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CHAPTER I

INTRODUCTION

Measuring social welfare and deprivation has always been a challenging task for both

economic theorists and policy makers. The standard norm has been to use of income for

these purposes. Even in the second half of the twentieth century, the welfare or human

development or well-being as it is variously known, of a society was predominantly gauged

in terms of average income or wealth. Similarly, individuals or households in many countries

are still identified as destitute if they fail to acquire incomes above a subsistence threshold.

This led to the measurement and analysis of both welfare and poverty being based only on

a single component or attribute (also known as ‘dimension’) of well-being.

However, the proponents of the basic needs approach (Streeten et al., 1981) and later

the capability approach (Sen, 1985) have shown that the perception of human welfare and

deprivation go beyond income or wealth. The basic needs approach identifies an individual or

a household as destitute if they fail to achieve the resources – such as food, shelter, health

care, and education – needed to sustain long term physical well-being. The capability

approach developed primarily by Amartya Sen, on the other hand, argues that well-being

should be based on what individuals are capable of doing and being, and not merely on

the commodity bundle that they own. These two approaches have their differences (Anand

and Ravallion, 1993), but they are common in at least one aspect: both encourage the

measurement of social welfare and poverty to be based on multiple components or attributes

of well-being, such as education and health, instead of income alone.
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These approaches have inspired several indices of welfare or poverty over the last few

decades and motivated many international orgnizations and policy makers to embrace a

multidimensional framework for assessing the level of both well-being and deprivation. Ex-

amples include, but are not limited to, the well known Human Development Index (HDI)

and the Human Poverty Index (HPI) published annually by the United Nations Develop-

ment Programme (UNDP), various physical quality of life indices, e.g. Morris (1979), and

the Human Opportunity Index (de Barros et al., 2009) developed recently by the World

Bank researchers. In 2002, the government of India has proposed identifying families below

the poverty line using a multidimensional survey (Government of India, 2002). A recent

commission appointed by French President Nicolas Sarkozy also recommends using a multi-

dimensional definition of well-being (Stiglitz, Sen, and Fitoussi, 2009). For further instances

where the governments of different countries have moved towards proposing a multidimen-

sional definition, see Alkire and Sarwar (2009).

In this dissertation, the indices are classified into the following two categories, when the

measurement is based on more than one attribute of well-being: multidimensional index and

composite index. An index that summarizes the state of a society by aggregating achieve-

ments of individuals or households based on multiple attributes is called a multidimensional

index, where an achievement refers to the quantity of an attribute obtained by an individual.

For a multidimensional index, it is mandatory that the information on all attributes for each

individual or household is available from the same data set.

However, it often happens that either (i) the information is collected from different sources

or (ii) the achievements in different attributes belong to different sets of individuals within

a society or (iii) the information is available only in aggregated form. The first situation
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occurs when one uses different sample surveys to collect information on different attributes;

for example, information on income or consumption expenditure may be collected from

an expenditure survey, but information on health may be available from a health survey.

Clearly, the same set of individuals is not interviewed in both surveys. The second situation

arises when the information on selected attributes is based on different sets of individuals.

For example, the life expectancy rate is based on the individuals who passed away, the

mortality rate is based on the children under five years of age, the literacy rate is based on the

individuals older than fourteen years, the school enrolment rate is based on the individuals

who are in the age group of five to fourteen years, etc. Under these circumstances, the

achievements across individuals are aggregated to construct an indicator for each attribute,

and then all these indicators are combined by taking a weighted average to obtain a composite

index. Thus, an index that summarizes the state of a society by aggregating the indicators of

multiple attributes is called a composite index. The composite indices are not only restricted

to welfare economics, but are also widely applied to other branches of social science. The

well-known examples include, but are not limited to, the Human Development Index, the

Human Poverty Index, the Environmental Performance Index, the Global Peace Index, the

Index of Economic Freedom, the Child Well-Being Index, and the index for colleges in the

U.S. News college rankings.

Note that the definitions of a multidimensional index and a composite index are different,

but it may sometime be hard to draw a concrete line of distinction between them. For

instance, information on individual achievements may be collected using the same survey and

also may be available for the same set of individuals in a society. If the achievements are first

aggregated across individuals to obtain an indicator for each attribute, and these indicators
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are then aggregated to obtain an index, then clearly, this is a multidimensional index by

definition. However, if one assumes that the indicators in the first stage are given and

aggregates these indicators to obtain an index, then based on the second stage aggregation

only, the same index can be interpreted as being a composite index.

One may confront several challenges while constructing an index based on multiple at-

tributes. The major challenges are: to choose an appropriate set of attributes, to collect

reasonable data, to determine a suitable set of weights reflecting the importance of each

attribute, to select an appropriate aggregation method so that the data can be meaning-

fully summarized, and to verify the statistical significance of the evaluation generated by

the index. This dissertation primarily focuses on various issues related to the method of ag-

gregation so that the interpretation of the indices and the comparisons based on them have

meaningful policy implication. In particular, it focuses on three different aspects concerning

the aggregation methods of three different sets of indices: multidimensional welfare indices,

composite indices, and multidimensional poverty indices. Furthermore, the tools developed

in this dissertation are applied to real world data showing how they may influence existing

policy decisions.

Chapter II is devoted to developing a class of multidimensional social welfare indices that

is sensitive to inequality across individuals because a satisfactory index of social welfare or

poverty should be sensitive to the inequality in the distributions of the attributes (Atkinson,

1970; Foster and Sen, 1997). Aside from its direct concern, inequality may well have neg-

ative indirect effects on social welfare. For example, a high level of inequality may lead to

political instability (Alesina and Perotti, 1996; Justino, 2004), tensions among different eth-

nic groups (Stewart, 2008), an increase in crime rates (Fajnzylber et al., 2002), and feelings
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of deprivation among the members of society. These consequences, in turn, have adverse

effects on the level of social welfare. Thus, the first aspect of aggregation is concerned with

developing a class of social welfare indices that is sensitive to inequality across individuals.

If two societies have the same level of average achievement in each attribute, then the one

with less inequality across individuals should reflect a higher level of social welfare.

The second aspect of aggregation is associated with the composite indices that are ob-

tained by taking a weighted average of various indicators of attributes. These indices are

frequently used to rank societies or countries. These rankings are often of high national

priority. It is a matter of pride for countries to be on the top of the lists. Moreover, various

donor countries judge the performance of the debt seeking developing countries based on

these composite indices. However, the choice of weights when constructing these indices is

crucial because a choice of different weights, other than the one used, may alter the existing

rankings and thus leading to ambiguous comparisons. A comparison is ambiguous or not

robust if it is reversed when different weights are chosen. On the other hand, a compari-

son between a pair of countries or societies is completely robust if the comparison is never

reversed when weights are changed. Therefore, in addition to making comparison across

regions, it is important that one verify how robust these comparisons are. The next two

chapters of the dissertation deal with this second aspect of aggregation. In Chapter III,

a natural measure for evaluating the level of robustness is proposed and characterized. In

Chapter IV, this new measure of robustness is applied to certain real world data sets to

examine how the prevalence of robust comparisons varies when the targeted level of robust-

ness is altered. It is shown that this relationship is influenced by the association among the

indicators across societies. The research in the Chapter III and IV is jointly conducted with
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my advisor James Foster and Mark McGillivray.

The Chapters V and VI are devoted to the application of the class of multidimensional

welfare indices developed in the first chapter and an application of a class of multidimensional

poverty indices developed by Alkire and Foster (2008), respectively, to the Indian context. I

find the applications to the Indian context interesting for the following reasons. There has

been almost a three-fold increase in the national per-capita gross domestic product of India

between 1990-91 and 2007-08. Furthermore, analyses using various poverty measures have

suggested a significant fall in poverty when it is defined purely in terms of income. At the

same time, the national family health survey and the human development report reveal that

more than fifty percent of the rural women are illiterate, fifty seven infants do not survive

out of every thousand newborns, nearly ninety percent of the rural households use solid

biomass fuel for cooking purposes, and sixty seven percent of the population live without

improved sanitation facilities as mandated in the millennium development goals (MDG)

by the UNDP. Clearly, an improved performance in terms of income alone fails to reflect

improved performance in other attributes of well-being. Moreover, inequality in achievements

also remains high across the population and also across different population subgroups, such

as across various geographical regions, across religions, and across castes/tribes. Although

the dimension-specific averages partly explain these observations, they ignore the existing

inter-person inequality. Thus, India happens to be an appropriate context for the application

of a multidimensional social welfare index that is also sensitive to inter-personal inequality

and the Chapter V is devoted to this objective.

The third aspect of aggregation concerns multidimensional poverty indices. In 2002,

the Government of India has proposed identifying families below the poverty line using a
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multidimensional survey. The survey consists of thirteen questions with five responses each.

A household is identified as poor if the household fails to secure a certain score out of these

thirteen questions. A poverty index is constructed by just counting the number of poor

persons. Consequently, the poverty index is neither sensitive to the depth, nor the breadth

of poverty. By saying that the index is not sensitive to the depth of poverty, it is meant

that the index does not change if a deprived person becomes more deprived in one attribute.

Similarly, by saying that the index is not sensitive to the breadth of poverty, it is meant that

the index does not change if a poor individual becomes deprived in an additional attribute

in which (s)he was not deprived before. Moreover, the poverty index does not allow for

poverty decomposition across attributes. In other words, it is not possible to calculate the

contribution of each attribute to total poverty. A recently proposed class of multidimensional

poverty indices by Alkire and Foster (2008) is sensitive to both the depth and the breadth of

poverty, and allows for the decomposition of poverty across attributes. In Chapter VI, this

new poverty index is applied to the Indian context to analyse the state of multidimensional

poverty. The research in this chapter is conducted jointly with Sabina Alkire.

Finally, in Chapter VII, possible extensions are discussed and concluding remarks are

provided. Since the research in some of the chapters has been conducted jointly, for the sake

of uniformity, third person pronouns are used instead of first person pronouns throughout

the rest of this dissertation.
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CHAPTER II

A CLASS OF DISTRIBUTION AND ASSOCIATION SENSITIVE MULTIDIMENSIONAL

WELFARE INDICES

Introduction

In this chapter, we are concerned with the evaluation of social welfare when there are two

or more attributes of well-being. To have a common basis for comparison across different

societies, we suppose that the set of attributes is fixed. However, to allow for comparisons

across societies with different set of individuals, we define our indices for all population sizes.

For a society, we summarize the achievement of every individual in every attribute by an

achievement matrix. A social welfare index is defined as a real-valued function on the set of

possible achievement matrices. We propose a new class of multidimensional social welfare

indices and characterize them axiomatically. Indices in this class are constructed in two

stages. First, an overall achievement score is obtained for each individual by aggregating

over the different attributes of well-being and then these scores are aggregated across indi-

viduals. In each stage of this aggregation, we use a generalized mean, which is characterized

by a single parameter. Therefore, we refer to our new two-stage welfare indices as the class

of two-parameter generalized mean social welfare indices.1 The class includes several indices

proposed in the literature, such as those of Foster et al. (2005) and Decancq and Ooghe

(2009), as special cases. Indices in our class are particularly amenable for empirical applica-

tions because of their simple functional form. Seth (2009) has used this new class of indices

to critically evaluate the Human Development Index.
1Since writing this dissertation, we have learned that Kockläuner (2006) has proposed a similar class of indices
for measuring poverty and has discussed some of its properties. See also Kockläuner (2008).
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A satisfactory index of social welfare should be sensitive to the inequality in the distri-

butions of the attributes of well-being (Atkinson, 1970; Foster and Sen, 1997). Aside from

its direct concern, inequality may well have negative indirect effects on social welfare. For

example, high levels of inequality can lead to political instability, tensions among ethnic

groups, increase in crime rates, and feelings of deprivation among the members of society.

When there are multiple attributes of well-being, there are two distinct forms of inequal-

ity. The first is concerned with the dispersion across the individual achievements of each

attribute (Kolm, 1977) and the second is concerned with the correlation – or more pre-

cisely, association – across attributes (Atkinson and Bourguignon, 1982). The first form

of inequality is distribution sensitive inequality and the second is association sensitive in-

equality. Many multidimensional indices of social welfare, inequality, or poverty, such as

the Human Development Index, Human Poverty Index, and various physical quality of life

indices, are insensitive to either of these forms of inequality, whereas others, such as those

proposed by Hicks (1997), Foster et al. (2005), Gajdos and Weymark (2005), and Alkire

and Foster (2008) only take account of distribution sensitive inequality. There have also

been a small number of multidimensional indices proposed that take account of both kinds

of inequality. See, for example, Tsui (1995, 1999, 2002), Bourguignon (1999), Bourguignon

and Chakravarty (2003), Decancq and Lugo (2009), and Decancq and Ooghe (2009).

This class of indices developed in this chapter is most closely related to that of Foster et al.

(2005). They also constructed a class of welfare indices by applying a two-stage aggregation

procedure in which a generalized mean is used in each stage. However, they used the same

generalized mean parameter in both stages. Using a single parameter is quite restrictive

because it is then not possible for their indices to be association sensitive. By using two
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parameters, our indices can be both distribution and association sensitive.

Bourguignon (1999) has also proposed a two-parameter class of indices, albeit in the

context of measuring inequality. Each of Bourguignon’s indices is a monotonic transform of

one of our indices. However, Bourguignon does not provide an axiomatic characterization of

his class. Furthermore, as discussed later, the value of his welfare indices can respond to a

change in the inequality aversion parameter in a way that is counter intuitive.

The rest of this chapter is organized as follows. In the second section, we introduce our

basic definitions and notation. In the third section, we define and discuss the class of two-

parameter generalized mean social welfare indices. In the fourth section, we introduce the

non-distributional axioms and use them to characterize our class defined in the third section.

We then, in the fifth section, introduce our inequality aversion axioms and characterize the

subclasses of our class of indices that satisfy them. We consider other subclasses of our indices

in the sixth section. In the final section, we discuss possible extensions of our analysis and

provide some concluding remarks.

Preliminaries

The set of attributes of well-being is D = {1, . . . , D}, where D ⊂ N is the number of

attributes.2 Throughout the analysis D is fixed with D ≥ 2. For example, the attributes

could be income, years of education, and an index of health status. Alternatively, the

attributes of well-being could be incomes in different time periods or states of nature. The

former would be appropriate for studying income inequality over time, whereas the latter

2We use the following standard notation. The set N is the set of positive integers. The Euclidean k-space is
Rk and it’s non-negative and positive orthants are Rk+ and Rk++, respectively. It is sometime convenient to
think of a j×k real-valued matrix as being a vector in Rjk. The D-dimensional simplex is SD = {x ∈ RD+1+

|
∑D+1
i=1 xi = 1}. The interior of SD is denoted by Int(SD).
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would be appropriate for studying income inequality under uncertainty (Ben Porath et al.,

1997). The set of individuals is N = {1, . . . , N}. We let the population size vary, so N can

be any integer in N.

The quantity of an attribute obtained by an individual is referred to as an achievement.

An achievement matrix for a population of size N is a matrix H ∈ RND++ , whose ndth entry

is the achievement hnd of attribute d by person n. The nth row hn· of H is the vector listing

the achievements of all D attributes by person n. The dth column h·d of H is the vector

listing the achievements of all N individuals for attribute d. Let HN denote the set of all

possible achievement matrices of population size N and let H = ∪N⊂NHN be the set of all

possible achievement matrices.

A social welfare index is a function W : H → R. The social welfare associated with

the achievement matrix H ∈ HN is at least as large as the social welfare associated with

the achievement matrix H ′ ∈ HN ′ if and only if W (H) ≥ W (H ′). The matrices H and H ′

could be for societies with different sets of individuals, as would be the case when making

comparison between different countries or regions. Of course, if they are the achievement

matrices for a single society, then N must equal N ′.

We employ the following operations on vectors and matrices. For all M ∈ N and all

x, y ∈ RM , the join of x and y is (x ∨ y) = (max (x1, y1) , . . . ,max (xM , yM)) and the meet

of x and y is (x ∧ y) = (min (x1, y1) , . . . ,min (xM , yM)). For all r,M ∈ N and all z ∈ RM ,

the r-replication of z is the vector [z]r = (z, . . . , z) ∈ RrM in which z has been replicated r

times. Similarly, for all r, L,M ∈ N and all Y ∈ RLM , the r-replication of Y is the matrix

[Y ]r ∈ RL
′M in which the rows of Y has been replicated r times, where L′ = r · L.

The following special vectors and matrices are used in the subsequent discussion. The

11



M vector whose components are all equal to 1 is 1M . Similarly, the L ×M matrix 1LM is

the matrix with a 1 in every entry. The M vector whose components are all equal to 1/M

is ξM .

A Class of Indices

The class of social welfare indices that is introduced here is defined using generalized

means. For vectors in RM++, for all γ ∈ R, and all a ∈ RM+ , the generalized mean of order γ

for the weight vector a ∈ SM−1 is the function µMγ (·; a) on RM++ defined by setting, for all

x ∈ RM++,

µMγ (x; a) =


[∑M

m=1 amx
γ
m

]1/γ
if γ 6= 0∏M

m=1 x
am
m if γ = 0

. (1)

The parameter γ determines the curvature of the level surfaces of µMγ . For γ = 1, a gen-

eralized mean is simply a weighted arithmetic mean. It is a weighted geometric mean and

a weighted harmonic mean for γ = 0 and γ = −1, respectively. As γ → ∞, µMγ (x; a) →

maxm∈M {xm}, and as γ → −∞, µMγ (x; a) → minm∈M {xm}.3 Of particular interest are

generalized means in which all attributes receive the same weight. That is, in (1), the weight

vector a is equal to ξM . Note that a generalized mean is twice differentiable.

It is common in the literature on multidimensional social welfare and inequality to con-

struct an overall index in two stages. This can be done by either (i) first aggregating across

individuals for each attribute and then aggregating across attributes or (ii) first aggregat-

ing across attributes for each individual and then aggregating across individuals. Following

Pattanaik et al. (2007), the former method is called column-first two-stage aggregation and

the latter is called row-first two-stage aggregation. Pattanaik et al. (2007, Propositions 1
3We require that γ be in R and thereby exclude the limiting cases of γ =∞ and γ = −∞.
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and 2) have shown that the column-first procedure completely ignores interactions across

dimensions, which is important if the index is to be association sensitive. Thus, here, we

only consider the row-first procedure. In the first stage, achievements are aggregated to

obtain an individual’s overall achievement score. For a population size of N ∈ N, the overall

achievement score for individual n is obtained by applying an aggregation function QN
n :

RD++ → R for all n in N. Then, in the second stage, these scores are aggregated using a

function ΦN : RN → R. Formally, the row-first two-stage aggregation method can be defined

as follows.

Row-First Two-Stage Aggregation For every N ⊂ N and every n in N, there exist

functions ΦN : RN → R and QN
n : RD++ → R such that for all H ∈ HN , the social welfare

index W can be written as

W (H) = ΦN(QN
1 (h1·), . . . , Q

N
N(hN ·)). (2)

The indices we propose use generalized means for each stage of the aggregation. For

every choice of the parameters α and β in R and every weight vector a in Int
(
SD−1

)
, the

two-parameter generalized mean social welfare index W (·;α, β, a) is defined by setting

W (H;α, β, a) = µNα (µDβ (h1·; a), . . . , µDβ (hN ·; a); ξN). (3)

for every N ⊂ N and every H ∈ HN . Note that (3) is obtained from (2) by setting ΦN(·)

= µNα (·; ξN) and QN
n (·) = µDα (·; a) for all N ⊂ N and for all n in N. Intuitively, the index is a

generalized mean of generalized means. Let G denote the set of all two-parameter generalized

mean social welfare indices.
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Following Atkinson (1970), µNα (x) is referred to as the equally distributed equivalent over-

all achievement, where x is the vector of overall achievements. The parameter α measures

society’s aversion towards inter-personal inequality in these achievements. That is, α mea-

sures the degree to which one individual’s overall achievement is substitutable for a second

individual’s overall achievement in the social welfare index W . Similarly, the parameter β

measures the degree of substitutability across the dimensions of well-being of any individual.

In defining the class of indices G, we have not required that they be either distribution

or association sensitive. As we shall show, such sensitivity can be achieved by placing

restrictions on the parameters that define these indices. In the subsequent sections, under

the maintained assumption that we use row-first aggregation, we shall provide an axiomatic

characterization of the class of all two-parameter generalized mean social welfare indices, as

well as characterizations of the sub-classes that satisfy distribution sensitivity, association

sensitivity, or both of these properties together.

Non-Distributional Axioms

In this section, we axiomatically characterize the two-parameter class of generalized mean

social welfare indices G given our assumption that the index is constructed using row-first

aggregation, that is, assuming that the social welfare index W has the form in (2). The

axioms that we employ are standard in the literature. Furthermore, none of the axioms

considered in this section take into account distributional or associational concerns.

The first axiom requires the value of social welfare index to change continuously with a

change in the achievement of any person in any dimension.
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Continuity (CONT) For every N ⊂ N, W is continuous on RND++ .

The next axiom imposes convenient normalizations on the aggregation function Q and

the social welfare indexW . If an individual has the same achievement in all dimensions, then

the overall achievement is equal to this value. Moreover, if everybody has the same overall

achievements, then the value of the social welfare index is equal to this common value.

Normalization (NORM) For every N ⊂ N, every ζ > 0, and every H ∈ HN such that

H = ζ1ND,

QN
n (hn·) = ζ ∀n ∈ N and W (H) = ζ.

The social welfare index can be thought of as being a representation of a social preference

on the set of achievement matrices. We assume that this preference is homothetic. A

preference is homothetic if whenever two achievement matrices for the same population are

socially indifferent, then so are the achievement matrices obtained by proportionally scaling

both of them. By assuming that this preference is homothetic, we are implicitly assuming

that we are concerned with relative inequality; that is, there is no change in inequality if an

achievement matrix is proportionally scaled.4

Homotheticity (HOM) For every N ⊂ N, every δ > 0, and every H,H ′ ∈ HN ,

W (H ′) = W (H)⇔ W (δH ′) = W (δH).

We assume that the identities of individuals are not ethically significant. This is accom-

plished by requiring the social welfare index to be symmetric in the sense that the index is
4Tsui (1995) introduced a stronger version of homotheticity axiom called ratio scale invariance, which has
also been used by Decancq and Ooghe (2009). However, this axiom has been questioned by Bourguignon
(1999, p. 479). For a related discussion, see Weymark (2006, p. 311).
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invariant with respect to permutations of the individual achievement vectors.

Anonymity (ANON) For every N ⊂ N, every H,H ′ ∈ HN , and for every permutation

matrix P ∈ RNN+ such that H ′ = PH,

W (H ′) = W (H).5

The preceding axioms do not place any restrictions on the value of the index for achieve-

ment matrices for societies with different population sizes. We assume that if an achievement

matrix is replicated an arbitrary number of times, then the value of the social welfare index

is unchanged. Thus, social welfare is being measured in per capita terms.

Population Replication Invariance (POPRI) For every r ∈ N and every H,H ′ ∈ H

such that H ′ = [H]r,

W (H ′) = W (H).

We assume that each attribute of well-being contributes positively to social welfare. It

is, therefore, natural to assume that the value of the social welfare function increases if the

value of some attribute for some individual increases with no decrease in the value of any

attribute for any individual.

Monotonicity (MON) For every N ⊂ N and every H,H ′ ∈ HN such that H ′ ≥ H and

H ′ 6= H,

W (H ′) > W (H).

5A permutation matrix is a square matrix with each row and column having exactly one element equal to one
and the rest equal to zero.
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The restriction of the social welfare index to achievement matrices in HN provides an

index of social welfare for any group of size N . We assume that social welfare increases if the

social welfare of a subgroup of the society increases, while that of the rest of the population is

unchanged. This increase in subgroup social welfare may be accompanied by both increases

and decreases in achievements of individuals in the subgroup. Our monotonicity axiom does

not apply to such comparisons.

Subgroup Consistency (SUBCON) For every N1, N2, N ∈ N such that N1 + N2 = N ,

every H1, H
′
1 ∈ HN1 , and every H2, H

′
2 ∈ HN2 , if W (H ′1) > W (H1) and W (H ′2) = W (H2),

then W (H ′1, H
′
2) > W (H1, H2).

It is common in empirical analysis for an individual’s overall achievement score to be

obtained by taking a weighted sum of his achievements in each dimension. These weights

could measure the relative importance of the different achievements. See, for example,

Decancq and Lugo (2008). Alternatively, they can be used to convert the units for each

dimension into a common scale. Suppose that the set of achievements D is partitioned into

two disjoint subsets D1 and D2. For given values of the achievements in D2, the aggregation

function QN
n for person n in a row-first two-stage aggregation procedure defines a conditional

ordering of achievement vectors for the attributes in D1. When fixed weights are used to

aggregate the attributes in D, this conditional ordering is independent of the values in D2.

We do not assume a prori that fixed weights are used in this aggregation. However, we

do assume that for every partition of D into disjoint subsets D1 and D2, the aggregation

function QN
n defines a conditional ordering of achievement vectors for the attributes in D1

that is independent of the values of the attributes in D2. That is, QN
n is assumed to be
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completely strictly separable. More precisely, we assume that QN
n is additively separable for

all n in N.6

Additive Separability (ADDSEP) For every N ⊂ N and every n ∈ N, the aggregation

function QN
n can be written as

QN
n (hn·) = Un(V n

1 (hn1) + · · ·+ V n
D(hnD)) (4)

for all hn· ∈ RD++, where Un : R → R is a continuous and increasing function, and V n
d :

R++ → R is a continuous function for all d in D.

For row-first two-stage aggregation, Theorem 1 shows that the non-distributional axioms

introduced in this section characterize the set of two-parameter generalized mean social

welfare indices G.

Theorem 1 An index W : H → R is a two-parameter generalized mean social welfare

index if and only if W is obtained using row-first two-stage aggregation and satisfies CONT,

NORM, HOM, ANON, POPRI, MON, SUBCON, and ADDSEP.

Proof. See Appendix A.

Inequality Sensitivity Axioms

In this section, we introduce axioms that are concerned with the sensitivity of the social

welfare indices to the two forms of inequality described above. First, we introduce a distrib-

ution sensitivity axiom that ensures that the social welfare index takes account of the spread
6Additive separability of QNn is equivalent to complete strict separability if D ≥ 3. However, for D = 2,
additive separability is a somewhat stronger assumption than complete strict separability. See Blackorby
et al. (1978, Section 4.4).
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of the multidimensional distribution and we then characterize the subclass of the class of

two-parameter generalized mean social welfare indices G that satisfies this axiom. Next, we

introduce two alternative association sensitivity axioms and we characterize the subclasses of

G that satisfy each of these axioms. Finally, we characterize the subclasses of G that satisfy

both our distribution sensitivity axiom and one of our association sensitive axioms.

Distribution Sensitive Inequality

Distributional sensitivity of the social welfare index W is obtained by requiring that the

value of the index increases if an achievement matrix is subjected to a common smoothing.

For everyN ⊂ N\{1} and everyH ′, H ∈ HN , H ′ is obtained fromH by a common smoothing

if there exists a bistochastic matrix B such that H ′ = BH and H ′ is not a permutation of

H.7 Note that the same bistochastic matrix is being applied to each attribute. Formally, we

require our social welfare index to satisfy the following axiom due to Kolm (1977).

Increasing under Common Smoothing (ICS) For everyN ⊂ N\{1} and everyH ′, H ∈

HN such that H ′ is obtained from H by a common smoothing,

W (H ′) > W (H).8

When there is only one dimension of well-being, H ′ and H are distributions of a single

attribute, and the requirement that H ′ be obtained from H by a common smoothing is

equivalent to saying thatH ′ can be obtained fromH by a sequence of Pigou-Dalton transfers,

possibly supplemented by permutations of some of the distributions in this sequence.
7A bistochastic matrix is a non-negative square matrix whose row and column sums are both equal to one.
8This axiom is also known as the Uniform Majorization Principle. See Kolm (1977) and Weymark (2006) for
further discussion of this and related distribution sensitivity axioms.
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Theorem 2 characterizes the subclass of G that satisfies ICS.

Theorem 2 A two-parameter generalized mean social welfare index W (H;α, β, a) satisfies

ICS if and only if α < 1 and β < 1.

Proof. See Appendix B.

In the definition of a generalized mean µMγ , the parameter γ determines the curvature

of the level surfaces (iso-achievement curves) of µMγ . The restriction β < 1 implies that

the aggregation function Q is strictly quasi-concave and thus has a strictly convex upper

contour set. Consequently, the overall achievement score increases when one achievement

vector is obtained from the second by a strictly convex combination of the achievements

of the latter. Note that the first stage aggregation function is analogous to the constant

elasticity of substitution (CES) function in the utility analysis. Similarly, if α < 1, then the

aggregation function Φ is also strictly quasi-concave in its arguments which are the overall

achievements of the individuals.

Association Sensitive Inequality

We now consider the sensitivity of the social welfare index W to a change in the associa-

tion between dimensions while leaving the marginal distributions unaltered.9 Association

sensitivity was introduced into the literature on multidimensional social welfare by Atkinson

and Bourguignon (1982) and has subsequently been considered by Tsui (1995, 1999, 2002),

Bourguignon (1999), Bourguignon and Chakravarty (2003), and Decancq and Lugo (2009),

9What we refer to association between dimensions is often called dependence in the statistics literature and
correlation in the literature on economic inequality. We do not employ the term ‘correlation’here so as to
emphasize that we are not restricting our attention to the correlation coeffi cient used in statistics.
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among others. There are various ways in which the different dimensions of well-being may

be interdependent, with the consequence that there are a number of different concepts of

association sensitivity. See Joe (1997, Chapter 2) for a discussion.

Here, association sensitivity of W is obtained by requiring that the value of the index

increases if an achievement matrix is subjected to an association increasing transfer. For

everyN ⊂ N\{1} and every H,H ′ ∈ HN , H ′ is obtained fromH by an association increasing

transfer if H ′ 6= H, H ′ is not a permutation of H, and there exist two individuals n1 and

n2 such that h′n1· = (hn1· ∨ hn2·), h′n2· = (hn1· ∧ hn2·), and h′n· = hn· for all n ∈ N\{n1, n2}.10

To interpret this definition, consider two individuals and an achievement matrix such that

neither individual has at least as much of every attribute than the other. If for each attribute,

we reallocate their achievements between these two individuals so that one of them has at

least as much of every achievement as the other, then the resulting achievement matrix has

been obtained from the former by an association increasing transfer. As emphasized by

Bourguignon and Chakravarty (2003), whether an association increasing transfer is socially

beneficial depends on whether the attributes are substitutes or complements in W . As a

consequence, we have the following two different association sensitivity axioms, the choice

of which depends on which of these two cases apply.

Decreasing under Increasing Association (DIA) For everyN ⊂ N\{1} and everyH ′, H ∈

HN such that H ′ is obtained from H by a finite sequence of association increasing transfers,

W (H ′) < W (H).
10The concept of an association increasing transfer was introduced by Tsui (1999) under the name of a cor-
relation increasing transfer. Tsui’s concept was in turn was based on the idea of a basic rearrangement due
to Boland and Proschan (1988). These concepts are closely related to the correlation increasing switches
considered by Bourguignon and Chakravarty (2003). For formal definitions of these concepts, see the articles
cited above and for a discussion of the relationship between them, see Chakravarty (2009) and Seth (2009).
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Increasing under Increasing Association (IIA) For everyN ∈ N\{1} and everyH ′, H ∈

HN such that H ′ is obtained from H by a finite sequence of association increasing transfers,

W (H ′) > W (H).

Theorem 3 characterizes the subclasses of G that satisfy these axioms.

Theorem 3 (i) A two-parameter generalized mean social welfare index W (H;α, β, a) sat-

isfies DIA if and only if α < β. (ii) A two-parameter generalized mean social welfare index

W (H;α, β, a) satisfies IIA if and only if α > β.

Proof. See Appendix C.

After an association increasing transfer takes place, one of the two individuals affected

by the transfer has at least as much of every attribute as the other affected individual. If

the attributes are substitutes (resp. complements) from the perspective of social welfare,

then such a transfer should decrease (resp. increase) the value of the social welfare index,

which requires that α is less than (resp. larger than) β. For example, if two of the attributes

are income and some indicator of health status, then it is natural to regard them as being

substitutes because an individual with poor health can better deal with his condition if

he has suffi cient funds to help ameliorate this situation. On the other hand, if quality of

health and housing infrastructure are two attributes of well-being, then good health is better

enjoyed by an individual whose housing infrastructure is improved as well. In this situation,

these two attributes are complements to each other.
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Sensitivity to Both Forms of Inequality

By combining Theorems 2 and 3, we obtain the subclasses of G that are both distribution

and association sensitive.

Theorem 4 (i) A two-parameter generalized mean social welfare index W (H;α, β, a) sat-

isfies ICS and DIA if and only if α < β < 1. (ii) A two-parameter generalized mean social

welfare index W (H;α, β, a) satisfies ICS and IIA if and only if β < α < 1.

To illustrate the significance of the parameter restrictions in Theorem 4, we consider the

problem of a policy maker who needs to decide which person to allocate a marginal transfer T

in his budget so as to maximize the increase in social welfare. For simplicity, in the following

discussion we suppose that both α and β are non-zero. For any N ⊂ N and any H ∈ HN , if

the transfer T is provided to person n to improve her achievement in dimension d, then the

increment in social welfare is:

∂W (H;α, β, a)

∂T
=
(
adh

β−1
nd Cα−β

n C
)
cnd,

where ad is the weight of dimension d in the calculation of the overall achievement scores,

cnd = ∂hnd/∂T is the increase in achievement hnd due to the transfer, Cn = µβ (hn·; a)

is the overall achievement score of person n, and C = 1
N
W (H;α, β, a)1−α. Note that C is

identical across all individuals. Let ωnd = adh
β−1
nd Cα−β

n cnd for all n and all d. To maximize the

increase in social welfare, the policy maker should assist person n to increase her achievement

in dimension d if

ωnd > ωn′d′ ∀n′ ∈ N/{n} and ∀d′ ∈ D/{d}. (5)
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First, to illustrate the role that the restriction α < 1 plays, we consider the situation in

which hnd = h̄n for all d and cnd = c̄ for all d and all n. In this case, ωnd = hα−1n c̄. Consider the

problem of determining which individual the budget increase should be spent on. Because

α < 1, the policy maker should provide the transfer to the individual or individuals for which

h̄n is minimal.

Second, we consider the role that the restriction β < 1 plays. This role is most clearly

seen when ad = ā for all d and cnd = c̄ for all d and all n. Consider the problem of determining

which attribute the budget increase should be spent on conditional on individual n being

the person receiving the transfer. Because Cn does not depend of d and because β < 1, it

follows from (5) that the transfer should be spent on the attribute or attributes for which

hnd is minimal.

Third, to illustrate how the substitutability and complementarity between attributes

affects the allocation of the transfer, we again consider the situation in which ad = ā for all

d and cnd = c̄ for all d and all n. We already know that if individual n receives a transfer,

the transfer should be spent on the attribute or attributes for which hnd is minimal. If the

social welfare index is not association sensitive, then α = β and thus ωnd = āc̄hβ−1nd . Hence,

the transfer should be allocated to the individuals and attributes for which hnd is minimal

regardless of what anybody’s overall achievement score is. If, however, the social welfare

index is association sensitive, then α 6= β and thus ωnd = āc̄hβ−1nd Cα−β
n and the transfer

should be allocated to those individuals and attributes for which hβ−1nd Cα−β
n are maximal.

