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CHAPTER	
  1 INTRODUCTION	
  
 
 
Computer simulation has become increasingly important in engineering, especially for 

studying phase transitions and critical behavior that are both important in natural 

processes or industrial applications.1-4 During these processes, conformational changes 

occur in response to changes in the environment or as part of a functional process that 

correspond to changes in the free energy of the system. Free energy, in general 

corresponds to the total amount of energy that can be converted to do work and is 

minimized when a system reaches equilibrium. Free energy is the central quantity in 

thermodynamics for the characterization of physical equilibrium,5-7 e.g., a wide range of 

processes as shown in Table 1.1 are all characterized by the free energy calculation, i.e., 

the comparison of the relative stabilities among systems is given by the comparison of the 

free energies of the relevant systems, and almost always the states of interest are those 

with the lowest free energy (i.e., stable states).5, 7 

Table 1.1 A list of example systems for which free energy calculation is applied for 
comparisons of relative stability, from Kofke et al.5 

Phase equilibrium: vapor vs. liquid 
vs. solid vs. etc. 

Reaction equilibrium: reactant 
vs. product  

Protein structure: folded vs. 
unfolded 

Self-assembly/nucleated vs. 
dispersed 

 

 Hence, to fully understand and examine the phase behavior of complex fluids, a 

detailed and explicit calculation of the phase transition behavior based on the underlying 

free energies is necessary.5, 6, 8 However, calculation of free energy remains a challenge in 

traditional molecular dynamics (MD) or Monte Carlo (MC) simulations6, 9, 10 as a result 
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of the direct relation between free energy and the partition function (not a mechanical 

property, i.e., not expressible in terms of molecule positions and momentum), which is 

prohibitively difficult to be calculated from traditional simulations. Specifically, complex 

fluid systems frequently have rough energy landscapes, often exhibiting many minima 

close to each other separated by large energy barriers.11 These features can cause 

problems for the numerical exploration of partition function since for example, some 

energy states may not be visited due to the energy barriers, and the transitions between 

states are thus rare events.12 Typically, traditional MC and MD methods sample only the 

lower energy regions, while rarely visiting the higher energy regions, and thus can lock 

the simulation into a particular region of phase space, and fail to sample some of the 

states of interest. Additionally, very low energy states may not be visited if an energy 

barrier exists. Thus, traditional methods are typically unable to sample the entire 

accessible phase space, or even just the important states, within a reasonable amount of 

computational time, even for rather simple systems, leaving the partition function 

unsolved.13 To circumvent this problem, various methods based on equilibrium or quasi-

static simulations have been developed by focusing on the differences in free energy 

between states, such as thermodynamic integration,13-15 free energy perturbation,6, 16, 17 

and Jarzynski’s nonequilibrium fast growth method.18-20 These work-based methods rely 

on tailoring a chain of configurational energies that connect the target and the reference 

states whenever their energy regions have poor overlap (as shown in Figure 1.1b and 

Figure 1.1e). This can result in perceived inefficiency where many “uninteresting” states 

are required to be sampled.6, 21 These methods can be nontrivial for even simple systems, 

let alone complex chemical and biological systems, which are frequently characterized by 



 3 

inhomogeneity, molecular flexibility, and strong long-range interactions. 

 

Figure 1.1 Schematic representation of the relation between two systems of interest with 
their important configurations, from reference,5 (a) A and B coincide, (b) no overlap at all 
between A and B, (c) B is a subset of A, (d) B is a point of A, a special case of (c), (e) 
parts of A and B are overlapped. 

 

 To mitigate these problems and improve the energy exploration, advanced sampling 

methods that go beyond standard MD or MC have been developed, such as the 

generalized ensemble technique,22 multiple histogram reweighting,23 multicanonical or 

entropic sampling,24, 25 replica exchange or parallel tempering,26-28 and the WL random 

walk4, 29 and its extended algorithms.30, 31 The common feature of these methods is the 

calculation of the density of states (DOS). The temperature independent DOS, g(E,V,N), 

which is the number of possible states that occupy the same energy level E, is a central 

quantity of interest in thermodynamics. If g(E) is known with high accuracy for all 

energies, the canonical partition function over a wide range of temperature can be 

constructed with a single simulation, and all thermodynamic quantities of interest, 

including the free energy changes and thus phase behavior, can be determined. Among 

them, the WL method4, 29 is frequently cited as among the most efficient ones, performing 

a random walk over the whole energy range, allowing sampling of conformations at all 

relevant temperatures in a single simulation. The g(E) is updated at every MC move and 

determined finally by an iterative process. Compared to other flat-histogram methods, 

this dynamic update of g(E) on the fly can provide quicker exploration of phase space30, 
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31, and it can be implemented very efficiently in parallel (by multiple walkers running 

concurrently in the energy space), making WL suitable for efficient free energy 

calculation. A detailed discussion of WL sampling is provided in Section 3.1.1. However, 

there are two factors limiting the further application of the WL method to large and 

complex systems; (1) the large increase in the number of energy levels as the system size 

increases due to discrete representation of DOS, and (2) the lacking of MD sampling for 

complicated systems beyond the scope of effective MC moves. Thus, based on the 

general idea of the WL algorithm, the statistical temperature molecular dynamics 

(STMD) method30, 31 was developed to overcome the problems listed above, which 

improves the sampling efficiency and enables efficient simulations of large systems, with 

a detailed discussion in Section 3.1.4. The parallel efficiency of STMD is due part to the 

existence of efficient parallel methods for MD simulations. 

In this dissertation, two outstanding scientific problems that are still beyond the 

capacity of current simulation techniques were selected and studied using sampling 

techniques based on the WL ideas; the self-assembly of lipids and phase transitions in 

nano-confined fluids. This dissertation presents results from several studies aimed at 

elucidating the phase behavior of these complex systems, with explicit free energy, heat 

capacity calculations and order parameter analysis. Additionally, as an extension of the 

WL and STMD methods, we propose a novel hybrid MC/MD method for various 

ensemble studies beyond the canonical one.  

Chapter 2 outlines the background related to the phase behavior of the two 

systems studied, self-assembly of lipid bilayers and nano-confined induced solidification 

of molecular fluids. Next, Chapter 3 provides a detailed account of the simulation and 
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theoretical tools and methods applied throughout this dissertation. Chapter 3 also details 

the application and extension of these methods, which are used throughout the 

subsequent chapters. 

 In Chapter 4, a series of simulations are reported for a simple lipid system based on 

the model proposed by Drefahl et al.32 to study self-assembly using MC methods, such as 

Metropolis,33 WL and statistical temperature MC (an extended WL algorithm, and 

discussion is provided in Section 3.1.3 ), in order to demonstrate the applicability of these 

methods in understanding the self-assembly process. Results from the WL method show 

that the phase transition occurs in a two-step process with a stable intermediate phase; the 

second phase transition was missed in the conventional Metropolis MC simulations. This 

demonstrates the advantage of being able to perform a complete scan of the whole 

temperature range with the WL method.  

 Next, in Chapter 5, two different techniques - replica-exchange Wang-Landau 

(REWL, the detailed discussion is in Section 3.1.2) and STMD 30, 31 are applied to 

systematically study the phase transition behavior of self-assembly lipids as a function of 

temperature using an off-lattice lipid model, both allowing direct calculation of the DOS 

with improved efficiency compared to the original WL method. The simulations 

conducted by both methods can go to very low temperatures with the whole system 

exhibiting well-ordered structures and several bilayer phases are observed within the 

temperature range studied, including gel phase bilayers with frozen water, water (i.e., 

frozen and liquid water), and liquid water and a more fluid bilayer with liquid water. The 

results obtained from both methods, STMD and REWL, are consistently in excellent 

agreement with each other, thereby validating both methods and the results.  
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In Chapter 6, the phase behavior of Lennard-Jones (LJ) fluids nano-confined 

between parallel solid surfaces is examined by STMD over a range of wall separations, 

including both ideal and non-ideal ones, as well as various wall-fluid interaction 

strengths. The free energy landscape is monitored between different states and heat 

capacities are calculated. Results showed that the transition temperature TODT is reduced 

with a sharper, more distinct transitions in heat capacity curve, as the pore size is 

increased. For non-ideal pore spacings, reduced TODT are obtained, with oscillatory 

behavior exhibited in the pore density, i.e., density in non-ideal pores is lower than the 

ideal ones. 

In Chapter 7, we discuss the calculation of the joint DOS (e.g., as a function of 

temperature and compositions, or temperature and pressure) for continuous models. To 

study phase behavior in many systems, the 2D JDOS is quite useful and becomes 

necessary. Thus, we propose a hybrid WL/STMD method to take advantage of the 

benefits of STMD algorithm, but in a 2D WL context. To demonstrate the idea of the 

method, we performed a series of hybrid WL/STMD simulations on binary LJ systems, 

with the second variable being the composition of the particle (𝑁!) or volume (V). The 

results obtained are compared to those from the standard methods (i.e., original WL, WL 

in 2D form, and standard STMD) with independent runs and are consistently in excellent 

agreement with each other. 

 Finally, Chapter 8 summarizes the main conclusions of the dissertation and 

discusses recommendations for future work.  
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CHAPTER	
  2 BACKGROUND	
  
 

2.1 Self-­‐assembly	
  
 
Self-assembly is a spontaneous process by which disordered molecules associate into 

stable and structurally well-defined aggregates as a consequence of specific and local 

interactions of the molecules themselves; no external forces need to be involved. 

Molecules that undergo a self-organized process often form hierarchical structures at the 

nanoscale. As such, self-assembly is a crucial capability for future large-scale 

manufacturing of nanotechnology-based systems. In nature, a variety of integral 

structures that are important in the fields of chemistry, biochemistry and biophysics, such 

as membranes, vesicles and virus capsids, are created via self-assembly of amphiphilic 

molecules.  

2.1.1 Self-­‐assembly	
  of	
  amphiphilic	
  lipids	
  
 
Amphiphilic lipid molecules consisting of a hydrophilic head group and hydrophobic tail 

groups can self-assemble into a wide variety of structures, such as bilayers, micelles, and 

vesicles, when mixed with a suitable solvent.34, 35 For example, at a constant temperature, 

when the concentration of amphiphile is quite low, the molecules in the bulk solvent can 

be fully dissolved as independent monomers. When it reaches the critical micelle 

concentration (CMC), the monomers will form into aggregates, such as micelles, and as 

the concentration further increases, a variety of other phases such as cylindrical micelles 

or lamellar/bilayer phases will be observed (see Figure 2.1).36 Among them, lipid 

bilayers are important structures in both natural and artificial biological interfaces (for 
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containment and separation),37 such as the membranes that form the basis of almost all 

life forms.38,39 As a result, the self-assembly of these systems has been extensively 

studied, both computationally and experimentally.40-42 However, most experiments 

explore the macroscopic structure of the membrane.43-45 A detailed understanding of the 

self-assembly process of the lipids on the molecular level is not yet well known and 

would provide important insight into nanotechnology applications. 

       

Figure 2.1 A schematic description of amphiphiles at various concentrations, from 
reference36 (a)monomers, (b) micelle aggregates, (c) cylindrical micelles, (d) bilayer.  

 

 Simulation studies of lipid bilayers emerged in the late 1980’s and early 1990’s.46 

Initially, due to the complexity of the amphiphilic molecules and the limited resources of 

computational time, the work mainly utilized simplified on-lattice molecular models to 

capture the self-assembly behavior. Additionally most studies were limited to micellar 

systems in dilute solutions due to the rapid increase of computational time for dense 

systems, see for example, Larson et al.47,48,49, Bernardes et al.39, 50, 51 and Care et al.36, 52 

Of the few models that focus on the formation of a bilayer structure, they all adopted the 

conventional Metropolis MC method to study the self-assembly behavior.32, 37, 53 For 

example, Brindle37, 53 observed that at low temperatures, amphiphiles self assembled into 

a castellated bilayer structure in a simple cubic lattice (32 × 32 × 32). Based on the prior 

research, it is generally accepted that lipid self-assembly can be qualitatively explained 
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monomers aggregate in such a way as to minimise the solvophobic interaction but 
maintain the solvophilic interaction. The tail sections of the amphiphiles are normally 
flexible and the diagrams shown in figure 1 are schematic. There is considerable debate 
about the structure of the micelles (Manger 1979). Amphiphiles have a wide range of 
industrial application and are involved in many biological systems. Thus, for example, 
the properties of amphiphiles are important in the formation and structure of biological 
membranes. The work presented here is only relevant to the monomeric and micellar 
phase of the amphiphile-solvent system. 
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Figure 1. A schematic diagram of amphiphile-solvent phases. Circles: heads of amphiphile; 

line: flexible tails. (a) Monomers; (b) micelle; (c) hexagonal packing of cylindrical micelles; 

(d) the lamellar phase. 

The amphiphile molecules are interesting physical objects since the ‘gas’ of amphi- 
philic molecules within the solvent has properties unlike those of a conventional gas. 
Thus, as the density is increased, the ‘gas’ condensed into aggregates (micelles) with a 
well defined equilibrium size rather than the normal continuous liquid phase. This is 
a direct consequence of the ‘schizophrenic’ properties of the amphiphile. There is 
considerable experimental and theoretical interest in the micellar phase of the amphi- 
phile-solvent system (Mittal and Lindman 1984). However there are many questions still 
to be resolved concerning, for example, the size, shape, polydispersity and mechanism of 
formation of the micelles (Menger 1979). 

The motivation behind the work discussed here is a desire to develop a simple model 
that exhibits the important features of an amphiphile-solvent system. Initially it is 
intended to develop a model system that exhibits a micellar phase, although ultimately 
it may be possible to extend the analysis to include the lyotropic liquid-crystalline phases. 
We assume, following Wennerstrom and Lindman (1979) that true micelle formation is 
associated with a well defined critical micelle concentration and a micelle size distribution 
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by the hydrophobic effect,54 i.e., the monomers form aggregates in a way that minimizes 

the hydrophobic interaction while maintaining the hydrophilic interaction with bulk 

water. But complex details such as the necessary forces that direct lipids to assemble into 

predictable arrangements, or transient intermediate phase behavior during the aggregation 

process are still the subject of much debate.55-57 Thus, a systematic study of the 

temperature dependence on the phase behavior is necessary. More recently, Drefahl et 

al.32 studied the molecular interactions necessary for the self-assembly of amphiphiles on 

a cubic lattice. They performed a series of simulations using flexible 3-segment 

amphiphilic molecules with purely repulsive interactions and found that bilayer structures 

formed at low temperatures, with a phase transition to clusters observed at high 

temperatures. They provided the phase behavior as a function of temperature, by 

performing independent MC simulations at discrete point of temperature at an interval of 

0.5 (in reduced units); however, this procedure was likely insufficient to fully disclose the 

entire phase behavior. Thus, the systematic study of bilayer formation with respect to 

statistical thermodynamics is still challenging for the traditional methods and remains a 

longstanding problem that has not been fully resolved.58  

 More recently, many traditional MC and MD simulations have been performed on 

continuum models (i.e., off-lattice) studying micelle formation from the self-assembly of 

amphiphiles, but limited studies have been performed on the systematic examination of 

bilayer phase behavior as a function of temperature.34, 59-65 For example, Marrink 

developed the coarse-grained Martini force field and performed a series of work on the 

phase behavior of lipid bilayers.61, 62, 66, 67 Previous work based on a simple coarse-

grained lipid model by Goetz et al.64 and Fujiwara et al.55 reported the structural 
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properties of the various aggregates, such as spherical micelles, cylindrical micelles and 

bilayers, via the variation of the amphiphilic concentration and hydrophobic interactions 

(see Figure 2.2). Of those studies, conventional MD or MC methods, along with 

temperature quenching, have been used as the main simulation techniques to induce 

phase transitions. In addition, these studies all relied on visual inspection or calculation of 

order parameters to support the structural phase transitions observed as a function of the 

system temperature. 

 

Figure 2.2 Simulation snapshots of self-assembled structures formed by amphiphilic molecules 
at various amphiphilic concentrations; (a) the isotropic micellar phase  (b) the hexagonal phase 
and (c) the lamellar phase. Isosurfaces of tail particles are shown. The figures are from 
reference55. 

 
 More recently, the calculation of the heat capacity (Cv) has been used as a more 

direct signature of a phase transition. The work of Rodgers et al. 59  and Nagai et al.60, 

reported the first attempt to characterize the phase transition of a solvated amphiphilic 

model by monitoring changes in enthalpy. Specially, Rodgers reproduced the four 

different bilayer phases that are structurally in agreement with previous experiments 

utilizing the DPD model, such as subgel, gel, ripple, and fluid, and they studied the 

enthalpy changes along with them (see Figure 2.3). Nagai et al. directly calculated the Cp 

curve for a bilayer system that is composed of 32 dipalmitoylphosphatidylcholine 
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(DPPC) lipids, see Figure 2.4. There are two peaks indicating a pre-transition and main 

transition of fluid-gel phases, with the three corresponding phases shown in Figure 2.4; 

the titled gel phase is characterized as narrow, thick, and well-ordered, while the fluid 

bilayer is wide, thin, and disordered. These studies represent promising initial 

quantitative heat capacity investigations of the structural phase transition behavior. 

However, these methods are applied with mixed success. Although the simple DPD 

model given by Rodgers et al. 59 describes structurally all the phases of a DPPC bilayer 

(subgel, gel, ripple, and fluid), the enthalpy change between certain phase transitions was 

either underestimated or no observable enthalpy changes were detected between some of 

the structures. In the study by Nagai et al.,60 reference temperatures at 127 points 

between 283 ~ 390 K are needed to implement valid swapping of structures (replicas are 

required to be separated by small temperature differences). As the number of degrees of 

freedom of the system increases, the required number of replicas also greatly increases, 

and so only a small system of 32 lipids was studied, with only preliminary results 

presented for a larger 128-lipid system. In addition, the hysteresis between heating and 

cooling processes is still quite substantial in the systems studied above and may mask the 

underlying equilibrium phases with heating and cooling processes. Recent work by Guo 

et al.44 used heat capacity coupled with order parameter analysis to determine the order-

order and order-disorder transitions in a fully atomistic ceramide bilayer structure, 

although it must be noted that the large computational expense necessitated a very rapid 

heating and cooling sequence. 
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Figure 2.3 Different lipid phases obtained by Rodgers et al.59, from DPD and MARTINI 
simulations. DPD simulations obtained structures in agreement with experimental results, 
while MARTINI missed some intermediate phases. 

 

 
(a)                                                     (b) 

Figure 2.4 Phase behavior of 32 DPPC lipids from Nagai60, (a) heat capacity (b) with 
three corresponding phases, from left to right are tilted gel phase, untilted gel phase and 
fluid phase.  

 

2.2 Nano-­‐confined	
  system	
  
 
Nano-confined fluids, defined as fluids confined by solid surfaces with separation 

distances on the order of a few molecular diameters or nanometers, are of great 

importance both in industrial applications such as lubrication, separations and catalytic 

processes, as well as emerging areas, such as ionic liquid-based supercapacitors.8, 68, 69 

For example, the industrial separation processes that depend on the relative adsorption of 

different components in a mixture, and this adsorption always involves the transfer of 

Figures 6–9 show the temperature dependence of the
enthalpy, thickness of the bilayer, area per lipid, and heat
capacity, respectively. Here, the heat capacity C is defined
by

C ¼ hðH þ PV Þ2i% hH þ PVi2

kBT 2
; ð6Þ

where H, P, V , kB, and T are the sum of kinetic energy and
potential energy, pressure, volume, Boltzmann constant,
and temperature, respectively. Sudden changes of behaviors
exist around 296K in Figs. 6–8. Other sudden changes of
behaviors also exist around 288K in Figs. 6 and 7. The heat
capacity in Fig. 9 has two peaks around 288 and 296K,
corresponding to the two sudden changes in the enthalpy in
Fig. 6. According to these results, two phase transitions were
found.

The phase transition around 288K is the phase transition
of water. The sudden changes of enthalpy around this
temperature in Fig. 6 mainly consist of the sudden changes
of LJ potential energy between water particles (see Fig. 15
below). Note that the enthalpy changes in Fig. 6 around
288K are large. These are correlated to large changes in
energy around this temperature. The large differences in the
energy are the reason why the replica exchanges were not
successful around this point.

