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Chapter 1 – Introduction 

Introduction to the question 

 “What’s in a name? That which we call a rose by any other name would smell as sweet.” 

– William Shakespeare 

 Perhaps this is true, a rose would look and smell lovely to anyone, but if you had 

extensive experience with roses and were able to name it even more specifically as a particular 

species of rose then your recognition of that rose might be different. You might notice particular 

distinguishing features, that it was deep pink and strongly scented with cup-shaped blooms atop 

firm stems, and thus name it not just as a rose but an American Beauty. Your ability to name the 

rose by species might reflect your level of experience with roses; maybe you are a florist or a 

gardener. But the American Beauty is also a popular and well-known rose, it was featured in a 

movie with the same name, is the official flower of Washington D.C., and appears in the Lord & 

Taylor logo, so you may recognize it even if you have only a small amount of experience with 

roses. However, recognizing a rarer rose by name, say an Audrey Wilcox or Majestic rose, 

would suggest a high level of rose experience.  

 Our experience with objects in the world continuously shapes how we perceive, label, 

and act upon them (Bub, Masson, & Lin, 2013; Dehaene et al., 2010; Folstein, Palmeri, & 

Gauthier, 2013; Gauthier, Skudlarski, Gore, & Anderson, 2000; Goldstone, 1994; Goldstone & 

Styvers, 2001; K. H. James, James, Jobard, Wong, & Gauthier, 2005; Tanaka, Curran, & 

Sheinberg, 2005; Van Gulick & Gauthier, in press; A. C.-N. Wong, Palmeri, & Gauthier, 2009a; 

A. C.-N. Wong, Palmeri, Rogers, Gore, & Gauthier, 2009b; Y. K. Wong, Folstein, & Gauthier, 

2012; Xu, 2005). In the field of high-level vision, we often measure performance on object 

recognition tasks in hopes of understanding the perceptual and cognitive processes that 
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contribute to successful object recognition. When we quantify performance on these tasks, we 

sometimes want to know not only who performs best, but also why one person performs better 

than another. For the latter goal, we measure task performance to estimate an individual’s 

underlying ability, the stable, underlying trait that contributes to observed performance. For 

example, we might measure visual recognition performance for birds. However, performance by 

itself is difficult to interpret. Performance, especially domain-specific performance, is likely 

driven by experience in that domain and a person’s domain-general visual ability. Therefore, 

accounting for the effect of experience is important when we compare performance between two 

people to make inferences about their relative ability: if Liz performs better than Theo on our 

measure of bird recognition, is that because she has better general visual ability or more bird 

experience? If we wish to know someone’s true object recognition ability, we must be able to 

quantify experience as well, in a way that will allow us to separate the contributions of 

experience and ability to observed performance.  

 Experience can be measured directly, for example through self-report, although this can 

be biased and is limited to introspection. Experience can also be estimated by looking at its 

effects on the acquisition of other kinds of knowledge. As category experience accumulates over 

time, experts are likely to acquire both visual and semantic category knowledge. The Vanderbilt 

Expertise Test (VET; McGugin, Richler, Herzmann, Speegle, & Gauthier, 2012b) was created to 

measure visual knowledge for a variety of categories, but there is currently no non-visual test of 

semantic knowledge for common object categories. 

 The goal of the following studies is to create a measure of semantic knowledge for 

specific categories, the Semantic Vanderbilt Expertise Test (SVET). This measure will be in a 

standardized format that can be used to test knowledge of object names for many different 
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categories and that can be completed easily by subjects, including those with little semantic 

knowledge. We will evaluate the measure’s reliability and validity for each category, and test 

whether it can be used to capture individual differences in knowledge across the range of 

experience from novice to expert. The resulting set of tests will be a novel and valuable tool to 

measure semantic knowledge that will enhance our ability to study object learning and expertise.  

 However, just as when measuring visual performance for birds, if Theo performs better 

than Liz on a test of semantic bird knowledge, we cannot say if this is because he has greater 

domain-general ability, such as verbal ability or general intelligence, or because he has more bird 

experience that led to the acquisition of domain-specific semantic knowledge. It is important to 

disentangle the contributions of domain-general ability and domain-specific experience to 

understand both visual and semantic performance. Thus, the SVET will offer a way to measure 

semantic knowledge and, when paired with another domain-specific measure such as a visual test 

(VET; McGugin et al., 2012b), will allow us to compare performance on two different tasks that 

are both influenced by domain-specific experience. 

Testing many different categories is important for this goal so that we can assess the 

relationship between experience and performance within a category and compare an individual’s 

within category performance to their average experience and performance across many 

categories. This comparison is needed to determine what contributions to performance might be 

domain-general versus domain-specific. 

 In the following work, we hope to begin to understand domain-general and domain-

specific contributions to individuals’ performance, with an emphasis on the common role of 

category-specific experience across tasks. We will measure both visual and semantic 

performance for eight different object categories using a newly designed test of semantic 
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knowledge, the SVET. We will also measure domain-general visual and verbal abilities that 

contribute to visual and semantic performance. If we find that these general abilities are not 

correlated with each other, then we can hypothesize that any shared variance observed between 

visual and semantic performance for the same category may be the result of common category 

experience. 

Background 

 Individual differences in visual performance. Individual differences have been almost 

completely overlooked in the study of general object recognition in neuro-typical populations. 

While some have measured object recognition ability in clinical populations (Barton, Hanif, & 

Ashraf, 2009; Duchaine & Nakayama, 2005; 2006; Germine, Cashdollar, Düzel, & Duchaine, 

2011b), those studies generally seek to understand the extent of possible object recognition 

deficits rather than the variation in ability within a normal population. The one object domain for 

which individual differences have been extensively investigated is human faces. This is due in 

part to the development of a standardized test of face memory that has proven reliability and 

validity, the Cambridge Face Memory Test (CFMT) (Duchaine & Nakayama, 2006). It has been 

demonstrated that the CFMT can reveal fine differences in face recognition performance across 

the spectrum of performance from those with prosopagnosia and Asperger syndrome to so-called 

“super-recognizers” (Bowles et al., 2009; Germine, Duchaine, & Nakayama, 2011a; Hedley, 

Brewer, & Young, 2011; Russell, Duchaine, & Nakayama, 2009). This has allowed the CFMT to 

be used in work investigating the relationship between face recognition and other traits and 

abilities, such as holistic processing (Richler, Cheung, & Gauthier, 2011) and social anxiety 

(Davis et al., 2011). In a study of individual differences between pairs of homozygous and 

heterozygous twins (Wilmer et al., 2010), this measure, together with memory tests for art and 
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words, suggested that face recognition ability is both highly heritable and specific (although see 

Gauthier et al., in press regarding specificity). While these studies inform our understanding of 

face processing, they measure performance with only one specific category, faces, with which 

most people have extensive experience. Because experience with faces is very high for most 

people, the CFMT may in fact offer a good estimate of domain-general visual ability, but it 

cannot inform us about the contribution of experience to performance.  

 A better way to tease apart domain-general ability from domain-specific experience in 

object recognition is to measure performance across a variety of different object categories. The 

Vanderbilt Expertise Test (VET) is an object memory test designed similarly to the CFMT that 

includes 8 different non-face object categories (birds, cars, planes, owls, wading birds, 

motorcycles, mushrooms and leaves). It allows measurement of both object recognition 

performance for specific categories as well as a better estimate of general object recognition 

tested across a range of categories (McGugin, et al., 2012b). Tests like the VET that compare 

performance across categories for which experience varies can help disentangle the domain-

general and domain-specific contributions to individual differences in object recognition. 

 Measurement of category experience. In previous work, researchers have tried to 

quantify experience by asking subjects to report their category expertise on a numerical scale (1-

9) as their level of “interest in, years exposure to, knowledge of, and familiarity with” objects 

from a specific category (Gauthier et al., in press; McGugin et al., 2012b). These self-report 

measures of object experience for specific categories individually have been shown not to be 

highly predictive of visual performance for that category (mean R2=3.1% reported for eight 

categories by Gauthier et al., in press). However, an interesting result emerged when face and 

object recognition performance was considered in the context of self-reported object experience 
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averaged across eight categories. Object experience did not predict face nor object recognition, 

but did influence the relationship between them: object recognition was more similar to face 

recognition with increasing object experience (Gauthier et al., in press). This is important 

because it suggests that face perception is not independent from object recognition, but that 

experience is a critical variable that differentiates visual performance for all domains, including 

faces. Because experience for faces is very high for most people, performance reflects mainly 

domain-general ability rather than experience; the same thing occurs for other object categories: 

increasing experience results in more similar performance between faces and other objects.    

 Self-reports are subjective and susceptible to bias. In particular, when subjects rate their 

experience with a category, which is a fairly general attribute, they may not have much 

information about how they rank relative to others. Self-reports might also differ in their 

relationship to performance based on how people commonly introspect about their abilities. For 

example, when asked to rate their expertise with an object category, subjects may consider how 

frequently they see an object, their interest in the category, or the extent of their vocabulary for 

the domain. The availability of each type of experience during introspection might vary and 

could be different for different domains. This might affect how self-reports are related to 

performance. For example, if domain-specific vocabulary is easier to introspect about than visual 

ability, then self-reports might be more related to semantic versus visual performance.  

 A recent metasynthesis (a qualitative interpretation of the results of many related studies) 

investigated the relationship between self-reports and objective measures of performance and 

found that on average there is a moderate correlation (mean r=0.29), with most abilities ranging 

between 0.2 and 0.4 (Zell & Krizan, 2014). However, the correspondence between perceived 

ability and performance was greater for specific abilities (e.g., hitting a baseball) than general 
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abilities (e.g., playing baseball) and for simpler and more familiar abilities. Interestingly, they 

found that whether self-report occurred before or after performance had almost no effect, 

suggesting either no interaction between self-report and performance or an equal effect in either 

direction (e.g., saying you are good at something first makes you perform well, but also 

performing well makes you say you are skilled) (Zell & Krizan, 2014).    

 Measuring semantic knowledge. Performance on a measure of semantic knowledge also 

reflects experience for a given category. In a test of semantic knowledge, we might assume that 

performance is a reflection of both experience and domain-general ability, such as general verbal 

ability or fluid intelligence. There is currently no well-tested, non-visual measure of semantic 

knowledge available for a variety of everyday object categories.  

 One study that did employ a test of semantic knowledge used this measurement in a 

compelling way to estimate the level of visual performance that should match a specific level of 

semantic performance (Barton et al., 2009). This study aimed to quantify the true extent of visual 

object recognition deficits in a group of patients with prosopagnosia. Because of the wide 

variation in levels of experience with specific object categories, it can be difficult to dissociate 

the contributions of experience and ability to observed performance. In this case, it was difficult 

to determine if a particular patient’s performance recognizing cars was reduced or not from 

his/her pre-morbid performance. Barton et al. (2009) developed a test of verbal semantic 

knowledge for cars in which subjects were given a list of the names of car models made between 

1950 and 2005 and asked to write the manufacturer of each model, and a test of visual semantic 

car knowledge in which they saw an image of a car and were asked to name its manufacturer, 

model and decade of make. Then, using a group of healthy control subjects, they gathered data 

and found the relationship between performance on the verbal and visual tasks to be highly 
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correlated. Based on the relationship found in controls, the verbal semantic knowledge 

performance of the individual prosopagnosics could be used to predict what their normal visual 

performance should have been, and determine if a patient’s current performance demonstrated a 

deficit below expected performance. This comparison demonstrated that the prosospagnosics had 

significantly worse visual car recognition performance than would be expected based on their 

verbal semantic scores, an effect that was particularly strong for three of the prosopagnosics (one 

who self-reported high car experience) who had high semantic scores.  

 The tests of semantic knowledge developed by Barton et al. (2009) demonstrate the 

predictive power of semantic knowledge on visual recognition performance and the importance 

of accounting for experience in measures of object recognition. However, the weakness of these 

tests for measuring the relationship between visual and semantic performance is that both tasks 

require semantic knowledge of cars, which makes it perhaps unsurprising that tests are highly 

correlated, especially for naming cars at the most specific level (models). The correlation 

between measures in this case could be the result of shared verbal abilities as well as experience. 

Thus, for the goals of this dissertation, it is important that visual tests not require semantic 

knowledge or object naming and that tests of semantic knowledge not include images of objects 

so that the abilities tapped by each test are as distinct as possible.      

 Semantic knowledge has also been measured in studies of perceptual expertise, where 

categorization and naming at the subordinate-level as quickly and frequently as the basic-level 

has come to be a regarded as a hallmark of expertise (Tanaka & Taylor, 1991). Rosch et al. 

(1976) first demonstrated that subjects were fastest to categorize objects at the basic level (e.g., 

dog) compared to either the subordinate (e.g., golden retriever) or superordinate level (e.g., 

animal). However, Tanaka and Taylor (1991) found that the level of categorization for an object 
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interacted with an individuals’ amount of experience recognizing and naming objects from that 

category. In this study, a group of bird and dog experts were asked to complete several tasks with 

both their category of expertise (birds or dogs) and the other category, with which they did not 

have extensive experience. For each category, subjects were asked to list the features of basic 

and subordinate-level categories, freely name object images, and perform a category-verification 

task at both the basic and subordinate levels. Tanaka & Taylor (1991) found that for their domain 

of expertise, experts listed as many features for the subordinate- as the basic-level category, 

named objects at the subordinate-level as frequently as the basic-level, and verified subordinate-

level labels as quickly as basic-level labels, demonstrating that semantic knowledge of object 

names and features was a result of extensive object experience. Having the vocabulary to 

describe object features and name objects at a specific level has even been shown to predict 

perceptual taste discrimination of specific wines (Hughson & Boakes, 2002).  

 Another example of non-visual semantic knowledge measurement are two tests that were 

created to measure print exposure: the Author Recognition Test (ART) and the Magazine 

Recognition Test (MRT) (Stanovich & Cunningham, 1992). These tests were created to provide 

a valid measure of print exposure that was less subject to bias than self-reports or activity diaries 

and to measure small individual differences in print exposure between literate subjects (rather 

than the large difference between illiterate and literate subjects). In each test, the names of real 

authors, mostly of novels, and magazine titles are presented in a list among foils and subjects 

must select as many targets as they recognize while avoiding foils. The SVET we created to pair 

with visual tests uses a similar format of recognizing target names among foils, but we will 

employ a triplet (one target, two foils) trial structure to reduce guessing and allow for more 

precise design of easy and difficult trials based on foil selection.     
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 Beyond test creation, the study of print exposure by Stanovich and Cunningham (1992) is 

also an example how a theoretical framework can be used to relate performance and experience 

to make inferences about why people differ. The ART and the MRT were used with general 

measures of fluid intelligence and reading comprehension to demonstrate that print exposure 

predicts an array of verbal skills (spelling, vocabulary, verbal fluency) independent of fluid 

intelligence and reading comprehension. A similar framework has also been applied to 

understanding individual differences in knowledge of specific domains, for example knowledge 

of basketball (Hambrick, 2003) and current events (Hambrick, Meinz, & Oswald, 2007; 

Hambrick, Pink, Meinz, Pettibone, & Oswald, 2008). To understand why some individuals 

acquire different levels of knowledge, an array of domain-general ability and domain-specific 

interest and knowledge was tested, including general cognitive ability factors such as working 

memory and fluid intelligence, as well as personality traits and personal interest and previous 

knowledge in the domain. These studies suggest that acquisition of knowledge in a 

domain depends on independent contributions from both ability and non-ability factors. In this 

work, we will adapt this framework to ask how ability and experience contribute to both visual 

and semantic performance for the same category and across categories.  

The need for a non-visual measure of semantic knowledge  

 The measure of verbal semantic car knowledge used by Barton et al. (Barton et al., 2009) 

correlated well with visual performance, however, that correlation is difficult to interpret because 

both tasks required knowledge of object names. Their verbal semantic task was also designed in 

a way that was specific to cars, and would be difficult to adapt for other object categories. 

Tanaka and Taylor’s (1991) measures of feature listing and object naming were excellent for 

experts and for differentiating between basic- and subordinate-level category names. However, it 
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is not adaptable to measuring object knowledge within a category for novices without enough 

knowledge to list any features, may be susceptible to expertise illusions (e.g., novices may be 

reluctant to list features in categories they do not believe they know much about), and may be 

relatively difficult to standardize.  

 For these reasons, in this dissertation we will develop a new test of semantic object 

knowledge, the SVET, which will be more versatile and standardized across a variety of object 

categories. There are several attributes that we will strive for in designing this new measure: it 

should measure semantic knowledge in a manner that is theoretically independent of visual 

knowledge, it should be easily implemented for a wide range of object categories, and it should 

have a fixed number of trials that will produce a standardized score, both for each category 

separately and across categories. The SVET will use knowledge of subordinate-level object 

labels and names as a measure of semantic knowledge for each category under the assumption 

that these are an important part of semantic networks. For example, an image of a specific cat 

might bring to mind the words “tabby,” “domestic short hair,” or “Teddy” (if we know the 

specific cat). Certainly the semantic network for many categories might include considerably 

more than names, however, using subordinate-level names will allow us to create tests that are 

comparable across many categories because names and labels are almost always an important 

part of semantic knowledge.  

 One could use the SVET as an independent measure of semantic knowledge either on its 

own or together with any variety of cognitive or perceptual measures or individual variables. We 

suggest that the SVET could also be used with another measure of performance for the same 

category, such as a visual task, to estimate the contribution of category-specific experience to 

both tasks. To estimate experience from measures of visual and semantic performance, we must 
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first consider how these variables interact with each other and underlying abilities. Figure 1 

presents a schematic model of the proposed relationships between these observed and latent 

variables. It is important to note that the performance measures are domain-specific, just as 

experience is domain-specific, but that the abilities are postulated to be domain-general. Every 

person has experience with all sorts of objects through interactions with the world in their jobs, 

hobbies, and everyday life; an individual may care about some objects a lot, and not care about 

others, and this is reflected in each individual’s level of experience for a particular category.  

 We will consider two domain-general abilities that may be important for the tasks we use 

in this project. One is fluid intelligence (Gf), which can be thought of as general cognitive 

aptitude based on measures of problem-solving and reasoning. While crystallized intelligence 

refers to knowledge of specific facts and content, research and modeling have suggested that 

fluid intelligence is predictive of a general interest in learning and seeking knowledge, which 

results in acquiring crystallized intelligence in specific domains (Schmidt, 2014). Because fluid 

intelligence measures are mostly independent of prior experience, we hypothesize they may best 

capture individual differences that would influence a person’s ability to acquire semantic 

knowledge in any domain. 

 The other general ability we will consider is a domain-general ability for visual learning 

(v), for example the ability to discriminate visually similar objects. The variance that is common 

to performance on many domain-specific tests of visual recognition might reflect v, although this 

is complicated by variability in domain-specific performance. Under the assumption that v is 

domain-general and includes for face recognition, measures of face recognition performance 

(such as the Cambridge Face Memory Test, CFMT; Duchaine and Nakayama, 2006) might 

provide a relatively direct estimate of v. This is because there is very little variance in amount of 
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experience with faces between individuals (experience is high for everyone), so the standardized 

score on the CFMT is likely to be a very good estimate of an individual’s true ability to 

recognize faces, which might reflect v. An estimate of v might also be obtained by looking at 

average VET performance across all categories (or all but one) because in principle aggregating 

across categories reduces any category-specific effects on performance. Importantly, studies of 

performance on the CFMT and measures of intelligence suggest that v and Gf are not correlated 

(Davis et al., 2011; Hedley et al., 2011; Wilhelm et al., 2010; Wilmer et al., 2010).  

 Domain-specific experience must interact with each of these domain-general abilities to 

produce domain-specific performance. If individuals’ performance on visual and semantic tasks 

is correlated, and if v and g are independent of one another, the shared variance in performance 

may be the result of common category experience. Therefore, according to this proposed 

framework experience can contribute to at least part of the shared variance between visual and 

semantic performance.  

 
Figure 1. Diagram of proposed relationships between variables that contribute to domain specific performance. 
Visual ability and verbal ability are domain-general abilities that do not interact with one another, but each interact 
with domain-specific experience separately. The interaction of ability and experience shapes domain-specific 
performance. The shared variance between visual and semantic performance reflects common domain experience. 
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Goals of the dissertation  

 The goals of this work are first to create a standardized, non-visual measure of semantic 

knowledge for object categories that is reliable by testing and refining the test with a large online 

sample (Study 1). In Study 2A, we will use the newly developed SVET together with measures 

of visual performance for each category and domain-general abilities in a large sample in the 

laboratory to understand the relationships between these measures and assess the contribution of 

category experience to performance across visual and semantic tasks. Studies 2B and 2C will 

continue our exploration of the SVET by whether name knowledge explains the visual-semantic 

relationship and testing the SVET with an expert population of birders. Lastly, in Study 3 we will 

demonstrate how the SVET might be a useful independent measure for understanding another 

cognitive phenomenon; we will explore the lateralization of visual object recognition 

performance as a function of semantic knowledge by asking if SVET performance predicts 

lateralized object recognition. Overall, the work will contribute to the new research area of 

individual differences in object recognition and provide a carefully tested and refined tool, the 

SVET, to the psychology community for future use in this field.  
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Chapter 2 – Study 1 

Creating a Test of Semantic Object Knowledge: The Semantic Vanderbilt Expertise Test 
(SVET) 

 
Overview 

 The goal of the first study was to create a valid and reliable measure of semantic 

knowledge for a variety of object categories, which will be called the Semantic Vanderbilt 

Expertise Test (SVET). We wanted to create a measure that could easily be used to assess an 

individual’s level of semantic knowledge both for a specific category, and using a format that 

could be applied in the same way across many categories. There were several attributes we 

wanted the test to have that would make it flexible to use for many different categories and 

effective for easily testing a range of subject populations in combination with other measures. 

First, the test should have a concise, standardized format that can easily be used for many 

different object categories and that can be completed by subjects with both low and high 

semantic knowledge. Some methods of testing semantic knowledge such as listing names or 

features of objects in a category might favor high knowledge subjects but not discriminate low 

knowledge subjects who might be at floor; to avoid this, recognition of object names will be a 

better task than naming. Second, the test should not include any visual information so that it 

would measure performance relatively independently of visual skills. Ultimately we are seeking 

to pair the SVET with a visual test, such as the Vanderbilt Expertise Test (VET; McGugin et al., 

2012b), to measure visual and semantic performance separately. Third, the test should be able to 

measure performance with as much precision as possible across the full range of ability, from 

novice to expert. Fourth, the test should provide a valid measure of domain-specific semantic 

knowledge. This can be tested by assessing whether semantic performance is correlated with 

self-reports of experience with that category and with visual performance for that category, more 
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than the same measures for other categories. Finally, the test should have good internal 

consistency and be relatively unidimensional, such that differences in scores between individuals 

will reliably estimate differences in a single type of knowledge.  

 To create and refine the SVET for each category, and to determine which categories 

would be appropriate for measurement with the SVET, we recruited subjects online using 

Amazon Mechanical Turk (AMT) to complete single category SVETs. AMT allows us to collect 

data quickly and with minimal cost from a population that is more diverse in terms of age, 

experience, and education than we typically have access to on a university campus, a feature that 

is particularly important for creating these tests. We will also test reliability in a university 

population in Study 2 since that population is most likely to be used by other psychologists who 

use the SVET. In recent years AMT has been used to collect data for a wide range of psychology 

tasks including classic and complex cognitive and perceptual tasks (e.g. face recognition, Stroop, 

attentional blink) and studies have found that results obtained from AMT are consistent with 

those obtained in the laboratory when subjects are screened and carefully instructed online (on 

AMT: Crump, McDonnell, & Gureckis, 2013; or on other websites: Germine et al., 2012). The 

steps taken to refine each SVET based on online data will be outlined here, followed by the 

presentation and discussion of data collected on AMT with the final version of each SVET with 

116 subjects who completed the SVET for all eight categories: cars, planes, Transformers, 

dinosaurs, shoes, birds, leaves, and mushrooms.  

Test design 

 The SVET uses knowledge of subordinate-level names (Jolicoeur, Gluck, & Kosslyn, 

1984; Rosch et al., 1976) as an indicator of how much knowledge an individual has about a 

particular object category. For many domains individuals may have more complex, relational, 
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and hierarchical knowledge beyond naming, but the nature of this knowledge varies considerably 

between domains, (e.g. for dinosaurs: time periods, diets of dinosaurs, predator-prey 

relationships; for birds: migration patterns, habitat, songs, physical differences between males 

and females) whereas naming knowledge can be tested for nearly all domains. This measurement 

makes the assumption that the more a person knows about a domain, the more vocabulary he/she 

has acquired about that domain. We will validate this assumption by comparing SVET 

performance with self-reports of category experience to ensure a positive relationship.    

 Categories. We selected object categories for which subordinate-level names would be 

relevant and typically acquired with experience and interest in the category. Categories were also 

required to have subordinate-level objects that could be learned and recognized in the VET. We 

selected a set of categories that included domains of greater interest to men or women as 

previous work has found strong effects of sex on experience and visual performance with 

different categories (McGugin et al., 2012b), as well as a mix of living domains and artifacts. We 

created SVETs for 9 categories and pilot testing showed that only one of them would not be 

useful with a non-expert population; the SVET-Butterfly was excluded from further testing 

because of near chance performance in pilot testing. Our final set of categories in the SVET 

includes four male-interest categories—cars, planes, Transformers, and dinosaurs—and four 

female-interest categories—shoes, birds, leaves, and mushrooms. Previous work (McGugin et al., 

2012b) demonstrated greater self-reports of experience and better recognition performance for 

men with non-living vehicles categories such as cars, planes, and motorcycles, and for women 

with living categories such as owls, wading birds, and leaves. Given the nature of these sex 

differences for object categories, men may have greater experience with more artifact than living 

categories, and women may have greater experience with more living than artifact categories. 
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Alternatively, this may be an accident of the categories used in McGugin et al., (2012b), because 

all the non-living categories in that study were vehicles (cars, planes and motorcycles). To 

achieve a better balance of living/artifact categories relative to the original VET (McGugin et al., 

2012b), we included dinosaurs as a living category (or once-living and natural) that we believed 

men would have more experience with and shoes, specifically women’s high heels, as an artifact 

that we believed women would have more experience with.  

 Trials. The SVET for each category consisted of 48 test trials and 3 additional catch 

trials. Each SVET trial presented three names: one target name, a real subordinate-level name of 

an object in that category (e.g. Honda Civic, 737, blue jay, birch), and two foil names, which are 

either names of objects in a category not tested in any of the SVETs (e.g., types of stone, grass, 

or viruses; never more than 3 per category were used in the same SVET) or were entirely made-

up words. Compared to object naming, this trial format allows those with limited category 

knowledge to complete the test. Having three names in each trial reduces the chance level and 

allowed us to manipulate trial difficulty through foil properties, for example how similar a foil is 

to a real name. Catch trials were very easy trials that followed the same format as the test trials 

with real target names but much more obvious foil names (e.g. blue jay, JCPenney, lipstick). 

