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CHAPTER 1

INTRODUCTION

In this thesis we investigate two subjects in asymptotic analysis. The first one focuses
on the study of asymptotic properties of sequences of points called greedy energy
sequences, obtained through an iterative algorithm that involves the minimization
of certain energy functionals. The second subject concerns the study of asymptotic
properties of sequences of multiple orthogonal polynomials in the complex plane. We

give a detailed description of these two topics in what follows.

I.1 Greedy energy sequences

In order to define these sequences rigorously, we need to introduce a number of basic
concepts and notations. Since some of the results in this part of the thesis are obtained
in the context of locally compact metric spaces, we introduce these notions in this
general setting.

Let X denote a locally compact metric space containing infinitely many points. A
kernel in X is, by definition, a lower semicontinuous function & : X x X — RU{+o0}.
It is called positive if k(x,y) > 0 for all (z,y) € X x X. The class of M. Riesz kernels

in X = RP? is the most important one for our study, and it is defined as follows:

log —* ifs =0,

k:s(%y) = lw=ul” (1)
m, ifs > 0,
where | - | denotes the Euclidean norm in RP. The logarithmic kernel (case s = 0)

plays a significant role in the asymptotic analysis of complex polynomials.



For a set wy = {z1,...,2ny} of N (N > 2) points in X, not necessarily distinct,

the k-energy of wy is defined as

Elwy)= ) k(@i a;) = > k(wi ). (2)

1<i#j<N i=1j=1j#i

If the kernel is symmetric, i.e. k(x,y) = k(y,z) for all z,y € X, we may also write

Blwy)=2 Y k(z;z;).

1<i<j<N
We will use the notation card(wy) = N to indicate that the set wy = {x1,...,2n}
consists of NV points, even if they are not distinct. If k = k; and wy = {x1,..., 25} C

RP, we will denote by E,(wy) the Riesz s-energy of wy.

Definition I.1.1. Let k : X x X — RU {400} be a symmetric kernel on a locally
compact metric space X, and let A C X be a compact set. We say that wy s an

optimal N-point configuration for A if card(wy) = N and

E(wy) = inf{E(wy) : wy C A, card(wy) = N}.

For every N, the existence of optimal N-point configurations is guaranteed by the
lower semicontinuity of k£ and the compactness of A. Of course, these configurations

are not unique in general. Let us now define the notion of greedy energy sequences.

Definition 1.1.2. Let k : X x X — RU {400} be a symmetric kernel on a locally
compact metric space X, and let A C X be a compact set. A sequence (a,)5>, C A

n=1

is called a greedy k-energy sequence on A if it is generated in the following way:

e a, is selected arbitrarily on A.



o Assuming that ay,...,a, have been selected, a,. 1 is chosen to satisfy

n

Zk(an+1aai) = iggzk(%ai% (3)
i=1

i=1
for every n > 1.

We remark that the choice of a,y; is not unique in general. We will use the

notation

ANk = {a17"'7aN}

for the set formed by the first N points of this sequence. In the context of Riesz
kernels k,, we write ayy s instead of oy g, .

We will later introduce in this thesis more general definitions of optimal configura-
tions and greedy sequences, since we are also interested in analyzing their asymptotic
behavior under the presence of an external field. One of the goals of this thesis is to
find similarities and differences in the behavior of these two constructions.

It seems that A. Edrei was the first to introduce in [22] (see page 78 of that
paper) the definition of configurations ay o in the complex plane (for the logarithmic
kernel). However, in the literature these configurations are often called Leja points in
recognition of F. Leja’s article [38]. When the kernel employed is the Green function or
the Newtonian kernel 1/|z—y| on the unit sphere S?, the corresponding configurations
an are also referred to as Leja-Gdrski points (see [31] and references therein). In [5],
certain configurations known as fast Leja points were introduced, and an algorithm
was presented to compute them. These configurations are defined over discretizations
of planar sets and the kernel employed is the logarithmic kernel. In [17] a constrained
energy problem for this kernel was considered and associated constrained Leja points

were introduced.



If A C C is compact, an equivalent way to define the sequence of configurations

anp on A is to ask a,1 to satisfy the property

n

n
H |ap 1 — ag| = max H |z — ax| = M,.
k=1 z€A fraie}

In particular, for every n > 2 the points a, lie in the outer boundary of A, i.e.
the boundary of the unbounded component of C\ A. Edrei observed in [22] that if

(ap)s, C Ais an arbitrary greedy kop-energy sequence on A, then

lim [V(ay, ..., a,)[*" = capy(A), (4)
T M/ = capy (4), )
where V((y, ..., (,) denotes the Vandermonde determinant associated with (1, ..., (,,

1.e.

VG, -G = I G-=4),

1<i<j<n

and capy(A) denotes the logarithmic capacity of A, which is defined as

capy(4) = e "W, (6)

1
|2 =]

A(A) = inf{ [ [ 10g dp(z) dp(t) - 1> 0, supp(p) C A, | = 1.1

The asymptotic formula (4) can be equivalently formulated as

. Ey(anp)
o A

=7(A). (7)

On the other hand, optimal configurations in the complex plane (i.e. when the

total energy is minimized with respect to N variable points on compact sets A C C,

1y(A) is known as the Robin constant of A.



see Definition 1.1.1) associated with the logarithmic kernel are known in the literature
as Fekete points. They can also be defined as those N-point configurations wj =

{z1,...,2n} C A that satisfy the property
V(z1,...,2n8)| = Iélg:} V(¢ Cn)|-

M. Fekete was the first to show in [25] that (7) also holds for any sequence of optimal
N-point configurations wy on A.

Regarding the origin of Leja sequences in [22], let us explain the reason why these
sequences were introduced. G. Pdlya proved in [51] that if £ C C is a compact set
such that C\ E is connected, and f(z) is the analytic continuation onto C\ E of the

series expansion

St ottt (8)
so that C\ E is the natural domain of f(z), then

lim sup | B,|'/"" < capy(E),
where

bo by -+ bnoa

bnfl bn e b2n72

Edrei used Leja sequences and applied their property (4) to show in [22] the following
interesting converse result. If £ C C is a compact set as before, then for every
6 € [0, 1] there exists a series expansion (8) representing an analytic function f(z) on

C\ E such that

limsup | B, | = 6 capy(E),

n—oo



where C \ E' is the natural domain of f.

There are several practical reasons for studying greedy energy sequences. First,
these sequences are significantly easier to obtain numerically as compared to optimal
configurations, since only one new particle (point) is generated at each step of the
algorithm and all the previously defined particles are preserved (in the case of optimal
configurations one generates N new particles at the Nth step and the previous ones are
disregarded). This property makes greedy points useful, for instance, to sample the
surface where they are generated, and to use them as nodes of a Newton interpolation
scheme [53]. Greedy sequences also serve as a reference model to study the behavior of
general sequences of particles. In addition, greedy sequences (especially Leja points)
have been extensively used in numerical linear algebra [54, 14], numerical analysis
[17, 39, 5] and approximation theory [22, 38, 7, 60].

Chapters II and IIT of this thesis are devoted to the study of greedy sequences.
Chapter II contains results obtained using potential theoretic tools. These tools can
be employed if there exists a positive measure supported on the set whose energy is
finite (the notion of energy of a measure is defined in Section II.1). In the context
of Riesz kernels, this situation corresponds to the case when s < dimg(A), where
dimp(A) denotes the Hausdorff dimension of A. Chapter III describes those results
obtained in the context of Riesz kernels under the assumption that s > dimg(A) (the
hyper-singular case).

The two main problems that we analyze regarding greedy energy points can be
simply explained as follows. We investigate how the energy of these configurations
behaves as the number of particles increases and tends to infinity (and obtain asymp-
totic formulas that are analogous to (4) and (5)). We also investigate how these
configurations are asymptotically distributed. In so doing, we will show that greedy
energy configurations are in many aspects similar to optimal configurations (especially

in the context of potential theory). But we will also show that in other situations the



behavior of greedy configurations differs significantly from that of optimal configura-
tions.
The main results obtained in this thesis on asymptotic properties of greedy energy

sequences can be outlined as follows:

e We show that for s > 1, greedy ks-energy sequences on Jordan arcs or closed
Jordan curves in R? are not asymptotically s-energy minimizing (see Definition
I11.1.2 and Theorem II1.2.5 for details). A similar result is proved for greedy

best-packing configurations (see Definition II1.2.7 and Theorem I11.2.8).

e In fact, we show in Theorems I11.2.5 and II1.2.8 that for s € (1, c0], no infinite
sequence of points on Jordan arcs or curves in R? can be asymptotically s-energy

minimizing.

e We disprove a conjecture of L. Bos on the asymptotic distribution of greedy

best-packing configurations (see Proposition I11.2.9).

e It is shown that greedy kgi-energy sequences (case s = d) on the unit sphere
S? C R4 are asymptotically d-energy minimizing (see Theorem I11.2.14). A
similar result is proved for greedy ki-energy sequences (case s = 1) on smooth
Jordan arcs or curves in R? (Theorem I11.2.6). As an important consequence, we
obtain that these sequences are asymptotically uniformly distributed (in both

situations).

e [t is shown that in terms of second-order asymptotics, greedy ks -energy se-
quences and optimal configurations on the unit circle S* behave differently for

s € (0,1] (Propositions 11.2.15 and I11.2.3).

e In Chapters I and III, more general definitions of greedy energy sequences are

introduced and their asymptotic properties are studied in the context of external



fields (in Chapter II see e.g. Theorems I1.2.5 and 11.2.7) and weighted Riesz

potentials (Chapter III).

e We provide several numerical computations that illustrate some of our results.

1.2 Multiple orthogonal polynomials

The origin of this subject is intimately related to the work of Charles Hermite on
analytic number theory, and in particular to his proof in [33] of the transcendence
of e. In this paper Hermite introduces the technique of simultaneous rational ap-
proximation of a system of analytic functions (in the case of [33] that system was
formed by exponential functions). This important technique is now called Hermite-
Padé approximation. If the functions to be approximated are Markov-type functions,

i.e. functions of the form

) = [P0 () c B )

Z—XT

where the measures y; are assumed to be finite and compactly supported, then the
common denominator of the rational approximants is a polynomial that satisfies or-
thogonality conditions with respect to the measures ;.

More precisely, let p;, 1 < i < m, be a system of non-trivial complex-valued
measures that are compactly supported in the complex plane, and consider a multi-
index n = (n4,...,n,) € Z7'. Then, there exists a non-trivial polynomial P, of

degree at most |n| = ny + - - - + n,,, that satisfies the property
/kan(x)dui(az):O, 0<k<n —1, 1<i<m. (10)

Such a polynomial is called a multiple orthogonal polynomial associated with n and



(1, .-y pm). Finding P, reduces to the problem of solving a linear system of |n|
homogeneous equations on |n| + 1 unknowns, and therefore a non-trivial solution
exists. P, is of course not unique, but observe that there is only one monic polynomial
of lowest degree that satisfies (10).

The asymptotic theory of multiple orthogonal polynomials studies the behavior of
these polynomials as |n| approaches infinity. Different types of asymptotic properties
can be analyzed, but in this thesis we investigate the ratio and nth root asymptotic
behavior of certain sequences formed by such polynomials. Several obstacles must be
overcomed before obtaining these asymptotic properties. One of them is to determine
the exact degree of the polynomials considered (it is desirable that they have maximal
degree). In order to solve this problem it is necessary to assume additional conditions
on the orthogonality measures. It is also critical to determine the location of the zeros,
since the asymptotic properties that we investigate must be analyzed in a region that
excludes them.

The most important class of measure systems for which asymptotic properties of
associated multiple orthogonal polynomials have been studied is the class of Nikishin
systems. These systems were introduced by E.M. Nikishin in [48]. For the sake of
simplicity, we explain how to construct such systems only in the case of two measures.
Let o1 and o5 be measures supported on the real line, and assume that their supports
are contained in disjoint compact intervals. Then the Nikishin system generated by

(01,02) is the system (u, p2) defined as

dpy(x) == doy(x), dpus(x) == 09(x) doy ().

In this thesis we will consider a similar construction for measures supported on starlike
sets in the complex plane. We would like to mention here that a large number of ap-

plications of multiple orthogonal polynomials associated with Nikishin systems have



been found in diverse areas such as vector rational approximation [49, 48, 12|, simul-
taneous quadrature formulas [26], analytic number theory [58], and more recently in
integrable systems, random matrix theory, and brownian motions of non-intersecting
paths [35, 18, 19].

The problem we investigate in this thesis is motivated by recent investigations
in [3] on strong asymptotics of polynomials generated by a three-term higher-order

recurrence of the form

ZQn = Qn—H + an—p+1Qn—p7 p e N, n > D, (11)

where the coefficients a; are positive and satisfy the perturbation condition

> an —a| < oo (12)
n=1

It was shown in [2] that the positivity of the coefficients implies the fact that these
polynomials are indeed multi-orthogonal with respect to a system of positive measures

whose supports are compact and contained in the starlike set

p

S = Q [0, 00) exp(2mik/(p + 1)).

Moreover, the orthogonality measures have a Nikishin-type structure.
The condition (12) allows the authors of [3] to prove a strong asymptotic formula

of the form

lim @n(2)

= wi(2)

= F(](Z).
This limit holds uniformly on compact subsets of the region 2 = C\ Sy, where

So = LPJ 0, exp(2mik/(p+1)),  a=[(p+1)/p"T]at/HD,
k=0

10



Fy is a certain function analytic in €2, and wy is the unique branch of the algebraic
equation

WPt — zwP +a=0

that satisfies wo(z) = z + O(1), z — oo, and has a holomorphic continuation onto €.

In this thesis we will start from rather weak assumptions on the orthogonality
measures (instead of starting from assuming a condition on the recurrence coefficients
such as (12)) to obtain ratio and nth root asymptotic formulas for the associated
multiple orthogonal polynomials. Ratio asymptotics provides the limiting behavior

(outside the support of the measures) for sequences of the form

(B (13)

and nth root asymptotics describes, in particular, the limiting distribution of the
zeros of these polynomials. In the case of ratio asymptotics, we will in fact show the
existence of different periodic limits for the sequence (13). The sequence of polynomi-
als we investigate also satisfies a three-term recurrence relation of the form (11) with
positive coefficients. The ratio asymptotic behavior of (13) will also allow us to prove
that the sequence formed by the recurrence coefficients has different periodic limits.
Therefore the situation we consider is different from that analyzed in [3]. Several
relations between the limiting functions of the sequence (13) are obtained, as well as
relations between the limiting values of the recurrence coefficients.

The main technique that we employ to obtain ratio asymptotics is to find a cer-
tain system of boundary value problems satisfied by the limiting functions of the
sequence (13), and show that this system has a unique solution. In order to find the
boundary value problems we will apply auxiliary results on ratio and relative asymp-
totics of polynomials orthogonal with respect to varying measures. To obtain nth root

asymptotics we will use again techniques from logarithmic potential theory.

11



The following is an outline of the main results obtained in this thesis on properties
of multiple orthogonal polynomials associated with measures supported on starlike
sets (for a description of the measures of orthogonality and statement of the main

results see Section IV.1):

e We prove that the multiple orthogonal polynomials have maximal degree and

we describe the multiplicity and location of their zeros (see Proposition IV.1.1).

e [t is shown that the multiple orthogonal polynomials satisfy a three-term recur-
rence relation of third order with positive recurrence coefficients (Proposition

IV.1.2).

e The exact number of zeros of the functions of second type (see (176) for defini-

tion) is obtained, as well as their multiplicity and location (Proposition IV.1.3).

e An interlacing property of the zeros of the multiple orthogonal polynomials and
the functions of second type is proved (see Theorem IV.1.4 and Proposition

IV.1.5).

e Under mild conditions on the orthogonality measures, the ratio asymptotic be-
havior of the multiple orthogonal polynomials and the limiting behavior of the
recurrence coefficients is described in Theorem IV.1.6. In particular, we show
the existence of different periodic limits for the sequence of ratios of consecu-
tive polynomials and the sequence of recurrence coefficients (see also Proposition
IV.1.7 for relations between the limiting functions and the limiting values of the

recurrence coefficients).

e We describe the limiting functions of the sequence of ratios of consecutive poly-
nomials in terms of the branches of a three-sheeted compact Riemann surface

of genus zero (Theorem IV.1.8).

12



e Under regularity assumptions on the measures of orthogonality (see Definition
IV.1.10), we obtain the nth root asymptotic behavior of the multiple orthogonal
polynomials, as well as the asymptotic distribution of their zeros. The limit-
ing distribution of the zeros is described in terms of the solution to a vector

equilibrium problem for logarithmic potentials (see Corollary IV.1.13).

e We also provide several numerical experiments that illustrate our results.

13



CHAPTER II

GREEDY ENERGY POINTS: THE POTENTIAL THEORETIC
CASE

II.1 Introduction, background results and notation

Throughout this chapter, X will denote a locally compact metric space containing
infinitely many points. If X is not compact, let X* = X U {oco} be the one-point
compactification of X. Recall that k : X x X — RU {400} denotes a kernel in X.
Kernels are always assumed to be symmetric.

Assume that f : X — R U {+oo} is a lower semicontinuous function, and let
wy = {z1,...,2zx} be a configuration of N (N > 2) points in X. In addition to the

notion of k-energy (2) of wy, we define the weighted energy of wy as

E¢(wy) := E(wy) + 2(N = 1) > f(x). (14)

i=1

In potential theory, the function f is referred to as an external field. Recall that if

k = ks and wy C R, then F¢(wy) denotes the Riesz s-energy of wy.

Definition I1.1.1. For a non-empty set A C X, the weighted N-point energy of A
18 given by

Er(A,N) :=inf{Ef(wy) : wy C A, card(wy) = N}. (15)

If f =0, we use instead the notation

E(A,N) :=inf{E(wy) : wy C A, card(wy) = N}. (16)

14



We say that wy, C A is an optimal weighted N -point configuration on A if
Epwiy) = &(A,N),  card(w}) = N.

If A is compact, the existence of wy follows from the lower semicontinuity of k
and f (see also Definition I1.1.1 for the case f = 0).

We will also use the notation
Es(A,N) :=inf{FE(wy) : wy C A, card(wy) = N} (17)

to denote the N-point Riesz s-energy of a compact set A C RP.
In order to state our results, we need to introduce the continuous analogues of the
above notions. Given a non-empty set A C X, let M(A) denote the linear space of

all real-valued Radon measures that are compactly supported on A, and let
MT(A) == {pe M(A): u >0}, Mi(A) :={pe MT(A) : u(X)=1}. (18)
Given a measure p € M(X), the energy of u is the double integral

() rz//k(w,y) dp(x) dp(y), (19)

whereas the function

U (@) i= [ k(z,y) duty) (20)

is called the potential of u. The weighted energy of u is defined by

Iy(u) = 1) +2 [ f d. (21)

15



Since any lower semicontinuous function is bounded below on compact sets, the above
integrals are well defined, although they may attain the value +ooc.

We shall use the notations Is(u), Is (1), and UF to denote, respectively, the
energy (19), weighted energy (21), and potential (20) of a measure p € M(RP) with
respect to the Riesz s-kernel.

We say that k satisfies the mazimum principle if for every measure p € M;(X),

sup U*(x) = sup U¥(x). (22)

xEsupp(p) zeX

In RP, it is well known that Riesz kernels k, satisfy the maximum principle for s €
[p—2,p) (ct. [37, Theorem 1.10]).

The quantity w(A) := inf{I(n) : p € My(A)} is called the Wiener energy of
A, and plays an important role in potential theory. The capacity of A is defined
as cap(A) := w(A)~! if k is positive, and otherwise, it is defined as cap(A) :=
exp(—w(A)). These notions generalize the concepts of Robin constant and loga-
rithmic capacity of a compact set A C C (see (6)). A property is said to hold
quasi-everywhere (q.e.), if the exceptional set (the set of all points where the prop-
erty is not satisfied) has Wiener energy +oco. In the context of Riesz kernels, we will
use the symbols w,(A) and caps(A) to denote the Wiener s-energy and s-capacity of
aset A C RP.

Given a net {u,} C M(A), we say that {u,} converges in the weak-star topology

to a measure u € M(A) if

lign/gd,ua = /gdu, for all g e C.(A),

where C.(A) denotes the space of compactly supported continuous functions on A.

We will use the notation

flo = i
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to denote the weak-star convergence of measures. If A is compact, we know by
the Banach-Alaoglu theorem that M;(A) equipped with the weak-star topology is
compact.

If w(A) < oo, ameasure p € M;(A) satisfying the property I(u) = w(A) is called
an equilibrium measure for A. If A is compact, the existence of such a measure is
guaranteed by the lower semicontinuity of k& and the compactness of M;(A) (cf. [28,
Theorem 2.3]). However, uniqueness does not always hold in this case.

For Riesz kernels k, in RP, the following are well known properties. Let A C R?
be a compact set, and assume that 0 < s < dimy(A), where dims;(A) denotes the
Hausdorff dimension of A. Then there exists only one measure Ay s € M;(A) such
that Is(Aas) = ws(A), i.e. the equilibrium measure for A is unique. On the other
hand, if s > dimy(A), then I () = 400 for all p € M;(A). We refer the reader to
Theorems 8.5 and 8.9 in [45] for justifications of these facts.

The following result is central in this theory.

Theorem I1.1.2 (Choquet [16]). Let k be an arbitrary kernel on X and A C X be a

compact set. Then

N—oo N2

=w(A), (23)
where E(A, N) is defined by (16).
The following is a variation of Theorem I1.1.2.

Theorem I1.1.3 (Farkas and Nagy [24]). Assume that the kernel k is positive and
is finite on the diagonal, i.e. k(x,z) < +oo for all x € X. Then for arbitrary sets

ACX,

am e = wld),

We remark that Theorems I1.1.2 and I1.1.3 were proved in the context of locally

compact Hausdorff spaces. Potential theory in these spaces was developed by Choquet
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[15, 16], Fuglede [28] and Ohtsuka [50]. Recently Zorii [61, 62] has studied properties
of potentials with external fields in this setting.

It was shown by Fuglede [28, Theorem 2.4] that if A C X is compact and u €
M;(A) is an equilibrium measure for A, then the inequality U*(z) < w(A) is valid

for all = € supp(p). The essential support of p is by definition the set

Shi={r e A:U"(x) Sw(A)}. (24)

Hence supp(u) C Sj;.

The following is a restricted version of Definition I.1.2.

Definition I1.1.4. Under the same assumptions as in Definition 1.1.2, assume that
w(A) < oo, and let p € My(A) be an equilibrium measure. A sequence (a, =
Un )y C A is called a greedy (k, pu)-energy sequence on A if it is generated in the

following way:

e ay is selected arbitrarily on S

o Assuming that ay, ..., a, have been selected, a1 is chosen to satisfy a1 € S},
and
Zk(anﬂ,ai) = inf Zk(:v,ai)
i=1 veSh i

for every n > 1.
The set formed by the first N points of this sequence is denoted by an .

In this chapter we are also interested in the so called Gauss variational problem

in the presence of an external field f. In what follows we assume that A C X is a

closed set, and we will refer to A as the conductor. The Gauss variational problem
asks for a solution to the minimization problem

Vi(A):= inf [ , 25

jA) = int 1) (25)
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where M ;(A) denotes the class of measures
My(A) = {j € Mi(A) : () < +oo, [ fdpu < +oo}. (26)

Throughout we will denote V;(A) simply as Vy. If My(A) = 0, then by definition
Vi = 4o0. If Mf(A) # 0 and there exists a minimizing measure u € M;y(A)
satisfying I¢(p) = Vi, we call p an equilibrium measure in the presence of the external
field f. In this case we say that the Gauss variational problem is solvable, and observe
that V; is finite.

Sufficient conditions for the existence and uniqueness of solution for a similar
variational problem were provided by N. Zorii [61, 62] in the more general context of
locally compact Hausdorff spaces. She assumes that the kernel is positive if A is not
compact, and allows measures to have non-compact support in this case. We remark
that the theory of logarithmic potentials (k = ko) with external fields in the complex
plane is particularly rich in applications to physics and other branches of analysis. We
will make use of this theory in Chapter IV, in order to obtain nth root asymptotics
of multiple orthogonal polynomials. We refer the reader to [56] for details on this
theory.

Let us introduce the notation

Wilu) = Vi = [ fdn (27)

for an equilibrium measure pr € M(A) in the presence of f. This value is finite. The

essential support of p in the presence of f is defined as

St ={re AU (x) + flo) < Wie(p)}. (28)
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If the Riesz kernel k; is employed, we use the symbol W, ;(1) to denote the constant
(27).

Using [28, Lemma 2.3.3] and the argument employed in [56] to prove parts (d) and
(e) of Theorem 1.1.3, it is easy to see that if 1 € M(A) is an equilibrium measure

in the presence of f, then

U(@)+ f() < Vy = [ fau (29)

holds for all z € supp(u) (i.e. supp(p) C S5 ,) and

V(@) + f() 2 Vs~ [ fdu (30)

holds q.e. on A.

We are ready to introduce the following definition (compare with Definition I1.1.4):

Definition I1.1.5. Let k : X x X — R U {+o0} be a kernel on a locally compact
metric space X, A C X be a closed set, and f: X — RU{+oo} be an external field.
If X is not compact, we assume that f satisfies the following “growth” condition at
infinity: for each compactly supported probability measure v,

lim (U"(z) + f(z)) = +o0, (31)

r—00

(i.e. given M > 0, there exists a compact set B C X such that U”(x) + f(x) > M
for allz € X \ B).

Assume that the Gauss variational problem is solvable and p € Ms(A) is an
equilibrium measure. A sequence (an = anp fu)oe; C A is called a weighted greedy

(f, u)-energy sequence on A if it is generated in the following way:

e ay is selected arbitrarily on S5 ,.
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o For every n > 1, assuming that aq, ..., a, have been selected, a1 is chosen so

that any1 € S}, and

n n

Y K(ant1, ai) +nf(ants) = é%f { > k(x,a;) + nf(x)} (32)
i=1 T8 L =1
The set formed by the first N points of this sequence is denoted by a{\m' We also

introduce the following associated function:
n—1
Ul () == k(x,a;) + (n — 1) f(2), r€eA n>2. (33)
i=1

Remark I1.1.6. Condition (31) implies in particular that S}, 1s compact. Conse-
quently, for every n > 1, the existence of a,1 is guaranteed by the lower semiconti-
nuity of k and f. However, a,.1 may not be unique.

In the context of Riesz kernels in RP, (31) is one of the conditions that are usually
required in order to prove the solvability of the Gauss variational problem (see [56]).
If s =0, (31) is equivalent to the property

lim (f(z) — log|z|) = 400, (34)

|z|—o0

and if s > 0, then (31) is equivalent to requiring that

lim f(z) = +o0. (35)

|z|—o0

In many practical circumstances it is not possible to determine the support or es-
sential support of an equilibrium measure. For this reason it is of interest to introduce

the following

Definition I1.1.7. Let k : X x X — R U {+o0} be a kernel on a locally compact

metric space X, A C X be a closed set, and f: X — RU{+oc} be an external field.
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In case it exists, a sequence (an, = an, )5, C A is called a weighted greedy f-energy
sequence on A if it is constructed inductively by selecting ay arbitrarily on A so that
fla1) < +00, and any1 as in (32) but taking the infimum on A. We use the notation

04{\, to indicate the configuration formed by the first N points of this sequence.
We will also consider more general constructions.

Definition 11.1.8. Let m > 2 be a fixed integer. Under the same assumptions of Def-
inition 11.1.5, suppose that the Gauss variational problem is solvable and 1 € M¢(A)
is an equilibrium measure in the presence of f. A sequence (ay, = Qnm, f.u)o0q C A is
called a weighted greedy (m, f, u)-energy sequence on A if it is generated inductively

in the following way:

o The first m points ay,...,a, are selected so that {ay,...,a,} is an optimal

weighted m-point configuration on S} ,, i.e.

Ei({ar,...,an}) < Ei({z1,...,20}) (36)

forall (zy,... ,2,) € S}, x--- xS} .

o Assuming that aq,...,a,,n have been selected, where N > 1 is an integer, the
next set of m points {amni1,- - - ,am(N+1)} C S}’# is chosen to minimize the

enerqy functional

m mN m

U (), ) = Kz, a)+ > k(z,z)H(N+1)m—1)Y f(z,)
i=11=1 1<i<j<m i=1
(37)

on Sf,u X e X Sm.

For every N > 0, the subindices mN +1,...,m(N + 1) are assigned to the points

(f,;m)

mn,, denote the configuration formed

AmN+1s - -+ Gm(N+1) 1 an arbitrary order. Let o

by the first mN points of this sequence.
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In analogy to Definition 11.1.7, we also introduce the following

Definition I1.1.9. Under the same assumptions of Definition I1.1.7, given an integer
m > 2, a sequence (Gn, = Upm, f)oe, C A (in case it exists) is called a weighted greedy
(m, f)-energy sequence on A if it is obtained inductively as in (36) and (37) but the

)

minimization is taken on A. With C(;{}Cn we denote the configuration {ai,...,anN}-

II.2 Main results

11.2.1 Greedy energy sequences

Our first result on the asymptotic behavior of greedy sequences is the following:

Theorem II.2.1. Letk : X x X — RU{+o00} be a kernel on a locally compact metric
space X that satisfies the mazimum principle. Assume that A C X is a compact set

and {any} is a greedy k-energy sequence on A. Then

(i) the following limit holds:

. E(CYN,k)
J\}Eﬂw N2 w(A); (38)

(1) if w(A) < oo and the equilibrium measure u € My(A) is unique, it follows that

1

S Y bt Noo (39)

acanN k
where d, is the unit Dirac measure concentrated at a;

(111) if w(A) < oo, there holds




where a,, is the n-th element of the greedy k-energy sequence, and

Furthermore, if w(A) < oo, the analogues of assertions (i), (ii), and (iii) hold for

any greedy (k, p)-energy sequence on A without assuming the maximum principle.

Theorem I1.2.1 generalizes a result for Riesz potentials due to Siciak [57, Lemma
3.1]. For sets of positive capacity, his result asserts that if A C R? is a compact set,
p—2<s<p,p>2 and {an,} is a greedy ks-energy sequence on A, then (40) holds
for k = k,.