The other phase transition around 296K corresponds to
the sol–gel phase transition of the DPPC bilayer. This is
supported by the sudden changes of thickness and area
around 296K in Figs. 7 and 8. The phase characteristics
were reproduced that the bilayer is thin and wide above the
temperature and thick and narrow under the temperature.
The sol–gel phase transition is also suggested by the
temperature dependence of the LJ potential energy between
DPPC molecules (see Fig. 13 below). The sol–gel phase
transition temperature is consistent with the previous work
by Marrink et al.11) They reported that the transition
temperature is 295& 5K.

The area per lipid in different phases was discussed in
ref. 3. Their estimates of the area per lipid for the gel phase
(20 'C) and for sol phase (50 'C) are 0.479 and 0.64 nm2,
respectively. Our results are in accord with these values.

We now examine some component energy terms as
functions of the temperature to further analyze the phase
behaviors.

Figure 10 shows the average bond-length energy, hEbondi,
as a function of temperature. This term has two sudden
changes around 296 and 288K. Its manner of change around
296K differs from that of the enthalpy in Fig. 6.

Figure 11 shows the average angle energy, hEanglei, as a
function of temperature. This term also has two sudden
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system in order to study the phase transitions. The bilayer
underwent many phase transitions between gel and sol
phases during the simulation. We believe that this is crucial
to sample gel phases correctly. The reason is that, in the
annealing simulations, systems can easily get trapped in
local-minimum-energy states and cannot escape from the
states because temperatures decrease only. On the other
hand, REMD lets the system make a random walk in the
temperature space so that the system can explore the
conformational space more widely. It is worth noting that
we could discuss well-equilibrated states in a wide range
of temperature because the REMD method gives correct
distributions at any temperature. This is not so easy by
conventional methods.

We examined the temperature dependences of the
enthalpy, heat capacity, thickness of bilayer, and area of
bilayer. The phase-transition temperature itself was in
agreement with the previous work by Marrink et al.11)

We also examined the temperature dependence of many
component energy terms. We found the average bond-length
energy and the average LJ potential energy between water
molecules and DPPC have different behaviors from the other
energy terms. These two terms favor the sol phase, as the
system is cooled. On the other hand, the other terms favor
the gel phase.

To investigate the conformational property, we examined
the PMF maps and tilt angle distributions at four different
temperatures. Conformations were classified into three
states, namely, sol, untilted gel, and tilted gel states. The
tilted gel state was observed for the first time with
MARTINI2.0, while a previous work with MARTINI did
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Fig. 19. (Color online) Snapshots of three states of the DPPC bilayer with
32 lipids during the REMD simulation. Water particles are suppressed for
clarity. (a) The sol phase. The bilayer is wide, thin, and dis-ordered. (b) The
un-tilted gel phase. The bilayer is narrow, thick, and well-ordered. (c) The
tilted gel phase. The bilayer is narrow, thick, and well-ordered.
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Fig. 20. (Color online) Snapshots of three states of the DPPC bilayer with
128 lipids obtained by the REMD simulation. Water particles are suppressed
for clarity. (a) The sol phase. (b) The un-tilted gel phase. (c) The tilted gel
phase.
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for clarity. (a) The sol phase. (b) The un-tilted gel phase. (c) The tilted gel
phase.
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for clarity. (a) The sol phase. (b) The un-tilted gel phase. (c) The tilted gel
phase.
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molecules from a bulk phase into slit or cylindrical nanopores. In lubrication applications 

where surfaces move with respect to each other at nanometer separations, such as in a 

hard disk or microscale electromechanical systems, MEMS, and their nanoscale analogs, 

NEMS, the surface will need to be lubricated continuously under nano-confinement to 

prevent damage, which means solidification of the lubricant is undesirable.70 Additional 

detailed applications are given in the review by Gelb et al.8 Thus, understanding the 

phase transition behavior of nano-confined fluids is necessary for device design and 

control. 

When molecules are confined within such narrow pores, their phase behaviors can 

be dramatically different from that of the bulk fluids. This surface-driven phase change 

can be attributed to a combination effect of fluid–wall interaction68, 71, 72 and spatial 

constraint in the pores.73 This phenomena has been widely examined experimentally,74-80 

with strong evidence of confinement induced solidification, e.g., the observation of a 

several orders of magnitude increase in viscosity as a function of reduced pore 

separation,75, 78-80 although other studies have posited that systems undergo a constant 

vitrification as the separation is reduced.76, 81, 82 In either case, it is well agreed upon that 

the structural and dynamical properties are altered dramatically compared to the bulk as 

systems undergo nanoscale confinement.83-85 Molecular simulations have also been 

performed of nano-confined fluids,68, 71, 72, 86-88 employing both coarse-grained and 

atomistically detailed models of the fluids and surfaces. Although many of the studies use 

hypothetical/simplified model systems (i.e., a united atom approach), such as in the work 

of Wang,86 and Ballamudi,89, 90 useful information can be obtained; however, these early 

studies ignored important characteristics of the experimental systems, such as a realistic 



 14 

treatment of the wall-fluid interactions. Cui et al. 14 was the first to attempt to model the 

experiments76, 78, 79, 91 with high-fidelity molecular dynamics simulations of n-dodecane 

nano-confined between mica-like surfaces. In a series of papers they demonstrated a clear 

first-order transition from a disordered fluid state to a layered and herringbone-ordered 

state.92, 93 Recently, with the desire to more accurately represent the mica-wall surface 

atoms, and in particular the mica-fluid interactions, Docherty and Cummings68, 72 

performed a series of molecular simulations with fully atomistic models of the mica 

surfaces and confined non-polar molecules (Figure 2.5). As in the previous work90, the 

confined fluid undergoes a transition to a layered and ordered structure. From Figure 

2.5b~c, as the separation is reduced, one can see that the molecules undergo a rapid and 

abrupt transition to an FCC ordered solid-like structure from the fluid-like structure. 

Overall simulation studies, whether conducted with simplified or fully atomistic models, 

tend to predict a well-defined transition to a solid phase as the separation between 

confining surfaces is reduced past a critical value.  

 
Although progress has been made in understanding the behavior of fluids under 

nano-confinement by preforming simulations, the length and timescales that can be 

accessed by simulations are still considerably limited compared to experiment, making it 

possible that structures found in MD or MC simulations are not the equilibrium ones, but 

are metastable configurations, since the true low-free-energy structures are inaccessible 

due to large free energy barriers. Furthermore, simulations alone do not provide a clear 

picture of the free energy landscape, and thus the simulation studies reviewed here were 

unable to find the precise location of the phase transition. Thus, to examine the nature of 

the liquid-solid phase transition, a detailed and explicit calculation of the phase transition 
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behavior based on the underlying free energies is necessary.8 In this work, we will 

calculate the free energy of the nano-confined systems and study their phase transition 

behavior by the STMD method, which will be discussed in details in Section 3.1.4. 

 

 

Figure 2.5 The evidence from atomistic simulations of fluids confined between mica 
walls, from Hugh et al.;68 (a) ordered phase of n-dodecane confined between mica sheets, 
(b) liquid-like structure of cyclohexane at n=6 confined by mica sheets, (c) ordered solid-
like structure of cyclohexane at n=5 confined by mica sheets, with right one shows only 
the structure of confined fluids. 

Figure 2. A comparison of GCMD and NPT ensemble simulations.
Panels (a) and (b) depict a side and top view of an equilibrated GCMD simulation with a fixed-surface separation of
three dodecane molecular diameters. In the top view, panel (b), the mica is removed to reveal the structure of the con-
fined fluid. Panel (c) shows a close of up the confined dodecane molecules for this same system. The difference
between the confined and bulk regions is dramatic, with the confined molecules freely forming three distinct layers,
with an intra-layer herringbone structure. Panel (d) depicts an equilibrated NPT simulation for a separation of five molec-
ular diameters. Comparing panels (c) and (d), it is clear that in both simulation techniques, the equilibrated structure is
essentially the same, i.e., a layered herringbone structure.

Figure 3. The evidence from atomistic simulation.
Panel (a) depicts an atomistic NPT ensemble simulation of nanoconfined dodecane for a surface separation of five mo-
lecular diameters. The top picture shows the full simulation, including mica. The color coding of atoms is: red — oxygen,
white — hydrogen or potassium; green — aluminum, and yellow — silicon. Carbon atoms are represented as light or
dark blue spheres; the contrast in the carbon atoms is to show the domains of layered herringbone structure. As in the
simpler models,32 the confined fluid undergoes a transition to a layer and ordered structure with an intra-layer structure
consisting of regions of parallel molecules. Panel (b) and (c) show an equilibrated atomistic NPT ensemble simulation
for cyclohexane with a separation of six and five molecular diameters, respectively. In the case of six diameters, the
cyclohexane remains fluid-like (order parameter of 0.34). Conversely, upon moving to a separation of five diameters, the
molecules undergo a rapid and abrupt transition to an FCC ordered solid-like structure (order parameter 0.90).
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CHAPTER	
  3 SIMULATION	
  AND	
  COMPUTATIONAL	
  METHODS	
  
 

3.1 Free	
  energy	
  simulation	
  methods	
  
 
In this Chapter, we review the simulation methods used in the reminder of the 

dissertation. 

3.1.1 Wang-­‐Landau	
  Monte	
  Carlo	
  simulation	
  
 
WL Monte Carlo simulation is applied in Chapters 4 to simulate the bilayer formation on 

a cubic lattice lipid model, and forms the basis of all other methods employed throughout 

the dissertation. In contrast to traditional MC methods such as the Metropolis that 

samples with a Boltzmann factor in order to create configurations distributed according to 

the canonical distribution,33 the WL algorithm performs a random walk in energy space 

with a bias (non-Boltzmann factor). The sampling weight of a specific energy level is 

proportional to the reciprocal of the density of states, 1/g(E), and a flat histogram is 

generated for the energy distribution. Thus, a proposed move from energy state E1 to 

energy state E2 is accepted or rejected with the probability p given by  

𝑝 𝐸! → 𝐸! = 𝑚𝑖𝑛 !(!!)
!(!!)

, 1 .                                      (3.1) 

Initially all g(E) are set equal to unity and determined later by an iterative process. 

Specifically, each time after an energy level E is visited, the g(E) is updated by a 

modification factor f (>1.0) via 

𝑙𝑛𝑔! 𝐸 = 𝑙𝑛𝑔 𝐸 + 𝑙𝑛𝑓,                                      (3.2) 

where 𝑙𝑛𝑔! 𝐸  with a prime means the update of  DOS at energy E at the current 

simulation step. Here, in order to fit all possible 𝑔 𝐸  into double precision mumbers for 
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the systems studied, 𝑙𝑛𝑔 𝐸  is used instead of 𝑔 𝐸 . At the same time, an energy 

histogram H(E) is also accumulated and when the histogram is “flat”, as defined by a pre-

set tolerance, g(E) is assumed to converge to the true value with an accuracy proportional 

to the current f. The modification factor is then reduced to a smaller value (𝑙𝑛𝑓! =

0.5×𝑙𝑛𝑓!), the histograms reset to zero, and the next level of random walk started.  In this 

new round, g(E) is modified with the new modification factor f1, and the random walk is 

terminated when f1 approaches 1.0 with g(E) converged to the true value. Usually, the 

natural logarithm of the modification factor f, ranges from 1.0 to 1 × 10-8, as suggested by 

Landau et al.4 The histogram is considered flat when H(E) for all possible E is not less 

than 85% of the average histogram value, 〈H(E)〉.  

The unique point of the WL method is its equal probability for sampling all the 

configurations and thus the system will not be trapped by local energy minima, as can 

happen with conventional MC. Therefore, the WL method is capable of addressing the 

sampling problem and long relaxation time needed for complex systems with rough 

energy landscapes.  

3.1.1.1 Application	
  of	
  Wang-­‐Landau	
  MC	
  
 
Initially, the WL algorithm was mainly used to study spin and lattice systems.4, 29, 94-96 

For example, the 3D Edwards-Anderson model (EA model) is a spin glass model for 

magnetism with very rough energy landscape (see Figure 3.1).4 Based on the Boltzmann 

distribution, the system is very likely to be trapped in local energy minima when 

simulated by conventional MC methods, resulting in long relaxation time. With the WL 

method, in order to calculate the order-parameter at any temperature from the canonical 

average, Wang and Landau4 performed a random walk in 2D energy-order parameter 
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space. The internal energy and entropy at zero temperature were estimated up to a lattice 

size of 203, and the transition temperature was estimated at Tg = 1.2.  

 

Figure 3.1 Canonical probability of Edwards-Anderson 3D model in the order-parameter 
space for a single distribution of bonds, from reference;4  

 

More recently, researchers have extended the application of WL method to 

continuous systems, such as the study of collapse transition in fully flexible bead-spring 

and square well polymers. 97-101 For example, Seaton et al.99, 102 studied the characteristic 

behavior of a flexible homopolymer with a chain length up to 561. By use of the WL 

method, they calculated thermodynamic properties over a wide range of temperatures and 

reached to temperatures lower than accessible in complementary Metropolis MC 

simulations. From specific heat capacity calculations, they found a sharp peak at low 

temperature, indicating a solid-liquid phase transition and a weaker coil-globule 

transition at high temperature. This study shows that the WL sampling algorithm is 

highly effective for single flexible homopolymer simulations. Similarly, the folding of 

simple peptide models in vacuum and continuum solvent have also been studied using 

WL.11, 103, 104-105 Clearly, these works show the great potential of the WL method to 

explore systems with rough energy landscapes. 
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Most WL simulations are carried out at constant density in a NVT ensemble, and 

thus the DOS, g(E), is only a function of the energy variable. However, if we want to 

determine phase equilibrium, which plays a key role in natural processes and industrial 

applications, such as vapor-liquid coexistence, the DOS is required to be a function of 

both the energy and density. This results in the need for calculating 2D DOS. For 

example, with their own extended WL sampling for random walk in both the energy and 

the volume space, Yan et al.106 and Shell et al.107 calculated vapor-liquid coexistence 

curves for small systems of the LJ fluids, and Poulain et al. studied LJ clusters.108 

Overall, these simulations require significantly more simulation time than 1D DOS and 

can quickly become impractical, even for some simple systems.   

3.1.1.2 Method	
  Validation	
  with	
  Ising	
  model	
  

As an instructive test, the WL algorithm was applied to a classic problem, namely the 

Ising model.40 The Ising model consists of discrete variables called spins, 𝑠!, that can be 

in one of two states, as shown in Figure 3.2a. Each spin can interact only with its nearest 

neighbors, and the energy function is defined as 𝐸 = 𝑠!!!! 𝑠!. The Ising model is one of 

the simplest statistical models showing a phase change, and in the case of zero magnetic 

field has a complete analytic solution.109 Thus it is an ideal benchmark for testing new 

algorithms and theoretical approaches.   

 
Since the proposal of the WL method in 2001, the Landau group has tested the 

algorithm on the Ising model at different sizes, including 32 × 32, 50 × 50 and 256 × 

256.4, 29 To verify our own implementation of the WL algorithm, we performed 

calculations on the 2D Ising model with L=256 and obtained good agreement with the 
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results of Landau et al.,40 as shown in Figure 3.2. Here, the WL parameter settings are as 

follows: initially all lng(E)=0, H(E)=0, flatness criterion of 85%, lnf changed from 1.0 to 

10-8, and the system is run in parallel with 23 sub-energy windows.  

 

    

(a)                                                                 (b) 

Figure 3.2   Density of states for Ising model; (a) from this work (inset, up in red, +1 or 
down in blue, -1),  (b) from Landau et al.40  

 

3.1.2 Parallelization	
  of	
  Wang-­‐Landau	
  MC	
  algorithm	
  
 
The WL algorithm is based on random walks in energy space, which can be implemented 

in parallel for efficient sampling of the complex systems by parallel “walkers”, i.e., 

multiple side-by-side simulations continually updating g(E) through time.  

Generally, there are two routes for the parallelization of the WL algorithm. Firstly, 

to speed up the simulations, the total energy range can be divided into multiple smaller 

sub-windows, with each sampled by an independent WL random walker.110, 111 The 

strategy of multiple energy windows are frequently used in WL simulations110, 111 and 

have been adopted in this work in Chapter 4. In this approach, the total energy range is 

divided into overlapping energy windows and g(E) is estimated for each window using 
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independent random walks. The g(E) for the whole energy range is then obtained via a 

matching procedure in which the overlapping energy regions are stitched together. The 

total simulation time is largely determined by the convergence speed of the slowest 

walker (i.e., low energy windows, or windows involved with phase transitions). And also 

for complex system we can introduce unequal distribution of the energy space to faster 

the convergence of these slow walkers.112  The details of the parameter setting for 

running simulation in multiple energy windows is discussed in details in Section 4.2.1.  

Another parallelization scheme is multiple random walkers work simultaneously 

on the same DOS and histogram (i.e., for the same energy windows), such as the previous 

parallelization work implemented by GPU,113 shared memory,114 and distributed 

memory.115 In the work of Yin et. al, a parallel WL algorithm on multiple GPUs (Fermi 

architecture card) are implemented for the simulation of water clusters. Results showed 

that they obtained an average of about 50 times speedup for a given workload, in contrast 

to a single thread code on an intel i7-930. 

3.1.2.1 Replica-­‐exchange	
  Wang-­‐Landau	
  	
  
 
As stated earlier, the WL method performs random walks in energy space that can be 

parallelized by using multiple “walkers” and can be broken up into smaller overlapping 

sub-energy windows that are stitched together at the end. To further speed up the 

convergence of the simulations, the replica exchange technique was combined with the 

WL method. We accomplished this in collaboration with Thomas Vogel and David 

Landau at the University of Georgia at Athens, and this is employed in Chapter 5. As in 

every MC scheme, a conformational update is proposed at each step that is accepted with 

a certain probability 𝑃acc depending on the total energy E (note reduced units are used and 
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so E is the reduced dimensionless energy) of the actual (X) and proposed new state (Y) 

and the statistical ensemble. In this case, 

𝑃acc 𝑋 → 𝑌 = min 1, ! ! !
! ! !

   ∙ 𝑏 ,                                  (3.3) 

where b is a correction factor for any configurational bias that might be introduced by the 

MC update moves. 

To speed up the simulation, the global energy range is divided into individual 

energy windows116 with significant energetic overlap. As in the typical replica exchange 

algorithm, these overlapping energy windows are allowed to swap configurations with 

neighboring energy windows, which are accepted with: 

𝑃acc 𝑋!𝑌! → 𝑌!𝑋! = min 1, !! ! !
!! ! !

  !! ! !
!! ! !

.                                 (3.4)           

𝑃acc depends on the total energy E (note reduced units are used and so E is the reduced 

dimensionless energy) of the actual (X) and proposed new state (Y) and the statistical 

ensemble. Here, 𝑔! 𝐸 𝑋  is the current estimate of the density of states in energy 

window i at the energy of its actual conformation X. More generally, we allow for 

multiple, individual WL walkers in each energy window that merge their density of states 

estimates at defined stages in the WL run, resulting in a decrease in the statistical error. 

For a detailed introduction and discussion of the parallel WL framework used, see 

reference.112  
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Figure 3.3 Schematic representation of the division of the total energy range into nine 
individual energy windows with fixed mutual overlap of 75%. Three WL walkers are 
deployed in each window as indicated by the dotted lines. Arrows illustrate the replica-
exchange communication scheme, i.e., walkers can exchange configurations with walkers 
from neighboring windows. 

 
In this study, nine individual energy windows are created with a mutual overlap of 

75% (for a better exchange of the replicas between different energy windows) and three 

WL walkers per window. This set-up has been found suitable and leads to significant 

speed-ups compared to single processor WL simulations.112 Figure 3.3 provides a 

schematic overview of the simulation set up. 

3.1.3 Statistical	
  temperature	
  Monte	
  Carlo	
  	
  
 
This simulation algorithm is implemented in Chapter 5. The WL Monte Carlo algorithm 

has attracted considerable interests due to its ability to generate a flat energy distribution 

with the dynamic update of g(E); however, the large increase in the number of energy 

levels as the system size increases limits its application to large and complex systems. 