Suppose that hnd = hn′d′ , where d (resp. d′) is the attribute with minimal achievement for

individual n (resp. n′). Then, the transfer should not go to individual n′ if the attributes are

substitutes (α < β) and Cn′ > Cn. Similarly, the transfer should not go to individual n′ if
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the attributes are complements (α > β) and Cn′ < Cn. When the attributes are substitutes

(resp. complements), then higher (resp. lower) association is detrimental to social welfare

and, thus, the individual with the lower (resp. higher) overall achievement score should be

favored whenever they have the same minimal achievements.

Related Social Welfare Indices

Foster et al. (2005) have proposed a one-parameter class of generalized mean social wel-

fare indices, which we refer to as the FLS class. The FLS class is the subclass of our

two-parameter generalized means G obtained by setting α = β ≤ 1. The FLS indices ex-

ibit distribution sensitivity, but as can be seen from Theorem 4, they are not association

sensitive. When α = β = 1, the social welfare index is simply the arithmatic mean across

individuals of weighted arithmatic means across attributes. This index is neither association

nor distribution sensitive. Several well-known indices are simple means of weighted arith-

metic means. For example, the Human Development Index (United Nations Development

Programme, 2006) and the Morris (1979) physical quality of life index have this functional

form.

For the FLS class, both column-first two-stage aggregation and row-first two-stage ag-

gregation yield an identical evaluation. This invariance property is called path independence.

Path Independence (PATHIN) For every N ⊂ N, there exist functions Φ : RN++ → R++

and Q : RD++ → R++ such that for all H ∈ HN ,

Φ(Q(h1·), . . . , Q(hN ·)) = Q(Φ(h·1), . . . ,Φ(h·D)).
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Note that the class of two-parameter generalized mean social welfare indices cannot be

simultaneously association sensitive and path independent. If the data for different attributes

are available at different levels of aggregation, we do not have enough information to consider

association among attributes. For example, education data may be available at the individual

level, income data may be available at the household level, and health data may be available

at the municipality level. In such circumstances, it may be appropriate to require the social

welfare index to be path independent. Subclasses of G that satisfy PATHIN are characterized

in Theorem 5.11

Theorem 5 (i) A two-parameter generalized mean social welfare index W (H;α, β, a) sat-

isfies PATHIN if and only if α = β. (ii) A two-parameter generalized mean social welfare

index W (H;α, β, a) satisfies PATHIN and ICS if and only if α = β < 1.

Proof. For any N ∈ N and any H ∈ HN , let W1 = µNα (µDβ (h1·; a), . . . , µDβ (hN ·; a); ξN) and

W2 = µDβ (µNα (h·1; ξN), . . . , µNα (h·D; ξN), a). It is straightforward to show that if α = β, then

W1 = W2. By Hardy et al. (1934, Theorem 26), W1 > W2 if β < α and W1 < W2 if β > α.12

Hence, W1 6= W2 if α 6= β. Part (ii) of the theorem follows directly by combining part (i)

with Theorem 2.

The subclass of G for which α ∈ (0, 1) and β < 1 shares the same ordinal properties as

the class of welfare indices proposed by Bourguignon (1999). For a ∈ Int(SD−1), α ∈ (0, 1),

and β < 1, the Bourguignon social welfare index is defined as

WB(H;α, β, a) =
1

N

∑N

n=1
(µDβ (hn·; a))α = (W (H;α, β, a))α , (6)

11For a class of path independent standard of living indices, see Dutta et al. (2003).
12Although Hardy et al. (1934) assume that both α and β are positive, their proof can be easily extended for
all α and β in R.
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for all N ⊂ N and all H ∈ HN . Thus, our indexW (H;α, β, a) is a monotonic transformation

of the corresponding Bourguignon index.

By using the inequality aversion parameter α to transform W (H;α, β, a) as in (6), it is

unclear how to interpret a comparison of welfare levels for different values of α. To see why,

consider any N ∈ N and suppose that there are two societies with achievement vectors H,H ′

∈ HN such that hn· = h′n· = h for all n. In this situation, WB(H;α, β, a) 6= WB(H ′;α′, β, a)

for any α 6= α′. However, it is not clear why differences in inequality aversion should result

in different levels of social welfare when everybody has the same achievement vector.

Bourguignon has used his welfare index to construct an inequality index by setting

IB(H;α, β, a) = 1 − WB(H;α, β, a)/WB(H̄;α, β, a), where H̄ = BH and B = 1NN/N .

It is shown in Seth (2009) that for some α > α′ > α′′, IB(H;α, β, a) < IB(H;α′, β, a) >

IB(H;α′′, β, a). Thus, with this index, inequality is not monotonically increasing in the

inequality aversion parameter for a given achievement matrix.

Recently, Decancq and Ooghe (2009) have proposed a class welfare indices that are also

constructed using a row-first two-stage aggregation procedure. In the first stage, they use

the geometric mean µD0 to aggregate across attributes and in the second stage, they use a

generalized mean µNα with α < 0 to aggregate across individuals. This procedure implicitly

assumes that attributes are substitutes and thus their indices can only satisfy IDA but not

IIA. Note that the Decancq-Ooghe class is a subclass of G.

Conclusion

In this chapter, we have proposed a class of two-parameter generalized mean social welfare

indices and characterized it axiomatically. Under appropriate parametric restrictions, we
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have shown that these indices are both distribution and association sensitive. Because of

their simple functional structure, our indices are easy to implement empirically. We have also

shown that the indices proposed by Foster et al. (2005) and Decancq and Ooghe (2009), as

well as the Human Development Index, are subclasses of our indices. We have also discussed

how indices are related to the Bourguignon class of indices.

Our indices proposed here assume that the degree of substitution between each pair of

attributes is the same. As a consequence, all attributes are either substitutes or complements

to each other. A natural extension of our analysis would be to construct a more general class

of indices that would treat some attributes as substitutes, while simultaneously treating

other attributes as complements.

Following Tsui (1995), we have only considered association increasing transfers of the

kind introduced by Boland and Proschan (1988). Alternative concepts of dependence among

attributes could be used to construct indices based on them. Decancq (2009) has done this

for positive orthant dependence.

Seth (2009) has used the indices proposed in this chapter to measure social welfare in

Mexico using 2000 census data and has found that the ranking of Mexican states differs when

association sensitivity is taken into account than when it is not. In Chapter four, I apply

the index to the Indian context showing how the consideration for inequality may alter the

state level rankings.
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Appendix

A. Proof of Theorem 1

Proof. The suffi ciency part of the proof is straightforward. To prove necessity, suppose

that W is obtained using row-first two-stage aggregation, i.e., W takes the form (2), and

that it satisfies CONT, NORM, HOM, ANON, POPRI, MON, SUBCON, and ADDSEP.

Consider any N and any Ĥ ∈ HN such that ĥnd = x̂n for every d ∈ D. By NORM,

QN
n (ĥn·) = x̂n for every n ∈ N and, hence, W (Ĥ) = ΦN(x̂), where x̂ = (x̂1, . . . , x̂N). Let

H̄ = PĤ for some permutation matrix P . Reasoning as above, W (H̄) = ΦN(x̄), where

x̄T = Px̂T and x̂T is the transpose of x̂. ANON impliesW (Ĥ) = W (H̄) and therefore ΦN(x̂)

= ΦN(x̄). Thus, ΦN is symmetric in its arguments. It follows from NORM that ΦN is a

reflexive function, i.e., ΦN(ζ, . . . , ζ) = ζ for all ζ ∈ R++. Consider any H ∈ HN and let δ =

W (H). Define H0 ∈ HN by setting h0nd = δ for all n in N and d in D. By NORM, it follows

thatW (H0) = W (H). Now consider any λ > 0. Then by HOM we haveW (λH0) = W (λH),

and by NORM it follows that λδ = W (λH0). We conclude that λW (H) = W (λH) for any λ

> 0 and any H in HN , and so W is homogeneous of degree one. Using the vector x̂ defined

above, it further follows that ΦN(λx̂) = λΦN(x̂) and therefore ΦN is also homogeneous of

degree one.

Let XN ∈ RN++ denote the set of all vectors of overall achievement scores with the fixed

population size N and let X = ∪N⊂NXN . Define Φ : X → R so that ΦN(x) = Φ(x) for all

N and all x ∈ XN . The function Φ inherits continuity from W . Furthermore, Φ inherits the

analogue of subgroup consistency from W . For any r ∈ N, let H̃ = [Ĥ]r, with the same Ĥ

defined earlier. By POPRI, W (H̃) = W (Ĥ) and therefore Φ satisfies replication invariance
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because Φ(x̂) = Φ(x̃), where x̃T = [x̂T ]r for all r ∈ N. We have shown that Φ satisfies all

the assumptions of the Theorem in Foster and Székely (2008, p. 1149). Thus, there exists a

scalar α ∈ R such that Φ can be written as

Φ(x) =


(
1
N

∑N
n=1 x

α
n

)1/α
if α 6= 0(∏N

n=1 xn

)1/N
if α = 0

(7)

for all x ∈ X, where N is the number of components in x.

We now prove that QN
n is also a generalized mean. First, for any N, we show that Q

N
n =

QN
n′ for all n, n

′ ∈ N. Consider any n, n′ ∈ N and any h̄ ∈ RD++. Let H ∈ HN be such that

hn· = h̄ and hn̂· = 1D for all n̂ 6= n and let H ′ ∈ HN be such that h′n′· = h̄ and hn̂· = 1D

for all n̂ 6= n′. Using NORM and (7), W (H) = µNα (1, . . . , 1, QN
n (h̄), 1, . . . , 1; ξN) and W (H ′)

= µNα (1, . . . , 1, QN
n′(h̄), 1, . . . , 1; ξN). By ANON, W (H) = W (H ′). Using the formula for a

generalized mean of order α, it now follows that QN
n (h̄) = QN

n′(h̄). Hence, QN
n = QN

n′ for all

n, n′ ∈ N. We denote this common function by QN .

Next, we prove that QN = QN ′ for all N,N ′ ∈ N. Consider any H ∈ H1. Note that H

= h for some h ∈ RD++. By (7), W (H) = QN(h). Consider any N ∈ N and let H̄ = [h]N .

By (7), W (H̄) = QN(h). POPRI implies that W (H̄) = W (H). Hence, QN(h) = Q1(h) for

all h ∈ RD++ and all N ∈ N. Therefore, Q1 = QN for all N ⊂ N. We denote this common

function by Q.

Because W (·) = Q(·) when N = 1, Q inherits the properties of continuity, monotonicity,

and homogeneity of degree one from W . For all h ∈ RD++, ADDSEP implies that Q (h)

= U(
∑D

d=1 Vd(h)), where U : R → R is continuous and increasing and Vd : R++ → R

is continuous for all d. The monotonicity of Q implies that each Vd is also increasing.
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Hence, by Eichhorn (1978, Theorem 2.4.1), there exists a scaler β ∈ R and a weight vector

a ∈ Int(SD−1) such that Q can be written as:

Q(h) =


(∑D

d=1 adh
β
d

)1/β
if β 6= 0∏D

d=1 h
ad
d if β = 0

(8)

for all h ∈ RD++. In other words, the first-stage aggregation function Q is a generalized mean

of order β. Therefore, W is a two-parameter generalized mean social welfare index.

B. Proof of Theorem 2

The proof of Theorem 2 is based on Lemma B1.

Lemma B1 For any N ⊂ N\{1}, if H ′ is obtained from H ∈ HN by a common smooth-

ing, then (i)
∑N

n=1G(h′n·) >
∑N

n=1G(hn·) for strictly concave G and (ii)
∑N

n=1G(h′n·) <∑N
n=1G(hn·) for strictly convex G.

Proof. The proof is similar to the proof of Marshall and Olkin (1979, Theorem B.1., p. 433).

Consider any N ∈ N\{1} and suppose that H ′ is obtained from H ∈ HN by a common

smoothing. Thus, H ′ = BH for some bistochastic matrix B. Denote row n of B by bn·.

Because H ′ is not a permutation of H, there exist two individuals n1 and n2 such that h′n1·

6= hn1· and h
′
n2· 6= hn2·. Let G : RD++ → R be strictly concave. Strict concavity of G implies

G(h′n·) = G(
∑N

n̂=1 bnn̂hn̂·) >
∑N

n̂=1 bnn̂G(hn̂·) for n = n1, n2. Because for all n ∈ N\{n1, n2},

either h′n· = hn· or h′n· =
∑N

n̂=1 bnn̂hn̂·, it follows that G(h′n·) ≥
∑N

n̂=1 bnn̂G(hn̂·) for all

n ∈ N\{n1, n2}. Hence,
∑N

n=1G(h′n·) >
∑N

n=1

∑N
n̂=1 bnn̂G(hn̂·) =

∑N
n̂=1

∑N
n=1 bnn̂G(hn̂·) =
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∑N
n̂=1G(hn̂·) =

∑N
n=1G(hn·). The second part of the lemma can be proved in a similar

manner.

Proof of Theorem 2. (a) We first establish suffi ciency. That is, we show that if α < 1

and β < 1, then W (·;α, β, a) defined in (3) satisfies ICS. We consider four cases.

Case 1. We first suppose that α 6= 0 and β 6= 0. In this case,

W (H;α, β, a) = Ψ

(
N∑
n=1

G1(hn·)

)
, where G1(hn·) =

1

N
µDβ (hn·; a)α and Ψ(x) = (x)

1
α .

The first partial of G1 is ∂G1(hn·)/∂hnd = 1
N
αadh

β−1
nd X

α
β
−1 where X =

∑D
d=1 adh

β
nd, and

the second partial is:

(G1)dd =
1

N
adα (β − 1)hβ−2nd Xα/β−1 +

1

N
a2dα (α− β)h2β−2nd Xα/β−2.

The second cross partial derivative of G1 is:

(G1)dd′ =
1

N
α (α− β) adad′h

β−1
nd hβ−1nd′ X

α/β−2.

The Hessian matrix Q1 of G1 can be written as:

Q1 = Q11 +Q21;

where Q11 is a D ×D diagonal matrix with the dth diagonal element being equal to

Q11(d, d) =
1

N
adα (β − 1)hβ−2nd X

α
β
−1 for all d = 1, . . . , D,
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and

Q12 =


1
N
a21α (α− β)h2β−2n1 Xα/β−2 . . . α(α−β)

N
a1aDh

β−1
n1 hβ−1nD Xα/β−2

...
. . .

...

α(α−β)
N

a1aDh
β−1
n1 hβ−1nD Xα/β−2 . . . 1

N
a2Dα (α− β)h2β−2nD Xα/β−2

 .

Therefore, for a non-zero vector z = (z1, . . . , zD) ∈ RD,

zQ1z
′ = zQ11z

′ + zQ21z
′; (9)

where

zQ11z
′ =

D∑
d=1

z2d

(
1

N
adα (β − 1)hβ−2nd X

α
β
−1
)

=
1

N
α (β − 1)X

α
β

[
D∑
d=1

adh
β
nd

X

(
zd
hnd

)2]
,

and

zQ21z
′ =

α(α− β)Xα/β

N
[z1 . . . zD]



(
a1h

β
n1

Xhn1

)2
. . .

a1h
β
n1

Xhn1

aDh
β
nD

XhnD

...
. . .

...

a1h
β
n1

Xhn1

aDh
β
nD

XhnD
. . .

(
aDh

β
nD

XhnD

)2




z1

...

zD


or,

zQ21z
′ =

1

N
α (α− β)Xα/β

(
D∑
d=1

adh
β
nd

X

zd
hnd

)2
.

From (9), it follows that,

zQ1z
′ =

1

N
α (β − 1)X

α
β

[
D∑
d=1

adh
β
nd

X

(
zd
hnd

)2]
+

1

N
α (α− β)Xα/β

(
D∑
d=1

adh
β
nd

X

zd
hnd

)2
.
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Hence,

zQ1z
′ = α

X
α
β

N

(β − 1)

(
D∑
d=1

Xd

X

(
zd
hnd

)2)
+ (α− β)

(
D∑
d=1

Xd

X

zd
hnd

)2 ,
whereXd = adh

β
nd and, as defined earlier,X =

∑D
d=1Xnd. By Jensen’s inequality,

∑D
d=1(Xd/X)(zd/hnd)

2

≥ (
∑D

d=1(Xd/X)(zd/hnd))
2. As α < 1 and β < 1, we have (β − 1)

∑D
d=1(Xd/X)(zd/hnd)

2 +

(α− β)(
∑D

d=1(Xd/X)(zd/hnd))
2 < 0. There are two subcases: (i) 0 < α < 1 and (ii) α < 0.

In subcase (i), zQ1z′ < 0. Hence, G1 (·) is strictly concave. Therefore, if H ′ is obtained

from H by common smoothing, then by part (i) of Lemma B1, we have
∑N

n=1G1(h
′
n·) >∑N

n=1G1(hn·). Because Ψ(·) is increasing for α > 0, it follows thatW (·;α, β, a) satisfies ICS.

In subcase (ii), zQ1z′ > 0. Hence, G1 (·) is strictly convex. Part (ii) of Lemma B1 then

implies that
∑N

n=1G1 (h′n·) <
∑N

n=1G1 (hn·) if H ′ is obtained from H by common smoothing.

Because Ψ (·) is decreasing for α < 0, W (·;α, β, a) satisfies ICS in this subcase as well.

Case 2. We now suppose that α 6= 0 and β = 0. In this case,

W (H;α, β, a) = Ψ

(
N∑
n=1

G2(hn·)

)
, where G2(hn·) =

1

N
µD0 (hn·; a)α and Ψ(x) = (x)

1
α .

The first partial of G2 is ∂G2 (hn·) /∂hnd = 1
N
αadh

−1
ndY where Y =

∏D
d=1 h

αad
nd . The

second partial of G2 is (G2)dd = 1
N
αad (αad − 1)h−2ndY and the second cross partial is (G2)dd′

= 1
N
α2adad′h

−1
ndh

−1
nd′Y . Let the Hessian matrix be denoted by Q2. For a non-zero vector z =
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(z1, . . . , zD) ∈ RD,

zQ2z
′ = [z1 . . . zD]


αa1(αa1−1)

N
h−2n1Y . . . α2a1aD

N
h−1n1h

−1
nDY

...
. . .

...

α2a1aD
N

h−1n1h
−1
nDY . . . αaD(αaD−1)

N
h−2nDY




z1

...

zD



or, zQ2z′ =
αY

N
[z1 . . . zD]


−a1h−2n1 + αa21h

−2
n1 . . . αa1aDh

−1
n1h

−1
nD

...
. . .

...

αa1aDh
−1
1 h−1D . . . −aDh−2D + αa2Dh

−2
D




z1

...

zD

 .

Hence,

zQ2z
′ =

αY

N

− D∑
d=1

ad
z2d
h2nd

+ α

(
D∑
d=1

ad
zd
hnd

)2 .
By Jensen’s inequality,

∑D
d=1(adz

2
d/h

2
nd) ≥ (

∑D
d=1 adzd/hnd)

2. Because α < 1, we have

−
∑D

d=1(adz
2
d/h

2
nd) + α(

∑D
d=1 adzd/hnd)

2 < 0. There are also two subcases: (i) 0 < α < 1

and (ii) α < 0. Reasoning as in Case 1, it follows that W (·;α, β, a) satisfies ICS.

Case 3. Next, we suppose that α = 0 and β 6= 0. In this case,

W (H;α, β, a) =

(
N∏
n=1

G3 (hn·)

)1/N
, where G3 (hn·) = µDβ (hn·; a).

Taking the logarithm on each side of this equation, it follows that ln[W (H;α, β, a)] =

1
N

∑N
n=1 ln[G3 (hn·)]. Because G3 is a generalized mean, both it and lnG3 are strictly concave

for β < 1. By part (i) of Lemma B1, it follows that W (·;α, β, a) satisfies ICS.
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Case 4. Case 4. Finally, we suppose that α = 0 and β = 0. Then,

W (H;α, β, a) =

(
N∏
n=1

D∏
d=1

hadnd

)1/N
.

Equivalently, we have ln[W (H;α, β, a)] = 1
N

∑N
n=1

∑D
d=1 ad log hnd. Hence, from part (i) of

Lemma B1 it follows that W (·;α, β, a) satisfies ICS.

(b) Next, we establish necessity by showing that ICS is violated when either (i) α ≥ 1 or (ii)

β ≥ 1.

(i) Suppose that α ≥ 1. For any N ∈ N, consider any h ∈ RN++ and let H ∈ HN be such

that h·d = h ∀d. For any a ∈ Int(SD−1) and any β ∈ R, the overall achievement score vector

associated with H is h. Thus, W (H;α, β, a) = µNα (h; ξN). Consider any bistochastic matrix

B and let H ′ = BH. By construction, h′·d = h′ ∀d. The overall achievement score vector

associated with H ′ is h′, where h′ = Bh. Hence, W (H;α, β, a) = µNα (h; ξN) ≥ µNα (h′; ξN) =

W (H ′;α, β, a) because α ≥ 1, violating ICS.

(ii) Suppose that β ≥ 1. For any a ∈ Int(SD−1), let H ∈ H2 be such that h1· 6= h2·

but µDβ (h1·; a) = µDβ (h2·; a) =: x̄. Thus, W (H;α, β, a) = x̄. Let H ′ = B̄H, where B̄ =

1
2
122. It follows that µDβ (h′1·; a) = µDβ (h′2·; a) =: ȳ and W (H ′;α, β, a) = ȳ. Because µDβ is

strictly convex for β > 1, by part (ii) of Lemma B1, we have µDβ (h1·; a) + µDβ (h2·; a) = 2x̄ >

µDβ (h′1·; a) + µDβ (h′2·; a) = 2ȳ. This implies thatW (H;α, β, a) >W (H ′;α, β, a). Furthermore,

W (H;α, 1, a) = W (H ′;α, 1, a) because, by construction, x̄ = ȳ when β = 1. Hence, ICS is

violated for any β ≥ 1.
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C. Proof of Theorem 3

For the purpose of the proof, for every N ⊂ N and every H ∈ HN , we express W (H;α, β, a)

as

W (H;α, β, a) = F(F (G(h1·), . . . , G(hN ·))), (10)

where G : RD++ → R++, F : RN++ → R++, and F : R++ → R++. The functional forms of G,

F , and F are conditional on α and β, as shown in Table 1.

Table 1: Functional Forms of G, F , and F

F (·) F (·) G (hn·)

α 6= 0, β 6= 0 :
(
1
N
F (·)

)1/α ∑N
n=1G (·) (µDβ (hn·; a))α

α 6= 0, β = 0 :
(
1
N
F (·)

)1/α ∑N
n=1G (·) (µD0 (hn·; a))α

α = 0, β 6= 0 : (F (·))1/N
∏N

n=1G (·) µDβ (hn·; a)

α = 0, β = 0 : (F (·))1/N
∏N

n=1G (·) µD0 (hn·; a)

To determine howW changes in response to a sequence of association increasing transfers,

we first need to determine how F responds to such a sequence, which in turn depends on

whether G is strictly L-subadditive, strictly L-superadditive, or a valuation.13

From Table 1, we see that F is either additive or multiplicative. Lemmas C1 and C2

summarize how F is sensitive to a sequence of association increasing transfers when F is

additive or multiplicative, respectively.

Lemma C1 For every N ⊂ N\{1}, every H ′, H ∈ HN such that H ′ is obtained from H by a

finite sequence of association increasing transfers, and for F (H) =
∑N

n=1G(hn·), (i) F (H ′) <

13A twice differentiable function G : RD++ → R+, is (i) strictly L-subadditive if ∂2G(hn·)/∂hnd1∂hnd2 <
0 ∀d1 6= d2; (ii) strictly L-superadditive if ∂2G(hn·)/∂hnd1∂hnd2 > 0 ∀d1 6= d2; and (iii) a valuation if
∂2G(hn·)/∂hnd1∂hnd2 = 0 ∀d1 6= d2. See Milgrom and Roberts (1990) or Topkis (1998, p. 43).
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Table 2: Modularity Properties of G

Strict L-subadditive Strict L-superadditive Valuation

α > 0 and α < β α < 0, α < β, and β 6= 0 α = β 6= 0

α = 0 and β > 0 α > 0, α > β and β 6= 0 α = β = 0

α < 0 and α > β α < 0 and β = 0

α > 0 and β = 0

α = 0 and β < 0

F (H) if and only if G is strictly L-subadditive, (ii) F (H ′) > F (H) if and only if G is strictly

L-superadditive, and (iii) F (H) = F (H) if and only if G is a valuation.

Proof. See Boland and Proschan (1988, Proposition 2.5 (a)).

Lemma C2 For every N ⊂ N\{1}, every H,H ′ ∈ HN such that H ′ is obtained from

H by a finite sequence of association increasing transfers, and for F (H) =
∏N

n=1G(hn·),

(i) F (H ′) < F (H) if and only if lnG is strictly L-subadditive, (ii) F (H ′) > F (H) if and only

if lnG is strictly L-superadditive, and (iii) F (H) = F (H ′) if and only if lnG is a valuation.

Proof. This result immediately follows from Lemma C1 by taking a logarithm on each side

of F (H) =
∑N

n=1G(hn·).

Table 2 summarizes the restrictions on α and β under which G, and hence lnG, is strictly

L-subadditive, strictly L-superadditive, or a valuation. With these preliminaries in hand, we

now prove Theorem 3.

Proof of Theorem 3. For any N , let H ′ be obtained from H ∈ HN by a sequence of

association increasing transfers. We separately consider the cases in which α < β, α > β,

and α = β.
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First, we show that if α < β, then the social welfare index W satisfies DIA. There are

four cases to consider: (i) α > 0 and α < β, (ii) α < 0, α < β, and α 6= β, (iii) α < 0 and

β = 0, and (iv) α = 0 and β > 0. In cases (i), (ii), and (iii), F (·) =
∑N

n=1G(·). In case (i),

by Table 2, G is strictly L-subadditive and, hence, by Lemma C1, F (H ′) < F (H). Because

F(·) = ( 1
N
F (·))1/α and α > 0, it follows that W (H ′;α, β, a) < W (H;α, β, a). In case (ii), by

Table 2, G is strictly L-superadditive and, hence, by Lemma C1, F (H ′) > F (H). Because

F(·) = ( 1
N
F (·))1/α and α < 0, it follows thatW (H ′;α, β, a) < W (H;α, β, a). In case (iii), by

Table 2, lnG is strictly L-superadditive and, hence, by Lemma C2, F (H ′) > F (H). Because

F(·) = ( 1
N
F (·))1/α and α < 0, it follows that W (H ′;α, β, a) < W (H;α, β, a). In case (iv),

F (·) =
∏N

n=1G(·). By Table 2, G is strictly L-subadditive and, hence, by Lemma C1, F (H ′)

< F (H). Because F(·) = (F (·))1/N , W (H ′;α, β, a) < W (H;α, β, a). Therefore, W satisfies

DIA if α < β.

Next, we show that if α > β, then the social welfare index W satisfies IIA. Again, there

are four cases to consider: (i) α < 0 and α > β, (ii) α > 0, α > β, and β 6= 0, (iii) α > 0 and

β = 0, and (iv) α = 0 and β < 0. In cases (i), (ii), and (iii), F (·) =
∑N

n=1G(·). In case (i),

by Table 2, G is strictly L-subadditive and, hence, by Lemma C1, F (H ′) < F (H). Because

F(·) = ( 1
N
F (·))1/α and α < 0, it follows that W (H ′;α, β, a) > W (H;α, β, a). In case (ii), by

Table 2, G is strictly L-superadditive and, hence, by Lemma C1, F (H ′) > F (H). Because

F(·) = ( 1
N
F (·))1/α and α > 0, it follows thatW (H ′;α, β, a) > W (H;α, β, a). In case (iii), by

Table 2, lnG is strictly L-superadditive and, hence, by Lemma C2, F (H ′) > F (H). Because

F(·) = ( 1
N
F (·))1/α and α > 0, it follows that W (H ′;α, β, a) > W (H;α, β, a). In case (iv),

F (·) =
∏N

n=1G(·). By Table 2, G is strictly L-superadditive and, hence, by Lemma C1,

F (H ′) > F (H). Because F(·) = (F (·))1/N , W (H ′;α, β, a) > W (H;α, β, a). Therefore, W
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satisfies IIA if α > β.

It remains to be shown that if α = β, then W satisfies neither DIA nor IIA. If α = β 6= 0

(resp. α = β = 0), then by Table 2, G (resp. lnG) is a valuation. Thus, F (H ′) = F (H) by

Lemma C1 (resp. Lemma C2). It then follows that W (H ′;α, β, a) = W (H;α, β, a). Hence,

W satisfies neither DIA nor IIA.
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CHAPTER III

RANK ROBUSTNESS OF COMPOSITE INDICES: DOMINANCE AND AMBIGUITY

(WITH JAMES FOSTER AND MARK MCGILLIVRAY)

Introduction

Composite indices are frequently used by economists and other social scientists to assess

the performance of a society when the assessment is based on achievements in more than

one dimension. In this chapter, a society may range from a country or a state to an acad-

emic department. Recent decades have seen increased use of composite indices, which, by

their very nature, combine in various ways indicators of achievement in various dimensions.

Remarkable attention is given to rankings arising from these indices and this is especially

true of country rankings. People are naturally curious as to how their country compares to

others, national pride is often at stake, and national governments are often quick to claim

credit for a high or higher than expected ranking if it can be linked, dubiously or otherwise,

to public policy. More generally, the media, business groups, civil society, sections of the re-

search community, and international organisations regularly monitor and report on country

rankings of indices assessing a variety of phenomena such as sustainability, corruption, rule

of law, national income, economic policy effi cacy, institutional performance, happiness, hu-

man well-being, transparency, globalisation, human freedom, peace or vulnerability. Besides

country rankings, the other type of ranking that is often of high interest is the ranking of

the US graduate school departments by their academic effectiveness. It is widely recognised

that most of the preceding phenomena are multidimensional in nature.
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The interest of national governments and others in rankings arising from composite in-

dices is, however, blind to long held concerns regarding their construction. A central concern

is the weighting of indicators. In a perfect world, the weight vectors would be based on the

information obtained from a meta production function for the phenomenon in question. An

absence of accepted information on these functions has resulted in one of three weighting

schemes. The first and the most common is to select weights arbitrarily, typically by taking

the simple arithmetic mean of the indicators in question. Using this mean is interpreted as

assigning equal weights to each dimension. The proponents of this equal weight approach

acknowledge that the approach is deficient, as in reality the dimensions will almost certainly

have differential importance, but argue that there is no accepted basis or guidance for doing

otherwise. In this sense, the equal weight approach is seen as the least deficient available

weighing scheme, one that is likely to attract the least disagreement.14 The second is the

normative approach that involves setting weights either in accordance with individual or so-

cietal norms, with the individuals often being those of the designers of the index in question.

The third scheme is statistical, being purely data-driven. Many different such approaches

have been proposed, the most popular being the principal components analysis, with the

first principal component extracted from the dimensional indicators serving as the compos-

ite index. A weight vector arising from both the second and the third approaches is also

14For example, the proponents of the Environmental Sustainability Index (ESI) argued for equal weights on
the grounds that “. . . no objective mechanism exists to determine the relative importance of the different
aspects of environmental sustainability” (Esty et al., 2005, p. 66). Mayer and Jencks (1989) argue that
“. . . we have no reliable basis for doing [otherwise]”. Other composite indices, used in environmental, well-
being and related fields that employ equal weights include the Child Well-being Index, Commitment to
Development Index, Economic Resilience Index, Economic Vulnerability Index, Environmental Performance
Index, Environmental Sustainability Index, Gender Empowerment Measure, Gender-related Development
Index, Genuine Progress Measure, Global Peace Index, Human Development Index, Human Poverty Index,
Index of Economic Freedom, Global Peace Index and the Physical Quality of Life Index. In most of the
above cases, the index is formed by taking the simple arithmetic mean of the component indicators.
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diffi cult to defend: the second because of a lack of guidance as to whose norms should be

used and the third because of diffi culties in interpretation.

No matter whichever of the above three schemes is applied to determine the weights,

it is hard to have universal agreement over the choice. A selection of different weighting

vectors other than the one initially selected often alters the ranking and thus creates an

ambiguity in the comparison, which in turn may result in the policy recommendation based

on these indices being indecisive. One may thus cast doubt on the ranking arising from

these indices. Specifically, one can ask to what extent these rankings are conditional upon

the initial weighting vector.

Such is the focus of this chapter. An ordering based merely on the initially selected

weight vector is complete and one is always able to compare any two geographical units

unambiguously, but as discussed above, the chosen weigh vector itself is subject to wide

disagreement. We, on the other hand, use a framework based on a strict partial ordering

instead. We view a comparison as completely robust or unambiguous if rankings are not

reversed using any weight vector within a given set. The comparison is incomplete or is

stated to be ambiguous, otherwise. Our strict partial ordering framework is analogous to

that of Sen (1970) and Foster and Shorrocks (1988a,b). It is also closely related to the

model of Knightian uncertainty (Bewley, 2002) and the multiple prior model of Gilboa and

Schmeidler (1989). The condition that one can rank any two units only if the ranking is not

reversed using any weight vector within a given set is analogous to the situation where one

places zero confidence on her initial choice. On the other hand, if one bases the rankings

only on the initial choice so as to obtain a complete ordering, then this is analogous to the

situation where one is absolutely confident about her selection. Both situations are, under
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natural circumstances, too stringent. We thus pursue an intermediate approach, where

one is partially confident about the choice of initial weight vector. In this framework, one

believes that her initial choice is correct with some probability only, but with the rest of

the probability, she is uncertain about what should be the correct choice. This framework

is similar to that of the multiple prior model of epsilon-contamination applied in Bayesian

Statistics and Decision Theory, where an agent is only certain with some probability about

her decision, but she is worried that, with some chance, her decision may be completely

wrong. The two extreme situations of zero confidence and absolute confidence are special

cases of our framework.

We, further, propose a measure by which the robustness of a given comparison may be

gauged and illustrate its usefulness using data from the Human Development Index (HDI).

The HDI is a very well known and widely used measure of well-being at the national level

and the rankings it provides are the subject of intense international interest. This chapter

shows how some country rankings are fully robust to changes in weights, while others are

quite fragile. It further investigates the prevalence of the different levels of robustness in

theory and practice. From the outset it should be emphasised that the fundamental purpose

of this chapter is not to discourage the reporting or use of these indices and the rankings

they provide. Rather, it is to facilitate more incisive interpretation of these rankings.

It is shown later that the approach we develop in this chapter can easily be extended to

situations where composite indices are constructed by taking generalized means of indicators.

Also, the approach is applicable to situations where composite indices are constructed by

taking the average of the dimension-specific ranks.

The remainder of chapter is structured as follows. The second section provides a descrip-
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tion of the mathematical concepts, notation, and definitions used throughout the chapter.