Including catch trials is particularly important for online testing to exclude any subjects who 

answer randomly or do not understand the task instructions. The trials and trial order were the 

same for all subjects to eliminate order effects as a contribution to individual differences. In the 

versions of the SVET used in the complete eight-category set (SVET 1.0) in the following 

studies, trials were ordered from easiest to hardest based on trial accuracy from previous pilot 

data. See Table 1 for examples of an easy, medium, and difficult SVET trial for each category 

(see Appendix A for all trials in each SVET).  
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 Car names. Names in the SVET-Car consisted of make and model names 

 (e.g., Honda Accord). All makes for both target and foil names were real car brands sold in the 

United States between 2000 and 2013 (e.g., Toyota, Ford, Audi). Target model names were real 

models of sedans sold in the United States between the years 2000 and 2012 (e.g., Camry, Focus, 

A6). Foil model names were either real words or non-words that (to the best of our knowledge) 

had not been used as 20th or 21st century American car names (e.g., Olympic, Alepo, Primo). 

Target names always consisted of both a real make and real model name combined to form a real 

car name (e.g., Honda Accord). Foil names were of two forms, with equal frequency: 1) 

Mismatched, a real make and a real model name but that do not form a real car name when 

combined (e.g., Honda Camry); and 2) Fake, a real make and a fake model name (e.g., Honda 

Napa).  

 Plane names. Target names in the SVET-Plane were names of model airplanes used in 

the United States in the past 20 years, with the exception of 8 trials that were plane models used 

in World War I or World War II. Although planes could be referred to by a manufacturer name, 

model name and sub-model name (e.g. Airbus A340-300), we aimed to use only the model name  

that a person with knowledge of planes would use (e.g. A340). Plane models were from several 

types of aircraft: commercial (16 trials), general aviation (7 trials), World War I (1 trial), World 

War II (7 trials), military aircraft including fighter, fighter trainer, transport, and bomber (12 

trials), drones (3 trials), and business jets (2 trials). Foil names were created to match the format 

of real plane model names, such that some were all numbers, combinations of letters and 

numbers, or words. 

 Transformer names. Target Transformer names were the names of characters capable of 

changing form (not human characters or the names of other objects or locations) from the 
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Transformers entertainment franchise produced by Takara Tomy and Hasbro toy companies. 

Names were selected from Generation 1, Generation 2, and Beast Wars series of comics and 

television and from the recent film series (2007, 2009, 2011 movies). Foil names were created to 

match the style of real Transformer names and were words or non-words.  

 Dinosaur names. Target dinosaur names were the common names of discovered 

dinosaurs that are generally accepted by the scientific community. Names were taken with 

roughly equally sampling across time period (e.g., Jurassic, Cretaceous) and other dinosaur traits 

(e.g. herbivore vs. carnivore, bipedal vs. quadrupedal). Foil names were created to match the 

style of real dinosaur names, with some names based on physical attributes denoted by Greek 

roots (e.g. using roots tetra meaning four and cerato meaning horns) and others named after 

places or fictitious people who may have discovered them.  

 Shoe names. The VET-shoe and SVET-shoe both refer to knowledge of women’s high-

heeled pumps. Shoes are perhaps a particularly interesting category for name knowledge. 

Although individual shoes do have a model name on the box (e.g. Moxy, Delilah), these names 

change every season and would rarely be used to identify a shoe even by those who are very 

skilled at visual shoe recognition (see Study 2B). Instead, we used the brand (or designer) names 

of women’s high-heeled pumps as the target names. We hypothesized that these were the names 

that one would acquire knowledge of as they become more experienced with shoes. All brand 

names are brands of women’s high-heeled pumps currently sold in the United States at 

Nordstrom or Saks Fifth Avenue department stores. Foil names were created to match the style 

of real brand names (e.g. one or two words or the name of a designer) and were words or non-

words.  
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 Bird names. Target names for the SVET-bird were all common names of passerine, or 

perching, birds found in a large portion of North America. Real bird names were selected to 

sample across a variety of passerine families (e.g. flycatchers, orioles, jays, finches) and east and 

west coast birds. Foil names were created to match the style of real bird names and were words 

or non-words.  

 Leaf names. Target names for the SVET-leaf were all common names of deciduous trees 

found in a large portion of North America. Foil names were created to match the style of real leaf 

(tree) names and were words or non-words.  

 Mushroom names. Target mushroom names were all common names of mushroom 

species found in North America. An effort was made to avoid using multiple names that refer to 

the same species. Most of the mushrooms used are edible, although some (6 trials) are poisonous 

or potentially poisonous.  
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Table 1. Example trials from each SVET. Selected trials illustrate an easy, medium, and difficult trial for each 
category (lower trial numbers are easier). Names in orange are the real name and correct response.   

                     Name 1                           Name 2                               Name 3 
CAR 
Trial 6 Volvo Focus Mercedes-Benz C300 Mercury Alero 
Trial 26 Suzuki Prestige Infiniti G37 Pontiac S550 
Trial 49 Saturn Fusion Acura TSX Saab S80 
PLANE 
Trial 2 737 Serpens Sheffield 
Trial 24 8900 A2 Lobo Spitfire 
Trial 45 Mosquito Western Lair A480 
TRANSFORMER 
Trial 4 Lavaman Chromoburn Quickstrike 
Trial 28 Sunstreaker Septawave Proton 
Trial 46 Waveracer Hound Sotter 
DINOSAUR 
Trial 7 Pentaceratops Eudontidectes Microtarius 
Trial 22 Stuthioceratops Centaurisaurus Iguanodon 
Trial 48 Corposaurus Monocyclosaurus Mussaurus 
SHOE 
Trial 4 Nine West Rebecca Fox Aloft 
Trial 25 Zetta  Kalden White Franco Sarto 
Trial 47 Graham Wood Gravelle Chinese Laundry 
BIRD 
Trial 5 Savannah Sparrow Tufted Gemthroat Green Huckaloo 
Trial 23 Scarlet Tanager Blue-stripe Binbeak Tri-colored Wheatear 
Trial 37 Spot-breasted Pixie McCown's Longspur Pale-eyed Baylin 
LEAF 
Trial 3 Red Mountainwood Venuswood American Sycamore 
Trial 19 Yellow Poplar California Bargo Feather Willow 
Trial 47 Silver Aster Valley Walnut Tulip Poplar 
MUSHROOM     
Trial 4 White Truffle Milky Scaber Sugar Siullus 
Trial 25 Amber Stalk Tavel Enoki 
Trial 46 Crab Brittlegill Elephant Trunk  Glass Cap 
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 Trial presentation. On each trial, three object names (one real name and two foils) were 

presented mid-height in the browser window, one in the center and one each to the left and right 

of center, on a white background (see Figure 2). The location of the correct response in each trial 

was counter-balanced so that it occurred with equal frequency in the left, right, and center 

locations. Subjects responded by clicking on a name and were given unlimited time to make their 

response on each trial. No feedback was provided and subjects could not return to previous trials.  

 

  
Figure 2. SVET trial format showing three trials from SVET-Car. 
 
Test refinement 

 After designing an initial SVET for each category, we went through multiple iterations of 

data collection and revision for each test (between 1 and 4 revisions per category). Data were 

collected independently for each SVET with subjects recruited from AMT  

(https://www.mturk.com/, Amazon Web Services, Amazon.com Inc., Seattle, WA) with 

restrictions that they be English speakers residing in the United States (N=35-101 per SVET 

version; N=1,383 total).  

Saturn'Fuze' Honda'Soul' Toyota'Avalon'

Pon4ac'Grand'Am' Honda'Napa' Infini4'ILX'

Mazda'Blaze' Honda'Fit' Ford'Fiber'
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 For each SVET version, we went through several steps to assess and revise the trials. 

First, we looked at accuracy on test trials to evaluate if the frequency distribution of trial 

accuracy was spread evenly across difficulty. Ideally the tests would have an even distribution 

with some trials demonstrating high accuracy, almost all subjects got them correct, and others 

demonstrating medium or low accuracy suggesting that more category knowledge was required 

to answer the trial correctly. In addition to accuracy for each trial, we looked at the percentage of 

times each foil was chosen on a given trial. A foil that is rarely chosen will not be useful in 

differentiating knowledge levels and will in effect increase the chance level to .50 if subjects 

without any knowledge almost always know to ignore a certain implausible foil. 

 For each test we looked at the correlation between SVET performance and subjects’ self-

report of experience with that category. We found that these were always well-correlated, 

although to a greater extent for certain tests than others, which is likely due to the nature of that 

category and how subjects answered our “experience” question. More importantly, we expect 

when we test the same subjects with many categories that correlation of performance and 

experience will be greater for the same category than across categories (this will be reported for 

the last versions of each SVET).  

 For each SVET dataset, we computed Cronbach’s alpha as a measure of internal 

consistency to assess test reliability. Our goal was at least acceptable test reliability (α >.7), 

although given our relatively small sample size for each version we expected that some 

variability would be due to sampling noise. We also conducted factor analyses using polychoric 

correlations for each test to estimate how similar the trials were to one another, i.e., if they were 

measuring the same type of knowledge. Using the results of these factor analyses, we could look 

at the eigenvalues for each factor as well as the factor loadings for each trial. Our goal was to 
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make each test as unidimensional as possible so that test scores would reflect differences in 

primarily just one type of knowledge across individuals. With a similar goal in mind for test 

revision, we also conducted some more exploratory analyses using 2-parameter Item Response 

Theory (IRT) models. We used IRT results to assess trial difficulty in the context of subject 

ability (theta), which we wanted to have an even distribution, and the discriminability of trials 

(slope), which we wanted to be positive and as high as possible to increase the usefulness of our 

measure in differentiating between individuals.    

 Using all of these data, we revised the tests to increase reliability and coverage over the 

range of ability in the normal population. We replaced target and foil names in some trials to 

smooth the accuracy distribution so that there was an even number of trials from easy to difficult 

and so that foils in the same trial were chosen with equal frequency for incorrect responses. 

Trials that had low Factor 1 loading or high Factor 2 loading were changed to reduce 

multidimensionality and trials with a negative slope in our IRT model were also revised. In a 

typical test revision, between 5 and 20 target or foil names were changed, but an entire trial was 

rarely dropped. Although it was sometimes possible to replace a more common name with a 

more obscure one or vice versa, the decision of how to replace names was often limited to our 

introspection on how someone would approach a trial. This was especially difficult for 

understanding why certain foils were more or less appealing, and for cars and planes we sought 

out experts with that category to get their feedback on the trials. A more data-driven approach 

was employed for several categories, in which we refined not just the most recent version (e.g. 

change version 2 trials to create version 3), but also looked at data from multiple test versions 

(e.g. version 1 its derivation version 2) and combined trials from the two tests to create a version 

a well-rounded test. 
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Testing all SVETs in a single online sample 

 After revising each SVET separately, we conducted an online study in which all subjects 

completed the final SVET for all eight categories. This dataset allowed us to compare 

performance between categories in the same subject and obtain data for the 1.0 version of each 

SVET with an online sample, which differs in age, education, and category experience from the 

Vanderbilt samples we will test in Studies 2 and 3.  

 Subjects. Subjects were recruited online on AMT. The SVET for each of the eight 

categories was completed as a separate HIT or task. The SVET-Car was posted first and subjects 

who completed the test without missing more than one catch trial and who obtained above 

chance accuracy (all but two) were sent a personal invitation offering them the chance to 

complete the other seven SVETs. The study was approved by the Vanderbilt IRB and subjects 

gave informed consent before the start of each test. Subjects were paid $0.75 for the SVET-Car 

and $0.10 for each of the other tests, but were awarded a $1.00 bonus for each of the seven 

additional tests if they completed the full set within 24 hours ($8.45 total). All eight SVETs were 

completed by 116 subjects (48 male) aged 18-67 (mean=35.82, SD=12.45) who are reported in 

the analyses. All but one of these subjects reported English as their native language, but all 

reported being English-speakers currently residing in the United States. Subjects who completed 

only a subset of the SVETs (N=9) or completed only the SVET-car but did not accept the 

invitation to complete more tests (N=22) were compensated without bonuses and are excluded 

from the analyses.  

 Procedure. At the beginning of each SVET, we asked subjects to provide a rating of 

their experience with the object category (as in Gauthier et al., in press; McGugin et al., 2012b). 

For example the self-report for cars asked, “Rate your expertise with: Cars. By expertise we 
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mean your experience with, interest in, and knowledge about items in this category, relative to 

other people.” Ratings were on a whole-number scale from 1 (very much below average) to 9 

(very much above average). Task instructions to select the real name were adjusted for each 

category to be as clear as possible (e.g. for birds, “the real, common name of a bird species found 

in North America”). Each SVET trial was then presented, as shown in Figure 2, until subjects 

responded by clicking on one of the three names. There was a 1 sec inter-trial blank interval. 

Subjects completed 51 trials total for each SVET (48 test trials and 3 catch trials that were 

interspersed with the test trials); trial order was the same for all subjects with trials ordered 

approximately from easiest to hardest in each test. All subjects completed the SVET-car first, but 

could complete the other seven categories in any order they chose.  

 

 
Figure 3. Boxplots of accuracy for SVETs completed by a single set of subjects on AMT (N=116 ). The bottom 
and the top of each box represent the first and third quartile, respectively, and the middle line of each box shows the 
second quartile, or the median. Whiskers show the highest and lowest scores between 1.5 and 3 (the interquartile 
range) while outliers beyond this range are represented by dots (or an asterisk in the case of one very extreme 
outlier). The grey dotted line shows chance (.33). 
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 Results and discussion. No subjects were excluded due to catch trial performance (catch 

trial accuracy across all tests >.66), which was very good on all tests (.93-.99 on each test). As 

can be seen in Figure 3 and the first column of Table 2, mean SVET performance and variability 

differed between categories, with cars and mushrooms showing the highest and lowest accuracy, 

respectively. The greatest variability in accuracy was observed for cars and shoes, for which self-

report of experience is the highest (Table 2, column 2), suggesting that greater amounts of 

experience with cars and shoes is reflected in the SVET score. For all categories, we observed a 

significant correlation between SVET performance and self-report of experience with that 

category (Table 2, column 3). To determine if this relationship between SVET performance and 

experience was greater within a category than across categories we calculated the average 

correlation between each SVET and self-reports of experience for the other seven categories (r=-

0.05-0.10 for each category). We found that SVET performance and experience were always 

much more highly correlated within category (mean r=0.37) than across categories (mean 

r=0.05). In a further step we asked how each SVET predicts experience-Other (the average of 

experience ratings for the other seven categories) (mean r=0.08; Table 3, column 2) and also 

how category experience predicts SVET-Other (the average of SVET performance for the other 

seven categories) (mean r=0.07; Table 3, column 3). We found that within category SVET-

experience correlation was already greater than both of these relationships with non-category 

SVET experience. This suggests that the SVET effectively measures category-specific 

experience with a category using non-visual naming knowledge. There may also be strong 

effects of sex or other variables underlying the differences between categories, both in amount of 

experience and, perhaps as a result, SVET performance. However, as the goal in Study 1 is to 

create and validate the SVETs we will hold off on exploring these effects in more detail in Study 
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2, where we will have a larger sample, a more nuanced measure of experience, and measures of 

both visual and semantic performance.  

Table 2. Results of the SVET 1.0 for each category from a single group of subjects on AMT in Study 1. All 
correlations with experience (column 3) are significant (rCrit(114)=.18, p<.05). 
 

  
Mean Acc  
(Std Dev) 

Experience 
(Std Dev) 

Correlation 
with Exp, r 

Cronbach's 
Alpha 

Factor 1 
Eigenvalue 

Factor 2 
Eigenvalue 

Factor 3 
Eigenvalue 

Car 0.69 (0.15) 4.78(1.37) 0.37 0.94 14.88 6.84 3.95 
Plane 0.53 (0.12) 2.78(1.38) 0.36 0.84 8.61 5.70 4.86 
Transformer 0.45 (0.11) 2.84(1.65) 0.50 0.75 7.89 6.36 4.04 
Dinosaur 0.47 (0.08) 3.90(1.48) 0.40 0.63 7.08 5.89 4.47 
Shoe 0.53 (0.17) 4.07(1.66) 0.44 0.92 12.17 5.95 3.80 
Bird 0.52 (0.10) 3.41(1.40) 0.33 0.75 6.93 4.97 4.58 
Leaf 0.57 (0.13) 3.57(1.53) 0.27 0.87 10.32 4.68 3.61 
Mushroom 0.44 (0.10) 2.63(1.40) 0.27 0.71 7.17 5.86 3.72 

 
Table 3. Correlations (r) of SVET and experience self-report ratings within and between categories for a single 
group of subjects on AMT in Study 1. Column 1 shows the correlation between SVET and experience for the same 
category (column 3 in Table 2). Column 2 shows the correlation between SVET for the category and experience-
other (average of self-reports on other 7 categories). Column 3 shows the correlation between experience for the 
category and SVET-Other (average of SVET performance on other 7 categories). Values in bolded red are 
statistically significant (rCrit(114)=.18, p<.05). 
 

  
SVET-Category and 
Experience-Category   SVET-Category and 

Experience-Other   Experience-Category 
and SVET-Other 

Car 0.37 
 

0.06 
 

0.13 
Plane 0.36 

 
0.15 

 
0.06 

Transformer 0.50 
 

0.06 
 

0.09 
Dinosaur 0.40 

 
0.21 

 
0.19 

Shoe 0.44 
 

-0.09 
 

0.24 
Bird 0.33 

 
0.14 

 
0.04 

Leaf 0.27 
 

0.01 
 

-0.15 
Mushroom 0.27   0.08   -0.03 

  
 
 To assess the SVET as a useful measure of semantic experience, we need to look at 

several properties of each test in this dataset. First, we consider the range and frequency of trial 

difficulty. The frequency histograms of trial accuracy in Figure 4 illustrate that while some 

categories demonstrate a better spread than others, for example SVET-Car is skewed towards 

easy (or high accuracy) trials likely because it is the category with the greatest level of 
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experience, all of the tests cover nearly the full range of difficulty without over-representing any 

difficulty level too much. Some of the spikes in frequency are likely due to noise in our sample, 

and while categories such as cars, shoes and leaves could be smoothed further in their difficulty 

distribution, we feel comfortable using these versions of the SVET going forward since no area 

of the difficulty distribution above chance (.33) is unrepresented.  

 

 
 
Figure 4. Frequency histograms of trial accuracy for each SVET as completed by a single group of subjects on 
AMT (N=116).  
 
 Next, we assessed the reliability and dimensionality of the SVETs. We computed 

Cronbach’s alpha, a coefficient of internal consistency, to estimate the reliability of each test, 

which is a way of asking if all of the trials in a SVET are measuring the same thing, in this case 

semantic object knowledge. In Study 1, all tests had at least an acceptable level of internal 

consistency (α>.6) and many demonstrated higher consistency (α>.75) (Table 2, column 4). We 

can understand these differences in internal consistency by looking at the principal factor 

analysis for each test. Table 2 (columns 5-7) shows the eigenvalues for the first three factors for 
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each of the SVETs, which represent the amount of variance in the test that is accounted for by 

each factor. Factor eigenvalues are traditionally plotted on a scree plot to appreciate how factor 

loadings drop off significantly after the first or several factors. Figure 5 shows example scree 

plots for a subset of the SVETs. As can be appreciated from the figure, the SVET-Car and 

SVET-Shoe are highly unidimensional with the first factor carrying a large portion of the test 

variance, while other SVETS, including plane and bird, are more multidimensional. Looking at 

the factor 1 and 2 eigenvalues in Table 2, it can be appreciated that categories with higher factor 

2 values relative to factor 1 values, for example SVET-Dinosaur, also have lower internal 

consistency, suggesting that those SVETs may measure more than a single type of knowledge. 

Overall, our tests demonstrate good reliability, with some being more multi-dimensional than 

others. For categories that demonstrate multidimensionality, it may be useful in some analyses to 

restrict analyses to a subset of trials that load highly on a single factor, a strategy we will use in 

Study 2. 

 
 
Figure 5. Sample scree plots for four of the final SVETs from data with a single group of subjects on AMT. The 
blue bars and the y-axis on the left show the eigenvalues for each of the first 20 factors, which measure test variance 
accounted for by that factor. The red curve and the y-axis on the right show cumulative variability accounted for by 
Factors 1-n. 
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Conclusions 

 In Study 1 we applied a multi-stage process of creating, testing, and refining the SVET 

for a final set of eight object categories. We successfully created a non-visual test of semantic 

object knowledge using subordinate-level names in a standard format that can be used for many 

different object categories and can be completed by both novices and experts. We demonstrated 

that each SVET is reliable, valid, and covers a range of performance.  

 We found that all eight SVETs show acceptable or good internal consistency. We also 

investigated the dimensionality of each test because unidimensionality is an assumption required 

for some analyses including basic IRT methods. Some tests were highly unidimensional while 

others were more multidimensional, with two factors carrying much of the test’s variance, 

perhaps reflecting the knowledge structure for that category.    

 Each SVET consists of trials ranging from easy to difficult so that it can measure 

individual performance with a high level of precision across the full range of knowledge. We 

tested the frequency distribution of trial accuracy for each SVET and found excellent coverage 

across the range of performance. 

 We also validated the SVET by considering the correlation between SVET performance 

and self-reports of category experience. We found that each SVET was well-correlated with 

experience for that category, and that within category experience correlated much more than 

across category experience.  

 We tested over 1,500 subjects and addressed many aspects of test design usually 

overlooked in cognitive psychology. In Study 1, we sought to design the SVET as carefully as 

possible to be a reliable and valid measure of semantic knowledge that is standardized, 

informative, and reasonable in length. The attention and time spent rigorously testing our 
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measures is critical for tests of individual differences in object knowledge and cannot be 

overlooked. The SVET will be available to psychologists as a tool for measuring object 

experience and understanding visual and semantic object performance.  

 In Study 2 we will use the SVET together with a visual memory test (the VET) for each 

category, as well as domain-general measures of visual and verbal ability to investigate visual 

object performance and the contribution of experience. This demanding individual differences 

approach to studying object recognition would not be possible without the careful design of all of 

these measures.  
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Chapter 3 – Study 2 

Exploring the SVET and Understanding the Contribution of Experience to Performance 

 After establishing the basic psychometric properties of the SVET for eight object 

categories in Study 1, the next goal is to investigate the relationship between visual (VET) and  

semantic performance (SVET) for the same categories. In this study, all subjects will complete 

the VET and the SVET for eight object categories, allowing us to compare performance on both 

measures both within and across categories. In addition, adding measures of domain-general 

visual and verbal ability will help to determine how performance is influenced by domain-

general versus domain-specific abilities. Using these measures together to understand the 

contributions to performance will allow us to understand how category experience influences an 

individual’s visual performance. We will also consider the SVET in two special cases. We will 

measure visual and semantic performance for a category for which even experts rarely employ 

subordinate-level names to assess the extent to which visual and semantic performance may be 

related not because of common experience but because semantic information is automatically 

employed even in visual tasks where it is not required. We will also test the SVET-Bird and 

VET-Bird in a sample of expert birders to test the validity of the SVET for use in expert 

populations. 
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Study 2A: 

Using the SVET and VET with Measures of General Visual and Verbal Ability to 

Understand Performance and the Contribution of Experience 

Overview 

 Study 2A addresses the SVET’s relationship with a number of other individual abilities 

and variables. Here we explore the relationship between visual and semantic performance for 

each of the eight categories for which we developed a SVET in Study 1. We ask how visual and 

semantic performance measures are related both within a category and across categories and how 

they are related to an individual’s age, sex, and self-report of experience. Using domain-general 

measures of visual learning and fluid intelligence (Gf) we will also ask if underlying domain-

general abilities contribute to domain-specific performance. With this set of measures, we hope 

to account for many of the variables that contribute to visual and semantic performance for a 

given category, which may then allow us to uncover whether experience with a given category is 

the main contributor of the domain-specific relationship between visual and semantic 

performance. 

We address these questions with a dataset collected in the laboratory with subjects from 

the Vanderbilt and Nashville community, thereby also obtaining reliability measurements in a 

different population than Study 1 (younger on average, tested in the laboratory). We 

employed a progression of correlations, rotated factor analyses, Item Response Theory models, 

and regressions to understand the contribution of category experience to performance.  

 An important goal of Study 2A is to investigate the relationships between domain-

specific performance, experience, and domain-general abilities. By collecting a large dataset in 

which every subject has completed all measures, including both the VET (visual) and the SVET 
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(semantic) for eight object categories, we can ask a number of questions about the relationship 

between these variables. First, we will assess the relationship between both VET and SVET 

performance with an expanded self-report measure of category experience. The correlation 

between performance and experience within a category, more than across categories, will 

provide further evidence that these tests are valid in their measurement of category-specific 

knowledge. We will then consider the relationship between VET and SVET performance for 

each category with age, sex, domain-general visual learning, and Gf. The relationship between 

performance with each of these variables is interesting on its own, but it is also important to 

account for so that we can later consider the relationship between domain-specific visual and 

semantic performance independent of these variables. We will address the relationship between 

VET and SVET performance within compared to between categories and try to understand what 

variables contribute to shared variance between VET and SVET. Our hypothesis is that common 

VET-SVET variance reflects shared category experience. To estimate the contribution of 

experience, we will remove this contribution from other measured variables that are not tied to 

category-specific experience (age, sex, Gf, domain-general task performance assessed using 

aggregates of the other domains). The results will help us understand how category experience is 

expressed in visual and semantic performance. 

Experiment design 

 Five measures were used in Study 2A, three domain-specific measures including a self-

report of experience, the VET (McGugin et al., 2012b), and the SVET, and two domain-general 

tests of visual learning and fluid intelligence (Gf). Each domain-specific measure tested eight 

object categories in the following order: cars, birds, dinosaurs, shoes, planes, mushrooms, 

Transformers, and leaves.  
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 Face recognition performance was measured using the Cambridge Face Memory Test 

(CFMT) (Duchaine & Nakayama, 2006). The CFMT is a well-established measure of visual 

memory for an object category outside of our SVET set, human faces. As suggested before, 

visual performance for faces is of particular interest because experience is high and variability is 

low, such that CFMT may be a relatively good measure of visual ability.  