Recently, to improve this, Kim et al. derived the statistical-temperature Monte Carlo 

algorithm, which extends the WL method to simulations with larger energy intervals by 

updating the statistical temperature T(E) instead of DOS.30, 31 STMC achieves a flat 

Emin Emax
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energy distribution by the systematic refinement of T(E), which is realized by the 

thermodynamic relationship between T(E) and g(E) via117 

  !
! !

= !!
!! !,!

= !!"# !
!!

  .                                            (3.5) 

By using the finite difference approximation with Equation 3.5 and combining it with the 

g(E) update scheme Equation 3.2 (converted to entropy S, 𝑆!! = 𝑆! + 𝑙𝑛𝑓 , where f is the 

modification factor), a dynamic update of the statistical temperature is realized by 

  𝑇!±!! = !!±!
!∓!!±!×(!"# !∆!)

  ,                               (3.6)  

where ∆𝐸 = 𝐸!!! − 𝐸!  (𝑗 = 𝑛𝑖𝑛𝑡 𝐸 ∆𝐸 ) (nint being a function returning the nearest 

integer value) is the energy bin size, i.e., the update changes temperature estimates only 

at the discrete values of 𝐸!±!. For a detailed derivation of the above formulations, the 

reader is referred to the original references.30 The temperature is updated in a range 

𝑇! < 𝑇! < 𝑇ℎ and at the boundary or beyond set to 𝑇! = 𝑇! or 𝑇ℎ as appropriate, where 𝑇! 

and 𝑇ℎ are the lower and upper boundaries, respectively. Due to this limited sampling 

range of T(E), the initial lnf is usually set to a value very close to zero (with the actual 

value depending upon the temperature range being sampled), in contrast to the WL 

method in which lnf  is initially set to 1.0 in order to cover a large range of energy states.  

To implement STMC, all 𝑇!  are set to a constant value at the start of the 

simulation (usually 𝑇! ). A proposed move is accepted or rejected with the same 

acceptance rule as in the original WL method Equation 3.1. After an energy bin 𝐸! is 

visited, the actual 𝑇!±! is updated by Equation 3.6, and then integrated by Equation 3.5 to 

determine the current g(E) for the acceptance probability. The fact that 𝑇! is only defined 

on the grid points 𝐸! and the sharp change of the integrand at low temperatures makes it 
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difficult to apply a generic numerical integration, and thus a linear interpolation scheme31 

is used to connect successive bins. For a value of the potential energy E between 𝐸!  and 

𝐸!!!:  

 𝑇 𝐸 = 𝑇! + 𝜆!(𝐸 − 𝐸!),                                    (3.7) 

where 𝜆! = 𝑇!!! − 𝑇! ∆𝐸  is the slope of the linear segment connecting the two 

neighboring bins. The continuum g(E) estimate is then calculated by analytical 

integration at the end of MD simulations: 

  𝑙𝑛 𝑔 𝐸 = !
! !!

!
!!

𝑑𝐸!                                                                                                                                                                                                                             

= !
!!!!

!∗
!!!!! 𝑙𝑛 1+ !!!! !!!!!!!

!!!!
+ !

!!∗
𝑙𝑛 1+ !!∗ !!!!∗

!!∗
,                  (3.8) 

                                                  = 𝐿! 𝐸! +!∗
!!!!! 𝐿!∗!! 𝐸   

where   𝑖∗ = 𝑖 − 1  for 𝐸!!! ≤ 𝐸 ≤ 𝐸!   (𝐸! = 𝐸! + 𝐸!!! 2 ), and 𝑖∗ = 𝑖   for 𝐸! ≤ 𝐸 ≤

𝐸! , and  𝐿! =
!

!!!!
𝑙𝑛 1+ !!!! !!!!!!

!!!!
.  By updating the intensive variables 𝑇! located at 

discrete points, a continuum description of g(E) can be obtained through analytical 

integration of T(E). Therefore, moderately larger and fewer bins can be used to accelerate 

the simulation convergence, which still maintains the statistical accuracy.11 

3.1.3.1 Validation	
  of	
  STMC	
  by	
  2D	
  Ising	
  model	
  
 

To verify our implementation of the STMC algorithm, we also performed calculations on 

the 2D Ising model of L=32, with three different energy bin sizes, following the same 

simulation details as Kim et al. As shown in Figure 3.4, we obtained good agreement 

with the results of Kim et al. 30  
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Figure 3.4 Convergent temperature T(E) for 32×32 Ising model; (a) from this work, (b) 
from Kim et al. 30  

 

3.1.4 Statistical	
  temperature	
  molecular	
  dynamics	
  	
  

3.1.4.1 Overview	
  of	
  MD	
  simulation	
  
 

Based on classical Newtonian equation of motion, MD simulation provides the 

time evolution of interacting molecules. The dynamics can be directly tracked at the 

atomic level, making MD especially competitive in molecular biology and chemical 

areas. Normally, a standard MD simulation follows the steps: initialize the system, 

compute the forces on all particles, and then integrate Newton’s equations of motion 

through a time step Δt ≈ 10-15s. These two core steps are repeated until we have computed 

the time evolution of the system for sufficient time (typically, ns or longer). When 

finished, we compute the averages of measured quantities.33  

Specifically, the time evolution of a set of interacting particles follows Newton’s 

equations of motion, which are solved numerically by calculating the forces on each atom 

in the system. Due to many-body nature of the problem the continuous equations of 

motion are discretized and evaluated at regular time intervals, or timesteps. The force 
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fine-tuning of ~T!E"; the ‘‘edge effect’’ [7] can be avoided
by restricting updates to Tl < ~Tj < Th, and maintaining
~Tj # Tl (Th) beyond the lower (upper) temperature bounds
Tl (Th).

An STMC simulation requires the computation of ~S!E"
from ~T!E" for the acceptance probability; trial moves are
made as usual. The direct integration of ~!!E" is not desir-
able due to the sharp variation of the integrand at low
temperatures. To overcome this problem, we approxi-
mate the statistical temperature using the piecewise inter-
polation

 

~T!E" # ~Tj $ "j!E% Ej" (4)

for Ej & E & Ej$1, where "j # ! ~Tj$1 % ~Tj"=! is the
slope of the linear segment connecting [Ej, ~Tj] and
[Ej$1, ~Tj$1]. Linear extrapolation is particularly appropri-
ate at low temperatures, where the specific heat CV is
nearly constant. The sequence of consecutive interpola-
tions also enables a faithful representation of a T!E" cor-
responding to a phase transition [8]. The interpolation in
Eq. (4) yields the continuum entropy estimate,

 

~S!E" #
Z E

El

~!!E0"dE0 #
Xi'

j#l$1

Lj!Ej" $ Li$1!E"; (5)

where i' # i% 1 (i) for "Ei%1 & E & Ei (Ei & E & "Ei),
"Ei # !Ei $ Ei$1"=2, El is the lowest energy, and Lj #
"%1
j%1 ln(1$ "j%1!E% Ej%1"= ~Tj%1). Equation (5) is used

to determine the acceptance of trial moves, taking into
account that the updated ~Tj differs from its previous esti-
mate at only two grid points i* 1. For the corresponding
update of ~#, let ~#i # exp(~S!Ei") #

Qi
j#l$1 Yj, Yj #

( ~Tj= ~Tj%1)"
%1
j%1 . On a visit to Ei, Eq. (3) yields

 

~# 0
i$k # ~fk ~#i$k; (6)

where ~fk # $i$k
j#i%1Y

0
j=Yj is a nonuniform modification

factor for k 2 (%1; 2); Y0
j is evaluated at the updated ~T0

j.
The combination of the fundamental Eq. (3) and the

intrinsic smoothing of Eq. (5) allows a continuum descrip-
tion of ~S!E" regardless of the choice of !. Thus our method
can maintain statistical accuracy using larger values of !,
which is essential for large systems with a huge range of
#!E". In contrast, as seen below, ! must be small for other
flat histogram MC methods [1,4].

Once the histogram fluctuations are less than 20% of the
mean, the sampling is repeated with a reduced convergence
factor fn$1 #

!!!!!
fn

p
, n being the iteration, and is terminated

at fd + f% 1< 10%8. During the initial stages of the
simulation, the temperature estimate for an unexplored
energy region is modified every 104 MC steps as ~T!E" #
Tmin for E< Emin, Tmin # ~T!Emin" # minf ~T!E"g. This
low-energy flattening of ~T!E" corresponds to the extrapo-
lation of ~S!E" # ~S!Emin" $ !E% Emin"=Tmin for E< Emin

and accelerates the convergence by assisting the system to
access lower energies through the canonical sampling at
Tmin. When the simulation converges with fd < 10%8,
thermodynamic properties are determined with the conver-
gent ~T!E" via Eq. (5) [1].

We tested the STMC algorithm for the 32, 32 Ising
model with periodic boundary conditions and Tl # 1:2,
Th # 4, an initial constant temperature estimate ~T!E" #
Th, and considered ! # 8, 32, 64, and an initial value
fd;0 # 10%5. Note that f0 is very close to unity due to
the restricted sampling range of ~T!E", in contrast to WL
sampling, which usually starts with f0 # e to cover a large
range of ~#!E". Consequently, both ~T!E" and ~S!E" are
almost indistinguishable after the first iteration from their
convergent values with fd # 10%8. When ! is increased to
64, the temperature estimate displays a small ruggedness
due to the discrete nature of the histogram [Fig. 1(a)], but
the flat histograms in the inset confirm that STMC works
even for large energy bins. The corresponding entropy
estimates, Fig. 1(b), show good agreement with the exact
result [9], and the errors #~S!E" # ~S!E" % S!E" are less
than one for the region [E!Tl", E!Th"], regardless of the
value of ! [inset, Fig. 1(b)].

Another test is the continuum N # 110 Lennard-Jones
fluid with a cutoff of 2:5$ at reduced density % # 0:88,
Tl # 0:65, and Th # 1:82. The flatness of the histogram
has been checked every 104 steps for the energy window
%670 & E & %540. We found [see Fig. 2(a)] a small
ruggedness in ~T!E" with E for ! # 1, fd;0 # 10%3, but
~T!E" shows a smoother variation with fd;0 # 10%4 and
! # 4 and 16. Nevertheless, the simulations give flat histo-
grams [inset of Fig. 2(a)] for all values of !. To demon-
strate the progression of statistical errors we have checked
the average standard deviations of the specific heat CV of
five independent runs at temperatures T # 1:0, 1.1, 1.2,
1.3, and 1.4 [see Fig. 2(b)]. Precise estimates of CV were
determined by canonical sampling for 106 steps. The sta-
tistical errors of both STMC and WL rapidly decrease to a
limiting value because, as fd decreases, further MC steps
do not [3] refine ~T!E" or ~S!E". However, STMC is superior
to WL for the same ! # 1 and is comparable even for
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FIG. 1 (color online). The 32, 32 Ising model: (a) convergent
~T!E" and histograms (inset); (b) entropy estimates ~S!E" and
absolute errors #S!E" (inset) for energy bins ! # 8, 32, and
64. The notation for curves is !fd;0!".
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acting on ith atom is calculated by the gradient of the potential energy with respect to 

atomic displacements,  

𝐹! = 𝑚!𝑎! = 𝑚!
!!𝒒!
!!!

= −∇!!𝑉 𝒒!,…𝒒! = !!
!!!
, !!
!!!

, !!
!!!

,              (3.9) 

where Fi is the force acting upon ith particle at time t and is the mass of the particle, 

and 𝒒!   = (𝑥! ,𝑦! , 𝑧! , ) is the position vector of ith particle,  𝑉 𝒒!,…𝒒! , is the potential 

energy of N interacting particles as a function of their positions. Thus, a potential energy 

function, or force field, needs to be defined for calculating 𝑉 𝒒!,…𝒒!  and its 

derivatives. The force field defines the forces between the particles and potential energies 

of each conformation. 33  

Compared with other molecular methods, such as molecular mechanics and 

Monte Carlo, the time evolution of the interacting molecules are explicitly computed in 

MD simulations, from which the macroscopic functional properties (such as kinetic 

energy, pressure and temperature) can be computed by time-averaging of the behaviour 

of individual particles. 

3.1.4.2 STMD	
  
 
Prior implementations of WL sampling have been based on MC. This limits the 

applicability of the method to more complex systems where effective MC moves are not 

available. A different approach, termed statistical-temperature molecular dynamics 

(STMD), was recently proposed by Kim et al.,30, 31 with the objective of generating a 

deterministic trajectory by MD sampling and to augment the capabilities of the WL 

method to complicated systems beyond the scope of effective MC moves. To implement 

the variable T(E) into an MD simulation and realize a random walk in energy space, a 

im
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generalized ensemble technique118 is employed in which the energy state is weighted by a 

non-Boltzmann factor. In the generalized ensemble, the sampling of configurations is 

based on the weight   

𝑤 𝐸 = 𝑒!!(!),                                                  (3.10) 

which leads to the effective potential in the canonical ensemble at a temperature 𝑇! as  

 𝑉!"" = 𝑇!𝑆(𝐸).                                      (3.11) 

Then the force term 𝑓can be solved by the derivative over position q: 

                                                                                                      𝑓       = − !!!""
!𝒒

                                                                        

                                                                                                                        = −𝑇!
!! ! 𝒒

!𝒒
= −𝑇!

!! ! 𝒒
!!

!! 𝒒
!𝒒

.                               

                                                                                                                    = !!
! !

𝑓                                                                    (3.12) 

Thus, the sampling weight 𝑒!!(!) is realized in an MD simulation with the Nosé–Hoover 

thermostat by maintaining the kinetic energy at the reference temperature 𝑇! = 𝑇ℎ and 

constantly adapting the forces with an energy-dependent scaling factor.  

To implement STMD, all 𝑇!  are set to a constant value at the start of the 

simulation (usually 𝑇ℎ).  The rest of the algorithm is similar to the implementation of 

STMC, including the temperature update in Equation 3.7 and integration for Li(E) as in 

Equation 3.8. 

3.1.4.3 Validation	
  of	
  STMD	
  by	
  LJ	
  fluid	
  
 
To firstly examine our implementation of STMD, we studied the LJ systems in the NVT 

ensemble, with the parameter settings matching the work of Kim et al;31 the system 

consists of 110 particles, with reduced density as ρ=0.88, and the potential cutoff at 2.5σ; 

temperature range from [0.7,1.8], corresponding to a fluid region, with Nosé-Hoover 
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thermostat reference 𝑇!=1.8.  As in Figure 3.5, results for all the three different energy 

bin sizes (2, 4, and 16) agree with the reference.31 

(a)    (b)  

(c) (d)  

Figure 3.5 Lennard-Jones fluids simulated by STMD; (a) and (b) from this work,(c) and 
(d) from Kim et al.31 

 

3.1.5 Hybrid	
  WL	
  Monte	
  Carlo/	
  STMD	
  method	
  
 

To calculate the 2D DOS, we proposed the hybrid WL/STMD method, which is 

composed of original WL sampling and the standard STMD, taking the advantages of 

both of the algorithms. To illustrate the idea of the hybrid method, we firstly calculate 2D 

DOS as function of energy and the composition of the systems (i.e., in a semi-grand 

canonical ensemble), namely 𝑔 𝐸,𝑁 . Specifically, the simulation is performed in two 

directions (as shown in Figure 3.6). In the vertical direction, standard STMD simulations 

are performed as a function of energy with fixed system compositions, i.e., the number of 

all the species are fixed with a total of them as N (see details for the binary LJ system in 

!

close to unity due to the restricted sampling range of T̃!U", in
contrast to WL sampling, which usually begins with f =e
to cover a large range of !̃!U". Accordingly, after the first
iteration !4.4"106 MD steps", both T̃!U" and S̃!U" have
almost reached their convergent values with fd#10−8 !1.4
"107 MD steps" in Fig. 2!b".

When $ increases to 16, the temperature estimate T̃!U"
in Fig. 3!a" shows a staircase modulation due to the discrete
energy grid, which is directly reflected in the fluctuations of
the energy histogram H!U" in the inset of Fig. 3!a". How-
ever, the overall flatness of the histograms confirms that
STMD is applicable with a large energy bin. Furthermore,
the reweighting gives the same entropy estimate in Fig. 3!b"
regardless of $. The energy PDF, P!U", has been computed
by collecting the simulation data of 3"106 MD steps with
fd#10−6. The variation of the temperature estimates is less
than 10−5 with this modification factor, so we assumed that
the weight is fixed. The internal energy Uave!T"= #U$T, with
#¯$T being the canonical ensemble average at T, and the
heat capacity CUU!T" in Fig. 4 show good agreement with
the canonical sampling results for 107 MD steps. The relative
errors of the internal energy, i.e., %= %!Uave−Ucano" /Ucano%, are
less than 0.0004.

The convergence of STMD is accelerated by two factors.
One is the low energy flattening, which increases the initial
sampling speed by allowing the system to access an unex-
plored energy region more rapidly through the canonical
sampling. The other is the continuum description of the en-
tropy estimate combined with an adjustable energy bin size.
Since the flat histogram condition can be more easily
achieved for a large $, the rate of convergence can be en-
hanced greatly without harming the statistical accuracy. We
quantified the rate of convergence by plotting log fd as a
function of the number of MD steps. The flatness of the
histogram has been checked every 105 MD steps. The time

required for the first reduction of f has been shortened from
1.5"107 to 4.2"106 MD steps with the application of the
flattening with the same $=2 and fd=0.000 25 in Fig. 5!a".
The effect of an enlarged $ is also notable. By increasing $
to 16, the rate of convergence is accelerated about 1.5 times
compared to $=2 with the same fd.

In the asymptotic limit of fd→0, where the dynamic
modification of T̃!U" is negligible, STMD reduces to the
generalized ensemble sampling with the fixed weight w!U"
=exp&−S̃!U"'.2,3 In this limit, the constant temperature esti-
mate for each energy bin Ui produces a canonical sampling
corresponding to the temperature T̃i and the resulting energy
distribution is directly influenced by the staircase behavior of
T̃!U" for a large $. Thus the overall PDF is obtained as a
superposition of the canonical ensemble samplings repre-

FIG. 3. !a" Convergent temperature estimates T̃!U" and resulting energy
histograms H!U" !inset", and !b" reweighted entropy estimates for $=2, 4,
and 16 for 110-particle LJ fluid.

FIG. 4. Reweighted average energy Uave!T" and heat capacity CUU!T" for
$=2, 4, and 16 for 110-particle LJ fluid. For comparison, canonical en-
semble results for 107 MD steps have been plotted at T
=0.7,0.9,1.1,1.3,1.5,1.7.

FIG. 5. !a" log fd as a function of MD steps for various simulation condi-
tions with the same fd=0.000 25, and !b" temperature estimate T̃!U" and
distributions P!U" with $=2 and 16 for 110-particle LJ fluid. The asterisk in
!a" denotes the STMD simulation without low energy flattening. The exact
statistical temperature T!U"=Uave

−1 !U" is provided for comparison.

135101-6 Kim, Straub, and Keyes J. Chem. Phys. 126, 135101 !2007"
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Section 7.2), and are responsible for calculating g(Ei,N). At intervals, with a fixed energy 

state E, WL samplings are performed with a random walk of the second variable 𝑁!, 

which is the number of the particles in one species, as shown in Figure 3.6. This idea 

follows from the ideas of replica exchange MD, but in this case swapping is governed by 

the WL acceptance criteria (i.e., DOS) rather than the Metropolis weight. Separate sets of 

histogram are maintained for each direction, e.g., for WL, at fixed energy bin, the 

simulation needs to be converged over 𝑁! , while for STMD, at fixed N, they are 

converged over Ei. This allows for different bin sizes to be used for the WL part and 

STMD part, as appropriate.  