As a consequence of Theorem II.2.1, we deduce the following corollaries. We

denote the d-dimensional unit sphere in R4 by S¢9.

Corollary 11.2.2. Let d be a positive integer and s € [0,d). If an, C S? is an

arbitrary greedy ks-energy sequence, then the asymptotic formula®

D((d+1)/2) T(d—s) :
B, (an.) T((d—s+1)/2) T(d—s/2)’ if 0<s<d,
. s\QN s o
i P = )
—log(2) + 5(4(d) —¥(d/2)), if s=0,
holds, where ¥(z) :=I"(x)/I'(x) denotes the digamma function. In addition,

! > b N (42)
T a — 0d, — 00,
N acanN. g

where g is the normalized Lebesque measure on S?.

Figure 1 below shows the first 2000 points of a greedy ki-energy sequence on the
unit sphere S2?. Observe that these points are distributed in a uniform fashion, as is

consistent with (42).

"'We remark that for d = 1 and s = 0 we have £(S*, N) = —Nlog(N), N > 2, (cf. [10]).
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Figure 1: 2000 greedy energy points on S? for s = 1

We will also show in Chapter III that greedy kq-energy sequences (s = d) on S¢
satisfy (42), i.e. they are asymptotically uniformly distributed. However, it remains

an open question to know if this property holds for s > d.

Corollary I1.2.3. Let a5 be any greedy ks-energy sequence on [—1,1] for s € [0,1).

Then
V7 T(1+s/2) .
cos(ws/2) T((1+s)/2)? Zf 0<s <1,
hm ES(aN75> (43)
N—oo N2
log(2), if s=0.
Furthermore,
1 5 Cs p - N y
Nag;v a%m x, x € [—1,1], — 0, (44)

where cs 15 a normalizing constant.

Figures 23 — 6 below show the first 30 points of different greedy k,-energy sequences
on [—1,1]. The values of s are indicated. In all examples, the first point is selected
to be a; = —1. Observe that, as the parameter s increases, the points distribute
themselves more uniformly on [—1, 1]. This phenomenon agrees with property (44). In
fact, as a consequence of a more general result from Chapter III, we know that greedy

ki-energy sequences (s = 1) on [—1, 1] are asymptotically uniformly distributed.
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11.2.2 Optimal weighted N-point configurations, weighted greedy energy
sequences, and the Gauss variational problem in R? for Riesz po-

tentials

We present now the main results obtained in the context of potentials in the presence

of external fields. The following is a generalization of Theorem II.1.2 to this setting.
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Theorem I1.2.4. Let k : X x X — RU {400} be an arbitrary kernel on a locally
compact metric space X, A C X be a compact conductor, and f: X — RU {400} be
an external field. Assume that the Gauss variational problem is solvable. If {w}} is
a sequence of optimal weighted N -point configurations on A, then

. Er(wy)
A}linoo N2 = Vf. (45)

Furthermore, if the Gauss variational problem has a unique solution p € My(A),
then

1 «
¥ > b p, N — o0, (46)

*
TEWN

where §, is the unit Dirac measure concentrated at x.

As the proof of Theorem I1.2.4 shows, without assuming the uniqueness of the equi-
librium measure one can deduce that any convergent subsequence of (1/N) ¥ c.x 0z
converges in the weak-star topology to an equilibrium measure. This observation is
also applicable to all the results concerning greedy energy sequences.

The next result can be regarded as a generalization of Theorem I1.2.1, but we
remark that in Theorem I1.2.1(7) we allow the possibility that w(A) = 400, whereas

in Theorem I1.2.5 the assumptions imply that w(A) < +oc.

Theorem I1.2.5. Let k : X x X — RU{+o0} be an arbitrary kernel on a locally
compact metric space X, A C X be a closed set, and f : X — R U {+o0} be an
external field satisfying (31) in case that X is not compact. Assume that the Gauss
variational problem is solvable and p € M¢(A) is a solution. Let {a{V#} be a weighted

greedy (f, u)-energy sequence on A. Then

(i) the following limit holds:

~ V. (47)



(11) If the equilibrium measure ji € M(A) is unique, it follows that

1 x
v 2 da—n  Nooo (48)
aEa{VYH
/
tim S v [ gy, (49

where a, is the n-th element of the weighted greedy (f, i)-energy sequence, and
U/ is the function defined in (33).

The following result shows that if k is not allowed to take the value 4+o0, then a

certain relation can be established between conditions (47)—(49).

Proposition 11.2.6. Let k : X x X — R be a real-valued kernel on a locally compact
metric space X, A C X be a closed set, and f: X — RU{+oo} be an external field.
Assume that the Gauss variational problem is solvable and p € My(A) is a solution.

Suppose that {b,};>, C S}, is a sequence of points such that

1 N
N n;l(sbn — 22 N — 0, (50)
and set
n—1
T () ==Y k(z,b) + (n — 1) f(x), reA n>2.
i=1
If the following holds:
T/ (b,
lim. fl )=Vf—/fdu, (51)
then
Ey({bu b))
lim L e =V (52)

Theorem I1.2.5 can be generalized for the class of greedy sequences introduced in

Definition II.1.8.
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Theorem 1I1.2.7. Let m > 2. Under the same assumptions of Theorem II.2.5,
assume that {a%’f)} is a weighted greedy (m, f,p)-energy sequence on A, where

€ Mg(A) is an equilibrium measure solving the Gauss variational problem. Then
(i) the following limit holds:

_ E(apys)
dim =y =V (53

(11) If the equilibrium measure i € M (A) is unique, it follows that

1
Z ) N — oo, (54)
mN acalf M)
U (s, an
Jim (e N+R{ A1) =m?*(Vy — / fdp), (55)

where a; is the i-th element of the weighted greedy (m, f,p)-energy sequence,

and U,E,{]’Vm) is the function defined in (37).

Remark I1.2.8. [t is easy to see that (54) implies that

= Zn: Sa, — I, N — 0.
iz

All the results stated above, except Proposition I1.2.6, are of course valid for Riesz
kernels. We are also interested in obtaining asymptotic properties for greedy energy
sequences of the type introduced in Definitions I1.1.7 and I1.1.9. These sequences have
the advantage that their construction does not require the knowledge of the support
of the equilibrium measure. We will show below that under natural assumptions on
the external field f, these sequences can be constructed using Riesz potentials, and

their asymptotic properties described.
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Let p > 2 and consider the Riesz s-kernel k; in R? for s € (0,p). Assume that

A C R? is a closed set and f is an external field satisfying
cap,({r € A: f(z) < +o0}) > 0. (56)

If A is compact, no additional assumptions are needed. If A is not compact, we also
assume that condition (35) holds.

Using the same arguments employed to prove Theorem 1.1.3 in [56] (which con-
cerns the case p = 2 and s = 0) and the fact that kg is positive definite (see [37,
Theorem 1.15]), it is not difficult to see that the Gauss variational problem on A
in the presence of f has a unique solution X = A\;; € My(A). Furthermore, the
inequality

UN) + f () < Vay = [ fa (57)

is valid for all € supp(\), where V; s := I s(\) denotes the minimal energy constant
(25), and

Uw) + f(x) 2 Vi = [ fx (59)

holds q.e. on A (relative to the s-capacity of sets).
We remark that if p = 2 and s = 0 then these properties hold if (35) is replaced
by (34) (cf. [56]).

The following result holds.

Lemma 11.2.9. Let p > 2 and p — 2 < s < p. Suppose that A C RP is closed and f
satisfies (56). If A is not compact, assume that (35) holds (or (34) in the case p = 2,
s =0). Let X\ = A, s be the equilibrium measure solving the Gauss variational problem
on A in the presence of f. If {xy,...,x,} C RP is an arbitrary collection of points

such that

Z \a:' - -+tnf(r) > M for g.e. x € supp(\), (59)
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then for all x € RP,

PP

i=1

> M —n(W,;(\) = U} (), (60)

|z —x® —

where Wy ¢(\) is defined in (27) and U is the potential associated to X. Moreover,

(59) implies that
——— +nf(zx) > M for g.e. x€ A (61)

Remark I1.2.10. The case p = 2, s = 0 of Lemma I1.2.9 (the logarithmic kernel is
employed in this case) is known as the generalized Bernstein-Walsh lemma and was

proved by H. Mhaskar and E. Saff in [46].
As a consequence of Lemma 11.2.9, we obtain the following results.

Corollary I1.2.11. With the assumptions of Lemma I1.2.9, let (a, = a, )72, be
a weighted greedy f-energy sequence on A constructed using the Riesz kernel kg for
s € [p—2,p). Then this sequence is well-defined and a, € Sty for alln > 2, where
S}, 1s the essential support (28). Moreover, all the asymptotic properties in Theorem

I1.2.5 hold for this sequence (replacing a}c\,’u by a{v ={ai,...,an} and p by N).

Corollary 11.2.12. Let m > 2 be an integer and assume that all the assumptions of
Lemma I1.2.9 hold. Let (a, = aym, )2, be a weighted greedy (m, f)-energy sequence
on A obtained using the Riesz kernel kg for s € [p — 2,p). Then this sequence is
well-defined and a, € S}, for all n > 1. Furthermore, all the asymptotic properties
in Theorem I1.2.7 hold for this sequence (replacing afjjﬂ by oz,%(,n) = {ay,...,ay}

and p by A).

We remark that the problem of finding an explicit representation of the solution

of a Gauss variational problem in R? is a difficult task in general. However, there are
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certain assumptions on f that could alleviate the difficulty of this problem, as the

following result shows in the case of Newtonian potentials.

Proposition I1.2.13. Letp > 3 and s = p—2. Assume that f is a radially symmetric
function (i.e. f(x) = f(|z|) for all x € RP) satisfying (35). Assume further that, as
a function of Ry, f has an absolutely continuous deriwative and obeys one of the

following conditions:
(1) rP=Lf'(r) is increasing on (0, 00);
(ii) f is convex on (0,00).

Let ro be the smallest number for which f'(r) > 0 for all v > ry, and let Ry be the
smallest solution of R f/(Ry) = p — 2 (it is easy to see that ro < Ry and Ry is
finite). If \p_a ¢ is the solution of the Gauss variational problem on A = RP with f

as the external field, then

supp(Ap—2.f) ={z € R : ry < |z| < Ry},

and A\,_o 5 18 given by

1
p—2

dA\p—2.f(z) = (rP=1f'(r)) dr do,—1(T), r=rz, r=|z, (62)

where do, 1 denotes the normalized surface area measure of the unit sphere SP~*

(0p-1(SP71) = 1) in RP. Moreover,

1
Wp—2,s(Ap—2,s) = 2 + f(Ro), (63)
0
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and
1/RE? + f(Ro) = f(ro), if  |a| <o,

Uy (2) = /R 2+ f(Ro) — f(z), if 1o < |z < Ro, (64)

1/]zP~2, if  |x[ = Ro.
Remark I1.2.14. The case p = 2, s = 0 was analyzed by Mhaskar and Saff in [47]

(see Example 3.2 of that paper).
I1.2.3 Second-order asymptotics on S! for greedy k,-energy sequences

In this subsection we present a result that is in clear contrast with the previous ones.
We have shown (see Theorems I1.2.1 and 11.1.2) that under certain conditions on A

and k, the sequences

E<aNJ€)/N27 E(w}k\/)/*]\ﬂ?

have the same asymptotic behavior (w} denotes here an optimal N-point configura-
tion on A, see Definition 1.1.1). This property also holds in the external field case
(see Theorems I1.2.5 and I1.2.4). However, the expression (66) below shows that in
terms of second-order asymptotics, greedy ks-enerqy sequences and optimal N -point
configurations on S* behave differently for s € (0,1).

It is known that if s € (0, 1), then the following limit holds (cf. [10]):

L E(SLN) — L) NP 2¢(s)
NLH;O N1+s - (271')5’

(65)

where &,(S', N) denotes (see (17)) the N-point minimal Riesz s-energy of S!, o
is the normalized arclength measure on S, and ((s) is the analytic extension of

the classical Riemann zeta function. The expression (65) is called a second-order
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asymptotic formula because it gives the second term in the asymptotic expansion of

E(SY,N), i.e. (65) can be written as

E(SY N) = I,(0) N* + ?2(75‘;) NS 4 o( NS, N — oo.

Proposition I1.2.15. Let s € (0,1) and consider an arbitrary greedy ks-energy se-

quence {anstn on S'. Then the following second-order asymptotics holds:

Ey(asans) — I(0)(3-2")?

g (3-2n)l+s = /()

2¢(s)
(2m)*’

(66)

where f(s) = 5(3)"+ (5)'" <1 for s € (0,1), ((s) is the analytic extension of the

classical Riemann zeta function, and o is the normalized arclength measure on S*.

If s € (0,1), then ((s) < 0, and therefore f(s) (22475‘;) > (QQCS) It is well known that on
S1, the minimal N-point Riesz s-energy &,(S', N) is attained only by configurations
consisting of NV equally spaced points, and this property holds for every s > 0. We
will show (see Lemma I11.4.2 in Chapter III) that for such s, greedy configurations

Qgn s on ST are formed by 2" equally spaced points. Hence we obtain:

Corollary I1.2.16. For all s € (0,1) and for any greedy ks-energy sequence {an s} n

on S, the sequence
Ei(ays) — Is(o) N?
N1+s

18 not convergent.

I1.3 Numerical experiments

In this section we provide some other numerical experiments. We illustrate in Figures
7-10 the first 200 points of four approximate greedy ks-energy sequences on the unit

square [0,1]% for four different values of s (for better visualization we have deleted
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the coordinate axes). The initial point is always selected to be the origin. The points
in Figures 8-10 were obtained by minimizing over a discretization of [0, 1]? formed by
the set

{(/100,3/100) : 0 < 4, j < 100},

whereas, in the case of Figure 7, the points were obtained using a discretization of
the boundary of [0, 1]? consisting of 4000 equally spaced points. We remark that if
s = 0, it follows from the maximum modulus principle that all greedy energy points
will lie on the boundary of the square and thus only the boundary was discretized in

this case.

Figure 7: s =0 Figure 8: s =0.2

Figure 9: s =0.5 Figure 10: s =1

The following figure shows the first 272 points of the same sequence illustrated in
Figure 1. Observe that these points are already very well spread in the surface of the

unit sphere.
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Figure 11: 272 greedy energy points on S? for s = 1

The configurations shown below in Figures 12-16 are obtained adding the next 20

points to the configurations shown in Figures 23-6. So the total number of points is

50. Recall that the first point is in all cases a; = —1.

0.5-

I !
-1.0 -0.5 0.5 1.0

—05)

10}

Figure 12: s =0

05rF

=05

-1.0F

Figure 14: s =0.4

0.5-

-1.0 -0.5 0.5

—05)

10}

Figure 13: s =0.2

05rF

-1.0 -0.5 0.5

=05

-1.0F

Figure 15: s = 0.6
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-1.0 -0.5 0.5 1.0

-05F

-1.0+

Figure 16: s = 0.8

We now present some plots of weighted greedy energy points. The following
example shows the first 50 points of a weighted greedy f-energy sequence on A =

[—1,1] (see Definition I1.1.7) for the logarithmic kernel ky and the external field

f(z) = |x|, xr € [-1,1]. (67)

The first point selected for this sequence was a; = —1. Observe that the points are

much more numerous near the origin, since f takes the lowest value there.
1.0k

0.5+

-1.0 -0.5 3 0.5 1.0

—-1.0+

Figure 17: 50 weighted greedy f-energy points for the logarithmic kernel and the
external field (67)

The next two examples are also weighted greedy f-energy sequences on A = [—1, 1]

for the logarithmic kernel kg, but now the external field is

f(z) = —log(w(x)), w(r) = (1 —2)M(1+ )™, A1, Ag > 0. (68)
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The function w is called the Jacobi weight. It is known (cf. [56, page 241]) that in

this case the equilibrium measure is

(14+ A+ A2)
1 — 22

1
dpins (@) = Ja—ab-2), a<z<b

with support supp(p, x,) = [a,b], where
a=02—02—VA,  b=06>—6>+VA,

and

/\1 >\2

0 = ———, 0Oy
DT N

=T A= L@ a6 - 6))

The following example corresponds to the choice A\; = 2, A\ = 1. The point a; is the

origin. In this case, a &~ —0.83 and b =~ 0.45.

1.0

—¢

0.5 1.0

S ®

=05

,1.0 [

Figure 18: 50 weighted greedy f-energy points for the logarithmic kernel and the
external field (68) with parameters \; = 2, Ay =1

In the following example we choose Ay = 4, Ay = 1, and again a; = 0. Observe
that now all the points were pushed to the interval [—1,0]! Another interesting
phenomenon can be observed, which is that many points are almost coincident. In

this example, a =~ —0.89 and b ~ 0.062.
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-1.0 -0.5 3 0.5

-05F

—-1.0+

Figure 19: 50 weighted greedy f-energy points for the logarithmic kernel and the

external field (68) with parameters Ay =4,y =1

In Figure 20 we show the first 200 points of a weighted greedy f-energy sequence

on A = [0,1]?. The initial point is the origin, s = 0.8 and the external field is

fz,y) =22+ 42, (v,y) € A

0.8¢- ° .
06L ® . °
044 ®

0.2¢-

—$olsete o cocseo sole bdos oo o b o olos olo s oo &

Figure 20: 200 weighted greedy f-energy points on [0, 1]? for s = 0.8 and the external

field f(z,y) = 2* + 92
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11.4 Proofs

In this section we give the proofs of the results stated in Section II1.2. Some auxiliary
results are also contained in this section. Theorems I1.2.1 and I1.2.5 are proved using

the same arguments, so we only give the proof of the latter result.
11.4.1 Proofs of results from Subsection 11.2.1

Proof of Corollary I1.2.2. It is well known (see for example [37]) that for any s < d
the equilibrium measure associated with the Riesz kernel kg is unique and coincides
with a4. Since supp(oy) = S9, any greedy k.-energy sequence {an sty C S?is a
greedy (ks, 04)-energy sequence. Therefore by (38) we obtain that

ES S
lim LN’)

N N2 = wS(Sd) = Is<0d)-

The values on the right-hand side of (41) are the values of I;(04). The case s > 0
follows from formula (1.2) of [36] and the case s = 0 from formula (2.26) of [11].
Finally (42) follows from (39). O

Proof of Corollary I1.2.3. It is shown in [37] that for s < 1 the equilibrium measure

associated with the Riesz kernel k, is

Cs

mdm, .I'E(—171),

and its energy is given by the value on the right-hand side of (43). Therefore, the

results in Corollary 11.2.3 follow from Theorem I1.2.1. O
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I1.4.2 Proofs of results from Subsection I11.2.2

Proof of Theorem I1.2.4. Our first goal is to show that

E *
lim sup s(@h)

msup =L < V. (69)

Let v € My(A) be arbitrary, and consider the measure A := ®I_, v on the pro-
duct space X~. Define the function h : XV — R U {+oo} by h(zy,...,zn) =
E;({z1,...,xn}). Therefore, Ef(wk) < h(zy,...,zy) for all (z,...,zx) € AN,

Integrating with respect to A it follows that
Ef(w}k\/) < AN h’(xla R ,I'N) d)\('rla R ,$N)

:/AN 3 k(xi,xj)d/\(xh...,xN)—I—Z(N—1)AN§;f(xi)dA(x1,...,xN)

1<iAj<N

= [ M) vl dute) 208 =03 [ Fe) v

1<iA <N
_ N(N - 1)(/@ k(z, y) dv(z) dv(y) + Q/A f(z) dy(:v)) — N(N = 1)I;(v).

Taking the infimum over v € M;(A) we obtain that Ef(wy) < N(N — 1)V}, and
therefore (69) holds.
Next we show that

Vy < liminf 22K (70)

N—oo N2

and at the same time we verify (46). Let wy = {z1,...,2x} and define

1
Uy = NZ(S%

i=1
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Assume that g, : A x A — R is a sequence of non-decreasing continuous functions

that converges pointwise to k on A. We fix n. Then

//gn(:v,y) dvn(z) dvn(y) +2/fdyN (71)

1 /X N
— W(Zgn(m,xi) + Y galwmizy) + 2sz(xi))
=1 1<i#j<N i=1
1 /X N
N<Z Gl ) + 2f () + > k(w,x;) +2(N — 1)Zf($i)>
=1 1<i#j<N i=1

(é (gn (i, 25) + 2f (x;)) + Ef(&)}kv))

Let C := inf{k(z,y) : (v,y) € A%} and D := inf{f(z) : * € A}. Both C and D are
finite since A is compact and k and f are lower semicontinuous. Using Ef(wy) <

N(N — 1)V} we obtain

NDSiV:f(fCi)S

i=1

Z(Vf —0). (72)

By the compactness of A and the continuity of g,, there exists a constant M, > 0

such that
N

i=1
In particular,

Zij\il 9n (xia ZL‘Z)

V2 — 0, N — . (73)

From (72) and (73) we conclude that

S (gn (s, ) + 2f ()
N2

— 0, N — o0. (74)

Let v € M;(A) be a cluster point of the sequence {vy} in the weak-star topology.

Then there exists a subsequence {vy}nen that converges weak-star to v (cf. [28,
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Lemma 1.2.1]). Therefore

| [ nlay) dvi@) dviy) +2 [ f@) dvia) (75)

<h]1\}11nf(//gn x,y) dvy(x) dvy(y +2/f ) dvn (z ))

Now we apply (75), (71), (74) and (69) to obtain

| [ gaemydvi@)dviy) +2 [ () dv(a) < vy,

From the monotone convergence theorem we conclude that

I¢(v) hm//gna:ydl/()dl/ +2/f )dv(z) < Vy.

n—oo

Therefore v = p, the equilibrium measure. Since p is the only cluster point of {vy},

(46) follows.

Using (71) we have

| [ 9ae.v) dula) duty) +2 [ () diutz)

1
< hmmf(Z Gn(Tiy ;) + 2f(z)) + Ef(w}kv)> = llrriloréf mEf(w}“V),

from which (70) follows. Finally, (45) is a consequence of (70) and (69). O

Lemma II.4.1. Let k : X x X — RU {400} be a symmetric kernel on a locally
compact metric space X, A C X be a compact set, and f : X — RU{+o0} be an
external field. Assume that the Gauss variational problem is solvable and p € My (A)

is a solution. Let {1,} C My(S},) be a sequence of measures that converges to ju in
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the weak-star topology. Then

Tim / fdr, = / Fdp. (76)

Proof. Since f and U* are lower semicontinuous we have
[ £ <timint [ fdr,,

limsup [ (Wy(p) — U*)dr, < / (W () — U™) dp.

n—oo

In addition, for z € S} , the inequality f(z) < Wy(u) — U*(x) holds, and therefore

limsup [ fdr, <limsup [ (Wi(p) — U")dr,.

n—oo n—oo

By (29) and (30), f = Wy(n) — U* g.e. on S, and since p has finite energy this

equality holds p-a.e. Thus

[ rdu= [Wi(w) = v7)du,

and (76) follows. O

Proof of Theorem I1.2.5. To prove this result we follow closely ideas from Chapter

V of [56]. By definition,
Ul(a,) < U () forall z €S}, n=>2.

We have, for any = € 57 ,

Er(al,) =2 > klai,a;)+2(N-1)Y f(a;)
1<i<j<N i=1
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We now integrate with respect to p to obtain

Ey(af,) <2 ig(v (0) + [ -+ f(ar)).

Taking into account that U*(a;) + f(a;) < Wy(p) for all ¢ and We(p) + [ fdp = Vi,
it follows that

Ef(af,) < N(N = 1)V}, (77)

Now, if {w}y } is a sequence of optimal weighted N-point configurations on S% ,, then
Ef(wy) < Ef(ozfv,#) for all N. Therefore (47) is a consequence of (77) and (45).
Throughout the rest of the proof we assume that the equilibrium measure p €

M (A) is unique. Consider the sequence of normalized counting measures

Z Oa.
aGaN "
As in the proof of Theorem II.2.4, we select a sequence g, : 57, x S}, — R of non-

decreasing continuous functions that converges pointwise to & on S% ,. We have, as

n (71),

//gn(x,y) dvy() dVN(y)+QT/deN < Zim1 9nla C]LV)Q 7N )
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Let {vn} nen be a subsequence that converges in the weak-star topology to a measure

A € M;(A). By the lower-semicontinuity of f,

/fdA < ligleiArflf/fduN.

Thus from (73) and (47) we conclude that

//gn(:v,y) d\(z) dA(y) + 2 /fd)\é V.

Now we let n — oo and obtain

://k(x,y)d)\(x) d)\(y)+2/fd>\§‘/f-

It follows that A € M;(A) and X is an equilibrium measure. By hypothesis there is

only one equilibrium measure, thus A = p and (48) is proved.

We next show (49). First,

S () = 5 Erlok,) = SN - D)

By (48) and Lemma I1.4.1,

]&L“%oﬁzf“l = [ 1du

This implies that

9 N

oy SO - ) = [ fde

46
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Applying (47), (78), and (80), we obtain

N

2 =W
lim S U/ i_V—/ d :
N (N-1)N= ' () ! H w
For every n > 1,
f n
1
Uni1(ani1) xégfu {n ;:1 k(x,a;) + f(a:)}

Integrating this expression with respect to p it follows that

n

Ur{+1(an+1> < 1
n IR L=

Let
Pn ‘= dﬂ - — E i)y > 1.
/f n; lf(a) "

On the other hand, for every n > 2,

U7{+1(an+1) > Ul(ay) + L,

(81)

ZUWM+/fWSWMM+/ﬂm—iif@) (52)

(83)

where L := inf{k(z,a) + f(v) : a,v € S} ,}. We may assume that [ < —1.

Let € € (0,1). Assume that m is an integer such that

ng (am )
HTH < Wilp) —e.

Applying (83) repeatedly we obtain for (1+¢/(3L))m <1i < m,

U»il(azurl) (m—1)L €/3
LW —e———— <W — —
and so
Uif a; m m €
i) < T aw ) - ef2) < Ty -

(84)
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Taking into account (82) and the previous inequality,

2 u 2

————— > Uli(ai) £ ———— > iWep) +pi) (85

(m+1)m = (m+1)m 1<i<(1+€/(3L))m
2 € 2

= > mWip) - > i
(m+ 1)1\ aLmeicm 2m+1)m (| aDymeicm
Furthermore, it is easy to see that

€ 2 Z < €2 <1+2 +m6> (86)
2(m+1)m ~ 6L(m+1) 3L

(1+€/(3L))m<i<m

< e2(1+¢/(3L)) |
- 6L

By (79) we know that p, — 0 as n — oo, which implies that

2
lim ————— Y ip =0 (87)
N—ox (N +1) N 1<i<(1+¢/(3L))N

If Wy(u) <0, then

Y W Y mw) < wi),

(m+1)m 1<i<(14¢/(3L))m (14¢/(3L))ym<i<m
and hence it follows from (85) and (86) that

m(m2+1) i Ui};1(az+1) (88)

e2(1+ 3¢/(3L)) 2

+ > i
6L (m+1)m 1<i<(1+¢/(3L))m

< Wi(p) +

Since the second term of the right-hand side of (88) is a negative constant, applying
(87), (81), and (88), it follows that there are finitely many integers m satisfying (84).

This together with (82) implies (49).
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Now we assume that W,(u) > 0. It is easy to verify that

e D ST L 7 FED SR 1)

(m + 1)m 1<i<(1+¢/(3L))m (1+¢/(3L))m<i<m
2 € e2m
< (1 Wi (),
= ( Tl T 3Lmr ) T 9(m+1)L2> )

and so, from (85) and (86), we deduce that

2 s 2 € eem
= NU/ i < (1 >W
(m—l—l)m; Falain) < (14 2o+ orm =y T o e )V W)
2(1 4+ 3L 2 )
i GL/( ) - S i
6 (m+1)m 1<i<(1+¢/(3L))m

If we assume that there is an infinite sequence N of integers m satisfying (84), applying

the last inequality and (87), we obtain

m 2 2
. f A < € Wf(ﬂ) € (1+€/(3L))
fim sup (m—+1)m Z.Zzl Ur(@ia) < Wilp) + —g5=+ 6L - (89

We may assume without loss of generality that L < —(1 +2Wj(u))/3. Then the
right-hand side of (89) is a constant strictly less than Wy (u), which contradicts (81).

This concludes the proof of (49). O
Proof of Proposition I1.2.6. We know that

N

Ei({by,...,bx}) = 2;:@‘(@) + 23 (N — ) f(by). (90)

=1

Since k is real-valued and {b,};2, C S5 ,, we have that T/ (b,) < +oco for all n. From

(51) it follows that
2 N
lim 2 ST () = Vi~ [ (o1)
=2

Vo NN —1) &
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and applying (50) and Lemma I1.4.1, we obtain
zx}l—rgo]\/' _1 ; — 1) /fd,u. (92)
Therefore (52) is a consequence of (90)—(92). O

The proof of Theorem I1.2.7 is similar to that of Theorem I1.2.5, and consequently

we only sketch it. The details are left to the reader.

Sketch of the proof of Theorem I1.2.7. In order to prove (53), we use the fact

that
N-1 "
Ef mNM 2 {U ™) a]m+17"' ]+1 +mZZf &Terl +¢m,N7
where
dmn = E({ar,...,an}) +2(mN —1) Zf(az)
i=1
Using the definition of {a@j41,...,a(j+1)m} and integrating the resulting inequality

by dp(mi1) X -+ X dp(z,y) it follows that

Er(alm)y <m2(N—1)(N—2)Wf(,u)+m2(N+1)N/fdu+o(N2).

mN,u

This inequality and (45) imply (53). The asymptotic expression (54) is an application
of (53).

To prove (55) we use the inequalities

U(fjvm) (CL N+1y.--,0 (N—i—l))
m m ) 9 m < W . ’
N < mWi(p) + pm,y
U,(,{(’xll) (am(N+1)+17 <. 7am(N+2)> > Ugjvm) (amNJrla s 7am(N+1)) + m2L>
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where

P, N zm(/fdu— ml]\,gf(ai)) + (mQJ_Vl)I(u)Jr (m]; D /fdu

and L = inf{k(z,a) + f(z) : a,x € S;,}. The rest of the arguments in the proof of

(55) are analogous to those used to justify (49). O

Lemma I1.4.2. Let p > 2 andp — 2 < s < p. Assume that A C RP is closed and f
satisfies the conditions (56) and (35) (or (34) in the case p =2, s =0). Let A = s 5
be the equilibrium measure solving the Gauss variational problem on A in the presence

of f. Then

(i) for any measure v € M;(RP),

“inf 7 (US(2) + f(2)) < Wi p(N), (93)

€S

where Sy denotes the support of X, and “inf” means that the infimum is taken

quasi-everywhere.

