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Chapter I 

 

Introduction 

 

Scholars in many academic fields, including psychology, have advocated that researchers 

move away from null hypothesis significance tests (NHSTs) and p-values as the primary source 

of support for their hypotheses (APA, 1999; Cohen, 1991). One of the primary criticisms of the 

NHST is that p-values do not provide information about the size or importance of effects, only 

whether effects are likely or unlikely to occur given that a null hypothesis is true. Indeed, the 

APA Task Force on Statistical Inference strongly recommended that researchers report effect 

sizes for the primary outcomes of their studies (APA, 1999). Whereas effect size measures have 

been developed and routinely employed for many hypotheses such as mean differences, 

proportions, and strengths of relationships, there are some methods for which consensus has not 

been reached regarding the most appropriate measures of effect size. One of the most notable 

among these methods is mediation analysis.  

Mediation analysis is the study of the potential pathways through which a predictor 

variable has an effect on an outcome variable. The most basic example of mediation is a three 

variable model consisting of an independent variable X, an outcome variable Y, and an 

intervening variable M, or the mediator. In this model, changes in X are associated with changes 

in M, and those changes in M are associated with changes in Y. In other words, the effect of X on 

Y is partially or fully transmitted via M. The effect of X transmitted to Y through the mediator is 

the indirect effect. The indirect effect is often of primary interest to researchers in mediation 

analysis. Specifically, it allows for the examination of processes that give rise to their 
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phenomena of interest. While much progress in mediation analysis has been made regarding 

statistical inference for indirect effects, less progress has been made in developing effect size 

measures for the indirect effect.  

The goal of this research is to develop a general effect size measure for mediation 

analysis that can be applied to mediation models of any complexity. Currently available effect 

size measures for mediation analysis were developed for the special case of basic three-variable, 

single-level models, and generally have not been evaluated in the more complex models 

increasingly common in the social sciences (e.g., models involving multiple mediators, 

covariates, latent variables, etc.). Indeed, the currently available measures have properties that 

preclude or substantially limit their use for these complex models. A general effect size measure 

will be developed to address these limitations. First, the topic of effect size will be reviewed with 

a focus on effect size measures with properties relevant to mediation analysis. Next, mediation 

analysis will be reviewed, including effect size measures developed specifically for mediation 

analysis. Then, a general effect size measure for mediation analysis will be proposed, including a 

matrix method for obtaining the measure and demonstrations of its use in special cases. Finally, 

simulations will be conducted to examine the behavior of the statistic in various population 

models, as well as the finite sampling properties of the measure in a multiple mediator model. 

The study will conclude with a summary of findings, limitations, and future directions. 

 

Effect size 

 

Broadly speaking, an effect size is defined as the quantification of some phenomenon of 

interest to address a specific research question (Kelley & Preacher, 2012). In the social sciences, 
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this is commonly translated as a measure of the extent to which a null hypothesis is false or a 

conveyance of the practical importance of results beyond their statistical significance (Cohen, 

1988). Statistical significance often is determined by comparing a test statistic to a critical value 

from the null distribution of that test statistic. If the test statistic exceeds the critical value, it 

means the observation of the test statistic would have been unlikely in the null distribution, and 

the null hypothesis is rejected. The p-value is the translation of the test statistic into a probability 

of occurrence in the null distribution, where a p-value less than a specified critical value (e.g., α 

= 0.05) provides evidence that the null hypothesis should be rejected. Whereas p-values play an 

important role in hypothesis testing, they do not provide information regarding the magnitude or 

practical importance of effects (APA 1999; Cohen, 1991). For example, p-values close to a .05 

cutoff (.01 - .05) can correspond to large effect sizes and, alternatively, results with very small p-

values (< .001) may correspond to small effect sizes. That is, smaller p-values do not necessarily 

correspond to larger effect sizes. This is because statistical significance is a function not only of 

the size of the effect, but also of sample size, the significance level, and sample variability.  

Any sample statistic can function as a measure of effect size. However, there are several 

properties a statistic should have in order for it to be considered a useful measure of effect size 

(Kelley & Preacher, 2012). First, the statistic should have an interpretable scale. Whereas some 

measures of effect size are useful in their original metrics (e.g., mean differences on an 

established measure; Baguley, 2009), it is often necessary to standardize measures. This makes 

results comparable across studies by removing the variable metric. For example, Cohen’s d is the 

standardized mean difference, or the difference in z scores, between two groups  

1 2
12

p

X X
d

s


 ,     (1) 
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where 
1X  is the mean for group 1, 

2X  is the mean for group 2, and ps  is the pooled standard 

deviation. Second, it is desirable to quantify the precision of the statistic. Because sample 

statistics vary about their corresponding population values, it should be possible to construct 

confidence intervals (CIs) based on the statistic’s sampling distribution. Third, the statistic 

should be unbiased. This means that the expected value of the statistic is the population 

parameter across repeated sampling. If the expected value of a statistic is a value other than the 

population parameter across repeated sampling, the statistic is biased. Fourth, the statistic should 

be consistent, meaning that it approaches the population parameter as sample size approaches 

infinity. Fifth, the statistic should be efficient, meaning that its sample variance should be 

reasonably small. These properties ensure the effect size measure is a good estimator, and allow 

for the comparison of results over time and across studies, and facilitate meta-analyses and 

statistical power calculations (APA, 1999). 

Effect size measures have been established for many primary outcomes. Likely the most 

often employed measure is the previously described standardized mean difference (Cohen’s d). 

When the strength of relationship between two linearly related continuous variables is of interest, 

the Pearson bivariate correlation coefficient has been established as the optimal measure of effect 

size (Cohen, 1988). The correlation coefficient r between two variables is expressed as 

1 1 2 2

1
12

1 2

( )( )

( 1)

N

i i

i

X X X X

r
N s s



 





,     (2) 

where 1iX  are the individual observations in group 1, 2iX  are the individual observations in group 

2, N is the sample size, 1s  is the standard deviation within group 1, and 2s  is the standard 

deviation within group 2. Like Cohen’s d, the correlation coefficient is metric-free, and also can 

be expressed in terms of standardized mean differences 
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12
12

2

12 4

d
r

d



 ,     (3) 

assuming that the number of subjects in each group is equal (Cohen, 1988).  

When the strength of linear relationships between two variables is of interest controlling 

for the influence of a set of variables, or conditional on a set of variables, the effect size can be 

expressed using partial, semi-partial, and multiple correlation coefficients. The partial correlation 

coefficient (
YXr

Z
) is the correlation between variables removing the influence of a set of 

variables from both. For example, the partial correlation between variables Y and X2 with the 

variance shared with variable X1 removed from both is expressed as  

2 1 1 2

2 1

1 1 2

2 21 1

YX YX X X

YX X

YX X X

r r r
r

r r




 
,     (4) 

where 
2YXr  is the correlation between Y and X2, 

1YXr  is the correlation between Y and X1, and 

1 2X Xr  is the correlation between X1 and X2.  

The semi-partial correlation coefficient (
( )Y Xr

Z
) is the correlation between two variables 

removing the influence of a set of variables from only one variable. Using the previous example, 

the semi-partial correlation between Y and X2 controlling for the association of X1 and X2 is 

expressed as 

2 1 1 2

2 1

1 2

( )
21

YX YX X X

Y X X

X X

r r r
r

r





.     (5) 

The semi-partial correlation coefficient is a scaling of the partial correlation coefficient. For 

example, the semi-partial correlation coefficient in (5) can be re-expressed in terms of a partial 

correlation 
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12 1 1 2

2 1 2 1 1

1 2 1

2

2

( )
2 2

1
1

1 1

YXYX YX X X

Y X X YX X YX

X X YX

rr r r
r r r

r r

  
    
   
  

.   (6) 

In other words, the semi-partial correlation is the partial correlation of Y and X2 given X1 scaled 

by the square root of the variance unaccounted for in Y by X1. It can be seen from (6) that the 

semi-partial correlation is equivalent to the partial correlation when X1 accounts for no variance 

in Y, and the semi-partial correlation is otherwise less than the partial correlation.  

The multiple correlation coefficient (
Y XR

Z
) represents the strength of relationship 

between one variable and a set of other variables. From the previous example, the multiple 

correlation of Y with X1 and X2 is expressed as 

1 2 1 2 1 2

1 2

1 2

2 2

2

2

1

YX YX YX YX X X

Y X X

X X

r r r r r
R

r

 



.     (7) 

When a variable is designated the outcome variable and another set of variables the 

predictors, the strength of relationship between variables can be expressed using regression 

coefficients. If the variables involved in the regression analysis are in their raw metrics, the 

coefficients are unstandardized, meaning they are scaled in terms of the predictor and outcome 

variables. Coefficients can be standardized by transforming variables to have means of 0 and unit 

variances. From previous examples, the standardized regression coefficient ( YX Z ) of X2 

predicting Y conditional on X1 is 

2 1 1 2

2 1

1 2

21

YX YX X X

YX X

X X

r r r

r






.     (8) 

The standardized regression coefficient is a further scaling of the partial correlation coefficient, 

and can be re-expressed as 
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1 1 2 12 1 1 2

2 1 2 1

1 2
1 1 2 1 2

2 2 2

2 2 2 2

1 1 1

1 1 1 1

YX X X YXYX YX X X

YX X YX X

X X YX X X X X

r r rr r r
r

r r r r


       
      

             

.  (9) 

In other words, the standardized regression coefficient represents the partial correlation scaled by 

the ratio of the square root of the variance in Y unaccounted for by X1 to the square root of the 

variance in X2 not accounted for by X1. It should be noted that, unlike partial and semi-partial 

correlations, the standardized regression coefficient can be larger than 1. 

 Another common primary outcome is the proportion of variance explained (R2). This 

statistic quantifies the amount of variability accounted for in an outcome by a set of predictors, 

or, equivalently, the proportion reduction in error variance accounted for in the outcome by the 

predictors. When a model consists of only two variables, R2 is equivalent to the squared 

correlation coefficient ( 2

YXr ). Similarly, R2 for two variables removing the effect of a set from 

both is the squared partial correlation coefficient ( 2

YXr
Z

), for two variables removing the effect of 

a set from one of the variables is the squared semi-partial correlation coefficient (
2

( )Y Xr Z ), and for 

the effect of a set of variables on another variable is the squared multiple correlation coefficient  

( 2

Y XR
Z

). Because R2 is a proportion, it is bounded by 0 and 1. In addition, because the 

standardized regression coefficient can be greater than 1, it should not be interpreted as a 

proportion. 

R2 can be decomposed into effect sizes for the unique and shared contributions of a set of 

variables. If the predictor variables are uncorrelated, the total R2 is the sum of the unique R2 of 

each predictor and the outcome. For example, if variables X1 and X2 are uncorrelated, the squared 

multiple correlation can be expressed as 

1 2 2 1

2 2 2

Y X X YX YXR r r  .     (10) 



8 

 

When the predictors are correlated, the unique contributions of each variable can be obtained by 

subtracting the R2 from a reduced model without the predictor of interest from the R2 from the 

model with both predictors. For example, the unique proportion of variance accounted for by X2 (

2 1

2

( )Y X XR ) is  

2 1 1 2 1

2 2 2

( )Y X X Y X X YXR R r  .       (11) 

2 1

2

( )Y X XR  is equivalent to the squared semi-partial correlation coefficient. The proportion of 

variance in Y shared by X1 and X2 can then be calculated from the zero-order correlation between 

Y and X2 and the squared semi-partial correlation coefficient 

2 2 1

2 2 2

( )shared YX Y X XR r r  .    (12) 

Substituting the definition of the squared semi-partial correlation coefficient from (11) into (12) 

gives 

2 1 2 1

2 2 2 2( )shared YX Y X X YXR r R r   .           (13) 

That is, the proportion of variance accounted for in Y jointly by X1 and X2 is equivalent to the sum 

of the squared zero-order correlations 
1

2

YXr  and 
2

2

YXr  minus the squared multiple correlation of Y 

with X1 and X2.  

Standardized mean differences, correlation coefficients, and proportion of variance 

measures are appropriate effect size measures for many quantities of interest in regression-based 

methods. However, there are some regression-based methods, notably mediation analysis, where 

these measures are not adequate to quantify the quantity of interest. In mediation analysis, the 

primary outcome of interest is often the indirect effect, which is defined as either the difference 

between regression coefficients or the product of regression coefficients. While the component 

regression coefficients have established measures of effect size, the effect size for the indirect 
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effect is not completely captured by those measures. In other words, standardized regression 

coefficients can be estimated for the constituent paths of the indirect effect, but interpreting the 

effect sizes of these coefficients does not necessarily lead to a reasonable interpretation of the 

indirect effect. For example, if a mediation model has an indirect effect consisting of the product 

of two standardized regression coefficients, and the effect size of one coefficient is large and the 

effect size of the other is small, it is not clear the effect size of the indirect effect itself is large or 

small. A reason for this is that effect size measures of the indirect effect components were 

designed to quantify linear relationships defined by a single equation. The most basic 

representation of mediation, however, involves at least three variables and two equations, so it 

should not be unexpected that effect size measures for simpler models do not adequately capture 

a more complex effect.  

 

Mediation Analysis 

 

Mediation analysis is the study of the potential causal pathways through which a 

predictor variable has its effect on an outcome variable. Many natural processes can be described 

in terms of mediation. For example, observing an object in the environment may appear to be an 

instantaneous process, but there are many processes that must occur in order to perceive the 

object. Generally speaking, light must be absorbed by photoreceptors in the eye, and that light 

must be transduced into an electrical signal that travels through the brain to the visual cortex, 

which then must travel to the prefrontal cortex. Therefore, the observation of an object is 

mediated by many lower order processes, and the absence or malfunction of any one of these 

processes may preclude perception of the object. The lower order processes can be further 
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broken down into the functioning of cells and molecules, and, theoretically, further still into an 

infinite causal chain that perfectly explains the phenomenon. In the social sciences, researchers 

often are concerned with phenomena that operate on a much larger scale. For example, is the 

relationship between maternal and child depression mediated by parental involvement? Or, is the 

relationship between leadership style and team success mediated by perceived charisma? These 

are the types of questions that mediation analysis was designed to address.  

Figure 1 provides an example of a simple single-level, three-variable mediation model in 

which all variables are observed. The total effect of a predictor on an outcome variable is given 

by the ordinary least squares (OLS) regression equation 

Y X YX Y XY d X e   ,      (14) 

where Y is the outcome variable, X is the predictor variable, 
Y Xd  is the intercept term, or the 

mean of Y when X = 0, 
YX   is the linear slope coefficient relating X to Y, and Y Xe  is the residual 

error term, where 
2~ (0, )
Y XY X ee N  . The regression coefficient YX  is the total effect, or the 

predicted change in Y for a unit change in X. For some research questions the total effect is of 

primary interest (e.g., the degree to which a drug reduces the risk of heart disease). However, it is 

also possible to examine how the effect of X on Y is transmitted via mediators. The relationships 

among X, M, and Y can be described in a system of two linear regressions. The relationship 

between X and M is expressed as 

M X MX M XM d X e   ,     (15) 

where M is the mediator, M Xd  is the intercept term, MX  is the linear slope coefficient relating 

X to M, and 
M Xe  is the residual, where 

2~ (0, )
M XM X ee N  . The relationships among X, M, and Y 

are expressed as  
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Y MX YX M YM X Y MXY d X M e     ,     (16) 

where Y again is the outcome variable, 
Y MXd  is the intercept term, 

YM X  and 
YX M  are the 

slope coefficients of Y regressed on M controlling for X and on X controlling for M, respectively, 

and 
Y MXe  is the residual, where 

2~ (0, )
Y MXY MX ee N  . Because 

YX M  is the effect of X on Y 

independent of M, it is referred to as the direct effect. The effect of X on Y transmitted via M is 

referred to as the indirect effect.  

For the basic three variable mediation in Figure 1, calculation of the indirect effect 

requires parameter estimates from two of the three regressions outlined in (14) - (16). There are 

two methods that can be used to compute the indirect effect. One calculates the indirect effect as 

the difference between the total effect (
YX ) from (14) and the direct effect (

YX M ) from (16) 

(Baron & Kenny, 1986). Another method calculates the indirect effect as the product of the 

regression coefficients 
MX  from (15) and 

YM X  from (16). In this simple mediation model, the 

two methods yield equivalent indirect effects, but estimates will differ if the outcome is not 

continuous or data are nested (Bauer, Preacher, & Gil, 2006; Krull & MacKinnon, 1999; 

MacKinnon & Dwyer, 1993). Whereas the two approaches both yield unbiased and efficient 

estimates, the product of coefficients approach is preferred because when there is more than one 

indirect effect, YX YX M  will return only the total indirect effect, or the sum of the indirect 

effects through each mediator (Krull & MacKinnon, 1999). The product of coefficients approach 

allows for computation of indirect effects through each mediator (i.e., specific indirect effects; 

Bollen, 1987) as well as the total indirect effect. The definitions of the indirect effect also show 

the relationships among the total, direct, and indirect effects: 

MX YM X YX YX M YX MX YM X YX M            . 
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In other words, the total effect is the sum of the direct and indirect effects. 

The incorporation of multiple mediators and/or covariates into mediation models is a 

straightforward extension of the three-variable model. A model with a single predictor (X) and 

outcome (Y) and two parallel mediators (M1 and M2) is represented in the four equations 

Y X YX Y XY d X e        (17) 

1 1 11 M X M X M XM d X e        (18) 

2 2 22 M X M X M XM d X e       (19) 

1 2 1 2 1 2 2 1 1 21 2Y M M X YX M M YM XM YM XM Y M M XY d X M M e       ,  (20) 

where 
1M X  and 

2M X  are the regression coefficients of M1 and M2 on X, respectively, and

1 2YM XM  and 
2 1YM XM  are the regression coefficients of Y on M1 and M2, respectively, controlling 

for X and the other mediator. A path diagram for this model can be found in Figure 2. There are 

still a single total effect (
YX ) and a single direct effect (

1 2YX M M ) of X on Y as in the three-

variable mediation model, but now two indirect effects of X on Y, one through M1 (
1 1 2M X YM XM  ) 

and one through M2 (
2 2 1M X YM XM  ). It is still true that the indirect effect is equivalent to the 

difference between the total and direct effects (MacKinnon, 2008; Preacher & Hayes, 2008), 

therefore 

1 1 2 2 2 1 1 2

1 1 2 2 2 1 1 2
.

M X YM XM M X YM XM YX YX M M

YX M X YM XM M X YM XM YX M M

     

     

  

   
 

This means that the sum of the indirect effects through M1 and M2 is equivalent to the total 

indirect effect. This formulation also means that any correlation between the mediators is 

incorporated into the specific effects.  
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The inclusion of covariates is also a straightforward extension of the single or multiple 

mediator models in (14) - (20). For example, adding a covariate Z to a single mediator model is 

expressed as 

Y XZ YX Z YZ X Y XZY d X Z e         (21) 

M XZ MX Z MZ X M XZM d X Z e            (22) 

Y MXZ YX MZ YM XZ YZ XM Y MXZY d X M Z e       ,     (23) 

where 
YZ X , MZ X , and YZ XM  are the coefficients for the regression of Y on Z controlling for 

X, M on Z controlling for X, and Y on Z controlling for M and X, respectively. If Z is correlated 

with X and/or M, the estimates of 
YX Z , 

YX MZ , 
MX Z , and 

YM XZ  from (21) - (23) would be 

expected to differ from the estimates obtained in (14) - (16).  

Much of the progress in mediation analysis has been concerned with inference regarding 

the indirect effect. In their seminal work on mediation analysis, Baron and Kenny (1986) first 

proposed a joint significance test, according to which an indirect effect was considered 

significantly different from zero if both 
MX  from (15) and YM X  from (16) were significantly 

different from zero. This method, termed the causal steps approach, also required YX M  from 

(14) to be significant as well, which precluded the existence of indirect effects when the total 

effect was not significantly different from zero. It is possible, however, for non-zero indirect 

effects to exist in the absence of a significant total effect. These are cases of inconsistent 

mediation, or suppression. More generally, suppression is considered to occur when the 

magnitude of the direct or indirect effect is greater than the total effect, which also means the 

direct and indirect effects are of different signs (MacKinnon, Krull, & Lockwood, 2000). That is, 

suppression is said to occur when the effect of the predictor on the outcome is stronger, directly 
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or indirectly, when incorporating the mediator than the effect of the predictor on the outcome 

alone. If one considers indirect effects only in circumstances where suppression is not evident, 

then the causal steps approach would be applicable, although other methods for determining the 

indirect effect have been shown to be superior in terms of power and Type I error rate 

(MacKinnon et al., 2004). However, if one considers indirect effects in circumstances where 

suppression is evident, then other methods must be employed. Specifically, this requires 

hypothesis testing for estimates of the indirect effect. The total and direct effects are OLS 

regression coefficients, so their sampling distributions are asymptotically normal, allowing 

hypothesis testing based on symmetric CIs. The indirect effect, however, is the product of the 

regression coefficients 
MX  and 

YM X , the distribution of which is nonnormal (Aroian, 1947). 

Current methods for constructing CIs for the indirect effect include bootstrap CIs (Bollen & 

Stine, 1990; MacKinnon, Lockwood, & Williams, 2004; Shrout & Bolger, 2002), Monte Carlo 

CIs (MacKinnon et al., 2004), Bayesian credible intervals (Yuan & MacKinnon, 2009), and a 

method of constructing CIs based on the distribution of product terms (MacKinnon, Fritz, 

Williams, & Lockwood, 2007; Tofighi & MacKinnon, 2011). Although these developments in 

inference for the indirect effect have been crucial for the advancement of mediation analysis, less 

research has been devoted to establishing a general effect size measure for the indirect effect. 
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Chapter II 

 

Effect size measures in mediation analysis 

 

Success rate difference 

 

A recently developed measure of effect size proposed by Kraemer (2014) interprets the 

indirect effect as a standardized mean difference, or the success rate difference (SRD). In 

general, SRD for two groups sampled from populations 1 and 2 is defined as 

1 2 2 1( ) ( )SRD P T T P T T     ,    (24) 

where T1 and T2 are individuals sampled from populations 1 and 2, respectively, 1 2( )P T T  is the 

probability that the individual sampled from population 1 has a response that is clinically 

preferable to the individual sampled from population 2, and 2 1( )P T T  is the probability that the 

individual sampled from population 2 has a response that is clinically preferable to the individual 

sampled from population 1. If all the individuals from population 2 have a response preferable to 

those in population 1, then SRD = -1. If the converse is true, then SRD = 1. This can be re-

expressed in terms of Cohen’s d: 

2 1
2

d
SRD

 
   

 
,     (25) 

where Φ( ) is the cumulative standard normal distribution function, and d is the standardized 

mean difference between groups (Cohen’s d). Kraemer (2014) extended (25) as a measure of 

effect size for the indirect effect when the independent variable is dichotomous (e.g., group 
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assignment). The effect size for the indirect effect is the difference between the overall SRD and 

the SRD under the null hypothesis. The overall SRD is 

   

*

1 2 3

2 2

2 3 1 2 3 2

2 1
0.5 0.5

Overall

b b M b M
SRD

b b P V b b P V

 
     

      

,  (26) 

where ΔM is the difference in the means of the mediator between groups, *M  is the mean of the 

mediator across groups, P1 and P2 are ratios of mediator variance in groups 1 and 2, respectively, 

to the average mediator variance across groups, V is the error variance in each group, B1 is the 

difference in the outcome between the focal group and control group controlling for the other 

variables (i.e., the direct effect of group assignment), B2 is the linear effect of the mediator on the 

outcome controlling for the other variables, and B3 is the interaction effect of group assignment 

and the mediator. It should be noted that SRD was developed in an approach to mediation 

modeling known as the MacArthur Framework, which specifies an interaction between the 

independent variable and the mediator. The SRD under the null hypothesis is 

  

*

1 3

2

2 3

2 1

2 0.25
Null

b b M
SRD

b b V

 
 

   
  

 

,    (27) 

The mediation effect size (MedES) is the difference between the overall SRD and SRD under the 

null: 

      

* *

1 2 3 1 3

2 2 2

2 3 1 2 3 2 2 3

2 2
0.5 0.5 2 0.25

b b M b M b b M
MedES

b b P V b b P V b b V

  
                     

,  (28) 

CIs for MedES can be formed using a bootstrapping procedure. MedES has been demonstrated in 

cases of a binary M and continuous Y, binary M and binary Y, and binary M and any form of Y 

(Kraemer, 2014). It is theoretically possible for MedES to be applied in scenarios with multiple 
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treatment groups, multiple outcomes, and multiple mediators, although its properties have not 

been examined in those cases. 

MedES has several properties that limit its usefulness as a general measure of effect size 

in mediation analysis. If the goal of the researcher is to make strong causal inferences regarding 

the indirect effect, then an independent variable based on random assignment is desirable. 

However, the independent variable in many studies is continuous, and MedES would not be 

applicable. MedES could technically be applied if the continuous independent variable were 

dichotomized; however, in addition to the disadvantages inherent to dichotomizing continuous 

variables in general (MacCallum, Zhang, Preacher, & Rucker, 2002), the dichotomized variable 

would not be equivalent to a variable based on random assignment, and, therefore, strong causal 

arguments could not be made. In addition, the specification of the interaction term assumes non-

additivity in the regression of the outcome on the predictor and mediator, an assumption that may 

not be appropriate. Although it can be argued that the mediation formulations in (14) - (23) 

impose an assumption of additivity, interaction terms can be added to any of equations to relax 

the assumption. 

 

Ratio measures 

 

The ratio measures of effect size measures in mediation analysis quantify the relative 

magnitudes of the indirect effect to either the total effect or direct effect. One often used measure 

is the proportion of the mediated effect ( MP ), which is the ratio of the magnitude of the indirect 

to the total effect (Alwin & Hauser, 1975). In terms of the coefficients in Figure 1, the proportion 

of the mediated effect is 
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M

ab
P

c
 .     (29) 

Since the total effect is the sum of the indirect and direct effects, this ratio can be expressed in 

terms of the direct effect as 

1 1M

c
P

c


   .     (30) 

A similar measure proposed by Sobel (1982) is the ratio of the indirect effect to the direct effect, 

or RM : 

M

ab
R

c



.     (31) 

There are several properties of PM and RM that limit their usefulness as general effect size 

measures for indirect effects. Mackinnon, Warsi, and Dwyer (1995) demonstrated via simulation 

studies that PM  is unstable in several parameter combinations, has excessive bias in small 

samples, has large variance over repeated samples, and stabilizes only in large samples (N > 

500). Preacher and Kelley (2011) identified several additional limitations. First, PM can give 

misleading estimates of practical importance because it is possible to obtain relatively high 

values of PM with relatively small total and indirect effects, and relatively small values of PM 

with relatively large total and indirect effects. For example, consider two studies, one where 

.01ab  , ˆ .02c  , and ˆ .5MP  , and the other where .2ab  , ˆ .6c  , and ˆ .3MP   (all estimates are 

statistically significant). Although PM indicates that the effect size of the indirect effect from first 

study was larger than the second, it would be difficult to say the indirect effect from the first 

study was more meaningful. Second, although PM is referred to as a proportion, it does not 

behave as a proportion; it can assume negative values or exceed 1 depending on the relationship 

of the total and direct effects. Third, focusing on the overall PM could lead the researcher to 
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neglect additional mediators. If the PM is large, it may be that there are other correlated mediators 

that could explain a significant amount of variance but would likely not be included. Fourth, RM, 

although not specifically referred to as a proportion, has the same limitations as PM because it is 

based upon the same information. 

 

Kappa squared 

 

In their review of effect size measures in mediation analysis, Preacher and Kelley (2011) 

proposed two new measures. One was the ratio of the observed indirect effect to the maximum 

possible indirect effect that could have been observed given the study design ( 2 ). The 

maximum possible indirect effect is computed as the product of the maximum possible values of 

MX  from (15) and YM X  from (16) permissible to maintain a positive definite variance-

covariance matrix. Preacher and Kelley (2011) showed that for a three-variable mediation model 

with variance/covariance matrix 

 

, 

 

where 2

X , 2

M , and 2

Y  are the variances of X, M, and Y, respectively, and 
MX , 

YX , and 
YM

are the covariances of X and M, X and Y, and M and Y, respectively, the bounds for 
MX  holding 

the total effect and YM X  constant are 

2 2 2 2 2 2

2 2

YM YX M Y YM X Y YX

MX

X Y

       


 

    
 
  

         (32) 

2

2

2

X MX YX

MX M YM

YX YM Y

  

  

  

 
 

   
 
 
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and the bounds for 
YM X  holding the total effect and 

MX  constant are 

2 2 2

2 2 2

X Y YX

YM X

X M MX

  


  

  
  

  

        (33) 

The maximum possible indirect effect ( ( )MX YM XMax   ) is then 

( ) ( ) ( )MX YM X MX YM XMax M M     .   (34) 

The sign of the observed indirect effect determines whether to use the upper or lower bound 
MX  

and YM X . 2  is then the ratio of the observed indirect effect to the maximum possible indirect 

effect, 

2

( )

MX YM X

MX YM XMax

 


 
 .               (35) 

 There are limitations of 2  that restrict its utility as a general measure of effect size for 

indirect effects. For illustrative purposes and without loss of generality, variables will be 

assumed to be standardized with unit variance. Two of these limitations were identified by Wen 

and Fan (2015). The first is that 2  is not a monotonic function in raw or absolute value of the 

indirect effect. This means that as the indirect effect increases, the effect size corresponding to 

that indirect effect does not necessarily increase. This could make comparisons of 2  across 

studies problematic because equivalent effect sizes do not necessarily correspond to equivalent 

indirect effects. The second, and more problematic, limitation is that the maximum possible 

indirect effect is unbounded in situations where either MXr  or YMr  is not held constant such that 

the magnitude of the indirect effect becomes infinitely large as MXr approaches 1. The correlation 

matrix will remain positive definite as  approaches 1 if YMr  is allowed to approach the value 

of YXr . A limitation not noted by Wen and Fan (2015) is that 2  as currently formulated does not 

MXr
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hold 
YM X constant when computing the bounds for 

MX . In fact, it is the correlations between X 

and Y (
YXr ), and M and Y (

YMr ) that are held constant. It is not possible to hold 
YM X  and 

YX  

constant when computing bounds for 
MX , because 

YM X  is determined in part by the value of 

MX , as evident by the formula for 
YM X  in (8). In addition, the current formulation 

underestimates the maximum value of 
YM X . The maximum value of 

YM X  was derived by first 

obtaining the bounds of the correlation coefficient 
YMr  with 

MXr  and 
YXr  fixed, then scaling by 

the ratio of the standard deviations of Y to M. However, 
YM X  achieves substantially larger 

values when 
MXr is maximized as opposed to 

YMr . This is also evident from the formula for 

YM X  in (8) because as X approaches its maximum correlation with M of 1, the denominator of 

(8) approaches 0, making the indirect much larger than could be possible by maximizing 
YMr .  