𝐻!" 𝐸,𝑁! = 𝐻!" 𝐸,𝑁! + 1,                                     (3.13) 

ln𝑔!" 𝐸,𝑁! = ln𝑔!" 𝐸,𝑁! + ln𝑓!",                              (3.14) 

𝐻!"#$ 𝐸! ,𝑁 = 𝐻!"#$ 𝐸! ,𝑁 + 1,                                   (3.15) 

After the simulation has converged according to the pre-defined final 

modification factor, the 2D DOS 𝑔 𝐸,𝑁  can be obtained by connecting ln𝑔!"#$ 𝐸! ,𝑁  

at different N with 𝑙𝑛𝑔!" 𝐸,𝑁! . Here, the initial ln𝑓!" = 1.0, and ln𝑓!"#$ = 0.00025, 

while the final ln𝑓!" < 10!!, and ln𝑓!"#$ < 10!!, following general setting of the two 

methods.4, 31  
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Figure 3.6 Schematic representation of hybrid WL/STMD method 

 

3.2 Analysis	
  methods	
  
 
A number of methods are applied throughout this dissertation to analyze simulation 

results. Below is a description of the most important or commonly used methods. 

3.2.1 Thermodynamic	
  properties	
  
 
Thermodynamic properties were calculated throughout the dissertation. After obtaining 

g(E), the partition function Q can be calculated at any given temperature and other 

thermodynamic properties determined. The partition function is calculated in terms of the 

contribution from energy levels,117 

 𝑄 𝑁,𝑉,𝑇 = 𝑔 𝐸 𝑒!! !!!!   ,                         (3.16) 

where kB denotes Boltzmann’s constant, T is the temperature, and g(E) is the density of 

states, which is defined as the number of states that have the same energy level. The free 

energy, F, can be calculated from the partition function Q,119 
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     𝐹 = −𝑘!𝑇ln𝑄 𝑁,𝑉,𝑇 ,                                                     (3.17) 

 
and the average energy 𝐸   and heat capacity Cv can be calculated as,  

 𝐸 = !"(!)!
!!

!!!!
!

,                                          (3.18) 

 𝐶! =
!

!!!!
𝐸! − 𝐸 ! ,                                      (3.19) 

where N is the number of molecules, E is the system potential energy and 𝐸! − 𝐸 ! is 

the fluctuation in the energy. 

3.2.2 Order	
  parameter	
  	
  

3.2.2.1 Characterization	
  of	
  bilayer	
  	
  

To quantify the structural properties and transitions within the self-assembled structures, 

several order parameters have been calculated in Chapter 5.  The ordering of the lipid 

molecules is quantified by using the nematic order parameter, S2,120 in which the average 

direction of each lipid is first quantified by calculating the moment of inertia tensor for 

each molecule: 

𝐼!" = 𝑚! 𝑟!!𝛿!" − 𝑟!"𝑟!"
!!
!!! ,                                      (3.20) 

where 𝑟! is the position vector of each particle i relative to the center of mass of a given 

molecule, and 𝑚! is the mass of each particle i , 𝛿!" is the Kronecker delta, 𝑁! is the total 

number of particles in the lipid, and α and β are looping variables that correspond to the 

coordinate axes (i.e., x, y, z).  The characteristic vector describing the lipid, 𝑢, is the 

eigenvector associated with the smallest eigenvalue of the tensor, and is used to construct 

the nematic tensor: 

𝑄!" = !
!!

!
!  𝑢!"

!!
!!! 𝑢!" − !

!  𝛿!",                                   (3.21) 
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where 𝑁! is the total number of lipids.  The director of the system is the eigenvector 

associated with the largest eigenvalue, and the nematic order parameter, S2, corresponds 

to this largest eigenvalue.  For a given simulation snapshot two Q tensors, one for each 

layer, were constructed and the two S2 values averaged.  Using the same procedure, S2 

for the individual segments of the lipids (the individual bead) is also calculated. All 

results are calculated as block averages, where quantities are averaged for energy blocks 

of size ΔE = 32, corresponding to the energy bin size in the STMD simulations. 

To quantify the transition of the water to a crystalline (i.e., frozen) structure, 

techniques based upon shape matching are employed.121, 122 Briefly, the global structure 

of the water particles is determined via the super-position of the directions between a 

particle and its first neighbor shell (i.e., a bond-order diagram is constructed).  Systems 

with a high degree of global ordering demonstrate strong correlations in terms of these 

“bond” directions. The bond-order diagram is transformed by taking the magnitude of the 

spherical harmonic transform for harmonics 4, 6, 8, 10, and 12, and concatenating these 

into a single vector, providing a characteristic “fingerprint” (i.e., shape-descriptor) of the 

system.  To determine the transition, the dot product normalized between 0 and 1, is 

calculated between this vector and the vector describing a low temperature, ordered 

crystalline state (determined visually), this procedure is repeated using five different 

crystalline configurations as a reference to provide a more robust description. The order 

parameter is constructed such that an ideal match gives a value of unity. 

3.2.2.2 Characterization	
  of	
  crystallized	
  structure	
  
 
In Chapter 6, a layer-by-layer global two-dimensional (2D) hexagonal order parameter 

(OP) of particles within the nano-pore was constructed by taking the Fourier transform 
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with frequency = 6 of the superposition of the in-plane first neighbor shell surrounding 

atoms within a given layer; for detailed calculation of the order parameter, refer to 

references.121, 122 Note that, unlike the related order parameter of Gubbins,86 the 2d 

hexagonal order parameter used here takes into account the global orientational ordering 

of the system, not just the average local order, providing a clearer separation between 

ordered hexagonal and disordered states.  For a full description of the difference between 

local and global order parameter construction, refer to Keys et al. 121, 122  

3.3 MD	
  simulation	
  package	
  	
  
 
The STMD algorithm was implemented within HOOMD-Blue123, 124 simulation package. 

HOOMD-Blue is highly optimized to run MD simulation on graphical processing units 

(GPU). By implementing the STMD algorithm within this package, the algorithm can 

leverage the massively multicore nature of the GPUs for efficient calculation of the DOS. 

For the lipid system reported in Chapter 5, the STMD simulations run ~4-5 times faster 

on the NVIDIA GeForce GTX 480 GPUs than those on 8 core CPUs (2.4 GHz Opteron).  
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CHAPTER	
  4 LIPID	
  BILAYER	
  SELF-­‐ASSEMBLY	
  ON	
  A	
  3D	
  LATTICE	
  
MODEL	
  

 

This chapter focuses on the applicability of WL method to the self-assembly of lipid 

molecules with a simple 3D-lattice model. The lipid models, with different chain lengths 

and various lattice sizes, are considered. Also conventional Metropolis MC simulations 

were implemented for comparison. This study provides an important first step towards 

the overall goal of developing a framework for the studying of phase behavior of 

complex fluids by density-of-states based methods. This work is published in Gai et al.94 

4.1 Introduction	
  
 
Amphiphilic molecules consisting of a hydrophilic head group and hydrophobic tail 

groups can display different fluid phases such as bilayers, micelles, and vesicles through 

self-assembly when mixed with a suitable solvent.34, 125 Among them, lipid bilayers are 

important structures in both natural and artificial biological interfaces,37 such as the 

membranes that form the basis of almost all life forms.39 As a result lipid self-assembly 

has been the focus of both extensive computational and experimental research.126, 127 

While, it is generally accepted that lipid self-assembly can be qualitatively explained by 

the hydrophobic effect54, complex details such as the necessary forces that direct lipids to 

assemble into predictable arrangements, or transient intermediate phase behavior during 

the aggregation process, are still the subject of much debate.55-57 Furthermore, since self-

assembly is driven by non-covalent interactions, it is necessary to explore the 

macroscopic environmental factors that can strongly influence self-assembly, such as 

concentration, the presence of other amphiphile species, and other state conditions.39, 127 



 36 

 During the self-assembly process, conformational changes correspond to changes in 

the system free energy. Free energy in general corresponds to the total amount of energy 

that can be converted to do work and is minimized when a system reaches equilibrium. 

Hence, to fully understand the self-assembly process and study equilibrium 

configurations, it is necessary to examine the underlying free energy behavior. The free 

energy, F, can be calculated from the partition function Q,119 

 𝐹 = −𝑘!𝑇ln𝑄(𝑁,𝑉,𝑇) ,                                           (4.1) 

which in turn can be defined from an enumeration of the states that a system can occupy 

or in terms of the contribution from energy levels,117 

 𝑄 𝑁,𝑉,𝑇 = 𝑒!!! !!!! = 𝑔 𝐸 𝑒!! !!!!   ,         (4.2) 

where kB denotes Boltzmann’s constant, T the temperature, s the system state with energy 

Es, and g(E) is the density of states, which is defined as the number of states that have the 

same energy level. Therefore, F can be determined either by evaluating the energy of all 

microscopic states, s, with a complete or at least importance sampling of the 

configuration space required, or by evaluating g(E) for each possible energy level. The 

challenge in calculating Q is that traditional molecular dynamics or Monte Carlo 

simulation methods sample only the lower energy regions, while rarely visiting the higher 

energy regions, and thus can lock the simulation into a particular region of phase space, 

i.e., energy minima. Additionally, very low energy states may not be visited if an energy 

barrier exists. The time needed to ensure convergence of such simulations is prohibitively 

long and so advanced methods for calculation of the free energy are required.  

 To calculate F directly, the free energy can also be calculated based on the density 

of states g(E) (Equation 4.2), which is not dependent on temperature in the canonical 
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distribution. Thus if g(E) is known with high accuracy for all energies, the canonical 

distribution at any given temperature can be constructed and all thermodynamic 

quantities of interest, including the free energy, determined.128 Unfortunately, this central 

quantity of interest is not known a priori and conventional MC in the Metropolis form 

does not allow for the direct calculation of g(E). As described in Chapter 3, a 

breakthrough in this aspect is the WL method,29 which does allow the direct calculation 

of g(E). Here we apply both the original WL and STMD methods to calculate the free 

energy and thermodynamic properties of self-assembling lipid bilayers. We report a 

series of simulations utilizing the basic model proposed by Drefahl et al.32 in order to 

demonstrate the applicability of these methods in understanding the self-assembly 

process.  

4.2 Simulation	
  details	
  
 

4.2.1 Model	
  
 
Drefahl and co-workers32  studied on-lattice self-assembly using a lipid model that is 

described by a chain of 3 beads, with the first bead representing a hydrophilic head group 

(h) and the remaining beads hydrophobic tail (t) groups. The molecular interactions are 

purely repulsive between the non-bonded head and tail beads and between the tail beads 

and water and are equal in magnitude (Eht = Etw = +20 arbitrary units).32 We note that the 

lipid model studied here is similar in spirit to the well-studied HP protein lattice model 

that is composed of a sequence of hydrophobic (H) and polar (P) monomers;129 however, 

most HP model simulations are focused on the conformation of a single HP chain,96, 130 

and thus do not include semi-explicit solvent nor employ periodic boundary conditions, 

as in the current work. 
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The lipids are embedded in a simple cubic lattice of volume V and dimensions L × 

L × L with each bead occupying one site (i.e., no two beads can occupy the same site), 

with the remaining lattice sites assumed to be water (w). Periodic boundary conditions are 

used in all directions. Two beads are considered nearest-neighbors if they are on adjacent 

sites in the lattice, so each site has six nearest neighbors in a 3D lattice. With these 

definitions, the volume fraction of lipids is given by  

 𝑋 = !!×!
!
,                                                 (4.3) 

where Na is the number of molecules and n is the number of beads in a chain.  

 For the 3-segment chain system studied, three basic move types35, 48 were used to 

generate successive configurations; reptation, interchange of tail and head groups and 

end-bond rotation, as illustrated in Figure 4.1, in a 70:20:10 percentage ratio, 

respectively. Reptation and interchange of tail and head groups provide more flexible 

changes to the molecular conformation and so a larger percentage of these moves are 

employed for efficient sampling. 

 

 

Figure 4.1 Schematic depiction of the Monte Carlo moves used in the simulations. Grey 
represents the head group bead and black the tail group beads. 

 

 In this work we have extended the original model to longer 5-segment chains, 

which consists of one head group and four tail beads. The free energy surface of longer 
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molecules is more complicated and thus more elaborate trial moves are required for their 

simulation. A simple configurational bias MC (CBMC) move for the WL algorithm,131 

which biases the selection of random sites to avoid the overlap of segments, was 

implemented in place of end-bond rotation in the simulations of the 5-segment system. 

The simple CBMC move involves cutting any bond between two beads randomly and 

then re-growing the chain by considering all possible trial orientations and choosing one 

position from the available trial positions with uniform probability.132        

4.2.2 Wang-­‐Landau	
  parallel	
  
 
As noted in Section 3.1.2, to speed up the simulations, rather than simulating a single 

energy window, multiple energy windows110, 111 are frequently used in WL simulations 

and have been adopted in this work. To ensure a random walk across the energy space, 

the size of the energy windows were carefully chosen.  In general, although the 

simulations converge faster with smaller energy windows, they cannot be so small that 

they only cover a narrow energy range and potentially lock the system into a particular 

region of phase space. There should also be a suitably large overlap between adjacent 

windows that are to be stitched together. Additionally, since with this approach the 

random walk is restricted to certain energy ranges, in order to avoid errors in g(E) at the 

edges of the sampled energy interval, whenever a proposed move is rejected because the 

energy is beyond the border of a given window the g(E) for the current energy value is 

still updated, following the work of  Schulz et al. 92 To determine the optimal energy 

windows and their overlap, simulations were performed with three different values for 

the number of energy bins per window (100, 150, 200) and with both 25% and 50% of 

overlap between adjacent windows on a lattice size of 20. From the calculated g(E) and 
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heat capacities negligible differences were found between the different sets of 

simulations; boundary effects were also shown to be negligible for the current system 

with this approach. Furthermore, the results obtained were found to be reproducible from 

different initial configurations and agree with the Metropolis MC results (as discussed 

below). Thus, based on our extensive tests and the additional consideration of simulation 

efficiency, the results provided herein use moderately small windows (100 energy bins 

per window), with 25% overlap between adjacent windows and are the average of three 

independent simulations from different initial conditions. For the Metropolis MC 

simulations a typical run length was 2×107 MC cycles of equilibration followed by 2×107 

MC cycles of production, while for the WL simulations the number of cycles ranged 

from 1×106 to 3×107, with the very low energy range requiring 108 cycles. 

4.3 Phase	
  behavior	
  of	
  3-­‐segment	
  lipid	
  model	
  with	
  WL	
  algorithm	
  
 
In the present work, extensive simulations to study the process of spontaneous bilayer 

formation of a simple 3D lattice model have been performed.  To test the performance of 

the WL method and determine the appropriate values of the WL parameters, a lattice size 

of L = 20 with 266 3-segment molecules (corresponding to a concentration of 10 vol. %) 

was first studied and the results compared to those obtained from conventional 

Metropolis MC simulations. As can be seen in Figure 4.2, the results from the WL and 

conventional Monte Carlo methods are in good agreement. The results from the WL 

simulations (Figure 4.2a) show that the temperature dependence of the energy is smooth 

both in the high- and the low-temperature regions.  In Figure 4.2b, a peak is obtained in 

the heat capacity plot from the WL simulation at T = 19.62, indicating a first order phase 

transition, which is consistent with the range 19.5 - 19.75 observed for the same phase 
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transition from the Metropolis MC simulations. Here, the transition we are studying is 

that from micelles to an ordered bilayer.   

 
 As noted by Landau et al.,29 in the WL algorithm the accuracy of the g(E) is largely 

controlled by the modification factor, which also determines the simulation efficiency 

(i.e., the necessary number of Monte Carlo steps). The ideal final should be very 

close to 0.0 and in practice the random walk is usually stopped when 𝑙𝑛𝑓 <

10!!~10!!.4, 99 

 

Figure 4.2 Comparison of the (a) energy per molecule, and (b) heat capacity obtained 
from the Metropolis MC and WL methods for the lattice size L=20. The red circles, black 
solid lines and blue dash lines correspond to results from the Metropolis MC, WL with 
lnf=10-8, and WL with lnf=10-6, simulations respectively. 

 

 We note that it has been shown that the convergence of g(E) to the true value can 

stagnate for small ln f (referred to as saturation) and variants of the original WL method 

have been proposed, with mixed success, to overcome this problem.89, 133, 134 In the 

current work, results obtained using ln𝑓 = 10!!  and ln𝑓 = 10!!were compared, as 

ln f
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shown in Figure 4.2b,  with the large difference in results indicating that the saturation 

point has not been reached thus far.  Based on the Metropolis MC results, more accurate 

results are obtained with ln𝑓 = 10!!, which also indicates that the iterative refinement 

process from 10-6 to 10-8 is important. Hence, we use the parameter ln𝑓 = 10!! in all of 

the simulations reported unless otherwise stated.  

 With our implementation of the WL method tested and optimized, the phase 

transition behavior for a larger lattice of L = 48 with 3686 3-segment molecules was then 

studied and the results compared to those presented by Drefahl et al.32 using Metropolis 

MC simulations. With the WL method, the Cv values with a temperature interval of 0.01 

have been calculated and a continuous curve with two apparent peaks obtained; one at 

T=19.68 and a second peak at T=20.40, indicating that a two-step phase transition process 

occurs (Figure 4.3). In the inset of Figure 4.3, Cv obtained from the WL simulations is 

compared to that obtained by Drefahl et al. at discrete temperature points.32 From the 

figure we can see that while both methods yield similar behavior, only one phase 

transition is observed between T =19.75 and T = 19.85 in the work of Drefahl et al.32 

Clearly, a scan of the whole temperature range with the WL method is advantageous, 

disclosing more specific information (i.e., the intermediate phase behavior) about the 

system.   
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Figure 4.3 Heat capacity as a function of temperature for a lattice size of L=48. Inset 
shows the comparison between Metropolis MC32 (red) and WL methods (black). 

 
 To demonstrate the phase transition visually, simulation snapshots are shown in 

Figure 4.4 and Figure 4.5 over typical energy ranges (i.e., corresponding to different 

temperatures). For L = 48, at low temperatures one bilayer spanning the whole simulation 

box is observed and a second smaller bilayer is also found (Figure 4.4a). As the 

temperature is increased, the second bilayer melts into disordered clusters (Figure 4.4b) 

until at higher temperatures further still, the bilayer spanning the whole simulation box 

also disappears and only clusters are observed (Figure 4.4c).  For the L = 20 system, at 

low temperatures only one bilayer is formed throughout the simulation box (Figure 4.5a), 

which as temperature is increased transforms to clusters directly without an intermediate 

phase (see Figure 4.5b and Figure 4.5c). From the comparison of the behavior observed 

for the L = 20 and 48 lattices, we can draw the preliminary conclusion that the ratio of the 

number of chains to the number of lattice sites in a plane, i.e., area per lipid, affects the 

phase transition temperature Tc. At small ratios, when the number of chains is not 
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sufficient to span the entire lattice plane, only one phase transition from a bilayer to 

clusters occurs. At higher ratios, when the number of chains is sufficient to form an 

additional bilayer, the phase transition occurs in two steps; first the small bilayer breaks 

into smaller clusters, and then the larger bilayer breaks down into clusters. This larger 

bilayer melting into clusters results in larger energy fluctuations in the system, explaining 

the very large value of Cv for the second-step phase transition. 

 

 

Figure 4.4 Snapshots of system configurations from simulations of a lattice size of L=48 
illustrating (a) a bilayer structure in the low energy range (E/N =36.0), (b) a cluster and 
bilayer mixture in the middle energy range (E/N =46.7), and (c) clusters in the high 
energy range( E/N =84.7). 

 

 

Figure 4.5 Snapshots of system configurations from simulations of a lattice size of L=20 
illustrating (a) a bilayer structure in the low energy range (E/N =41.2), (b) clusters in the 
middle energy range (E/N =68.4), and (c) clusters in the high energy range (E/N =83.6).  
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Figure 4.6 Heat capacity as a function of temperature for 3-segment amphiphiles on 
lattices of different sizes. (a) red, L=20; black, L=28; blue, L=36; green, L=48, and (b) 
red, L=40; black, L=42; blue, L=44. 

 
 Based on the observations described above, a system size search was performed to 

determine the critical ratio at which the two-step phase transition starts. Several different 

lattice sizes in the range of L = 20 - 48 were studied with the same molecule 

concentration of 10 vol. %.  The heat capacity curves obtained are presented in Figure 

4.6, from which we can see that the phase transition temperature Tc  shifts as the system 

size increases and two peaks begin to appear for lattice sizes of L = 42 with 2470 lipids 

(Figure 4.6b) and above, when the ratio equals ~1.4. 