(1) If v € My(A), then

“sup” (U2 () + f(2)) = Wy (M), (94)

ZESV

where S, denotes the support of v, and “sup” means that the supremum is

taken quasi-everywhere.

(11i) Suppose that v € My (A) has finite s-energy and there exists a constant M such
that U (x) + f(x) = M for q.e. x € S, and UY(x) + f(x) > M for all x € A.
Then v =\ and M = W ¢(A).

Proof. The case p = 2, s = 0 of this result is part of Theorems [.3.1 and 1.3.3 in

[56]. We first justify (93). To the contrary, suppose that there exists a measure

o1



v € M;(RP) and a constant C' > W, ;(\) such that

Ul(z)+ f(x) >C  for qe. x€ S).

From (57) we obtain that

UMz)+C =W, (\) < U () for q.e. x € S). (95)

Since I4(A) is finite, Sy is a compact set with positive s-capacity. Therefore, there
exists a unique measure py € M;(Sy) such that I;(uy) = ws(Sy) > 0. Since U <
ws(Sy) on supp(py), applying the first maximum principle ([37, Theorem 1.10]) it
follows that Ut < wy(S)) everywhere in RP. Using (58) we conclude that UM =
ws(Sy) q.e. on S,.

If we define now the measure 7 := (C' — Wy s(\)) ws(S)) "y, (95) yields

UMM (z) < U () for q.e. x € S,. (96)

Since A and 7 have finite energy, this inequality holds (A + n)-almost everywhere.
Applying Theorem 1.27 (case s = p —2) and Theorem 1.29 (case p—2 < s < p) from
[37] we obtain that the inequality (96) holds everywhere in RP. Finally, multiplying
both sides by |z|* and letting |z| — oo it follows that C' — W, ((A) < 0, which
contradicts our initial assumption.

Now we prove (94). Let L := “sup”,es, (UY(z) + f(z)) and assume that L is

finite. It follows from this assumption that v has finite s-energy. Using (58) we have

UY(z) + W (A — L<U}MNx)  forqe. x€S,. (97)

The same argument employed above to prove part (i) shows that W ;(\) — L < 0.
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Finally, the assumptions of (iii) imply that

“inf 7 (UY(z) + f(z)) = M = “sup” (U () + f(z)),

ZL'EA IESV

and consequently we obtain using (93) and (94) that M = W, ¢(\). Taking C = M in
(95) and L = M in (97) we conclude that U? = U2 everywhere in R?, which implies

that A = v by Theorem 1.15 from [37]. O

Proof of Lemma I1.2.9. From (59) and Lemma I1.4.2(i) applied to the measure

|2

(1/n)>>7 04, we obtain that W ¢(A) > M /n. Using (57) and (59) we have

M
UY(z) + Wy (A) — — > UlMx) for q.e. x € supp(N). (98)
n
The same argument employed to prove Lemma I1.4.2(i) shows that the inequality
(98) is valid everywhere in R?, which is precisely (60). Finally, (61) is a consequence
of (60) and (58). O
Proof of Corollary 11.2.11. The fact that a,, is well-defined for all n > 1 follows
from conditions (56) and (35) (or (34) in the case p = 2, s = 0). Applying Lemma
1129 to {x1,...,2,} :={ai,...,a,} and
" 1

M = T n )
; ‘an+1 _ ai|s + nf(a "rl)

it follows that a, € S}, for all n > 2. The case p = 2, s = 0 is justified in the same
way. It is clear from the proof of Theorem I71.2.5 that (47)-(49) are valid for the

weighted greedy f-energy sequence (a,)52 ;. O

Proof of Corollary II.2.12. For every N > 0, the existence of the minimizing
configuration {amn+1, .- ., @mvi1)} is guaranteed by the conditions (56) and (35) (or

(34) in the case p =2, s = 0).
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Next, we show that wy = {@mni1,---s@muvir)) C Siy for every N > 0. It

follows from the definition of wy that for each i € {1,...,m}, the inequality

ui 1

- al’ j=1,j#i |amN+i - amN—i—j’

-+ (N + )m — 1) f(amn+i) (99)

Z |amN+1

_Z|x—al| f: :

i 1T — amnl® TN+ Um = 1)f(z)

holds for all x € A. (If N = 0 then the first term on both sides of the inequality
doesn’t appear in the expression.) If we denote the left hand side of (99) by M, and
apply Lemma I1.2.9 to {z1,...,xvt1m-1} = {a}7 U {@mnij})1 jzi> then (60)
implies that a,,n1i € S7 ).

It is clear that the sequence (a,)n>1 is a weighted greedy (m, f, \)-energy sequence

and, therefore, all the assertions of Theorem I1.2.7 are applicable to (ay)n>1. [

Proof of Proposition I1.2.13. It is easy to see that

1/rP=2 if x| <,
1 _
fo = spatom @ -
1/|z|P~2,if |z| > 7.

Let v be the measure supported on {z € R? : ry < |z| < Ry} whose expression is
given by the right-hand side of (62). From the definition of 7y and Ry it follows that
v is a probability measure and by simple computations we obtain that the potential

U,_, coincides with the function on the right-hand side of (64). Therefore

,o(7) + f(x) = + f(Ro), 7o < |z] < Ry. (100)

Rb?

Applying the definitions of ry and Ry again, we get that f(|z|) > f(ro) if |z] < 7 and
f(lz]) +1/|z[P~2 > f(Ro) +1/RE2 if |x| > Ry (regarding f as a function of R.). As
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a consequence

UZ o) + f(@) = —

= R + [(Ro) (101)

for all x € RP. Therefore, it follows from (100), (101), and Lemma I1.4.2, that
v = A\p—2 s and (63) holds. O

I1.4.3 Proofs of results from Subsection 11.2.3

Proof of Proposition I1.2.15. We have

Ey(agon) —I(0)(3-2")? 1 Ey(agons) — I(0)(2") — L(0)27"+? '

= 102
(3 . 2n>1+s 31+s (2n)1+s ( )
As will be justified in Section III.4 (see Lemma I11.4.3), the relation
1
Es(Oé3.2n7S) = 5 55<Sl, 2n+2) + gg(Sl, 2n)
holds. Therefore, from (102), it follows that
ES(Ozg.Qn,S) — ]3(0)(3 . 2”)2
(3 . 2n)1+s
1 gE(Sh2M) — I (0)(27)? | A E(ST,2M2) — I (0)(2712)?
B 31+s( (2n)1+s - 9 (2n+2)1+s ) :
Applying now (65) we get
n _ LAY 1+s 1+s
lim Ey(azans) — I5(0)(3-2") _ <1 (4> i (1> >2C(S) _
neoo (3 2m)its 2\3 3) ) (2n)
Finally, it is easy to check that f(s) = 2(3)'™ + (3)'™ < 1 for all s € (0,1). O
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Proof of Corollary I1.2.16. Since asn ¢ consists of 2" equally spaced points (see
Lemma II1.4.2 below), Eg(agn ) = £(S*,2"), and therefore
Ey(agn ) — I(0)2%" ~2¢(s)

Jim on(1+s) T (2n)

but the subsequence {as.0n s}, provides a different limit value, given by (66). O
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CHAPTER III
GREEDY ENERGY POINTS: THE HYPER-SINGULAR CASE

III.1 Introduction, background results and notation

In Chapter II we investigated the asymptotic behavior of greedy energy sequences
under conditions that allowed us to use potential theoretic methods. In the present
chapter, we analyze greedy k,-energy sequences on compact sets A C RP, assuming
that s > dimy(A). Therefore in this situation there exists no probability measure
supported on A with finite Riesz s-energy, and other methods must be employed.

In this chapter we will also investigate greedy “best-packing” sequences, whose
points are chosen to maximize the minimum distance to previously selected points.
The definition of these sequences is introduced in Subsection II1.2.2. In order to
motivate our results, we will present in this section some background material.

In this chapter, A will denote a compact set in RP, and d will denote its Hausdorff

dimension. For s < d, Theorem II1.1.2 asserts that

Es(w}k\f,s

lim ) _ L(Aas), (103)

N—oo N2
where {w}ys} denotes any sequence of optimal N-point configurations on A with
respect to the Riesz s-kernel, and A4 s denotes the corresponding equilibrium measure
on A (see the paragraph preceding the statement of Theorem I1.1.2). In addition (see
[37] or Theorem 11.2.4),

1

N Z 5IL))\A,sa N—>OO,

*
IGUJN’S
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where ¢, is the Dirac unit measure concentrated at z. If s > d, then Theorem II1.1.2

tells us that

lim ES (w}kV,S)
N—oo N2

= —'—()O7
so the order of growth of E,(w}y ) is greater than N?.

Throughout the rest of this chapter we denote by Vol(B?) the volume of the unit
ball B in R%, and H, represents d-dimensional Hausdorff measure in R? (normalized
by the condition H4([0,1]?) = 1, where [0, 1]? denotes here the embedding of the d-

dimensional unit cube in R?). Regarding the case s > d, in [32, 8] geometric measure

theoretic tools were employed to obtain the following result:

Theorem II1.1.1. Let A be a compact subset of a d-dimensional C*-manifold in RP.

If {wx 4} is any sequence of optimal N-point configurations on A for s = d, then

lim Ed(wfv,d) B VOI(Bd)
N—oo N2log N Hy(A)

(104)

Furthermore, if Hqy(A) > 0, any sequence {On} of configurations on A whose energies

satisfy (104) is uniformly distributed with respect to Hg in the sense that

1 * Hd|A
— — N ) 1
N Z Oy Ha(A)’ — 00 (105)

TEWN

Assume now that A C RP is a d-rectifiable compact set, i.e. A is the image of a
bounded set in R under a Lipschitz mapping. If {w}k\,’s} 15 any sequence of optimal

N -point configurations on A for s > d, then

i ZsWhe) _ Coa
1m = ,
Nooo N1ts/d Hd(A)S/d

(106)

where Csq > 0 is a constant independent of A and p. In addition, if Ha(A) > 0,

any sequence of configurations on A whose energies satisfy (106) is asymptotically
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uniformly distributed with respect to Hy.

We remark that the constant C; 4 equals 2((s) when d = 1, where ((s) is the

classical Riemann zeta function (cf. [44]). The value of C; 4 for d > 2 is still unknown.

Definition II1.1.2. Let A be a compact set of Hausdorff dimension d. A sequence
of point sets wy C A, is said to be asymptotically s-energy minimizing on A, and we
shall write {wy}n € AEM(A;s), if it satisfies, with wy , replaced by wy, the limit

relation (103), (104) or (106), according to whether s < d, s =d, or s > d.

As a particular consequence of Corollary I1.2.11, we know that if A C RP is
compact, s < d and s € [p — 2,p), then any greedy ks-energy sequence ay,, C A is
AEM(A;s). One of the goals of this chapter is to determine whether or not greedy
ks-energy sequences are asymptotically s-energy minimizing for s > d. We will show
examples where this property holds and other examples where it fails. See Section
1.2 for details.

In Figures 21-22 below we show two examples of greedy k,-energy sequences on
[0,1]% for the values s = 2 and s = 4. As a particular consequence of our Theorem
I11.2.15, we know that greedy ks-energy sequences on [0, 1]? are asymptotically uni-
formly distributed for s = 2. But it remains an open question to know if this is also

the case when s > 2 (on [0, 1]? or S?).

Figure 21: s =2 Figure 22: s =4

In Section II1.2 we state and discuss our main results. Their proofs are given in

subsequent sections.
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II1.2 Main results

I11.2.1 Greedy k,-energy sequences on S’

In this subsection we present some results about the asymptotic behavior of Fg(a s)
for greedy ks-energy sequences on S* when s > 1. As we shall see in Proposition
11.2.2, greedy k,-energy sequences on S are not AEM(S!;s) for s > 1, which is
perhaps a surprising result. We conclude that the behavior of Eg(ay ) exhibits a
transition at s = 1, the Hausdorff dimension of S!, since as we saw in Chapter II

greedy ky-energy sequences are AEM(S?; s) for s < 1.

Remark II1.2.1. [t follows from the geometric lemmas proved in Section III.j that
greedy ks-energy sequences an s on S are independent of s, i.e. once the points
ai, ..., a, have been selected, the choice of an.1 is independent of the value of s and

depends only on the position of the first n points of the sequence.

In [44, Theorem 3.1] it was proved that if I' is a rectifiable Jordan arc, then for

s>1,

Jin PR 2EC) (1o
and if s = 1,

s ilz(ﬁg}\)r - H12(1“)’ (108)

where {w} ,}n is any sequence of optimal N-point configurations with respect to the
Riesz s-kernel.

We remind the reader that by &£,(S*, N) we denote the N-point Riesz s-energy of
St (see (17)). As it was observed in Chapter II, optimal N-point configurations on

S1 consist precisely of N equally spaced points, and this property holds for all values
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of s € [0,00). From (107) we have

Iim E(S',N)  2((s)

= ) 109
N—oo N1+s (27’(’)5 ( )

By Corollary I1.2.2 and Theorem I11.2.14 (see Subsection I11.2.3) we know that if
s € [0,d], then any greedy k-energy sequence {ay} on S% is AEM(S? s). However

the situation changes when s > 1 on S*.

Proposition II1.2.2. For s > 1, any greedy ky-energy sequence {an s}y on S' is

not asymptotically s-energy minimizing. In fact, the subsequence c.on s satisfies

. Ey(azons)
iy (3. 2m)i+s

where f(s) = 23" 4+ (3)'* > 1 for all s > 1.

As in the previous chapter, we want to describe the difference in terms of second-
order asymptotics between greedy ks-energy sequences and optimal N-point configu-

rations when s = 1. The following formula holds (see [10]):

E(S',N) - IN?logN 1

lim. = — (7~ log(r/2), (110)

where 7 = limpy; oo (1 + % +- 4 ﬁ —log M) denotes the Euler-Mascheroni constant.

Proposition II1.2.3. For any greedy ki-energy sequence {ay1}n on S* we have

tiyg 220020 = 2O LSBT L dog(a/2) 4 tog2¥/3). (11

Since the first 2™ points of such sequences ay; are equally spaced on S* (see

Lemma I11.4.2), we obtain the following:
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Corollary I11.2.4. For any greedy ki-energy sequence {an1}n on S', the sequence

Ei(an,) — EN%log N
N2

18 not convergent.

111.2.2 k,-Energy of sequences on Jordan arcs or curves in R? for s > 1

and best-packing

Throughout this subsection, by a Jordan arc in R? we understand a set homeomorphic
to a closed segment. A closed Jordan curve refers to a set homeomorphic to a circle.

The main result in this subsection states that for s > 1 it is not possible to
find any sequence of points on a Jordan arc or curve that is asymptotically s-energy

minimizing.

Theorem I11.2.5. Let {x}32, C I be an arbitrary sequence of distinct points, where
[ is a rectifiable Jordan arc or closed Jordan curve in RP. Set X,, := {xx}7_y,. Then
{X.}n &€ AEM(I;s) for all s > 1. In particular, {ayns} ¢ AEM(I;s) for any greedy

ks-energy sequence on I when s > 1.

The next result shows that, in contrast to the case s > 1, for s = 1 greedy k;-
energy sequences on S are AEM(S?;1). More generally, we shall prove this fact for
smooth Jordan arcs or curves I' by which we mean that the natural parametrization

®:[0,L] — T, where L = H;(T), is of class C' and ®'(t) # 0 for all ¢ € [0, L].

Theorem II1.2.6. Let I' C R? be a smooth Jordan arc or closed curve, and let

s =d=1. Then any greedy ky-energy sequence {ay1} on I' is AEM(T'; 1), i.e.

i E1(04N,1) 2
m = .
N=co N2log N ~— Hy(T)

(112)
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Furthermore,

1 * Hl'F
— 0q — , N — oo. 113
V.2 T (H3)

For the analogous result for greedy kq-energy on the unit sphere S¢ C R, see
Theorem II1.2.14.
We next consider best-packing configurations. For a collection of N distinct points

wy = {x1,...,2x} C RP, we set

dwy) == Jain |z; — x4l

and for an infinite set A C RP, we let
In(A) :=sup{d(wy) : wy C A, card(wy) = N}

be the best-packing distance of N-point configurations on A. In [9, Theorem 2.2] it is

shown that if A =T is a rectifiable Jordan curve or arc in R?, then

This fact leads us to the following.
Definition III1.2.7. Let I' C RP be a Jordan arc or curve, and let wy C I' be a

sequence of N-point configurations. We say that {wy} € AEM(T", 00) if

lim N(wy) = Hi (D).

N—oo

The following result is analogous to Theorem II1.2.5 in the sense that it proves
the impossibility of finding an infinite sequence on any rectifiable Jordan arc or curve

that is AEM(T'; 00).
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Theorem II1.2.8. Let I' C R? be a rectifiable Jordan arc or curve with length L =
Hi(T), and let {xx}32, C T be an arbitrary infinite sequence such that x; # x; if
i #j. Set X, == {xg,...,x,}. Then {X,} ¢ AEM(I',00). In fact,

4+3\/_

liminf n (A, 114
im inf n (X,) < 4+4\/— (114)
Moreover, if ¢ := limsup,,_, . nd(X,) > 2+4\/§L, then
L
hrrLg%)l.}fnﬂ )§§—|— c(L—c)<ec. (115)

In particular, if limsup,, .. nd(X,) = L, then liminf, . nd(X,) < L/2.
In analogy with finite s, we define greedy best-packing configurations on a compact
set A C RP by selecting ag € A and choosing a,, € A so that

min |a, — ;] = max min |z — a4
0<i<n—1 zeA 0<i<n—1

Such points are referred to in [20] as Leja-Bos points. Theorem II11.2.8 shows that
such points are not asymptotically optimal on rectifiable Jordan arcs or curves.

In [20] there appears a conjecture attributed to L. Bos stating that if A is a
compact domain of C, every Leja-Bos sequence {a,}7°, on A with |ag| = max{|z| :
x € A} is asymptotically uniformly distributed. We show in the following result that

this conjecture is false (see also Figure 33 in Section II1.5).

Proposition I11.2.9. There exist greedy best-packing sequences on [0,1] and [0,1]?

that are not asymptotically uniformly distributed.

It is not difficult to see, however, that greedy best-packing sequences are dense in

the set A.
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I11.2.3 Weighted Riesz potentials

In this subsection we will consider the notion of weighted discrete Riesz energy intro-

duced in [8]. We reproduce here the main definitions.

Definition II1.2.10. Let A C RP be an infinite compact set whose d-dimensional
Hausdorff measure Hy(A) is finite. A symmetric function w : A x A — [0,00] is

called a CPD-weight function on A X A if

e w is continuous (as a function on A x A) at Hg-almost every point of the

diagonal D(A) := {(z,x) : x € A},

e there is some neighborhood G of D(A) (relative to A x A) such that infgw > 0,

and
e w is bounded on any closed subset B C A x A such that BN D(A) = 0.
The term CPD stands for (almost) continuous and positive on the diagonal.

Definition IT11.2.11. Let s > 0. Given a collection of N (N > 2) points wy :=

{z1,...,on} C A, the weighted Riesz s-energy of wy is defined by

Bioy) =y Aomn)

1<i#j<N |2 — e

while the N-point weighted Riesz s-energy of A is given by
EY(A,N) :=inf{EY(wy) : wy C A, card(wy) = N}.
The weighted Hausdorff measure H;" on Borel sets B C A is defined by

HE"(B) = / (w(z, 2))" Y dHa(z).

B
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The following result about the asymptotic behavior of {E¥(A, N)} y was obtained
in [8].

Theorem II1.2.12. Let A be a compact subset of a d-dimensional C'-manifold in

R? and assume that w: A x A — [0, 00| is a CPD-weight function on A x A. Then

w d
L EPAN) _ Vol(BY)

= . 11
N—oco N?log N H;luw(A) (116)

Furthermore, if Hy(A) > 0 and {On} is a sequence of configurations on A satisfying

(116), with E¥(A, N) replaced by EY (On), then

! i - Hila N (117)
— — — 00.
Nz @y >

TEWN

Assume now that A C RP is a d-rectifiable set. Then for s > d,

. S;U<A7 N) o Cs,d
MNim e = [HS™ (A)]/4 (118)

where Cy q 1s the same positive constant that appears in Theorem II1.1.1. In addi-
tion, if Hq(A) > 0, any sequence {@n} of configurations on A satisfying (118) with
EY(A,N) replaced by E¥(@n) also satisfies (117).

Definition IT1.2.13. Let w be a lower semicontinuous CPD-weight function on Ax A.
A sequence (a,)32, C A is called a greedy (w, s)-energy sequence on A if it is generated

in the same way as generated in Definition 1.1.2, with k(x,y) := w(z,y)/|z — y|°.

Our first result in this subsection concerns greedy (w, d)-energy points on the unit

sphere S¢ C R (compare with Proposition I11.2.2 and Corollary 11.2.2).

Theorem I11.2.14. Assume that w : S¢x S? — [0,00) is a continuous function such

that w(z,x) > 0 for all x € S%. Let {a% 4}n be an arbitrary greedy (w,d)-energy
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sequence on S¢, d > 1. Then

. Ej(afs)  Vol(BY)
lim e

= 119
N—oo N2 log N Hng<5d) ! ( )

and therefore

1 o H"|se
N Z 5@ — Hde Sd 5 N — OQ.
aEa%’d d ( )

In particular, any greedy kg-energy sequence {ana}n on S¢ is AEM(S? d) and sat-

isfies (42) for s = d.

In the following result we consider greedy (w,p)-energy sequences on sets in RP

with positive Lebesgue measure.

Theorem II1.2.15. Let A C RP be a compact set such that H,(A) > 0, and let
{ak,} v be an arbitrary greedy (w, p)-energy sequence on A. Assume that w : AxX A —

[0,00) is a continuous function such that w(x,x) >0 for all x € A. Then

E¥(a,)  Vol(B)

li = 12
N N2 logN  HLY(A) (120)
and therefore
1 * HZ’U)|A
— —_— N . 121
N Z Oa ng(A)’ — ( )

aea}‘\’,,p
In particular, any greedy ky-energy sequence {an,}n on A is AEM(A;p) and is

asymptotically uniformly distributed with respect to 'H,.

In view of Proposition II1.2.2, it is not in general possible to extend Theorem
[11.2.14 to s > d. However, for any compact set A C R? with Hs(A) > 0 (where
d > 0 is arbitrary, not necessarily an integer), we can show that the order of growth

of E¥(aly,) when s > 6 (s = 0) is at most N'*/° (N?log N). Let
HP(A) == inf{) (diam G;)’ : A C |G}, 5> 0.
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Theorem II1.2.16. Let 0 < 0 < p. Assume that A C RP is a compact set such that
Hs(A) > 0. Let w be a bounded lower semicontinuous CPD-weight function on A x A.

Consider an arbitrary greedy (w, s)-energy sequence {ay fn C A, for s > 6. Then,

for N > 2,

M sa ||w]| Hse(A)=/ANH/5 0 if s> 6,

M(g’AHU}||H§o(A>_1N2IOgN, if8:5,

where the constants Mss4 > 0 and Msa > 0 are independent of w and N, and

|w] := sup{w(z,y) : z,y € A}.

Corollary I11.2.17. Let A C RP be a d-rectifiable set. Suppose s > d and w is a
bounded lower semicontinuous CPD-weight function on Ax A. Consider an arbitrary
greedy (w, s)-energy sequence {ay }n C A. Then there are constants Cy, Cy > 0 such
that

Cy N1 < EP(aky,) < Cy NTH/4, (122)

If s = d and A is assumed to be a compact subset of a d-dimensional C*-manifold,

then there are constants C3,Cy > 0 such that
Cy N*log N < Ef(ay ;) < CyN?log N, (123)

for any greedy (w, d)-energy sequence {af 4} n C A.

Corollary II1.2.18. Let A C RP be a d-rectifiable set. Suppose s > d and w is a
bounded lower semicontinuous CPD-weight function on Ax A. Consider an arbitrary
greedy (w, s)-enerqy sequence {a,}5>, C A. Then {a,}5, is dense in A. If s =d

and A is assumed to be a compact subset of a d-dimensional C*-manifold, the same
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conclusion holds for any greedy (w,d)-energy sequence. Taking w = 1 the result is

applicable to greedy ks-energy sequences.
We can slightly improve the density result in certain cases like a real interval.

Proposition II1.2.19. Let [a,b] C R and s > 1. Assume that w is a bounded
lower semicontinuous CPD-weight function on [a,b] X [a,b], and (a,)5 is a greedy
(w, s)-energy sequence on [a,b]. If I is any closed subinterval of [a,b], then

d{1<n<N: I))i+s
lim inf (card{l < n < an € 1})
N—oo N

> 0. (124)

I1I.3 Numerical experiments

In Theorem II1.2.6, we proved that greedy kj-energy sequences are asymptotically
uniformly distributed on smooth Jordan arcs or closed Jordan curves (see (113)). In
the case of an interval [a,b] C R, this property can be formulated in an equivalent

way as follows: If (a,)%°, is an arbitrary greedy kj-energy sequence on [a, b], then

1<n<N: —
- card{1 <n < a, € [e,d]}  d—c

Jim ¥ = for all [c,d] C [a,b]. (125)

We do not know if this property also holds for greedy ks-energy sequences in the
case s > 1 (the best we can say so far is (124)). However, in view of the following
numerical experiments we tend to believe that the answer is positive.

In all the examples below the points were generated in the interval [—5,5], and
the first point is always selected to be a; = —5 (therefore the second and third points

are always as = 5 and a3 = 0). The number of points in each example is indicated.
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Figure 23: s =1, N =17
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Figure 25: s =1, N =25
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Figure 27: s =1, N =31
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Figure 29: s =1, N =33
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Figure 24: s =3, N =17
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Figure 26: s =3, N =25
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Figure 28: s =3, N = 31
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Figure 30: s =3, N =33
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Figure 31: s =1, N =41 Figure 32: s =3, N =41

Observe that in the cases N = 17 and N = 33, the points are practically equally

spaced! So the limit (125) should definitely hold for the subsequence N = 2" 4 1.

I11.4 Proofs of results from Subsection I11.2.1

In order to prove Proposition II1.2.2 we need some auxiliary lemmas that give a

geometric description of greedy ky-energy sequences on S?.

Lemma II1.4.1. Let s > 0 and consider two points x1, x5 € S*. Set
f(z) = ks(z,21) + ks(x, 229), r e S
where ks is the Riesz s-kernel (1). Then on each arc determined by x1 and xzo the

function f has only one minimum and it is attained at the midpoint of the arc.

Proof. We write z; = € and x5 = ¢, and without loss of generality we assume that
A =0 and ¢ € (0,27). We want to show that the function g() := f(e') is strictly
decreasing on (0, ¢/2). Since g(f) is symmetric on the interval (0, ¢) with respect to
the point ¢/2, the location and uniqueness of the minimum follows. Assume first that

s > 0. We have that

9(0) =272[(1 —cos(¢ — )72 + (1 — cos ) 2]
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Thus

9(0) = ()27 # (0 — )(1 — cos(6 — 0)) 5" — sin(0)(1 — cos(8)) .

Showing that ¢’(f) < 0 on (0, ¢/2) is equivalent to

sin(¢ — 6) _ sin 0
(1 —cos(¢—0)):+tt ~ (1 —cosf)2t’

0 € (0,0/2).

Since ¢ — 6 > 6, and the function (sinz)/(1 — cosx)? is strictly decreasing on (0, 27)
for # > 1, we obtain the desired result for s > 0.

If s =0 we have

9(0) = —log(2[cos(¢/2 — 0) — cos(¢/2)]),

and so the claim is also valid in this case. O

Lemma II1.4.2. Let s > 0 and assume that (a,)32, is an arbitrary greedy ks-energy

sequence on St. Then

1) for every positive integer m, the set com , consists of 2™ equally spaced points,
Yy p Y ; q Yy sp p

that is,

-2mn om

agms = {ar1€"™ g5

(ii) for every positive integer m, the set ag.om can be written as

O{3.2m78 - 52m+2 \ ng, (126)

where Som+2 and Som are formed, respectively, by 2™ and 2™ equally spaced
points, and Som C Som+2;

(iii) the choice of any point a,, is independent of s.
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Proof. We first justify property (i). This property is well known for s = 0 (cf.[5]).
The following argument applies to all values of s > 0. We proceed by induction on m.

For m =1 the result follows trivially. Assume now that the result is true for m — 1,

[ee]
n:l?

i.e. given any greedy kg-energy sequence (by,) the first 27! points are equally

spaced, and let us show that {a,}2", consists of 2™ equally spaced points. Consider
the function

2m—1

fom-1(z) = > ky(z,a,), r e St

n=1
By hypothesis the points aq,...,asm-1 are equally spaced. The symmetry of these

points and Lemma [11.4.1 allow us to conclude that fym-1 attains its minimum at

each midpoint of the 2! arcs determined by a, ..., asm-1, and only at these points.
Thus,
27 (2k—1) | om_

agm-141 € {aze 7 120 (127)

Now we write
2m—14]
fszl_;’_l (ilj‘) - Z k’s(QT, an) = f2m71(x) _|_ ks(:[:, afszl_i_l)
n=1

The (only) point where the function fym-1,; attains its minimum is the point where

ks(z, agm-1,1) attains its minimum, i.e. the point —agm-1, since

;rells]f} f2m71+1([[‘) Z ilélsl} f2m71 ((L’) + irellsl} ks (.I', a2m71+1),

and fom-1(x) and ks(z,asm-1,1) both attain their minimum at the same point. In

general, by the symmetry of {a,}27 ", if we write

l

f2'm71+l(.r) = f2m71 (CU) -+ Z 1{73<fL’, a2m71+k) l < 2m717
k=1

it follows that the point asm-1,,.1 is a point where 3¢ _, ky(x, agm-1,;) attains its
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minimum. Therefore, the set {agm-1,5}3", is formed by the first 2! points of
some greedy ks-energy sequence. By induction hypothesis, {a2m71+k}izzl is formed

by 2™~ equally spaced points. From (127) we conclude that

{an}izl = {an}in:lll U {a2m*1+k}i211

is also formed by equally spaced points.
Properties (ii) and (7ii) are immediate consequences of the above proof. O
Since greedy kg-energy sequences {ay s} on the unit circle S* are independent of

s, we will denote them simply by ay.