 In this study we used three different tasks to measure fluid intelligence, as each task 

measures reasoning and problem-solving abilities in different domains that all contribute to a 

measure of Gf (adapted from Redick et al., 2012; see also Hambrick et al., 2007; 2008). All three 

tasks ask subjects to find a pattern or rule in a set of stimuli. Raven’s Advanced Progressive 

Matrices (RAPM) (Raven, Raven, & Court, 1998) is a test of spatial ability, The Letter Sets task 

(Ekstrom, French, Harman, & Dermen, 1976) is a test of verbal fluid intelligence, and the 

Number Series task (Thurstone, 1938) is a test of numerical fluid intelligence.  

 Methods  

 Subjects. Subjects were recruited from Vanderbilt University and the Nashville 

community; they gave informed consent and received course credit or monetary compensation 

for their participation. The study was approved by the Vanderbilt IRB. All subjects reported 

normal or corrected to normal visual acuity, were native English-speakers, and had lived in the 

United States at least 10 years. Subjects were not specifically recruited for their interest in any of 

the tested categories; rather, we were interested in testing the range of experience and 

performance for these categories found in a typically varying sample, although this is constrained 

by the fact that many subjects were students at the university. Two hundred and seventeen 

subjects participated in the study. One subject was excluded for not completing all of the tasks 



	
   38 

and three subjects were excluded for below chance (.33) performance on two or more SVETs. 

Data reported here are for 213 subjects (86 male) aged 18-55 (mean=22.49, SD=6.31). 

 Equipment. The experiment was conducted in the laboratory on Apple Mac Minis (OSX 

10.9.2, 2Ghz Intel core 2 duo) with 21.5-inch LCD monitors (1920x1080 resolution) using 

MATLAB R2009b (Mathworks, Natick, MA, USA) and the Psychtoolbox 

(http://psychtoolbox.org; Brainard, 1997). The experience questionnaire was completed using 

REDCap electronic data capture survey tools (http://redcap.vanderbilt.edu; Harris et al., 2009) 

hosted by Vanderbilt University. Subjects were allowed to sit a comfortable distance from the 

monitor (approximately 40cm). 

 Stimuli.  

 CFMT. Stimuli were grey-scale images of faces from varying viewpoints with and 

without added noise used by Duchaine and Nakayama (2006) in the Cambridge Face Memory 

Test (see Figure 8). 

 VET.  Stimuli were similar to the grey-scale images of objects with real-world 

backgrounds used by McGugin et al. (2012b) in the Vanderbilt Expertise Test (VET) (See Figure 

6). Some of the VETs used here (dinosaur, Transformer, shoe, and passerine bird) were not 

included in the original set (McGugin et al., 2012b) but were created in the same way to be 

paired with the SVET. Other VETs (car, plane, leaf and mushroom) have been revised (images 

and trials altered) from their original form to improve coverage of the range of performance and 

dimensionality. All images were 256 x 256 pixels and subtended a visual angle of approximately 

5.2 degrees. In the VET for each category, 6 object identities (e.g. cars: Chevrolet Cobalt, 

Lincoln MKS, Acura RL; birds: Cedar Waxwing, Blue Jay, Horned Lark) were used as target 

objects. One exemplar of each target was used at study and in same-exemplar trials. Three other  
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Figure 6. Stimuli and test design for VETs. Figure adapted from McGugin et al. (2012b).  
 

exemplars of each target object were used for different-exemplar trials. The different exemplars 

of the targets differed from the studied exemplar in one or more ways including background, 

viewpoint, position, model year, color, and other non-diagnostic features, but were always the 

same species or model. The objects were selected for each category according to the same 

guidelines as the SVET, as described in Study 1, to be species or models found in North America 

when applicable; all birds were passerine birds and only male birds were shown, cars were 

sedans, leaves were from deciduous trees, shoes were women’s high heels, Transformers were 

shown in multiple forms from any of the series used in the SVET, and planes were a mix of 

commercial and military planes. Foil images were objects from the same category (e.g. cars, 
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planes, leaves) but of a different type (name as in model or species) than any of the six target 

objects. Different exemplars of the same foil object occurred between one and four times per 

VET, but never on the same trial. Catch trial foil images were obviously different from studied 

objects and were usually selected from a similar category or sub-category that was not studied 

(e.g. SUVs in the VET-Car, wading birds in the VET-Bird, sneakers in the VET-Shoe).  

 SVET. SVET names were the same as those described for version 1.0 of each SVET in 

Study 1.  

 Fluid intelligence. The stimuli used in these tasks were adapted from Redick et al. (2012) 

(Figure 7).  

 Raven’s advanced progressive matrices (RAPM). Stimuli were matrices with one missing 

piece (Raven et al., 1998). Each matrix was a 3 x 3 array of objects with the lower right-hand 

object missing. The features of the objects in the matrix varied systematically (e.g., object shape, 

number of lines, direction of lines) according to a pattern that subjects needed to deduce to 

correctly select which of eight objects would appropriately complete the matrix. Eight single 

objects were presented below the matrix and labeled with the numbers 1–8, from which subjects 

selected their response.  

 Letter sets. Stimuli in each trial were five sets of four letters (e.g. BCCB, GFFG, LMML, 

QRRQ, WXXW) (Ekstrom et al., 1976). Four of the five letter sets followed a specific rule 

regarding the order or composition of the set. The sets were displayed in a row in the center of 

the screen and labeled with the numbers 1–5, which subjects used to select their response. These 

rules were not based on the sounds or shapes of the letters, or whether the letters formed specific 

words, but were based on features such as alphabetical order, repetition, or the presence/absence 

of a specific letter. 
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 Number series. The stimulus in each trial was an array of 5–12 one or two-digit numbers, 

selected and arranged so that when read from left to right they followed a particular rule 

(Thurstone, 1938). The pattern governing the number array could apply to single numbers alone 

or groupings of numbers in the series and could follow either a numerical order (e.g. 1 2 4 1 2 5 

1 2 6 interpreted as 124, 125, 126) or a mathematic function (e.g. 2 5 8 11 14 17 interpreted as 

+3 to each number). Below the number array the numbers 1–5 were presented and labeled 

“Answer” from which subjects selected their response. 

 
Figure 7. Stimuli and trials for fluid intelligence tests. Examples of a single trial for each task. Stimuli adapted 
from Redick et al. (2012). 
 
 Procedure. To prevent a contribution of order to individual scores, all subjects received 

the same order of tasks and trials. The experience questionnaire was given first before subjects 

could be influenced by their task performance. This was followed by the visual tasks, the CFMT, 

and then the VETs, which do not include any specific names. Subjects then completed a short 

bird and shoe image naming test, which will be described and reported in Study 2B, followed by 

the SVETs, and lastly the fluid intelligence tests. 

 Experience self-report. All questions in this self-report questionnaire of experience were 

answered as multiple choice questions with radio buttons in a website interface. The questions 

IQ Tests 

A. Number Series 

B. Letter Sets 

C. Raven’s Progressive Matrices 

!

1"4"3"2"5"4"3"6"5""

3" 4" 5" 6" 7"

NLIK" PLIK" QLIK" THIK" VLIK"

Answer'1' Answer'2' Answer'3' Answer'4' Answer'5'

1' 2' 3' 4' 5'
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are the same as those used by Gauthier et al. (in press) to quantify category experience. They 

specifically ask about verbal, visual, and amount of experience. First, subjects answered 4 

domain-general questions and then seven domain-specific questions, answering the same 

question for each of the eight categories before moving to the next question (see Table 4 for 

questions). Even-numbered subjects completed the domain-specific questions in reverse order 

from odd-numbered subjects to counter-balance any potential order effects. All questions were 

answered on a scale from 1 to 9 described for each questions (1 = very little, 9 = a lot) except for 

duration experience, which was answered from 1 (no interest) to 5 (6 or more years).   

Table 4. Questions used for the self-report of experience questionnaire answered on a scale from 1-9.   
 
General Experience 
1. Generally speaking, how strong is your interest in classifying objects in their various sub-
categories (such as learning about different kinds of insects, plants, vehicles, tools...)? 
2. Generally speaking, how easily do you learn to recognize objects visually? 
3. Generally speaking, relative to the average person, how much of your time at WORK or 
SCHOOL involves recognizing things visually? 
4. Generally speaking, relative to the average person, how much of your FREE TIME involves 
recognizing things visually? 

 Domain-specific Experience 
Note the following order is for odd subject numbers, even subject numbers had the reverse 
order; XXX = category (e.g. birds, cars) 
1. Please rate yourself on your expertise with XXX considering your interest in, years of 
exposure to, knowledge of, and familiarity with XXX. 
2. If you are interested in XXX, when did this interest begin? 
3. How often do you look at IMAGES of XXX, in movies, television, or other kinds of 
documents (books, magazines, or online)? 
4. How often do you read TEXT (in books, magazines, online) that contains information about 
XXX? 
5. How important is the domain of XXX to you, relative to all the other things you are 
interested in? 
6. If you saw a specific XXX in a TV show, how sure are you that you could recognize that 
item among similar images if you were tested the next day? 
7. If you were asked to write an essay about different kinds of XXX, how extensive and 
detailed do you think your essay would be? 
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 CFMT. In this task, subjects learned six target face identities and then had to select those 

target faces among distractors. The target was sometimes shown in a different orientation, or 

with different lighting or added noise compared to study (Figure 8). Thus, success on the CFMT 

requires generalizing across low-level image properties and viewpoints to identify faces. The 

CFMT has been shown to be a reliable measure that discriminates between individuals at all skill 

levels (Bowles et al., 2009; Germine et al., 2011a; Germine et al., 2011b; Wilmer et al., 2010; 

Woolley, Gerbasi, Chabris, Kosslyn, & Hackman, 2008). 

 First, subjects completed three practice trials with a cartoon face shown from different 

viewpoints; these are the only trials on which subjects receive feedback. Subjects then studied 

the sex target face identities for 20 sec. The target images shown at study were front-facing 

views of six unique individuals. This was followed by an 18 trial learning phase in which they 

saw three faces, one of which was the exact study image of a test face. In all test trials, they had 

to select the face that matched one of the six target identities. Every trial contained one target 

face and two unstudied distractor faces that were not taken from the target set. Next, there was a 

30 trial no noise test phase, in which the target image was one of the target face identities, but 

was not the exact study image. In this phase, the target face images varied from the studied 

images in viewpoint and lighting conditions. Subjects were told that they would need to select 

the same identity even though images would not be exactly the same. Subjects were then shown 

the 6 target face study images again for 20 seconds. Lastly, they completed another 24 trial test 

phase in which Gaussian noise was added to all of the images. Subjects indicated their responses 

by pressing 1, 2, or 3 on the number pad to indicate the location of the target face on the screen. 

Images remained on the screen until subjects made a response. See Duchaine and Nakayama 

(2006) for additional details. 
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Figure 8. Stimuli for the Cambridge Face Memory Test. Figure from Duchaine and Nakayama (2006).  
 
 VET. Each VET task for each of the eight categories began with the presentation of a 

study screen showing an example of each of the six target objects (See Figure 6). Subjects were 

told to learn each of these objects and could study them for as long as they chose. No object 

names beyond the category name (e.g. birds, cars) was ever indicated. In the first 12 trials, the 

exact studied image of the target appeared along with two foil object images. The images were 

vertically centered on the screen, to the left of center, at center, and to the right of center. The 

position of the target was counterbalanced for each trial so that the location varied but each 

location occurred an equal number of times. Accuracy was stressed in the instructions and 

images remained on the screen until a response was selected by pressing 1, 2, and 3 on the 

keyboard for the left, center, and right image, respectively. Subjects received feedback after each 

of these trials indicating if their response was correct or incorrect. After these 12 exact image 
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trials, the study screen with all six target objects was presented again for subjects to study as long 

as they desired. Subjects then completed 36 trials in which the target image was a different 

exemplar of the target than at study or the first 12 trials. They were told that the target would 

now be the same object but a different image and that they would need to generalize across 

viewpoint, background, color, size and/or model year, depending on the category. Subjects did 

not receive feedback on these trials. There were 3 unique exemplar images for each target that 

were different from the studied image, each of which were shown twice among different foils.  

 SVET. The procedure was the same as in Study 1, except that subjects indicated their 

response by pressing the 1, 2, and 3 keys (corresponding to the left, center, and right name, 

respectively) on the keyboard number pad.   

 Fluid intelligence. Trials and procedure for our set of fluid intelligence tasks were 

adapted from Redick et al. (2012) (see also (Hambrick et al., 2007; 2008). For all of the tests, 

subjects had a time limit in which to complete as many trials as possible. They were informed of 

this time limit in the instructions and told to focus on accuracy rather than speed in completing 

the tests. There was no time limit on any specific trial, but a response was necessary to advance 

to the next trial and subjects could not return to previous trials. In each of the tasks, trials got 

progressively more difficult. Subjects responded using the keyboard number pad. Practice trials 

(2-5 per task) were included at the start of each task with a short explanation of the correct 

response for each problem. No feedback was provided on any of the test trials.  

 RAPM. Subjects were instructed to determine the pattern that governed objects in the 

matrix and select which of the eight response objects would correctly complete the matrix. A 

subset of 18 trials selected from the full advanced matrices test were used (Raven et al., 1998). 

Subjects were given 10 minutes to complete as many trials as possible up to 18 trials. 
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 Letter sets. Subjects were instructed to select which of the five sets did not follow the 

same composition rule as the others. Subjects were given 7 minutes to complete as many trials as 

possible, up to 30 trials.  

 Number series. Subjects were instructed to determine the rule that governed the number 

series from left to right in each trial and to select which of five numbers presented as possible 

responses would continue the pattern as the next number in the series. Subjects were given 5 

minutes to complete as many trials as possible, up to 15 trials.  

 Measurement with item response theory. To further investigate the measurement 

properties of the VET and SVET and to enhance our ability to examine relationships between 

measure we will employ techniques from Item Response Theory (IRT). IRT models produce 

subject scores known as theta that offer several advantages over sum scores to measure 

performance. The goal of IRT is to produce a more meaningful scale than sum scores on which 

ability levels can be compared. IRT places items and people on the same scale. One assumption 

of IRT is that the only reason that item responses are correlated is that there is an underlying 

theta, which is the latent factor that represents the level of subjects on the ability measured by the 

test. 

IRT takes into account how individual items (trials) function in terms of their 

discriminability on the model’s construct of the underlying trait – different items can provide 

different amounts of information about an individual’s ability, and so are weighted accordingly 

in the model. Each item is described by an item characteristic function, a mathematical 

expression that relates a subject’s probability of success on an item to the trait measured by the 

set of items. Unlike sum scores that are based on all test trials equally, theta scores are 

standardized Z-scores that are based on a measurement model in which item responses are 
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weighted differently to best estimate an individual’s level on the construct (see Embretson, 1996; 

Embretson & Reise, 2000; Lord & Novick, 1968). As a result theta scores make better use of 

measurements, characterizing individual items on their relative difficult, their ability to 

discriminate subjects at a given ability level, as well as guessing rates in more complex models, 

in theory providing more useful scaling of individual differences, as well as valuable information 

about test items.  

 When looking to correlate performance on a test with another measure, using thetas may 

depart from sum scores as a function of the variability in discrimination among the trials on the 

test, because such variability will lead to different items being weighted differently. IRT scores 

offer the advantage of being normed based on the test items themselves, rather than on a 

normative sample, and of being scaled to linearly relate to the underlying ability, properties that 

facilitate their use when correlating across different measures (Embretson & Reise, 2000). 

 Basic IRT models assume that tests are unidimensional, meaning that a single factor 

carries that majority of variance in test performance. The usefulness of IRT measures with the 

CFMT (Duchaine & Nakayama, 2006), which demonstrate good unidimensionality, has been 

demonstrated using large datasets both online and in the lab (Cho et al., submitted; Wilmer et al., 

2012). To investigate the dimensionality of each VET and SVET, we will conduct exploratory 

factor analyses (EFA) to determine how many factors carry significant portions of variance. If 

we find that many of the tests, either in the VET or the SVET set, are multidimensional, we will 

create versions of those tests by selecting only a subset of trials that load on a single factor. To 

do this, we will identify the factor out of the two or three that are most significant that correlates 

best with the other measure for the same category (VET for SVET and vice versa) and then 

select only trials that load highly on that factor. We will then use this “select trial” version of the 
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test to conduct an IRT model. We will use this specific IRT-pipeline in later analyses to explore 

if these measurement models produce more easily interpreted patterns of relationships across our 

measures. For example, we will ask if using theta rather than sum scores increases the extent to 

which VET and SVETs are more related within then across categories. 

Results and discussion 

 Accuracy, variability and reliability for each measure. 

 Visual and semantic tests. Accuracy on all of the visual and semantic tests was above 

chance (.33) and not at ceiling, and all tasks displayed variability between individuals (Figure 9 

and Table 5). Skewness was negative for all VETs and positive for all SVETs, suggesting that 

the SVETs had a more difficult distribution of trials. When considering all CFMT trials, both 

with and without added noise, accuracy on the CFMT was high, which is consistent with 

previous face memory results in a typical population (Duchaine & Nakayama, 2006; McGugin et 

al., 2012b). In general, performance was higher and more variable on the VETs that the SVETs 

(paired t-test of mean VET and mean SVET, p<.05 for all categories). While this difference 

could the result of the difficulty of a visual versus semantic task, it is most likely only because 

the SVET unintentionally contained more difficult trials. Future revisions of the SVETs should 

add more easy trials at the beginning of the test to engage subjects and increase overall 

performance. SVET accuracy in this study largely matches what we observed in Study 1 with an 

older, online sample. Again, we see the greatest variance in accuracy on SVET-Car and SVET-

Shoe, likely a reflection of our sample’s greater variability in experience with those categories, 

especially between men and women.   
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Table 5. Accuracy on CFMT, VETs and SVETs in Study 2A. Columns show the mean sum score, 95% confidence 
interval (CI), median, interquartile range (IQR), and skewness.  
 
    Mean 95% CI Median IQR Skewness 

 
CFMT 0.80 (.78, .82) 0.81 0.17 -0.42 

       VET Car 0.59 (.57, .61) 0.60 0.21 0.06 

 
Plane 0.68 (.66, .70) 0.69 0.21 -0.01 

 
Transformer 0.72 (.70, .74) 0.73 0.19 -0.19 

 
Dinosaur 0.70 (.69, .71) 0.69 0.17 -0.28 

 
Shoe 0.73 (.71, .75) 0.75 0.17 -0.42 

 
Bird 0.67 (.65, .69) 0.69 0.19 -0.41 

 
Leaf 0.57 (.55, .59) 0.58 0.15 -0.27 

 
Mushroom 0.60 (.59, .61) 0.60 0.13 -0.22 

       SVET Car 0.62 (.60, .64) 0.60 0.19 0.21 

 
Plane 0.45 (.44, .46) 0.44 0.13 0.32 

 
Transformer 0.42 (.41, .43) 0.42 0.13 0.54 

 
Dinosaur 0.47 (.46, .48) 0.46 0.08 0.80 

 
Shoe 0.54 (.52, .56) 0.50 0.23 0.43 

 
Bird 0.47 (.46, .48) 0.46 0.10 0.48 

 
Leaf 0.53 (.51, .55) 0.52 0.17 0.24 

  Mushroom 0.40 (.39, .41) 0.40 0.13 0.30 
 

  
Figure 9. Boxplots of accuracy performance in Study 2A on CFMT (grey), VETs (checkered), and SVETs (solid). 
The bottom and the top of each box represent the first and third quartile, respectively and the middle line of each 
box shows the second quartile, or the median. Whiskers show the highest and lowest scores between 1.5 and 3 times 
the interquartile range while outliers beyond this range are represented by dots (or an asterisk in the case of very 
extreme outliers). The grey, dotted line shows chance (.33). 
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 The visual measures, CFMT and VETs, all showed high reliability measured as internal 

consistency with Cronbach’s alpha (values reported in Table 8). In general, the reliability of the 

SVETs was also excellent, with the exception of the SVET-Bird (α = .52) and SVET-Mushroom 

(α = .66), which were less reliable. In Study 2A the reliability of the SVET-Dinosaur was higher 

(α = .73), than in Study 1 (α = .63). Exploratory factor analyses with the maximum number of 

factors and polychoric correlation for each of the SVETs in Study 2A show that SVET-Bird, -

Mushroom, and –Dinosaur exhibited the most multidimensionality, which is manifest here in 

lower test reliability. Overall, our set of measures in Study 2A appear to be robust measurement 

tools.  

 Experience self-report. In reporting their experience classifying and recognizing objects 

generally for all categories, subjects reported the highest mean rating for the question asking how 

easily they recognize objects visually (mean=6.87, SD=1.33) and the lowest mean rating but 

most variability for the question asking about their interest in fine-level object classification 

(mean=4.88, SD=1.93). Cronbach’s alpha for the four domain-general experience questions was 

0.65, suggesting that they measured related experience.  

 Similarly, self-reports of category experience based on each of the seven domain-specific 

experience questions differed somewhat but demonstrated high reliability across questions 

(Cronbach’s alpha ranged from 0.83-0.93, mean α =0.88). Table 6 shows the correlations 

between each of the each of the category-specific experience questions averaged across category 

(mean r=0.55). The questions were all well-correlated with one another and this was generally 

consistent across categories, as can be seen from the range reported. Birds demonstrated the least 

consistency (mean r=0.44) and shoes demonstrated the greatest consistency (mean r=0.69). 
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Table 6. Correlations (r) between each of the seven category-specific experience questions and averaged across the 
eight object categories; range of correlations shown in parentheses.  
 
    1 2 3 4 5 6 

1 Overall Expertise -      

2 Duration Interest 0.60 
(.49-.77) -     

3 Image Frequency 0.53 
(.40-.68) 

0.44 
(.30-.64) -    

4 Text Frequency 0.58 
(.49-.70) 

0.52 
(.44-.69) 

0.61 
(.50-.70) -   

5 Importance 0.63 
(.57-.77) 

0.57 
(.43-.73) 

0.57 
(.43-.69) 

0.67 
(.54-.77) -  

6 Visual Memory 0.56 
(.38-.73) 

0.45 
(.32-.63) 

0.44 
(.26-.60) 

0.45 
(.27-.60) 

0.54 
(.28-.67) - 

7 Essay 0.68 
(.59-.78) 

0.51 
(.40-.66) 

0.47 
(30-.62) 

0.56 
(.49-.67) 

0.63 
(.52-.77) 

0.51 
(.34-.66) 

 

 
Figure 10. Boxplots showing the general and category-specific experience aggregates for Study 2A. 
 
 We computed nine different experience aggregate scores for each subject for use in later 

analyses: A single general experience aggregate that was the average of the four general 

experience ratings, and category-specific experience aggregates for each of the eight categories, 

which in each case was an average of the seven category-specific experience questions.  

 Figure 10 shows the results of the nine experience self-report aggregates. Subjects 

reported the highest levels of experience with cars and shoes, although, as in Study 1, those 
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categories also show the highest variance as a result of the interaction between sex and interest 

for cars and shoes. Reported experience was similar for the other six categories with the lowest 

average experience reported for mushrooms, although with a notable number of outliers. 

 Fluid intelligence. Performance on the three measures of fluid intelligence was 

calculated as the number of trials correctly answered within the time limit and was comparable to 

that reported in the literature (Redick et al., 2012) (Number series: mean=10.27, SD=2.75; Letter 

sets: mean=18.08, SD=4.12; RAPM: mean=10.85, SD=2.91). Each of the tests demonstrated 

high reliability calculated with Cronbach’s alpha (Number series: α=0.85; Letter sets: α=0.87; 

RAPM: α=0.92). Considering all trials from the three different fluid intelligence tests together as 

a single measure also exhibited high internal consistency (α=0.92). This allowed us to calculate a 

fluid intelligence aggregate score (that we will refer to as Gf) for each subject as the mean 

number of correct trials on each of the three tests, which we will use in later analyses. 

 Correlation between VET and SVET with experience. Using the aggregate scores of 

self-reported experience for each category, as well as general object classification, we can look at 

the correlations between experience and accuracy on the VET and the SVET for each category 

(Table 7). First, we consider the relationship with general experience. VET performance is 

generally not strongly correlated with general experience, although more so for Transformers 

and birds. SVET performance in general was more related to general experience than VET, with 

SVET-Transformer, -Bird, -Car, -Dinosaur-, and -Leaf demonstrating a significant correlation. 

However, these relationships with general experience are modest and while they are specific to 

category-specific visual or semantic performance, they could reflect domain-general interests or 

skills. For example, looking at all four general experience questions for Transformers and birds, 

the greatest correlation values with the VET are with the first two questions (see Table 6) that 
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ask about classification and visual recognition, skills which may be more related to the structure 

of these categories compared to others. Second, we consider the relationship with category-

specific experience, which shows a significant correlation with both the VET and the SVET for 

all categories, with the exception of the VET-Mushroom. Notably, all of the category-specific 

correlation values are higher for the SVET (mean r=0.44) than the VET (mean r=0.27).  

Table 7. Correlations (r) of general experience aggregate and category-specific experience aggregate for each 
category with VET and SVET accuracy as well as VET-Other and SVET-Other accuracy (the average of accuracy 
on the other 7 categories) in Study 2A. Values shown in bolded red are statistically significant (rCrit(211)=.132, 
p<.05). 
 

  

Correlation (r) of 
General Experience 

Aggregate with: 

 

Correlation (r) of Category                         
Experience Aggregate with: 

 
VET SVET VET SVET VET-Other SVET-Other 

Car 0.11 0.14 
 

0.42 0.52 0.03 0.13 
Plane 0.10 0.09 

 
0.17 0.32 -0.06 0.06 

Transformer 0.16 0.13 
 

0.23 0.55 -0.02 0.05 
Dinosaur 0.06 0.17 

 
0.32 0.50 0.08 0.32 

Shoe -0.02 -0.01 
 

0.50 0.62 0.01 -0.29 
Bird 0.24 0.16 

 
0.26 0.42 0.06 0.26 

Leaf 0.05 0.14 
 

0.15 0.36 0.10 0.24 
Mushroom 0.00 0.07 

 
0.11 0.28 0.13 0.13 

 

As expected, we found that both VET and SVET were related to self-reported experience, 

the fact that this relationship was stronger for SVET suggests that subjects based their self-

ratings of experience on semantic knowledge more than perceptual performance. This could be 

because people have more access to other people’s semantic knowledge (through its verbal 

expression) than to other people’s perceptual knowledge. These relationships seem to be specific 

to each category, and not general effects across all objects: the correlation between VET and 

SVET with category experience is always greater within category (with VET and SVET for the 

same category) than across category (with VET-Other and SVET-Other, the average of accuracy 

on the other seven categories for each test – see Table 7). Overall, VET and SVET both 
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demonstrate category-specific validity as they are well correlated with self-reports of category-

specific experience.  

