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CHAPTER 1

INTRODUCTION AND MAIN RESULTS

It is a common technique in geometric group theory to study groups via their action of

some space. One standard way to do so is to convert a group G into a metric space by fixing

a generating set X and endowing G with the corresponding word metric dX ; the group has

a natural cobounded action on the corresponding Cayley graph Γ(G,X). However, not all

generating sets are equally good for this purpose : the most informative metric space is

obtained when X is finite, while the space corresponding to X = G forgets the structure of

the group almost completely.

The first section of thesis (part of joint work with Carolyn Abbott and Denis Osin;

(see [2]) focuses on formalizing this notion, so that generating sets can be ordered in a

way according to the amount of information they provide about the group G. Indeed, we

introduce an ordering on the generating sets of G as follows.

Let X , Y be two generating sets of a group G. We say that X is dominated by Y ,

written X � Y , if the identity map on G induces a Lipschitz map between metric spaces

(G,dY )→ (G,dX).

This is equivalent to the requirement that

sup
y∈Y
|y|X < ∞.

The relation � is inclusion reversing and a preorder on the set of generating sets of G.

It therefore induces an equivalence relation on the generating sets of G in the usual manner.

X ∼ Y ⇔ X � Y and Y � X .
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The above condition is equivalent to the statement that the Cayley graphs Γ(G,X) and

Γ(G,Y ) are quasi-isometric. A quasi-isometry is a coarse version of an isometry for spaces.

We denote the equivalence class of a generating set X by [X ] and the set of all such equiva-

lence classes by G (G). G (G) is a poset under the order induced from above. Note also that

under this equivalence, all finite generating sets are equivalent and the equivalence class of

a finite generating set is the largest.

[2] also introduces the poset of hyperbolic structures on G, denoted H (G), which

consists of equivalence classes of (possibly infinite) generating sets of G such that the cor-

responding Cayley graph is hyperbolic, endowed with the order from G (G). Since hyper-

bolicity is preserved under quasi-isometries, this notion is well-defined. Using arguments

similar to those from the proof of the Milnor-Svarc Lemma, one can also define hyperbolic

structures in terms of cobounded G-actions on hyperbolic spaces. This allows to work with

either hyperbolic Cayley graphs or cobounded actions on hyperbolic spaces, according to

our convenience.

We are especially interested in the subset A H (G) ⊆H (G) of acylindrically hyper-

bolic structures on G, i.e. hyperbolic structures [X ] such that the action of G on Γ(G,X) is

acylindrical.

Definition 1.0.1. An isometric action of a group G on a metric space (S,d) is acylindrical if

for every ε > 0 there exist R,N > 0 such that for every two points x,y ∈ S with d(x,y)≥ R,

there are at most N elements g ∈ G satisfying

d(x,gx)≤ ε and d(y,gy)≤ ε.

Although it is not immediately obvious, the equivalence of generating sets preserves

acylindricity, making this a well-defined notion as well.

An important class of groups for this thesis is the class of acylindrically hyperbolic

groups. In order to define this class of groups, we need the following theorem by Osin.
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Theorem 1.0.2. [69, Theorem 1.1] Let G be a group acting acylindrically on a hyperbolic

space. Then G satisfies exactly one of the following three conditions.

(a) G has bounded orbits.

(b) G is virtually cyclic and contains a loxodromic element.

(c) G contains infinitely many independent loxodromic elements.

Cases (a) and (b) in the above theorem are called elementary, and Case (c) is called

non-elementary.

Definition 1.0.3. A group G is called acylindrically hyperbolic if it admits a non-elementary,

acylindrical action on a hyperbolic space.

The main goal of [2] was to initiate the study of the posets H (G) and A H (G) for

various groups G. My contribution to this body of work deals with the notion of accessi-

bility.

Definition 1.0.4. A group G is said to be H -accessible (respectively A H -accessible) if

the poset H (G) (respectively A H (G)) contains the largest element.

Over the last few years, the class of acylindrically hyperbolic groups has received con-

siderable attention. It is broad enough to include many examples of interest, e.g., non-

elementary hyperbolic and relatively hyperbolic groups, all but finitely many mapping

class groups of punctured closed surfaces, Out(Fn) for n ≥ 2, most 3-manifold groups,

and finitely presented groups of deficiency at least 2. On the other hand, the existence

of a non-elementary acylindrical action on a hyperbolic space is a rather strong assump-

tion, which allows one to prove non-trivial results. In particular, acylindrically hyperbolic

groups share many interesting properties with non-elementary hyperbolic and relatively

hyperbolic groups. For details we refer to [30, 56, 69, 68] and references therein.
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One can ask the question if every acylindrically hyperbolic group is A H -accessible.

While this is not true (a fact that follows from [2, Theorem 2.18]), I do prove that several

well-known acylindrically hyperbolic groups are A H -accessible.

Theorem 1.0.5. The following acylindrically hyperbolic groups are A H -accessible.

(a) Finitely generated relatively hyperbolic groups whose parabolic subgroups are not

acylindrically hyperbolic.

(b) Mapping class groups of punctured closed surfaces.

(c) Right-angled Artin groups.

(d) Fundamental groups of compact orientable 3-manifolds with empty or toroidal bound-

ary.

The next part of this thesis answers the following question.

Problem 1.0.6. Which groups admit acylindrical, non-elementary, cobounded actions on

quasi-trees ?

By a quasi-tree, I mean a connected graph quasi-isometric to a tree. Quasi-trees are a

very specific subclass of hyperbolic spaces; indeed they are the “1- dimentional” hyperbolic

spaces from the asymptotic point of view.

The motivation behind our question comes from the following observation. If instead of

cobounded acylindrical actions we consider cobounded proper (i.e., geometric) ones, then

there is a crucial difference between the groups acting on hyperbolic spaces and quasi-

trees. Indeed a group G acts geometrically on a hyperbolic space if and only if G is a

hyperbolic group. On the other hand, Stallings theorem on groups with infinitely many

ends and Dunwoodys accessibility theorem implies that groups admitting geometric actions

on quasi-trees are exactly virtually free groups. Yet another related observation is that

acylindrical actions on unbounded locally finite graphs are necessarily proper. Thus if
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we restrict to quasi-trees of bounded valence in Question 4.1.1, we again obtain the class

of virtually free groups (see Table 1.1). Other known examples of groups having non-

elementary, acylindrical and cobounded actions on quasi-trees include groups associated

with special cube complexes and right angled artin groups (see [10], [39], [47]).

Hyperbolic
spaces Quasi-trees Locally finite

quasi-trees

Geometric
action

Hyperbolic
groups

Virtually free
groups

Virtually free
groups

Acylindrical,
non-elementary,

cobounded
action

Acylindrically
hyperbolic
groups

? Virtually free
groups

Table 1.1

Thus one could expect that the restriction to a such a small subclass of hyperbolic

spaces would yield a very specific subclass of the class of acylindrically hyperbolic groups.

However, I prove that this does not happen. (See [8])

Theorem 1.0.7. Every acylindrically hyperbolic group admits a non-elementary cobounded

acylindrical action on a quasi-tree.

In particular, this shows that every acylindrically hyperbolic group G has a structure

[X ] ∈ A H (G) such that the corresponding Cayley graph Γ is a (non-elementary) quasi-

tree.) The proof of this result utilizes the notions of hyperbolically embedded subgroups

and projection complexes. As an application, I also obtain some new results about hyper-

bolically embedded subgroups and quasi-convex subgroups of acylindrically hyperbolic

groups.
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Lastly, this thesis answers a particular question associated to quasi-parabolic hyper-

bolic structures (defined in the next section). Our understanding of quasi-parabolic struc-

tures on groups is far from being complete. The ultimate goal would be to obtain a clas-

sification of possible isomorphism types of Hqp(G). While achieving this goal does not

seem realistic at the moment, there are some simpler questions which can be answered.

One open questions posed in [2] is the following.

Problem 1.0.8. Does there exist a group G such that Hqp(G) is finite and non-empty ?

I prove that there an infinitely many groups which satisfy this property.

Theorem 1.0.9. The lamplighter groups Lp have exactly two quasi-parabolic structures,

when p is a prime.

Organization of the thesis : The next few sections are dedicated to introducing several

notions and definitions that will be used throughout the thesis. We will also record several

useful results from [2]. The following chapters will then deal with the proofs of the main

results of this thesis. Please note that Chapter 3 appears in [2], and is part of joint work

with C. Abbott and D. Osin. Chapter 4 was first published in Algebraic and Geometric

Topology 17 (2017) 2145 - 2176, published by Mathematical Sciences Publishers.
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CHAPTER 2

PRELIMINARIES

2.1 Comparing Group Actions and Generating Sets

We begin with some standard terminology. Throughout this thesis, all group actions on

metric spaces are isometric by default. Our standard notation for an action of a group G on

a metric space S is G y S. Given a point s ∈ S or a subset X ⊆ S and an element g ∈G, we

denote by gs (respectively, gX) the image of s (respectively X) under the action of g. Given

a group G acting on a space S and some s ∈ S, we also denote by Gs the G-orbit of s.

In order to avoid dealing with proper classes we fix a cardinal number c ≥ 2ℵ0 and,

henceforth, we assume that all metric spaces have cardinality at most c.

Definition 2.1.1. An action of a group G on a metric space S is said to be

(i) proper is for every bounded subset B⊆ S the set {g ∈ G | gB∩B 6= /0} is finite;

(ii) cobounded if there exists a bounded subset B⊆ S such that S =
⋃

g∈G

gB;

(iii) geometric if it is proper and cobounded.

Given a metric space S, we denote by dS the distance function on S unless another

notation is introduced explicitly.

Definition 2.1.2. A map f : R→ S between two metric spaces R and S is a quasi-isometric

embedding if there is a constant C such that for all x,y ∈ R we have

1
C

dR(x,y)−C ≤ dS( f (x), f (y))≤CdR(x,y)+C; (2.1)
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if, in addition, S is contained in the C–neighborhood of f (R), f is called a quasi-isometry.

Two metric spaces R and S are quasi-isometric if there is a quasi-isometry R→ S. It is well-

known and easy to prove that quasi-isometry of metric spaces is an equivalence relation.

Definition 2.1.3. If a group G acts on metric spaces R and S, a map f : R→ S is called

coarsely G-equivariant if for every r ∈ R, we have

sup
g∈G

dS( f (gr),g f (r))< ∞. (2.2)

We now recall the definition of equivalent group actions introduced in [4].

Definition 2.1.4. Two actions G y R and G y S are equivalent, denoted G y R∼G y S,

if there exists a coarsely G-equivariant quasi-isometry R→ S. It is easy to prove (see [4])

that ∼ is indeed an equivalence relation.

We further develop another notion for comparing actions, especially when considering

non-cobounded actions.

Definition 2.1.5. [2, Definition 31.] Let G be a group. We say that G y R dominates

G y S and write G y S� G y R if there exist r ∈ R, s ∈ S, and a constant C such that

dS(s,gs)≤CdR(r,gr)+C (2.3)

for all g ∈ G.

Example 2.1.6. Assume that the action G y S has bounded orbits. Then G y S � G y R

for any other action of G on a metric space R.

Equivalently, we could define the relation � as follows.

Lemma 2.1.7. [2, Lemma 3.3] G y S � G y R if and only if for any r ∈ R and any s ∈ S

there exists a constant C such that (2.3) holds for all g ∈ G.
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Corollary 2.1.8. [2, Corollary 3.4] The relation� is a preorder on the set of all G-actions

on metric spaces.

Proof. The relation � is obviously reflexive and is transitive by Lemma 2.1.7.

This allows us to introduce the following notion.

Definition 2.1.9. [2, Definition 3.5] We say that two actions of a group G on metric spaces

R and S are weakly equivalent if Gy R�Gy S and Gy S�Gy R. We use the notation

∼w for weak equivalence of group actions.

It is sometimes convenient to use the following alternative definition of weak equiva-

lence.

Lemma 2.1.10. [2, Lemma 3.6] Two actions GyR and Gy S are weakly equivalent if and

only if there exists a coarsely G–equivariant quasi-isometry from a G-orbit in R (endowed

with the metric induced from R) to a G-orbit in S (endowed with the metric induced from

S).

Although the notions of equivalence and weak equivalence are not the same, they do

coincide for cobounded actions.

Lemma 2.1.11. [2, Lemma 3.8] Let G y R and G y S be two actions of a group G on

metric spaces.

(a) If G y R∼ G y S, then G y R∼w G y S.

(b) Suppose that the actions are cobounded and G y R∼w G y S. Then G y R∼G y

S.

We are now ready to formalize the notion of comparing two generating sets of a group.

Definition 2.1.12. [2, Definition 1.1] Let X , Y be two generating sets of a group G. We say

that X is dominated by Y , written X � Y , if the identity map on G induces a Lipschitz map

9



between metric spaces (G,dY )→ (G,dX). This is obviously equivalent to the requirement

that supy∈Y |y|X < ∞, where | · |X = dX(1, ·) denotes the word length with respect to X . It

is clear that � is a preorder on the set of generating sets of G and therefore it induces an

equivalence relation in the standard way:

X ∼ Y ⇔ X � Y and Y � X .

We denote by [X ] the equivalence class of a generating set X and by G (G) the set of all

equivalence classes of generating sets of G. The preorder � induces an order relation 4 on

G (G) by the rule

[X ]4 [Y ] ⇔ X � Y.

For example, all finite generating sets of a finitely generated group are equivalent and

the corresponding equivalence class is the largest element of G (G); for every group G, [G]

is the smallest element of G (G). Note also that our order on G (G) is “inclusion reversing”:

if X and Y are generating sets of G such that X ⊆ Y , then Y � X .

To define a hyperbolic structure on a group, we first recall the definition of a hyperbolic

space. In this paper we employ the definition of hyperbolicity via the Rips condition.

Definition 2.1.13. A metric space S is called δ -hyperbolic if it is geodesic and for any

geodesic triangle ∆ in S, each side of ∆ is contained in the union of the closed δ -neighborhoods

of the other two sides.

Definition 2.1.14. [2, Definition 1.2] A hyperbolic structure on G is an equivalence class

[X ] ∈ G (G) such that Γ(G,X) is hyperbolic. We denote the set of hyperbolic structures by

H (G) and endow it with the order induced from G (G).

It is well-known that hyperbolicity of a space is a quasi-isometry invariant; thus the def-

inition above is independent of the choice of a particular representative in the equivalence

class [X ].

10



Recall that an isometric action of a group G on a metric space (S,d) is acylindrical [18]

if for every constant ε there exist constants R = R(ε) and N = N(ε) such that for every

x,y ∈ S satisfying d(x,y)≥ R, we have

#{g ∈ G | d(x,gx)≤ ε, d(y,gy)≤ ε} ≤ N.

This is a notion that dates back to Sela for groups acting on trees; the general definition

is due to Bowditch. Groups acting acylindrically on hyperbolic spaces have received a lot

of attention in the recent years. For a brief survey we refer to [69].

Definition 2.1.15. [2, Definition 1.2] The set of acylindrically hyperbolic structures on G,

denoted A H (G), consists of hyperbolic structures [X ] ∈H (G) such that the action of G

on the corresponding Cayley graph Γ(G,X) is acylindrical.

It is easy to check that acylindricity is preserved under the equivalence of generating

sets. Indeed, the map between Cayley graphs corresponding to equivalent generating sets

is G-equivariant.

The last notion we introduce here is that of the Svarc-Milnor map, that allows us to

interchangeably work with generating sets or cobounded group actions. Using the standard

argument from the proof of the Svarc-Milnor Lemma, it is easy to show that elements of

H (G) are in one-to-one correspondence with equivalence classes of cobounded actions of

G on hyperbolic spaces considered up to the natural equivalence : two actions G y S and

G y T are equivalent if there is a coarsely G-equivariant quasi-isometry S→ T . Indeed,

we prove the following results in [2].

Lemma 2.1.16. [2, Lemma 3.9] Let X, Y be generating sets of a group G. Then G y

Γ(G,X)� G y Γ(G,Y ) if and only if X � Y . In particular, G y Γ(G,X)∼ G y Γ(G,Y )

if and only if X ∼ Y .

Lemma 2.1.17. [2, Lemma 3.10] Let G be a group generated by a set X and acting on a

metric space S. Suppose that for some s ∈ S, we have supx∈X dS(s,xs)< ∞. Then the orbit

11



map g 7→ gs is a Lipschitz map from (G,dX) to S. In particular, if G is finitely generated,

the orbit map is always Lipschitz.

Lemma 2.1.18. [2, Lemma 3.11] Let G be a group acting coboundedly on a geodesic

metric space S. Let B ⊆ S be a bounded subset such that
⋃

g∈G gB = S. Let D = diam(B)

and let b be any point of B. Then the group G is generated by the set

X = {g ∈ G | dS(b,gb)≤ 2D+1}

and the natural action of G of its Cayley graph Γ(G,X) is equivalent to G y S.

In particular, given a group G, we let Acb(G) denote the set of all equivalence classes

of cobounded G-actions on geodesic metric spaces (of cardinality at most c). We define a

relation 4 on Acb(G) by

[G y R]4 [G y S] ⇔ G y R� G y S.

Then we get the following results.