Lemma II1.4.3. Let s > 0. Given any greedy ky-energy sequence {an}y on S, the

following relation holds for every n > 1:
1
Ey(ason) = 3 E,(S,2m ) 4 £,(ST,2™). (128)

Proof. Tf {3}, C S* is an arbitrary collection of N equally spaced points, then

using the simple equality [e® — e| = 2| sin(%5?)|, we conclude that for s > 0,

£,(S",N) = By({zx}Y.,) = 2°N X__jl sin (7;\7;) (129)

Consider any greedy k,-energy sequence (ay)3-; on S'. We claim that

2nt2_1

k
Eg(azon) = Es(Sqn+2) — ontl . 9g=s Z sin ( T

n+2
k=1 2

>_s + Ey(San),

where aig.on = Son+2 \ Son is as in (126). To see this, notice that Es(as.9n) is obtained

by removing twice from E,(Syni2) all terms |e® — €|~ where either € € Sy or

€i6 € S2n .
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Since

E5(52"+2) = gs(Sla 2n+2)’ ES(SQ") = gs(Sla Qn)a

(128) follows by applying (129). The case s = 0 is proved similarly.

Proof of Proposition III.2.2. Using (128) we obtain

Ey(aza) 1 12020+ g (G on+2) 1 &S, 2m)
31+s9n(1+s) _31—1—55 on(l+s) 2(n+2)(1+s) 31+s  9n(l+s)

Simplifying the above expression and applying (109) we conclude that

b -G+ ()

It is straightforward to check that f(s) = l(é)Hs + (é)HS > 1 for all s > 1.

2\3

Proof of Proposition II1.2.3. First observe that

Ei(agon) — £(3-27)%log(3 - 27)
(3277

1/(1/2) & (S, 22) + & (S, 2") — L(3-27)%log(3 - 2)
9< 22n )

We add and subtract (1/7)2%"log(2") to obtain

Ei(agon) — 2(3-27)%log(3 - 27)
(3277

B 1<£1(Sl, 2m) — 1227 Jog(2m)
9

(1/2) £1(ST, 27 +2) — %An
92n +16 22(n+2) >

where A, = (3-2")?1og(3 - 2") — 22" log(2"). Taking into account that

22(n+2)

A== log(2"2) 4 1og(3)(3 - 2")* — 8log(4)2*"

5

(130)



it follows that
(1/2) 81(51,2”+2) — %An

16 2(n12) (131)
51(51’ 2n+2) _ %22(n+2) log(2n+2) 1
=38 53(n72) + ;(8log(4) — 9log(3)).

Applying (110), (130) and (131) we conclude that

1m
n—00 (3 . 2n)2

= Ly~ Toa(m/2)) + ~ (5 log(4) ~ log(3)) = ~ (7 ~ log(r/2) +log(2% /3)).
0]

Proof of Corollary II1.2.4. Since Ej(agn) = &£(S*,2") for all n, the result follows

from (110) and (111). O

I11.5 Proofs of results from Subsection I11.2.2

Proof of Theorem II1.2.5. Assume first that I' is a Jordan arc. If 1,29 € ', we
denote by (x1,zs) the subarc joining z; and xo, and by (1, x2) its length.
Let &, := {zrn}i_ be a sequence of configurations on I', where we assume that

the points zy,,, are located in successive order. Set
dk,n = l(xkfl,nv xk,n>7 k= 17 RN LT (132)

In [44] the following result was proved:

Theorem III.5.1. Let T be a rectifiable Jordan arc in RP. If s > 1 and {X,}, €
AEM(T'; s), then

n
Jim

L
dip — l —0,  L:=H(D) (133)
k=1 n
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We prove Theorem II1.2.5 by contradiction. Let {z;}72, C I' be an arbitrary
sequence of distinct points and set &), := {xx}7_,. We will use the notation &, =

{Zoms .-, Tpn}. Assume that {X,}, € AEM(I';s). Let 6 > 0 and consider the sets

A (e {L...,n};'L;;5 < dpy < L;:5}, B m {1,... n}\ A%

n

Let € > 0 be a fixed number. Then from (133) there exists N = N(¢) € N such that,
ifn>N,
L
@m—‘ge (134)
n

n
D
k=1

If k € B?, then |dy,, — L/n| > §/n, and from (134) it follows that

>

card(B%)— < e, n > N.
n

Therefore,

card(A%) =n — card(B°) > n(l — ;), n > N.

There are exactly n subarcs (x_1.n, Tk, ), and when we add the next n/2 points
we may assume that n is even) to the configuration X,,, obviously at most n/2 o
y that 7 i to the configuration X,, obviously at most n/2 of

these new points will lie in the subarcs (xg—1,, Trn,) Where k € Afl. Setting
C% = {k € A : (x}_1.n,Trn) does not contain a new point},

we have
€ n 1 €
d(CP) > Q_>_: <_)
card(Cy) > n 5 5 ="57;
Now since the intervals (xg_1,, Tr,) With k € C’fl do not contain a new point, there

are at least card(C?) values of &’ in {1,...,3n/2} such that dy 3nj2 = di, for some
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k € 2. For these values of k' and the corresponding values of k, we have

L L
dhn'_ %—y
n

L
dpr 3nj2 — 371/2‘ =

Now we choose § to be any fixed value less than L/3, say § := L/6. Then for k € C?,

J L L S L L p L L p L L L
o=+ ] 2 g [~ el | = g = = e > - =
Finally,

3n/2

D

k'=1

oo~ 5o =l E < (L0
wan2 3l ="M2 "5 )en - \2 L)6

But the above estimate contradicts (134) since we can select e sufficiently small so

(1 6€>L>
2 L)6

If T is a closed Jordan curve, we select an orientation for it. Then the above

that

reasoning used to prove the result in the case of Jordan arcs is also applicable. We
only have to define (zg_1,,%k,) as the subarc joining xj_;, and xj, on which a
particle moves from x_; ,, to y , following the orientation prescribed. The details of

the argument are left to the reader. 0

Proof of Theorem III.2.6. We first assume that [" is a smooth Jordan arc of length
L. We will reduce the problem of asymptotics of an; on I' to a weighted problem
on [0,L] and then apply Theorem II1.2.15. Let ® : [0,L] — T' be the natural

parametrization of I and define w : [0, L] x [0, L] — [0, 00) by

w(z,y) = | [z = | (135)

P(x) — (y)|

Let ¥ = &' be the inverse function of ®. If a, is the n-th element of the greedy

ki-energy sequence on I, let b, := ¥(a,) € [0, L] and By := {b1,...,bn}. Since for
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t=®(z),z €0,L],

n—1 1 -
%Eﬁz |t—al int Z < |0(z) — (b)) OL]Zl

zG[O L=

’L

it follows that {Oy} is a greedy (w,1)-energy sequence on [0, L] (see Definition

[11.2.13) associated with the weight function (135). Notice that

L L
H(0, 1) = [ wiw,a) " de = [0 () de = L
0 0
Applying Theorem II1.2.15 we obtain that

. Eilany) . EY(BN) 2 _ 2
lim —————= = lim = — =T
N—oo N2log N N—oo N2log N H;™([0,L]) L

If I' is a smooth Jordan closed curve and @ : [0, L] — I'is the natural parametriza-

tion of I' (®(0) = ®(L), d'(0) = ®'(L)), we set

— |2 — ¢ 2miz/L 2riy/ L
— — T — Y%A . 0 L
w(Z,f) |(b<x)_®(y)|7 z € ag € ) l‘aye [ ) ]7

and apply (with the aid of Theorem II1.2.14) a similar argument as above on the unit
circle S*.

In both cases, (113) is a consequence of (112) and Theorem III.1.1. O

Proof of Theorem III.2.8. Let p > 1 be a rational number and let n € Z, be
such that n/p is an integer. We denote the first n + 1 points of the sequence {xy}7°,
by X, = {Zon,- .-, Tnn}, where as in the proof of Theorem II1.2.5 the points zy, are
located on I' in successive order. There are exactly n subarcs (x;,, Zit1.,). We add
to &, the next n/p points of the sequence {z}}. Then there are at least (p — 1)n/p
subarcs (Z;,, T;+1,) DOt containing a new point. These subarcs have length at least

d(X,). We select (p — 1) n/p of those.
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On the other hand, there are 2n/p subarcs (25 (p+1)n/p, Tit1,(p+1)n/p) T€Maining

with length at least 6(X(41)n/p). Consequently,

p—1)n 2n
(p> 3() + 2 8(Xyey) < L (136)

Thus

2
L p~+p
Letting f(p) denote the right-hand side of (137), we see that for p > 1 the function f

attains its minimum when p = 1 + /2, and f(1 +/2) = jiig L, which establishes

(114).
Let X,,, be a subsequence of configurations such that limy_,, ng 6(X,, ) = c. Notice
that we cannot apply (136) directly because we cannot assume that ny /p is an integer.

Let |z denote the integral part of x and let {z} := x — |z]. Then we get

(nk - B;D 5(X,,) + zm’“J (Xt tmfp)) < L. (138)

Since

it follows that

lim <nk - WD 5, )= LD (139)

k—oo

Similarly,

n n
’(P +1) UJN%HLMW - <nk + UD&%HWM < p( Xyt in/p))
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and thus

lim inf (nk + {?J)M%Hm/m) = liminf(p +1) VZJ O( Xyt lna /) )- (140)

k—o0

Since liminf, ..o nd(X,) < liminfy_oo(ne + [7k/p)) 6(Xnytine/p)), We obtain from

(138)-(140) that

2 —1
liminfnd(A,) < L — P=-.

Therefore

liminfnd(A,) < g(p) =

n—oo

(1 +11))p(L —20) +c‘

If ¢ = L we get immediately that liminf,, .. nd(X,) < L/2. The function g attains
a minimum for p = y/¢/(L — ¢) and takes the value L/2 + (/¢ (L — ¢) at this point.
This proves (115). O

Proof of Proposition I11.2.9. Consider the sequence {a,}5°, C [0,1] defined as
follows:

e ag:=1,ay:=0,ay :=1/2.

e Assuming that the first 2" 4+ 1 points have been selected, let agny; := (27 —

1)/2m 1 <i <2

Obviously {a,}2, is a greedy best-packing sequence on [0,1]. However, the se-

quence of configurations Sy := {a,}_, is not uniformly distributed since

. card(S3.9n—1 N[0,1/2]) , 2" +1 2
hm = lim — = —
n—oco 3-2n"1 41 n—co3.2n-l41 3

Now we consider the sequence {b, }°, C [0, 1]? formed in the following way:

1) b1 = (]_, 1),b2 = (0,0),b3 = (0, 1)7b4 = (1,0)
2) Assume that the first (27! + 1)%, n > 1, points have been selected.
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2.1) We define the next 22"~1 points as the centers of the 22"~1) squares of

area 272"~ whose vertices are the first (2"~'4-1)2 points by, . . .

5 b(2n71+1)2 .

These 221 points are chosen in an arbitrary order.

2.2)

Now we select the next 2"(2"~! + 1) points to be the middle points of the

edges of the 22("=1 squares mentioned above. The first group of points

that we add consists of those points with abscissa equal to 0. The second

group is formed by those with abscissa equal to 27". In general, the points

from the i-th group have abscissa (i —1)/2". We add exactly 2" +1 groups,

and in each one of them, the points are selected in an arbitrary order.

Figure 33 illustrates the first 221 points of the sequence {b,}52 .

...........

Figure 33: Greedy best-packing
of Bos

points for square: a counterexample to a conjecture

Using Voronoi cell decompositions one can show that {b,}°, is a greedy best-

packing sequence on [0, 1]?. Indeed if we consider this Voronoi decomposition of [0, 1]2

corresponding to the points {b;}}, that is, [0, 1]> = UN,V; where

Vi={zx 0,1 |z —b| <|z—bj| forall j =1,...,N},

then it is easy to see that each V; is a convex polygon with 3, 4 or 5 sides and that

bny1 corresponds to a vertex of the V;’s that is of maximal distance from the points

{b:} ).
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To show that the sequence of configurations Ty := {b;}, is not asymptotically
uniformly distributed, we consider the subsequence of sets consisting of N(n) = 3 -

22(n=1) 1 7.97=2 4 1 points. We have that

1

T 1/2 1 n—1 "
T 020Dy DY 21

s N(n) T N)

2
:55&

OJ
Using a similar argument it is possible to construct a greedy best-packing sequence

on [0,1]7 C RP that is not asymptotically uniformly distributed.
We remark that it is still plausible that for any infinite compact A C RP there
exists at least one greedy best-packing sequence that is asymptotically uniformly

distributed on A.

I11.6 Proofs of results from Subsection I111.2.3

Proof of Theorem II1.2.14. Given a point x € S, we define C(z,r) := {y € S¢:
ly—z| < r}. If 04 denotes the normalized Lebesgue measure on S?, then the following

estimates hold (see formulas (3.7) and (3.4) in [36]):

L 1
FE () o), 0, 141
,/Sd\c(xﬂ,) |Z)3 _ y|d Ud(y> Ya 108 " + ( ) r s ( )

oa(C(z,r)) < ;'Vd rt, d>2, (142)

where

_ T((d+1)/2)
= T 2)T(d)2) (143)
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If d = 1, inequality (142) is not valid since o1(C(x,r)) = 2 arcsin(%), but instead we
have

o1(C(z,7)) =nr +O(*), r—0. (144)

For z € S% and r > 0,

HE(Clar)) = [ wlyy) dHaly) = Ha(S?) [ wly,5) dou(y)

C(z,r) C(z,r)
Thus
d d
HY(C(x,7)) < MHd(fl J7aT , d>2, (145)
HY(Clz, 1)) < MH(SHr+ 00, r—0, (146)
where M := sup{w(y,y)"! : y € S¢}.
Let r € (0,1) be fixed and set
) N
D;(r) = S \ C(a;,rN~d), DN(T) = ﬂ D;(r),
i=1

where a; is the i-th element of the greedy (w,d)-energy sequence. From (145) and

(146) we obtain that

d d
HE (DY) 2 sty - DT g (147)
3
HyY (DN (r)) > Hy(SY) — MHL(SY)yr + (’)(]7\,72>, N — 0. (148)

We may assume that the expressions in the right-hand side of the above inequalities
are positive since we can take r sufficiently close to 0 and N sufficiently large (we will

eventually let 7 — 0 and N — o0).
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Let € > 0. Since the function w(z,y)/w(x, z) is uniformly continuous on S x S¢,

there exists & > 0 such that

‘ wiz,y)

—1’<e, for |r—y| <.
w(z, )

Consider the function

n—1

x,a;) ”
Z‘x_ i Test nzz (149)
From the definition of a greedy (w,d)-energy sequence we know that U\ ,(a,) <

wy(x) for all z € S% Let 2 <n < N and assume that r < §. Then C(a;,rN™1) C
C(a;,6) forall 1 <i<mn—1 and so

iy ) dHq(z)
w d d,w < ’U)(I,CLZ) d
/DN(T) n,d(x> Hd (SC) . /Dl(r) U}(l’,ZL’) |l’ _ ai]d

ol 1+e w(x,a;) dHq(x)
< Ty !
T = (/C‘(ai,E)\C(ai,rNd) |z — a;]? Ha() + /Sd\C(ai,é) w(x,x) |z — ai|d)
d 1
< (n-— 1)((1 + €)Ha(S )/S dog(x) + C(w, 5)),

N\CairN 1) [ — a]?

where C'(w, 0) is some constant depending on § and w. Using (141) it follows that

/DN(T) v (x) dHG" () < (n— 1)(1 + e)Ha(S?) Oj log N — y4logr + (9(1)>‘ (150)

Therefore,
E¥ (0% ) =2 Uw an§2 S — w (2) dHY (2
N(N —-1) o [ Vd
< —————(1+ HS<1 N — 4l —|—(91>.
Hg7w(DN(T))( E) d( ) d Og ’yd Og/}ﬂ ( )
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Consequently, from (147) and (148) we get that for d > 1,

i Ey (@%,d) 1
im sup

a7
N—oo N2logN — 'Hgﬂ”(sd) _ W(l + ) Ha(S%)

d

After letting » — 0 and € — 0 we obtain that

ey i (0R0) (S 0 _ Vol(BY)
Im sup — < —0 = dw .
Nooo N2logN = HGY(Sd)d  HGY(S9)

Finally, since (S, N) < EY(a% ) for all N, applying (116) it follows that

i Zd(@Ra) _ Vol(BY)
N—oo N2 IOgN n Hng(sd)‘

The statement about the weak-star convergence of the normalized counting measure

associated with aj; ; is also an application of Theorem III.2.12. O

Remark II1.6.1. It is not difficult to see that greedy ks-energy sequences on S C
RITY satisfy the following property for any s € [0,00). If {a,}°, denotes such a
sequence, then for each integer m > 1, the choice of asy, is unique and sy, = —Am—1.

It is also easily seen that on S? the configuration formed by the first siz points of

any greedy ks-energy sequence does not depend on s and is a rotation of the configu-

ration {(1,0,0), (—1,0,0), (0, 1,0), (0, —1,0), (0,0, 1), (0,0, —1)}.

Proof of Theorem III.2.15. If R := diam(A) is the diameter of A, » < R and

x € A, then
1
dS/ dy =Hy-1(SP)log(R/r). (151
/A\B(M) |z —y|P Y B(z,R\B(z,) [T — y[P y p-1( ) log(R/7) (151)
Defining
. N
Di(r) = A\ B(a;,rN"#),  D"(r):= (] Di(r),
=1
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where q; is the i-th element of the greedy (w, p)-energy sequence, the proof of The-
orem I11.2.14 is applicable here and yields the result. For instance, using (151) the

expression similar to (150) is
1
/ U@ () < (n = (1 + e (577) (p log N — log r + 0(1)). (152)
DN (r ’

Since Vol(BP) = p~tH,_1(SP~1), (120) follows from (152) and Theorem I11.2.12. The

limit (121) is a consequence of (120) and Theorem I11.2.12. O

Proof of Theorem II1.2.16. We follow closely the argument on page 20 of [8]. The

following result is known as Frostman’s lemma (see [45]).

Lemma II1.6.2. Let 6 > 0 and A be a Borel set in RP. Then Hs(A) > 0 if and only
if there exists p € M™*(A) such that u(A) > 0 and

w(B(z,r)) <1, reRP, r>0, (153)

where B(x,r) denotes the open ball centered at x and radius r. Furthermore, one can

select pu so that p(A) > ¢, s H°(A), where ¢, 5 is independent of A.

Let u be a measure from Lemma I11.6.2, and set o := (u(A)/2N)'/?. Define the
sets

Dj = B(CLJ‘,TQ), DN :A\ U Dj,

where a; denotes the j-th element of the greedy (w, s)-energy sequence. Then, using

(153),

w(Dy) > (A S 1u A)—(N—l)rg>ﬂ(2A)>0. (154)

J=1

Consider the function Uy, defined in (149). From (154) we obtain

w 1 w = (x,a;)
U lox) < s | URL(0)dute g g e @
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where |Jw|| := sup{w(x,y) : x,y € A}. Set R := diam(A). Then u(A) < R? by (153).
If y € Aand r € (0, R], then

—s

1 r
dulx g/ rEA: > ) dt
/. s oy = [ m raed)
:u(A) /T_S —1/s d—s T —46/s
< B(y.t dt < R =9/5
<t Bl TE)d < BT |

5— 5—s ;
R™* 4+ 25070 if s > 0,

IN

1+ §log (R> ifs =5

Therefore, for s > § we obtain

w 2||’ZUH —5 S 1-s N 5/6
Uiolon) < SO =R i) <ol (Lo ) 059)

where C > 0 is a constant independent of N and w. If s = ¢, then

U (ax) < M(N — (1 atos (£)) < ol

Nlog N
s, (156)

1(A)

where Cy > 0 is also independent of N and w. The sequence {U%(a;)}n is non-

decreasing since

Therefore, applying pu(A) > ¢, s H3°(A) and (155)—(156), Theorem III1.2.16 readily

follows from
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O

Proof of Corollary I11.2.17. Since EY(ay, ) > £Y(A, N) for every N and s > d,
the lower bounds in (122) and (123) follow from (118) and (116), respectively. The

upper bounds follow from Theorem I11.2.16. U

Proof of Corollary II1.2.18. Assume the existence of a point a € A and € > 0
such that {a,};2, N B(a,e) = 0. Let afy, = {a1,...,an}. Then

N j-1
Ef(ay) =2 > wlana;) Z]z: (e,
’ N 1<i<j<N a; — ajl* ~ j=2i=1 la; — 5E|

where the last inequality is valid for any z € A. In particular, taking r = a we get

[[]]

Ef(a,) <

N(N —1),

68

where ||w|| = sup{w(z,y) : z,y € A}. This inequality contradicts the first inequalities
n (122) and (123). O

Proof of Proposition IT1.2.19. Assume that there exists a subinterval I = [¢,d] C
[a, b] for which (124) is not satisfied. Let V; be a subsequence such that
(card{l1 <n < N, : a, € I})'*s

im =0.
l—o0 Nl

Select € > 0 sufficiently small so that J = [c+€/2,d — €/2] C I is not empty. If we
define v, := card{1 <n < N, : a,, € J}, then there exists a subinterval of J of length

at least (d — ¢ —€)/(v; + 1) not containing any point from {a, € J: 1 < n < N;}.

Let x; be the center of such a subinterval. We have, for oy, , = {a1,...,an,},
N; n—1 xl Cl
EY(ay,.,) —22 J(an) <QZ (7 —ZZzl — (157)
n=2 o e E T
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N —1 N, -2 1

o —ai* " Jm—aolr T o — an|?

< 2w

| = 2lwl(Sra+ 1),

where ||w| = sup{w(z,y) : z,y € [a,b]} and

Ny —1 Ny —1
S]J = Z lis, T[’l = Z lis
a;€l,1<i<N;—1 |IL‘[ - ai| a;i ¢, 1<i<N,—1 |xl - ai|
For each a; ¢ I, |a; — ;] > €/2; hence
2Ty, < (2/€) N} (158)

Ifa;€1,1<i< N, —1,then |a; — x| > (d—c—¢€)/2(v;+ 1). Therefore, if we define

7= card{1 <i < N; —1:q; € I}, it follows that

25+1

2 <
511 < (d—c—e)®

(Vl + 1)8 T Nl. (159)

By hypothesis, 7' t*/Nf — 0 as | — oo. We deduce from (157)-(159) that

. EY(ay, )
iy =0
which contradicts the fact that
B (eR,) o E2([a,B],N) 2¢(s)
B e L S Y
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CHAPTER 1V

MULTIPLE ORTHOGONAL POLYNOMIALS ON STARLIKE
SETS

IV.1 Introduction and statement of main results

In this chapter we present the results on the algebraic and asymptotic properties of
multiple orthogonal polynomials associated with a system of two measures supported
on starlike sets. The main results are described in this section. We start with the
definition of the orthogonality measures and the associated polynomials.
Let
2
So == |J 10, o exp(2mik/3), (160)
k=0

where a > 0 is arbitrary and finite. Assume that s; is a complex-valued function

defined on Sj such that

s3>0 on (0,a), s1 € LY0,a), (161)
sl(e%z) = e%sl(z), z€ 5\ {0,q, e%a,e%a}. (162)

Set
f(z) = 22 [ ; ;223 dt, (163)

where sy is a real-valued function defined on [—b, —a] C (—o00,0] that satisfies so €

L'(—b,—a). We assume that 0 < a < b < co. Notice that f satisfies

27i 4ri

fles 2)=e3 f(2).
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We assume of course that the measures si(t) dt and sy(t) dt are non-trivial (i.e.

their supports contain infinitely many points). We will also assume that

S9 >0 on [—b,—al. (164)

We next construct the following weights

Wo(z) = s1(2), z €5, (165)

Wi(z) = f(2) s1(2), z €5, (166)

and define the sequence of monic polynomials {Q,}22, of lowest degree that satisfy

the following conditions:

deg Qn < m, (167)
/SOQ%(t)tkWi(t)dtZO, k=0,....n—1, i=0,1, (168)
/S Qo1 (t) t" Wo(t) dt = 0, k=0,...,n, (169)

0
/So Q2nt1(t) t* Wi(t)dt =0, E=0,....n—1. (170)

These are the polynomials whose algebraic and asymptotic properties we investi-

gate. The first result concerns their degree and the location of their zeros.

Proposition IV.1.1. The degree of each polynomial Q,, is maximal, i.e. deg @, =n.
Moreover, if n = 37, then @, has exactly j simple zeros on the interval (0,«). If
n = 3j + 1, then Q, has a simple zero at the origin and j simple zeros on (0, ).
Finally, if n = 35 + 2, then Q,, has a double zero at the origin and j simple zeros on
(0, ). The remaining zeros of Q,, are simple, are located on the rays (0, ) exp(27i/3),

(0, ) exp(4mi/3), and are rotations of the zeros on (0, ).
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The proof of Proposition IV.1.1 is given in Section IV.2; it heavily relies on Lemma
IvV.2.4.
The following figures show the zeros of the polynomials @,,21 < n < 24, associ-

ated with the following weights:

s;=1 on [0,5], ss=1 on [-2,—1]. (171)
Figure 34: Zeros of (091 Figure 35: Zeros of Q99
Figure 36: Zeros of (a3 Figure 37: Zeros of (o4

One of the most important properties of the polynomials @),, is the fact that they

satisfy a three-term recurrence relation of third order, as the following result shows.

Proposition IV.1.2. The monic polynomials @), satisfy the following recurrence

relation

2Qn = Qni1 + anQn-2, n>2 a, €R, (172)

where

Qi(z)=2, j=0,1,2. (173)
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The coefficients a,, are given by the formulas

o Jo T Qan(t) sy () dt
e T Qanal) 1 () T (174)
o Jo " Qanga (B) s1(t) f(t) dt
Aon1 = fé"otnfl Q2n_1(t) Sl(t)f(t) di (175)

Moreover, a, > 0 for all n > 2.

Proposition 1V.1.2 is proved in Section IV.2. One can show, using orthogonal-
ity properties of the polynomials @), with respect to varying measures (Proposition
IV.3.6), that each integral in (174) and (175) is positive.

The following functions, called functions of second type, will play a crucial role in

the asymptotic analysis of the polynomials @),,. They are defined as follows:

Q)

U,(2): M
0

Observe that the functions V¥, satisfy the following immediate properties (see also
Corollary 1V.3.3):

\I/n - H(@\S@),

Uy, (2) = O(1/2"1), z — 00, (177)

Wani1(2) = O(1/2"F2), 2 — oo

(Throughout this chapter H(2) denotes the space of all holomorphic functions on
an open set @ C C.) The functions ¥, also satisfy orthogonality conditions (see
Propositions IV.2.2 and 1V.3.4). It is important for our study to determine the exact
number of zeros of each function ¥, outside the starlike set Sy, and their location.

The following result gives the answers to these questions.
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Proposition IV.1.3. For each j € {0,1,2,3,5}, the function Ve ; has exactly 31
simple zeros in C\ Sy, of which | zeros are located in the interval (—b, —a), and the
remaining 21 zeros are rotations of these | zeros by angles of 2r/3 and 47/3; Ve,
has no other zeros in C\ Sy. The function Ve 4 has exactly 3l + 3 simple zeros in
C\ So, of which I + 1 zeros are located in the interval (—b,—a), and the remaining
20 + 2 zeros are rotations of these I + 1 zeros by angles of 2 /3 and 47/3; Ve 1q has

no other zeros in C\ Sp.

This proposition is proved in Section V.3, where other properties of the functions
W, are described.

Notation: Let ), 2 denote the monic polynomial whose zeros coincide with the
finite zeros of W,, outside Sy, so that deg@,» = 3l it n =6l + j, j € {0,1,2,3,5},
while deg Q0 = 3l + 3 if n = 61 + 4.

The following result asserts that for consecutive values of n the zeros of the poly-
nomials @), actually interlace, and the same is true for the zeros of (), 2. This property
is relevant for analyzing the ratio asymptotic behavior of the sequences {Q,, },>o and

{Qn.2}n>0, since it implies, in particular, that the families of functions

%) (%)

are normal in the regions C\ Sy and C \ Sy, respectively, where

Sy = O[—b, —al exp(2mik/3). (178)

k=0

We have:

Theorem IV.1.4. For every n > 0, the polynomials Q,, and Q.1 do not have any
common zeros in Sp \ {0}. Moreover, there is exactly one zero of Qny1 between two

consecutive zeros of @, in (0,a). Conversely, there is exactly one zero of @Q,, between
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two consecutive zeros of Qni1 in (0,a). Therefore, the zeros of Q, and Q1 interlace
in So \ {0}.

Additionally, for everyn > 0, the functions V,, and ¥, 11 do not have any common
zeros in Sy. There is exactly one zero of W, 11 between two consecutive zeros of ¥,

in (=b, —a), and vice versa. Therefore, the zeros of W,, and ¥, 1 interlace in S;.

We can determine exactly how the zeros of @), interlace, thanks to the fact that

the recurrence coefficients a,, are all positive.