 

4.4 Phase	
  behavior	
  of	
  5-­‐segment	
  lipid	
  model	
  with	
  WL	
  algorithm	
  
 
We have also extended the lipid model to simulate longer 5-segment chains using a 

lattice size of L = 20. For the efficient sampling of the longer chains, a simple CBMC 

move type was implemented as described in section 2.3. To verify the CBMC algorithm, 

simulations for the 3-segment model and L=20 were first performed. As shown in Figure 
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4.7, comparisons between the WL and Metropolis MC simulations with and without 

CBMC results indicate good agreement.   

 

Figure 4.7 Comparison of heat capacities obtained from WL simulation without CBMC 
(red line) and with CBMC (blue line) and from MC without CBMC (red squares) and 
with CBMC (blue circles). 

 

 Preliminary tests showed that for lipids with longer tail groups using the same 

concentration of 10 vol% as in the simulations of the 3-segment model, or keeping the 

same number of lipid chains (N=266, which is 17 vol%), always results in the formation 

of closed vesicles, even at low temperature, rather than the bilayer sheet of interest. 

Based on this, and our observations of the effect of the area per lipid, a higher 

concentration of 31.25 vol% (500 chains) was chosen for study and a one-step phase 

transition observed as temperature is reduced, as shown in Figure 4.8. The peak in the 

heat capacity curve around T = 19.16 indicates the phase transition temperature. Thus, we 

have successfully applied the WL algorithm to longer amphiphilic chains; however, as 

the length of the lipid chain and the system size increases, the number of energy bins 
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required increases due to the extensive nature of the energy and discrete representation of 

the density of states. In this work this resulted in a factor of 5 increase in simulation time 

for the 5-segment lipid system over the analogous 3-segment system.  

 

Figure 4.8 (a) Energy per molecule, and (b) heat capacity per molecule as a function of 
temperature for the 5-segment lipid model in a lattice of size L=20. 

 

4.5 3-­‐segment	
  lipid	
  model	
  with	
  STMC	
  algorithm	
  
 
The STMC algorithm is applied to the 3-segment lipid system on the L = 20 cubic lattice 

for direct comparison to the WL method. To implement the STMC simulations 

efficiently, the strategy of multiple energy windows is again employed, with four 

different energy bin sizes considered (ΔE =ΔWL, 2ΔWL, 4ΔWL, 8ΔWL, where ΔWL, is the 

interval between neighboring energy levels in the original WL method), and an initial 

value of lnf = 5×10-6. The simulations are considered to be converged when the final 

modification factor is smaller than 10-8.  
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 Similar phase transition phenomenon (shown in Figure 4.9) and system structures 

(not shown) are obtained as that from the WL simulations. In Figure 4.9a, we can see 

that the T(E) values appear to be largely independent of the bin sizes ΔE and all four sets 

of values have the same shape as those calculated from the WL simulation. With the 

continuous density of states integrated from the convergent T(E), we can again calculate 

any thermodynamic properties of interest and present results for the heat capacity in 

Figure 4.9b. While there are small differences between the WL and STMC results at high 

energies, the simulation results are all within the error bars. While the STMC method 

helps avoid the increase in the number of energy bins (proportional to the number of 

sites) as the system size increases seen with the original Wang-Landau method, in 

practice, the time needed for a STMC step is ~ 3 times as long as that for a WL step on 

the same system (which can be seen from the algorithm, as more calculations are done in 

the STMC method at each step).  Since the STMC method is capable of utilizing 

simulations with larger energy bin sizes (i.e., fewer energy bins are required for 

histogram flatness), the simulations can be converged with fewer MC steps than the WL 

method and so can compensate for the slower speed of an individual step. For this 

system, the overall efficiencies are similar for the WL and STMC methods for ΔE = 

4ΔWL, while the STMC method for ΔE = 8ΔWL is faster than WL; however, as the system 

size increases, the simulation time required increases significantly. For example, 

preliminary results indicate that while the STMC algorithm achieves ~34000 MC 

cycles/min for L = 20 this decreases to only ~ 20000 MC cycles/h for L = 48, making the 

study of the larger lattice via STMC impractical. For comparison the WL method is still 

robust for L = 48 and achieves ~520000 MC cycles /h. 
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Figure 4.9 Comparison of the WL and STMC algorithms for lattice size L=20 (a) 
convergent T(E), (b) heat capacity, red, WL; blue, STMC with bin size=ΔWL; black, 
STMC with bin size=2ΔWL; green, STMC with bin size=4ΔWL; violet, STMC with bin 
size=8ΔWL. 
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CHAPTER	
  5 PHASE	
  TRANSITION	
  BEHAVIOR	
  OF	
  AMPHIPHILIC	
  
LIPIDS	
  IN	
  SOLUTION	
  

 

In this chapter, two different techniques - REWL and STMD30,31 - were applied to 

systematically study the phase transition behavior of self-assembling lipids as a function 

of temperature using an off-lattice lipid model, both allowing direct calculation of the 

density of states with improved efficiency compared to the original WL method. The 

phase behavior of the lipid molecules with respect to bilayer formation has been 

characterized through the calculation of the heat capacity as a function of temperature, in 

addition to various order parameters and general visual inspection. The simulations 

conducted by both methods can go to very low temperatures with the whole system 

exhibiting well-ordered structures. With optimized parameters, several bilayer phases are 

observed within the temperature range studied, including gel phase bilayers with frozen 

water, water (i.e., frozen and liquid water), and liquid water and a more fluid bilayer with 

liquid water. These results provide a more complete understanding of the lipid phase 

transitions, with improved efficiency. The results obtained from both methods, STMD 

and REWL, are consistently in excellent agreement with each other, thereby validating 

both the methods and the results. This work is published in Gai et al.135 

5.1 Introduction	
  
 
Generally speaking, amphiphilic systems have rough energy landscapes, exhibiting many 

minima close to each other separated by large energy barriers.11 These features can cause 

problems for the numerical exploration of their phase behavior as a function of 

temperature using standard MD or MC methods, for example, since some energy states 
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may not be visited due to the energy barriers. Thus, conventional MD or MC simulations 

can become locked into a particular region of phase space (i.e., sample only small 

regions), and the results may depend on the initial conditions and thermodynamic 

pathway of the simulation.118 

The time needed to ensure convergence of conventional simulations is often 

prohibitively long and thus various methods have been proposed to improve the rough 

energy exploration by going beyond standard MD or MC methods.4, 118 Among them, the 

as described in Chapter 3, the WL method,4 which performs a random walk over the 

whole energy range, allows sampling of the conformations at all relevant temperatures in 

a single simulation. Compared to other flat-histogram methods, this dynamic update of 

g(E) on the fly can provide quicker exploration of phase space,136 and once the g(E) is 

known, all thermodynamic and structural quantities can be calculated at any temperature. 

The WL method has been applied to study a number of different systems, focusing 

primarily on simple models for polymers and proteins.4, 89, 99, 133, 134 When applying the 

WL algorithm to more complex systems, convergence problems30, 31 can be encountered 

due to the extensive nature of the energy and discrete representation of the density of 

states on an energy grid, which results in the number of energy bins required increasing 

substantially with system size.  

 To improve the sampling efficiency, a parallel replica-exchange framework for 

the WL sampling scheme, described in Section 3.1.2, can be employed.112 In this 

approach individual simulations with overlapping energy distributions are carried out and 

replicas are allowed to move between the individual simulations.26, 137 A different 

approach, STMD, was recently proposed by Kim et al., 30, 31 with the objective of 
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generating a deterministic trajectory by MD sampling and to augment the capabilities of 

the WL method to complicated systems beyond the scope of effective MC moves. The 

STMD algorithm, describe in Section 3.1.4, implements the idea of WL sampling into 

MD simulation using the generalized ensemble via the statistical temperature. This is 

achieved by relying on the thermodynamic relationship between the statistical 

temperature T(E) and the density of states g(E); STMD achieves a flat energy distribution 

by dynamic modification of T(E). By updating the intensive variable T(E), a continuum 

description of g(E) can be obtained through analytical integration of T(E); therefore, 

moderately larger bins, and hence fewer bins, can be used to accelerate the simulation 

convergence, while still maintaining the statistical accuracy. 30, 31 

 Here we have applied both the REWL and STMD methods, which are very 

different techniques, to calculate the free energy and thermodynamic properties of self-

assembling bilayers using an off-lattice lipid model.  Since the systems and phenomena 

being studied are of a complex nature, they hold the potential for revealing hidden 

algorithmic difficulties, which might not be obvious by using a single method. We report 

a series of density-of-states simulations by both the REWL and STMD methods to 

systematically study the phase transition behavior of self-assembling lipid molecules as a 

function of temperature based on the CG models of Goetz et al.64 and Fujiwara et al.65 

From the density of states, we determine a number of thermodynamic properties (average 

energy and heat capacity) to characterize the phase transition, in addition to visual 

inspection and order parameter-based analysis. Together they provide a more complete 

understanding of the lipid phase transitions.  

5.2 Simulation	
  details	
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We studied continuous lipids model solvated in water. The amphiphilic molecules are 

also modeled as short linear chains composed of a hydrophilic head bead and two 

hydrophobic tail beads (Figure 5.1).  The water molecules are represented as hydrophilic 

beads.  The total number of particles in the system is fixed at N = 1000 and the number of 

amphiphilic molecules M is varied. The volume of the simulation box is chosen such that 

the number density, ρ, is maintained at ρ = 0.8. 

                   

Figure 5.1 Schematic of the model amphiphilic lipid and solvent molecules studied. P: 
polar head beads, H: hydrophobic tail beads, W: solution (water) beads. 

 
All non-bonded particles of the same type as well as the solvent and hydrophilic 

head beads interact via the LJ potential:  

𝑈LJ,ε 𝑟!" = 4𝜀 !
!!"

!"
− !

!!!

!
.                                          (5.1) 

The interaction between tail beads and head or solution particles is purely repulsive: 

𝑈rep 𝑟!" = 4𝜀!"#
!rep
!!"

!
,                                             (5.2) 

where 𝑟!" is the distance between two particles i and j. The van der Waals radii, 𝜎 and 

𝜎rep, are set to 1.0 and 1.05 respectively, and 𝜀＝𝜀!"#＝𝜀!＝1.0, following Fujiwara et 

al.65 A version of the model is also studied in which the interaction between water 
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particles 𝜀!  is reduced to 0.7. Bonds between monomers in the lipid molecules are 

finitely extendible, non-linear elastic (FENE) and are modeled by the corresponding 

FENE and WCA potentials138, 139: 

𝑈FENE 𝑟b = − !
!
𝑅!ln 1− !b

!

!
+ 𝑈WCA 𝑟b   ,                         (5.3) 

with 

𝑈WCA 𝑟 =
4𝜀 !

!

!"
− !

!

!
+ 𝜀  , 𝑟 < 2! !𝜎

0  , 𝑟 ≥ 2! !𝜎
,                        (5.4) 

 
For conformational updates a combination of local displacements of single 

particles in Cartesian coordinates and reptation moves for the amphiphilic molecules are 

used. As illustrated in Figure 5.2, in the reptation move a molecule and one of its ends 

are selected at random.  Then, from all the neighboring solution particles (i.e., particles 

within the maximal allowed bond length R, Equation 5.3), one is chosen randomly and 

connected to the molecule, while the bond to the monomer at the other end is broken 

(Figure 5.2b). Finally, the types of the monomers are restored to create a valid 

conformation (Figure 5.2c). Clearly, this move introduces a bias, as there is, in general, a 

different number of potential neighbors for the forward and backward moves. To fulfill 

detailed balance, this bias is corrected by an appropriate weight factor b in the acceptance 

probability as shown by Equation 3.4. 

During one Monte Carlo sweep N individual updates are made, of which 3M/10 

are reptation moves.  
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Figure 5.2 Illustration of the applied reptation move for conformational update during 
the Wang-Landau sampling. a) shows the initial state, c) the final one. Note that the 
Cartesian coordinates do not change during the trial move. 

 

5.3 Phase	
  transition	
  behavior	
  of	
  system	
  with	
  M	
  =	
  125	
  	
  
 
The self-assembly of amphiphilic lipids solvated in water at different concentrations has 

been simulated by both STMD and REWL MC in this work. As discussed earlier, the 

model studied is similar to that employed by Goetz et al.64 and Fujiwara et al.;65   

however, previous work focused on the structural properties of the various aggregates, 

such as spherical micelles, cylindrical micelles and bilayers, via the variation of the 

amphiphilic concentration and hydrophobic interactions using standard MC and MD 

simulations. Additionally, these previous studies relied only on visual inspection of 

simulation snapshots and calculated order parameters at discrete temperatures to 

characterize the different structures. In this work, we investigate the phase transition 

behavior of the bilayer structures through their thermodynamic properties as a function of 

temperature in addition to structural and visual analysis. All Tj are set to a constant value 

at the start of the simulation (usually Th). 
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In both the STMD and REWL simulations a wide temperature range from Tl = 0.4 

to Th > 6 was first tested, in order to cover a sufficient energy range corresponding to both 

fluid and gel regions. For the STMD runs, an energy bin size of ∆E = 32 was used with 

an initial modification factor ln f = 0.00025. The entire temperature range was split into 

three windows, T ∈ [0.4,1.0], T ∈ [0.6,4.0] and T ∈ [3.5,6.5], which were independently 

simulated with time steps of 0.01, 0.01 and 0.001, respectively.  For example, for the 

system with M=125 lipids, we found that it took approximately 4.7×106, 4.2×107 and 

3.1×106 MD steps respectively for the three windows to reach the lowest temperatures for 

the first time and was then followed by uniform sampling of the temperature range. The 

total simulation time for each energy window, T ∈ [0.4,1.0], T ∈ [0.6,4.0] and T ∈ 

[3.5,6.5], was 4.0×109, 2.0× 108 and 4.0× 108 MD steps, respectively, with a final WL 

modification factor of ln f < 5×10-7. Even though results from STMD and REWL agree 

over a wide range of temperature, for the results presented henceforth we focus on 

temperatures less than 𝑇ℎ ≲   1, as this range encompasses the bilayer phase transitions of 

interest.  

The evolution of the potential energy E in the first two windows for the lipid 

system is shown in Figure 5.3, each of which displays a walk with frequent sweeps in the 

energy range, which corresponds to the restricted temperature range applied. Once the 

simulations are converged, the density of states g(E) is integrated from the convergent 

statistical temperature T(E).   
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Figure 5.3 Energy trajectory from STMD simulation of M = 125 lipid system with εw 
=1.0 for a) T ∈ [0.4,1.0] and b) T ∈ [0.6,4.0]. 

 
For the REWL simulations, preliminary scans were performed in the energy 

ranges E ∈ [-5200, 3500] (which corresponds to a temperature range of approximately T 

∈ [0.5, 8.5]) and E ∈ [-5400, 0] (T ∈ [0.4, 5]).  For these preliminary runs, a single 

walker per energy subinterval and the Wang-Landau flatness criterion proposed by Zhou 

and Bhatt140 was used in order to obtain faster results. The energy bin size for these runs 

was ∆E = 5. Replica exchanges were attempted every 105 MC sweeps. Figure 5.4 shows 

examples of two energy trajectories and the corresponding walks through energy 

windows for both of these runs. While the transition from completely mixed and 

disordered configurations into a fluid bilayer (Figure 5.4a) does not present a significant 

obstacle for the algorithm, Figure 5.4b illustrates that the fluid-gel bilayer-bilayer 

transition is hard to overcome. Following the preliminary scans, multiple independent 

simulation runs with three independent Wang-Landau walkers per energy subinterval 

were performed in the energy range E ∈ [-5350, -3350], corresponding to the temperature 

range of the bilayer phases (T ∈ [0.45, 1.4]). Furthermore, the originally proposed, 

stricter 80%-flatness criterion4, 29 and an energy bin size of ∆E=1 was used. Up to a 

108

E

108

E

a) b)
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maximum of 108 Monte Carlo sweeps (one sweep corresponds to one update of each 

particle in the system, on average) per walker were used to converge the estimator for the 

density of states, followed by a production run consisting of 3x107 MC sweeps for each 

walker. Error bars for all observables were obtained from 200 iterations of bootstrap 

resampling141 of the multiple density of state pieces from the REWL runs. Confirming the 

quality of the WL weight determination, the estimated density of states at that point and 

the measured density of states in the production run were within mutual error bars. 

 
 
Figure 5.4 Trajectories through energy space (top) and energy windows (bottom) from 
REWL preliminary scan for the same system studied in Fig. 4. a) Sampling of energy 
range E∈[-5200,3500], covering the clustering of the lipid molecules and the bilayer 
formation. b) Sampling of energy range E∈[-5400,0], focusing on the fluid-gel bilayer-
bilayer transition. For each case, walks of two single replicas out of 39 (a) and 9 (b) are 
shown as examples.  

 
From both methods, STMD and REWL, thermodynamic properties such as the 

average energy and heat capacity at constant volume were then calculated from the 

obtained density of states g(E), with a temperature step <0.001, providing a systematic 

analysis of the phase transition behavior as summarized in Figure 5.5.  
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Figure 5.5 Density of states and thermodynamic properties of lipid system with M = 125 
and εw=1.0; comparison of data from STMD (symbols) and REWL (solid line) (a) 
logarithm of density of states, (b) Energy-Temperature relations, comparison between the 
convergent energy (dots) and reweighted energy (straight line). The inset shows the 
comparison between the reweighted energy from STMD and the mean energy calculated 
from REWL results. (c) Heat capacities calculated from STMD and REWL results. (d) 
Microcanonical analysis. As an example, β=1.950 on left scale agrees with the peak 
temperature of T=0.513 in (c) via the relation β=1/T. 

 

We first note that excellent agreement is obtained for the density of states 

calculated from both the STMD and REWL methods.  Secondly, we find that there are 

two jumps in the average energy between 0.5 and 0.6 in the temperature (Figure 5.5b); 

we also note from Figure 5.5b good agreement between the inverse reweighted average 

energy calculated from g(E) and the convergent T(E) obtained directly from STMD. The 

changes in the average energy are better marked quantitatively by the two peaks observed 
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in the Cv curves shown in Figure 5.5c.  The small energy jump at lower T manifests in a 

peak in Cv at T = 0.513 and the larger energy jump in the peak at a higher temperature of 

T =0.535.  These peaks in Cv indicate structural phase transitions in the bilayer system. 

Simulation snapshots are provided in Table 5.1 that demonstrate the three different 

bilayer phases observed. Note that at very high temperature 𝑇 ≫ 1, the lipid molecules 

GB1 become more hydrated and increased disorder is seen in the lipid tails (denoted 

GB2). During the main transition, the gel bilayer phase concurrently with the water 

undergoes a transition to a fluid bilayer phase (denote FB) in which the tails are 

disordered without any tilt, concurrently with the water melting. This phase covers a wide 

temperature range for the current system and is physiologically generally the most 

important phase of the bilayer.  

As both the water and bilayer phase transitions occur at temperatures very close to 

each other and to further demonstrate the extremely good agreement between the results 

obtained from the STMD and REWL methods, an additional microcanonical analysis,142, 

143 which is based on the same relation used in STMD and given in Equation 3.5 was 

carried out on the density of states obtained from REWL.  The results are shown in 

Figure 5.5d and compared to the analysis of the heat capacities (Figure 5.5c). As can be 

seen from the figure, the peaks in 𝛾 corresponding to the phase transitions are well 

separated and the microcanonical temperature of the transition corresponding to the lower 

peak in the heat capacity from STMD at T = 0.513 is measured as T = 1/ β = 1/(1.950 ±	
 

0.003) = 0.513 ±	
 0.001. This essentially perfect agreement indicates once more that 

reliable results are obtained for the simulation of the self-assembly amphiphilic 
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molecules. The complete comparison for all transition temperatures is discussed and 

presented separately in Table 5.2 below. 

Table 5.1 Simulation snapshots of the different bilayer structures seen for the M = 125 
lipid system with εw =1.0. From left to right the phases observed as temperature increases 
are denoted as follows: gel phase bilayer 1 with frozen water (GB1+FW); gel phase 
bilayer 2 with mixed water (i.e., frozen and liquid water, GB2+MW); gel phase bilayer 3 
with liquid water (GB3+LW); and fluid bilayer with liquid water (FB+LW).   