Proposition 2.1.19. [2, Proposition 3.12] The map G (G)→ Acb(G) defined by [X ] 7→

[G y Γ(G,X)] for every [X ] ∈ G (G) is well-defined and is an isomorphism of posets.

Proof. That the map is order-preserving and injective follows from Lemma 2.1.16. Surjec-

tivity follows from Lemma 2.1.18.

Definition 2.1.20 (Svarc-Milnor map). [2, Definition 3.13] Given a group G, we denote by

σ : Acb(G)→ G (G) the inverse of the isomorphism described in Proposition 2.1.19. We

call σ the Svarc-Milnor map.

It follows from Proposition 2.1.19 that σ can be alternatively defined as an isomorphism

of posets Acb(G)→ G (G) such that for every cobounded action G y S, we have
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G y Γ(G,X)∼ G y S (2.4)

for every X ∈ σ([G y S]).

In particular, the Svarc-Milnor map associates hyperbolic (respectively, acylindrically

hyperbolic) structures on a group G to cobounded actions (respectively, cobounded acylin-

drical actions) of G on hyperbolic spaces. Indeed this follows from (2.4), the well-known

fact that hyperbolicity of a geodesic space is a quasi-isometry invariant, and the fact that

acylindricity of an action is preserved under the equivalence.

2.2 General classification of hyperbolic structures

We begin by recalling some standard facts about groups acting on hyperbolic spaces.

For details the reader is referred to [37].

Given a hyperbolic space S, by ∂S we denote its Gromov boundary. In general, we

do not assume that S is proper. Thus the boundary is defined as the set of equivalence

classes of sequences convergent at infinity. More precisely, a sequence (xn) of elements of

S converges at infinity if (xi|x j)s→ ∞ as i, j→ ∞ (this definition is clearly independent of

the choice of s). Two such sequences (xi) and (yi) are equivalent if (xi|y j)s→∞ as i, j→∞.

If a is the equivalence class of (xi), we say that the sequence xi converges to a. This defines

a natural topology on S∪∂S with respect to which S is dense in S∪∂S.

From now on, let G denote a group acting (by isometries) on a hyperbolic space S. By

Λ(G) we denote the set of limit points of G on ∂S. That is,

Λ(G) = ∂S∩Gs,

where Gs denotes the closure of a G-orbit in S∪∂S; it is easy to show that this definition is

independent of the choice of s ∈ S. The action of G is called elementary if |Λ(G)| ≤ 2 and

non-elementary otherwise. The action of G on S naturally extends to a continuous action
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of G on ∂S.

Definition 2.2.1. An element g ∈ G is called

(i) elliptic if 〈g〉 has bounded orbits;

(ii) loxodromic if the orbits of 〈g〉 are quasi-convex (equivalently, the translation number

of g is positive);

(iii) parabolic otherwise.

Every loxodromic element g ∈ G has exactly 2 fixed points g±∞ on ∂S, where g+∞

(respectively, g−∞) is the limit of the sequence (gns)n∈N (respectively, (g−ns)n∈N) for any

fixed s ∈ S. We clearly have Λ(〈g〉) = {g±∞}. Loxodromic elements g,h ∈ G are called

independent if the sets {g±∞} and {h±∞} are disjoint.

Definition 2.2.2. A quasi-geodesic is a quasi-isometric embedding of an interval (bounded

or unbounded) I ⊆R into a metric space X . Note that geodesics are (1,0)-quasi-geodesics.

By slight abuse of notation, we may identify the map that defines a quasi-geodesic with its

image in the space.

Every loxodromic element g ∈ G preserves a bi-infinite quasi-geodesic lg in S; adding

g±∞ to lg, we obtain a path in S∪ ∂S that connects g+∞ to g−∞. Such a path is called a

quasi-geodesic axis (or simply an axis) of g. Given any s ∈ S, we can always construct

an axis of g that contains s: take the bi-infinite sequence . . . ,g−2s,g−1s,s,gs,g2s, . . . and

connect consecutive points by geodesics in S.

The following theorem summarizes the standard classification of groups acting on hy-

perbolic spaces due to Gromov [37, Section 8.2] (see also [40] for complete proofs in a

more general context) and some results from [24, Propositions 3.1 and 3.2].

Theorem 2.2.3. Let G be a group acting on a hyperbolic space S. Then exactly one of the

following conditions holds.
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1) |Λ(G)|= 0. Equivalently, G has bounded orbits. In this case the action of G is called

elliptic.

2) |Λ(G)| = 1. Equivalently, G has unbounded orbits and contains no loxodromic ele-

ments. In this case the action of G is called parabolic. A parabolic action cannot be

cobounded and the set of points of ∂S fixed by G coincides with Λ(G).

3) |Λ(G)|= 2. Equivalently, G contains a loxodromic element and any two loxodromic

elements have the same limit points on ∂S. In this case the action of G is called

lineal.

4) |Λ(G)|= ∞. Then G always contains loxodromic elements. In turn, this case breaks

into two subcases.

(a) G fixes a point of ∂S. Equivalently, any two loxodromic elements of G have

a common limit point on the boundary. In this case the action of G is called

quasi-parabolic. Orbits of quasi-parabolic actions are always quasi-convex.

(b) G does not fix any point of ∂S. Equivalently, G contains infinitely many in-

dependent loxodromic elements. In this case the action of G is said to be of

general type.

Parabolic and quasi-parabolic acylindrical actions do not exist. Moreover, we have the

following [69].

Theorem 2.2.4. Let G be a group acting acylindrically on a hyperbolic space. Then exactly

one of the following three conditions holds.

(a) The action is elliptic.

(b) The action is lineal and G is virtually cyclic.

(c) The action is of general type.
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An acylindrical action is called elementary in cases (a) and (b), and non-elementary

in case (c). In particular, being non-elementary is equivalent to being of general type for

acylindrical actions.

Definition 2.2.5. A group G is said to be acylindrically hyperbolic if it admits a non-

elementary, acylindrical action on a hyperbolic space.

Lemma 2.2.6. [2, Lemma 4.4] Let G y R and G y S be equivalent actions of G on hyper-

bolic spaces. Then G y R and G y S have the same type.

Proposition 2.2.7. Let X and Y be equivalent generating sets of a group G. Then the

following hold.

(a) Γ(G,X) is hyperbolic if and only if Γ(G,Y ) is.

(b) The action G y Γ(G,X) is acylindrical if and only if G y Γ(G,Y ) is.

(c) The action G y Γ(G,X) is elliptic (respectively lineal, quasi-parabolic, of general

type) if and only if so is G y Γ(G,Y ).

Thus we obtain the following classification of hyperbolic structures, which follows al-

most immediately from the results stated above, and the fact that cobounded actions cannot

be parabolic. The sets of elliptic, lineal, quasi-parabolic, and general type hyperbolic struc-

tures on G are denoted by He(G), H`(G), Hqp(G), and Hgt(G) respectively. We use

analogous notation for acylindrically hyperbolic structures.

Theorem 2.2.8. [2, Theorem 4.6] For every group G, the following holds.

(a)

H (G) = He(G)tH`(G)tHqp(G)tHgt(G)

and the subsets He(G)tH`(G) and He(G)tH`(G)tHqp(G) are initial segments

of H (G).
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(b) Either

A H (G) = A H e(G)tA H `(G)

(if G is virtually cyclic) or

A H (G) = A H e(G)tA H gt(G)

(if G is acylindrically hyperbolic).

2.3 Hyperbolically Embedded Subgroups

In this section, we recall the definition of the notion of a hyperbolically embedded

collection of subgroups, introduced in [30]. We then define a strongly hyperbolically em-

bedded collection of subgroups, which is a strengthening of the notion of a hyperbolically

embedded collection of subgroups.

Suppose that we have a group G, a collection of subgroups {H1, . . . ,Hn} of G, and a

subset X ⊆ G such that X together with the union of all Hi generate G. Let

H = H1tH2t . . .tHn. (2.5)

We think of X and H as abstract sets and consider the alphabet

A = X tH (2.6)

together with the map A →G induced by the obvious maps X→G and Hi→G. By abuse

of notation, we do not distinguish between subsets X and Hi of G and their preimages in A .

Note, however, the map A → G is not necessarily injective. Indeed if X and a subgroup

Hi (respectively, subgroups Hi and H j for some i 6= j) intersect in G, then every element

of Hi∩X ⊆ G (respectively, Hi∩H j) will have at least two preimages in A : one in X and
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another in Hi (respectively, one in Hi and one in H j) since we use disjoint unions in (2.5)

and (2.6).

In these settings, we consider the Cayley graphs Γ(G,X tH ) and Γ(Hi,Hi), and we

naturally think of the latter as subgraphs of the former. For every i ∈ {1, . . . ,n}, we intro-

duce a relative metric d̂i : Hi×Hi→ [0,+∞] as follows: we say that a path p in Γ(G,XtH )

is admissible if it contains no edges of Γ(Hi,Hi). Then d̂i(h,k) is defined to be the length

of a shortest admissible path in Γ(G,X tH ) that connects h to k. If no such a path exists,

we set d̂i(h,k) = ∞. Clearly d̂i satisfies the triangle inequality, where addition is extended

to [0,+∞] in the natural way.

Remark 2.3.1. It is important that the union in the definition above is disjoint. This disjoint

union leads to the following observation : for every h ∈Hi∩H j, the alphabet H will have

two letters representing h in G, one from Hi and another from H j. It may also be the case

that a letter from H and a letter from X represent the same element of the group G. In this

situation, the corresponding Cayley graph Γ(G,X tH ) has bigons (or multiple edges in

general) between the identity and the element, one corresponding to each of these letters.

It is convenient to extend the relative metric d̂i to the whole group G by assuming

d̂i( f ,g) : =

 d̂i( f−1g,1), if f−1g ∈ Hi

d̂i( f ,g) = ∞, otherwise.

If the collection {H1, . . . ,Hn} consists of a single subgroup H, we use the notation d̂ instead

of d̂i.

Definition 2.3.2. A collection of subgroups {H1, . . . ,Hn} of G is hyperbolically embedded

in G with respect to a subset X ⊆ G, denoted {H1, . . . ,Hn} ↪→h (G,X), if the following

conditions hold.

(a) The group G is generated by X together with the union of all Hi and the Cayley graph

Γ(G,X tH ) is hyperbolic.
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(b) For every i, the metric space (Hi, d̂i) is proper, i.e., every ball (of finite radius) in Hi

with respect to the metric d̂i contains finitely many elements.

If, in addition, the action of G on Γ(G,X tH ) is acylindrical, we say that {H1, . . . ,Hn} is

strongly hyperbolically embedded in G with respect to X.

Finally, we say that the collection of subgroups {H1, . . . ,Hn} is hyperbolically embed-

ded in G and write {H1, . . . ,Hn} ↪→h G if {H1, . . . ,Hn} ↪→h (G,X) for some X ⊆ G.

Remark 2.3.3. Unlike the notion of a hyperbolically embedded subgroup, the notion of a

strongly hyperbolically embedded subgroup depends on the choice of a generating set. In

general, {H1, . . . ,Hn} ↪→h (G,X) does not imply that {H1, . . . ,Hn} is strongly hyperboli-

cally embedded in G with respect to X , but does imply that {H1, . . . ,Hn} is strongly hyper-

bolically embedded in G with respect to some other relative generating set Y containing X ,

see [69, Theorem 5.4] for details.

Since hyperbolically embedded subgroups and the metric d̂ introduced above play a

crucial role in this thesis, we consider two additional examples borrowed from [30].

Example 2.3.4. (a) Let G = H×Z, X = {x}, where x is a generator of Z. Then Γ(G,X t
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H) is quasi-isometric to a line and hence it is hyperbolic. However the corresponding

relative metric satisfies d̂(h1,h2) ≤ 3 for every h1,h2 ∈ H (See Fig. 2.1). Indeed let

ΓH denote the Cayley graph Γ(H,H). In the shifted copy xΓH of ΓH there is an edge

(labeled by h−1
1 h2 ∈H) connecting h1x to h2x, so there is an admissible path of length

3 connecting h1 to h2. Thus if H is infinite, then H 6↪→h (G,X).

(b) Let G = H ∗Z, X = {x}, where x is a generator of Z. In this case Γ(G,X tH)

is quasi-isometric to a tree (see Fig. 2.2) and d̂(h1,h2) = ∞ unless h1 = h2. Thus

H ↪→h (G,X). In fact, H is strongly hyperbolically embedded in G in this case.

The following result proved in [30] relates the notions of hyperbolically embedded col-

lections of subgroups and relatively hyperbolic groups. (Readers unfamiliar with relative

hyperbolicity can take this result as the definition of relatively hyperbolic groups.)

Theorem 2.3.5. Let G be a group, {H1, . . . ,Hn} a collection of subgroups of G. Then

{H1, . . . ,Hn} ↪→h (G,X) for a finite X ⊆G if and only if G is hyperbolic relative to {H1, . . . ,Hn}.

We will make use of several technical notions first introduced in [65, 63] for relatively

hyperbolic groups and then generalized in the context of hyperbolically embedded sub-

groups in [30].

Definition 2.3.6. Let q be a path in the Cayley graph Γ(G,X tH ). A (non-trivial) subpath

p of q is called an Hi-subpath if the label of p is a word in the alphabet Hi. An Hi-subpath

p of q is an Hi-component if p is not contained in a longer Hi-subpath of q; if q is a loop,

we require in addition that p is not contained in any longer Hi-subpath of a cyclic shift of

q.

Two Hi-components p1, p2 of a path q in Γ(G,X tH ) are called connected if there

exists a path c in Γ(G,X tH ) that connects some vertex of p1 to some vertex of p2, and

the label of c is a word consisting only of letters from Hi. In algebraic terms this means that

all vertices of p1 and p2 belong to the same left coset of Hi. Note also that we can always

assume that c is an edge as every element of Hi is included in the set of generators. A
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component of a path p is called isolated in p if it is not connected to any other component

of p.

The following result is a simplified version of [30, Proposition 4.13]. Given a path p in

a metric space, we denote by p− (respectively p+) its initial (respectively, terminal) point.

Lemma 2.3.7. Let G be a group and {H1, . . . ,Hn} a fixed collection of subgroups in G. Let

X ⊂ G such that G is generated by X together with the union of all {H1, . . . ,Hn}. Then

there exists a constant C > 0 such that for any n-gon p with geodesic sides in Γ(G,X tH ),

any λ ∈ Λ, and any isolated Hλ component a of p, d̂λ (a−,a+)≤Cn.

We also have the following results, which will be used in later sections.

Lemma 2.3.8 ([30], Corollary 4.27). Let G be a group, {Hλ}λ∈Λ a collection of sub-

groups of G, and X1 and X2 be relative generating sets. Suppose that |X1∆X2| < ∞. Then

{Hλ}λ∈Λ ↪→h (G,X1) if and only if {Hλ}λ∈Λ ↪→h (G,X2).

Theorem 2.3.9 ([69], Theorem 5.4). Let G be a group, {Hλ}λ∈Λ a finite collection of

subgroups of G, X a subset of G. Suppose that {Hλ}λ∈Λ ↪→h (G,X). Then there exists

Y ⊂ G such that the following conditions hold.

(a) X ⊂ Y

(b) {Hλ}λ∈Λ ↪→h (G,Y ). In particular, the Cayley graph Γ(G,Y tH ) is hyperbolic.

(c) The action of G on Γ(G,Y tH ) is acylindrical.

We now recall some useful results and constructions from [4].

Definition 2.3.10. Let H1, . . . ,Hn be subgroups of a group G and let X be a relative gener-

ating set for G with respect to H1, . . . ,Hn. Let

ιX : G (H1)×·· ·×G (Hn)→ G (G)
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be the map defined by

ιX([Y1], . . . , [Yn]) =

[
X ∪

(
n⋃

i=1

Yi

)]
. (2.7)

This map can be thought of as the analogue of the induced action map defined in [4] for

equivalence classes of group actions on geodesic metric spaces. In general, very little can

be said about this map. However, if the collection of subgroups is hyperbolically embedded,

then the map behaves well. In the theorem below, we restate some of the results of [4] in

this regard using terminology of [2].

Theorem 2.3.11. Let G be a group, let H1, . . . ,Hn be subgroups of G, and let X be a

relative generating set for G with respect to H1, . . . ,Hn. Then the map ιX defined by (2.7) is

well-defined and order preserving. If, in addition, {H1, . . . ,Hn} ↪→h (G,X), then ιX sends

H (H1)×·· ·×H (Hn) to H (G). In particular, ιX is injective.

We extend this result in [2] by showing that the induced action also preserves acylin-

dricity.

Theorem 2.3.12. [2, Theorem 5.20] Suppose that a collection of subgroups {H1, . . . ,Hn}

is strongly hyperbolically embedded in a group G with respect to a relative generating set

X. Then for every A ∈A H (H1)×·· ·×A H (Hn), we have ιX(A) ∈A H (G).

2.4 Accessibility

The famous Stallings’ theorem states that every finitely generated group with infinitely

many ends splits as the fundamental group of a graph of groups with finite edge groups.

