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CHAPTER I 
 
 
 

OVERVIEW 
 
 
 

 Since the discovery of p53, more than 30 years of research has yielded 

numerous publications all aiming to better understand p53 signaling in normal 

and disease states.  First discovered as a proto-oncogene, p53 has since been 

shown to act as a potent tumor suppressor through both transcription-dependent 

and –independent signaling mechanisms.  The goal of my dissertation research 

was to perform genomic analyses that would identify a subset of novel p53 target 

genes and further elucidate their functional roles downstream of the p53 signaling 

network. 

 

Introduction 

  Prior to the invention of genomic technologies, the identification of 

putative transcriptional targets consisted of a gene-by-gene approach using 

nuclease protection assays as well as in vitro DNA binding and reporter assays.  

As a result, identification of transcription factor signaling networks was 

challenging.  The advent of genomic analyses such as gene expression 

microarrays, genome-wide chromatin immunoprecipitation (ChIP) methods, and 

novel computational algorithms has allowed for the high-throughput discovery of 

transcriptional networks.  There are approximately 2600 proteins in the human 
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genome that are assumed to function as transcription factors based on 

identification of DNA binding domains (Sturzbecher et al., 1992).  As these 

genomic methods allow further identification of transcriptional targets for the 

numerous potential transcription factors, we are beginning to understand the vast 

signaling capability that a single transcription factor has, both uniquely and 

through crosstalk with other transcription factors and co-factors.  Further, these 

signaling networks will likely have important clinical utility, given that sequence 

mutations in transcription factors are the cause of multiple disease states and 

can be exploited as potential therapeutic targets.  

A sequence-specific transcription factor contains a DNA binding domain 

that recognizes a unique genomic sequence and may bind to thousands of 

locations in the genome.  A variety of factors influence the activity of transcription 

factors including spatial localization, accessibility of the DNA-binding site, and 

sequence specific recognition of the consensus binding region (Mitchell and 

Tjian, 1989).  Cellular localization itself is often regulated by protein-protein 

interactions or post-translational modifications.  Protein interactions and post-

translational modifications may activate a transcription factor by targeting it to the 

nucleus or alternatively inactivate the transcription factor by marking it for 

degradation (Ptashne and Gann, 1998).  For example NF-kappaB is maintained 

in the cytoplasm due to a protein interaction with Inhibitor kappaB alpha by 

obscuring the nuclear import signal (Baeuerle and Baltimore, 1988).  In addition, 

numerous stress events, such as DNA damage, can influence protein-protein 
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interactions and post-translational modification of a transcription factor to regulate 

its subcellular localization and, ultimately, its activity (Cheng et al., 2009; 

Rathmell et al., 1997).   

 In addition to localization, a transcription factor and the basal transcription 

machinery require accessibility to the DNA binding region.  Chromatin is made up 

of DNA wrapped around histone proteins (nucleosomes) and can be found either 

condensed as heterochromatin or during interphase in a loose state known as 

euchromatin (Olins and Olins, 1974).  Chromatin structure due to nucleosome 

placement can also create DNA-specific binding sequences from two half-sites 

that are not close in the coding region but by bringing the DNA loops together the 

two halves of a DNA binding sequence can achieve close spatial orientation 

(Rippe et al., 1995).  

 For precise regulation of gene expression, another tier of specificity is 

observed at the genome level using the consensus binding site.  Consensus 

sequences, also referred to as response elements, are commonly located in the 

promoter region, enhancer, or within one kB downstream of the transcriptional 

start site of a gene.  A response element contains a unique sequence of DNA 

that can be specifically recognized by a transcription factor.  The complexity of 

response element binding by transcription factors is augmented by the fact that 

response elements can be degenerate, variations of the consensus binding 

sequence that can confer different binding affinities.  The p53 consensus binding 

site consists of two 10 bp half-sites (5ʼ-PuPuPuC(A/T)(T/A)GPyPyPy-3ʼ, where 
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Pu=Purine and Py=Pyrimidine) separated by a 0-13 spacer (el-Deiry et al., 1992).  

Since the initial definition of the consensus binding site, genomic screening has 

shown that the 20 bp palindrome without a spacer is preferentially bound by p53 

tetramers (Ma and Levine, 2007; Wei et al., 2006). 

 

p53: Sequence-Specific Transcriptional Activator and Tumor Suppressor 

 p53 was first discovered in 1979 and described as a proto-oncogene 

(Lane and Crawford, 1979; Linzer and Levine, 1979).  After three decades of 

work and greater than 53,000 published articles, we now understand this 

transcription factor is a potent tumor suppressor (Hinds et al., 1989; Levine, 

1989).  One observation linking p53 to tumor suppressor activity was that ectopic 

wild-type p53 expression inhibited oncogene-mediated rat fibroblast 

transformation and colony forming ability (Eliyahu et al., 1989).  Moreover, rare 

clones that did undergo transformation in those studies expressed a mutant, 

inactive form of p53 (Finlay et al., 1989).  Another key observation defining p53 

as a tumor suppressor was allelic deletions of the p53 locus on chr 17 in 75% of 

colon cancers, and the remaining p53 allele showed mutated p53 in two tumors 

studied resulting in the classic Knudson two-hit hypothesis for a tumor 

suppressor gene (Baker et al., 1989; Knudson, 1971).  

Since its discovery, studies have characterized p53 as the most frequently 

mutated gene in all human tumors (Caron de Fromentel and Soussi, 1992; 

Hollstein et al.).  In 2009, the International Agency for Research on Cancer 
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counted 26,597 published somatic mutations and 535 germline mutations in the 

p53 gene (Petitjean et al., 2007).  Of these somatic mutations, the majority are 

comprised of missense mutations located in the DNA binding domain that alter 

the ability of p53 to bind to DNA (Flaman et al., 1998).  As point mutations in p53 

continue to be studied, there is growing evidence that these alterations not only 

inhibit p53 binding to its consensus sites but also confer dominant-negative 

activity through dimerization of the mutant and wild-type p53 (Milner and Medcalf, 

1991).  

Germline p53 mutations are not infrequent, and genomic sequencing in 

larger patient populations suggest that alterations in p53 may be responsible for 

as much as 20% of all inherited cancers (Palmero et al. 2010).  Li-Fraumeni 

syndrome is an autosomal dominant disorder most commonly associated with a 

germline mutation in p53 (Malkin et al., 1990), but has also been attributed to 

mutations in CHK2 (Bell et al., 1999).  Patients with Li-Fraumeni are at risk for 

early onset of a wide range of cancer types including breast, brain, soft tissue 

sarcomas, bone sarcomas, and adrenal cortical carcinomas (Bell et al., 1999; 

Birch et al., 2001; Malkin et al., 1990). 

In tumors where mutations in p53 are not present, there are frequent 

alterations in other nodes of the p53 signaling pathway.  For example, the 90 kDa 

protein murine double mutant 2 (MDM2) binds and negatively regulates p53 

(Momand et al., 2000), and is amplified in numerous cancers that retain wild-type 

p53 (Fakharzadeh et al., 1991).  In neuroblastoma tumors that rarely exhibit 
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mutations of p53, homozygous deletion of p14ARF allows escape from p53-

mediated growth arrest (Thompson et al., 2001).  p14ARF in normal conditions 

serves to sequester MDM2 thus inhibiting the E3 ubiquitin ligase activity of 

MDM2 to degrade p53 (Honda and Yasuda, 1999).  

Due to its ability to induce growth arrest and apoptosis in a majority of 

tumor types, p53 is commonly considered an anticancer therapeutic target.  p53 

is a challenging target, as it is frequently lost or mutated in human tumors.  

Therefore therapeutic approaches include activating wild-type p53, reactivating 

and selectively inhibiting mutant p53, or selectively inhibiting the wild-type p53 in 

normal cells to reduce side-effects during chemoradiation.   

Currently several adenoviral vectors carrying wild-type p53 that require 

intratumoral injection (brand name Advexin) are in clinical trials and are being 

well tolerated and efficacious in late stage disease patients (Vazquez et al., 

2008).  Another adenoviral vector, ONYX-015, selectively replicated in p53-

deficient cancer cells (Bischoff et al., 1996).  Although only minor antitumor 

activity was seen with ONYX-015 alone, a significant antitumor effect was 

achieved when combined with chemotherapeutic agents (Heise et al., 2000; 

Khuri et al., 2000).   

In addition to gene therapy, other approaches for modulation of p53 

activity are being developed, including investigation of small molecules that either 

directly interact with p53 or disrupt normal interactions with negative regulators 

such as MDM2.  For example, Nutlins are a class of small-molecule MDM2 
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inhibitors that have antitumor efficacy in mouse xenograft models (Vassilev et al., 

2004).  Nutlin binds MDM2 at the p53-binding pocket, inhibiting the MDM2-p53 

interaction and stabilizing p53.  Additionally, RITA (reactivation of p53 and 

induction of apoptosis) was identified in a chemical screen of small molecules 

designed to bind to p53 and block its interaction with negative regulatory factors.  

In mouse models, RITA induced tumor cell apoptosis under conditions of 

normoxia and hypoxia (Issaeva et al., 2004; Yang et al., 2009).     

 

p53 Structure and Regulation 

p53 is a 393 amino acid (aa) protein containing an N-terminal 

transcriptional activation domain (1 - 63 aa), a proline rich domain (64 - 92 aa), a 

central DNA binding domain (93 - 300), a nuclear localization signal domain (316- 

325 aa), a homo-oligomerization domain (307 - 355 aa), and a C-terminal domain 

that is involved in regulation of the DNA binding domain (356 - 393aa) (Cho et al., 

1994; Muller-Tiemann et al., 1998; Wang et al., 1994) (Figure 1a).  Each domain 

is crucial for the regulation and transcriptional activity of p53.  As its name 

suggests, the N-terminal transcriptional activation domain is the binding region 

for cofactors that regulate the transcriptional activity of p53, such as MDM2. 

(Fields and Jang, 1990; Momand et al., 1992).  The proline-rich domain is 

thought to be necessary for the pro-apoptotic function of p53.  Specifically,  
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binding of the apoptotic specific regulator of p53 (ASPP) family of proteins occurs 

in this proline rich domain, and this cofactor interaction has been reported to 

influence the ability of p53 to induce a subset of pro-apoptotic target genes 

(Samuels-Lev et al., 2001).  Additionally, p53 proteins lacking the proline-rich 

domain fail to activate specific target genes such as PIG3 and as a result are 

unable to induce apoptosis (Baptiste et al., 2002 1998, Bergamaschi et al, 2006).   

The DNA binding domain is comprised of an antiparellel β sandwich that is 

stabilized by a Zn++ ion to enable interaction with, and binding of, DNA (Duan and 

Nilsson, 2006; Pavletich et al., 1993).  Mutations occurring in the DNA domain 

may disrupt protein structure and alter the ability of p53 to bind DNA (Cho et al., 

1994).  The oligomerization domain contains an amphipathic helix that allows for 

homodimerization and formation of transcriptionally active p53 tetramers 

(Sturzbecher et al., 1992 1994).  Lastly, post-translational modifications such as 

phosphorylation, glycosylation, ubiquitination, acetylation, and sumoylation occur 

frequently in both the N- and C-terminal region of p53.  The C-terminal domain 

can negatively regulate p53 activity through its non-specific nucleic acid binding 

activity (Bayle et al., 1995).   Modifications at the C-terminus often inhibit the 

ability of this domain to negatively regulate sequence-specific DNA binding of 

p53 (Weinberg et al., 2004).  Additionally, these modifications can alter protein 

stability (Li et al., 2003a), oligomerization state (Nicholls et al., 2002), nuclear 
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export (Stommel et al., 1999), and degree of ubiquitination of p53 (Nakamura et 

al., 2000; Rodriguez et al., 2000). 

 p53 stability is regulated at the protein level by post-translational 

modifications that either stabilize or mark the protein for degradation.  MDM2 is a 

proto-oncogene that functions as a major negative regulator of p53 (Momand et 

al., 2000).  MDM2 is a transcriptional target of p53; this regulation creates an 

auto-regulatory feedback loop that acts to tightly regulate p53 activity.  Upon 

stabilization, p53 transcriptionally induces expression of MDM2 that, in turn, 

functions as an E3 ubiquitin ligase to target p53 for nuclear export and 

proteasomal degradation (Honda et al., 1997).  The p53 nuclear export signal 

(NES) is structurally masked in its tetrameric complex.  p53 ubiquitination by 

MDM2 disrupts the tetrameric state of p53 and exposes its NES, at which point 

p53 is translocated to the cytoplasm for degradation (Freedman et al., 1997).  

Depending on tissue- or stress–specific contexts, p53 forms autoregulatory loops 

with other E3 ubiquitin ligases (Pirh2, COP1) (Dornan et al., 2004; Leng et al., 

2003) and ubiquitin analogues (SUMO1, Nedd8) (Buschmann et al., 2000 2004).   

 In addition, post-translational modifications of p53 occur at more than 40 

different amino acid residues, where they act to influence p53 stability, 

localization, and co-factor interactions.  These regulating modifications include, 

but are not limited to, acetylation by pCAF and p300 (Liu et al., 1999), 

phosphorylation by ATM, ATR, and CK2 (Gu and Roeder, 1997; Jongmans et al., 

1996) and sumolation through PML nuclear bodies (Buschmann et al., 2001).  
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One well-characterized event is the phosphorylation of p53 at serine-15 (S15) by 

DNA-protein kinase (Lees-Miller et al., 1992).  p53 S15 mutations abrogate the 

ability of p53 to induce cell cycle arrest.  Microtubule-inhibitors increase 

phosphorylation at S15 and threonine-18 (T18) (Stewart et al., 2001).  Moreover 

phosphorylation of serine-46 (S46) is important for transcriptional induction of 

pro-apoptotic genes by p53 (Oda et al., 2000b).  Although much emphasis is 

placed on deciphering the “code” of p53 post-translational modifications and cell 

fate determination, the in vivo importance of these modifications in disease is still 

unclear.  As mentioned above, the majority of missense mutations in human 

tumors occur in the DNA-binding domain and inhibit the ability of p53 to bind and 

transcriptionally activate its target genes.  These hotspot mutations do not 

commonly coincide with amino acids that are post-translationally modified in p53, 

and the N- and C-terminal domains that are locations of modification are 

infrequently altered in tumors.  

 

The p53 Family of Transcription Factors 

 Although the discovery of p53 preceded that of its family members, p63 

and p73, p53 is evolutionarily the youngest of the family (Yang et al., 1998 1997).  

Invertebrate species express a single p63-like protein, and the existence of all 

three family members did not occur until the evolution of vertebrate species 

(Derry et al., 2001).  While the three family members exhibit significant sequence 

and structural homology, they retain both overlapping and unique functions.  
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Each family member gene encodes an N-terminal transactivation domain, a 

central DNA binding domain, and C-terminal oligomerization domain (Figure 1b).  

Despite the common gene structures, p63 and p73 can exist as one of a number 

of protein isoforms resulting from usage of multiple transcriptional start sites (TA 

and ∆N), as well as numerous C-terminal splicing events.  To date, at least six 

different p63 isoforms and 14 (of 35 theoretical) p73 isoform variants have been 

described (De Laurenzi et al., 1998; Stiewe et al., 2002; Yang et al., 1998).  Until 

recently, p53 was thought to exist as a single isoform, but recent studies suggest 

as many as nine possible p53 variants (Ghosh et al., 2004).  In addition to 

common protein regions within the family, p63 and p73 contain a C-terminal SAM 

domain that mediates protein-protein interactions (Figure 1b).  The functional 

significance of the p63 SAM region became evident with the discovery that 

germline mutations in this domain result in developmental disorders such as 

ectodermal dysplasia and limb-mammary syndrome (Brunner et al., 2002). 

 Unlike p53-/- mice that develop normally and succumb to spontaneous 

tumorigenesis (Donehower et al., 1992), p63-deficient mice die shortly following 

birth due to the complete lack of stratified epithelia and all its derivatives (Mills et 

al., 1999; Yang et al., 1999).  These murine phenotypes are recapitulated in 

human disease, as heterozygous germline p63 mutations result in ectodermal 

dysplasia, orofacial clefting, and limb malformation (Celli et al., 1999; Ianakiev et 

al., 2000; Perez et al., 2007). 
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 Global deletion of the p73 gene in mice results in neurological, 

immunological, and pheromonal defects, evidence that p73, like its family 

member p63, is required for a number of developmental processes (Yang et al., 

2000).  Recently, the studies of mouse models with isoform specific p73 deletions 

have shown that p73 regulation of distinct biological processes must be studied 

in the context of individual isoforms. The first isoform specific knockout generated 

was TAp73-/- mice (Tomasini et al., 2008).  These mice were similar to the p73-/- 

mice, in that they exhibited infertility and hippocampal dysgenesis.  Unlike global 

p73-deficient mice, 73% of TAp73-/- mice died from the development of 

spontaneous tumors, most of which were comprised of lung adenocarcinomas.  

Global deletion of the ∆Np73 isoform resulted in mice that were fertile, yet 

displayed signs of neurodegeneration.  Evidence also showed that ∆Np73 

depletion resulted in an increased sensitivity to DNA damage, along with higher 

levels of p53-dependent apoptosis (Wilhelm et al, 2010). 