GB1+FW GB2+MW GB3 +LW FB+LW 
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5.4 Phase	
  transition	
  behavior	
  at	
  different	
  ε 	
  	
  

5.4.1 Thermodynamics	
  properties	
  
	
  

Using an equal strength for the interaction energy of the water and lipids (i.e., εw = ε = 

1.0), the gel-fluid phase transition of the lipids and the frozen-liquid water transition 

occur almost concurrently in temperature. In order to examine the phase transitions of the 

lipids and solvent separately, and determine all of the phases that may be present during 
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the self-assembly process, a lower energy constant for the water-water interaction has 

also been studied.  

Table 5.2 Comparison of transition temperatures obtained from peak positions in the heat 
capacities (STMD and REWLa) and by microcanonical analysis of the density of states 
obtained by REWLb. It is known that for strong first-order like transitions in finite 
systems, canonical and microcanonical transition temperatures might144, 145 differ, as can 
be seen for transition #2, for example. All other temperature values are in good 
agreement. 

Energy constant  Transition STMD REWLa REWLb 

𝜺𝒘 = 𝟏.𝟎 #1 0.513 0.5147 ±	
 0.0001 0.5128 ±	
 0.0009 

#2 0.535 0.5351 ±	
 0.0001 0.519 ±	
 0.006 

𝜺𝒘 = 𝟎.𝟕 #3 0.404 0.4032 ±	
 0.0001 0.401 ±	
 0.002 
0.408 ±	
 0.002 

#4 0.427 0.4273 ±	
 0.0001 0.4277 ±	
 0.0003 
0.433 ±	
 0.002 

#5 0.533 0.532 ±	
 0.001 0.533 ±	
 0.01 
aTransition temperatures obtained from peak positions in the heat capacities (STMD and REWL). 
bTransition temperatures obtained by microcanonical analysis of the density of states obtained by REWL. 
 

The thermodynamic data including the average energy and Cv obtained from 

simulations with εw = 0.7ε are presented in Figure 5.6. In Figure 5.6a, the logarithm of 

the density of states calculated from both the STMD and REWL methods is presented 

and can be seen to agree well. From Figure 5.6b, good agreement between the 

reweighted average energy and convergent T(E) from STMD is again also observed, with 

a more gradual transition in temperature seen for εw = 0.7 than for εw = 1.0. Three energy 

changes are observed, each correlated to a transition temperature, which manifest in Cv 

peaks at T = 0.404, 0.427, and 0.533. These also agree very well with the transition 

temperatures obtained from the microcanonical analysis as reported in Figure 5.6d and 

Table 5.2. Furthermore, the microcanonical analysis reveals more clearly some pre-

transitions that are not easily detected through analysis of the heat capacity peaks as they 
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are represented as shoulders at slightly higher temperatures than the main transition 

peaks.  To obtain the error bars in Cv from the STMD simulations, three independent 

simulations were run from different initial conditions. 

 

Figure 5.6 Density of states and thermodynamic properties of lipid system with M = 125 
and εw=0.7; comparison of data from STMD (symbols) and REWL (solid line) (a) 
logarithm of density of states, (b) Energy-Temperature relations, comparison between the 
convergent energy (dots) and reweighted energy (straight line). The inset shows the 
comparison between the statistical temperature from STMD and the mean energy 
calculated from REWL results. (c) Heat capacities calculated from STMD and REWL 
results. Inset: Comparison with data shown in Figure 5.5 for εw = 1.0. (d) microcanonical 
analysis. Values for β on left scale agree with peak temperatures in (c) via the relation 
β=1/T. Generally, error bars are only shown every nth (n>20) data point. 

 
Simulation snapshots are provided in Table 5.3 that demonstrate the different 

bilayer phases observed in the simulations. At low temperature, the system is again in the 

GB1+FW phase (see Table 5.1) and as temperature increases the frozen water melts in 
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the above-mentioned two steps via a pre-transition (exhibiting GB2+MW structure) and 

then the main transition (to GB3+LW phase). At a higher temperature still, the gel bilayer 

phase begins to change to the fluid bilayer phase (FB+LW phase).  

Table 5.3 Simulation snapshots showing four different bilayer phases seen for the M = 
125 lipid system with εw = 0.7ε. 

 
GB1+FW GB2+MW GB3 +LW FB+LW 

    

    

    
 

From the comparison of the heat capacities obtained from the two sets of 

simulations performed for different water-water interactions (i.e., with εw = 0.7 and 1.0. 

see Figure 5.6c for a direct comparison), we can see that only two peaks are observed 

when εw = 1.0, since the gel-fluid phase transition of the lipids and the frozen-liquid 

water transitions occur almost concurrently. This also explains the large peak in Cv at T = 

0.535 for εw = 1.0, which is generated from the energy changes in both the LJ potential 

energy between water particles and the lipid fluidization process. Thus, the utilization of 
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a smaller εw for the water-water interaction separates the processes of the lipid gel-fluid 

transition and the solvent frozen-fluid transition, providing a clearer demonstration of the 

complicated phase behavior of this solvated lipid system.  

5.4.2 Order	
  parameter	
  
 
To provide additional interpretation of the various phases and demonstrate that the peaks 

in Cv are indeed associated with the structural transitions discussed above, several 

structural metrics have also been calculated for the system of M = 125 with εw = 0.7. In 

Figure 5.7a, the average nematic order parameter S2 (see Section 3.2.2.1) is plotted as a 

function of temperature. As can be seen from the figure, S2 maps closely to the 

transitions observed in Cv at T = 0.404 and 0.427. The most significant change (i.e., 

steepest) occurs at T = 0.427, resulting in a large increase in the orientational ordering of 

the lipids; this transition appears to finish by T = 0.404, where S2 attains a near constant 

value with a small standard deviation (i.e., it is in the GB1 phase).  Additionally, S2 

appears to first start increasing roughly around the transition marked by T = 0.533, 

marking the transition between the GB3 (T < 0.533) and the FB (T > 0.533) phases.  

Additional insight into the transition at T = 0.533 can be gleaned by examining 

the value of S2 for the individual segments of the lipid chain.  In Figure 5.7b, S2 

calculated for “segment 1”, containing the head group and first bead of the tail, and 

“segment 2,” containing the two tail group beads is calculated. Overall, segment 1 has a 

more uniform alignment than segment 2 over the temperature range studied, however S2 

is reduced in both cases as temperature increases, indicating more random configurations. 

The increased uniformity of segment 1 is likely related to the fact that it is located at the 

planar interface of the bilayer. Additionally, for segment 2, there is a clear transition in 
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S2 associated with T = 0.533, where S2 begins to more rapidly increase as system 

temperature is reduced, consistent with visual inspection. Segment 1 shows a less obvious 

transition; as the system is cooled, orientational ordering of this first segment is actually 

reduced until the temperature is decreased below T = 0.533, where it then begins to trend 

upwards. This loss in ordering is associated with the formation of holes within the 

bilayers; the formation of the water-filled holes induces curvature at the water-head group 

interface, reducing the overall global-order.  

We observe that the normal to the bilayer does not change significantly during the 

simulation, which enables us to easily quantify the formation of the aforementioned 

holes. By projecting the lipids onto the plane parallel to the bilayer, a 2D histogram can 

be constructed; cells that do not contain lipid particles are considered to be holes.  Figure 

5.7c shows the fraction of the plane occupied by the bilayer, from which we can see that 

the key changes in fraction match closely to the transitions in Cv, where, in particular, 

there is a clear plateau of the average fraction in the region bounded by 0.427 < T < 

0.533.  Even more telling is the standard deviation, where, from approximately T = 0.6 to 

T = 0.5, the error bars, corresponding to the standard deviation, grow significantly, 

reaching a peak at T = 0.533. For state points in this regime around T > 0.533, we see a 

mixture of systems with holes and those that span the box, while for T < 0.533 all 

systems appear to exhibit holes in the bilayer structure. The formation of holes results in 

a more compact bilayer sheet, as well as decreased hydration as T reduces to the point 

where water changes from liquid to frozen (i.e., the bilayer hole is not filled by water). 

These phenomenon result in decreased potential interactions between the head groups 

and water, which manifests itself in the heat capacity curve.  
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Figure 5.7 Structural metrics, a) global nematic order parameter S2; b) S2 for the 
individual segments of the lipid chain; c) the fraction of the plane occupied by the 
bilayer; d) order parameter for crystallization of water particles. Note the structural 
transitions determined via Cv are plotted as dashed vertical lines for visual aid (T=0.404, 
0.427, 0.533) 

Table 5.4 Feature summary of the lipid system at M=125 with εw = 0.7 

T 0.35 ~ 0.404 0.404 ~ 0.427 0.427 ~ 0.533 >> 0.533 
Water Frozen water Mixture Liquid water 
Lipids GB1 GB2 GB3 Fluid bilayer 
Holes Yes, without water Yes, filled with 

water 
No 

Structural 
feature 

Tail highly 
order 

Less order; 
More hydrated 

Less order; 
Curvature at 

boundary  

Tail random 
distributed 

 

  Finally, the order parameter associated with the crystallization of water particles 

has been calculated showing a strong increase in the average order parameter starting at T 

= 0.427 and ending at T = 0.404 (Figure 5.7d). This supports the results of the visual 

T

S
2

S
2

T

O
P

cr
y
st
a
l

a) c)

b) d)



 68 

inspection that observed frozen water for T < 0.404, a mixture of frozen and liquid for 

0.404 < T < 0.427, and predominantly liquid water for T > 0.427. 

To give an overall view of the bilayer structures discussed above, the features of 

the lipid system are summarized in Table 5.4. 

5.5 Phase	
  transition	
  behavior	
  at	
  different	
  lipid	
  concentrations	
  	
  
 
A system with a lower lipid concentration of M =75 (εw = 0.7) has also been studied to 

examine the effect of lipid concentration on the phase transition behavior. The calculated 

heat capacity for this system is provided in Figure 5.8 and shows that the phase transition 

behavior is similar to the system with M =125, i.e., three apparent phase transitions are 

observed but at shifted temperatures. Simulation snapshots for this system are also 

presented in Table 5.5. At low temperatures when the water is frozen, the gel phase 

bilayer structure given in Table 5.4 is found to be quite similar to that seen for the system 

with M = 125; however, upon increasing the temperature, when the system is in the fluid 

phase (bilayer with liquid water, FB+LW), due to the smaller amphiphilic concentration, 

some head groups are found to wrap around the border of the bilayer which introduces 

curvature at the interface and prevents the lipid tails from interacting with the water 

particles. However, the large lipid aggregate will merge with itself at higher 

concentrations (M = 125) in one or two directions and form a stable bilayer.       
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Figure 5.8 Heat capacity at M = 125 (black) and M = 75 (red dotted) lipid concentrations. 
𝜀! = 0.7𝜀 in both cases.        

 
 
 Table 5.5 Snapshots showing the four different bilayer phases seen simulations for M = 
75.  

GB1+FW GB2+MW GB3 +LW FB+LW 
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CHAPTER	
  6 PHASE	
  TRANSITION	
  BEHAVIOR	
  OF	
  NANO-­‐
CONFINED	
  FLUIDS	
  

 
 
In this chapter, the phase transition behavior of LJ fluids confined by attractive walls was 

examined, at various pore sizes, wall-fluid interaction strengths and registry of the wall 

surfaces. The application of STMD enables a detailed and explicit calculation of the 

underlying free energies and heat capacities, which more fully reveals the nature of phase 

transition behavior.86,146,147 Here, we find convincing evidence that the phase transition 

strongly dependent on the pore sizes and wall-fluid interaction strengths. This work 

corresponds to a manuscript in preparation by Gai et al.148 

6.1 Introduction	
  	
  
 
Fluids confined by solid surfaces with separation distances on the order of a few 

molecular diameters are of great importance both in industrial applications such as 

lubrication and separation, as well as emerging areas, such as ionic liquid-based 

supercapacitors.8, 68, 69 When molecules are confined within such narrow pores, their 

phase behavior can be dramatically different from that of the bulk fluid. This surface-

driven phase change can be attributed to a combined effect of fluid–wall interaction68, 71, 

72 and spatial constraint in the pores.73 This phenomena has been widely examined 

experimentally,74-80 with strong evidence of confinement induced solidification, e.g., the 

observation of a several orders of magnitude increase in viscosity as a function of 

reduced pore separation,75, 78-80 although other studies have posited that systems undergo 

a constant vitrification as separation is reduced;76, 81, 82 in either case, it is well agreed 

upon that the structure is significantly altered as compared to the bulk, and may undergo 
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disorder-to-order transition, as systems undergo nanoscale confinement. Molecular 

simulations have also been performed,68, 71, 72, 86-88 employing both coarse-grained and 

atomistically detailed models of the fluids and surfaces; these studies have led to an 

important understanding of the behavior under confinement, specifically the importance 

of the wall-fluid interactions as dictated by the partial charges on the atoms.  However, to 

examine the nature of the liquid-solid phase transition, a detailed and explicit calculation 

of the phase transition behavior based on the underlying free energies is necessary.8 

In early work, Dominguez et. al.146 examined the free energy of the solid and fluid 

phases by thermodynamic integration in purely repulsive and weakly attractive pores, and 

located the phase transition point accordingly. However, the method is not extensible to 

other cases of moderately or strongly attractive wall–fluid interactions, since it is (1) 

difficult to find a suitable path of integration that is thermodynamically reversible at these 

conditions, and (2) the calculations did not take into account the heterogeneous nature of 

the particles in the wall vs. the fluid, as occurs in strongly interacting systems. In other 

work, Gubbins and coworkers86 performed grand-canonical Monte Carlo simulations 

with umbrella sampling on the Lennard-Jones fluid confined between structure-less 

walls. They calculated the relative free energy differences between the liquid and solid 

phases under fixed confinement for systems with both weak and strong attractive wall-

fluid interactions. From the comparison of the relative free energy, two transitions were 

observed corresponding to the pre-crystallization (the layers near the two walls freeze 

first while the rest of the system remains fluid-like) and another transition associated with 

full solid formation (all the layers are frozen).  However, this approach can only provide 

relative free energy difference between the confined solid and liquid phases, which 
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makes it impossible to directly compare the free energies between different pore sizes. 

Furthermore, this relies on the definition of a suitable order parameter for umbrella 

sampling;149 this may be non-trivial for complex systems and the wrong choice of order 

parameter may miss important behavior in the system. Recently, Wan et al.147 examined 

the phase behavior of LJ fluid system confined by attractive walls modeled by explicit LJ 

particles using a combination of grand-canonical molecular dynamics (GCMD) 

simulations and absolute Helmholtz free energy calculations by the Einstein crystal 

method.  This work specifically focused on the behavior of systems over a range of 

separations, including both ideal and non-ideal separations.  It was shown that the general 

trend was a reduction in the free energy as the pore size was decreased to sizes that can 

accommodate an integer number of molecular layers; however, when also considering 

non-integer spacing, considerable oscillatory behavior in free energy is observed as the 

pore separation was decreased.  However, the Einstein crystal method150 is only 

applicable to stable solid states, and cannot be extended for determining the free energy 

of non-crystalline confined states, and thus the phase transition cannot be directly probed. 

 As an extension of the above work of Wan et al.,147 we examined a similar LJ 

system using the STMD method,31 which allows the calculation of density of states, and 

thus relative free energy over a wide range of temperatures interested, including the phase 

transition, as described in Section 3.1.4. We examine the phase transition behavior via the 

calculation of the heat capacity, to determine the effect of pore size, pore registry and the 

nature of the fluid-wall interaction on the phase transition. By combining these results 

with aforementioned Einstein crystal method, the offset between the free energy 

determined by STMD can be determined, allow for comparison of the absolute free 
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energy between different states, e.g., different pore separations. Here, we see strong 

evidence of a significant dependence of the phase transitions on the pore sizes and wall-

fluid interaction strengths. 

6.2 Simulation	
  details	
  
 
The nano-confined system employed in this work is similar to that used in Wan et. al.,147 

where the system is composed of two particle species, mobile fluid particles and static 

wall particles, with a bulk phase in contact with two identically sized pores, as shown in 

Figure 6.1. Two pores are used as this provides a means to adjust pore size for non-ideal 

pore sizes while keeping the box dimensions fixed. All particles are modeled as LJ 

spherical particles with identical size (i.e., σ = 1), with interactions between mobile fluid 

particles (i.e., the characteristic LJ energy for mobile molecule-mobile molecule 

interaction) set as εmm = 1.0 for all simulations. Interactions between the walls (w) and 

mobile particles (m) are varied with εwm =(1.0, 2.0, 4.0). XPLOR style shifting is used 

such that the well depth of the potentials are unchanged regardless of cutoff; due to the 

heterogeneous nature of the system we employ a cutoff of 3.0σ between mobile particles, 

where XPLOR shifting starts at 2.75σ, and a longer cutoff of 5.0σ between wall-mobile 

interactions, with XPLOR shifting starting at 4.75σ. System sizes are fixed at 7680 

particles, with roughly 25% of the particles existing as part of the pore walls; the number 

of mobile particles varies slightly as pore size is varied. Wall particles are set in an FCC 

structure with number density ρwall= 1.0, corresponding to the minimal energy state for an 

LJ system.  In all cases, the box size is set as (11.225, 33.852, 21.996), which for an ideal 

crystalline pore state with density of 1.0 results in a bulk fluid with number density of 

0.85. In this case, the size of the bulk fluid is sufficient that changes in densities in the 
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pore do not strongly influence the bulk state. While anisotropic NPT simulations are 

typically employed in GCMD simulations, where the long dimension of the box can 

fluctuate, this approach cannot be used with the standard STMD method.  For ideal pore 

separations, the distance is set to integer multiples of the FCC layer spacing 2! ! 6 9σ 

(i.e., 1 Layer=2! ! 6 9σ). 

      
Figure 6.1 Snapshot for illustration of the confined system 

 

6.3 Ideal	
  systems	
  with	
  varied	
  fluid-­‐wall	
  interaction	
  strength	
  
 
With the STMD method, a temperature range covering the phase transition temperature 

within the nanopore is given specifically for each system in Table 6.1. For the STMD 

runs, an energy bin size of ∆E = 32 was used with an initial modification factor lnf = 

0.00025.31 To accelerate the simulations, the entire temperature range was split into two 

separate temperature windows which were merged in postprocessing,4, 111 e.g., for 4 

layers confined with εwm=1.0, two windows in T ∈ [0.65,1.0] and T ∈ [0.85,2.0] are used. 

For εwm = 1.0, the total simulation times for STMD were 8.3×107 and 5×108 MD steps, 

respectively for each window, to converge with a final modification factor of ln f <5×10-

7. Figure 6.2 plots the energy as a function of simulation progression, demonstrating a 

random walk in energy space.  
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Table 6.1 Temperature range simulated for each system 

Confined 
layers 

Separation 
(σ) 

T range  
εwm=1.0 εwm=2.0 εwm=4.0 

4 3.67 0.65~1.9 0.65～2.1 0.65～2.7 
5 4.58 0.65～1.7 0.65～1.8 0.65～2.2 
6 5.50 0.65～1.6 0.65～1.6 0.65～1.75 
7 6.42 0.65～1.5 0.65～1.5 0.65～1.5 

 

a)  b)  

Figure 6.2 Energy trajectory from STMD simulation of pore size =4L system with εwm 
=1.0, for a) T ∈ [0.65,1.0] and b) T ∈ [0.85,2.0]. 

 

6.3.1 Heat	
  capacity	
  
 
With the convergent T(E) (not shown here), g(E) can be integrated and heat capacity 

calculated to give a robust estimate of the location of the phase transitions. First, for 

εwm=4.0, the TODT is compared with varied pore separations, as shown in Figure 6.3. As 

the size of the confined region increased, we observed a decrease in fluid-solid phase 

transition TODT, as expected from prior work,147 with a sharper and higher peak in Cv. The 

sharpness of the peak is likely related to several factors. First, the interaction between the 

central layers of the pore and wall is reduced as the distance between the pore walls is 

increased. Second, as the pore size increases, the number of particles in the confined 

region increases, which partially contributes to a larger change in energy upon 
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crystallization and thus sharper changes in the heat capacity, resulting in more bulk like 

behavior. 