This was a starting point of an accessibility theory developed by Dunwoody. A finitely

generated group G is said to be accessible if the process of iterated nontrivial splittings of

G over finite subgroups always terminates in a finite number of steps. Not every finitely

generated group is accessible [32], but finitely presented groups are [31], as well as torsion

free groups [51].
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More generally, one can ask whether a given group has a maximal, in a certain precise

sense, action on a tree satisfying various additional conditions on stabilizers (see, for ex-

ample, [11, 75]). Yet another problem of similar flavor studied in the literature is whether

a given group admits a maximal relatively hyperbolic structure [9]. It is natural to ask a

similar question in our setting.

Definition 2.4.1. [2, Definition 2.17] We say that a group G is H -accessible (respectively

A H -accessible) if H (G) (respectively A H (G)) contains the largest element.

Definition 2.4.2. A group G is said to be strongly A H -accessible if there exists an ele-

ment [X ] ∈A H (G) such that for every acylindrical action (not necessarily cobounded) of

G on any hyperbolic space S, we have G y S� G y Γ(G,X), with respect to the preorder

on group actions from Definition 2.1.5. We say that the structure [X ] realizes the strong

A H -accessibility of G. Such a structure, if it exists, is obviously unique. In particular, a

strongly A H -accessible group is A H -accessible.

Remark 2.4.3. Note that in the above definition, we do not restrict the cardinality of S. We

consider actions of G on all hyperbolic metric spaces, not just those of bounded cardinality.

Example 2.4.4. Every hyperbolic group is strongly A H -accessible. Indeed, if G is a

hyperbolic group, then there exists a finite generating set X such that [X ] ∈A H (G). The

result then follows from Lemma 2.1.17.

Example 2.4.5. Every group G which is not acylindrically hyperbolic is strongly A H -

accessible. Indeed, this is an immediate consequence of Theorem 2.2.4. If G is virtually

cyclic, the result follows from Example 2.4.4. If every acylindrical action of G on a hy-

perbolic space is elliptic, then the trivial structure realizes the strong A H -accessibility of

G.

In particular, this example applies to groups with infinite amenable radicals (e.g. infinite

center) (see [69, Corollary 7.2]) and to direct products of two infinite groups (see [69,

Corollary 7.2]). In fact, if G is the direct product of two groups with infinite order elements,
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then the trivial structure realizes the strong A H -accessibility of G (since G contains Z×Z

as a subgroup, it is not virtually cyclic).

It is easy to find examples of groups which are not H -accessible, e.g., the direct

product F2×F2; however, this group is A H -accessible, see Section 7.1. Finding A H -

inaccessible groups, especially finitely generated or finitely presented ones, is more diffi-

cult. However, for a lot of well-known classes of groups in geometric group theory, the

question of accessibility can answered in the affirmative, as proved in the next chapter of

this thesis.
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CHAPTER 3

A H − ACCESSIBLE GROUPS

3.1 Sufficient condition for largest action

The goal of this chapter is to prove the following theorem.

Theorem 3.1.1. The following groups are A H -accessible.

(a) Finitely generated relatively hyperbolic groups whose parabolic subgroups are not

acylindrically hyperbolic.

(b) Mapping class groups of punctured closed surfaces.

(c) Right-angled Artin groups.

(d) Fundamental groups of compact orientable 3-manifolds with empty or toroidal bound-

ary.

In fact, we will prove something stronger for each of the classes of groups mentioned

in Theorem 3.1.1; namely that they are strongly A H −accessible. This fact will be imme-

diately clear from the proofs below. We would like to note that following an early draft of

[2], parts (b) and (c) of the above theorem were independently and subsequently proven in

[3], which additionally proves the A H -accessibility of certain other groups using differ-

ent methods. The special case of part (d) of the above theorem when the 3-manifold has no

Nil or Sol in its prime decomposition is also proven in [3].

In order to prove that the groups listed in Theorem 3.1.1 have largest actions, we will

use the following sufficient condition for largest actions, developed in [2]. Note that in the

proposition, we use the order on group actions introduced in Definition 2.1.9. Here and

in what follows, we always think of connected graphs as metric spaces with respect to the

combinatorial metric.
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Proposition 3.1.2. Let G be a group acting cocompactly on a connected graph ∆ and let

A be a set of actions of G on metric spaces. Suppose that for every vertex v ∈ V (∆) and

every action G y S ∈ A , the induced action of the stabilizer StabG(v) on S has bounded

orbits. Then A� G y ∆ for all A ∈A .

As an immediate corollary of Proposition 3.1.2 and Proposition 2.1.19, we obtain the

following.

Corollary 3.1.3. [2, Corollary 4.14] Let G be a group acting cocompactly on a connected

graph ∆ and let F ⊆ G (G) be any subset. Suppose that for every v∈V (∆) and every [X ]∈

F , the stabilizer StabG(v) has bounded diameter with respect to dX . Then σ([G y ∆]) is

an upper bound for F in G (G).

3.2 Relatively hyperbolic groups

We start with the proof of Theorem 3.1.1 by dealing first with the case of relatively

hyperbolic groups. Recall that a group G is hyperbolic relative to subgroups H1, . . . ,Hn

if {H1, . . . ,Hn} ↪→h (G,X) for some finite X ⊂ G (see Theorem 2.3.5). The subgroups

H1, . . . ,Hn are called peripheral subgroups of G.

Theorem 3.2.1. Let G be a relatively hyperbolic group with peripheral subgroups H1, . . . ,Hn.

If each Hi is strongly A H -accessible, then G is strongly A H -accessible.

Proof. Let X be a finite subset of G such that {H1, . . . ,Hn} ↪→h (G,X). Let H = tn
i=1Hi.

By [69, Proposition 5.2], the action of G on Γ(G,X tH ) is acylindrical, i.e., {H1, . . . ,Hn}

is strongly hyperbolically embedded in G with respect to X .

Let [Yi] be the element in A H (Hi) that realizes the strong A H -accessibility of Hi,

for each 1≤ i≤ n. Then by Theorem 2.3.12, [X ∪Y1∪ ...∪Yn] ∈A H (G). We will show

that this element realizes the strong A H -accessibility of G.

Indeed, suppose that G y Z is an acylindrical action of G on a hyperbolic space and let

dZ denote the metric on Z. Fix a base point z ∈ Z. Restricting the action of G on Z to each
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Hi, we obtain an acylindrical action of each Hi on a hyperbolic space. But then

Hi y (Z,dZ)� Hi y Γ(Hi,Yi)

for every 1 ≤ i ≤ n. We can assume that there exists a constant C such that for every i =

1, ...,n, dZ(z,hz)≤CdYi(1,h)+C for all h ∈Hi. In particular, if y ∈Yi, then dZ(z,yz)≤ 2C.

Since X is finite, Lemma 2.1.17 applies and we conclude that

G y Z � G y Γ(G,X ∪Y1∪ ...∪Yn).

Proof of Theorem 3.1.1(a). If G is a finitely generated relatively hyperbolic group, then it

follows from [65, Theorem 1.1] that the collection of peripheral subgroups is finite. Let

H be a peripheral subgroup of G, which by assumption, is not acylindrically hyperbolic.

Example 2.4.5 applies, and we conclude that each peripheral subgroup is strongly A H -

accessible. The result follows from Theorem 3.2.1.

3.3 Mapping class groups

We next deal with the case of mapping class groups of closed punctured surfaces, for

which we will need several facts and definitions taken from [36], stated below. We refer

the reader to [36] for proofs and details.

Definition 3.3.1 (Complex of curves). A closed curve on S is called essential if it is not

homotopic to a point or a puncture. The complex of curves associated to S is a graph defined

as follows: vertices of the complex of curves are isotopy classes of essential, simple closed

curves, and two vertices are joined by an edge if the curves have disjoint representatives on

S. The complex of curves is denoted by C(S).
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We let g denote the genus of the surface S and p denote the number of punctures. We

adopt the convention that if a is a vertex of C(S), then by slight abuse of notation, we let a

denote the associated curve, and let Ta be the Dehn twist about a. We now list some facts

about Dehn twists and C(S) which we will require for the proof.

(a) [36, Propositions 3.1 and 3.2] Ta is a non-trivial infinite order element of G.

(b) [36, Fact 3.6] Ta = Tb if and only if a = b.

(c) [36, Fact 3.8] For any f ∈Mod(S) and any isotopy class a of simple closed curves in

S, we have that f commutes with Ta if and only if f (a) = a.

(d) [36, Fact 3.9] For any two isotopy classes a and b of simple closed curves in a surface

S, we have that a and b are connected by an edge in C(S) if and only if TaTb = TbTa.

(e) [36, Powers of Dehn twists, pg 75] For non-trivial Dehn twists Ta and Tb, and non-

zero integers j,k, we have T j
a = T k

b if and only if a = b; j = k.

(f) [36, Sec 1.3] G admits a cocompact, isometric action on C(S). (This follows from

the change of co-ordinates principle).

(g) [55, Theorem 1.1] C(S) is a hyperbolic space. Except when S is a sphere with 3 or

fewer punctures, C(S) has infinite diameter.

(h) [19, Theorem 1.3] If S is a surface satisfying 3g+ p ≥ 5, then the action of Mod(S)

on C(S) is acylindrical.

Proof of Theorem 3.1.1(b). Let S be a compact, punctured surface without boundary, of

genus g and with p punctures. We consider the following two cases.

Case 1. First assume that 3g+ p < 5. The mapping class groups for the cases g = 0

and p = 0,1,2,3 are finite and hence A H -accessible. In the cases of g = 0, p = 4 (the

four-punctured sphere) and g = 1, p = 0,1 (the torus and the once punctured torus), the
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mapping class groups are hyperbolic groups. Example 2.4.4 applies and we conclude that

these groups are also A H -accessible.

Case 2. We now assume that 3g+ p≥ 5. In this case, we will prove the result by using

Corollary 3.1.3 applied to A H (G)⊂ G (G) for G = Mod(S).

By fact (f) above, G admits a cocompact (hence cobounded), isometric action on C(S).

By facts (g) and (h) above, C(S) is an infinite diameter hyperbolic space and the action of

Mod(S) on C(S) is acylindrical.

To apply Corollary 3.1.3, we must consider stabilizers of vertices of C(S). Let H =

StabG(a), where a is a vertex of C(S). By fact (a) above, Ta is a non-trivial infinite order

element of G. Further Ta(a) = a, so Ta ∈ H by fact (c) above. For every element f ∈ H,

using fact (c) again, we must have f Ta = Ta f since f (a) = a. This implies that H has an

infinite center and is thus not acylindrically hyperbolic (see Example 2.4.5).

Since C(S) is connected and unbounded, there exists a vertex b 6= a of C(S) connected

by an edge to a. Then Tb is a non-trivial infinite order element by fact (a), and by applying

facts (d)and (c) above, Tb ∈H. By using fact (e) above, one can easily show that 〈Ta,Tb〉 ∼=

Z2 ≤H, so H is not virtually cyclic. By Theorem 2.2.4, every acylindrical action of H on a

hyperbolic space is elliptic. In particular, for every acylindrical action of G on a hyperbolic

space, the induced action of H is also acylindrical and thus elliptic. Applying Corollary

3.1.3, it follows that G is A H -accessible with largest element σ([G yC(S)]).

Remark 3.3.2. The above proof also applies to the set A of acylindrical actions of Mod(S)

on hyperbolic spaces. In this case, Proposition 3.1.2 applies, and we conclude that Mod(S)

is strongly A H -accessible. The same holds true for the cases of RAAGs and 3-manifolds

discussed below.

3.4 Right Angled Artin groups

We now proceed to the case of right-angled Artin groups (RAAGs). We begin by defin-

ing a RAAG and its extension graph.

29



Definition 3.4.1. Given a finite graph Γ, the right-angled Artin group on Γ is the group

defined by the presentation

A(Γ) = 〈V (Γ) | [a,b] = 1 ∀{a,b} ∈ E(Γ)〉.

For example, the RAAG corresponding to a complete graph on n vertices is Zn.

Definition 3.4.2. The extension graph Γe corresponding to A(Γ), introduced in [47], is a

graph with vertex set

{vg | v ∈V (Γ),g ∈ A(Γ)}

and edges defined by the following rule: two distinct vertices ug and vh are joined by an

edge if and only if they commute in A(Γ).

There is a natural right-conjugation action of A(Γ) on Γe given by gvh = vhg for v∈V (Γ)

and g,h ∈ A(Γ). Further, we may write

Γ
e =

⋃
g∈A(Γ)

gΓ,

where gΓ denotes the graph Γ with its vertices replaced by the corresponding conjugates

by g.

We will require the following theorems for the proof. For the proofs of these theorems

and further details concerning RAAGs, we refer the reader to [47].

Theorem 3.4.3. [48, Lemma 26] Let Γ be a finite connected graph. Then Γe is a quasi-tree.

Theorem 3.4.4. [47, Theorem 30] The action of A(Γ) on Γe is acylindrical.

We first prove the strong A H -accessibility of RAAGs arising from finite connected

graphs. We will then use this result to prove the A H -accessibility of RAAGs arising from

any finite graph.
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Lemma 3.4.5. Let Γ be a connected finite graph and G = A(Γ). Then G is strongly A H -

accessible.

Proof. Let V (Γ) denote the set of vertices of the graph Γ. If |V (Γ)| = 1, then G ∼= Z.

Example 2.4.4 applies in this case and we conclude that G is strongly A H -accessible.

Thus we may assume that |V (Γ)| ≥ 2. In this case, we will prove the result by using

Proposition 3.1.2 applied to the set A of acylindrical actions of G on hyperbolic spaces.

Observe that G y Γe is cocompact and isometric. By Theorem 3.4.3 and 3.4.4, G y Γe

is acylindrical and Γe is a quasi-tree and hence a hyperbolic space. Thus σ([G y Γe]) ∈

A H (G).

Since the action of G on Γe is by conjugation, stabilizers of vertices of the extension

graph correspond to centralizers of conjugates of standard generators of G. So we must

consider H =CG(ag), where a represents a vertex of Γ, and g is any element of G.

Since Γ is connected and |V (Γ)| ≥ 2, there exists a vertex b 6= a such that b is connected

to a in Γe, i.e. [a,b] = 1 in G. But then [ag,bg] = 1, so bg ∈ H. It can be easily shown that

〈ag,bg〉 ∼= 〈a,b〉 ∼= Z2 ≤ H, since the RAAG corresponding to a graph with 2 vertices and

an edge connecting them is Z2. Thus H cannot be virtually cyclic.

Since the center of H contains the infinite cyclic group 〈ag〉, H cannot be acylindrically

hyperbolic by Example 2.4.5. Thus H cannot act non-elementarily and acylindrically on

a hyperbolic space. By Theorem 2.2.4, for any acylindrical action of G on a hyperbolic

space, the induced action of H is elliptic. Applying Proposition 3.1.2, we conclude that G

is strongly A H -accessible.

Proof of Theorem 3.1.1(c). If Γ is connected, the result follows from Lemma 3.4.5. If Γ is a

disconnected finite graph, then Γ has two or more connected components, say Γ1,Γ2, ...,Γn.

Let A(Γi) denote the RAAG associated to the connected subgraph Γi of Γ. It is easy to

see that G = A(Γ1) ∗A(Γ2) ∗ ... ∗A(Γn), and so G is hyperbolic relative to the collection

{A(Γi) | 1 ≤ i ≤ n}. By Lemma 3.4.5, each RAAG A(Γi) is strongly A H -accessible.

Using Theorem 3.2.1, we conclude that G is A H -accessible.
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3.5 Fundamental groups of manifolds

Lastly, we consider the case of fundamental groups of compact, orientable 3-manifolds

with empty or toroidal boundary. In order to prove the theorem, we will need the following

results and definitions.

Definition 3.5.1. A 3-manifold N is said to be irreducible if every embedded S2 bounds a

3-ball.

Definition 3.5.2. A 3-manifold N is said to be atoroidal if any map T → N which induces

a monomorphism of fundamental groups can be homotoped into the boundary of N, i.e., N

contains no essential tori.

Definition 3.5.3. A Seifert fibered manifold is a 3-manifold N together with a decompo-

sition into disjoint simple closed curves (called Seifert fibers) such that each fiber has a

tubular neighborhood that forms a standard fibered torus.

The standard fibered torus corresponding to a pair of coprime integers (a,b) with a > 0

is the surface bundle of the automorphism of a disk given by rotation by an angle of 2πb
a ,

equipped with natural fibering by circles.

Lemma 3.5.4. [7, Lemma 1.5.1] Let N be a Seifert fibered manifold. If π1(N) is infinite,

then it contains a normal, infinite cyclic subgroup.

Definition 3.5.5. A compact 3-manifold is said to be hyperbolic if its interior admits a

complete metric of constant negative curvature −1.

The following theorem was first announced by Waldhausen ([79]), and was proved

independently by Jaco-Shalen ([43]) and Johannson ([44]).

Theorem 3.5.6. [7, Theorem 1.6.1][JSJ decomposition Theorem] Let N be a compact,

orientable, irreducible 3-manifold with empty or toroidal boundary. Then there exists a
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collection of disjointly embedded incompressible tori T1,T2, ...,Tk such that each compo-

nent of N cut along T1∪T2∪ ...∪Tk is atoroidal or Seifert fibered. Furthermore, any such

collection of tori with a minimal number of components is unique up to isotopy.