 Variance accounted for by age and sex. Next we considered the correlations between 

VET and SVET performance for each of the eight categories and age and sex (Table 8). Age is 

only strongly correlated with Gf and a subset of the SVETs. The negative correlation between Gf 

and age is very likely due to a sampling bias, as the majority of our subjects were from the 

university community and under 30 years of age, and the few older subjects we had in this study 

may not represent the same population in Gf performance. SVET performance was positively 

correlated with age, significantly for cars, birds, leaves, and mushrooms, which is likely the 

result of older subjects having more experience and thus more name knowledge for these 

categories. However, especially for the categories of birds, leaves and mushrooms, age may also 

be correlated with a particular interest in these living categories as a hobby.  

 Women performed better than men on the CFMT, a sex advantage that has been shown 

before using this face measure (Bowles et al., 2009; Duchaine & Nakayama, 2006). Because of 

previously observed sex effects in visual performance (McGugin et al., 2012b), we specifically 

selected a mix of categories for which we predicted men or women would perform better. This 

prediction for our four male-interest and four female-interest categories was largely borne out in 

our data, however the effect of sex was larger for male-interest categories for SVET than VET 

(VET: male-interest mean r=0.05, female-interest mean r=-0.22; SVET: male-interest mean 

r=0.30, female-interest mean r=-0.10). For both VET and SVET, only shoes demonstrated a 

strong sex effect for which women performed better than men. The sex effects we observed for 

VETs show the same pattern reported by McGugin et al. (2012b), although their sex effect for 
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visual performance with male-interest categories, all vehicles in their study (cars, planes, and 

motorcycles), were considerably stronger than what we observed for the same categories.    

 Correlation between VET and SVET and visual and verbal ability. Next we consider 

the relationship between VET and SVET performance for each category with face recognition 

(CFMT) and verbal (Gf) abilities (Table 8). Note that even though the CFMT is a domain-

specific test, because faces are generally thought to be a particularly distinct domain in high-

level recognition, shared variance between VET and CFMT might be interpreted as a domain-

general visual ability. As predicted based on previous findings (Gauthier et al., n.d.; McGugin et 

al., 2012b), CFMT was positively correlated with VET performance for all categories, 

suggesting that a common visual ability contributes to performance on all of these visual tests. 

As found before (Gauthier et al., in press), the CFMT is not particularly distinct from all the 

other visual tests (VETs): the average correlation between CFMT and VETs was r=0.26 (range = 

0.19-0.38) (Table 8), while the mean pairwise correlation among VETs was r=0.33 (range = 

0.09-0.46) (Table 9). This suggests that the modest correlation between face and object 

recognition tasks is only one example of a general principle whereby such visual measures seem 

to primarily reflect domain-specific variance. Interestingly, the correlation between CFMT is 

stronger with the average performance on all eight VETs (VET-All) (r=0.40) than it is with any 

single category VET, which may demonstrate that aggregating the VET across categories 

reduces categories-specific contributions producing a measure that more closely reflects domain-

general visual ability. The relationship between CFMT and SVET performance (mean r=0.08), a 

non-visual measure, was on average weaker than for CFMT-VET correlations (mean r=0.26, 

two-sided Fisher’s Z=-2.69, p=0.007). However, for two categories (dinosaurs and shoes), visual 

ability and semantic performance were significantly correlated.  
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Table 8. Correlations of test accuracy with age, sex, Gf and CMFT in Study 2A. The first column shows the 
reliability of each measure as Cronbach’s alpha. Columns 2-5 show the correlation (r) of each accuracy on each 
measure with age, sex, Gf accuracy, and CFMT accuracy. Values shown in bolded red are statistically significant 
(rCrit(211)=.132, p<.05). 
 

 Cronbach's α 

Correlation (r) of test with: 

  Age Sex Gf CFMT 

Gf 0.92 -0.25 0.06 - 
 

      CFMT 0.92 -0.07 -0.15 0.14 - 

      VET-Car 0.90 -0.07 0.06 0.01 0.21 
VET-Plane 0.89 0.08 0.09 0.28 0.22 
VET-Transformer 0.89 -0.01 0.06 0.29 0.28 
VET-Dinosaur 0.88 0.07 0.00 0.29 0.26 
VET-Shoe 0.89 0.00 -0.54 0.10 0.38 
VET-Bird 0.93 0.01 -0.05 0.29 0.24 
VET-Leaf 0.84 -0.04 -0.16 0.25 0.28 
VET-Mushroom 0.71 0.03 -0.12 0.21 0.19 

      SVET-Car 0.89 0.22 0.28 -0.08 0.06 
SVET-Plane 0.72 0.10 0.36 0.14 -0.01 
SVET-Transformer 0.74 0.02 0.30 0.15 0.07 
SVET-Dinosaur 0.73 0.09 0.24 0.25 0.14 
SVET-Shoe 0.91 0.04 -0.55 -0.11 0.18 
SVET-Bird 0.52 0.29 0.02 0.04 0.06 
SVET-Leaf 0.77 0.39 -0.01 0.04 0.06 
SVET-Mushroom 0.66 0.16 0.13 0.14 0.10 
 

 We observed that Gf and CFMT were positively correlated. While this correlation is 

small, it is important because this relationship has not be observed previously (Davis et al., 2011; 

Hedley et al., 2011; Wilhelm et al., 2010; Wilmer et al., 2010). Gf was positively correlated with 

VET accuracy for most categories, although not significantly for cars and shoes, and positively 

correlated with SVET accuracy for planes, Transformers, dinosaurs, and mushrooms. Only the 

SVET-Car and SVET-Shoe were slightly negatively related to Gf, suggesting that the strong sex 

differences in experience and performance with those categories in our sample may influence 

their relationship with other variables.  
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 Of course, when calculating the correlation between two measures it is important to 

consider the reliability of each measure (Cronbach’s alpha in Table 8), as test reliability limits 

correlation. Reliability is high for nearly all of these measures, so performing a correction for 

attenuation on these correlations is largely not a concern. However, as an example, the corrected 

Pearson’s r of SVET with Gf for three SVETs that demonstrate medium reliability are 0.06, 0.05, 

and 0.18 for SVET-Bird, -Leaf, and -Mushroom, respectively. These correlation coefficients 

after correcting for attenuation are only slightly larger than the uncorrected correlations reported 

in Table 8, suggesting that our measures are reliable enough to safely interpret the pattern of 

correlations without adjustment.  

 Correlation between VET and SVET within and between categories. We considered 

the relationship between performance on the VET and SVET within and between the eight 

categories using correlations between accuracy on each VET and SVET (Table 9). Panel A of 

Table 9 shows that nearly all VETs are positively correlated with each other, with the exception 

of VET-Bird and VET-Mushroom with VET-Car. The pair-wise correlations between VET 

accuracy was r=0.32 for all male-interest categories (cars, planes, Transformers, and dinosaurs) 

and r=0.37 for female-interest categories (shoes, birds, leaves, mushrooms). However, these 

correlations were not on average much stronger than the correlations between VET categories 

across sex-interest r=0.31(e.g.VET-Car with VET-Shoe). Contrary to previous findings with the 

VET (McGugin et al., 2012b), we did not observe strong sex effects in VET performance. 

 Looking at the relationship between SVETs (Panel C of Table 9), we see a strong positive 

correlation between all of the male-interest categories (mean r=0.27), although for female-

interest categories, SVET-Shoe performance appears to be unrelated to the living, female-interest 

categories, birds, leaves, and mushrooms, which are positively correlated with each other (mean 
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r=0.31). SVET-Shoe performance is also unrelated or even negatively related (planes and 

Transformers) with the male-interest categories. This suggests that sex is but one of several 

factors that are related to experience with object categories.   

 In considering the relationships between VETs and SVETs, we were most interested in 

the relationship between VET and SVET accuracy for the same category, which might indicate 

how common category experience contributes to both visual and semantic performance (Panel C 

of Table 9, same category shown in outlined diagonal). We observed a positive correlation 

between VET and SVET performance for all categories, with nearly all relationships being 

significant. Leaves and mushrooms are the only two categories that were not significant (p<.05). 

We will continue to explore these SVET-VET relationships within each category. Off the 

diagonal in Panel B of Table 9, we observed both positive and negative relationships between 

VET and SVET between categories that may reflect related interest, or lack of interest, across 

categories (e.g. VET-Plane with SVET-Car and VET-Bird with SVET-Mushroom are positively 

correlated, but VET-Shoe and SVET-Plane are negatively correlated). To determine if the VET-

SVET correlation was stronger within category versus between categories, we compared the 

relationship between the VET and SVET for the same category versus SVET-Other (the average 

of performance on the other seven SVET categories). For six of the eight categories, excluding 

birds and leaves, we found that the VET-SVET correlation was stronger within than between 

categories, a difference that was statistically significant using an independent two-sided Steiger’s 

Z (p<.05) for three of the categories (cars, Transformers, and shoes). We also compared the 

relationship between SVET and VET within category versus VET-other (average performance 

on the other VET categories), where we observed an even more robust pattern of results. We 

found that for all categories except leaves and mushrooms, the SVET-VET correlation was 
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greater within category than between categories, an effect that was statistically significant using 

an independent two-sided Steiger’s Z (p<.05) for all six categories (cars, planes, Transformers, 

dinosaurs, shoes, and birds). This suggests that the relationship between VET and SVET 

performance is largely category-specific and supports our hypothesis that shared VET-SVET 

variance primarily reflects common category experience. 

 
Table 9. Correlations (r) of VET and SVET accuracy for each category in Study 2A. Panel A shows the 
correlations between each of the VETs. Panel B shows the correlations between each SVET and VET with within 
category correlations outlined along the diagonal. Panel C shoes the correlations between each of the SVETs. Values 
shown in bolded red are statistically significant (rCrit(211)=.132, p<.05). 
 

 
 
 
 SVET-Select scores from the IRT pipeline. Finally, we used multiple regression to ask 

what variables contribute to the relationship between VET and SVET performance for each 

category. We were interested in looking at this relationship both with the sum scores we have 

discussed thus far as well as with theta scores from an IRT model of each test. We used a 

specific IRT-pipeline defined here to explore whether such an approach produces more domain-

specific effects that are more likely related to category-specific experience.  
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 To use a 2-parameter IRT model on these tests, it is important that the assumption of 

unidimensionality be met. To investigate the dimensionality of each VET and SVET, we first 

performed exploratory factor analysis (EFA) with the maximum number of factors. For VETs we 

only used data from Study 2A subjects (N=213), but to maximize power for SVETs we used data 

from subjects in both Study 2A and Study 1 (N=116 form AMT; N=319 total). We found that all 

of the VETs were unidimensional but that many SVETs were multidimensional and included 

trials that loaded more on factor 2 or 3 than factor 1, or that loaded on more than one factor 

equally. To create a SVET trial set that was unidimensional for use with IRT, we selected a 

subset of SVET trials, SVET-Select, that reflect a single factor. When several factors were strong, 

we chose the one that was most correlated with VET performance. Note that this choice could 

inflate the VET-SVET correlations within category using the IRT pipeline scores, but it should 

not affect relationships with any of the other variables. 

 To create the SVET-Select subsets, we first looked at the data for all test trials of each 

SVET in a polychoric principal factor analysis of three factors under rotation to reduce the cross-

correlation between factors. We chose to use three factors because two or three factors accounted 

for most of the variance on all the SVETs (as in Cole et al., 2012). To determine which rotation 

was most appropriate for our data set, we tested several methods on two categories and then 

applied the best rotation to all SVETs. Because we did not believe that the factors contributing to 

performance on these tests were necessarily independent, we limited testing to oblique rotations. 

We tested several oblique rotations including Oblimin and Promax and found similar patterns of 

results, so we selected the Oblimin rotation, which is a common and well-accepted rotation that 

allows for non-independent factors. Using the results of the Oblimin-rotated factor analysis we 

identified trials that loaded strongly (≤-0.3 of ≥0.3) on each of the three factors. To ensure that 
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we selected the SVET factor that was most related to VET performance, we looked at the 

correlation between the subset of trials loading most strongly for each factor with VET 

performance for the same category. For all categories, the highest correlation between sub-SVET 

and VET was for SVET factor 1, with the exception of cars, for which SVET factor 2 was more 

correlated with VET performance. For mushrooms and leaves no factor was strongly correlated 

with VET so we selected factor 1 since that was the dominant factor for the SVETs overall. To 

create a unidimensional “SVET-select” measure for each category, we selected only these trials 

that loaded strongly on the VET-related factor, between 14 and 30 trials for each SVET. Table 

10 shows the properties of SVET-Select for Study 2A subjects and demonstrates 

unidimensionality of the sub-test with high eigenvalues for factor 1 relative to factor 2 and 3.  

 To obtain theta scores for SVET-Select, we ran a two-parameter IRT model with the 

selected trials using data from Study 2A and subjects from Study 1 who took only one SVET 

each (these additional subjects in each model help reduce measurement error). We then extracted 

the theta scores of Study 2A subjects for each SVET-Select. We also ran a 2-parameter IRT 

model for each VET using only Study 2A subjects and all VET trials to obtain VET thetas.  

  
Table 10. Properties of SVET-Select trials chosen as a subset of each SVET in Study 2A. Shown are the number 
of trials (out of 48 total on each SVET) included in SVET-Select, mean sum scores and standard deviation in 
parentheses, correlation (r) of SVET-Select with VET, and eigenvalues for Factors 1, 2 and 3. Mean and correlation 
are for Study 2A subjects only, eigenvalues are from an exploratory factor analysis with Study 1 and Study 2A 
subjects.  
 

SVET-Select 
Number of 

Trials Mean (SD) Correlation 
(r) with VET 

Factor 1 
Eigenvalue 

Factor 2 
Eigenvalue 

Factor 3 
Eigenvalue 

Car 20 0.59 (.18) 0.42 5.10 1.25 0.92 
Plane 19 0.38 (.15) 0.31 5.35 1.38 1.19 
Transformer 18 0.45 (.21) 0.33 4.74 1.04 1.03 
Dinosaur 16 0.34 (.15) 0.21 3.52 1.04 0.93 
Shoe 30 0.57 (.22) 0.40 9.82 1.66 1.25 
Bird 14 0.51 (.16) 0.33 3.37 0.82 0.78 
Leaf 20 0.53 (.20) 0.11 5.63 1.47 1.11 
Mushroom 16 0.41 (.15) 0.07 3.37 1.10 0.89 
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 Contribution of experience to within category VET-SVET correlations. One of our 

goals in measuring visual and semantic performance for object categories was to determine 

which abilities and variables might contribute to performance, and in particular if common 

category experience can explain the shared variance between visual and semantic performance. 

We collected or measured several variables, including age, sex, and Gf, not because we were 

necessarily interested in their contribution to the VETs and SVETs per se, although those 

contributions are notable, but because we wanted to isolate the contribution of common category 

experience by accounting for variance due to other variables.  

 To understand the contribution of category experience to the correlation between VET 

and SVET performance, we performed several multiple regressions that progressively account 

for more sources of correlation between VET and SVET, before ultimately testing for the effect 

of shared experience. These analyses were conducted with both sum scores of accuracy for all 

trials, as used in previous analyses, and also theta scores for both tests based on our IRT pipeline. 

These two different ways of quantifying test performance show largely the same pattern of 

results.   

 The zero-order correlations between VET and SVET performance for each category are 

shown in Table 11, column A. The results are similar using our IRT-pipeline; most categories 

show the same or a greater positive relationship between VET and SVET, with the exception of 

planes, which are slightly more correlated using sum scores. Column B presents the partial 

correlations between VET and SVET performance residuals for each category with age, sex, and 

Gf entered simultaneously as predictors. Using both sum scores and the IRT-pipeline scores, we 

observed a slight decrease in the correlation coefficient, although planes increased slightly, once 

the contributions of age, sex, and Gf were removed. The notable exception to this trend is the 
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VET-SVET-Shoe relationship, which was substantially reduced from column A to column B. 

This reduction is almost entirely due to the contribution of sex, which is strongly correlated with 

both VET-Shoe and SVET-Shoe performance (as seen in Table 11). Overall, age, sex, and Gf do 

not account for much of the shared variance between VET and SVET performance.  

Table 11. Correlations and partial correlations (r) of VET and SVET performance for each category in Study 2A – 
at top using sum scores and all SVET trials and bottom using theta and SVET-Select trials. Column A shows the 
zero-order correlations (also shown in Table 9, Panel B, diagonal boxes). Column B shows the partial correlations 
with age, sex, and Gf regressed out. Column C shows the partial correlations with age, sex, and Gf as well as VET-
Other and SVET-Other performance regressed out. Column D shows the partial correlations with age, sex, Gf , 
VET-Other, and SVET-Other performance, as well as self-report category experience aggregate regressed out. 
 

 
 
 Next, we asked how much of the shared variance between VET and SVET for a category 

might be the result of a domain-general ability reflected in performance across all tests. Perhaps 

some individuals are just very good at these types of tasks with any object category, and we 

would not want to consider that effect to be domain-specific. For each VET and SVET we 

created a non-category score for each subject (VET-Other and SVET-Other), which was the 

average performance on the other seven categories for that test (e.g. SVET-Other for cars is the 

average of performance on all SVETs except SVET-Car). We then used VET-Other and SVET-
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Other as regressors to remove domain-general task performance from the VET-SVET 

relationship. Table 11, column C shows the partial correlations between VET and SVET 

performance residuals for each category with age, sex, Gf aggregate, VET-Other, and SVET-

Other performance all entered as simultaneous predictors in a multiple regression. Moving from 

column B to C, now accounting for domain-general test performance in addition to the other 

variables, we observe very little change in the correlation between VET and SVET performance 

with either sum scores or theta with SVET-Select. While a more substantial change can be seen 

for birds using sum scores, this change is not seen using theta scores. This can also be seen in the 

change between column A and B, suggesting that, especially for birds, the IRT pipeline seems to 

produce more robust measurements. Overall, there was little if any influence of domain-general 

test performance on the shared variance between VET and SVET. At this point looking at the 

correlations in column C, we hypothesize that the remaining shared variance between VET and 

SVET comes from domain-specific experience.  

 To test this hypothesis, we performed another regression including domain-specific 

experience as a predictor (Table 11, column D). Theoretically, if our hypothesis was correct and 

our measure of category experience contained no measurement error (an assumption of 

mediation analyses that is almost universally violated; Baron and Kenny, 1986), we would 

expect the correlation between VET and SVET to be completely eliminated by regressing out 

experience.  

Column D shows the partial correlations between VET and SVET performance residuals 

for each category with age, sex, Gf, VET-Other, SVET-Other performance, self-report category 

experience aggregate removed in a simultaneous regression. Between the zero-order correlations 

(column A) and column C, we observed little meaningful change in the correlation between VET 
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and SVET as we accounted for age, sex, Gf, and domain-general test performance. As we 

account for the contribution of category experience (column D), we now observe a substantial 

decrease in the VET-SVET partial correlation for several of the categories, in some cases 

resulting in non-significant correlations.  

 To estimate the contribution of experience more directly, we performed a 2-step, stepwise 

regression on VET scores. In step 1, we used age, sex, Gf, and non-category VET and SVET as 

predictors. In step 2, we entered both SVET and self-report category experience aggregate.  

We report the amount of variance (R2) accounted for by experience in VET performance after 

controlling for SVET (Table 12). We found that category experience contributed a significant 

portion of variance for cars, planes, Transformers, dinosaurs, birds, and leaves. These results 

suggest that, as hypothesized, shared variance between visual and semantic performance can be 

explained, at least in part, by domain-specific experience.  

 It is interesting to note that the correlation coefficients in Table 11, column D are not zero, 

as theoretically predicted. One reason for this could be the imprecision of our experience 

measure, which relies on self-reports, and which may not accurately reflect real-world levels of 

experience (Zell & Krizan, 2014). There could also be qualitatively different aspects of domain-

specific experience that we did not access with this measure. Alternatively, there could be other 

subject characteristics that are relevant to specific domains besides age, sex, Gf, and reported 

experience. We can honestly only speculate about what those might be, perhaps individual 

differences in attention or memory or unreported knowledge or skills that would influence both 

visual and semantic performance for a given category.  
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Table 12. Variance (R2) in VET performance explained by experience after controlling for SVET and significance 
(p). These are shown at top for sum scores and all SVET trials and on bottom for theta and SVET-Select trials.         
 

    
Experience Variance in 

VET(SVET) 

    R2 p 

Sum Score Car 0.04 0.003 
All Trials Plane 0.02 0.033 

 
Transformer 0.04 0.005 

 
Dinosaur 0.03 0.007 

 
Shoe 0.01 0.319 

 
Bird 0.05 0.001 

 
Leaf 0.02 0.032 

  Mushroom 0.01 0.324 

    Theta Car 0.03 0.019 
SVET Select Plane 0.03 0.009 

 
Transformer 0.03 0.022 

 
Dinosaur 0.03 0.007 

 
Shoe 0.00 0.743 

 
Bird 0.04 0.002 

 
Leaf 0.03 0.012 

  Mushroom 0.01 0.251 
 
Conclusions 

 In Study 2A we tested the SVET in the laboratory in a large sample from the Vanderbilt 

and Nashville community. We tested the SVET with a visual measure (VET) for each category 

as well as measures of domain-general visual and verbal abilities and an expanded self-report 

measure of category experience. 

 Here again, the SVET produced reliable measurements of semantic experience in a 

different sample collected in person that differed in age from our previous online sample in 

Study 1. We also obtained good reliability and similar performance as previously reported for the 

VETs with some of the same categories (McGugin et al., 2012b). Using an expanded 

questionnaire of seven category-specific questions about experience, we were able to 

demonstrate validity of the VET and SVET. Our seven-item questionnaire of domain-specific 
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experience demonstrated good internal consistency, which is notable because there are not 

standard ways of measuring experience across various categories, and this at least offers a viable 

option. Using this measure we showed that the correlations between VET and SVET 

performance and experience was stronger within category than across categories.  

 We then examined the relationships between VET and SVET and age and sex, 

demonstrating better SVET performance with increasing age and finding sex effects in VET and 

SVET performance for different categories that we predicted to be male or female categories. 

Interestingly, we found the strongest sex effects for male-interest categories on the SVET, but 

also for SVET-Shoe for women. We observed patterns of sex effects for the VET that were 

qualitatively similar to those reported previously (McGugin et al., 2012b), although they were 

not as strong. The relationship between VET and CFMT performance demonstrated a common 

visual ability that contributes to performance for faces and each of our eight categories; however, 

the CFMT was less related to semantic performance, as would be expected given that it is a non-

visual task. Fluid intelligence was positively related to performance on all VETs and most 

SVETs. The Gf relationship was on average stronger for VETs than SVETs, which might be 

because the VET is a learning task while the SVET tests mostly previously acquired knowledge. 

These results demonstrate the contribution of domain-general abilities that should be accounted 

for when examining category-specific performance.  

 With the addition of the VET in Study 2A we were able to examine performance for the 

same category on two different tasks, a visual memory test and a non-visual semantic test. 

Importantly, by looking at the relationships between all eight VETs and SVETs we observed that 

the relationship between visual and semantic performance within a category was always greater 

than the relationship between visual performance for a category and semantic performance for 
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other categories. This further demonstrates that the VET and SVET measure category-specific 

performance and provides evidence for our hypothesis that performance across tasks reflects 

common category experience. We explored this VET-SVET relationship in greater depth to 

determine what other factors might contribute. We found that the relationship was still 

significant after removing contributions of age, sex, Gf, and non-category task performance, but 

that experience as measured by our self-report experience aggregate accounted for a significant 

portion of the variance for five of the categories. This finding demonstrates the critical 

importance of considering both domain-general ability and domain-specific experience when 

interpreting individual differences in domain-specific performance.  

 
Study 2B: The Case of a Category Without Known Semantic Labels 

Overview 

 We hypothesized that the underlying abilities that support the acquisition of visual and 

semantic knowledge may be independent, and therefore predicted that the only common 

contribution to visual and semantic performance for a given category would be experience with 

that category. One reason for this hypothesis is that face recognition has been found to be 

independent from general intelligence (Gf) and related measures (Davis et al., 2011; Hedley et al., 

2011; Wilmer et al., 2010), and face recognition can be argued to be a relatively pure measure of 

visual ability (v), since there should be minimal contribution from differences in experience for 

this category. Therefore, if Gf and v are independent, then experience in a domain could be the 

main source of a correlation in performance on visual and non-visual knowledge acquired 

through these abilities. However, this is a conjecture, and the generalization to a domain-general 

v also depends on the assumption that what we learn from face recognition ability speaks to non-
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face recognition ability. In addition, it is worth considering whether there may be other possible 

sources of correlation between tasks like the VET and SVET.  

 One other possible reason for the correlation between visual and semantic performance 

could be the use of labels to help encode and remember the objects in a visual task like the VET. 

Even when labels are not provided anywhere in the test, some subjects with semantic knowledge 

may automatically use object names in a visual task that does not require them. Therefore, it is 

important to consider the extent to which performance on the visual tasks is potentially 

contaminated by verbal strategies.  

 Importantly, a verbal strategy may not be equally available for all categories. There are 

categories for which every exemplar has a name that is likely available to experts, such as cars. 

In this case, naming of visual images could be an automatic and common strategy, provided that 

the subject knows the object names. However, for other categories, semantic knowledge, at least 

individual object names, might not be as readily available, even to an expert. This would reduce 

the potential overlap between semantic knowledge and performance on a visual task. Shoes (in 

our case women’s high heels) are an example of such a category. Individuals highly familiar with 

women’s high heels might be very good at recognizing diagnostic visual features of women’s 

high heels, such that they would do very well on the VET-Shoe in which they need to generalize 

across non-diagnostic features (color, material, viewpoint) but not diagnostic features (toe shape, 

heel design, heel height) to recognize different exemplars of the same pump. Yet, these subjects 

may not know the labels for specific shoes. While they might be able to recognize the style of 

some shoe designers, specific shoes models change frequently and those names are rarely used to 

identify shoes beyond the immediate shopping experience.  
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 In Study 2B we will measure subjects’ ability to name images of shoes and birds shown 

in the VET. For shoes, we expect that few subjects, if any, will provide a specific brand or model 

name, while for birds, we expect some will be able to name the birds by common species names. 

If these naming results are found, these two categories will serve as examples of categories in 

which knowledge of names might influence visual performance (birds), and in which semantic 

knowledge would not include individual names that would allow labeling in a visual task (shoes). 