 As homozygous p63 deletions are incompatible with life, heterozygous 

mouse studies also suggest a role for p63 in tumor suppression, where 10% of 

p63+/- mice developed squamous cell carcinomas.  These studies suggest that 

loss of a single p63 allele is sufficient for the development of tumors (Flores et 

al., 2005).  Additionally, compound heterozygote p53+/-p63+/- mice displayed a 

striking difference in the rate of tumor metastasis compared to p53+/- supporting a 

role for p63 not only in tumor suppression but also in metastasis.  Interestingly, 

p63 is rarely mutated in human tumors and is most often overexpressed in 
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squamous cell carcinomas, suggesting an oncogenic function of p63 in 

tumorigenesis (Sniezek et al., 2004; Yamaguchi et al., 2000).  Like squamous 

cell carcinomas, a subset of breast cancers display a basal-like phenotype 

overexpressing ΔNp63α, consistent with numerous reports that this isoform can 

act in a dominant-negative manner towards the pro-apoptotic functions of its 

family members, p53 and p73 (Perou et al., 2000; Yang et al., 1998).  

Despite their unique differences with regards to signaling, the p53 family 

members retain the ability to functionally cooperate, as evidenced by their ability 

to physically interact with each other.  p73 and p63 can form homotetramers, as 

well as heterotypic interactions amongst themselves but not with wild-type p53 

(Davison et al., 1999).  Mutated p53 is suggested to function in a dominant 

negative fashion by interacting with wild-type p53 and inhibiting its activity 

through the p53 oligomerization domain.  Similarly, interactions between the core 

domain of mutant p53 and p73 can downregulate the growth suppressive pro-

apoptotic anti-tumoral activity of p73 isoforms (Gaiddon et al., 2001; Strano et al., 

2002).  

With approximately 60% sequence identity in the DNA binding domain, the 

p53 family of transcription factors have both overlapping and unique binding 

motifs (Osada et al., 2005; Perez et al., 2007; Yang et al., 2006).  For example, 

selectivity in target gene expression can occur due to the preference of p63 for 

A/G at position 5 and C/T at position 16 in the consensus binding sequence 

(Perez et al., 2007).  ChIP analysis following ectopic expression of individual p53 
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family members showed that 72% of the p53-binding sites could be bound by p63 

and/or p73 (Smeenk et al., 2008).  Work presented in Chapter III of this 

dissertation will describe subsets of genes both uniquely regulated by p53, as 

well as genes co-regulated by different p53 family members.   

p53 family members can also functionally cooperate to regulate specific 

biological outcomes, such as apoptosis.  p63-/-  p73-/- MEFs are unable to 

undergo p53-dependent apoptosis after DNA damage, suggesting the necessity 

of p63 and p73 as co-factors during p53-dependent apoptosis (Flores et al., 

2002).  In addition to cooperative protein interactions at select promoters, p53, 

p63, and p73 participate in cross-family feedback loops.  For example, ∆Np73 

expression is regulated by p53 to form a negative autoregulatory loop, whereby 

∆Np73 competes at p53 consensus binding regions (Kartasheva et al., 2002).  

Additionally, p73 activation after DNA damage induces MDM2, a negative 

regulator of both p53 and p73 activity (Wang et al., 2001).  MDM2 binds and 

sequesters p73, negatively regulating its transcriptional activity by inhibiting the 

ability of p73 to interact with its coactivator, p300 (Zeng et al., 1999). 

 

Methods for the Identification of Transcriptional Target Genes 

Initially, the discovery of transcription factor target genes primarily 

occurred through a one-assay-one-gene approach, thus limiting the ability to 

rapidly discover large signaling networks regulated by a single transcription 

factor.  Given the human genome consists of four unique DNA bases, a six bp 



  16 

response element is predicted to occur >700,000 times in the genome (Georges 

et al.).  With the release of the human genome sequence, algorithms using 

position weight matrices (PWM) were created to predict in silico transcription 

factor binding sites (Venter et al., 2001).  Though useful, in silico methods are 

unable to assess chromatin structure or account for the necessary activation of 

transcription factors, thus yielding numerous false positives.   

While in silico methods often fail to address in vivo issues, chromatin 

immunoprecipitation (ChIP) methods enable the identification of response 

elements directly bound by a transcription factor under a given biological 

condition.  It is important to note that this method identifies DNA binding sites and 

putative transcriptional targets in the biologically-relevant context of normal or cell 

stress conditions, as well as the state of chromatin structure.  ChIP-sequencing 

(ChIP-seq) allows for the high-throughput identification of genomic transcription 

factor binding sites (Johnson et al., 2007).  ChIP-seq does not require large 

amounts of starting material and the sequencing platforms allow greater 

coverage than can be achieved with ChIP-library methods.  Of course this 

method also has limitations including antibody availability, epitope access,  and 

specificity for use in the immunoprecipitation step.  Moreover, CHIP relies on 

chemical crosslinking that may unnecessarily include interactions of extraneous 

DNA-protein or protein-protein bonds.  Lastly, the necessary starting material to 

perform large-scale ChIP assays is often prohibitive in primary cultures or clinical 

specimens (Kang et al., 2002).   



  17 

ChIP-based methodologies are useful tools to identify putative regulatory 

sites for a transcription factor; however, it does not yield data about regulation of 

a gene near the bound response element.  To address the latter, an investigator 

can combine ChIP analysis with gene expression microarray technologies to 

correlate binding and regulation of a gene.  Microarray experiments allow for 

analysis of gene expression under control and experimental conditions, one of 

which could be used to study transcription factors (Schena et al., 1995).  Gene 

expression microarrays allows comprehensive analyses of transcript level 

changes across samples but does not inform whether changes in gene 

expression are a direct result of the condition you are testing or rather a by-

product of secondary signaling.  The work presented in Chapter III of this thesis 

is based on the integrated analysis of multiple genome-wide ChIP and gene 

expression microarray analyses for the identification of direct p53 target genes. 

 

 

Transcription-Dependent Functions of p53 

 Currently, 150 genes have been published and functionally characterized 

as p53 transcriptional targets.   Genome-wide ChIP analyses have revealed that 

p53 has approximately 1600 binding sites in the genome (Cawley et al., 2004; 

Smeenk et al., 2008).  Perhaps the most well-known transcription-dependent 

functions of p53 include transcriptional activation of target genes involved in cell 

cycle regulation, genomic stability, cellular senescence, and apoptosis with 
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growing evidence for target genes involved in angiogenesis, cell migration, and 

autophagy. 

 

Role of p53 in Cell Cycle and Genomic Stability  

p53 transcriptional activity is essential for proper G1 cell cycle checkpoint 

function (Pietenpol et al., 1994).  The first p53 target gene described was p21 

(CDKN1a/WAF1/CIP1) (el-Deiry et al., 1993).  p21 is a cyclin-dependent kinase 

inhibitor that binds to and inactivates cyclin-CDK2 and –CDK4 complexes that 

are necessary for progression through the G1-phase of the cell cycle (Gu et al., 

1993).  p21 is necessary for DNA damage induced, p53-dependent, G1 arrest 

(el-Deiry et al., 1994).  While p53 is most well-known for its ability to induce target 

gene expression, it also retains transcriptional repressor activity.  Repression of 

c-Myc expression by p53 is necessary for G1-phase cell cycle arrest to occur (Ho 

et al., 2005; Sachdeva et al., 2009).  This repression occurs through a 

mechanism of histone deacetylation, as well as through induction of miR-145 by 

p53 that itself downregulates c-Myc.   

 Entry into mitosis can also be blocked by p53 after DNA damage at the 

G2/M checkpoint, and this arrest is mediated by a number of genes and different 

mechanisms.  One mechanism of p53-mediated G2/M arrest is through the 

inhibition of CDK1/cyclinB complexes by p21 (Harper et al., 1995; Medema et al., 

1998). The growth arrest and DNA damage inducible gene 45 (GADD45) is 

another p53 transcriptional target that causes the G2/M arrest by dissociating the 
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cyclin B subunit from CDK1 (Zhan et al., 1999).  Our group showed that p53 

prevents premature exit from G2 cell cycle arrest through a p21 and RB-

dependent mechanism that inhibits and then decreases cyclin B1-CDK1 activity 

(Flatt et al., 2000).  p53 also transcriptionally activates 14-3-3σ, a gene that is 

necessary for maintenance of the G2/M checkpoint through its ability to 

sequester the cyclinB/CDK1 complex in the cytoplasm (Chan et al., 1999).   

p53 also alters G2/M arrest through mechanisms involving topoisomerase 

II.  Topoisomerase II regulates chromatin structure by binding to DNA, creating 

double-stranded DNA breaks, and allowing torsional strain to be relieved by 

rotating one of the broken DNA strands prior to reannealing (Kingma and 

Osheroff, 1997).  Topoisomerase II is active during the G2/M transition while 

chromosomes are becoming highly condensed.  In response to cell stress, p53 is 

stabilized and can repress the promoter of topoisomerase II to initiate a G2/M 

arrest (Sandri et al., 1996).   

In addition to cell cycle regulatory genes, p53 also transcriptionally 

regulates genes involved in global genomic repair, as well as individual 

processes such as nucleotide excision repair (NER) and mismatch repair (MMR).  

The gene p53-induced ribonucleotide reductase 2 (p53R2) is a DNA repair 

protein that directly provides the substrates, deoxynucleotides, for DNA synthesis 

and repair (Tanaka et al., 2000).  Another well-known p53 target gene involved in 

DNA damage and repair, DNA damage binding protein 2 (DDB2), is responsible 

for the binding of DDB1 and the movement of repair complex to sites of lesions 
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(Hwang et al., 1999).  DDB2 is involved in the global genome repair pathway of 

NER (Stoyanova et al., 2009).  Nucleotide excision repair is a process that 

repairs pyrimidine dimers, a type of DNA damage resulting from UV radiation.  

During normal cell replication, base mismatches left uncorrected by the 

proofreading capabilities of DNA polymerases are addressed by mismatch repair 

(MMR).  p53 transcriptionally upregulates several key MMR genes including 

MLH1 (Chen and Sadowski, 2005), a gene that recruits enzymes to the site of 

repair; MSH2, which recognizes sites of damage (Scherer et al., 2000); and 

PCNA, a gene needed to facilitate repair of the mismatched base (Xu and Morris, 

1999).   

 

Role of p53 in Cellular Senescence 

 Cellular senescence is a process by which cells lose their ability to divide.  

Cells undergoing senescence exhibit a round and flattened morphology and can 

be identified by their expression of senescence-associated β-galactosidase (β-

gal).  β-galactosidase is a lysosomal hydrolase typically active at the low pH of 

4.0 but becomes active in senescent cells only at a pH of 6.0 (Dimri et al., 1995).  

Cellular senescence is induced by two unique pathways, both of which are 

regulated by p53.  The first mechanism, known as the telomere or aging 

pathway, occurs when cells undergo senescence as a result of critically 

shortened telomeres (Karlseder et al., 2002).  Alternatively, a second mechanism 
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of cellular senescence can be caused through a stress induced pathway such as 

oncogenic activation or DNA damage (Di Micco et al., 2006).   

In the telomere or aging model of senescence, cells undergo a limited 

number of cell divisions, at which time chromosomal telomeres reach a critically 

shortened length.  At this point, cellular senescence is induced to prevent 

permanent chromosomal damage, and detection of markers occur that are 

typically associated with DNA double-strand breaks, such as phosphorylated 

H2AX and foci consisting of DNA repair proteins (Takai et al., 2003).  

Additionally, senescent cells have activated Chk1 and Chk2 (d'Adda di Fagagna 

et al., 2003).  The Chk1 protein is necessary for telomere induced senescence as 

depletion of this kinase rescues cell cycle progression (d'Adda di Fagagna et al., 

2003).  During senescence, p53 is stabilized and can be detected at response 

elements of growth arrest genes, such as p21 and GADD45 (Jackson and 

Pereira-Smith, 2006).   

In the oncogenic model of senescence, cells permanently exit the cell 

cycle as a mechanism for protection against cellular transformation.  Ectopic 

expression of oncogenes such as K-ras and c-Myc will activate p14ARF to 

sequester the p53 negative regulator MDM2 and allow activation of p53 (Shay et 

al., 1991).  Recently, DEC1 was identified as a p53 target gene required for K-ras 

induced senescence (Qian et al., 2008).  DNA damage induction of senescence, 

on the other hand, requires ATM/ATR activation and phosphorylation of p53 that 

activates senescence (Alcorta et al., 1996).   
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Role of p53 in Regulation of Angiogenesis 

 Evidence suggests a tumor suppressive role for p53 through the inhibition 

of angiogenesis, or inhibiting creation of new blood vessels from pre-existing 

ones.  p53 can inhibit production of proangiogenic factors, increase the levels of 

endogenous angiogenic inhibitors, and interfere with other upstream activators of 

angiogenesis.  During tumor formation, angiogenesis is induced when tumor cells 

are exposed to hypoxic conditions.  Hypoxia inducible factor (Reef et al.) 

recognizes hypoxic signals and transcriptionally upregulates vascular endothelial 

growth factors for tumor angiogenesis (Liu et al., 1995).  p53 directly binds HIF 

and targets it for degradation (Ravi et al., 2000).  p53 also specifically activates a 

number of secreted antiangiogenic factors including thrombospondin-1 that 

negatively regulates angiogenesis by inhibiting proliferation and migration of 

endothelial cells (Dameron et al., 1994).  Increased expression of antiangiogenic 

collagens present in the basement membrane of blood vessels is another way 

that p53 inhibits angiogenesis (Teodoro et al., 2006).  Furthermore, p53-

mediated transcriptional repression of pro-angiogenic factors includes vascular 

endothelial growth factor (Pal et al., 2001), basic growth factor (Ueba et al., 

1994), and basic growth factor binding protein (Sherif et al., 2001; Subbaramaiah 

et al., 1999). 
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Role of p53 in Cell Movement and Migration 

 As tumors progress, cells metastasize from the primary site to nearby or 

distant locations.  During metastasis, tumor cells undergo cytoskeletal and 

morphological changes, as well as negotiate extracellular matrix barriers.  Cells 

first become polarized before sending out filopodia extensions that recognize 

barriers and interact with the environment (Timpson et al., 2001).   Rho GTPases 

(Rac1, Cdc42, and RhoA) and Rho kinases (ROCK) are a few of the proteins 

implicated at different stages in tumor progression to control cell protrusions and 

sense spatial information (Sahai and Marshall, 2003).  

p53 prevents cellular movement and migration by inhibiting filopodia 

formation and cell spreading downstream of the activity of Cdc42 (Gadea et al., 

2002; Gadea et al., 2004).  Cdc42 is activated at the extending front of a cell to 

form a complex that establishes cell polarity through a pathway that involves 

inactivation of glycogen synthase kinase 3b (GSK3b) (Etienne-Manneville and 

Hall, 2003).  p53 activates GSK3b through nuclear binding and stabilization, 

effectively stopping cell polarization (Watcharasit et al., 2002).  The p53-

dependent target gene LIM-kinase 2b (LIMK2b) is a known regulator of actin 

dynamics and further links p53 with cellular motility (Hsu et al.).   

 

p53 and apoptosis 

Apoptosis, or programmed cell death, is a normal physiological function 

essential for proper differentiation, development, and tumor suppression.  
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Apoptosis is characterized by morphology changes including plasma membrane 

blebbing, cell detachment, cell shrinkage, nuclear fragmentation, chromatin 

condensation, and chromosomal DNA fragmentation (Kerr et al., 1972).  

Apoptosis differs from necrosis in that it does not typically elicit an immune 

response as in the case with necrotic cell death. 

Induction of apoptosis occurs through two mechanisms.  The first known 

as the intrinsic pathway, results when cellular stresses signal through the 

mitochondria to activate the caspase cascade (Lee and Bernstein, 1995).  The 

second pathway, known as the extrinsic, or signal transduction pathway, is 

triggered by an interaction of extracellular ligands with transmembrane receptors 

that initiate activation of the caspase cascade and results in cell death 

(Bredesen, 2000).  p53 regulates both pathways of apoptosis through 

transcriptionally-dependent mechanisms.   

The p53-upregulated modulator of apoptosis (PUMA) was discovered as a 

direct target gene encoding two BH3 domains that allows binding to the Bcl-2 

proteins and release of cytochrome C from the mitochondria (Nakano and 

Vousden, 2001).  PUMA-deficient mice are unable to undergo p53-dependent 

apoptosis in response to ionizing radiation and cytokine withdrawal (Jeffers et al., 

2003).  Another p53-regulated apoptotic target gene, Noxa, contains a BH3 

domain that binds to Bcl-2, which is required for mitochondrial membrane 

permeabilization (Oda et al., 2000a).  A p53 target that plays a role in the intrinsic 

apoptotic pathway is the apoptotic protease activating factor 1 (APAF-1).  
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Following release of cytochrome C, APAF-1 oligomerizes to form the 

apoptosome and activates the caspase cascade through cleavage of 

procaspase-9 (Robles et al., 2001).   Evidence of p53-dependent apoptosis 

through activation of the extrinsic pathway occurs through transcriptional 

activation of Fas/CD95 and tumor necrosis factor family members (Fukazawa et 

al., 1999).  Tumor necrosis factors recruit adaptor molecules to bind and activate 

procaspase-8 cleavage, thus activating the caspase cascade (Burns et al., 2001; 

Li et al., 2003b).  The above described transcriptional targets are only a few of 

the many identified players in p53-dependent apoptosis. 