2  may still be a useful measure of effect size for the indirect effect provided some 

additional constraints are applied. Specifically, it would be necessary to fix either MXr or YMr to a 

specific value to limit the size of the maximum possible indirect effect. This may be possible in 

situations where the relationship between the predictor and mediator or mediator and outcome is 

well established by prior research. For example, a treatment may be designed to influence a 

mediator that has a well-established relationship with an outcome of interest. It may be possible 

then to maximize 
MX  (e.g., the maximum effect the intervention could have had on the 

mediator) with the mediator-outcome relationship fixed to its sample value. 2  would then be 

defined as  

2

( ) ( ) ( | )

MX YM X MX YM X

MX YM X MX YM X MXMax Max Max

   


    
 


,      (36) 
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( | )YM X MXMax    is the maximum value of 
YM X  when 

MX  is maximized holding the total 

effect and 
YMr  constant. However, applying this logic to experimental or quasi-experimental 

studies where the relationships between the predictor and mediator or the mediator and outcome 

are not well established could be problematic. 

 

Residual based index 

 

The second effect size measure proposed by Preacher and Kelley (2011) is a residual-

based index that compares the variance explained in M by X and the variance explained in Y 

jointly by M and X to the total variability of M and Y. This was based on a method proposed by 

Berry and Mielke (2002) for an effect size measure (M) in multivariate multiple regression. In 

this method, sums of Euclidean residuals from least absolute deviation (LAD) regression are 

calculated for models conforming to null and alternative hypotheses. The residual sum for the 

null, or reduced, regression model is 

0

1/2
21/2

2

0 0

1 1 1 1 1

mN r N r

ik ik ij jk

i k i k j

e y x 
    

   
          

     ,   (37) 

where subscript i refers to the ith observation from a sample of size N, subscript k refers to the kth 

of r dependent variables yik, subscript j refers to the jth of m0 covariates xij predicting the kth 

dependent variable, and 
0 jk  are the regression coefficients. The residual sum for the alternative, 

or full, regression model is given by  

1

1/2
21/2

2

1 1

1 1 1 1 1

mN r N r

ik ik ij jk

i k i k j

e y x 
    

   
          

     .   (38) 
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The models in (37) and (38) differ in the number of covariates under the null and alternative 

hypotheses. The effect size (
BMM ) is calculated as the ratio of sums of squared absolute 

deviations from the alternative to null model and subtracted from 1 

1/2

2

1

1 1

1/2

2

0

1 1

1

N r

ik

i k

BM
N r

ik

i k

e

M

e

 

 

 
 
  
 
 
 

 

 

.     (39) 

In the special case of multiple regression with a single outcome variable, the effect size measure 

reduces to  

1

1

0

1

1

N

ik

i
BM N

ik

i

e

M

e





 



.      (40) 

Parameters in LAD regression are estimated by minimizing the sums of absolute deviations, 

which reduces the influence of extreme observations compared to ordinary least squares (OLS) 

regression (Berry & Mielke, 2002).  

 Preacher and Kelley (2011) proposed an extension to MBM where the null and alternative 

models correspond to regression equations in mediation analysis. The residual sum under the null 

hypothesis in a simple three-variable mediation model corresponds to the sum of absolute 

residuals when X explains no variance in M, 

0

0 0

1 1 1 1
i j

mN N N

M i ij M i

i i j i

e M x M M
   

       ,        (41) 

and the sum of residuals when X and M explain no variance in Y, 

0

0 0

1 1 1 1
i j

mN N N

Y i ij Y i

i i j i

e Y x Y Y
   

       ,     (42) 
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where M  and Y  are the means of M and Y, respectively. The residual sum under the limiting 

alternative hypothesis corresponds to the sum of residuals when that X explains all the variance 

in M, 

1

1 1 .

1 1 1 1
i j

mN N N

M i ij M i M X i

i i j i

e M x M d aX
   

        ,   (43) 

and the sum of residuals when X and M jointly explain all the variance in Y, 

1

1 1

1 1 1

. . .

1 1 1

' ,

i j

mN N

Y i ij Y

i i j

N N N

i Y X i i Y M i i Y MX i i

i i i

e Y x

Y d cX Y d dM Y d c X bM


  

  

 

         

  

  

  (44) 

The residual-based effect size measure Γ is then the ratio of the residual sum under the 

alternative hypothesis to the residual sum under the null subtracted from 1,  

 

 

1 1

1

0 0

1

1
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M Y
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i

e e

e e






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




.     (45) 

  has several desirable properties for an effect size measure.   has a meaningful 

interpretation as a proportion bounded by 0 and 1 because the residual sum in the numerator of 

(45) will always be smaller than the denominator when suppression is not evident.   is also 

independent of sample size, and bootstrap CIs can be estimated. To further aid in the 

interpretability of  , it is often advisable to standardize variables to unit variance, as  can be 

influenced by the scales of M and Y .  

There are several complicating factors that limit   as a general measure of effect size in 

mediation. One is that   can return a non-zero effect size when the indirect effect is zero. This 

can occur if X explains variance in M, but M and X explain no variance in Y, or M does not 

explain variance in Y controlling for X (i.e., 0YM X  ). This suggests that the null hypothesis 
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that X explains no variance in M and X, and M explain no variance in Y, is not the only null 

hypothesis under which the indirect effect is zero, and formulations for additional null 

hypotheses may need to be incorporated to cover all circumstances that correspond to a null 

indirect effect. In addition, it is possible for   to be greater than 1 in cases of suppression, 

meaning the interpretation of  as a proportion does not extend to these circumstances.  

 

Proportion of variance explained 

 

R2 measures in mediation analysis aim to quantify the proportion of variance explained in 

the criterion that can be attributed to both the predictor and the mediator but to neither alone (De 

Heus, 2012; Fairchild, MacKinnon, Taborga, & Taylor, 2009; MacKinnon, 2008; Preacher & 

Kelley, 2011). One approach to quantifying this variance was developed by Fairchild and 

colleagues (2009) where the variance in Y jointly accounted for by M and X is 

2 2 2 2( )med MY Y MX XYR r R r   ,     (46) 

where 2

MYr  is the squared correlation between M and Y, 2

YXr  is the squared correlation between X 

and Y, and 2

Y MXR  is the squared multiple correlation of Y with M and X. Equation (46) is 

equivalent to the result derived in (13). To isolate variance accounted for by M and X jointly, the 

proportion of variance in Y explained by X is added to the proportion of variance in Y explained 

by M. Since the addition of these probabilities counts their overlap twice, subtracting the total 

variance accounted for in Y by M and X leaves only the area of joint overlap. 

 The 2

medR  method for obtaining shared variance is based on a multiple regression 

framework where a single equation represents the relationships among variables. However, this 
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may not be an appropriate framework in which to determine shared variance in mediation 

analysis. Consider the mediation model presented in Figure 1. According to Fairchild and 

colleagues (2009), the proportion of variance accounted for in Y by X and M jointly is given in 

(46). However, as shown in (14) - (16), a mediation model consists of at least two equations 

specifying the causal ordering of variables (i.e., X causes M, X and M cause Y). That is, the 

causal ordering of variables imposes an assumption that M and Y are mutually dependent on X. 

This assumption implies that the observed correlation between M and Y is not the simple 

product-moment correlation of the two variables, but a composite of their correlation conditional 

on X and correlation due to their mutual dependence on X (Duncan, 1970; Wright, 1960). In path 

analysis literature, the conditional correlation is often referred to as “true” correlation, and 

correlation due to mutual dependence is referred to as “spurious” correlation (Blalock, 1962; 

Dillon & Goldstein, 1984; Simon, 1957). It should be noted that the designation of “true” and 

“spurious” correlation is due purely to the model’s assumptions about the relationships among 

variables. That is, the observed correlation matrix does not make distinctions about which 

correlations are “true” and which are “spurious”.  

The assumptions of several models are illustrated in Figure 3. Panel A represents a model 

where all variables are simply correlated (i.e., no variable is a cause of another variable). In this 

case, while it is possible to obtain correlations among variables conditional on another variable, 

no assumptions are imposed regarding which relationships are conditional, so each observed 

correlation would be considered a “true” correlation. Panel B represents a multiple regression 

model where X and M are causes of Y. This model assumes the relationship between X and Y is 

conditional M and that the relationship between M and Y is conditional on X. These conditional 

relationships would be considered the “true” correlations. However, it is possible for these 
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conditional relationships to differ from their respective observed correlations. If the “true” 

correlations differ from their respective observed correlations, the difference would be 

considered due to “spurious” correlation. In this case, “spurious” correlation arises from the 

correlation between X and M. It follows that for a multiple regression model, the observed 

correlations and “true” correlations would be equivalent when X and M are uncorrelated. Panels 

C and D represent simple three-variable mediation models where X causes M, and X and M cause 

Y. For both models, the model assumes the relationship between X and M is unconditional on any 

other variable, so the observed correlation would be considered “true” correlation. However, the 

model also assumes the relationship between X and Y is conditional on M, and the relationship 

between M and Y is conditional on X. Panel C represents a scenario where there is no relationship 

between M and Y conditional on X. In this case, although the observed correlation between M 

and Y would be non-zero, there would be no “true” correlation from the perspective of the model 

assumptions, meaning the relationship between M and Y was entirely “spurious”. In terms of 

mediation analysis, the indirect effect for this model would be zero because none of the effect of 

X on Y is transmitted via M. Panel D represents a scenario where there is no relationship between 

Y and X conditional on M. In this case, the observed correlation between M and Y would be 

considered “true” correlation because M is the only cause of Y, precluding the presence of 

“spurious” correlation due to mutual dependence of M and Y on X.  

To illustrate how “spurious” correlation is quantified in mediation analysis, consider the 

model in Figure 4 (adapted from Dillon & Goldstein, 1984) in which all variables are 

standardized with unit variance. X2 and X1 have direct effects on the outcome Y, as well as 

indirect effects on Y through the mediator M. In this example, the observed correlation between 
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X2 and M is inflated due to the correlation of X2 and X1. Specifically, the observed correlation 

between X2 and M is 

2 2 1 2 1 1 2MX MX X X X MX Xr r   ,     (47) 

where 
1 2X Xr  is the correlation between X1 and X2, 

1 2MX X and 
2 1MX X are the standardized 

regression coefficients for the regressions of X1 predicting M controlling for X2, and X2 

predicting M controlling for X1, respectively. 
2 1MX X  would be considered “true” correlation 

between X2 and M, and 
1 2 1 2X X MX Xr   would be considered “spurious” correlation. When 

considering the observed correlation between M and Y, additional “spurious” correlations among 

the variables need to be accounted for: 

1 2 1 2 1 2 2 1 2 1 1 2

2 1 2 1 1 2 1 2 1 2
,

YM YM X X MX X YX MX MX X YX MX X X

MX X YX MX MX X YX MX X X

r r

r

    

   

  

 
   (48) 

where 
1 2YM X X , 

1 2YX MX , and
2 1YX MX are the coefficients of the regression of Y on M, X1, and X2, 

and 
1 2MX X  and 

2 1MX X are the coefficients of the regression of M on X1 and X2. 
1 2YM X X would 

be considered “true” correlation and all other terms “spurious” correlation. 

In the simple three variable mediation model in Figure 1, the only “spurious” correlation 

to account for is that between M and Y, 

YM YM X MX YX Mr     ,     (49) 

where MX  is the regression coefficient relating M and X, YM X  is the regression coefficient for 

the regression of Y on M controlling for X, and YX M  is the regression coefficient for the 

regression of Y on X controlling for M. Squaring YMr to calculate the proportion of variance 

explained in Y by M in (48) thus yields an estimate that is a mixture of the “true” proportion of 
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variance in Y accounted for by M, and a “spurious” proportion of variance due to their mutual 

dependence on X. 

This can be seen more clearly when the relationship between Y and M is completely 

accounted for by X as in Panel C of Figure 3 (i.e., 0YM X  ). The proportion of variance in Y 

accounted for by M is  

2 2

2

2 2

( )

(0 )

.

YM YM X MX YX M

MX YX M

MX YX M

r   

 

 

 

 



     (50) 

This illustrates that even when the relationship between Y and M is 0 when controlling for X, Y 

and M appear to be correlated via an entirely “spurious” correlation. Therefore, the proportion of 

variance in Y explained by M in the case of simple three-variable mediation adjusted for the 

“spurious” correlation is 

2 2( )YM X YM MX YX Mr    .     (51) 

Inserting this result into (51) gives an adjusted version of 2

medR  ( 2*

medR ) 

2* 2 2 2( ) ( )med YM MX YX M Y MX XYR r R r     ,    (52) 

which can be interpreted as the joint variance accounted for in Y by M and X after correcting for 

“spurious” correlation induced by the ordering of variables.  

 This adjustment accounts for some contradictory results obtained using the Fairchild et 

al. (2009) 2

medR  formulation. Specifically, there are circumstances when 2

medR  returns a non-zero 

value when the indirect effect is in fact zero (Lindenberger & Pötter, 1998). In the three-variable 

mediation model in Figure 1, this occurs when 0MX   and 0YM X   (i.e., YM MX YXr r r  ). In 

this case, 2

medR  becomes  

2 2 2 2 2 2 2 2

.( ) ( )med MY Y MX XY MY XY XY MYR r R r r r r r       .    
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Not only does this show that 2

medR  returns non-zero effect sizes when the indirect effect is in fact 

0, but also implies that 2

medR  overestimates the variance in Y accounted for jointly by X and M 

when 0YM X  . To illustrate the effect of correcting for “spurious” correlation, consider the 

mediation model in Figure 1 with the correlation matrix  

1 .7 .5

.7 1 .6

.5 .6 1

 
 
 
  

, 

where the first column contains the correlations with X, the second column correlations with M, 

and the third column correlations with Y. 2

medR  unadjusted for spurious correlation returns the 

proportion of variance in Y accounted for jointly by M and X as 

2 2
2 2 2

2

.6 .5 2 .6 .5 .7
.6 .5 0.2375

1 .7
medR

    
   


. 

However, because 
YM MX YXr r r   the estimate of 

YMr  is inflated by “spurious” correlation. The 

proportion of variance in Y accounted for by M accounting for spuriousness is 

2

2

2

.5 (.7)(.6)
.6 .7 .2403

1 .7
YM X

 
    

 
. 

Substituting the adjusted value of 
2

YMr into the 2

medR  formula gives 

2 2
2* 2

2

.6 .5 2 .6 .5 .7
.5 .2403 0.1177

1 .7
medR

    
   


. 

Contrasting this result using the value of 
2

YMr without accounting for spuriousness (.2375) shows 

that the variance in Y jointly explained by M and X can be substantially inflated if the ordering of 

variables is not taken into account. 
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A circumstance in a three-variable mediation model where 2

medR  would not need to be 

adjusted is when the “spurious” correlation is zero (i.e., 0MX YX M   ). This circumstance is only 

possible when either 0MX  , 0YX M  , or 0MX YX M   . Because mediation is not in 

evidence when 0MX  , the only circumstance under which “spurious” correlation would not 

need to be accounted for is when 0YX M  . In other words, the unadjusted 2

medR  formula is 

appropriate only when the direct effect of X on Y is zero.  

 Adjusting the 2

medR  formula for “spurious” correlation results in a noteworthy 

interpretation for the variance explained in Y jointly by M and X. Consider the previous three-

variable mediation example. Calculating the indirect effect of X on Y through M gives 

2

.6 .7 .5
.7 .3431

1 .7
MX YM X 

 
  


. 

Squaring this result yields the value .1177, the same value obtained using 2*

medR  in (52). In other 

words, for three-variable mediation, the standardized squared indirect effect is equivalent to the 

variance in Y jointly explained by M and X, 

2* 2 2 2 2 2( ) ( )med YM MX YX M Y MX XY MX YM XR r R r        .    (53) 

This result is commensurate with the interpretation of the indirect effect as a coefficient whereby 

a one-unit change in X results in change in Y through the mediator M (MacKinnon, 2008). For 

standardized variables, a standard deviation change in X results in a change in standard 

deviations of Y through M, which, when squared, gives the variance in Y explained by X 

indirectly though M. In this sense, the standardized squared indirect effect functions in the same 

manner as a standardized regression coefficient, except that the squared standardized indirect 

effect is confined to the variance explained jointly by M and X. 
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 Equation (53) suggests that to obtain an R2 effect size measure for the indirect effect, one 

standardizes X, M, and Y, squares the resulting regression coefficients, and computes the 

standardized squared indirect effect ( ). Whereas this is evident for the special case of three-

variable mediation, it is unclear if the square of products of regression coefficients are always 

equivalent to the joint variance accounted for in an outcome by a set of predictors and mediators. 

It is therefore necessary to establish whether the squared product of these squared regression 

coefficients represents joint variance explained. It should be reiterated that standardized 

regression coefficients can be greater than 1, so the squared standardized regression coefficients 

should not be considered proportions. That is, squared path coefficients do not function as 

probabilities like squared correlation coefficients (or squared partial or semi-partial correlation 

coefficients). However, it should be also reiterated that joint variance explained can be negative, 

and therefore is also not a proportion (Cohen, Cohen, West, & Aiken, 2003), so the components 

of joint variance explained need not function strictly as probabilities.  

Smith (1981) showed that the variance explained by squared path coefficients is related 

to that explained by the squared semi-partial correlation coefficients. For the mediation model in 

Figure 1, the equation for the squared semi-partial correlation of Y and M with X removed from 

M is  

2
2

( ) 2

( )

1

YM X YX M MX
Y M X

MX

r r r
r

r





.      (54) 

The squared standardized regression coefficient represents a scaling of the squared semi-partial 

correlation by the proportion of variance in M unexplained by X, 

2

( )2

. 21

Y M X

YM X

MX

r

r
 


.     (55) 
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This shows that the squared path coefficient represents a scaling of the unique proportion of 

variance in Y accounted for by X controlling for M. To demonstrate that the product of squared 

regression coefficients represents joint variance explained, it is useful to first consider the 

following interpretation of the squared multiple correlation coefficient: 

1 2 1 1 2 1 1 2 1

2 2 2 2

... ( ) ( ... )...
p p p pY X X X X YX Y X X Y X X X XR r r r
 

   .    (56) 

This means that the squared multiple correlation between an outcome Y and p predictor variables 

is equivalent to the sum of the squared correlation of the outcome with the first predictor and the 

squared semi-partial correlations of the outcome with each subsequent predictor, partialing out 

the effects of the prior predictors. A general formula for the squared regression coefficient for the 

unique variance in Y accounted for by Xp partialing out the effects of the other predictors is 

1 2 1

1 2 1

1 2 1

2

( ... )2

... 2

...1

p p

p p

p p

Y X X X X

YX X X X

X X X X

r

R
 








.    (57) 

Multiplying both sides of (57) by the right hand denominator shows that the squared semi-partial 

correlation is equivalent to 

1 2 1 1 2 1 1 2 1

2 2 2

( ... ) ... ...(1 )
p p p p p pY X X X X YX X X X X X X Xr R

  
  .   (58) 

Substitution of this result into (56) yields 

1 2 1 1 2 1 2 1 1 2 1 1 2 1

2 2 2 2 2 2

... ... ...(1 ) ... (1 )
p p p p p pY X X X X YX YX X X X YX X X X X X X XR r R R 
  

      ,  (59) 

where each 1p   squared multiple correlation on the right hand side of the equation can be 

expressed in terms of squared standardized regression coefficients. Multiplying terms in (59) 

gives 

1 2 1 1 2 1 1 2 1

2 1 2 1 1 2 1 1 2 1

2 2 2 2

... ...

2 2 2 2

... ...

...

... .

p p p p p

p p p p p p

Y X X X X YX YX X YX X X X X

YX X X X YX X X X X X X X X X

R r

r R

 

 

 

 

   

  
  (60) 
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Considering the terms on the right hand side of (60), the squared coefficients on the left represent 

the scaled unique associations between the outcome and each of the p predictors partialing out 

the effects of prior predictors, and the products of squared coefficients on the right represent the 

shared variance components of the squared multiple correlation. Because each squared multiple 

correlation can be expressed in terms of squared semi-partial correlations, and the squared semi-

partial correlations, in turn, can be expressed in terms of squared regression coefficients, it 

follows that the joint variance in an outcome accounted for by a set of predictors can be 

expressed as the product of squared standardized regression coefficients. 
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Chapter III 

 

General formula for    

 

A general formula for obtaining standardized squared indirect effects is derived using a 

matrix method developed by Bollen (1987). For recursive models, the B matrix can be expressed 

in general terms as 

 
MX M

YX YM

 
 


 
  

0 0 0

B B B 0

B B 0

,     (61) 

where B is a m m  matrix of standardized regression coefficients, 
MXB  is a q p  partition of B 

of regression coefficients relating the p predictors to the q mediators, 
YXB  is a r p  partition of 

B of regression coefficients relating the predictors to the r outcomes controlling for the 

mediators, YMB  is a r q  partition of B of regression coefficients relating the mediators to the 

outcomes controlling for the predictors, and MB  is a q q  partition of B of regression 

coefficients relating the mediators. Because there are no regression coefficients relating 

predictors to other predictors or outcomes to other outcomes (some predictors or outcomes 

would then be considered mediators), the upper left p p  and lower right r r  submatrices are 

0. The MB  submatrix has zeros along its diagonal, and, whereas all elements of MXB , YXB , and 

YMB  may only appear in the lower or upper triangle, elements of MB  may be above or below the 

diagonal depending on the direction of relationships among mediators. In order for the model to 
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remain recursive, however, it must be possible to arrange the rows and columns of 
MB  to yield a 

lower triangular matrix with 0 diagonal. For example, 

2 1

1 2

1 3 2 3

0 0

0 0

0

M M

M M M

M M M M

B

B

B B

 
 

  
 
 

B  

is non-recursive. A matrix of total effects T can be derived from B as 

1 1 1

1 1

= ( ) (( ) ) ( )

(( ) (( ) )

MX M MX M

YX MX YM YM M MX YM YM M

  

 

 
 

      
 
        

0 0 0

T I B I = B I B I B I B I 0

B B B B I B I)B B B I B I 0

, (62) 

where I is the identity matrix. This illustrates the potentially large number of direct and indirect 

effects possible if a model has multiple predictors, mediators, and outcomes. The matrix of 

indirect effects IIND can be calculated by subtracting the coefficient matrix B from T: 

1 1 1

1 1

= ( ) (( ) ) ( )

(( ) ) (( ) )

IND M MX M M

MX YM YM M MX YM M

  

 

 
 

       
 
      

0 0 0

I I B I B = I B I B I B I B 0

B B B I B I B B I B I 0

, (63) 

The four non-zero partitions in IIND can consist of indirect effects. The partition in the first 

column, second row of IIND consists of the indirect effects of a set of predictor variables on a set 

of mediators through another set of mediators. The partition in the second row, second column of 

IIND consists of the indirect effects of a set of mediators on another set of mediators through 

another set of mediators. The partition in the third row, second column consists of the indirect 

effects of a set of mediators on the outcomes through another set of mediators. Finally, the 

partition in the third row, first column represents the indirect effects of a set of predictors on a set 

of outcomes through a set of mediators.  

The indirect effects contained in IIND in (63) represent the total indirect effects. That is, 

they represent the sums of specific indirect effects. Bollen (1987) proposed a method for 
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obtaining these specific indirect effects from the coefficient matrix B. To omit paths through 

specific mediators, the rows and columns of B associated with those mediators are set equal to 0.  

This can be accomplished by premultiplying B by an elementary operator that has diagonal 

elements corresponding to the omitted mediators set to zero. Calculating IIND from this modified 

B matrix gives specific indirect effects. 

Bollen’s method for obtaining total and specific indirect effects can be extended to obtain 

matrices of total standardized squared indirect effects ( tot
YMX

) and specific standardized squared 

indirect effects ( sp
YMX

), where superscripts of   denote the type of standardized squared indirect 

effect (e.g., total, specific, etc.) and subscripts denote the variables utilized in estimating the 

standardized squared indirect effect. This can be accomplished by employing the procedure 

outlined in (62) and (63) and replacing the coefficient matrix B with a matrix of squared 

coefficients B*. This matrix B* is computed by taking the Hadamard square of the B matrix 

 * 2 2

2 2

MX M

YX YM

 
 

 
 
  

0 0 0

B B B B B 0

B B 0

,    (64) 

where each partition of B* contains squared regression coefficients. The matrix of tot
YMX

 ( tot

YMX
 ) 

can then be calculated 

2 1 2 2 1 2

2 2 2 2 1 2 2 2 1

(( ) ) ( )

(( ) ) (( ) )

tot

M MX M M

MX YM YM M MX YM M

 

 

 
 

     
 
      

0 0 0

I B I B I B I B 0

B B B I B I B B I B I 0

YMX .  (65) 
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Special case of two simultaneous mediators 

 

 Consider the mediation model shown in Figure 2 in which there is one predictor variable 

X, two simultaneous mediators M1 and M2, and one criterion Y. If all variables are correlated, and 

there is no directional relationship between the mediators (i.e., one does not predict the other), 

the joint variance accounted for in Y by M1, M2, and X can be decomposed into 1) the joint 

variance in Y accounted for by X and M1, 2) the joint variance in Y accounted for by X and M2, 

and 3) the joint variance in Y accounted for by X, M1, and M2. As with R2 for multiple regression 

analysis, the joint variance accounted for in Y can be conceptualized as consisting of unique and 

shared joint variance. For example, the joint variance in Y accounted for by X and M1 above and 

beyond M2 could be considered a unique component of joint variance, and the joint variance in Y 

accounted for by all the variables could be considered a shared component of joint variance.  

The addition of another simultaneous, non-directional mediator M3 would expand the 

number of joint variance components to include three unique joint variance components, three 

shared joint variance components consisting of the predictor and two of the three mediators, and 

a shared joint variance component consisting of all variables. As more variables are added and 

the model complexity increases, this method of labeling joint variance components becomes 

unwieldy. To avoid confusion, joint variance components will hereafter be labeled using the 

convention for correlation and partial correlation coefficients. The most basic component of joint 

variance, the unique component (i.e., one predictor, mediator, and outcome), is zero-order joint 

variance, the shared joint variance component with four variables (e.g., two mediators, one 

predictor, and one outcome) is first-order joint variance, the shared joint variance component 
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with five variables (e.g., three mediators, one predictor, and one mediator) is second-order joint 

variance, etc. 

Returning to the special case of two simultaneous mediators, (46) can be expanded to 

account for additional spurious correlations. For example, the correlation 
1YMr  can be 

decomposed into 

1 1 2 1 2 1 2 1 2 1 2 1 2YM YM M X M X YX M M YM M X M X M X MX M Mr r r         ,  (66) 

where 
1 2YM M X  is the direct effect of M1 on Y controlling for the other variables in the model, and 

the remaining terms are spurious common causes of Y and M1 and residual correlation among the 

mediators controlling for X. Expanding (53) for the joint variance components results in two 

zero-order joint variance components, one for the joint variance in Y accounted for by M1 and X, 

1 1 1 1 2 1 2 1

2* 2 2 2

( ) X( ( )) ( )med Y M X YM M X YX M YM M X M X Y M X XYR r R r         , (67) 

one for the joint variance in Y accounted for by M2 and X 

2 2 2 2 1 1 2 2

2* 2 2 2

( ) ( ( )) ( )med Y M X YM M X YX M YM X M X M X Y M X XYR r R r         , (68)  

and one first-order joint variance component for the joint variance in Y accounted for by M1, M2, 

and X, 

2 1 1 1 1 2 2 1 2 1 2

2 2 2 1 1 2 1 1 2

1 2 2 1 2 1

2* 2

( ) X 1 2

2

X 1 2

2 2 2 2

( ( ( )))

( ( ( )))

.

med Y M M X YM M X YX M YM X M X M X YM M M M X M X

YM M X YX M YM X M X M X YM M M M X M X

Y M X Y M X Y M M Y M M X

R r r

r r

R R R R

       

       

    

    

   

 (69) 

The total joint variance accounted for in Y by X, M1, and M2 is 

1 2 2 1

2* 2* 2* 2*

( ) ( ) ( )med med Y M X med Y M X med Y M M XR R R R   .   (70) 

If the residual correlation of the mediators controlling for X is zero, the first-order joint overlap 

component
2 1

2*

( ) 0med Y M M XR  . Substituting this result in (70) leaves 2*

medR  as  



40 

 

1 2

1 1 2 2

2* 2* 2*

( ) ( )

2 2 2 2 .

med med Y M X med Y M X

M X YM X M X YM X

R R R

   

 

 
 

In other words, when the residual correlation between mediators conditional on X is zero, the 

total joint variance accounted for is the sum of the zero-order joint variance components of the 

specific indirect effects. 