We can then look at the correlation between visual and semantic performance for these two 

categories. If visual and semantic performance are correlated, even when subjects with high VET 

and SVET scores are unable to name shoes by model name, this would provide evidence that the 

VET-SVET relationship cannot be attributed to overlapping use of object names in both tasks.   

Methods 

 Subjects. Two hundred and ten subjects (86 male; age: mean=22.49, SD=6.40) who 

participated in Study 2A completed a bird and shoe image naming task in addition to the other 

tasks in Study 2A.    

 Tasks.  

 VET, SVET, and experience questionnaire described in Study 2A. Study 2B looks at 

a subset of the data collected in Study 2A, which includes the VET, SVET, and self-report of 

category experience for shoes (women’s high heels) and birds. Subjects completed the tasks in 

the following order so that the VET and image naming test were completed before the SVET to 

avoid subjects learning or remembering any object names from the SVET: category experience 

questionnaire, VET, CFMT, bird and shoe image naming, SVET. In study 2B will use the bird 

and shoe experience aggregate computed in Study 2A, and the theta scores for VETs and SVETs 

(SVET-Select trials).   
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 Bird and shoe image naming. Images used for the naming test were grey-scale images of 

different birds and shoes used as foils in the VET-Bird and VET-Shoe, respectively. There were 

18 trials for each category. Subjects completed the naming test as an online survey using 

REDCap electronic data capture survey tools (http://redcap.vanderbilt.edu; Harris et al., 2009) 

hosted by Vanderbilt University. Each image was presented with a blank textbox below it in 

which subjects were instructed to type the most specific name they had for each object or “NA” 

if they did not have a name for the object. All of the bird trials were shown on a single webpage 

first followed by all of the shoe trials on another page.  

Results and discussion 

 Shoe naming. No subjects, even those with high VET-Shoe and SVET-Shoe scores, 

provided brand or designer names for shoes, as are used in the SVET, or specific shoe model 

names to name each shoe image. Instead, all shoe “name” responses were descriptions of the 

pictured shoe. These descriptions were almost always either very general category names (e.g., 

pump, stiletto, peep-toe, platform) or descriptions of the shoe’s physical attributes including 

shape, color, fabric, and style (e.g., pointy-toe heel, ornate open-toed pumps, scalloped pumps, 

black bow, round-toe, beige suede). While some subjects included elaborate descriptions of 

shoes, suggesting an understanding of diagnostic shoe features, a specific subordinate-level name 

for the shoe was never given.  

 To determine if being able to give a detailed description of the shoe in terms of style, 

features, and type was related to shoe performance, we qualitatively scored subjects according to 

whether they provided a detailed description. For each subject we looked at all 18 shoe trials and 

assigned a single score based on their naming responses across trials. If a subject put “NA” or a 

single, general word (heel, shoe, pump) for more than half of the trials, they were scored as 0. 
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Subjects were scored as 1 if they listed a more detailed description on more than half of the trials 

(N=133, 101 female). This descriptive measure was significantly and positively correlated with 

all shoe measures: experience (shoe experience aggregate; r(208)=0.37, p≤0.0001), VET-Shoe 

(r(208)=0.29, p≤0.0001), and SVET-Shoe (r(208)=0.28, p≤0.0001). This suggests that the detail 

of shoe descriptions reflects common shoe experience. However these descriptions are longer 

and less unique than typical subordinate-level names, and so are less likely to be useful in the 

VET in the way that knowledge of individual object names might in another category. 

 Bird naming. To score the names subjects provided for each of the bird images, we 

counted any name that was a complete match or a more general partial match of the common 

species name of each bird as correct (e.g. for barn swallow: barn swallow, swallow, and swallow 

with a different sub-species descriptor, such as tree swallow or cliff swallow, were all counted as 

correct). More than half of subjects (N=112) did not correctly name any birds. Overall, scores 

ranged from 0-7 birds correctly named out of 18 bird trials (mean=0.84 birds correct, SD=1.27).   

 Correlation of naming with experience, VET, and SVET for birds. Performance on 

the bird naming task was significantly correlated with all other bird measures: self-report bird 

experience aggregate (r(208)=0.46, p≤.0001), VET-Bird (r(208)=0.37, p≤.0001), and SVET-Bird 

(r(208)=0.42, p≤.0001). Figure 11 shows the scatterplots of bird naming score with VET-Bird 

and SVET-Bird accuracy. These plots illustrate that while many subjects could not name any 

birds, those who did correctly name even a few birds performed better on both the visual and 

semantic bird tests. These naming data provide further evidence of the convergent validity of our 

measures and suggest that with greater levels of bird experience, people typically acquire greater 

knowledge of subordinate-level bird names.  

 
 



	
   73 

 
Figure 11. Scatterplots showing the relationship between the VET-Bird (left) and SVET-Bird (right) theta and 
bird naming score in Study 2B. 
 
 Correlation between VET and SVET with and without object names. A positive 

correlation between VET and SVET performance was found for a category for which expertise 

affords the ability to name objects (birds: r(208)=0.35, p≤0.0001), but also for a category for 

which objects cannot be named at the subordinate-level by experts, as demonstrated by our 

naming survey (shoes: r(208)=0.42, p≤.0001). While the bird and shoe domains may differ in 

many ways, it is worth noting that the correlation is numerically higher for shoes. This provides 

some evidence that subordinate-level names are not required for a category to demonstrate 

shared variance between visual and semantic performance. 

 To investigate if bird naming contributes to the correlation between VET and SVET for 

birds, we return to the partial correlations we calculated in Study 2A and remove factors that 

might contribute to the VET-SVET relationship (Table 11). In this dataset for birds, the partial 

correlation between VET and SVET while controlling for age, sex, Gf, general task performance 

(VET-Other and SVET-Other) and bird experience aggregate was r=0.17, p=0.01. The shared 

VET-SVET variance was 6.2% before entering bird experience into the model, and dropped to 

2.8% after accounting for experience. Whatever is left is minimal, albeit statistically significant, 
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and the present results suggest that it could be a contribution from naming. Adding the bird 

naming scores as another regressor indeed reduced the partial correlation of VET-Bird and 

SVET-Bird further (r=0.12, p=0.08, shared variance 1.4%), rendering the correlation no longer 

significant. This suggests that bird naming performance may contribute to both visual and 

semantic performance in a way that is independent from our bird experience measure and may be 

specific to how labels could be applied to birds in the VET in a manner that is not controlled by 

our experience measure.   

 Similarly, we also tested the contribution of shoe description to the VET-SVET 

relationship for shoes. In this dataset, the partial correlation between VET-Shoe and SVET-Shoe 

after controlling for age, sex, Gf, general task performance (VET-Other and SVET-Other) and 

shoe experience aggregate was r=0.18, p=0.01. The shared VET-SVET variance was 4.9% 

before entering shoe experience into the model, and dropped to 3.1% after accounting for 

experience. We then entered our binary score of subjects’ shoe responses (1 for a detailed 

description of shoe style or 0 for a single word or no description) into the model. The shoe 

description score did not account for any additional VET-SVET variance (the shared variance 

remained at 3.1%, r=0.18, p=0.01). This suggests that for shoes, unlike for birds, naming, or 

describing shoe features verbally, did not contribute to VET performance.  

Conclusions  

 In this dataset, shoes provide a really interesting example of common category 

experience. Clearly those with shoe experience have knowledge of shoes that can be measured in 

both semantic and visual domains. Performance on the visual (VET) and semantic (SVET) tasks 

is correlated, but we were able to demonstrate that shoe experts do not use the designer labels 

from the SVET, nor do they have specific subordinate-level model names, for the shoes in the 
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VET. Therefore, this appears to be a case where the VET-SVET correlation cannot be explained 

by the use of labels during the VET. There are likely other categories that would exhibit the same 

properties, perhaps watches, stand mixers, cell phones, or sunglasses. These categories might 

offer other opportunities to demonstrate shared variance between visual and semantic tasks that 

cannot be explained by labeling images in the visual task and could mainly reflect the role of 

experience for the independent acquisition of verbal and semantic knowledge. 

 In contrast, we found that for birds, bird naming performance contributed to the VET-

SVET correlation in a way not captured by our self-report measure of bird experience or domain-

general factors and abilities. For birds and other categories for which specific names may be 

strongly tied to object recognition performance, object naming may be used in both the VET and 

the SVET, and thus reflects a particular type of bird experience not completely captured in our 

bird experience measure.  

  
Study 2C: Testing the SVET-Bird in Expert Birders 

Overview 

 The goal of Study 2C was to provide further validation of the SVET by comparing 

performance of a sample of “experts” to a sample from the general population. We used online 

data collection to test birders with the SVET-Bird and VET-Bird and we also collected a more 

extensive questionnaire of experience that was specifically tailored to measure the extent of 

experience with birds. Our goal was to investigate if the SVET was capable of capturing 

individual differences in semantic knowledge even among high-level experts for a category, and 

to determine if we could validate these SVET results with other category-specific self-reported 

metrics of experience. We were also interested in whether we could replicate the relationship 

between visual and semantic performance found in Study 2A in experts.  
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Methods 

 Subjects. We recruited 64 subjects by email to participate in the online study. Email 

contact was facilitated by colleagues who had tested these specific birders previously or through 

acquaintances with personal relationships to regional birding clubs or specific birders. All 

subjects self-reported an interest and substantial experience in bird watching as a hobby or 

profession. The study was approved by the Vanderbilt IRB. As compensation, subjects who 

completed all parts of the study were entered in a lottery to win $50 with 1:10 odds of winning. 

Two additional subjects who began the study but chose not to complete all parts were not 

included in the analyses. One subject who completed all parts was excluded from the analyses 

because they misunderstood the VET instructions, resulting in below chance performance. The 

data reported here are for 63 subjects (29 male) aged 23-82 (mean=50.86, SD=15.16). All 

subjects reported that passerine birds were a type of bird they had experience recognizing. All 

subjects reported speaking English and living in the United States or Canada. As can be 

appreciated from Figure 12, our subjects reside in many different locations across North America.  

 
 
Figure 12. Map of North America, with Alaska shown in left inset, with red stars depicting the locations of birders 
who participated in Study 2C. 
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 Procedure. Subjects completed four tasks in the following order: an extended bird 

experience questionnaire for birders, VET-Bird, SVET-Bird, and the bird image naming task. 

The VET-Bird and SVET-Bird were the same as Study 2A and the bird image naming task was 

the same as Study 2B. The birder experience questionnaire first asked the same questions used in 

Study 2A, four domain-general and seven bird specific; all were on a scale from 1-9 except for 

the duration of interest in birds for which they were asked to enter the number of years. To 

extend our experience questionnaire to measure differences in amount of bird experience 

between birders, we added 11 additional bird-specific questions, for example how frequently 

they go birding, how often they plan vacations around birding, if they belong to birding groups, 

and approximately how many different types of birds they have observed in person while birding 

during their lifetime (for full set of extended birder questions see Appendix B).  

 These tasks were completed using two online platforms: REDCap survey data collection 

tools were used for the experience questionnaire and bird naming test as in Studies 2A and 2B, 

and our own secure testing website was used for the VET and the SVET through a test-specific 

email link. The VET and SVET were presented one trial at time as in Study 2A, but subjects 

indicated their response by clicking on an image or name as in Study 1.  

Results and discussion 

 Accuracy on VET-Bird, SVET-Bird, and bird naming. Our group of birders 

performed very well on the VET-Bird, SVET-Bird, and bird naming (see mean and SD in Table 

13). Performance on catch trials was high (mean=0.99); no subjects were excluded due to catch 

trials. While performance was high, variability between subjects remained such that we were 

able to see individual differences between birders, although these differences were smaller than 

in Study 1 and Study 2A samples. Note that in this dataset, age and sex happen to be correlated 
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(r=0.31, p=0.02). This renders any relationships between performance and age or sex more 

difficult to interpret, so we will not consider these variables here. Because the birders in Study 

2C represent a notably different population than the general population we tested in Study 2A, it 

would not be prudent to combine the data in an IRT model (without verifying if the test functions 

in the same qualitative manner in the two populations) and we did not have enough power with 

birders alone to conduct an IRT model to obtain theta scores. Therefore, we will use sum scores 

as our measure of performance for VET-Bird and SVET-Bird in our analyses. 

 Self-reported bird experience. Responses on the extended bird experience questionnaire 

for birders demonstrated high levels of self-reported experience with birds including many years 

birding, much time spent birding, looking at birds, and reading about birds (Table 13). Based on 

reports of the number of birds sighted during their lifetimes, frequency of birding including on 

bird-related trips and vacations, and involvement in birding organization and events, we can be 

fairly certain that we sampled a group of truly experienced birders.  

 The seven bird-specific questions used in Study 2A again demonstrated high internal 

consistency (average correlation between questions: r=0.34). We computed a bird-experience 

aggregate for each subject (basic bird aggregate) as the average of the Z-scored reports for each 

of the questions. The eleven extended bird questions specifically for birders also demonstrated 

good internal consistency (average correlation between questions: r=0.28) and were all well-

correlated with the basic bird experience aggregate (mean r=0.40).  
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Table 13. Results from birders in Study 2C. The first column shows the mean and standard deviation for accuracy 
on each task, age, and self-reports of experience. The second and third columns give the correlations (r) between 
VET-Bird and SVET-Bird accuracy and each measure. Correlation coefficients shown in bolded red are statistically 
significant (rCrit(62)=.25, p<.05).  
 
  Mean (SD) VET-Bird SVET-Bird 

VET-Bird  0.96 (0.08) - - 
SVET-Bird  0.96 (0.07) 0.43 - 
Bird Naming 14.95 (3.77) 0.67 0.55 

    General Experience (1-9): 
   General Experience Aggregate 6.79 (1.09) 0.20 0.22 

    Bird-specific Experience (1-9):  
   Overall Expertise 6.90 (1.36) 0.48 0.45 

Importance 7.81 (1.27) 0.13 0.16 
Duration Interest (years) 27.17 (17.95) 0.08 0.08 
Visual Memory 7.00 (2.26) 0.10 0.12 
Image Frequency 7.90 (1.59) 0.32 0.30 
Text Frequency 7.79 (1.85) 0.37 0.26 
Essay 6.21 (2.06) 0.24 0.33 
Bird Experience Aggregate (Z-score) - 0.48 0.45 

    Birder Extended Questions: 
   Age Started (age) 20.33 (13.43) -0.44 -0.14 

Age Intense (age) 26.46 (13.53) -0.42 -0.16 
Birding Frequency (1-7) 5.86 (1.28) 0.25 0.41 
Travel (1-5) 3.60 (1.36) 0.26 0.41 
Vacation (1-6) 3.71 (1.68) -0.13 -0.26 
Log of Sightings (1-3) 2.49 (0.69) 0.30 0.33 
Birds Sighted (number) 714.37 (811.89) 0.23 0.32 
Local Expertise (1-7) 4.14 (1.29) 0.32 0.28 
Periodicals (number) 1.46 (1.38) 0.25 -0.01 
Organizations (number) 2.16 (1.61) 0.20 0.10 
Events (1-7) 2.43 (1.28) 0.20 0.28 
Extended Bird Experience Aggregate (Z-score) - 0.44 0.43 

 
 We found that one question, age at which your interest in birds/birding became intense, 

was poorly correlated with the other birder questions, and that a similar question, age at which 

you became interested in birds/birding, was more consistent, so we removed the age intensity 

question from our later analyses and did not include it in the aggregate measure. Using the other 

10 birder-specific questions and the 7 basic bird experience questions we computed an extended 
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bird experience aggregate score for each subject as the average of the Z-scored reports for each 

of the 17 questions.   

 Interestingly, the domain-general experience aggregate score, calculated as the average of 

ratings on the four domain-general experience questions as in previous studies, was highly 

correlated with the extended bird experience aggregate (r=0.69, p≤0.0001)(Figure 13). This 

suggests that with an expert population, asking about their general experience with all objects 

may lead subjects to reflect on experience with their primary category of expertise, although this 

may not be a good measure of experience with birds given that the domain-general question does 

not predict VET or SVET scores. 

 
Figure 13. Scatterplot showing the relationship between general experience aggregate and extended bird 
experience aggregate for birders in Study 2C. 
 

Correlations between SVET-Bird and VET-Bird and experience. Many but not all 

self-report questions of bird experience were correlated with SVET-Bird and VET-Bird 

performance (Table 13).  

The domain-general experience aggregate was positively correlated with performance, 

but it was not significantly correlated with either SVET or VET performance. Several of the 
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seven category-specific experience questions that we used in Study 2A were related to 

performance individually, especially questions about the frequency that someone read about or 

viewed picture of birds and the essay question, which was strongly correlated with SVET 

performance. The bird-specific experience aggregate for these seven questions demonstrated a 

high positive correlation with both SVET and VET. Interestingly, the category-specific overall 

expertise question (“Rate your expertise with XXX considering your interest in, years of 

exposure to, knowledge of, and familiarity with XXX”) was the most highly correlated with both 

SVET-Bird and VET-Bird of any measure including the birder specific questions. This is 

consistent with previous findings (Gauthier et al., in press; McGugin, et al., 2012b) that this 

omnibus question of expertise is actually remarkably informative given its simplicity, here even 

in experts. Figure 14 shows SVET-Bird accuracy and expertise ratings for birds for both the 

birders in this study and the larger online sample in Study 1; considering both groups together 

(N=179), the correlation was very high, r(177)=0.80, p<.0001. 

  

 
Figure 14. Scatterplot showing the relationship between SVET-Bird accuracy and self-reported bird expertise in 
AMT subjects from Study 1 (black triangles) and Birders from Study 2C (green circles).  
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Many of the extended bird experience questions that we added in this study just for 

birders were correlated with VET and SVET performance, especially how young someone was 

when they became interested in birds, how frequently they go birding or travel to see birds, and 

the estimated total number of bird species they have observed in their lifetime (Table 13). It is 

perhaps of interest that different experience questions seem to predict VET and SVET best: 

while age at which birding started predicts VET more than SVET (r=0.44 vs. 0.14), birding 

frequency predicts SVET more than VET (r=0.41 vs. 0.25). These patterns could be investigated 

in a larger study to test hypotheses regarding whether the same aspects of experience influence 

the acquisition of visual and semantic knowledge. The extended bird experience aggregate 

created from 17 bird-specific questions demonstrated a robust positive correlation with both VET 

and SVET. The significant correlations between these specific self-report measures of birder 

experience questions and our visual and semantic tests provide further validation that we are in 

fact measuring visual and semantic knowledge that would be acquired through extensive 

experience with that category.    

 

 
Figure 15. Scatterplot showing the relationship between bird naming score extended bird experience aggregate for 
birders in Study 2C. 
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 Correlations between VET-Bird and SVET-Bird and bird naming. Results of the 

bird naming test can also be used as further validation of our measures, especially of the SVET. 

For birders in Study 2C, the number of birds correctly named was significantly positively 

correlated with both VET-Bird and SVET-Bird performance (Table 13). Bird naming was also 

strongly correlated with extended bird experience aggregate scores (r=0.72, p≤0.0001) (Figure 

15). This demonstrates that for our sample of birders, greater levels of experience resulted in 

better bird naming performance, a skill that may also influence performance on the VET-Bird 

and SVET-Bird. To investigate the possible overlap between naming and these visual and 

semantic measures, we asked if VET and SVET contribute independently to naming 

performance for birds. We performed a simultaneous multiple regression predicting bird naming 

performance with VET-Bird and SVET-Bird performance (N=59 after removing three subjects 

who had very large externally studentized residuals (>2.5) in the correlation between VET and 

SVET; see blue X’s in Figure 17). The results shown in Table 14 suggest that VET-Bird and 

SVET-Bird each make independent contributions to bird naming, and together account for 60.8% 

of the variance. Note that adding the bird aggregate experience scores to this model leads to an 

impressive R2 adjusted of 71%. 

Table 14. Results of a simultaneous multiple regression predicting bird naming performance with VET-Bird and 
SVET-Bird performance for birders (N=59) in Study 2C.  
 
Model and predictor β SE t p 
Bird Naming (R2 adj = 60.8%) 
Intercept -53.079 7.127 -7.450  ≤0.0001 
VET-Bird 25.412 7.942 3.200 0.002 
SVET-Bird 44.637 8.824 5.060  ≤ 0.0001 
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 It is also useful to consider this expert data together on a continuum with non-expert data 

to observe the spread of performance from novice to expert. Image naming is a task that has been 

used previously (Barton et al., 2009) to quantify experience, and so it is important as we develop 

the non-visual SVET that we test its relationship with image naming as well. Figure 16 shows 

VET-Bird and SVET-Bird accuracy with bird naming scores for both the large sample of 

subjects collected at Vanderbilt University in Study 2A and the birders collected online in Study 

2C. Considering both groups of subjects together (N=275), the correlations between each 

measure and naming were high (VET-Bird and bird naming: r(273)=0.74, p<.0001; SVET-Bird 

and bird naming: r(273)=0.93, p<.0001), although the strength of these relationships may be 

driven primarily by large group differences between those who could not name any birds and 

those who could name birds. Nevertheless, it is interesting to observe the variability in 

performance for both a general and an expert population. While we do observe some variability 

within experts on all measures, it clear that if we were interested in refining a measure 

specifically to investigate individual differences between experts we would need to extend the 

VET, SVET, and naming tests to include a larger set of more difficult trials to reduce ceiling 

effects and better discriminate among experts. A larger sample of bird experts would also allow 

us to compute an IRT measurement model, which should increase the information provided by 

these tests. 
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Figure 16. Scatterplots showing the relationship between the VET-Bird (left) and SVET-Bird (right) accuracy and 
bird naming score in Vanderbilt subjects from Study 2B (black diamonds) and Birders from Study 2C (green circles).  
  
 Correlations between VET-Bird and SVET-Bird. In our expert birder sample, 

performance on the SVET-Bird and VET-Bird was again positively correlated, r(61)=0.43, 

p=0.005, replicating the results of Study 2A in an expert population and allowing for the 

possibility that common variance between VET and SVET is the result of common category 

experience. We can also consider this relationship for non-expert subjects in Study 2A together 

with birders in Study 2C to gain an understanding of the relationship across greater variability in 

experience. Considering both groups together (N=278), the SVET-VET correlation for birds was 

high, r(276)=0.70, p<.0001 (Figure 17).  

 However, to compare with the results we observed in Study 2A in which experience 

accounted for shared VET-SVET variance, we were interested in the contribution of experience 

to the VET-SVET relationship in the birder sample. For this analysis, we began by looking at the 

correlation between VET-Bird and SVET-Bird (r=0.62, p≤0.0001) after removing three subjects 

(N=59) who had very large externally studentized residuals (>2.5) (subjects marked with blue 

X’s in Figure 17). We then performed a simultaneous multiple regression predicting VET-Bird 
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with SVET-Bird and extended bird experience aggregate. The partial correlation between VET-

Bird and SVET-Bird after partialing out bird experience and age (we did not include sex to avoid 

multicolinearity with age) was reduced, but still quite sizeable (r=0.56, p≤0.0001). In our birder 

dataset, unlike in Study 2A, we do not have measures of domain-general abilities or task 

performance for other categories, so we cannot say if the shared VET-SVET variance after 

removing experience is the result of domain-general or category-specific abilities. In novices in 

Study 2A we observed with that removing experience rendered the VET-SVET partial 

correlation non-significant for birds (from r=0.17 to r=0.08; Table 11), suggesting that for 

novices experience carries much of the variability in performance. However, for experts, while 

experience contributes somewhat to the VET-SVET relationship, much more variance still 

remains after partialing out experience. This result with expert birders is analogous to what has 

been suggested for face recognition performance: experience may account for less variability in 

performance in a sample/category for which experience is generally high (Gauthier et al., in 

press). However, adding bird naming to the model further reduced the correlation between SVET 

and VET to r=0.30, p=0.03), suggesting that subjects who could name birds better (and had 

better SVET scores) may have also used a naming strategy on the VET. 
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Figure 17. Scatterplots showing the relationship between SVET-Bird and VET-Bird accuracy for Vanderbilt 
subjects from Study 2A (black diamonds) and Birders from Study 2C (green circles). Three birders marked with 
blue X’s denote subjects with very high externally studentized residuals (>2.5). 
 
Conclusions 

 In Study 2C we provided validation of the SVET in an expert population by testing the 

SVET-Bird in a sample of experienced birders together with VET-Bird, a test of bird naming, 

and an extended measure of bird experience. We demonstrated that while birders’ performance 

was high on all of the bird measures, there was sufficient individual variability that allowed us to 

observe relationships between performance on each test and experience. For future work testing 

performance with experts, we would recommend creating extended versions of VET, SVET, and 

the naming test with additional difficult trials to reduce ceiling effects for experts and to better 

resolve individual differences at the high end of performance. However, using the standard VET-

Bird, SVET-Bird, and bird naming test we demonstrated high correlations between all bird 

measures and between each of those measures and the extended measure of bird experience, 

providing further evidence that the SVET and the correlation between VET and SVET reliably 

capture real-world experience with a specific object category. We also demonstrated that while 

experience accounts for some shared variance between VET-Bird and SVET-Bird for birders, it 
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may account for less variance than in a novice population where experience varies much more. 

This study provides further evidence that the SVET is a useful tool that can be used together with 

a variety of other visual measures and that can capture expertise at high levels of performance.      
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Chapter 4 – Study 3 

Putting the SVET to the Test – Can Semantic Knowledge Predict Lateralized Object 
Recognition Performance? 

 
Overview 

 In Studies 1 and 2 we created the SVET, and validated the test by looking at its 

relationship with measures of experience, visual performance, and domain-general abilities. We 

also looked at the validity of one category tested with a SVET, birds, by testing a sample of bird 

experts. We found that the SVET and VET both measure dimensions that can discriminate 

experts from the general population, and provide information that discriminates between experts. 

Thus, we have presented the SVET for eight different object categories and can make a case that 

it is a reliable and valid measure of category-specific semantic knowledge that can be used to 

help understand other perceptual and cognitive phenomena.  

In Study 3 we present an example of how the SVET might be used in combination with 

other measures to answer questions regarding how visual and semantic object information is 

represented in the brain. More specifically, we will use the SVET in combination with the VET 

to address the lateralization of expertise effects in the brain.  

Introduction to the question 

 While visual processes are a large part of object recognition, this process also interacts 

with an array of other systems, such as cognitive, emotional, and linguistic systems, that can 

influence perception. In the previous studies we observed a positive relationship between 

category experience and semantic performance measured with the SVET. Semantic knowledge 

acquired for familiar objects can affect perception of those objects, and has been shown to 

change lateralization of visual processing (Curby, Hayward, & Gauthier, 2004). In Study 3 we 

will investigate if the degree and direction of lateralization for visual recognition of an object 
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category, in particular performance in the left hemisphere, can be predicted by semantic 

knowledge of that category measured by the SVET. 