Proposition IV.1.5. Let the roots of the polynomials Qsi, Q3x+1, Q3kro and Qsi.s,

in the interval (0, ), be denoted, respectively, as follows:

R ) A I

x§3k+1) < :cg?’kﬂ) - xg3k+1) ez :C,(fffl) < xﬁf’kﬂ),

x§3k+2) < x§3k+2) < x§3k+2) ez xggs_k;ﬂ) < $§€3k+2)7

PO B B8 (k) x,(fffg)

Then

239 < R B0 @) B0 k) (179)
D Bk B B L (BRD)  (3k4D) (180)
2 G R O 0D k) (1s1)

Theorem IV.1.4 and Proposition IV.1.5 are proved in Section IV.4 (see also Propo-
sition 1V.4.1).
The following figures show the interlacing of the zeros of certain polynomials

associated with the weights (171):
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Figure 38: Zeros of Q3 (circles) and Figure 39: Zeros of (a4 (squares)
(24 (squares) and Qo5 (circles)

We next describe the ratio asymptotics of the polynomials @), and ), 2, and the
limiting behavior of the recurrence coefficients a,,. In order to state these results, we

need to introduce the following polynomials:

ng(T) = ng(%>’ (182)
Pijoin () = W (183)
Pypio(7) = W (184)

P, o(1) := QHQ(\?’/F) (185)

The fact that P, and P, s are indeed polynomials is a consequence of Propositions
IV.1.1 and IV.1.3. Observe that the zeros of P, and P, > are contained in the interval
(0,a%) and (—b%, —a?), respectively.

Theorem IV.1.6. Assume that s; > 0 a.e. on [0,a] and s > 0 a.e. on [—b, —al.

Then for each i € {0,...,5}, the following limits hold:

lim P6k+i+1(2’)

— F® z z O[S
A () (2), € C\[0,a7], (186)
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. Portit 2(2) (1) 3 3
lim —————~ = F,(2), ze€C\ [-a’, =], 187
fim —pete s = BG) \| ] (187)

where convergence is uniform on compact subsets of the indicated regions . Moreover
(cf. (172)),
—c". for i €{0,1,3,4},
Jim agy+i = (188)
—C, for i e {2,5},

where
L+ /24 0(1/2%),  for i € {0,1,3,4},
A - 1

2+ CY +0(1)2), for i€ {2,5},

is the Laurent expansion at co of Fl(z) Consequently,

lim @orri1(2) 2FP(), zeC\ S, ie{0,1,34}, (190)
k—oo Qppti(2)

Qekti+1(2) ]511‘)(23)

lim , 2eC\ Sy, i€{2,5}, 191

k00 Qﬁk—i—z( ) 22 \ 0 { } ( )
Qﬁk—‘rz-l—l 2( ) i) .

lim = (%), ze€C\ Sy, i€{0,...,5}, (192)

k=00 Qgpyi2(2)

hold uniformly on compact subsets of the indicated regions.

As we remarked in the introduction of this thesis, the proof of the ratio asymptotic
behavior of the polynomials @),, and @), 2 relies on the application of results on ratio
and relative asymptotics of polynomials orthogonal with respect to varying measures
(see the discussion after Lemma IV.5.4). These auxiliary results from [6] allow us to
find a system of boundary value equations satisfied by the limiting functions ]51(1‘)’ fz(i)

(see Proposition IV.5.5). The existence of the limits (186)—(187) then follows by

LTf the degree of the numerator equals the degree of the denominator, then convergence is uniform
on compact subsets of C \ [0,a?] or C\ [-b3, —a?].
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proving that this system has a unique solution (Proposition IV.5.7). We do this by
applying the maximum and minimum principle for harmonic functions.

We also describe in Proposition IV.5.8 the ratio asymptotic behavior of the func-
tions of second type V,,, as well as the ratio asymptotic behavior of the polynomials
Pns Pn2 defined in (318) (these polynomials are “orthonormal versions” of the poly-
nomials P, P,» defined in (182)-(185), see Proposition IV.5.3) and their leading
coefficients.

Several relations can be established among the limiting functions Fl(i), ﬁQ(i), and the
limiting values of the recurrence coefficients (see also the boundary value properties
described in Proposition IV.5.5).

Let us define

a” = lim ag, 0<i<5.
k—o0

Proposition IV.1.7. The following relations among the functions ﬁ}(i) are valid:
() =2F"(z), ()= =F"(2), (193)

FORY = FORY,  FVRP = VP, FPRY = PR, (194)

1—]51(3)_@ 1—]51(4)_ﬁ 2—151(5)(2')_@ (195)
170 a0 0 a0 @) T o
BB, RO D, (196)

FORYD = EORY, YRR = FORD,  FPRY = FPRY. (107

Furthermore, the functions ]}1(2‘)’ i € {0,...,5}, are all distinct, and the functions
ﬁ;(i), i €{0,1,3,4}, are also distinct.

For every i € {0,...,5}, a®? > 0, and the following relations hold:

ONNC) a® = ®, a©® £ M =B 4 4@, (198)

9
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The following inequalities also hold:
a® £a® g £q® D@ g L@,

In fact, we will show that a® > oV, and therefore by (198) we also have a(®) > a3
(see Remark 1V.6.2).

From (172) we immediately deduce that the following relations also hold every-
where in C\ Sp:

~1(0)ﬁ11(1)(z _ le(Q)) _ a(?)’
FYF?(1 - FY) = a®

’

~1(2)ﬁ11(3)<1 N ﬁw1(4)> _ CL(4),
~1(3)F1(4)(Z . Fl(5)) _ a(5)’
RYFY(1- FY) = a?,

FORO(1 — FOY Z g

Theorem IV.1.6, Proposition IV.1.7, and other related results concerning ratio
asymptotics of the polynomials ), and @), 2, are proved in Section IV.5.

Table 1 below lists the computed values of the recurrence coefficients a,,,2 < n <
24, associated with the weights (171), while Table 2 lists the values of those coefficients

associated with the weights
s=1 on [0,5], ss=1 on [-10,—1].
Observe that these numerical computations are consistent with the limiting relations

(198).
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We remark that at least one of the following inequalities must hold:
a® £ M, a® £ a®, (199)

otherwise all the limiting values a( would be equal, which is impossible. However,

the numerical computations in Tables 1 and 2 suggest that both inequalities are true.

So far we have not been able to show this.
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Table 1: Table 2:

n . n G,

2 | 31.250000000000000 2 | 31.250000000000000
3 | 13.117294027817388 3 | 23.654726542657228
4 | 27.061277400754041 4 | 16.523844885914200
5 | 6.9566203276935465 5 | 17.731583489815896
6 | 32.092059220810601 6 | 26.357636064321322
7 1 1.2666533338178369 7 | 10.512172941164216
8 | 30.232554389281338 8 | 22.629265657982933
9 | 9.4134893772834573 9 | 21.483061273650794
10 | 23.491822238001053 10 | 14.316753958288949
11 | 7.8798482592518220 11 | 18.833016666617695
12 | 31.448198155175568 12 | 25.360935576606374
13 | 0.9977706208003094 13 | 9.8243828701623133
14 | 30.298124895839139 14 | 23.362195866879705
15 | 9.0993421406653429 15 | 21.014090866438814
16 | 23.195484548469524 16 | 13.857149443187150
17 | 8.1836828622050826 17 | 19.377667630986058
18 | 31.167379058897494 18 | 25.137061245771417
19 | 0.9455998438654098 19 | 9.4515850248265041
20 | 30.418396962231367 20 | 23.841100160945267
21 | 8.9595044331899466 21 | 20.743499158036020
22 | 23.098955251172832 22 | 13.712837073322134
23 | 8.3152993124024974 23 | 19.610502893814671
24 | 31.044243836574903 24 | 25.051985211064199




Tables 3 and 4 below correspond, respectively, to the following weights:

s;=1 on [0,5], ss=1 on [-30,—1],

s;=1 on [0,5], ss=1 on [-100,—1].

The values displayed in these tables not only support the conjecture (199), but they

also suggest that the following phenomenon holds: For a and « fixed,

a? —a® — 0, at) —a® — 0, as b — oo.
Table 3: Table 4:

n ay, n Q,

2 | 31.250000000000000 2 | 31.250000000000000
3 | 24.670637551289226 3 | 24.784783120101957
4 | 15.507933877282202 4 | 15.393788308469470
5 | 18.793727081605252 5 | 18.910289628010061
6 | 25.332457619748633 6 | 25.216064645109287
7 | 11.720413795766915 7 | 11.852299372605387
8 | 21.448846635763506 8 | 21.317094875233968
9 | 22.852085146053171 9 |22.996155578103468
10 | 12.993134749701883 10 | 12.849288733098089
11 | 20.256032419069617 11 | 20.406089364171059
12 | 24.028086798792512 12 | 23.878501626014072
13 | 11.312952488783849 13 | 11.473406396504589
14 | 21.928402064229323 14 | 21.768253422855603
15 | 22.645750831199066 15 | 22.816679053194818
16 | 12.297891655914007 16 | 12.127380906657459
17 | 21.039607970438863 17 | 21.215636103754317
18 | 23.613071919035916 18 | 23.437898677590793
19 | 11.112849968988774 19 | 11.296133040848717
20 | 22.255444662619830 20 | 22.072665551683782
21 | 22.538797503708382 21 | 22.731954796025644
22 | 12.007749160328618 22 | 11.815214776104113
23 | 21.420855813072539 23 | 21.618523134985741
24 | 23.413918309071074 24 | 23.217532805177368
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We next describe the limiting functions F j(i) in terms of the branches of a certain
compact Riemann surface of genus zero.

Let Ay := [0,03] and Ay := [-b* —a®]. Consider the three-sheeted compact
Riemann surface

R:R()URlURQ

formed by the consecutively “glued” sheets
Ro I:@\Al, Rl Z:@\<A1UA2), RQ ::@\A27 (200)

where the upper and lower banks of the cuts of two neighboring sheets are identified.
Since R has genus zero (it is not difficult to show that the normal form of this surface
is aa™!, see also [23, Section 1.2]), there exists a conformal representation ¢ of R onto
C such that

W(z) = Az + 0O(1), z— ooV, A#£0, (201)

V() = B/z4+0(1/2%), z—00?, B#0, (202)

i.e. the divisor of 1) consists of a simple pole at co® and a simple zero at co® (z(!)
denotes the point in the sheet [ that projects onto z € C). By Liouville’s theorem,
such conformal representation is uniquely determined up to a multiplicative constant.

We can certainly assume that the coefficient A in (201) is given by
A=—2/d% (203)

and so we will assume throughout that 1 satisfies the three properties (201)—(203).

Hence 9 is uniquely determined. Let

w = {w()a ?Pl, 1/}2}
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denote the branches of .
Finally, given an arbitrary function H(z) that has in a neighborhood of infinity a

Laurent expansion of the form H(z) = CzF + O(z%71), C # 0, k € Z, we denote

H:=HJC.

Theorem IV.1.8. The following representations are valid:

- ©0) _ 43 o) 4 - 0) _ 4
FO - Z))~ a . FO _ ( )1%7 FO() = 2(a® — a®) |
a vy — al®) ¢0 —all) a®o(z) — a®
o _ @0 —dD)dy e a® —alV ﬁ@@%zddm—d%&a@
! a©ey — a® ! Wby — aM’ ! ag(z) —a®
- _ 4@ (g(© b
FQ(O)(Z) _ FQ(Q)(Z) _ ( )Zwo(z) wZ(f) ’
() — a®wiehy (2 wz( )/wi”)(@O(2) — a®)
- _ (0)((0) _
o) =FY(z) = (Cz (a? —a >i;DO( ) ,
(e — a® o (2) s (2) i) (@O (2) — a®)
A _ a® — g
Va(a®edy — a) (v — (i = 1)/wt)’
o _ ] a® — g

(@3 — aM) (P — (W — 1) Jwi?)’
@

The constants w,’ are the reciprocals of the right-hand sides in the boundary value

equations (363)—(365). They can be written in terms of the limiting values a® as

follows:
1 1 a0 g
(0)
@ _ (6 _ a
YID T WL T 0 o 6)
L @ ww__am”—a@
LT @ OB
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Using Theorem 3.1 from [43], we can easily describe in the following result the
cubic algebraic equation whose solutions are the branches of the conformal mapping
1. The coefficients of this equation can be computed only in terms of the endpoints

of the intervals A; and A,.

Proposition IV.1.9. Let

207 205
A==, = 1, (204)

and let 3 and v be the unique solutions of the algebraic system

204+7B =By =B—7B=0By+B8+7)+ A —w(B—-7)°=0,
A+ ) (B=7)°=43B+ 7)1 =72+ 8+7)(2—-0-7),

satisfying the conditions —1 < v < 3 < 1. Then w = 1(z) is the solution of the cubic
equation

& TUTTTTHE)

+|: 4z i 2 +2+2h+®2—3®1:| . 2@1
a’H(3) ~ H(p) H(B)? H(B)?

(205)

w3+[22 3+h+@2—@1]w2

=0,

where

@12 @22

1l—2z 1472
(8—7)?

h=i@+7(%w—1_ﬁv)

H(z)=h+z+

1= {(1- (1~ d(1-A1-7),  Oy= (1 +a)(1+d)(1+5)(1+7)

¢ and d are the solutions of equation

(B —7)*

22+ (B+7) 4+ ot —3 =0,
B+ T3,

satisfying ¢ < —1,d > 1.
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The proofs of Theorem IV.1.8 and Proposition IV.1.9 are given in Section IV.6.
We now describe the main results obtained on nth root asymptotics and zero
asymptotic distribution for the polynomials (),, and @), ». First, we need to introduce

certain definitions.

Definition IV.1.10. Let i be a positive, finite, compactly supported measure in the
complex plane, where supp(u) contains infinitely many points. We say that p is

regular (in the sense of Stahl and Totik [59)) if

1
lim /4711/ N
=00 capg(supp(p))

where k, > 0 denotes the leading coefficient of the nth orthonormal polynomial asso-
ciated with p, and capy(supp(p)) indicates the logarithmic capacity of supp(u). The

class of reqular measures is denoted by Reg.

Given a compact set E2 C C, recall that M, (E) denotes the space of all probability
Borel measures supported on E (see (18)). If P is a polynomial of degree n, we indicate

by up the associated normalized zero counting measure, i.e.

where 4, is the Dirac measure with mass 1 at = (in the sum the zeros are repeated

according to their multiplicity). If p € M;(E), let

1
|2 =1

Vi(z) = [log — dp(t)

denote in this chapter the logarithmic potential associated with . Finally, recall that
if {pn} C M1(E) and p € M;(E), then the notation

[tn —— 1
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indicates the weak-star convergence of the sequence pu, to u, which means that for

every continuous function f on FE, the following holds:

Jm [ fdp, = [ fp

Let Ey, Ey be compact subsets of R, and let M = [¢;x].1 < j,k < 2 be a
real, positive definite, symmetric matrix of order two. Given a vector measure

w = (u1, po) € Mi(Ey) x My(FE3), we define the combined potential
2
W= "¢ VH, j=1,2,
k=1
and the constants

wit = inf{Wf(x) : 2 € Ej}, j=1,2.

In [49, Chapter 5], a more general version of the following result is proved. We

will make use of this result.

Lemma IV.1.11. Assume that the compact sets Ey, Ey are reqular with respect to
the Dirichlet problem, and let M = [cjx],1 < j,k < 2 be a real, positive definite,
symmetric matriz of order two. If c;, > 0 in case E; N Ey # 0, then there exists a
unique vector measure & = (fiy, fiy) € My(Ey) x My(FE2) such that

Wi =uwf,  zesuwp(m), j=12

The matrix M is called the interaction matriz, @ is called the vector equilibrium
measure determined by the matrix M on the system of compact sets (E, Es), and
wh W are called the equilibrium constants.

Let \; be the positive, rotationally invariant measure on Sy whose restriction to
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the interval [0, a] coincides with the measure s;(z) dx, and let Ay be the positive, ro-
tationally invariant measure on S; whose restriction to the interval [—b, —a| coincides
with the measure sy(x) dx.

The zero asymptotic distribution and nth root asymptotics of the polynomials P,

and P, 2 can be described as follows:

Theorem IV.1.12. Assume that the measures Ay and Ay are in the class Reg, and

suppose that supp(A1) and supp(Aa) are regular for the Dirichlet problem. Then

wp, — i, € Mi(Ay), A = [0,0?], (206)

pp,, — Ty € Mi(Dy), Ay =[-b°,—d?], (207)

where @ = (fi;, fiy) s the vector equilibrium measure determined by the interaction

matriz
1 -1/4
(208)
—1/4 1/4
on the system of intervals (Aq, As). Therefore,
Tim | Py (2)| /03 = V), (209)
uniformly on compact subsets of C\ Ay, and
lim [P 5(z)[/10) = V0, (210)
uniformly on compact subsets of C\ Ay. Moreover,
al 1/4k &
klim (/ Pgori (1) dV6k+j(T)> =e 1, forall j=0,...,5, (211)
—00 0
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1/2k —
lim (/ Pékm ) dVei42(T )) —e ™ forall j=0,...,5 (212

k—o0
where (wlﬁ, wg) 18 the corresponding vector of equilibrium constants, and the varying

measures dvg4; and dverijo are defined in (320) below.
The next result follows immediately from the previous theorem.

Corollary IV.1.13. Under the same assumptions of Theorem 1V.1.12, let @ =
(i, iy) be the vector equilibrium measure determined by the interaction matriz (208)
on the system of intervals [0,a?],[<b%, —a®], and let (¥, wh) be the corresponding

vector of equilibrium constants. Consider the probability measures ¥, € My([0, a])

and 9y € My([—b, —al]), defined as follows:

9 (F) :=n,(E?), E C|0,q],

=

9o(E) =Ty (E?), E C [-b, —a],

where E® = {2® : x € E}. If we denote by Zg, the set of all roots of Q, on (0,a),

and by Zg, , the set of all roots of Q2 on (—b,—a), then

DS

n :I:EZQn

The limits

lm [Q,(2)]"/" = e 3V (), zeC\ S,

n—oo

lim |Qua(2)|" =60, zeC\ 8,
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hold uniformly on compact subsets of the indicated regions. Finally, we have

o £) 1/k -
lim ( 2 () 51 dt) — e
gl /0 QSk( ) Q3k,2<t>

| sl N
lim </ dt> =e 1
k—oo QSkH Q3kt1,2(1)

. () >1/k_ —leﬁ
;}E&(/ Qiiralt thng()dt =¢ 5

. —a thgk(t>’ 1/k LB
lim ( 2t | So(t dt) = e 4w
Pl b Q3k,2( ) ‘ng(t)‘ 2( )

s |haa (8)] Ve
lim ( Q> t dt) =e "2,
oo b 3k+1,2< ) |Q k+1(t)| ( )

: - £ harr2 (1)) Yk o E
lim ( Q> t t dt) =e 2
ALy G0 g, Ly 20

where the functions hy, are defined in (319) (see also (321)-(323)).

The following proposition provides a link between the results on ratio and nth

root asymptotics.

Proposition IV.1.14. Under the same assumptions of Theorem IV.1.6, the following

relations hold:

1 5
V(2 ) Zlog |Fll) |, zeC\[0,a%, (213)
i=0
V() = —SloglEOG), 2 e C\ -~ (214)
=0

where (Tiy, fiy) is the vector equilibrium measure determined by the interaction matriz

208) on the system of intervals [0, 3], [—b3, —a?].
( ) y ) 7 )

Theorem IV.1.12, Corollary IV.1.13, Proposition IV.1.14, and other related results

are proved in Section IV.7.
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IV.2 The polynomials @),

Let
2
2

k=0

We may assume that so(z) = 0 for all z € (—o0,0]\ [-b, —

through the symmetry property

27i 4mi

so(e3t) =es so(t), te .
Proposition I1V.2.1. The following holds:
f2) =3 =L d
z) = T
3 /s t - z E} 72/3 ’

U (—o0, 0] exp(2mik/3).

(215)

al, and we extend sy to ¥

(216)

zeC\ 5. (217)

Therefore f(z2)/2? is the Cauchy transform in z3 of a weight supported on [—b3, —a?].

Proof. Let

R; = {e%ia: cx € [a, b}, Rp:=[-b,—al, R

be the three rays forming the set S, and let v;(¢) = e5t,

t e

Sg(t)

b .
J = [
R t— 2z a
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Yir(t) = —t, yir(t) = e t,

[a, b] be the parametrizations of Ry, Ry, and Ry, respectively. We have



Therefore

/532(25) dt:/j( -1 N -1 n -1 )82(—t)dt. (218)

1T [%s
=z —t—2z est—z e s3t—2z

The decomposition of 1/(t3 4 23) in simple fractions is given by

1 1 —1 —1 —1
e + — + — . 219
3 + 23 322<—t—2 et — 2 elzwt—z> (219)

From (218) and (219) we obtain

1 t b —t —a t
_ 82( ) dt = 22 82( ) dt = 22/ 82( ) dt
3Js,t— 2z a 3+ 23 b 23 —¢3

The second equality in (217) follows after a simple change of variable. O

Proposition IV.2.2. The functions V,, satisfy the following orthogonality conditions:

0= [ t"Wy,(t)sat)dt, v=0,...,n—1, (220)
St

0= ¥ \Ijgn+1(t> Sg(t) dt, V= 0,...771— 1, (221)
S1

where Sy is the starlike set (178).
Proof. We prove (220). The proof of (221) is identical. If 0 < v < n — 1, applying

Fubini’s theorem we have

QZn(x)
VW, (t t)dt = tYso(t
s on (1) 52(t) s, 52()30 1

s1(z) dx dt

tr —a¥ + ¥

r—1

= [, Qu@)s1(@) /S 1 s(t) dt
= -/So Qon(x) py(x) s1(x) de — 3 /So Qon(x) 2" f(2) s1(x) dz,

where p, is a polynomial of degree at most n — 2. Using (168), (220) follows. O
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Proposition IV.2.3. Let Q,, be the monic polynomial of smallest degree satisfying

the conditions (167)—(170). If d,, := deg @, then

2me 2midn,

Qn(eTZ> =€ 3 Qn(z)a

and

(222)

(223)

In particular, all the coefficients of Q,, are real. Furthermore, for each 0 < k <n-—1,

0— / £5 Qo () (1 4 e27i0Hdn)/3 | Amith+dan)[3) o (4 gt
0

0= /O thZn(t)(l + 627ri(k+2+d2n)/3 + 647ri(k+2+d2n)/3) Sl(t)f(t) dt.

Similarly, for each 0 < k <mn,

0=/ " Qo (1) (1 4 e2mib+danin) /3 | tmilhrdani)/3) (4 g,
0

and for 0 <k <n—1,

0= /a th2n+1 (t)(l + 627ri(k+2+d2n+1)/3 + e4m’(k+2+d2n+1)/3> s (t) f(t) dt.
0

(224)

(225)

(226)

(227)

Proof. If we define P,(t) := Q,(e5't) and perform the substitution z = e3't, we

obtain for any integer k > 0,

/S Pyt Wo(tydt = | Qe 1) tF sy (t) dt

4mi 4mi 2mik

:/ e 5 gt Qn(z)si(e3x)esdr=e 3
So
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and similarly

_ 2mik 4mi 47i 47i

/SOPn(t)tkwl(t)dt:/ e 3 2" Qu(x)f(es x)s1(e3 x)e s do

So

_ /SO 2 Qn(z) f(x) s1(x) d.

It follows that ), and P, satisfy the same orthogonality conditions. Since they have
the same degree,

2midn,

Pn/e 3 :Qna

hence (222) holds.

Using the fact that s; and f are real-valued on (0, ) (see (217)), we get

4ri 27

si(es t) =si(et), te(0,q),

2mi

si(eFt) f(eFt) = s1(eF ) feFt),  te(0,a).

Applying these relations it is immediate to see that

/SOQn(t)tk s1(t) dt = /so Q. (1) tF s4(t) dt,

/SO On@) 1" F() s1(t) dt = /S Qu () % £(£) 51(t) dt.

Consequently @, (f) and @, (t) are monic polynomials with the same degree and sat-
isfying the same orthogonality relations, so (223) holds.
If we write the orthogonality relations (168) in terms of the interval [0, o, we get

for0<k<n-—1andje{0,1},

0= /S t*Qan (1)W;(t) dt
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= [ tQutWit)dt+ [ e QT W () e F
0 0

4mi

+/ e 5 tF Qo (e T W, (e 5 t) €5 dt.
0

4mi

Since Wo(e5't) = €3 Wo(t) and Wi(e5't) = ¢35 Wy (t), using (222) we obtain (224)

and (225). The proofs of (226) and (227) are analogous. O

Lemma IV.2.4. Assume that m > 1 is an integer, and let P, Py be polynomials,

not both identically equal to zero. If Py and P, have degree at most m — 1, then the

functions
Hi(t) == Pi(t) + P(t)VEF(VD) (228)
Ha(t) := Py(t)t + Po(t) V1 f(V) (229)

have at most 2m — 1 zeros on (0,00), counting multiplicities. Similarly, if P; has
degree at most m and Py has degree at most m — 1, then Hy and Hy have at most 2m
zeros on (0,00). If Py has degree at most m — 1 and P, has degree at most m, then

H, and Hs also have at most 2m zeros on (0,00).

Proof. Let o be a finite positive measure with compact support supp(c) C R, and let

o denote its Cauchy transform, i.e.

5(2) = / do(x)

z—x

Lemma 5 in [27] asserts that the system {1,5} forms an AT system on any closed
interval A C R disjoint from Co(supp(c)) (Co(A) denotes the convex hull of A). This
means that for any multi-index (ny,n2) € Z% and any pair of polynomials 7y, 7o with

degm < n; —1, degmy < ny — 1, not both identically equal to zero, the function

7T1+7Tga'
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has at most ny; + ny — 1 zeros on A, counting multiplicities. By Proposition 1V.2.1

we have:

) = (P + 20 [ 20T Ay

3 p t—1 723
so all the assertions concerning H, are valid.

Assume that there exist polynomials P;, P, of degree at most m — 1, not both
identically equal to zero, such that the function H; in (228) has at least 2m zeros on
(0, 00), counting multiplicities. If P, = 0 then we immediately reach a contradiction.
So we assume that P, # 0. Pick 2m of these zeros and form a monic polynomial
T5,, of degree 2m that vanishes at these points. The function H; can be analytically

extended onto C \ [—b?, —a?®], and in this region we have

Hi(z)  Pi(z) | zPy(z) [~ s(YT) dr
Tom(2)  Tom(2) + 3Ty (2) /_b3 o _ 1 12/3°

Observe that

Tom(2)

H(z) O( 1

= zm+1>’ z — Q.

Let T’ be a simple closed curve surrounding [—b%, —a?], so that the zeros of Ty, lie
outside this curve. By Cauchy’s theorem, Fubini’s theorem and Cauchy integral

formula, for any 0 < v < m — 1 we have

H 1 - P 3
Ay Y TC RS T L
r Ton(2) 3 /w3 Top (T) T2/3
and this contradicts the fact that deg P, < m — 1. Using the same argument one
proves the case deg P, < m,deg P, < m — 1.
In the remaining case we also use this argument by contradiction, but now we also

divide H; by &, where

so(3/7)
dU(T) = 2 3 7_2/3 ,
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and use the fact that

= 1(2) + fil2), (230)

where [(z) is a polynomial of degree one and i is a measure of constant sign supported

on [—b%, —a?]. A proof of (230) can be found in the appendix of [34]. O
Proof of Proposition IV.1.1. Assume first that n = 31 and dy,, = 3j. Then (224)
and (225) are equivalent to the following conditions:

/a 3 Qo (t) 51(t) dt = 0, 0<k<I-—1, (231)
0

/Oa ¥ Qo ()t f(t)s1(t)dt =0, 0<k<I-1. (232)

From (222) and the fact that do, = 3j, we deduce that
QQn(t) = Qg + as t3 + .+ a3j t3j,

50 Qan(t) = Qan(t?) for some polynomial Qy,. Therefore (231) and (232) can be

rewritten as follows:

o L d
| Qs (97 5 =0, 0<k<i-1, (233)
0 T

[ @ VIR (97 S =0, 0sksi-L @0

Suppose that the polynomial @Qn has N < 21 sign changes on the interval (0, a?).
Let P, and P, be two polynomials of degree at most [ — 1, not both identically zero
and with real coefficients, such that the function Hy(t) = Pi(t) + Py(t)v/t f(3/t) has
a zero at each point where @gn changes sign on (0, ?), and a zero of order 21 —1— N
at o®. Finding P, and P; is equivalent to solving a homogeneous linear system with

21— 1 equations and 2/ unknowns, therefore a non-trivial solution exists. By Lemma

117



IV.2.4, the function H; has no zeros on (0, @] other than the 27— 1 prescribed. Using

(233) and (234) we have

a3

[ H) @) s2(97) 7 =0

But this contradicts the fact that H; @gn is real-valued and has constant sign on
[0, ®]. By applying (222) we conclude that Q,, has exactly 2n simple zeros on Sy,
2n/3 of them are located on (0,«) and the rest are obtained rotating the zeros on
(0, @) by angles of 27 /3 and 47/3.

Suppose now that n = 3l and ds, = 37 + 1. We want to reach a contradiction.

From (224) and (225) we have
0= / 200, (t) s1 () dt,  0<k<I—1,
0

0= /Oa ¥ Qo (t) f(t) s1(t)dt, 0<k<I—1.

The symmetry property (222) and ds, = 3j + 1 imply that @2, has the form
Q2n<t> =bit + b4t4 4+ .. 4 b3j+1t3j+1,

S0 Qan(t) =t Qon (t3) for some polynomial Qo of degree j. Consequently, Qs,, satisfies

the orthogonality conditions

dr

0{3 ~
0= [ PQunTs(¥7) 55 0<k<i-1, (235)
0 T

0= [ PAnn) IS G 0sksi-L (@3

The polynomial Qs,, has N < j sign changes on (0, ). Notice that

1
Ao =3j+1<2n=61=j+5<2l= <201
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We can find polynomials P, and P, of degree at most [ — 1 with real coefficients, not
both identically zero, such that the function Hy(t) = Pi(t)t + Py(t)/t f(¥/t) has a
zero at each point where @gn changes sign on (0, a®) and has a zero of order 2/ —1— N
at a®. By Lemma IV.2.4, the function Hy has no zeros on (0, 3] other than the 27 —1

prescribed. From (235) and (236) we obtain

:/00‘ HQ(T) @271(7—) 81(\3/;) 75d27/—37

but this contradicts the fact that @Qn is non-zero and the function Hs @gn is real-
valued and has constant sign on [0, @3]. This contradiction shows that da, = 35 + 1
is impossible if n is a multiple of 3.
If we assume that n = 31 and ds, = 37 + 2, then (224) and (225) are equivalent
to
0= at?”f“QQn(t) si(t)dt, 0<k<Il-—1,
0= /a R 2Q0, (1) f(t) s1(t)dt,  0<k<I—1.