This result also can be derived using the matrix expression outlined in the previous 

section. The standardized regression coefficients from multiple mediator model can be expressed 

in the matrix B from (61), 

1

2

1 2 1 2 2 1

0 0 0 0

0 0 0

0 0 0

0

M X

M X

YX M M YM M X YM M X





  

 
 
 

  
 
 
 

B . 

Because the relationships among the mediators are non-directional, the third row, second column 

entry is zero. Taking the Hadamard square of this matrix as in (64) gives 

1

2

1 2 1 2 2 1

2

*
2

2 2 2

0 0 0 0

0 0 0

0 0 0

0

M X

M X

YX M M YM M X YM M X





  

 
 
 

  
 
 
 

B . 

Solving for 
1 2

tot

YM M X  as in (65) gives 

1 2

1 1 2 2 2 1

2 2 2 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

tot

YM M X

M X YM M X M X YM M X   

 
 
 
 
 

  

 . 
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To obtain a specific indirect effect of X on Y through, say, M1, the paths through M2 are 

set to zero. First, B is premultiplied by an elementary operator matrix that replaces the rows and 

columns associated with M2 with zeros: 

1 1

2

1 2 1 21 2 1 2 2 1

0 0 0 0 0 0 0 01 0 0 0
0 0 0 0 0 00 1 0 0

0 0 0 0 0 0 00 0 0 0

0 000 0 0 1

M X M X

M X

YX M M YM M XYX M M YM M X YM M X

 



   

    
    
         
    
       

B . 

The Hadamard square of B  is taken: 

1

1 2 1 2

2

*

2 2

0 0 0 0

0 0 0

0 0 0 0

0 0

M X

YX M M YM M X



 

 
 
 

  
 
 
 

B . 

Solving for the matrix of 
1

sp

YM X  (
1

sp

YM X )  

1

1 1 2

2 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

sp

YM X

M X YM M X 

 
 
 
 
 
  

 . 

As a practical example, consider the multiple mediator model described above with the 

correlation matrix 

1

.3 1

.3 .09 1

.4 .2 .2 1

 
 
 
 
 
 

, 

in which the first row and column correspond to the predictor variable X, the second and third 

rows and columns correspond to the mediators M1 and M2, and the fourth row and column 

correspond to the criterion Y. Note that the correlation between M1 and M2 is equal to the product 
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of the correlations 
1M Xr  and 

2M Xr , meaning that their residual correlation controlling for X is 

zero. That is, the mediators are independent conditional on X. The standardized indirect effects 

are 

1 1 2

2 2 1

2

2

.2 .4 .3
.3 .0267

1 .3

.2 .4 .3
.3 .0267,

1 .3

M X YM XM

M X YM XM

 

 

 
  



 
  



 

which, when squared and summed, is .00139. This means the total joint variance in Y accounted 

for by X, M1, and M2 is .00139, and the specific joint variance components of M1 and M2 are both 

.000695. Now consider the correlation matrix where the mediators are positively correlated: 

1

.3 1

.3 .2 1

.4 .2 .2 1

 
 
 
 
 
 

. 

The standardized indirect effects are now smaller (
1 1 2 2 2 1

.0235M X YM XM M X YM XM     ), as is the 

sum of 
1

sp

YM X  and 
2

sp

YM X  (.0011). This result demonstrates that, all else being equal, conditionally 

independent mediators account for more joint variance than mediators with residual correlation.  

 Examination of the specific indirect effects in the above example with residually 

correlated mediators leads to a modification of the procedure for determining joint variance 

components to obtain unique joint variance attributable to certain variables controlling for other 

variables in the model. To examine the specific indirect effect through M1, the rows and columns 

of the B matrix corresponding to M2 are set to zero and 
1

sp

YM X  is calculated as in (65), which 

results in a 
1

sp

YM X  of .0006. However, this value incorporates the residual correlation between the 

mediators, so it should not be considered a zero-order joint variance component. The zero-order 

joint variance in Y accounted for by M1 and X can be determined using a procedure similar to that 
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for finding unique variance components in multiple regression. In this case, the joint variance 

accounted for in Y by M2 and X without controlling for M1 is subtracted from the total joint 

variance. This results in the zero-order joint variance component of M1 and X because the 

correlation between M1 and M2 is incorporated into the indirect effect through M2, and 

subtracting the resulting joint variance from the total joint variance removes the shared 

component of M1 and M2. In this example, the joint variance accounted for by M2 alone can be 

found by eliminating the row and column associated with M1 from the correlation matrix  

1
1

.3 1
.3 1

.3 .2 1
.4 .2 1

.4 .2 .2 1

 
  
   
  
    

 

 

and estimating regression coefficients unconditional on M1: 

0 0 0

.3 0 0

.37 .088 0

 
 


 
  

B . 

The standardized squared indirect effect associated with M2 alone, or the unconditional 

standardized squared indirect effect ( unc
YMX

), is .00071. Subtracting this from the 
1 2

tot

YM M X  results 

in .00039, which is the zero-order joint variance component accounted for in Y by X through M1. 

This can also be considered the unique joint variance in Y accounted for by X through M1, or the 

unique standardized squared indirect effect ( uni
YMX

). 

A general procedure for removing the row and column associated with the variables to 

create a reduced correlation matrix of interest 
R

j
 can be accomplished by pre- and post-

multiplying the correlation matrix R by an elementary operator O 


R O RO

j
 ,     (71) 



44 

 

where subscript –j refers to the variables removed from the correlation matrix. For the above 

multiple mediator example, to remove mediator M1, O is  

1 0 0

0 0 0

0 1 0

0 0 1

 
 
 
 
 
 

. 

Standardized squared indirect effects are then calculated from 
R

j
 to obtain a matrix of unc

YMX
     

( unc

YMX
 ). To obtain the matrix of uni

YMX
 ( uni

YMX
 ) for j, unc

YMX
  is subtracted from tot

YMX
 . However, 

these matrices are not conformable for addition, so tot

YMX
  is reduced by the same elementary 

operator O employed in (71) to reduce R. The matrix uni

YMX
  is then 

uni tot unc O O
YMX YMX YMX

         (72) 

 

R2 measures of effect size in mediation analysis similar to    

 

There are three proposed measures of effect size for mediation that resemble  . Two 

measures proposed by MacKinnon (2008) for the simple three-variable mediation model in (14) - 

(16) are  

2 2 2

4.6 MX YM XR r r       (73)

2 2
2

4.7 2

MX YM X

Y MX

r r
R

R


      (74) 

where (74) represents a scaling of (73) by the reciprocal of the proportion of variance in Y 

accounted for jointly by M and X. More recently, De Heus (2012) proposed a revision of (73) 

2 2 2

( )DH MX Y M XR r r       (75) 
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which represents a scaling of the partial correlation coefficient by the proportion of variance in Y 

accounted for by X as in (6). These results are similar to that obtained for a three-variable 

mediation model in (53), except that the squared regression coefficient is replaced with squared 

partial and semi-partial correlations. These conceptions of the joint variance explained have an 

advantage and a disadvantage. The advantage is that because 2

MXr , 2

YM Xr , and 2

( )Y M Xr  are 

bounded by 0 and 1, 2

medR  in (73) - (75) is also bounded by 0 and 1. This is not true for tot

YMX  

because the squared standardized YM X  can be greater than 1 when suppression is evident. The 

disadvantage of these conceptions is that (73) - (75) are not monotonically increasing functions 

of the indirect effect in raw or absolute value. This means that when the total effect, direct effect, 

and variances are held constant, an increase in the indirect effect does not necessarily result in an 

increase in 2

medR . This can be seen in panels A - C of Figure 5 where 2

medR  from (73) - (75) was 

calculated for 5,000 randomly generated positive definite correlation matrices. Most commonly 

used effect size measures (e.g., Cohen’s d, Cohen’s f, R2, etc.) are monotonically increasing 

functions of the quantity of interest (Wen & Fan, 2015).  

The conceptions of 2

medR  in (73) - (75) are not monotonically increasing functions of the 

indirect effect because the indirect effect is theoretically unbounded, and constraining 2

medR  to be 

bounded by 0 and 1 requires standardized indirect effects greater than 1 to be scaled ≤ 1. This is 

evident by rearranging (9) in terms of the partial correlation 

2

2

1

1

MX

YM X YM X

YX

r
r

r


 
 
  

     (76) 

and substituting into (73): 
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2
2 2 2

2

1

1

MX
med MX YM X

YX

r
R r

r


 
   

 
 .     (77) 

The consequence of applying the scaling factor in (77) to 2

YM X  is that the rank order of effect 

sizes is not necessarily equivalent to the rank order of indirect effects. In other words, if 2

medR

from study 1 is larger than 2

medR from study 2 using (73) - (75), it does not necessarily mean that 

the indirect effect was larger in study 1 than in study 2.  

tot

YMX  shares properties of the R2 effect size measures in (73) - (75), but also has key 

advantages. When suppression is not evident (i.e., ab < c and c’ < c), tot

YMX  and (73) - (75) are 

bounded by 0 and 1, and are monotonic functions in absolute value of the indirect effect, 

differing by only a scaling constant. However, tot

YMX  is the only measure that remains a 

monotonically increasing function of the indirect effect in absolute value when suppression is 

evident. This can be seen in panel D of Figure 5 where tot

YMX  was calculated for the same 5,000 

correlation matrices as in panels A - C. Monotonicity allows effect sizes from different studies to 

be compared directly regardless of suppression. In addition, whereas it appears that (73) - (75) 

have an advantage in interpretability as proportions, the total joint variance component should 

not be interpreted as a proportion of variance because it can be negative (Cohen, et al., 2003). 

Therefore, the advantage of interpretability afforded by having bounded 
2

medR  is illusory because 

it is technically not a proportion of variance explained. 
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Summary of   

 

 To this point it appears the   is a promising measure of effect size for mediation 

analysis.   has been shown to be the result from adjusting the 
2

medR  formula derived by Fairchild 

and colleagues (2009) for spurious and unanalyzed correlation induced by mutual dependence 

among variables. Whereas   is not bounded by 0 and 1 like proportion of variance measures, it 

has a significant advantage in interpretability over related measures by maintaining a monotonic 

relationship with the indirect effect in absolute value regardless of whether or not suppression is 

evident. Thus,   appropriately quantifies the variance in the outcome accounted for jointly by a 

set of predictors and mediators in circumstances common in applied research settings. A matrix 

method is also available for obtaining   based on the work of Bollen (1987). It has also been 

demonstrated that the tot
YMX

can be decomposed into joint variance components such that the 

unique and shared contributions of a set of predictors and mediators can be examined. Table 1 

summarizes the decompositions of  , including recommendations for use in applied research.   

components represent a novel set of statistics with largely unknown properties. The aims of the 

following simulations were to examine the behavior of these statistics across a large range of 

parameter values, and to investigate their finite sampling properties using a Monte Carlo method. 
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Chapter IV 

 

Simulation studies 

 

The first simulation study was conducted to examine the properties of the   in two 

mediation models: 1) a four-variable model with a single predictor, single criterion, and two 

parallel mediators and 2) a four-variable model with a single predictor, single outcome, single 

mediator, and a covariate. All variables were considered continuous with means of 0 and 

variances of 1. A range of parameters was created by applying the models to various positive 

definite correlation matrices. The behavior of   under some specific parameter combinations 

was of interest (e.g., correlation between mediators was 0, one indirect effect was 0, etc.), so 

correlation matrices were created with values systematically varied over 0, .1, .3, .5, .7, and .9. In 

total, the two mediation models were applied to 21,500 positive-definite correlation matrices. 

It was expected that tot
YMX

, sp
YMX

, and unc
YMX

 would be monotonic functions in absolute 

value of their respective indirect effects across the range of parameter combinations. Since uni
YMX

 

are differences in tot
YMX

 and unc
YMX

 and do not have directly corresponding standardized indirect 

effects, it was not expected that uni
YMX

 would be a monotonic function of any particular 

standardized indirect effect. In addition, it was expected that when correlations among predictors 

in the covariate model and residual correlations in the multiple mediator model were zero, sp
YMX

, 

unc
YMX

, and uni
YMX

 would be equivalent. Further, as correlations among predictors and residual 

correlations among mediators increased, values of sp
YMX

, unc
YMX

, and uni
YMX

 would diverge, with the 

largest discrepancies occurring when correlations and residual correlations were strongest. 
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Finally, it was expected that tot
YMX

, sp
YMX

, unc
YMX

, and uni
YMX

 would be zero when their respective 

indirect effects were zero. 

 

Two parallel mediators 

 

The first four-variable mediation model considered was a model with a single predictor 

and two parallel mediators. A path diagram for this model can be found in Figure 2. There were 

seven standardized squared indirect effects examined in this simulation. Considering the 

regressions of M1 on X, M2 on X, and Y on X, M1, and M2, there are one total standardized 

squared indirect effect (
1 2

tot

YM M X ) and two specific standardized squared indirect effects through 

M1 (
1

sp

YM X ) and M2 (
2

sp

YM X ). 
1 2

tot

YM M X , 
1

sp

YM X , and 
2

sp

YM X  quantify zero- and first-order joint 

variance. Considering the regressions of M1 on X, M2 on X, Y on X and M1, and Y on X and M2, 

there are two standardized squared indirect effects, one for the indirect effect of X on Y through 

M1 unconditional on M2 (
1

unc

YM X ) and the indirect effect of X on Y through M2 unconditional on M1 

(
2

unc

YM X ). In these models the residual correlation between the mediators is incorporated into the 

indirect effects. Zero-order joint variance components uniquely attributable M1 (
1

uni

YM X ) and M2    

(
2

uni

YM X ) are determined by subtracting 
1

unc

YM X  and 
2

unc

YM X  from 
1 2

tot

YM M X  . Although not studied in 

the present simulation, it is also possible to examine the joint variance component common to 

both M1 and M2 by subtracting the zero-order joint variance component from the unconditional 

component. In sum, a mediation model with a single predictor, single outcome, and two parallel 

mediators yields 
1 2

tot

YM M X , 
1

sp

YM X , 
2

sp

YM X , 
1

unc

YM X , 
2

unc

YM X , 
1

uni

YM X , and 
2

uni

YM X .  
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Plots of the joint variance components and standardized indirect effects can be found in 

Figures 6 - 9. As in the plot for the three-variable mediation in Figure 5 panel D, 
1 2

tot

YM M X for the 

two mediator model is always greater than 0 and can be greater than 1. However, unlike Panel D 

of Figure 5, it appears in Figure 6 that 
1 2

tot

YM M X  is not a monotonically increasing functioning of 

the total standardized indirect effect. This is the case because even though all of the values for 

the correlations used to generate the parameters were within the positive manifold, some 

standardized indirect effects were negative. Squaring and summing these negative standardized 

indirect effects for 
1 2

tot

YM M X  thus creates this departure from monotonicity. For example, if two 

standardized specific indirect effects were .5 and -.5, the total standardized indirect effect would 

be 0, but 
1 2

tot

YM M X  would be .5. This apparent contradiction can be considered an advantage of the 

1 2

tot

YM M X  over the total standardized indirect effect. There are infinitely many ways two mediators 

could return a total standardized indirect effect of 0 (e.g., both indirect effects are 0, one indirect 

effect is -1,000 and the other +1,000, etc.), and they would be indistinguishable without 

examining specific indirect effects. 
1 2

tot

YM M X  returns different values for these various parameter 

combinations without requiring the examination of 
1

sp

YM X  and 
2

sp

YM X , showing that joint variance 

is accounted for even if the standardized indirect effects cancel. Plots of 
1

sp

YM X  and 
2

sp

YM X in 

Figure 7 shows that these are monotonic increasing function of the standardized indirect effect in 

absolute value. It can be seen in Figure 7 that a significant number of the correlation matrices 

produced indirect effects greater than 1 (i.e., suppression was evident), and the 
1

sp

YM X  and 
2

sp

YM X  

remained monotonically increasing functions of the indirect effect in absolute value. 
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Plots of 
1

unc

YM X  and 
2

unc

YM X  can be found in Figure 8. As expected, these were also 

monotonic functions of the respective standardized indirect effects in absolute value. To examine 

the differences in magnitude between 
1

sp

YM X  and 
1

unc

YM X  and between 
2

sp

YM X  and 
2

unc

YM X , values of 

each statistic for M1 were plotted and can be found in Figure 9. It appears from this plot that 

1

unc

YM X  and 
2

unc

YM X  can vary substantially from 
1

sp

YM X  and 
2

sp

YM X . For example, the largest 
1

unc

YM X  was 

approximately 4, whereas the largest 
1

sp

YM X  was greater than 30. However, the Spearman rank 

correlation between 
1

sp

YM X  and 
1

unc

YM X  and between 
2

sp

YM X  and 
2

unc

YM X  was 0.88, suggesting that 

although the magnitudes of the estimates appeared to vary, the rank order is largely preserved. 

Plots of 
1

uni

YM X  and 
2

uni

YM X  can be found in Figure 10. It can be seen that zero-order joint 

variance components can be negative, meaning that, for example, 
1

unc

YM X  was larger than 
1 2

tot

YM M X . 

In general, negative zero-order joint variance components occur when  

0tot unc  
YMX YMX

. 

In the two parallel multiple mediator example, the 
2

uni

YM X  of M2 can be expressed as  

1 1 2 2 2 1 1 1

2 2 2 2 2 2 0M X YM XM M X YM XM M X YM X        , 

Similarly, the 
1

uni

YM X  for M1 is negative when  

1 1 2 2 2 1 2 2

2 2 2 2 2 2 0M X YM XM M X YM XM M X YM X        . 

1

uni

YM X  and 
2

uni

YM X  are negative in situations similar to suppression multiple regression 

models. Consider the correlation matrix  
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1 .3 .9 .1

.3 1 .1 .5

.9 .1 1 0

.1 .5 0 1

 
 
 
 
 
 

, 

where the first column represents correlations with X, the second column correlations with M1, 

the third column correlations with M2, and the fourth column correlations with Y. In this 

example, regression coefficients are .3 for M1 on X (
1M X ), .9 for M2 on X (

2M X ), .51 for Y on 

M1 controlling for X and M2 (
1 2YM XM ), and -.014 for Y on M2 controlling for X and M1 (

2 1YM XM

). The total effect 
YX  = .1 and the direct effect 

1 2YX M M  = -.042. The specific indirect effect 

through M1 is 
1 1 2M X YM XM   = .154 and the specific indirect effect through M2 is 

2 2 1M X YM XM   =   

-.0125. Because the total indirect effect and direct effect were of different signs, this meant that 

suppression was evident (MacKinnon et al., 2000). The total indirect effect was .1415                  

(
1 2

.02tot

YM M X  ), the unconditional indirect effect through M1 is .155 (
1

.024unc

YM X  ), and the 

unconditional indirect effect through M2 is -.426 (
2

.181unc

YM X  ). Therefore, 
1

uni

YM X  through M1 is 

.024 - .182 = -.1578, and 
2

uni

YM X  through M2 is .024 - .024 = 0. In this case, the cause of the 

negative 
1

uni

YM X  was due to the difference between the specific indirect effect through M2              

(
2 2 1M X YM XM   = -.0125) and the unconditional indirect effect through M2 not controlling for M1    

(
2 2M X YM X   = -.426). This illustrates how the magnitude of an indirect effect can be 

substantially affected by the residual correlation among mediators. 

In general, correlation among predictors and residual correlation among mediators are the 

cause of differences between specific indirect effects and unconditional indirect effects. To 

illustrate this point, consider a scenario where mediators M1 and M2 are correlated, but the 
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indirect effect through M1 is zero (i.e., 
1

0M X  , 
1 2

0YM XM  , or 
1 1 2

0M X YM XM   ). If M1 and 

M2 were independent conditional on X, then the unconditional indirect effects would be 

equivalent to the specific indirect effects. However, if there is any residual correlation between 

M1 and M2, the unconditional indirect effects through M2 will be larger than its associated 

specific indirect effect, making 
1 2

tot

YM M X  smaller than 
2

unc

YM X , resulting in negative 
1

uni

YM X . If 

mediators are correlated, the unconditional indirect effects and specific indirect effects will 

certainly differ, and stronger correlations will be associated with larger differences. 

 

Single mediator, covariate 

 

The second four-variable model considered was a three-variable mediation model with a 

single predictor X, single mediator M, and a covariate Z. A path diagram of this model can be 

found in Figure 4 (X1 or X2 could be labeled Z). Z was considered as a baseline covariate (i.e., Z 

was measured concurrently with X). As with the four-variable model with two parallel mediators, 

there were seven  s that could be examined. Considering the regressions of M on X, M on Z, and 

Y on X, Z, and M, there is a total standardized squared indirect effect (
tot

YMXZ ), and two specific 

standardized squared indirect effects through M, one with predictor X (
sp

YMX ) and the other with 

covariate Z (
sp

YMZ ).
tot

YMXZ , 
sp

YMX , and 
sp

YMZ  consist of zero- and first-order joint variance that can 

be decomposed to obtain estimates of the unique contributions of X and Z. Considering the 

regressions of M on X, M on Z, Y on X and M, and Y on Z and M, there are two unconditional 

standardized squared indirect effects, one the indirect effect of X on Y through M unconditional 

on Z (
unc

YMX ) and the indirect effect of Z on Y through M unconditional on X (
unc

YMZ ). In the 
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unconditional models, the correlation between the X and Z is incorporated into the indirect effect. 

Finally, the zero-order joint variance attributable uniquely to X (
uni

YMX ) and Z (
uni

YMZ ) can be 

obtained by subtracting 
unc

YMX  and 
unc

YMZ  from 
tot

YMXZ . In this example, the effect of interest could 

be 
tot

YMXZ  (i.e., the total joint variance accounted for by X, Z, and M), 
sp

YMX  (i.e., the joint variance 

accounted for by X and M without partialing out the effect of Z), 
unc

YMX  (i.e., joint variance 

accounted for by X and M including the variance shared with Z), or 
uni

YMX  (i.e., the joint variance 

in Y attributable uniquely to X and M). Z could also be considered another predictor of interest. 

In summary, the mediation model with a single predictor, mediator, outcome, and covariate can 

yield 
tot

YMXZ , 
sp

YMX , 
sp

YMZ , 
unc

YMX , 
unc

YMZ , 
uni

YMX , and 
uni

YMX . 

Plots of   for the three variable mediation model with a covariate can be found in 

Figures 11 - 14. The overall behavior of   in the three variable mediation model with a covariate 

appeared similar to the behavior of the mediation model with two parallel mediators in Figures 6 

- 9. Specifically, 
tot

YMXZ  was not a monotonically increasing function in absolute value of the total 

standardized indirect effect, but 
sp

YMX , 
sp

YMZ , 
unc

YMX , and 
unc

YMZ  were monotonically increasing 

functions of the specific and unconditional standardized indirect effects. However, there were 

some noteworthy differences between the models’ behaviors. The plot of 
1 2

tot

YM M X  in Figure 6 is 

closer to a monotonic function of the indirect effect than 
tot

YMXZ  in Figure 11. This suggests that 

correlated predictors and residually correlated mediators differentially influence the magnitude 

of the indirect effects. In addition, the differences between the specific and unconditional  s 

were more disparate in the model with a covariate than in the multiple mediator model, with a 

Spearman rank correlation of only 0.33. 
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Chapter V 

 

Monte Carlo simulation 

 

Monte Carlo simulations are employed to examine the finite sample properties of 

statistical estimators. Employing this type of simulation allows for the behavior of estimators to 

be studied under various conditions (e.g., small sample sizes, nonnormality, misspecification, 

etc.) (Paxton, Curran, Bollen, Kirby, & Chen, 2001), and is particularly useful for estimators 

with asymptotic distributions that are overly complex or unknown.   is the square of the 

standardized indirect effect, which is known to have a non-normal sampling distribution 

(MacKinnon, Lockwood, & Williams, 2004). Specifically, the asymptotic distribution of the 

indirect effect is a Bessel function of the second kind with a purely imaginary argument (Aroian, 

1947). The square of this distribution is not easily derived, so a Monte Carlo simulation was 

employed to study the finite sample properties of  . 

The Monte Carlo simulation was designed to examine the sample behavior of   from 

populations with varying magnitudes of indirect effects, total effects, and correlations among 

mediators. There were several  s that could be examined, and the simplest model that yielded 

tot
YMX

, 
sp
YMX

, 
unc
YMX

, and 
uni
YMX

was a four-variable model with a single predictor, single outcome, 

and two parallel mediators. Of most interest for this set of statistics were bias, relative bias, mean 

square error (MSE), consistency, efficiency, coverage, and the proportions of estimates above 

and below the 95% confidence limits. 

Bias was defined as the difference between the sample estimate and the population 

parameter, 
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ˆ ˆ( )bias     ,      (78) 

where ̂  is the sample estimate and   is the population parameter. Lower values of bias indicate 

that the mean sample estimate is closer to the population parameter, and an unbiased estimator 

has a bias of 0. It was hypothesized that because the sample estimate of the indirect effect is an 

unbiased estimate of the indirect effect (Bauer, Preacher, & Gil, 2006), then   would be an 

unbiased estimate of  . Relative bias was defined as the ratio of the bias to the population 

parameter: 

ˆ
ˆ( )relbias

 





 .      (79)  

Like bias, lower relative bias means the sample estimates are closer to the population parameter, 

and an unbiased estimator has a relative bias of 0. However, relative bias is on a different scale 

than bias, so whereas the measures convey essentially the same information, relative bias 

provides results that may be more interpretable. It was hypothesized that   would be unbiased in 

terms of relative bias, and that relative bias would decrease as sample size increased. 

MSE was defined as the sum of the variance of sample estimates and squared bias, 

2ˆ ˆ ˆ( ) var( ) ( ( ))MSE bias    .     (80) 

MSE is a measure of the bias and variability of a sample estimator, and lower values of MSE 

indicate a more precise estimator. When a sample estimator is unbiased, the MSE is equivalent to 

the variance of that estimator. It was hypothesized that the MSE would decrease as sample size 

increased.  

Consistency of the statistics was evaluated by conducting the simulations across a range 

of sample sizes. As the sample size is increased, the statistics were expected to converge to their 

population values. That is, bias, relative bias, MSE, and CI width were expected to decrease as 
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sample size increased. There are no explicit criteria for evaluating efficiency, but relative 

efficiency for MSE and CI widths of estimators (e.g., 
sp
YMX

 vs. 
unc
YMX

) were compared to 

determine if  s were equally efficient, and, if not, which estimators were the most efficient. 

Relative efficiency was evaluated by taking the ratio of pairs of estimators. Relative efficiency 

values greater than 1 indicated the estimator in the numerator was more efficient, and relative 

efficiency values less than 1 indicated the estimator in the denominator was more efficient. It 

was hypothesized that 
unc
YMX

 would be the most efficient estimator because the inclusion of the 

additional mediator for 
sp
YMX

 and 
uni
YMX

 would result in less precise estimates. 

Coverage was defined as the proportion of samples in which the population parameter 

was contained within the 95% CI. It was hypothesized that coverage would approach a nominal 

level of 95% as the sample size increased. If the population parameter was not contained within 

the 95% CI of a sample, it was recorded whether the parameter was above the upper CI limit or 

below the lower CI limit. A proper 95% CI requires 2.5% of samples outside of the CI to be 

above the upper confidence limit and 2.5% below the lower confidence limit. It was 

hypothesized that the proportion of these misses to the left and right of the CI would be equal. 

 Correlation matrices were used to generate the population data for the Monte Carlo 

simulations. Only positive definite matrices were included in the simulation. The values of the 

correlations varied among 0, .09, .1, .3, .5, and .9. Given the computational intensity of the 

simulation procedures, several restrictions were imposed to reduce the total number of 

population matrices. First, total effects were set to be only .3 and .5. Although cases in which the 

total effect is very small or zero may be of interest to investigate the properties of the statistic 

under those specific conditions of suppression, there still remained several parameter 

combinations in which suppression was evident with total effects of .3 and .5. Second, mediator 
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correlations were set to be 0, .09, .3, and .9. These correlations represent conditions in which the 

mediators had no residual correlation (
1 2

0M M Xr  ), small residual correlation (
1 2

.15M Mr   ), and 

strong residual correlation (
1 2

.9M Mr   ). Third, the values for 
1M Xr  and 

1YMr  were constrained to 

be equal and varied among .1, .3, .5, and .9. Fourth, values of 
2M Xr  and 

2YMr  varied among 0, .3, 

and .9. These conditions created mediation models in which the magnitudes of the standardized 

indirect effects were in a range common in applied research settings, as well as models with 

more extreme parameter combinations. In addition, correlation matrices that resulted in similar 

parameters were removed. This resulted in 36 correlation matrices for use as population 

correlation matrices. Population data were generated from these matrices using the ‘mvrnorm’ 

function in R (version 3.1.2). 