 Associating non-visual semantic features with scenes and objects, especially relevant and 

salient descriptions, can influence visual object recognition (Wiseman, MacLeod, & Lootsteen, 

1985) and discrimination (Gauthier, James, Curby, & Tarr, 2003) by making objects with 

associated semantic knowledge easier to remember and recognize. Associations between shape 

information and non-visual semantic content can be created rapidly, creating multimodal 

representations in the brain that are automatically activated by the visual presentation of an 

object (James & Gauthier, 2003; 2004). While in some studies researchers have taught subjects 

to associate specific semantic knowledge with objects, the SVET can be used as a measure of 

semantic knowledge of an object category learned through real-world experience, and used to 

study the influence of this knowledge on perception.  

 One hypothesis is that greater semantic knowledge for a category will increase the 

recruitment of left hemisphere brain areas even during a visual task. From early lesion studies to 

modern fMRI studies, the left hemisphere has been found to be responsible for the majority of 

linguistic and verbal processing in the brain (Kann, 1950; Wagner, Desmond, Demb, Glover, & 

Gabrieli, 1997). In particular, the left inferior frontal gyrus (LIFG) is activated by semantic 

processing not only for words, but also for images and objects (Vandenberghe, Price, Wise, 

Josephs, & Frackowiak, 1996; Vuilleumier, Henson, Driver, & Dolan, 2002; Wagner et al., 

1997). It also been theorized that different subsystems underlie object processing in each 

hemisphere, so that more abstract or conceptual visual processing is left-lateralized, while fine 

visual discrimination is more right-lateralized (Marsolek, 1999). 
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 In this study, we will use the SVET to quantify semantic knowledge of a category 

acquired from real-world experience to predict the degree of visual processing lateralization for 

that category. There is evidence suggesting that semantic knowledge affects the laterality of 

object perception in the brain. A behavioral study with novel objects found that when subjects 

were trained to associate specific adjectives (e.g., fast, hollow, strong) with particular novel 

objects, recognition of those objects in a sequential matching task was facilitated for processing 

in the left versus right hemisphere (Curby et al., 2004). These results seemed to be due to 

associating semantic information with the objects, because subjects in a different training 

condition who performed visual similarity judgments during training rather than learning 

semantic information did not demonstrate any difference in performance between the right and 

left hemispheres.  

 A surprising difference in laterality was also observed in an fMRI study of perceptual 

expertise with cars and planes in face selective areas. The response to cars in the fusiform face 

area (FFA) was correlated with behavioral car expertise bilaterally, while the response to planes 

in FFA was only related to behavioral expertise for planes in the right hemisphere (McGugin, 

Gatenby, Gore, & Gauthier, 2012a). This, however, may not represent a true categorical 

difference. In this study, subjects were recruited to maximize differences in car expertise. About 

half the subjects self-reported expertise with cars, but none reported expertise with airplanes. 

However, despite the fact that only three of the subjects reported any above-average experience 

with planes, performance on visual tasks with planes and with cars were correlated. According to 

the results from the previous chapters of this dissertation, people who self-report as experts in a 

domain are likely to have more semantic knowledge in that domain. But because most of these 

subjects did not report any special knowledge of planes, it is unlikely that they had much 
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semantic knowledge for that category. This led McGugin et al. (2012a) to suggest that the 

difference in laterality between the categories might be the result of semantic knowledge; high 

semantic knowledge for cars recruits both left and right hemispheres for object recognition, 

while lack of semantic knowledge for planes leads to activity that is correlated with visual 

performance in the right hemisphere only. 

 In Study 3, we will use the SVET as a measure of semantic knowledge for specific object 

categories to investigate the effect of semantic knowledge on individual differences in lateralized 

object processing. We predict that subjects with high SVET scores in a domain may have access 

to expert representations in both hemispheres when they recognize objects in that domain, 

whereas subjects with low SVET scores may mainly perform visual judgments based on right-

hemisphere representations. To test this hypothesis, we had subjects perform a lateralized visual 

matching task with four different object categories. They also performed VETs and SVETs for 

each category. We will essentially attempt to predict VET performance based on the matching 

scores in each hemisphere, and ask if this is modulated by SVET scores.  

 We tested four objects categories selected from the set of eight tested in the previous 

studies: cars, planes, shoes, and birds. These categories were selected for several reasons. First, 

we chose two male-interest and two-female interest categories based on the results of the 

previous studies, not because we were interested in sex effects per se, but because we wanted to 

sample a range of individual experience for each of these categories, and experience level for 

many categories corresponds with sex. We also selected these four categories because we found 

robust effects of a category-specific VET-SVET relationship for these categories in Study 2A. 

We were also particularly interested in cars and planes because they were used in the previous 

fMRI study (McGugin et al., 2012a). Lastly, we chose to test shoes because we expected that the 



	
   93 

pattern of results might differ from the other categories based on the results of Study 2B, which 

showed that while VET-Shoe and SVET-Shoe are robustly correlated, shoe naming does not 

contribute to the relationship. While our prediction for cars, planes, and birds is greater 

recruitment of left hemisphere with increased semantic knowledge, this effect may not be 

observed for shoes, for which visual and semantic knowledge from common experience do not 

seem to overlap.  

Methods 

 Subjects. One hundred and twenty subjects were recruited from the Vanderbilt 

University and Nashville, TN community; they gave informed consent and received course credit 

or monetary compensation for participation. The study was approved by the Vanderbilt IRB. All 

subjects reported normal or corrected to normal visual acuity, were native English-speakers, and 

had lived in the United States at least 10 years, except for one subject who had lived in the U.S. 

for four years. Data from one subject were excluded for below chance (.33) performance on three 

SVETs and data from one subject were left in the dataset but they completed the lateralized 

matching task on a different day. Thus, data are reported here for 119 subjects (47 male) aged 

18-46 (mean=21.54, SD=3.55).  

 Equipment. The experiment was conducted in the laboratory on Apple Mac Minis (OSX 

10.9.2, 2Ghz Intel core 2 duo) with 21.5-inch LCD monitors (1920x1080 resolution) using 

MATLAB R2009b (Mathworks, Natick, MA, USA) and Psychtoolbox (http://psychtoolbox.org; 

Brainard, 1997). The experience questionnaire was completed using REDCap electronic data 

capture survey tools (http://redcap.vanderbilt.edu; Harris et al., 2009) hosted by Vanderbilt 

University. Subjects were seated approximately 60 cm from the monitor and used a chin rest 

during the lateralized matching task to maintain this distance.  
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 Tasks. Subjects performed four tasks in the following order: experience questionnaire, 

lateralized matching, VET, and SVET. Each task tested four object categories with trials always 

blocked by category, and blocks occurring in the order: cars, birds, shoes, and planes. 

 Experience questionnaire. Subjects completed the same questionnaire as in Study 2A 

with four domain-general experience questions and seven category-specific questions for each 

category.  

 VET and SVET. The VETs and SVETs for cars, birds, shoes and planes were the same 

as those used in Study 2A and were administered in the same fashion.  

 Lateralized matching. The lateralized matching task was a sequential same-different 

object recognition task in which the second image was presented in the periphery to the left or 

right of fixation to selectively recruit one hemisphere of the brain in the perceptual judgment.  

 Stimuli. Stimuli were grey-scale images of cars, birds, shoes, and planes. Cars, birds, and 

planes were shown on natural backgrounds as they are commonly seen, and shoes were shown 

on white backgrounds as they might be seen in magazines or online. Images were padded by 

flanking solid-color rectangles, if necessary, to make them square; flankers were a consistent 

color (grey, black, or white) for each category. These images were selected to be similar to the 

images used in the VET and followed the same criteria used for the VET and SVET in Studies 1 

and 2 (e.g. found in North America, car models from 2000 to present, male passerine birds, etc). 

While some of the same objects (e.g. Honda Civic, blue jay) appear in both tasks, no exact 

images are used in both tasks. Each trial consisted of a pair of images shown sequentially. The 

first image was presented in the center of the screen and the second image was presented 200 

pixels to the left or right of center. The first image was 180 x 180 pixels and subtended a visual 
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angle of approximately 4.8 x 4.8 degrees. The second image was 100 x 100 pixels and subtended 

a visual angle of approximately 2.6 x 2.6 degrees. 

 Test and trial structure. The block of trials for each category consisted of 110 trials: 100 

matching trials and 10 fixation catch trials. Of the 100 matching trials, 50 were same trials and 

50 were different trials. Same trials presented the same object in each image, but only 10 same 

trials in each block showed an identical match; we will refer to these as ‘same: exact’ trials 

(Figure 18). The other 40 same trials in each block were ‘same: different example’ trials which 

presented two different examples of the same object but might differ in non-diagnostic features 

of the object or image, for example, color, model year, viewpoint, or background. Each of the 50 

same trials presented a unique object. Subjects were carefully instructed that same responses 

indicated the same object (car, plane, or shoe model, or bird species) regardless of whether a 

same or different example was presented in the second image. On different trials there were two 

different objects in each image. The images used in different trials were not used in same trials 

and were only used once each, but object identity sometimes overlapped with an object presented 

in a same trial up to twice per block. Apart from Same vs. Different, none of the other 

distinctions will be explicitly analyzed; trials were merely selected to cover a range of difficulty, 

so that the test as a whole would discriminate domain-specific performance across the entire 

spectrum of ability.  
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Figure 18. Examples of each trial type, same: exact, same: new example, and different, used in the lateralized 
matching task in Study 3 for cars, birds, shoes, and planes, shown in each row.  
 
 Trials. Each trial began with a red fixation cross for 1,000ms, followed by the first image 

presented centrally for 1,500ms, a black cross shown for 500ms, the second image presented to 

the left or right of fixation for 200ms, and then a mask (specific to the test category) shown for 

250ms (Figure 19). Subjects responded with a keyboard button press (‘1’ for same or ‘2’ for 

different on the keypad) and could make a response as soon as the second object appeared. The 

screen remained blank until a response was made and then advanced to the next trial after a 

500ms ITI.  

 Procedure. Subjects were instructed to fixate the center of the screen at all times 

throughout the trial even when images appeared off center, which is critical for lateralized 

processing. We used fixation catch trials consisting of a perceptual detection task in the center of 
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the screen to ensure fixation. On fixation catch trials (10 trials, presented at pseudo-random times 

during the block with greater frequency at the start of each block), the fixation cross and first 

image appeared, as on a matching trial, but then there was a subtle shift in the black fixation 

cross such that the horizontal line shifted 5 pixels to the left or right (five left and five right trials 

per block) for 150ms followed by a blank screen. On fixation catch trials, subjects were required 

to make a different keypress response indicating which side of the horizontal line in the cross 

become longer (‘Z’ for left, ‘X’ for right).   

 

 
Figure 19. The trial structure of a single trial in the lateralized matching task in Study 3. Each trial began with a 
red fixation cross, followed by a first image presented centrally, a brief cross, a second image presented briefly to 
the left or right (right in this example) of fixation and then a mask. Presentation times are shown for each part of the 
trial.  
 
Results and discussion 

 Task performance. 

 Experience ratings. Subjects reported a range of general and category-specific 

experience for each category comparable to responses in Study 2A. As in the previous study, we 

looked at the consistency of the set of questions for each category and of the general experience 

question using the average correlation between all questions and Cronbach’s alpha. The four 

general questions were the least correlated with one another (mean r=0.32, α=0.64). An 

aggregate score computed as the average of the four general questions had median=5.50 and 

SD=1.16. The seven category-specific questions for each category demonstrated higher 

correlations and excellent internal consistency (Car: mean r=0.76, α=0.93; Plane: mean r=0.61, 
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α=0.89; Shoe: mean r=0.73, α=0.95; Bird: mean r=0.53, α=0.87). Because the questions were 

highly correlated, we created a category-specific aggregate score for each subject (average of the 

7 questions). Figure 20 shows the aggregate of category-specific experience for each category. 

As in the previous study, subjects reported greater experience with cars and shoes, although this 

experience was also more variable than that for planes and birds.  

 
Figure 20. Boxplots showing the aggregate of self-reported category-specific experience ratings for four 
categories in Study 3.  
 
 VET and SVET performance. Accuracy computed as the sum score on the VET (VET-

Car: mean=0.59, SD=0.15; VET-Plane: mean=0.65, SD=0.13; VET-Shoe: mean=0.72, SD=0.11; 

VET-Bird: mean=0.64, SD=0.13) and SVET (SVET-Car: mean=0.64, SD=0.16; SVET-Plane: 

mean=0.45, SD=0.09; SVET-Shoe: mean=0.57, SD=0.16; SVET-Bird: mean=0.47, SD=0.07) 

was above chance and within the expected range based on previous studies. No subjects were 

excluded due to catch trial performance on the VET or SVET. One subject was excluded for 

below chance (.33) performance on three SVETs. 

 We used theta VET and SVET scores, as in Study 2A. For VET, we computed theta 

scores from a two-parameter IRT model based on all the data we had for these categories to 

provide a better measurement model. Therefore, the scores for individuals in Study 3 were 
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computed in separate models for each category using these subjects (N=119) together with those 

from Study 2A (N=213; Total N=332). Likewise, for SVET performance we computed theta 

using only the SVET-Select trials identified in Study 2A to produce a unidimensional measure 

and the factor most correlated with the VET. SVET theta scores for individuals in Study 3 were 

computed from a two-parameter IRT model for each category together with subjects from Study 

1 (N=116), Study 2A (N=213), and Study 3 (N=119; Total N=448). Figure 21 shows the 

distributions of these theta scores for each VET and SVET for the Study 3 subjects.    

 Table 15 shows the correlations between each of the VETs and SVETs. Overall, VETs 

were more correlated with one another (mean r=0.26; Panel A) than SVETs (mean r=0.04; Panel 

C), a pattern also observed in Study 2A, and which is likely due to the common contribution of 

domain-general visual ability on all VETs. The VET-SVET correlation was also again observed 

to be stronger within category (mean r=0.33) than between category (VET-SVET for different 

category, mean r=0.04; two-sided Fisher’s Z test: Z=4.39, p≤0.0001; Panel B), producing 

evidence in another sample that performance for both tests is category-specific.  

 
Figure 21. Boxplots showing the theta scores for subjects on each VET (V-) and SVET-Select (SV-Sel) for each 
category in Study 3.  
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 Lateralized matching performance.  

 Most subjects performed well on the fixation catch trials (mean=0.93, SD=0.09). Despite 

instructions to report which side of the cross became longer, some subjects instead reported 

which direction the horizontal line appeared to move (the opposite response). Subjects with very 

low accuracy on fixation (<0.2, many with perfectly negative accuracy) were considered to have 

swapped responses and their scores were inverted (e.g. 0.1 to 0.9 accuracy). Three subjects 

performed nearly at chance (0.5) on fixation trials, but further inspection of their data revealed 

that they had  high accuracy (≥0.7) in at least one block and switched the response mapping part-

way through the task in other blocks, resulting in poor average performance. Therefore, no 

subject was excluded for performance on fixation catch trials, especially since performance on 

the fixation task was not correlated with performance on the matching tasks.  

 
Figure 22. Boxplots showing performance on the lateralized matching task in Study 3 as d prime for each 
category and hemisphere (e.g. ‘Car Left’ shows performance when cars were presented to the right of fixation such 
that visual processing would be in the left hemisphere.)  
 
 The lateralized matching task was challenging given that the second image in each trial 

was presented very briefly in the periphery, and most of the same trials required complex object 

recognition beyond image matching. However, most subjects performed above chance on the 
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task for all categories (mean sum score=0.62, SD=0.49). Note that for each category, subjects 

performed very well on the ten exact same trials, suggesting that it was the trial difficulty in 

terms of object similarity, not the task itself, that was challenging (mean sum score on exact 

same trials =0.86-0.92 on each category).  

 To remove the influence of any individual bias in performance on the matching task, we 

used signal detection theory to compute d prime (d’) (Green & Swets, 1966) for presentation in 

each visual field separately (Figure 22). We computed the correlations between left and right 

hemisphere d’ (Table 15, Panel E). We did not observe a within versus between category 

difference in the correlation between hemispheres (within category mean r=0.30, between 

category mean r=0.23, two-sided Fisher’s Z test: Z=0.62, p=0.54). Between categories there was 

not a greater relationship between matching performance in the left hemisphere (mean r=0.22; 

Table 15, Panel D) versus the right hemisphere (mean r=0.26; Panel F; two-sided Fisher’s Z test: 

Z=-1.09, p=0.28).  

Table 15. Correlations (r) between performance on each of the measures in Study 3: VET, SVET, and lateralized 
matching, which is divided by left hemisphere and right hemisphere trials. Each task is show for cars, planes, shoes 
and birds. Correlations within category but cross task (VET-SVET) or hemisphere (left-right) are outlined on the 
diagonals of Panel B and D. Values shown in bolded red are statistically significant (rCrit(117)=.177, p<.05). 
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 Contribution of SVET to VET performance in each hemisphere. To determine if 

SVET performance moderated the hemispheric contribution to VET performance, we performed 

a multi-step regression analysis.  

 First, for each category, we tested a model that predicted VET performance using SVET 

scores, the two lateralized matching scores, and the interaction between lateralized matching and 

SVET (all predictors entered simultaneously - Table 16). Most interestingly, the SVET showed a 

significant interaction with lateralized matching to predict VET scores: SVET*left hemisphere 

matching for cars and planes and SVET*right hemisphere for shoes and nearly (p=0.059) for 

birds. This reveals that VET performance, a task for which the images can be fixated, was most 

similar to matching in one hemisphere, as a function of semantic knowledge.  

 To further investigate these interactions, we computed how VET scores residualized for 

SVET (therefore a relatively pure index of visual performance when tested foveally) were 

predicted by matching performance in each hemisphere for subjects with low vs. high SVET 

scores (according to a median split). In these datasets, the SVET contributed to VET 

significantly for cars, planes, and shoes (car: R2=26.0%, p≤0.0001; plane: R2=10.4%, p=0.0003; 

shoe: R2=12.2%, p≤0.0001; bird: R2=2.1%, p=0.12). Therefore, these represent the different 

magnitudes of variance accounted for by regressing out the SVET from VET scores (twice as 

much for cars as for planes or shoes, and very little for birds). 

 Using these VET residuals, we then proceeded to test the hypothesis that McGugin et al. 

(2012a) advanced to explain their right-lateralized expertise effects for planes, but bilateral 

expertise effects for cars: that semantic knowledge would play a role in extending expertise 

effects to the left hemisphere. This test will assess whether visual performance in subjects with 
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different levels of semantic knowledge may be the result of unequal contributions from the two 

hemispheres.  

Table 16 Multiple regressions for each category predicting VET with SVET, right hemisphere matching, left 
hemisphere matching, and the interaction of SVET with left and right hemisphere matching.  

CAR 
  

 
 

 Model and predictor β SE t p 
VET Theta (R2 adjusted = 29.7%)   
Intercept -0.235 0.117 -2.010 0.046 
SVET Select Theta 0.322 0.093 3.460 0.001 
Right Hem Matching Dpr 0.628 0.275 2.290 0.024 
Left Hem Matching Dpr 0.181 0.304 0.595 0.553 
SVET Select*Right Hem Matching 0.388 0.230 1.690 0.095 
SVET Select*Left Hem Matching -0.494 0.197 -2.500 0.014 

     PLANE  
    Model and predictor β SE t p 

VET Theta (R2 adjusted = 15.3%)   
Intercept -0.496 0.220 -2.260 0.026 
SVET Select Theta 0.041 0.202 0.203 0.839 
Right Hem Matching Dpr 0.141 0.297 0.475 0.636 
Left Hem Matching Dpr 0.405 0.208 1.950 0.054 
SVET Select*Right Hem Matching -0.220 0.200 -1.100 0.272 
SVET Select*Left Hem Matching 0.449 0.199 2.260 0.026 

     SHOE 
    Model and predictor β SE t p 

VET Theta (R2 adjusted = 16.7%)   
Intercept -0.520 0.268 -1.940 0.055 
SVET Select Theta 0.908 0.227 4.000 0.000 
Right Hem Matching Dpr 0.518 0.338 1.530 0.128 
Left Hem Matching Dpr 0.357 0.287 1.240 0.217 
SVET Select*Right Hem Matching -0.696 0.266 -2.620 0.010 
SVET Select*Left Hem Matching -0.093 0.185 -0.502 0.617 

     BIRD 
    Model and predictor β SE t p 

VET Theta (R2 adjusted = 6.2%)   
Intercept -0.826 0.274 -3.010 0.003 
SVET Select Theta 0.298 0.252 1.180 0.239 
Right Hem Matching Dpr 0.248 0.203 1.220 0.224 
Left Hem Matching Dpr 0.398 0.236 1.690 0.094 
SVET Select*Right Hem Matching -0.390 0.204 -1.910 0.059 
SVET Select*Left Hem Matching 0.234 0.237 0.988 0.325 
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 Table 17 shows the results of these regressions. Italics indicate hemispheres for which we 

previously observed a significant contribution of SVET*hemisphere in VET. We will focus our 

discussion on these results, as our previous analyses led us to believe that SVET scores could 

predict a meaningful difference in visual performance in those hemispheres. We will not 

compare low/high SVET effects for the non-italicized results as we did not previously obtain a 

significant interaction of SVET*hemisphere. For instance, while for cars high SVET subjects 

show a contribution of the right hemisphere matching while low SVET subjects do not, this 

interaction was not quite significant (see Table 16). 

Table 17 Multiple regressions for each category predicting VET(SVET) with left and right hemisphere matching 
for subjects with low SVET scores (left) and high SVET scores (right). Italics indicate hemispheres for which we 
previously observed a significant contribution of SVET*hemisphere in VET.  
  

 
 

 For cars, we observed that left hemisphere matching predicted VET residuals for subjects 

with low SVET scores (partial correlation: r(115)=0.34, β=0.95 p=0.009) but not for those with 

high SVET scores (partial correlation: r(115)=-0.03, β=-0.76, p=0.10) (Figure 23). In contrast, 

for planes, we found the opposite relationship. We observed that left hemisphere matching was 

strongly related to VET residuals for subjects with high SVET scores (partial correlation: 

r(115)=0.31, β=0.72, p=0.02) but not for those with low SVET scores (partial correlation: 
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r(115)=-0.09, β=-0.20, p=0.49). For shoes, we did not find a statistically significant contribution 

of right hemisphere to VET residuals in either low or high SVET subjects, however, qualitatively, 

the right hemisphere matching was more strongly related to VET residuals for subjects with low 

SVET scores (partial correlation: r(115)=0.25, β=0.69, p=0.13) than high SVET scores (partial 

correlation: r(115)=0.01, β=-0.06, p=0.91). 

 The findings for planes fit our prediction based on the results of McGugin and colleagues 

(2012a), with greater semantic knowledge associated with greater left hemisphere contribution to 

visual processing. Had we tested only planes, the story might have been simple. But the opposite 

pattern was found for cars. An explanation of the car results in left hemisphere is less apparent, 

and the results could differ from those for planes either because cars is a category for which 

more subjects possess semantic knowledge (compared to planes) and/or because SVET itself 

accounted for more of the overall variance in VET performance. 

 Despite showing a significant interaction in the initial model, in this analysis we did not 

observe a significant right hemisphere contribution to VET(SVET) for shoes for either low or 

high SVET subjects, although the qualitative pattern suggests a stronger contribution for low 

SVET subjects. Since we had no prediction about how the right hemisphere contribution to VET 

performance would be mediated by SVET scores, we note that the effect for shoes is generally 

similar to that for birds. While the interaction between SVET and hemisphere was only 

marginally significant in the original model for birds, when SVET scores were split we observed 

a positive contribution of right hemisphere matching to VET(SVET) in low SVET subjects only. 

This may indicate a different strategy for those with limited semantic bird knowledge, one that 

relies more on processing in the right hemisphere than for those with greater semantic bird 

knowledge who can apply knowledge beyond visual information to the task.  
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Figure 23. Scatterplots showing the partial correlations of VET residual (SVET) with left hemisphere matching d’ 
for cars and planes and right hemisphere matching d’ for shoes, split by median SVET scores: low SVET scores (top 
row) and high SVET scores (bottom row). 

 
 
 
Conclusions 

 In Study 3, we used the SVET as an independent measure to ask how levels of semantic 

knowledge for a category might affect visual processing of those objects in the brain. Our 

hypothesis based on previous findings (Curby et al., 2004; McGugin et al., 2012a) was that 

subjects with high semantic knowledge might recruit both hemispheres more equally in a visual 

task, while those with less semantic knowledge would use mostly the right hemisphere, therefore 

suggesting that left hemisphere recruitment may result from automatic activation of semantic 

knowledge during a visual task.  
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  We used SVET scores together with a peripheral visual matching task to target left and 

right hemisphere processing to predict the performance on the VET, a foveal visual task. We 

found a significant interaction between semantic knowledge in the left hemisphere for cars and 

planes, and in the right hemisphere for shoes and birds. The results for planes suggest this 

interaction is different for low versus high SVET subjects, which match our predictions as well 

as those by McGugin and colleagues (2012a) in fMRI. To better interpret the results for cars, 

shoes, and birds, future studies that examine the effect of category experience in more detail and 

test a wider range of categories are needed to broaden our understanding of when these semantic 

and hemispheric interactions occur and in what direction.   

Perhaps even more importantly for the goals of this dissertation, Study 3 demonstrates 

that the SVET is a valuable measurement tool that provides additional information beyond 

measures of visual processing for investigating the effects of semantic knowledge and object 

experience on visual and cognitive processes. This study provides an example of how individual 

differences work can contribute to our understanding of high-level visual processes, allowing us 

to ask questions that cannot be answered by group analyses. We hope to continue using the 

SVET as a measure in future work and will make it available to other psychologists who may 

wish to use it as well.  

 
 
 
 
 
 
 

 
 
 
 
 



	
   108 

Chapter 5 – Conclusion 

 In this dissertation we have made significant progress in the measurement of semantic 

knowledge for an object category, and with novel measures, we learned about how semantic 

knowledge relates to visual performance, domain-general abilities, and category experience. 