The tori in the above theorem are referred to as JSJ-tori. If T = ∪k
i=1Tk, the connected

components of N\T are called JSJ-components. For details of atoroidal and Seifert fibered

manifolds, we refer the reader to [7, Sections 1.5 and 1.6].

The following was proved by Perelman in his seminal papers (See [71, 72, 73]).

Theorem 3.5.7. [7, Theorem 1.7.5][Hyperbolization Theorem] Let N be a compact, ori-

entable, irreducible 3-manifold with empty or toroidal boundary. Suppose that N is not

homeomorphic to S1×D2 (solid torus), T 2× I (torus bundle), K2 ∼× I (twisted klein bottle

bundle). If N is atoroidal and π1(N) is infinite, then N is a hyperbolic manifold.

Remark 3.5.8. Note that the manifolds S1×D2, T 2× I, or K2×̃I, although atoroidal, are

also Seifert fibered manifolds, and are hence considered to be Seifert fibered JSJ compo-

nents. Under this convention, the Hyperbolization theorem implies that JSJ components of

N are either hyperbolic or Seifert fibered manifolds.

Definition 3.5.9. Let N be a compact, orientable, irreducible 3-manifold with empty or

toroidal boundary. We say N is a graph manifold if all its JSJ components are Seifert

fibered manifolds.

The next result can be found in [7, Theorem 7.2.2]. This result follows easily from

a combination theorem proved by Dahmani (see [29, Theorem 0.1]) or a more general

combination theorem, later proved by the third author (see [67, Corollary 1.5]). The result

has also been proved by Bigdely and Wise (see [15, Corollary E]).

Theorem 3.5.10. Let N be a compact, orientable, irreducible 3-manifold with empty or

toroidal boundary. Let M1, . . . ,Mk be the maximal graph manifold pieces of the JSJ-

decomposition of N. Let S1, . . . ,Sl be the tori in the boundary of N that adjoin a hyperbolic
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piece and let T1, . . . ,Tm be the tori in the JSJ-decomposition of N that separate two (not

necessarily distinct) hyperbolic components of the JSJ-decomposition. The fundamental

group of N is hyperbolic relative to the set of peripheral subgroups

{Hi}= {π1(Mp)}∪{π1(Sq)}∪{π1(Tr)}.

The last theorem we mention here is a combination of [80, Lemma 2.4] and [58, Lemma

5.2]. Although [80, Lemma 2.4] was originally stated and proved for closed manifolds, the

same proof also holds for manifolds with toroidal boundary. (See proofs of [80, Lemma

2.3 and Lemma 2.4]).

Theorem 3.5.11. Let N be an orientable, irreducible 3-manifold with empty or toroidal

boundary. Then either N has a finite-sheeted covering space that is a torus bundle over a

circle or the action of π1(N) on the Bass-Serre tree associated to the JSJ decomposition of

π1(N) is acylindrical.

Proof of Theorem 3.1.1(d). We first observe that it suffices to prove the theorem for a com-

pact, orientable, irreducible 3-manifold N with empty or toroidal boundary. Indeed, if N

is not irreducible, we let N̂ denote the 3-manifold obtained from N by gluing 3-balls to all

spherical components of ∂N. Then N̂ is irreducible, and π1(N̂) = π1(N). Also observe

that if π1(N) is finite, then it is A H -accessible by Example 2.4.4, so we may assume that

π1(N) is infinite in what follows. We consider the following two cases.

Case 1. If there are no JSJ-tori, then it follows from Theorem 3.5.6 that N is either an

atoroidal manifold or is Seifert fibered. If N is atoroidal and not homeomorphic to S1×D2,

T 2× I, or K2×̃I, then it follows from Theorem 3.5.7 that N is hyperbolic. Consequently,

if N is closed, π1(N) is a hyperbolic group and hence A H -accessible by Example 2.4.4.

If N has toroidal boundary, then π1(N) is hyperbolic relative to its peripheral subgroups,

which are isomorphic to Z×Z (see [35]). Applying Example 2.4.5, we get that Z×Z is

strongly A H -accessible. By Theorem 3.2.1, we conclude that π1(N) is A H -accessible.
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If N is Seifert fibered (recall that S1×D2, T 2× I, or K2×̃I are considered Seifert fibered

JSJ components, as explained in Remark 3.5.8), then by Lemma 3.5.4, π1(N) has an infinite

cyclic, normal subgroup. Since Z is not acylindrically hyperbolic, we can use [69, Corol-

lary 1.5] to conclude that π1(N) is not acylindrically hyperbolic. Applying Theorem 2.2.4,

we conclude that either π1(N) is virtually cyclic, or every acylindrical action of π1(N) on a

hyperbolic space is elliptic. In the former situation, π1(N) is A H -accessible by Example

2.4.4. In the latter case, π1(N) is obviously A H -accessible.

Case 2. We now assume that N admits at least one JSJ torus, i.e., the JSJ decomposition

of N is non-trivial. By the Seifert-van Kampen theorem, the JSJ decomposition of N in-

duces a graph of groups decomposition of π1(N) whose vertex groups are the fundamental

groups of the JSJ components, and the edge groups are the fundamental groups of the JSJ

tori.

By Theorem 3.5.10, it suffices to prove the strong A H -accessibility of each peripheral

subgroup Hi provided by the theorem. Following the notation of Theorem 3.5.10, if Hi =

π1(Sq) or Hi = π1(Tr), then Hi ' Z×Z. By Example 2.4.5, such Hi are strongly A H -

accessible.

It thus remains to consider the graph manifolds Mp, which have at least one JSJ com-

ponent. Using Theorem 3.5.11, either Mp has a finite-sheeted covering space that is a torus

bundle over a circle or the action of π1(Mp) on the Bass-Serre tree associated to the JSJ

decomposition of π1(Mp) is acylindrical. We denote this Bass-Serre tree by Tp.

If Mp has a finite-sheeted covering space that is a torus bundle over a circle, then π1(Mp)

is virtually polycyclic and is hence not acylindrically hyperbolic. Further, since we have

at least one JSJ torus, Z×Z ≤ π1(Mp), which means that π1(Mp) is not virtually cyclic.

By Theorem 2.2.4, every acylindrical action of π1(Mp) on a hyperbolic space is elliptic,

allowing us to conclude that the trivial structure realizes the strong A H -accessibility of

π1(Mp).

If the action of π1(Mp) on the Bass-Serre tree Tp is acylindrical, then we will use
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Proposition 3.1.2 applied to the set A of acylindrical actions of π1(Mp) on hyperbolic

spaces in order to prove that π1(Mp) is strongly A H -accessible. Note that the action

π1(Mp) y Tp is cocompact and so σ([π1(Mp) y Tp]) ∈ A H (π1(Mp)). Stabilizers of

vertices for this action are isomorphic to the vertex groups, which are the fundamental

groups of Seifert fibered components. Let M be a Seifert fibered component of Mp. Since

we have at least one JSJ torus, Z×Z ≤ π1(M) and π1(M) is infinite. Arguing as in Case

1 by using Lemma 3.5.4, we can conclude that π1(M) is not acylindrically hyperbolic.

Applying Theorem 2.2.4 allows us to conclude that the induced action of π1(M) in any

acylindrical action of π1(Mp) on hyperbolic spaces is elliptic. Applying Proposition 3.1.2,

we get that π1(Mp) is strongly A H -accessible.
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CHAPTER 4

ACYLINDRICAL ACTIONS ON QUASI-TREES

4.1 Background

Recall that a group is called acylindrically hyperbolic if it admits a non-elementary,

acylindrical action on a hyperbolic space. The main goal of this section is to answer the

following.

Problem 4.1.1. Which groups admit non-elementary cobounded acylindrical actions on

quasi-trees?

In this thesis, by a quasi-tree we mean a connected graph which is quasi-isometric to a

tree. Quasi-trees form a very particular subclass of the class of all hyperbolic spaces. From

the asymptotic point of view, quasi-trees are exactly “1-dimensional hyperbolic spaces”.

As explained in the introduction (see Table 1.1), one could expect that the answer to Ques-

tion 4.1.1 would produce a proper subclass of the class of all acylindrically hyperbolic

groups, which generalizes virtually free groups in the same sense as acylindrically hy-

perbolic groups generalize hyperbolic groups. Our main result shows that this does not

happen.

Theorem 4.1.2. Every acylindrically hyperbolic group admits a non-elementary cobounded

acylindrical action on a quasi-tree.

In other words, being acylindrically hyperbolic is equivalent to admitting a non-elementary

acylindrical action on a quasi-tree. Although this result does not produce any new class of

groups, it can be useful in the study of acylindrically hyperbolic groups and their sub-

groups. In this thesis, we concentrate on proving Theorem 4.1.2 and leave applications for

future papers to explore (for some applications, see [56]).
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It was known before that every acylindrically hyperbolic group admits a non-elementary

cobounded action on a quasi-tree satisfying the so-called weak proper discontinuity prop-

erty, which is weaker than acylindricity. Such a quasi-tree can be produced by using pro-

jection complexes introduced by Bestvina-Bromberg-Fujiwara in [12]. To the best of our

knowledge, whether the corresponding action is acylindrical is an open question. The main

idea of the proof of Theorem 4.1.2 is to combine the Bestvina-Bromberg-Fujiwara approach

with an ‘acylindrification’ construction from [69] in order to make the action acylindrical.

An essential role in this process is played by the notion of a hyperbolically embedded sub-

group introduced in [30] - this fact is of independent interest since it provides a new setting

for the application of the Bestvina-Bromberg-Fujiwara construction.

The above mentioned construction has been applied in the setting of geometrically sep-

arated subgroups (see [30, Section 4.5]). However, not every hyperbolically embedded

subgroup H ≤ G arises from an action of G on a hyperbolic space in which H is geometri-

cally separated. Nevertheless, it is possible to employ hyperbolically embedded subgroups

in this construction, possibly with interesting applications. If fact, we prove much stronger

results in terms of hyperbolically embedded subgroups (see Theorem 4.4.1) of which The-

orem 4.1.2 is an easy consequence, and derive an application in this paper which is stated

below (see Corollary 4.5.5).

Corollary 4.1.3. Let G be a group. If H ≤ K ≤G , H is countable and H is hyperbolically

embedded in G, then H is hyperbolically embedded in K.

We would like to note that the above result continues to hold even when we have a finite

collection {H1,H2, ...,Hn} of hyperbolically embedded subgroups in G such that Hi ≤ K

for all i = 1,2, ...,n. Interestingly, A.Sisto obtains a similar result in [77], Corollary 6.10.

His result does not require H to be countable, but under the assumption that H ∩K is a

virtual retract of K, it states that H ∩K ↪→h K. Although similar, these two theorems are

distinct in the sense that neither follows from the other.

Another application of Theorem 4.4.1 is to the case of finitely generated subgroups, as
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stated below (see Corollary 4.5.8).

Corollary 4.1.4. Let H be a finitely generated subgroup of an acylindrically hyperbolic

group G. Then there exists a subset X ⊂ G such that

(a) Γ(G,X) is hyperbolic, and the action of G on Γ(G,X) is non-elementary and acylin-

drical

(b) H is quasi-convex in Γ(G,X)

The above result indicates that in order to develop a theory of quasi-convex subgroups

in acylindrically hyperbolic groups, the notion of quasi-convexity is not sufficient, i.e., a

stronger set of conditions is necessary in order to prove results similar to those known for

quasi-convex subgroups in hyperbolic groups. For example, using Rips’ construction from

[74] and the above corollary, one can easily construct an example of an infinite, infinite

index, normal subgroup in an acylindrically hyperbolic group, which is quasi-convex with

respect to some non-elementary acylindrical action.

4.2 A silght modification to the relative metric

The aim of this section is to modify the relative metric on countable subgroups that are

hyperbolically embedded, so that the resulting metric takes values only in R, i.e., is finite

valued. This will be of importance in section 4.4. The main result of this section is the

following.

Theorem 4.2.1. Let G be a group. Let H < G be countable, such that H ↪→h G. Then there

exists a left-invariant metric d̃ : H×H→ R, such that

(a) d̃ ≤ d̂

(b) d̃ is proper, i.e., every ball of finite radius has finitely many elements.
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Proof. There exists a collection of finite, symmetric (closed under inverses) subsets {Fi}

of H such that H =
⋃

∞
i=1 Fi and 1⊆ F1 ⊆ F2 ⊆ ...

Let d̂ be the relative metric on H. Let H0 = {h ∈ H | d̂(1,h)< ∞}.

Define a function w : H→ N as

w(h) =

 d̂(1,h) , if h ∈ H0

min{i | h ∈ Fi} , otherwise

Since Fi’s are symmetric, w(h) = w(h−1) for all h ∈ H. Define a function l on H as

follows- for every word u = x1x2...xk in the elements of H, set

l(u) =
k

∑
i=1

w(xi).

Set a length function on H as

|g|w = min{l(u) | u is a word in the elements of H that represents g},

for each g in H. We can now define a metric dw : H×H→ N as

dw(g,h) = |g−1h|w.

It is easy to check that dw is a (finite valued) well-defined metric. Since

dw(ag,ah) = |(ag)−1ah|w = |g−1a−1ah|w = |g−1h|w = dw(g,h),

for all a,g,h ∈G, the metric dw is left-invariant. Further, it is easy to see that for all h ∈H,

dw(1,h)≤ w(h).

It remains to show that dw is proper. Let N ∈ N. Suppose h ∈ H such that w(h)≤ N. If

h ∈ H0, then d̂(1,h) ≤ N which implies that there are finitely many choices for h, since d̂

is proper. If h /∈ H0, then h ∈ Fi for some minimal i. But each Fi is a finite set, so there are
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finitely many choices for h. Thus |{h ∈H | w(h)≤ N}|< ∞ for all N ∈N. This implies dw

is proper.

Indeed, if y 6= 1 is such that |y|w ≤ n, then there exists a word u, written without the

identity element (which has weight zero), representing y in the alphabet H such that u =

x1x2...xr and ∑
r
i=1 w(xi)≤ n. Since w(xi)≥ 1 for every xi 6= 1, r≤ n. Further, w(xi)≤ n for

all i. Thus xi ∈ {x ∈H | w(x)≤ n} for all i. So there only finitely many choices for each xi,

which implies there are finitely many choices for y. By definition, dw ≤ d̂. So we can set

d̃ = dw.

4.3 The bottleneck property and a modified version of Bowditch’s lemma

In this section, Nk(X) denotes the closed k-neighborhood of a set X in a metric space

(S,dS). i.e.

Nk(X) = {s ∈ S | ∃ x ∈ X such that dS(s,x)≤ k}.

In particular, Nk(x) denotes the closed k-neighborhood of a point x in a metric space.

The goal of this section is to prove the following theorem, which will be used in the

proof of Theorem 4.1.2. Part (a) is a simplified form of a result taken from [46], which is

in fact derived from a hyperbolicity criterion developed by Bowditch in [19].

Theorem 4.3.1. Let Σ be a hyperbolic graph, and ∆ be a graph obtained from Σ by adding

edges.

(a) [19] Suppose there exists M > 0 such that for all vertices x,y ∈ Σ joined by an edge

in ∆ and for all geodesics p in Σ between x and y, all vertices of p lie in an M-

neighborhood of x, i.e., p⊆NM(x) in ∆. Then ∆ is also hyperbolic, and there exists

a constant k such that for all vertices x,y ∈ Σ, every geodesic q between x and y in Σ

lies in a k-neighborhood in ∆ of every geodesic in ∆ between x and y.

(b) If, under the assumptions of (a), we additionally assume that Σ is a quasi-tree, then

∆ is also a quasi-tree.
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Definition 4.3.2. A graph Γ with the combinatorial metric dΓ is said to be a quasi-tree if it

is quasi-isometric to a tree T .

In order to prove Theorem 4.3.1, we will employ the following neccesary and sufficient

condition for a geodesic metric space to be a quasi-tree, developed by Manning.

Theorem 4.3.3. [53, Theorem 4.6, Bottleneck property] Let Y be a geodesic metric space.

The following are equivalent.

(a) Y is quasi-isometric to some simplicial tree Γ

(b) There is some µ > 0 so that for all x,y ∈ Y, there is a midpoint m = m(x,y) with

d(x,m) = d(y,m) = 1
2d(x,y) and the property that any path from x to y must pass within

less than µ of the point m.

We remark that if m is replaced with any point p on a geodesic between x and y, then

the property that any path from x to y passes within less than µ of the point p still follows

from (a), as proved below in Lemma 4.3.5. We will need the following lemma.

Lemma 4.3.4. [22, Proposition 3.1]For all λ ≥ 1,C ≥ 0,δ ≥ 0, there exists an R =

R(δ ,λ ,C) such that if X is a δ -hyperbolic space, γ is a (λ ,C)-quasi-geodesic in X, and γ ′

is a geodesic segment with the same end points, then γ ′ and γ are Hausdorff distance less

than R from each other.

Lemma 4.3.5. If Y is a quasi-tree, then there exists µ > 0 such that for any point z on a

geodesic connecting two points, any other path between the same end points passes within

µ of z.

Proof. Let T be a tree and q : Y → T be the (λ ,C) quasi-isometry. Let dY and dT denote

the metrics in the spaces Y and T respectively. Note that since T is 0-hyperbolic, Y is

δ -hyperbolic for some δ .