0

In this case, there exists a polynomial @Qn of degree j such that Qs, = tzégn(t?’) and

one obtains the orthogonality conditions
ad -
0= / T5Qon(7) 81 (Y7) Y7 dr,  0<k<i—1, (237)
0

0= /0a3 ™ Qun(T) VT F(/T) 51(N/7) VTdr,  0<k<I-1. (238)

The polynomial Qs,, has N < j sign changes on (0, ), and
. .2 .
dgn:3]+2§2n:6l:>]—|—§§2l:>j§2l—1.

Taking as a basis measure s;(/7) /7 dr and using that the function (228) has at

most 27 — 1 zeros on (0, a?] if the polynomial coefficients have degree at most [ — 1,
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we get a contradiction.

Let n = 31+ 1 and assume that dy, = 35 + 2. We will show that dy, = 2n. In
this situation (237) and (238) are valid again. If we assume that the polynomial Qy,
has N < 21 sign changes on the interval (0,a?), then we obtain a contradiction as
before.

If n=3141 and ds, = 37, then
/ ¥ Qon(t) s1(t)dt =0,  0< k<,
0

/Oa 3R Qy, (1) £(t) 51(t) dt = 0, 0<k<Il-1.

Therefore
a? ~ dr
| Qun) s S5 =0 0<k<t
o’ ~ dr
| Qun) VD (YD) 55 =0, 0<k<i-1,
0 T
Since

. . 2 4
dgn:3]§2n:61+2:>j§2l—|—§:>]§2l,

applying Lemma IV.2.4 we get a contradiction.

If n=3l+1 and ds, = 37 + 1, then

So
Oz/oangégn(T)Tsl(%)TdZ%, 0<k<I-1, (239)
o kA dr
0= [ ™Qu(n) V7 FID 8(V7) 55, 0<k<L, (240)
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and using Lemma IV.2.4 and
. . 1 .
dgn:3j+1§2n:6l+2:>j§2l+§:>]§2l,

we get a contradiction.

Let n = 3l 4+ 2 and assume that dy, = 37 + 1. We want to show that ds, = 2n. In

this case the relations (239) and (240) hold. If we assume that Q,, has N < 21+ 1

sign changes on the interval (0, a?), then we obtain a contradiction.

Let n = 3l + 2 and assume that dy, = 3j. Then the relations (233) and (234)

are both valid for 0 < k£ < [. From d, < 2n we deduce that j < 27+ 1. Applying

Lemma IV.2.4 we reach a contradiction.

Let n = 3] + 2 and assume that dy, = 35 + 2. Then (237) is valid for 0 < k <]

and (238) holds. The inequality dg, < 2n implies that j < 2[, so Lemma IV.2.4 gives

a contradiction.

The analysis for the polynomials Q5,1 is similar.

Corollary IV.2.5. The polynomials @),, and the functions V,, satisfy

27 2min

@Qn(e™ 2) = €73 Qu(2),

27

U, (e 2) = e 5 1Y, (2),

for allm > 0.

Proof. (241) follows from (222) and d,, = n. Now,

4mi

est—z

\Ifn(e%iz) _ Qn(t) s1(t) dt:/s e Qn(t) s1(1) dt

So t—e3 2

4mi 4mi

=e
So est—z
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Remark IV.2.6. The following example shows that the linear independence of two
positive Borel measures supported on an interval is not sufficient to guarantee that
the degrees of the associated multiple orthogonal polynomials are mazximal. If we take

the measures
du(x) = dz, dps(z) = (202° — 302% + 122) dx, x € [0,1],
then the polynomial P(x) = x — 1/2 satisfies

0= [ P@)dm() = [ Pla)dus(a)

but P is not of degree two.

A similar ezample can be constructed on a starlike set. If we let

1 if  tel0,1],

ml(t) =14 e3 if t e {e%x T E (O, 1]}7

e if te{eFa:ixe(0,1]}

and define
ma(t) := 10 — 9¢, t €[0,1],

2me 2mi

mo(es t) :=e3 (10 — 9t), t € (0,1],

4mi 4mi
3

mo(e s t) :==es (10 — 9¢), t € (0,1],
then my and moy satisfy

2mi 4w

my(est) =e s my(t), t e Sy\ {0},
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2mi 2mi

mo(e s t) = e’ 3 mao(t), t e Sy\ {0},

where Sy := U2_,[0, 1] exp(2mik/3). For the polynomial P(t) = t* — 1/4 we have
/~ P(t)t! mi(t)dt =0,  j=0,1,
So

/~ P(t)t my(t) dt = 0, j=0,1,
So
but deg P < 4.
Lemma IV.2.7. For any integer k > 0, the following holds:
/S 35 (t) dt = 3/a 35, (1) dt, /S t3RFLF(t) s, (1) dt = 3/a t3RFLF(t) s1(1) dt,
0 0 0 0
(243)

3+ 5 () dt = 0, 325, (t) dt = 0. (244)
So SO

Proof. Making use of (162),
t3k t)dt = / ) dt+/ s (e t) e S dt+ | tFsi(e5t) e dt

=3[ t*s(t)dt,

and similarly we get the other equality in (243). We have
/ 35 5 (8) dt = / P s ()1 +eF +eF)dt =0,
So 0

t3k+2 t)dt = / B2 () (14 eF +e5)dt =0.
[
Proof of Proposition IV.1.2. We first show that Q,(2) = 2z and Q(z) = 2°. Let

us write Q1(2) = z+¢; and Qa(2) = 2%+ 22+ c3. Note that the integrals in (243) are
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non-zero because $;(x)dx is non-trivial and f > 0 on (0, «). Using (243) and (244)

we have

0= /S Q1(t) s () dt = ¢, = 0,

0= o Qg(t) 81<t> dt = c3 = 0,

0= /S Qs(1) f(1) s1(t) dt = ¢5 = 0.

If n > 1 and we write

2Q2n = Qaont1 + b2nQopn + bay1Q2n—1 + bop_2Q2n—2 + - - - + b1Q1 + b Qo,

let us show that

and

b2n = b2n—1 = 0.

(245)

(246)

(247)

We first prove (246) by induction. If n = 1 then there is nothing to prove. So we

assume here that n > 2. If we integrate (245) with respect to s;(t) dt, the integral

on the left-hand side vanishes and on the right-hand side all integrals except the last

one also vanish, hence

Ozbo/ 81<t):>b020.
So

To show that b; = 0 we now integrate (245) with respect to f(t) s;(t) dt. Again the

integral on the left-hand side vanishes and on the right-hand side all integrals vanish

except

[ @ 1@y di = /S tF(1) si(t) dt #0,
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and it follows that b; = 0. We assume now that
O0=0by=0br="--=boyp =bopy1 =0

for some k < n — 3, and let us prove that boxio = bopyrs = 0. We multiply (245) by

21 and apply the induction hypothesis to obtain

ZHZQ% = Zk+1Q2n+1 + bznZkHan + -+ b2k+3zk+1Q2k+3 + b2k+22k+1Q2k+2' (248)

Observe that
/S 1 Qapaa(t) s1(t) dt # 0
0

because otherwise (o2 and (QQopr3 would satisfy the same orthogonality relations,
implying that these polynomials are equal, which is impossible. In addition, by (168)

and (169) we know that

E+2<n—1= [ t"2Qq,(t) s (t)dt =0,
So

E+1<i—1= [ #91Qy@)si(t)dt =0,
0
k+1 < j = /5’ tk+1Q2j+1(t) 81<t> dt = 0,
0
and so

/S " Qopgs(t) s1(t) dt = - -+ = s 1 Qo (1) s1(t) dt = 0,
0 0

therefore bogio = 0.

To show that bogy3 = 0 we now integrate (248) with respect to f(t) s1(t) dt. Now,

/S P Qop (1) F(£) s1(t) dt # 0,
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because otherwise QQor13 and Qory4 satisfy the same orthogonality conditions, which

is impossible by the maximality of the degrees. Since

k+2<n—1= . tF2Qan (1) f(t) s1(t) dt = 0,

E+1<j—1= [ #9105 ) si(t)dt = 0,
k+1<j-1= /s Qa1 (1) f(2) s1(t) dt = 0,

implying that boy3 = 0.
Now we justify (247). Suppose that 2n = 3m + [, where [ € {0,1,2}. Then we
know by (241) that

Qan(t) = t'Qan(t),

where @, is a monic polynomial of degree exactly m, and

Q2n+1 (t) - tl+1@2n+1 (t) )

where @2n+1 is also a monic polynomial of degree exactly m. Therefore the polynomial
tQon(t) — Q2n11(t) has degree at most 2n — 2. This implies (247).

Similarly one shows that for all n > 1,

2Qon+1 = Qant2 + aonr1Q2n-1, aznt1 € R.

This completes the proof of (172).

Since

/SO t"Qaon(t)s1(t)dt = /SO " Qony1 (t)s1 (1) dt + agy, /SO " Qon_o(t)s1 (1) dL,
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and the first integral in the right-hand side vanishes, we get

P Js, 1" Qan(t)s1(t)dt
" fSO tn_lQQn—2(t)81<t)dt'

We know by (224) that for every n,

[ Qu()s ()t =3 /0 Qo (t)51 (),

since dy, = 2n. This shows (174), and similarly one proves (175).

The positivity of the recurrence coefficients is proved later in Proposition 1V.3.8.

IV.3 The second type functions ¥, and associated polyno-

mials (), 2

Proposition IV.3.1. The following formula holds:

2min 4min

1 e 3 e 3

mn(z)z/:( I )Qn(t)sl(t)dt, 2 ¢ S,

tl—2z2 e3t—z est—z

In particular, for z ¢ Sy and any integer k > 0,

Wy (2) = 327 * Qui(t) 51(t) / P Qa(VT 7_23 s1(Y/T) dr

0o 13— z3 T2/3’

Wy (2 _3/at Qsr+1(1) / ? Qae1 (V1) 51(3/7) dr

t3—z3 T — 23

Y

atQ3k+2()51 di — / Q3I<:+2(\3/F) (\S/F) dr

T — 23 T1/3°

Uskia(z) = 32/

0 13 —

Proof. By definition,
Q) (1)

So t— 2

U, (2) = t
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4w

= [ @00 | QulTANCTD e, BTN 5]

est—z est—z

Applying the symmetry properties (162) and (241), we obtain (249). The formulas
(250)—(252) follow immediately from (249). O

Proposition IV.3.2. For any integer | > 0, the following orthogonality conditions

hold:
ao? d
0= [ ™ QuT) (YD) 55 0<k<i-1 (253)
0 T
OCS
0= [ QualvR s¥Tdr, 0sksi-1 (254)
0
a? . 5 5 dr
0:/0 T Q61+2(\/F)51(\/F)m7 O0<k<i-1, (255)
a? dr
O:/o TkQ61+3(\3/F)31(\3/F)m7 O0<k<l, (256)
063
0= [ QuuaR) s (VP dr, 0<k<I-1 (257)
0
o’ dr
():/O ™ Qei15(V7) 81(%)m, O<k<l (258)

Proof. 1t follows from Proposition 1V.2.3 and (241) that for any integer n > 0, the

following orthogonality properties hold:
0= / 17 Qon(t) (1 4 > UFT2/3 L AmiGH2Ey o () dt, 0<j<n—1, (259)
0

0= / t7 Qongr (t) (1 + U2 HD/3 o AmiGHAD/3) o (1) dt,  0<j <n. (260)
0

Taking n = 3l in (259) and (260) we obtain
0= / 9 Qat) (1 + 2™/ 4 M3 g () dt,  0<j<3l—1,
0

0= / 7 Qe (t) (1 + 20D L AmGHDBY g (1) dt, 0<j <3l
0
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Hence

0= /Oa 3% Qe (t) s1(t) dt,

ozz/ﬂt”*sz+ﬂﬂsla)da
0

0<k<l—1,

0<k<i-1,

and (253)—(254) follow after applying the transformation 7 = ¢3. Similarly, replacing

n by 3l + 1 and 3] + 2 in (259)—(260), we get

0:/'ﬂQMM@ﬂl+¥“W”“+6“W*W%sﬂwﬁ,

0

0= / # Qeres (£) (1 + e2T0HD/3 L AiH2/3) o (1 g
0

which imply (255)—(258).

Corollary 1V.3.3. The following holds:

0= / 4 Qura(t) (1 + 2mi(i+2)/3 | e4m'(j+2)/3) s1(t) dt,
0

0= [ ¥ Qaaslt) (1 + € 4 =97 51 (1)
0

z — 00,

Z — 00,

z — OQ.

0<j<3L

0<j<3l+1,

0<j<3l+1,

0<j<3l+2,

(261)

(262)
(263)
(264)
(265)

(266)

Proof. By (177) we know that Wy, (2) = O(1/2"""), which implies (261), (263), and

(265). We can improve the estimate Wo,,1(z) = O(1/2z""?) given in (177). If we
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define the functions

Corn (2 / ? Qo (VT — s1(v/7) dr,
Q6l+3 (\/_) dr

G61+3 / 5 7_2/3 )
* Qo5 (V7) 51(Y/1) dr

G6l+5 / r— 2 1/3 )

it follows from Proposition 1V.3.2 that
Ger1(2) = O(1/21h), z — 00,

Gerya(2) = O(1/212), zZ — 00,
Gerys(z) = O(1/2112), z — 00,

therefore

Vei1(2) = Gan (2°) = 0(1/2°FF), 2 — oo,
Werps(2) = 22 Ggps(23) = O(1/231H4), z — 00,
Weris(2) = 2 Geps(2®) = O(1/2%75), Z — 00.
O

It is convenient to rewrite the orthogonality conditions obtained in Proposition

IV.2.2 in terms of the interval (—b, —a).

Proposition 1V.3.4. The functions V,, satisfy:

0:/7 W (t) (145 4D L o5 WDy oo (@t »=0,...,n—1, (267)
—b

0:/_ Y Wopr (1) (145 U7 45 My got)dt, v =0,...,n—1. (268)
—b
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In particular, for any integer | > 0,

7013 d
0=/, ™Vl a7 55 0<k<I-L,

—a’ dr
OI/_b3 Tk‘%lﬂ(%)&(%)m; 0<k<Ii-1,

3

0= /_ T Uera(T) so(IT) dr,  0<k<I—1,
—b

- dr
_ k
0= /_b3 T Wer3(V/T) 32(\3’/?)m, 0<k<l—1,

—a’ dr
02/4)3 TkW61+4(%)52(%)%, 0<k<lI,

3

0= /7 T s (VT) s2(YT)dr,  0<k<l—1,
b

Proof. By (220), for v =0,...,n — 1,

b . s e
0= [ t"Wyn(t)so(t)dt = / ™I, (e ) sy(e t) dt
S1 a

5mi

b b . s’
[ () sa(—t)dt 4+ [T (1) sy )

By (242) and (216) we have

\Ilgn(e%it) _ 6747ri(1+4n)/3\p2n(_t>, \Ijzn(e%ﬂ _ ewii(1+4n)/3\I,2n(_t>’

27 5 4ri

52(@%” = 6752(—t>, SQ(@Tt) = 6782(—15),

and (267) follows. The proof of (268) is similar and is left to the reader.

orthogonality conditions (269)-(274) follow immediately from (267)-(268).

As a consequence of (269)—(274) we obtain

(269)

(270)

(271)

(272)

(273)

(274)

The

Corollary IV.3.5. For each j € {0,1,2,3,5}, the function W ; has at least | sign

changes in the interval (—b, —a), and the function Vg4 has at least [+1 sign changes
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in the interval (—b, —a). Therefore the functions Wy ;,j € {0,1,2,3,5} have at least
3l zeros, counting multiplicities, in C\ Sy, and Ve 14 has at least 3l+3 zeros, counting

multiplicities, in C\ Sp.

Observe that the function W,, satisfies the property
U, (z) =—-V,(z2), z € C\ Sp,

hence, z is a zero of V¥, if and only if Z is a zero of V,,.
Let 7 € {0,1,2,3,5} and assume that zy,...,2; are [ distinct zeros of Wgy; in

(—00,0). Then the points

27 2mi 4mi 4w

€3 Ty,...,63 2,3 Ty,...,€3 2

are also zeros of g1 ;. Since

(z —z)(z — e%x)(z - e%x) = 2% — 18,

we have that

l

! .
= H(z — xp) H(z—e%xk H z — 643”510;C

k=1 k=1 k=1

is a polynomial in 2z with real coefficients. Assume further that ¥e; has more than
3l zeros in C \ Sy, counting multiplicities. Then there exists a point zg € C\ Sy such

that the polynomial

27 4mi

Ry(z) :=Ri(2)(z — 20)(z — €73 29) (2 — € 5 2)
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satisfies

U, _
Z8H ¢ H(T\ S).
R,

If zy € R then Ry is also a polynomial in z® with real coefficients. If zyp ¢ R then R

does not have real coefficients, but the polynomial

27i 47 27 4mi

Rs3(2) .= Ri(2)(z —20)(z —e3 20)(z — €3 z9)(z —Zp) (2 — €3 Zp) (2 — €73 Zp)
is a polynomial in z® with real coefficients such that

U, _
Z8H ¢ H(T\ S).
Ry

In any case, if we assume that Ug,;, 5 € {0,1,2,3,5}, has more than 3/ zeros in C\ S,
counting multiplicities, then we can find a polynomial Rg.; with real coefficients and

degree at least 3l 4 3 satisfying

27i 4mi

Rei+j(2) = Rej(e3 2) = Reiyj(e? 2), z € C, (275)
Wi j =
Yoiti ¢ HT\ S). (276)
6l-+j

Similarly, if we assume that Wg 4 has more than 3/ + 3 zeros in C \ Sy, counting
multiplicities, then there exists a polynomial Rg.4 with real coefficients and degree

at least 3] + 6 such that

27 4mi

R6l+4(z) = R6l+4(€TZ) = R61+4(GTZ’>, z € (C, (277)
Wei44 =
€ H(T\ Sy). (278)
6144

Proof of Proposition IV.1.3. Suppose that Wg has more than 3l zeros in C \ S,

counting multiplicities. Let Rg be a polynomial with real coefficients and degree at
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least 31 + 3 satisfying (275) and (276). By (261) we have

\If&(z)_ ( 1 )
Ru(z)  O\wmi) P

Let T" be a positively oriented, smooth Jordan curve surrounding Sy such that the
zeros of Rg lie in the unbounded component of C\ I'. By Cauchy’s theorem, formula

(249), Fubini’s theorem, and Cauchy’s integral formula, for v = 0,...,60 + 2,

t—z est—z es3t—z

zv 1 o 1 1 1
- 2mi ' , dt d
/F R (2) 2mi /o < T + —im >Q61(t) si(t)dtdz

2miv/3 dmiv/3

B /at”{ 1 N e n e
o LRa(t) Rg(es't) Rg(es't)

] Qai(t) 51 (t) dt,

and applying (275) we obtain

a . . ¢
0= / 1+ v emiv) o) S >) dt,  0<v<6l+2,
0

which implies

«a t)
oz/ #0a) 2w o<k<al
; Qei(1) Ro(t) <k<

As a consequence, Qg has at least 21 4+ 1 sign changes in (0, «), which contradicts
Proposition IV.1.1. This proves the claim in the case n = 6/. In the remaining cases
we use the same argument. Indeed, we can select polynomials Rg1j, 1 < j <5 (recall

that Rg4 has degree at least 61 + 4) satisfying (275)—(278) and such that

Werr1(2) ( 1 )

Yol _ g

Reia(2) 6146 ) z2— X%,
Uea(z) ( 1 )

Roipa(2) 0 L6145 ) z =0,
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Ueii3(2) ( 1 )

=0
Reres(2) L6117 ) Z = 00,
Uerra(2) ( 1 >

=0
Rea(2) 649 )’ z =%,
Ueii5(2) ( 1 )

_ o |
Reren(2) L6148 ) £ X0

The orthogonality conditions that we obtain for the polynomials Qg y;,1 < j <5,

are
a t)
0= / §3h+2 i dt.  0<k<2l
; Qo141 (%) Ros (0 <k<
o:/at%ﬂ s1(t) dt.  0<k<2l,
[ Quaalt) s <k<

oz/atSkQ6l+3() s1(t) dt, 0<k<2+1,
0

R61+3( )
oz/aﬁk+2 9y o<k<aal,
0 Q6l+4( ) Rﬁz+4(t) Sk 20+
0=/at3’“+1 t s1(t) dt, 0<k<20+1,
: Qei45(t) 5— = Roa() <k<2+

and they contradict the number of simple zeros that the polynomials Qg4j,1 < j <5,
on the interval (0, «) (see Proposition IV.1.1). O
Recall that (), » denotes the monic polynomial whose zeros coincide with the zeros

of W,, outside Sy. So we have proved the following:

Proposition IV.3.6. Foreach j € {0,1,2,3,5}, deg(Qei+jz2) = 3l, and deg(Qei+4,2)
3l + 3. Furthermore, the following orthogonality conditions with respect to varying

measures hold:

3 () s1(t) _
o_/ ¢ Q6l2()dt, 0<k<2—1, (279)
[ k42 s1(t) _
0_/0 £952 Qg (¢ ) Gano e 0sksA-L (280)
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Oz/aﬁ’f*1 Qoi2(t >Sli()dt 0<k<2 -1, (281)
0

Qoi+2,2(t)
0= /Oa 1% Qeraa(t )Cﬁiijwdt 0<k<2l (282)
0= /O "2 O (1) Q;i% dt, 0<k<2, (283)
0= /0 "B Qgris(1) Q;iij(t) dt, 0<k<al (284)

Proposition IV.3.7. The following formulas are valid for any fixred z € C\ Sy. If q

s a polynomial of degree at most 3k, then

47w

a(2)Usi(2) _ [ Qai(®) 51(x) ( a@) | a(eFx) | qleTa) Jir. @)
QSk,z(Z) 0 Q3k,2(I) xr—=z e%x —Zz e%a: —Z
If deg(q) < 3k + 2, then
a(2) W1 () _ [ Quena(w) 51(w) ( ax) | eFgleFa) q(w)) dr. (256)
Q3k+1,2(2) 0 Q3k+1,2(iv) r—=z e%x —Zz e%x —Z '
If deg(q) < 3k + 1, then
a(=)Usira(2) _ [ Qurea() 51(2) ( a@) | eFq(er) q<>> dr. (287)
Q3k+2,2(2’) 0 Q3k+2,2($) r—=z e%x —Zz e%x -z '
In particular, we have
Qax(2) sk (2) \I’3k / ng s1(x)
d 2
Q3k 2 = ng 2 963 — 23 v ( 88)
Q3rt1(2 )‘I’3k+1 _ 3, / Q3k+1 z s1(x) d (289)
QSk—i—l 2 Q3k+1 2 £U3 — 28
Qar42(2 )\Ifsk+2 / Q3k+2 s1(z)
=3z dx. 290
Q3k+2 2 Q3k+2 2 953 - 23) ( )
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Proof. By (261) and Proposition 1V.3.6, we know that if ¢ is a polynomial of degree

at most 6/, then

Vale) o1y
o) _o< ) , (201)

and if ¢ is a polynomial of degree at most 6/+3, then by (264) and Proposition IV.3.6,

m = O(i), zZ — 00. (292)

Let z € C\ Sy and define a simple closed curve I" surrounding Sy so that z lies in the
unbounded component of C\ I'. We also assume that I' is oriented clockwise and the
zeros of Qg2 and Qg 132 lie in the unbounded component of C\ I'. If deg g < 61, by
(291), Cauchy’s theorem, (249), Fubini’s theorem, and Cauchy’s integral formula, we

have

q(2) ‘1’61 - /q ‘1’61 dt
Qe1,2( "~ 2mi Qera(t) t—2

_/Q612 o : /a[ : T 2’”'1 + ml }Qﬁl(x)sl(x)dxdt

(t)(t — 27rz T—t eFr—t esgr—t

q(t) { 1 1 1 ]
— 3 —+ — + — dt dx
/ Quu(@) 1( 27”/@612 Ot—2)le—t Fo—t eFa—t

:/()a Q%(Z;)QZZ;I')(Q@) . q2€5%x) n q4(75%x) )dm,

T—2 eB3x—2z esx—2
where in the last equality we used that

27i 4mi

Qo2(t) = Qar2(e 3 ) = Qar2(e 3 ).

Analogously, if deg ¢ < 61 + 3, applying (292) we obtain

4mi

%) _ o Quis) o) (o) | ) | leFa)

Qoirz2(2) S0 Qagaa(r) \z—2z Fo—2 eFa—z
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Therefore (285) follows, since we checked that it is valid for &k = 2] and k = 2[ + 1.

The proofs of (286)—(287) are analogous.
To obtain (288) and (289), we replace ¢ in formulas (285) and (286), by Q3 and
Qsk+1, respectively. Formula (290) follows from (287) by taking q(z) = Qsxri2(2)/z.
[

Proposition IV.3.8. The recurrence coefficients {a,}°, that appear in (172) are

all positive.

Proof. We know by (174) that

- Jo' t¥ Qei(t) s1(t) dt
" Jo 3 Qe (t) s1(t) dt

Now we write

3 Y s1(t)
/0 tlth)sl(t)dt—/o tlQﬁlon()Qm()dt

Since deg Qa2 = 3I, by (279) we obtain that

/ oz 24

31
/t Qei(t) Qer2(t) Qe,2(1)

Qﬁl 2

If we write

tSl (t)

——dt,
Qe1—2,2(1)

/a 317 Qr_o(t) s1(t) dt = /“ 277 Qer—2,2(t) Qer—2(t)
o 0

taking into account that deg (£*2Qg_22) = 6l — 2 and the orthogonality conditions

(283), we conclude that

o t ts
/0 #7 Qui-a2(t) Q! )Q6l$122 dt = / Qi Qﬁz 12<22 t) =0
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Therefore ag > 0. Since

et Qera(t) s1(t) dt
Gei+2 = @ 43l )
Jo 13 Qe(t) s1(t) dt

in order to show that ag 2 > 0 we prove that the integral in the numerator is positive.

We write

S1 (t)

———dt,
t Qe142,2(1)

/Oa 1 Qerpa(t) s1(t) dt = /Oa %2 Qor12,2(t) Qerya(t)

and using (281) and the fact that deg (£32Qg402) = 61 + 2, it follows that

st

dt > 0.
t Q61+2 2 / QGHQ t Qoi12,2(t)

/ "2 Qg (t) Qe () ——

Finally,
oo I T Qaga(t) s (1) dt
T P Qaa(t) s1(1) dt

since both integrals are positive (recall that [5* ¢3! Qg_2(t) s1(t) dt > 0).

It is easy to see that the functions ¥,, satisfy the same recurrence relation satisfied

by the polynomials ),,. In particular,

tVe41(t) = Werpa(t) + ag1 Wer—1 (). (293)
From (267) we have that

0= /_b“ £3k+2 Weria(t) s2(t) dt = 0, 0<k<l-—1,

t?’l_l

so if we multiply (293) by and integrate we obtain that

/b tsl \If6l+1(t) S9 (t) dt = agl+1 /b t3l_1 qjﬁl_l(t) SQ(t) dt. (294)
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We claim that both integrals in (294) are positive. From (288)—-(290) we have

Us(z) 327 o Q5(x) si(x)

Qse2(2)  Qsp(2) Jo Qapa(x) 23 — 23 dz,
Wsey1(2) _ 3z @ Qi) ws1(x) A
Qak12(2)  Qaei1(2) Jo Qapyro(w) 23 — 23

Uapia(z)  32° ¢ Q@) si(x) dx.

Q3k+2,2(2) B Q3k+2(2’) 0 Q3k+2,2($) -73(1’3 - 23)

Therefore, if z =t < 0, then

. \I’Sk@) _ 3k

Slgn(@g&z(t)) = (=1)°", (295)
sign(M) = (—1)%, (296)
sign(%) = (—1)3F+1, (297)

Observe that since deg Qg1+12 = 3! and deg Qg—12 = 3l — 3, by the orthogonality

conditions satisfied by Vg1 and Wg_; and (295)—(297), we obtain that

— —a

/ ba 3 W (1) 50(1) dt — / " Querat) Vet () sa() dt

—a Wit (t)

= 2 t)————"s9(t) dt > 0,
b Q6l+1,2( )Q6l+1,2(t) 2( )

33 W1 () 12 so(t) dt

/_ba 3N W () so(t) dt = /

—b

~a —a W
=/, Qe1_12(t)We_1(t) 12 so(t) dt = /_ ) lew(t)mz? so(t) dt > 0.

Thus from (294) we get that ag1 > 0. Reasoning as before, from

3 W6 () = 1 We4 4 (1) + agres t2 Werya (),
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we have
T3 Wy, 5(t) so(t) dt
T3 (t) so(t) dt

agl+3 =

since [ t31We44(t) s2(t)dt = 0. Using the orthogonality conditions satisfied by

W43, the fact that deg Qgr432 = 31, and (295), we obtain

/ ) 3 g, o (1) so(t) dt = / ) 36 () tsy(t) dt

—a

=/, Qeo1+32(t)Wer3(t) tso(t) dt = , Q§z+3,2(t)

Wera(t)

——— 2 tsyo(t)dt > 0,
Qei+3,2(t) 2(1)

and so ag+3 > 0. Finally, from

325 (1) = P g 6(t) + agres 2 Wgrs(t),

we have
R s 2 W 5(t) so(t) dt
S8 T OB g o (8) so(E) dit

> 0,

since both integrals are positive. O]

IV.4 Interlacing properties of the zeros of (), and V¥,

Proposition IV.4.1. Let A, B € R be two constants such that |A| + |B| > 0. Let

Yo(2) = A2V, (2) + BV, 11(2), (298)

T.(2) == AzQ,(2) + BQni1(2). (299)

Then, for every n > 0, the function Y,, has only simple zeros on (—00,0). Similarly,

for every n > 0, the polynomial T,, has only simple zeros on (0, «).
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Proof. From (269)-(274) it follows that
a’ dr

=L

3

0= [ ™MVau(VD) 57 dr

—a’ , ) dr
0:/ T*Yo112(V/7) 82<%)W’

_p3 T

e k 3 3 dr
02/_b3 T Yor3(V/T) 82(\/;)%»

3

0= [ ™Ve(VD) (Y7 dr

0= /b: TYo115(V/T) 52(V/7) ar

™Y (7) 52(\:)’/;)%,

£1/3°

0<k<l-1,

0<k<l—2,

0<k<l—1,

0<k<l—1,

0<k<l-—1,

0<k<I—-1

These orthogonality conditions show that for each j € {0,2,3,4, 5}, the function Yg4;

has at least [ sign change knots in (—o0,0), and the function Y1 has at least | — 1

sign change knots in (—o00,0). From (242) it follows that for every n,

2mi

Yo(e3 2) =C, Yu(2),

where C), denotes a constant. Therefore the functions Yg4;,j € {0,2,3,4,5}, have

at least 3l zeros in 3 \ {0}, and Yg 11 has at least 3] — 3 zeros in 3 \ {0}. For each

0 <j <5, let Rg4; denote the monic polynomial whose zeros coincide with the zeros

of Ygi; on 31 \ {0}. Then Rgy; satisfies (275), Y1,/ Rei; € H(C\ Sp), and using

(261)—(274) we have
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Yoi43(2 _ O( 1 ) . oo
Rera(2 L6143 ) ,
Yor4a(2)

| |
Q

1
<26l+2)’ Z = 00,

0(1), Z — 0.