   
Figure 6.3 Heat capacity of nano-confined LJ system at varied pore distances 

 
In addition, for a fixed confining distance, we compared the heat capacity at 

different interaction εwm, shown in Figure 6.4. For all the systems, as εwm is reduced, a 

lower TODT is observed, in agreement with the above discussion that the reduced 

interaction between mobile particles and walls requires a lower temperature to crystallize, 

and the behavior becomes more bulk like.86, 151 

Table 6.2 gives a summary of the TODT estimated from the peak(s) in the Cv 

curves; this peak corresponds to the midpoint of the transition and thus will overestimate 

the transition temperature. However, this estimate provides unambiguous and uniform 

criteria to establish trends. Similar trends in TODT are observed as compared to Wan et 

al.,147 where large pores demonstrate more bulk like behavior (i.e., TODT in the pore 

approaches that of the bulk).  However, as expected, TODT  estimated from STMD tends to 

be slightly higher than in Wan et al.,147 which relied on order parameter analysis.  

Additionally, as will discussed below, the Cv curve begins to demonstrate two peaks as 
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the wall fluid interaction strength is reduced and pore size increased; for consistency, we 

report both peaks in Table 6.2. 

(a)  (b)  
 

(c)  (d)  
 
Figure 6.4 Comparison of heat capacity at varied interaction with fixed confined 
distances, (a) 7 layers, (b) 6 layers, (c) 5 layers, (d) 4 layers 

 
Table 6.2 Summary of TODT from STMD in this work with resolution of T=0.001, 
compared to Wan et al.147 

No. of 
Layers 

εwm =1.0 εwm =2.0 εwm =4.0 
TODT

STMD TODT
147 TODT

STMD TODT
147 TODT

STMD TODT
147 

4 1.598 1.4 1.920 1.8 2.297 2.3 
5 1.371 1.1 1.614 1.4 1.904 1.7 
6 1.234/1.302 0.9 1.385/1.429 1.1 1.521 1.2 
7 1.145/1.224 0.8 1.242/1.298 0.9 1.320 1.0 

 

6000

8000

10000

12000

14000

16000

18000

20000

22000

0.6 0.8 1 1.2 1.4 1.6

ε=1.0

ε=2.0

ε=4.0

C
v

T

6000

8000

10000

12000

14000

16000

0.6 0.8 1 1.2 1.4 1.6 1.8

C
v

T

5000

6000

7000

8000

9000

10000

11000

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

C
v

T

5000

5500

6000

6500

7000

7500

8000

0.5 1 1.5 2 2.5 3

C
v

T



 78 

6.3.2 Order	
  parameter	
  	
  
 
The behavior of the nano-confined system is different from that of the bulk, and the 

extent of the difference is dependent on the strength of the wall-fluid interaction εwm, the 

separation of the confining walls, and the location of a given particle from the walls.72 

The confining walls introduce heterogeneity in the system; even in the absence of 

attraction, the dynamics of particles along the walls have been shown to be altered 

compared to bulk.73 For systems with attractive walls, as considered here, the potential 

landscape within the pore varies at each parallel separation from the wall, where those 

particles closest to the wall demonstrate the strongest, least bulk-like behavior. It is also 

important to note that, in this work, while the contribution from a single wall is fixed 

regardless of separation, ultimately the potential felt by the particles will depend on the 

combined effects of both walls; particles in smaller pores experience stronger potential 

interactions than larger pores at the center layers, as shown in Figure 6.5. 

 

Figure 6.5 Potential energy at the center layer(s) of the pore resulting from the effective 
walls on each side 
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To further examine this heterogeneity, the 2D global hexagonal OP121, 122 is 

examined as a function of T for different spatial regions in the pore, and simultaneously 

compared to the heat capacity. Figure 6.6 plots the OP for each specified layer (shown in 

Figure 6.6a) for a pore that can hold six ideal layers, as a function of T for various εwm 

(shown in Figure 6.6b-d).  

For all interaction strengths, particles in Layer 1 - i.e., those particles in contact 

with the walls - demonstrate a high value of the OP over the entire T range considered; 

the changes in the OP are relatively minimal as T is increased beyond the TODT predicted 

by the peak(s) in Cv curves, suggesting a highly ordered state even at high T, as has been 

seen in other works.86, 147 Layers 2 and 3 demonstrate a more significant drop in OP value 

as T is increased, coincident with the peak(s) in Cv curves. However, for Layer 3 the 

magnitude of the change in the OP as the ODT is crossed does not strongly depend on 

εwm (in all three cases, OP of Layer 3 is reduced to small values ~0.2), while the change 

in the OP for Layer 2 becomes smaller in magnitude as εwm is increased. Specially, in 

Figure 6.6b, the OP of Layer 2 drops to ~0.2, and Figure 6.6d shows OP of Layer 2 is 

still large (~0.5) at the right end of the Cv peak.  That is, Layer 2 becomes increasingly 

ordered as εwm is increased.  As such, the ordering of the central most layers, in this case 

Layer 3, is ultimately indicative of the formation of a solid phase in the pore for this pore 

size.   

Additionally, the difference in structural ordering with T between the central-most 

layers (i.e., Layers 2 and 3 for 6 total layers here) appears to manifest itself in the number 

of peaks seen in the Cv curves. Specifically, for the system with 6 total layers, systems 
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with weak εwm demonstrate two distinct peaks (Figure 6.6b), steadily reducing in 

magnitude until only a single peak is seen for the strongest εwm (Figure 6.6d). The 

increased ordering in Layer 2 at this larger εwm results in a less significant change in 

structure as the system is cooled, which manifests itself in a more gradual, less sharply 

peaked Cv behavior. 

As was seen in Figure 6.4, the appearance of one or two peaks is also dependent 

on the pore separation, where larger pores tend to demonstrate two peaks in heat capacity, 

in correspondence with different ordering behavior of the central most layers.  For 

example, in Figure 6.4a, Cv is plotted for a system that can contain 7 ideal layers; even 

εwm = 2.0 appears to have two peaks, albeit less well defined than weaker interaction 

strengths. Compared to a pore size of 5 ideal layers, only two peaks for εwm = 1.0 are 

observed, albeit rather weakly differentiated, and only a single, wide peak is seen for εwm 

=2.0. Further considering an even smaller pore, e.g. 4 ideal layers, only a single peak in 

Cv is seen for all εwm, due to the fact that there are no particles that would exist in Layer 3, 

i.e., no particles separated from the walls by 2 layers of particles and thus the system is 

unable to introduce different ordering behaviors as a function of T.   

Furthermore, the ordering of the individual layers in the pore, or more 

specifically, the degree of ordering above the ODT, also appears to be directly related to 

the height of the Cv peak(s). Systems with weaker εwm have a more significant structure 

change, as was seen in Figure 6.6b, where both Layers 2 and 3 change from mostly 

disordered to ordered; in contrast, in Figure 6.6d, systems with larger εwm demonstrate 

wider peaks of lower magnitude, even though the system size is equivalent, since the 

structural transition primarily occurs on a smaller subset, namely Layer 3. Thus, it is clear 
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that the wall-fluid interaction strength will also influence the sharpness and height of Cv 

in addition to the number of particles in the pore, as stated previously. 

(a)                       (b)  
 

(c)  (d)  
     
Figure 6.6 Order parameter for a system that can hold six ideal layers, (a) snapshot for 
the layers (b) εwm =1.0, (c) εwm =2.0, (d) εwm =4.0. Note, OP values are calculated with a 
resolution of T=0.01 to capture the curve of change, but for better view, symbols are 
drawn with every three of the values 
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states chosen were those in the crystalline solid regime where the Einstein crystal method 

is valid. These free energies can then be used to offset, or align the relative free energy 

curves provided by STMD, in the same matter as was done in Iacovella et al.152 using 

absolute free energy calculations to align free energy perturbations. The advantage of 

additionally using STMD is that the free energy can be calculated even for a non-

crystalline confined state, where the Einstein crystal method would not work, allowing 

direct investigation of the phase transition. Four different temperatures and their aligned 

free energies are plotted for different ideal pore sizes, as shown in Figure 6.7a. The free 

energy increases as the pore size increases for each of the temperatures explored. We also 

compare the free energy changes by normalizing by the values at the estimated TODT, as 

shown in Figure 6.7b. These plots show that as the confined region becomes larger, the 

changes in free energy also become larger, further supporting the more significant change 

in the structural ordering previously discussed in Figure 6.3 in relation to the sharper 

change in Cv.  

(a)     (b)  

Figure 6.7 (a) Free energy at different layers, solid symbol means solid states, while 
open symbol means liquid states, (b) free energy changes with ΔT. 
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6.4 Non-­‐ideal	
  pore	
  size	
  
 
STMD simulations were also performed for systems with non-ideal pore spacing. The 

distances between walls studied were 4.5, 5.5 and 6.5 layers, respectively. With the same 

method as above, the phase transition behavior is demonstrated by heat capacity 

calculations, shown in Figure 6.8. We found that the behavior of these non-ideal spacing 

systems is quite different from that of the ideal pore spacing systems, with TODT shifted to 

much smaller values (T=0.8~1.1). To explain this, we examined the density of the 

particle in the pores and found considerably oscillatory behavior, i.e., the density in non-

ideal pores is lower than that in the ideal pores (Figure 6.9a). Generally, compared to the 

ideal-pore separation systems, the particles tend to be more disordered in the non-ideal 

spacing pores (due to the extra space), with fewer particles entering the pore region, and 

thus require a lower temperature to get well ordered structures.  

(a)    (b)  (c)  

Figure 6.8 Heat capacity for non-ideal pore spacing systems  
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namely εwm=4.0. Examining the simulation snapshots for the structure in each pore in 

Table 6.3, we found that for the weaker interaction of εwm =1.0/2.0, in for example, the 

pore of 6.5 L, only 6 layers of solid particles are found in the pores, thus introducing a 

lower density in the pores. In contrast for a strong interaction, εwm =4.0, the upper was 

found to have 7 layers and bottom pore 6 layers, which also supports the notion of a more 

disrupted structure formed for strong εwm in non-ideal spacing pores, resulting in the 

lower TODT.  

(a)  (b)  

Figure 6.9 Density profile at T=0.8 (a) as a function of pore separation at εwm = 1.0, (b) 
as a function of εwm. Note, density here takes both of the two pores into consideration. 

Table 6.3 Snapshot for the confined system with non-ideal seperation 
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6.5 Registry	
  of	
  the	
  surface	
  
	
  
The confining walls of the above systems are all perfectly aligned, such that an ideal FCC 

structure can be accommodated without any stacking faults. However, such alignment 

cannot be guaranteed in experiment. Thus, it is necessary to examine the effect of the 

registry of the crystalline surfaces on the layered-structure in the pore. We shift the 

middle wall separating the two pores with a distance of  2! ! 3/2 σ, which induced a 

HCP stacking fault, as shown in Figure 6.10a. Similar STMD simulations are performed 

on these systems. We still observe a transition of fluid to solid as T is reduced, indicating 

non-ideality in orientation of walls does not impact the formation of a solid. Examining 

the Cv curve in Figure 6.10b more carefully, a slight change in the TODT compared to the 

perfectly aligned systems is observed, where in all cases, a loss of registry shifts the 

transition to lower temperature.  In addition, for the fixed confining distance, we also 

compared the heat capacity at different εwm, and similar phase behavior is obtained as the 

above FCC stacking wall, i.e., as εwm is reduced, a lower TODT is observed.   

 (a)   (b)  
Figure 6.10 (a) Snapshot for the system with unregistered wall sheet, (b) heat capacity 
 
 

Thus, the study here provides strong evidences that for the ideal pore separation, in 
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CHAPTER	
  7 CALCULATION	
  OF	
  TWO-­‐DIMENSIONAL	
  DENSITY	
  
OF	
  STATES	
  

 
 
In this chapter, we propose a novel algorithm, the hybrid WL/STMD method to take 

advantage of the benefits of STMD algorithm, but in a 2D Wang-Landau MC context. 

The hybrid method enables the calculation of 2D joint density of states, thus extending 

the original STMD method to various ensembles besides canonical ensemble (constant N, 

V, T), which will be helpful for revealing the entire phase behavior. The idea and 

feasibility of calculating the continuous 2D DOS by the hybrid method was demonstrated 

using a binary LJ system here. The hybrid method proposed here enables a more direct 

way for offsetting the free energy among different simulations/states, compared to the 

Einstein crystal method employed in the Chapter 6. This work is contained in a 

manuscript in preparation by Gai et al.153 

 

7.1 Introduction	
  
 
The temperature independent density of states (DOS) g(E) is a central quantity of interest 

in thermodynamics. Many flat-histogram Monte Carlo (MC) methods have been 

developed for the direct calculation of g(E).4, 12, 25, 30, 154-157 As stated in Section 3.1.1, the 

WL method4 is outstanding and flexible because it can dynamically update the density of 

states on the fly (at every simulation step instead of between runs), which can provide 

quicker exploration of the phase space. And the WL method in the original form has been 

effectively applied to study a number of different systems, focusing primarily on discrete 

systems such as simple models for polymers, lipids and proteins. 89, 94, 134, 135 
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Recently, the WL method has been extended to apply in off-lattice systems with 

continuous degrees of freedom.99, 106, 107, 158-161 In these systems, not only does the energy 

range become significantly larger (random movements can result in unpredictable energy 

changes in continuous systems),12, 162 but also it is frequently important to calculate the 

joint DOS (JDOS)105 depending on one or more order parameters besides energy. The 

JDOS of continuous models is useful since the free energy can be calculated not only as a 

function of temperature, but also as a function of concentration or pressure, etc., which 

can reveal the entire phase behavior. Nontrivial extensions of the original WL method are 

required for continuous systems. The de Pablo group106, 158 has successfully described 

properties of continuous LJ fluids with extended WL algorithm. They also studied open 

systems in which random walks were performed for both the energy E and the number of 

particles N, thus generating an estimate of 2D g(N, E).106 Shortly thereafter, Shell et al.107 

generalized the continuum WL method to various ensembles, presented the appropriate 

acceptance criteria, and implemented simulations on LJ fluids determining 2D density of 

states such as g(E,N) and g(E,V). However, when applying the WL algorithm to more 

complex systems, convergence problems can be encountered due to the extensive nature 

of the energy and discrete representation of DOS on an energy grid, which results in the 

number of energy bins required increasing substantially with system size.30, 31, 163 When 

dealing with JDOS, such accumulation problems may occur more easily and become 

more severe. Thus, these simulations are limited to relatively small systems, or a selected 

narrow region in the parameter space.105 To mitigate the accumulation problem, Zhou et 

al.105 implemented a kernel function update in the WL method, combined with a global 

update (referred to “frontier sampling”) to partially scale the estimate of the DOS to 
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higher values in order to visit the unexplored states. However, this method is very 

sensitive to the system–dependent parameterization and several studies have been 

reported108, 164 that do not show significant improvements using the approaches 

recommended by Zhou et al.105 for continuous systems. 

Overall, these aforementioned WL samplings are based on Monte Carlo simulation, 

which is not easily applicable to more complex systems often due to the inability to 

create effective MC moves. To overcome these problems, a different approach, termed 

statistical-temperature molecular dynamics (STMD), was recently proposed by Kim et al., 

30, 31 as stated in Chapter 3. This is achieved by relying on the thermodynamic 

relationship between the statistical temperature T(E) and the density of states g(E).165 The 

highly parallelizable nature of MD166, 167 and independence of bin sizes makes STMD 

better suited for large, dense, complex systems. STMD sampling has been applied 

successfully to LJ fluids, liquid crystalline and biomolecules.31, 135, 168 Despite its 

advantages, STMD in its current form can only use to calculate DOS as a function of 

temperature in the canonical ensemble. 

Thus, in this work, we proposed the hybrid WL/STMD method (referred to as the 

2D STMD method) to take advantage of the benefits of STMD algorithm, but in a 2D 

WL context. The general idea of the hybrid method is similar to replica exchange 

STMD,169 but we perform WL samplings for the exchange of configurations at intervals. 

To demonstrate the idea of the method, we performed series of 2D STMD simulations on 

binary LJ systems, with the second variable, the composition of the particle (i.e., a semi-

grand canonical ensemble) and to a lesser degree volume (i.e., NPT ensemble). In this 

work, we will put more focus on the former variable (i.e., composition of particle), the 
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composition change. From the results obtained, we determined a number of 

thermodynamic properties (average energy and heat capacity) to characterize the phase 

behavior. The results obtained were verified by comparison to the original WL method 

(referred to as 1D WL), WL in 2-dimensions following Shell et. al. (referred to as 2D 

WL), and standard STMD (referred to as 1D STMD). 

7.2 Simulation	
  details	
  
 
The particular model studied is composed of a binary mixture (A and B) of LJ spherical 

particles at the same size. The total number of particles is set as 110 and the range of B 

particles is changed from 20 to 30. The number density of the system is 0.85 for systems 

with composition changes. The interaction parameter between particles of unlike species 

A and B is 0.5, and all others are set to 1.0. The temperature range studied is 0.7 to 1.8. 

The STMD simulations are performed within HOOMD-Blue,123, 124 and the WL 

sampling is implemented through an in-house code written in C++ with a python 

interface to enable easy integration with the HOOMD-Blue package. The cutoff of the 

interaction for all particles is set to half of the box length (2.53σ). Potentials are shifted to 

zero at cutoff (i.e., for each interaction potential a constant shift is applied to the entire 

potential such that it is 0 at the cutoff).  

7.3 Hybrid	
  method	
  in	
  semi-­‐canonical	
  ensemble	
  with	
  WL	
  identity	
  swap	
  
 
The hybrid method was first applied to a binary Lennard-Jones fluid with a composition 

change by WL swap at an interval of 1000 STMD steps. As shown in Figure 7.1a, in the 

temperature range studied (0.7-1.8), systems with different compositions correspond to 

different energy ranges, but with some shared regions. For the WL part of the algorithm, 

the fixed energy bin needs to be among this region to enable swapping. In this work, we 
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used a bin size of E=20 or 100, and perform a random walk in the number of particles, as 

shown in Figure 7.1b. For the current studied system, the composition change is not very 

large, such that there is significant energy overlap. If extending to larger systems or those 

with larger composition changes, the calculation may need to be broken up into separate 

overlapping windows, similar to what is typically done in WL and STMD. 

   
 

 (a)                                            (b)                                       (c) 

Figure 7.1 (a) Number of particles and the corresponding energy range in T [0.7:1.8], (b) 
the trajectory of the number of particles, and (c) energy trajectory from 2D STMD 
simulation  

 
On the other hand, the evolution of the potential energy E at fixed composition in 

the STMD direction is also shown in Figure 7.1c, each of which displays a walk with 

frequent sweeps in the energy range, corresponding to the given temperature range. Once 

the simulations are converged, g(E, Nj) is obtained directly from the WL sampling 

(Figure 7.2a), and g(Ei, N) (Figure 7.2b) is integrated from the convergent statistical 

temperature T(E) (not shown here) in the STMD direction. A continuous distribution of 

DOS g(E, N) can be obtained by connecting the independent g(Ei, N) with the offset from 

g(E, Nj). This is similar to the method described in Chapter 6, where the offset between 

different states was determined via absolute free energy calculations; however, absolute 

free energy calculations are only applicable to crystalline solid states and may present 
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challenges for complex molecules. For STMD, it took approximately 5×107 MD steps to 

reach the lowest temperatures for the first time in each window and was then followed by 

uniform sampling of the temperature range. The total simulation time was 2.5× 108 MD 

steps, with a final modification factor of ln f < 10-8. At the same time, the WL part was 

also converged to lnf <10-6, with 2.5× 105 MC steps. 