A formal treatment of the notion of dominance and its relation to rank robustness is pro-

vided in the third section, which also defines and characterizes a strict partial ordering that

facilitates the construction of a measure of robustness. The fourth section constructs a rank

robustness measure and provides an application of inter-country comparisons in terms of the

HDI. The fifth section looks at the prevalence of robust comparisons, highlighting how the

number of ambiguous comparisons across an entire sample of observations varies with the

critical level of the measure of robustness. The HDI is used in this section to illustrate key

points. The final section concludes this chapter.

Notation and Definitions

Let D ≥ 2 be the number of dimensions under consideration. For a, b ∈ RD, the expres-

sion a ≥ b indicates that ad ≥ bd for d = 1, . . . , D; this is the vector dominance relation. If

a ≥ b with a 6= b, this situation is denoted by a > b; while a >> b indicates that ad > bd

for d = 1, . . . , D. Let X ⊆ RD denote the nonempty set of indicator vectors and let SD

= {s ∈ RD+1 : s ≥ 0 and
∑D+1

d=1 = 1} be the simplex of associated weighting vectors. A

composite index C : X × SD−1 → R combines the dimensional indicators in x ∈ X using

a weighting vector w ∈ SD−1 to obtain an aggregate level C(x;w) =
∑D

d=1wdxd. In what

follows, it is assumed that an initial weighting vector w0 ∈ SD−1 satisfying w0 >> 0 has

already been chosen; this fixes the specific composite index C0 : X → R defined as C0(x) =

C(x;w0) for all x ∈ X. The associated strict ordering of indicator vectors will be denoted

by C0, so that x C0 y holds if and only if C0(x) > C0(y). For every d ∈ {1, . . . , D}, we

denote the D-dimensional basis vector by vd, whose dth element is equal to one and the rest
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of the elements are zero. For example, v1 = (1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), and vD =

(0, 0, . . . , 0, 1).

Robust Comparisons

Our aim is to construct a general criterion for determining when a given comparison x

C0 y is robust. The motivation is similar in spirit to the use of the Lorenz criterion as a

robustness check in inequality evaluations, or stochastic dominance tests for comparisons

involving risk or poverty. Let W ∈ SD−1 be a nonempty set of weighting vectors. Define

the weak robustness relation RW on X by x RW y if and only if C(x,w) ≥ C(y, w) for all

w ∈ W . If both x C0 y and x RW y hold for w0 ∈ W , then we say that x robustly dominates

y (given w0 and W ), and denote this by x CW y. In words, the level of the composite index

is higher for x than y at w0, and this ranking is not reversed using any other weighting vector

in W . If instead x C0 y holds, but x RW y does not, then this indicates that the ranking

C(x,w0) > C(y, w0) is not robust (relative to the given W ) since the initial inequality is

reversed using another weighting vector, say, C(x,w1) < C(y, w1) for w1 ∈ W .

The relations RW and CW are closely linked with other dominance criteria, including

Sen’s (1970) approach to partial comparability in social choice and Bewley’s (2002) multiple

prior model of Knightian uncertainty. Bewley’s presentation, in particular, suggests a natural

characterization ofRW among all binary relationsR onX. Consider the following properties

of a binary relation R on X, each of which is satisfied by RW .

Quasiordering (Q) R is transitive and reflexive.

Monotonicity (M) (i) If x > y then x R y; (ii) if x >> y then y R x cannot hold.
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Independence (I) Let x, y, z, y′, z′ ∈ X where y′ = αx+ (1− α)y and z′ = αx+ (1− α)z

for 0 < α < 1. Then y R z if and only if y′ R z′.

Continuity (C) The set R(z) = {x ∈ X | x R z} is closed for all z ∈ X.

Axiom Q allows R to be incomplete. AxiomM ensures that R follows vector dominance

when it applies, and rules out the converse ranking when vector dominance is strict. Axiom

I is a standard independence axiom, which requires the ranking between y and z to be

consistent with the ranking of y′ and z′ obtained by a convex combination with another

vector x. Finally, Axiom C ensures that the upper contour sets of R contain all their limit

points. We have the following characterization.

Theorem 6 Suppose that X is closed, convex, and has a nonempty interior. Then a binary

relation R on X satisfies axioms Q, M , I, and C if and only if there exist a non-empty,

closed, and convex set W ⊆ SD−1 such that R = RW .

Proof. See Appendix D.

Thus any robustness relation satisfying the four axioms is generated by pairwise compar-

isons of the composite index over some fixed set W of weighting vectors.

The ranking RW has an interesting interpretation in terms of the well-known maxmin

criterion of Gilboa and Schmeidler (1989) for multiple priors. Suppose we know that x RW

y for some nonempty, closed set W ⊆ SD−1. By linearity of the composite index, this can

be expressed as C(x− y, w) ≥ 0 for all w ∈ W , or as minw∈W C(x− y, w) ≥ 0. The Gilboa-

Schmeidler evaluation function GW (z) = minw∈W C(z, w) represents the maxmin criterion,

which ranks a pair of options x and y by comparing GW (x) and GW (y), or the respective
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minimum values of the composite index on the set W . Our robustness ranking x RW y is

obtained by applying GW to the net vector (x− y) and checking whether the resulting value

is nonnegative. Indeed, x RW y if and only if GW (x− y) ≥ 0.15

Theorem 6 shows that under the given axioms, the selection of a robustness criterion

reduces to the choice of an appropriate setW of multiple weighting vectors used in RW . But

which W should be used? As we argue below, the answer depends in part on the confidence

one places in the initial weighting vector w0. If one has confidence that w0 is the most

appropriate weighting vector, then this would be reflected in the selection of a smaller set

W containing w0. The limiting case of W = {w0} indicates utmost confidence in w0 and

hence entails no robustness test at all: x C0 y is equivalent to x CW y. On the other hand,

a larger W would suggest less confidence in w0, a more demanding robustness test RW , and

correspondingly fewer robust comparisons according to CW . Clearly CW ′ is a subrelation

of CW whenever W ⊆ W ′. We now investigate the robustness relations for some natural

specifications of the set W of allowable weighting vectors.16

Full Robustness

We begin with the limiting case where W is the set SD−1 of all possible weighting vectors,

and denote the associated robustness relations by R1 and C1. When x C1 y holds we say the

comparison x C0 y is fully robust since it is never reversed at any configuration of weights.

Of course, requiring unanimity over all of SD−1 is quite demanding and consequently C1 is

15The maxmin criterion applies when GW (x) − GW (y) ≥ 0, while our robustness criterion holds when GW (x−
y) ≥ 0. The maxmin criterion generates a complete relation, but requires comparisons of C(x,w) with
C(y, w′) for some w 6= w′, which is not easily interpreted in the present context. Note that the maxmin
criterion is implied by our robustness criterion

16Since CW is the intersection of C0 and RW , it is a strict partial order (transitive and irreflexive) satisfying
conditions I and M .
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the least complete among all such relations; however, when it applies the associated ranking

of indicator vectors is maximally robust.

Consider the vertices of SD−1, given by vd = ed for d = 1, . . . , D, where ed is the usual

basis element that places full weight on the single indicator d. Clearly C(x, vd) = xd, which

suggests a link between the robustness relations and vector dominance. Indeed, we have the

following characterizations of R1 and C1.

Theorem 7 Let x, y ∈ X. Then (i) x R1 y if and only if x ≥ y and (ii) x C1 y if and only

if x > y.

Proof. Suppose that x C0 y is true. If x ≥ y holds, then clearly C(x;w) = w · x ≥ w · y =

C(y;w) for all w ∈ SD−1, and thus x C1 y. Conversely, if x C1 y holds, then setting w = vd

in C(x;w) ≥ C(y;w) yields xd ≥ yd for all d, and hence x ≥ y.

In order to check whether a given ranking x C0 y is fully robust, one need only verify

that the indicators in x are at least as high as the respective levels in y.

One interesting implication of Theorem 7 is that judgments made by C1 are “mean-

ingful”even when variables are ordinal and no basis of comparison between them has been

fixed.17 Suppose that each variable xd in x is independently altered by its own monotonically

increasing transformation fd(xd) and let the resulting transformed indicator vector be x′ =

(f1(x1), . . . , fD(xD)).18 It is clear that x > y if and only if x′ > y′, and consequently, by

Theorem 7 we have x C1 y if and only if x′ C1 y′. In other words, if C1 holds for any given

cardinalization of the ordinal variables, it holds for all cardinalizations. Note that while C0

17For a technical discussion of “meaningful statements” using a measurement theory approach, see Roberts
(1979).

18The resulting function f : X → RD defined by f(x) = (f1(x1), . . . , fD(xD)) is called a monotonically
increasing transformation.
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on its own is not meaningful in this context (as y′ C0 x′ is entirely consistent with x C0

y), the fully robust relation C1 is preserved and hence is appropriate for use with ordinal

variables.

Epsilon Robustness

Now consider SD−1ε ⊆ SD−1 defined by SD−1ε = (1− ε){w0} + εSD−1 for 0 ≤ ε ≤ 1, which

is made up of vectors of the form (1− ε)w0 + εw, where w ∈ SD−1. Parameter value ε = 0

yields SD−10 = {w0} and hence the “no robustness”case, while ε = 1 yields SD−11 = SD−1 or

full robustness. Each SD−1ε with 0 < ε < 1 is a scaled down version of SD−1 located so that

w0 is in the same relative position in SD−1ε as it is in SD−1. Figure 1 provides examples of

SD−1ε for the case of D = 3 and ε = 1/4, where Panel 1 has w0 = (1/3, 1/3, 1/3) and Panel 2

has w0 = (3/5, 1/5, 1/5). As noted in the Figure, ε is a measure of the relative size of SD−1ε .

Moreover, for a given w0, the sets are nested in such a way that SD−1ε ⊂ SD−1ε′ whenever ε′

> ε.

The set SD−1ε of weighting vectors can be motivated using the well-known epsilon conta-

mination model of multiple priors commonly applied in statistics and decision theory.19 In

that context, w0 corresponds to an initial subjective distribution and SD−1ε contains proba-

bility distributions that are convex combinations of w0 and the set of all objectively possible

distributions, where (1 − ε) represents the decision maker’s level of confidence in w0 and

ε is the extent of the “perturbation” from w0. The Gilboa-Schmeidler evaluation function

GW then reduces to a form invoked by Ellsberg (1961), namely Gε(z) = (1 − ε)C(z, w0) +

εminwεSD−1 C(z, w) using our notation.

19See for example, Carlier, Dana, and Shahidi (2003); Chateauneuf, Eichberger, and Grant (2006); Nishimura
and Ozaki (2006); Carlier and Dana (2008); Asano (2008); and Kopylov (2009).
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Figure 1: Multiple Weighting Vectors: The epsilon-Robustness Set

Substituting SD−1ε in the definitions of RW and CW yields the ε-robustness relations Rε

and Cε. Since the sets SD−1ε are nested for a given w0, it follows that x Cε y implies x Cε′

y whenever ε > ε′. The rankings clearly require C(x,w) ≥ C(y, w) for all w in SD−1ε and

hence at each of its vertices vεd = (1 − ε)w0 + εvd. Define xε = (xε1, . . . , x
ε
D) where xεd =

C(x, vεd) = vεd · x, and let yε be the analogous vector derived from y. The following result

characterizes Rε and Cε.

Theorem 8 Let x, y ∈ X. Then (i) x Rε y if and only if xε ≥ yε and (ii) x Cε y if and

only if xε > yε.

Proof. We need only verify that x C0 y and xε ≥ yε imply x Cε y. Pick any w ∈ SD−1ε ,

and note that since SD−1ε is the convex hull of its vertices, w can be expressed as a convex

combination of vε1, . . . , v
ε
D, say w = α1v

ε
1 + . . .+ αDv

ε
D where α1 + · · ·+ αD = 1 and αd ≥ 0

for d = 1, . . . , D. But then C(x;w) = w · x = α1v
ε
1 · x+ · · ·+αDv

ε
D · x = α1x

ε
1 + · · ·+αDx

ε
D,
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and similarly C(y;w) = α1y
ε
1 + · · · + αDy

ε
D; therefore x

ε ≥ yε implies C(x;w) ≥ C(y;w).

Since w was an arbitrary element of SD−1ε , it follows that x Cε y.

Theorem 8 shows that to evaluate whether a given comparison xC0 y is ε-robust, one need

only compare the associated vectors xε and yε. If each component of xε is at least as large as

the respective component of yε, then the comparison is ε-robust; if any component is larger

for yε than xε, then the comparison is not. Checking whether the xε vector dominates yε is

equivalent to requiring the inequality C(x,w) ≥ C(y, w) to hold for each vertex w = vεd of the

set SD−1ε . Note further that xε is a convex combination of the vectors (C0(x), . . . , C0(x)) and

x, namely, xε = (1− ε)(C0(x), . . . , C0(x)) + εx, so that when ε = 1 we obtain the condition

x ≥ y in Theorem 7, while when ε = 0, the condition reduces to a simple comparison of

C0(x) and C0(y).

Our approach differs from the existing approach for robustness testing proposed by Cher-

chye, Ooghe, and Puyenbroeck (2008) in various ways.20 First, the later approach is ap-

plicable to only a particular type of scaling, where indicators are divided by the dimension

specific medians. Our approach, however, does not assume any particular form of scaling.

Second, Cherchye et al. (2008) assume that the weights on each dimension depend on the

dispersion of that dimension. Thus, unlike in our approach, the maximum and minimum

possible weights on each dimension are not always one and zero, respectively. Furthermore,

a dimension with smaller dispersion has a relatively smaller weight variation compared to a

dimension with larger dispersion. Our approach, on the other hand, assumes the variation

20There is another literatures that uses sensitivity analysis to verify the strength of comparisons. Sensitivity
analysis is different from robustness testing in the sense that it estimates confidence intervals around each
composite index depending on different scenarios. If the confidence intervals of two composite indicators do
not intersect, an unambiguous comparison is possible. See for example Saisana et al. (2005) and Cherchye
et al. (2008).
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in weights to be independent of the dispersion of dimensions; a weight equal to one implies

that the dimension is the only one that matters and a weight equal to zero implies that

the dimension does not matter at all. The third difference between these two approaches

is that Cherchye et al. (2008) assume that one region is better than a second region if and

only if the former generalized Lorenz dominates the latter. They assume that the different

dimensions are interchangeable. Our approach, on the contrary, is interested in dimension

specific comparisons. To us, we compare income with income, or education with education,

and not income with education.

Before we conclude the section, we should mention that the concept of full robustness

and epsilon robustness can easily be extended to the situation where composite indices are

constructed as a general mean of dimension-specific indices. The composite index, in this

situation, can be defined as C(x;w) = (w · xα)1/α, where xα represents the vector with each

element of x raised to the power α ∈ R. The strict ordering of indicator vectors requires x C0

y holds if and only if C0(x) > C0(y), or, (w ·xα)1/α > (w ·yα)1/α. This requires comparing only

w · xα and w · yα; the comparison is linear in w.21 Analogous to Theorem 7 and Theorem 8,

it can be easily shown that (i) x C1 y if and only if x > y and (ii) x Cε y if and only if

xε > yε. Thus, the same approach can be applied to composite indices such as the human

poverty index and the inequality adjusted human development index proposed by Foster

et al. (2005).

Measuring Robustness

Our method of evaluating the robustness of the comparison x C0 y fixes a set SD−1ε

21This is analogous to a class of human development indices proposed by Chakravarty (2003).
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of weighting vectors and confirms that the ranking at w0 is not reversed using any other

w ∈ SD−1ε , in which case the associated ε-robustness relation applies. Theorem 8 provides

simple conditions for checking whether x Cε y holds. The present section augments this

approach by formulating a robustness measure that associates with any comparison x C0 y

a number r ∈ [0, 1] that indicates its level of robustness.

We construct r using two statistics – one that might be expected to move in line with

robustness and another that is likely to work against it. The first of these is A = C(x;w0)

− C(y;w0) > 0, or the difference between the composite value of x and the composite value

of y at the initial weighting vector w0. Intuitively, A is an indicator of the strength of the

dominance of x over y at the initial weighting vector. The second is B = maxw∈SD−1 [C(y;w)

− C(x;w), 0], or the maximal “contrary”difference between the composite values of y and

x. Note that when the original comparison is fully robust, then C(y;w) − C(x;w) ≤ 0 for

all w ∈ SD−1 and there is no contrary difference. Consequently B = 0. On the other hand,

when the comparison is not fully robust, then C(y;w) − C(x;w) > 0 for some w ∈ SD−1,

and hence B = maxw∈SD−1 [C(y;w) − C(x;w)] > 0. B is the worst-case estimate of how far

the original difference at w0 could be reversed at some other weighting vector.

We propose r = A/(A + B) as a measure of robustness.22 Notice that when the initial

comparison x C0 y is fully robust, then B = 0 and hence r = 1. Alternatively, when

the initial comparison is not fully robust and B > 0, the measure r is strictly increasing

in the magnitude of the initial comparison A, and strictly decreasing in the magnitude of

the contrary worst-case evaluation B. In addition, if A tends to 0 while B remains fixed,

22Permanyer (2007) proposes a different method for measuring robustness. He suggests the radius of the largest
ball around the initial weight for which the initial comparison is not reversed as the measure of robustness.
His measure has a number of short comings. One limitation of this measure is that it is arbitrarily chosen
and no justification is provided.

54



the measure of robustness r will also tend to 0. These characteristics accord well with an

intuitive understanding of how A and B might affect robustness.

Practical applications of r may be hampered by the fact that it requires a maximization

problem to be solved, namely, maxw∈SD−1 [C(y;w) − C(x;w)]. However, by the linearity of

C(y;w) − C(x;w) = (y − x) · w in w, the problem has a solution at some vertex vd where

the difference C(y;w) − C(x;w) becomes yd − xd. Consequently, B = maxd(yd − xd), or

the maximum coordinate-wise difference between y and x. The measure r can be readily

derived using this equivalent definition.

Now what is the relationship between the robustness measure r and the relation Cε

developed in the previous section? The following theorem provides the answer.

Theorem 9 Suppose that x C0 y for x, y ∈ X and let r be the robustness level associated

with this comparison. Then the ε-robustness relation x Cε y holds if and only if ε ≤ r.

Proof. Let x C0 y and suppose that 0 < ε ≤ r. By the definition of r, we have ε ≤

A/(A+B) and hence εB ≤ (1− ε)A. Pick any d = 1, . . . , D. Then using the definitions of

A and B, we see that ε(yd − xd) ≤ (1− ε)(w0 ·x − w0 · y) and hence εvd · y + (1− ε)w0 · y ≤

εvd · x + (1− ε)w0 · x. Consequently, vεd · y ≤ vεd · x, and since this is true for all d, it follows

that xε ≥ yε and hence x Cε y by Theorem 8.

Conversely, suppose that x C0 y and r < ε ≤ 1. Then (1−ε)A < εB so that (1−ε)(w0 ·x

− w0 · y) < ε(yd − xd) for some d, and hence vεd · y > vεd · x or yεd > xεd for this same d. It

follows, then, that xr ≥ yr cannot hold, and neither can x Cε y by Theorem 8.

Raising ε leads to a more demanding robustness criterion and a more incomplete relation

Cε. Theorem 9 identifies r as the maximal ε for which x Cε y holds, and hence the largest
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Table 3: Human Development Index: The Top 10 Countries in 2004

Country HDI Rank

Norway 0.965 1

Iceland 0.960 2

Australia 0.957 3

Ireland 0.956 4

Sweden 0.951 5

Canada 0.950 6

Japan 0.949 7

United States 0.948 8

Switzerland 0.947 9

Netherlands 0.947 10

set SD−1ε for which the original comparison is not reversed. Alternatively, it corresponds to

the lowest level of confidence (1−ε) for which the Gilboa-Schmeidler (or Ellsburg) evaluation

function of the net indicator vector (x−y) is always nonnegative; i.e., the largest ε for which

Gε(x− y) = (1− ε)C(x− y, w0) + εminw∈SD−1 C(x− y, w) ≥ 0.

Illustrative Example

We illustrate our methods using data from the 2004 Human Development Index (HDI)

dataset as published in the 2006 Human Development Report.23 The HDI is a composite

index C(x;w0) constructed by taking the simple average of three dimension-specific indica-

tors (of education, health and income) and hence w0 = (1/3,1/3,1/3) is the initial weighting

vector. Table 3 provides information on the top ten countries according to the HDI, includ-

23Our underlying dataset was obtained directly from the UNDP and is less severely rounded off than the
published data. Thanks to Alison Kennedy for making these data available for our use.

56



ing their rankings and HDI values.24 This yields the C0 relation over these 10 countries, but

says nothing about the robustness of any given judgment.

Table 4: Robustness of Three HDI Comparisons

Rank Country HDI
Health Educ. Income Health Educ. Income
x1 x2 x3 x0.251 x0.252 x0.253

3 Australia 0.957 0.925 0.993 0.954 0.949 0.966 0.956
5 Sweden 0.951 0.922 0.982 0.949 0.944 0.959 0.951

2 Iceland 0.960 0.931 0.981 0.968 0.953 0.965 0.962
8 USA 0.948 0.875 0.971 0.999 0.93 0.954 0.961

4 Ireland 0.956 0.882 0.99 0.995 0.937 0.964 0.966
6 Canada 0.950 0.919 0.97 0.959 0.942 0.955 0.952

Table 4 focuses on three specific comparisons; the middle columns provide the dimen-

sional indicators x1, x2, and x3 needed to ascertain whether full robustness C1 obtains.

The indicator vector for Australia dominates the indicator vector for Sweden, and hence by

Theorem 7, this comparison is fully robust. However, the comparison for Iceland and USA

reverses in the income dimension, while the Ireland and Canada comparison has a reversal

in health, and so neither of these rankings is fully robust. Observe that the HDI margin

between Australia and Sweden (0.006) is identical to the margin for Ireland and Canada,

and yet the robustness characteristics of the two comparisons are quite different. The HDI

margin between Iceland and USA is twice as large (0.012) and yet it too is not fully robust.

The final columns of Table 4 give the entries of the associated xε vectors for ε = 0.25

in order to ascertain ε-robustness of the comparisons. A quick evaluation in terms of vector

dominance reveals that both the Australia/Sweden and the Iceland/USA comparisons are

24Due to rounding, the HDI levels of Switzerland and Netherlands appear to be equal; in fact, Switzerland has
a slightly higher HDI than Netherlands.
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ε-robust, but the reversal in the Ireland/Canada comparison implies that ε-robustness does

not hold for this ranking when ε = 0.25. By Theorem 8 we know that there are weighting

vectors in SD−1ε for which Canada has a higher composite index level than Ireland.

Figure 2: Graphical Analysis of Three HDI Comparisons

Figure 2 provides a graphical representation of these comparisons. At the base of each

diagram is the simplex SD−1 of all weighting vectors, including the three vectors v1, v2, and

v3 at its vertices and the initial weighting vector w0 at its center. Also depicted is the smaller

set SD−1ε of weighting vectors and its vertices vεd for d = 1, 2, 3, where ε = 0.25. Now suppose

that a given country with indicator vector x has been selected. For any weighting vector w

in the simplex, the level of the composite index C(x;w) can be graphed as the height above

w. The heights above v1, v2, v3, and v0 are, respectively, the dimensional indicators x1, x2,

x3, and the HDI. The linearity of C in w ensures that these points and the remaining C(x;w)

values form a tilted “indicator simplex”with vertices as high as the dimensional indicators
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and a center as high as the country’s HDI level. The height at vεd is x
ε
d for d = 1, 2, 3, which

together are the coordinates of the vector xε.

Panel 1 of Figure 2 shows that Australia has a higher HDI level than Sweden. Each

of its dimensional indicators is higher, so that vector dominance applies. Consequently,

the indicator simplex of Australia is everywhere above the indicator simplex for Sweden,

reflective of the fact that full robustness, or C1, holds. The second panel depicts the rather

different scenario for Iceland and USA. The HDI margin is twice as large as in Panel 1,

but the indicator simplexes intersect and C1 does not hold. Iceland performs better than

USA in terms of education and health, but has lower indicator value in terms of income.

More weight on income can make the USA’s composite index level higher than Iceland’s.

However if we restrict consideration to the smaller set SD−1ε , no reversals are possible. The

intersection of the two indicator simplexes (where composite index levels are equal) projects

down to weighting vectors that are outside of SD−1ε , and Cε holds for ε = 0.25.

The final panel depicts the case of Ireland and Canada, which has the same HDI margin

as Panel 1 and intersecting indicator simplexes as in Panel 2, but has different robustness

characteristics than both. While Ireland’s education and income variables are higher than

Canada’s, the health index has the opposite orientation, and C1 cannot hold. If we project

the intersection of the indicator simplexes onto SD−1, we obtain a dashed line that cuts

through SD−1ε , implying that Cε does not hold and the Ireland-Canada comparison is not

robust for ε = 0.25. This is also evident from Table 4 since Ireland has higher levels of the

composite index at two of the vertices of SD−1ε (namely, vε2 and v
ε
3) and a lower level at the

remaining one (vε1).

The levels of robustness can also be calculated for each of these comparisons. The Aus-
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Table 5: Measure of Robustness

Country Nor Ice Aus Ire Swe Can Jap USA Swit Neth

Rank 1 2 3 4 5 6 7 8 9 10
Norway 1 –

Iceland 2 20 –

Australia 3 35 19 –

Ireland 4 86 14 4 –

Sweden 5 53 94 100 11 –

Canada 6 61 100 60 14 14 –

Japan 7 28 34 23 9 7 2 –

USA 8 77 28 17 67 5 3 1 –

Switzerland 9 49 100 41 16 17 20 6 2 –

Netherland 10 100 68 57 47 25 13 4 7 1 –

tralia/Sweden comparison is fully robust, with A = 0.006 and B = 0, and hence r = 100%.

The Iceland/USA comparison has A = 0.012 and B = 0.031, and hence r = 28%. In con-

trast, the Ireland/Canada ranking has A = 0.006 and B = 0.037, and therefore r = 14%.

Table 5 presents the level of robustness of pair-wise comparisons for the top ten countries in

the HDI ranking. For every cell below the diagonal the “column country”of the cell has a

higher ranking according to C0 than the “row country”. The number in the cell indicates

the level of robustness of the associated comparison, expressed in percentage terms. Out

of the 45 pair-wise comparisons, four are fully robust as denoted by r = 100%, while 20 of

them, or 44.4 percent, are robust at r = 25%. For the entire dataset of 177 countries for the

same year, 69.7 percent of the comparisons are fully robust and about 92 percent are robust

for r = 25%.
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The Prevalence of Robust Comparisons

The focus now shifts from individual comparisons to the entire collection of comparisons

associated with a given dataset X̂ and an initial weighting vector w0. The first question is

how to judge the overall robustness of the dataset. One option would be to use an aggregate

measure (such as the mean) that is strictly increasing in each comparison’s robustness level.

However, rather than settling on a specific measure we use a “prevalence function”based on

the entire cumulative distribution of robustness levels, and employ a criterion analogous to

first order stochastic dominance to indicate greater robustness.

Suppose the initial weighting vector is w0 and there is a dataset X̂ containing n obser-

vations. Without loss of generality, we enumerate the elements of X̂ as x1, x2, . . . , xn where

C0(x
1) ≥ C0(x

2) ≥ . . . ≥ C0(x
n). The analysis can be simplified by assuming that no two

observations in X̂ have the same initial composite value, so that C0(x1) > C0(x
2) > . . . >

C0(x
n).25 There are k = n(n− 1)/2 ordered pairs of observations xi and xj with i < j, and

each comparison xi C0 x
j has an associated robustness level rij. Let P = [rij] represent the

robustness profile of X̂ (given w0), which lists the level of robustness rij for every ordered

pair in a manner similar to Table 5.

The mean robustness level in profile P is given by r̄ =
∑

i

∑
j>i rij/k̂ ; it is the average

level of robustness of the k comparisons. Of course, a higher mean level r̄ does not necessarily

tell us anything about the prevalence of Cr comparisons (or comparisons whose robustness

levels are at least r) for any specific r. An alternate approach is to summarize robustness

levels in P in a way that reflects the entire distribution, and not just the average. For any

given dataset and initial weighting vector w0, define the prevalence function p : [0, 1]→ [0, 1]

25This is true for each of the examples presented below.
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to be the function which associates with each r ∈ [0, 1] the share p(r) ∈ [0, 1] of the k

comparisons whose robustness levels are at least r. In other words, p(r) is the proportion of

comparisons for which the Cr relation applies.26

Illustrative Example

Figure 3 depicts the prevalence functions obtained from HDI datasets for three different

years, which uses equal weights across three dimensions to rank 177, 175, and 174 countries,

respectively.27

Figure 3: Prevalence Functions of HDI for Various Years

Several initial observations can be made from the prevalence functions given in Figure 3.

Each graph is downward sloping; reflecting the fact that as r rises, the number of comparisons

that can be made by Cr is lower (or no higher). As r falls to 0, all functions achieve the

26At r = 0 the complete relation C0 is used and hence p(0) = 1.
27Note that the Human Development Indices for the years 1998 and 2004 are obtained from UNDP (2000 and
2006), respectively.
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100% comparability arising from C0; in the other direction, the value of p(r) at r = 1

is the percentage of the comparisons that can be compared using C1 and hence is fully

robust. There is a wide variation in p(1) across datasets. It is reasonably large for all the

HDI examples, with p(1) being about 69.8% in 2004, 69.2% in 2001, and 71.5% in 1998. The

shapes of the p(r) functions are essentially linear for all three HDI dataset. These regularities

of prevalence functions are worth examining from a more theoretical perspective. If we set

a target of 25 percent robustness, then on an average 92 percent to 93 percent of the HDI

comparisons are robust.

Conclusion

Rankings arising from composite indices receive remarkable attention. Yet they are de-

pendent upon an initial weighting vector, and any given judgment could, in principle, be

reversed if an alternative weighting vector was employed. This leads one to question rank-

ings provided by composite indices, especially if there is ambiguity over the numerical values

of the weights they employ. Many well known and widely used indices are characterised in

this way.

Using an analytical framework based on partial ordering and the model of epsilon-

contamination used in Bayesian Statistics and Decision Theory, this chapter examined a

variable-weight robustness criterion for composite indices that views a comparison as robust

if the ranking is not reversed at any weight vector within a given set. It characterized the

resulting robustness relations for various sets of weighting vectors. These robustness rela-

tionships moderate the complete ordering generated by the composite index. A measure

by which the robustness of a given comparison may be gauged was then proposed, and il-
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lustrated using the Human Development Index (HDI). The chapter also demonstrated how

some rankings are fully robust to changes in weights while others are quite fragile. Finally,

the chapter investigated the prevalence of the different levels of robustness in theory and

practice and offer insight as to why certain datasets tend to have more robust comparisons.

It was emphasised at the outset of the chapter that its intention was not to discredit or

discourage the use of composite indices, but to facilitate better use of them. The chapter

helps in this regard by reducing the undue emphasis placed on ranking that are not robust

to the choice of weight vector, hopefully placing greater emphasis on those rankings that

have higher robustness. It promotes this outcome by allowing end users of composite indices

to discern between robust and non-robust comparisons, thereby making the HDI and other

composite indices more useful and less misleading.

Two findings of the chapter are worth highlighting further. Both are suggestive of addi-

tional research. The first relates to the interesting empirical observation that the prevalence

functions associated with the HDI datasets are nearly linear. In other words, increasing r by

a given amount decreases the prevalence of robust rankings by a fixed amount, independent

of the initial level of r. This means that in the case of the HDI, the entire shape of p(r) is

determined by the percentage of fully robust comparisons, p(1). Hence if one were to remove

from consideration all fully robust comparisons, the conditional prevalence functions would

be virtually identical. Put differently, among all comparisons that are not fully robust, the

percentage of comparisons having robustness level r or less is r itself; so, for example, only

5% of these comparisons have robustness level of 0.05 or less (or, equivalently, 0.95 or more).

It would be interesting to explore this regularity further.

Further directions for future research ought to be emphasised. The first is to develop and
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integrate statistical robustness into the analysis. The second involves a link with a theoretical

literature that addresses uncertainty. The structure of the general robustness relation defined

above for a given set W of weighting vectors is closely related to discussions of “Knightian

uncertainty”(Bewley, 1986) and ambiguity in which an individual decision maker has a set

of prior probability distributions instead of a single prior. One way in which the approach

of this chapter differs from this literature is that it privileges the initial weighting structure

instead of treating it as just one of many. The criterion discussed by Bewely requires a strict

improvement for possible probability vectors. This chapter’s approach allows the comparison

to be weak using the other non-distinguished vectors in the set. Nonetheless, there is a

fundamental link between the two approaches that would be interesting to explore. Thirdly,

the interpretation given in the chapter is that each dimension of the indicator vector is the

measured amount of a given indicator. One could instead view the dimensions as being

obtained from the underlying indicators by some transformation based on, for example, the

utility or welfare from the specific dimension. Such an approach might well be adapted

to deal with this case and with other departures from the linearity inherent in composite

indices. Finally, there is clearly a link between the fully robust criterion outlined in this

paper and first order stochastic dominance in the multidimensional setting. How does the

rth degree robustness relate to multidimensional stochastic dominance? Is there an analogue

in the framework employed by this chapter to second order multidimensional stochastic

dominance? It would be interesting to pursue this direction as well.
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D. Proof of Theorem 6

Proof. Let R be a binary relation on a set X that is closed, convex, and has some z in its

interior.

If R = RW for some non-empty, closed, and convex W ⊆ SD−1, then it is immediate

that RW satisfies Q, M , I, and C.

Conversely, suppose that R satisfies Q,M , I, and C. Define U = {x ∈ X : x R z} be the

upper contour set of R at z. We know that z ∈ U by Q and U is closed by C. Moreover, we

can show that U is convex. Pick any x, y ∈ U . Let x′ = αx + (1− α)y for some α with 0 <

α < 1. Then, where z′ = αz + (1−α)y, we have x′, z′ ∈ X and by axiom I it follows that x′

R z′. Moreover, by a second application of I, it follows from y R z that z′ R z. Therefore,

by Q we have x′ R z and so U is convex.

Since, z is in the interior of X, there exists λ > 0 such that Nλ = {x ∈ RD : ‖x− z‖ ≤

λ} ⊆ X. Define Uλ = U ∩ Nλ and note that it is compact, convex, and contains z, so that

the set Kλ = {z} − Uλ is compact, convex, and contains 0. Let K = Cone Kλ be the cone

generated by Kλ. It is immediate that K is closed, compact, and contains 0. We can state

that K has the property that for x, y ∈ X we have x R y if and only if y − x ∈ K. To see

this, let x, y ∈ X and select α > 0 small enough that z′ satisfying z = αy + (1−α)z′ lies in

Nλ and x′ = αx + (1 − α)z′ is also in Nλ. Clearly, z − x′ = α(y − x) for α > 0. So if x R

y, we know that x′ R z by I, and hence z − x′ ∈ K which implies y − x ∈ K. On the other

hand, if y − x ∈ K, then since z − x′ ∈ K, we have x′ R z so that x R y by I, establishing

the result.