Now instead of just measuring performance on a single bird recognition test, we could have Theo 

and Liz complete an entire battery of tests that would tell us about their visual and semantic 

knowledge with birds and other categories, including faces, and self-report measures of 

experience in these domains. If Liz performs well on VET-Bird but not SVET-bird and Theo 

does well on both VET-Bird and SVET-Bird, how might we understand their visual bird 

performance? We might look at visual performance on all VETs and see that Liz performs well 

on the other VETs and on the CFMT, suggesting that her visual bird performance is not the result 

of bird experience but reflects her high domain-general visual ability. If Liz also reports low 

experience with birds that would suggest her poor SVET-Bird performance is because of a lack 

of bird experience, especially if her scores are not low on all SVETs or for categories with which 

she reports more experience. If Theo reports above average bird experience and his VET-Bird 

and SVET-Bird performance are well correlated with each other but not with other categories, 

this would suggest that Theo’s performance with birds is high at least in part because he has 

greater experience in this domain. Of course the exploration of individual differences is best 

done in the context of a much larger data set, such as the ones we gathered in this dissertation.  

 Our goal in this work was to create a valid and reliable measure of semantic knowledge 

that could be used for many different categories and which, together with other measures, would 

help us better understand object recognition performance.    
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 We successfully created a standardized, non-visual measure of semantic knowledge, the 

SVET, for eight object categories. The SVET, which tests knowledge of object names and labels 

for a category, is concise and can be completed by subjects at all levels of category experience. 

The SVET is also adaptable to many categories, which is important because testing performance 

on many different categories is critical to interpreting performance as reflecting either domain-

general or domain-specific influences. We found that each of the SVETs was reliable and offered 

good coverage of all levels of performance in both an online sample and a university sample as 

well as with experts tested on the SVET-Bird. We provided evidence for the validity of the VET 

in a number of ways: i) SVETs showed domain-specific correlations with their corresponding 

VETs, a result that combines both convergent and discriminant validity; ii) similarly, SVETs 

showed domain-specific correlations with reports of experience; iii) the SVET discriminated 

experts from novices in the bird domain; iv) SVETs were more related to domain-specific 

measures than to fluid intelligence or face recognition. The SVET thus provides a novel and 

valuable tool to measure semantic performance independent of visual performance. 

     Beyond measurement of semantic knowledge we were interested in SVET performance 

because it offered another measure that would be influenced by category experience. As such the 

SVET could eventually provide a way to estimate experience independent of self-report. One 

analysis of particular interest was the relationship between visual (VET) and semantic (SVET) 

performance for the same category. We hypothesized that the shared variance between these two 

different tasks should reflect primarily domain-specific experience. In other words, after we 

removed the influence of domain-general variables (age, sex, Gf, and non-category performance: 

an estimate of general visual ability for the VET and of general verbal ability for the SVET), we 

found that experience as measured by our self-report measure contributed independently and 
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significantly to the VET-SVET relationship for six of the eight categories we tested. Indeed, in 

most cases, once regressing out experience there was very little shared variance left between 

VET and SVET, less then 3% (the exception was cars, where the correlation still accounted for 

16% of the variance). Two categories did not demonstrate a significant independent contribution 

of experience: shoes and mushrooms. This could be because of a large sex effect that was 

strongly correlated with shoe experience, accounting for much of the variance for shoes, and 

because mushrooms demonstrated low variability in both experience and VET and SVET 

performance in our sample, leaving little individual variability to explain with a small range of 

experience. Whether the differences between categories found here replicate or depend on 

properties of our specific sample remains to be seen. Overall, these results generally supported 

our hypothesis that the main contributor to domain-specific overlap between visual and semantic 

performance is experience. These results also serve to validate our domain-specific self-report 

measures of experience. 

 In our analyses removing domain-general factors to see if the remaining shared variance 

between VET and SVET reflected only expertise, we found in some cases, such as cars, that a 

significant share of variance remained unexplained after removing the contribution of experience. 

Aside from the possibility that this could be due to error in measurement of experience, we 

explored whether some of this variance could be attributed to a strategy of using names to 

remember objects in the visual task. With a category for which even experts lack subordinate-

level names, shoes, we found that the relationship between VET and SVET remained strong. 

And with a category for which there was great variability in the ability to name objects at the 

subordinate-level, birds, we found that while bird naming may account for some of the variance 

shared by VET and SVET, this variance was independent of self-reported experience with birds.  
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 Furthermore, whereas in our university sample for birds we observed that removing 

experience rendered the VET-SVET partial correlation non-significant, for birders we found that 

the VET and SVET remained correlated after partialing out the role of experience. This result 

mirrors a situation that has been postulated for face recognition in the normal population: when 

experience is high, experience is expected to account for less of the variability in performance 

(Gauthier et al., in press).  

In the introduction we made the prediction based on previous results (Davis et al., 2011; 

Hedley et al., 2011; Wilhelm et al., 2010; Wilmer et al., 2010) that two domain-general abilities, 

v and Gf, would not be related. The idea that domain-general abilities are related to a common 

underlying factor has been central to a great deal of work in the study of intelligence, as 

expressed in the classic idea of a general factor (g) (Chiappe & MacDonald, 2005; Garlick, 2002; 

Horn, 1968; Horn & Cattell, 1966; Humphreys, 1979). This is one reason to be excited about 

new developments in the study of individual differences in face recognition, and by extension 

now also object recognition: individual abilities that can be reliably measured and that are not 

strongly related to g have the potential to broaden the scope of predictions and understanding in 

human behavior. 

To the extent that face recognition can be assumed to be a good estimate of v, we found 

that face recognition (CFMT) and Gf were correlated with each other, although the correlation 

accounts for a very small proportion of the variance (r=0.14, R2=0.02), especially given that 

these are highly reliable measures.  

We also found a correlation between each VET and Gf, a relationship that was 

statistically significant except for cars and shoes (mean for all categories, r=0.22). Interpreting 

such a correlation is somewhat difficult, because it could reflect how intelligence influenced 
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learning of domain specific information, or it could reflect the correlation between Gf and 

domain-general visual ability (v) as expressed in each domain-specific test. However, we can 

also look at the correlation between Gf and an aggregate VET score (VET-All) for all eight 

categories. By aggregating across categories, we would expect to reduce domain-specific 

contributions, to the extent these contributions are not correlated between categories. In Study 

2A, the correlation between VET-All and Gf was numerically higher (r=0.32) than the average 

correlation with each category (mean r=0.21), suggesting a domain-general v could be related to 

Gf. Interestingly, VET-All was even more correlated with CFMT (r=0.41), again more than the 

average correlation between CFMT and each VET (mean r=0.27). Gf appears to share more 

variance with measures of object recognition than with our measure of face recognition, and this 

difference may be difficult to attribute to experience, which in itself does not relate to Gf, either 

when averaged across all categories (r=-0.06) or when computed separately for each category 

(mean r=-0.03). 

In contrast, the correlation between SVET and Gf was always weaker than between VET 

and Gf for every category. The correlation between SVET and Gf was statistically significant but 

small for six of the eight categories. SVET-All, the average of SVET performance averaged 

across all eight categories, was correlated with Gf more (r=0.20) than any of the single category 

SVETs (mean r=0.10). 

While some theories of intelligence suggest that all domain-general cognitive abilities are 

related to g, others dispute this common relation for some domain-general abilities (Conway, 

Cowan, Bunting, Therriault, & Minkoff, 2002; Friedman et al., 2006). Why is the VET more 

correlated with Gf then the SVET? It may be because it is a learning and memory task, while the 

SVET is in essence a measure of crystallized knowledge. Of course, the extent to which someone 
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learns over the course of a short VET, or the kind of learning that occurs, may depend on how 

much they know about a category to start with. For instance, for faces, learning might be limited 

to the specific exemplars on the test, whereas for mushrooms in novices, subjects may learn that 

some features are more diagnostic of identity for the entire category. In future work it would be 

interesting to investigate what domain-general abilities are more related to acquiring knowledge 

tested in the SVET.  

Future work might also explore why we observed stronger sex differences in the male-

interest categories for the SVET than the VET, and if this is related to any domain-general 

abilities or differences in types experience (e.g. recognizing objects versus reading about them) 

with those categories. We would also be curious to investigate further what might explain the 

remaining domain-specific variability we observed between VET and SVET after removing age, 

sex, Gf, non-category task performance, and self-reported experience. Perhaps there is another 

aspect of category-specific experience not captured by our experience measure, or domain-

general abilities that apply selectively to performance with some categories more than others.   

This work investigating the contributions to object recognition performance represents a 

new direction in individual differences work in high-level vision. While some work has been 

done to understand relationships between face recognition and other performance measures 

(Dennett et al., 2011; Gauthier et al., in press; Wilhelm et al., 2010; Wilmer et al., 2010; 2012) 

investigating the contribution of experience in domains with greater variability in experience has 

not been done. Here we applied a framework in which domain-specific measures can be used to 

estimate domain-specific effects after partialing out domain-general variance. Similar methods 

have been used in cognitive domains (Hambrick, 2003; Hambrick et al., 2007; 2008; Stanovich 

& Cunningham, 1992) but have not been applied to questions in object recognition. In fact, the 
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next step in this research program might follow in the footsteps of these cognitive studies to 

apply structural equation modeling methods to our measures, to estimate latent variables that 

correspond to both domain-specific and domain-general factors. 

Our use of item response theory (IRT) methods to measure subject performance and 

refine our measures is atypical in cognitive psychology, but we found it useful both for test 

creation and data interpretation. We hope to continue and extend our use of IRT in future work 

on the SVET and other individual differences measures. 

 We hope that the SVET will be a useful tool that can be employed as an independent 

measure to understand other perceptual and cognitive phenomena. In Study 3 we demonstrated 

how SVET scores might be used to understand lateralization of visual processing in the brain, 

which we hypothesized based on previous work might recruit the left hemisphere more with 

greater semantic knowledge (Curby et al., 2004; McGugin et al., 2012a). We found that for 

planes, increased left hemisphere performance was related to high SVET scores as predicted, 

however interpretation for other categories was less clear and will require more investigation – 

but the results suggested that lateralization of visual processing interacts with a subject’s level of 

semantic knowledge. The SVET thus appears to measure informative variability that could be 

helpful to investigate individual differences in high-level visual processes.  

 In conclusion, this dissertation presents the SVET as a reliable and valid measure of 

semantic knowledge and demonstrates its use for measurement of semantic knowledge for a 

range of categories and populations. It also illustrates the use of the SVET as a measure of 

category-specific performance that reflects category-specific experience to understand the 

abilities and experience that contribute to performance. In the future we will continue to refine 

and expand the SVET, both in new categories and extended versions for expert populations, and 
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we will make it available to other psychologists who wish to use it in their research. We hope 

this work contributes to the exciting new research area of individual differences in object 

recognition and look forward to continuing this research using the SVET together with fellow 

psychologists.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   116 

REFERENCES 
 

Barton, J. J. S., Hanif, H., & Ashraf, S. (2009). Relating visual to verbal semantic knowledge: 

the evaluation of object recognition in prosopagnosia. Brain, 132(12), 3456–3466. 

doi:10.1093/brain/awp252 

Bowles, D. C., McKone, E., Dawel, A., Duchaine, B., Palermo, R., Schmalzl, L., … Yovel, G. 

(2009). Diagnosing prosopagnosia: effects of ageing, sex, and participant-stimulus ethnic 

match on the Cambridge Face Memory Test and Cambridge Face Perception Test. Cognitive 

Neuropsychology, 26(5), 423–455. doi:10.1080/02643290903343149 

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. 

Bub, D. N., Masson, M. E. J., & Lin, T. (2013). Features of planned hand actions influence 

identification of graspable objects. Psychological Science, 24(7), 1269–1276. 

doi:10.1177/0956797612472909 

Chiappe, D., & MacDonald, K. (2005). The evolution of domain-general mechanisms in 

intelligence and learning. Journal of General Psychology, 132(1), 5–40. 

doi:10.3200/GENP.132.1.5-40 

Cho, S.-J., Wilmer, J., Herzmann, G., McGugin, R., Fiset, D., Van Gulick, A. E., … Gauthier, I. 

(submitted). Item Response Theory Analyses of the Cambridge Face Memory Test (CFMT).  

Cole, D. A., Cho, S.-J., Martin, N. C., Youngstrom, E. A., March, J. S., Findling, R. L., … 

Maxwell, M. A. (2012). Are increased weight and appetite useful indicators of depression in 

children and adolescents? Journal of Abnormal Psychology, 121(4), 838–851. 

doi:10.1037/a0028175 

Conway, A. R., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A latent 

variable analysis of working memory capacity, short-term memory capacity, processing 



	
   117 

speed, and general fluid intelligence. Intelligence, 30(2), 163–183. 

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon's Mechanical 

Turk as a Tool for Experimental Behavioral Research. PLoS ONE, 8(3), e57410. 

doi:10.1371/journal.pone.0057410.t001 

Curby, K. M., Hayward, W. G., & Gauthier, I. (2004). Laterality effects in the recognition of 

depth-rotated novel objects. Cognitive, Affective, & Behavioral Neuroscience, 4(1), 100–111. 

Davis, J. M., McKone, E., Dennett, H., O'Connor, K. B., O'Kearney, R., & Palermo, R. (2011). 

Individual differences in the ability to recognise facial identity are associated with social 

anxiety. PLoS ONE, 6(12), e28800. doi:10.1371/journal.pone.0028800 

Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. 

(2010). How learning to read changes the cortical networks for vision and language. Science, 

330(6009), 1359–1364. doi:10.1126/science.1194140 

Dennett, H. W., McKone, E., Tavashmi, R., Hall, A., Pidcock, M., Edwards, M., & Duchaine, B. 

(2011). The Cambridge Car Memory Test: A task matched in format to the Cambridge Face 

Memory Test, with norms, reliability, sex differences, dissociations from face memory, and 

expertise effects. Behavior Research Methods, 44(2), 587–605. doi:10.3758/s13428-011-

0160-2 

Duchaine, Brad, & Nakayama, K. (2005). Dissociations of face and object recognition in 

developmental prosopagnosia. Journal of Cognitive Neuroscience, 17(2), 249–261. 

doi:10.1162/0898929053124857 

Duchaine, Brad, & Nakayama, K. (2006). The Cambridge Face Memory Test: results for 

neurologically intact individuals and an investigation of its validity using inverted face 

stimuli and prosopagnosic participants. Neuropsychologia, 44(4), 576–585. 



	
   118 

doi:10.1016/j.neuropsychologia.2005.07.001 

Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-

referenced cognitive tests. Princeton, NJ: Educational Testing Services. 

Embretson, S. E. (1996). The new rules of measurement. Psychological Assessment, 8(4), 341–

349. 

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: 

Lawrence-Erlbaum. 

Folstein, J. R., Palmeri, T. J., & Gauthier, I. (2013). Category Learning Increases 

Discriminability of Relevant Object Dimensions in Visual Cortex. Cerebral Cortex. 

doi:10.1093/cercor/bhs067 

Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). 

Not all executive functions are related to intelligence. Psychological Science, 17(2), 172–179. 

doi:10.1111/j.1467-9280.2006.01681.x 

Garlick, D. (2002). Understanding the nature of the general factor of intelligence: The role of 

individual differences in neural plasticity as an explanatory mechanism. Psychological 

Review, 109(1), 116–136. doi:10.1037//0033-295X.109.1.116 

Gauthier, I., James, T. W., Curby, K. M., & Tarr, M. J. (2003). The influence of conceptual 

knowledge on visual discrimination. Cognitive Neuropsychology, 20(3), 507–523. 

doi:10.1080/02643290244000275 

Gauthier, I., McGugin, R. W., Richler, J. J., Herzmann, G., Speegle, M., & Van Gulick, A. E. (in 

press). Experience moderates overlap between object and face recognition, suggesting a 

common ability. Journal of Vision. 

Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds 



	
   119 

recruits brain areas involved in face recognition. Nature Neuroscience, 3(2), 191–197. 

doi:10.1038/72140 

Germine, L. T., Duchaine, B., & Nakayama, K. (2011a). Where cognitive development and 

aging meet: face learning ability peaks after age 30. Cognition, 118(2), 201–210. 

doi:10.1016/j.cognition.2010.11.002 

Germine, L., Cashdollar, N., Düzel, E., & Duchaine, B. (2011b). A new selective developmental 

deficit: Impaired object recognition with normal face recognition. Cortex, 47(5), 598–607. 

doi:10.1016/j.cortex.2010.04.009 

Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee, G., & Wilmer, J. B. 

(2012). Is the Web as good as the lab? Comparable performance from Web and lab in 

cognitive/perceptual experiments. Psychonomic Bulletin & Review, 19(5), 847–857. 

doi:10.3758/s13423-012-0296-9 

Goldstone, R. (1994). Influences of categorization on perceptual discrimination. Journal of 

Experimental Psychology General, 123(2), 178–200. 

Goldstone, R. L., & Styvers, M. (2001). The sensitization and differentiation of dimensions 

during category learning. Journal of Experimental Psychology: General, 130(1), 116–139. 

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: 

Wiley. 

Hambrick, D. Z. (2003). Why are some people more knowledgeable than others? A longitudinal 

study of knowledge acquisition. Memory & Cognition, 31(6), 902–917. 

doi:10.3758/BF03196444 

Hambrick, D. Z., Meinz, E. J., & Oswald, F. L. (2007). Individual differences in current events 

knowledge: Contributions of ability, personality, and interests. Memory & Cognition, 35(2), 



	
   120 

304–316. doi: 10.3758/BF03193451 

Hambrick, D. Z., Pink, J. E., Meinz, E. J., Pettibone, J. C., & Oswald, F. L. (2008). The roles of 

ability, personality, and interests in acquiring current events knowledge: A longitudinal 

study. Intelligence, 36(3), 261–278. doi:10.1016/j.intell.2007.06.004 

Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research 

electronic data capture (REDCap) - A metadata-driven methodology and 

 workflow process for providing translational research information support. Journal of 

Biomedical Informatics, 42(2), 377–381. 

Hedley, D., Brewer, N., & Young, R. (2011). Face recognition performance of individuals with 

Asperger syndrome on the Cambridge Face Memory Test. Autism Research : Official 

Journal of the International Society for Autism Research, 4(6), 449–455. 

doi:10.1002/aur.214 

Horn, J. L. (1968). Organization of abilities and the development of intelligence. Psychological 

Review, 75(3), 242–259. 

Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized 

general intelligences. Journal of Educational Psychology, 57(5), 253–270. 

Hughson, A. L., & Boakes, R. A. (2002). The knowing nose: The role of knowledge in wine 

expertise. Food Quality and Preference, 13(7), 463–472. 

Humphreys, L. G. (1979). The construct of general intelligence. Intelligence, 3(2), 105–120. 

James, K. H., James, T. W., Jobard, G., Wong, A. C.-N., & Gauthier, I. (2005). Letter processing 

in the visual system: Different activation patterns for single letters and strings. Cognitive, 

Affective, & Behavioral Neuroscience, 5(4), 452–466. doi:10.3758/CABN.5.4.452 

James, T. W., & Gauthier, I. (2003). Auditory and Action Semantic Features Activate Sensory-



	
   121 

Specific Perceptual Brain Regions. Current Biology, 13(20), 1792–1796. 

doi:10.1016/j.cub.2003.09.039 

James, T. W., & Gauthier, I. (2004). Brain areas engaged during visual judgments by involuntary 

access to novel semantic information. Vision Research, 44(5), 429–439. 

doi:10.1016/j.visres.2003.10.004 

Jolicoeur, P., Gluck, M. A., & Kosslyn, S. M. (1984). Pictures and names: making the 

connection. Cognitive Psychology, 16(2), 243–275. 

Kann, J. (1950). A Translation Of Broca's Original Article On The Location Of The Speech 

Center. Journal of Speech and Hearing Disorders, 15, 16–20. 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: 

Addison-Wesley. 

Marsolek, C. J. (1999). Dissociable Neural Subsystems Underlie Abstract and Specific Object 

Recognition. Psychological Science, 10(2), 111–118. 

McGugin, R. W., Gatenby, C., Gore, J., & Gauthier, I. (2012a). High-resolution imaging of 

expertise reveals reliable object selectivity in the FFA related to perceptual performance. 

Proceedings of the National Academy of Scince, 109(42), 17063–17068. doi: 

10.1073/pnas.1116333109 

McGugin, R. W., Richler, J. J., Herzmann, G., Speegle, M., & Gauthier, I. (2012b). The 

Vanderbilt Expertise Test reveals domain-general and domain-specific sex effects in object 

recognition. Vision Research, 69, 10–22. doi:10.1016/j.visres.2012.07.014 

Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven's Progressive Matrices and 

Vocabulary Scales. New York, NY: Psychological Corporation. 

Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., … 



	
   122 

Engle, R. W. (2012). No Evidence of Intelligence Improvement After Working Memory 

Training: A Randomized, Placebo-Controlled Study. Journal of Experimental Psychology 

General. doi:10.1037/a0029082 

Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic Processing Predicts Face 

Recognition. Psychological Science, 22(4), 464–471. doi:10.1177/0956797611401753 

Rosch, E., Mervis, C. B., Gray, W., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in 

natural categories. Psychology, 7, 573–605. 

Russell, R., Duchaine, B., & Nakayama, K. (2009). Super-recognizers: people with extraordinary 

face recognition ability. Psychonomic Bulletin and Review, 16(2), 252–257. 

doi:10.3758/PBR.16.2.252 

Schmidt, F. L. (2014). A General Theoretical Integrative Model of Individual Differences in 

Interests, Abilities, Personality Traits, and Academic and Occupational Achievement: A 

Commentary on Four Recent Articles. Perspectives on Psychological Science, 9(2), 211–218. 

doi:10.1177/1745691613518074 

Stanovich, K. E., & Cunningham, A. E. (1992). Studying the consequences of literacy within a 

literate society: The cognitive correlates of print exposure. Memory & Cognition, 20(1), 51–

68. 

Tanaka, J. W., & Taylor, M. (1991). Object categoires and expertise: Is the basic level in the eye 

of the beholder. Cognitive Psychology, 23, 457–482. 

Tanaka, J. W., Curran, T., & Sheinberg, D. L. (2005). The training and transfer of real-world 

perceptual expertise. Psychological Science, 16(2), 145–151. doi:10.1111/j.0956-

7976.2005.00795.x 

Thurstone, L. L. (1938). Primary Mental Abilities. Chicago, IL: University of Chicago Press. 



	
   123 

Van Gulick, A. E., & Gauthier, I. (in press). The perceptual effects of learning object categories 

that predict perceptual goals. Journal of Experimental Psychology: Learning, Memory, and 

Cognition. 

Vandenberghe, R., Price, C., Wise, R., Josephs, O., & Frackowiak, R. S. (1996). Functional 

anatomy of a common semantic system for words and pictures. Nature, 383(6597), 254–256. 

doi:10.1038/383254a0 

Vuilleumier, P., Henson, R. N., Driver, J., & Dolan, R. J. (2002). Multiple levels of visual object 

constancy revealed by event-related fMRI of repetition priming. Nature Neuroscience, 5(5), 

491–499. doi:10.1038/nn839 

Wagner, A. D., Desmond, J. E., Demb, J. B., Glover, G. H., & Gabrieli, J. D. E. (1997). 

Semantic Repetition Priming for Verbal and Pictorial Knowledge: A Functional MRI Study 

of Left Inferior Prefrontal Cortex. Journal of Cognitive Neuroscience, 9(6), 714–726. 

doi:10.1126/science.8316836 

Wilhelm, O., Herzmann, G., Kunina, O., Danthiir, V., Schacht, A., & Sommer, W. (2010). 

Individual differences in perceiving and recognizing faces-One element of social cognition. 

Journal of Personality and Social Psychology, 99(3), 530–548. doi:10.1037/a0019972 

Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Gerbasi, M., & Nakayama, K. (2012). 

Capturing specific abilities as a window into human individuality: The example of face 

recognition. Cognitive Neuropsychology, 29(5-6), 360–392. 

doi:10.1080/02643294.2012.753433 

Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Williams, M., Loken, E., … Duchaine, 

B. (2010). Human face recognition ability is specific and highly heritable. Proceedings of the 

National Academy of Sciences, 107(11), 5238–5241. doi: 10.1073/pnas.0913053107 



	
   124 

Wiseman, S., MacLeod, C. M., & Lootsteen, P. J. (1985). Picture recognition improves with 

subsequent verbal information. Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 11(3), 588–595.  

Wong, A. C.-N., Palmeri, T. J., & Gauthier, I. (2009a). Conditions for facelike expertise with 

objects: becoming a Ziggerin expert--but which type? Psychological Science, 20(9), 1108–

1117. doi:10.1111/j.1467-9280.2009.02430.x 

Wong, A. C.-N., Palmeri, T. J., Rogers, B. P., Gore, J. C., & Gauthier, I. (2009b). Beyond Shape: 

How You Learn about Objects Affects How They Are Represented in Visual Cortex. PLoS 

ONE, 4(12), e8405. doi:10.1371/journal.pone.0008405.g004 

Wong, Y. K., Folstein, J. R., & Gauthier, I. (2012). The nature of experience determines object 

representations in the visual system. Journal of Experimental Psychology General, 141(4), 

682–698. doi:10.1037/a0027822 

Woolley, A. W., Gerbasi, M. E., Chabris, C. F., Kosslyn, S. M., & Hackman, J. R. (2008). 

Bringing in the Experts: How Team Composition and Collaborative Planning Jointly Shape 

Analytic Effectiveness. Small Group Research, 39(3), 352–371. 

doi:10.1177/1046496408317792 

Xu, Y. (2005). Revisiting the role of the fusiform face area in visual expertise. Cerebral Cortex, 

15(8), 1234–1242. doi:10.1093/cercor/bhi006 

Zell, E., & Krizan, Z. (2014). Do People Have Insight Into Their Abilities? A Metasynthesis. 

