit iron 

acquisition would target a variety of essential cellular processes of the bacterium. The 
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most abundant and bioavailable source of iron during infection is Hb-bound heme. In 

order to acquire iron from Hb, S. aureus lyses red blood cells releasing Hb. Cell wall-

expressed IsdB binds Hb and extracts heme from the globin portion of the molecule. IsdB 

subsequently passes heme to IsdA and other cell envelope Isd proteins, which transport 

heme into the cytoplasm. Finally, heme is degraded to release elemental iron. Isd-

mediated iron acquisition from the host Hb is critical for S. aureus infection as indicated 

by a significant decrease in virulence of strains inactivated for components of the Isd 

system. 

Since its recent discovery the Isd has become one of the most studied iron 

acquisition systems in bacteria. Interest in the Isd system is fueled by the fact that its 

different components are conserved among numerous Gram positive pathogens. Further, 

Isd is the only identified Gram positive cell wall transport system and delineation of its 

mechanism uncovers aspects of basic bacterial physiology. Studies outlined in this thesis 

are primarily focused on the function and interactions of the Hb receptor IsdB in the 

context of infection. Our findings contribute to the model of iron acquisition and nutrient 

transport in Gram positive bacteria.  

In Chapter II, I describe the elucidation of the regulation and localization of IsdB 

at the cell wall and its expression during S. aureus infection. Cell wall Isd proteins are 

covalently anchored to murein and are therefore immobile. To bind Hb, IsdB has to be 

exposed on the surface. Further, to pass heme to the Isd system, IsdB has to be in direct 

proximity to other Isd proteins. Because of the sub-micrometer size of a S. aureus 

bacterium and the presence of non-specific antibody-binding Protein A (SpA), studies of 

protein localization within S. aureus are few. In order to circumvent the antibody-binding 
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activity of SpA, we have generated a knock out strain (spa) deficient in SpA. This strain 

was used for all immunofluorescence and immunogold studies we have carried out. 

Importantly, expression levels of Isd proteins are unaffected in spa. Using 

immunofluorescence we have demonstrated iron regulation and surface localization of 

IsdB. We have also observed a similar pattern of IsdA expression and localization. 

Double staining revealed that IsdA and IsdB co-localize on the cell surface. Additionally 

IsdA and IsdB form an interaction within staphylococcal cell wall and in vitro. Co-

localization and interactions of IsdB with IsdA are consistent with their function as a 

conduit of heme through the cell wall.  

To get insight into the mechanism which allows for IsdA and IsdB co-

localization, we carried out experiments which pinpoint the site of their deposition to the 

cell wall. To increase resolution we utilized electron microscopy coupled with 

immunogold labeling. We have found that IsdB is exclusively anchored at the site of cell 

division. IsdA is also deposited at the same site, although some of it is deposited at a 

distant locale. This indicates that S. aureus ensures co-localization of the Isd components 

by anchoring them to the cell wall at the same site.  

While investigating cell wall expression of the Isd machinery, we have discovered 

that the pattern of its localization is dependent on the quantity of expressed protein. In 

low-iron conditions, when expression is maximal, Isd is uniformly distributed throughout 

the cell surface. In contrast, in the conditions of lower expression levels under moderate 

iron stress, Isd is confined to distinct puncta within the cell wall. Discrete localization 

increases the local concentration of the Isd components, which may be necessary for their 

function as a heme import machinery. Importantly, we have found that staphylococci 
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isolated from the hearts of infected mice display punctuate localization of IsdB. This 

indicates that targeting of Isd to discrete locales on the surface of S. aureus is relevant in 

the context of infection.   

Systemic murine infections revealed differential expression of IsdB dependent on 

the site of invasion. S. aureus infecting mouse hearts express both IsdA and IsdB at 

significant levels. In contrast, S. aureus isolated from the livers express lower amounts of 

IsdA and undetectable levels of IsdB. In support of organ specific expression profiles, 

IsdB is required for full virulence of S. aureus within the hearts, but not the livers of 

infected mice. We propose that differential expression of IsdA and IsdB are indicative of 

different levels of available iron within these two organs. This is supported by the fact 

that liver is a major site of iron storage in the body. Therefore it is likely that bacteria 

invading the liver experience a relatively iron-rich environment and down-regulate iron 

acquisition systems. Vaccines against IsdB have been shown to elicit a response against 

S. aureus infections in mice, non-human primates, and humans, supporting its role in S. 

aureus pathogenesis (36, 51, 63, 68, 115). Antibodies directed against IsdB appear to 

function through inhibition of iron acquisition rather than through opsonization of S. 

aureus (63). We propose that by monitoring the expression of Isd proteins during 

infection, one can predict the iron availability within the infection site. Considering the 

impact of iron concentration on staphylococcal virulence, organ specific variations in iron 

availability may contribute significantly to the types of S. aureus infections that present 

clinically. 