Let x,y be two points in Y , joined by a geodesic γ . Let z be any point of γ , and let α

be another path from x to y. Let V denote the vertex set of α , ordered according to the
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Figure 4.1: Corresponding to Lemma 4.3.6

geodesic γ . Take its image q(V ) and connect consecutive points by geodesics (of length

at most λ +C) to get a path β in T from q(x) to q(y). Then the unique geodesic σ in T

must be a subset of β . Since q(V ) ⊂ q ◦α , we get that any point of σ is at most λ +C

from q ◦α . Also, q ◦ γ is a (λ , C)-quasi-isometric embedding of an interval, and hence

a (λ ,C)-quasi-geodesic. Thus, by Lemma 4.3.4 the distance from q(z) to σ is less than

R = R(0,λ ,C).

Let p be the point on σ closest to q(z). There is a point w ∈ Y on α such that

d(q(w), p)≤ λ +C. Since d(p,q(z))< R, we have d(q(w),q(z))≤ λ +C+R. Thus

d(z,w)≤ λ
2 +2λC+Rλ .

Thus α must pass within µ = λ 2 +2λC+Rλ of the point z.

Lemma 4.3.6. Let p,q be two paths in a metric space S between points x and y, such that p

is a geodesic and q ⊆Nk(p). Then p ⊆N2k(q).

Proof. Let z be any point on p. Let p1, p2 denote the segments of the geodesic p with end

points x,z and z,y respectively.

Define a function f : q → R as f (s) = d(s, p1)− d(s, p2). Then f is a continuous

function. Further, f (x) < 0 and f (y) > 0. By the intermediate value theorem, there ex-

ists a point w on q such that f (w) = 0. Thus d(w, p1) = d(w, p2) (see Fig.4.1). Let z1
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Figure 4.2: Corresponding to Theorem 4.3.1

(resp. z2) be a point of p1 (resp. p2) such that d(pi,w) = d(zi,w) for i = 1,2. Then

d(z1,w) = d(z2,w). By the hypothesis, d(w, p) = min{d(w, p1),d(w, p2)} ≤ k. So we get

that d(w, p1) = d(w, p2)≤ k. Thus d(z1,z2)≤ 2k, which implies d(z,w)≤ 2k.

Proof of Theorem 4.3.1. We proceed with the proof of part (b).

We prove that ∆ is a quasi-tree by verifying the bottleneck property from Theorem

4.3.3. Let dΣ (resp. d∆) denote the distance in the graph Σ (resp. ∆). Note that the vertex

sets of the two graphs are equal.

Let x,y be two vertices. Let m be the midpoint of a geodesic r in ∆ connecting them.

Let s be any path from x to y in ∆. The path s consists of edges of two types

(i) edges of the graph Σ;

(ii) edges added in transforming Σ to ∆ (marked as bold edges on Fig.4.2).

Let p be a geodesic in Σ between x and y. By Part (a), there exists k such that p is in the

k-neighborhood of r in ∆. Applying Lemma 4.3.6 , we get a point n on p such that

d∆(m,n)≤ 2k.
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Let s′ be the path in Σ between x and y, obtained from s by replacing every edge e of

type (ii) by a geodesic path t(e) in Σ between its end points (marked by dotted lines in

Fig.4.2). Since Σ is a quasi-tree, by Lemma 4.3.5, there exists µ ′ > 0 and a point z on s′

such that

dΣ(z,n)≤ µ
′.

Case 1: If z lies on an edge of s of type (i) , then

d∆(z,m)≤ d∆(z,n)+d∆(n,m)≤ dΣ(z,n)+d∆(n,m)≤ µ
′+2k.

Case 2: If z lies on a path t(e) that replaced an edge e of type (ii), then by Part (a),

d∆(e−,m)≤ d∆(e−,z)+d∆(z,n)+d∆(n,m)≤ k+µ
′+2k = µ

′+3k.

Thus the bottleneck property holds for µ = µ ′+3k > 0.

4.4 The main result

Our main result is the following theorem, from which Theorem 4.1.2 and other corol-

laries stated earlier can be easily derived (see Section 4.5).

Theorem 4.4.1. Let {H1,H2, ...,Hn} be a finite collection of countable subgroups of a

group G such that {H1,H2, ...,Hn} ↪→h (G,Z) for some Z ⊂ G. Let K be a subgroup of G

such that Hi ≤ K for all i. Then there exists a subset Y ⊂ K such that:

(a) {H1,H2, ...,Hn} ↪→h (K,Y )

(b) Γ(K,Y tH ) is a quasi-tree, where H =
⊔n

i=1 Hi

(c) The action of K on Γ(K,Y tH ) is acylindrical

(d) Z∩K ⊂ Y
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4.4.1 Outline of the proof

Step 1: In order to prove Theorem 4.4.1, we first prove the following proposition. It is

distinct from Theorem 4.4.1 since it does not require the action of K on the Cayley graph

Γ(K,X tH ) to be acylindrical.

Proposition 4.4.2. Let {H1,H2, ...,Hn} be a finite collection of countable subgroups of a

group G such that {H1,H2, ...,Hn} ↪→h G with respect to a relative generating set Z. Let K

be a subgroup of G such that Hi ≤ K for all i. Then there exists X ⊂ K such that

(a) {H1,H2, ...,Hn} ↪→h (K,X)

(b) Γ(K,X tH ) is a quasi-tree, where H =
⊔n

1=1 Hi

(c) Z∩K ⊂ X

Step 2: Once we have proved Proposition 4.4.2, we will utilize an ’acylindrification’ con-

struction from [69] to make the action acylindrical, which will prove Theorem 4.4.1. The

details of this step are as follows.

Proof. By Proposition 4.4.2, there exists X ⊆ K such that

(a) {H1,H2, ...,Hn} ↪→h (K,X)

(b) Γ(K,X tH ) is a quasi-tree

(c) Z∩K ⊂ X

By applying Theorem 2.3.9 to the above, we get that there exists Y ⊂ K such that

(a) X ⊆ Y

(b) {H1,H2, ...,Hn} ↪→h (K,Y ). In particular, the Cayley Graph Γ(K,Y tH ) is hyper-

bolic
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(c) The action of K on Γ(K,Y tH ) is acylindrical.

From the proof of Theorem 2.3.9 (see [69] for details), it is easy to see that the Cay-

ley graph Γ(G,Y tH ) is obtained from Γ(G,X tH ) in a manner that satisfies the as-

sumptions of Theorem 4.3.1, with M = 1. Thus by Theorem 4.3.1, Γ(K,Y tH ) is also a

quasi-tree. Further

K∩Z ⊂ X ⊂ Y.

Thus Y is the required relative generating set.

We will thus now focus on proving Proposition 4.4.2. In order to prove this proposi-

tion, will use a construction introduced by Bestvina, Bromberg and Fujiwara in [12]. We

describe the construction below and will retain the same terminology as introduced by the

authors in [12].

4.4.2 The projection complex

Definition 4.4.3. Let Y be a set and ξ > 0 be a constant. Suppose that for each Y ∈ Y we

have a function

dπ
Y : (Y\{Y}×Y\{Y})→ [0,∞)

that satisfy the following axioms :

(A1) dπ
Y (A,B) = dπ

Y (B,A) for all Y ∈ Y and all A,B ∈ Y\{Y}

(A2) dπ
Y (A,B)+dπ

Y (B,C)≥ dπ
Y (A,C) for all Y ∈ Y and all A,B,C ∈ Y\{Y}

(A3) min{dπ
Y (A,B),d

π
B(A,Y )}< ξ for all distinct Y,A,B ∈ Y

(A4) #{Y | dπ
Y (A,B)≥ ξ} is finite for all A,B ∈ Y.

Let J be a positive constant. Then associated to this data we have the projection

complex PJ(Y), which is a graph constructed in the following manner : the set of ver-

tices of PJ(Y) is the set Y. To specify the set of edges, one first defines a new function
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dY : (Y\{Y}×Y\{Y})→ [0,∞), which can be thought of as a small perturbation of dπ
Y .

The exact definition of dY can be found in [12]. An essential property of the new function

is the following inequality, which is an immediate corollary of [12], Proposition 3.2.

For every Y ∈ Y and every A,B ∈ Y\{Y}, we have

|dπ
Y (A,B)−dY (A,B)| ≤ 2ξ . (1)

The set of edge of the graph PJ(Y) can now be described as follows : two vertices

A,B∈Y are connected by an edge if and only if for every Y ∈Y\{A,B}, dY (A,B)≤ J. This

construction strongly depends on the constant J. Complexes corresponding to different J

are not isometric in general.

We would like to mention that if Y is endowed with an action of a group G that preserves

projections, i.e., dπ

g(Y )(g(A),g(B)) = dπ
Y (A,B) ), then the action of G can be extended to an

action on PJ(Y). We also mention the following proposition, which has been proved under

the assumptions of Definition 4.4.3.

Proposition 4.4.4 ([12], Theorem 3.16). For a sufficiently large J > 0, PJ(Y) is connected

and quasi-isometric to a tree.

Definition 4.4.5. [Nearest point projection] In a metric space (S,d), given a set Y and a

point a ∈ S, we define the nearest point projection as

projY (a) = {y ∈ Y | d(Y,a) = d(y,a)}.

If A, Y are two sets in S, then

projY (A) =
⋃
a∈A

projY (a).

We note that in our case, since elements of Y will come from a Cayley graph, which is

a combinatorial graph, the nearest point projection will exist. This is because distances on
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a combinatorial graph take discrete values in N∪{0}. Since this set is bounded below, we

cannot have an infinite strictly decreasing sequence of distances.

We make all geometric considerations in the Cayley graph Γ(G,Z tH ). Let dZtH

denote the metric on this graph. Since {H1,H2, ...,Hn} ↪→h G under the assumptions of

Proposition 4.4.2, by Remark 4.26 of [30], Hi ↪→h G for all i = 1,2, ...,n. By Theorem

4.2.1, we can define a finite valued, proper metric d̃i on Hi, for all i = 1,2, ...,n, satisfying

d̃i(x,y)≤ d̂i(x,y) for all x,y ∈ Hi and for all i = 1,2, ...,n (2)

We can extend both d̂i and d̃i to all cosets gHi of Hi by setting d̃i(gx,gy) = d̃i(x,y) and

d̂i(gx,gy) = d̂i(x,y) for all x,y ∈ Hi. Let d̂iam (resp. d̃iam) denote the diameter of a subset

of Hi or a coset of Hi with respect to the d̂i (resp. d̃i) metric.

Let

Y= {kHi | k ∈ K, i = 1,2, ...,n}

be the set of cosets of all Hi in K. We think of cosets of Hi as a subset of vertices of

Γ(G,ZtH ).

For each Y ∈ Y, and A,B ∈ Y\{Y}, define

dπ
Y (A,B) = d̃iam(projY (A)∪projY (B)), (3)

where projY (A) is defined as in Definition 4.4.5. The fact that (3) is well-defined will

follow from Lemma 4.4.6 and Lemma 4.4.8, which are proved below. We will also proceed

to verify the axioms (A1)− (A4) of the Bestvina-Bromberg-Fujiwara construction in the

above setting.

Lemma 4.4.6. For any Y ∈Y and any x∈G, d̃iam(projY (x))≤ 3C, where C is the constant

as in Lemma 2.3.7. As a consequence, d̃iam(projY (x)) is bounded.
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Figure 4.3: The bold red edge denotes a single edge labeled by an element of H

Proof. By (2), it suffices to prove that d̂iam(projY (x)) is bounded. Let y,y′ ∈ projY (x).

Then dZtH (x,y) = dZtH (x,y′) = dZtH (x,Y ). Without loss of generality, x /∈ Y , else the

diameter is zero.

Let Y = gHi. Let e denote the edge connecting y and y′, and labeled by an element of

Hi. Let p and q denote geodesics between the points x and y, and x and y′ respectively. (see

Fig.4.3)

Consider the geodesic triangle T with sides e, p,q. Since p and q are geodesics between

the point x and Y , e is an isolated component in T , i.e., e cannot be connected to either p

or q. Indeed if e is connected to, say, a component of p, then that would imply that e+ and

e− are in Y , i.e., the geodesic p passes through a point of Y before y. But then y is not the

nearest point from Y to x, which is a contradiction. By Lemma 2.3.7, d̂i(y,y′)≤ 3C. Hence

d̂iam(projY (x))≤ 3C.

Remark 4.4.7. Observe that in the previous lemma, we proved the following fact : If x

is a point in G and y ∈ projY (x), then every geodesic path p between x and y satisfies the

property that no vertex of p, except for y, can belong to the coset Y . We will use this fact

repeatedly in the following lemmas.

Lemma 4.4.8. For every pair of distinct elements A,Y ∈ Y, d̂iam(projY (A)) ≤ 4C, where
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Figure 4.4: Lemma 4.4.8

C is the constant as in Lemma 2.3.7. As a consequence, d̃iam(projY (A)) is bounded.

Proof. Let Y = gHi and A = f H j. Let y1,y2 ∈ projY (A). Then there exist a1,a2 ∈ A such

that dZtH (a1,y1) = dZtH (a1,Y ) and dZtH (a2,y2) = dZtH (a2,Y ). Now y1 and y2 are

connected by a single edge e, labeled by an element of Hi, and similarly, a1 and a2 are

connected by an edge f , labeled by an element of H j (see Fig.4.4). Let p and q denote

geodesics that connect y1,a1 and y2,a2 respectively. We note that p and/or q may be trivial

paths (consisting of a single point), but this does not alter the proof.

Consider e in the quadrilateral Q with sides p, f ,q,e. By Remark 4.4.7, e cannot be

connected to a component of p or q.

If i = j, then e cannot be connected to f since A 6= Y . If i 6= j, then obviously e

and f cannot be connected. Thus e is isolated in this quadrilateral Q. By Lemma 2.3.7,

d̂i(y1,y2)≤ 4C. Thus

d̂iam(projY (A))≤ 4C.

Corollary 4.4.9. The function dπ
Y defined by (3) is well-defined.

Proof. Since the d̃i metric takes finite values for all i = 1,2, ...,n, using Lemma 4.4.8, we

have that dπ
Y also takes only finite values.
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Lemma 4.4.10. The function dπ
Y defined by (3) satisfies conditions (A1) and (A2) in Defi-

nition 4.4.3.

Proof. (A1) is obviously satisfied. For any Y ∈Y and any A,B,C ∈Y\{Y}, by the triangle

inequality, we have that

dπ
Y (A,C) = d̃iam(projY (A)∪projY (C))

≤ d̃iam(projY (A)∪projY (B))+ d̃iam(projY (B)∪projY (C))

= dπ
Y (A,B)+dπ

Y (B,C).

Thus (A2) also holds.

Lemma 4.4.11. The function dπ
Y from (3) satisfies condition (A3) in Definition 4.4.3 for any

ξ > 14C, where C is the constant from Lemma 2.3.7

Proof. By (2), it suffices to prove that

min{d̂iam(projY (A)∪projY (B)), d̂iam(projB(A)∪projB(Y ))}< ξ .

Let A,B ∈ Y\{Y} be distinct. Let Y = gHi, A = f H j and B = tHk. If d̂iam(projY (A)∪

projY (B))≤ 14C, then we are done. So let

d̂iam(projY (A)∪projY (B)))> 14C. (4)

Choose a∈A,b∈B, and x,y∈Y such that dZtH (A,Y )= dZtH (a,x) and dZtH (B,Y )=

dZtH (b,y). In particular,

x ∈ projY (A),y ∈ projY (B) (5)

and b ∈ projB(Y ). Let p,q denote geodesics connecting a,x and b,y respectively. Let h1
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Figure 4.5: Condition (A3)

denote the edge connecting x and y, which is labeled by an element of Hi.

By (5), we have that

d̂iam(projY (A)∪projY (B))≤ d̂iam(projY (A))+ d̂iam(projY (B))+ d̂i(x,y).

Combining this with (4) and Lemma 4.4.8, we get

d̂i(x,y)≥ d̂iam(projY (A)∪projY (B))− d̂iam(projY (A))− d̂iam(projY (B))

> 14C−8C = 6C.

Choose any a′ ∈ A and b′ ∈ projB(a
′), i.e.,: dZtH (a′,B) = dZtH (a′,b′); (see Fig.4.5).

(Note that if a′ = a, the following arguments still hold). Let h2 and h3 denote the edges

connecting a,a′ and b,b′; which are labeled by elements of H j and Hk respectively. Let

r denote a geodesic connecting a′ and b′. Consider the geodesic hexagon W with sides

p,h1,q,h3,r,h2. Then h1 is not isolated in W , else by Lemma 2.3.7, d̂i(x,y)≤ 6C, a contra-
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B = tHk

pro jB(A) pro jB(Y )
b′ b c

≤ 4C
≤ 4C

Figure 4.6: Estimating the distance between arbitrary points b and c of projB(A) and
projB(Y ) resp.

diction.

Thus h1 is connected to another Hi-component in W . By Remark 4.4.7, h1 cannot be

connected to a component of p or q. Since A,B,Y are all distinct, h1 cannot be connected

to h2 or h3. So h1 must be connected to an Hi-component on the geodesic r. Let this edge

be h′ with end points u and v as shown in Fig 4.5. Let s denote the edge (labeled by an

element of Hi), that connects y,v. Let r′ denote the segment of r that connects v to b′. Then

r′ is also a geodesic.