Now let P = {p ∈ RD : p · k ≤ 0 for all k ∈ K} be the polar cone of K, so that by

standard results on polar cones, P is closed and convex. It is clear that P ⊆ RD+ , since
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by monotonicity, we have −vd ∈ K and so p · (−vd) ≤ 0 and pd ≥ 0, where vd is the D-

dimensional usual basis vector for co-ordinate d. In addition, we can show that P contains

at least one element p 6= 0. Indeed, it is clear fromM that K contains no k >> 0 (otherwise,

we would have x << z with x R z). Then, K ∩ RD++ = ∅ and since both sets are convex,

we can apply the Minkowski separation theorem to find p0 6= 0 in P . Let W = SD−1 ∩ P ,

so that ConeW = P . Clearly, K is the polar cone of both P and W , hence, K = {t ∈ RD :

w · t ≤ 0 for all w ∈ W}.

We now show that R = RW . If x R y, then y − x ∈ K and so w(y − x) ≤ 0 for all w ∈

W , hence x RW y. Conversely, if x RW y, then by definition we have w(y − x) ≤ 0 for all

w ∈ W , hence x− y ∈ K or x R y.
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CHAPTER IV

COMPOSITE INDICES: RANK ROBUSTNESS, STATISTICAL ASSOCIATION, AND

REDUNDANCY

(WITH JAMES FOSTER AND MARK MCGILLIVRAY)

Introduction

It is noted in Chapter III that the rankings yielded by composite indices can sometimes

be reversed by a plausible change to the initial vector of weights, while in other cases,

the rankings yielded are preserved when the vector of weights is changed. In Chapter III,

we define and characterize a general rank robustness criterion that discerns between these

situations for a given initial weighting vector and provide necessary and suffi cient conditions

for rankings to exhibit full robustness (where weights can range the entire simplex) or a

weaker form of robustness (where weights are restricted to a smaller simplex around the

initial weighting vector). We propose a practical measure to evaluate the level of robustness

of given comparison (say, between Norway and Denmark). This provides a useful toolkit for

judging the robustness of the rankings generated by composite indices.

Empirical applications of these methods reveal that there is a wide variation in the

prevalence of robust comparisons as one evaluates different composite indices over their

respective datasets. Why do some composite indices appear to have more robust comparisons

than others? What characteristics of a given dataset are related to the prevalence of robust

comparisons? These are the questions addressed in the present chapter.

We begin by analyzing the prevalence of robustness for several well-known composite in-

dices on their respective datasets, and show that some of them have much greater robustness
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than others. We examine various ways of transforming datasets, including transformations

that leave the prevalence of robust comparisons unchanged and others that increase robust-

ness. We explore a key determinant of the robustness —the statistical association between

component variables —and establish a key relationship between the prevalence of full ro-

bustness and the well-known Kendall tau rank correlation coeffi cient. These results shed

new light on the role of positive association in multidimensional measurement. Previous

research argued that high associations between component variables are undesirable as they

are indicative of redundancy, which occurs when one component provides largely the same

information as the index as a whole. The present results reveal a favorable aspect of positive

association: its impact on the robustness of the associated rankings.

The chapter consists of five additional sections. The second section briefly presents the

robustness approach of Chapter III. The third section examines the prevalence of robustness

for three well-known composite indices. The fourth section provides several theorems on

the prevalence of robustness and in particular investigates how the statistical association

between components affects robustness. The fifth section looks at the issue of redundancy

and its relationship to rank robustness. The final section concludes the chapter.

Robustness

We first outline the notation and definitions used in our analysis of robustness. Let

D ≥ 2 be the number of dimensions under consideration. For the two D-dimensional vectors

a and b, the expression a ≥ b means that ad ≥ bd for all d = 1, . . . , D, which is the vector

dominance relation. If a ≥ b and a 6= b, then this situation is indicated by a > b; whereas

a >> b denotes ad > bd for all d = 1, . . . , D. The least upper bound of a and b, denoted by
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a ∨ b, is the vector having max{ad, bd} as its dth coordinate; the greatest lower bound of a

and b, denoted by a ∧ b, is the vector having min{ad, bd} as its dth coordinate.

Let X ⊂ RD be the set of achievement vectors and let SD = {s ∈ RD+1 : s ≥ 0 and∑D+1
d=1 sd = 1} denote the simplex of associated weighting vectors. A composite index C :

X × SD−1 → R combines the dimensional achievements in x ∈ X using a weighting vector

w ∈ SD−1 to obtain an aggregate level C(x;w) = w · x. We assume that an initial weighting

vector w0 ∈ SD−1 has already been selected and this fixes the specific composite index C0 : X

→ R defined as C0(x) = C(x;w0) for all x ∈X. The associated strict ordering of achievement

vectors will be denoted by C0, so that x C0 y holds if and only if C0(x;w0) > C0(y;w0).

We let X̂ ∈ RND denote a dataset of achievement vectors with the ndth element being the

dth achievement of the nth achievement vector. The nth row of the dataset is denoted by xn

∈ RD, which is the nth achievement vector for n = 1, . . . , N . Without loss of generality, we

assume that C0(x1) ≥ C0(x
2) ≥ . . . ≥ C0(x

N).

Our treatment of robustness is normative, being based on an epsilon-contamination model

of ambiguity, is closely related to the theory of Knightian uncertainty (Bewley, 2002). In this

treatment, if C(x;w0) > C(y;w0), the comparison between a pair of achievement vectors,

x and y in RD, is considered to be fully robust, denoted by x C1 y, if C(x;w) ≥ C(y;w)

no matter what weighting vector w ∈ SD−1 is used. It can be shown that full robustness is

equivalent to x > y. When vector dominance does not hold, and the comparison is not fully

robust, in Chapter III, we propose using intermediate partial orderings Cr for 0 < r < 1,

which requires agreement over a smaller set of weighting vectors SD−1r = {w ∈ SD−1 : w =

rw0+ (1 − r)w′} for some w′ ∈ SD−1}. Clearly, SD−11 = SD−1 and SD−1r contracts to {w0}

when r tends to 0, so that Cr becomes less stringent, and more complete, as r falls to 0. We
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have construct vectors xr and yr having the property that x Cr y if and only if xr > yr; this

provides a straightforward test for checking whether Cr holds.28

Chapter III also presents a related method for measuring the level of robustness of a

given comparison. Suppose that x C0 y and hence C(x;w0) > C(y;w0) for a given pair

x, y ∈ X. Let A = C(x;w0) − C(y;w0) be the difference in aggregate achievements using

the initial weighting vector w0. In the context of the Human Development Index, this is

analogous to the difference in HDI values for two countries, and represents the margin by

which x dominates y. Let B = maxw∈SD−1 [C(y;w) − C(x;w), 0] be the maximum contrary

difference between aggregate achievements as w ranges across SD−1. This represents the

maximum margin by which y could dominate x if the weights were allowed to vary. The

measure of robustness is defined by r = A/(A + B). Intuitively, when B = 0 so that

full robustness x C1 y holds, then r = 1; when B becomes large relative to A, then the

measure of robustness r falls towards 0. It turns out that the maximum possible contrary

difference B is also the maximum coordinate-wise difference between y and x, and hence r

is straightforward to calculate. Moreover, it can be shown that the intermediate robustness

ordering x Cr′ y holds for all r′ below or equal to the robustness level r, but fails to hold for

r′ > r; so the robustness measure gives the highest (or most stringent) robustness ordering

that is applicable to the given pair.

Chapter III goes on to define a prevalence function to analyze how the share of robust

comparisons varies with the specific level of robustness. To illustrate this analysis, we assume

that there is a dataset X̂ with N observations and that overall achievement is calculated

using an initial weighting vector w0. The analysis is simplified by assuming that no two

28Specifically, xr = r(C0(x)1) + (1 − r)x and yr = r(C0(y)1) + (1 − r)y, where 1 = (1, 1, . . . , 1) is the unit
vector.
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observations in X̂ have the same initial composite value, so that C0(x1) > C0(x
2) > . . . >

C0(x
N).29 There are k = N(N − 1)/2 ordered pairs of observations xi and xj with i < j,

and each comparison xi C0 xj has an associated robustness level rij. Let P = [rij] represent

the robustness profile of X̂ (given w0). For any given dataset X̂ and initial weighting vector

w0, the prevalence function p : [0, 1] ∈ [0, 1] associates with each r ∈ [0, 1], the share p(r) ∈

[0, 1] of the k comparisons whose robustness levels are at least r. Equivalently, p(r) is the

share of the comparisons for which the rth robustness ordering Cr holds.

Suppose that p and q are the prevalence functions for dataset X̂ (given w0) and dataset

Ŷ (given u0), respectively. We say that X̂ has greater robustness than Ŷ if p(r) ≥ q(r) for

all r ∈ [0, 1], with p(r) > q(r) for some r ∈ [0, 1]. In words, no matter the target level of

robustness r, the share of all comparisons in X̂ with robustness level r or more is at least as

high as the respective share in Ŷ , and for some r it is higher. The two are said to have the

same robustness if their prevalence functions are the same. In the next section we apply this

approach to several composite indices and compare their associated prevalence functions.

Prevalence of Robustness: Empirical Applications

The prevalence function is now constructed for several composite indices and datasets

having the country as their unit of analysis. The first is the Human Development Index

or HDI for the years 1998 and 2004, as obtained from the Human Development Reports

(United Nations Development Programme, 2000, 2006). The HDI contains three components,

capturing achievements in per capita income, education, and health, respectively, and is

simply the arithmetic (or equal weighted) mean of the three components. Each component

has been normalized to range between zero and one, and hence the HDI take values in the
29This is true for each of the composite indices presented below.
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same range. The HDI provides a ranking of 177 countries for each of the above-mentioned

years. The second composite index is the Index of Economic Freedom (IEF). The IEF is

based on achievement in ten dimensions relevant to economic freedom.30 Each component

index has been normalized to range between zero and one hundred, and the IEF is formed

by taking the arithmetic mean of the ten components. We examine the IEF for 2007, which

ranks 157 countries. These data were obtained from the Heritage Foundation (2008). The

third composite index is the Environmental Performance Index (EPI). The EPI is based on

25 component indices. A number of versions of the EPI exist, each differentiated by the level

of aggregation of the components. We examine four versions: EPI2, EPI6, EPI8 and EPI10.

EPI2 is based on two equally weighted summary measures of environmental health and

ecosystem vitality, respectively. EPI6, EPI8, and EPI10 are based on a mix of summary and

individual indices of environmental health, air pollution, the impact of water, biodiversity

and habitat, productive natural resources and climate, and are obtained by aggregating six,

eight, and ten of these component indices, respectively. Full descriptions of the EPI can be

found in Esty et al. (2008). The EPIs under consideration in this chapter rank 149 countries

for the year 2007.

Prevalence functions for the above-mentioned composite indices are shown in Figure 4

with p(r) presented in percentage terms. Each function is downward-sloping, reflecting the

fact that as r rises, the number of comparisons that can be made by Cr is lower (or no

higher). As r falls to zero, all functions achieve the 100% comparability arising from C0; in

the other direction, the value of p(r) at r = 1 is the percentage of the comparisons involving

vector dominance, and hence are fully robust. There is, interestingly, a wide variation in

30The ten dimensions business freedom, trade freedom, monetary freedom, government size, fiscal freedom,
property rights, investment freedom, financial freedom, freedom from corruption, labor freedom.
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p(1) across each composite index under consideration. It is clearly highest for the HDI, with

p(1) being 69.8% for the 1998 HDI rankings and 73.2% for those of 2004. Put differently,

69.8% and 73.2% of pair-wise HDI comparisons are fully or 100% robust in 2004 and 1998,

respectively. The value of p(1) for EPI2 rankings is 47.4%. It is much lower for the remaining

indices, being 4.2%, 3.0%, 1.5% and 6.5% the EPI6, EPI8, EPI10 and IEF, respectively.

Figure 4: Prevalence Functions p(r)

For all r between zero and one, it is clear from Figure 4 that the robustness is greater

for the HDI than for the EPI and the EFI. The 1998 HDI prevalence function is also higher

than the 2004 HDI prevalence function. The EPI10 exhibits the lowest prevalence of robust

comparisons. An additional feature of Figure 4 is that shapes of the p(r) functions are dif-

ferent, with those associated with the HDI being essentially linear, and the others exhibiting
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pronounced curvatures. Drawing on these observations, we now examine the prevalence of

robustness from a more theoretical perspective and consider transformations that allow the

robustness of different composite indices to be compared.

Prevalence, Transformation, and Positive Association

We begin with some basic transformations that leave the prevalence functions fixed. We

then consider changes in the dataset that increase the prevalence of fully robust comparisons.

In particular, we show the key role played by association among dimensions.

Fixed Robustness and Transformations

Our first transformations yield pairs of datasets that have similar robustness properties. A

monotonically increasing transformation of X is a function f : X → RD that can be written

as f(x) = (f1(x1), . . . , fD(xD)) where each function fd(xd) is monotonically increasing; a

common-slope affi ne transformation of X has the additional property that each function

fd(xd) can be written as fd(xd) = αxd + βd for some α > 0 and βd in R. We say that Ŷ is

obtained from X̂ by a common-slope affi ne transformation (respectively, by a monotonically

increasing transformation) if Ŷ = {f(x) : x ∈ X̂} for some transformation f having the

appropriate property.

Applying a monotonically increasing transformation to a dataset preserves the orderings

of achievements within each dimension, but can disrupt the weighted averages across dimen-

sions. In particular, it is possible that C(x′;w0) > C(x;w0) and C(y′;w0) < C(y;w0) where

y′ and y are transformations of x′ and x, respectively, which implies that the robustness

profiles of X̂ and Ŷ can be rather different for the same w0. On the other hand, if we restrict
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consideration to common-slope affi ne transformations, we see that C(y;w) = w · y = αw · x

+ w · β where β = (β1, . . . , βD), and hence C(x′;w) ≥ C(x;w) if and only if C(y′;w) ≥

C(y;w), where y′ and y are the respective transformations of x′ and x. In this case, X̂ and

Ŷ have the same robustness profile and hence the same prevalence function p(r) given w0.

So, for example, if every dimension is scaled up or down in the same proportion, this will

leave p(r) unchanged, as will simply adding a different constant to each dimension. On the

other hand, multiplying each dimension by a different positive constant alters the implicit

weighting across dimensions, potentially changing the rankings of transformed observations.

Using an arbitrary monotonic increasing transformation, likewise, can alter rankings and

lead to different prevalence functions for the transformed dataset. Note, though, that fully

robust comparisons are preserved under a monotonic transformation, and hence the preva-

lence p(1) of full robustness does not change. These results are summarized in the following

theorem.31

Theorem 10 Suppose that the initial weighting vector is fixed. If Ŷ is obtained from X̂ by

a monotonically increasing transformation, then Ŷ and X̂ share the same prevalence value

p(1). If Ŷ is obtained from X̂ by a common-slope affi ne transformation, then they share the

same prevalence function p(r).32

In the example of the HDI, the normalized income, education, and health variables used

to construct index values are actually monotonic transformations of underlying variables

involving a nonlinear function in the case of income, and affi ne transformations with different

31The result on monotonic transformations would be true even if the initial weighting vectors were different.
The role played by common-slope affi ne transformations is similar to assumptions used in social choice theory.
See, for example, Blackorby et al. (1984).

32The first part of Theorem 10 will generate same prevalence function p(1) even if we use the dominance
criterion proposed by Cherchye et al. (2008).
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slopes across the three variables. Consequently, the specific shapes of the transformations

can influence HDI comparisons as well as their measured robustness levels. However, as

indicated in Theorem 10, these transformations do not influence fully robust comparisons

and p(1). If one restricts consideration to C1 comparisons, there would be no need to select

the “right”transformations or even to transform variables at all: one could use the original

income, education, and health variables directly.

A second form of transformation replaces each variable in the achievement vector with

one or more copies of that variable. A replicating transformation of X is a function f : X

→ RD′ for some D′ > D such that f(x) = (f1(x1), . . . , fD(xD)), where each fd(xd) is the

kd-fold replication (xd, . . . , xd) ∈ Rdkd for some integer kd ≥ 1. We say that Ŷ is obtained

from X̂ by a replicating transformation if Ŷ = {f(x) : x ∈ X̂} for some transformation f

of this type. Transformed achievement vectors have higher dimension D′ and, consequently,

the associated weighting vectors must be adjusted to account for this. Now, which initial

weighting vector u0 for Ŷ would correspond to the original w0 for X̂? One option is to divide

the weight equally among the associated dimensions in u0; however, it turns out that any

allocation of the weight across its associated dimensions will do. We say u0 is consistent

with w0 if, for each d = 1, . . . , D, the weight on xd is equal to the sum of the kd entries in u0

associated with fd(xd) = (xd, . . . , xd). So for example, if D = 2 and f replicates each entry

two times, then w0 = (1/2, 1/2) is consistent with u0 = (1/6, 2/6, 1/4, 1/4). We have the

following result.

Theorem 11 If Ŷ is obtained from X̂ by a replicating transformation, and u0 is consistent

with w0, then Ŷ and X̂ have the same prevalence function p(r).

Proof. See Appendix E.

77



In other words, according to Theorem 11, appending copies of one or more existing

variables leaves the comparisons and the robustness properties of a dataset unaffected, as long

as the effective weight on each variable is unchanged. As an example, consider what would

happen if the education variable in an HDI dataset were replicated to obtain a four variable

dataset. Using equal weights of 1/4 for the four dimensional dataset would likely alter

rankings since this would, in effect, increase the aggregate weight on education. However, if

the total weight on the two education variables is maintained at 1/3, say where each variable

receives a weight of 1/6, then all comparisons and robustness levels would be the same as

before.

One implication of this is that the number of variables per se does not have an inde-

pendent impact on a dataset’s robustness. In contrast, the empirical evidence provided by

Figure 4 does might suggest that a greater number of variables is associated with lower

robustness. The evidence is particularly striking for the three EPI examples, where the ag-

gregation of variables, and hence the decrease in the number of variables, clearly leads to

increased robustness – even though they use the same underlying data. Is this due to the

decreased number of variables?

Let us examine how EPI6 is constructed from EPI10. The first and fifth variables in

EPI6 are each obtained by combining three distinct variables in EPI10 (namely, variables

1-3 and variables 7-9), while the remaining variables are unchanged. Weights from the initial

weighting vector u0 for EPI10 are used to construct each new variable in EPI6 as a weighted

average of the source variables from EPI10, and the weight on the new variable is the sum

of the corresponding weights in u0. The new w0 is thus consistent with u0. Now consider

a ten variable replication of EPI6 that repeats variable 1 three times and variable 5 three
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times and let the initial weighting vector be u0. By Theorem 11, this intermediate dataset

has precisely the same robustness profile and prevalence function as EPI6. It is not the

number of variables that is driving the observed decrease in robustness. Instead, its source is

found in the transformation from the intermediate dataset to EPI10, by which the perfectly

correlated triplets are converted to variables that are less positively associated. The fall in

robustness is due to disagreements among the new variables, rather than the higher number

of variables per se. Association among variables is likely a key driver of robustness, which is

explored further in the next section.

Increased Robustness and Positive Association

What factors generally lead to greater robustness? At an intuitive level, the possibility

of fully robust comparisons is related to the degree of correlation or association among

the dimensional variables. For example, if two of the achievements are perfectly negatively

correlated, so that when one rises, the second falls, then it is impossible for vector dominance

and hence C1 to hold. On the other hand, if there is complete positive association between

all variables, so that when any variable rises, all rise, then every achievement vector is

comparable by vector dominance, and C1 is universally applicable.33 We saw in Figure 4

that both HDI datasets have high levels of robustness, and that the prevalence function is

higher for 1998 than for 2004. Kendall’s tau correlation coeffi cients for 2004 are 0.55 for

health and education, 0.66 for health and income, and 0.58 for income and education, which

indicates strong, positive association among variables; the respective values for 1998 are

33Note that if there are more than two dimensions, then it is impossible for all pairs of variables to be perfectly
negatively correlated; in other words, there is no analogous notion of perfect negative association in higher
dimensions.
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even higher, at 0.59, 0.70, and 0.60.34 Both intuition and empirical evidence suggest a link

between positive association and robustness. We now turn to the theoretical justification for

such a link.

For simplicity, assume that the dataset X̂ has the property that within each dimension, all

observed values of the variable are distinct.35 Given any two dimensions c and t, let Ect be the

number of concordant pairs of observations in which one of the two observations has higher

values in both dimensions c and t. Let Gct be the number of discordant pairs in which one

observation is higher in one dimension and the second is higher in the other. Then Kendall’s

tau correlation coeffi cient for dimensions c and t is defined as τ ct = (Ect −Gct)/(Ect +Gct).

Note that the denominator of this expression is k = N(N − 1)/2 while Gct = k − Ect, so

that τ ct = 2Ect/k − 1.

Now consider the special case where there are only two variables, and so there is a single

coeffi cient τ = τ 12 and number E = E12 of concordant pairs. In this special case, the number

of concordant pairs is precisely the number of fully robust pairs, so the share of fully robust

comparisons is p(1) = E/k. Therefore, τ = 2p(1)− 1 and we have the following result.

Theorem 12 Suppose that D = 2 for a given dataset X̂. Then the share p(1) of fully robust

comparisons is determined by Kendall’s tau correlation coeffi cient τ according to the formula

p(1) = (τ + 1)/2.

In the case of two variables, there is a direct relationship between p(1) and the level of

association as measured by Kendall’s tau. Whenever τ = 1 so that the variables have perfect

positive association, we must have p(1) = 1. If τ = −1, and perfect negative association

34Kendall’s tau correlation coeffi cient is a measure of association or correlation based on ranks of the variables
concerned. See Kendall and Dickinson (1990).

35This rules out ties and simplifies the definition of Kendall’s tau correlation coeffi cient.
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obtains, then p(1) = 0. The independence case of τ = 0 implies p(1) = 1/2, so that half the

comparisons would be fully robust in this case. The example of EPI2 has τ = −0.053 and

hence p(1) = 0.474 by Theorem 12.

Now consider the general case of D ≥ 2. Full agreement across all dimensions entails

concordance in any two dimensions, hence p(1) ≤ Ect/k = (τ ct + 1)/2 for any pair c and t.

We have the following result.

Theorem 13 Let τmin = minc,t τ ct be the minimum value of Kendall’s tau correlation coef-

ficient across all pairs of variables c and t in dataset X̂. Then the share p(1) of fully robust

comparisons is bounded as follows: p(1) ≤ (τmin + 1)/2.

This result shows that the smallest Kendall tau coeffi cient, appropriately transformed,

provides us with an upper bound for the proportion of comparisons that are fully robust.

If τmin = 1, so that all pairs of variables move together in full accord, then p(1) = 1 and

the bound is tight. If τmin = −1, say, when a pair of variables exhibits a perfect negative

association, then no comparison is robust and p(1) = 0 is equal to this bounding value. For

0 < τmin < 1, the actual value of p(1) can be equal to or below the bound. For example,

for the 2004 HDI dataset, τmin = 0.55, and thus according to Theorem 13, we have p(1)

≤ 0.78. As noted above, the actual prevalence of fully robust comparisons is p(1) = 0.698.

For EPI6, EPI10, and EFI, the respective values of τmin are −0.147, −0.237, and −0.3395,

yielding upper bounds on p(1) of 0.43, 0.38, and 0.33 respectively. The true values for p(1)

are 0.042, 0.015, and 0.065, respectively.

When there are several dimensions, pair-wise associations can provide only partial in-

formation on the magnitude of p(1). An interesting alternative is to adjust the definition

of Kendall’s tau itself to obtain a multidimensional measure of association that corresponds
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exactly to p(1). Let E be the number of pairs of observations in which one of the two obser-

vations has higher values in all dimensions, and G be the number of pairs for which the two

observations disagree in at least one dimension. Given any dataset X̂ having an arbitrary

number of dimensions D > 0, we define Kendall’s coeffi cient of positive association by τ =

(E − G)/(E + G), or the number of fully robust comparisons minus the number that are

not fully robust, over the total number of comparisons. With dimensional ties ruled out, the

total number of comparisons is once again k = N(N − 1)/2, while G = k − E, so that τ =

2E/k − 1 = 2p(1)− 1 and p(1) = (τ + 1)/2.

In the two-dimensional case, the coeffi cient τ reduces to the standard Kendall’s tau; for

more dimensions, it requires agreement across all dimensions before counting the comparison

as increasing positive association. So for example, the positive association measures for the

HDI datasets in 1998 and 2004 are, respectively, τ = 0.464 and τ = 0.396, while for the

EFI it drops to τ = −0.87. The coeffi cient for the EPI dataset rises from −0.97, to −0.916,

to −0.053 as we move from largest to smallest number of dimensions. This is a useful

way of restating a robustness property of datasets using more familiar terminology, while

emphasizing the fundamental link between positive association and robustness.

An alternative route makes use of the general notion of “increasing association” found

in Boland and Proschan (1988), among other sources.36 We say that dataset Ŷ is obtained

from dataset X̂ by an association increasing rearrangement if for some x 6= x′, we have: (a)

neither x ≥ x′ nor x′ ≥ x holds; (b) y = x ∨ x′ and y′ = x ∧ x′; and (c) y′′ = x′′ for all

x′′ 6= x, x′. In other words, the datasets are identical apart from a pair of non-comparable

36In the literature on multidimensional inequality and poverty, increasing association was first introduced by
Atkinson and Bourguignon (1982). Tsui (1999, 2002) based the notion of correlation increasing majorization
on the ‘basic rearrangement’used by Boland and Proschan (1988).
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observations in X̂ that were made comparable in Ŷ by placing all the higher values in one

observation (the least upper bound) and all the lower values in another (the greatest lower

bound). We have the following result.

Theorem 14 Suppose that the initial weighting vector is fixed. If dataset Ŷ is obtained from

dataset X̂ by a series of association increasing rearrangements, then the share p(1) of fully

robust comparisons is higher for Ŷ than for X̂.

Proof. See Appendix F.

One natural implication of the theorem is that an association increasing rearrangement

must lead to a higher value for Kendall’s coeffi cient of positive association τ . It is also easy

to see that none of the pair-wise coeffi cients τ ct will fall, and that at least one will rise.

Consequently, this form of transformation is especially useful for illustrating the connection

between full robustness and positive association.

Theorem 14 provides information on the share p(1) of fully robust comparisons, but not

on p(r) for r < 1. The following example shows how greater association across variables

need not translate to increased overall prevalence. Suppose that X̂ is made up of the four

vectors x1 = (30, 80), x2 = (100, 30), x3 = (90, 100), and x4 = (80, 120). With equal initial

weights, we see that C0(x1) = 55, C0(x2) = 65, C0(x3) = 95 and C0(x4) = 100, and yet only

two comparisons x3 C0 x1 and x4 C0 x
1 are fully robust. Let Ŷ be made up of the four

vectors y1 = (30, 30), y2 = (100, 80), y3 = y3, and y4 = y4, so that is obtained from by an

association increasing rearrangement. Then the number of fully robust comparisons rises to

three, since now y2 C0 y
1, y3 C0 y

1, and y4 C0 y
1 hold. Clearly, p(1) rises as a result of the

association increasing rearrangement.
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What about the prevalence p(r) at other values of r? For example, let r = 0.40, and

note that the respective xr vectors used in evaluating Cr are (45, 65), (79, 51), (93, 97),

and (92, 108) for X̂ and (30, 30), (94, 86), (93, 97), and (92, 108) for Ŷ . Checking each

collection for vector dominance, we find that the number of Cr comparisons in X̂ is four,

while only three Cr comparisons are possible in Ŷ , and hence p(r) is negatively affected by

the association increasing rearrangement. Note that the rearrangement results in a vector y2

that is not comparable to the other two unchanged vectors, y3 and y4, and this is preserved

in Cr; whereas, the non-comparability of x2 with x3 and x4 does not survive the averaging

underlying Cr. Since this example has two dimensions, it also follows that Theorem 12

applies, and Kendall’s tau coeffi cient is higher in Ŷ than X̂. Consequently, p(r) can strictly

fall when there is greater association, or when the tau coeffi cient between the two dimensions

rises. While it is clear that p(1) is linked to positive association among variables, the specific

mix of factors that determine the placement and shape of p(r) for r ∈ (0, 1) has yet to be

determined.

Robustness and Redundancy

The results of the previous section show that greater positive association increases the

prevalence of fully robust comparisons and, in this sense, is a desirable attribute of a multi-

dimensional dataset. There is an alternative literature that takes a rather different view of

positive association, and we will now briefly examine these arguments in light of our findings.

A number of previous studies have critiqued the HDI based on the statistical association

between the three components used to construct the composite index (McGillivray, 1991,

2005; McGillivray andWhite, 1993; Cahill, 2005). McGillivray (1991), in particular, provided
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an argument based on a notion of “redundancy of composition,”which arises when there is

a strong positive association between a composite index and one of its components. High

redundancy of composition is considered to be an undesirable property on the grounds of

parsimony: if a single component provides basically the same ranking as the composite index,

why not use the former instead of the latter? A second argument invokes the notion of

“multidimensionality”of the index: if each pair of component variables is highly correlated,

then the index could hardly be characterized as multidimensional, and once again, a single

dimension may be all that is needed.

The force of these arguments is mitigated somewhat by our robustness results. To be sure,

when the variables are highly correlated in a given dataset, the index may well be tracked by

a single component and may act like a unidimensional measure; but the comparisons it makes

will tend to be robust.37 Note that this favorable conclusion (like the critiques) is contingent

on the actual dataset employed. At a different point in time, or over a specific subset

of observations, the associations may be dramatically different and the conclusions could

be reversed.38 So the terms “redundant”, “multidimensional”and “robust” should not be

associated with a given composite index, but rather jointly to the index and a specific dataset.

In addition, once a robustness perspective is adopted, the parsimony or multidimensional

arguments carry less force: if we replace the original variables with a single one, we lose all

information on robustness, since a single variable always generates an unambiguous ranking.

There remains an interesting and unresolved tension between the need for a composite

37It is easy to demonstrate formally that the higher the associations between components on a composite
index, the higher will be the correlation between the index itself and any one of its components.

38Suppose we are interested in the group of thirty least developed countries according to the HDI. The Kendall’s
tau rank correlation coeffi cients between the 2004 HDI and its three components are 0.18, 0.41, and 0.38,
respectively, and the Kendall’s tau coeffi cients between each pair of the three components are merely −0.31,
−0.01, and 0.08. A similar pattern is found in other groups of interest.
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index to improve upon unidimensional alternatives and the desire for the comparisons it

makes to be robust. This question has implications for the choice of a specific variable to

represent a given dimension in practice. Is it preferable to select a component variable that

has low association with the other variables (to improve the multidimensional integrity of

the index)? Or might it be better to seek out a variable that has high association with

the others (to ensure more robust comparisons)? Further guidance on how to address this

tension lies beyond the scope of the present chapter.

Conclusion

This chapter has analyzed the robustness of rankings obtained from composite indices —

the multidimensional indices that combine information on two or more component indices

using a weighted average. It examined the empirical prevalence of robust comparisons for

three well-known and widely used indices: the Human Development Index, the Index of

Economic Freedom and the Environmental Performance Index. The rank robustness of

the Human Development Index was found to be the highest, with 73% of pair-wise 1998

country rankings of this index being fully robust. The Environmental Performance Index

was the least robust, with no more than 6.5% of its pair-wise rankings being fully robust.

The chapter then examined the link between various characteristics of the dataset and the

prevalence of robust comparisons. One characteristic found to be relevant was the statistical

association among index components, and many results were proved linking robustness and

association. In particular, maximal robustness is obtained when components are perfectly

positively associated. The chapter briefly touched upon a dilemma concerning the design

of composite indices. According to the above results, highly positive associations among
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component variables are desirable as they can enhance rank robustness. But according

to previous research, such associations are to be avoided on the grounds of redundancy.

Should the design of a composite index be focused on rank robustness or on the avoidance of

redundancy, or should we try to attain an optimal balance between the two? This question

has been left to future research.

One further question raised by this chapter concerns the shape of prevalence functions

and the implied empirical distribution of robust comparisons. It is evident that for both

years, the HDI prevalence functions are approximately linear (more precisely, affi ne), as is

the function associated with EPI2. The other prevalence paths have a strictly convex shape.

A question is: what is it about the former composite indices and their datasets that produce

a linear form? Linearity ensures that, if consideration is restricted to comparisons that are

not fully robust, the empirical distribution of robustness levels is approximately uniform. In

other words, the robustness level r is also the share of these comparisons having a robustness

of r or below, and the share of comparisons having, say, r = 0.95 or above is 1 − r = 0.05.

This is certainly a notable regularity, and it would be useful to identify its source. Additional

structure on the nature of this association, such as is available with a copula, may be helpful

in this regard.
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Appendix

E. Proof of Theorem 11

Proof. Suppose that y is a replicated achievement vector associated with x, so that y = f(x)

for a replicating transformation f . Given the initial weighting vector w0 and a consistent

weighting vector u0, it is clear that C(y;u0) = u0 · f(x) = w0 · x = C(x;w0). Now, let

r ∈ (0, 1] and select any d = 1, . . . , D along with an index value d′ of one of its copies. Let vrd

denote the dimension d vertex of the simplex SD−1r in RD and let vrd′ denote the dimension

d′ vertex of the simplex SD
′−1

r in RD′ . It is clear that C(x; vrd′) = vrd′ · x = (1− r)C(x;w0) +

rxd = (1− r)C(y;u0) + ryd′ = vrd′ · y = C(y; vrd′). Hence, where y
′ and y are the respective

transformations of x′ and x, we have (i) C(x′;w0) ≥ C(x;w0) if and only if C(y′;u0) ≥

C(y;u0), and (ii) C(x′; vrd) ≥ C(x; vrd) if and only if C(y′; vrd′) ≥ C(y; vrd′). Since (ii) holds

for each d and every associated d′, it follows from Theorem 8 in Chapter III that x′ Cr x if

and only if y′ Cr y, and p(r) is the same for both.

F. Proof of Theorem 14

Proof. Fix the initial vector w0 and let Ŷ be obtained from X̂ by a single association

increasing rearrangement involving x, x′, y, and y′ as defined in (a)-(c) above. If we can show

that p(1) rises, then we are done. To do this, we need only focus on comparisons involving at

least one of the vectors x and x′ in X̂, since the remaining vectors are unchanged. Consider

first the comparison involving both x and x′. By (b) we know that neither x ≥ x′ nor x′ ≥

x holds, and hence by Theorem 7, neither x C1 x
′ nor x′ C1 x can be true. However, by

construction y > y′ and since, by assumption, no achievements in any given dimension of x
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and x′ can be equal, we must have y >> y′. Again, by Theorem 7, it follows that y C1 y
′

holds, which represents a gain of one comparison for Ŷ as compared to X̂.