The biochemical signaling linking p53 to final cell fate is still not completely 

understood.  Many factors are associated with cell fate including the cell of origin, 

type and extent of cell stress, p53-specific post-translational modifications, and 

the presence of p53 interacting cofactors.  As mentioned previously, 

phosphorylation of p53 at serine-46 is associated with apoptosis.  Specifically, 

some reports suggests this post-translational modification is required for 

upregulation of unique p53 target genes, including the p53-regulated Apoptosis-

Inducing Protein 1 that functions to increase the mitochondrial membrane 

permeability and subsequent release of cytochrome C (Oda et al., 2000b).  The 

human cellular apoptosis susceptibility protein (hCAS) binds p53 apoptotic genes 

including p53AIP1 and PIG3, and hCAS suppression was sufficient to abrogate 

p53-dependent apoptosis (Tanaka et al., 2007). 
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In addition to the well-known transcriptional role of p53 in apoptosis 

described above, p53 also regulates apoptosis in a transcription-independent 

manner.  For example, DNA damage or hypoxic conditions can result in p53 

translocation from the nucleus to the mitochondria where the tumor suppressor 

can increase mitochondrial membrane permeabilization by directly interacting 

with proapoptotic proteins Bax and Bak at the outer mitochondrial membrane 

(Chipuk et al., 2004; Leu et al., 2004).  Additional support was provided by data 

showing that a transcription-independent role of p53 in apoptosis was observed 

when p53 mutants lacking the transcriptional activation domain still retained the 

ability to localize at mitochondria and induce apoptosis (Chipuk et al., 2004).  The 

transcription-independent role of p53 in apoptosis is controversial because it is 

difficult to fully separate the transcription-dependent and –independent 

mechanisms.  Data showing that PUMA and Noxa-deficient mice are unable to 

undergo p53-mediated apoptosis would argue against a transcription-

independent role of p53 during apoptosis.  Proponents of the transcription-

independent function of p53 suggest that only a basal level of the target genes 

Puma and Noxa is necessary in conjunction with the cytoplasmic functions of p53 

to induce apoptosis. 

 

Role of p53 in Autophagy 

 The term autophagy comes from the Greek roots ʻautoʼ, meaning self, and 

ʻphagyʼ, meaning to eat, thus making the appropriate reference to “eat oneself”.  
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Autophagy is most commonly studied as a response to cellular starvation; 

however, recent evidence shows that autophagy is also induced after cellular 

stresses, such as genotoxic damage.  There are several types of autophagy such 

as macroautophagy, microautophagy, and selective autophagy.  

Macroautophagy is a vacuolar process of self-digesting portions of the cellular 

cytoplasm, including long-lived proteins and/or damaged organelles.  This 

process begins with the formation of a double-membrane autophagosome that 

engulfs portions of the cytoplasm and later fuses with a lysosome containing 

degradative enzymes that breakdown larger macromolecules into monomeric 

components. These breakdown products are released into the cytoplasm and 

recycled by multiple cellular processes (Figure 2) (Berg et al., 1998; De Duve and 

Wattiaux, 1966).  Microautophagy refers to the direct uptake of cytoplasmic 

constituents for recycling through invagination of the lysosomal membrane.  The 

third type of autophagy is selective-autophagy that encompasses several 

processes including chaperone-mediate autophagy and pexophagy (Beau et al., 

2008).  Chaperone-mediated autophagy is a process whereby soluble 
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cytoplasmic proteins that contain a special targeting motif are transported to the 

lysosome using a chaperone complex.  The chaperone complex consists of 

hsc70 and co-chaperones that relocate proteins to the lysosomal membrane 

where the Lamp-2A receptor recognizes and translocates the cargo into the 

lumen of the lysosome for degradation (Kaushik et al., 2006).  Other forms of 

selective autophagy have been recently discovered in S. cerevisiae, including 

organelle specific autophagy known as pexophagy where receptors such as 

Pex3 and Pex14 on peroxisomes are recognized by the Atg associated proteins 

involved in autophagosomal formation (Farre et al., 2008).    

Nutrient sensing is the signal for many of the pathways that control 

autophagy including the mammalian target of rapamycin (mTOR) pathway; Ras 

and c-AMP-dependent protein kinase A that monitor glucose levels; insulin 

receptors and Akt signaling; and the ATP-sensing AMPK pathway.  In addition, 

various extra- and intracellular stresses can also activate the autophagy 

machinery including endoplasmic stress such as hypoxia (Yorimitsu et al., 2006), 

the accumulation of unfolded proteins (Bernales et al., 2006), pathogen infections 

(Gutierrez et al., 2004), and genotoxic stress such as chemotherapeutics 

(Munoz-Gamez et al., 2009).  All of these signaling pathways converge to 

activate the AuTophaGy-related (ATG) genes that constitute the core machinery 

for the process of autophagy (Tsukada and Ohsumi, 1993).  There are 

approximately 30 ATG genes involved in the different stages of autophagy that 

represent three major functional groups including i) the Atg9 and cycling 
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components, ii) vacuolar sorting proteins, and iii) the ubiquitin-like protein system 

(Xie and Klionsky, 2007). 

The role of autophagy in cancer is paradoxical in that the process is 

known to provide energy and pro-survival mechanisms that can be oncogenic 

signals; however, downregulation of autophagy gene expression in human 

cancer, and knockdown of autophagy genes in mouse models, support a role for 

autophagy in tumor suppression.  The first human gene discovered connecting 

autophagy and cancer was Beclin 1, that is monoallelically deleted in 50% of 

breast, ovarian, and prostate cancers (Shen et al., 2008; Yue et al., 2003).  A 

mouse model with monoallelic loss of Beclin 1 is viable but shows a higher 

incidence of lymphomas, lung and liver carcinomas, hyperplastic mammary 

glands, and acceleration of premalignant lesions induced by hepatitis B virus (Qu 

et al., 2003; Yue et al., 2003).  When Beclin 1 was ectopically expressed in the 

autophagy deficient MCF7 breast carcinoma cell line, that has minimal levels of 

Beclin 1 expression, functional autophagy was rescued and clonogenic survival 

decreased (Liang et al., 1999).  The UV irradiation resistance-associated gene 

(UVRAG) is a tumor suppressor mutated at high frequency in colon cancer and 

identified as a positive regulator of Beclin 1 as well as a promoter of autophagy 

(Liang et al., 2007). 

In addition to the direct role of these autophagic players in cancer, a 

number of upstream autophagy regulators are tumor suppressors and 

oncogenes.  The class I phosphoinositide 3-kinase (PI3K-I) is a known oncogene 
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activated via receptor tyrosine kinases leading to cell growth and inhibition of 

autophagy by activating mTOR (mammalian target of rapamycin).  PI3K is 

frequently activated in sporadic cancer where receptor tyrosine kinases are 

mutated, subsequently turning on mTOR and inhibiting autophagy (Petiot et al., 

2000).  The tumor suppressor, STK11 (serine/threonine kinase 11) is mutated in 

patients with hereditary intestinal polyposis that increases the risk of cancer by 

90% at age 70 (Rustgi, 2007).  STK11 positively induces autophagy through 

activation of AMPK signaling (Liang et al., 2007).  Another well known tumor 

suppressor ARF (alternative reading frame of CDKN2A) sequesters MDM2, 

allowing accumulation of p53 levels and activation of p53 following oncogenic 

stress signals.  ARF can induce autophagy in p53-dependent and –independent 

manners.  The short mitochondrial ARF isoform induces autophagy and 

subsequent caspase-independent cell death that can be rescued with knockdown 

of ATG5 or Beclin 1 (Reef et al., 2006).  Additionally, ARF directly interacts with 

Bcl-xL that normally protects cells from autophagy by inhibiting Beclin 1 activity 

(Pimkina et al., 2009). 

p53 acts as a positive and negative regulator of autophagy.  Furthermore, 

p53 can regulate autophagy in transcription-dependent and –independent 

manners.  p53 acts in a transcription-independent function to negatively regulate 

autophagy.  Expression of p53 in the p53-null HCT116 cell line rescued baseline 

autophagy to the same levels as p53-proficient HCT116 cells (Tasdemir et al., 

2008).  Moreover, the role of p53 as an inhibitor of autophagy was confirmed 
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when ectopic expression of wild-type p53, a p53-DNA binding mutant, and a p53-

cytoplasmic only variant all consistently showed repressive effects on autophagy  

(Morselli et al., 2008; Tasdemir et al., 2008).  

The more widely described role of p53 in autophagy is through the 

transcription-dependent induction of autophagic activity following cellular stress.  

Autophagy is induced following numerous cellular stress signals that also activate 

p53 such as starvation, hypoxia (Levine and Abrams, 2008), endoplasmic 

reticulum stress, oxidative stress (Feng et al., 2005), and DNA-damage 

(Katayama et al., 2007).  p53 upregulates the β1 and β2 subunits of AMP-

activated protein kinase that act as a sensor of intracellular energy stores and 

stimulates autophagy by phosphorylating the TSC1/TSC2 complex that directly 

inhibits mTOR (Feng et al., 2007).  In addition, p53 regulates the upstream 

activators of AMPK, Sestrin1 and Sestrin2, after genotoxic and oxidative stress 

conditions, to induce autophagy (Budanov and Karin, 2008).  p53 can also bind 

and directly regulate TSC2 after genotoxic stress further linking p53 to the mTOR 

pathway through induction of this mTOR inhibitor (Feng et al., 2007).     

DAPK-1 and DRAM1 are two additional novel connections between p53 

and autophagy.  DAPK-1 is regulated in a p53-dependent manner in numerous 

cell lines in response to adriamycin and ionizing radiation and is epigenetically 

silenced during tumorigenesis (Gozuacik and Kimchi, 2006; Martoriati et al., 

2005).  Since its discovery as a p53 transcriptional target, publications have 

described the role of DAPK-1 in autophagy induction, including its ability to 
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phosphorylate Beclin 1, resulting in its disassociation from Bcl-xL (Harrison et al., 

2008; Zalckvar et al., 2009).  The damage-regulated autophagy modulator 

(DRAM) is regulated by p53 and its family member p73 but is only necessary for 

p53-mediated autophagy induction (Crighton et al., 2007).  DRAM is lysosomal in 

location, induces markers of autophagy, and decreases cell survival but the exact 

mechanism by which it functions in autophagy has not been deciphered (Crighton 

et al., 2006).  Through work completed in our laboratory, p73 binds and regulates 

a number of transcriptional targets involved in autophagy and metabolism 

including ATG5 and ATG7 (Rosenbluth et al., 2009).  In Chapter IV of this 

dissertation, I described the ISG20L1 gene and its functional characterization as 

a direct target of p53 and the family members, p63 and p73.  Further, ISG20L1 

induces autophagy in response to multiple genotoxic stresses, providing further 

evidence that p53 acts to promote DNA damage-induced autophagy. 

 

Overall Goals of Dissertation Research 

 One focus of research in the Pietenpol laboratory is deciphering unique 

and overlapping functions of the p53 family of transcription factors.  Multiple 

findings from our laboratory have contributed to the current understanding of how 

p53 and p63 coordinate cell fate decisions in response to stress and 

differentiation cues (Perez et al., 2007). Further, we recently defined the p73 

cistrome and used this dataset to gain mechanistic insight to the role of p73 in 

differentiation and tumorigenesis (Rosenbluth et al., under review).   p53, p63, 
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and p73 have approximately 1600, 5800, and 7600 binding sites in the genome, 

respectively (Rosenbluth et al., 2008; Smeenk et al., 2008; Yang et al., 2006).  

To date approximately 150 genes are documented as direct p53 target genes. 

The goal of this dissertation is to identify novel p53 family transcriptional target 

genes and mechanistically characterize their functions in biologically-relevant 

processes downstream of the p53 family signaling axis. 

In Chapter III of this dissertation, I describe the use of statistical and 

bioinformatic tools to perform genomic analyses and identify a subset of novel 

p53 transcriptional targets.  Further, I describe current and future plans to 

analyze these target genes, in a high-throughput manner, and identify the 

contribution of each to p53-regulated processes such as cell cycle arrest, 

apoptosis, and autophagy, among others. 

 In Chapter IV of this dissertation, I describe the identification of ISG20L1 

as a target gene of the p53, as well as its family members p63 and p73.  Further, 

I show that ISG20L1 acts downstream of p53 as a modulator of autophagy. 

 Lastly, in Chapter V of this work I will summarize the findings and 

significance of my completed research.  I will further describe the questions that 

arise from this work and remain unanswered in the fields of p53 and autophagy.  
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CHAPTER II 
 
 

MATERIALS AND METHODS 
 
 

Cell Culture 
 

The RKO, U2OS, H460, 293FT, HCT116, and H1299 cell lines were 

obtained from  ATCC and cultured in DMEM medium with 10% fetal bovine 

serum supplement and 1% penicillin-streptomycin.  The MDA-MB-231 were 

obtained from ATCC and cultured in McCoyʼs 5A-Dulbeccoʼs modified Eagleʼs 

medium (Invitrogen).  The ATG5+/+ and ATG5-/- MEFs were a kind gift from  Dr. 

Mizushima (Tokyo Medical and Dental University)  and cultured in DMEM 

medium with 10% fetal bovine serum (Kuma et al., 2004).  The MDA-MB-231 

was also obtained from ATCC and cultured in McCoyʼs 5A medium.  The Rh30 

cell line was kindly given by Peter Houghton (St. Jude Childrenʼs Research 

Hospital) and cultured in RPMI medium with 10% fetal bovine serum.  

The ecdysone-inducible expression system (Invitrogen, Carlsbad, Ca) was 

used to generate cell lines that conditionally express p53.  A human 

hemaglutinin-tagged p53 cDNA was ligated into the pIND vector.  The resulting 

vector pIND-p53 was cotransfected with the pVgRXR vector into the human large 

cell lung carcinoma H1299, which is null for p53 family member expression.  

Stable clones were selected by limiting dilution of G418 (Mediatech) and Zeocin 

(Cayla) and the resulting cell lines were named H1299-inducible p53 (Hip53).  

The Hip53 ponasterone A-inducible p53 cell lines were cultured in DMEM 
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supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin, 600 

µg/mL G418 (Mediatech, Herndon, VA), and 400 µg/mL zeocin (Cayla, Toulouse, 

France).  All cells were grown at 37°C with 5% CO2. 

Primary human foreskin epidermal keratinocytes (NHEKs) were obtained 

from the Vanderbilt Skin Disease Research Core.  NHEKs were isolated by 

collecting human foreskins in a 1:1 mixture of Dulbeccoʼs modified eagle medium 

(DMEM) and nutrient mixture F-12 HAM (DMEM-F12) (Gibco, Gaithersburg, MD) 

supplemented with 5% fetal bovine serum (FBS) (dialyzed to remove calcium 

ions), and 50 µg/mL gentamicin (Gibco) and stored at 4°C.  Foreskins were 

washed 3 times for 15 min each time in DMEM-F12 supplemented with 

gentamycin and 1% penicillin-streptomycin.  Excess dermis was trimmed away 

and the dermal side of each foreskin was lightly scored with a sterile scalpel.  

The foreskins were placed dermis-side down on sterile filter paper and incubated 

in DMEM-F12 containing 0.25% bovine pancreas trypsin (Sigma Chemical 

Company, St. Louis, MO), 0.04% disodium ethylenediamine tetracetic acid 

dehydrate (EDTA), 50 µg/mL gentamycin, and 1% penicillin-streptomycin 

overnight at 4°C.  After trypsinization, the epidermis was separated from the 

dermis, rinsed in DMEM-F12, minced, and then incubated in EpiLife keratinocyte 

growth medium (Cascade Biologics, Portland, OR) supplemented with human 

keratinocyte growth supplement (HKGS) (Cascade Biologics) and 50 µg/mL 

gentamicin fro 20 minutes at 37°C.  The epidermis was triturated with a pipet, 

and any remaining trypsin was inactivated with excess media containing 5% 
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dialyzed FBS (Sigma).  Cells were centrifuged at 500 rpm for 10 min, 

resuspended in keratinocyte growth medium, and palted.  For all experiments, 

NHEKs were cultured in EpiLife keratinocyte growth medium (Cascade 

Biologics). 