Monte Carlo simulations were performed on each of the 36 sets of population data. First, 

for each of the population correlation matrices, 500 samples were created from the population 

correlation matrix using the R ‘mvrnorm’ function with the setting ‘empirical=FALSE’. Then for 

each of the 500 samples, 1000 bootstrap resamples were created by resampling with 

replacement. For each bootstrap resample, 
1 2

tot

YM M X , 
1

sp

YM X , 
2

sp

YM X , 
1

unc

YM X , 
2

unc

YM X , 
1

uni

YM X , and 
2

uni

YM X  

were estimated. Values for the 2.5th and 97.5th percentiles, 95% CI width, and whether or not the 

population parameter was within the CI were recorded for each sample. If the population 

parameter was outside the 95% CI, it was recorded whether the parameter was above the upper 

confidence limit or below the lower confidence limit. For each of the 500 samples, 
1 2

tot

YM M X , 

1

sp

YM X , 
2

sp

YM X , 
1

unc

YM X , 
2

unc

YM X , 
1

uni

YM X , and 
2

uni

YM X  were also estimated. Means and variances of each 

statistic were computed across the 500 samples. This procedure was then repeated for four 

sample sizes of 50, 100, 250, and 500. 



59 

 

Results of Monte Carlo simulation 

 

Complete results of the Monte Carlo simulation for all  s can be found in Tables 2-10. 

Included in the tables are estimates of the mean  , bias, relative bias, MSE, mean lower and 

upper confidence limits, mean CI width, coverage, and proportions of misses to the left and right 

of the 95% CI. These values were estimated across sample sizes of 50, 100, 250, and 500, and 

for 36 different combinations of population correlations. 

Graphical summaries across the generating populations of 
1 2

tot

YM M X , 
1

sp

YM X , 
2

sp

YM X , 
1

unc

YM X , 

2

unc

YM X , 
1

uni

YM X , and 
2

uni

YM X  can be found in Figures 15-21. For each sample size, plots include the 

mean ̂  estimates for each sample, median ̂  estimate across populations, medians for the lower 

and upper confidence limits, and the median population  . Medians were used to summarize 

central tendency because the distributions of mean estimates across populations were 

substantially positively skewed. It can be seen in Figures 15-21 that the median estimate of ̂  

across populations approached the population median as sample size increased. In addition, CI 

widths about the median estimates decreased as sample size increased. Moreover, Tables 2, 5, 

and 8 show that for each set of population parameters, estimates approached the population 

parameters as sample size increased. This demonstrates that ̂  is a consistent estimator of the 

population  . It can also be seen from Figures 15 - 21 that the mean estimates of 
1 2

ˆ tot

YM M X , 
1

ˆ sp

YM X , 

and 
2

ˆ sp

YM X  were consistently positively biased, and that the bias was more pronounced at smaller 

sample sizes. As with the estimates of the mean ̂ , the median bias across all parameter 

combinations approached zero as the sample size increased. This was also true for the relative 

bias and MSE.  
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Bias in the mean ̂  estimates was more pronounced when the population   was close to 

zero. For example, the maximum relative bias for 
1 2

ˆ tot

YM M X  was 573.8742 for a sample size of 50. 

Even though the absolute bias for this parameter combination was 0.00284, the population 

1 2

tot

YM M X  was 4.9x10-6, meaning the 
1 2

ˆ tot

YM M X  estimate was of much larger magnitude relative to 

the population 
1 2

tot

YM M X . However, as the magnitude of   increased in the population, the bias 

and relative bias of the estimated ̂  decreased for all sample sizes. 

Coverage and proportions of misses to the left and right of the 95% CI can be found in 

Tables 4, 7, and 10. There were several instances where the population parameters were not 

contained within the 95% CIs. This occurred when   in the population was 0 (i.e., 

1 1
0M X YM X   ). Because 

1 2

tot

YM M X , 
1

sp

YM X , 
2

sp

YM X , 
1

unc

YM X , and 
2

unc

YM X  can never be negative, all 

values close to zero were positive, making it impossible for a CI to include 0. This is why when 

examining the proportions of misses to the left and right of the 95% CI, all of the misses are to 

the left because the lower 95% confidence limit is always greater than the population parameter. 

Similarly, imbalances in the proportions of misses to the left and right appeared to occur more 

frequently across sample sizes when   was small in the population (~.00005 or less). For   

larger than ~.00005, imbalances appeared to decrease as sample size increased. In addition, high 

coverage values (i.e., ≥ .98) were more common for smaller  , suggesting that small   may 

have overly wide CIs. It also appeared that, in general, coverage approached the nominal level of 

95% as sample size and   magnitude increased. 

Examination of the CI widths in Tables 3, 6, and 9 and MSE in Tables 2, 5, and 8 showed 

that 
1 2

tot

YM M X  had the largest median CI width (M = .1013) and the largest median MSE (M = 

1.3x10-5) of all the statistics considered. Comparisons of the CI widths and MSE for 
sp
YMX

, 
unc
YMX

, 
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and 
uni
YMX

 did not reveal clear optimal statistics in terms of efficiency. Plots of the relative CI 

widths for M1 at sample size 500 for each set of parameters can be found in Figure 22, and plots 

of the relative MSE for M1 at sample size 500 for each set of parameters can be found in Figure 

23. For the majority of populations, the CI widths and MSEs for 
1

ˆunc

YM X  and 
2

ˆunc

YM X  were smaller 

than for 
1

ˆ sp

YM X , 
2

ˆ sp

YM X , 
1

ˆuni

YM X , and 
2

ˆuni

YM X . One pattern that emerged among the populations where 

1
ˆunc

YM X  and 
2

ˆunc

YM X  were the most efficient were that those populations tended to have high residual 

correlations among the mediators. Specifically, 
1

ˆunc

YM X  and 
2

ˆunc

YM X  were the most efficient in all 

populations that had the highest mediator residual correlation (
1 2

.8684M Mr  ). This suggests that 

high mediator residual correlations can result in decreased precision of parameter estimates in 

much the same way that multicollinearity among predictors in multiple regression results in less 

precise parameter estimates. 
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Chapter VI 

 

Discussion 

 

The goal of this research was to develop a general effect size measure for mediation 

analysis that could be applied to mediation models of any complexity. For the mediation models 

considered,   was shown to be an appropriate measure of effect size. For the basic three-variable 

mediation model, it was demonstrated that   represents the variance in the outcome that is 

accounted for jointly by the predictor and mediator.   improves on a previous measure of joint 

variance ( 2

medR ) by using decomposition techniques from path analysis (Duncan, 1970; Simon, 

1957; Wright, 1960) to account for spurious and unanalyzed effects that inflate the correlations 

between mediators and outcomes. Accounting for these effects corrected a contradictory result 

returned by 2

medR  where an indirect effect of 0 could return a non-zero effect size. It was also 

shown that because   is a squared product or sum of squared products of standardized regression 

coefficients, it always represents the variance in an outcome shared by a set of predictors and 

mediators. A general matrix technique was also developed that returns   for various mediation 

models.  

  has many desirable properties of an effect size measure. First,   has an interpretable 

scale. Because it is the squared product of standardized regression coefficients,   is also 

standardized; i.e., it is not dependent on the scales of the predictors, mediators, or outcomes. This 

also means that it is invariant under linear transformations of the predictor, mediator, or 

outcome.   is also a monotonically increasing function of the indirect effect in absolute value, 

meaning that larger magnitudes of   directly correspond to larger magnitudes of the indirect 
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effect. This is an advantage over similar measures of joint variance in (73) - (75) because those 

measures do not preserve the rank order of indirect effects, complicating the comparison of 

effect sizes across studies. Even though it is simply a scaling of (73) - (75),   does not lose its 

property of monotonicity when suppression is evident. This means that results obtained under all 

conditions could be appropriately compared across studies. Second, although relative bias 

appeared excessively high in some cases, it was due to population effects being very small, and 

the absolute bias in those cases was relatively small. Third,   is a consistent estimator. As 

demonstrated via Monte Carlo simulation,   estimate approaches the population parameter as 

the sample size increases. Fourth, Monte Carlo simulation demonstrated that CIs can be created 

for   using a bootstrap procedure. Fifth, although there are no criteria for absolute efficiency, 

Monte Carlo simulation also demonstrated that the width of the CIs decreases as sample size 

increases. 

  can also be used to decompose and compare magnitudes of indirect effects in models 

with multiple mediators and/or covariates. Current methods for determining indirect effects 

within a multiple mediator model estimate coefficients such that the sum of the specific indirect 

effects is the total indirect effect. However, it may be of interest to decompose the total joint 

variance accounted for into unique and shared components as in multiple regression analysis. 

This can be accomplished by estimating 
unc
YMX

 for models without certain mediators, and 

subtracting 
unc
YMX

 from those unconditional models from 
tot
YMX

 from the full model. The resulting 

uni
YMX  represent joint variance components unique to certain mediators.   also has the desirable 

property that when the total indirect effect is zero but the specific indirect effects are non-zero 

(i.e., when specific indirect effects cancel), it returns a non-zero total effect size, indicating that 

joint variance is indeed accounted for. This method of decomposition aids in determining the 
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effects of mediators in the presence of covariates, such that the effects of the covariates can be 

partialed out from the effects of the mediators. 

 

Limitations 

 

  has several limitations that should be addressed by future research. First, because   is 

similar to R2 in multiple regression, it likely has a bias towards overfitting in sample data. 

Simulation studies can address this potential limitation by 1) determining   does in fact have an 

overfitting bias and the extent of bias using a resampling or simulated cross-validation 

procedure, and 2) adjust   for inflation. Second, because   can be larger than 1, it should not be 

interpreted as a proportion of variance. This somewhat limits the interpretability of  , and 

highlights an advantage of the other joint variance measures (73) - (75) which are bounded by 0 

and 1. In addition, benchmarks established for small, medium, and large effects sizes for R2 

measures would not be applicable. However, the forfeiture of the boundedness criterion comes 

with two significant gains. One is the aforementioned monotonicity property, but another is a 

simple detection of suppression or inconsistent mediation. Any  > 1 indicates that suppression 

or inconsistent mediation is evident, which could be valuable information for applied 

researchers. In addition, some commonly employed effect size measures such as Cohen’s d do 

not have an upper bound and maintain interpretability. Benchmarks for small, medium, and large 

effect sizes can be established over time as the measure is employed in the reporting of results 

for a given field. Third, when using   to decompose joint variance into unique and shared 

components, under some circumstances the unique joint variance components can be negative. 

There are some potential solutions to this limitation. One is to set a lower bound of 0 on the 
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unique joint variance component. Because by definition   is a squared value, it would be 

illogical to interpret negative values as meaningful. It may be more reasonable to interpret those 

variables as contributing no unique joint variance. Another potential solution could be to 

consider removing a variable with a negative unique joint variance component since it is unlikely 

to be contributing uniquely above and beyond the other variables in the model. However, this 

would be a more exploratory procedure, and appropriate steps should also be taken to control the 

Type I error rate. 

 

Future research 

 

  is a promising general effect size measure for mediation analysis. The present study 

demonstrated the applicability of   in single and multiple mediator models, as well as in 

mediator models with covariates. Future research should extend the results of this study to 

mediation models with latent variables, moderators, and multilevel mediation. In addition, 

variables considered in this study were continuous, and there may be approximations of   in 

models with binary and count outcomes (e.g., pseudo-R2). Future work should also develop an 

appropriate adjustment to correct for the consistent positive bias of  . Given the expected 

behavior of a squared value, there may be a consistent adjustment to reduce the positive bias. 

Finally, future research could further examine methods of joint variance decomposition and the 

behavior of joint variance components. Given the similarities demonstrated between   and 

standardized regression coefficients in multiple regression, there may be ways to increase effect 

sizes by adding independent predictors to reduce total error variance. 
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Figure 1. Path diagram for a three variable mediation model 
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Figure 2. Path diagram for a four variable mediation model with two parallel mediators  
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Figure 3. Potential relationships among three variables 
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Figure 4. Dillon & Goldstein 12.2-3 mediation model 
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Figure 5. Plots of R2 effect sizes measures vs. the indirect effect for a three-variable mediation model for 5,000 indirect effects  

 

 

Note: Effect sizes in Panels A and B refer to equations (78) and (79) (MacKinnon, 2008); effect size in Panel C refers to equation (80) 

(De Heus, 2012); effect size in Panel D refers to equation (59) (
tot

YMX ).  
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Figure 6. Plot of 
1 2

tot

YM M X  vs. the total standardized indirect effect 
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Figure 7. 
1

sp

YM X  and 
2

sp

YM X vs. the specific standardized indirect effects  
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Figure 8. 
1

unc

YM X  and 
2

unc

YM X  vs. unconditional standardized indirect effects 
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Figure 9. Plot of 
1

unc

YM X vs. 
1

sp

YM X  
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Figure 10. Plot of 
1

uni

YM X  vs. 
1 2

tot

YM M X  and 
1

unc

YM X  
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Figure 11. Plot of the 
tot

YMXZ vs. the total standardized indirect effect in a three variable mediation 

model with a baseline covariate (Z) 
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Figure 12. Plot of 
sp

YMX  and 
sp

YMZ  vs. the specific standardized indirect effects in a three variable 

mediation model a baseline covariate (Z) 
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Figure 13. Plot of unc

YMX  and unc

YMZ  vs. unconditional standardized indirect effects in a three 

variable mediation model a baseline covariate (Z) 
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Figure 14. Plots of uni

YMX  and uni

YMZ vs. unc

YMX  and unc

YMZ , and tot

YMXZ  in a three variable mediation 

model a baseline covariate (Z) 
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Figure 15. Monte Carlo simulation results for 
1 2

tot

YM M X  

 

Note: Filled circles connect by a solid black line represent the median estimate of the mean 

1 2
ˆ tot

YM M X across combinations of population parameters for each sample size; unfilled circles 

represent mean 
1 2

ˆ tot

YM M X  estimates for each combination of population parameters; dashed lines 

represent the median upper and lower 95% confidence intervals; the solid red line is the median 

population parameter  
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Figure 16. Monte Carlo simulation results for 
1

sp

YM X for M1 

 

Note: Filled circles connect by a solid black line represent the median estimate of the mean 
1

ˆ sp

YM X  

across combinations of population parameters for each sample size; unfilled circles represent 

mean 
1

ˆ sp

YM X  estimates for each combination of population parameters; dashed lines represent the 

median upper and lower 95% confidence intervals; the solid red line is the median population 

parameter  
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Figure 17. Monte Carlo simulation results for 
2

sp

YM X  for M2 

 

Note: Filled circles connect by a solid black line represent the median estimate of the mean 

2
ˆ sp

YM X  across combinations of population parameters for each sample size; unfilled circles 

represent mean 
2

ˆ sp

YM X  estimates for each combination of population parameters; dashed lines 

represent the median upper and lower 95% confidence intervals; the solid red line is the median 

population parameter  
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Figure 18. Monte Carlo simulation results for 
1

unc

YM X  for M1 

 

Note: Filled circles connect by a solid black line represent the median estimate of the mean 
1

ˆunc

YM X  

across combinations of population parameters for each sample size; unfilled circles represent 

mean 
1

ˆunc

YM X  estimates for each combination of population parameters; dashed lines represent the 

median upper and lower 95% confidence intervals; the solid red line is the median population 

parameter  

 

 

  



89 

 

Figure 19. Monte Carlo simulation results for 
2

unc

YM X  for M2 

 

Note: Filled circles connect by a solid black line represent the median estimate of the mean 

2
ˆunc

YM X  across combinations of population parameters for each sample size; unfilled circles 

represent mean 
2

ˆunc

YM X  estimates for each combination of population parameters; dashed lines 

represent the median upper and lower 95% confidence intervals; the solid red line is the median 

population parameter  
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Figure 20. Monte Carlo simulation results for 
1

uni

YM X  for M1 

 

Note: Filled circles connect by a solid black line represent the median estimate of the mean 
1

ˆuni

YM X  

across combinations of population parameters for each sample size; unfilled circles represent 

mean 
1

ˆuni

YM X  estimates for each combination of population parameters; dashed lines represent the 

median upper and lower 95% confidence intervals; the solid red line is the median population 

parameter  
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Figure 21. Monte Carlo simulation results for 
2

uni

YM X  for M2 

 

Note: Filled circles connect by a solid black line represent the median estimate of the mean 

2
ˆuni

YM X  across combinations of population parameters for each sample size; unfilled circles 

represent mean 
2

ˆuni

YM X  estimates for each combination of population parameters; dashed lines 

represent the median upper and lower 95% confidence intervals; the solid red line is the median 

population parameter  
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Figure 22. Monte Carlo simulation results for   relative confidence interval width across 36 

populations, n=500 
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Figure 23. Monte Carlo simulation results for   relative MSE across 36 populations, n=500 
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Table 1. Summary of   components and recommendations for use 

  component (  matrix) Description Recommendation 

tot
YMX

 ( tot

YMX
 ) 

Total standardized 

squared indirect effect 

tot
YMX

 is appropriate when the effect of a 

predictor or set of predictors on an outcome 

through a set of mediators is the primary 

effect size of interest. Contributions of 

individual variables are of less interest.  

sp
YMX

 (
sp

YMX
 ) 

Specific standardized 

squared indirect effect 

sp
YMX

 is appropriate when the effect of a 

specific predictor or set of predictors on an 

outcome through a specific mediator or set of 

mediators is the primary effect size of interest. 

Most appropriate when correlation among 

predictors or residual correlation among 

mediators are relatively small.    

unc
YMX

 (
unc

YMX
 ) 

Unconditional 

standardized squared 

indirect effect 

unc
YMX

 is appropriate when the effect of a 

specific predictor or set of predictors on an 

outcome through a specific mediator or set of 

mediators unconditional on another variable 

or set of variables is the primary effect size of 

interest. Most appropriate when correlation 

among predictors or residual correlation 

among mediators are relatively large.    

uni
YMX

 (
uni

YMX
 ) 

Unique standardized 

squared indirect effect 

uni
YMX

 is appropriate when the effect of a 

specific predictor or set of predictors on an 

outcome through a specific mediator or set of 

mediators controlling for another variable or 

set of variables is the primary effect size of 

interest. Appropriate when any correlation 

among predictors or residual correlation 

among mediators is present, specifically for 

controlling for the effects of certain variables 

(e.g., covariates).    
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Table 2. Mean, bias, relative bias, and MSE of 
1 2

ˆ tot

YM M X , 
1

ˆ sp

YM X , and 
2

ˆ sp

YM X  

  
1 2

ˆ tot

YM M X   
1

ˆ sp

YM X   
2

ˆ sp

YM X  

 n Mean 

Est. 

Bias Rel. Bias MSE  Mean 

Est. 

Bias Rel. Bias MSE  Mean 

Est. 

Bias Rel. Bias MSE 

1

2

1 2

1 2

0

.00005

.00005

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00122 0.00117 23.48416 0.00001  0.00050 0.00050 NA 0.00000  0.00072 0.00067 13.46716 0.00000 

100 0.00043 0.00038 7.61570 0.00000  0.00009 0.00009 NA 0.00000  0.00034 0.00029 5.89387 0.00000 

250 0.00014 0.00009 1.77903 0.00000  0.00002 0.00002 NA 0.00000  0.00012 0.00007 1.46240 0.00000 

500 0.00008 0.00003 0.69453 0.00000  0.00000 0.00000 NA 0.00000  0.00008 0.00003 0.62049 0.00000 

1

2

1 2

1 2

0

.00006

.00006

.3

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00136 0.00130 21.48073 0.00001  0.00051 0.00051 NA 0.00000  0.00085 0.00079 13.03863 0.00001 

100 0.00044 0.00038 6.35318 0.00000  0.00011 0.00011 NA 0.00000  0.00033 0.00027 4.45902 0.00000 

250 0.00015 0.00009 1.55980 0.00000  0.00002 0.00002 NA 0.00000  0.00014 0.00008 1.26890 0.00000 

500 0.00011 0.00005 0.78100 0.00000  0.00001 0.00001 NA 0.00000  0.00010 0.00004 0.69405 0.00000 

1

2

1 2

1 2

0

.00015

.00015

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.01477 0.01326 8.76496 0.00126  0.00532 0.00532 NA 0.00019  0.00945 0.00794 5.24977 0.00063 

100 0.00583 0.00432 2.85685 0.00013  0.00171 0.00171 NA 0.00002  0.00412 0.00261 1.72377 0.00006 

250 0.00284 0.00133 0.88057 0.00001  0.00049 0.00049 NA 0.00000  0.00235 0.00084 0.55621 0.00001 

500 0.00230 0.00079 0.52239 0.00001  0.00029 0.00029 NA 0.00000  0.00202 0.00050 0.33311 0.00000 

1

2

1 2

1 2

0

.00077

.00077

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00742 0.00664 8.61120 0.00032  0.00278 0.00278 NA 0.00006  0.00464 0.00387 5.01210 0.00015 

100 0.00333 0.00256 3.31918 0.00005  0.00101 0.00101 NA 0.00001  0.00232 0.00155 2.00671 0.00002 

250 0.00169 0.00092 1.18833 0.00001  0.00032 0.00032 NA 0.00000  0.00137 0.00060 0.77639 0.00001 

500 0.00107 0.00030 0.39113 0.00000  0.00014 0.00014 NA 0.00000  0.00093 0.00016 0.21144 0.00000 
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1

2

1 2

1 2

.00084

.00005

.00089

.0316

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.00427 0.00338 3.80895 0.00006  0.00337 0.00253 3.01184 0.00005  0.00089 0.00085 18.40161 0.00001 

100 0.00241 0.00152 1.71568 0.00001  0.00214 0.00130 1.54346 0.00001  0.00027 0.00022 4.86849 0.00000 

250 0.00151 0.00063 0.70487 0.00000  0.00139 0.00055 0.65402 0.00000  0.00012 0.00008 1.63583 0.00000 

500 0.00115 0.00026 0.29182 0.00000  0.00107 0.00023 0.27326 0.00000  0.00007 0.00003 0.63176 0.00000 

1

2

1 2

1 2

.09765

.00972

.10738

.8684

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.18422 0.07684 0.71560 0.06153  0.14490 0.04724 0.48379 0.03157  0.03932 0.02960 3.04368 0.00630 

100 0.12874 0.02136 0.19890 0.01489  0.10872 0.01106 0.11327 0.00896  0.02002 0.01030 1.05890 0.00107 

250 0.11740 0.01002 0.09331 0.00406  0.10395 0.00630 0.06447 0.00262  0.01345 0.00372 0.38298 0.00022 

500 0.11110 0.00372 0.03463 0.00179  0.09949 0.00184 0.01881 0.00116  0.01161 0.00188 0.19350 0.00009 

1

2

1 2

1 2

1.70303

.00004

1.70307

.2075

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 1.80044 0.09738 0.05718 0.42729  1.79986 0.09684 0.05686 0.42685  0.00058 0.00054 14.49267 0.00000 

100 1.74683 0.04377 0.02570 0.20381  1.74665 0.04362 0.02562 0.20380  0.00018 0.00015 3.94729 0.00000 

250 1.69279 -0.01027 -0.00603 0.07966  1.69271 -0.01031 -0.00605 0.07966  0.00008 0.00004 1.12571 0.00000 

500 1.71181 0.00875 0.00514 0.03665  1.71175 0.00873 0.00513 0.03665  0.00006 0.00002 0.48538 0.00000 

1

2

1 2

1 2

3.16064

.00236

3.10877

.0925

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 3.13782 0.02905 0.00935 0.75627  3.13031 0.02390 0.00769 0.74923  0.00751 0.00515 2.17940 0.00019 

100 3.18225 0.07348 0.02364 0.34669  3.17740 0.07099 0.02285 0.34453  0.00486 0.00249 1.05459 0.00004 

250 3.11079 0.00202 0.00065 0.13699  3.10737 0.00097 0.00031 0.13634  0.00342 0.00106 0.44797 0.00001 

500 3.11837 0.00961 0.00309 0.06126  3.11544 0.00903 0.00291 0.06082  0.00294 0.00057 0.24313 0.00001 

1

2

1 2

1 2

0

.00479

.00479

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00924 0.00445 0.92847 0.00017  0.00043 0.00043 NA 0.00000  0.00882 0.00402 0.83933 0.00016 

100 0.00689 0.00210 0.43788 0.00005  0.00009 0.00009 NA 0.00000  0.00680 0.00201 0.41927 0.00005 

250 0.00553 0.00074 0.15347 0.00002  0.00002 0.00002 NA 0.00000  0.00551 0.00072 0.15016 0.00002 

500 0.00512 0.00033 0.06906 0.00001  0.00000 0.00000 NA 0.00000  0.00512 0.00033 0.06838 0.00001 
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1

2

1 2

1 2

0

.3969

.3969

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.60888 0.21198 0.53410 0.34775  0.08429 0.08429 NA 0.02484  0.52460 0.12770 0.32174 0.25391 

100 0.50651 0.10961 0.27617 0.10940  0.03493 0.03493 NA 0.00400  0.47158 0.07468 0.18816 0.09055 

250 0.42787 0.03097 0.07804 0.03400  0.01698 0.01698 NA 0.00083  0.41089 0.01399 0.03525 0.03265 

500 0.41289 0.01599 0.04028 0.01472  0.00720 0.00720 NA 0.00016  0.40569 0.00879 0.02214 0.01439 

1

2

1 2

1 2

00053

.00448

.00501

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.01094 0.00593 1.18214 0.00022  0.00333 0.00280 5.26983 0.00005  0.00761 0.00313 0.69768 0.00015 

100 0.00759 0.00258 0.51392 0.00006  0.00153 0.00099 1.87072 0.00001  0.00607 0.00158 0.35312 0.00005 

250 0.00568 0.00067 0.13325 0.00001  0.00079 0.00026 0.49488 0.00000  0.00489 0.00041 0.09039 0.00001 

500 0.00526 0.00025 0.04933 0.00001  0.00069 0.00016 0.30793 0.00000  0.00457 0.00008 0.01869 0.00000 

1

2

1 2

1 2

.19319

.21203

.40522

.8011

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.50074 0.09552 0.23572 0.20734  0.23564 0.04245 0.21971 0.04871  0.26510 0.05307 0.25030 0.06210 

100 0.43311 0.02789 0.06882 0.08083  0.20535 0.01216 0.06295 0.01943  0.22775 0.01573 0.07417 0.02377 

250 0.44979 0.04457 0.11000 0.03342  0.21399 0.02080 0.10764 0.00828  0.23581 0.02378 0.11214 0.00939 

500 0.42516 0.01995 0.04922 0.01639  0.20332 0.01013 0.05244 0.00398  0.22184 0.00981 0.04629 0.00464 

1

2

1 2

1 2

00203

.00203

.00405

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.00862 0.00457 1.12736 0.00013  0.00406 0.00204 1.00551 0.00006  0.00455 0.00253 1.24922 0.00007 

100 0.00642 0.00237 0.58419 0.00004  0.00336 0.00134 0.65950 0.00002  0.00306 0.00103 0.50889 0.00002 

250 0.00485 0.00080 0.19662 0.00001  0.00245 0.00043 0.21212 0.00000  0.00239 0.00037 0.18112 0.00000 

500 0.00444 0.00039 0.09560 0.00000  0.00220 0.00017 0.08520 0.00000  0.00224 0.00021 0.10601 0.00000 

1

2

1 2

1 2

0

.05444

.05444

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.06616 0.01172 0.21519 0.00295  0.00041 0.00041 NA 0.00000  0.06575 0.01131 0.20769 0.00294 

100 0.06110 0.00666 0.12232 0.00127  0.00008 0.00008 NA 0.00000  0.06102 0.00658 0.12085 0.00127 

250 0.05740 0.00296 0.05433 0.00041  0.00001 0.00001 NA 0.00000  0.05739 0.00295 0.05414 0.00041 

500 0.05610 0.00165 0.03038 0.00019  0.00000 0.00000 NA 0.00000  0.05610 0.00165 0.03032 0.00019 
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1

2

1 2

1 2

00005

.05339

.05344

.1816

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.06655 0.01311 0.24542 0.00276  0.00228 0.00223 48.06682 0.00003  0.06427 0.01088 0.20378 0.00271 

100 0.05808 0.00464 0.08686 0.00109  0.00095 0.00090 19.32938 0.00000  0.05713 0.00374 0.07011 0.00109 

250 0.05637 0.00293 0.05486 0.00044  0.00038 0.00033 7.12958 0.00000  0.05599 0.00260 0.04870 0.00044 

500 0.05438 0.00094 0.01759 0.00021  0.00022 0.00018 3.76555 0.00000  0.05415 0.00076 0.01433 0.00021 

1

2

1 2

1 2

00298

.06325

.06624

.1184

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.07831 0.01208 0.18234 0.00331  0.00533 0.00235 0.79118 0.00007  0.07298 0.00972 0.15371 0.00305 