Now consider a case-by-case analysis of comparisons involving vectors x and x′ and any

given unchanged vector x′′. (i) Suppose that x′′ can be compared to both x and x′ using

C1. The case where x C1 x
′′ and x′′ C1 x′ simultaneously hold is impossible, since it implies

x ≥ x′ in contradiction to (a). Similarly the case where x′ C1 x
′′ and x′′ C1 x both apply

contradicts x′ ≥ x, and is likewise impossible. On the other hand, if x′′ C1 x and x′′ C1 x′

hold, then x′′ ≥ x and x′′ ≥ x′ must both be true, and hence x′′ >> x and x′′ >> x′ since no

two vectors in X̂ can have equal entries in a given dimension. By construction, then, y′′ >>

y and y′′ >> y′, which yields y′′ C1 y and y′′ C1 y
′, by Theorem 7. Similarly, x′ C1 x

′′ and x

C1 x
′′ yields y′ C1 y′′ and y C1 y

′′, and so in all possible cases, y′′ can be compared to both

of y and y′ using C1. Clearly, X̂ and Ŷ have the same number of fully robust comparisons

of this type. (ii) Suppose that x′′ can be compared to exactly one of x and x′ using C1. If

the comparison is x C1 x′′, then x >> x′′ and hence by construction y >> y′′, which implies

y C1 y
′′. In a similar fashion, if the comparison is x′ C1 x

′′, then we also conclude that y C1

y′′. Alternatively, if the comparison is x′′ C1 x, then x′′ >> x and hence by construction y′′

>> y′, which implies y′′ C1 y′. By the same argument, if the comparison is x′′ C1 x
′, then

we conclude y′′ C1 y
′ once again. So in each circumstance, y′′ can be compared to at least

one of y and y′ using C1 and hence Ŷ has at least as many fully robust comparisons of this

type as X̂. (iii) Suppose that x′′ can be compared to neither of x and x′ using C1. Then,

trivially, Ŷ has at least as many fully robust comparisons of this type as X̂. Consequently,

the number of fully robust comparisons across cases (i) to (iii) is at least as high for Ŷ as

for X̂; and given the original single comparison gain by Ŷ over X̂, it follows that p(1) must
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be strictly higher for Ŷ than for X̂.
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CHAPTER V

MULTIDIMENSIONAL WELFARE: AN INDIAN EXPERIENCE

Introduction

In Chapter II, a new class of multidimensional welfare indices has been introduced. The

class is based on generalized means and has two parameters. Under appropriate restrictions

of parameters, subclasses of this class are sensitive to two forms multidimensional inequal-

ity. One form of inequality is concerned with the spread of the marginal distributions of

attributes and the other is concerned with the association across the attributes. It is dis-

cussed how a multidimensional social welfare index that is sensitive to these two forms of

inequality can influence policy recommendations. Because the indices in this class are based

on general means, they are amenable to empirical applications and statistical tests can be

easily developed.

This chapter has two-fold objectives. The first is to show how this newly developed

multidimensional index in Chapter II can be applied for evaluating social welfare in the

context of developing countries, where social welfare is mostly gauged by a single dimension

– usually income. However, an increase in income in these countries may not necessarily

result in improvements in other attributes of well-being due to different forms of market

failures and the absense of highly competent governance. The second objective is to show

how the welfare evaluations are altered when the welfare indices are subjected to sensitivity

to inequality.

For our purpose in this chapter, we choose India showing how the welfare evaluations

91



across Indian states are altered when both multidimensionality and inter-personal inequality

is incorporated into the social welfare evaluation. Like other developing countries, in India,

the social welfare has been predominantly measured by per-capita income. There has been

almost a three-fold increase in the national per-capita gross domestic product between 1990-

91 and 2007-08. At the same time, however, the national family health survey and the human

development report reveal that more than fifty percent of the rural women are illiterate, fifty

seven infants do not survive out of every thousand newborns, nearly ninety percent of the

rural households use solid biomass fuel for cooking purposes, and sixty seven percent of

the population live without improved sanitation facilities as mandated in the millennium

development goals (MDG) by the UNDP. Clearly, an increase in one attribute, such as

income, does not necessarily lead to improvement in other attributes of well-being.

The second reason why India is found to be appropriate is that the inequality of achieve-

ment in different attributes remain high across the population and across various population

sub-groups, such as, across regions, across religions, and across castes and tribes. Although

the attribute-specific averages explain the story partly, they ignore the existing inter-personal

inequality.

Because this class of indices requires the attributes to be continuous, three attributes of

well-being are carefully constructed using several indicators. Seth (2009) has applied this

class to the Mexican context showing how the state rankings are altered when different forms

of inequalities are considered. However, the health variable is not available at the household

level and, therefore, Seth (2009) does not appropriately capture the inequality in health.

This chapter, on the other hand, selects all three attributes in such a way that each of them

captures well-being at the household level. Moreover, we use the demographic and health

92



survey data set, which collects internationally comparable data for many other developing

countries. This chapter also develops confidence intervals relevant to the survey to verify the

statistical significance of the evaluations generated by the indices.

The rest of this chapter is organized as follows. The second section describes the class of

multidimensional welfare indices and provide an outline of the data set used in this chapter.

In the third section, the attributes and indicators are introduced based on which social welfare

is evaluated. The fourth section is devoted towards developing the statistical properties of

the indices. The fifth section discusses the results reflecting how the rankings across different

population subgroups are altered as an inequality sensitive index is used as opposed to an

index that is not sensitive to inequality at all. The final section concludes this chapter.

The Welfare Index and the Data

To begin with, we spend some time recapitulating the multidimensional social welfare

index introduced in Chapter II and then describe the data set.

The Class of Welfare Indices

The new class of multidimensional index has two parameters. An index in this class first

aggregates the achievements of each person to obtain an overal achievement score. Then in

the second stage, these achievement scores are aggregated to obtain the social welfare index.

Let the achievements of a society consisting of N individuals and D attributes of well-being

be summarized by the matrix H, where the ndth element of hnd denotes the achievement of

individual n in attribute d, for all d = 1, . . . , D and all n = 1, . . . , N . Our social welfare
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index can be defined as:

W (H;α, β, a) =

 1

N

N∑
n=1

(
D∑
d=1

adh
β
nd

)α/β
1/α

, (11)

where the parameter α measures society’s aversion towards inter-personal inequality in these

achievements, the parameter β measures the degree of substitutability across the attributes

of well-being of any individual, and a is a D-dimensional weight vector such that ad >

0 and
∑D

d=1 ad = 1.39 The dth element in the weight vector a signifies the importance

that is attached to the dth attribute when measuring the overall achievement score for each

individual. Note that in each stage of aggregation, an index in our class uses a generalized

mean and thus the index is a generalized mean of generalized means.

It is shown in Chapter II that the class of indices defined in (11) is sensitive to two distinct

forms of multidimensional inequality. Sensitivity to the first form of inequality requires that

if the average achievement of each attribute remains unchanged but the distribution of each

attribute becomes more dispersed, then the social welfare index should register a fall. The

second form of sensitivity requires that if the marginal distribution of each attribute remains

unaltered but the association across attributes increases, then the level of social welfare

should fall, provided the attributes are substitutes to each other. By the attributes being

substitutes, we mean that if an individual has lower achievement in one attribute and higher

achievement in another, then the person can compensate for her lower achievement in the

former attribute by her higher achievement in the latter. It is shown in Chapter II that the

index registers a fall due to an increase in association among attributes if α < β and an

increase due to an increase in association if α > β. Similarly, the value of the index falls as

39For α = 0 and β = 0, the corresponding geometric mean forms should be used.
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the spread of the attributes increases if α < 1 and β < 1.

The Data and the Unit of Analysis

For the analysis, we select three attributes that are often considered important while mea-

suring social welfare: material well-being, educational well-being, and quality of health.40 We

use the third National Family Health Survey (NFHS-3) 2005-06 data set for the following

two reasons. This dateset is chosen for its sound quality. Furthermore, it is a part of the

Demographic Health Survey (DHS), which collects comparable data for many developing

countries. It is possible to make cross-country welfare comparison in future applying the

techniques introduced in Chapter II. The NFHS-3 collects information on a nationally repre-

sentative sample of 109,041 households and covers 99 percent of the Indian population from

twenty-eight states and the national capital territory of Delhi.41

In this survey, the entire country is divided into fifty-eight regions in terms of rural and

urban areas, and then eight major cities are further divided into slum and non-slum areas.

Overall, there are seventy-three regional divisions. Each region is assigned a nationally

representative population weight equal to the projected population of households in that

region divided by the total number of sample households drawn from that region. In our

analysis, we assume that samples drawn from each region are independently and identically

distributed. However, samples drawn from any two different regions are indeed independent

but are not necessarily drawn from an identical distribution.

Like the previous two rounds (1992 and 1997), this survey does not collect any information

40Variations of these three attributes are commonly used when constructing the human development index
(UNDP) and various physical quality of life indices (e.g. see Morris 1979).

41All three rounds of National Family Health Survey are coordinated by International Institute for Popu-
lation Sciences(IIPS), Mumbai; ORC Macro; and the Ministry of Health and Family Welfare (MOHFW),
Government of India.
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on household income or consumption expenditure. Instead, it collects detailed information

on household asset ownerships. The availability of information only at the household level

does not allow an individual level analysis. It is implicitly assumed that all members in a

household share the same level of material well-being. Hence, our unit of analysis in this

chapter is the household.

Dimensions and Indicators

The choice of appropriate indicators for constructing the three chosen attributes is crucial.

We now discuss the choice of indicators and their strengths and weaknesses.

Material Well-Being

The choice of a reasonable measure of material well-being is highly debatable. There are

three possible alternatives to measure material well-being at the household level: income,

consumption expenditure, and wealth or asset ownership summarized by an asset index

score. An asset index score is a composite index of the set of assets owned by a household.

Among these three indicators, income data are not often reliable as respondents tend to

under-report their earnings and, for developing countries, there are not many reasonable

sources to verify the response. Moreover, it is diffi cult to measure the income for self-

employed and agricultural workers owing to non-accountability and seasonal issues. The

consumption expenditure data, on the other hand, are free from these problems and thus are

superior to income data. However, the asset index score has certain crucial advantages over

the consumption expenditure. First, ownership of asset is supposed to be a better indicator

of long run material well-being because it does not fluctuate frequently. Second, there is
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likely to be less recall bias or mis-measurement for assets.42 Third, the time required to

collect asset information is much shorter because the list of assets is generally much shorter

than the list of commodities used for consumption (McKenzie, 2005). Nevertheless, an asset

index may not be the best method for measuring short run material well-being, since it

does not fluctuate much in the short run. Indeed, there are other challenges. The first is

the selection of an appropriate set of assets while constructing the asset index score. The

second challenge is to attach a reasonable weight to each asset. Third, there is a possibility

of clumping, where a large proportion of households has the same score (Howe et al., 2008).

There are numerous ways of constructing an asset index score (Filmer and Scott, 2008).

The most reasonable approach is to calculate the monetary value of the set of assets, but

the set of prices and the depreciation costs are not readily available. The second reasonable

approach is the regression based method (Stifel and Christiaensen, 2007), which calculates

the weight on each asset by regressing the consumption expenditure on the set of assets. We

can not pursue this approach because it requires availability of household level consumption

expenditure data. There are also different statistical procedures such as using principal

component analysis, factor analysis, and multiple correspondence analysis to determine the

weights on assets. However, the choice of weights generated by these latter methods are not

intuitive and are thus often diffi cult to justify. We, therefore, choose to pursue an approach

that is simple and intuitive.

There are two possible alternatives. One is simply counting the number of assets a

household owns, but this is diffi cult to justify: for example, a watch is certainly not as

expensive as a car. The second simple approach is to weight the assets so that the weights

42Recall bias occur when a survey respondent’s answer is affected by the memory of the respondent.
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reflect some value adjustments. For this purpose, we assume that if an asset is more valuable

then it is less likely to be held by the population. Thus, the weight attached to the asset

should be proportional to the share of the population not holding it (Morris et al., 2000).

This way we meet the second challenge while constructing an asset index.

Let us denote the set of the K assets by X = (X1, . . . , XK). The set of assets owned by

household n ∈ N is denoted by Xn = (Xn
1 , . . . , X

n
K), where Xn

k = 1 if household n owns asset

k and Xn
k = 0 otherwise, for all k = 1, . . . , K. Let us denote the share of the population that

does not own asset k by gk. Then the asset index score for household n can be represented

by the following formula:

An =

∑K
k=1 φ(gk)X

n
k∑K

k=1 φ(gk)
, (12)

where φ′ > 0. If φ(gk) = gk, then the weight on asset k is linear in gk. Note that we are

interested in the comparisons across population subgroups at the national level, and so the

weights are based on the national level coverage of the assets.

We choose a set of twenty assets from the NFHS data set. When choosing the assets, we

take into account the following two aspects. First, the set of assets should be comparable

across various population sub-groups. Second, our approach in (12) requires every asset to be

dichotomous. The chosen set of assets consists of electricity connection, refrigerator, bicycle,

motor cycle, car, phone, cell phone, watch, bank account, mattress, pressure cooker, chair,

cot or bed, table, electric fan, color TV, black & white TV or radio or transistor, sewing

machine, computer, and water pump.43

We report the national non-coverage rate of the assets and the two sets of weights in

43We do not include any information on housing because this indicator is not dichotomous. Several other asset
indicators such as a thresher, a tractor, or an animal-drawn cart are not included because they are rural
based indicators in general, and thus can lead to erroneous conclusions during rural versus urban comparison.
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Table 6: Weights Attached to the Selected Assets

Non-Coverage Linear Weight Squared Weight
Assets Rate φ(gk) = gk φ(gk) = g2k
Electrification 0.32 0.03 0.01
Refrigerator 0.85 0.07 0.08
Bicycle 0.49 0.04 0.03
Motorcycle or scooter 0.83 0.07 0.07
Car 0.97 0.08 0.10
Telephone 0.86 0.07 0.08
Mobile telephone 0.83 0.07 0.08
Watch or clock 0.22 0.02 0.01
Own a bank or post-offi ce account 0.59 0.05 0.04
Mattress 0.43 0.03 0.02
Pressure cooker 0.62 0.05 0.04
Chair 0.46 0.04 0.02
Cot/bed 0.17 0.01 0.00
Table 0.57 0.04 0.04
Electric fan 0.46 0.04 0.02
Color television 0.75 0.06 0.06
Sewing machine 0.82 0.06 0.07
Computer 0.97 0.08 0.10
Water pump 0.90 0.07 0.09
Black and White TV/Radio/transistor 0.56 0.04 0.03

Table 6. For the first set of weights, φ(gk) = gk, whereas, for the second, φ(gk) = g2k. Morris

et al. (2000) used the first set of weights. However, in our context, the first set of weights

seems bit unrealistic as it does not allow enough variation in the weights across the assets.

The second set of weights attaches comparatively more weight on the rarer assets. We have

found that the Spearman’s rank correlation coeffi cient between both asset index scores at

the individual level is almost one. We have also calculated the Spearman’s rank correlation

coeffi cient between the asset index scores for the second set of weights and the wealth index

in the NFHS-3 data set that uses the principal component analysis. The resulting coeffi cient

is 0.92. Thus, our choice of the second set of weights is robust to the choice of the other

weights. The clumping problem is automatically taken care off as we choose a large number
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of assets.

Educational Well-Being

The second attribute for evaluating welfare is the educational well-being of the households.

We assume that educational well-being increases with the presence of household members

who have completed more years of education. Other members in the households indeed

benefit from their presence (Basu and Foster, 1998). The following choices are available in

the survey as an indicator for this attribute: the first obvious choice is to use the years of

education completed by the head of the household; the second is to use the maximum level of

education completed by any member in the household; and a third potential choice is to use

the average years of education completed by the adult members in the household. Each of

these choices has its pros and cons. Given that nearly forty percent of the household heads in

India is fifty years or older, the first indicator would under-estimate the recent improvement

in the knowledge base of the country as a whole. The problem with the second indicator is

that it does not distinguish between the level of knowledge of two households with the same

number of members. It provides an identical score to a five-member household with only

one person having completed fifteen years of education, to another household in which all

five members have completed fifteen years of education.

It is apparent that the third indicator is the best choice among these three indicators,

and we measure the material well-being of a household by the average years of education

completed by the adult members in that household.44 For household n, let us denote the set

of Mn ∈ N members byMn = {1, . . . ,Mn}. If the years of education completed by member
44Indeed, the indicator suffers from two limitations. The first is that it ignores the level of education completed
by the non-adult members. The second is that it does not consider the qualitative differences among education
standards. The former limitation requires further research, but the latter is a data limitation.
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m is denoted by Ym, then the educational well-being of the household is denoted by

En =
1

22×Mn

Mn∑
m=1

Ym. (13)

We divide the right hand side by 22, which is the highest year of education possible, so that

the index lies between zero and one, like the asset index.

Quality of Health

The third attribute chosen is the quality of health of the household. It is diffi cult to find

an appropriate indicator for measuring the health quality of an entire household. The sur-

vey contains few direct health indicators such as the body mass index (BMI) and level of

anaemia for the respondents, and stunting and wasting for the children. These indicators

are, however, not suffi cient to capture the health of an entire household. Moreover, they are

not monotonically increasing with the quality of health. In other words, a higher BMI of a

person does not necessarily imply a better quality of health for that person. The alternative

is to construct a proxy index that captures the risk to the health of the entire household. The

higher is the value of the index, the better should be the quality of health of a household.

We construct a health risk index combining four sub-attributes that consist of the follow-

ing six indicators: (i) the access to safe drinking water, (ii) the availability of an improved

toilet facility, (iii) the number of people the toilet is shared with, (iv) the type of fuel used

for cooking, (v) the availability of a separate cooking room that is not used for sleeping,

and (vi) the number of persons per sleeping room. Each of these indicators contribute in

different ways towards the quality of health of the members in the household. For further
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discussion, see Mishra et al. (1999), World Health Organization (2000), Beggs and Siciliano

(2001), Bartram et al. (2005), and Rehfuess et al. (2009). Note that these sub-attributes

and indicators are also included among the Millennium development goals (United Nations,

2003).

The first sub-attribute is safe drinking water. This indicator identifies whether a house-

hold has access to safe drinking water and is denoted by ln1 = 1 if household n has access,

and ln1 = 0, otherwise. The second sub-attribute is an improved sanitation facility, which is

measured using two indicators: access to an improved toilet facility (l2) and the number of

other households the toilet is shared with (l3). It is argued that shared toilet facilities can

be less hygienic and can deter household members from using it (World Health Organization

and UNICEF, 2006). For household n, ln2 = 1 if the household has access to an improved

toilet facility, and ln2 = 0, otherwise; and ln3 = 1 if the toilet is not shared with anyone,

and if the toilet is shared with c other households, then ln3 = 1/c. The third sub-attribute

is indoor pollution, which is also measured using two indicators: the type of cooking fuel

used as a source of energy for daily cooking purposes (l4) and whether the household cooks

in the same room used for sleeping (l5). For household n, ln4 = 1 if the household uses

MDG mandated non-biomass fuel for cooking and ln4 = 0, otherwise. Similarly, ln5 = 1 if

the household does not cook in the room used for sleeping and ln5 = 0, otherwise. The final

sub-attribute is crowding, which is measured by the number of persons per bedroom (l6).

This indicator is believed to be an important health risk indicator because transmission of

communicable and respiratory diseases are higher in situations of crowding. For household

n, ln6 = Mn/Rn, where Rn is the number of rooms used for sleeping. Because it is diffi cult

to justify normatively which sub-attribute is of greater importance in reducing health risks,
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each of the sub-attributes is weighted equally. Thus, the health risk score for household n

can be written as

Ln =
1

4
ln1 +

1

4

(
ln2 + ln3

2

)
+

1

4

(
ln4 + ln5

2

)
+

1

4
ln6 . (14)

For all n ∈ N, the overall achievement score for household n is calculated as Q (hn·) =

µ3β (An, En, Ln; ξ3) .

Statistical Properties of the Attributes

Before we apply these three attributes to construct multidimensional welfare indices, we an-

alyze the distribution of each dimensional achievements across the households by estimating

a Gaussian kernel density for each attribute. For any N ∈ N, let y = (y1, . . . , yN) ∈ RN++

denote a distribution of achievements. Following Gisbert (2003), the kernel density estimate

is defined as

f̂ (ŷ) =
1

B

N∑
n=1

wnK

(
yn − ŷ
B

)

for any ŷ in R, where wn ≥ 0 and
∑N

n=1wn = 1, K is the density of the standard normal

distribution. The bandwidth B is calculated as B = 0.9N1/κ×min {sd (y) , iqr (y)}, where κ

< 0, and sd (y) and iqr (y) denote the standard deviation and the interquartile range of y,

respectively.

In Figure 5, we depict the kernel density estimates of the three selected attributes.45

Although the kernel density for the asset index scores is unimodal, the two other kernel

densities are not. There is a large number of Indian households in which none of the adult

members has finished even one year of education. That explains the existence of the left

45To ensure suffi cient smoothing of the kernel density estimates, the values of κ are assumed to be −6, −6,
and −9 for the asset index, average adult education index, and the index of health risk, respectively.
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Figure 5: Kernel Density Estimate of the Three Attributes

mode of the kernel density for average adult education, in addition to the usual mode on

the further right. The health risk score also has two modes. Note that the index of health

risk is a composite index of both continuous and dichotomous variables and, unlike the asset

index, there is not a large number of indicators. Thus, clumping is a possibility. Note

that the distribution of both the asset index scores and the average education scores is

right skewed, as expected. However, the distribution of the health risk score is not. The

possible reason is that the majority of the Indian households have access to safe drinking

water and this indicator receives 25 percent weight. Possibly, there is a group of households

with access to safe water and with high performance in other sub-attributes; and another

group of households with access to safe drinking water who do not perform well in other

sub-attributes.

Stastistical Tests

In this section, the asymptotic properties of the class of two-parameter generalized mean

social welfare indices are analyzed and relevant statistical tests are developed in order to
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verify the statistical significance of the estimates. In many sample surveys, data are collected

in two stages. First, the entire region of interest is divided into a fixed number of strata and

then random samples are drawn from each of these stratum. Each stratum corresponds to

a particular joint distribution of achievements across the population. Thus, samples drawn

from the same stratum are independently and identically distributed. However, random

draws from any two different strata are independent but are not identically distributed.

Suppose, there are M such strata and the multivariate distribution corresponding to

stratum m is denoted by Fm for all m = 1, . . . ,M . Let a total number of Nm samples are

drawn from stratumm and N =
∑M

m=1Nm be the total sample size. Subscript nm represents

the nth sample drawn from the mth strata. Samples {hnm1, . . . , hnmD}Nmnm=1 ∼ Fm receive a

population representation weight of wm = Pm/P , where Pm stands for the population size

in stratum m and P =
∑M

m=1 PM is the total population size. We assume that as N →∞,

Nm → ∞ but Nm/N → wm for all m. This is a restriction on the sampling design. We

assume that as the total sample size increases, then the sample size in each strata also

increases. The population version of the social welfare index can be written as

θ =

(∑M

m=1
wm

(∫ (
µDβ (hnm·; a)

)α
dFm

)) 1
α

=
(∑M

m=1
wmπm

) 1
α

= π
1
α , (15)

where πm =
∫

(µDβ (hnm·; a))αdFm for all m, and π =
∑M

m=1wmπm.
46

Therefore, for a given achievement matrix H ∈ H, the statistic of interest can be written

46In terms of the discrete variables, the population version of the social welfare index can be written as θ =
( 1P
∑M
m=1

∑Pm
nm=1

(µDβ (hnm·; a))
α)1/α.
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as

θ̂ =

(∑M

m=1

wm
Nm

∑Nm

nm=1

(
µDβ (hnm·; a)

)α) 1
α

=

(∑M

m=1
wm

(
1

Nm

∑Nm

nm=1
ηnm

)) 1
α

,

where ηnm = (µDβ (hnm·; a))α for all m and nm = 1, . . . , Nm. Then π̂m = 1
Nm

∑Nm
nm=1

ηnm for

all m, and π̂ =
∑M

m=1wmπ̂m.
47

By the Weak Law of Large Number, as N →∞, then π̂m
p→ E(ηnm) for all m and also π̂

p→
∑M

m=1wmE(ηnm). Thus, by the continuous mapping theorem, θ̂
p→ (
∑M

m=1wm(Eηnm))1/α.

We assume that the variance of ηnm be finite and from the restrictions on weights, it

clearly follows that wm/wm′ < ∞ for all m 6= m′. Then, applying the theorem in Eremin

(1999, p. 1012), we have

√
N (π̂ − π)

D→ Normal

(
0,
∑M

m=1

N

Nm

w2mσ
2
ηm

)
,

where σ2ηm is the variance of ηnm for all m.

By applying the Delta method, and replacing π = θα from (15), we have

√
N(θ̂ − θ) D→ Normal

(
0,
θ2(1−α)

α2

∑M

m=1

N

Nm

w2mσ
2
ηm

)
.

We first consistently estimate σ2ηm for all m as

σ̂2ηm = v̂ar
(
ηnm
)

=
1

Nm − 1

∑Nm

nm=1

(
ηnm − π̂m

)2
.

47This framework is analogous to the framework in Bickel and Freedman (1984) and Eremin (1999).
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Therefore, a consistent estimator of σ2θ is

σ̂2θ =
θ̂
2(1−α)

α2

∑M

m=1

(
w2mN

Nm (Nm − 1)

∑Nm

nm=1

(
ηnm − π̂m

)2)
.

Hence, the standard error of the estimate is

SE(θ̂) =
σ̂θ√
N

=
θ̂
1−α

|α|

√∑M

m=1

w2m
Nm (Nm − 1)

(∑Nm

nm=1

(
ηnm − π̂m

)2)
. (16)

Finally, we calculate the confidence interval for the statistic θ̂. In this situation, both

the mean and the variance are unknown and so the test statistic is equal to

T =
θ̂ − θ
SE(θ̂)

=

√
N(θ̂ − θ)
σ̂θ

.

We know that if
√
N(θ̂−θ) D→ Normal (0, σ2θ) and σ̂

2
θ

p→ σ2θ, then T
D→ Normal (0, 1) (Bierens,

2004, Theorem 6.21). Hence, the confidence interval of θ is given by

θ̂ − zδSE(θ̂) ≤ θ ≤ θ̂ + zδSE(θ̂), (17)

where z is a standard normal distribution, zδ is the critical value with confidence level of

(1− δ) %, and the formulation of SE(θ̂) follows from (16). 48

48Under certain circumstances, it is assumed that the entire sample is drawn independently from an identical
distribution. Our method applies here as well, because it is identical to the situation forM = 1 and thus θ̂ =
( 1N
∑N
n=1(µ

D
β (hn·; a))

α)1/α, where N is the sample size. The corresponding standard error can be estimated

as SE(θ̂) = 1
|α| (θ̂)

1−α√(
∑N
n=1(ηn− π̂)2/N(N −1)), and the confidence interval can be estimated using (17).
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Results

Table 7 summarizes the average achievement scores in three attributes across various

population subgroups. The entire sample is divided into four different types of sub-groups:

by states, by religions, by castes and tribes, and by rural and urban areas.49 The population

of the eight cities are further divided into slum and non-slum areas.50

Among the twenty-eight Indian states, the people of Goa enjoy the highest level of ma-

terial well-being; whereas, the people of Kerala enjoy both the highest level of educational

well-being and the best quality of health. The citizens of the capital territory of Delhi have

higher average achievement compared to the citizens of any other Indian state in all three

attributes. On the other hand, the people of Bihar and Jharkhand, the two neighboring

states, share the lowest level of well-being in all three attributes. Note that a state that has

higher well-being in one attribute does not necessarily have higher well-being in other at-

tributes. For example, consider Rajasthan, which ranks 17th in terms of material well-being

but ranks 26th in terms of educational well-being. The people of West Bengal are not as

well-off in terms of material well-being as they are in terms of health risk.

In terms of religion, the entire sample is divided into six major groups: Hindu, Muslim,

Christian, Sikh, Buddhist/neo-Buddhist, and others.51 The dominant religious group in

India is Hindu, covering almost eighty percent of the Indian population. It is evident from

Table 7 that the Sikhs, who are primarily residents of Punjab, score highest in terms of

49The sample size for the analyses across states, religions, and rural and urban areas is 106,674. The sample
size for comparison across castes and tribes is 105,818. Because the social welfare index is based on general
means, we replace the score of zero by a marginal positive number.

50The eight large cities for which the slum/nonslum data are available are Chennai, Delhi, Hyderabad, Indore,
Kolkata, Meerut, Mumbai, and Nagpur. The corresponding sample size that we use for our analysis is 18,168.

51The ‘others’group consists of people from various religions such as Jain, Parsi/Zoroastrian, Jewish, Donyi
polo, etc. and of course the group of people with no religion.
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both asset ownership and quality of health; whereas, the educational well-being is highest

for Christians. Although the difference in material well-being and risk to health is marginal

between Hindus and Muslims, Hindus enjoy a substantially higher level of well-being in terms

of education.

The caste system is highly prominent in Indian society and we also decompose the Indian

population in terms of Scheduled Castes, Scheduled Tribes, Other Backward Classes (OBCs),

none of these three classes (the upper-caste people in particular), and people belonging to

neither any caste nor any tribe. It can be seen from Table 7 that the group of people who

are classified as Scheduled Tribes have the lowest achievements in all three attributes. This

picture contrasts to the group of people belonging the ‘none of the above’class. Unlike the

other two population sub-groups above, the dimensional rankings are mostly robust in this

case. A further subgroup decomposition in terms of rural and urban areas shows that the

people living in urban areas enjoy twice as much educational and material well-being as their

rural counterparts. The rural population also suffer from much higher health risks. Note

that the rural area consists of more than two-third of the total Indian households

In Table 8, we report two welfare indices for every population sub-groups. In the second

column, we report the social welfare indexW (·; 1, 1, a), which is the simple average of average

dimensional achievements. By construction, this index is not sensitive to either of the two

forms of inter-personal inequality. The ranks of the population subgroups are provided in

the parentheses. The third column reports the confidence interval of the reported level of

social welfare using the statistical tests developed in the previous section. The fourth column

reports the value of a social welfare index that is sensitive to both forms of multidimensional

inequality. We assume the level of inequality aversion to be α = −0.5 and the degree
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Table 7: Achievements across Various Population Subgroups

Pop Asset Index Average Quality
States Share φ(gk) = gk Rank Adult Educ. Rank of Health Rank

Andhra Pradesh 8.7% 0.20 19 4.4 24 0.56 18
Arunachal Pradesh 0.1% 0.20 18 4.8 21 0.59 11
Assam 2.7% 0.19 23 5.4 18 0.57 16
Bihar 7.0% 0.14 29 3.4 29 0.48 23
Chhattisgarh 2.1% 0.15 26 4.1 27 0.44 26
Delhi 1.2% 0.47 1 8.8 1 0.73 1
Goa 0.2% 0.45 2 7.8 3 0.68 4
Gujarat 4.9% 0.28 10 5.8 12 0.59 12
Haryana 1.8% 0.32 7 5.8 13 0.58 15
Himachal Pradesh 0.6% 0.34 5 7.1 5 0.60 9
Jammu and Kashmir 0.7% 0.30 9 5.8 11 0.56 20
Jharkhand 2.5% 0.15 27 4.0 28 0.36 29
Karnataka 5.8% 0.23 14 5.7 15 0.55 21
Kerala 2.8% 0.38 4 8.3 2 0.69 2
Madhya Pradesh 6.2% 0.18 24 4.5 22 0.42 28
Maharashtra 9.6% 0.27 11 6.6 7 0.58 14
Manipur 0.2% 0.26 12 7.1 6 0.55 22
Meghalaya 0.3% 0.19 22 5.1 19 0.56 19
Mizoram 0.1% 0.32 6 7.2 4 0.67 5
Nagaland 0.2% 0.21 16 5.7 14 0.60 10
Orissa 3.8% 0.15 28 4.3 25 0.43 27
Punjab 2.3% 0.41 3 6.1 9 0.66 6
Rajasthan 5.4% 0.21 17 4.1 26 0.47 25
Sikkim 0.1% 0.25 13 5.6 16 0.69 3
Tamil Nadu 7.6% 0.21 15 6.0 10 0.57 17
Tripura 0.4% 0.19 21 5.5 17 0.63 7
Uttar Pradesh 13.8% 0.19 20 4.4 23 0.48 24
Uttarakhand 0.8% 0.30 8 6.5 8 0.61 8
West Bengal 8.3% 0.18 25 4.9 20 0.59 13

Religion
Hindu 81.7% 0.21 4 5.2 5 0.53 6
Muslim 12.4% 0.20 5 4.0 6 0.55 4
Christian 2.7% 0.28 3 7.1 1 0.61 2
Sikh 1.6% 0.46 1 6.3 3 0.68 1
Buddhist/neo-buddh. 0.8% 0.19 6 5.6 4 0.53 5
Others 0.7% 0.33 2 6.8 2 0.57 3

Caste/Tribe
Scheduled castes 19.4% 0.15 4 3.9 4 0.48 4
Scheduled tribes 8.6% 0.11 5 3.0 5 0.39 5
OBCs 40.0% 0.20 3 4.8 3 0.51 3
None of above 29.8% 0.32 1 7.0 1 0.64 1
No Caste or Tribe 2.2% 0.21 2 5.1 2 0.60 2

Rural/Urban
Urban 32.5% 0.35 - 7.6 - 0.69 -
Rural 67.5% 0.15 - 3.9 - 0.46 -

Slum\Non Slum
Slum 37.4% 0.31 - 7.0 - 0.65 -
Non Slum 62.6% 0.48 - 9.6 - 0.77 -

India 100% 0.23 - 5.1 - 0.51 -
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Table 8: Association Sensitive Welfare Indices with a = (1/3, 1/3, 1/3)

Confidence Confidence
States W (·,1,1,a) Interval (99%) W (·,-0.5,0.1,a) Interval (99%) I (·,-0.5,0.1,a)
Andhra Pradesh 0.320 (22) (0.314, 0.325) 0.135 (22) (0.130, 0.141) 0.52
Arunachal Pradesh 0.337 (18) (0.326, 0.348) 0.139 (20) (0.129, 0.150) 0.54
Assam 0.333 (19) (0.326, 0.340) 0.153 (18) (0.145, 0.161) 0.49
Bihar 0.259 (27) (0.252, 0.265) 0.099 (27) (0.094, 0.103) 0.56
Chhattisgarh 0.259 (26) (0.253, 0.265) 0.100 (26) (0.095, 0.106) 0.57
Delhi 0.533 (1) (0.525, 0.541) 0.369 (2) (0.355, 0.383) 0.29
Goa 0.494 (2) (0.485, 0.502) 0.324 (3) (0.309, 0.339) 0.32
Gujarat 0.377 (12) (0.370, 0.384) 0.201 (12) (0.191, 0.211) 0.43
Haryana 0.386 (9) (0.378, 0.394) 0.214 (11) (0.202, 0.226) 0.42
Himachal Pradesh 0.424 (6) (0.415, 0.432) 0.282 (5) (0.267, 0.297) 0.31
Jammu and Kashmir 0.374 (13) (0.365, 0.382) 0.216 (10) (0.204, 0.227) 0.39
Jharkhand 0.233 (29) (0.226, 0.239) 0.074 (29) (0.070, 0.079) 0.66
Karnataka 0.346 (17) (0.341, 0.352) 0.159 (17) (0.153, 0.165) 0.50
Kerala 0.483 (3) (0.476, 0.490) 0.373 (1) (0.361, 0.385) 0.20
Madhya Pradesh 0.267 (25) (0.261, 0.274) 0.098 (28) (0.094, 0.103) 0.61
Maharashtra 0.383 (10) (0.378, 0.389) 0.200 (13) (0.192, 0.208) 0.45
Manipur 0.379 (11) (0.372, 0.386) 0.249 (7) (0.239, 0.259) 0.31
Meghalaya 0.326 (21) (0.317, 0.335) 0.144 (19) (0.133, 0.154) 0.51
Mizoram 0.438 (5) (0.429, 0.447) 0.310 (4) (0.293, 0.327) 0.25
Nagaland 0.354 (15) (0.347, 0.360) 0.183 (15) (0.174, 0.191) 0.43
Orissa 0.259 (28) (0.253, 0.265) 0.102 (25) (0.097, 0.107) 0.57
Punjab 0.450 (4) (0.442, 0.457) 0.279 (6) (0.267, 0.291) 0.34
Rajasthan 0.290 (24) (0.284, 0.296) 0.102 (24) (0.096, 0.107) 0.62
Sikkim 0.395 (8) (0.386, 0.405) 0.232 (8) (0.219, 0.246) 0.34
Tamil Nadu 0.350 (16) (0.344, 0.356) 0.170 (16) (0.163, 0.176) 0.47
Tripura 0.356 (14) (0.347, 0.364) 0.192 (14) (0.178, 0.207) 0.39
Uttar Pradesh 0.291 (23) (0.287, 0.295) 0.122 (23) (0.119, 0.126) 0.54
Uttarakhand 0.403 (7) (0.394, 0.412) 0.219 (9) (0.207, 0.231) 0.43
West Bengal 0.328 (20) (0.323, 0.334) 0.138 (21) (0.132, 0.144) 0.52

Religion
Hindu 0.325 (4) (0.324, 0.327) 0.140 (4) (0.138, 0.142) 0.54
Muslim 0.310 (6) (0.306, 0.313) 0.125 (6) (0.121, 0.128) 0.54
Christian 0.405 (2) (0.397, 0.413) 0.202 (2) (0.190, 0.215) 0.47
Sikh 0.473 (1) (0.465, 0.482) 0.298 (1) (0.283, 0.314) 0.33
Buddhist/neo-Buddhist 0.325 (5) (0.310, 0.340) 0.159 (3) (0.140, 0.179) 0.47
Others 0.403 (3) (0.392, 0.414) 0.131 (5) (0.117, 0.145) 0.66

Caste/Tribe
Scheduled castes 0.269 (4) (0.266, 0.272) 0.109 (4) (0.107, 0.112) 0.54
Scheduled tribes 0.209 (5) (0.205, 0.212) 0.067 (5) (0.065, 0.069) 0.63
OBCs 0.311 (3) (0.308, 0.313) 0.139 (3) (0.137, 0.141) 0.51
None of above 0.425 (1) (0.422, 0.428) 0.232 (1) (0.227, 0.237) 0.43
No Caste or Tribe 0.350 (2) (0.343, 0.357) 0.156 (2) (0.146, 0.167) 0.50

Rural/Urban
Urban 0.464 - (0.461, 0.467) 0.288 - (0.283, 0.293) 0.35
Rural 0.263 - (0.261, 0.265) 0.107 - (0.106, 0.109) 0.54

Slum\Non Slum
Slum 0.426 - (0.421, 0.431) 0.297 - (0.289, 0.304) 0.26
Non Slum 0.561 - (0.556, 0.566) 0.436 - (0.426, 0.445) 0.20

India 0.329 - (0.327, 0.330) 0.141 - (0.139, 0.142) 0.54
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of substitution between attributes to be β = −0.5. Note that we have α < β, which

reflects our implicit assumption that the three attributes are substitutes to each other at the

disaggregated level.