Consider the quadrilateral Q with sides r′,h3,q,s. By using arguments similar to those

in the previous paragraph, h3 cannot be connected to r′,q or s. Thus h3 is isolated in Q. By

Lemma 2.3.7,

d̂k(b,b′)≤ 4C.

Since the above argument holds for any a′ ∈ A and for b′ ∈ projB(A), we have that

d̂k(b,b′)≤ 4C. Using Lemma 4.4.8 (see Fig.4.6), we get that

d̂iam(projB(Y )∪projB(A))≤ 4C+4C = 8C < ξ .

Lemma 4.4.12. The function dπ
Y defined by (3) satisfies condition (A4) in Definition 4.4.3,

for ξ > 14C, where C is the constant from Lemma 2.3.7

Proof. If dπ
Y (A,B) ≥ ξ , then by (2), d̂iam(projY (A)∪ projY (B)) ≥ dπ

Y (A,B) ≥ ξ . Thus it

54



Y = gHi

Y ′

B = tHkA = f H j

x y

a

b

a′ b′

x′ y′

h1

h2
h3

h′

u v

p q

r

e

Figure 4.7: Condition (A4)

suffices to prove that the number of elements Y ∈ Y satisfying

d̂iam(projY (A)∪projY (B))≥ ξ (6)

is finite. Let A,B ∈ Y,A = f H j and B = tHk. Let Y ∈ Y\{A,B},Y = gHi. Let a′ ∈ A,b′ ∈

projB(a
′). By repeating the computations in Lemma 4.4.11, we can show that if Y is such

that d̂iam(projY (A)∪ projY (B)) ≥ ξ , then for any a ∈ A,b ∈ B,x ∈ projY (a),y ∈ projY (b),

we have that d̂i(x,y)> 6C.

Let h1 denote the edge connecting x,y, which is labeled by an element of Hi (see

Fig.4.7). Let h2 denote the edge connecting a,a′, which is labeled by an element of H j

and h3 denote the edge connecting b,b′, which is labeled by an element of Hk. Let p be

a geodesic between a,x, let q be a geodesic between b,y, and let r be a geodesic between

a′,b′. As argued in Lemma 4.4.11, we can show that h1 cannot be isolated in the hexagon

W with sides p,h1,q,h2,r,h3 and must be connected to an Hi-component of r, say the edge

h′.
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We claim that the edge h′ uniquely identifies Y . Indeed, let Y ′ be a member of Y,

with elements x′,y′ connected by an edge e (labeled by an element of the corresponding

subgroup). Suppose that e is connected to h′. Then we must have that Y ′ is also a coset

of Hi. But cosets of a subgroup are either disjoint or equal, so Y = Y ′. Thus, the number

of Y ∈ Y satisfying (6) is bounded by the number of distinct Hi-components of r, which is

finite.

4.4.3 Choosing a relative generating set

We now have the necessary details to choose a relative generating set X which will

satisfy conditions (a) and (b) of Proposition 4.4.2. This set will later be altered slightly to

obtain another relative generating set which will satisfy all three conditions of Proposition

4.4.2. We will repeat arguments similar to those from pages 60-63 of [30].

Recall that H =
⊔n

i=1 Hi, and Z is the relative generating set such that {H1,H2, ...,Hn} ↪→h

(G,Z). Let PJ(Y) be the projection complex corresponding to the vertex set Y as specified

in section 4.4.2 and the constant J is as in Proposition 4.4.4, i.e., PJ(Y) is connected and a

quasi-tree. Let dP denote the combinatorial metric onPJ(Y). Our definition of projections

is K- equivariant and hence the action of K on Y extends to a cobounded action of K on

PJ(Y).

In what follows, by considering Hi to be vertices of the projection complex PJ(Y), we

denote by star(Hi), the set

{e is an edge in PJ(Y) | e connects Hi to kH j, for some k ∈ K and 1≤ j ≤ n }.

We choose the set X in the following manner. For all i = 1,2, ...,n and each edge e in

star(Hi) in PJ(Y) that connects Hi to kH j, choose all elements xe ∈ HikH j such that

dZtH (1,xe) = dZtH (1,HikH j).

We say that all such xe have type (i, j). Since Hi ≤ K for all i, xe ∈ K. We observe the
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following:

(a) For each xe of type (i, j) as above, there is an edge in PJ(Y) connecting Hi and xeH j.

Indeed if xe = h1kh2, for h1 ∈ Hi,h2 ∈ H j, then

dP(Hi,xeH j) = dP(Hi,h1kh2H j) = dP(Hi,h1kH j)

= dP(h−1
1 Hi,kH j) = dP(Hi,kH j) = 1.

(b) For each edge e connecting Hi and kH j, there is a dual edge f connecting H j and

k−1Hi. Thus for every element xe of type (i, j), there is an element x f = (xe)
−1 of

type ( j, i). In particular, the set given by

X = {xe 6= 1|e ∈ star(Hi), i = 1,2, ...,n} (7)

is symmetric, i.e., closed under taking inverses. Obviously, X ⊂ K.

(c) If xe ∈ X is of type (i, j), then xe is not an element of Hi or H j. Indeed if xe = h1kh2 ∈

Hi for some h1 ∈Hi and some h2 ∈H j, and xe is an element of Hi or H j, then k = h f

for some h ∈ Hi and some f ∈ H j. Consequently

dZtH (1,HikH j) = dZtH (1,HiH j) = 0 = dZtH (1,xe),

which implies xe = 1, which is a contradiction to (7).

Lemma 4.4.13 (cf. Lemma 4.49 in [30]). The subgroup K is generated by X together with

the union of all Hi’s. Further, the Cayley graph Γ(K,X tH ) is quasi-isometric to PJ(Y),

and hence a quasi-tree.

Proof. Let Σ = {H1,H2, ...,Hn} ⊆ Y. Let diam(Σ) denote the diameter of the set Σ in the

combinatorial metric dP. Since Σ is a finite set, diam(Σ) is finite. Define
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φ : K→ Y as φ(k) = kH1

By Property (a) above, if xe ∈ X is of type (i, j),

dP(xeH1,H1)≤ dP(xeH1,xeH j)+dP(xeH j,Hi)+dP(Hi,H1)

= dP(H1,H j)+1+dP(Hi,H1)≤ 2diam(Σ)+1.

Further, for h ∈ Hi,

dP(hH1,H1)≤ dP(hH1,hHi)+dP(hHi,H1)

= dP(H1,Hi)+dP(Hi,H1)≤ 2diam(Σ).

Thus for all g ∈ 〈X ∪H1∪H2...∪Hn〉, we have

dP(φ(1),φ(g))≤ (2diam(Σ)+1)|g|XtH , (8)

where |g|XtH denotes the length of g in the generating set X ∪H1 ∪H2...∪Hn. (We use

this notation for the sake of uniformity).

Now let g ∈ K and suppose dP(φ(1),φ(g)) = r, i.e., dP(H1,gH1) = r. If r = 0, then

H1 = gH1, thus g∈H1 and |g|XtH ≤ 1. If r > 0, consider a geodesic p in PJ(Y) connecting

H1 and gH1. Let

v0 = H1 = g0H1(g0 = 1),v1 = g1Hλ1,v2 = g2Hλ2, ...,vr−1 = gr−1Hλr−1,vr = gH1(gr = g)

be the sequence of vertices of p, for some λ j ∈ {1,2, ...,n}, and some gi ∈ K (see Fig.4.8).

Now giHλi is connected by a single edge to gi+1Hλi+1 . Thus dP(giHλi,gi+1Hλi+1) = 1,

which implies dP(Hλi,g
−1
i gi+1Hλi+1) = 1. Then there exists x ∈ X such that

x ∈ Hλig
−1
i gi+1Hλi+1
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v0 = H1

vr = gH1

v1 v2

vr−1

. . .

p

Figure 4.8: The geodesic p

and

dZtH (1,x) = dZtH (1,Hλig
−1
i gi+1Hλi+1).

Thus x= hg−1
i gi+1k for some h∈Hλi and some k∈Hλi+1 which implies g−1

i gi+1 = h−1xk−1.

So |g−1
i gi+1|XtH ≤ 3, which implies

|g|XtH =

∣∣∣∣∣ r

∏
i=1

g−1
i−1gi

∣∣∣∣∣
XtH

≤
r

∑
i=1

∣∣g−1
i−1gi

∣∣
XtH ≤ 3r = 3dP(φ(1),φ(g)) (9)

The above argument also provides a representation for every element g∈K as a product

of elements from X ∪H1∪H2...∪Hn. Thus K is generated by the union of X and all Hi’s.

By (8) and (9), φ is a quasi-isometric embedding of (K, |.|XtH ) into (PJ(Y),dP) satisfying

1
3
|g|XtH ≤ dP(φ(1),φ(g))≤ (2diam(Σ)+1)|g|XtH .

Since Y is contained in the closed diam(Σ)-neighborhood of φ(K), φ is a quasi-isometry.

This implies that Γ(K,X tH ) is a quasi-tree.

Let d̃i denote the modified relative metric on Hi associated with the Cayley graph

Γ(G,ZtH ) from Theorem 4.2.1. Let d̂X
i denote the relative metric on Hi associated with

the Cayley graph Γ(K,X tH ). We will now show that d̂X
i is proper for all i = 1,2, ...,n.

We will use the fact that d̃i is proper and derive a relation between d̃i and d̂X
i .

Lemma 4.4.14 (cf. Lemma 4.50 in [30]). There exists a constant α such that for any Y ∈Y

and any x ∈ X tH , if

d̃iam(projY{1,x})> α,
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then x ∈ H j and Y = H j for some j.

Proof. We prove the result for

α = max{J+2ξ ,6C}.

Suppose that d̃iam(projY{1,x}) > α and x ∈ X has type (k, l), i.e., there exists an edge

connecting Hk and gHl in PJ(Y), where g ∈ K. We consider three possible cases and arrive

at a contradiction in each case.

Case 1: Hk 6= Y 6= xHl . Then

d̃iam(projY{1,x})≤ dπ
Y (Hk,xHl)≤ dY (Hk,xHl)+2ξ ≤ J+2ξ ≤ α,

using (1) and the fact that Hk and xHl are connected by an edge in PJ(Y), which is a

contradiction.

Case 2: Hk =Y . Since x /∈Hk, let y∈ projY (x), i.e., dZtH (x,y)= dZtH (x,Hk)= dZtH (x,Y ).

x

y 1
Hk = Y

Figure 4.9: Case 2

By Lemma 4.4.6, if d̂k(1,y)≤ 3C, then

d̂iam(projY{1,x})≤ d̂iam(projY (1))+ d̂iam(projY (x))+ d̂k(projY (1),projY (x))

≤ 0+3C+ d̂k(1,y)≤ 6C ≤ α.
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Then by (2), we have

d̃iam(projY{1,x})≤ α,

which is a contradiction. Thus d̂k(1,y) > 3C. This implies that 1 /∈ projY (x) (see

Fig.4.9). By definition of the nearest point projection, dZtH (1,x) > dZtH (y,x),

which implies dZtH (1,x)> dZtH (1,y−1x). Since y−1x∈HkgHl , we obtain dZtH (1,x)>

dZtH (1,HkgHl), which is a contradiction to the choice of x.

Case 3: Y = xHl,Hk 6= Y . This case reduces to Case 2, since we can translate everything by

x−1.

Thus we must have x ∈H j for some j. Suppose that H j 6=Y . But then d̃iam(projY{1,x})≤

d̃iam(projY (H j))≤ 4C ≤ α , by Lemma 4.4.8; which is a contradiction.

Lemma 4.4.15 (cf. Lemma 4.45 in [30]). If Hi = f H j, then Hi = H j and f ∈ Hi. Conse-

quently, if gHi = f H j, then Hi = H j and g−1 f ∈ Hi.

Proof. If Hi = f H j, then 1 = f k for some k ∈ H j. Then f = k−1 ∈ H j, which implies

Hi = H j.

Lemma 4.4.16 (cf. Theorem 4.42 in [30]). For all i = 1,2, ...,n and any h ∈ Hi, we have

α d̂X
i (1,h)≥ d̃i(1,h),

where α is the constant from Lemma 4.4.14. Thus d̂X
i is proper.

Proof. Let h ∈ Hi such that d̂X
i (1,h) = r. Let e denote the Hi-edge in the Cayley graph

Γ(K,X tH ) connecting h to 1, labeled by h−1. Let p be an admissible path of length r

in Γ(K,X tH ) connecting 1 and h. Then ep forms a cycle. Since p is admissible, e is

isolated in this cycle.

Let Lab(p) = x1x2...xr for some x1,x2, ...,xr ∈ X tH . Let

v0 = 1,v1 = x1,v2 = x1x2, ...,vr = x1x2...xr = h.
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e h = vrv0 = 1

v1

v2

v3

...

vr−1

x1

x2

x3

...

xr

Figure 4.10: The cycle ep

Since these are also elements of G, for all k = 1,2, ...,r we have

d̃iam(projHi
{vk−1,vk}) = d̃iam(projHi

{x1x2...xk−1,x1x2...xk−1xk})

= d̃iam(projY{1,xk}),

where Y = (x1x2...xk−1)
−1Hi.

If d̃iam(projY{1,xk}) > α for some k, then by Lemma 4.4.14, xk ∈ H j and Y = H j for

some j. By Lemma 4.4.15, Hi = H j and x1x2...xk−1 ∈ H j. But then e is not isolated in the

cycle ep, which is a contradiction.

Hence

d̃iam(projHi
{vk−1,vk})≤ α

for all k = 1,2, ...,r, which implies

d̃i(1,h)≤ d̃iam(projHi
{v0,vr})≤

r

∑
j=1

d̃iam(projHi
{v j−1,v j})≤ rα = α d̂X

i (1,h).

4.4.4 Proof of Proposition 4.4.2

The goal of this section is to alter our relative generating set X from Section 4.4.3, so

that we obtain another relative generating set that satisfies all the conditions of Proposition
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4.4.2. To do so, we need to establish a relation between the set X and the set Z. We will

need the following obvious lemma.

Lemma 4.4.17. Let X and Y be generating sets of G, and supx∈X |x|Y <∞ and supy∈Y |y|X <

∞. Then Γ(G,X) is quasi-isometric to Γ(G,Y ). In particular Γ(G,X) is a quasi-tree if and

only if Γ(G,Y ) is a quasi-tree.

Remark 4.4.18. The above lemma implies that if we change a generating set by adding

finitely many elements, then the property that the Cayley graph is a quasi-tree still holds.

We also need to note that from (1) in Definition 4.4.3, it easily follows that for each

Y ∈ Y and every A,B ∈ Y\{Y},

dY (A,B)≤ dπ
Y (A,B)+2ξ . (10)

Lemma 4.4.19. For a large enough J, the set X constructed in Section 4.4.3 satisfies the

following property : If z ∈ Z∩K does not represent any element of Hi for all i = 1,2, ...,n,

then z ∈ X.

Proof. Recall that dZtH denotes the combinatorial metric on Γ(G,ZtH ). Let z ∈ Z∩K

be as in the statement of the lemma. Then z ∈ HizHi for all i and 1 /∈ HizHi. Thus

dZtH (1,HizHi)≥ 1 = dZtH (1,z)≥ dZtH (1,HizHi),

which implies

dZtH (1,HizHi) = dZtH (1,z) for all i.

In order to prove z ∈ X , we must show that Hi and zHi are connected by an edge in

PJ(Y). By Definition 4.4.3, this is true if

dY (Hi,zHi)≤ J for all Y 6= Hi,zHi.
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Y = gH j

Hi zHie

x y

h

1 z

f

s t

p q

h2

Figure 4.11: Dealing with elements of Z∩K that represent elements of H

In view of (10), we will estimate dπ
Y (Hi,zHi).

Let dZtH (h,x) = dZtH (Hi,Y ) and dZtH ( f ,y) = dZtH (zHi,Y ) for some h ∈Hi, f ∈

zHi and for some x,y ∈ Y = gH j. Let p be a geodesic connecting h and x; and q be a

geodesic connecting y and f . Let h2 denote the edge connecting x and y, labeled by an

element of H j. Similarly, let s, t denote the edges connecting h,1 and z, f respectively, that

are labeled by elements of Hi. Let e denote the edge connecting 1 and z, labeled by z.

Consider the geodesic hexagon W with sides p,h2,q, t,e,s (see Fig.4.11).

By using Remark 4.4.7 and the fact that Y 6= Hi,zHi, we can show that h2 cannot be

connected to q , p, s or t. Since z does not represent any element of Hi for all i, h2 cannot

be connected to e. Thus, h2 is isolated in W . By Lemma 2.3.7, d̂ j(x,y) ≤ 6C. By Lemma

4.4.8,

dY (Hi,zHi)≤ dπ
Y (Hi,zHi)+2ξ ≤ 14C+2ξ .

So we conclude that by taking the constant J to be sufficiently large so that Proposition

4.4.4 holds and J exceeds 14C + 2ξ , we can ensure that z ∈ X and the arguments of the

previous section still hold.

Lemma 4.4.20. There are only finitely many elements of Z ∩K that can represent an ele-

ment of Hi for some i ∈ {1,2, ...,n}.