100 0.07032 0.00408 0.06165 0.00123  0.00398 0.00100 0.33614 0.00002  0.06634 0.00308 0.04874 0.00119 

250 0.06857 0.00234 0.03526 0.00049  0.00325 0.00027 0.09164 0.00001  0.06532 0.00206 0.03261 0.00046 

500 0.06735 0.00111 0.01678 0.00023  0.00320 0.00022 0.07531 0.00000  0.06415 0.00089 0.01403 0.00022 

1

2

1 2

1 2

1.26563

.01174

1.27736

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 1.33497 0.05761 0.04510 0.29702  1.31798 0.05236 0.04137 0.30222  0.01699 0.00525 0.44744 0.00042 

100 1.28085 0.00349 0.00273 0.13441  1.26684 0.00122 0.00096 0.13759  0.01401 0.00227 0.19356 0.00014 

250 1.30784 0.03048 0.02386 0.06814  1.29521 0.02959 0.02338 0.06958  0.01262 0.00089 0.07565 0.00005 

500 1.28141 0.00405 0.00317 0.03196  1.26898 0.00336 0.00265 0.03273  0.01243 0.00069 0.05888 0.00003 

6

6

1

2

1 2

1 2

0

4.9 10

4.9 10

.3

sp

YM X

sp

YM X

tot

YM M X

M M Xr























 

50 0.00284 0.00283 573.8742 0.00003  0.00231 0.00231 NA 0.00002  0.00053 0.00053 106.7661 0.00000 

100 0.00117 0.00116 235.0753 0.00001  0.00099 0.00099 NA 0.00000  0.00018 0.00017 34.47822 0.00000 

250 0.00042 0.00042 84.71810 0.00000  0.00036 0.00036 NA 0.00000  0.00007 0.00006 12.22098 0.00000 

500 0.00023 0.00023 46.41417 0.00000  0.00021 0.00021 NA 0.00000  0.00003 0.00002 4.14990 0.00000 

1

2

1 2

1 2

09379

.00683

.10062

.8684

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.14035 0.03973 0.39483 0.03026  0.11934 0.02556 0.27248 0.01900  0.02100 0.01417 2.07518 0.00180 

100 0.12335 0.02273 0.22589 0.01105  0.10821 0.01442 0.15377 0.00744  0.01514 0.00831 1.21637 0.00054 

250 0.10929 0.00867 0.08617 0.00338  0.09916 0.00537 0.05722 0.00237  0.01013 0.00330 0.48374 0.00012 

500 0.10358 0.00296 0.02945 0.00156  0.09543 0.00164 0.01752 0.00112  0.00815 0.00132 0.19321 0.00005 
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1

2

1 2

1 2

04785

.00348

.05134

.8684

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.08016 0.02882 0.56142 0.01239  0.06656 0.01871 0.39099 0.00735  0.01360 0.01011 2.90199 0.00091 

100 0.06897 0.01764 0.34358 0.00482  0.06072 0.01286 0.26885 0.00320  0.00826 0.00477 1.36987 0.00022 

250 0.05433 0.00299 0.05828 0.00119  0.04924 0.00138 0.02891 0.00085  0.00509 0.00161 0.46154 0.00004 

500 0.05404 0.00271 0.05273 0.00052  0.04981 0.00196 0.04088 0.00039  0.00424 0.00075 0.21554 0.00001 

6

1

2

1 2

1 2

.5184

4.9 10

.5184

.8684

sp

YM X

sp

YM X

tot

YM M X

M M Xr


















 

50 0.60388 0.08547 0.16488 0.15958  0.60343 0.08503 0.16402 0.15950  0.00045 0.00044 89.55768 0.00000 

100 0.57080 0.05239 0.10106 0.07399  0.57063 0.05223 0.10076 0.07396  0.00016 0.00016 32.05163 0.00000 

250 0.52247 0.00406 0.00784 0.02600  0.52242 0.00402 0.00776 0.02599  0.00005 0.00004 8.48302 0.00000 

500 0.52614 0.00773 0.01492 0.01296  0.52612 0.00772 0.01489 0.01296  0.00002 0.00002 3.04503 0.00000 

1

2

1 2

1 2

0059

.0059

.01181

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.01840 0.00659 0.55840 0.00033  0.00964 0.00374 0.63311 0.00018  0.00876 0.00286 0.48369 0.00013 

100 0.01463 0.00283 0.23947 0.00011  0.00735 0.00145 0.24598 0.00004  0.00728 0.00138 0.23296 0.00005 

250 0.01262 0.00082 0.06918 0.00003  0.00631 0.00041 0.06968 0.00002  0.00631 0.00041 0.06868 0.00002 

500 0.01230 0.00049 0.04154 0.00001  0.00611 0.00021 0.03490 0.00001  0.00619 0.00028 0.04819 0.00001 

1

2

1 2

1 2

.57154

.02074

.59227

.6493

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.70767 0.11540 0.19484 0.37014  0.67903 0.10749 0.18808 0.35757  0.02864 0.00790 0.38104 0.00122 

100 0.66984 0.07756 0.13096 0.17860  0.64636 0.07483 0.13092 0.17327  0.02347 0.00274 0.13194 0.00035 

250 0.63014 0.03787 0.06394 0.05863  0.60820 0.03666 0.06414 0.05734  0.02194 0.00121 0.05818 0.00012 

500 0.62123 0.02895 0.04889 0.03161  0.60012 0.02859 0.05002 0.03069  0.02110 0.00037 0.01771 0.00006 

1

2

1 2

1 2

.7465

.0013

.74779

.6493

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.86478 0.11699 0.15644 0.37863  0.86041 0.11392 0.15260 0.37503  0.00437 0.00307 2.36982 0.00007 

100 0.80687 0.05908 0.07901 0.15367  0.80412 0.05762 0.07719 0.15229  0.00275 0.00145 1.12265 0.00002 

250 0.76067 0.01287 0.01722 0.05635  0.75903 0.01253 0.01679 0.05597  0.00164 0.00034 0.26373 0.00000 

500 0.74374 -0.00406 -0.00542 0.02780  0.74223 -0.00427 -0.00571 0.02760  0.00150 0.00021 0.16118 0.00000 
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1

2

1 2

1 2

.06891

.45002

.51892

.7184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.58510 0.06617 0.12752 0.19085  0.08729 0.01838 0.26674 0.00937  0.49781 0.04779 0.10620 0.12161 

100 0.58192 0.06300 0.12140 0.09065  0.08615 0.01724 0.25019 0.00439  0.49577 0.04576 0.10168 0.05800 

250 0.52967 0.01075 0.02072 0.02937  0.07313 0.00423 0.06135 0.00144  0.45654 0.00652 0.01450 0.01866 

500 0.52888 0.00995 0.01918 0.01381  0.07218 0.00327 0.04744 0.00060  0.45670 0.00668 0.01485 0.00901 

1

2

1 2

1 2

.00465

.03587

.04052

.1816

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.05282 0.01231 0.30370 0.00164  0.00691 0.00226 0.48703 0.00009  0.04591 0.01004 0.27994 0.00152 

100 0.04570 0.00518 0.12775 0.00063  0.00591 0.00126 0.27189 0.00004  0.03978 0.00391 0.10907 0.00059 

250 0.04318 0.00266 0.06557 0.00026  0.00497 0.00032 0.06902 0.00001  0.03821 0.00234 0.06512 0.00025 

500 0.04156 0.00104 0.02566 0.00010  0.00492 0.00027 0.05751 0.00001  0.03664 0.00077 0.02153 0.00009 

1

2

1 2

1 2

.00116

.02412

.02528

.1184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.03422 0.00894 0.35376 0.00105  0.00283 0.00167 1.43819 0.00002  0.03139 0.00727 0.30151 0.00101 

100 0.03034 0.00505 0.19995 0.00042  0.00218 0.00101 0.87247 0.00001  0.02816 0.00404 0.16754 0.00041 

250 0.02683 0.00155 0.06121 0.00014  0.00154 0.00038 0.32633 0.00000  0.02529 0.00117 0.04844 0.00013 

500 0.02563 0.00035 0.01368 0.00006  0.00135 0.00019 0.16298 0.00000  0.02428 0.00016 0.00649 0.00006 

1

2

1 2

1 2

.03516

.2296

.26476

.7184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.33052 0.06577 0.24840 0.08218  0.05191 0.01675 0.47656 0.00413  0.27861 0.04901 0.21347 0.05205 

100 0.29585 0.03109 0.11744 0.03647  0.04291 0.00776 0.22067 0.00170  0.25294 0.02333 0.10163 0.02358 

250 0.27680 0.01204 0.04548 0.00983  0.03859 0.00344 0.09777 0.00045  0.23821 0.00860 0.03748 0.00640 

500 0.26900 0.00424 0.01602 0.00588  0.03625 0.00109 0.03107 0.00023  0.23275 0.00315 0.01372 0.00394 

1

2

1 2

1 2

.31641

.08752

.40392

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.52815 0.12422 0.30754 0.16520  0.42503 0.10862 0.34330 0.14002  0.10312 0.01560 0.17826 0.00599 

100 0.45648 0.05256 0.13012 0.06826  0.36394 0.04753 0.15023 0.06175  0.09254 0.00502 0.05742 0.00221 

250 0.41388 0.00995 0.02464 0.02332  0.32562 0.00922 0.02913 0.02072  0.08825 0.00073 0.00838 0.00080 

500 0.41035 0.00643 0.01592 0.01017  0.32154 0.00514 0.01624 0.00877  0.08881 0.00129 0.01476 0.00035 
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1

2

1 2

1 2

.31641

.01085

.32726

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.40313 0.07587 0.23185 0.10514  0.38643 0.07003 0.22132 0.10757  0.01670 0.00585 0.53875 0.00048 

100 0.36729 0.04003 0.12233 0.04577  0.35429 0.03789 0.11974 0.04703  0.01300 0.00214 0.19767 0.00016 

250 0.34025 0.01299 0.03970 0.01602  0.32829 0.01188 0.03755 0.01661  0.01196 0.00111 0.10263 0.00005 

500 0.33955 0.01229 0.03756 0.00876  0.32809 0.01168 0.03693 0.00905  0.01146 0.00061 0.05607 0.00003 

1

2

1 2

1 2

.00088

.00479

.00567

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.01209 0.00642 1.13127 0.00025  0.00379 0.00291 3.30869 0.00008  0.00830 0.00351 0.73133 0.00015 

100 0.00859 0.00291 0.51339 0.00008  0.00208 0.00120 1.36021 0.00001  0.00651 0.00172 0.35785 0.00006 

250 0.00639 0.00072 0.12617 0.00001  0.00120 0.00032 0.35865 0.00000  0.00519 0.00040 0.08347 0.00001 

500 0.00607 0.00040 0.07015 0.00001  0.00112 0.00024 0.27524 0.00000  0.00495 0.00016 0.03248 0.00001 

1

2

1 2

1 2

.00245

.00245

.0049

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.01141 0.00652 1.33306 0.00024  0.00567 0.00322 1.31695 0.00012  0.00574 0.00330 1.34917 0.00011 

100 0.00704 0.00215 0.43980 0.00004  0.00350 0.00105 0.42974 0.00002  0.00355 0.00110 0.44986 0.00002 

250 0.00556 0.00067 0.13731 0.00001  0.00281 0.00037 0.15068 0.00001  0.00275 0.00030 0.12393 0.00000 

500 0.00525 0.00036 0.07400 0.00000  0.00265 0.00021 0.08469 0.00000  0.00260 0.00015 0.06331 0.00000 

1

2

1 2

1 2

.00479

.00479

.00959

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.01514 0.00555 0.57908 0.00030  0.00720 0.00241 0.50223 0.00012  0.00794 0.00314 0.65593 0.00014 

100 0.01252 0.00294 0.30634 0.00011  0.00622 0.00143 0.29799 0.00005  0.00630 0.00151 0.31468 0.00005 

250 0.01053 0.00095 0.09900 0.00003  0.00517 0.00038 0.07956 0.00001  0.00536 0.00057 0.11845 0.00001 

500 0.01000 0.00042 0.04352 0.00001  0.00503 0.00024 0.04910 0.00001  0.00497 0.00018 0.03793 0.00001 

1

2

1 2

1 2

.00245

.00245

.0049

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.00966 0.00477 0.97471 0.00017  0.00496 0.00252 1.02968 0.00009  0.00469 0.00225 0.91973 0.00006 

100 0.00714 0.00225 0.46007 0.00005  0.00351 0.00107 0.43648 0.00002  0.00363 0.00118 0.48366 0.00002 

250 0.00567 0.00078 0.15874 0.00001  0.00277 0.00033 0.13388 0.00000  0.00289 0.00045 0.18361 0.00001 

500 0.00530 0.00040 0.08271 0.00000  0.00265 0.00021 0.08464 0.00000  0.00264 0.00020 0.08078 0.00000 
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1

2

1 2

1 2

.07131

.00479

.0761

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.09618 0.02008 0.26392 0.00663  0.08929 0.01798 0.25219 0.00649  0.00689 0.00210 0.43846 0.00005 

100 0.08627 0.01017 0.13367 0.00258  0.08101 0.00970 0.13601 0.00256  0.00527 0.00047 0.09887 0.00001 

250 0.07883 0.00273 0.03585 0.00083  0.07382 0.00252 0.03532 0.00083  0.00500 0.00021 0.04371 0.00001 

500 0.07682 0.00072 0.00943 0.00041  0.07196 0.00065 0.00914 0.00041  0.00486 0.00007 0.01366 0.00000 

1

2

1 2

1 2

.06113

.00245

.06358

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.07653 0.01295 0.20365 0.00376  0.07350 0.01237 0.20231 0.00372  0.00303 0.00058 0.23710 0.00001 

100 0.07041 0.00683 0.10745 0.00160  0.06755 0.00641 0.10489 0.00159  0.00286 0.00042 0.17156 0.00000 

250 0.06769 0.00411 0.06458 0.00068  0.06506 0.00393 0.06426 0.00067  0.00262 0.00018 0.07265 0.00000 

500 0.06490 0.00132 0.02081 0.00031  0.06235 0.00121 0.01986 0.00031  0.00255 0.00011 0.04466 0.00000 
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Table 3. Confidence limits, mean confidence interval width for 
1 2

ˆ tot

YM M X , 
1

ˆ sp

YM X , and 
2

ˆ tot

YM X  

  
1 2

ˆ tot

YM M X  
 

1
ˆ sp

YM X  
 

2
ˆ sp

YM X  

 

n 

Mean 

LCL 

Mean 

UCL 

Mean CI 

Width  

Mean 

LCL 

Mean 

UCL 

Mean CI 

Width  

Mean 

LCL 

Mean 

UCL 

Mean CI 

Width 

1

2

1 2

1 2

0

.00005

.00005

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00004 0.02194 0.02190  0.00000 0.01187 0.01187  0.00000 0.01440 0.01440 

100 0.00001 0.00572 0.00571  0.00000 0.00241 0.00241  0.00000 0.00437 0.00437 

250 0.00001 0.00129 0.00128  0.00000 0.00040 0.00040  0.00000 0.00110 0.00110 

500 0.00000 0.00055 0.00054  0.00000 0.00010 0.00010  0.00000 0.00052 0.00051 

1

2

1 2

1 2

0

.00006

.00006

.3

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00004 0.02507 0.02502  0.00001 0.01319 0.01318  0.00000 0.01644 0.01644 

100 0.00002 0.00635 0.00634  0.00000 0.00293 0.00293  0.00000 0.00462 0.00462 

250 0.00001 0.00149 0.00149  0.00000 0.00045 0.00045  0.00000 0.00128 0.00128 

500 0.00001 0.00066 0.00066  0.00000 0.00011 0.00011  0.00000 0.00062 0.00062 

1

2

1 2

1 2

0

.00015

.00015

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00045 0.19333 0.19288  0.00002 0.08830 0.08828  0.00015 0.11532 0.11518 

100 0.00026 0.06033 0.06007  0.00001 0.02564 0.02563  0.00006 0.03891 0.03885 

250 0.00024 0.01842 0.01818  0.00000 0.00616 0.00616  0.00008 0.01380 0.01372 

500 0.00038 0.01004 0.00966  0.00000 0.00280 0.00279  0.00018 0.00815 0.00797 

1

2

1 2

1 2

0

.00077

.00077

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00018 0.12532 0.12514  0.00001 0.05880 0.05879  0.00003 0.07459 0.07456 

100 0.00011 0.04103 0.04093  0.00000 0.01775 0.01774  0.00002 0.02603 0.02601 

250 0.00013 0.01193 0.01180  0.00000 0.00430 0.00430  0.00005 0.00884 0.00879 

500 0.00015 0.00539 0.00525  0.00000 0.00157 0.00157  0.00006 0.00440 0.00434 
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1

2

1 2

1 2

.00084

.00005

.00089

.0316

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.00018 0.04269 0.04251  0.00004 0.03474 0.03470  0.00000 0.01550 0.01549 

100 0.00015 0.01637 0.01622  0.00006 0.01481 0.01475  0.00000 0.00412 0.00412 

250 0.00016 0.00674 0.00658  0.00010 0.00639 0.00629  0.00000 0.00111 0.00111 

500 0.00018 0.00393 0.00375  0.00013 0.00379 0.00366  0.00000 0.00049 0.00049 

1

2

1 2

1 2

.09765

.00972

.10738

.8684

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.01902 0.89964 0.88062  0.01094 0.63854 0.62760  0.00102 0.29606 0.29503 

100 0.02431 0.46260 0.43829  0.01730 0.35359 0.33629  0.00087 0.12769 0.12682 

250 0.03799 0.28750 0.24950  0.03395 0.23417 0.20021  0.00097 0.05946 0.05849 

500 0.04950 0.21793 0.16843  0.04654 0.18279 0.13625  0.00148 0.03843 0.03695 

1

2

1 2

1 2

1.70303

.00004

1.70307

.2075

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.77485 3.37822 2.60337  0.77320 3.37626 2.60306  0.00000 0.00952 0.00952 

100 1.01236 2.74188 1.72952  1.01193 2.74125 1.72932  0.00000 0.00255 0.00255 

250 1.20609 2.27836 1.07227  1.20597 2.27821 1.07224  0.00000 0.00071 0.00071 

500 1.35808 2.11396 0.75588  1.35802 2.11387 0.75586  0.00000 0.00033 0.00033 

1

2

1 2

1 2

3.16064

.00236

3.10877

.0925

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 1.75481 5.09787 3.34306  1.74552 5.07330 3.32778  0.00029 0.05668 0.05638 

100 2.15599 4.48603 2.33004  2.15164 4.47321 2.32157  0.00019 0.02835 0.02817 

250 2.44743 3.88201 1.43458  2.44489 3.87512 1.43022  0.00028 0.01377 0.01349 

500 2.63762 3.65099 1.01337  2.63550 3.64590 1.01040  0.00038 0.00924 0.00886 

1

2

1 2

1 2

0

.00479

.00479

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00050 0.06105 0.06055  0.00000 0.01058 0.01058  0.00028 0.05706 0.05678 

100 0.00064 0.03011 0.02948  0.00000 0.00238 0.00238  0.00051 0.02956 0.02905 

250 0.00116 0.01590 0.01474  0.00000 0.00038 0.00038  0.00112 0.01584 0.01472 

500 0.00177 0.01132 0.00956  0.00000 0.00009 0.00009  0.00175 0.01131 0.00956 

             

             

             

             



105 

 

1

2

1 2

1 2

0

.3969

.3969

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.16269 2.36346 2.20077  0.00256 0.73423 0.73166  0.06994 1.85019 1.78025 

100 0.17556 1.46359 1.28803  0.00079 0.31507 0.31428  0.09975 1.26075 1.16100 

250 0.20744 0.88600 0.67855  0.00036 0.12758 0.12722  0.15535 0.81977 0.66442 

500 0.23781 0.71049 0.47267  0.00015 0.05891 0.05876  0.20945 0.67834 0.46889 

1

2

1 2

1 2

00053

.00448

.00501

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.00094 0.07025 0.06931  0.00005 0.03352 0.03347  0.00024 0.05090 0.05066 

100 0.00106 0.03283 0.03177  0.00004 0.01258 0.01254  0.00044 0.02708 0.02664 

250 0.00149 0.01616 0.01467  0.00003 0.00466 0.00462  0.00092 0.01447 0.01356 

500 0.00210 0.01139 0.00929  0.00006 0.00288 0.00282  0.00150 0.01030 0.00880 

1

2

1 2

1 2

.19319

.21203

.40522

.8011

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.07005 1.74996 1.67991  0.02770 0.85008 0.82237  0.03348 0.94250 0.90902 

100 0.09301 1.16959 1.07659  0.03976 0.56860 0.52884  0.04581 0.62410 0.57828 

250 0.18014 0.87520 0.69505  0.08261 0.42413 0.34153  0.09138 0.46495 0.37357 

500 0.22773 0.69881 0.47108  0.10630 0.33848 0.23218  0.11603 0.36890 0.25287 

1

2

1 2

1 2

00203

.00203

.00405

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.00076 0.05505 0.05429  0.00010 0.03212 0.03202  0.00014 0.03431 0.03417 

100 0.00091 0.02743 0.02653  0.00016 0.01749 0.01733  0.00015 0.01631 0.01616 

250 0.00138 0.01335 0.01196  0.00033 0.00843 0.00810  0.00031 0.00823 0.00792 

500 0.00187 0.00927 0.00740  0.00054 0.00568 0.00515  0.00055 0.00576 0.00521 

1

2

1 2

1 2

0

.05444

.05444

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.01029 0.22548 0.21519  0.00000 0.00970 0.00970  0.00931 0.22336 0.21405 

100 0.01721 0.15155 0.13433  0.00000 0.00200 0.00200  0.01691 0.15122 0.13430 

250 0.02685 0.10578 0.07893  0.00000 0.00031 0.00031  0.02680 0.10573 0.07894 

500 0.03350 0.08731 0.05382  0.00000 0.00008 0.00008  0.03349 0.08730 0.05382 
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1

2

1 2

1 2

00005

.05339

.05344

.1816

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.01123 0.22796 0.21674  0.00002 0.02677 0.02675  0.00862 0.22073 0.21212 

100 0.01692 0.14651 0.12959  0.00001 0.00968 0.00967  0.01516 0.14433 0.12917 

250 0.02675 0.10418 0.07744  0.00001 0.00318 0.00317  0.02595 0.10352 0.07756 

500 0.03232 0.08535 0.05303  0.00001 0.00155 0.00155  0.03188 0.08502 0.05315 

1

2

1 2

1 2

00298

.06325

.06624

.1184

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.01404 0.25576 0.24171  0.00013 0.03930 0.03917  0.01061 0.23945 0.22884 

100 0.02197 0.16877 0.14680  0.00022 0.01947 0.01924  0.01911 0.16051 0.14140 

250 0.03428 0.12265 0.08837  0.00052 0.01028 0.00975  0.03171 0.11764 0.08593 

500 0.04176 0.10260 0.06084  0.00094 0.00759 0.00664  0.03910 0.09833 0.05923 

1

2

1 2

1 2

1.26563

.01174

1.27736

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.52861 2.69499 2.16638  0.49113 2.68186 2.19073  0.00111 0.08611 0.08500 

100 0.67634 2.14192 1.46558  0.65069 2.13210 1.48141  0.00174 0.04931 0.04757 

250 0.89096 1.82825 0.93729  0.87194 1.81967 0.94772  0.00331 0.03066 0.02735 

500 0.98023 1.63440 0.65418  0.96374 1.62481 0.66107  0.00511 0.02412 0.01901 

6

6

1

2

1 2

1 2

0

4.9 10

4.9 10

.3

sp

YM X

sp

YM X

tot

YM M X

M M Xr























 

50 0.00011 0.03601 0.03589  0.00002 0.02932 0.02930  0.00000 0.01301 0.01300 

100 0.00005 0.01240 0.01234  0.00001 0.01100 0.01098  0.00000 0.00341 0.00340 

250 0.00002 0.00391 0.00388  0.00000 0.00361 0.00361  0.00000 0.00083 0.00083 

500 0.00001 0.00182 0.00180  0.00000 0.00173 0.00172  0.00000 0.00029 0.00029 

1

2

1 2

1 2

09379

.00683

.10062

.8684

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.01462 0.73229 0.71767  0.00819 0.56436 0.55616  0.00054 0.20265 0.20211 

100 0.02063 0.44841 0.42779  0.01559 0.35967 0.34408  0.00045 0.10212 0.10167 

250 0.03501 0.26568 0.23066  0.03220 0.22534 0.19314  0.00074 0.04457 0.04384 

500 0.04632 0.20062 0.15430  0.04437 0.17525 0.13088  0.00099 0.02754 0.02655 
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1

2

1 2

1 2

04785

.00348

.05134

.8684

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00561 0.48551 0.47990  0.00311 0.36352 0.36041  0.00018 0.14289 0.14271 

100 0.00960 0.27156 0.26197  0.00723 0.21973 0.21250  0.00026 0.06058 0.06033 

250 0.01478 0.14429 0.12951  0.01343 0.12264 0.10921  0.00033 0.02430 0.02398 

500 0.02212 0.11126 0.08914  0.02109 0.09749 0.07641  0.00047 0.01516 0.01469 

6

1

2

1 2

1 2

.5184

4.9 10

.5184

.8684

sp

YM X

sp

YM X

tot

YM M X

M M Xr


















 

50 0.12976 1.60993 1.48017  0.12822 1.60805 1.47983  0.00000 0.01000 0.01000 

100 0.18797 1.20827 1.02030  0.18757 1.20769 1.02012  0.00000 0.00266 0.00266 

250 0.26521 0.87557 0.61036  0.26512 0.87542 0.61029  0.00000 0.00061 0.00061 

500 0.33369 0.76759 0.43390  0.33365 0.76755 0.43390  0.00000 0.00021 0.00021 

1

2

1 2

1 2

0059

.0059

.01181

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.00205 0.09123 0.08918  0.00039 0.05714 0.05674  0.00026 0.05473 0.05448 

100 0.00297 0.04932 0.04635  0.00061 0.03078 0.03017  0.00062 0.03009 0.02947 

250 0.00476 0.02841 0.02365  0.00144 0.01723 0.01579  0.00142 0.01725 0.01583 

500 0.00638 0.02193 0.01554  0.00230 0.01287 0.01057  0.00234 0.01298 0.01064 

1

2

1 2

1 2

.57154

.02074

.59227

.6493

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.10957 2.35200 2.24243  0.09531 2.29055 2.19524  0.00165 0.14245 0.14080 

100 0.15726 1.68327 1.52600  0.14345 1.64411 1.50066  0.00301 0.08199 0.07898 

250 0.25327 1.20268 0.94941  0.23767 1.17157 0.93391  0.00663 0.05192 0.04529 

500 0.33621 1.00245 0.66623  0.31953 0.97578 0.65625  0.00944 0.03988 0.03044 

1

2

1 2

1 2

.7465

.0013

.74779

.6493

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.17045 2.45299 2.28254  0.16525 2.43775 2.27250  0.00009 0.04177 0.04168 

100 0.24715 1.79324 1.54608  0.24456 1.78481 1.54025  0.00009 0.01867 0.01858 

250 0.36966 1.30784 0.93818  0.36876 1.30364 0.93488  0.00011 0.00764 0.00753 

500 0.45363 1.11250 0.65887  0.45289 1.10926 0.65636  0.00019 0.00503 0.00484 
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1

2

1 2

1 2

.06891

.45002

.51892

.7184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.10312 1.90018 1.79706  0.00520 0.42598 0.42077  0.09009 1.50411 1.41402 

100 0.18652 1.36731 1.18079  0.01343 0.27787 0.26444  0.16828 1.10621 0.93793 

250 0.26675 0.93647 0.66972  0.02368 0.16595 0.14227  0.23992 0.77861 0.53869 

500 0.33051 0.80053 0.47002  0.03382 0.13219 0.09837  0.29374 0.67303 0.37929 

1

2

1 2

1 2

.00465

.03587

.04052

.1816

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.00922 0.18377 0.17454  0.00023 0.04386 0.04363  0.00543 0.16548 0.16005 

100 0.01358 0.11603 0.10245  0.00053 0.02432 0.02380  0.00962 0.10567 0.09605 

250 0.02070 0.07983 0.05913  0.00110 0.01364 0.01254  0.01659 0.07332 0.05674 

500 0.02499 0.06500 0.04001  0.00185 0.01034 0.00849  0.02063 0.05921 0.03858 

1

2

1 2

1 2

.00116

.02412

.02528

.1184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.00445 0.14137 0.13692  0.00003 0.02703 0.02699  0.00274 0.13166 0.12891 

100 0.00722 0.08678 0.07955  0.00011 0.01282 0.01271  0.00524 0.08293 0.07769 

250 0.01084 0.05543 0.04458  0.00014 0.00610 0.00596  0.00911 0.05348 0.04437 

500 0.01367 0.04374 0.03008  0.00024 0.00397 0.00373  0.01217 0.04223 0.03006 

1

2

1 2

1 2

.03516

.2296

.26476

.7184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 0.04561 1.22132 1.17571  0.00238 0.28624 0.28386  0.03826 0.95874 0.92048 