A comparison of ranks generated from these two indices reveals how the ranks alter after

considering the existing inequality within the sub-groups. The rank of Madhya Pradesh

decreases to 28 from 25. Kerala seizes the first rank from Delhi owing to the lowest level of

inequality across her citizens. The gap in well-being between the rural and the urban areas

further widenes after accounting for inequality. A similar pattern follows when comparing

the level of well-being between slum and non-slum areas in the eight major cities of India.

The ranking among the religious groups are mostly robust, except that the social welfare of

the people in the ‘others’category falls sharply. Note that this sub-group contains various

religious groups and therefore the impact of high inter-religion inequality is a possible cause

behind this finding. The analysis in terms of the the social welfare indices indicates persistent

disparity across different castes and tribes in the Indian context. The group of people who

are scheduled tribes not only have lower social welfare but also a massive amount of within

group inequality.

To provide some idea about the extent of existing inequality within each group, we can

estimate the level of inequality (I) using the formulation:

I (H;−0.5, 0.5, a) = 1− W (H;−0.5, 0.5, a)

W
(
H̄;−0.5, 0.5, a

) ;
where H, H̄ ∈ HN such that H̄ = BH, where B = 1NN/N . Intuitively, the ideal situation

is believed to be achieved when there is perfect equality across the population. Therefore,
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inequality is measured as the relative gap between the current welfare level to that of the

ideal welfare level. The sixth column of Table 8 reports the level of inequality using the

above formulation. The inequality in overall achievements in Kerala is the lowest and it is

highest in Jharkhand. Note that the level of inequality in Madhya Pradesh is high and the

state decreases by three ranks. Rural India also shows a significantly higher level of within

group inequality compared to the urban area. Our study finds that the level of inequality is

higher in slums than in non-slum areas.

Conclusion

In this chapter, we have applied the multidimensional social welfare indices developed

in Chapter II to the Indian context. For our purpose, we used the National Family Health

Survey data for the year 2005/06, which is also the Demographic Health Survey data. The

chapter also develops the confidence intervals which are appropriate for the dataset. We

carefully contruct three attributes of well-being using several indicators. The attributes are

chosen so that they are continuous.

We use two different indices from our class. One is analogous to the Human Development

Index, where the index is the simple arithmetic mean of arithmetic means. Thus, the index

is not sensitive to either of the two forms of multidimensional inequality. The other index

is sensitive to both forms of inequality. The parameter values are chosen in such a manner

that the attributes are substitutes to each other. Our results show that the state of Kerala

ranks best when the welfare index is sensitive to inequality across the population.

However, note that the dataset does not contain any information on income. As a result,

we can not directly compare our multidimensional results directly with the results using
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an income based approach. A possible future direction of research would be to apply our

class of indices using a dataset that contains information on either income or consumption

expenditure.

A second possible direction of reseach would be to quantify the separate impact of the

two forms of inequality. We calculated the level of inequality for every population subgroup

but were not able to say which form of inequality had relatively more importance than the

other. Finally, due to the lack of good health indicators, we were not able to construct a

sound health indicator. Instead, we constructed a health risk attribute as a proxy. Also, our

method of constructing the indicator was crude. Further research is required to construct a

more sophisticated health attribute.
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CHAPTER VI

MEASURING MULTIDIMENSIONAL POVERTY IN INDIA: A NEW PROPOSAL

(WITH SABINA ALKIRE)

Introduction

One of the principal objectives of post-independence Indian development planning has

been to eradicate poverty, thus improving the lives of those battered by deprivation and

suffering. This goal is important in itself and also in turn strengthens social, political, and

economic outcomes. Although this objective has remained constant, the mechanisms for

addressing it have evolved. To improve the effectiveness and timeliness of policy, recent

attention has focused both on direct deprivations and on income poverty. In some cases, this

is because data on deprivations can be gathered more quickly than income data and at a

lower cost; in other cases this arises from a direct interest in deprivations for which income

poverty is an insuffi cient proxy. This chapter explores how the measurement of multiple

deprivations may be strengthened and made more relevant for policy.

Initially, Indian poverty measures were unidimensional and based on income or expen-

diture. From 2002, India identified rural households as ‘below the poverty line’according

to a thirteen-item census questionnaire. The 2002 census process was subsequently accused

of corruption and low data quality and coverage; the methodology was subject to criticisms

because of the weighting and aggregation processes; and the content of the 13-item survey

was challenged.

Informed by such criticisms, this chapter draws on the 2005/6 National Family Health

Survey. First, it explores concerns over BPL data quality. Next, we use the NFHS dataset,
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which is arguably of better quality, to match the dimensions in the rural BPL census, and

find 10 plausible matching indicators. We construct a pseudo-BPL score using the current

methodology, and compare this with the identification and aggregation methodology pro-

posed by Alkire and Foster (2008). Their identification strategy addresses some weaknesses

of the BPL. Also, it goes beyond the BPL because it can be disaggregated, and hence can

provide policy guidance at the village, block, or district level as to the components of de-

privation. Using a decomposable measure would make much better use of BPL census data

at minimal extra cost. For example, poverty in Orissa is driven more by deprivations in the

quality of the air the household members breathe and in nutrition, whereas deprivation in

assets figures more strongly in Rajasthan. In both states, a lack of women empowerment,

a lack of access to sanitation, and a lack of education are widespread. Comparing the BPL

methodology and the Alkire and Foster (AF) methodologies lead to different results. If all

else were equal, according to the AF method, as many as 33 percent of extremely poor rural

Indians would not have received a BPL card using the 2002 BPL method.

To respond to the criticisms regarding data content in the BPL survey, in this chapter

we present an illustrative index of multiple deprivation, which employs nine variables, each

of which represent policy goals in the 11th plan. Once again, the results are compared with

income poverty and with pseudo-BPL status. Finally, the poverty rates are disaggregated

by state and broken down by dimension. We demonstrate that an alternative measurement

methodology is able to specify the composition of multidimensional poverty in any given

state or group and to guide policy concretely and specifically.

This chapter proceeds as follows. The second section provides a brief history of poverty

measurement in India and describes how Indian poverty measurement methodologies moved
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from being single dimensional to multi-dimensional. In the third section, we provide the

theoretical framework of the 2002 BPL, which is the key approach implemented by the

Indian government, and critically evaluate the process drawing on the existing literature.

The fourth section describes an improved multidimensional methodology for identification

and measurement proposed by Alkire and Foster (2008). The fifth section describes the

NFHS data and our construction of pseudo-BPL measures and of AF measures. The sixth

section compares the 2002 BPL approach with the AF methodology. The seventh section

develops an index of deprivation, using NFHS data, which responds to criticisms regarding

the data content in the BPL. We compare these results with income poverty and with

pseudo-BPL status for sample respondents. The final section concludes.

Poverty Measurement Methodologies: Brief Review

This section provides a brief history of poverty measurement mechanisms since indepen-

dence. Under the first four quinquennial plans, the government of India aimed to reduce

income poverty by pursuing a high rate of economic growth measured solely in terms of the

per capita gross domestic product. The rate of economic growth, however, was insuffi cient to

cause a sharp fall in income poverty across all states and, consequently, for the first two and

a half decades, the income poverty rate hovered between 38 percent and 57 percent without

any particular trend. The offi cial measure of poverty for that entire period was based on

consumption expenditure (Radhakrishna and Ray, 2005).

In the early seventies, for the first time the basic minimum needs approach gained promi-

nence. The Planning Commission appointed a Task Force on ‘Projections of Minimum Needs

and Effective Consumption Demand’that defined the rural poverty line as the per capita
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consumption expenditure level needed for a minimum required calorie intake in rural and

urban areas. Thus although poverty measurement remained in income space, the basis of

poverty measurement evolved from the income-based approach to the basic-needs-based ap-

proach. According to the recommendation of the task force, the minimum basic food intake

requirement for the rural and the urban habitants was 2400 calories and 2100 calories, re-

spectively (Government of India, 1979). Based on these minimum calorie requirements, the

minimum required subsistence income levels were determined for different regions. These

minimum required income levels were used as regional poverty thresholds. Since then the

Indian poverty analysis has been based on consumption expenditure (Datt and Ravallion,

2002).

To improve the effectiveness and timeliness of policy, recent attention has focused on

specific deprivations besides income poverty. To target services to the most needy, the gov-

ernment developed a measure by which families were categorised as living ‘below the poverty

line’(BPL). Since 1992, three successive BPL censuses (1992, 1997, 2002) identified rural

families that are below the poverty line and thus eligible for government support such as sub-

sidized food or electricity, and schemes to construct housing and encourage self-employment

activities. Each BPL census applied a unique identification technique. The first BPL sur-

vey in 1992 gathered self-reported income data and used the all-India income poverty line

to identify BPL households. This generated very high estimates of rural poverty (52.5%).

Moreover, this approach was based on income data, which may be less accurate than con-

sumption data (Atkinson and Micklewright, 1983; Grosh and Glewwe, 2000).

To improve upon the 1992 methodology, the 1997 BPL census used expenditure and

multiple criteria rather than income data alone, and excluded the visibly non-poor. It had
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two parts. The first part was administered to all rural households, and identified as “visibly

non-poor”households who met certain requirements. If the household was not registered as

visibly non-poor, it was administered a survey, which gathered basic socio-demographic in-

formation, as well as household characteristics, and consumption expenditures over the past

30 days. However, critics including a subsequent Expert Review criticised the 1997 method-

ology for four reasons. First, the exclusion criteria were too stringent (the possession of a

single ceiling fan was grounds for exclusion). Secondly, poverty lines for all states and Union

Territories (UT) were lacking. Thirdly, the BPL criteria were not uniform across states;

hence, interstate comparisons were diffi cult. Fourthly, there were no procedures available to

add new families to the BPL lists for five years (Government of India, 2002; Hirway, 2003;

Jalan and Murgai, 2007; Sundaram, 2003). Finally, the non-poor households were identified

according to their resources rather than what household members were capable of being

and doing. This is the fundamental distinction between the needs-based approach and the

capability approach of Amartya Sen.

The next section describes the 2002 BPL methodology in detail, and identifies both its

strengths and shortcomings.

Below The Poverty Line (BPL) 2002: Methodology and Critiques

In 2002, rural households were asked a set of non-income questions and the responses were

used to identify those households that were qualified to receive BPL cards. No additional

analysis was conducted using the census dataset other than the identification of the BPL

card holders. How did this proceed?
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2002 BPL Methodology

The 2002 rural BPL census consists of thirteen questions for each household, comprising

topics such as food, housing, work, land ownership, assets, education, and so on.52 Depending

upon the response category selected, the household is assigned a score (0-4) for each variable.

A household’s score is then summed to create an aggregate score. A poverty cutoff is fixed

at the State level or at lower levels for the aggregate score. Households falling below that

area’s poverty cut-off are identified as ‘BPL’. At the state or UT level, a further limit was

fixed: the number of households identified as BPL was limited to ten percent above the BPL

figures estimated in 1999-2000.

Like every other poverty measure, the 2002 BPL methodology involves two components:

the identification of the poor and the aggregation of the data into a single poverty index

(Sen, 1976). Let us introduce the notation that we use to describe the 2002 BPL method. We

denote the set of all positive integers by N. Let us assume that there are N ∈ N households

in the economy and the well-being of each household is gauged using D ∈ N dimensions.

The achievements of the households in the entire society are summarized by an N × D

dimensional matrix H ∈ RND+ , where RND+ is the N ×D-dimensional non-negative euclidean

space. The set of all N × D dimensional matrices is denoted by H. The sum of entries in

any given vector or matrix a is denoted by |a|, while µ(a) is used to represent the arithmetic

mean of a. The achievement of the nth household in the dth dimension is denoted by hnd for

all d = 1, . . . , D and all n = 1, . . . , N .

The first stage of the BPL method identifies which households are multidimensionally

poor. Let us designate the set of categories for the dth dimension by Id = {0, 1, . . . , id},

52These questions and the response categories are reprinted in Appendix G.
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where id ∈ N is the score attached to the highest category in the dth dimension.

First, an N × D-dimensional matrix X is constructed from the matrix H, where xnd

is the ndth element of X such that xnd ∈ Id for all d and for all n. For example, suppose

the dimension of well-being is acres of land holding. Instead of using the amount of land

holding directly, five categories were created. See Appendix G. Thus, the nth element in

the dth dimension can take any integer value between zero and id such that 0 ≤ xnd ≤ id.

Each household is provided a score in each dimension based on their achievement in that

particular dimension. The overall welfare score of the household is calculated by summing

the dimensional scores. The welfare score of the nth household is denoted by Dn =
∑D

d=1 xnd.

The minimum possible welfare score is zero and the maximum possible welfare score is D̂ =∑D
d=1 id. Therefore, 0 ≤ Dn ≤ D̂ for all n. A household is identified as poor if the welfare

score of that household lies below a certain threshold, which is called a poverty line or a

poverty cut-off and is denoted by z. The nth household is poor and identified as ‘below the

poverty line’if Dn < z and non-poor, otherwise.

After identifying the poor, an N -dimensional vector Y = (y1, . . . , yN) is created such that

yn = 1 if Dn < z and yn = 0, otherwise. In other words, Y is a vector containing only zeros

and ones: an element is equal to one if the corresponding household is poor and zero if the

household is non-poor. Finally, the BPL poverty rate is equal to:

PBPL =
1

N

N∑
n=1

yn.

We can think of each BPL question as a dimension of social welfare, i.e., D = 13. The

response to each question comprises five categories, i.e., Id = {0, 1, 2, 3, 4} for all d. The

121



worst category is assigned a score of zero; whereas the best category is assigned a score of

four. In the three intermediate categories a higher value implies a better category. The score

for the nth household in the dth dimension is equal to hnd, where 0 ≤ hnd ≤ 4 for all d and

all n. The minimum possible overall welfare score is zero and the maximum possible overall

welfare score is D̂ = 52, i.e. 0 ≤ Dn ≤ 52 for all n. Households falling below that area’s

poverty cut-off (these vary by state or district) are identified as ‘BPL’.

Critiques of the BPL Process

The 2002 BPL results have come under fierce criticism from many sides. See Hirway (2003),

Jain (2004), Jalan and Murgai (2007), Mukherjee (2005), and Sundaram (2003) among

others. The criticisms might be roughly divided into three kinds: methodological drawbacks

in identification and aggregation, data quality and corruption, and issues of data content.

Methodological Drawbacks in Identification and Aggregation

The main methodological criticisms of the BPL indicator are as follows:

1. Cardinalization —The method by which the response variables are summed into a

welfare score Dn is problematic for the following reasons. First, the raw data are cate-

gorical, and their ordering might be disputed. Yet even if one agrees with the ordering

of the responses, the distance between the responses for each dimension is not known.

There is no justification for assuming the distance between each category to be uniform.

Furthermore, the inter-dimensional comparison of scores presumes cardinality across
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dimensions. For example, a household is assigned a score of two if either the house-

hold members enjoy one (not two) square meals per day throughout the year, or if the

household includes at least one person who has completed secondary schooling. How-

ever, these two situations may not appear to reflect the same degree of deprivation. In

a country where about 60 percent of students drop out before completing secondary

education, a household with a member completing secondary education is reasonably

well off. Nevertheless, a household seems less likely to be well nourished if the entire

household were to survive only on one square meal a day for the entire year. The

cardinalization of ordinal data in this way may not be highly intuitive.

2. Complete Substitutability across Dimensions —A second and related problem is that

the scores for the thirteen dimensions are aggregated into a single overall score such

that Dn =
∑N

n=1 xnd, and the poor are identified according to a cut-off set across the

aggregate score, Dn < z. This simple aggregation is equivalent to treating all dimen-

sions as perfect substitutes. A one-point gain in one dimension can be compensated by

an equivalent one-point decrease in any other dimension, at any other level of achieve-

ment. Once again, this does not appear to be a convincing argument. The problem

can be explained in terms of the poverty focus axiom and the deprivation focus ax-

iom.53 According to the poverty focus axiom, if there is an increase in any dimension

among the non-poor, the poverty rate should remain unchanged. According to the

deprivation focus axiom, if there is an increase in any dimension in which a household

is not deprived (whether the household is poor or non-poor), the poverty rate remains

the same. Although the BPL does not identify deprivation thresholds, intuitively the

53For formal definitions of the poverty and deprivation focus axioms, see Alkire and Foster (2008).
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BPL method satisfies the poverty focus axiom, but not the deprivation focus axiom.

Consider a marginally poor household in Uttar Pradesh that requires only one point

so that it can move above the BPL poverty line. Along with other achievements, the

household owns 5 hectares of un-irrigated land but survives normally on one square

meal per day but less than one square meal occasionally. The household is deprived

in terms of food security but is not deprived in terms of land holding. Note that if

the household owned 5.1 hectares of land it would score ‘4’rather than ‘3’in that di-

mension. Further, this change in score in a non-deprived dimension would increase its

aggregate score, hence pull it above the BPL poverty line. The total substitutability

among the BPL dimensions at all levels appears to be particularly undesirable given

their equal weight and the problems in data content.

3. Equal Weighting of Dimensions —The thirteen dimensions are combined using equal

weights. This implies that each dimension makes an equally important and equally

valuable contribution to poverty. But no justification for these weights is provided.

Jalan and Murgai (2007) argue that the relative weights on dimensions should also be

allowed to vary across states because different indicators do not have the same impact

across states. For example, education should be weighted differently in Bihar than in

Kerala. Alternatively, in a different context, Atkinson et al. (2002) argues that the

dimensions should be chosen explicitly such that they are roughly equal in normative

(ethical) importance. Sen and others argue that the weights, being value judgements,

must be subject to public discussion (Sen, 1996, 2004).
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4. Varying Poverty Lines —No national poverty line is set; rather states, and in some

cases districts, set their own poverty line across the 52-point scale. Jain (2004) observes

that the district poverty line varies from 12-15 in Madhya Pradesh, driven by the need

for each district to match “the ‘already declared’proportion of poor in that district”.

In this situation, the fact that the BPL status of a family with fourteen points depends

only upon its district level quota for the year 2000 seems rather diffi cult to defend,

particularly when the poverty quotas are controversial, which is our next point. While

there is no easy response to this situation, the need for flexibility and state autonomy

must be balanced against the need to maintain uniform standards.

5. Imposed Poverty Quotas —To ensure that the numbers of BPL households did not

exceed fiscal resources, the States’BPL estimates were capped so that they could not

exceed the NSSO 1999-2000 estimates by more than 10 percent. This particular cap

has been widely disputed, because BPL is not measuring income poverty. Using the

1999-00 and 2004-05 NSS datasets, Jalan and Murgai find that identification of the

poor through 2002 BPL method is an inadequate proxy for consumption poverty. “The

BPL score misclassifies nearly half (49 percent) of the [consumption] poor as non-poor,

and conversely, 49 percent of those identified as BPL poor are actually [consumption]

non-poor. Even in the “best” state, Orissa, 32 percent of the poor are misclassified

while in the worst state, Andhra Pradesh, three out of every four poor people are

misclassified as non-poor based on the BPL indicator”(p 7). As Hirway argues, given

the multidimensional approach of the BPL census, “There is no reason why the two

estimates should match, and there is no logic in reducing the estimates of poverty

of one kind to match the other kind of poverty!” (p. 4804). While clearly there are
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needs to impose some limits for reasons of fiscal constraints and accuracy, the use of

1999-2000 NSS data creates errors of inclusion and exclusion in states.

6. Neglect of Intensity of Poverty Across Households —The BPL method is not sensitive to

the inequality in terms of the range of deprivations BPL households suffer. In a region

with high inequality among the poor, the BPL method does not provide the policy

maker information on who among the BPL are extremely poor rather than marginally

poor. However, the extreme poor might claim special priority either in terms of the

targeting or level of provision of government services.

7. High Cost; Low Policy Impact —Fielding a rural census of households is costly, and gives

rise to potentially powerful data to guide policy even at very local areas. Unfortunately,

the BPL measure makes very rudimentary use of the BPL data. The current BPL

identification gives rise to an aggregate headcount. But this cannot be decomposed

to show the composition of poverty in different villages, blocks and districts or for

different cultural groups or kinds of households. Such analysis is extremely important

for policy since it allows a policy maker to understand the components of poverty for

each group, and thus to craft an effective and effi cient response.

Corruption, Data Quality and Data Coverage

“Targeting”, Hirway observed, “is not a statistical exercise, but is a major political activity”

(p. 4804). Because households identified as BPL access multiple benefits, Hirway observes,

there is “a mad rush in our villages to be enrolled as BPL households.”Concretely, “The

rich and powerful in a village frequently pressurises the talati and the sarpanch to include
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their names in BPL lists” (p. 4805, see also Khera (2008)); poor households may not be

interviewed, their interviews may be distorted, and they may not be able to convince the

local elite to include their names on the list. Jain gives particular examples of poor data

quality: “Charua Singh was excluded from the BPL list because the enumerator had filled

up the form without visiting Charua’s house.”(Jain, 2004, p. 4982). Jain also argues that

pavement dwellers, who have no address for the BPL ration cards, households displaced by

riots and communal violence, manual scavengers, and communities involved in caste-based

prostitution are systematically excluded from BPL status.

Corruption crowds out the poor from BPL card ownership. Drawing on village level

studies in Rajasthan, Khera (2008) reports the striking finding that 44 percent of poor

households did not have a BPL card, and 23 percent of those with a BPL card were non-

poor. Hirway finds 11-18 percent of the 1997 BPL list members in Gujarat are clearly local

elite, and 14 percent of the poor households were excluded from the BPL lists. Further,

the truly poor (rather than the mis-classified elite) had greater diffi culty in using their BPL

status effectively to enjoy all its intended benefits. In participatory social assessments inWest

Bengal, Mukherjee (2005) found that “in some villages the [BPL] list had been manipulated

to the extent of 50 percent with the inclusion of many non-poor households.”(p. 12). The

manipulation appeared to occur after the survey, through corruption: “Though door-to-

door BPL survey was conducted, the final outcomes in terms of the BPL list shocked many

genuine poor in terms of not finding their names on the list”(p. 12).

Although some crosschecks were successful in revising BPL lists to correct inaccuracies,

others were infiltrated. For example, a triangulation process had been set up to verify the

BPL results, in that the BPL list was to be read out in the gram sabha so that inaccuracies
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could be addressed, and a revised list read out at a second meeting. But in Jain’s Madhya

Pradesh case study, this cross check rarely functioned. “In Petlawad, the block level pan-

chayat offi cials declared the first list as final and entertained no grievances; the Kotma block

panchayat offi cer refused to disclose the list in public. . . As per the study of 100 panchay-

ats, it was found that in 67 panchayats, no second gram sabha meeting was organised for

approving the list. . . ”(Jain, 2004, p. 4983).

It is true that the case studies are dispersed and anecdotal. But as the 2002 BPL census

did not have explicit mechanisms to correct for distortions in the “situations where the poor

are not powerful enough to assert themselves and the administration is not strong enough

to identify the poor correctly”(Hirway, 2003, p. 4806), the grave doubts about data quality

seem worth exploring further.

Data Content and Periodicity

Even if the thirteen 2002 BPL indicators had been implemented accurately and without

corruption, a number of authors argue that the outcomes would still be inaccurate. In the

case study from MP, Jain and the Alliance Campaign for Good Governance argue that the

BPL 2002 had “inappropriate indicators”. They argue that even if the dimensions were

justifiable (a separate question), the indicators should have taken into account the quality

of land, the size of house, whether clothes were provided as gifts, and the quality as well as

number of meals eaten per day.

In addition, the BPL census focuses mainly on resources (land, house, clothing, food,

bathroom, consumer goods, loans, ‘want from government’), rather than on capabilities —

the things that households are able to do and be (be nourished, be healthy). The educa-
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tion questions come closest to approximating capabilities. The diffi culty with resources, as

Amartya Sen argues, is that the capabilities a physically disabled household or a pregnant

mother are able to achieve from a given bundle of resources (2 kgs rice and a bicycle, for

example) may be very different than the capabilities others could achieve. Concretely, Jain

observes that the BPL systematically excludes certain categories of people such as the dis-

abled, who may score above the poverty line in the space of resources (fan, clothes, or bicycle)

but not be able to enjoy basic capabilities. Given the diversity of people’s ability to convert

resources into capabilities, if development aims at expanding capabilities, the constituent

indicators should, when possible, focus directly on capabilities (such as nutritional status)

rather than resources (number of meals).

Another striking aspect of the BPL survey, which has not received suffi cient critical

comment, is the response structures. The response structure on the status of the household

labour force will systematically regard female-headed households as more deprived, which

is understandable (although it is unclear what score will be given if women and men both

work, and why that might be inferior to men alone working). However, if a household is

unable to work because of illness, disability, or unemployment, they may respond ‘other’

and thus be given the least deprived score of 4, which seems aberrant. A similar diffi culty

is evident in the response structure ‘means of livelihood’. Both Sundaram (2003) and Jalan

and Murgai (2007) find the ordering of the livelihood category problematic —for example,

it assumes that a small business household (e.g. an artisan) is always better off than one

employed in agriculture (e.g. a landowner). Also a household who has ‘no indebtedness’

scores the value of 4, regardless of whether it has no loan because it is socially marginalized

(drug addicts), and family and banks will not lend to them, or because it is suffi ciently
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wealthy not to require a loan.

The ranking of the last two dimensions are particularly confusing. In case of reason for

migration from the household, the logic of ordering is not transparent. While many poor

households are migrants, the more educated, more empowered are also subject to migratory

pressures and many rural poor are ‘left behind.’ Yet according to this response structure,

a nuclear Bengali family whose son is a high profile software engineer residing in Bengaluru

(earlier well-known as Bangalore) would receive a score of two, whereas a family of bonded

laborers, who has not migrated anywhere would receive a score of three.

The final question of the BPL is ‘preference of assistance from government’. It is not

evident how responses will reveal information regarding the respondent’s own socio-economic

status. There is no proper justification as why a family seeking assistance on housing would

receive higher score than a family seeking assistance for skill upgradation. Moreover, the

responses will be influenced by respondents’assessment of government capabilities. This is

a discrete variable in which the elements are diffi cult to order at all; the BPL practice of

ascribing a cardinal meaning to the resulting scores merits review. From the discussion of the

last few paragraphs, it is evident that some of the response structures are in fact misleading

and require the introduction of more useful dimensions of social welfare.

A further and distinct set of criticisms refer to the fact that the BPL surveys are only

conducted every five years, but households’economic status can shift rapidly, and transient

spells of poverty affect many households. Unless there are ways to update the BPL status

between surveys, even if the initial identification of BPL households was accurate, it is certain

to become inaccurate over time. The likely magnitude of that inaccuracy could be important

to consider.
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This section has enumerated in detail the tremendous challenges that were encountered

in the 2002 BPL census process. A number of these challenges, relating to corruption and

to the census instrument, have been the focus of other accounts and surely will be addressed

in the next BPL census. The remainder of this chapter focuses on the above methodological

criticisms and suggests an alternative approach.

Multidimensional Poverty: A New Methodology

A Planning Commission Report from the Working Group on Poverty Alleviation (Gov-

ernment of India, 2006) explicitly took a “multi-dimensional view of poverty”(p. 18) which

it also calls a ‘multiple deprivation’view (p. 24) rather than a norm based on calories or

income. It interpreted the 2002 BPL not as a proxy for income or expenditure poverty,

but rather as a direct measure of multidimensional poverty that encompasses expenditure

poverty and goes beyond it. The Report explicitly stated that “the possibility of conflict

between the magnitude of poverty as revealed by the BPL surveys and as estimated on the

basis of NSS surveys . . . need not be a major issue . . . ”(p. 25).

This approach is consistent with other empirical work, which has identified the inherent

value of multidimensional poverty measures for guiding policy (Laderchi et al., 2003; Lader-

chi, 2008). Many have argued that human poverty and deprivation go beyond income or

ownership of material wealth (Drèze and Sen, 2002). Yet even in this case, direct attention

to other variables such as education, health, and nutrition might not be required if income

were a suffi cient proxy for these outcomes and if policies to reduce income poverty consis-

tently reduced other deprivations. Unfortunately, this is not necessarily the case now any

more than in the early periods after independence. Since liberalization, India has enjoyed
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a strong rate of economic growth. Yet human development indicators remain uneven and

weak. The first page of the 11th plan of India states the following concern: “the National

Family Health Survey-3 (NFHS-3) shows that almost 46 percent of the children in the 0 to

3 years’age group suffered from malnutrition in 2005—06, and what is even more disturb-

ing is that the estimate shows almost no decline from the level of 47 percent reported in

1998 by NFHS-2”(Government of India, 2008). More generally, across developing countries,

Bourguignon et al. (2008) find “little or no correlation between growth and the non-income

MDGs”. Another reason to use indicators in addition to income is that some families ex-

perience multiple deprivations, whereas others are deprived only in one dimension. Clearly,

the households with multiple deprivations should be targeted. For these reasons, it is useful

to explore measures of human deprivation that can identify households with multiple depri-

vations. Finally, it is useful to see the leading components of deprivation in different states

and districts, as analysis of such data can be used to design the most effective sequence of

interventions.

In the previous section, we critically evaluated the BPL approach. In our first criticism

of the BPL approach, we pointed out the methodological drawbacks of the identification

and aggregation process. This section is devoted towards addressing these methodological

weaknesses and proposes adopting a recent methodology for multidimensional poverty mea-

surement developed by Alkire and Foster (2008). The Alkire and Foster (AF) method was

selected because it addresses the methodological concerns of the current BPL aggregation

method discussed in the previous section in the following ways:

1. Valid treatment of ordinal data —The AF measure is suitable for ordinal data. By

applying dimension-specific cut-offs, households are classified as either deprived or
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non-deprived in that dimension. This has the effect of dichotomising ordinal data and

thus avoids the problem of cardinalization.

2. Poverty and Deprivation Focused —By applying cut-offs to each dimension, each house-

hold is judged to be deprived or not in that dimension independently of its achievements

in other dimensions. Thus, we do not have a situation of perfect substitutability where

an increase in landholdings from 5 to 5.1 hectares can compensate for a decrease from

one square meal per day to complete food insecurity. Rather, multidimensional poverty

status only depends on dimensions in which households are deprived.

3. Equal or general weights —It is possible to weight the dimensions equally, or, to weight

indicators and dimensions differently, or indeed to explore several weighting structures

and the robustness of the BPL status according to variable weights.

4. Poverty lines can be fixed or flexible —In our example, we have used the same depri-

vation cut-offs nationally both for each deprivation and across deprivations. However,

these could be fixed at district or state levels if that were deemed more appropriate.

5. Highly informative for policy — Finally and most importantly, in the current BPL

measure, the census data are used solely to designate households as BPL or ‘Above the

Poverty Line’(APL). However using the AF measure, the BPL population of any state

or ethnic group can be scrutinised to see what deprivations are mainly responsible for

their multidimensional poverty. This information, taken together with other analyses

made possible by the same data (hence at minimal extra cost) can inform policy. Using

the AF measure, responses can be tailored to the composition of poverty in different

states or districts, making them more effi cient and effective.
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The Alkire and Foster Methodology

As in the discussion of BPL methodology, consider a society with N households and D

dimensions.54 Let H denote the set of all N × D matrices and H ∈ H represents an

achievement matrix of a society, where hnd is the achievement of the nth household in the dth

dimension for all d and all n.55 The nth row and the dth column of H are denoted by hn· =

(hn1, . . . , hnD) and h·d = (h1d, . . . , hNd). The row vector hn· summarizes the achievements of

household n in the D dimensions; whereas, the column vector h·d represents the distribution

of achievements in the dth dimension across the N households. We denote the D-dimensional

deprivation cut-offvector by z, where the deprivation cut-offfor the dth dimension is indicated

by zd.

Corresponding to anyH ∈H, anN ×D dimensional deprivation matrix g0 is constructed,

where the ndth element is denoted by g0nd. Any element of g
0 can take only two values as

follows:

g0nd =


1 if hnd < zd

0 otherwise
.

In other words, the ndth entry of the matrix is equal to one when the nth household is

deprived in the dth dimension and is equal to zero when the household is not deprived. From

the matrix g0, we construct an N -dimensional column vector C of deprivation counts such

that the nth element cn = |g0n| represents the number of deprivations suffered by the nth

household. If the dimensions in H are cardinal, then we construct a normalised gap matrix

54Although we choose households rather than individuals as the unit of analysis in order to parallel the BPL
methodology, it is of course possible to focus instead upon individuals.