~6l+4

YGH—B z

)
Reiya(2)
)
R61+4(Z)
(2)
Reiis(2)
As before, we let I' denote a closed curve surrounding Sy, such that the zeros of
the polynomials Rg.y; lie in the unbounded component of C\ Sp. Using Cauchy’s

theorem, (249), Fubini’s theorem, and Cauchy’s integral formula, we obtain that for

v=20,...,60—2,

, Yei(2)

s1(x)
g z Ra(2) —dx.

Rﬁl (l‘)

0— ds — / o To(x) (1 + 2mi(+1)/3 | e4m(u+1)/3)
0

Similarly, we have that

0 :/ 7V T6!+1( )(1 + e2m(z/+2)/3 + 647rz(u-i—2)/3)& d[E, 0<v< 6l — 3,
0

Rei1()
0= / x’ Teya(z) (1 + e¥mi/3 4 64””/3)M dr, 0<v<6l-—1,
0 R61+2(1U)
0:/;ﬁ%meu+émwm“+&M”W% &@)dm 0<v<6l+1,
0 RGH—S( )

0 :/ v T6l+4(37) (1 +€2m(u+2)/3_|_64m(1/+2)/3) ( ) dil?, 0<v< 61,
0 Reipa(z)

0= /a 2" Tops(x) (14 /3 4 647”.”/3)ﬂ dr, 0<v<6l+2,
0 Reiy5(7)
and so
OZ/Q%HT T g o<k<o-2, 300
0 T 6[(56) Rﬁl(x) T = — ( )
oz/a Sk+LT, Md, 0<k<2l—2, 301
0 v 6l+1(x)R61+1(37) ! - (301)
B R L O 0<k<2—1 302
/0 x 6042 (27) R6l+2(x) xz, = = ) ( )
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= /a g3k+2 T65+3(x)ﬂ dz, 0<k<2—-1, (303)
0

Rﬁl+3($)
ozfa w020 g o<k<ao, 304
0 v 6l+4(x)R61+4($) g - (304)
oz/a B a0 =) e o<k<a 305
0o " 6l+5(x)361+5($) v - (305

The orthogonality conditions (300) imply that the polynomial Tg has at least 21 — 1

sign change knots in (0, «). Taking into account that

2mi 27

Ta(es 2z) =e5 Tg(z),

we see that any sign change knot of Tg; in (0, «) (or even in (0, c0)) must be a simple
zero, because otherwise Ty would have at least 61+ 3 zeros, contradicting the fact that
deg(Ts) < 61+ 1. Moreover, Ty cannot have any zero of multiplicity > 2 in (0, 00),
because then one also obtains that Tg; would have at least 6/ + 3 zeros. Therefore we
conclude that all the zeros of Tg in (0,00) are simple. Similarly, using (301)—(305)
one argues that the polynomials Tg4;,1 < j < 5, must have only simple zeros in
(0, 00).

Now we show that the functions Y,, have only simple zeros in (—oo,0). We already
know that Yy has at least [ sign change knots in (—o00,0). If we assume that one of
these sign change knots is a zero of multiplicity > 3, then Rg would have degree at

least 3l + 6, and so we would have

Reasoning as above, we derive that (300) would be valid for 0 < & < 2[, which
implies that Ty has at least 6/ + 3 zeros, which is a contradiction. Therefore all the
sign change knots of Yy in (—o0,0) must be simple zeros. Furthermore, if Yg has

a zero of multiplicity > 2 in (—o00,0), we can also take Rg to be of degree at least
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3l 4+ 6, and we will arrive to a contradiction. Similarly we see that all the zeros of

Ye14+5,1 < j <5, contained in (—o0,0), must be simple. a

Proof of Theorem IV.1.4. Let 2 € (0, ) and assume that Q,(x) = Qn11(z) = 0.
Then z is a simple zero of @), and Q1. Therefore, @, (z) # 0 and Q/,,,(x) # 0.
Take A =1 and B = —2Q),(x)/Q,,,,(x). For this choice of A and B, we have that

the polynomial T, defined by (299) satisfies

To(x) = T,(x) =0,

contradicting Proposition IV.4.1. This shows that @),, and @),,+1 do not have common
zeros in (0, «).

Let x € (0,«) be arbitrary but fixed. Taking A = Q,+1(z)/z and B = —Q,(z),
we have that |A| + |B| > 0. For this choice of A and B we have T),(x) = 0 trivially,

therefore we must have 7 (x) # 0, and so

_ Qn+1<x) Qn(x)

Ln() : + Qua1 () @ (2) — Qu(x) Qs () # 0,

and this is valid for every x € (0,«). In particular, the sign of L, is constant on
(0, ). Without loss of generality we assume that L, > 0 on (0, «). If z1, 25 are two

consecutive zeros of @, in (0, ), since
Ln(21) = Qni1(x1) @y (21) > 0,

Ly (x3) = Qpy1(x2) @y (22) > 0,

and the sign of @, changes at these two points, by Bolzano’s theorem we find that
there must be an intermediate zero of (), 11. Analogously, one shows that between

two consecutive zeros of @11 on (0, «) there is one of @Q),,. By counting the zeros of
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Q. and Q,.1, it is easy to see that between two consecutive zeros of @, on (0, ),
there is exactly one intermediate zero of (), 11, and viceversa.

The same argument proves the interlacing property of the zeros of ¥,, and V¥, ;.
O

Proof of Proposition IV.1.5. If we write
Q3k—2(z) — b§3k’—2)z + bigk_Q)Zél + . + 23]&._27

Q3k(2) = béS’“) + bg?’k)z?’ 4423k
Qzp1(2) = bggk“)z + bff’kﬂ)z‘* e 2R

by the recurrence relation we obtain
b(()?)k) B bg3k+1) ~ 4 bggk—2). (306)

From Vieta formulas we derive that

3k 3k 3k
b = (=1 (@™

bg3k;+1) _ (_1>3k(x§3k+1) - _x](€3k+1)>3

Y

) equals (—1)3*~1 times the product of all non-zero roots of Qs;_o.

and similarly b§3’“‘2
Using (306), Proposition 1V.3.8, and the fact the product of all non-zero roots of

(Q3,_o 18 positive, we obtain that

(xg3k) . xl(jk))g < (wg?)kJrl) . $](€3k+1))3.
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This inequality and Theorem IV.1.4 imply (179). Similarly, if we write
ngfl(z) _ bé3k71)22 + bg3k71)25 4t 23k717

Q3k+2(z) _ b§3k+2)22 + bg3k+2)z5 et ngH’

we have
b§3k+1) B b53k+2) S bgskq),
3k+2 3k+2 3k-+2
e R

and b§3k_1) equals (—1)%*1 times the product of all nonzero roots of Qs,_1. Hence

(3k—+1) (3k+1)

3k+2 3k+2
(@D P < @ PR PRy

which implies (180) by Theorem IV.1.4. The property (181) follows directly from
Theorem IV.1.4. U

Remark IV.4.2. For every n > 0, the polynomials @Q,, and Q.3 do not have any
common zeros in Sy \ {0}, and their zeros also interlace. Similarly, the functions
U, and U, 3 do not have common zeros in Sy and they interlace. This follows from
the fact that if A, B are real constants so that |A| + |B| > 0, then the functions
AQ, + BQ,.3 and AV, + BV, .3 have only simple zeros on (0,a) and (—o0,0),

respectively.

IV.5 Ratio asymptotics of the polynomials ), and @), 2

Let
QY

H, = .
Qn,Q

(307)

Notice that H, is a real-valued function with constant sign in (—o0,0).
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Proposition IV.5.1. Let | > 0 be an arbitrary integer. Then the following orthogo-

nality conditions hold:

I Yl L 1 Vi = _
0—/4)3 Qﬁl,z(f)’\g/;@&(%)’ 2o(V7)dr,  0<k<I-1 (308)

—ad H 3 ’
0= /_bs 7k Q61+1,2(€’/F)|Tl/365‘6ify)|?)| so(/T)dr,  0<k<Il-1.  (309)

0= /_b: -k Q6l+2,2(%)m so({/7) dr, 0<k<l-1. (310)

_a3 I o/
0= [bS Tk Q6l+3,2<\3/;) ’\;F%Zji;f_{”/)’?)’ 82(\3/;) d’/‘7 0 S k S | —1. (311)

S H 3
0= [b3 Tk Q6l+4,2(\3/F) |72’/36é2+;if\;‘;)‘ so(N/7) dT, 0<k<I. (312)

0= /_;: " Qaz+5,z(%)m so(YT)dr,  0<k<Il-1. (313)

Foreach j € {0,1,2,3,5}, Qe14j2(/7T) is a polynomial in T of degree I, and Qg14.2(/T)

1 a polynomial in 7 of degree [ 4 1.

Proof. The orthogonality conditions (308)—(313) follow immediately from (269)—(274).
The claims concerning the degree of the polynomials @, 2({/7) are a consequence of

Proposition IV.1.3. 0

Proposition IV.5.2. Let kK > 0 be an arbitrary integer. Then the following orthog-

onality conditions hold:

a® J d

_ aSTjQ3k+1(\?/F) 31(%) 3= dr ) B
0_/0 o ngﬂz(\%)\/'d, 0<j<k-—1. (315)

Y Quee(VT)  si(VT) .
0_/O o S ngz(\%)ﬁdr, 0<j<k—1. (316)
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For each k > 0, the expressions

Q3k+1<\3/;> QBk—&-Q(\B/F)
T -2/3

Qar(VT),

denote polynomials in 7 of degree k.
Proof. The orthogonality conditions follow immediately from (279)—(284). O

For each integer j > 0, let

3 _
([ 2V dr
Ksj = (/0 st(7'>P3j2(7_)7_2/3> )

Nis 7_)\5/; ~1/2
K3j+1 = (/ 3]—1—1 P3]+12( ) dT) )

3 T —-1/2
Ksji2 := </ 3]+2 >\/_ dT) )

P 3542, 2( )
where the polynomials P, and P, are defined in (182)—(185). Similarly, we define

for each integer 7 > 0 the following constants

_g3 . . ~1/2
Ksjp = (/3 Pg(7 )‘51—](3;]/(_))" (\/?)d7> ,

—a3 H.. 5/~ _1/2
K3j+172 = (/ ng—l—l,Q(T) M 82(\3/;) dT) ’

—b? |7 Psjy1(7)]

—a3 Ho. 3/ —-1/2
K3ji99 := (/ P32j+2,2(7_> M 52(\3/;) dT) :

—b? |72/3 Pyjyo(T)|

We need to introduce more notations. Let

(317)
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consider the polynomials

Pn ‘= Rn Pn; Pn2 ‘= Kn2 Pn,27 (318>
and the functions
hy = K2 H,. (319)
Finally, we introduce the following positive varying measures:
S 3 T T
dl/gj (T) = P;(;g—)) TCQITa
S 3 T 3 T
dvsj (7)== 7133(]+\C)2(\£ dr,
S 3 T 3 T
dvgjpo(T) == % dr,
|h '(%’ﬁ)\ (320)
dVSj,2(T) = ‘é/?p&.(.r)‘ 52(%) dr,
h3; e
dl/gj_f_l’Q(T) = % 82(%) dT,
. 3 T
dV3j+272(7') = % 52<\3/F> dr.

Proposition IV.5.3. The polynomials p,, and p, o are orthonormal polynomials with

respect to the measures dv,, and dv, s, respectively. That is, for every n > 0,

and

/a ijn(T) dv, (1) =0, for all j < degp,,
0

3

/73 ijn,2(7—> an,Z(T) = O’ fOT’ all ‘7 < degpn,z-
—b

Proof. It follows immediately from Propositions IV.5.1 and IV.5.2.
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Using (288)—(290), it is easy to check that the functions h, have the following

representations:
o [ Pa(T)
hsp(z) = 2 e dvsg(T), (321)
a3 p2
hae1(2) = 2 ng+71(§) vz (7), (322)
0o T—=Z
a® 2
h3k+2(2) = 23/ p3k+72(73—) dV3k+2(T). (323)
0o T—=z

Lemma IV.5.4. Assume that s;(z) > 0 a.e. on [0,a], and sy(x) > 0 a.e. on
[—b, —a]. If f is continuous on [0, 3], then

i [ R an0) = [0 (321

n—0o0 Jo T

Similarly, if g is continuous on [—b%, —a?], then

3

T [ g a(r)dna(r) = = [ o) Y _d;(7+b3). (325)

In particular, the following limits hold uniformly on closed subsets of C\ Sy :

z
lim hgy(z) = ————, (326)
k—o0 (23 _ a3)z3
z
i A — 2
g hawn () = = —m (827)
3
. z
Tim Ay (2) = -, (328)

<23 _ a3)23

where the branch of the square root is taken so that v/z > 0 for z > 0.

Proof. Let us define the measures

S 3
dpze(T) = 17(2\//5 ) dr, dpsi1 (1) = dpspr2 (1) = s1(3/7)V/T dr,
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According to Definition 2 in [6], for each i € {0, 1,2} and k € Z, we know that the
system ({dpaisi}, {Psiiat, k)i>1 is strongly admissible on [0, @®]. Then by Corollary

3 in [6], we obtain that

3 3

[ dpsii(r) 1 @ dr
i [ 10 B = 1 [ 0=

for every f continuous on [0, @®]. Since dvs;(7) = duziyi(7)/ Paisio(7), (324) follows.
The asymptotic formulas (326)—(328) are a consequence of (324) and (321)—(323).

Similarly, if we define the measures

I

dmay(T) = W
() = "I 97
dmggo(T) = W s2(V/7) dr,

then for each i € {0,1,2} and each k € Z, the system ({dmg;},{|Pyuvil, k}) is

strongly admissible on [—b%, —a?], and (325) follows as before. O

For each i € {0,...,5}, we consider the families of rational functions

{P6k+i+1(z) } {P6k+i+1,2(2) }
Porri(2) Ji Porrio(z) Ji

By Theorem IV.1.4, the first family is uniformly bounded on compact subsets of
C\ [0,a?%], and the second family is uniformly bounded on compact subsets of C\
[—b3, —a?®]. Therefore, by Montel’s Theorem we can extract convergent subsequences
from each family. Let A C N be a sequence of integers so that for each ¢ € {0,...,5},

lim P6k+i+1(2)

_ (@) 3
keA P6k+i<z) _Fl (Z)a ZE(C\[O,CY ]a (329)
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. Pépriv1,2(2)
ke Poyio(2)

= F(z), zeC\[-d* b (330)
where the limits hold uniformly on compact subsets of the indicated regions. Our
goal is to show that we obtain the same limiting functions ]:}(i), no matter which
convergent subsequences we choose.

Since the zeros of the polynomials P, are all contained in [0, @3] and they interlace,
from (329) we derive that for each i € {0,...,5}, the functions F, fi), 1/ ﬁl(i) are analytic
in C\ [0, @®]. Moreover, since deg(Ps;) = deg(Psyy1) = deg(Paj12) and deg(Psyy3) =
deg(Psgi2) + 1, we know that if i € {0,1, 3,4}, then F is analytic at infinity and

ﬁl(i)(oo) = 1, whereas the functions ]51(2), ]51(5) have a simple pole at infinity and
n(2) )
Fi7(z) =24+ 0(1), z — 00,

FPL) =24001), z— oo

Similarly, for each ¢ € {0,...,5}, the functions ﬁQ(i), 1 /F’Q(Z) are analytic in the
region C\ [—b®, —a®]. Since deg(Pspti2) = k for i € {0,1,2,3,5} and deg(Pegya2) =
k + 1, we have that for i € {0, 1,2}, the functions Féz) are analytic at infinity and
F’Q(i)(oo) = 1, whereas

() =2+0(1),  2—o0,
F2)=1/2+0(1/2%), Z — 00,
FP2) =2+ 0(1), z — 00.

Given a Borel measurable function w > 0 defined on the interval [c, d] that satisfies

the Szegd condition
log w(t)
(d—1t)(t—rc)

€ L'(dt),
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the function

St e {15 (B LY o [ )

is called the Szegd function on C\ [c, d] associated with w. If we introduce the notation

iz =ea - [ —— log £(6) db .

A 610 _

then S(w; z) can be written as

S(wv Z) = D(TD, 1/w[c,d]<z))7

where

d—c c—l—d>7 0 ¢ [0, 27],

w(0) = w<2 cosf +

and 9q) is the conformal mapping of C\ [c, d] onto {|z| > 1} satisfying that ¢(c0) =

oo and 9'(0c0) > 0, i.e.

22 —c—d 22 —c—d\?
e 2070
Yiea (2) d—c +\/< d—c )

In particular, if w is continuous at z € [¢,d] and w(x) > 0, then the limit

tm |S(w:2)* = s

holds. We will indicate this below by writing |S(w; z)[? w(z) = 1.
Throughout this section we are always assuming that s; > 0 a.e. on [0,«], and

sy > 0 a.e. on [—b, —a]. By (314)—(315) we have

ol

0= / ijﬁk(T) dve(T), 0<j<2k—1,
0
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3

0= /0 TjP6k+1(T) 9ok (T) dvgr (1), 0<j<2k—1,

where gor(7) := TPs 2(7)/ Por+12(7). Using (330),

e = oy

uniformly on [0, a?®]. Since deg(Ps;) = deg(Pgx11), using Theorem 2 in [6] (result on
relative asymptotics of polynomials orthogonal with respect to varying measures), we

obtain that

lim Pory1(2) SV (2)

_ 7(0) 5 2 cC o3
Reh Pgp(z) Sio)(oo) = I (2), e C\ [0,a7], (331)

uniformly on compact subsets of the indicated region, where Sfo) is the Szego function
on C\ [0, o] associated with the weight 7/Fs" (7), T € [0,a%]. Therefore 5\ satisfies

the following boundary value condition,

T

|S£O><T>|2ﬁ— —1, T€(0,0% (332)

Similarly, by (315)-(316) we have

3

0= / 77 Popr (1) g (7)), 0<75<2k—-1,
0

3

0= /0 77 Po12(T) Gorr1 (1) dver+1(T), 0<7<2k—-1,

where ger+1(7) := Por+1.2(7)/ Por+2.2(7), and so applying the same argument we obtain

that

Paia(z) _ S1"(2) _ z

lim (2), z2eC\[0,a%, (333)

keA P6k+1(2) - Sgl)(OO)
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uniformly on compact subsets of the indicated region, where Sfl) is the Szeg6 function

on C \ [0, o8] associated with the weight 1/F{"(7), 7 € [0, a®]. Therefore

|S§”<T>|2F -1, 1€’ (334)

By Proposition IV.5.2 we know that
3

0= / 7 Pyopa(7) dvgrsa(r),  0<j <2k —1,
0

a®
0= /0 T Potet3(T) Gokr2(T) dVi42(T), 0< 7 <2k,

where geri2(7) = Pors22(7)/(TPorss2(7)). Let P, be the monic polynomial of
degree 2k orthogonal with respect to the measure dvggi3(7) = Gert2(T) dvspr2(T).

Since deg(Pg;. ) = deg(Psk+2), by Theorem 2 in [6] we have

L Pas(®) _ SP)
keA Pojyo(2) S}Q)(oo)

: (335)

uniformly on compact subsets of C \ [0,a?%], where Sg) is the Szegdé function on

C\ [0, a?] with respect to the weight 1/(7F4? (7)), 7 € [0, a?]. Therefore,

1
|S§2)(T)|27ﬁ(2)(7—) = 1, T € (0;053]. (336)
2

Let ¢; denote the conformal mapping of C\ [0, &®] onto the exterior of the unit circle
and satisfies ¢1(00) = oo and ¢/ (c0) > 0. Then, by Theorem 1 in [6] (result on ratio

asymptotics of polynomials orthogonal with respect to varying measures) we have

. Pers(2) 1(2)
1 —
KA Py a(2)  dh(o0)”

(337)
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uniformly on compact subsets of C \ [0, a?]. Therefore by (335) and (337) we have

. Pyjis(z) SP)(Z) 01(2) =@ .
ieA P6k+2(2’) o Sf)(oo) qb’l(oo) Fy ( )7 (338)

uniformly on compact subsets of C \ [0, a?].

The same arguments used before show that

P (3) _ o
lim bk 14(2) = 5(113) (2) =F¥2), uniformly on  C \ [0, &®], (339)
keh Popis(2) 91 (00)

(4) - _
lim Poss(2) = S;i () = F1(4)(z), uniformly on C \ [0, ?], (340)
kA Poia(2) S (0)

(%) )
lim Poso(2) = 5 (2) 4(2) = 1(5)(2), uniformly on  C\ [0,0?],  (341)

keA P6k:+5(z) S§5)(OO) ¢/1(OO)

where SS’), SYI), Sf’) are the Szegd functions on C \ [0, ] associated with the weights

7'/]52(3) (1), 1/15’2(4)(7')7 1/(7‘]52(5) (1)), respectively. Therefore

T

S (7)? o e (0,07, (342)
2
1
S ()P = 7€ 0,07, (343)
2
1
‘S§5)<T>’27ﬁ2(5)(7') =1, 7€ (0,07, (344)

Now we will derive other relations between the functions Fl(i) and Fg(i) which are

valid on [—b%, —a?]. From (308)—(309) we have

3

0= /73 ijﬁk,Z(T) dVGkQ(T), 0 S ] S ke — 17
b

3

0= /_b3 ij6k+1,2(7') g6k72(7') dVGkQ(T), 0 < ] < b — 1’
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where

sona(r) = e (WO Pu(r)|
| [72/3 b, (Y/7)] o (7))

Using Lemma IV.5.4 and (329),

I (7) 1
m ger2(7) = —=——

uniformly on [—b% —a?]. Again, using the fact that deg(Psr2) = deg(Psry12), by

Theorem 2 in [6] we obtain that

lim Pot1,2(2) o Séo)(z)

= = ﬁ(o) z s 345
kEA P6k‘,2<z) Séo)(oo) 2 ( ) ( )

uniformly on compact subsets of C \ [—b?, —a?], where Séo) is the Szegd function on

C\ [-1%, —a?] associated with the weight 1/|7 F{”(7)|, and so

1
SO =1, 7€ [, —d%. (346)
I B (7))
Similarly, we have that the limits
Posza(2) _ 537(2) _ g
lim ’ = =F,"(2), (347)

keA Poji1,2(2) B Sél)(oo) B

(2) _
lim Poriso(z) _ S537(2) _ @(2), (348)

kA Poryao(z) ng)(oo)

hold uniformly on compact subsets of C \ [-b%, —a?], where Sél), S§2) are the Szegd

functions associated with the weights |7|/ |ﬁf1) ()|, 1/|F?(7)], respectively. Therefore

SR T 1 e -, 349

1S5 (7)] 0] [ ] (349)
1

SO —o— =1, 7€[-b —a%. 350

1957 (7)) 700, [ ] (350)



Let ¢y be the conformal mapping of C \ [~ —a®| onto the exterior of the unit
circle, and satisfies the conditions ¢(c0) = oo and ¢)h(c0) > 0. As a result of

Theorems 1 and 2 in [6], we also obtain that the limits

Pépya2(2) . 553)(2) Pa(2)

i _ 3
}cIEH/% P6k+3,2(z) - 553)(00) §b/2(00) - F2 (Z)v (351)
iy Poesa(z) _ 857 (00) @h(00) _ A (), (352)

keA Porrap(z) S5 (2) ¢2(2)

Pepyan(z) 555)(3) $2(z) _ ~2(5)(Z) (353)

lim = =
keh Poisn(2) S5 (00) ¢h(00)

hold uniformly on compact subsets of C\ [-b%, —a?], where 5’53), 554), and Sés) are the

Szegd functions on C \ [—?, —a3] with respect to the weights
=(3 = (4 =(5
Ve @l B @O YIEY@L 1 e [ —d),

respectively. Therefore we have

(3)(\|2 3

T) —=m@& . — — ]-; TE|[-b » A, 354

SO o [, (350
0

SOOI, e 6 -a) (355)
1

5(5) T 2~7 = 17 T E _b37 _a3 : 356

S0 s -, -] (30

Proposition IV.5.5. There exist positive constants c,(f), 1<k<2,0<1<5, such

that the functions kal) = c,(f)ﬁ’,il) satisfy the following boundary value conditions:

FOOP g~ =1 Te0al 1=03 (357)
o \T
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F(l) T L — 1, T E 0,0&3, [ = 1747 398
O 0,07 (3
1
F(l)']' 27:1, T € 0,043, l:2757 359
FOF (0,0 (3
1
() 2 3 3
T _17 T E —b , —a |, l:0737 360
B OF o =, ~) (960
T 1 rep -l 1-1.4 361
I (7))? (‘l) , ,—a’], 4,
700
1
FV ()2 =1, 7el[-t’,-d’], 1=205. 362
O ¥~ (52

Proof. 1t follows from the relations (331)—(334), (336), and (338)—(344), that there

exist positive constants wgl) such that

FOPP =—=—=, 7€(0,0%, [=0,3 363
| 1 ( >| Fg(l)(T) wgl) ( ] ( )
|FD ()2 Lol e 0,0°], [=1,4 (364)
1 ~(l)(7_) w(l)7 ) ) )y

2 1
RRYGE ~(1l) % re(0,0°], 1=25, (365)

(1) w

where

W = (5P (0))?, for 1=0,1,3,4, (366)
i) = (51(00) ¢(00))?, for 1=2,5. (367)

Similarly, from (345)—(356) we obtain that there exist positive constants wy’ such

that
\ED ()2 ITFfl”(T)I = wlg) re[-b, —d, 1=0,3, (368)
B ()P , ﬁg('TH = wlm 7 [-—d’], =14, (369)
1 2
|FP ()2 — L 1 e 0%, —d?], =25, (370)
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where

wd = (5P (0))?, for 1=0,1,2,
Wi = (59 (00) ¢h(0))?, for 1=3,5,
Wi =1/(88 (00) ¢h(00))2.

Therefore, finding the positive constants c,(j) reduces to solving the equations

(c)? (cr))?
oo 1= oo =0...5
Co W1 C1 Wy

If we take logarithms we transform these equations into the linear system

2log cgl) — log cgl) = log wil),

— log cgl) + log cg) = log wél),

in the unknowns log cgl), log cg), which has a unique solution.

(371)
(372)

(373)

O

In order to prove the uniqueness of the limiting functions Ji(i), we need to use

Lemma IV.5.6 below. More general versions of this result can be found in [4] (see

Lemma 4.1) and [1] (see Proposition 1.1), so we omit the proof.

Let us first introduce some notations. Assume that A;, Ay are disjoint compact

intervals in R, and let C'(4;) denote the space of all real-valued continuous functions

on A;. We write u = (u1,uz)! € Cifu; € C(Ay), and uy € C(Ay). Given u; € C(Ay),

let Ty 1 (u;) denote the harmonic function in C\ A, that solves the Dirichlet problem

with boundary conditions

Tyi(ur)(z) = us(w), x € Ay,
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and given uy € C(Ay), let T} o(us) denote the harmonic function in C\ A; that solves

the Dirichlet problem with boundary conditions
Tio(ug)(z) = ug(x), € Ay

Consider the linear operator T : C' — C' defined as follows

0 T
T =

Tp; 0
and [ : C — (' the identity operator. The auxiliary result is the following
Lemma IV.5.6. Ifue C and (2] —T)(u) =0, then u= 0.

Now we prove that the limiting functions do not depend on the subsequence A C N

selected for which (329) and (330) hold.

Proposition IV.5.7. The limiting functions E(i) are unique for every j € {1,2} and
ie€{0,...,5}.

Proof. For each fixed i € {0,...,5}, by Proposition IV.5.5 the functions log \Fl(z)| and

log \Fz(l)| satisfy the system

2log |F{"(7)| — log | F3”(7)| = log | fi(7)], 7 € (0,a%),
(374)

—log |[F{" ()| + 21og | F" (7)] = log gi(r)|, 7 € [-b%,—d’],

where the functions f;(7), g;(7) equal 1/7,1, or 7, depending on the value of i (f; and

g; are not equal). Assume that the functions éﬁ“, @g) satisty

Pt
lim 61<;++1(Z)

— 9 3
ke P6k+i(2) - Gl (2)7 KAS C\ [0,0é ]7
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. P6k+i+1 2(2’) (%) 3 3
lim —————= = G5 (2), z2€C\ |[—a’, —b"],
s (2) 2 (2) \ ]

for some other subsequence A’ C N, where the limits hold uniformly on compact
subsets of the indicated regions. Then as before we can find positive constants dgi), déi)
so that the functions G;i) = dg-i) CNT’;Z) satisfy the same system (374).