Primary human mammary epithelial cells (HMECs) were purified from 

normal breast tissue obtained by the Vanderbilt- Ingram Cancer Center Human 

Tissue Acquisition and Pathology Shared Resource Core and grown in DMEM 

serum supplemented with 10% fetal bovine serum, 0.2% gentamicin, 1% 

fungizone, and 1% penicillin-streptomycin, and stored for no more than 48 h prior 

to epithelial cell preparation.  The exterior of the tissue was trimmed off with a 

sterile scalpel and weighed.  Tissue is washed three times with sterile PBS and 

0.2% gentamicin, 1% fungizone, and 1% penicillin-streptomycin and then minced 

with sterile scissors and placed in a sterile 500 mL flask.  For every 10 g of 

tissue, 35 mL of Digestion Media were added.  The Digestion Media is composed 

of Human Mammary Fibroblast Medium supplemented with 1 mg/Ml of 

collagenase (Sigma) and 0.2 mg/mL hyaluronidase (Sigma).  The tissue was 

incubated with shaking at 37°C for 12 h.  The cell mixture was transferred to 

sterile 50 mL conical tubes, spun at 1000 rpm for 10 min, resuspended in Human 

Mammary Fibroblast Medium, and plated.  The plated cell mixture was placed at 

37°C with 5% CO2 in a humidified incubator for 2 h, allowing the fibroblasts to 

attach to the tissue culture dish.  The media containing non-adherent cells was 

collected and spun at 1000 rpm for 10 min.  The cell pellet was resuspended and 
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cultured in growth media.  The HMEC growth media is composed of DMEM/F12 

medium 1:1 supplemented with 1.0 µg/mL insulin (Humulin R, Eli Lilly and Co.), 

1.0 µg/mL hydrocortisone (Sigma), 10  µg/mL ascorbic acid (Sigma), 12.5 ng/mL 

human recombinant EGF (Gibco), 10 µg/mL apotransferrin (Sigma), 0.1 mM 

phosphoethanolamine (Sigma), 2.0 nM beta-estradiol (Sigma), 10 nM 3,3ʼ5-

triiodo-L-thyronine sodium salt (Sigma), 15 nM sodium selenite (Sigma), 2.0 mM 

L-glutamine, 1% penicillin-streptomycin, 1 ng/mL cholera enterotoxin (ICN 

Biomedicals, Inc.), 1% fetal bovine serum, and 35 µg/mL bovine pituitary extract 

(Gibco).  Experiments and protocols involving HMECs were approved and 

considered to meet the criteria for Exempt Review by an Institutional Review 

Board Health Sciences Committee at Vanderbilt University. 

 

Cell Treatment 

 The following chemotherapeutics were used in treatment of cell lines 

mentioned above as described in results 8 Gy 137Cs ionizing radiation, 0.13 mM 

5-FU (APP Pharmaceuticals), 20 µM etoposide (Bedford Laboratories), 5 µg/mL 

cisplatin (APP Pharmaceuticals), 5 nM paclitaxel (Sigma), 40 nM rapamycin 

(Calbiochem).  Lysosomal inhibitors were used at final concentration of 10 µg/ 

mL of E64d (Calbiochem 330005) and pepstatin A (MP Biomedical 195368).   

The Hip53 cells were treated with 10 µM ponasterone A. 
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Cell Transfection and Small Interfering RNA 

The following targeting sense strand sequences were used for siRNA: 

Dharmacon siControl (Non-Targeting siRNA #1) UAGCGACUAAACACUCAA; 

Dharmacon siISG20L1-1 CAGCAAGGUUCACGGAUAUUU; siISG20L1-2, 

AUACUAAGCAAGCGAGGGAUU; siISG20L-3, 

CUCAAUUGGAAACGUGAAAUU.  Dharmacon siRNA ISG20L1 pools consisted 

of the above targeting vectors plus siISG20L1-4 CAGCAGGGCCACUCGUCUA.  

Dharmacon siRNAs were reverse transfected into H460, U2OS, and RKO cells 

(4.5 x 105) with Lipofectamine2000 (Invitrogen) according to the manufacturerʼs 

protocol.   

To knockdown p53 in NHEK cells, a 19-bp short hairpin RNA, 

corresponding to nucleotides 611 to 629 of p53 RNA (GenBank NM000546), was 

annealed and cloned into the self-inactivating lentiviral vector (H1-LV) that 

contains a GFP reporter gene under control of human ubiquitin C promoter for 

monitoring infection efficiency.  A scrambled oligonucleotide was designed as a 

negative control and also cloned in the H1-LV vector.  These lentiviral vectors 

were transfected using CaPO4 methods into 293FT cells.  After 48 h viral medium 

was harvested and with the addition of 8 µg/mL polybrene used to infect NHEK 

cells. 

293FT cells were transfected using Fugene 6 (Roche) to make pSico 

lentivirus.  To knockdown p73 in MDA-MB-231 and Rh30, cells were infected with 

the pSico lentivirus system that expresses shRNA targeting all isoforms of p73. 
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 Forty-eight h later, cells were treated with rapamycin (40 nM) and RNA 

harvested 24 h later.  The shRNA targeting p73 sequence used in the pSico 

lentivirus is 5ʼ-TCAAGGAGGAGTTCACGGA-3ʼ. 

293FT cells were transfected using Lipofectamine2000 with either pCEP4 

empty control or cDNAs encoding p53, TAp63γ, TAp73β, or ΔNp63α and 

harvested 24 h later for RT-PCR or Western analysis. 

Clonogenic Survival Assays were performed in HCT116, RKO, H1299 

cells, as well as ATG5+/+ and ATG5-/- MEFs transformed with SV40 large T 

antigen obtained from Dr. Mizushima (Kuma et al., 2004).  For all cell lines, 

Lipofectamine2000 was used to transfect either pCEP4 empty vector control or 

ISG20L1 in 60 mm dishes.  Twenty-four h after transfection, cells were selected 

for 10 days under the appropriate hygromycin B concentration determined per 

cell line.  Colonies were Wright stained and analyzed using the Biorad Quantity 

One software. 

 

Protein Lysate Preparation 

 Cells were washed with ice-cold PBS and harvested in lysis buffer (50 mM 

Tris-HCL [pH 7.4], 100 mM NaCl, 0.5% Nonidet P-40, 4 mM EDTA, 1 mM 

dithiothreitol) supplemented with 50 mM NaF, 0.2 mM Na Vanadate, and the 

protease inhibitors antipain (10 µg/mL) (Sigma), and 4-(2-aminoethyl)-

benzenesulfonylfluoride (200 µg/mL) (Calbiochem, San Diego, CA).  Cells were 

incubated on ice for 1 h, and the protein supernatant was clarified by 
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centrifugation at 13,000 g for 15 min at 4°C.  Protein concentration was 

determined by the Bio-Rad Protein Quantification Kit (Bio-Rad Laboratories, 

Hercules, CA). 

 

Western Analysis and Antibodies 

Protein lysates were boiled in 1x Laemmli sample buffer, separated by 

SDS-Page, and transferred them to Immobilon-P membranes (Millipore, Billerica, 

MA) for Western analysis.    Membranes were blocked with 5% non-fat dry milk in 

TTBS (100 mM Tris-HCL [pH 7.5], 150 mM NaCl, 0.1% Tween-20) and then 

incubated in the antibodies mentioned below prepared in 1% non-fat dry milk.  

Fourteen percent SDS-polyacrylamide gels were used for analysis of LC3 using 

anti-MAP1LC3-II (Abgent AP1802a).  Additional antibodies used for protein 

detection: anti-p53 (Santa Cruz Biotechnology, PAb1801), anti- β−Actin (Sigma-

Aldrich, A5441- 0.2 mL), anti-PARP (Cell Signaling, #9542), anti- Caspase-3 

(Cell Signaling, #9662), anti-p73 (Bethyl A300), p63 (4A4) (Santa Cruz, sc-8431), 

and anti-ISG20L1 (Bethyl Laboratories, rabbit affinity purified antibody).  A 

peptide for ISG20L1 antibody production was designed at the C-terminus of 

ISG20L1, outside of the functional exonuclease domain found from amino acids 

111-275, with the intent to increase antigenicity and accessibility of the antibody 

while decreasing possible cross-reactivity.  The peptide product sequence 

“HGSRGGAREAQDRRN” targets amino acids 311-325 of ISG20L1 and these 15 

amino acids are unique to the ISG20L1 sequence.   
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RNA Isolation and Real-Time Analysis 

Total RNA was purified, reverse transcribed and quantitative real-time 

PCR was performed by the following:  RNA isolation was done using the Aurum 

Total RNA Mini kit (Bio-Rad), and reverse transcription of 500 ng of mRNA was 

performed using the TaqMan Reverse Trasncription Reagents kit (Applied 

Biosystems, Carlsbad, Ca) to generate cDNA.  The cDNA samples were diluted 

1:4 and 2 µl were used for qRT-PCR.  Reactions were performed using the iQ 

SYPBR-Green Supermix (Bio-Rad).  All primer sequences were obtained using 

the Primer3 resource at (http://frodo.wi.mit.edu/primer3/) (Rozen and Skaletsky, 

2000).  All primer sets were run under the following cycling conditions: 95°C for 3 

minutes followed by 40 cycles of: 95°C for 10 sec and annealing at 60°C for 45 

sec, with data acquisition during each cycle on an iCycler Thermal Cycler (Bio-

Rad).  Melting curve analysis following PCR cycling was used to determine purity 

and quality of PCR product. 

 

 RNA isolation and microarray experiments 

 The Hip53 cell model was used with treatment of ponasterone A to induce 

p53 activity for 24 h and the control vector alone cell line was also used.  

Experiment was performed in duplicate.  RNA was isolated using the Aurum 

Total RNA Mini Kit (Bio-Rad) without addition of β-mercaptoethanol and 

submitted to the VMSR for quality control.  The RNA was processed and 

microarray was hybridized by the VMSR.  Microarray data analyses was 
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performed using the ArrayAssist software platform (Stratagene).  A list of probes 

was created with fold-change in gene expression for p53 induced samples versus 

pVgRXR control. 

 

Immunofluorescence, Immunohistochemistry, and Electron Microscopy 

For immunofluorescence analysis, cells were grown on glass coverslips 

and fixed in a 4% paraformaldehyde solution for 10 min at room temperature.  

After rinsing with PBS, the cells were permeabilized with 0.5% Triton X-100 for 

10 mins.  Following another rinse with PBS, cells were blocked for 15 min at 

room temperature with 5% BSA-PBS solution.  The ISG20L1 (Bethyl) and FLAG 

antibodies (Sigma, F3165 anti-FLAG M2) were diluted in 1% BSA-PBS and 

incubated on cells at 37°C with 5% CO2 for 1 h.  The coverslips were washed 3x 

with PBS and placed in 2° rabbit anti- Alexa Flour 546 and mouse anti- Alexa 

Flour 488, respectively for 1 h at room temperature, in the dark.  The cells were 

washed 3x with PBS and counterstained with DAPI.  All images were obtained 

using 1000x magnification on a Zeiss Axioplan microscope equipped with a Zeiss 

camera and software. 

Direct immunofluorescence was performed on U2OS cells stably 

expressing mRFP-GFP-LC3.  The mRFP-GFP-LC3 expression vector was kindly 

provided by Dr. Yoshimori (Osaka University) (Kimura et al., 2007) and Dr. 

Mizushima (Tokyo Medical and Dental University).  U2OS stably expressing the 

tagged LC3 protein were generated by transfecting the cells with the mRFP-GFP-
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LC3 expression vector using FuGENE 6 (Roche, Indianapolis, IN) and selecting 

in geneticin (Cellgro, Manassas, VA).  Engineered U2OS cells were then 

transfected with either pCEP4 control or ISG20L1 expression plasmids and 

treated for 24 h with 5-FU.  The cells were fixed and analyzed as above using a 

Zeiss Axioplan.  Fifty cells were counted, without knowledge of the plasmids 

expressed, and RFP-only foci are reported as a percentage of total foci.  

For immunohistochemistry analysis, cells were grown on glass coverslips. 

 The cells were fixed, and permeabilized as indicated above for IF analysis.  

Washes were done in 1x TBS/0.1% Tween- 20 (1x TBST), and cells were 

blocked overnight rocking at 4°C in 5% normal goat serum diluted in TBST.  The 

coverslips were stained specifically for the cleaved LC3 using the Abgent LC3 

specific 1° antibody (Abgent AP1806a) for 30 mins at room temperature.  The 

coverslips were then washed 3 times in TBST.  The secondary used was the 

Dako Cytomation LSAb2 system HRP kit (K0673) according to manufacturerʼs 

protocol.  Cells were analyzed for LC3 staining and counted at 200x 

magnification. 

 U2OS cells were reverse transfected using Lipofectamine2000 with 

Dharmacon Nonsilencing control or siRNA targeting ISG20L1.  Three days after 

reverse transfection, cells were treated or not for 24 h with 5-FU to induce 

autophagy.  Cells were harvested, washed with PBS, and exposed to 2% 

glutaraldehyde for fixation.  Sample were rinsed in buffer, postfixed in 1% OsO4 

for 1 h, dehydrated through an ethanol series and transferred into Epon resin.  
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Ultrathin sections (60–70 nm, silver-gray) were obtained using a Reichert Ultracut 

E microtome with a diamond knife, transferred to formvar-coated grids, and 

examined on a Phillips CM-10 transmission electron microscope (FEI, Hillsboro, 

OR), operating at 80 kV, and images were captured with an AMT 2 mega pixel 

camera (Advanced Microscopy Techniques, Danvers, MA).   

Two replicates were performed and each time 25 micrographs were 

counted blindly for each control and ISG20L1 knockdown.  Additionally, cells 

were photographed in an un-biased fashion according to their placement on the 

grid.  Images were quantified using ImageJ software and taking into account 

various acceptable methods (Klionsky et al., 2008; Swanlund et al.).  We set to 

scale the pixel ratio to microns and used measurement analysis to quantify the 

area occupied by autophagosome and autolysosomes as compared to the total 

cytoplasmic area excluding the nucleus.  Autophagosomes were defined as 

double or multiple membrane structures surrounding cytoplasmic material, and 

autolysosomes were defined as single membrane structures surrounding 

cytoplasmic constituents and various levels of degradation (Mizushima et al., 

2001).   

 

Flow Cytometric Analyses 

Flow cytometry was performed by incubating 1 x 106 cells in 20 µg/mL 

propridium iodide (Sigma-Aldrich) and measuring DNA content for 15,000 events 

using a FACSCaliber instrument (Becton- Dickinson) (Stewart and Pietenpol, 
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1999).  Flow cytometry data were plotted using CellQuest software (Becton, 

Dickinson & Co).  Annexin V-FITC staining detected by flow cytometry was 

performed using the Annexin V-FITC apoptosis detection kit (BD Pharmingen, 

556547). 

 

Chromatin Immunoprecipitation Analyses 

 HMECs were treated or not with 10 ug/mL cisplatin for 24 h and 

chromatin was prepared(Szak et al., 2001).  Growth media was aspirated from 

cells and replaced with 1.6% formaldehyde (EM Science, Gibbstown, NJ) 

solution in PBS.  Cells were incubated in formaldehyde for 10 min at room 

temperature, followed by inhibition of the crosslinking reaction by the addition of 

glycine for a final concentration of 0.125 M.  After 2 min incubation, cells were 

washed twice with PBS.  Extracts were prepared by scraping cells in 1 mL of 

lyses buffer as above.  Sonication of the cell lysates was performed to yield 

chromatin fragments of approximately 500-1000 bp, and debris was pelleted by 

centrifugation for 10 min at 13,000 x g, and 1- 1.5 mg of total protein extracts was 

pre-cleared with 10 µg of isotype matched antibody (Pierce, Rockford, IL) bound 

to PAS for 1 h with rocking at 4°C.  The extracts were immunoprecipitated with 1 

µg of the respective antibodies by rocking overnight at 4°C.  Immunocomplexes 

were washed twice with buffer, four times with wash buffer (100 mM Tris [pH 8.5], 

500 mM LiCl, 1% Noniodet P-40, 1% deoxycholic acid), followed by two more 

washes in lyses buffer.  The protein was degraded in digestion buffer (120 µg/mL 
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Proteinase K, 10 mM Tris [pH 7.5], 5 mM EDTA, and 0.5% SDS) at 56°C 

overnight, and then incubated at 65°C for 30 min.  The DNA was resuspended in 

40 µ water, and 2 µl of each sample were used for PCR amplification. 

 PCR amplification was performed using primers ISG20L1 forward 

CAGCCTGTCCAACATGGC and ISG20L1 reverse 

GCTGAGGCCATAACTTGGAAA, GAPDH forward  

CACCAGCCATCCTGTCCTCC and GAPDH reverse 

GTTCCTTCCCAGCCCCCACT, and p21 forward              

GCTTGGGCAGCAGGCTG and p21 reverse AGCCCTGTCGCAAGGATC as 

previously described (Schavolt and Pietenpol, 2007).  PCR was performed using 

one cycle of 5 min at 95°C; followed by different number of cycles as indicated 

below of: 95° for 30 s, annealing temperature as indicated below for 45 s, and 30 

sec of 72°C; to be finished with 10 min at 72°C.  AEN 40 Cycles Anneal 54°C, 

GAPDH 35 Cycles Anneal 62°C, and p21 35 Cycles Anneal 57°C.  Amplified 

DNA was resolved on a 6% polyacrylamide gel and stained after with ethidium 

bromide. 