 

  

(a)                                                                              (b) 

Figure 7.2 Density of states, (a) g(E, Nj) from WL part, (b) g(Ei, N) from STMD 
direction (black line), and final continuous g(E, N) (red line) 

 
 

Thermodynamic properties such as heat capacity were then calculated from the 

obtained density of states, with a temperature step <0.01, providing a systematic analysis 

of the phase behavior as summarized in Figure 7.3. The peak in the heat capacity curve 

corresponds to the phase separation of the binary mixture, as can be demonstrated by the 

VMD snapshot in Figure 7.3b. 
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(a)                                                                    (b) 

Figure 7.3 (a) Heat capacity calculated in the T range [0.7,1.8], and (b) VMD snapshot 
showing the state of phase separation of the binary mixture (sphere sizes are reduced to 
enable visualization) 

 

          

(a)                                                                    (b) 

Figure 7.4 (a) Energy and (b) heat capacity from simulations by four different methods 

 

To verify the results obtained here, we also ran the same system with the modified 

Wang-Landau method given by Shell et al.107 (i.e., 2D WL); and comparisons of the 

average energy and heat capacity are shown in Figure 7.4 for a specified system with NB 

= 26, selected at random, but representative of the results across the entire range. 
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Additionally, 1D WL and 1D STMD simulations have also been run for the same system 

(i.e., NB = 26) and also included in Figure 7.4 for comparison. Nearly identical behavior 

is seen for E and heat capacity among the four different methods, verifying the results 

and proposed methodology.  

7.3.1 Swap	
  frequency	
  
 
Here we examined three different sets of simulations that only differ in the relative 

frequency of WL composition swaps.  Specifically, we examine systems where swapping 

is attempted ever 500, 1000, and 20000 STMD steps.  The heat capacity of these systems 

as a function of swap frequency is shown in Figure 7.5, where we note that the curves 

are nearly identical for all frequencies. For the hybrid method, it is desirable for ln𝑓!"and 

ln𝑓!"#$ to both converge simultaneously or as closely to each other as possible. With a 

very frequent swap (i.e., 500), the convergence of the STMD part of the method will be 

the bottleneck, while for a very infrequent swap, the convergence of the WL part is 

delayed. Among the three sets of simulations, it seems that simulations with a swap 

frequency of 1000 STMD steps exhibit a good balance between the convergence of the 

two parts for the system being considered.  Alternatively, instead of performing one WL 

swap move each cycle, we can also make multiple WL swap attempts for longer STMD 

cycles, as another means to balance the convergence of WL DOS and STMD T(E).  
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Figure 7.5 Heat capacity from simulations with different swap frequency 

 

7.4 Extension	
  to	
  volume	
  change	
  by	
  Wang-­‐Landau	
  
 
Similarly, we extended the hybrid 2D STMD method to the simulation in the NPT 

ensemble. Instead of composition swap by WL, volume-scaling moves are attempted 

each cycle. The system is composed of 110 particles with 26 of type B and 84 of type A, 

and the volume is restricted from 130 σ3 to 230 σ3, with a volume bin size set as 5σ3. 

Other simulation details are similar as above. Here we provided the calculated 2-

dimensioal g(E,V), and heat capacity for every volume considered, as shown in Figure 

7.6. Generally, systems within large volumes have a more apparent peak in heat capacity 

curve, reflecting the larger energy changes in these systems compared to those with small 

volumes. 

For comparison, 1D STMD and 2D WL simulations were also run for comparisons, 
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20

40

60

80

100

120

140

160

180

0.6 0.8 1 1.2 1.4 1.6 1.8

2D_500freq
2D_1000freq
2D_20000freq

C
v

T



 95 

 

 

(a)                                                  (b) 

Figure 7.6 (a) Density of states lng(E,V) and (b) heat capacity in the NPT ensemble  
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Figure 7.7 Comparisons of the results from different simulations. Note heat capacity of 
1D STMD is an average of systems with low and high volume boundaries of a volume 
bin 
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CHAPTER	
  8 CONCLUSIONS	
  AND	
  FUTURE	
  WORK	
  
 

8.1 Conclusion	
  
 
Through the application of advanced, high-fidelity computational tools and methods, 

significant new insight into the structural, and thermodynamic properties (especially free 

energy and heat capacity) and phase behavior of complex fluids has been provided in this 

dissertation. These findings are obtained based on efficient and valid density-of-states 

simulation methods. Extended algorithms for joint density-of-states calculations have 

also been proposed and validated, enabling study of the entire phase behavior of various 

ensembles, and thus provide insight that is not generally available by experiment. 

Specially, in Chapter 4, the recently developed Wang-Landau algorithm was 

applied for the first time to study the process of self-assembly using a 3D lattice-based 

lipid model. The lipid model studied consists of 3 or 5 coarse-grained segments with the 

empty lattice sites representing water. The molecular interactions between hydrophobic 

and hydrophilic segments and between hydrophobic segments and water are purely 

repulsive. A bilayer structure is found to form at low temperatures, with phase transitions 

to clusters as temperature increases. With the complete density of states obtained, 

continuous curves of the average energy and heat capacity could be calculated and thus a 

complete view of the phase behavior provided. For 3-segment chains, varying lattice 

sizes were studied, with the observation that as the system size increases, the phase 

transition temperature shifts. Specifically, the ratio of chain number to lattice area (i.e., 

area per lipid) affects the phase transition temperature. At small ratios, only one phase 

transition occurs between the bilayer and cluster phases, while at high ratio when the 
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number of chains is enough to form an additional bilayer, the phase transition occurs in 

two steps with stable intermediate state. An additional simple CBMC move was 

implemented and applied to simulate longer 5-segment chains on a lattice of size L = 20 

and similar phase transition behavior was observed as a function of temperature; however 

due to the increase in the required number of energy bins as the system size increases, 

application of the WL method to much larger system would be somewhat impractical. 

The STMC method, an extension of the WL algorithm that allows simulations 

with larger energy bin sizes, was also implemented to study the self-assembly process. 

The results obtained are found to be in good agreement with the original WL method and 

largely independent of the energy bin size used. The possibility of running simulations 

with larger bin sizes by STMC with fewer MC steps is potentially an improvement over 

the original WL method; however, the longer time taken to perform an individual STMC 

step soon outweighs any additional benefits.  

 Thus, to examine complex or continuous systems, parallel simulation and 

extended to MD simulations are necessary. Two important systems were selected for the 

phase behavior study. Specifically, in Chapter 5, we examined the structural and phase 

behavior of self-assembled lipid bilayers modeled with off-lattice amphiphilic molecules 

in solutions. Simulations were performed using STMD and parallel replica-exchange WL 

MC methods, both of which allow the direct calculation of the density of states. We have 

demonstrated that these two very different methods provide essentially identical results 

when considering the density of states and key transitions in the heat capacity for the 

model lipid system studied, thereby validating both the methods and the results obtained, 
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and showing the applicability of these methods to determine the free energy of self-

assembling lipid systems.  

While both methods provide closely matching results for the systems studied 

herein, we note that there are considerations to take into account when selecting one 

method over the other.  A particularly advantageous feature of STMD is that it does not 

require a reduction in the energy bin size as system size is increased, since the statistical 

temperature can be locally interpolated well by a linear function, making the results from 

STMD only weakly dependent on the energy bin size. However, to the best of our 

knowledge, no such interpolation scheme exists for the WL method. Therefore, REWL 

simulations use a much finer energy binning compared to STMD, making it more costly 

for all histogram bins to be filled for appropriate convergence. This can make STMD 

better suited for the examination of larger systems.  However, as we observe in our 

calculations, the error bars associated with STMD tend to be larger than those obtained 

from REWL, which may be associated with the fact that STMD follows the “natural” 

dynamics dictated by the equations of motion which are absent in the MC moves 

underlying WL; as such, hysteresis effects around phase transitions may be more 

pronounced in STMD, influencing the ability to accurately resolve certain behaviors 

/transitions. However, both STMD and REWL are important tools, enabling the accurate 

calculation of the density of states over a wide range of systems and state points.  

In general, the nature of the system and state points under consideration will play 

a key role in determining which method is most suited to a given application.  Generally, 

applicability is largely determined by the underlying algorithm of each method, i.e., MD 

versus MC, and the way in which parallelism is implemented in that method. For 
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example, STMD relies on MD-based force calculations that, in this work, are 

implemented on massively-parallel GPUs; this makes STMD well suited for the efficient 

examination of large systems, since the MD algorithm is known to scale well on 

massively multi-threaded GPUs, distributed CPU computing machines, and hybrid CPU-

GPU systems.166, 167 STMD may also lend itself more easily to the study of complex 

molecules, e.g., biopolymers, again as a result of the parallel nature of the underlying MD 

calculations but also since it avoids having to develop nonphysical effective MC trial 

moves to overcome steric hindrance.30, 31, 170 However, although the single-replica STMD 

used in this work is highly parallel with regards to the force computations, it may still 

experience problems associated with getting trapped in local energy minima at low 

temperature, making it prohibitively expensive to appropriately sample this regime. For 

example, even for the relatively small, coarse-grained system studied here, ~2 months of 

computation time was needed to study the lowest temperature window compared to ~5 

days for the highest temperature window; however, we note that sufficient convergence 

was found over the entire range studied in this work.  The ability to incorporate 

specialized MC moves into the WL method can be used to mitigate such problems, 

increasing sampling and avoid trapping (e.g., cluster moves and identity swaps). The 

REWL method is also less prone to such trapping issues at low temperatures as a result of 

the parallel sampling associated with the replica exchange MC moves; prior work has 

shown this approach to be superior over the original WL method without such 

exchanges112 and has additionally been demonstrated for statistical temperature MC165 

(note, statistical temperature MC is closely related to STMD). We note that the replica-

exchange technique has been implemented for MD-based computations, specifically in 
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the context of the STMD method, demonstrating increased performance as compared to a 

single-replica STMD.162 However, in this work we chose to concentrate on the 

aforementioned parallelization direction and the efficient implementation on GPUs.  

 
In Chapter 6, another important system, nano-confined fluids was also simulated. 

We studied the nature of the fluid-solid phase transition in nano-confined regions by 

performing STMD simulations. Heat capacity and free energy are calculated to indicate 

the phase behaivor and better understand the phase transition. For the ideal pore 

speparation systems,  the TODT decreases to lower values when either the pore separation 

is increased or the wall-fluid strength εwm is reduced. Both of these agrees with the idea 

that a reduced interaction between mobile particles and walls requires a lower 

temperature to crystallize, and the behavior becomes more bulk like. For the systems with 

non-ideal spacing seperation, quite different results are obtained with a much lower TODT, 

compared to the ideal-pore spacings. The calculation of the free energy between different 

states at various pore separations shows strong evidence that the ordered structures we 

obtained are the states with low free energies. 

To further the ability to use STMD to calculate the 2D DOS, Chapter 7 reported a 

hybrid WL/STMD method, making use of both the advantages of Wang-Landau and 

especially the STMD algorithms. To demonstrate and validate the proposed method, the 

2D density of states was calculated in the semi-grand canonical ensemble and NPT 

ensemble with a binary mixture of LJ fluids. Nearly identical results are obtained 

compared to the known methods (1D/2D WL and standard STMD), when considering the 

calculated thermodynamic properties for the system studied, thereby validating both the 

methods and the results obtained. 
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The hybrid method is not without its own limitations. First, overlapping energy 

regions are required for performing the movement in the WL direction; thus if extending 

to wider changes in larger systems, simulation with small energy bin size and multi-

windows may be inevitable. In addition, the many sets of simulations varying in 

composition or volume are actually independent from each other, but they need to wait 

for each other (to be converged to the current modification factor) so that the whole 

simulation can proceed to next iteration. The synchronization of this process could be 

time-consuming. However, for obtaining the 2D DOS, this is unavoidable. In principle, 

additional parallelization (i.e., multiple walkers) could be implemented to speed 

convergence.  As discussed earlier, a particularly advantage of STMD is that it is only 

weakly dependent on the energy bin size. In addition, STMD scales better to larger 

systems and may lend itself more easily to the study of complex molecules, e.g., 

biopolymers, as a result of the parallel nature of the underlying MD calculations but also 

since it avoids having to develop nonphysical effective MC trial moves to overcome 

steric hindrance. All of these advantages led to the idea of hybrid method practical for 

simulations of larger systems. In sum, we have verified the feasibility of obtaining 

independent DOSs generated via efficient STMD, for calculating the continuous 2D 

DOS.  

8.2 Future	
  work	
  
 
Despite the progress made, there are still many aspects that require further study and 

development. Below we discuss recommendations for future studies, both in the aspects 

of method development and applied systems. 
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8.2.1 Extended	
  applications	
  	
  
 
The study of the self-assembly lipids and nano-confined systems, modeled with simple 

coarse-grained lipids and Lennard-Jones particles, respectively, demonstrated the great 

potential of the WL/STMD methods for studying the phase behavior of complex systems. 

Thus, an important next step is to apply these methods to the study of more realistic 

systems/models; several related systems of immediate interest are described below. 

Skin lipids - self-assembly of ceramides  

The stratum corneum is the outermost layer of the skin and is responsible for the barrier 

function in mammalian physiology. Ceramide lipids (CER), the main constituent of this 

layer, are a class of double-tailed lipids composed of hydrophobic sphingosine and acyl 

tails, connected together with a hydrophilic head group. From experimental work, a 

diverse mixture of CERs has been observed in the stratum corneum (12 different CERs), 

along with cholesterol and free fatty acid.43, 44, 171 Although the lipid profile of the stratum 

corneum is well known, experiments are unable to discern the exact molecular level 

structure, and how the local interactions between these constituents influence barrier 

function. In previous work from our group,44 MD simulations have been used to examine 

the behavior of ceramide bilayers, focusing on nonhydroxy sphingosine (NS) and 

nonhydroxy phytosphingosine (NP) ceramides. This work proposed a modified version of 

the CHARMM force field for ceramide simulations, showing better ability to match the 

results from the experiment (shown in Figure 8.1), when compared to the commonly 

used GROMOS force field. While this method could be directly examined using tools 

such as STMD, the simulations would likely be too computationally expensive for any 

practical exploration. 
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(a)                                          (b)                                     (c) 

Figure 8.1 Snapshots of the observed phases for CER NS at different temperatures, and 
from reference;44 (a) tilted gel bilayer phase (b) untilted gel bilayer phase (c) liquid-like 
bilayer phase. 

 
Coarse-grained models have been developed and derived from the modified 

CHARMM force field, enabling the efficient and accurate examination of the phase 

behavior of CERS as a function of temperature by the STMD method.  Such 

examinations would focus on the heat capacity for detecting all the major transitions as 

well as subtle intermediate order-order transitions known to occur; our prior 

examinations with the simplified model outlined in Chapter 5 make us confident in the 

sensitivity of the heat capacity to determine such transitions if they exist.  The nature of 

the flat histogram sampling in STMD may also prove useful for the formation of 

equilibrium, rather than metastable phases, as the method allows equal sampling of all 

phases, eliminating the need to worry about kinetic traps in the phase landscape. 

Preliminary work has already been undertaken, examining the coarse-grained CER3 

system, which consists of 200 lipids and 5000 water molecules. The CER3 molecule is 

coarse-grained to three head group beads and seven tail group beads show in Figure 8.2 . 

At a fixed volume with V, Cv is calculated in Figure 8.2 , and a simulation snapshot is 

shown in Figure 8.3, demonstrating the formation of an ordered gel bilayer structure. 

While these preliminary results are promising, it is important to note that the 

corresponding traditional MD simulations are performed in the NPT ensemble, while 
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STMD is limited to NVT.  The use of NVT may give rise to stressed or defective bilayer 

structures, since the system cannot adjust the bilayer cross section, which will influence 

the area per lipid. As such, continued studies will require the use of the hybrid 

WL/STMD method, previously discussed in Chapter 7.  

         

Figure 8.2 (a) Schematic depication of the coarse-grained CER3, (b) heat capacity from 
STMD with different energy bin sizes. 

 

 

Figure 8.3 Snapshot for the structure of lipid bilayer at T=270K. The water particles are 
not shown, and the right one only shows the tails for better view  

 
Nano-confined thin films of non-polar fluids 

As discussed earlier in the thesis, when a liquid is nano-confined in a narrow gap (such as 

in a porous medium, in a lubricated contact between solids, or near a cell membrane),76 

the dynamic behavior is changed. The phenomenon has been experimentally detected for 
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various systems such as octamethylcyclotetrasiloxane, cyclohexane, toluene, and 

alkanes.71 In the work reported previously from our research group,68, 71, 72, 92, 93 the 

dynamical properties for an alkane (dodecane) ultra-thin film confined between solid 

surfaces were extensively studied. Dodecane (C12H26) with a thickness of the chain as ~4 

Å, has already been extensively studied by experimental work of Granick et al.76, 81 In the 

work of Cui et al.,92 where dodecane is described by a united atom model, and the solid 

walls composed of simple LJ atoms, solid-like structure was found to form when the film 

thickness reduced to 6 molecular layers (shown in Figure 8.4). 

(a)     (b)  

Figure 8.4 The equilibrium configuration of the confined dodecane with a film thickness 
of (a) 8 molecular layers, (b) 6 molecular layers. The solid wall atoms are shown in black. 
Individual fluid molecules are colored differently for easy distinction. All are from 
reference.92 

 
As of yet, only traditional MD simulation has been used to study this phase 

transition. The STMD method is uniquely suited to study this transitions, in much the 

same way as described in Chapter 6 for simple nanoconfined LJ spheres, i.e., GCMD 

STMD simulations. Here it is proposed to study the nature of these phase behaviors of the 

alkanes films by calculating free energy and heat capacity as a function of temperature, 

with various mica wall separations.  Furthermore, other complex systems, so as the 
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aforementioned cyclohexane, can be examined to provide a better link to experimental 

studies.    

8.2.2 2D	
  DOS	
  method	
  
 
Efficiency 

When examining lower temperatures and more complex molecule system, the 

computational time cost associated with calculating the 2D DOS will be increased greatly. 

As previously discussed in the context of WL MC, replica-exchange can be used to 

greatly speed up convergence.135 It has also been demonstrated that replica-exchange can 

be used with 1D STMD.162 As such, it is an important next step to include replica 

exchange as part of the hybrid WL/STMD code developed to calculate the 2D DOS.  

Also, since the WL part is likely to converge more slowly than the STMD part in most 

cases, the algorithm can be modified slightly so as to increase WL sampling.  For 

example, similar to the concept of having multiple walkers, multiple configurations from 

the STMD trajectory can be used as starting points to N unique WL walkers. 

 

Application to diblock copolymer 

Block copolymer consists of two or more homopolymer subunits linked by covalent 

bonds, where systems with two distinct blocks (A and B) are called diblock copolymers. 

Diblock copolymers are attractive because they can microphase separate to form various 

nanostrutrues such as sheets and cylinders, and will be particularly useful in the self-

assembly of nanobuilding blocks (e.g. creating devices for use in computer memory, 

nanoscale-templating and nanoscale separations).172 Similar to the ammphiphilic lipids 

studied in this thesis, the incompatibility between the blocks drives the block copolymers 
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themselves self-assemble into complex morphologies as they attempt to minimize their 

free energy by aggregating with species of their own kind; since the blocks are covalently 

linked to each other, they cannot form macroscopic domains separately, instead forming 

many complex phases.15, 173 

The differences in relative lengths of each block (asymmetry) leads to different 

morphologies. In prior studies173, blocks with similar length tend to form lamellar phases, 

while larger difference in block lengths lead to “hexagonally packed cylinder" geometry, 

shown in Figure 8.5. Accurately locating phase transitions between different spatially 

structured phases formed by the self-assembling of these systems is a computational 

challenge. Most simulation studies consider a fixed block fraction, calculating phase 

transitions as a function of temperature.  The transition as a function of block fraction is 

typically interpolated with little else done to quantify the transition as a function of block 

fraction. With the 2D DOS applied in the semi-grand canonical ensemble (i.e., the 

relative fraction of A and B can be changed, however the total system is fixed), the phase 

behavior can be calculated as a both a function of temperature and block fraction.  

Further study of related systems, such as melts of amphiphilic polymer grafted 

nanoparticles, are also of interest and could be examined using the same approach.  
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Figure 8.5 Different structures of block copolymer composed of A and B; (a) lamellar 
phase obtained with χN=52.7, fA=0.5, (b) hexagonal cylinder at χN=57.9,fA=0.2. And fA 
is the relative fraction of A block. 

b
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