55A society could be a nation, state, or any geographic region.
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g1, where the ndth element is:

g1nd =


(zd − hnd) if hnd < zd

0 otherwise
.

By construction, g1nd ∈ [0, 1] for all n and all d, and each element gives the extent of depriva-

tion experienced by the nth household in the dth dimension. The generalized gap matrix is

denoted by gα, with α > 0. The ndth element of gα is denoted by gαnd, which is the normalised

poverty gap raised to the power α.

Now, we are in a position to provide an outline of the class of multidimensional poverty

measure proposed by Alkire and Foster (2008). The first stage of multidimensional poverty

measurement is to identify the poor. Most existing poverty measures identify the poor either

by the union approach or by the intersection approach. According to the union approach,

a household is identified as poor if the household is deprived in at least one dimension. On

the other hand, a household is identified as poor according to the intersection approach

if the household is deprived in all dimensions. Note that the 2002 BPL method does not

follow either of these approaches. If dimensions are equally weighted, the multidimensional

approach proposed by Alkire and Foster identifies a household as poor if the household is

deprived in at least k dimensions, where k ∈ {1, . . . , D}.56 Thus, k can be considered as a

second poverty cut-off.

Let us define the identification method ρk such that ρk(hn·, z) = 1 if cn ≥ k, and ρk(hn·, z)

= 0 if cn < k. This implies that a household is identified as multidimensionally poor if the

household is deprived in at least k dimensions. Note that for k = 1, the identification

56Equal weights are presented first for simplicity; we discuss general weights below.
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criterion is equivalent to the union approach; whereas, the identification criterion is the

same as the intersection approach for k = D. The set of multidimensional poor, according

to this identification criterion, is defined by Zk = {n : ρk(hn·, z) = 1}. A censored matrix

g0(k) is obtained from g0 by replacing the nth row with a vector of zeros whenever ρk(hn·, z)

= 0. An analogous matrix gα(k) is obtained for α > 0, with the ndth element gαnd (k) = gαnd

if ρk(hn·, z) = 1, while gαnd (k) = 0 if ρk(hn·, z) = 0.

Based on this identification method, Alkire and Foster define the following poverty mea-

sures. The first natural measure is the percentage of individuals that are multidimensionally

poor. Analogous to the single-dimensional headcount ratio, the multidimensional Headcount

Ratio is defined by HCR(H; z) = Q/N , where Q is the number of individuals in the set Zk.

This measure has the advantage of being easily comprehensible and estimable. Moreover,

this measure can be applied using ordinal data. Unfortunately, it is completely insensi-

tive to the intensity and distribution of poverty, as first noticed by Watts (1969) and Sen

(1976) in the single-dimensional context. It also fails to satisfy the properties of transfer

and monotonicity. In addition, in the multidimensional context, it violates dimensional

monotonicity. Alkire and Foster describe this problem as follows: if a household already

identified as poor becomes deprived in an additional dimension in which the household was

not previously deprived, HCR does not change. Finally, this measure is not flexible to

dimensional decomposition, which is often useful for policy recommendation.

To overcome the limitations of the multidimensional headcount ratio, Alkire and Fos-

ter propose the class of dimension-adjusted Foster-Greer-Thorbecke measures, defined by

Mα(H; z) = µ(gα(k)) for α ≥ 0. For α = 0, the class of measures yields the Adjusted Head-

count Ratio, defined byM0 = µ(g0(k)). The adjusted headcount ratio is the total number of
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deprivations experienced by all poor households divided by the maximum number of depriva-

tions that could possibly be experienced by all households and is formulated by |g0(k)| /ND.

It can also be expressed as a product between the percentage of multidimensional poor

(HCR) and the average deprivation share across the poor given by A = |g0(k)| /QD. Thus,

M0 = HCR · A. In words, A provides the fraction of possible dimensions D in which the

average multidimensionally poor household is deprived. In this way, M0 summarises infor-

mation on both the incidence of poverty and the average extent of a multidimensional poor

household’s deprivation. This measure is as easy to compute as the HCR and can be calcu-

lated with ordinal data, but it is indeed superior to the HCR since it satisfies the property

of dimensional monotonicity described above.

When some data are cardinal, for α = 1, the class of dimension-adjusted FGT measures

yields the Adjusted Poverty Gap, given byM1 = µ(g1(k)), which is the sum of the normalised

gaps of the poor |g1(k)| divided by the highest possible sum of normalised gaps ND. It can

also be expressed as the product between the percentage of multidimensional poor households

HCR, the average deprivation share across the poor A, and the average poverty gapG, where

G = |g1(k)| / |g0(k)|. Thus, M1 = HCR ·A ·G. M1 summarises information on the incidence

of poverty, the average range of deprivations, and the average depth of deprivations of the

poor. It satisfies not only dimensional monotonicity, but also monotonicity: if an individual

becomes more deprived in any dimension in which they are already deprived,M1 will increase.

Finally, for α = 2, this class of measures yields the Adjusted Squared Poverty Gap (M2),

defined by M2 = µ(g2(k)), which is the sum of the squared normalised gaps of the poor

|g2(k)| divided by the highest possible number of normalised gaps ND. It can also be

expressed as the product between the percentage of multidimensionally poor HCR, the
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average deprivation share across the poor A, and the average severity of deprivations S,

which is given by S = |g2(k)| / |g0(k)|. Thus,M2 = HCR ·A ·S. M2 summarises information

on the incidence of poverty, the average range, and severity of deprivation of the poor. If

there is a regressive transfer among two poor persons, then M2 increases, unlike M1 and

M0. This measure satisfies both types of monotonicity principle, the transfer principle, and

is sensitive to the inequality among the poor because it emphasizes the deprivations of the

poorest.

All members of the Mα family are decomposable by population subgroups. Given two

separate achievement matrices H1 and H2, with population size of N1 and N2, respectively,

the overall poverty level for N = N1 + N2 individuals is obtained by:

Mα (H1, H2; z) =
N1
N
Mα (H1; z) +

N2
N
Mα (H2; z) .

Clearly, this can be extended to any number of subgroups. All members of theMα(H; z) fam-

ily can be decomposed into dimensional subgroups asMα(H; z) =
∑D

d=1 µ (gα·d (k)) /D, where

gα·d is the d
th column of the censored matrix gα(k). It is a very convenient decomposability

property; µ (gα·d (k)) /Mα(H; z) can be interpreted as the post-identification contribution of

the dth dimension to overall multidimensional poverty.

The Mα family of measures are neutral to the association increasing transfers defined in

Chapter II (p. 21). If one achievement matrix is obtained from another achievement matrix

by an association increasing transfer among the poor, both of them yield the same level of

poverty. The additive form enables the family of measures to evaluate the achievement of

each household in each dimension independently of the achievements in the other dimensions.
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In this sense, the Mα family of measures is analogous to the first group of measures of

Bourguignon and Chakravarty (2003).

Weighting

Apart from identification and aggregation, another important challenge in multidimensional

poverty measurement is how to weight different dimensions. The weights implicitly indicate

the dimensional importance and/or policy priority. In the preceeding analysis, the dimen-

sions were presented as if they were equally weighted. Equal weights is an arbitrary and

normative weighting system that is appropriate in some, but not all, situations (Atkinson

et al., 2002). In many other cases, some dimensions are believed to be more important than

others, and hence should to receive a relatively higher weight. Thus, we move from equal

weights to unequal weights. The Mα family can be easily extended to a more generalized

form considering unequal weighting structures.

Let w be a D-dimensional row vector with the dth element being equal to wd, which is

the weight associated with the dth dimension such that |w| = D. We define the N × D

dimensional matrix gα (wd) with the ndth element being equal to gαnd that takes two values

as follows:

gαnd (wd) =


wd ((zd − hnd) /zd)α if hnd < zd

0 otherwise
.

The weighted column vector C of deprivation counts can be obtained with the nth element

being equal to cn = |g0n·|; cn varies between 1 and D. In this situation, the dimensional

cut-off for the identification step is a real number k, such that 0 < k ≤ D, instead of

k being a positive integer. When k = min{wd}, the criterion is nothing but the union
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approach, whereas, k = D yields the intersection approach. Also note that if wd = 1 for

all d, then the weighting structure turns out to be the equal weighting structure. After the

multidimensionally poor are identified, the identification method is denoted by ρk such that

ρk(hn·; z, wd) = 1 when cn ≥ k, and ρk(hn·; z, wd) = 0 when cn < k. Finally, a censored

matrix g0(k, wd) is obtained from g0 (wd) by replacing the nth row with a vector of zeros

whenever ρk(hn·, z) = 0. An analogous matrix gα(k, wd) is obtained for α > 0, with the ndth

element gαnd (k, wd) = gαnd (wd) if ρk(hn·; z, wd) = 1, while gαnd (k, wd) = 0 if ρk(hn·; z, wd) = 0.

The class of dimension-adjusted FGT measures is defined by Mα(H; z, wd) = µ(gα(k;wd))

for α ≥ 0.

Having introduced the new methodology, we now compare it to the methodology applied

in the 2002 BPL process. Our empirical results draw on the National Family Health Survey

dataset for the period of 2005-06, which is introduced in the next section.

Data

The National Family Health Survey (NFHS-3) for the year 2005/06 has been collabo-

ratively conducted by the International Institute for Population Sciences (IIPS), Mumbai,

India; ORCMacro, Calverton, Maryland, USA; and the East-West Center, Honolulu, Hawaii,

USA. The survey interviewed 124,385 women aged 15-49 and 74,369 men aged 15-54 from

109,041 households and from all 29 states of India including Delhi. Unlike the previous two

surveys, NFHS-3 interviewed never-married women, never-married men, and ever-married

men in addition to ever-married women. Besides collecting information on household char-

acteristics, such as housing structures, access to sanitation, water sources, and assets, the

survey collected data on individual characteristics, such as the level of education and the
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health status of the respondents. Numerous questions in the survey are analogous to the

questions asked in the BPL questionnaire. This allows us to make comparisons between the

BPL method and the AF method of poverty measurement. We list all the related questions

in Table 9.

In order to compare our findings with the rural BPL population, we focus on rural areas.

The rural BPL survey is uniform, and distinct from urban BPL methods. The NFHS collects

information for men and women in 58,805 rural households. Because the unit of analysis for

the BPL method is household instead of individual, we keep the household as our unit of

analysis. In this chapter, we weight the households by the nationally representative sample

weight provided in the dataset (See Appendix K.)

The 2002 BPL Method versus the AF Method

In this section, we use the NFHS-3 dataset to compare the identification technique of

the BPL 2002 method with that of the AF method. First, we select dimensions or variables

to match the BPL questionnaire as closely as possible, and report the descriptive statistics.

Then we replicate the 2002 BPL score structure using the chosen set of variables and identify

the households that are poor using a pseudo-BPL method. The pseudo-BPL method applies

the BPL 2002 method to identify the poor, but only using the matched dimensions from the

NFHS-3 data set. Finally, we compare the results obtained using the pseudo-BPL method

to the results obtained using the AF method for the same set of variables drawn from the

NFHS data set.
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Matching Dimensions, Indicators, and their Poverty Cut-offs

We select NFHS variables or questions that match, as closely as possible, to those present in

the 2002 BPL questionnaire.57 The match is not perfect, and no proxy is available for three

of the questions, thus our comparison is affected by the differences in dimensions. In the first

three columns of Table 9, we summarize the questions asked in the BPL questionnaire and

the analogous questions asked in the NFHS-3 questionnaire. It is evident from Table 9 that

ten out of thirteen questions in the NFHS-3 are analogous to the BPL questions. Out of

the ten questions, some are directly matched; the rest are obtained by manipulating several

other questions.58 The 2005/6 NFHS is not able to match BPL questions 3, 12, and 13.59

The chosen variables restrict the sample size to 42,717 households, which contain 238,179

persons from 28 states of India.

We exclude Delhi from our analysis because Delhi primarily consists of urban areas;

whereas our analysis focuses on rural areas. Note that all of our results are corrected for

population weights. The fourth column of Table 9 reports the dimension-specific headcount

poverty rates, which give us an idea of the deprivation rates in each dimension.60 It is evident

that majority of the rural Indian population is deprived in three dimensions: sanitation, land,

and loan.

57See Appendix G.
58For detailed description of the related NFHS variables and the corresponding poverty cut-offs, please see
Appendix H.

59The earlier version of NFHS contained information on how many clothes households in the household owned,
but the current version of the survey does not ask that question.

60Note that the poverty rates are calculated in terms of the proportion of individuals instead of the proportion
of households. We first identify the households that are deprived in a particular dimension and assume that
all members in those households are deprived in that dimension. Thus, the poverty rate is the proportion of
sample population in the deprived households to the total sample population.

61There are 68.9% of households with at least one child in the age group of 5-14 and 19.9% of them contain
at least one child laborer.

62Out of the 68.9% of households with at least one child in the age group of 5-14 years, 9.04% contain at least
one child that does not attend school.
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Table 9: NFHS Questions Analogous to BPL Questions and Dimensional Headcount Ratios

BPL Relevant Headcount
Questions NFHS-3 Questions Dimensions (NFHS)

1.
Size group of operational
holding of land

Acres of irrigated and un-
irrigated agricultural land
holdings

Land 70

2. Type of house Type of House Housing 18

3.
Average availability of nor-
mal wear clothing

N/A — —

4. Food Security
Body mass index of the re-
spondent

Food Security 44

5. Sanitation Type of toilet facility Sanitation 77

6.
Ownership of Consumer
durables

Access to different assets Asset 31

7.
Literacy status of the high-
est literate adult

Highest education level at-
tained by the family mem-
bers

Education 26

8.
Status of the Household
Labour Force

Number of hours the chil-
dren worked for household
and non-household members
(5-14)

Labour 1661

9. Means of livelihood
Occupation of the respon-
dent and her partner

Occupation 29

10.
Status of children (5-14
years) [any child]

The reason why the children
do not go to school (5-14)

Child Status 762

11. Type of indebtedness
Anyone in the household has
a Bank or Post Offi ce ac-
count

Loan 64

12.
Reason for migration from
household

N/A — —

13. Preference of Assistance N/A — —

As the analysis of poverty in this chapter is multidimensional, one might be interested in

the breadth of poverty. A household that is deprived in one dimension may not be deprived

in any other dimension. In contrast, a household could be deprived in eight out of ten

dimensions. Both households are deprived in at least one dimension. Does it mean that
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they are equally poor? The answer is indeed no. The breadth of deprivation for the latter

household seems more intense. Thus, it would be interesting to explore the breadth of poverty

among the rural Indian population. In other words, it would be interesting to see how many

people are deprived in one dimension, in two dimensions, and so on. In the first column of

Table 10, we report the exact number of dimensions in which any particular household is

deprived. For example, 10 percent of the sample are deprived in exactly one dimension (it

does not matter which one), and not deprived in the other nine dimensions. The second

column reports the percentage of people deprived in exactly that many dimensions. In the

third column, we provide a pie-chart to diagrammatically visualize the distribution of the

breadth of multi-dimensional poverty.

Table 10: Indicators and Cut-offs of the Chosen Dimensions

Number of
Dimensions 0 1 2 3 4 5 6 7 8 9 10 Total

Percentage
of Poor (%) 3.1 10.0 14.5 17.3 17.6 16.3 11.7 6.4 2.4 0.5 0.1 100

As we can see from Table 10, only 3.1 percent of all rural population is not deprived in

any dimension. If identification of the poor is based on the union approach, then 96.9 percent

of all rural people live in poverty. Recall that a household is identified as poor by the union

approach if it is deprived in at least one dimension, whereas a household is identified as poor

according to the inter-section approach if it is deprived in every dimension. Nearly 32 percent

of the rural population are deprived in either two or three dimensions. Roughly a third of

the rural population is deprived in either four or five dimensions. Also observe that any

poverty index based on the intersection approach would judge India as almost poverty free
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(0.1%). The BPL process neither follows the union approach nor the intersection approach,

but an intermediate approach in a peculiar way. We have already presented the methodology

earlier.

Under-coverage Rate and Over-coverage Rate

In comparing our measure with the pseudo-BPL measure, it is useful to identify persons who

are classified as poor according to one measure, and non-poor by the other. These can be

called over-coverage and under-coverage.

Table 11: Definition of Over-coverage and Under-coverage

Poor by AF Method

Yes No Total

Poor by Yes pyy pByn pBy
pseudo-BPL No pMyn pnn pBn
method Total pMy pMn 1

Let us denote the total household population by N . Let the number of poor based on

the pseudo-BPL approach be denoted by NBy and the number of non-poor be denoted by

NBn = N− NBy. We define pBy = NBy/N and pBn = NBn/N , where pBy and pBn are the

proportion of poor and non-poor identified by the pseudo-BPL method. Let the proportion

of poor and non-poor identified by the AF method be denoted by pMy and pMn, respectively.

These concepts are summarized in Table 11. The rows denote the proportion of house-

holds that are identified as poor versus those identified as non-poor by the pseudo-BPL

method. The columns, on the other, denote the proportion of households that are poor

versus those are not poor according to the AF method. The following four variables denote
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the interaction between these two distinct methodologies.

pyy : The proportion of households that are identified as poor by both

methodologies

pnn : The proportion of households that are identified as non-poor by

both methodologies

pByn : The proportion of households that are identified as poor by the

pseudo-BPL method but are classified as non-poor in terms of the

AF method

pMyn : The proportion of households that are identified as non-poor by the

pseudo-BPL method but are classified as poor in terms of the AF

method

The under-coverage rate is defined to be the ratio of the percentage of the sample popu-

lation that is identified as non-poor by the pseudo-BPL method but are actually classified as

poor by the AF method to the percentage of the population that are classified as poor by the

AF method. Similarly, the over-coverage rate is defined to be the ratio of the percentage of

the sample population that are identified as non-poor by the AF method, but are classified

as poor by the pseudo-BPL method to the percentage of the population that are identified as

poor according to the pseudo-BPL method. Thus, from Table 11, the under-coverage rate is

pMyn/pMy; whereas, the over-coverage rate is pByn/pBy. Intuitively, if a hundred individuals

are identified as poor by the AF method and five of them are misidentified as non-poor by

the pseudo-BPL method, then the under-coverage rate is five percent. Similarly, if a hundred

individuals are identified as poor by the pseudo-BPL method and ten of them are actually

non-poor according to the AF methodology, then the over-coverage rate is ten percent.
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Coverage Rates for the Alternative Methodology

In this section, we compare the coverage rates for both methodologies, and find that the

AF methodology identifies the poor differently from the BPL methodology. To illustrate the

differences in coverage rates, we generate a pseudo-BPL score.63 The highest possible score

for any household is 38. A household is classified as poor based on these ten dimensions if

it fails to make a certain score, say z, out of 38 such that 0 ≤ z ≤ 38. In Table 12, we

summarize the pseudo-BPL poverty rates for various poverty cut-off scores. The first row

of Table 12 reports various poverty cut-offs (z). If a household fails to meet a score that

is greater than the cut-off, the household is classified as poor (analogous to what is done

in the BPL 2002 process). In the second row, we report the poverty rates based on the

corresponding poverty cut-off reported in the first row.

Table 12: BPL Poverty Rates Calculated from the NFHS-3 Dataset

Poverty Line (z) 14 15 16 17 18 19 20 21 22 23 24

Pseudo-BPL
Pov. Rate (%) 16.8 21.6 26.9 32.9 39.1 44.9 51.1 56.8 62.2 67.2 72.1

For clarity, simplicity, and to match our analysis with the pseudo-BPL identification

method, we primarily restrict the analysis to the multidimensional headcount ratio. Accord-

ing to the AF identification methodology, a household is identified as poor if the household is

deprived in a certain number or weighted sum of dimensions only. For the purposes of com-

parison with the existing BPL measure, we further match the BPL assumption of weighting

the dimensions equally. Hence, if the second cut-off (k) is, say, four out of ten dimensions,

then a household is identified as poor if the household is deprived in at least four dimensions.

63To see the score structure of these ten dimensions, please refer to Appendix I.
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We present the multidimensional headcount ratio (MD Headcount) in Table 13.

Table 13: India: Multidimensional Poverty Measures

Poverty MD Matched Under Over
Cut-Off Headcount Pseudo-BPL Coverage Coverage
(k) (H) Poverty Rate Rate Rate

3 0.724 0.721 (z = 24) 5.70% 5.30%
4 0.551 0.568 (z = 21) 7.70% 10.40%
5 0.375 0.391 (z = 18) 12.40% 16.10%
6 0.212 0.216 (z = 15) 20.60% 22.10%
7 0.094 0.092 (z = 12) 33.00% 31.10%

In the first column of the table, we report the second cut-off (k), which establishes the

minimum number of dimensions a household must be deprived in order to be considered as

poor. In the second column, we report the fraction of people that are deprived in at least

that many dimensions. For example, 55 percent of the sample population are poor in at

least four out of ten dimensions. If the poverty cut-off is five out of ten dimensions, then

37.5 percent of the sample population are poor.

The next obvious question is how the AF identification method compares to the pseudo-

BPL method. In the third column of Table 13, we report the pseudo-BPL poverty rates that

match as closely as possible to the corresponding multidimensional poverty rates. For exam-

ple, the multidimensional poverty rate for k = 3 (0.72) is close to the pseudo-BPL poverty

rate corresponding to z = 24 (0.72) from Table 12. In the fourth and the fifth columns of

Table 13, we report the under-coverage rate and the over-coverage rate for the multidimen-

sional headcount method. This is analogous to what we defined in the last subsection and

in Table 11.

The findings are striking. The k cutoff that comes closest to approximating the actual
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2002 BPL headcount ratio is k = 5. At this headcount, over 12 percent of the poor do not

receive BPL cards, and 16 percent of those with BPL cards are not poor. However now

we focus on the poorest households among the BPL population — those deprived in 7 or

more dimensions (k = 7). Here we find that 33 percent of the extreme poor do not receive

BPL cards. Whereas we might have expected the persons that were borderline on either

measures to be mis-identified, in fact we find that mis-identification increases with the depth

of poverty, which is a disturbing feature. More generally, in the fourth column, we report the

percentage of the population residing in households that are classified as non-poor by the

pseudo-BPL method among the total population residing in households that are identified

as poor by the AF method. Similarly, in the fifth column, we report the percentage of the

population residing in households that are classified as poor by the pseudo-BPL method but

are identified as non-poor by the AF method. The under-coverage rate and the over-coverage

rate for M0 increases because as the cut-off k becomes more stringent, the non-deprived

dimensions partially compensate for the deprived dimensions.64 Even in an environment

with no data corruption, the BPL 2002 method would not allocate BPL cards to some of

the extreme poor and instead would distribute them among the non-poor.

We can conclude from the analysis in this section that the AF approach is more powerful

than the BPL 2002 approach in terms of the identification of poor households. Note that the

BPL method has also been criticized due to the data content. It has been argued earlier that

the poor households cannot be identified properly even if the methodology is implemented

without any corruption. In the next section, we propose choosing the dimensions based on

the capability approach. We also propose the adjusted headcount ratio as a measurement of

64Note that the under-coverage rate and the over-coverage rate would have been identical if we were able to
choose the pseudo-BPL poverty rate as exactly identical to the multidimensional headcount ratio.
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overall poverty instead of the multidimensional headcount ratio.

Towards an Improved Measure: Reflecting Multiple Deprivations

In the last section, we matched the dimensions and weights used in the BPL census to

identify the poor households. However, as we observed, the BPL census data content and

weighting is subject to serious and reasonable criticism. In August 2008, the Deputy Chair-

person of the Planning Commission of India stated that an index of deprivation might be

constructed to better represent the many faces of poverty (Chauhan, 2008). The dimensions

might include education, health, infrastructure, a clean environment, and benefits for women

and children —thus some dimensions not used in the 2002 BPL method. Moreover, poverty

should be measured by the deprivation of capabilities (Reddy, 2008). Therefore, in this

last section, we explore an illustrative improved multidimensional poverty measure that uses

existing data, but still might better reflect multiple deprivations across India. Naturally,

the choice of dimensions, poverty cut-offs, and weights for such an improved measure are

value judgements, and should be influenced by the public debate, as well as by the needs of

policy and public sector institutions. If such a set of dimensions were widely agreed on, then

it might be a reasonable expectation that accurate and robust measures of all relevant di-

mensions would be implemented in national survey processes such as the BPL, NSS, and/or

NFHS. The process of public discussion and debate, and the enriched data set, would con-

tribute to a measure of poverty that reflects people’s multiple deprivations. Using existing

data and illustrative dimensions, this final section demonstrates the characteristics of such

a measure if it employs the adjusted headcount methodology (M0) proposed by Alkire and

Foster.
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Dimensions, Indicators, and Cut-offs

First, we present the tentative dimensions, indicators, and cut-offs that will be used in

the following analysis. We use NFHS-3 data to select the indicators for nine dimensions,

drawing on the article mentioned above but selecting these indicators merely as an illustrative

example. We choose nine dimensions that are based on eleven indicators. We presume that

infrastructural facilities should be an important dimension while measuring deprivation and

the the dimension consists of two crucial indicators, housing and access to electricity, with

equal importance. Similarly, sanitation and access to drinking water together create another

important dimension for the same purpose. Other dimensions are measured using only a

single indicator. The set of dimensions and the respective indicators are summarized in

Table 14 and their detailed descriptions can be found in Appendix J.

In the last columns of Table 14, we report unidimensional headcount ratios. It is evident

that most of the rural Indians (77%) in the sample are deprived in sanitation. This is, as

might be expected, slightly higher than the national average, which, according to the HDR

2007, was 67 percent. On the contrary, most of the villagers (84%) have access to safe

drinking water.

Weighting

We use equal weights, again for illustrative purposes. Note that two of our dimensions have

two indicators. Therefore, all of our following nine dimensions receive equal weights of 11/9:

living standard, sanitation/water, fuel, asset, education, livelihood, electricity, child status

65See Basu and Foster (1998).
66Among the 68.9% of households having at least one child in the age group of 5-14, 24.6% of households are
deprived in terms of child status.
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Table 14: Dimensions, Indicators, and the Headcount Ratios

Dimensions Indicators Headcount
(NFHS)

1. Living Standard
Housing type 0.18

Access to electricity 0.44

2. Health The minimum BMI of one woman in the household 0.44

3. Water & Sanitation
Access to improved sanitation 0.77

Access to improved drinking water source 0.16

4. Air Quality Sources of fuel for cooking 0.31

5. Assets Asset holding 0.31

6. Education Maximum year of education completed by any member65 0.26

7. Livelihood Occupation of the respondent and her partner 0.29

8. Child Status Child labor and/or child school attendance 0.2066

9. Empowerment Empowerment of women in the household 0.59

and empowerment. The reason behind such a choice is that the total weight sums up to

eleven, which is the total number of indicators. We provide a weight of 11/18 to each of the

following four indicators: housing, electricity, sanitation, and water.

Table 15: Multidimensional Poverty Measures

Poverty Headcount
M 0 A = M 0/HCRCut-Off Ratio

(k) (HCR)

3 0.676 0.308 0.456
4 0.463 0.244 0.527
5 0.275 0.166 0.603
6 0.200 0.128 0.642
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Results

In Table 15, we present the number of poor in multiple dimensions, the cut-off based head-

count ratios, the adjusted headcount ratios, and average deprivation among the poor using

the nested weight. The union approach would identify 92.4 percent of the rural population

as poor. On the other hand, the intersection approach leads to an almost poverty free India.

If the poverty cut-off is four out of eleven dimensions, 46 percent of the rural population

belongs to poor households, which is the multidimensional headcount ratio for this particular

cut-off. The main criticisms of the multidimensional headcount ratio are that it does not

take into account the breadth of multidimensional poverty, it does not satisfy dimensional

monotonicity, and it is not decomposable. Therefore, we propose the adjusted headcount

ratio (M0) as a measure of poverty instead of the multidimensional head count. For the

theoretical properties of M0, see the earlier methodological section.

We use the cut-off of four out of eleven subsequently because the multidimensional head-

count ratio of 46 percent is somewhat close to the headcount ratio of 42 percent estimated

by the World Bank for a poverty line of $1.25 per day (Chen and Ravallion, 2005). The third

column of Table 15 reports the adjusted headcount poverty rates for different cut-offs. If the

poverty cut-off is four out of ten dimensions, then M0 is 0.244. Recall that M0 = HCR ·A.

For the poverty cut-off of four out of ten dimensions, HCR is equal to 0.463 and A is equal

to 0.244/0.463 = 0.527. A can be interpreted as the poor being deprived in 52.7 percent of

all dimensions on average. If the union approach is employed, then the poor are deprived

in 37.9 percent of all dimensions on average. Thus, the fourth column reports the average

depth of poverty among the population from the poor households.

Until now, our discussion was at the country level. We nowmove to state level analysis. In
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Table 16: State-wise Decomposition of Poverty for 4/11 Cut-off

1 2 3 4 5 6 7 8

States
Populn. Headcount M 0 NSS
Share of Ratio HC Poverty M 0 Income NSS
States (H) Rank Ratio Rank Poverty67 Rank

Kerala 2.41% 0.056 1 0.026 1 0.132 6
Sikkim 0.06% 0.073 2 0.033 2 0.223 14.5
Mizoram 0.05% 0.088 3 0.04 3 0.223 14.5
Himachal Pradesh 0.73% 0.1 5 0.046 4 0.107 4
Manipur 0.18% 0.1 6 0.046 5 0.223 14.5
Goa 0.07% 0.098 4 0.049 6 0.054 2
Punjab 2.25% 0.149 7 0.071 7 0.091 3
Nagaland 0.13% 0.161 8 0.079 8 0.223 14.5
Tripura 0.41% 0.227 9 0.114 9 0.223 14.5
Jammu & Kashmir 0.88% 0.242 10 0.116 10 0.046 1
Uttaranchal 0.82% 0.244 11 0.118 11 0.408 25
Meghalaya 0.25% 0.258 12 0.129 12 0.223 14.5
Tamil Nadu 3.72% 0.293 13 0.142 13 0.228 19
Haryana 2.10% 0.306 14 0.152 14 0.136 7
Gujarat 4.14% 0.325 15 0.159 15 0.191 9
Karnataka 4.80% 0.345 17 0.172 16 0.208 10
Maharashtra 6.82% 0.342 16 0.173 17 0.296 21
Andhra Pradesh 6.79% 0.382 18 0.192 18 0.112 5
Arunachal Pradesh 0.11% 0.388 19 0.203 19 0.223 14.5
Assam 2.94% 0.395 20 0.205 20 0.223 14.5
West Bengal 8.54% 0.466 21 0.246 21 0.286 20
Bihar 10.62% 0.503 22 0.254 22 0.421 26
Chhattisgarh 2.62% 0.541 25 0.281 23 0.408 24
Rajasthan 6.51% 0.535 23 0.286 24 0.187 8
Orissa 4.23% 0.537 24 0.288 25 0.468 28
Uttar Pradesh 17.86% 0.612 26 0.332 26 0.334 22
Madhya Pradesh 6.97% 0.629 27 0.344 27 0.369 23
Jharkhand 2.97% 0.823 28 0.489 28 0.463 27

India - 0.463 - 0.244 - 0.28368 -

our NFHS sub-sample, India has twenty eight states. Table 16 ranks states according to their

adjusted headcount poverty ranks, where a household is identified as poor if it is deprived

in four out of eleven dimensions. Kerala has the least poverty and Sikkim, a state in the
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eastern part of India, registers the second lowest poverty rate according to the M0 measure.

Jharkhand, where more than eighty percent of population are identified as members of poor

households, ranks last. The overall M0 ranks for states do not vary significantly from the

headcount ranks. Spearman’s rank correlation coeffi cient between these two rankings is 0.99.

Conversely, theM0 rank and the NSS income poverty rank among states varies significantly.

Spearman’s rank correlation coeffi cient between these two rankings is merely 0.58. Andhra

Pradesh, which ranks fifth in terms of the NSS income poverty line, ranks eighteenth in

terms of the adjusted headcount ratio. Similarly, Rajasthan ranks eighth in terms of the

NSS income poverty but twenty-fourth in terms of M0.

Table 17: Poverty Decomposition by Dimensions

M 0 Child
Rank State House Elect. Health Sanit. Water Fuel Asset Educ. Liveli. Sta. Emp. M 0

1
Kerala 0.012 0.034 0.036 0.021 0.031 0.022 0.043 0.004 0.028 0.012 0.038 0.026
Break Down 2.7% 7.4% 15.4% 4.5% 6.7% 9.4% 18.4% 1.9% 12.1% 5.2% 16.3% 100%

2
Sikkim 0.032 0.038 0.021 0.057 0.036 0.044 0.023 0.059 0.018 0.025 0.026 0.033
Break Down 5.4% 6.4% 7.1% 9.6% 6.1% 15.0% 7.7% 19.7% 6.0% 8.5% 8.6% 100%

21
West Bengal 0.161 0.4 0.326 0.374 0.056 0.11 0.363 0.285 0.208 0.12 0.305 0.246
Break Down 3.6% 9.1% 14.7% 8.5% 1.3% 5.0% 16.4% 12.9% 9.4% 5.4% 13.8% 100%

22
Bihar 0.273 0.465 0.358 0.488 0.032 0.249 0.038 0.297 0.173 0.174 0.371 0.254
Break Down 6.0% 10.2% 15.6% 10.7% 0.7% 10.9% 1.7% 13.0% 7.5% 7.6% 16.2% 100%

25
Orissa 0.27 0.418 0.344 0.528 0.147 0.286 0.197 0.282 0.213 0.14 0.446 0.288
Break Down 5.2% 8.1% 13.3% 10.2% 2.8% 11.0% 7.6% 10.9% 8.2% 5.4% 17.2% 100%

28
Jharkhand 0.064 0.697 0.488 0.813 0.472 0.544 0.696 0.375 0.492 0.259 0.52 0.489
Break Down 0.7% 7.9% 11.1% 9.2% 5.4% 12.4% 15.8% 8.5% 11.2% 5.9% 11.8% 100%

India 0.145 0.311 0.289 0.439 0.096 0.24 0.263 0.22 0.218 0.152 0.319 0.244
Break Down 3.3% 7.1% 13.2% 10.0% 2.2% 11.0% 12.0% 10.0% 9.9% 6.9% 14.5% 100%

After we compare the ranks of states under different methodologies, it is interesting to

analyze the source and contribution of different dimensions to overall poverty. In Table 17,

67We report the poverty rates based on Uniform Recall Period (URP) rather than the Mized Recall Period
(MRP) since the URP method is the same as the traditional method used in 1993-94 and different from the
method pursued in 1999-00. The MRP based method yielded an extremely low level of rural poverty (22%).
See Government of India (2007)

68Out of the 68.9 percent of households containing at least one child within the age group of 5-14 years, 9.04
percent contain at least one child that does not attend school.
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Figure 6: Adjusted Headcount Poverty Ranking Vs. NSS Income Poverty Ranking

we present the decomposition of poverty across different dimensions. It is evident that

Sikkim and Kerala have almost the same M0 poverty rates, but the source differs radically.