To attain sufficient levels of p73 for ChIP analysis, ~1.7 x 107 rapidly 

growing Rh30 cells were treated for 24 h using vehicle control or 40 nM 

rapamycin.  The samples were prepared and Genpathway analysis performed  

using the p73 antibody (Bethyl Laboratories, A300) for immunoprecipitation. 
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DNA Laddering 

 Cells were counted and 2 x 106 cells were removed and washed in PBS 

for DNA laddering analysis.  Procedure was followed according to the Roche 

Apoptotic DNA-Ladder Kit (11 835 246 001).  In brief, cells were lysed in an equal 

volume of proprietary lysis buffer, incubated for 10 min at room temperature, 100 

µl of isopropanol was added and vortexed prior to loading the sample onto filter 

tubes.  Filter tubes were spun 2x 1 min at 8000 rpm and washed after each spin 

with 500 µl washing buffer.  After discarding flow through, filter tube samples 

were placed in collection tubes and 100 µl elution buffer was added and then 

spun for 1 min at 8000 rpm.  DNA obtained from samples was run on a 1% 

agarose gel next to 1 kb DNA ladder and positive control DNA (U937 cells 

treated with camptothecin) supplied from Roche. 
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CHAPTER III 
 
 
 

IDENTIFICATION OF NOVEL P53 FAMILY TRANSCRIPTIONAL TARGETS 
 
 
 

Introduction 
 

 The tumor suppressor p53 functions as a sequence-specific DNA binding 

protein that regulates the expression of genes involved in cell-cycle arrest, 

apoptosis, DNA repair, senescence, cell growth, and anti-angiogenesis 

(Pietenpol et al., 1994).  Stress signals including DNA damage, oncogenic 

activation, metabolic changes, and hypoxia activate p53  (Debbas and White, 

1993; Graeber et al., 1994; Imamura et al., 2001; Kastan et al., 1991; Reisman et 

al., 1993; Zhan et al., 1993).  As a transcription factor, p53 binds a degenerate 

DNA sequence consisting of 2- 10 bp decamers with palindromic sequences 5ʼ-

PuPuPuC(A/T)(T/A)GPyPyPy-3ʼ separated by a 0- 13 bp spacer (pu= purine and 

py= pyrimidine) (el-Deiry et al., 1992).  In addition to variations within the 

consensus binding sequence, p53 binding at specific target genes is affected by 

p53 protein levels and post-translational modifications; co-factors; and 

accessibility of the binding site as determined by chromatin structure.  Many of 

the p53 transcriptional targets that are well characterized and often used as 

positive controls were discovered in a one-gene-at-a-time approach, including 

p21 and MDM2 (el-Deiry et al., 1993; Honda et al., 1997).  The first attempt to 

estimate p53 binding sites across the genome was based on data derived from a 
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yeast-based one-hybrid (Tokino et al., 1994).  Based on the fifty-seven p53 sites 

identified, results were extrapolated to suggest that there were between 200 to 

300 total p53 binding sites in the genome (Tokino et al., 1994).  Several years 

later, the advent of oligonucleotide arrays allowed identification of putatively all 

p53 binding sites on chromosomes 21 and 22.  From this data, the authors 

suggested that 1,600 binding sites existed in the entire genome (Cawley et al., 

2004).   For comparison, c-Myc was estimated to have 25,000 binding sites from 

the same study (Cawley et al., 2004).  To date, only 150 of the approximate 

1,600 putative transcriptional targets (assuming each binding site corresponds to 

regulation of one gene or one non-coding RNA ʻgeneʼ) have been functionally 

characterized downstream of p53 signaling. 

 The p53 family members, p63 and p73, share an approximately 60% 

sequence identity with p53 in the DNA binding domain (Yang et al., 2006).  Work 

performed in our laboratory and others have suggested that each family member 

has unique binding specificity.  For example, p63 selectively binds A/G at position 

5 and C/T at position 16 of the 20 bp response element (Perez et al., 

2007)(Rosenbluth et al, not yet published).   The family members have both 

unique and overlapping functions through their control of  transcriptional targets.  

p63 and p73 can bind and regulate a number of well-characterized p53 

transcriptional targets including p21, GADD45, PERP, and MDM2 (Barbieri and 

Pietenpol, 2005; Zhu et al., 1998).  Similar to p53, its family members are known 

to be modulated after exposure of cells to DNA-damage.  For example, cisplatin-
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elevates p73 activity (Agami et al., 1999; Gong et al., 1999; Yuan et al., 1999) 

and UV radiation, paclitaxel, actinomycin D, bleomycin, and etoposide induce 

endogenous TAp63 activity (Gressner et al., 2005; Katoh et al., 2000; Okada et 

al., 2002).   

In addition to the large number of possible overlapping targets amongst 

the p53 family members, each has target genes it uniquely regulates as 

demonstrated best in the distinct phenotypes of the respective p53 family knock-

out mice.  Unlike the p53-null mouse model, that develops normally, for the most 

part, but has an increased incidence of tumorigenesis, the p63- and p73-null 

mouse models show defects in epithelial and neuronal development, respectively 

(Donehower et al., 1992; Yang et al., 1999; Yang et al., 2000)  These mouse 

models suggest that p63 and p73 play unique roles in development and 

differentiation.  p63 and p73 transcriptionally regulate target genes not regulated 

by p53, such as Wnt4 that is necessary for the development of several organs 

including ovarian follicles (Osada et al., 2005).  Recently, microarray gene 

expression analysis was performed on RNA harvested from p53-, p63-, or p73- 

null MEFs after DNA damage.  From this dataset each p53 family member 

uniquely regulated approximately 100 genes (Lin et al., 2009).  Data from these 

studies also suggest that p63 and p73 play a role in tumor suppression as they 

regulate a number of target genes involved in the DNA damage response and 

DNA repair.  
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 Utilizing genomic technology our laboratory and others have identified 

numerous candidate target genes, both unique and overlapping for p53, p63, and 

p73-dependent regulation.  We used a number of criteria to select p53 target 

genes to further characterize including: 1) identification of a p53 binding site 

within 20 kB of a select gene as determined by ChIP analyses, 2) differential 

regulation of a given gene by p53 as assayed by gene expression microarray, 

and 3) rank of a putative transcriptional target as determined by mathematical 

algorithms.  To date, I have identified approximately 150 genes as putative p53 

targets using the criteria listed above.  My dissertation research was focused on 

functionally characterizing a select number of these genes and linking these 

genes to biologically relevant pathways downstream of p53 signaling. 

 

Results 

In order to increase the probability of identifying genes directly regulated 

by p53 and functionally significant in tumor suppression, I applied a panel of 

selection criteria to a number of datasets generated in our laboratory and 

available in silico.  These selection criteria included: presence of a p53 binding 

site identified by ChIP analysis within 20 kB of a select gene and differential 

regulation of a gene by p53 as determined by gene expression microarray 

analyses.  By using datasets generated from several different cell lines and 

conditions, we sought to eliminate cell type- or DNA damage- specific bias.  After 

creation of a subset of putative target genes that are bound and regulated by 
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p53, we further analyzed the placement of these genes in the ranking predicted 

by the mathematical modeling algorithms applied to p53 gene expression 

analysis.  Lastly, we compared the putative p53 targets with previously identified 

p63 and p73 transcriptional targets to determine unique and coordinate 

regulation (Figure 3). 

 

ChIP-Based Datasets 

To compile a comprehensive set of genomic p53 binding sites, we used 

ChIP-based datasets from several sources.  The first was from our laboratory.  

Dr. Jamie Hearnes, a previous graduate student in the Pietenpol laboratory, 

identified p53-regulated target genes by combining ChIP with a yeast one-hybrid 

selection system (Hearnes et al., 2005).  Libraries were generated from primary 

human mammary epithelial cells (HMECs) and an immortal non-transformed 

breast cell line MCF-10A, both of which had been treated with adriamycin, a DNA 

intercalating agent that induced cell cycle arrest under these conditions (Hearnes 

et al., 2005).  From these cells p53-bound fragments were purified and cloned 

into a yeast expression system upstream of the HIS3 gene and transformed into 

an auxotrophic histidine-deficient yeast-strain with a galactose-inducible 

expression vector containing the p53 gene.  This allowed for selection of yeast 

transformants, the growth of which was dependent on p53-mediated transcription 

from select human genomic fragments.  The ChIP-yeast screen identified  
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genomic binding sites upstream of previously known p53 target genes including 

MDM2, p21, and DDB2.  An additional 100 novel genomic binding sites were 

identified upstream of putative p53 target genes such as RPS27L (ribosomal 

protein 27-like) that was recently validated as part of the p53-dependent 

apoptotic pathway (He and Sun, 2007) as well as FLJ12484/ ISG20L1 that will be 

further discussed in Chapter IV of this dissertation.   

In 2006, the first genome-wide ChIP analysis was performed using p53 

binding sites by combining ChIP with paired-end ditag sequencing (ChIP-PET) 

(Wei et al., 2006).  The novelty of this technique not only allowed for genome-

wide discovery of transcription factor binding sites but also capitalized on the 

efficiency of sequencing short tags (PET) to reduce background DNA without 

having to undergo further molecular validation.  The DNA fragments that 

generated this dataset were from the colon cancer cell line HCT116 after 

treatment with 5-fluorouracail (5-FU), an antimetabolite.  There were 1,766 PET-

clusters defining genomic loci that represent potential sites of p53 interaction.  

Further analysis established a PET-cluster curve to estimate the level of 

nonspecific versus specific PET clustering events.  Those regions containing 

three or more PETs to a cluster were identified as highly specific for p53 ChIP 

enrichment.   A total of 323 genomic loci had PET-3 clusters and were identified 

as true p53 binding sites.  The ChIP-PET analysis identified binding sites 

upstream of 61% of the previously known p53 target genes (Wei et al., 2006).  

The p53 target gene p21 was found to have a high number of PETs (13) 
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clustered at the known p53 response element.  Of the approximately 100 putative 

target genes associated with the 323 genomic loci, gene ontology analysis 

suggested many novel functions of p53 signaling through these target genes 

including cell adhesion and mobility, ion channel activity, and metabolism. 

In 2008, the first p53 sequential ChIP-on-chip dataset was made available. 

This dataset was generated on a genomic ChIP with probe spacing of 100 bp.  

The DNA used in the hybridization was generated from U2OS cells growth 

arrested after treatment with actinomycin D.  The study identified 1,546 genomic 

binding sites occupied by p53 with a 4% false positive rate (Smeenk et al., 2008).  

In comparison to the previous ChIP-PET dataset discussed, this ChIP-on-chip 

genome-wide study has a similar 69% overlap of p53 genomic binding sites.  The 

ChIP-on-chip screen contained 50% of the same genomic sequences identified 

by the ChIP-yeast screen described above.   

 When comparing these three ChIP-derived datasets, only eight genes 

were common to all including p21 and DDB2 (Table 1).  All three of the ChIP 

datasets were performed in unique cells lines after different types of DNA-

damage, and the methods used to identify p53 sites varied as described above.  

These differences amongst the ChIP datasets explain why only a small subset of 

similar p53 genes was found in common.  Additionally, p53 selectively binds 

regions of the genome dependent on the genotoxic stress encountered that may 

also explain why so few genes were similar to all ChIP datasets.  Overlaying of 

the two genome-wide ChIPs created a shared list of 103 genes (Table 2). 
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Gene Expression Datasets 

To create an extensive collection of gene expression datasets, we used 

microarray datasets from several sources.  The first dataset analyzed was from 

work performed in our laboratory by a previous graduate student, Dr. Kristy 

Schavolt.  By ectopically expressing p53 using adenovirus in normal human 

epidermal keratinocytes as compared to GFP vector control adenovirus, she 

generated a list of approximately 2,000 genes upregulated at least 1.5-fold 

(Schavolt and Pietenpol, 2007).   

Additionally, I analyzed differential gene expression in a p53-inducible cell 

model system that was generated in the laboratory by a previous graduate 

student, Dr. Patty Flatt (Flatt et al., 2000).  The inducible system was generated 

by transfection of pIND and pVgRXR vectors into the H1299 lung carcinoma cell 

line, which lacks detectable, endogenous expression of all p53 family members.  

The addition of ponasterone A caused induction of ectopic p53 and G1 and G2 

cell cycle arrest (Flatt et al., 2000).   

We treated both the parental (p53-null) and HIp53 cell lines with 

ponasterone A for 24 h to induce p53.  The experiment was performed in 

duplicate.  At 24 h, cells were harvested and total RNA was isolated using the 

BioRad Aurum kit.  Samples were submitted to the Vanderbilt Microarray core for 

quality control testing and gene expression analysis using the Affymetrix 

Expression (3ʼ) platform.  The microarray dataset generated was robust given 

that the expression of a number of previously identified target genes (CDKN1A, 
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MDM2, BCLXL, and RPS27L) was increased after p53 induction as compared to 

the control p53-null parental cell line.  Overall, the expression of 624 genes was 

increased 2-fold or greater in a p53-dependent manner after 24 h of ponasterone 

A treatment (Table 3).   

 

Gene ontology analysis and qRT-PCR confirmation of p53-dependent regulation 
of putative target genes  
 

The ChIP and gene expression microarray datasets described above were 

overlaid to create a list of potential p53 transcriptional targets.  To investigate 

functional groupings of these genes based on protein domains and previous 

literature we used Ingenuity Software to perform gene ontology analyses.  As 

would be expected, functional groupings of cell cycle, DNA repair, and cell death 

were found as well as functional categories not well linked to p53 signaling 

including cell-to-cell signaling, cell movement, and cellular metabolism (Figure 4). 

Quantitative real-time PCR analysis was performed in paired sets of RKO 

or HCT116 colorectal cancer cell lines to determine p53-dependent regulation of 

40 putative transcriptional targets identified using the p53 selection criteria.  The 

RKO set includes RKOs expressing a CMV-neo empty vector or RKOs 

expressing the human papilloma virus E6 that binds and degrades p53 with the 

cellular E6a protein (Kessis et al., 1993).  These cells were treated with Nutlin (10 

µM) for 24 h.  This drug disrupts p53:MDM2 binding and causes stabilization of 

p53 (Vassilev et al., 2004).  The set of HCT116 cells includes HCT116 p53 (+/+) 

and (-/-), the latter generated by somatic cell recombination (Bunz et al., 1998).   
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These cells were exposed to ionizing radiation (8 Gy) and RNA was harvested 24 

h later.  We found that 82.5% of the putative transcriptional targets identified 

using our genomic analyses were in fact regulated in a p53-dependent manner 

(Figure 5). 

  

Mathematical Models 

A limiting factor of using microarray based data to analyze target gene 

expression is that the datasets often only include one time point.  Clustering 

methods have attempted to resolve this issue by correlating similar gene 

expression profiles to suggest that a group of genes with similar transcript 

profiles over a timecourse are likely regulated by the same transcription factor. 

The dynamic mathematical model incorporates RNA production and degradation 

terms and prior biological knowledge, using a set of previously established target 

genes, and determines the activity of that transcription factor from microarray 

data (Barenco et al., 2006).  This algorithm ultimately results in a tool that allows 

for the calculation of confidence intervals for each potential transcriptional target 

(Barenco et al., 2006).   

To apply the dynamic mathematical algorithm, the MOLT4 human 

leukemia cell line was irradiated to activate endogenous p53 activity for gene 

expression analysis (Barenco et al., 2006).  A training set consisting of five well-

known target genes including DDB2, p21, Sesn1, BIK, and TNFRSF10b was 

used to derive the p53 activity profile that drives the dynamic  
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mathematical algorithm.  Once applied to gene expression microarray data, a list 

of the top 50 genes transcriptionally regulated by p53 was published and ranked 

according to a sensitivity score.  Additionally, to verify p53-dependent regulation 

gene expression microarray was performed on RNA harvested from MOLT4 cells 

in which p53 was knocked down by siRNA targeting.  Of the p53 target genes 

predicted by the mathematical modeling algorithm, 90% were validated as being 

regulated in a p53-dependent manner based on their sensitivity score to siRNA 

targeting p53.  Twenty-five of the top 50 putative p53 targets were unpublished at 

the time the algorithm was publicly released.  However, since the generation of 

this ranked list in 2006, eight of the remaining 25 have since been published as 

verified p53 targets validating this dynamic mathematical modeling. 

 

p53 Family Overlay 

Work performed by our group shows that despite differences in cell lines 

and methodologies, comparison of p53 family ChIP and gene expression 

microarray datasets showed considerable overlap of putative transcriptional 

targets amongst the family members (Wei et al., 2006; Yang et al., 2006, 

Rosenbluth et al, personal communication).  To begin a p53 family member 

comparison a comprehensive dataset for each p53 family member was selected.  

The p53 genome-wide, ChIP-PET screen described above (Wei et al., 2006),  a 

p63 genome-wide, ChIP-seq (Yang et al., 2006) and a whole genome p73 ChIP 

dataset  (Rosenbluth, personal communication) were chosen.  Each dataset was 
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generated in a different cell line under different conditions.  For p53, ChIP-PET 

methods used in HCT116 cells after treatment with 5-FU identified 1766 sites 

(Wei et al., 2006).  The p63 dataset was generated from a ME180 cervical 

carcinoma cell line with or without actinomycin D treatment  and 5800 binding 

sites were found (Yang et al., 2006).  The p73 dataset was generated in the 

Rh30 cell line after treatment with rapamycin and found 7678 binding sites in 

control compared to 8165 binding sites of p73 after treatment (Rosenbluth, 

personal communication). 