In chapter III, I describe investigations into the specificity of IsdB-Hb interaction. 

The amino acid sequence of Hb significantly varies across animal species. Most variation 
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occurs within the external residues that are more likely to interact with IsdB than residues 

embedded within Hb. We demonstrate that these differences result in differential 

recognition of Hb from distinct species by S. aureus. Further, S. aureus preferentially 

binds human Hb (hHb) over Hb from other animals. Because mouse models of infection 

are commonly used to study bacterial pathogenicity, we focused on differences between 

the interaction of hHb and mouse Hb (mHb) with IsdB. As with Hb derived from other 

animals, S. aureus demonstrates a significant preference for hHb over mHb. This 

preference is entirely dependent on IsdB, as confirmed by the lack of discrimination 

between mHb and hHb by isdB. Further, IsdB binds hHb in vitro with a much stronger 

affinity than mHb. We have found that the increased specificity of IsdB for hHb results in 

enhanced iron acquisition from hHb as compared to mHb (94).  

To assess the contribution of enhanced iron acquisition from hHb to infection, we 

acquired hHb-expressing mice (
H


A
). In a systemic model of infection these mice 

display increased number of colony forming units of S. aureus in their hearts and livers as 

compared to mice expressing mHb (C57BL/6J). hHb expression does not boost the 

number of infecting isdB,  indicating that the increase in susceptibility of 
H


A
 is due to 

enhanced hHb binding and not potential secondary effects. Infection of the 
H


A 
mice 

revealed the contribution of IsdB to liver infection, which was not obvious in C57BL/6J 

(Chapter II).  Whereas infection with either wild type or isdB resulted in similar number 

of CFUs in the liver of C57BL/6J mice, IsdB allowed for increased colonization of the 

livers of 
H


A
 animals. We propose the following explanation of liver infection data. 

Non-hemoglobin iron stored in the liver allows for S. aureus proliferation independent of 

IsdB-Hb interaction as indicated by high CFU numbers in the livers infected by isdB 
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mutant (Figures 11 and 16).  C57BL/6J mice infected with wild type S. aureus do not 

show increase in virulence as compared to isdB due a local concentration of mHb that is 

too low to be utilized by IsdB. Wild type S. aureus infecting 
H


A 
mice proliferate to 

higher numbers than isdB because they have access to hHb, which is bound with a 

higher affinity than mHb. The magnitude of the effect we report is comparable to other 

humanized mouse models of bacterial infection which have profoundly impacted studies 

into the host-pathogen interaction (57, 69, 94, 116). 

We demonstrate that all tested S. aureus isolates preferentially bind hHb. This is 

true for strains isolated from human and animal hosts. The explanation for hHb 

preference of animal isolates of S. aureus likely lies in their human origin. These isolates 

are thought to have been transmitted from humans to animal hosts recently in a single 

jump (48, 52, 74). We show that certain bacterial pathogens display preference for hHb, 

while others utilize mHb and hHb with similar efficiency. hHb preference appears to 

correlate with the host specialization of the pathogen. Human pathogens utilize hHb 

better than mHb, while pathogens with a wider host range do not differentiate between 

the two sources of Hb. Our experiments establish 
H


A
 as an improved model for studies 

into iron acquisition. Humanized mouse models are a valuable tool in biomedical 

research, underscoring the impact that our findings may have on studies into bacterial 

virulence (25, 71).  