Perspectives on Psychological Science, 9(2), 111–125. doi:10.1177/1745691613518075 

 

 

 



	
   125 

APPENDIX 

Appendix A. Complete SVETs (1.0) for eight categories. Each SVET is 51 trials: 48 test trials 
and 3 catch trials. Each row shows the 3 names (1 real, 2 foil) presented on each trial. The real 
name is shown in orange. Trials are ordered (excluded catch trials) approximately from easiest to 
most difficult. 
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SVET-Car. 
Trial Name1 Name2 Name3 
1 Infiniti Kobuk Scion dT Dodge Viper 
2 BMW M56 Mercury Manitu Ford Mustang 
3 Pontiac G7 BMW Caspari Ford Taurus 
4 Lincoln Leaf Nissan Sentra Porsche Crossfire 
5 Chrysler Osprey Mitsubishi Prancer Nissan Altima 
6 Volvo Focus Mercedes-Benz C300 Mercury Alero 
7 Hyundai Altitude Mitsubishi Eclipse Kia Gala 
8 Chevrolet Flash Volkswagen El Peso Buick Regal 
9 Toyota Prius Jaguar Lisbon Scion xR 
10 Volvo GS350 Chevrolet Lancer Dodge Charger 
11 Hyundai Yucatan Buick LeSabre Lincoln Jetta 
12 Catch Honda Civic Palm Tree Snickers Bar 
13 Toyota Calisto Chrysler PT Cruiser Hyundai Corolla 
14 Pontiac GTO Aston Martin Matrix Subaru Woodlands 
15 Pontiac Sky Cadillac DeVille Volvo Z60 
16 Volvo S60 Suzuki 911 Carrera Volkswagen Juniper 
17 Nissan Muse Audi A6 Chevrolet LaCrosse 
18 Hyundai Elantra  Saturn Neon Kia Cloud 
19 Dodge Festival Audi Vita Mazda Miata 
20 Chevrolet Camaro Cadillac Escort Subaru Malibu 
21 Jaguar XJ Lamborghini Nuvola Acura NRX 
22 Audi Z4 Mazda Kizashi Chevrolet Volt 
23 Catch Winter Storm Ford Fiesta Rose Garden 
24 BMW 580d Volkswagen GTI Toyota Lucerne 
25 Nissan Azera BMW 550i Kia Golf 
26 Suzuki Prestige Infiniti G37 Pontiac S550 
27 Lamborghini Gallardo  Toyota Sonata Lincoln Olympic 
28 Oldsmobile Cavalier Lexus Aventador Volvo C70 
29 Chrysler Concorde Lexus CD350 Buick Inspiron 
30 Mercury Grand Marquis Suzuki Avenger Honda Yaris 
31 Buick Chesapeake Subaru Impreza BMW 490x 
32 Mazda Blaze Ford Fiber Honda Fit 
33 Saturn Fuze Honda Soul Toyota Avalon 
34 Kia Forte Mitsubishi STZ Infiniti Dream 
35 Dodge Grand Prix Mitsubishi Ion Subaru Legacy 
36 Saab Eban Lincoln MKZ Lexus Sable 
37 Scion G6 Mercury Galant Cadillac XTS 
38 Oldsmobile Primo Porsche 538 Mercury Milan 
39 Saab 3-9 Hyundai Genesis Cadillac Revel 
40 Bentley Continental GT Mercedes-Benz Park Avenue Chrysler Crusader 
41 Lexus ES300 Ford Impala Acura Optima 
42 Acura QR320 Porsche Cayman Subaru Camry 
43 Catch Denim Skirt Yorkshire Terrier Toyota Matrix 
44 Chrysler Maxima Scion tC Lamborghini Magnum 
45 Volkswagen Mulsanne Buick Intrepid Oldsmobile Aurora 
46 Saab 9-5 Acura Sebring Nissan xD 
47 Aston Martin DB9 Honda Octave Infiniti ILX 
48 Lexus LF-CC Bentley Beetle Jaguar 9-3 
49 Saturn Fusion Acura TSX Saab S80 
50 Audi Allroad Cadillac Amethyst Bentley Baltic 
51 Audi A9 Oldsmobile Rocoto Honda Insight 
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SVET-Plane. 
Trial Name1 Name2 Name3 
1 F-16 Utah Vapor 
2 737 Serpens Sheffield 
3 Hellcat W-66 LP-8 
4 949 B-52 Flyingfish 
5 C-130 Su-800 Black Skiff 
6 P-209 Libra B-2 
7 Catch 747 Lean Cuisine Facebook 
8 Me 200 ES-69 F-105 
9 HLB J-49 DC-3 
10 Starlight Bouncer 717 
11 A400 Cygnus 777 
12 87A CS100 1020 
13 96Y Hawk Roehr 
14 8030 T-38 Bylon 
15 NDA DC-10 Bowman Cx36 
16 Lester Rotterdam Liberator 
17 877 A320 Ruby 
18 MD-80 Q70 1010 
19 C-17 MD-20 Sl-60 
20 N7 X-1 RYY 
21 A-10 D789 BV 10 
22 Falcon 900 Courante T-017 
23 A380 B-6 Sprinter Robson 
24 8900 A2 Lobo Spitfire 
25 Catch Barnes and Noble A319 Cool Whip 
26 A-49 F/A-18 898 
27 L-300 P-51 Tempo 
28 CS300 Td 500 R-180 
29 Gopher Panther MD-11 
30 Lagrange A340 797 
31 Y 88 Juno Citation Jet 
32 DA20 Locus 51-md 
33 Predator T700 Ocelot 
34 6690 Cub r590 
35 Protector Dakota 78K 
36 Yuri CRJ 5007 E175 
37 Catch Reese's Cup Walgreens F2 
38 KZ-66 AirPrince L-1011 
39 Yak-130 XX-30 MK-477 
40 432 King Air LF-105 
41 Cherokee Z-7 Arizona 
42 Missouri J25 Raven 
43 AM 99 LJ 431 Su-47 
44 67V Booker B-8 Otter 
45 Mosquito Western Lair A480 
46 393 VB-40 Starship 
47 Z1 Ju 88 RT-9 
48 BT10 Bf 109 Nova 8 
49 Ural DC-300 Camel 
50 F-25 Dash 8 19-10 
51 Me 262 F-41 Nightranger 
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SVET-Transformer. 
Trial Name 1 Name 2 Name 3 
1 Uppercut Outlook Megatron 
2 Courage Starscream Top Notch 
3 Fivepin Razorclaw Riot 
4 Lavaman Chromoburn Quickstrike 
5 Lightning Rod Thunderclash Firecraft 
6 Highboxer Tigatron Terraclash 
7 Bumblebee Astromega Receptor 
8 Torrent Ironhide Delta Minor 
9 Lordov Amphius Scorch 
10 Quatraquake Boomerjet Sideswipe 
11 Mallet Dom Soundwave 
12 Ratchet Volcano Dasher 
13 Wind Dagger Camrod Smokescreen 
14 Dustrage Roll Archer Orion 
15 Fox Ricochet Pitfall 
16 Catch Dunkin Donuts Cheddar Cheese Shipwreck 
17 Fireflight Triblast Dune Snare 
18 Bluebreak Moor Knight Grapple 
19 Spearonus Inferno Fuse 
20 Roadbuster Combust Loggerhead 
21 Vulture Blitzwing Crash 
22 Skyhammer Starshooter Neoblot 
23 Moonrider Windcharger Converse 
24 Terp Prowl Carbonspin 
25 Catch Frosted Flakes Vanquish Oatmeal Raisin 
26 Flytrap Tungsten Reflector 
27 Obsidian Double Dare Excelsion 
28 Sunstreaker Septawave Proton 
29 Cliffjumper Nailclaw Tanji 
30 Grimmel Giltwheel Mirage 
31 Jetstorm Megaglide Springshot 
32 Speedswoop Razorbyte Talon 
33 Thundercracker Buzzcraft Vilius 
34 Flashrun Solopred Jazz 
35 Hoverburst Mort Blurr 
36 Enemy  Sonic Thunder Bounce 
37 Raincharge Crosscut Hustler 
38 Zeus Hurricane Airlock 
39 Long Haul Quickjet Junction 
40 Breacher Dawn Bird Tracker 
41 Wolfspur Night Boomerang Chase 
42 Barracuda Hubcap Koben 
43 Catch Shrapnel Diet Coke J. Crew 
44 Barricade Ironwheel Skidbit 
45 Space Terror Omicron Prime Air Raid 
46 Waveracer Hound Sotter 
47 Canis Major Cheetor Sharpstrike 
48 Hornet Kickback Crossfire 
49 Punch Deepwave Roadflux 
50 Arcee Grimbolt Victorion 
51 Suntracker Steelhead Pointblank 



	
   129 

SVET-Dinosaur. 
Trial Name1 Name2 Name3 
1 Tyrannosaurus Rex Asperdatylus Telemosaurus 
2 Phoboraptor Triceratops Ditlosaurus 
3 Brachiosaurus Paramaxilosaurus Fabrilukosaurus 
4 Lopholurius Pirongocoelus Velociraptor 
5 Canthusius Meranoleptes Plateosaurus 
6 Tarbonyx Dragosaurus Ceratosaurus 
7 Pentaceratops Eudontidectes Microtarius 
8 Pachycephalosaurus Namibiasaurus Reginasaurus 
9 Plesiosaurus Timorspondylus Lanaptasaurus 
10 Tonivius Amygdalodon Amerivenator 
11 Geldanosaurus Panoplosaurus Scuriosaurus 
12 Nodocaudosaurus Spikosaurus Segisaurus 
13 Catch Barosaurus Betty Crocker Nike 
14 Dyptiodon Protoceratops Maxiosaurus 
15 Tetrachelodon Coleoptera Megalosaurus 
16 Celeritasaurus Apatosaurus Delphysis 
17 Bactronychus Dilophosaurus Latimosaurus 
18 Dromopedosaurus Diplodocus Gymnodontosaurus 
19 Lestipidius Parasaurolophus Dneipidosaurus 
20 Herbiodon Archaeopteryx Appellasaurus 
21 Montanasaurus Erhinodon Stegoceras 
22 Stuthioceratops Centaurisaurus Iguanodon 
23 Ramseysaurus Caenagnathus Dirulius 
24 Catch KitchenAid Titanosaurus Microsoft 
25 Spinosaurus Roxithromius Andromelosaurus 
26 Saurolophus Allocephale Ceralopus 
27 Compsognathus Amorispinax Artemidorus 
28 Tetramorphodon Oviraptor Draconychus 
29 Deinonychus Salvatosaurus Rugosaurus 
30 Voloceratops Hepatolodon Ankylosaurus 
31 Hadrosaurus Letoraptor Plateothersaurus 
32 Angusticeratops Yukonsaurus Gallimimus 
33 Vulcanodon Poissalodon Okavangosaurus 
34 Lesothosaurus Allobrachiosaurus Voltaeodon 
35 Paraprantadon Telmatosaurus Barocheirus 
36 Segnoceratops Zulosaurus Deinocheirus 
37 Corythosaurus Styrenosaurus Homodagnius 
38 Mauryonyx Rostrosaurus Achillobator 
39 Parbosaurus Polybutisaurus Lambeosaurus 
40 Brassicasaurus Deinosternus Lapparentosaurus 
41 Heptalogodon Zephyrosaurus Procerimimus 
42 Prontosaurus Orthithomimus Hydrapentasaurus 
43 Decacornutosaurus Euovatosaurus Stygimoloch 
44 Catch Cadillac Crock-pot Conchoraptor 
45 Ornitholopolus Niposcephales Mircovenator 
46 Seismosaurus Tyrannoraptor Pallosaurus 
47 Microceratus Dryptoplatyornis Rhynchodon 
48 Corposaurus Monocyclosaurus Mussaurus 
49 Ceraphalangiamimus Othnielia Plurasaurus 
50 Indostedosaurus Skorpiovenator Bagalosaurus 
51 Maiasaura Megacapitosaurus Pachypedolus 
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SVET-Shoe. 
Trial Name1 Name2 Name3 
1 Cristallo Gucci Fazzolari 
2 Angelo Frega Anong Prada 
3 Comoros Christopher Phan Anne Klein 
4 Nine West Rebecca Fox Aloft 
5 Kenneth Cole Londa Steve Hart 
6 Carolyn Palmer Clover Dolce Vita 
7 Birdie Hamel Thaksin Michael Kors 
8 Catch Cuisinart Honda Vigotti  
9 Semillon Jimmy Choo Madison Long 
10 Guillaume Deschamps  Oscar de la Renta Eze 
11 Le Chat Chic Christian Louboutin Lindsey Speegle 
12 Tai Ladd Elliott Pierce Miz Mooz 
13 Dahlia Versa Yves Saint Laurent 
14 Parade Betsey Johnson Dowell 
15 Ruby Soustel Etienne Aigner 
16 Phillip Weinkopf Lotte Kate Spade 
17 Paul Xu Enna Manolo Blahnik 
18 Marcus Rivera Aldo Cimarron 
19 Isaac Mizrahi Six Swans Lily James 
20 Alexandre Birman Portici Larkin 
21 Arzog Brian Atwood M. Rose 
22 Anika Taylor James Colver Balenciaga 
23 Nissa Takou Olivia Skelt Pedro Garcia 
24 Piper Joseph Blount Miu Miu 
25 Zetta  Kalden White Franco Sarto 
26 Rebecca Minkoff Daquin Paolo Trella 
27 Vasquez Taryn Rose Darby Hill 
28 Catch Hyundai J. Renee Pepperidge Farm 
29 Giuseppe Zanotti Francisco Soto Sara and Sophie 
30 Cole Haan Operetti Melissa Perry 
31 Ava Amini Ivanka Trump Serra 
32 Enzo Angiolini Nicole Hall Victor Russo 
33 Azzuri Via Spiga Maison du Roi 
34 Steve Madden Isabelle Laurent  Five Degrees 
35 Kevin Dunn Badgley Mischka Cecille 
36 Lola Wong Sam Edelman DBA 
37 Pollini Arresi P. Van Vliet 
38 Marcelino Stuart Weitzman R. Campbell 
39 Nina Adele Hirsch Molinelli 
40 Sigerson Morrison  Pebble and Stream Michael Williams 
41 Alston Brett Tiger Pearl Seychelles 
42 Catch Alfani John Deere Duracell 
43 Alice + Olivia Belle Amie Vega 
44 Laurel Charlotte Olympia J.R. Santuk 
45 Cote Vert Vince Camuto Sergio Nicoletti 
46 Elizabeth and James Joshua Gold Claudia Escotto 
47 Graham Wood Gravelle Chinese Laundry 
48 Joan & David Antonio Zaccaro Harry and Hampton 
49 Emilio Fenzi Kelsi Dagger Poz Poz 
50 Donald J Pliner Bella Domani Eve Hatton 
51 Revelle Jean-Pierre Arnaud  Corso Como 
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SVET-Bird 
Trial Name1 Name2 Name3 
1 Ochre Gabbro Kassam Thrasher Mountain Bluebird 
2 Masked Golong Blue Jay Canyon Kingfisher 
3 Great Mulmul Streak-tailed Dogbird Northern Raven 
4 Purple-breasted Shrew Olive Mohee Barn Swallow 
5 Savannah Sparrow Tufted Gemthroat Green Huckaloo 
6 Catch JCPenney White-eyed Vireo Tea Kettle 
7 Gray-capped Woodear Allegheny Bog Swallow American Goldfinch 
8 American Robin Bluegrass Chickadee Eastern Scrub Nutcracker 
9 Wilmer's Cuckoo Black-billed Cuckoo Long-billed Rogalin 
10 Holtcissel Mountain Chickadee Missouri Starwing 
11 Blue Downbill Cliff Swallow Antique Sage 
12 Winter Lazio Pine Plover Horned Lark 
13 Bay Pipin White-winged Parakeet Liriope 
14 Hooded Warbler Cape Cod Myna Western Kobuk 
15 Northern Mockingbird Silver-crowned Oriole American Goldenwing 
16 Long-tailed Steckle Chesapeake Broadwing Red-winged Blackbird 
17 Rock Wren Scoria Oregon Groswing 
18 Yellow-banded Vireo Belted Kingfisher Gold-collared Shortspur 
19 Catch American Tree Sparrow Microwave Oven Hyundai 
20 Northern Cardinal White-eyed Dotter White-ringed Magpie 
21 Fox Sparrow Cascade Sparrow Mouse Geum 
22 Lapland Longspur Orchard Spot-breast Weigela 
23 Scarlet Tanager Blue-stripe Binbeak Tri-colored Wheatear 
24 Baltimore Oriole Cloaked Queenbird Broadbent's Flycatcher 
25 Black-headed Peehatch Brown-winged Digger California Towhee 
26 Hesperus Kinglark Painted Ozark Cassin's Kingbird 
27 Thistle Grosbeak Sage Thrasher Wood Pennytail 
28 Orange Shrub Vireo Alder Flycatcher Waxhaw 
29 Jefferson's Bunting Loggerhead Shrike California Alewife 
30 Warbling Vireo Bush Moppet Siouxland Jay 
31 Brownpoll Northern Gibbon Gray Catbird 
32 Coastal Abelia Brown-spotted Foxtail Tufted Titmouse 
33 American Pipit Scruffy Fletcher Dark-horned Thrasher 
34 Lark Tango Phainopepla Knight's Solitaire 
35 Rose-throated Congaree Brogan's Jay Bicknell's Thrush 
36 River Pointwing Bohemian Waxwing Dusky Nimpkin 
37 Spot-breasted Pixie McCown's Longspur Pale-eyed Baylin 
38 Kieffer Tanager Bronze-headed Truit Western Wood-Pewee 
39 Catch Reebok Ziploc Bullock's Oriole 
40 Evening Grosbeak Dakota Raven Antietam 
41 Yellow-eyed Junco Kipp's Grackle Red-throated Severne 
42 Pinyon Jay Vermilion-tipped Finch Eastern Ruffe 
43 Whiskered Thrush Kirkland Waterthrush Black-capped Gnatcatcher 
44 Green-notched Starling Indigo Bunting Yellow-eyed Tatterfly 
45 Missippi Kinglet Kate's Warbler Budgerigar 
46 Violet-green Cowbird Bobolink Tortoise Crossbill 
47 Pine Siskin Crimson Wrenrobin Blue Swinger 
48 Emerald Mockingbird Valerian Eastern Phoebe 
49 Grey Mountain Pinchot Great Kiskadee Cobbler's Oriole 
50 Shiny Ridgehawk Veery Honeyed Manokin 
51 Red-rumped Rusbin American Treetit Ovenbird 
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SVET-Leaf. 
Trial Name 1 Name 2 Name 3 
1 Weeping Willow Sweetnut Dandelion Ash 
2 River Birch Winternut Bronze Mountain Elm 
3 Red Mountainwood Venuswood American Sycamore 
4 Bur Oak Green Hazel Flowering Placket 
5 Monte Cassino Oak White Ash Purple Watertree 
6 Goldenbark Burr Tennessee Grapin Apricot 
7 Prairie Redbark Cat-eye Hickory Sugar Maple 
8 Japanese Maple Orange Planterwood Roundleaf Alder 
9 Black Walnut Yirgacheffe Calumet Sycamore 
10 Silver Firth White Bruck American Mountain-ash 
11 Capaya Boxelder Maple Saranac Tupelo 
12 Catch Scarlet Oak Cheese Nips Adidas 
13 Northern Winslow Rock Elm  Wallich's Cherry 
14 Pignut Hickory Anthurium Pittberry 
15 Alstroemeria Quaking Aspen Yellow Oolong 
16 Lily Elm Pendleton Oak American Beech 
17 Flowering Dogwood Yellow Cottonwood Bristleleaf Catalpa 
18 Mouse Oak Norwegian Silkbark Pecan 
19 Yellow Poplar California Bargo Feather Willow 
20 Rooibos Redbud Moon Plum 
21 Victorian Poplar Tibouren Black Cherry 
22 Cherrybark Oak Brisco Birch Broadleaf Dago 
23 Black Brandywine Crimson Walnut Oregon White Oak 
24 Catch Springer Spaniel Bigleaf Maple American Airlines 
25 Bigtooth Aspen Martin's Locust Western Tolvo 
26 Dancing Ash Cone Maple Southern Magnolia 
27 Southern Kamut Post Oak Red River Vosch 
28 Christmas Maple Red Alder Pewter Oak 
29 Montana Green Oak Paper Birch Coppernut 
30 Slippery Elm American Moffett Meridan Whitewood 
31 Sweetgum Peruvian Hickory Sepia 
32 Mississippi Alder Ebony Spleenwood Blue Ash 
33 Catch Cadillac Siamese Cat Black Cottonwood 
34 Coffee Gum Horse Chestnut Black Linwood 
35 Mowamba Black Tupelo Sourroot 
36 Delta Maidenhair Jubilee Magnolia Live Oak 
37 Spanish Maple Black Muscat Eastern Cottonwood 
38 Frosted Beech Sassafras Japanese Painted Birch 
39 White Kava Overcup Oak American Finwood 
40 Sweeney's Oak Notched-bark Cottonwood Honey Locust 
41 Regal Poplin Red Loden Littleleaf Linden 
42 Shellbark Hickory Hudson Willow Terrywood 
43 Trembling Elm Hackberry Shiny Gum 
44 Spine Oak Sickle-leaf Willow Ginkgo 
45 Butternut Colonial Bricktree Honey Boxwood 
46 Baldcypress Ringed Dogwood Littleleaf Tappan 
47 Silver Aster Valley Walnut Tulip Poplar 
48 Kentucky Coffeetree Dixiewood Mottlewood 
49 Henwood Water Tupelo Jade Birch 
50 Chervil Netleaf Hackberry Sierra Hickory 
51 Yorkshire Aspen Goldenrain Sun Cypress 
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SVET-Mushroom. 
Trial Name 1 Name 2 Name 3 
1 Portabello Witches Brew Pignoli  
2 Porcini Cabbage  Fiddle 
3 Fluted Russica Cannelle Shiitake 
4 White Truffle Milky Scaber Sugar Siullus 
5 Catch Dishwasher Cauliflower Taco Bell 
6 River Vervain Red-capped Scaber Fern 
7 Wood Ear  Molasses Steely Wood 
8 Vinegar Black Saddle  Barrel 
9 Cardoon Bunny Ear Green-spored Parasol 
10 Black Perigord Truffle Cat's Paw Bachilucium 
11 Fan  Russell's Redfoot Wine-cap Stropharia 
12 Zeller's Bolete Camel Death in the Afternoon 
13 Black Tollius Bleeding Plovit Black Trumpet 
14 Sea String Mountain Puff Matsutake 
15 Burgundy Top Morel Hiziki 
16 Midoni Crimini Scarlet Tulip 
17 Painted Bark Brown Shandy Death Cap 
18 Udupi Cinnamon Cap Mauricus 
19 Chanterelle Globe  Mozuku 
20 Button Snowcap Beaver Tooth 
21 Cipolini Teddy Bear Reishi 
22 Horn-toothed Bolete Shaggy Parasol Habutai 
23 Pig's Ear Mouse of the Woods Raven Claw 
24 Catch Macy's Velveeta King Bolete 
25 Amber Stalk Tavel Enoki 
26 Cognac Cloud Ear  Sousaire 
27 Portalo Gombe King Trumpet  
28 Urikandji Canopy Velvet Foot 
29 Oyster  Potelle Ten Penny 
30 Shiso Palm Bleeding Milkcap 
31 Hen of the Woods Egoji Conch 
32 Tarutake Candy Cap Alsace Brown 
33 Sun-dotted Bear's Head Tri-colored Culotte 
34 Courgette Golden Needle Chandelier 
35 Parkeo Straw  Giblet 
36 Smoke Salmon  Honey  
37 Green Cap Ballast  Old Man of the Woods 
38 Petaluma Paddy Straw Bogie 
39 Fawn Starburst Midnight Korme 
40 Clam Shaggy Mane Royal Gilded 
41 Catch Field Hershey's Google 
42 King's Head Ivory Plume Yellowfoot 
43 Blue Foot  Gnome's Hat Bobbin 
44 Cassava Angel Wings Patapan 
45 French Tardis Hedgehog  Summer Cobalt 
46 Crab Brittlegill Elephant Trunk  Glass Cap 
47 Fontanelle Birch Bolete Spring Fiori 
48 Willow Ash Diving Bell Sweet Tooth 
49 Fairy-ring  Ruffle Cap  Pag Lace 
50 Satin Top Harutake Slippery Jack 
51 Horse  Dotted Pin Jester 
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Appendix B. Extended bird-specific experience questions for birders used in Study 2C. Note that 
for the order of the responses for question 6 are reversed from the others and so responses were 
adjusted before analysis.  
	
  
1. At what age did you first develop an interest in birds?  
__(Age) 
 
2. At what age did you first start birding relatively seriously (e.g., spending time 
learning bird identifications, going on planned bird walks, joining local Audubon or 
ornithological societies, etc.) 
__(Age) 

 3. How often do you go birding (specifically set aside time for bird watching at home 
or elsewhere)? 
_ Less than once a year 

  _ 1-3 times per year 
  _ 4-6 times per year 
  _ 7-12 times per year (every 1-2 months) 

_ 13-24 times per year (1-2 times per month) 
_ 25-48 times per year (every 1-2 weeks) 
_ 49 or more times per year (several times each week) 
 
4. How often do you travel outside of your region (more than 1 hour travel time from 
your home), at least in part, for specific bird watching opportunities? 
_ Almost never 

 _ 1 time per year 
  _ 2-3 times per year 
  _ 4-6 times per year 
  _ 7 or more times per year 

 
  5. How often have you planned a vacation with a primary intent of birding, on 

average? 
  _I am a professional who regularly identifies birds (e.g., ornithological research, 

photographer, tour leader, educator, wildlife resource manager) 
_ More than once a year 
_ Once a year 

  _ Every other year 
   _ Once every few years 

  _ Rarely or never 
 

  6. Do you keep a log (journal, online list, etc.) of birds that you see? 
  _ Never 

_ Sometimes 
   _ Almost always 
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7. About how many different types of birds (specific species or subspecies) have 
you observed in person while birding during your lifetime? 

  __(Number) 
 
8. How would you rate your own bird expertise for birds where you live? 

 _ I am a novice. Nearly all other birders I meet are more skilled than I am. 
_ I am a beginner. Most birders I meet are more skilled than I am, but I occasionally 
meet other beginners like me when out birding. 
_ I have intermediate birding skills. While there are many birders more skilled than I 
am, I can identify many birds that beginners cannot. 
_ I have advanced birding skills. While I am not the most expert birder that I know in 
my area, I often identify birds quicker and more accurately than others. 
_ I have expert birding skills. While not a professional, I often lead birding trips for my 
local birding societies, organize local bird counts, etc. 
_ I have expert birding skills. While I have met some people who are more expert than I 
am, I have done things like lead birding tour groups professionally, conduct 
ornithological research, educate about bird identification and bird conservation, or work 
in wildlife management. 
_ I have expert birding skills. I am recognized by my peers in my state, nationally, or 
internationally as someone other experts would turn to because of my expertise. 
 
9. How many birding periodicals (magazines, newsletters, journals) do you subscribe 
to?  
__(Number) 
 
10. How many local, national, or international birding organizations do you belong to 
(groups involved in planning or tracking bird sightings, science of birds, bird 
identification, formal groups of bird enthusiasts, etc.)  
__(Number) 
 
11. How often do you attend birding events, conferences, or meetings with other bird 
enthusiasts? 
_Almost never 
_1-3 times per year 

  _ 4-6 times per year 
  _ 7-12 times per year (every 1-2 months) 
  _13-24 times per year (1-2 times per month) 

_ 25-48 times a year (every 1-2 weeks) 
_ 49 or more times per year (several times each week) 
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