 We further advanced the “p53-focused” collection of transcriptional 

targets with additional cross-comparisons using p63 and p73 ChIP and gene 

expression microarray analyses performed in our laboratory.  Unlike the previous 

overlays where only ChIP results were described, we combined ChIP and gene 

expression analysis to identify putative targets that were bound and regulated by 

the family members.  To further analyze with our set of putative p53 

transcriptional targets, we used p73 and p63 gene expression analyses that were 

performed in our laboratory for comparison.  Both ChIP and gene expression 

microarray analyses were performed with DNA and RNA, respectively, that was 

generated from primary cultures of human mammary (HMEC), skin (NHEK), and 

prostate epithelial cells (HPrEC) expressing nonsilencing or p63 siRNA.  A similar 

approach was taken to identify novel targets of p73 by combining ChIP and gene 

expression microarray in H1299 ectopically expressing TAp73β as well as in the 

Rh30 cells where endogenous p73 activity was evaluated in cells grown in the 
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presence or absence of the mTOR inhibitor, rapamycin (Rosenbluth et al, 

personal communication).   

A list of approximately 212 genes resulted from overlapping the three p53 

family ChIP datasets described above with microarray gene expression datasets 

generated from p53-inducible model systems.  Approximately 23% (48 genes) of 

these genes at the intersection of the ChIP and gene expression datasets have 

been validated and published previously as direct p53 transcriptional targets.  

Further, after overlaying these genes with the p63 and p73 genomic ChIP and 

gene expression datasets described above, we found that six genes were bound 

by all three family members; 17 genes were bound by p53 and p63; and an even 

greater number of 40 genes were bound by p53 and p73 (Figure 6).  Of the 149 

genes uniquely regulated by p53, 31 have been previously published and linked 

to p53 signaling.   

 

Discussion 

 Using a combination of gene expression microarray analyses, ChIP, and 

mathematical modeling methods we identified putative p53 transcriptional targets 

for further functional characterization in the p53 signaling pathway.  Our subset of 

p53 putative transcriptional targets has been further validated since its 

compilation in 2006.  Our group and others have published many genes of 

functional biological significance from our list of p53 targets including RPS27L,  
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GLS2, PRKAB1, LIF, TOB1, PTP4A1/ PRL-1, COMMD1, ANKRD11, LASP1, 

STX6, and ISG20L1. 

Endothelin-2 (EDN2) is one of only five putative p53 target genes, along 

with p21, that was identified in common with the ChIP-yeast, ChIP-PET, and 

inducible-p53 gene expression microarray datasets.  Endothelin-1 and -3 are 

characterized as putative vasoactive peptides (Yanagisawa et al., 1988) and 

chemoattractants during tumor angiogenesis and migration (Stiles et al., 1997) as 

well as melanocyte development and melanoma (Eberle et al., 1999).  Previous 

work in our laboratory identified a strong p53-consensus binding site in EDN2 

located within 2 kb of exon 1 and EDN2 was regulated in a p53-dependent 

manner (Hearnes et al., 2005).  In addition, we found that EDN2 can also be 

regulated by both p63 and p73, depending on cellular context.  A significant 

increase in EDN2 levels occurred during epidermal differentiation (Kotake-Nara 

and Saida, 2006).  In the lung cancer cell line H1299, that lacks expression of the 

p53 family members, ectopic TAp63γ expression led to an approximately 22-fold 

elevation of EDN2 as determined by qRT-PCR.  Corroborating evidence that p63 

contributes to EDN2 regulation was found in HMECs and human prostate 

epithelial cells (HPrECs) when suppression of p63, using an adenovirus targeting 

the DNA binding domain of p63, caused a 60% reduction in the expression levels 

of EDN2.   

The unnamed protein KIAA0247 was identified as a putative p53 

transcriptional target in each of the ChIP datasets mentioned above as well as 
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the p63 and p73 ChIP datasets generated in our laboratory.  KIAA0247 was 

induced greater than 2-fold in our H1299 p53 inducible microarray gene 

expression dataset and ranked as one of the top 50 putative p53 targets by the 

mathematical algorithms.  Induction of p73 expression in the Rh30 cell line  

treated or not with rapamycin, resulted in a greater than 15-fold increase in 

binding of p73 at the KIAA0247 consensus binding site (Rosenbluth et al., not yet 

published).  This gene maps to chromosome 14q24.1 and has an open reading 

frame that encodes a putative 303 amino acid protein of a predicted molecular 

weight of 35 kDa.  Functional domain analysis demonstrated the presence of one 

short consensus repeat domain (CCP/sushi/SCR region).  The consensus repeat 

domain is commonly found in complement genes, often localizing to the cell 

surface, and involved in protein-protein interactions.  In a few instances, the 

presence of this domain is necessary for apoptotic activation (e.g. IL-15R and 

Drs) (Tambe et al., 2004; Wei et al., 2001).  Interestingly, KIAA0247 was 

identified as an induced gene in a p53-temperature sensitive model (Robinson et 

al., 2003).  The authors claimed that KIAA0247 has an AVPI-like motif.  AVPI 

motifs, found in Smac/Diablo proteins, can compete for binding to the BIR3 

domains of XIAPs thereby releasing bound caspases and inducing apoptosis 

(Sun et al., 2007).  The identification of KIAA0247 in an expression dataset 

where apoptosis was induced in a p53-dependent manner is further suggestive of 

its function in cell death (Robles et al., 2001).  Though the potential role of 

KIAA0247 in disease is not yet known, this gene has been found in both lung and 
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ovarian cancer gene expression signatures as a marker of prognosis and 

metastasis, respectively (Dressman et al., 2007; Zhang et al., 2007).  It will be of 

interest to determine if KIAA0247 plays a role in cell death, and if the mechanism 

occurs as suggested by its AVPI motif, where KIAA0247 may bind XIAP thereby 

releasing caspase-9. 

The gene ISG20L1/FLJ12484/AEN was identified in the ChIP-yeast 

selection method with a p53 consensus binding site located within one kb of the 

transcriptional start site (Hearnes et al., 2005).  This same p53 consensus site 

was identified in the ChIP-PET sequencing analysis with three overlapping PETs 

indicating increased likelihood of p53 binding (Wei et al., 2006), and is the most 

highly ranked p53 consensus binding site found using the computer algorithm 

p53MH (Hoh et al., 2002).  ISG20L1 is transcriptionally upregulated across 

numerous cell types including lung, breast, hematopoietic, and colon cell lines 

after treatment with genotoxic stresses such as ionizing radiation, as well as after 

encountering the inflammatory stresses NO, H2O2, and hypoxia (Barenco et al., 

2006; Hearnes et al., 2005; Staib et al., 2005; Sun et al., 2005; Wei et al., 2006).  

The functional role of IGS20L1 downstream of the p53 family will be further 

explored in Chapter IV of this dissertation. 

The identification of p53 transcriptional targets is central to further 

understanding of the functional signaling downstream of this tumor suppressor 

gene in both normal and disease states.  We have used a number of criteria to 

create a subset of p53 putative transcriptional targets for further functional 
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characterization including presence in ChIP datasets, gene expression analyses, 

and ranking in p53 mathematical algorithms. Functional characterization of one of 

these target genes, ISG20L1, is presented in detail in Chapter IV of this 

dissertation.  
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CHAPTER IV 
 
 
 

ISG20L1 IS A P53 FAMILY TARGET GENE THAT MODULATES GENOTOXIC 
STRESS-INDUCED AUTOPHAGY 

 
 
 

Introduction 
 

p53 can regulate autophagy in both a transcriptionally-dependent and -

independent manner (Crighton et al., 2006; Feng et al., 2007).  Autophagy is a 

mechanism used by cells to maintain metabolic homeostasis in the biological 

context of starvation (Komatsu et al., 2005).  During starvation, cells form double 

membrane autophagosomes that engulf cellular contents for degradation and 

these vesicles recycle the basic metabolic components for consumption (Levine, 

2005).  Although originally thought to be primarily induced to promote cell survival 

during starvation, autophagy also occurs after various forms of genotoxic stress 

and plays a role in cell death (Green and Chipuk, 2006; Kang et al., 2007; Scott 

et al., 2007; Shimizu et al., 2004). p53 has a dual role in autophagy and the 

molecular mechanisms are only now being discerned (reviewed in (Green and 

Kroemer, 2009; Levine and Abrams, 2008)).  Basal levels of cytoplasmic p53 

repress autophagy in a transcriptionally-independent manner (Tasdemir et al., 

2008).  Depletion of p53 or pharmacological inhibition using pifithrin-α causes 

induction of autophagy (Tasdemir et al., 2008).   The transcriptional dependent 

mechanisms of nuclear p53 are more widely described in connection of p53 and 

autophagy.  Nuclear p53 stimulates autophagy through transactivation of target 
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genes such as Sestrins, TSC2, and DRAM (damage-regulated autophagy 

modulator) (reviewed in (Vousden and Ryan, 2009)).  Under conditions of 

genotoxic stress such as ionizing radiation or camptothecin treatment, p53 

upregulates the AMPK activators Sestrin1 and Sestrin2 that will ultimately induce 

autophagy through the inhibition of mTOR (Braunstein et al., 2009; Budanov and 

Karin, 2008).  Upregulated by various stress signals including DNA damage, 

DRAM is a transcriptional target of p53 that is lysosomal in location and required 

for p53-induced autophagy, although the mechanism by which DRAM regulates 

autophagy is currently unknown (Crighton et al., 2006).  

p63 and p73 are two p53 homologs that share similar structure and have 

both unique and coordinate roles during development and tumorigenesis 

(Murray-Zmijewski et al., 2006).  The signaling upstream of each p53 family 

member is dependent on cellular context and various regulatory mechanisms 

[reviewed in (Rosenbluth and Pietenpol, 2008)].  Recently, work from our 

laboratory has shown that in addition to the interplay of mTOR and p53, inhibition 

of mTOR activates p73 and results in p73-dependent modulation of genes 

involved in metabolism and autophagy (Rosenbluth and Pietenpol, 2008; 

Rosenbluth and Pietenpol, 2009).  Though p73 also transcriptionally regulates 

the p53 target gene DRAM, p73-dependent autophagy does not require DRAM 

(Crighton et al., 2007). 

As presented in Chapter III, we have identified numerous, novel candidate 

p53 target genes by overlaying ChIP and gene expression datasets (Hearnes et 
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al., 2005; Schavolt and Pietenpol, 2007).  Of interest was the discovery of 

ISG20L1, a gene that was named due to its significant similarity with ISG20L2, a 

nucleolar protein that functions in the processing of the 5.8S rRNA (Coute et al., 

2008).  To determine the role that ISG20L1 plays in p53 family signaling, we 

generated an ISG20L1-specific antibody, analyzed ISG20L1 regulation by all 

three members of the p53 family, and functionally linked ISG20L1 to genotoxic 

stress-induced autophagy. 

 

Results 

ISG20L1 Antibody Production 

 The human ISG20L1 gene is 3.1 kb and evolutionarily conserved with 

72% identity to M. musculus.  We generated a rabbit polyclonal antibody to the 

human ISG20L1 protein (UniProt Q8WTP8) using a 15 amino acid sequence 

(HGSRGGAREAQDRRN) located at the C-terminus of the protein outside of the 

exonuclease III domain; database searching confirmed that this peptide is unique 

to ISG20L1.  We performed Western analyses in conjunction with gene 

overexpression and knockdown assays, to determine that our newly developed 

antibody could specifically identify a protein of the predicted molecular weight 

(~37 kD).  For overexpression analyses, protein lysates were prepared from 

H1299 cells engineered to ectopically express FLAG-tagged human ISG20L1.  

RNA knockdown experiments were performed in H460 cells by reverse 

transfecting siRNAs directed against ISG20L1 and subsequently treating with 
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ionizing radiation to upregulate endogenous ISG20L1 protein levels (Figure 7a).  

The antibody we produced had specificity for ISG20L1, the levels of which were 

significantly reduced after siRNA knockdown or enhanced with ectopic 

expression of ISG20L1, respectively (Figure 7a).  These results are the first 

demonstration of detection and regulation of endogenous ISG20L1 protein. 

Having confirmed antibody specificity, we analyzed the cellular localization 

of ISG20L1 in H1299 cells ectopically expressing a FLAG-tagged ISG20L1.  

Immunofluorescence analyses showed nuclear localization of ectopically 

expressed ISG20L1, similar to the staining pattern seen using a FLAG antibody 

(Figure 7b).  Merging nuclear DAPI staining with ISG20L1-specific staining, 

showed ISG20L1 localizes to a region of the nucleus having decreased density 

identified as the nucleolus and higher magnification analyses confirm increased 

intensity at perinucleolar regions (Figure 7b).  Although detectable by Western, 

we were unable to identify endogenous ISG20L1 using immunofluorescence. 

 

p53 Family Regulation of ISG20L1 

To analyze p53 regulation of ISG20L1 we used primary cultures of normal 

human keratinocytes (NHEKs), a model system with intact p53 signaling (Flatt et 

al., 1998; Schavolt and Pietenpol, 2007).  NHEKs were infected with control  
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shRNA or shRNA targeting p53 and exposed for 6 h to cisplatin to elevate p53 

activity.  Western analysis showed that both p53 and ISG20L1 protein levels 

were elevated after cisplatin treatment and this increase was primarily p53-

dependent as the shRNA targeting p53 significantly decreased the cisplatin-

induced elevation in p53 and ISG20L1 protein levels (Figure 8).  We hypothesize 

that residual ISG20L1 expression was due to cisplatin-mediated elevation of 

TAp73 activity or protein as previously shown (Agami et al., 1999; Gong et al., 

1999; Lapi et al., 2006; Yuan et al., 1999).  However, p73 protein is difficult to 

detect in primary cultures of normal human keratinocytes, likely due to the low 

level of expression in normal cells (Schavolt and Pietenpol, 2007). 

Given the residual expression of ISG20L1 in p53-depleted keratinocytes 

(Figure 8) and the overlapping binding and activity of p53 family members at 

many regulatory regions in the genome, we hypothesized that ISG20L1 is also 

regulated by p63 and p73.  To test this hypothesis, we transfected 293FT cells 

with plasmids encoding the transcriptionally active isoforms of the p53 family 

(p53, TAp73β, and TAp63γ) as well as the transcriptional repressor ΔNp63α.  

These cells express low levels of TAp73, non-detectable p63, and wild-type p53 

that is stabilized and inactivated by association with E1A and large T antigen 

(see pCEP4 control lane of Figure 9b).  Twenty-four h after transfection, we 

isolated RNA and protein and analyzed ISG20L1 by qRT- PCR and Western, 

respectively.   ISG20L1 levels were increased approximately 2-fold or more by  
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p53, TAp73β, and TAp63γ while ΔNp63α expression decreased levels of 

ISG20L1 as seen at both the mRNA and protein level (Figure 9a and 9b).  

Noting the elevation of ISG20L1 after TAp73 expression, we analyzed the 

ability of endogenous TAp73 to regulate ISG20L1 using the Rh30 

rhabdomyosarcoma cell line.  Rh30 cells do not express p63 and contain mutant 

p53, thereby allowing us to investigate the endogenous regulation of ISG20L1 

solely by p73.  We treated cells with paclitaxel or cisplatin, two agents known to 

increase p73 activity (Leong et al., 2007; Oh et al., 2008), and observed an 

elevation in TAp73 protein levels that were accompanied by an increase in 

ISG20L1 expression (Figure 10a).  Elevation of ISG20L1 was TAp73-dependent 

as shRNA depletion of TAp73 eliminated ISG20L1 expression after treatment 

(Figure 10a, right panel).  To verify p73-dependent regulation was not cell-type or 

damage specific, we infected MDA-MB-231, cells that are also lacking p63 and 

mutant for p53, with a shRNA lentivirus targeting p73 and treated with rapamycin, 

an agent known to elevate p73 activity in this cell line (Rosenbluth et al., 2008).  

Rapamycin is an inhibitor of the TOR pathway that regulates cell growth and cell 

cycle progression based on nutrient-dependent signaling and thus rapamycin has 

similar effects as nutrient starvation (Peng et al., 2002).  ISG20L1 RNA levels 

were decreased ~50% by RNAi knockdown of p73 and rapamycin treatment 

resulted in a greater than 2-fold induction in ISG20L1 expression that was 

abrogated with p73 knockdown (Figure 10b).  Thus, ISG20L1 can be modulated  
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by various forms of cell stress (genotoxic and metabolic), and in the absence of 

p53 its expression is dependent on other p53 family members.  

 Next we explored the ability of the p53 family members to bind the 

ISG20L1 promoter region.  Previous findings suggest that the p53 family 

members have similar transcription factor binding domains, but p53 and p63 

have different affinities due to slight differences in consensus site sequence 

composition and co-factor binding sites present in the promoter regions of 

regulated genes (Ortt and Sinha, 2006; Perez et al., 2007; Shikama et al., 1999; 

Zhu et al., 1998).  The p53 binding site discovered by our previous ChIP-based 

screen, CCACATGCCC-0-GGGCAAGCCC, was located approximately 450 bp 

upstream of the ISG20L1 transcriptional start site and matches the p53 canonical 

binding site at 18 of 20 base pairs, with no spacer in the palindrome (Hearnes et 

al., 2005).  To determine if p53 and p63 bind and regulate ISG20L1 at the same 

promoter region, we used human mammary epithelial cells (HMECs) that express 

p53 and p63 at levels sufficient for chromatin analyses (Perez et al., 2007).   