Numerous polymorphisms are found with the Hb sequence in the human 

population. Changes in the amino acid sequence of Hb can potentially affect acquisition 

of iron and severity of infections caused by S. aureus. To lay the groundwork for 

investigations into the contribution of hHb polymorphisms to S. aureus infections, we 
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have expressed recombinant versions of select hHb variants. As a proof of principle, we 

demonstrate that single amino acid substitutions within hHb found in the population 

affect hHb binding to S. aureus. These results encourage analysis of other variants and 

progression to clinical studies. Based on the ability of most vertebrate pathogens to use 

heme as a nutrient iron source, and the conservation of the Isd system across numerous 

Gram-positive pathogens, these studies may be applicable to a wide variety of disease-

causing microbes (29). Understanding the effect of hHb variations on S. aureus and other 

bacterial infections will provide insight into the role of host genetics in infectious 

diseases.   
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Future directions 

Identify the structural determinants of IsdB required for Hb binding We have 

determined that tyrosine Y165 is required for IsdB-Hb interaction. However, other IsdB 

residues involved in Hb recognition have not yet been identified. Residues necessary for 

Hb binding by IsdH are conserved within IsdB and will therefore be targeted for 

mutagenesis (92). The generation of point mutant forms of IsdB will be done by a Pfu 

mutagenesis technique. We will purify the mutants using our established purification 

protocol for IsdB (93). To ensure that the proteins are properly expressed and folded we 

will assess expression using SDS-PAGE and folding using circular dichroism 

spectroscopy at the Structural Biology Core Facility at Vanderbilt University. Purified 

forms of IsdB will be tested for binding to hHb using Octet technology (94). To extend 

the biochemical characterization of mutant IsdB we will test the ability of mutant IsdB 

proteins to complement the Hb utilization defect of ΔisdB. For these studies, we will 

clone deletion constructs into the staphylococcal expression vector pOS-1, and transform 

these complementation constructs into ΔisdB. We will confirm the expression and surface 

localization of truncated forms of IsdB by FACS and immunoblot. We will then assess 

the ability of the complemented strains to bind Hb by pull downs followed by silver 

stains as described in Chapter III. We will infect human hemoglobin expressing mice 

(
H


A
) with isdB Y165A intrachromosomal mutant of S. aureus. The decrease in 

virulence of isdB Y165A mutant similar to that of isdB would establish Hb binding as 

the primary function of IsdB during infection. These experiments will allow us to 

pinpoint the domains and residues within IsdB necessary for Hb recognition. 
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Elucidate the role of heme in regulation of Hb binding to IsdB  Incubation of S. 

aureus with heme inhibits IsdB-dependent binding of Hb. Expression of IsdB that is 

deficient in heme binding abolishes heme-induced inhibition of Hb binding. These results 

suggest a mechanism whereby binding of heme to IsdB upon its extraction from Hb 

weakens the interaction between IsdB and Hb. This allows the release of apo-Hb from 

IsdB. To test this hypothesis we will express rIsdB from E. coli using techniques 

described in Chapter II. rIsdB purifies as a mixture of apo- and holo-protein. We will 

generate exlusively holo-rIsdB by incubating rIsdB with heme. Heme binding will be 

assessed spectrophotometrically. Apo-IsdB will be generated by extraction of heme with 

concentrated urea and refolding of the protein in buffer. We will then measure the affinity 

of the interaction between apo-IsdB or holo-IsdB with Hb using Octet. Upon extraction 

of heme from Hb, IsdB passes heme to IsdA. We will also determine the strength of the 

interaction between apo-IsdB or holo-IsdB with apo-IsdA or holo-IsdA. In addition to 

heme, IsdB can bind metalloporphyrin analogues (heme backbone with non-iron metals 

substituted). We will test if IsdB binding to non-heme metalloporphyrins inhibits Hb 

binding similarly to heme. If this is the case we will perform growth curve experiments 

where metalloporphyrins will be added together with Hb as a sole iron source. If 

metalloporphyrins can inhibit Hb binding to IsdB, they will shut down heme-iron 

acquisition and will slow growth. Data obtained from these experiments will allow us to 

get insight into the mechanism of apo-Hb release from IsdB upon heme extraction. 
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Identify human hemoglobin polymorphisms that affect heme-iron acquisition by S. 

aureus We have found that certain polymorphisms within hHb decrease the efficiency of 

hHb binding by S. aureus. Numerous other polymorphisms remain to be tested. In order 

to bypass the necessity to purify rhHb variants we will utilize the BACTH two-hybrid 

interaction system (Euromedex). This system allows detection of an interaction between 

two protein partners by cloning them into vectors containing two separate domains of an 

adenylate cyclase within an E. coli reporter strain. The activity of adenylate cyclase 

resulting from the interaction of the two binding partners is spectrophotmetrically 

measured. To this end we have fused wild type IsdB and Hb into these vectors and have 

detected the interaction occurring between the two proteins. We will focus on 

polymorphisms within the amino acid residues that are exposed on the surface and are 

likely recognized by IsdB. Because many of these polymorphisms are within the same 

residues, we will test the least conservative substitutions within each residue (~200 total). 