100 0.07375 0.79116 0.71741  0.00474 0.16143 0.15669  0.06654 0.64098 0.57444 

250 0.12040 0.53845 0.41805  0.01032 0.09782 0.08751  0.10808 0.44646 0.33838 

500 0.15270 0.43587 0.28316  0.01500 0.07214 0.05714  0.13630 0.36704 0.23074 

1

2

1 2

1 2

.31641

.08752

.40392

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.10912 1.59245 1.48333  0.05298 1.42599 1.37301  0.01814 0.31625 0.29812 

100 0.13974 1.07702 0.93728  0.07804 0.94779 0.86974  0.02911 0.21403 0.18492 

250 0.19141 0.75160 0.56019  0.12031 0.64264 0.52233  0.04475 0.15403 0.10928 

500 0.24092 0.63659 0.39567  0.16458 0.53398 0.36940  0.05578 0.13319 0.07742 
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1

2

1 2

1 2

.31641

.01085

.32726

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.07716 1.28390 1.20674  0.05511 1.26661 1.21150  0.00083 0.09234 0.09151 

100 0.10038 0.90209 0.80171  0.07930 0.89273 0.81343  0.00133 0.05007 0.04874 

250 0.14913 0.63458 0.48546  0.13091 0.62608 0.49517  0.00264 0.03142 0.02879 

500 0.19214 0.53859 0.34646  0.17659 0.52977 0.35318  0.00409 0.02378 0.01969 

1

2

1 2

1 2

.00088

.00479

.00567

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.00104 0.07401 0.07297  0.00007 0.03469 0.03462  0.00028 0.05378 0.05350 

100 0.00129 0.03510 0.03381  0.00008 0.01417 0.01409  0.00054 0.02810 0.02756 

250 0.00175 0.01743 0.01568  0.00008 0.00564 0.00557  0.00103 0.01497 0.01394 

500 0.00249 0.01274 0.01025  0.00015 0.00380 0.00366  0.00168 0.01097 0.00929 

1

2

1 2

1 2

.00245

.00245

.0049

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.00107 0.06516 0.06409  0.00017 0.03929 0.03912  0.00020 0.03958 0.03938 

100 0.00107 0.02835 0.02728  0.00021 0.01702 0.01681  0.00022 0.01767 0.01746 

250 0.00163 0.01484 0.01321  0.00044 0.00909 0.00865  0.00040 0.00904 0.00864 

500 0.00226 0.01072 0.00847  0.00072 0.00654 0.00582  0.00070 0.00641 0.00570 

1

2

1 2

1 2

.00479

.00479

.00959

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 0.00150 0.08149 0.07999  0.00021 0.04792 0.04772  0.00027 0.05120 0.05094 

100 0.00240 0.04357 0.04118  0.00053 0.02633 0.02579  0.00054 0.02688 0.02634 

250 0.00375 0.02463 0.02087  0.00107 0.01481 0.01374  0.00108 0.01521 0.01413 

500 0.00496 0.01846 0.01350  0.00176 0.01100 0.00925  0.00172 0.01093 0.00921 

1

2

1 2

1 2

.00245

.00245

.0049

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.00093 0.06071 0.05978  0.00017 0.03806 0.03789  0.00014 0.03563 0.03549 

100 0.00107 0.02887 0.02780  0.00020 0.01763 0.01742  0.00021 0.01788 0.01767 

250 0.00165 0.01498 0.01333  0.00039 0.00908 0.00869  0.00044 0.00936 0.00892 

500 0.00227 0.01081 0.00854  0.00072 0.00652 0.00580  0.00071 0.00649 0.00577 
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1

2

1 2

1 2

.07131

.00479

.0761

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.01832 0.29430 0.27598  0.01257 0.28481 0.27224  0.00064 0.02759 0.02695 

100 0.02361 0.20853 0.18492  0.01858 0.20232 0.18374  0.00091 0.01595 0.01504 

250 0.03405 0.14667 0.11262  0.02910 0.14129 0.11220  0.00178 0.01066 0.00888 

500 0.04280 0.12267 0.07987  0.03797 0.11756 0.07959  0.00239 0.00855 0.00616 

1

2

1 2

1 2

.06113

.00245

.06358

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 0.04280 0.12267 0.07987  0.03797 0.11756 0.07959  0.00239 0.00855 0.00616 

100 0.01750 0.17526 0.15776  0.01467 0.17187 0.15720  0.00045 0.00915 0.00870 

250 0.02851 0.12706 0.09855  0.02580 0.12422 0.09841  0.00089 0.00581 0.00492 

500 0.03570 0.10406 0.06836  0.03313 0.10136 0.06823  0.00121 0.00463 0.00342 
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Table 4. Coverage, misses to the left and right for 
1 2

ˆ tot

YM M X , 
1

ˆ sp

YM X , and 
2

ˆ sp

YM X  

  
1 2

ˆ tot

YM M X  
 

1
ˆ sp

YM X  
 

2
ˆ sp

YM X  

 n Cov <.025 >.975  Cov <.025 >.975  Cov <.025 >.975 

1

2

1 2

1 2

0

.00005

.00005

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 84.2 15.8 0  0 100 0  99.2 0.8 0 

100 96 4 0  0 100 0  99.2 0.8 0 

250 98.4 1.6 0  0 100 0  99.2 0.8 0 

500 98.4 1.6 0  0 100 0  98.2 1.2 0.6 

1

2

1 2

1 2

0

.00006

.00006

.3

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 87.8 12.2 0  0 100 0  99 1 0 

100 96.8 3.2 0  0 100 0  99.2 0.8 0 

250 99 1 0  0 100 0  99.4 0.6 0 

500 98.4 1.2 0.4  0 100 0  98.4 0.4 1.2 

1

2

1 2

1 2

0

.00015

.00015

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 94 6 0  0 100 0  98.6 1.4 0 

100 96.8 3.2 0  0 100 0  98.8 1.2 0 

250 98.4 1.6 0  0 100 0  98.6 0.8 0.6 

500 96.8 2.8 0.4  0 100 0  95.8 2.2 2 

1

2

1 2

1 2

0

.00077

.00077

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 95.2 4.8 0  0 100 0  99.2 0.8 0 

100 98.2 1.8 0  0 100 0  99.4 0.6 0 

250 97 3 0  0 100 0  96.4 1.8 1.8 

500 98 1.4 0.6  0 100 0  95.2 1 3.8 
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1

2

1 2

1 2

.00084

.00005

.00089

.0316

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 95.4 4.6 0  99 1 0  98.8 1.2 0 

100 96.6 3.4 0  98.4 1.6 0  100 0 0 

250 95.6 4.4 0  96.6 3 0.4  99.8 0.2 0 

500 95.6 4.2 0.2  95.4 3.4 1.2  98 1.2 0.8 

1

2

1 2

1 2

.09765

.00972

.10738

.8684

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 95.6 2.2 2.2  93 2 5  98 2 0 

100 94.4 3 2.6  92.6 2.6 4.8  97.6 2.4 0 

250 94.6 2.6 2.8  95 1.8 3.2  98 1.8 0.2 

500 94.2 2.2 3.6  95.4 1.4 3.2  96.4 2 1.6 

1

2

1 2

1 2

1.70303

.00004

1.70307

.2075

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 95.6 1.6 2.8  95.6 1.6 2.8  99 1 0 

100 94.2 2.2 3.6  94.2 2.2 3.6  99.6 0.4 0 

250 91.2 3.4 5.4  91.4 3.2 5.4  99.6 0.4 0 

500 96 2.6 1.4  96 2.6 1.4  97 1.2 1.8 

1

2

1 2

1 2

3.16064

.00236

3.10877

.0925

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 93.4 2.8 3.8  93.4 2.8 3.8  97.4 2.6 0 

100 94.6 2.6 2.8  94.8 2.4 2.8  97 3 0 

250 94.8 2.6 2.6  95 2.4 2.6  98 2 0 

500 95.2 1.4 3.4  95.2 1.4 3.4  96.4 3 0.6 

1

2

1 2

1 2

0

.00479

.00479

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 98.6 1.4 0  0 100 0  96.8 1 2.2 

100 96.6 1.8 1.6  0 100 0  96 1.8 2.2 

250 94.4 3 2.6  0 100 0  94.4 2.8 2.8 

500 94.6 2.2 3.2  0 100 0  94.8 2 3.2 
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1

2

1 2

1 2

0

.3969

.3969

.9

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 94.6 5.4 0  0 100 0  93.2 4.2 2.6 

100 95.8 3.6 0.6  0 100 0  95.2 2.2 2.6 

250 94.2 3.4 2.4  0 100 0  93.4 3.4 3.2 

500 93.4 3 3.6  0 100 0  93.4 3 3.6 

1

2

1 2

1 2

00053

.00448

.00501

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 96.2 3.8 0  98.6 1.4 0  97.4 1.2 1.4 

100 95.8 3.8 0.4  98.8 1.2 0  94.6 2 3.4 

250 96.4 2.2 1.4  98.6 1.2 0.2  95 1.6 3.4 

500 94.8 2.6 2.6  96 3.4 0.6  94.4 1.4 4.2 

1

2

1 2

1 2

.19319

.21203

.40522

.8011

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 94.4 2.4 3.2  93.8 2.2 4  94.4 2.6 3 

100 92.4 3.4 4.2  93.4 2.4 4.2  92.2 3.2 4.6 

250 95 2.4 2.6  94.6 3.4 2  94.6 2.6 2.8 

500 92.2 4.4 3.4  92.6 4.2 3.2  93.2 3.2 3.6 

1

2

1 2

1 2

00203

.00203

.00405

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 96.6 3.4 0  98.8 1 0.2  98.6 1.4 0 

100 96.2 3.6 0.2  97.4 2 0.6  97.2 1 1.8 

250 98.2 1.4 0.4  95 1.6 3.4  95.4 1.6 3 

500 95 3.2 1.8  93.8 2.4 3.8  95 2.4 2.6 

1

2

1 2

1 2

0

.05444

.05444

0

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 94.6 2 3.4  0 100 0  94.4 1.6 4 

100 94.2 2.6 3.2  0 100 0  94.2 2.4 3.4 

250 94.8 3 2.2  0 100 0  94.6 3 2.4 

500 94.4 3.8 1.8  0 100 0  94.4 3.8 1.8 
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1

2

1 2

1 2

00005

.05339

.05344

.1816

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 96.4 1.8 1.8  95.8 4.2 0  94.2 1.6 4.2 

100 94.8 2.8 2.4  95.2 4.8 0  95.2 2.2 2.6 

250 93.6 3 3.4  96.4 3.6 0  93.2 3 3.8 

500 94 2.6 3.4  97 3 0  94.2 2.4 3.4 

1

2

1 2

1 2

00298

.06325

.06624

.1184

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 95.2 2 2.8  98.8 0.8 0.4  94.4 1.2 4.4 

100 94.4 1.8 3.8  97.6 0.6 1.8  94.6 1.4 4 

250 95.4 2.4 2.2  93.2 1.8 5  95.8 2.2 2 

500 94.6 2.2 3.2  94.8 2.6 2.6  94.4 2.4 3.2 

1

2

1 2

1 2

1.26563

.01174

1.27736

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 95 2.2 2.8  95 2.2 2.8  96.4 2.2 1.4 

100 95.4 2.6 2  95.4 2.6 2  95.2 1.2 3.6 

250 90.8 4.4 4.8  91.2 4.2 4.6  95.4 1.4 3.2 

500 93.2 3.2 3.6  93.8 3.2 3  93.6 3.4 3 

6

6

1

2

1 2

1 2

0

4.9 10

4.9 10

.3

sp

YM X

sp

YM X

tot

YM M X

M M Xr























 

50 5.2 94.8 0  0 100 0  96.6 3.4 0 

100 9.6 90.4 0  0 100 0  98.4 1.6 0 

250 24.4 75.6 0  0 100 0  98.4 1.6 0 

500 43.4 56.6 0  0 100 0  99.4 0.6 0 

1

2

1 2

1 2

09379

.00683

.10062

.8684

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 97 1.8 1.2  95.4 1 3.6  98.8 1.2 0 

100 95.2 1.6 3.2  94.4 1.2 4.4  98.6 1.4 0 

250 94.8 1.8 3.4  95 1.6 3.4  97.4 2.6 0 

500 94 2 4  94.2 1.8 4  95.4 2 2.6 
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1

2

1 2

1 2

04785

.00348

.05134

.8684

.sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 97 1.4 1.6  94.8 1.2 4  99 1 0 

100 95.6 2 2.4  95 2 3  98.2 1.6 0.2 

250 94.2 1.6 4.2  94.4 1.2 4.4  97.4 1.8 0.8 

500 92.8 2.8 4.4  93 2.4 4.6  95.2 2.2 2.6 

6

1

2

1 2

1 2

.5184

4.9 10

.5184

.8684

sp

YM X

sp

YM X

tot

YM M X

M M Xr


















 

50 93.8 3.6 2.6  93.8 3.6 2.6  96.4 3.6 0 

100 93.4 3.4 3.2  93.4 3.4 3.2  97.4 2.6 0 

250 93.8 2.8 3.4  93.8 2.8 3.4  98.6 1.4 0 

500 95.8 3 1.2  95.8 3 1.2  99.4 0.6 0 

1

2

1 2

1 2

0059

.0059

.01181

.0989

.sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 97.6 2.4 0  97.4 1 1.6  97.2 0.6 2.2 

100 96.4 2.2 1.4  95.4 0.8 3.8  94.6 1 4.4 

250 96.2 2 1.8  94.4 1.8 3.8  94.6 1.2 4.2 

500 94.6 3 2.4  93.2 2.2 4.6  94.4 1.6 4 

1

2

1 2

1 2

.57154

.02074

.59227

.6493

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 94.4 3.6 2  94.2 3.6 2.2  95.2 1.4 3.4 

100 94.2 3.8 2  93.8 3.8 2.4  94.8 1.4 3.8 

250 95.4 2.2 2.4  95 2.6 2.4  96.8 1.4 1.8 

500 93 4.6 2.4  92.6 4.6 2.8  96 1.8 2.2 

1

2

1 2

1 2

.7465

.0013

.74779

.6493

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 93.4 3.4 3.2  93.2 3.4 3.4  98.8 1.2 0 

100 95 2.2 2.8  95 2.2 2.8  98.6 1.2 0.2 

250 94.4 2.6 3  94.4 2.6 3  97.8 1.4 0.8 

500 94 3.6 2.4  94 3.6 2.4  96.6 1.4 2 
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1

2

1 2

1 2

.06891

.45002

.51892

.7184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 94.8 1.4 3.8  94.8 1 4.2  94.8 1.6 3.6 

100 93.8 3.4 2.8  94.4 3 2.6  93.8 2.8 3.4 

250 95.2 1.2 3.6  95.2 1.4 3.4  95 1.2 3.8 

500 95.2 2.8 2  95 2.8 2.2  95.4 2.4 2.2 

1

2

1 2

1 2

.00465

.03587

.04052

.1816

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 97.2 2 0.8  98.4 0.6 1  95.4 1.8 2.8 

100 96.6 2 1.4  93.2 2 4.8  95.2 2.2 2.6 

250 92.4 4.8 2.8  96.2 1 2.8  92.4 4.4 3.2 

500 95.6 1.4 3  92.2 3.2 4.6  94.6 2 3.4 

1

2

1 2

1 2

.00116

.02412

.02528

.1184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 97.4 2.2 0.4  99.4 0.4 0.2  96.6 1.6 1.8 

100 94.6 3 2.4  96.6 2.6 0.8  94.2 2.2 3.6 

250 94.2 3.8 2  96.2 2 1.8  94.4 3.2 2.4 

500 95 1.6 3.4  95.2 2.2 2.6  94.8 1.6 3.6 

1

2

1 2

1 2

.03516

.2296

.26476

.7184

sp

YM X

sp

YM X

tot

YM M X

M M Xr















 

50 96.6 1.6 1.8  97 1 2  95.2 1.8 3 

100 93.4 3 3.6  93.6 2 4.4  93.8 2.6 3.6 

250 95.6 1.6 2.8  96.2 1.4 2.4  96.2 1.2 2.6 

500 93.8 2.2 4  93 2.4 4.6  94 2.2 3.8 

1

2

1 2

1 2

.31641

.08752

.40392

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 94.4 3.8 1.8  94.4 3 2.6  93 2.4 4.6 

100 94.6 2.8 2.6  94 3.4 2.6  94.4 1.8 3.8 

250 93.8 2.8 3.4  93 3 4  92 3 5 

500 95.4 2.4 2.2  95.4 1.8 2.8  96.4 1.6 2 
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1

2

1 2

1 2

.31641

.01085

.32726

.8921

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 95.2 3.8 1  94.4 3.8 1.8  97 1.2 1.8 

100 93.6 2.8 3.6  93.6 2.6 3.8  93.8 2.6 3.6 

250 95.8 2.2 2  95.8 1.8 2.4  94.8 1.8 3.4 

500 93.8 4 2.2  93.6 4.2 2.2  95 2.4 2.6 

1

2

1 2

1 2

.00088

.00479

.00567

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 96.2 3.6 0.2  98.4 1.6 0  97 1.8 1.2 

100 95.8 4 0.2  98.2 1.8 0  94 2 4 

250 96 2.2 1.8  98.6 1.2 0.2  94.6 1.2 4.2 

500 95.2 3.6 1.2  95.8 2.6 1.6  93.6 2.2 4.2 

1

2

1 2

1 2

.00245

.00245

.0049

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 94.2 5.8 0  97.8 2 0.2  96.2 3 0.8 

100 95.8 3.8 0.4  95.4 2 2.6  96.8 2.2 1 

250 95.4 3 1.6  93.4 2.8 3.8  95.2 1.6 3.2 

500 95.8 2.6 1.6  94.6 2.4 3  94.4 1.4 4.2 

1

2

1 2

1 2

.00479

.00479

.00959

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr

















 

50 97 2.6 0.4  97 1 2  97 1.2 1.8 

100 95.6 3.4 1  92.6 2.4 5  94.4 2.4 3.2 

250 94.6 3.4 2  92.4 2.6 5  94.2 1.8 4 

500 95.2 2.8 2  95.8 1.4 2.8  95 1.8 3.2 

1

2

1 2

1 2

.00245

.00245

.0049

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 96.8 3.2 0  97.8 1.6 0.6  98.4 1.2 0.4 

100 96 4 0  96.6 1.4 2  94.8 2 3.2 

250 96 3.4 0.6  94.2 1.6 4.2  93.4 2 4.6 

500 96.4 2.4 1.2  94.4 2.4 3.2  95.4 1 3.6 
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1

2

1 2

1 2

.07131

.00479

.0761

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 94.6 4 1.4  94 4 2  95.6 1.8 2.6 

100 93.8 2.8 3.4  94 2.8 3.2  94.6 1.4 4 

250 95 2.4 2.6  94.8 2.4 2.8  93 3.2 3.8 

500 94.6 2.4 3  94.6 2.4 3  94.8 1.6 3.6 

1

2

1 2

1 2

.06113

.00245

.06358

.0089

sp

YM X

sp

YM X

tot

YM M X

M M Xr













 

 

50 95.6 3.4 1  94.8 3.4 1.8  96 0.8 3.2 

100 94.6 3 2.4  94.6 2.6 2.8  93 2.6 4.4 

250 94.2 3 2.8  94.4 2.8 2.8  93.6 2.4 4 

500 95.2 1.8 3  95.2 1.8 3  96 1.8 2.2 

 

  



119 

 

Table 5. Mean, bias, relative bias, and mean square error of 
1

ˆunc

YM X  and 
2

ˆunc

YM X  

  
1

ˆunc

YM X   
 

2
ˆunc

YM X  

 n Mean Est. Bias Rel. Bias MSE  Mean Est. Bias Rel. Bias MSE 

1

2

1 2

0

.00005

0

unc

YM X

unc

YM X

M M Xr










 

50 0.00049 0.00049 NA 0.00000  0.00071 0.00066 13.11945 0.00000 

100 0.00009 0.00009 NA 0.00000  0.00034 0.00029 5.89384 0.00000 

250 0.00002 0.00002 NA 0.00000  0.00012 0.00007 1.46445 0.00000 

500 0.00000 0.00000 NA 0.00000  0.00008 0.00003 0.61593 0.00000 

1

2

1 2

0

.00005

.3

unc

YM X

unc

YM X

M M Xr











 

50 0.00046 0.00046 NA 0.00000  0.00079 0.00074 14.71449 0.00000 

100 0.00009 0.00009 NA 0.00000  0.00029 0.00024 4.88295 0.00000 

250 0.00001 0.00001 NA 0.00000  0.00012 0.00007 1.39538 0.00000 

500 0.00000 0.00000 NA 0.00000  0.00009 0.00004 0.74116 0.00000 

1

2

1 2

0

.00005

.9

unc

YM X

unc

YM X

M M Xr











 

50 0.00036 0.00036 NA 0.00000  0.00084 0.00079 15.87717 0.00001 

100 0.00010 0.00010 NA 0.00000  0.00028 0.00023 4.56369 0.00000 

250 0.00001 0.00001 NA 0.00000  0.00012 0.00007 1.34133 0.00000 

500 0.00000 0.00000 NA 0.00000  0.00008 0.00003 0.67602 0.00000 

1

2

1 2

0

.00003

.3

unc

YM X

unc

YM X

M M Xr











 

50 0.00035 0.00035 NA 0.00000  0.00059 0.00056 21.96918 0.00000 

100 0.00008 0.00008 NA 0.00000  0.00020 0.00017 6.82512 0.00000 

250 0.00001 0.00001 NA 0.00000  0.00008 0.00005 2.11489 0.00000 

500 0.00000 0.00000 NA 0.00000  0.00004 0.00002 0.75773 0.00000 

1

2

1 2

00088

.00005

.0316

.unc

YM X

unc

YM X

M M Xr












 

50 0.00339 0.00251 2.85557 0.00005  0.00091 0.00086 17.20114 0.00001 

100 0.00219 0.00131 1.49091 0.00001  0.00029 0.00024 4.73949 0.00000 

250 0.00143 0.00055 0.62436 0.00000  0.00013 0.00008 1.53858 0.00000 

500 0.00111 0.00023 0.26085 0.00000  0.00008 0.00003 0.59550 0.00000 

1

2

1 2

00088

.00005

.8684

.unc

YM X

unc

YM X

M M Xr











 

50 0.00397 0.00309 3.51436 0.00007  0.00081 0.00076 15.20565 0.00000 

100 0.00204 0.00116 1.32029 0.00001  0.00026 0.00021 4.13535 0.00000 

250 0.00129 0.00041 0.46122 0.00000  0.00012 0.00007 1.41732 0.00000 

500 0.00109 0.00021 0.24132 0.00000  0.00009 0.00004 0.73422 0.00000 

50 1.72213 0.08643 0.05284 0.37681  0.00080 0.00075 14.92462 0.00000 

100 1.67868 0.04298 0.02627 0.18677  0.00032 0.00027 5.36392 0.00000 

250 1.61725 -0.01846 -0.01128 0.07365  0.00011 0.00006 1.28428 0.00000 
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1

2

1 2

1.63571

.00005

.2075

unc

YM X

unc

YM X

M M Xr












 500 1.64555 0.00984 0.00602 0.03432  0.00008 0.00003 0.52046 0.00000 

1

2

1 2

1.63571

.00005

.0925

unc

YM X

unc

YM X

M M Xr











 

50 1.67438 0.03868 0.02364 0.41555  0.00081 0.00076 15.26676 0.00001 

100 1.66801 0.03231 0.01975 0.18826  0.00027 0.00022 4.30325 0.00000 

250 1.63776 0.00205 0.00125 0.07417  0.00012 0.00007 1.43135 0.00000 

500 1.63789 0.00219 0.00134 0.03160  0.00008 0.00003 0.65382 0.00000 

1

2

1 2

0

.00479

0

unc

YM X

unc

YM X

M M Xr











 

50 0.00044 0.00044 NA 0.00000  0.00874 0.00395 0.82313 0.00016 

100 0.00009 0.00009 NA 0.00000  0.00678 0.00198 0.41390 0.00005 

250 0.00002 0.00002 NA 0.00000  0.00550 0.00071 0.14711 0.00002 

500 0.00000 0.00000 NA 0.00000  0.00512 0.00033 0.06816 0.00001 

1

2

1 2

0

.00479

.9

unc

YM X

unc

YM X

M M Xr











 

50 0.00049 0.00049 NA 0.00000  0.00785 0.00306 0.63823 0.00016 

100 0.00010 0.00010 NA 0.00000  0.00668 0.00189 0.39379 0.00004 

250 0.00001 0.00001 NA 0.00000  0.00518 0.00038 0.08018 0.00001 

500 0.00000 0.00000 NA 0.00000  0.00510 0.00031 0.06426 0.00001 

1

2

1 2

00088

.00479

.0989

.unc

YM X

unc

YM X

M M Xr













 

50 0.00374 0.00286 3.25015 0.00006  0.00786 0.00306 0.63938 0.00015 

100 0.00194 0.00106 1.20765 0.00001  0.00641 0.00162 0.33767 0.00005 

250 0.00116 0.00028 0.31589 0.00000  0.00522 0.00043 0.08911 0.00001 

500 0.00104 0.00016 0.18627 0.00000  0.00485 0.00006 0.01199 0.00001 

1

2

1 2

00088

.00479

.801

.unc

YM X

unc

YM X

M M Xr











 

50 0.00341 0.00253 2.87388 0.00005  0.00844 0.00365 0.76140 0.00018 

100 0.00191 0.00103 1.16740 0.00001  0.00596 0.00117 0.24332 0.00004 

250 0.00141 0.00053 0.60478 0.00000  0.00558 0.00079 0.16380 0.00001 

500 0.00106 0.00018 0.20769 0.00000  0.00535 0.00056 0.11712 0.00001 

1

2

1 2

00245

.00245

.0989

.unc

YM X

unc

YM X

M M Xr













 

50 0.00444 0.00199 0.81524 0.00007  0.00504 0.00259 1.06068 0.00007 

100 0.00381 0.00136 0.55707 0.00002  0.00350 0.00105 0.43014 0.00002 

250 0.00289 0.00044 0.18050 0.00001  0.00281 0.00037 0.14938 0.00000 

500 0.00263 0.00019 0.07649 0.00000  0.00268 0.00024 0.09661 0.00000 

50 0.00050 0.00050 NA 0.00000  0.06539 0.01095 0.20109 0.00285 

100 0.00010 0.00010 NA 0.00000  0.06079 0.00634 0.11650 0.00124 

250 0.00001 0.00001 NA 0.00000  0.05741 0.00297 0.05453 0.00041 
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1

2

1 2

0

.05444

0

unc

YM X

unc

YM X

M M Xr











 500 0.00000 0.00000 NA 0.00000  0.05609 0.00165 0.03027 0.00019 

1

2

1 2

00088

.05444

.1816

.unc

YM X

unc

YM X

M M Xr













 

50 0.00356 0.00268 3.04718 0.00004  0.06585 0.01140 0.20947 0.00291 

100 0.00203 0.00115 1.30978 0.00001  0.05792 0.00348 0.06390 0.00107 

250 0.00129 0.00041 0.46007 0.00000  0.05703 0.00258 0.04743 0.00044 

500 0.00110 0.00022 0.24581 0.00000  0.05517 0.00072 0.01328 0.00020 

1

2

1 2

00088

.05444

.1184

.unc

YM X

unc

YM X

M M Xr











 

50 0.00325 0.00236 2.68628 0.00005  0.06346 0.00902 0.16560 0.00254 

100 0.00185 0.00097 1.10618 0.00001  0.05752 0.00308 0.05652 0.00101 

250 0.00120 0.00032 0.36443 0.00000  0.05654 0.00210 0.03852 0.00037 

500 0.00113 0.00025 0.28928 0.00000  0.05554 0.00110 0.02016 0.00018 

1

2

1 2

1.63571

.05444

.3

unc

YM X

unc

YM X

M M Xr











 

50 1.68363 0.04793 0.02930 0.36434  0.06570 0.01125 0.20670 0.00273 

100 1.62788 -0.00782 -0.00478 0.16228  0.05834 0.00389 0.07150 0.00104 

250 1.66949 0.03378 0.02065 0.08242  0.05627 0.00183 0.03356 0.00037 

500 1.64077 0.00507 0.00310 0.03928  0.05566 0.00122 0.02232 0.00020 

1

2

1 2

0

.00005

.8921

unc

YM X

unc

YM X

M M Xr













 

50 0.00220 0.00220 NA 0.00002  0.00066 0.00061 12.29530 0.00000 

100 0.00095 0.00095 NA 0.00000  0.00029 0.00024 4.85074 0.00000 

250 0.00035 0.00035 NA 0.00000  0.00013 0.00008 1.52106 0.00000 

500 0.00020 0.00020 NA 0.00000  0.00009 0.00004 0.72596 0.00000 

1

2

1 2

.00479

.00005

.8684

unc

YM X

unc

YM X

M M Xr











 

50 0.00804 0.00324 0.67681 0.00014  0.00077 0.00072 14.38349 0.00000 

100 0.00583 0.00104 0.21605 0.00004  0.00025 0.00020 4.03429 0.00000 

250 0.00536 0.00056 0.11743 0.00001  0.00013 0.00008 1.55388 0.00000 

500 0.00499 0.00019 0.04013 0.00001  0.00008 0.00003 0.53365 0.00000 

1

2

1 2

.00245

.00003

.8684

unc

YM X

unc

YM X

M M Xr











 