HMECs were chemically crosslinked under control and cisplatin-treated 

conditions, the latter agent can regulate the p53 signaling axis (Fritsche et al., 

1993; Leong et al., 2007).  Chromatin was prepared and immunoprecipitated with 

antibodies to p53, p53-Ser15, p63, and a negative control antibody against a 

non-DNA binding protein (Venter et al.).   Primers were used to amplify the region 

of the ISG20L1 gene previously reported to contain the p53 binding site (Hearnes 

et al., 2005).  Chromatin immunoprecipitation analysis (ChIP) showed increased 
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binding of p53 and p53-Ser15 after cisplatin treatment, and p63 bound the 

promoter region of ISG20L1 under both control and cisplatin treated conditions 

(Figure 11a).  These data indicate that both family members cooperate to 

regulate ISG20L1 expression.  

Given that HMECs do not express levels of p73 sufficient for chromatin 

analysis we performed p73 ChIP in the Rh30 cells to assess p73 binding levels 

at the ISG20L1 promoter in response to rapamycin treatment.  After rapamycin 

treatment, p73 binding at the p53 consensus binding site in the ISG20L1 

promoter increased ~15-fold as compared to a vehicle only-treated control 

(Figure 11b).  Collectively, these data show that all three p53 family members 

can bind to the promoter region of ISG20L1 and regulate its gene expression. 

 

ISG20L1 and Cell Death 

Shortly after our discovery of ISG20L1 as a p53 target (Hearnes et al., 

2005), ISG20L1 was reported to have exonuclease function in vitro (Lee et al., 

2005) prompting us to determine if it played a role in DNA laddering during the 

execution phase of apoptosis.  Using siRNA knockdown, we decreased ISG20L1 

levels in RKO cells and treated with 5-fluorouracil (5-FU) to induce apoptosis.  

Neither knockdown of ISG20L1 nor 5-FU treatment after knockdown affected the 

onset or extent of apoptosis as measured by analyses of PARP and caspase-3 

cleavage, sub-G1 content quantified by flow cytometry, and DNA laddering   
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(Figure 12a and 12b).  These data suggest that ISG20L1 does not play a role in 

the execution phase of apoptosis. 

To determine if ISG20L1 plays a role in genotoxic stress-induced 

autophagy we analyzed the effect of ISG20L1 modulation (ectopic expression or 

knockdown) in RKO cells after etoposide, a treatment that induces autophagy.  

During autophagy an ubiquitin-like signaling cascade is initiated that results in 

cleavage of a protein essential for autophagy, microtubule associated-protein 1 

light chain 3 (MAP1LC3) (reviewed in (Cecconi and Levine, 2008)).   After 

cleavage and post-translational modification (lipidation), MAP1LC3 (LC3-II) 

associates with autophagosomal membranes (Kabeya et al., 2000), and this 

modified form of LC3-II is used as a reliable molecular marker of autophagy 

(Klionsky et al., 2008).  We reverse transfected RKO cells with control or 

ISG20L1 siRNA and treated with etoposide.  Etoposide treatment resulted in a 

considerable increase in both ISG20L1 and LC3-II protein levels (Figure 13a).  

Robust knockdown of ISG20L1 resulted in a significant reduction in LC3-II as 

measured by Western (Figure 13a, right panel) and an ~70% reduction in LC3 

positive cells as measured by immunohistochemistry (IHC) using an antibody that 

detects endogenous, cleaved LC3 (Figure 13b and 13c).   To assess if 

knockdown of ISG20L1 was modulating autophagy flux, we added protease 

inhibitors, E64d and pepstatin A, to inhibit lysosomal degradation and LC3-II 

turnover (Klionsky et al., 2008).  RKO cells were treated with etoposide and 

lysosomal inhibitors for 8 h, three days after reverse transfection with control or  
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ISG20L1 siRNA.  Under these conditions, knockdown of ISG20L1 decreased 

LC3-II levels and thus autophagic flux (Figure 14a).  We investigated if ectopic 

expression of ISG20L1 affected autophagy and transfected RKO cells with vector 

control (pCEP4) or pCEP4 expressing ISG20L1.  RKO cells ectopically 

expressing ISG20L1 showed an increase in LC3-II by Western analysis (Figure 

14b).  

To verify these results were not cell type-, damage-, or assay-specific 

U2OS cells were transfected with control siRNA or three unique siRNAs that 

target ISG20L1 with varying degrees of knockdown.  After treatment with 5-FU, 

LC3-II levels decreased in a dose-dependent manner relative to levels of 

ISG20L1 knockdown (Figure 15).  We further determined that knockdown of 

ISG20L1 in U2OS cells treated with 5-FU does not alter cell cycle distribution 

(Figure 16).   

Autophagy was first studied and quantified using electron microscopic 

(EM) detection of autophagosomes (Klionsky et al., 2008; Mizushima, 2004; 

Mizushima et al.).  To verify that the modulation of LC3-II observed in 5-FU 

treated U2OS cells was a reliable marker of autophagy, we performed EM on 

parallel cultures of U2OS cells expressing either control siRNA or the siISG20L1-

1 and representative electron micrographs are shown (Figure 17).   Morphometric 

analysis (Swanlund et al.; Yla-Anttila et al., 2009) showed an approximately 6-

fold decrease in the percentage of autophagic vacuole volume fraction after  
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knockdown of ISG20L1 (Figure 17, p<0.0001, n = 25 cells, duplicate 

experiments).    

As described in the previous section, after autophagy induction, lipidated 

LC3-II is associated with autophagosomal membranes, resulting in the formation 

of punctate foci that can be quantified by fluorescence microscopy (Kabeya et al., 

2000; Klionsky et al., 2008).  To assess autophagy flux in the U2OS cell system, 

we used a LC3 (mRFP-GFP-LC3) vector that generates a LC3 fusion protein 

tagged at the 5ʼ end with red fluorescent protein (RFP) and green fluorescent 

protein (GFP).  Expression of mRFP-GFP-LC3 allows the distinction between 

early autophagic organelles (dual RFP+GFP+ puncta) and mature, acidified 

autolysosomes (RFP+ GFP- puncta) as the GFP signal is quenched in acidic 

compartments (Kimura et al., 2007 2008; Klionsky et al., 2008).  U2OS cells 

stably expressing mRFP-GFP-LC3 were transfected with control or ISG20L1 

expressing vectors and treated with 5-FU for 24 h. Those cells ectopically 

expressing ISG20L1 had a greater number of total LC3 foci and a 2.6-fold 

increase in the percentage of (RFP+GFP-) LC3 puncta per cell representing an 

increase in maturing autophagosomes (Figure 18, p<0.001, n = 50 cells; yellow 

arrows represent early autophagosomes that are RFP+GFP+, white arrows 

indicate late autolysosomal foci that are RFP+GFP-).  These data show that 

ISG20L1 affects autophagy flux through autophagosome formation and 

maturation into autolysosomes.  
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To extend and translate our mechanistic findings to the biologically 

relevant endpoint of cell growth, we analyzed the effect of ISG20L1 expression 

using colony formation assays.  We transfected RKO, H1299, HCT116 cells as 

well as ATG5+/+ and ATG5-/- mouse embryonic fibroblasts (MEFs) with control or 

ISG20L1 expression vectors, selected the cells in hygromycin for 10 days, and  

measured clonogenic growth.  ATG5-/- MEFs were derived from an ATG5-null 

mouse model system and shown to be autophagy defective (Kuma et al., 2004).   

A representative result from one of the tumor-derived cell lines (HCT116) 

is presented in Figure 19.  Cells ectopically expressing ISG20L1 had a 48% 

reduction in colony formation as compared to those cultures expressing an empty 

vector control.   Parallel flow cytometric analyses were performed at 48, 72, and 

96 h after transfection and no differences were observed in sub-G1 DNA content 

or Annexin V staining, between control and ISG20L1 expressing cells (Figure 20 

and 21).  Use of the ATG5+/+ and ATG5-/- MEFs enabled us to determine if the 

decreased clonogenic survival after expression of ISG20L1 was dependent on 

ATG5-induced autophagic processes.  As observed in the human cell lines, 

ectopic expression of ISG20L1 in the ATG5+/+ MEFs decreased colony number 

by ~77% compared to control.  Importantly, this ISG20L1-induced decrease in 

colony number was partially rescued in ATG5-/- cells (over 2-fold increase; Figure 

22).  Collectively, these data are consistent with a function for ISG20L1 in 

genotoxic stress-induced autophagy and decreased cell survival.  
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Discussion 

  Several studies provide evidence for a role of p53 in autophagy, a 

process first recognized as important in cell survival and now thought to function 

in tumor suppression (Crighton et al., 2006; Feng et al., 2005; Yue et al., 2003).  

We strengthen this link between the p53 signaling axis and genotoxic-stress 

induced autophagy by identifying ISG20L1 as a transcriptional target of all three 

p53 family members.  Using a newly generated antibody, we show that ISG20L1 

levels increase in a p53- and TAp73-dependent manner after various forms of 

stress.  In addition to p53, the family members p63 and p73 can bind and directly 

regulate ISG20L1 expression.  Ectopic expression of ISG20L1 decreased cell 

survival without induction of apoptosis as determined by flow cytometric analyses 

of sub-G1 DNA content or Annexin V staining, and the decreased clonogenic 

survival was partly rescued in an autophagy deficient background (ATG5-/- 

MEFs).   ISG20L1 was not involved in modulating 5-FU-mediated apoptosis, as 

suppression of ISG20L1 in RKO cells did not alter the incidence or extent of 

apoptosis as measured by PARP and caspase-3 cleavage, sub-G1 content, and 

DNA laddering.  In contrast, siRNA knockdown of ISG20L1 decreased genotoxic 

stress-induced autophagy as measured by electron microscopy, biochemical, 

and immunohistochemical analyses of LC3-II.  Thus, we identified ISG20L1 as a 

p53-family dependent, genotoxic stress-induced modulator of autophagy. 

The nucleolus is the cellular site of rRNA synthesis and processing as well 

as ribosomal assembly (Scheer and Hock, 1999).   One of the first connections of 
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p53 to nucleolar signaling was the observation that a dominant-negative form of 

the nucleolar protein Bop1 could induce p53-dependent cell cycle arrest (Pestov 

et al., 2001).  Recent publications have linked nucleolar proteins to arbitrating 

cellular response to stress, including autophagy (David-Pfeuty, 1999; Olson, 

2004; Rubbi and Milner, 2003). For example, nucleolar ARF can inhibit the 

production of the immature 12S rRNA intermediate, interact with the 5.8S rRNA 

(Sugimoto et al., 2003), and activate autophagy in p53-positive cells (Abida and 

Gu, 2008).   

Our data validates previous findings of ISG20L1 nucleolar localization 

(Kawase et al., 2008; Lee et al., 2005).  ISG20L2, a family member of ISG20L1, 

also localizes to the nucleolus and is involved in the processing of 12S rRNA to 

the mature 5.8S rRNA, part of the large ribosomal subunit (Coute et al., 2008).  In 

vitro assays have shown that the exonuclease III domain of ISG20L1 is required 

to degrade single- and double- stranded DNA and RNA (Kawase et al., 2008; 

Lee et al., 2005).  Collectively, the recent findings that ISG20L1 can degrade 

RNA, our data and others showing nucleolar localization of ISG20L1, and our 

linkage of ISG20L1 to autophagy suggests it will be important to examine the role 

of ISG20L1 in rRNA processing and ribosomal assembly during cellular response 

to stress (Kawase et al., 2008; Kraft et al., 2008; Lee et al., 2005). 

There is growing evidence for the interplay between autophagy and the 

p53 family.  As mentioned above, p19ARF and the short mitochondrial form 

(smARF) are able to induce autophagy in both p53-dependent and –independent 
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manners (Abida and Gu, 2008).   A number of genes involved in autophagy are 

directly regulated by p53 including the mTOR inhibitors, TSC1 and PTEN, 

Sestrin1 and Sestrin2, and the damage-regulated autophagy modulator (Venter 

et al.) (Crighton et al., 2006; Feng et al., 2005).  Additionally, inhibition of mTOR 

by p53 is associated with autophagy and occurs through DNA damaged-induced 

signaling involving AMPK and TSC1/2 (Feng et al., 2005).  p73 transcriptional 

activity has also been linked to autophagy as p73 is bound to a number of genes 

involved in metabolism and autophagy (Crighton et al., 2007; Rosenbluth and 

Pietenpol, 2009).  Our results show that ISG20L1 is contributing to cellular 

demise by modulating the process of autophagy that is commonly associated 

with type II cell death (Bursch et al., 2008; Eisenberg-Lerner et al., 2009).  

 The identification of ISG20L1 as a p53 family target and discovery that 

modulation of this target can regulate autophagic processes further strengthens 

the connection between p53 signaling and autophagy.  Given the keen interest in 

targeting autophagy as an anticancer therapeutic approach in tumor cells that are 

defective in apoptosis, investigation of genes and signaling pathways involved in 

cell death associated with autophagy is critical.  
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CHAPTER V 

 

SUMMARY AND FUTURE DIRECTIONS 
 
 
 

 p53 is the most frequently mutated gene in human cancer (Baker et al., 

1989; Daujat et al., 2001; Momand et al., 2000; Nigro et al., 1989).  As a 

transcription factor, p53 regulates a multitude of genes involved in cell cycle 

progression (el-Deiry et al., 1994), genomic stability (Tanaka et al., 2000), cellular 

senescence (Shay et al., 1991), apoptosis (Oda et al., 2000b), angiogenesis 

(Ravi et al., 2000), cell migration (Gadea et al., 2002), and autophagy (Crighton 

et al., 2006).  The transcriptional activity of p53 is required for its tumor-

suppressor ability (Pietenpol et al., 1994).  The goal of this dissertation was to 

identify novel p53 family transcriptional targets and determine their functions in 

biologically-relevant processes downstream of the p53 family signaling axis. 

  

Identification and characterization of p53 family target genes 

Our experience has shown the false discovery rate to be high when only 

using a single assay (i.e. ChIP or microarray analysis) to identify p53-bound or 

regulated genes.  Given this observation, along with the public availability of a 

vast array of p53 datasets, we overlaid numerous genomic datasets from both 

ChIP and gene expression assays to identify a subset of high-confidence putative 

p53 target genes.  The generation of our gene list is described in Chapter III of 
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this dissertation, and includes a number of previously published p53 target 

genes, such as p21 and MDM2.   

We utilized a number of criteria to create a panel of putative p53 

transcriptional targets.  To identify those genes that were directly bound and 

regulated by p53, we analyzed three unique ChIP datasets that provide ~1,600 

predicted p53 binding sites (Hearnes et al., 2005; Smeenk et al., 2008; Wei et al., 

2006).  Since presence of a p53 binding site in a gene does not always equate to 

transcriptional regulation, we also performed gene expression microarray 

analyses on RNA isolated from an inducible p53 cell model system that 

undergoes p53 mediated arrest.  When compared to the p53 null-parental cell 

line, induction of p53 resulted in upregulation of 624 genes two-fold or greater.  

Additionally, we used a gene expression dataset generated previously in our 

laboratory from primary human keratinocytes engineered to ectopically express 

p53 (Schavolt and Pietenpol, 2007).  After combining ChIP and gene expression 

data, the last tool used in the identification of new p53 transcriptional targets was 

a mathematical algorithm that ranks the probability of a gene being a putative 

transcriptional target based on gene expression data (Barenco et al., 2006).   

Since the generation of our putative p53 target gene collection, 10 genes 

have been published by our laboratory and others.  For example, we identified 

the ribosomal gene RPS27L as a novel p53 target gene.  During our 

characterization of RPS27L, another laboratory published it as a p53 target gene 

that regulates apoptosis (He and Sun, 2007; Li et al., 2007).  Gene ontology 
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analyses show that a number of the identified p53 target genes function in 

multiple pathways governed by p53, such as cell cycle regulation, DNA repair, 

and cell death.  In addition, other genes in our subset are identified as being 

involved in processes novel to p53 signaling including cell-to-cell signaling, cell 

morphology, and cellular metabolism.  Given this, we anticipate that our future 

analyses will not only discover target genes that function in canonical p53 

signaling pathways, but may ultimately reveal completely novel signaling 

mechanisms regulated by p53 itself. 

 Early studies aimed at identifying p53-regulated genes often involved 

analyzing a single gene, in a single p53-regulated process, such as apoptosis.  