Upon identification of such residues, we will express the Hb with identified 

polymorphisms and test their binding to the cell wall of S. aureus. Hb variants that pass 

the above two screens will be supplied to S. aureus in iron-limiting growth assays and 

will be tested for Hb-IsdB interaction strength in vitro.  

In addition to variants with polymorphisms within the external amino acids we 

will test variants with polymorphisms within the heme binding pocket. These 

polymorphisms likely affect the affinity with which Hb binds heme. It is possible that 

heme is differentially extracted from these variants, facilitating or slowing heme import 

into S. aureus. We will express hemoglobin variants with polymorphisms within the 

heme binding pocket and test their ability to supply iron to S. aureus. Finally, upon 
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identification of hemoglobin variants with altered affinity and/or ability to supply iron for 

S. aureus growth we will attempt to acquire blood samples from carriers of identified 

polymorphisms. We will purify native hemoglobin from blood samples and confirm the 

phenotypes identified with the recombinant Hb. Because we have experience with all the 

proposed techniques, we do not anticipate technical difficulties with their execution. 

These experiments will allow us to identify hHb variants that provide iron to S. aureus 

with altered efficiency. Data acquired from these experiments will be used to identify 

sequence polymorphisms within hHb that are associated with severe staphylococcal 

disease through the use of BioVU DNA repository. 

 

Elucidate the role of myoglobin and albumin as potential sources of heme-iron to S. 

aureus Hb is the most abundant source of heme-iron within vertebrates. Other heme-

binding proteins are potentially available to S. aureus during infection. Myoglobin (Mb) 

is a heme-binding protein that stores oxygen in the heart and muscle tissue. S. aureus 

causes heart and muscle infections and Mb is structurally related to Hb, therefore upon 

cell damage induced by S. aureus toxins, myoglobin can potentially become available to 

S. aureus. Albumin is an extracellular protein that binds heme and is present in the serum 

at concentration of 50 mg/ml (128). We will test myoglobin and albumin binding and 

utilization as an iron source by S. aureus using the techniques as we used to define Hb 

utilization. Notably, Mb-deficient mice are available and will provide with an animal 

model to discern the potential role of myoglobin as an iron source during infection. These 

experiments will define the role of myoglobin and albumin as potential sources of 

nutrient iron to the invading S. aureus. 
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Define the role of IsdB-Hb interaction in bacterial pathogenesis We have 

demonstrated an increase in susceptibility of mice to S. aureus systemic infection due to 

expression of hHb. We will expand our studies with 
H


A
 mice to additional infection 

models to determine the benefit that enhanced iron acquisition has on bacterial 

pathogenesis within distinct organs.  The contribution of the IsdB-Hb interaction to S. 

aureus lung infections will be tested in a murine model of pneumonia (79).  The 

contribution of IsdB-Hb interactions to S. aureus bone infections will be tested using a 

murine model of osteomyelitis that has been developed in the laboratory of Dr. Mark 

Smeltzer (10).  The contribution of IsdB-Hb interactions to heart colonization will be 

tested in a murine model of infectious endocarditis which has been developed by Dr. 

Arnold Bayer. S. lugdunensis is an emerging pathogen responsible for numerous invasive 

infections. Recently sequenced genome of S. lugdunensis has revealed the presence of a 

gene encoding a putative Hb receptor (121). In chapter III we have demonstrated 

preference for hHb displayed by S. lugdunensis. Mouse infections delineating the 

contribution of S. lugdanensis heme acquisition system will be carried out in 
H


A
 mice. 

The results of these experiments will reveal the contribution of the IsdB-Hb interaction 

during a variety of clinically relevant staphylococcal infections.   
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