If we define the functions
up = log [PV —log |G|, up = log | "] — log |GY),

then observe that u; is harmonic in C \ [0,a3], uy is harmonic in C \ [~ —a?]
(the possible singularities at infinity of the functions log |Fj(i)|, log |G§-i)] cancel out by

subtraction), and they are also bounded in the corresponding regions. Moreover we

have
2ui (1) —ux(7) =0, 7€ (0,03,
—uy(7) + 2uz(7) =0, 7€ [-b —a’].
Let Ay :=[0,03], Ay := [-1?, —a?®]. From the first equation and the generalized

minimum (maximum) principle for superharmonic (subharmonic) functions, we ob-
tain that 2u; — Tha(ug) = 0 on C\ A;. Similarly 2uy — To1(ug) = 0 on C\ Ay. In

particular,

2u1(7') — TLQ(UQ)(T) = O, T E AQ,

—To1(ur)(7) + 2us(7) =0, 7€ Ay,
so by Lemma IV.5.6 we get that uy = 0 on As, and us = 0 on A;. Therefore
Tio(ug) =0 on C\ Ay and Th1(u;) = 0 on C\ Ay. This implies that u; and uy are
identically zero.

From |Fj(i)| = |G§i)| it easily follows that ¢} = d} and F’j(i) = égl) O
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Proof of Theorem IV.1.6. The existence of the limits (186) and (187) follows from

Proposition IV.5.7. Notice that the polynomials P, satisfy the recurrence relations

P3j(2) = Pspy1(2) + agp Par—2(2),

Psji1(2) = Pagga(2) + asps1 Pak—1(2),
2Psi12(2) = Parys(2) + aspy2Par(2),

and so we have

Peiti(2) Prjriv1(2) .
Aghti = — , 1€40,1,3,4},
ot Popyi2(2)  Pegri-2(2) { }
ZPGkJri(Z) P6k+i+1(z) .
Qa i = — s 1€ 2, 5}.
T Porrica(2)  Poryioa(2) 2.5}
By (186) we obtain the existence of the limits
Hm agees = FU2 () FC V()1 — FYY 1 €{0,1,3,4 375
Pt 6k+1i 1 Z)4 z 1 Z)): t { s+ }7 ( )
. _ Ei-2) y mi-1) 0 .
Jim agrys = FiO T () FT C(2) (2 - FU(2), i€ {2,5) (376)

where the relations are valid for every z € C\ [0, a?], and we identify F& = W,

FED O
If i € {0,1,3,4} then

and for i € {2,5},
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and so (188) follows from (375)—(376). Using the definition of the polynomials P,,
(190)-(192) follow directly from (186)—(187). O

Proposition IV.5.8. Assume that the hypotheses of Theorem IV.1.6 hold. Then the

polynomials py, pno defined in (318) satisfy for each i € {0,...,5}:

. p6k+i+1(z) (4) (3) 3
lim —————= =k} F} /' (2), ze C\|0,a”], 377
Jim P < W) \ [0, 0 (377)

lim Porrit12(2) sIDEO(2),  zeC\[=b, —d?, (378)
k=00 Pglti2(2)

uniformly on compact subsets of the indicated regions, where

and the constants wj(-i) are defined in (366)—(367) and (371)—(373). Consequently, for

the leading coefficients Kk, kn o defined in (317) we have:

lim ZORHHL _ G0 (379)
k=00 Kgkti

. Kek+i+1,2 (i)

lim ———= =Ky, (380)

k—oo  Kegti2

In addition, the following limits hold uniformly on compact subsets of C\ (Sp U S1):

\Ijﬁk+i+1<z>_ 1 F;)(zg)

Tim - 2 E) 0.3, 381

koo Wepyi(2) w22 B (23) (381)
Wepss 1 ﬁ’(i) 3

lim Soein(2) 1 2R () (382)

k=0 Wepyi(z) wy) ﬁfi)(zi*)
Proof. Using the same argument employed before and Theorems 1 and 2 from [6], we

obtain

. Pék+i+1 (Z ) (4) 3 .
lim ———————= = 5)7(2), zeC\1[0,0’], i=0,1,3,4,
oo pb’k—i—i(z) 1 ( ) \ [ ]
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. Pekrit1(2) _ aol® 3 =
kh—{glo p6k+i(z) _Sl (Z)¢1<Z>7 ZGC\[0,0&], i =2,5,

lim Portit12(2) S(2),  zeC\[-, —d], i=0,1,2,
k=00 Dekti2(2)

. p6k+i+1,2(z) (1) 3 3 .
lim ————————= = 557(z z), ze€C\|=b’,—a’], 1=3,5,
oo p6k+i,2(z) 2 ( ) ¢2( ) \ [ ]

. DPek 5,2(2) G _
,}ggom = (87(2) da(2))™", 2 € C\ [V, —d”],

so (377) and (378) follow. (379) and (380) are immediate consequences of (377) and
(378).

Observe that by (307) we can write

S . Iii hn+1 Qn Qn+1,2
v, ’131-1-1 hy Qn—l—l Qn,Q 7

so if we apply (379)—(380) together with Lemma IV.5.4 and Theorem IV.1.6, we
obtain (381)-(382). O

Recall the definition

Proof of Proposition IV.1.7. We first show that o > 0 for all i. If we assume
that a(® = 0, then (375) implies that F% = 1. Now using (357) we obtain that
F{9(2) = 2 for all z € C\ [—b3, —a?, contradicting the fact that Fi” (co) = 1. If we
assume that a(!) = 0, then again by (375) we get ]51(1) = 1, and so by (358) we have
F'Q(l) = 1, contradicting (361). If a® = 0, then from (376) it follows that F’l(Q)(z) =2z
for all z € C\ [0,a?], and so (359) implies that F}(l)(z) = z, which is impossible.

Similar arguments show that a” > 0 for i € {3,4,5}.
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We prove now simultaneously that ﬁl(Q)(z) = zFl(O)(z) and F\¥ = F® . Let
w(2) = log | ()] ~log |: F{” ()], ua(2) :=log | F§ (2)] ~ log |F" (2)].

Then w; is harmonic in C \ [0, a®] and uy is harmonic in C\ [-b%, —a®]. By (360) and
(362) we see that uy is also bounded on C \ [—b?, —a?®]. To show that u; is bounded

on C\ [0, a?] it suffices to show that it is bounded near the origin.

Taking into account that Fl(o)(z) =C S%O)(z) and F1(2)(z) =D 552)(2) ¢1(z) (C and

(2)
1

D are constants), and the definitions of the functions Sfo) and S;”, the boundedness

of uy near the origin is equivalent to the boundedness of the expression

12 e” +1/61(2) 3
5/0 %{ei‘)—lﬂﬁﬂz)} log(1 4 cos @) df — log|z|, z ¢ 10,07,

near the origin. If we apply the substitution w = 1/¢;(2), this in turn is equivalent

to the fact that

1 o it A
7/ %FH"} log |1 + €| df — log |1 + w, lw| <1,
21 Jo e —w

is bounded near —1. But in fact we have

;T/O%%[ZZ:Z] log |1+ ¢|d6 = log |1 +w|,  |w| < 1.
Now Proposition IV.5.5 implies that
2uy (1) — ug(7) =0, 7€ (0,07,
—uy(7) 4 2us(7) = 0, T € [-b*, —a®.

The same argument used in the proof of Proposition IV.5.7 shows that u; and us are
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identically zero, and so E@)(z) = ZFl(O)(Z) and F” = F{® . Similarly one proves that
FO(2) = 2FP(2) and F = B,
From (193), (188), and (189), it follows that a®) = a® and a® = a®). We have
by (375)—(376) that
ROV ()(z - BY) = a®,

PR ()1 - FY) = a,

So if we apply that a(®) = a(® and }~71(2)(z) = zﬁ’l(o)(z), dividing one equation by the
other we get that zFfO)Fl(l) = F’l(4)Fl(5), which is equivalent to ]51(1) ~1(2) = Fl(4)ﬁ’1(5).
The other two relations in (194) follow immediately using this equality and (193).

The relations in (197) are an easy consequence of (194) and (357)—(359). Now,
(195) is obtained by dividing appropriate relations from (375)—(376) and taking into
account (194). The equality a® 4 a" = a® +a™ follows by identifying the Laurent
expansions at infinity of Fl(o)ﬁl(l) and Fl(g) ~1(4).

We next show that the functions ﬁl(i), i € {0,...,5}, are all distinct. If ¢ €
{0,1, 3,4}, then evidently F 2 F® and FO £ FO 1t FO = FY | then (363) and
(364) imply that

RO

= = -, T E O,a3,
Er) w7 e

which is contradictory since 1/ % is holomorphic outside [—b3, —a®]. The same
argument proves that ]51(0) #+ Fl(4), ]51(1) =+ Fl(?’), and ]51(3) #+ ]51(4). It ]51(0) = ]51(3), then
from (363) we obtain that }7}(0) = NQ(S), which is impossible since ~2(0) is analytic at
infinity and F1* is not. Similarly (using now (364) and (365)) we see that FY # FW
and ﬁl(Q) + ﬁl(5).

Now we show that the functions F}(i), i € {0,1,3,4}, are all different. If we assume

that F3” = F{". then (368)-(369) imply that




Since F\” and F{" are real-valued on [—b®, —a%], it follows that F{"(z) = 22F”(z),

which is impossible. The other cases hold trivially just by looking at the Laurent

expansion at infinity.

By (195) we obtain that a©® # ¢® and a® # a@ (otherwise F\¥ = F¥ or

FU = F™Y. Now we show that a¥ # a®). Applying (375) for i = 0 and the relation

FOR® — B E® e et
FOED(1— FO) = O,

Using (383) and the relation (375) for i = 4, we obtain

(0)
~ ~ a ~ ~(4
FY( - FY) =~ FY (1 - BY),

Applying the first two equations from (195), we derive that

3) (0)
~(1 ~(0 a ~(1)y , (0 a
F1-FY) =5 0= R)E -+

If we assume now that a(!) = ¥ then (385) yields

1-— F’l(o) a®

1—FY a0’
But from (375) we know that

(1-F"RY o

(1~ FD)FT

—— (1 - FM").

(383)

(384)

(385)

(386)

(387)

so (386) and (387) imply that EM) = ﬁl(o), which is contradictory. Therefore a(!)

a®, and so by (198) we also obtain that a(® # a®.
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Corollary 1V.5.9. The following relations hold:

O =, O = O, Puf? = Pl
A mf, =l

) =P, D = 0D, ) = uDul?
TR )

Proof. All these relations follow immediately from the relations established in Propo-
sition IV.1.7 and the boundary value equations (363)—(365) and (368)—(370) (multiply

or divide appropriately these equations). O

IV.6 The Riemann surface representation of the limiting func-
tions F’j(i)

We will give now the proof of Theorem IV.1.8. Before doing so, we need some defini-

tions and comments. Let

0
i) . Fr

G\" ok GU) = 22 0<4,j<5.
1

Recall that we chose the conformal representation 1) of R onto C so that it satisfies
the conditions (201)-(203). As a consequence, we have ¥ (z) = 1(Z). To see this,

observe that ¢ and ¢ (%) have the same divisor, and therefore ¥ (z) = C(z), for some

constant C'. Using the fact that the coefficient A in (201) is real, we get that C' = 1.

The symmetry property ¥ (z) = ¥ (%Z) implies in particular that

wkZR\(AkUAlﬂ_l)—)R, ]C:O,I,Q, A0:A3:®,
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and

Ur(rs) = r(25) = Y (1), T € Apyy. (388)

In addition, all the coefficients in the Laurent expansion at infinity of the branches

1, are real numbers. Given a function F' with Laurent expansion at infinity

F(z)=CZ+ 03", CeR\{0}, keZ,

we use the symbol sign(F(c0)) to denote the sign of C (i.e. sign(F(c0)) =1ifC >0
and sign(F'(c0)) = —1if C' <0).

The function 1) ¥ ¥ is analytic and bounded on C (when multiplying two con-
secutive branches, the singularities on the common slit cancel out by the Schwarz
reflection principle), so by Liouville’s theorem this function is constant. Let us de-
note this constant by C' (from now on we will reserve in this section the letter C' for

this constant). So we have

(1/)0 77[)1 wg)(Z) = C, (1;0 1;1 @Eg)(Z) = 1, z € C. (389)

Proposition IV.6.1. The following relations hold:

) - SO 6 o0
GO () = Sign(w‘zgf/)g) a(2) (391)
Proof. By (357) and (360) we have
\G§0’3)(7)|2G§0;)(T) —1,  re(0,aY, (392)
|G§°73>(T)|2W1)()| R ) (393)



Observe also that the functions GSO’S) and Gg)’?’) are bounded on C\ A; and C\ A,,

respectively. Moreover,
G () =D+ 0(1/2), z — 00,

G ()= E/z+0(1/2%), Z — 00.

Let us call v; and vy the functions on the right hand side of (390) and (391), respec-
tively. The function v, is positive on A; = [0, @] since sign(vy(oc0)) = 1. Using (388)

and (389), we have that for any z € (0,a?),

o) () Pea(e)® [ (ms)l[¢ () ][ (2)]
va(w)  sign(ihs(00)) s () C

_ [o(ep) [t (zo)[la()] _ [Yo(w)[lehr (ws) |¢ha(2)]

:17
] ]

i.e. v; and vy satisfy (392) on (0,a?). On the other hand, for z € (—b3, —a?),

va()? _ [Ya(ws)]

@]~ ()]

Y

so v and vy also satisfy (393) on (—b%, —a?).
Finally, the same argument used to prove Proposition IV.5.7 yields the validity of
the relations (390) and (391). O

Proof of Theorem IV.1.8. By Proposition IV.6.1 we have

Y

@ = 7;1 QZQ = 1/1/707 (394)
5O
= = ¥ (395)

2
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From the first relation in (195) and (394), simple algebraic manipulations show that

70 _ a® —a® 7O _ (a® — a® )1/)0
LT a0y — a®’ ! a© ey — a®
The representations of F 1(2) and F’ 1(2) in Theorem IV.1.8 follow immediately from the
relations Fl(Q)(z) = zﬁl(o)(z) and ]5(5)(2) = zFl(g)(z).
Since ﬁ’l(o)ﬁ’l( ) = Fl( F ), from (394) we have Fl(l)/F = 1. Using this relation

and (195) we obtain

( @ _ M) g @ __a®—al

FO = R
%—a

a(4)¢0 —aq® .

From the definition of the functions ¥, and Proposition IV.1.2 it follows that
these functions satisfy the same recurrence relation satisfied by the polynomials @,
ie.

2V, (2) = Vit + a, ¥, o, n>2. (396)

Therefore, if we define the functions

UD(z) := lim Lowria(2)

C\(Spus 0<:<5
k—oo \IfﬁkJri(Z) ’ z€ \< 0 1)7 ==

(by Proposition IV.5.8 we know that such limits exist) then we know by (396) that
D = U ()U(2) (2 — UD(2)), 0<i<5,

where we understand that U2 = U@ ) = U®) In particular, applying (381)

and (382) we obtain for i = 0, 1,4, 5, that

s s (0
o _ 1 EP(2) FYV(2) B F2(2) 397
SN I G R PR C) PN N (V=1 ’ (397)
wy wy o By (Z) F (Z> wy kY (Z)
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oL E éo () B (2) (1 (= ) (398)
P EO ) EO N T LR
1 (2) F(?’) (z F4)
@) 2 (1 2 ) 399
a 7
w§2>w§) (2) F1(3) (2) W Y (2) (399)
1 F<5
a® = NEND (2) (z 2 ), (400)
F1 z) wl F1 (2)
where these relations are valid for every z € C\ ([-b%, —a®| U [0, a?]). If we apply the

relations a® = a®, F®) = 2 F® ) = F{¥ from (397) and (400) we obtain

o (-] ﬁ’f’)(z)):wf’) (- - " (2) )

z— =
@\ TP TP LR
Using (395) we get
((I(O) C&J§3)> ( Za(o) u}§3)’i§2<2’) >F12(3) Z)
2| —= — = N — - :
@~ o0) = GRe TR P

If we substitute in this expression the functions }7’1(0), F, 1(5) by their representations in

terms of the branches lzk, we obtain

Z(a“’) wig’):m(?&o(z)—a@»( a® wﬁ?’)&g(z))ﬁfw

a® W® a® — a®) 39 (2) N WO

The factors in the right hand side of this equation never vanish on C \ ([0,a?] U

[—b3, —a?]), and so we can write

o W\ (5
z(m — ﬁ)w% )(a(o) —a®)

B ” ROFAET
(@®40(z) ~ a®) (Fzs — 26
1

a®o(z)

If we move z to the left hand side and evaluate both sides at infinity we obtain the

relation
3
w® (CL(O) _ wP) — ﬂ (401)
Fla® 0 a®)’
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and so the Riemann surface representation for the function ﬁz(?’) that we give in The-

orem IV.1.8 follows. This also proves the representation for the functions ~2(5), FQ(O),
and F’Q(Q).

From (398) and (399) we derive the relation

2) (3)

(4 (1
a(l)<1_ By >:w§ w <1_ B )
d\" T JOE®) T SO G\ T O ED

From Corollary IV.5.9 we know that wiz)wf’) = w§5)w§0). Since ]52(4)/]52(1) = ]52(0)/]52(3) =

QZQ and Fl(4)/]51(1) = 1/@20 = @Zl&g, we get

o Y a0 g
@ 1T E@ @ " (402)
a Fi7 Na®w, Wy
Evaluating at infinity we obtain the relation
am 1
- —1=——,
a® oD
and so
4)
1 _ a
Wil = (403)
From (402) we can write
7= (4)
1

A -

(%1 — (wi” = 1)/wi?)

So the Riemann surface representation of ]52(4) follows from that of ]51(4) and the
representation of ﬁ’Q(l) follows from the relation ﬁ2(4) = LEQF’Z(U.

Now from (401) and Corollary IV.5.9 we get

W = =~ (404)
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If we evaluate both sides of the equation (400) at infinity we obtain

1 3
CL(5) = CL(B) = B @ (1 — 1/(,&)5 )),
Wy Wy
and so (404) gives
w  a®—a®
U)l =
(@)

Finally, from Corollary 1V.5.9 and the above computations we deduce that

O

Remark IV.6.2. Observe that since wgl) > 0, it follows from (403) that a™® > a(V,

and so from (198) we have a® > a®),

Proof of Proposition IV.1.9. It is straightforward to check that the function
x(@) == F+2)) —0(e®),  weR,

is a conformal representation of the Riemann surface S constructed as R (200) but

formed by the sheets
So:=C\ [—u, —1], S :=C\ ([-p, =1 U1, \]), Sy :=C\ [1, )],
where A and p are defined in (204). x also satisfies

X(Z) =z+ 0(1)7 z— 00(1)7
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and has a simple zero at co(®) € S. Observe that

X(00?) = —h(c0”). (405)

(The reader is cautioned that in (405), co® € S and 0@ € R).
x and & are the type of conformal mappings and Riemann surfaces considered in

[43]. It follows from [43, Theorem 3.1] that

where H and f are described in the statement of the Proposition we are proving. So
x(2) = ¥(—a*(1 + 2)/2) + 2/H(B). Tt also follows from [43, Theorem 3.1] that the

function w = H(B)x(z) — 1 is the solution of the algebraic equation

w® — (H(B)z+0, — 0y —h)w? — (1 +0,+60)w+ H(B)z—h =0,

where ©1, 05, and h are the constants described in the statement of this Proposition.
Simple computations and a change of variable yield immediately that w = (z) is

the solution of the equation (205). U

IV.7 The nth root asymptotics and zero asymptotic distri-

bution of the polynomials ), and @,

We start this section with the following basic result from [56]:

Lemma IV.7.1. Let E C C be a compact set with positive logarithmic capacity which

1s reqular with respect to the Dirichlet problem, and ¢ a continuous function on E.
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Then there ezists a unique i € My(E) and a constant w such that

IN

>w, z€kb.

The measure [ is precisely the solution of the Gauss variational problem on E

(for the logarithmic potential) in the presence of the external field ¢, and of course

w=1{] 1og|zit|dﬁ<z> 4i(t) + [ (=) di(2).

So we call i the equilibrium measure in the presence of the external field ¢ on E and
w the equilibrium constant. We already know (see (57) and (58)) that if the compact
set E is not regular with respect to the Dirichlet problem, then the second inequality
holds except on a set e C E with zero logarithmic capacity. When E is regular, it is
well known (see [56, Theorem 1.4.8]) that the continuity of ¢ implies that the second
inequality holds for all points in E.

Recall that if P is a polynomial of degree n, we indicate by up the associated
normalized zero counting measure.

The following result will also be needed. The proof is a combination of the argu-

ments employed in [13], [29] and [59].

Lemma IV.7.2. Let o be a positive Borel measure in the class Reg such that supp(o)
is reqular for the Dirichlet problem. Suppose that {¢,},n € A C N, is a sequence of

positive continuous functions defined on supp(c) such that

1 1
lim — log

ned 2n S gn(z) ¢(z), ¢ € C(supp(0)), (406)
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uniformly on supp(c). By {qn}nea denote a sequence of monic polynomials such that

degq, =n and
/xk Gn () ¢n(x) do(x) =0, k=0,....n—1
Then
and
) ) 1/2n B
tig ([ 1.(0) o) do(a) ) = e (408)

where i and w are the equilibrium measure and equilibrium constant in the presence

of the external field ¢ on supp(o).

Proof. Let E :=supp(o). From (406) and Lemma IV.7.1, it follows that for any € > 0

there exists [y such that for all | > ly,l € A, and z € supp(i) C E,

Lol 1

g ——7% — = 0]°4
L7 ol — 20 lei(2)]

<oz)+e<w—VHz) +e,

where {p;},1 € A, is any sequence of monic polynomials such that degp, = [ (there is
no possibility of confusion with the sequence p,, defined in (318)), and || - ||z denotes

the supremum norm on E. Hence,

~ 1
w(z) = V*z) + 710 |pl§2>| <w+e, zesupp(p), >l
Doy ||

Since w; is subharmonic in C \ supp(jz), by the continuity and maximum principles,
we have

w(z) <w+e 2€C, 1>l
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In particular,

(c0) 1 1 <wi
uy(00) = — w+ €.
L ot
The last two relations imply
1/1 B
lim up <|pz(/2)|> <exp(w—VH(z)), (409)
P’ |1

uniformly on compact subsets of C, and

hm 1nf lF2tes /2| > exp (—w). (410)

In particular, these relations hold for the sequence of polynomials {¢},l € A.
Let ¢; be the weighted Fekete polynomial of degree [ for the weight e=® on E =
supp(c) (see [56, page 150] for definition) and |o| be the total variation of o, i.e.

lo| = o(F). From the extremal property in the L? norm of ¢;, we have

1/2
lai”l = ([ la@Poi@do@) " < lu6! [ < o) 15 <

o2 [t 61 %" -

Then, using (406) and [56, Theorem III.1.9], we obtain that
hmsup ||qlgbl/2\|1/l <e ™. (411)

Since supp(o) is regular with respect to the Dirichlet problem, Theorem 3.2.3 vi)

1/2 /l
lim sup (quﬁ HE) <1,

ien -\ a2

in [59] yields
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which combined with (410) (with p; = ¢;) and (411) implies

2, \ M
m ("qz¢ll/2||E> = 1. (412)
A\ Nad |2
Thus, we obtain (408) since (410), (411), and (412) give

lin sup g o1 = lim sup las 2" = e . (413)

All the zeros of ¢ lie in Co(supp(c)) C R. The unit ball in the weak star topology

of measures is compact. Take any subsequence of indices A’ C A such that
Mg, — KA, l e A/a
for some probability measure py,. Then,

1
_ — /K
liy 7log () = = lim, [ log -y () = =V (),

uniformly on compact subsets of C \ Co(supp(c)). This, together with (408) and
(409) (applied to {q;},l € A’), implies

(Vﬁ — Vi) (z) <0, z € C\ Co(supp(o)).

Since V# — Vi is subharmonic in C \ supp(fi) and (V# — VFa)(co) = 0, from the
maximum principle, it follows that Vi = Ve in C \ Co(supp(c)) and thus px = fi.

Consequently, (407) holds.

Let A\; be the positive, rotationally invariant measure on Sy whose restriction to

the interval [0, a coincides with the measure s;(z) dx, and let Ao be the positive, ro-
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tationally invariant measure on S; whose restriction to the interval [—b, —a| coincides

with the measure sy(z) dr. We also need the following auxiliary result:

Lemma IV.7.3. Suppose that A\1, Ao € Reg. Then the measures

51(V7) dr, s1(/7) /7 dr, T €[0,0%, (414)

72/3

3

s9(V/T) dr, s9(V/T) dr,

7_2/3 Y _a3]7 (415)

T € [-b
are also regular.

Proof. Let m, be the nth monic orthogonal polynomial associated with A\, i.e. 7, is

the monic polynomial of degree n that satisfies
/ T FdN () =0,  0<k<n-—1. (416)
So
The regularity of Ay is equivalent to the property

lim [|7,]|5"" = capy(supp(A1)),

n—oo

where |7, |2 denotes the L? norm of , with respect to A, and recall that cap,(A)

denotes the logarithmic capacity of A. It is immediate to check that

27i 2win

(€3 2) =e 3 m,(2), (417)

and so using this property and (416) we get

« a? d
O:/ t3l7T3k(t)51(t)dt:/ Tlﬂgk(%)sl(\g/;)T}—g, 0§l§k—1
0 0 T
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Similarly we have

« ol 3
0:/0 t3l“7r3k+1(t)sl(t)dt:/0 Tlel(%)dT, 0<I<k-1,

« ()43 3
0= / 3 2 ko (t) 51 (1) dt = / 7'l77rgk+2(\/F> 51 (/1) T34, 0<Ii<k-1
0 0

72/3

Therefore the polynomials

i, D man

are the monic orthogonal polynomials of degree k, respectively, associated with the

measures

51(V/7) dr, s1(v/7) dr, s1(V/T) /% dr. (418)

72/3

It also follows that

[ ims®P o = [ (e 28 ar

/S ra (O dh(t) = /0 « (W)Q s (¥/7) dr,

/So ‘7T3k+2(t)‘2 dA(t) = /a3 (Wy 51(\3/?) 7213 47

0

So taking into account (see [52, Theorem 5.2.5]) that

capy(supp(A1)) = capy(supp(p))'’?,
where p denotes any of the three measures in (418), the regularity of \; implies the
regularity of the three measures in (418).

Let [,, denote the nth monic orthogonal polynomial associated with the measure

dpi (1) = s1(/7) ¢/7dr, and let T, be the nth Chebyshev polynomial (see [52],
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page 155) for the set E := supp(p;). By the L? extremal property of orthogonal

polynomials, we have

(Je@ano)"” < ([0 amn)" < imienE

where ||T,,||g denotes the supremum norm of 7;, on E, and so by [52, Corollary 5.5.5]

we obtain

timsup |1,/ < T 7,11 = cap(supp(pr). (419)

On the other hand, if we call I, the nth monic orthogonal polynomial associated with

the measure dp,(7) := s,(/7) 7%/ d7, we have

(/ZNZ(T)dm(T))lm - 041/2</l2(7-) dp1(7)>1/2’

and so using the regularity of py and (419) we obtain that p; is also regular. This
proves that the measures in (414) are regular. Similar arguments show that the

measures in (415) are also regular. O

Proof of Theorem IV.1.12. Let j € {0,...,5} be fixed, and assume that for some

subsequence A C N we have that
H Py ; — M1 € MI(A1)7 (420)

HPg s — Ho € Mi(Ag). (421)

It follows from (420) and (421) that

1

}glél/{ % log | Pertj(2)| = =V (2), ze€C\ Ay, (422)
1 L
LIGIRI oy log | Psgtj2(2)| = _ZV (2), z € C\ Ay, (423)
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uniformly on compact subsets of the indicated regions.
We know by Proposition IV.5.2 that there exists a fixed measure dp supported on

Ay (dp is one of the measures in (414)) such that

dp(T)

, 0<j<deg(Pegsi), 424
el j < deg(Pucs) (424)

OZ/AlTjPGk‘H(T)

where deg(Psj+;) = 2k if 7 < 2 and deg(Psi+;) = 2k+1if j > 3. We know by Lemma
IV.7.3 that the measure dp is regular. If we apply Lemma IV.7.2 (taking do = dp,
¢ok = 1/ FPotjo and ¢ = —(1/4)V#2), we obtain from (423) and (424) that p, is the

unique solution of the extremal problem

=wy, T €supp(u),

Vi (r) — 3 V() (425)

>wy, TE A,

and

1/4k
Lim (/A1 Pijoy5(7) dV6k+j(7')) =e ™, (426)

where the measure dvgy; is defined in (320).
By Proposition IV.5.1, there exists a fixed measure dn (dn is one of the measures

in (415)) supported on A, such that

harss (V7

), 0 < j < deg(Pepsin), 427
‘P6k+j<7_>’ 77( ) ] g( 6]€+]72) ( )

0= /A2 Tj P6k:+j,2(7_)

where deg(FPesk+j,2) = k if j # 4 and deg(FPertj2) = k + 1 if j = 4. The function
he+; is defined in (319). We also know by Lemma IV.7.3 that dn is regular. Taking
into account the representations (321)—(323) and the fact that p, is orthonormal with

respect to dv, (see (318) and Proposition I1V.5.3), it follows that there exist positive
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constants C7, Cy such that
Cl S |h6k+J(\3/F)‘ S CQ, fOI' all 7 € AQ.

So applying Lemma IV.7.2 (now take do = dn, ¢(7) = |hertj(/7)|/|Por+;(7)| and

¢ = —VH) we get from (427) and (422) that uy satisfies

=wy, T €supp(a),
VE2(r) — VH(T) (428)

Zw27 TGAQv

and

1/2k
lim </A2 Pijotja(T) dV6k+j,2(T)> = e, (429)

where the measure duvgy+ )2 is defined in (320).

Therefore by (425) and (428), the vector measure (p1, 12) solves the potential equi-
librium problem determined by the interaction matrix (208) on the intervals Ay, A,.
By Lemma IV.1.11 this solution is unique, so (206) and (207) follow. (426) and (429)
imply (211) and (212). Finally, (209) and (210) are an immediate consequence of
(206) and (207). O

Proof of Proposition IV.1.14. By Theorem IV.1.6 we know that the following
limit holds:
lim Qetn(2) HFl ), zeC\&,.

k—oo Q6k i=0

Therefore we obtain that

5
. 1/k _ (1) (3
Tim Qe (2)[* = T[ 1F”(=?)

1=0

, ZGC\S{),
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and by Corollary IV.1.13 it follows that
1y t(.3 5 =~(s
e sV TRV ()Y zeC\ S
i=0

So (213) is proved. The same argument proves (214).
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