Though these studies provided an enormous wealth of information with regards 

to p53 function, the “single-gene-single-assay” approach can often be laborious 

and time-consuming.  The advancement in genomic technologies makes possible 

the study of multiple genes in a high-throughput manner, using assays based on 

gene depletion and/or exogenous expression.  With my panel of numerous 

putative p53 target genes and new genomic and molecularly-based technologies, 

our future plans for this project include a high throughput siRNA loss-of-function 

screen to identify the contribution of these genes to biological processes 

regulated by p53.  A high throughput analysis of genes will allow for more rapid 

characterization of novel target genes associated with p53-regulated cellular 

functions, such as cell cycle arrest, apoptosis, and autophagy, to name a few.   
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Loss-of-function screens are now routinely used to identify genes and 

pathways, that when targeted, sensitize tumor cells to various drugs.  The 

majority of siRNA screens existing in the literature, test for a single biological 

endpoint or are investigating the identification of genes involved in a single 

pathway.  For example, a recent study by a Vanderbilt graduate student, Dr. 

Courtney Lovejoy, involved a loss of function screen using siRNA in human cells 

to identify genes that when downregulated lead to a DNA damage response as 

measured by the DNA damage marker H2AX-phosphorylation (Lovejoy et al., 

2009).  This screen identified 73 novel genes that when silenced activated the 

DNA damage response pathway.  p53 is involved in numerous cellular pathways 

and these loss-of-function screens now afford us the opportunity to study the 

complexity of p53 signaling by characterizing novel target gene functions in a 

high-throughput manner using assays that cover a wide range of biological 

endpoints including DNA repair, apoptosis, cell survival, migration, and 

autophagy. 

 The subset of p53 family target genes described in detail in Chapter III are 

currently being assayed in siRNA loss-of-function screens.  We have Dharmacon 

OnTarget pools of siRNA that consist of four individual siRNAs all targeting the 

same gene.  A total of 164 genes are being assayed in a microtiter plate format.  

The biological assays that will be performed were chosen either due to prior 

linkage of p53 signaling to the biological endpoint being assayed or based on 

gene ontology analysis. The biological assays are measuring (i) changes in cell 
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number (Alamar blue, Invitrogen); (ii) apoptosis (Caspase-Glo 3/7 assay, 

Promega); (iii) DNA damage and repair (KAP1 immunofluorescence); (iv) 

autophagy (Monodansylcadaverine cell kit, Cayman Chemicals); and (v) 

migration (Oris Pro Cell Migration Assays, Platypus Technologies).  Positive hits 

will be screened in secondary validation assays using two individual siRNA from 

Qiagen.  For example a positive hit from the KAP1 DNA damage screen will be 

tested for H2AX-phosphorylation, and a positive hit in the migration screen will be 

tested in larger format using a scratch assay.  For those genes identified as 

overlapping with the other p53 family members, p63 or p73, we may add 

additional screens with biologically relevant end assays such as keratinocyte or 

human mesenchymal stem cell differentiation.     

  To determine p53-dependence, nonsilencing or siRNA targeting p53 will 

be used in combination with siRNAs targeting the genes under investigation to 

determine if biological effects of target gene knockdown are p53-dependent.  

Appropriate controls will be used to perform our loss-of-function screen.  Controls 

include four individual nonsilencing siRNAs that allow normalization across the 

plates.  Positive controls will be included that are appropriate to the biological 

endpoint being examined, for example siRNA targeting caspase-3 will be used 

for the cell death, Caspase-GLO 3/7 assay.  We are performing these functional 

screens in primary human mammary epithelial cells (HMECs).  These cells were 

selected based on the p53 family member expression status where HMECs 

express all of the family members.  The transfection conditions have been 
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optimized for maximum efficiency of siRNA uptake.  The siRNA screen is 

performed by reverse transfecting the HMECs using a preoptimized cell number 

with siRNA oligos targeting the genes of interest.  Each functional experiment is 

performed in triplicate to allow for statistical analysis.  Three days after reverse 

transfection, each cell line is treated with the IC50 of cisplatin, a DNA intercalator, 

known to activate the various members of the p53 family (Fomenkov et al., 2004; 

Toh et al., 2004).  The duration of treatment depends upon the biological 

endpoint being assayed.  

With the number of putative transcriptional targets growing, we can no 

longer characterize all these genes on an individual basis.  A more high-

throughput siRNA screening method is the only practical approach for initial 

characterization to inform us which target genes should receive more in depth 

and detailed investigation for the role played downstream of the p53 family 

signaling pathway. 

 

Unanswered Questions in the p53 field 

In addition to regulating mRNA expression, p53 also regulates the 

expression of noncoding RNA.  Noncoding RNAs (ncRNAs) include miRNAs that 

are short 22 nucleotide long ribonucleic acid molecules and act as post-

transcriptional regulators by binding to 3ʼ-untranslated regions of the mRNA 

transcript thus targeting it for degradation (Bartel, 2009).   
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Preliminary studies have begun to uncover the interplay of the p53 family 

and miRNAs.  ChIP analyses of p53 binding have shown perfect matches for the 

p53 consensus site and binding at genomic loci that are not located near coding 

regions invoking the question of p53 function at these locations (Hearnes et al., 

2005; Wei et al., 2006).  A number of publications have suggested a connection 

between the miRNA-34 family (miRNA-34a, -34b, -34c) and p53.  The miRNA-34 

family is induced after DNA damage in a p53-dependent manner (Bommer et al., 

2007; Chang et al., 2007; Corney et al., 2007; Tazawa et al., 2007).  p53 

consensus binding sites were found in the two transcripts encoding miRNA-34a 

and miRNA-34b/c (Wei et al., 2006).  Ectopic expression of miRNA-34 family 

induced similar results of G1 cell cycle arrest, inhibition of proliferation, and 

decreased clonogenic cell survival (Bommer et al., 2007; Tazawa et al., 2007).  

Recently, work performed in our laboratory has also found a direct connection 

between p73 and miRNA.  p73 binds 116 miRNAs and  expression levels of 142 

miRNAs changed greater than 50% after p73 knockdown (Rosenbluth et al, 

personal communication).   

Given the connections between the p53 family and direct regulation of 

miRNAs, a number of important questions remain in this field.  As transcription 

factors, p53 family members have previously been assayed for their ability to 

regulate target gene expression and now it will be important to investigate if 

regulation of transcriptional targets occurs directly by p53 or through secondary 

effects after induction of the miRNA-34 family.  It will be necessary to further 
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analyze miRNA-34 alterations in cancer and how restoration of miRNA-34 

function could potentially be used as an anti-cancer therapeutic.  Additionally, it 

will be important to discover other miRNAs controlled by the p53 family.  Since 

the connection between miRNA-34 and p53, only two other miRNA-145 and 

miRNA-192 have published evidence for p53-dependent regulation (Sachdeva et 

al., 2009; Song et al., 2008).  MicroRNA expression arrays obtained from three 

different models including an inducible p53 cell line, a p53 isogenic cell line 

HCT116 treated with DNA-damaging agents, and a conditional p53 model 

suggest that many miRNAs are both up- and down-regulated in a p53-dependent 

manner (Chang et al., 2007; Tarasov et al., 2007).  Future research is required to 

characterize these miRNA and their subsequent targets downstream of p53 

signaling.  Experiments that would yield light on this topic would be a comparison 

of gene expression arrays after knocking down p53, miRNA-34, or p53 and 

miRNA-34 to determine the necessity of miRNAs in p53 transcriptional activities.  

This type of experiment would show if miRNA-34 expression can downregulate a 

specific subset of p53-regulated genes and if p53 requires miRNA for 

transcriptional regulation of certain target genes.     

 

p53 and autophagy: paradoxical signaling 

Numerous transcriptional targets of p53 function in cell cycle arrest or 

apoptosis.  As we discover more novel target genes, new roles for p53 in various 

biological processes are being described, including p53 in the regulation of 
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autophagy.  Autophagy is a recycling process of cellular catabolism that allows a 

cell to breakdown cytoplasmic components for reuse by the cell.  Initially, 

autophagy was discovered after induction by starvation where electron 

microscopy captured the formation of the characteristic double membrane 

autophagosomes that enveloped portions of the cellʼs cytoplasm (De Duve and 

Wattiaux, 1966).  These autophagosomes proceed to fuse with lysosomal 

compartments of the cell where degradative enzymes such as cathepsins 

degrade the macromolecules contained within the autophagolysosome (Berg et 

al., 1998).  Since the discovery of this process in 1966, autophagy has been 

implicated in a number of different normal and disease states.  The importance of 

autophagy has also been seen in the development of higher eukaryotes where 

mice lacking the essential autophagy component Beclin1 die during 

embryogenesis and ATG5- or ATG7-null mice die perinatally (Kuma et al., 2004; 

Yue et al., 2003).  A number of disease states and pathologies are also attributed 

to the process of autophagy including neurodegenerative diseases (Huntingtonʼs, 

Alzheimerʼs, Parkinsonʼs); antiviral and antimicrobial immunity; and cancer.   

p53 activated under DNA-damage and metabolic stress conditions is also 

a known regulator of autophagy (Crighton et al., 2006; Feng et al., 2005; 

Tasdemir et al., 2008).  p53 can both positively and negatively regulate 

autophagy in a transcriptionally-dependent and –independent manner 

respectively.  Inhibition of autophagy is suggested to occur by low levels of 

cytoplasmic transcriptionally-independent functions of p53.  The more widely 
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described role of p53 in autophagy is through the transcription-dependent 

induction of autophagic activity following cellular stress.   p53 can regulate the 

upstream activators of AMPK, Sestrin1 and Sestrin2, after genotoxic and 

oxidative stress, to induce autophagy (Budanov and Karin, 2008).  Outside of the 

mTOR pathway, p53 has been shown to regulate several transcriptional targets 

that modulate autophagy including DAPK-1, DRAM, and the target gene 

discussed in Chapter IV of this dissertation, ISG20L1.  The damage-regulated 

autophagy modulator (DRAM) is regulated by both p53 and p73; however was 

only found necessary for p53 induced autophagy that resulted in cell death 

(Crighton et al., 2007).  DRAM is lysosomal in location, induces markers of 

autophagy, and decreases cell survival but the mechanism by which it functions 

in autophagy has not been deciphered (Crighton et al., 2006).  

Dissertation research, described in Chapter IV, identified a novel p53 

family transcriptional target, ISG20L1, that is involved in genotoxic stress-induced 

autophagy (Eby et al.).  Using a newly generated antibody, we found that 

ISG20L1 levels increase in a p53- and TAp73-dependent manner after various 

forms of stress.  In addition to p53, the family members p63 and p73 can bind 

and directly regulate ISG20L1 expression.  Ectopic expression of ISG20L1 

decreased cell survival without induction of apoptosis as determined by flow 

cytometric analyses of sub-G1 DNA content or Annexin V staining.  Decreased 

clonogenic survival was partly rescued in an autophagy deficient cell line (ATG5-/- 

MEFs).   ISG20L1 was not involved in modulating 5-FU-mediated apoptosis, as 
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suppression of ISG20L1 in RKO cells did not alter the incidence or extent of 

apoptosis as measured by PARP and caspase-3 cleavage, sub-G1 content, or 

DNA laddering.  In contrast, siRNA knockdown of ISG20L1 decreased genotoxic 

stress-induced autophagy as measured by electron microscopy, as well as 

biochemical, and immunohistochemical analyses of the autophagy marker LC3-II.  

Thus, we identified ISG20L1 as a p53-family dependent, genotoxic stress-

induced modulator of autophagy.  

Further investigation will be necessary to determine the molecular 

mechanism of ISG20L1 in the modulation of autophagy. The family member 

IGS20L2 was recently shown to have exoribonuclease activity that is necessary 

for processing of the 12S rRNA into the mature 5.8S rRNA form (Coute et al., 

2008).  Preliminary data shows that IGS20L1 has 3ʼ-5ʼ exonuclease activity and 

is perinucleolar in localization, where rRNA maturation occurs (Lee et al., 2005).  

Other proteins involved in autophagy have been shown to play a role in nucleolar 

structure and processing of rRNA.  For example, p19ARF-null MEFs have a 

greater number of nucleoli and increased processing of immature rRNA 

compared to wild-type controls (Apicelli et al., 2008).  ARF, as described 

previously, can alter autophagy through p53-dependent and –independent 

mechanisms (Abida and Gu, 2008; Reef et al., 2006).  Additionally, the mTOR 

pathway that regulates autophagy, plays a large role in sensing nutrient 

availability and adjusting the synthesis of ribosomal components (Mayer and 

Grummt, 2006).  Thus we are interested in determining if ISG20L1 plays a role in 
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rRNA processing and if that mechanism alters autophagy.  Planned experiments 

would determine if knockdown of ISG20L1 alters processing of rRNA from the 

pre-rRNA to mature forms of rRNA (12s- 5.8s rRNA) using Northern methods or 

quantitative real-time PCR primers specific to the various cleavage forms. 

Future research to identify additional novel p53 family transcriptional 

targets involved in autophagy will be performed through our ongoing siRNA 

functional screen to characterize p53 target genes as discussed above.   Our 

laboratory and others have linked both p53 and p73 to autophagic processes 

(Eby et al.; Rosenbluth and Pietenpol, 2009).  The field of autophagy will need to 

further investigate what seems to be a contradictory role of p53 in both the 

suppression and activation of autophagy.  It could be hypothesized that these 

opposing roles of p53 are merely protein-level and context dependent as low 

levels of cytoplasmic p53 inhibits whereas nuclear, transcriptionally active p53 

activates autophagy.  This dual nature of p53 activity, as well as our laboratory 

findings that p73 is connected to the process of autophagy, invokes the question 

of the importance of autophagy as a p53 family tumor suppressive mechanism. 

Many questions remain in the field of autophagy regarding its ability to 

provide either oncogenic survival mechanisms or tumor suppressive methods in 

the process of tumorigenesis.  Evidence shows that under hypoxic conditions 

autophagy can promote tumor cell survival in vivo (Degenhardt et al., 2006).  

Cells that have developed defects in apoptosis have also been shown to live for 

weeks under conditions of nutrient withdrawal (Lum et al., 2005).  At the same 
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time, loss of autophagy gene expression occurs in human tumors and 

corresponding mouse models results in increased incidence of tumor formation, 

thus suggesting a strong tumor suppressive role for the process of autophagy.  

Monoallelic loss of Beclin1 is common in breast, ovarian, and prostate cancer as 

well as monoallelic deletions of UVRAG in colon cancer (Goi et al., 2003).  

Though the exact mechanism of tumor suppression is not known, autophagy has 

been suggested to suppress tumorigenesis through cell death mechanisms 

(Chen and Karantza-Wadsworth, 2009).  Various models for the role of 

autophagy in cell death exist and include autophagy as the primary inducer of cell 

death; autophagy induction prior to/ or at the time of apoptosis activation; and 

lastly that apoptotic induction actually inhibits autophagic mechanisms (Qian et 

al., 2007; Yu et al., 2006).  When both apoptosis and autophagy pathways are 

inhibited, cell death by necrosis was evident but activation of only one of these 

pathways decreased levels of necrosis (Kunchithapautham and Rohrer, 2007).  

Thus it remains unclear if autophagy alone is sufficient to complete cell death or if 

it requires cross-talk with other cell death machinery.   

Further characterization of the events leading to cell death requires 

additional in vitro experiments to shed light on the crosstalk between autophagy 

and apoptosis.  Measuring multiple markers of apoptosis and autophagy in a 

panel of cell lines after starvation or genotoxic stress-induced cell death will result 

in valuable data regarding the timing and communication between these two 

pathways.  Further, using siRNA or specific inhibitors to suppress either 
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autophagy or apoptosis will yield information on their individual roles as they 

contribute to cell death.  As more whole tumor genomes become available, it will 

be interesting to determine the frequency of alterations seen in the autophagic 

pathway.  In a recent seminar at Vanderbilt University, Dr. Beth Levine showed 

the first evidence of tumor regression in a mouse xenograft model using a small 

molecule that interrupts the Bcl-2 and Beclin1 complex allowing Beclin1 to induce 

autophagy.  Further investigation to discover if this small molecule causes 

autophagic induced pathways associated with cell death and of course 

determination if this small molecule can have a therapeutic benefit alone or in 

combination with other anticancer therapies in humans will need to be studied.  

To determine if autophagy is sufficient for cell death, novel methods for the 

assessment of autophagy will be critical in investigating the anticancer 

therapeutic potential of autophagy.   

 

Concluding Remarks 

As we identify p53-dependent target genes involved in a diversity of 

cellular processes, we continue to discover novel functions for p53 signaling.  

During the course of my dissertation research, I overlaid a number of genomic 

datasets and employed a mathematical ranking algorithm to identify a collection 

of putative p53 transcriptional targets.  I further characterized the role of one of 

these targets, ISG20L1, as a p53 family regulated target gene that modulates 

autophagy.  My research has laid the groundwork to apply high-throughput 
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siRNA technology in a way that has not been done before to simultaneously 

characterize these putative p53 target genes in multiple biological assays.   

Connections between the p53 family and autophagy are relatively new and 

ISG20L1 is one of only a handful of direct targets linking these pathways.  A 

pressing question in the fields of p53 and autophagy that requires further 

investigation is the role of autophagy in cell death.  To target autophagy for 

anticancer therapeutic purposes, it will be necessary to characterize the role of 

autophagy in tumor suppression and cell death.   With the completion of the 

siRNA functional screens, we hope to uncover and explore additional pathways 

and novel roles of p53 and its family members. 
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