50 0.00473 0.00228 0.93433 0.00007  0.00055 0.00052 20.39922 0.00000 

100 0.00352 0.00107 0.43837 0.00002  0.00021 0.00018 7.21530 0.00000 

250 0.00273 0.00029 0.11770 0.00001  0.00008 0.00005 1.96248 0.00000 

500 0.00261 0.00017 0.06896 0.00000  0.00004 0.00002 0.73152 0.00000 

50 0.58894 0.08410 0.16658 0.15123  0.00062 0.00059 23.17246 0.00000 

100 0.55087 0.04602 0.09115 0.06610  0.00019 0.00016 6.45737 0.00000 

250 0.50645 0.00160 0.00317 0.02451  0.00008 0.00005 2.09960 0.00000 
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1

2

1 2

.50485

.00003

.2075

unc

YM X

unc

YM X

M M Xr













 500 0.51244 0.00759 0.01504 0.01191  0.00005 0.00002 0.88739 0.00000 

1

2

1 2

.00479

.00479

.0989

unc

YM X

unc

YM X

M M Xr













 

50 0.00842 0.00363 0.75675 0.00017  0.00739 0.00260 0.54267 0.00011 

100 0.00608 0.00129 0.26930 0.00003  0.00604 0.00125 0.26080 0.00004 

250 0.00525 0.00046 0.09534 0.00001  0.00523 0.00044 0.09103 0.00001 

500 0.00501 0.00022 0.04627 0.00001  0.00508 0.00028 0.05890 0.00001 

1

2

1 2

.02019

.00479

.6493

unc

YM X

unc

YM X

M M Xr













 

50 0.09733 0.07714 3.81981 0.02665  0.00806 0.00327 0.68178 0.00013 

100 0.06303 0.04284 2.12128 0.00962  0.00586 0.00107 0.22222 0.00004 

250 0.03612 0.01593 0.78881 0.00195  0.00518 0.00039 0.08153 0.00001 

500 0.03061 0.01041 0.51567 0.00102  0.00490 0.00011 0.02321 0.00001 

1

2

1 2

.50485

.00245

.6493

unc

YM X

unc

YM X

M M Xr













 

50 0.57557 0.07072 0.14009 0.14659  0.00443 0.00199 0.81299 0.00006 

100 0.53660 0.03175 0.06289 0.06027  0.00352 0.00107 0.43901 0.00002 

250 0.52113 0.01628 0.03225 0.02388  0.00298 0.00053 0.21857 0.00001 

500 0.50188 -0.00297 -0.00587 0.01110  0.00268 0.00023 0.09472 0.00000 

1

2

1 2

.00479

.05444

.7184

unc

YM X

unc

YM X

M M Xr











 

50 0.00820 0.00341 0.71164 0.00020  0.06429 0.00984 0.18078 0.00311 

100 0.00635 0.00156 0.32473 0.00005  0.05961 0.00517 0.09496 0.00115 

250 0.00555 0.00076 0.15774 0.00001  0.05674 0.00229 0.04211 0.00038 

500 0.00485 0.00006 0.01271 0.00000  0.05435 -0.00010 -0.00181 0.00018 

1

2

1 2

.00245

.02778

.1816

unc

YM X

unc

YM X

M M Xr













 

50 0.00440 0.00196 0.80051 0.00005  0.03711 0.00933 0.33581 0.00120 

100 0.00357 0.00112 0.45959 0.00002  0.03124 0.00346 0.12466 0.00045 

250 0.00269 0.00024 0.09961 0.00000  0.02971 0.00193 0.06947 0.00018 

500 0.00268 0.00024 0.09795 0.00000  0.02843 0.00066 0.02359 0.00007 

1

2

1 2

.00245

.02778

.1184

unc

YM X

unc

YM X

M M Xr











 

50 0.00416 0.00171 0.69944 0.00004  0.03474 0.00696 0.25060 0.00113 

100 0.00354 0.00110 0.44837 0.00002  0.03173 0.00395 0.14211 0.00046 

250 0.00298 0.00053 0.21827 0.00001  0.02916 0.00139 0.04987 0.00016 

500 0.00266 0.00022 0.08860 0.00000  0.02794 0.00016 0.00573 0.00007 

50 0.00505 0.00260 1.06451 0.00007  0.03565 0.00787 0.28330 0.00120 

100 0.00357 0.00113 0.46030 0.00002  0.03154 0.00376 0.13554 0.00046 

250 0.00292 0.00047 0.19266 0.00001  0.02901 0.00123 0.04438 0.00014 



123 

 

1

2

1 2

.00245

.02778

.7184

unc

YM X

unc

YM X

M M Xr











 500 0.00256 0.00012 0.04734 0.00000  0.02817 0.00039 0.01420 0.00007 

1

2

1 2

.02019

.05444

.8921

unc

YM X

unc

YM X

M M Xr













 

50 0.11132 0.09113 4.51273 0.03267  0.06523 0.01078 0.19803 0.00299 

100 0.06843 0.04823 2.38852 0.01191  0.05789 0.00345 0.06334 0.00115 

250 0.03623 0.01604 0.79420 0.00206  0.05530 0.00085 0.01566 0.00039 

500 0.02568 0.00548 0.27161 0.00062  0.05509 0.00065 0.01188 0.00017 

1

2

1 2

.50485

.05444

.8921

unc

YM X

unc

YM X

M M Xr













 

50 0.55697 0.05212 0.10324 0.12973  0.03328 0.00550 0.19798 0.00113 

100 0.53703 0.03218 0.06374 0.06716  0.02935 0.00158 0.05673 0.00045 

250 0.51289 0.00804 0.01593 0.02410  0.02886 0.00109 0.03909 0.00015 

500 0.51909 0.01424 0.02821 0.01276  0.02879 0.00101 0.03637 0.00008 

1

2

1 2

.00088

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00381 0.00293 3.33165 0.00007  0.00830 0.00350 0.73124 0.00015 

100 0.00214 0.00126 1.42933 0.00002  0.00649 0.00170 0.35485 0.00006 

250 0.00121 0.00033 0.36937 0.00000  0.00519 0.00039 0.08218 0.00001 

500 0.00115 0.00027 0.30584 0.00000  0.00497 0.00017 0.03625 0.00001 

1

2

1 2

.00245

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00559 0.00314 1.28516 0.00011  0.00567 0.00323 1.31941 0.00010 

100 0.00353 0.00109 0.44375 0.00002  0.00359 0.00115 0.46887 0.00002 

250 0.00280 0.00035 0.14486 0.00001  0.00273 0.00029 0.11770 0.00000 

500 0.00266 0.00021 0.08694 0.00000  0.00260 0.00016 0.06430 0.00000 

1

2

1 2

.00479

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00725 0.00245 0.51192 0.00013  0.00781 0.00301 0.62847 0.00013 

100 0.00623 0.00144 0.30053 0.00005  0.00640 0.00161 0.33570 0.00006 

250 0.00518 0.00038 0.07987 0.00001  0.00538 0.00059 0.12239 0.00001 

500 0.00501 0.00021 0.04453 0.00001  0.00497 0.00018 0.03671 0.00001 

1

2

1 2

.00245

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00498 0.00254 1.03806 0.00009  0.00462 0.00217 0.88874 0.00006 

100 0.00350 0.00106 0.43283 0.00002  0.00363 0.00118 0.48286 0.00002 

250 0.00279 0.00035 0.14184 0.00000  0.00291 0.00046 0.18811 0.00001 

500 0.00266 0.00022 0.08866 0.00000  0.00265 0.00021 0.08442 0.00000 

50 0.08909 0.01779 0.24945 0.00647  0.00912 0.00432 0.90230 0.00020 

100 0.08135 0.01004 0.14079 0.00260  0.00655 0.00176 0.36757 0.00005 

250 0.07358 0.00228 0.03191 0.00083  0.00513 0.00034 0.06994 0.00001 
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1

2

1 2

.07131

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 500 0.07194 0.00064 0.00891 0.00041  0.00496 0.00017 0.03533 0.00001 

1

2

1 2

.06133

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.07350 0.01237 0.20228 0.00380  0.00436 0.00192 0.78419 0.00005 

100 0.06756 0.00642 0.10507 0.00160  0.00358 0.00114 0.46592 0.00002 

250 0.06507 0.00393 0.06437 0.00067  0.00292 0.00048 0.19493 0.00001 

500 0.06237 0.00124 0.02023 0.00031  0.00271 0.00027 0.10955 0.00000 

 

  



125 

 

Table 6. Confidence limits, confidence interval width for 
1

ˆunc

YM X  and 
2

ˆunc

YM X  

  
1

ˆunc

YM X   
 

2
ˆunc

YM X  

 n Mean LCL Mean UCL Mean CI Width  Mean LCL Mean UCL Mean CI Width 

1

2

1 2

0

.00005

0

unc

YM X

unc

YM X

M M Xr










 

50 0.00000 0.01159 0.01159  0.00000 0.01402 0.01402 

100 0.00000 0.00238 0.00238  0.00000 0.00433 0.00433 

250 0.00000 0.00041 0.00041  0.00000 0.00110 0.00110 

500 
0.00000 0.00010 0.00010  0.00000 0.00051 0.00051 

1

2

1 2

0

.00005

.3

unc

YM X

unc

YM X

M M Xr











 

50 0.00000 0.01163 0.01163  0.00000 0.01464 0.01464 

100 0.00000 0.00252 0.00252  0.00000 0.00410 0.00410 

250 0.00000 0.00039 0.00039  0.00000 0.00113 0.00113 

500 
0.00000 0.00009 0.00009  0.00000 0.00054 0.00054 

1

2

1 2

0

.00005

.9

unc

YM X

unc

YM X

M M Xr











 

50 0.00000 0.01097 0.01097  0.00000 0.01498 0.01498 

100 0.00000 0.00249 0.00249  0.00000 0.00409 0.00409 

250 0.00000 0.00037 0.00037  0.00000 0.00109 0.00109 

500 
0.00000 0.00010 0.00010  0.00000 0.00052 0.00052 

1

2

1 2

0

.00003

.3

unc

YM X

unc

YM X

M M Xr











 

50 0.00000 0.00890 0.00890  0.00000 0.01169 0.01169 

100 0.00000 0.00204 0.00204  0.00000 0.00314 0.00314 

250 0.00000 0.00030 0.00030  0.00000 0.00079 0.00079 

500 
0.00000 0.00008 0.00008  0.00000 0.00033 0.00033 

1

2

1 2

00088

.00005

.0316

.unc

YM X

unc

YM X

M M Xr













 

50 0.00005 0.03417 0.03412  0.00000 0.01529 0.01528 

100 0.00007 0.01491 0.01484  0.00000 0.00419 0.00419 

250 0.00011 0.00649 0.00639  0.00000 0.00114 0.00114 

500 
0.00014 0.00388 0.00374  0.00000 0.00051 0.00051 

1

2

1 2

00088

.00005

.8684

.unc

YM X

unc

YM X

M M Xr











 

50 0.00007 0.03752 0.03745  0.00000 0.01426 0.01426 

100 0.00007 0.01427 0.01421  0.00000 0.00389 0.00389 

250 0.00008 0.00606 0.00598  0.00000 0.00109 0.00109 

500 
0.00014 0.00380 0.00366  0.00000 0.00052 0.00052 

50 0.74776 3.20794 2.46018  0.00000 0.01406 0.01405 

100 0.97733 2.62925 1.65193  0.00000 0.00425 0.00424 

250 1.15307 2.17626 1.02319  0.00000 0.00106 0.00105 
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1

2

1 2

1.63571

.00005

.2075

unc

YM X

unc

YM X

M M Xr













 

500 

1.30539 2.03218 0.72679  0.00000 0.00049 0.00049 

1

2

1 2

1.63571

.00005

.0925

unc

YM X

unc

YM X

M M Xr











 

50 0.73240 3.12918 2.39677  0.00000 0.01519 0.01518 

100 0.95892 2.61786 1.65894  0.00000 0.00403 0.00403 

250 1.17283 2.19889 1.02606  0.00000 0.00110 0.00110 

500 1.29953 2.02435 0.72482  0.00000 0.00052 0.00052 

1

2

1 2

0

.00479

0

unc

YM X

unc

YM X

M M Xr











 

50 0.00000 0.01087 0.01087  0.00027 0.05614 0.05587 

100 0.00000 0.00251 0.00251  0.00051 0.02938 0.02887 

250 0.00000 0.00040 0.00040  0.00111 0.01578 0.01467 

500 0.00000 0.00009 0.00009  0.00176 0.01131 0.00956 

1

2

1 2

0

.00479

.9

unc

YM X

unc

YM X

M M Xr











 

50 0.00000 0.01110 0.01110  0.00030 0.05139 0.05109 

100 0.00000 0.00246 0.00246  0.00046 0.02929 0.02883 

250 0.00000 0.00038 0.00038  0.00101 0.01502 0.01400 

500 0.00000 0.00009 0.00009  0.00173 0.01128 0.00955 

1

2

1 2

00088

.00479

.0989

.unc

YM X

unc

YM X

M M Xr













 

50 0.00006 0.03553 0.03547  0.00025 0.05166 0.05141 

100 0.00005 0.01433 0.01428  0.00049 0.02792 0.02743 

250 0.00006 0.00573 0.00567  0.00102 0.01514 0.01411 

500 0.00012 0.00373 0.00361  0.00164 0.01079 0.00915 

1

2

1 2

00088

.00479

.801

.unc

YM X

unc

YM X

M M Xr











 

50 0.00005 0.03356 0.03351  0.00031 0.05332 0.05301 

100 0.00007 0.01394 0.01387  0.00047 0.02674 0.02628 

250 0.00009 0.00652 0.00643  0.00112 0.01597 0.01485 

500 0.00012 0.00380 0.00369  0.00186 0.01172 0.00986 

1

2

1 2

00245

.00245

.0989

.unc

YM X

unc

YM X

M M Xr













 

50 0.00012 0.03390 0.03378  0.00014 0.03613 0.03599 

100 0.00020 0.01893 0.01874  0.00020 0.01780 0.01760 

250 0.00043 0.00948 0.00905  0.00040 0.00925 0.00885 

500 0.00071 0.00651 0.00580  0.00072 0.00660 0.00588 

50 0.00001 0.01123 0.01122  0.00946 0.22060 0.21114 

100 0.00000 0.00241 0.00241  0.01695 0.15021 0.13326 

250 0.00000 0.00038 0.00038  0.02685 0.10568 0.07882 
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1

2

1 2

0

.05444

0

unc

YM X

unc

YM X

M M Xr











 500 0.00000 0.00010 0.00010  0.03350 0.08730 0.05379 

1

2

1 2

00088

.05444

.1816

.unc

YM X

unc

YM X

M M Xr













 

50 0.00003 0.03507 0.03504  0.00947 0.22042 0.21095 

100 0.00006 0.01438 0.01432  0.01584 0.14436 0.12851 

250 0.00008 0.00612 0.00604  0.02681 0.10451 0.07771 

500 0.00014 0.00380 0.00367  0.03280 0.08611 0.05330 

1

2

1 2

00088

.05444

.1184

.unc

YM X

unc

YM X

M M Xr











 

50 0.00005 0.03343 0.03338  0.00865 0.21497 0.20632 

100 0.00005 0.01384 0.01379  0.01567 0.14275 0.12708 

250 0.00007 0.00583 0.00576  0.02646 0.10426 0.07780 

500 0.00014 0.00390 0.00375  0.03302 0.08672 0.05370 

1

2

1 2

1.63571

.05444

.3

unc

YM X

unc

YM X

M M Xr











 

50 0.74801 3.12402 2.37601  0.00926 0.22462 0.21535 

100 0.93959 2.55081 1.61122  0.01600 0.14579 0.12979 

250 1.19958 2.23711 1.03753  0.02624 0.10331 0.07707 

500 1.30200 2.02859 0.72659  0.03312 0.08709 0.05397 

1

2

1 2

0

.00005

.8921

unc

YM X

unc

YM X

M M Xr













 

50 0.00002 0.02751 0.02750  0.00000 0.01397 0.01397 

100 0.00001 0.01042 0.01041  0.00000 0.00410 0.00410 

250 0.00000 0.00345 0.00344  0.00000 0.00114 0.00113 

500 0.00000 0.00165 0.00164  0.00000 0.00053 0.00053 

1

2

1 2

.00479

.00005

.8684

unc

YM X

unc

YM X

M M Xr











 

50 0.00025 0.05185 0.05161  0.00000 0.01383 0.01383 

100 0.00036 0.02682 0.02646  0.00000 0.00400 0.00400 

250 0.00106 0.01553 0.01447  0.00000 0.00114 0.00114 

500 0.00169 0.01109 0.00940  0.00000 0.00050 0.00050 

1

2

1 2

.00245

.00003

.8684

unc

YM X

unc

YM X

M M Xr











 

50 0.00013 0.03562 0.03548  0.00000 0.01131 0.01131 

100 0.00019 0.01784 0.01765  0.00000 0.00311 0.00311 

250 0.00040 0.00897 0.00856  0.00000 0.00079 0.00079 

500 0.00071 0.00646 0.00576  0.00000 0.00033 0.00033 

50 0.12981 1.54579 1.41598  0.00000 0.01196 0.01196 

100 0.18246 1.16063 0.97817  0.00000 0.00306 0.00306 

250 0.25898 0.84512 0.58614  0.00000 0.00081 0.00081 
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1

2

1 2

.50485

.00003

.2075

unc

YM X

unc

YM X

M M Xr













 500 0.32663 0.74535 0.41872  0.00000 0.00034 0.00034 

1

2

1 2

.00479

.00479

.0989

unc

YM X

unc

YM X

M M Xr













 

50 0.00033 0.05252 0.05219  0.00019 0.05008 0.04989 

100 0.00042 0.02752 0.02710  0.00042 0.02707 0.02665 

250 0.00104 0.01519 0.01416  0.00102 0.01522 0.01420 

500 0.00172 0.01109 0.00937  0.00174 0.01122 0.00948 

1

2

1 2

.02019

.00479

.6493

unc

YM X

unc

YM X

M M Xr













 

50 0.00333 0.72769 0.72436  0.00024 0.05254 0.05230 

100 0.00289 0.38291 0.38002  0.00042 0.02627 0.02586 

250 0.00207 0.17651 0.17444  0.00102 0.01502 0.01400 

500 0.00286 0.11414 0.11128  0.00165 0.01090 0.00925 

1

2

1 2

.50485

.00245

.6493

unc

YM X

unc

YM X

M M Xr













 

50 0.12005 1.53416 1.41411  0.00012 0.03429 0.03417 

100 0.17722 1.13907 0.96185  0.00018 0.01790 0.01771 

250 0.26954 0.86336 0.59383  0.00045 0.00963 0.00918 

500 0.31808 0.73171 0.41363  0.00073 0.00656 0.00584 

1

2

1 2

.00479

.05444

.7184

unc

YM X

unc

YM X

M M Xr











 

50 0.00028 0.05270 0.05242  0.00927 0.21634 0.20707 

100 0.00046 0.02850 0.02805  0.01613 0.14947 0.13334 

250 0.00114 0.01582 0.01468  0.02667 0.10398 0.07731 

500 0.00162 0.01085 0.00923  0.03227 0.08501 0.05274 

1

2

1 2

.00245

.02778

.1816

unc

YM X

unc

YM X

M M Xr













 

50 0.00009 0.03490 0.03481  0.00379 0.14266 0.13888 

100 0.00020 0.01803 0.01783  0.00642 0.08923 0.08281 

250 0.00036 0.00903 0.00867  0.01164 0.06033 0.04869 

500 0.00073 0.00660 0.00587  0.01491 0.04801 0.03310 

1

2

1 2

.00245

.02778

.1184

unc

YM X

unc

YM X

M M Xr











 

50 0.00008 0.03359 0.03351  0.00344 0.13826 0.13482 

100 0.00023 0.01762 0.01739  0.00652 0.08950 0.08298 

250 0.00045 0.00962 0.00916  0.01131 0.05948 0.04817 

500 0.00071 0.00656 0.00585  0.01466 0.04732 0.03266 

50 0.00014 0.03698 0.03684  0.00364 0.13769 0.13404 

100 0.00019 0.01823 0.01804  0.00643 0.08964 0.08320 

250 0.00045 0.00941 0.00897  0.01122 0.05910 0.04788 
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1

2

1 2

.00245

.02778

.7184

unc

YM X

unc

YM X

M M Xr











 500 0.00068 0.00635 0.00567  0.01485 0.04752 0.03268 

1

2

1 2

.02019

.05444

.8921

unc

YM X

unc

YM X

M M Xr













 

50 0.00455 0.77903 0.77448  0.00937 0.21790 0.20853 

100 0.00360 0.39684 0.39324  0.01564 0.14467 0.12904 

250 0.00212 0.17507 0.17295  0.02576 0.10196 0.07620 

500 0.00181 0.10425 0.10243  0.03264 0.08615 0.05351 

1

2

1 2

.50485

.05444

.8921

unc

YM X

unc

YM X

M M Xr













 

50 0.11741 1.50221 1.38480  0.00331 0.13348 0.13017 

100 0.18012 1.13515 0.95503  0.00591 0.08382 0.07791 

250 0.26428 0.85388 0.58960  0.01112 0.05894 0.04782 

500 0.33167 0.75308 0.42141  0.01523 0.04858 0.03335 

1

2

1 2

.00088

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00007 0.03521 0.03514  0.00029 0.05326 0.05297 

100 0.00008 0.01472 0.01463  0.00052 0.02807 0.02755 

250 0.00008 0.00579 0.00572  0.00103 0.01498 0.01395 

500 0.00015 0.00395 0.00380  0.00168 0.01103 0.00935 

1

2

1 2

.00245

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00017 0.03872 0.03855  0.00019 0.03956 0.03937 

100 0.00021 0.01735 0.01713  0.00022 0.01798 0.01776 

250 0.00043 0.00912 0.00869  0.00038 0.00909 0.00871 

500 0.00071 0.00660 0.00589  0.00069 0.00646 0.00577 

1

2

1 2

.00479

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00022 0.04844 0.04822  0.00025 0.05135 0.05110 

100 0.00052 0.02671 0.02619  0.00053 0.02772 0.02719 

250 0.00104 0.01502 0.01398  0.00105 0.01545 0.01440 

500 0.00171 0.01109 0.00939  0.00168 0.01104 0.00936 

1

2

1 2

.00245

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00018 0.03824 0.03806  0.00013 0.03539 0.03527 

100 0.00020 0.01778 0.01758  0.00020 0.01802 0.01782 

250 0.00039 0.00921 0.00882  0.00043 0.00947 0.00904 

500 0.00071 0.00659 0.00588  0.00071 0.00656 0.00585 

50 0.01243 0.28626 0.27383  0.00035 0.05563 0.05528 

100 0.01860 0.20381 0.18522  0.00052 0.02846 0.02794 

250 0.02891 0.14126 0.11235  0.00102 0.01483 0.01380 
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1

2

1 2

.07131

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 500 0.03789 0.11772 0.07983  0.00168 0.01101 0.00933 

1

2

1 2

.06133

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 0.00969 0.24402 0.23433  0.00009 0.03458 0.03449 

100 0.01462 0.17231 0.15769  0.00019 0.01835 0.01815 

250 0.02576 0.12449 0.09873  0.00044 0.00951 0.00907 

500 0.03309 0.10155 0.06846  0.00073 0.00668 0.00594 
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Table 7. Coverage, misses to the left and right for
1

ˆunc

YM X  and 
2

ˆunc

YM X  

  
1

ˆunc

YM X   
 

2
ˆunc

YM X  

 n Cov <.025 >.975  Cov <.025 >.975 

1

2

1 2

0

.00005

0

unc

YM X

unc

YM X

M M Xr











 

50 0 100 0  99.4 0.6 0 

100 0 100 0  99.4 0.6 0 

250 0 100 0  99 1 0 

500 0 100 0  98 1.4 0.6 

1

2

1 2

0

.00005

.3

unc

YM X

unc

YM X

M M Xr











 

50 0 100 0  98.6 1.4 0 

100 0 100 0  99 1 0 

250 0 100 0  99.6 0.4 0 

500 0 100 0  98.2 0.4 1.4 

1

2

1 2

0

.00005

.9

unc

YM X

unc

YM X

M M Xr











 

50 0 100 0  98.6 1.4 0 

100 0 100 0  99.2 0.8 0 

250 0 100 0  99 1 0 

500 0 100 0  97 1 2 

1

2

1 2

0

.00003

.3

unc

YM X

unc

YM X

M M Xr











 

50 0 100 0  98.8 1.2 0 

100 0 100 0  98.8 1.2 0 

250 0 100 0  99.4 0.6 0 

500 0 100 0  98.6 1.2 0.2 

1

2

1 2

00088

.00005

.0316

.unc

YM X

unc

YM X

M M Xr












 

50 98.6 1.4 0  98.8 1.2 0 

100 99 1 0  99.6 0.4 0 

250 96.4 3.2 0.4  99.6 0.4 0 

500 95.2 3.6 1.2  97.6 1.4 1 

1

2

1 2

00088

.00005

.8684

.unc

YM X

unc

YM X

M M Xr











 

50 98.2 1.8 0  99.2 0.8 0 

100 98 1.8 0.2  99.8 0.2 0 

250 97.6 2 0.4  98.6 1.4 0 

500 96.2 2.6 1.2  97.4 1.4 1.2 

50 96 1 3  99 1 0 

100 93.8 2.6 3.6  99 1 0 

250 92 3 5  99 1 0 
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1

2

1 2

1.63571

.00005

.2075

unc

YM X

unc

YM X

M M Xr












 500 95.6 2.8 1.6  98.8 0.6 0.6 

1

2

1 2

1.63571

.00005

.0925

unc

YM X

unc

YM X

M M Xr











 

50 94.2 2.8 3  98.6 1.4 0 

100 95.2 2.2 2.6  99.4 0.6 0 

250 93.6 3 3.4  99 1 0 

500 95 2.4 2.6  98.2 0.8 1 

1

2

1 2

0

.00479

0

unc

YM X

unc

YM X

M M Xr











 

50 0 100 0  97 1 2 

100 0 100 0  96 1.4 2.6 

250 0 100 0  94.4 3 2.6 

500 0 100 0  95 2.2 2.8 

1

2

1 2

0

.00479

.9

unc

YM X

unc

YM X

M M Xr











 

50 0 100 0  97.2 1.2 1.6 

100 0 100 0  95.6 1 3.4 

250 0 100 0  94.4 1.4 4.2 

500 0 100 0  95.6 1.6 2.8 

1

2

1 2

00088

.00479

.0989

.unc

YM X

unc

YM X

M M Xr













 

50 98.6 1.4 0  96.8 1.4 1.8 

100 98.2 1.6 0.2  94.2 2 3.8 

250 98.4 1.2 0.4  95 1.6 3.4 

500 94.8 2.8 2.4  94.2 1.2 4.6 

1

2

1 2

00088

.00479

.801

.unc

YM X

unc

YM X

M M Xr











 

50 98.4 1.6 0  97.2 1.4 1.4 

100 97.6 1.8 0.6  94.2 1.8 4 

250 97.2 2.4 0.4  94.8 2 3.2 

500 97.2 2.2 0.6  94.2 2.8 3 

1

2

1 2

00245

.00245

.0989

.unc

YM X

unc

YM X

M M Xr













 

50 98.4 1 0.6  98.4 1.2 0.4 

100 97.2 1.4 1.4  96 1.2 2.8 

250 94.4 1.4 4.2  94.6 1.6 3.8 

500 94.2 2.2 3.6  94.8 2 3.2 

50 0 100 0  94.6 1.4 4 

100 0 100 0  94.4 2.4 3.2 

250 0 100 0  95.2 2.8 2 
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1

2

1 2

0

.05444

0

unc

YM X

unc

YM X

M M Xr











 500 0 100 0  94.6 3.8 1.6 

1

2

1 2

00088

.05444

.1816

.unc

YM X

unc

YM X

M M Xr













 

50 99.6 0.4 0  93.8 2 4.2 

100 97.2 2.4 0.4  95.4 2.2 2.4 

250 98.4 1 0.6  93.8 3 3.2 

500 95.4 3 1.6  94 2.8 3.2 

1

2

1 2

00088

.05444

.1184

.unc

YM X

unc

YM X

M M Xr











 

50 99 1 0  94.8 1 4.2 

100 98.8 1.2 0  94.2 1.8 4 

250 97.8 1.4 0.8  96 2 2 

500 96 2.4 1.6  95 2 3 

1

2

1 2

1.63571

.05444

.3

unc

YM X

unc

YM X

M M Xr











 

50 94.6 2 3.4  93.8 1.8 4.4 

100 95.8 1.4 2.8  95.6 1.6 2.8 

250 92.4 4.4 3.2  95.4 1.4 3.2 

500 94.4 2.4 3.2  94.8 2.8 2.4 

1

2

1 2

0

.00005

.8921

unc

YM X

unc

YM X

M M Xr













 

50 0 100 0  99 1 0 

100 0 100 0  99.8 0.2 0 

250 0 100 0  99.4 0.6 0 

500 0 100 0  98.6 0.4 1 

1

2

1 2

.00479

.00005

.8684

unc

YM X

unc

YM X

M M Xr











 