For example, the contribution of the education dimension towards the overall poverty in

Kerala is merely 1.9 percent. On the contrary, the contribution of education to Sikkim

poverty is nearly 20 percent. Kerala also performs better in terms of sanitation and fuel, but

performs much worse in nutrition, assets, and livelihood compared to Sikkim. West Bengal

and Bihar comparisons are more similar, although stark differences appear with respect

to assets, where West Bengal is much worse, and with respect to clean air, where Bihar

performs poorly. Comparing Orissa and Jharkhand, we find that women’s disempowerment

is starkly more prominent in Orissa, where poverty is also more strongly driven by poor
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housing and nutrition. Jharkhand has far higher contributions to poverty from poor asset

holdings and livelihoods. This type of decomposition enables policy makers to make proper

policy recommendations.

To have a graphical visualization of the difference in ranking between the Alkire and

Foster methodology and the NSS income poverty ranking, see Figure 6.69

Table 18: Spearman’s Rank Correlation Matrix for Different M 0 Rankings

Cut-off
3 4 5 6 7

(k)

4 1 - - - -
5 0.99 1 - - -
6 0.99 1 1 - -
7 0.97 0.97 0.98 0.98 -
8 0.96 0.96 0.96 0.97 0.98

The final concern is about how robust the poverty rankings are for varying cut-offs. One

might argue that the choice of cut-offis arbitrary and might wonder if theM0 rankings change

drastically due to a change in the cut-off. To address this legitimate query, we calculate the

M0 measures for all states for different cut-offs and then we calculate the Spearman’s rank

correlation coeffi cients between each pair of rankings for k = 3, . . .,8. From Table 18, it

can be seen that the minimum correlation is 0.98 between k = 3 and k = 8. Therefore, we

can conclude that the rankings for varying poverty cut-offs are highly robust. We did not

calculate the rankings beyond k = 8 because the value of M0 is very low and with so few

observations the rankings could be biased.

69It can be seen from Tables 9 and 15 that the multidimensional headcount ratio for k = 5 (28%) is very close
to the NSS 2004-05 poverty rate (28%). Therefore, a comparison of the rankings for k = 5 would have made
more sense. However, a subsequent analysis of rank correlation between the rankings generated by various
k values (Table 18) ensures that a choice of different k would not alter our analysis.
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Conclusion

This chapter first identified the various criticisms that have been leveled against the 2002

Below the Poverty Line (BPL) measure in rural India. The criticisms fall into three kinds: (i)

problems of data quality, data coverage, and corruption, (ii) problems with the aggregation

method, and (iii) issues of data content and periodicity. This chapter endeavours to isolate

the criticisms about the identification methodology, because errors of 12-33 percent would

remain due to these problems even if the data were strong.

To address the problems of identification and aggregation, using the same NFHS matching

dimensions, we applied dimension-specific cut-offs, and computed a multidimensional head-

count and adjusted headcount measure (M0), using the methodology proposed by Alkire and

Foster (2008). The resulting measure —which matched the BPL dimensions but with better

data and a more defensible aggregation technique —was then compared with the poverty

status identified by a pseudo-BPL approach at the national level. Significant differences

appeared, with under-coverage and over-coverage rates of up to 33 percent, which, despite

the differences in dimensions, bears consideration. We also illustrated the policy value of

having an aggregation method that generates decomposable multidimensional poverty mea-

sures because they can immediately reveal to any policy maker the poverty priorities in her

or his area. If census data were available, such a measure could be calculated at the local

level or for different population groups, so as to identify local priorities for public investment

and hence to inform multisectoral planning.

Finally, this chapter addressed the issue of data content, and also sought to affi rm the

possibility of a multidimensional index that transparently represents the multiple depriva-

tions people suffer. Naturally, the final selection of dimensions, weights, and cutoffs for a
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national poverty measure requires significant public discussion as well as the generation of

new data to match the dimensions of interest. However, for illustrative purposes, we ten-

tatively selected nine dimensions, and eleven indicators, that may improve upon the BPL

dimensions. We included empowerment because of its intrinsic importance, although data

for this dimension remains weak.

The nine dimensions were — living standard (housing, electricity), health, water and

sanitation, air quality the household members breathe, assets, education, livelihood, child

status, and empowerment. We compute our measure using these dimensions, compare it with

the 2004/5 NSS levels, and decompose it by state. The results are striking and informative.

For example, multidimensional poverty in Jharkhand is driven by asset deprivation, low

air quality, and poor quality of work, with nutritional deficits and disempowerment also

contributing significantly. In Gujarat, nutrition ranks as the leading contributor to poverty,

followed by deprivations in women’s empowerment and air quality.

While clearly further analysis is required, the multidimensional poverty methodology

implemented in this chapter can be used not only to identify the poor (as the NSS or BPL

do), but also to see easily what dimensions are most important for multidimensional poverty

among different groups of people.

159



A
p
p
en
d
ix

G
.
B
el
ow

P
ov
er
ty
L
in
e
S
u
rv
ey
Q
u
es
ti
on
s
(2
00
2)

S
l.
C
h
ar
ac
te
ri
st
ic
s/

S
co
re
s

N
o
Q
u
es
ti
o
n
s

0
1

2
3

4

1
S
iz
e
g
ro
u
p
o
f
o
p
er
at
io
n
al

h
o
ld
in
g
o
f
la
n
d

N
il

L
es
s
th
an

1
h
a
of

u
n
-

ir
ri
ga
te
d
la
n
d
(o
r
le
ss
th
an

0.
5
h
a
of
ir
ri
ga
te
d
la
n
d
)

1-
2
h
a
of
u
n
-i
rr
ig
at
ed

la
n
d
(o
r
0.
5-
1
h
a
of
ir
-

ri
ga
te
d
la
n
d
)

2
-5

h
a
of
u
n
-i
rr
ig
at
ed

la
n
d
(o
r
1.
0
-2
.5
h
a
of
ir
-

ri
ga
te
d
la
n
d
)

M
or
e
th
an

5
h
a
of
u
n
-i
rr
ig
at
ed

la
n
d

(o
r
2.
5
h
a
of
ir
ri
ga
te
d
la
n
d
)

2
T
y
p
e
o
f
h
o
u
se

H
ou
se
le
ss

K
u
tc
h
a

S
em
i-
p
u
cc
a

P
u
cc
a

U
rb
an
ty
p
e

3
A
v
er
ag
e

av
ai
la
b
il
it
y

o
f

n
o
rm

al
w
ea
r

cl
o
th
in
g

(p
er
h
o
u
se
h
o
ld
in
p
ie
ce
s)

L
es
s
th
an
2

2
or
m
or
e,
b
u
t
le
ss
th
an
4
4
or
m
or
e,
b
u
t
le
ss
th
an

6
6
or
m
or
e,
b
u
t
le
ss
th
an

10
10
or
m
or
e

4
F
o
o
d
S
ec
u
ri
ty

L
es
s
th
an

on
e
sq
u
ar
e

m
ea
l
p
er
d
ay

fo
r
m
a
jo
r

p
ar
t
of
th
e
ye
ar

N
or
m
al
ly
,
on
e
sq
u
ar
e
m
ea
l

p
er
d
ay
,
b
u
t
le
ss
th
an
on
e

sq
u
ar
e
m
ea
l
oc
ca
si
on
al
ly

on
e
sq
u
ar
e
m
ea
l
p
er

d
ay

th
ro
u
gh
ou
t

th
e

ye
ar

tw
o
sq
u
ar
e
m
ea
ls
p
er
d
ay

w
it
h
oc
ca
si
on
al
sh
or
ta
ge
E
n
ou
gh
fo
od

th
ro
u
gh
ou
t
th
e
ye
ar

5
S
an
it
at
io
n

O
p
en
d
ef
ec
ti
on

G
ro
u
p
la
tr
in
e
w
it
h
ir
re
gu
-

la
r
w
at
er
su
p
p
ly

G
ro
u
p
la
tr
in
e
w
it
h
re
g-

u
la
r
w
at
er
su
p
p
ly

C
le
an
gr
ou
p
la
tr
in
e
w
it
h

re
gu
la
r
w
at
er
su
p
p
ly
an
d

re
gu
la
r
sw
ee
p
er

P
ri
va
te
la
tr
in
e

6
O
w
n
er
sh
ip

o
f
C
o
n
su
m
er

d
u
ra
b
le
s:

D
o
y
o
u
ow
n

(t
ic
k
)
—
T
V
,
el
ec
tr
ic
fa
n
,

ra
d
io
,
p
re
ss
u
re
co
o
k
er

N
il

A
ny
on
e

T
w
o
it
em
s
on
ly

A
ny
th
re
e
or
al
l
it
em
s

A
ll
it
em
s
an
d
/o
r
an
y
on
e
of

th
e

fo
ll
ow
in
g
it
em
s
-
co
m
p
u
te
r,

te
le
-

p
h
on
e,

re
fr
ig
er
at
or
,

co
lo
u
r

T
V
,

el
ec
tr
ic

ki
tc
h
en

ap
p
li
an
ce
s,

ex
p
en
-

si
ve

fu
rn
it
u
re
,

L
M
V
@
/

L
C
V
@
,

tr
ac
to
r,

m
ec
h
an
is
ed

tw
o-
w
h
ee
le
r/

th
re
e-
w
h
ee
le
r,
p
ow
er
ti
ll
er
,
co
m
b
in
ed

th
re
sh
er
/

h
aw
es
to
r

[@
4-
w
h
ee
le
d

m
ec
h
an
is
ed
ve
h
ic
le
]

7
L
it
er
ac
y

st
at
u
s
o
f
th
e

h
ig
h
es
t
li
te
ra
te
ad
u
lt

Il
li
te
ra
te

U
p
to
P
ri
m
ar
y
(C
la
ss
V
)

C
om
p
le
te
d
S
ec
on
d
ar
y

(P
as
se
d
C
la
ss
X
)

G
ra
d
u
at
e/

P
ro
fe
ss
io
n
al

D
ip
lo
m
a

P
os
t
G
ra
d
u
at
e/

P
ro
fe
ss
io
n
al
G
ra
d
u
-

at
e

8
S
ta
tu
s
o
f
th
e
H
o
u
se
h
o
ld

L
ab
o
u
r
F
o
rc
e

B
on
d
ed
la
b
or

F
em
al
e
an
d
ch
il
d
re
n
la
b
or
O
n
ly
ad
u
lt
fe
m
al
es
an
d

n
o
ch
il
d
la
b
or

A
d
u
lt
m
al
es
on
ly

O
th
er
s

9
M
ea
n
s
o
f
li
v
el
ih
o
o
d

C
as
u
al
L
ab
or

S
u
b
si
st
en
ce
cu
lt
iv
at
io
n

A
rt
is
an

S
al
ar
y

O
th
er
s

10
S
ta
tu
s
o
f
ch
il
d
re
n
(5
-1
4

y
ea
rs
)
[a
n
y
ch
il
d
]

N
ot
go
in
g
to
sc
h
oo
l
an
d

w
or
ki
n
g

G
oi
n
g
to
S
ch
oo
la
n
d
w
or
k-

in
g

G
oi
n
g
to
sc
h
oo
l
an
d
n
ot
w
or
ki
n
g

11
T
y
p
e
o
f
in
d
eb
te
d
n
es
s

F
or

d
ai
ly

co
n
su
m
p
ti
on

p
u
rp
os
es

fr
om

in
fo
rm
al

so
u
rc
es

F
or

p
ro
d
u
ct
io
n

p
u
rp
os
e

fr
om

in
fo
rm
al
so
u
rc
es

F
or
ot
h
er
p
u
rp
os
e
fr
om

in
fo
rm
al
so
u
rc
es

B
or
ro
w
in
g
on
ly
fr
om

In
-

st
it
u
ti
on
al
ag
en
ci
es

N
o
in
d
eb
te
d
n
es
s
an
d
p
os
se
ss
as
se
ts

12
R
ea
so
n

fo
r

m
ig
ra
ti
o
n

fr
o
m
h
o
u
se
h
o
ld

C
as
u
al
w
or
k

S
ea
so
n
al
em
p
lo
ym
en
t

O
th
er

fo
rm
s
of

li
ve
li
-

h
oo
d

N
on
-m
ig
ra
nt

O
th
er
p
u
rp
os
es

13
P
re
fe
re
n
ce

o
f
A
ss
is
ta
n
ce

W
ag
e

E
m
p
lo
ym
en
t/

T
P
D
S
(T
ar
ge
te
d
P
u
b
li
c

D
is
tr
ib
u
ti
on
S
ys
te
m
)

S
el
f
E
m
p
lo
ym
en
t

T
ra
in
in
g

an
d

S
ki
ll

U
p
gr
ad
at
io
n

H
ou
si
n
g

L
oa
n
/S
u
b
si
d
y
m
or
e
th
an

R
s.

O
n
e

la
kh

or
N
o
as
si
st
an
ce
n
ee
d
ed

*S
ou
rc
e:
G
ov
er
n
m
en
t
of
In
d
ia
,
M
in
is
tr
y
of
R
u
ra
l
D
ev
el
op
m
en
t
(2
00
2)
an
d
S
u
n
d
ar
am

(2
00
3)

160



H. Dimensions, Indicators, and Poverty Cut-Offs Analogous to Year 2002 BPL
Questions

1. Land: Acres of irrigated and un-irrigated agricultural land holdings

This dimension corresponds to Question 1 in the BPL questionnaire and is asked

directly in the NFHS-3 survey.

Question HV244: If owns land usable for agriculture

Question SH60H: Hectares of agricultural land holding

Question SH61H: Hectares of land irrigated

Poverty Cut-off - Less than one hectare of un-irrigated land and 0.5 hectare of irrigated

land

2. Housing: Type of House

This dimension corresponds to Question 2 in the BPL questionnaire and is asked

directly in the NFHS-3 survey.

Question SHNFHS2: House type (Kachha, Semi-pucca, Pucca)

Poverty Cut-off - Live in a Kachha House

3. Land: Acres of irrigated and un-irrigated agricultural land holdings

This dimension corresponds to Question 2 in the BPL questionnaire that asks how

many times the household eats during a day. The NFHS-3 does not contain this

question, but it does collect information on nutritional intake and the body mass

index (BMI) of the respondents in the household. We prefer BMI to the nutritional

intake of the respondents not merely for convenience, but also for the following reasons.

First, it is diffi cult to match the BPL question with NFHS questions regarding specific
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food types consumed. Second, the body mass index directly represents the nutritional

state of a household —which is arguably the desired outcome for which the BPL meal

resources are a proxy. Note that BMI data are present for the female only, which is not

optimal, but may be acceptable because of the importance of women’s health in general.

Also, malnutrition among women has not improved over the past decade despite a high

rate of growth and reduction in income poverty. See Jose and Navaneetham (2008).

Question V445: Body mass index for the female respondent

Poverty Cut-off - The minimum BMI of the women in the household is less than 18.5

Kg/m2

4. Sanitation: Type of toilet facility

This dimension corresponds to Question 5 in the BPL questionnaire and is asked

directly in the NFHS-3 survey.

Question HV205: Type of toilet facility (1. Flush - to piped sewer system, 2. Flush - to

septic tank, 3. Flush - to pit latrine, 4. Flush - to somewhere else, 5. Flush - don’t

know where, 6. Pit latrine —ventilated, 7. Pit latrine - with slab, 8. Pit latrine -

without slab, 9. No facility/uses bush/field, 10. Composting toilet, 11. Dry toilet,

96. Other)

Poverty Cut-off - Uses Pit latrine —w/o slab, No facility/uses bush/field, Composting

toilet, Dry toilet, OTHER

5. Asset: Access to different assets

This dimension corresponds to Question 6 in the BPL questionnaire and the NFHS-3

collects information on the ownership of most of these items.
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Question SH47B: Has mattress Question SH47V: Has thresher

Question SH47C: Has pressure cooker Question SH47W: Has tractor

Question SH47F: Has table Question HV207: Has radio

Question SH47G: Has electric fan Question HV209: Has refrigerator

Question SH47I: Has black & white TV Question HV211: Has motor cycle

Question SH47J: Has colour Question HV212: Has car

Question SH47N: Has computer Question HV221: Has phone

Poverty Cut-off - Owns any one of the following assets: a b/w television, an electric

fan, a pressure cooker, or a radio. At the same time, does not own any of the following

assets: a refrigerator, a motor cycle, a car, a phone, a mattress, a table, a colour TV,

a computer, a thresher, or a tractor.

6. Education: Highest education level attained by the family members

This dimension corresponds to Question 7 in the BPL questionnaire and the NFHS-3

survey contains enough information to replicate this dimension.

Question HV108: Education completed in single years

Poverty Cut-off - Maximum year of education completed by any member is less than

5 years

7. Labor: Number of hours the children worked for household and non-household members

[age: 5-14]

This dimension corresponds to Question 8 in the BPL questionnaire that asks about

bonded labour and the labour status of women and children in the household, implying

that a household is most deprived if any worker is bonded, or if women and the children
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work. The NFHS-3 does not have data on bonded labour. Further, many would dispute

the view that women’s work-force participation should be treated as a deprivation.

However, there is widespread agreement in treating a child’s labour force participation

as a deficiency for the household. Therefore, we substitute the eighth BPL question by

the dimension named ‘existence of child labour in the household within the age group

of 5-14’.

Question SH24: In past week, number of hours worked for non-HH member [age 5-14]

Question SH27: In past week, number of hours helped with HH chores [age 5-14]

Question SH29: In past week, number of hours did other family work [age 5-14]

Question HV105 Age of household members

Poverty Cut-off - There is at least one incidence of child labour within the age group

of 5-14.

8. Occupation: Occupation of the respondent and her partner

This dimension corresponds to Question 9 in the BPL questionnaire that asks respon-

dents to categorize the means of livelihood for the family. The NFHS survey contains

enough information to identify a household by the major occupation of its members.

Question V716: Respondent’s occupation

Question V704: Partner’s occupation

Poverty Cut-off - The respondent and her partner both fall into the following oc-

cupation categories: unemployed, agricultural labourer, plantation labourers, simply

labourers, and new workers seeking jobs

9. Child Status: The reason why the children do not go to school (5-14)

This dimension corresponds to Question 10 in the BPL questionnaire that asks about
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the status of children in the household — whether they are in school and whether

they are working. We have already created a dimension on child labour. Therefore,

we replicate the tenth question by creating a dimension based only on whether the

children in the age group of 5-14 go to school.

Question SH22: Main reason not attending school [age 5-18] (1. School too far away,

2. Transport not available, 3. Further education not considered, 4. Required for

household work, 5. Required for work on farm, 6. Required for outside work, 7.

Costs too much, 8. No proper school facilities, 9. Not safe to send girls, 10. No

female teacher, 11. Required for care of sibling, 12. Not interested in studies, 13.

Repeated failures, 14. Got married, 15. Did not get admission, 96. Other)

Question HV105: Age of household members

Poverty Cut-off - A household is classified as deprived in the child-status dimension,

if any of the children in the age group of 5-14 does not go to school for any reason.

10. Loan: Any one in the household has a Bank or Post Offi ce account

This dimension corresponds to Question 11 in the BPL questionnaire that asks for

what purposes the household has become indebted and whether the loan is from an

informal sector or from institutional agencies. The NFHS does not contain analogous

questions but it has information on whether any member of the household has a bank

or a postal account. A household that has access to such account is more likely to

obtain an institutional loan, but a household without it is more inclined to obtain loan

from an informal sector, if at all.

Question HV247: Owns a bank account or post offi ce account

Poverty Cut-off - None of the household members holds a bank or post offi ce account
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J. Dimensions, Indicators, and Cut-Offs for the Deprivation Measure70

1. Living Standard

The first dimension represents the living standard of the households. The indicators

used to measure this dimension are the type of house and access to electricity.71

Question SHNFHS2: House type (Kachha, Semi-pucca, Pucca)

Question HV206: Has electricity

Poverty Cut-off —(i) A household is deprived in terms of housing if the household lives

in a kaccha house. (ii) A household is deprived of electricity if it does not have access

to electricity.

2. Health

This dimension is same as the food security dimension (3) in Appendix H..

Question V445: Body mass index for the female respondent.

Poverty Cut-off —The minimum BMI of the women in the household is less than 18.5

Kg/m2.

3. Water and Sanitation

This dimension measures the quality of a household’s access to water and sanitation.

Question HV201: Source of drinking water

Question HV205: Type of toilet facility

Poverty Cut-off —(i) A household is classified as deprived in terms of access to safe

drinking water supply if the sources of water are a unprotected well and spring, river,
70The following questions or indicators were gathered from the NFHS-3 questionnaire. Poverty cut-off denotes
the situation under which a household is deprived in that dimension.

71The NFHS-3 dataset does not allow us to incorporate the size of the house, which might be an important
factor. We do not rely on land holding since the quality of land differs from place to place and not all
households own land.
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dam, lake, ponds, stream, tanker truck, cart with small tank, bottled water, other. (ii)

A household is classified as deprived in the sanitation dimension if the household uses

one of the following: pit latrine without slab, no facility/uses bush/field, composting

toilet, dry toilet, other.

4. Air Quality

More than 90 percent of the rural households use solid waste matter as their source of

fuel while cooking. But the use of solid waste matter is harmful for the environment

and indeed harmful for household members if they breathe it regularly.72 Some rural

households cook outside or in a separate building; others cook inside, but some, unfor-

tunately, do not have a separate room for cooking. The households that cook inside

their living room using solid waste matters face clear respiratory hazards.

Question HV242: Household has separate room used as kitchen

Question HV226: Type of cooking fuel (1. Electricity, 2. LPG/Natural gas, 4. Biogas,

5. Kerosene, 6. Coal, lignite, 7. Charcoal, 8. Wood, 9. Straw/shrubs/grass, 10.

Agricultural crop , 11. Animal dung, 96. Other)

Poverty Cut-off —The household does not have a separate room used as kitchen and

the sources of fuel are coal, lignite, charcoal, wood, Straw/shrubs/grass, agricultural

crop, animal dung, and other.

5. Assets

This dimension is same as the Asset dimension (5) in Appendix H.

72See Duflo et al. (2008).
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Question SH47B: Has mattress Question SH47V: Has thresher

Question SH47C: Has pressure cooker Question SH47W: Has tractor

Question SH47F: Has table Question HV207: Has radio

Question SH47G: Has electric fan Question HV209: Has refrigerator

Question SH47I: Has black & white TV Question HV211: Has motor cycle

Question SH47J: Has colour Question HV212: Has car

Question SH47N: Has computer Question HV221: Has phone

Poverty Cut-off - Owns any one of the following assets: a b/w television, an electric

fan, a pressure cooker, and a radio. At the same time, does not own any of the following

assets: a refrigerator, a motor cycle, a car, a phone, a mattress, a table, a colour TV,

a computer, a thresher, and a tractor

6. Education

This dimension is same as the Asset dimension (6) in Appendix H.

Question HV108: Education completed in single years

Poverty Cut-off - Maximum year of education completed by any member is less than

5 years

7. Livelihood

This dimension is same as the Occupation dimension (8) in Appendix H.

Question V716: Respondent’s occupation

Question V704: Partner’s occupation

Poverty Cut-off —The respondent and her partner both fall into the following oc-

cupation categories: unemployed, agricultural labourer, plantation labourers, simply
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labourers, and new workers seeking jobs.

8. Child Status

For any country, one of the biggest assets is the children. Therefore, we incorporate

a dimension regarding the status of the child. This dimension consists of the labour

status and school attendance status of the children.

Question SH24: In past week, number of hours worked for non-HH member [age 5-14]

Question SH27: In past week, number of hours helped with HH chores [age 5-14]

Question SH29: In past week, number of hours did other family work [age 5-14]

Question HV105: Age of household members

Question SH22 Main reason not attending school [age 5-18] (1. School too far away, 2.

Transport not available, 3. Further education not considered, 4. Required for

household work, 5. Required for work on farm, 6. Required for outside work, 7.

Costs too much, 8. No proper school facilities, 9. Not safe to send girls, 10. No

female teacher, 11. Required for care of sibling, 12. Not interested in studies, 13.

Repeated failures, 14. Got married, 15. Did not get admission, 96. Other)

Poverty Cut-off —There is at least one incidence of child labour and/or at least one

child aged 5-14 does not attend school.73

9. Women’s Empowerment

The final dimension is the empowerment of women. It has been very diffi cult to find a

variable that adequately represents the empowerment of women. In the NFHS-3 sample

survey, respondents were asked several questions related to empowerment and violence,

such as: 1) if the woman faces severe, less severe, emotional, or sexual violence; 2) if the

73The NFHS-3 does not allow us to incorporate the labor status of the children in the age group of 15-18.
Also, the households that do not have any child are assumed not to be deprived in this dimension.
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woman has the final say in household decision making; 3) when the women respondent

justifies beating; and 4) if the women is allowed to freely go to certain places. The

first two sets of question reduce the number of observations drastically. Given that on

some occasions other households were present in the household during interview, the

fourth question seems to be a better proxy for woman empowerment than the third as

it is more objective. The fourth question asks if they are freely allowed to go to certain

places, like, a market, a health facility, and out of the village. We use this dimension

but acknowledge that stronger data are necessary to reflect the degree and kinds of

empowerment among all household members.

Question S824A: Allowed to go to: market (1. Alone, 2. With someone else only, 3. Not

at all)

Question S824B: Allowed to go to: health facility (1. Alone, 2. With someone else only,

3. Not at all)

Question S824C: Allowed to go to: places outside this village/community (1. Alone, 2.

With someone else only, 3. Not at all)

Poverty Cut-off —If any woman in the household does not have the right to go alone

to the market, a health facility, and somewhere outside of the village.

171



K. Weighted and Unweighted Population

State

Dataset Comparing Dataset for the
BPL and M 0 Deprivation Measure

Number of Weighted by Number of Weighted by
Observations Population Observations Population

Andhra Pradesh 8,415 16,235 8,455 16,357
Arunachal Pradesh 3,972 250 4,149 262
Assam 8,648 7,009 8,725 7,091
Bihar 9,449 25,449 9,470 25,577
Chhattisgarh 9,310 6,231 9,392 6,304
Goa 4,623 162 4,837 170
Gujarat 7,656 9,694 7,849 9,966
Haryana 8,214 4,997 8,272 5,046
Himachal Pradesh 7,388 1,732 7,476 1,757
Jammu and Kashmir 7,066 2,062 7,267 2,126
Jharkhand 7,404 7,126 7,409 7,151
Karnataka 12,830 11,381 12,990 11,555
Kerala 7,317 5,709 7,405 5,794
Madhya Pradesh 12,352 16,662 12,399 16,772
Maharashtra 9,443 16,218 9,537 16,425
Manipur 7,681 432 7,855 443
Meghalaya 4,123 594 4,190 605
Mizoram 2,857 130 2,877 131
Nagaland 6,584 309 6,607 311
Orissa 10,171 10,005 10,326 10,186
Punjab 8,401 5,326 8,520 5,416
Rajasthan 10,652 15,574 10,694 15,679
Sikkim 3,959 141 3,978 142
Tamil Nadu 8,292 8,907 8,324 8,967
Tripura 4,555 973 4,597 985
Uttar Pradesh 27,862 42,550 28,088 43,014
Uttaranchal 7,546 1,967 7,600 1,986
West Bengal 11,408 20,355 11,493 20,564

India 238,178 238,178 240,781 240,781
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CHAPTER VII

CONCLUSION

This dissertation consists of three projects focusing on different aspects of aggregation

while constructing indices based on multiple attributes of well-being. In particular, this

dissertation is concerned with three different types of indices: multidimensional welfare

indices, composite indices, and multidimensional poverty indices. An index that summarizes

the state of a society by aggregating achievements of individuals or households based on

multiple attributes is called a multidimensional index. Whereas an index that summarizes

the state of a society by aggregating indicators of multiple attributes is called a composite

index.

The first project develops a class of multidimensional social welfare indices that is sen-

sitive to two different forms of inequality across the population. One form of inequality is

concerned with the dispersion of the distribution of attributes and the other is concerned

with the correlation or association across attributes. The sensitivity to the first form of

inequality requires that the welfare index decreases if the dispersion of the attributes across

the population increases, while the dimensional averages remain unchanged. The sensitivity

to the second form of inequality requires that if the distribution of each attribute remains

unaltered but there is an increase in the association across attributes, then the social welfare

index decreases (resp. increases) if the attributes are substitutes (resp. complements). In

summary, the level of welfare decreases as a consequence of increase in any form of multidi-

mensional inequality. In Chapter II of the dissertation, the class of multidimensional social
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welfare indices is characterized with the help of certain reasonable axioms. An application

of this class to the Indian context is illustrated in Chapter V.

The second project develops a tool that is useful in verifying the robustness of rankings

generated by composite indices. These rankings are highly contingent upon the choice of

initial weights. A choice other than the one initially selected often alters the rankings and

creates ambiguous comparisons, raising an obvious concern as to how robust each comparison

is to this choice. To find an answer to this question, a natural measure of robustness is

developed in Chapter III, which can gauge the level of robustness on a 0-100 percent scale.

A comparison of hundred percent robustness implies that the comparison is never reversed no

matter what alternative weights are chosen and thus the comparison is completely robust.

However, requiring complete robustness is too stringent and, so, we introduce a concept

of partial robustness, where the required level of robustness may strictly lie between zero

and hundred. This idea is closely related to the model of Knightian uncertainty (Bewley,

2002) and the multiple prior model of Gilboa and Schmeidler (1989). It is discussed how the

required level of robustness depends to the confidence one places on the initial weights. In the

same chapter, we also introduce the concept of prevalence of robustness, and in chapter IV,

we show how the association across the indicators of the attributes is important in explaining

the relationship between the prevalence and the required level of robustness.

Finally, the third project of this dissertation is concerned with measuring poverty in the

Indian context, when there are multiple attributes of well-being and the attributes are either

categorical or dichotomous. The Indian government has realized the need for a multidimen-

sional approach in addition to the existing income based approach for measuring poverty.

In 2002, the government has proposed identifying the poor using a questionnaire containing
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thirteen non-income related questions. However, this approach has encountered several crit-

icisms in terms of its methodology and the contents of the questionnaire. The third project

proposes a new approach developed by Alkire and Foster (2008) for both identifying the

poor and measuring poverty, which may amend some of the methodological shortcomings.

Moreover, an illustrative index is proposed using some alternative attributes, each of which

represent policy goals in the eleventh five-year national plan (Government of India, 2008).

This dissertation contributes to the literature of welfare and poverty measurement both

theoretically and empirically. The first project not only proposes a class of welfare indices,

but also discusses its theoretical properties. Moreover, this project shows how various classes

of indices proposed at different points of time and for different purposes are closely related

to each other. Bourguignon (1999), Foster et al. (2005), and Decancq and Ooghe (2009) all

have proposed different classes of welfare indices based on generalized means. Bourguignon

(1999) proposes his class while constructing a multidimensional inequality index; Foster et al.

(2005) propose their class while proposing an inequality-adjusted human development index;

and Decancq and Ooghe (2009) propose their class while explaining how correlation between

attributes may affect the level of social welfare. All three classes are closely related to the

class introduced in the second chapter of this dissertation. In fact, the classes proposed

by Foster et al. (2005) and Decancq and Ooghe (2009) are subclasses of our class, and each

index in the Bourguignon (1999) class is a monotonic transformation of an index in our class.

Chapter II not only establishes clear links across these indices, but also critically evaluates

their theoretical properties.

Besides discussing the theoretical features of this class of indices, Chapter V analyzes

the empirical applicability of this class by applying it to the Indian context and developing

177



the confidence intervals for testing the statistical significance of the indices. It is shown how

the consideration of inequality across the individuals may yield completely different state

rankings. Recently, the United Nations Development Programme has taken the initiative

of proposing an improved human development index that is sensitive to the inter-personal

inequality. The statistical tools developed in Chapter V may be useful for this purpose,

because they are also applicable to the indices in the Foster et al. (2005) class.

The second project also contributes to the literature both theoretically and empirically.

Chapter III characterizes a measure of robustness linking it to several theoretical concepts

in economics, such as, partial ordering, Knightian uncertainty, epsilon contamination, and

multiple priors. The measure is also useful for policy analysis. It has been discussed how

popular and important these composite indices based rankings are. This natural measure

adds another dimension to the cross-country comparisons.

The focus of the third project is however primarily empirical. It applies a theoretically

improved measure to the Indian context to analyze the current state of its multidimensional

poverty. It appears from the above discussion that the first two projects of this dissertation

heavily applies the concept of association to the measurement issues.

Now, let us discuss the possible avenues for future studies and some extensions of the

current research. First, using the class of welfare indices in the first project, it is depicted

in Chapter V how the state rankings are altered while considering the two forms of inter-

personal inequality. However, it is not clear from the analysis if one form of inequality is

more prevalent than the other form. The present study does not allow us to isolate the

separate effects of these two distinct forms of inequality. The question, differently phrased,

is — can we state which form of inequality has greater impact on the level of welfare for
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a particular society? A technique may be developed that would enable us to answer this

question. If we think of an achievement matrix as a joint statistical distribution, then the

impact of any one form of inequality should be inferred by eliminating the other form of

inequality from that distribution altogether. One possible way to do this is to eliminate

the distribution sensitive inequality from the joint distribution, which can be obtained by

smoothing all marginal distributions so that every person has the same set of achievements.

The problem with this approach is that there would not be any association sensitive inequal-

ity either because the attributes would be perfectly positively correlated to each other. The

other possibility is to keep the distribution sensitive inequality intact and eliminate the asso-

ciation sensitive inequality. This is equivalent to purging the correlation or association from

the joint distribution, while keeping the marginal distributions unaltered. This approach

requires constructing a new joint distribution with the same marginal distributions that are

independent of each other. The only way to construct such an independent joint distribution

from the existing one is using the copula. The copula is a statistical technique for generating

numerous joint distributions from a fixed set of marginal distributions.

Second, the Chapter VI is concerned with the measurement of poverty in the multidimen-

sional framework because the measurement of poverty in a single dimension is increasingly

recognized as being inadequate. Similarly, the measurement of poverty over a single period of

time also seems to be inadequate as it provides only a narrow portrayal of what poverty truly

is. Over the past few decades, the measurement of poverty has evolved in two directions.

The first is by incorporating more than one dimension of well-being, which is known as the

multidimensional poverty measurement – what we discuss in this dissertation. A second

direction in which poverty measurement has evolved is by considering a single dimension of
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well-being over more than one period of time, which is called chronic poverty measurement.

However, the progress in these two areas of measurement has been made in separate and

disconnected ways, without properly acknowledging the common challenges faced by both

approaches. Further research is required in order to establish the connection between these

two branches of poverty measurement, addressing the commonalities and differences.

Third, the debate over robustness versus redundancy has not been completely resolved

in this dissertation. It is understood that if the association across dimensions is higher, then

the rankings are more robust. However, so is the extent of redundancy of composite indices.

Thus, further research is required in this area to analyze this link more thoroughly and to

investigate if there are other important factors in addition to multidimensional association.

Finally, the empirical application in Chapter V is developed only for an illustrative pur-

pose and further research is required to be conducted. First, the National Family Health

Survey data set does not contain any information on income. As a result, we can not di-

rectly compare our multidimensional results directly with the results using an income based

approach. Secondly, we use a proxy indicator of health risks to measure the quality of health

of each household. Further research is required to construct an indicator that can measure

household health directly.
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