Proof. Let z ∈ Z∩K represent an element of Hi for some i = 1,2, ...,n. Then in the Cayley
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1 z

z

h1

Figure 4.12: Bigons in the Cayley graph

graph Γ(G,Z tH ), we have a bigon between the elements 1 and h, where one edge is

labeled by z, and the other edge is labeled by an element of Hi, say h1 (see Rem. 2.3.1 and

Fig.4.12).

This implies that d̂i(1,z)≤ 1, so d̃i(1,z)≤ 1. But then z∈ B̃i(1,1), i.e., the ball of radius

1 in the subgroup Hi in the relative metric, centered at the identity. But this is a finite ball.

Take

ρ =

∣∣∣∣∣ n⋃
i=1

B̃i(1,1)

∣∣∣∣∣ .
Then z has at most ρ choices, which is finite.

By Lemma 4.4.20 and by selecting the constant J as specified in Lemma 4.4.19, we

conclude that the set X from Section 4.4.3 does not contain at most finitely many elements

of Z∩K. By adding these finitely many remaining elements of Z∩K to X , we obtain a new

relative generating set X ′ such that |X ′∆X |< ∞. By Proposition 2.3.8, {H1,H2, ...,Hn} ↪→h

(K,X ′) and Z∩K ⊂ X ′. By Remark 4.4.18, Γ(K,X ′tH ) is also a quasi-tree. Thus X ′ is

the required set in the statement of Proposition 4.4.2, which completes the proof.
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4.5 Applications

This section is dedicated to proving Theorem 4.1.2 and deriving other corollaries of

Theorem 4.4.1. In order to prove Theorem 4.1.2, we first need to recall the following

definitions.

Definition 4.5.1 (Loxodromic element). Let G be a group acting on a hyperbolic space S.

An element g ∈ G is called loxodromic if the map Z→ S defined by n→ gns is a quasi-

isometric embedding for some (equivalently, any) s ∈ S.

Definition 4.5.2. [30][Elementary subgroup, Lemma 6.5] Let G be a group acting acylin-

drically on a hyperbolic space S, g ∈ G a loxodromic element. Then g is contained in a

unique maximal elementary subgroup E(g) of G given by

E(g) = {h ∈ G |dHau(l,h(l))< ∞},

where dHau denotes the Hausdorff distance and l is a quasi-geodesic axis of g in S.

Corollary 4.5.3. A group G is acylindrically hyperbolic if and only if G has an acylindrical

and non-elementary action on a quasi-tree.

Proof. If G has an acylindrical and non-elementary action on a quasi-tree, by definition,

G is acylindrically hyperbolic. Conversely, let G be acylindrically hyperbolic, with an

acylindrical non-elementary action on a hyperbolic space X . Let g be a loxodromic element

for this action. By Lemma 6.5 of [30] the elementary subgroup E(g) is virtually cyclic and

thus countable. By Theorem 6.8 of [30], E(g) is hyperbolically embedded in G. Taking K =

G and E(g) to be the hyperbolically embedded subgroup in the statement of Theorem 4.4.1

now gives us the result. Since E(g) is non-degenerate, by [69, Lemma 5.12],, the resulting

action of G on the associated Cayley graph Γ(G,X tE(g)) is also non-elementary.

Corollary 4.5.4. For any acylindrically hyperbolic group G, A H (G) always contains a

structure [X ] such that Γ(G,X) is a non-elementary quasi-tree.
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The following corollary is an immediate consequence of Theorem 4.4.1.

Corollary 4.5.5. Let {H1,H2, ...,Hn} be a finite collection of countable subgroups of a

group G such that {H1,H2, ...,Hn} ↪→h G. Let K be a subgroup of G. If Hi ≤ K for all

i = 1,2, ...,n, then {H1,H2, ...,Hn} ↪→h K.

Definition 4.5.6. Let (M,d) be a geodesic metric space, and ε > 0 a fixed constant. A

subset S ⊂M is said to be ε-coarsely connected if there for any two points x,y in S, there

exist points x0 = x,x1,x2, ...,xn−1,xn = y in S such that for all i = 0, ...,n−1,

d(xi,xi+1)≤ ε.

Further we say that S is coarsely connected if it is ε-coarsely connected for some ε > 0.

Recall that we denote the closed σ neighborhood of S by S+σ .

Definition 4.5.7. Let (M,d) be a geodesic metric space, and σ > 0 a fixed constant. A

subset S ⊂ M is said to be σ -quasi-convex if for any two points x,y in S, any geodesic

connecting x and y is contained in S+σ . Further, we say that S is quasi-convex if it is

σ -quasi-convex for some σ > 0.

Corollary 4.5.8. Let H be a finitely generated subgroup of an acylindrically hyperbolic

group G. Then there exists a subset X ⊂ G such that

(a) Γ(G,X) is hyperbolic, and the action of G on Γ(G,X) is non-elementary and acylin-

drical

(b) H is quasi-convex in Γ(G,X)

To prove the above corollary, we need the following two lemmas.

Lemma 4.5.9. Let T be a tree, and let Q⊂ T be ε-coarsely connected. Then Q is ε-quasi-

convex.
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Proof. Let ε > 0 be the constant from Definition 4.5.6. Let x,y be two points in Q, and p be

any geodesic between them. Then there exist points x0 = x,x1,x2, ...,xn−1,xn = y in Q such

that for all i = 0, ...,n−1, d(xi,xi+1)≤ ε. Let pi denote the geodesic segments between xi

and xi+1for all i = 0,1, ...,n−1. Since T is a tree, we must have that

p⊆
n−1⋃
i=0

pi.

By definition, for all i= 0,1, ...,n−1, pi⊆ B(xi,ε), the ball of radius ε centered at xi. Since

xi ∈ Q for all i = 0,1, ...,n−1, we obtain

pi ⊆ Q+ε .

This implies p⊆ Q+ε .

Lemma 4.5.10. Let Γ be a quasi-tree, and S ⊂ Γ be coarsely connected. Then S is quasi-

convex.

Proof. Let T be a tree such that Γ is quasi-isometric to T . Let dΓ and dT denote distances

in Γ and T respectively. Let δ > 0 be the hyperbolicity constant of Γ. Let q : T → Γ be a

(λ ,C)-quasi-isometry. i.e.,

−C+
1
λ

dT (a,b)≤ dΓ(q(a),q(b))≤ λdT (a,b)+C.

Let ε > 0 be the constant from Definition 4.5.6 for S. Set Q = q−1(S). Then Q ⊂ T . It

is easy to check that Q is ρ-coarsely connected with constant ρ = λ (ε +C). By Lemma

4.5.9, Q is ρ-quasi-convex.

Let x,y be two points in S, and p be a geodesic between them. Choose points a,b in Q such

that q(a) = x and q(b) = y. Let r denote the (unique) geodesic in T between a and b. Since

Q is ρ-quasi-convex, we have

r ⊆ Q+ρ .
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Set σ = λρ +C. Then

q(r)⊆ S+σ .

Further q◦ r is a quasi-geodesic between x and y. By Lemma 4.3.4, there exists a constant

R(= R(λ ,C,δ )) such that q(r) and p are Hausdorff distance less than R from each other.

This implies that p⊆ S+(R+σ). Thus S is quasi-convex.

Proof of Corollary 4.5.8. By Corollary 4.5.3, there exists a generating set X of G such that

Γ(G,X) is a quasi-tree (hence hyperbolic), and the action of G on Γ(G,X) is acylindrical

and non-elementary. Let dX denote the metric on Γ(G,X) induced by the generating set X .

Let H = 〈x1,x2, ...,xn〉. Set

ε = max{dX(1,x±1
i ) | i = 1,2, ...,n}.

We claim that H is coarsely connected with constant ε . Indeed if u,v are elements of H,

then u−1v = ∏
k
j=1 w j, where w j ∈ {x±1

1 , ...,x±1
n }. Set

z0 = u,z1 = uw1, ...,zk−1 = uw1w2...wk−1,zk = v.

Clearly zi ∈ H for all i = 0,2, ...,k−1. Further

dX(zi,zi+1) = dX(1,wi+1)≤ ε

for all i = 0,1,2, ...,k−1. By Lemma 4.5.10, H is quasi-convex in Γ(G,X).
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CHAPTER 5

QUASI-PARABOLIC STRUCTURES

5.1 Structure of the Lamplighter groups

The goal of this chapter of the thesis is to answer the following open question from[2]

regarding quasi-parabolic structures.

Problem 5.1.1. Does there exist a group G such that Hqp(G) is non-empty and finite?

We will answer the above question in the affirmative. Indeed, we will prove the follow-

ing.

Theorem 5.1.2. The lamplighter groups Lp have exactly two quasi-parabolic structures,

when p is a prime.

Theorem 5.1.2 will additionally enable us to give the complete H (G) structure for the

Lamplighter groups when p is a prime. We begin by recalling relevant information about

the Lamplighter groups.

The Lamplighter groups, denoted Ln,n≥ 2, are given by the presentation

〈a, t | [at i
,at j

] = 1 ∀i, j ∈ Z, an = 1〉,

where xy = y−1xy.

Equivalently, this group is the (restricted) wreath product (
⊕
Z

Zn)oZ, where the gen-

erator of Z is taken to be t from the presentation given above. The ”lamplighter” picture

of elements of this group is the following : Take a bi-infinite road of light bulbs placed

at integer points, each of which has n states corresponding to the elements of Zn, and a

lamplighter indicating the particular bulb under consideration. The action of the group on

this picture is such that t moves the cursor one position to the right, and powers of a change
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the state of the current bulb under consideration. Thus each element of Ln can be inter-

preted as a configuration of a finite collection of lit bulbs in some allowable states, with the

lamplighter at a fixed integer. Algebraically, this means that if x ∈ Ln, then

x = tm(t−i1ak1t i1)(t−i2ak2t i2)...(t−il akl t il),

for some m, i1, i2, ...il ∈Z and some k1,k2, ...,kl ∈ {1,2, ...,n−1}. This visualization can be

very useful in making some arguments related to the Lamplighter groups. In this section,

we prove some results about the structure of the lamplighter group.

Let A =
⊕
Z

Zn. This is the base group used to define the lamplighter group as a wreath

product. Indeed,

A = 〈at i
| an = 1, [at i

,at j
] = 1∀i, j ∈ Z〉,

, and its visualization in Ln is that of elements consisting of a finite number of illuminated

lamps in some allowable states, while the lamplighter stands at index 0. i.e. If b ∈ Ln, then

b = (t−i1ak1t i1)(t−i2ak2t i2)...(t−il akl t il),

for some i1, i2, ...il ∈ Z and some k1,k2, ...,kl ∈ {1,2, ...,n−1}. A is in fact, a characteristic

subgroup of Ln (see [78]Lemma 4.2).

Remark 5.1.3. For n≥ 2, Ln has no general type structures. This follows from the fact that

Ln is solvable, and thus cannot contain any non-abelian free subgroups. In particular, Ln is

not acylindrically hyperbolic.

Although the lamplighter picture is very useful, we will use the description of elements

of Ln in terms of group rings. Let R=Zn[Z] be the group ring, which consists of the follow-

ing elements : all formal linear combinations of powers of t with coefficients 0,1, ...,n−1
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(also called Laurent polynomials ). For b ∈ A, k ∈ {0,1, ...n−1} and m ∈ Z, define

ktm.b = (bk)tm
= t−mbktm. (∗)

Lemma 5.1.4. A∼= R. In particular, A is a free left R-module , where the module multipli-

cation is defined by extending (*) canonically to formal sums in R.

Proof. We first prove that every b ∈ A represents as p(t).a, where p(t) ∈ R. Suppose that

b = (t−i1ak1t i1)(t−i2ak2t i2)...(t−il akl t il),

for some i1, i2, ...il ∈ Z and some k1,k2, ...,kl ∈ {1,2, ...,n−1}.

Set

pb(t) = k1t−i1 + k2t−i2 + ...klt−il .

Then

pb(t).a = (t i1ak1t−i1)(t i2ak2t−i2)...(t il akl t−il) = b.

It is easy to see that the map b 7→ pb(t) is an injective and surjective homomorphism.

Thus A∼= R.

Next observe that A is an abelian group (under component wise addition, though we

will use the multiplicative notation), where each element is of order at most n. Further, the

module multiplication is well defined and sends elements of A to A.

Let x,y ∈ R and b,c ∈ A. Clearly, by definition, we have (x+y).b = (x.b)(y.b). Further

since shifting and adding configurations of lamps (with marker at zero) is equal to adding

the configurations and then shifting, we also have x.(bc) = (x.b)(x.c). Thus the module

axioms are satisfied. It is also easy to see that since A ∼= R, the set B = {a} ⊂ A is a basis

for A. Thus A is a free R-module.

Lemma 5.1.5. Every element g ∈ Ln represents as tm(p(t).a), for some m ∈ Z, p(t) ∈ R.
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Proof. Recall that if g ∈ Ln, then

g = tm(t−i1ak1t i1)(t−i2ak2t i2)...(t−il akl t il),

for some m, i1, i2, ...il ∈ Z and some k1,k2, ...,kl ∈ {1,2, ...,n− 1}. This yields the repre-

sentation g = tmb, where b = (t−i1ak1t i1)(t−i2ak2t i2)...(t−il akl t il) ∈ A, and the result now

follows from Lemma 5.1.4.

We will now recall the definition of the Busemann pseudocharacter. A map q : G→ R

is a quasi-character (or quasi-morphism) if there exists a constant D such that

|q(gh)−q(g)−q(h)| ≤ D

for all g,h ∈ G; one says that q has defect at most D. If, in addition, the restriction of q to

every cyclic subgroup of G is a homomorphism, q is called a pseudocharacter (or homoge-

neous quasi-morphism). Every quasi-character q : G→ R gives rise to a pseudocharacter

p : G→ R defined by

p(g) = lim
n→∞

q(gn)

n

(the limit always exists); p is called the homogenization of q. It is straightforward to check

that

|p(g)−q(g)| ≤ D (5.1)

for all g ∈ G if q has defect at most D.

To every action of a group on a hyperbolic space fixing a point on the boundary, one can

associate the so-called Busemann pseudocharacter. We briefly recall the construction and

necessary properties here and refer to [37, Sec. 7.5.D] and [52, Sec. 4.1] for more details.

Definition 5.1.6. Let G be a group acting on a hyperbolic space S and fixing a point ξ ∈ ∂S.

Fix any s ∈ S and let x = (xi) be any sequence of points of S converging to ξ . Then the
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function qx : G→ R defined by

qx(g) = limsup
n→∞

(dS(gs,xn)−dS(s,xn))

is a quasi-character. Its homogenization px is called the Busemann pseudocharacter. It

is known that for any two sequences x = (xi) and y = (yi) converging to ξ , we have

supg∈G |qx(g)− qy(g)| < ∞ [52, Lemma 4.6]; in particular, this implies that px = py and

thus we can drop the subscript in px. It is straightforward to verify that g ∈ G acts loxo-

dromically on S if and only if p(g) 6= 0; in particular, p is non-zero whenever G y S is

quasi-parabolic.

Lemma 5.1.7. Let [X ] be a quasi-parabolic structure on G = Ln. Then t is a loxodromic

element with respect to the action G y Γ(G,X). Consequently, the action must fix either

t+∞ or t−∞.

Proof. Let p be the Busemann pseudocharacter associated to the action of G on Γ(G,X).

Let D be the defect of p. Assume, by contradiction, that t is not loxodromic with respect to

this action. Then p(t) = 0.

Observe that since each b ∈ A has finite order, it is not a loxodromic element and so

p(b) = 0. Since p is a pseudocharacter, for any x ∈ G, p(xn) = np(x).

Consider for any b ∈ A,k ∈ Z,

p(tkb)= lim
i→∞

q((tkb)i)

i
= lim

i→∞

q(t ikb′)
i
≤ lim

x→∞

q(t ik)+q(b′)+D
i

≤ lim
x→∞

q(t ik)+2D
i

= p(tk)= 0.

Similarly, we can show that p(tkb)≥ lim
x→∞

q(t ik)−2D
i

= p(tk) = 0.

Thus p(tkb) = 0 ∀k ∈ Z,b ∈ A. But this contradicts the non-elementary structure of

[X ].

Remark 5.1.8. The proof of Lemma 5.1.7 also shows that if we renormalize p so that

p(t) = 1, then the Busemann pseudocharacter associated to any quasi-parabolic action of
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Ln is the homomorphism that is the standard projection of elements of the group to Z.

5.2 A necessary and sufficient condition for regular quasi-parabolic actions

In order to show that there are exactly two quasi-parabolic structures on Lp when p is a

prime, we will need the following definitions and theorem taken from [24]. This theorem is

a necessary and sufficient condition for the existence of regular quasi-parabolic structures

on a group (defined below). Please note that the authors of [24] refer to quasi-parabolic

actions as focal actions.

Definition 5.2.1. [24, Section 4] Let G y S be a quasi-parabolic action, and p : G→ R

the associated Busemann pseudocharacter. The action of G is said to be regular if p is a

homomorphism.

Remark 5.2.2. It follows from Lemma 5.1.7 and Remark 5.1.8 that quasi-parabolic actions

of Ln,n ≥ 2 are always regular. Further, the lineal action associated to the Busemann

pseudocharacter p from Lemma 5.1.7 is an orientable one; see [2, Lemma 4.15] and it is

the only lineal structure on Ln.

Definition 5.2.3. [24, Section 4] Let H be a group and Q be a subset of H, and let α be

an automorphism of H. We say that the action of α is confining H into Q (resp. strictly

confining) if it satisfies the following conditions :

(a) α(Q) is contained (resp. strictly contained) in Q.

(b) H =
⋃
n≥0

α
−n(Q)

(c) αn0(Q.Q)⊂ Q for some non-negative integer n0.

The next theorem is a particular case of [24, Theorem 4.1]. We state it in this particular

way since we will apply the result in precisely the setting where G = Ln and A =
⊕

ZZn is

the base of the semi-direct product structure for this group.
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Although stated for a more general case, Theorem 4.1 of [24] can be restated as fol-

lows (See paragraph 4.A. of [24]) : Let X be a generating of a group G, and dX be the

associated word metric. Then (G,dX) is regular focal if and only if G has a subgroup K

and a decomposition K = H o 〈α〉 and a subset Q ⊂ H so that α is confining into Q and

the inclusion map (K,dS)→ (G,dX) is a quasi-isometry; where S = {Q,α±1}. In the case

when G = H o 〈α〉, the statement reduces to the following.

Theorem 5.2.4. Let G=Ao〈t〉 be a group and X a generating set of G. Then the following

are equivalent.

(1) Γ(G,X) is hyperbolic and G y Γ(G,X) is a regular quasi-parabolic action.

(2) There exists a subset Q⊂ A such that

(i) The action of t (or t−1) on A is strictly confining into Q. (This action is by

conjugation)

(ii) Setting S= {Q, t±1}, the inclusion map i : (G,dS) ↪→ (G,dX) is a quasi-isometry.

Moreover, if (2) holds, then the Busemann pseudocharacter in (1) is proportional to

the obvious projection of G to Z.

Remark 5.2.5. If t−1Qt = Q, then (G,dS) is quasi-isometric to a line. The above theorem

implies that [X ] = [S] ∈ Hqp(G).

Since every quasi-parabolic action of Ln is regular, the above theorem reduced the prob-

lem of finding all quasi-parabolic structures on the group to finding all subsets of A that are

strictly confining under the action of t or t−1. Since A∼= R by Lemma 5.1.4, we may refor-

mulate the conditions of confining actions as follows. Note that condition (b) of Definition

5.2.3 ensures that 0 ∈ Q always.

Definition 5.2.6. Let Q⊂ R. The action of t (resp. t−1) on R is (strictly) confining into Q

if
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(a) tQ (resp. t−1Q) is (strictly) contained in Q (Here we mean multiplication by t or t−1)

(b) For every p(t) ∈ R, there exists n≥ 0 such that tn p(t) ∈ Q. (resp. t−n p(t) ∈ Q)

(c) There exists a constant n0 ≥ 0 such that tn0(Q+Q)⊂ Q. (resp. t−n0(Q+Q)⊂ Q)

5.3 Groups with finitely many quasi-parabolic structures

We now turn to the proof of Theorem 5.1.2. For convenience, we set G = Lp, where p

is a prime. Further, let B+ ⊂ R consist of all elements with non-negative powers on t, and

B− ⊂ R consist of all elements with non-positive powers on t. Set

A+ = {t±1,B+}

and

A− = {t±1,B−}.

Our goal is to prove that [A+] and[A−] are the only two quasi-parabolic structures on G. We

will prove this theorem in a series of smaller results.

Lemma 5.3.1. The subset B+ (respectively B−) is strictly confining under the action of t

(respectively t−1).

Proof. We prove the lemma for B+; the proof for B− has symmetric arguments. Clearly

multiplication by t satisfies condition (a) of Definition 5.2.6. The action is strictly confining

since 1 ∈ B+, but 1 /∈ tB+. It is also easy to see that condition (b) of Definition 5.2.6 holds

by taking n to be the absolute value of the smallest negative exponent on t in p(t). Condition

(c) holds for n0 = 0 since B+ is closed under addition.

Corollary 5.3.2. [A−] and [A+] are quasi-parabolic structures on G.

We now want to prove the following :
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Proposition 5.3.3. Let Q⊂ R be strictly confining under the action of t. Set S = {Q, t±1}.

Then [S] = [A+].

Indeed, if we can prove the above proposition, then by symmetric arguments, we can

also show that if Q⊂ R strictly confining under the action of t−1, then [S] = [A−]. This will

then imply that [A+] and[A−] are the only two quasi-parabolic structures on G, and it will

remain to show that these structures are distinct. In order to prove the proposition, we will

need the following lemmas.

In what follows, we fix Q ⊂ R which is strictly confining under the action of t and set

S = {Q, t±1}.

Lemma 5.3.4. Suppose that {pi(t) | i ∈ Λ} ⊂ B+ is a collection of elements satisfying

(i) pi(t) /∈ Q for all i ∈ Λ, and

(ii) There exists a constant K such that tK pi(t) ∈ Q for all i ∈ Λ.

Set P = {tk pi(t) | k ≥ 0, i ∈ Λ} and Q′ = Q∪P. Then Q′ is also strictly confining with

respect to the action of t. Further if S′ = {Q′, t±1} then [S] = [S′].

Proof. Observe that tQ⊂ Q and ttk pi(t) = tk+1 pi(t) for all i ∈ Λ,k ≥ 0. Thus

tQ′ = t(Q∪P) = tQ∪ tP⊂ Q∪P = Q′.

To see the strict containment, choose an element p(t) from {pi(t)} such that p(t) has

minimal degree. Such an element exists because {pi(t)}⊂B+. We will show that p(t) /∈Q′.

Suppose, by contradiction, that p(t) ∈ tQ′ = t(Q∪ P). If p(t) ∈ tQ, then p(t) ∈ Q by

condition (a) of Definition 5.2.6, which violates condition (i) of the statement. If p(t) ∈ tP,

then p(t) is not an element of minimal degree from {pi(t)}, which contradicts the choice of

p(t). Thus p(t) /∈ tQ′, and condition (a) of Definition 5.2.6 holds. Condition (b) obviously

holds since Q⊂ Q′.
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It remains to show that condition (c) holds. Set m0 = K +n0, where n0 is the constant

that satisfies condition (c) for the action of t on Q.

Let q1(t),q2(t) ∈Q′. Observe that tKqi(t) ∈Q for i = 1,2 because Q is confining under

the action of t and by condition (ii) of the statement. Thus

tm0(q1(t)+q2(t)) = tn0+K(q1(t)+q2(t)) ∈ tn0(Q+Q) ∈ Q⊂ Q′.

If tm0(Q′+Q′) = Q′, then tm0+1(Q′+Q′) = tQ′ ⊂ Q′. Thus condition (c) is also satis-

fied.

Lastly, since Q⊂ Q′, sups∈S |s|S′ = 1. Conversely we have that

sups′∈S′ |s′|S ≤max{1,K +1}< ∞.

Remark 5.3.5. If Λ is a finite index set, then condition (ii) of Lemma 5.3.4 is naturally

satisfied. For each i∈Λ, there exists ki such that tki pi(t)∈Q, by condition (b) of Definition

5.2.6. Taking K = maxi∈Λ{ki} gives the required constant K for condition (ii).

We will first prove that [S]� [A+]. We will then use this fact to additionally prove that

[S] = [A+].

Lemma 5.3.6. Let Q⊂ R be strictly confining under the action of t. Then [S]� [A+].

Proof. First observe that by Remark 5.3.5, we may assume without loss of generality that

{0,1, ..., p−1} ⊂ Q. Consequently,

{1, t, t2, ..., t i, ...}
⋃
{2,2t,2t2, ...}...

⋃
{(p−1),(p−1)t,(p−1)t2, ...} ⊂ Q.

i.e. Q contains all elements from B+ that contain only one term.

Next, observe that for 0≤ j < i and any r,s∈Zp , rt j+st i ∈Q+Q. By using condition

(c) of Definition 5.2.6, we get that rtn0+ j + stn0+i ∈ Q. i.e. Q contains all element from B+

with 2 terms and such that the smallest exponent on t is n0.
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Using Lemma 5.3.4, we may further assume that Q contains all elements from B+ with

exactly 2 terms. Indeed, this is a consequence of the conclusion of the previous paragraph

and the observation that every element p(t) ∈ B+\Q with 2 terms satisfies tn0 p(t) ∈ Q. By

iterating the above steps finitely many times, we can conclude that Q contains all elements

from B+ with at most n0 terms.

It suffices to prove the following claim : For any n≥ n0, Q contains all elements from

B+ with n terms such that the smallest exponent on t is bigger than or equal to n0. Indeed

if the claim is proven, then by Lemma 5.3.4, we can conclude that Q contains all elements

from B+ since every element p(t)∈ B+\Q with more than n0 terms will satisfy tn0 p(t)∈Q.

Since Q contains all elements from B+ with at most n0 terms already, the result will follow.

To prove the claim, we will use induction on n ≥ n0. Since Q contains all elements

from B+ with at most n0 terms, the base of the induction holds.

Assume that the claim is true for all integers n such that n0 ≤ n≤ k. i.e. Q contains all

elements from B+ with at most k terms such that the smallest exponent on t is n0. We will

show that Q contains all elements from B+ with k+1 terms such that the smallest exponent

on t is n0.

Let p(t) = r1tn0+i1 + r2tn0+i2 + ...rn0t in0+n0 + ...+ rk+1tn0+ik+1 , where 0 ≤ i1 < i2 <

...in0 < ... < ik+1 is a sequence of non-negative integers and r1,r2, ...,rk+1 is a list of coef-

ficients from Zp.

Then r1t i1 + r2t i2 + ...+ rn0t in0 ∈ Q since this element has n0 terms. We claim that

in0+1≥ n0. Indeed if in0+1 < n0, then we cannot choose n0 non-negative integers strictly less

than n0−1. Thus rn0+1t in0+1 + ...+ rk+1t ik+1 is an element such that the smallest exponent

on t is bigger than or equal to n0. This element has k+1−n0 ≤ k terms. If k+1−n0 < n0,

this element is in Q. If k+1−n0 > n0, then this element is in Q by the induction hypothesis.

Thus

r1t i1 + r2t i2 + ...+ rk+1t ik+1 ∈ Q+Q.
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Using condition (c), we get that

r1tn0+i1 + r2tn0+i2 + ...+ rk+1tn0+ik+1 ∈ Q.

This completes the proof of the lemma.

Lemma 5.3.7. If {rt−i | i≥ 0, r ∈ Zp} ⊂ Q, then [S]� [A−].

Proof. Arguing as in Lemma 5.3.6, by using induction on the number of terms in elements

from B−, we obtain that r1t−i1 + r2t−i2 + r3t−i3 + ...+ rnt−in ∈ Q, for any n ≥ 1, any 0 ≤

i1 < i2 < ... < in, where i j ∈ Z+ and any choice r1,r2, ...rn of coefficients from Zp.

Corollary 5.3.8. For any r ∈ Zp\{0}, Q cannot contain {rt−i | i≥ 0}.

Proof. Since Q is strictly confining under the action of t, it defines a quasi-parabolic struc-

ture on G. By contradiction, suppose for some r ∈ Zp, {rt−i | i ≥ 0} ⊂ Q. Since p is a

prime r generates Zp. By using condition (c) of Definition 5.2.6 repeatedly, we get that

{zt−i | i≥ 0, z ∈ Zp} ⊂ Q.

The proof now follows from Lemma 5.3.6 and Lemma 5.3.7, which together imply that

[A+], [A−] � Q. Then any p(t) ∈ R satisfies the condition |p(t)|S = 1, by using condition

(a) of Definition 5.2.6. By Lemma 5.1.5, every element g ∈ G represents as tm((p(t)), for

some m ∈ Z, p(t) ∈ R. Thus the map from G→ Z given by tk(p(t)) 7→ k is surjective and

satisfies

dS(1, tk p(t))−1≤ |k| ≤ dS(1, tk p(t)).

Thus Q must define a lineal structure on G, which is a contradiction.

Definition 5.3.9. For p(t)∈R, the negative degree of p(t) is the smallest negative exponent

on t that appears in p(t). The leading negative coefficient is the coefficient of the term with

the negative degree.
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Example 5.3.10. For G = Z4, the negative degree of p(t) = 2t−9+3t−6+ t6+2t +1 is −9

and the leading negative coefficient is 2.

Proof of Proposition 5.3.3. By Lemma 5.3.6, [S] � [A+]. Thus, we may assume without

loss of generality that B+ ⊂ Q. We will now show that [A+] = [S].

First observe that if Q contains only finitely many more elements from R in addition to

B+, then we are done. So we need to consider the case when Q contains infinitely many

elements from R in addition to B+; let this collection be {p j(t) | j ≥ 1}.

If the negative degrees of these elements are bounded below, then again we have [A+] =

[S]. Indeed, if the lower bound on the negative degrees is −k0, then

|p j(t)|A+ ≤ tk0 +1

for all j, which implies that [A+]� [S].

Thus, it remains to consider the case when the negative degrees of the elements p j(t)

are not bounded below. Note that in this case we may add appropriate elements from B+

to each p j(t) and use condition (c) of Definition 5.2.6 to obtain infinitely many elements

from B− in Q such that their negative degrees are not bounded below. So without loss of

generality, we may assume that {p j(t) | j ≥ 1} ⊂ B−.

Since Zp is a finite set, there exists a coefficient r ∈Zp that occurs infinitely many times

as the leading negative coefficient on elements with unbounded negative degrees. We fix

this coefficient r and let {q j(t)} ⊂ {p j(t)} be this collection of elements.

Assume that

q j(t) = rt− j1 + r j,2t− j2 + ...+ r j,k jt
− jk j , (?)

where j1 > j2 > ... > jk j ≥ 0 and r j,2,r j,3, ...,r j,k j ∈ Zp i.e. the negative degree of each

q j(t) is − j1. Then j1→ ∞.

For any element of the form (?), we will refer to the following process as recovering
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an element : Using condition (a), multiply (?) by t j2 to obtain rt− j1+ j2 +b(t) ∈ Q, where

b(t) ∈ B+. By adding an appropriate b′(t), we get that rt− j1+ j2 ∈ Q+Q. Using condition

(c), we get rt− j1+ j2+n0 ∈ Q.

Case 1. The difference j1− j2 takes arbitrarily large positive values as j varies. In this

case, − j1 + j2 +n0 takes arbitrary small negative values, and so we can recover

{rt−i | i≥ 0} ∈ Q

by using condition (a) of Definition 5.2.6 in addition to the process of recovering elements

described above. This is a contradiction by Corollary 5.3.8.

Case 2. The difference j1− j2 is bounded for all j. i.e. 1 ≤ j1− j2 ≤ K. Choose any

integer M ≥ 1. Choose an element q j(t) which satisfies − j1 +M(p+ 1)n0 < 0. Such an

element must exist since j1→ ∞ as j→ ∞.

Since Q is confining under the action of t, we may use condition (a) and multiply q j(t)

by t j1− j2 to obtain

rt− j2 + r j,2t j1−2 j2 + ...+ r j,k jt
− jk j+ j1− j2 ∈ Q.

Adding this new element to q j(t) we obtain the following element in Q+Q :

rt− j1 + rr j,2t− j2 + .... (??)

By using condition (c), we get that

rt− j1+n0 + rr j,2t− j′2+n0 + ... ∈ Q.

Since o(r) = p, we may repeat the above step L≤ p times so that rL = r−1
j,2 . At the end
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of L iterations, we obtain

rt− j1+Ln0 + r′j,xt
− jx+Ln0 + ... ∈ Q,

where j1− jx > j1− j2 and − j1 +Ln0 < 0. i.e. the gap between the leading negative term

and the next has increased.

By repeating this process M times, we can turn the M successive coefficients that fol-

low the leading term to zero, allowing us to further increase the gap between the leading

negative term and the next in each iteration. This allows us to recover rt−i for larger values

of i. Note that this process does not involve passing to an equivalent generating set; instead

we are only using the conditions of Definition 5.2.6 to build elements in Q. By increasing

M and choosing the appropriate q j(t), this allows us to eventually recover the entire set

{rt−i | i≥ 0} ⊂ Q as in Case 1, which is a contradiction by Corollary 5.3.8.

Proof of Theorem 5.1.2. By Proposition 5.3.3, if Q ⊂ R is strictly confining under the ac-

tion of t, then [S] = [A+]. By similar arguments, we can show that if Q⊂ R is strictly con-

fining under the action of t−1, then [S] = [A−]. This yields two quasi-parabolic structures

on G. It is easy to see that these two structures are incomparable since supi≥1 |t i|A− =+∞

and supi≥1 |t−i|A+ =+∞; yielding precisely two quasi-parabolic structures on G.

Corollary 5.3.11. The H (G) structure of G = Lp, where p is a prime is the following

poset.

Figure 5.1: Poset of H (Lp)

Proof. The proof follows from Theorem 5.1.2, Remark 5.2.2 and the fact that the Lamp-

lighter groups have no general-type actions. Indeed, the Lamplighter groups are solvable
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and cannot contain non-abelian free subgroups.
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