50 98.2 0.8 1  99 1 0 

100 95.6 0.4 4  99.6 0.4 0 

250 94.4 2 3.6  99 1 0 

500 95 1 4  98.4 0.2 1.4 

1

2

1 2

.00245

.00003

.8684

unc

YM X

unc

YM X

M M Xr











 

50 97.2 1.8 1  98.2 1.8 0 

100 96.4 2 1.6  99 1 0 

250 92.6 2.4 5  99.4 0.6 0 

500 94.6 2 3.4  99.2 0.4 0.4 

50 93.4 4 2.6  99.2 0.8 0 

100 93.2 3.4 3.4  99 1 0 

250 92.8 3.2 4  99 1 0 
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1

2

1 2

.50485

.00003

.2075

unc

YM X

unc

YM X

M M Xr













 500 95.4 3.6 1  99 0.6 0.4 

1

2

1 2

.00479

.00479

.0989

unc

YM X

unc

YM X

M M Xr













 

50 98.4 1.2 0.4  98 0.8 1.2 

100 96 0.6 3.4  95.6 0.6 3.8 

250 93.8 2.4 3.8  94.2 1.4 4.4 

500 93.4 2.8 3.8  93.8 2.4 3.8 

1

2

1 2

.02019

.00479

.6493

unc

YM X

unc

YM X

M M Xr













 

50 96.8 3.2 0  98 0.6 1.4 

100 95.8 4.2 0  95.2 1.2 3.6 

250 96.6 3.4 0  96.2 1.4 2.4 

500 97.2 2.8 0  95.4 1.2 3.4 

1

2

1 2

.50485

.00245

.6493

unc

YM X

unc

YM X

M M Xr













 

50 93.8 3.6 2.6  98.6 1.2 0.2 

100 94.8 2 3.2  97.2 1.2 1.6 

250 94.4 3.2 2.4  94.2 2.8 3 

500 94.8 2.4 2.8  94.6 2 3.4 

1

2

1 2

.00479

.05444

.7184

unc

YM X

unc

YM X

M M Xr











 

50 96.8 1.2 2  94.2 2 3.8 

100 95.8 1.6 2.6  94.8 2.2 3 

250 94.4 2 3.6  95 1.6 3.4 

500 94.8 1 4.2  94 1.8 4.2 

1

2

1 2

.00245

.02778

.1816

unc

YM X

unc

YM X

M M Xr













 

50 99 0.6 0.4  95.2 2 2.8 

100 94.8 2.2 3  95.2 1.8 3 

250 96.6 1.2 2.2  93.4 3.4 3.2 

500 91.4 3.6 5  95.8 1.8 2.4 

1

2

1 2

.00245

.02778

.1184

unc

YM X

unc

YM X

M M Xr











 

50 99.4 0.4 0.2  96 1.6 2.4 

100 95 2.6 2.4  94.2 2.4 3.4 

250 94.8 2 3.2  93 3.2 3.8 

500 95.6 1 3.4  94.6 1.4 4 

50 97.2 1.8 1  95.4 1.8 2.8 

100 97.2 1.4 1.4  92.8 2.4 4.8 

250 93.6 1.8 4.6  94.2 2.6 3.2 
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1

2

1 2

.00245

.02778

.7184

unc

YM X

unc

YM X

M M Xr











 500 96.4 1 2.6  94.8 2 3.2 

1

2

1 2

.02019

.05444

.8921

unc

YM X

unc

YM X

M M Xr













 

50 95 5 0  92.8 3 4.2 

100 95.6 4.4 0  92.4 3.4 4.2 

250 97 3 0  93.6 2.8 3.6 

500 98 2 0  95.2 1.8 3 

1

2

1 2

.50485

.05444

.8921

unc

YM X

unc

YM X

M M Xr













 

50 95.2 2.8 2  94.8 1.2 4 

100 92.2 3 4.8  93.8 2 4.2 

250 94.8 2.8 2.4  94.8 2 3.2 

500 93.6 4 2.4  94 3.6 2.4 

1

2

1 2

.00088

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 

50 98 2 0  97 1.6 1.4 

100 98.2 1.8 0  94.2 1.8 4 

250 98.4 1.4 0.2  94.4 1.2 4.4 

500 95.8 2.4 1.8  94 2.4 3.6 

1

2

1 2

.00245

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 97.6 1.8 0.6  97 2.4 0.6 

100 95.8 2 2.2  96.2 2.2 1.6 

250 93.6 2.6 3.8  95.4 1.6 3 

500 94.2 2 3.8  94.2 1.6 4.2 

1

2

1 2

.00479

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 

50 97 1.2 1.8  98 0.6 1.4 

100 92.8 2.2 5  93.6 2.4 4 

250 92.4 2.2 5.4  94.8 1.2 4 

500 95.8 1.4 2.8  94.8 2.2 3 

1

2

1 2

.00245

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 98 1.6 0.4  99 0.8 0.2 

100 96.4 1.6 2  95 2.2 2.8 

250 95 1.2 3.8  94.2 1.4 4.4 

500 93.8 2.6 3.6  95.2 1.8 3 

50 94.4 3.4 2.2  96.8 1.8 1.4 

100 93.2 3.4 3.4  94.6 2 3.4 

250 95 2.4 2.6  93 1.6 5.4 
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1

2

1 2

.07131

.00479

.0089

unc

YM X

unc

YM X

M M Xr













 500 94.4 2.4 3.2  93.2 2.2 4.6 

1

2

1 2

.06133

.00245

.0089

unc

YM X

unc

YM X

M M Xr













 

50 95.4 3.2 1.4  99 0.6 0.4 

100 94.4 2.8 2.8  97.2 1.2 1.6 

250 94.2 2.8 3  96 1.8 2.2 

500 95.2 2 2.8  93.8 1.8 4.4 
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Table 8. Mean, bias, relative bias, and mean square error of 
1

ˆuni

YM X  and 
2

ˆuni

YM X  

  
1

ˆuni

YM X   
 

2
ˆuni

YM X  

 n Mean Est. Bias Rel. Bias MSE  Mean Est. Bias Rel. Bias MSE 

1

2

1 2

0

.00005

0

uni

YM X

uni

YM X

M M Xr











 

50 0.00052 0.00052 NA 0.00000  0.00073 0.00068 13.60807 0.00000 

100 0.00009 0.00009 NA 0.00000  0.00035 0.00030 5.90264 0.00000 

250 0.00002 0.00002 NA 0.00000  0.00012 0.00007 1.46099 0.00000 

500 0.00000 0.00000 NA 0.00000  0.00008 0.00003 0.62223 0.00000 

1

2

1 2

00001

.00006

.3

.uni

YM X

uni

YM X

M M Xr











 

50 0.00057 0.00056 53.70090 0.00000  0.00090 0.00084 13.82004 0.00001 

100 0.00015 0.00014 13.35426 0.00000  0.00036 0.00030 4.89039 0.00000 

250 0.00004 0.00002 2.34272 0.00000  0.00014 0.00008 1.31498 0.00000 

500 0.00002 0.00001 0.97070 0.00000  0.00010 0.00004 0.72270 0.00000 

1

2

1 2

00146

.00151

.9

.uni

YM X

uni

YM X

M M Xr











 

50 0.01392 0.01246 8.52180 0.00114  0.01441 0.01290 8.52871 0.00123 

100 0.00555 0.00409 2.79849 0.00012  0.00573 0.00422 2.78824 0.00012 

250 0.00273 0.00126 0.86482 0.00001  0.00283 0.00132 0.87110 0.00001 

500 0.00222 0.00076 0.51713 0.00001  0.00230 0.00079 0.51974 0.00001 

1

2

1 2

00075

.00077

.9

.uni

YM X

uni

YM X

M M Xr











 

50 0.00683 0.00608 8.15452 0.00030  0.00707 0.00630 8.16088 0.00031 

100 0.00313 0.00239 3.19932 0.00004  0.00326 0.00248 3.21883 0.00005 

250 0.00161 0.00086 1.15666 0.00001  0.00168 0.00091 1.17607 0.00001 

500 0.00103 0.00028 0.37859 0.00000  0.00107 0.00030 0.38717 0.00000 

1

2

1 2

00084

.00001

.0316

.uni

YM X

uni

YM X

M M Xr













 

50 0.00336 0.00252 3.00896 0.00005  0.00087 0.00086 130.7847 0.00001 

100 0.00212 0.00128 1.53505 0.00001  0.00022 0.00021 31.65219 0.00000 

250 0.00139 0.00055 0.65507 0.00000  0.00008 0.00008 11.42718 0.00000 

500 0.00107 0.00023 0.27368 0.00000  0.00004 0.00003 4.41702 0.00000 

1

2

1 2

.10733

.1065

.8684

uni

YM X

uni

YM X

M M Xr











 

50 0.18341 0.07608 0.70885 0.06104  0.18025 0.07375 0.69247 0.05951 

100 0.12848 0.02115 0.19707 0.01483  0.12670 0.02020 0.18963 0.01442 

250 0.11728 0.00995 0.09270 0.00404  0.11611 0.00961 0.09027 0.00398 

500 0.11101 0.00368 0.03430 0.00178  0.11001 0.00351 0.03292 0.00176 

50 1.79964 0.09663 0.05674 0.42711  0.07831 0.01095 0.16258 0.02837 

100 1.74651 0.04350 0.02554 0.20379  0.06815 0.00079 0.01179 0.00992 

250 1.69268 -0.01033 -0.00607 0.07967  0.07554 0.00819 0.12156 0.00393 
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1

2

1 2

1.703

.06736

.2075

uni

YM X

uni

YM X

M M Xr













 500 1.71173 0.00872 0.00512 0.03666  0.06626 -0.00109 -0.01622 0.00139 

1

2

1 2

3.10872

1.47306

.0925

uni

YM X

uni

YM X

M M Xr











 

50 3.13701 0.02829 0.00910 0.75568  1.46344 -0.00962 -0.00653 0.32424 

100 3.18199 0.07327 0.02357 0.34662  1.51424 0.04118 0.02795 0.15628 

250 3.11067 0.00195 0.00063 0.13698  1.47304 -0.00002 -0.00002 0.05126 

500 3.11829 0.00957 0.00308 0.06125  1.48048 0.00742 0.00504 0.02913 

1

2

1 2

0

.00479

0

uni

YM X

uni

YM X

M M Xr











 

50 0.00050 0.00050 NA 0.00000  0.00880 0.00401 0.83704 0.00016 

100 0.00011 0.00011 NA 0.00000  0.00680 0.00201 0.41859 0.00005 

250 0.00003 0.00003 NA 0.00000  0.00551 0.00072 0.15002 0.00002 

500 0.00000 0.00000 NA 0.00000  0.00512 0.00033 0.06834 0.00001 

1

2

1 2

.39211

.3969

.9

uni

YM X

uni

YM X

M M Xr











 

50 0.60103 0.20892 0.53282 0.33844  0.60839 0.21149 0.53286 0.34716 

100 0.49983 0.10773 0.27474 0.10728  0.50642 0.10952 0.27593 0.10933 

250 0.42270 0.03059 0.07801 0.03315  0.42786 0.03096 0.07800 0.03400 

500 0.40779 0.01568 0.03998 0.01439  0.41288 0.01598 0.04027 0.01472 

1

2

1 2

.00022

.00413

.0989

uni

YM X

uni

YM X

M M Xr













 

50 0.00308 0.00286 12.96313 0.00006  0.00720 0.00307 0.74170 0.00016 

100 0.00118 0.00096 4.33967 0.00001  0.00565 0.00151 0.36618 0.00005 

250 0.00046 0.00024 1.09146 0.00000  0.00452 0.00039 0.09435 0.00001 

500 0.00041 0.00019 0.85985 0.00000  0.00422 0.00008 0.02017 0.00000 

1

2

1 2

.40043

.40434

.8011

uni

YM X

uni

YM X

M M Xr











 

50 0.49229 0.09187 0.22942 0.20056  0.49733 0.09299 0.22997 0.20455 

100 0.42715 0.02672 0.06673 0.07863  0.43120 0.02686 0.06643 0.08003 

250 0.44421 0.04379 0.10935 0.03271  0.44838 0.04404 0.10892 0.03313 

500 0.41981 0.01938 0.04841 0.01597  0.42410 0.01976 0.04888 0.01630 

1

2

1 2

.0016

.0016

.0989

uni

YM X

uni

YM X

M M Xr













 

50 0.00358 0.00197 1.22897 0.00006  0.00418 0.00257 1.60301 0.00007 

100 0.00292 0.00131 0.81896 0.00002  0.00261 0.00100 0.62553 0.00002 

250 0.00204 0.00043 0.26861 0.00000  0.00196 0.00035 0.22119 0.00000 

500 0.00176 0.00015 0.09407 0.00000  0.00180 0.00020 0.12473 0.00000 

50 0.00077 0.00077 NA 0.00003  0.06566 0.01122 0.20607 0.00294 

100 0.00032 0.00032 NA 0.00001  0.06101 0.00656 0.12056 0.00127 

250 -0.00001 -0.00001 NA 0.00000  0.05739 0.00295 0.05409 0.00041 
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1

2

1 2

0

.05444

0

uni

YM X

uni

YM X

M M Xr











 500 0.00001 0.00001 NA 0.00000  0.05609 0.00165 0.03032 0.00019 

1

2

1 2

.00101

.05256

.1816

uni

YM X

uni

YM X

M M Xr















 

50 0.00070 0.00171 -1.69450 0.00014  0.06299 0.01043 0.19849 0.00272 

100 0.00015 0.00116 -1.15197 0.00003  0.05604 0.00349 0.06638 0.00110 

250 -0.00066 0.00035 -0.34612 0.00001  0.05508 0.00253 0.04807 0.00044 

500 -0.00079 0.00022 -0.21512 0.00000  0.05328 0.00072 0.01377 0.00021 

1

2

1 2

.01179

.06535

.1184

uni

YM X

uni

YM X

M M Xr











 

50 0.01485 0.00306 0.25968 0.00031  0.07507 0.00971 0.14862 0.00316 

100 0.01280 0.00101 0.08538 0.00011  0.06846 0.00311 0.04758 0.00122 

250 0.01203 0.00024 0.02023 0.00004  0.06737 0.00201 0.03083 0.00048 

500 0.01180 0.00001 0.00119 0.00002  0.06621 0.00086 0.01311 0.00023 

1

2

1 2

1.22292

.35835

.8921

uni

YM X

uni

YM X

M M Xr



 









 

50 1.26927 0.04636 0.03791 0.29777  -0.34866 0.00968 -0.02703 0.06959 

100 1.22251 -0.00040 -0.00033 0.13681  -0.34703 0.01131 -0.03157 0.03618 

250 1.25157 0.02865 0.02343 0.06852  -0.36165 -0.00330 0.00922 0.01320 

500 1.22575 0.00283 0.00232 0.03248  -0.35937 -0.00102 0.00285 0.00607 

6

1

2

1 2

.00005

4.9 10

.3

uni

YM X

uni

YM X

M M Xr



 








 

50 0.00217 0.00222 -49.25457 0.00003  0.00064 0.00063 127.624 0.00000 

100 0.00087 0.00092 -20.38220 0.00000  0.00021 0.00021 41.77806 0.00000 

250 0.00030 0.00034 -7.59745 0.00000  0.00008 0.00007 14.62207 0.00000 

500 0.00015 0.00019 -4.28153 0.00000  0.00004 0.00003 6.13120 0.00000 

1

2

1 2

.10057

.09583

.8684

uni

YM X

uni

YM X

M M Xr











 

50 0.13958 0.03901 0.38788 0.03004  0.13231 0.03648 0.38073 0.02802 

100 0.12310 0.02253 0.22400 0.01101  0.11752 0.02169 0.22638 0.01037 

250 0.10916 0.00859 0.08544 0.00337  0.10393 0.00811 0.08461 0.00314 

500 0.10350 0.00294 0.02920 0.00156  0.09860 0.00277 0.02891 0.00145 

1

2

1 2

.05131

.04889

.8684

uni

YM X

uni

YM X

M M Xr











 

50 0.07961 0.02830 0.55156 0.01229  0.07543 0.02654 0.54277 0.01139 

100 0.06876 0.01745 0.34016 0.00479  0.06546 0.01657 0.33884 0.00447 

250 0.05425 0.00294 0.05733 0.00118  0.05159 0.00270 0.05530 0.00109 

500 0.05400 0.00269 0.05240 0.00052  0.05143 0.00254 0.05192 0.00048 

50 0.60326 0.08488 0.16374 0.15949  0.01493 0.00138 0.10143 0.00760 

100 0.57061 0.05223 0.10075 0.07399  0.01993 0.00637 0.46996 0.00395 

250 0.52239 0.00401 0.00774 0.02599  0.01602 0.00246 0.18160 0.00106 
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1

2

1 2

.5184

.01356

.2075

uni

YM X

uni

YM X

M M Xr













 500 0.52609 0.00771 0.01487 0.01297  0.01370 0.00014 0.01040 0.00055 

1

2

1 2

.00701

.00701

.0989

uni

YM X

uni

YM X

M M Xr













 

50 0.01100 0.00399 0.56915 0.00020  0.00998 0.00297 0.42283 0.00015 

100 0.00859 0.00158 0.22489 0.00005  0.00855 0.00154 0.21908 0.00007 

250 0.00739 0.00038 0.05424 0.00002  0.00737 0.00036 0.05130 0.00002 

500 0.00722 0.00021 0.02968 0.00001  0.00728 0.00027 0.03832 0.00001 

1

2

1 2

.58748

.57208

.6493

uni

YM X

uni

YM X

M M Xr













 

50 0.69961 0.11213 0.19086 0.37076  0.61034 0.03826 0.06688 0.28488 

100 0.66398 0.07650 0.13021 0.17872  0.60680 0.03473 0.06070 0.13885 

250 0.62496 0.03748 0.06379 0.05879  0.59402 0.02194 0.03835 0.04663 

500 0.61632 0.02884 0.04910 0.03162  0.59062 0.01854 0.03241 0.02521 

1

2

1 2

.74535

.24294

.6493

uni

YM X

uni

YM X

M M Xr













 

50 0.86035 0.11500 0.15429 0.37915  0.28921 0.04626 0.19043 0.16212 

100 0.80335 0.05801 0.07782 0.15366  0.27028 0.02733 0.11250 0.07005 

250 0.75769 0.01234 0.01656 0.05640  0.23954 -0.00341 -0.01402 0.02432 

500 0.74106 -0.00429 -0.00575 0.02784  0.24185 -0.00109 -0.00449 0.01188 

1

2

1 2

.46448

.51413

.7184

uni

YM X

uni

YM X

M M Xr











 

50 0.52081 0.05633 0.12127 0.16428  0.57689 0.06276 0.12207 0.18662 

100 0.52230 0.05783 0.12449 0.07911  0.57557 0.06144 0.11950 0.08926 

250 0.47294 0.00846 0.01821 0.02595  0.52412 0.00999 0.01944 0.02897 

500 0.47453 0.01005 0.02164 0.01204  0.52402 0.00989 0.01924 0.01363 

1

2

1 2

.01274

.03807

.1816

uni

YM X

uni

YM X

M M Xr













 

50 0.01572 0.00298 0.23368 0.00028  0.04842 0.01035 0.27179 0.00159 

100 0.01445 0.00171 0.13450 0.00013  0.04213 0.00405 0.10644 0.00061 

250 0.01347 0.00073 0.05706 0.00004  0.04049 0.00241 0.06338 0.00026 

500 0.01313 0.00038 0.03015 0.00002  0.03887 0.00080 0.02101 0.00010 

1

2

1 2

.0025

.03807

.1816

uni

YM X

uni

YM X

M M Xr















 

50 -0.00051 0.00198 -0.79399 0.00007  0.03007 0.00723 0.31674 0.00099 

100 -0.00139 0.00111 -0.44359 0.00002  0.02679 0.00396 0.17335 0.00041 

250 -0.00233 0.00016 -0.06497 0.00000  0.02385 0.00101 0.04440 0.00013 

500 -0.00231 0.00019 -0.07474 0.00000  0.02297 0.00013 0.00566 0.00005 

50 0.29488 0.05790 0.24431 0.07229  0.32547 0.06316 0.24079 0.08068 

100 0.26431 0.02733 0.11532 0.03202  0.29228 0.02997 0.11424 0.03594 

250 0.24779 0.01081 0.04561 0.00884  0.27388 0.01157 0.04411 0.00973 
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1

2

1 2

.23698

.26231

.7184

uni

YM X

uni

YM X

M M Xr











 500 0.24083 0.00385 0.01624 0.00527  0.26644 0.00413 0.01573 0.00584 

1

2

1 2

.34948

.38373

.8921

uni

YM X

uni

YM X

M M Xr













 

50 0.46292 0.11344 0.32460 0.15709  0.41682 0.03309 0.08624 0.10496 

100 0.39859 0.04911 0.14052 0.06757  0.38805 0.00432 0.01127 0.04197 

250 0.35858 0.00910 0.02604 0.02305  0.37764 -0.00609 -0.01586 0.01573 

500 0.35526 0.00578 0.01655 0.00992  0.38468 0.00095 0.00246 0.00741 

1

2

1 2

.29948

.17759

.8921

uni

YM X

uni

YM X

M M Xr



 









 

50 0.36985 0.07037 0.23499 0.10494  -0.15384 0.02375 -0.13375 0.02288 

100 0.33794 0.03846 0.12841 0.04606  -0.16974 0.00785 -0.04422 0.01312 

250 0.31139 0.01191 0.03976 0.01601  -0.17264 0.00495 -0.02787 0.00405 

500 0.31076 0.01128 0.03768 0.00870  -0.17954 -0.00195 0.01098 0.00217 

1

2

1 2

.00088

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 

50 0.00379 0.00291 3.30922 0.00008  0.00828 0.00349 0.72712 0.00015 

100 0.00209 0.00121 1.37655 0.00001  0.00645 0.00165 0.34516 0.00007 

250 0.00120 0.00032 0.36566 0.00000  0.00518 0.00039 0.08150 0.00001 

500 0.00110 0.00022 0.25471 0.00000  0.00492 0.00013 0.02686 0.00001 

1

2

1 2

.00245

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 0.00574 0.00329 1.34671 0.00012  0.00582 0.00338 1.38096 0.00012 

100 0.00345 0.00100 0.41073 0.00002  0.00351 0.00107 0.43585 0.00002 

250 0.00283 0.00038 0.15691 0.00001  0.00276 0.00032 0.12975 0.00000 

500 0.00265 0.00020 0.08370 0.00000  0.00259 0.00015 0.06106 0.00000 

1

2

1 2

.00479

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 

50 0.00733 0.00254 0.52969 0.00013  0.00789 0.00310 0.64623 0.00016 

100 0.00612 0.00133 0.27698 0.00005  0.00629 0.00150 0.31215 0.00005 

250 0.00516 0.00036 0.07562 0.00001  0.00536 0.00057 0.11814 0.00001 

500 0.00503 0.00024 0.05032 0.00001  0.00500 0.00020 0.04251 0.00001 

1

2

1 2

.00245

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 0.00504 0.00259 1.06067 0.00010  0.00467 0.00223 0.91136 0.00007 

100 0.00351 0.00107 0.43728 0.00002  0.00364 0.00119 0.48730 0.00002 

250 0.00276 0.00032 0.12938 0.00000  0.00287 0.00043 0.17564 0.00001 

500 0.00264 0.00020 0.08100 0.00000  0.00263 0.00019 0.07676 0.00000 

50 0.08707 0.01576 0.22101 0.00647  0.00709 0.00230 0.47912 0.00013 

100 0.07972 0.00841 0.11795 0.00257  0.00493 0.00013 0.02770 0.00004 

250 0.07370 0.00239 0.03355 0.00084  0.00525 0.00045 0.09443 0.00001 
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1

2

1 2

.07131

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 500 0.07185 0.00055 0.00768 0.00040  0.00488 0.00008 0.01715 0.00001 

1

2

1 2

.06113

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 0.07216 0.01103 0.18043 0.00370  0.00303 0.00058 0.23788 0.00006 

100 0.06683 0.00569 0.09311 0.00162  0.00285 0.00041 0.16707 0.00001 

250 0.06476 0.00363 0.05937 0.00068  0.00262 0.00017 0.07005 0.00000 

500 0.06219 0.00106 0.01726 0.00031  0.00253 0.00009 0.03540 0.00000 
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Table 9. Confidence limits, misses to the left and right for 
1

ˆuni

YM X  and 
2

ˆuni

YM X  

  
1

ˆuni

YM X   
 

2
ˆuni

YM X  

 n Mean LCL Mean UCL Mean CI Width  Mean LCL Mean UCL Mean CI Width 

1

2

1 2

0

.00005

0

uni

YM X

uni

YM X

M M Xr











 

50 -0.00099 0.01269 0.01368  -0.00077 0.01510 0.01587 

100 -0.00022 0.00255 0.00277  -0.00009 0.00442 0.00451 

250 -0.00004 0.00042 0.00046  -0.00001 0.00110 0.00111 

500 -0.00001 0.00010 0.00012  0.00000 0.00052 0.00051 

1

2

1 2

00001

.00006

.3

.uni

YM X

uni

YM X

M M Xr











 

50 -0.00184 0.01581 0.01765  -0.00139 0.01853 0.01991 

100 -0.00049 0.00361 0.00411  -0.00023 0.00502 0.00525 

250 -0.00013 0.00065 0.00078  -0.00004 0.00133 0.00137 

500 -0.00005 0.00023 0.00028  0.00000 0.00063 0.00064 

1

2

1 2

00146

.00151

.9

.uni

YM X

uni

YM X

M M Xr











 

50 -0.00152 0.18542 0.18694  -0.00093 0.18836 0.18929 

100 -0.00027 0.05820 0.05846  -0.00007 0.05926 0.05933 

250 0.00016 0.01781 0.01765  0.00020 0.01828 0.01808 

500 0.00035 0.00972 0.00937  0.00037 0.01000 0.00963 

1

2

1 2

00075

.00077

.9

.uni

YM X

uni

YM X

M M Xr











 

50 -0.00195 0.11966 0.12162  -0.00125 0.12159 0.12284 

100 -0.00040 0.03949 0.03989  -0.00020 0.04009 0.04029 

250 0.00004 0.01148 0.01145  0.00009 0.01181 0.01172 

500 0.00012 0.00520 0.00508  0.00014 0.00536 0.00523 

1

2

1 2

00084

.00001

.0316

.uni

YM X

uni

YM X

M M Xr













 

50 -0.00077 0.03541 0.03618  -0.00376 0.01848 0.02224 

100 -0.00002 0.01484 0.01486  -0.00128 0.00480 0.00608 

250 0.00010 0.00638 0.00629  -0.00038 0.00122 0.00160 

500 0.00013 0.00378 0.00366  -0.00019 0.00050 0.00069 

1

2

1 2

.10733

.1065

.8684

uni

YM X

uni

YM X

M M Xr











 

50 0.01817 0.89292 0.87476  0.01597 0.88048 0.86452 

100 0.02409 0.46065 0.43657  0.02329 0.45462 0.43133 

250 0.03794 0.28693 0.24900  0.03738 0.28398 0.24659 

500 0.04947 0.21765 0.16818  0.04889 0.21563 0.16674 

50 0.77183 3.37633 2.60450  -0.27678 0.54342 0.82020 

100 1.01143 2.74119 1.72976  -0.12662 0.31838 0.44500 

250 1.20587 2.27815 1.07228  -0.03411 0.21631 0.25042 
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1

2

1 2

1.703

.06736

.2075

uni

YM X

uni

YM X

M M Xr













 500 1.35795 2.11387 0.75592  -0.00627 0.15514 0.16141 

1

2

1 2

3.10872

1.47306

.0925

uni

YM X

uni

YM X

M M Xr











 

50 1.75215 5.09384 3.34169  0.51769 2.81271 2.29502 

100 2.15541 4.48515 2.32974  0.83745 2.39612 1.55867 

250 2.44727 3.88167 1.43440  1.04241 1.98778 0.94536 

500 2.63753 3.65081 1.01328  1.16941 1.83185 0.66244 

1

2

1 2

0

.00479

0

uni

YM X

uni

YM X

M M Xr











 

50 -0.00496 0.01517 0.02012  -0.00031 0.05734 0.05765 

100 -0.00180 0.00393 0.00573  0.00047 0.02955 0.02908 

250 -0.00058 0.00092 0.00151  0.00111 0.01583 0.01472 

500 -0.00029 0.00035 0.00065  0.00175 0.01131 0.00956 

1

2

1 2

.39211

.3969

.9

uni

YM X

uni

YM X

M M Xr











 

50 0.15960 2.33243 2.17284  0.16184 2.35785 2.19601 

100 0.17327 1.44415 1.27088  0.17525 1.46255 1.28730 

250 0.20507 0.87529 0.67023  0.20736 0.88587 0.67851 

500 0.23504 0.70167 0.46663  0.23779 0.71046 0.47267 

1

2

1 2

.00022

.00413

.0989

uni

YM X

uni

YM X

M M Xr













 

50 -0.00435 0.03602 0.04037  -0.00453 0.05216 0.05669 

100 -0.00180 0.01284 0.01465  -0.00112 0.02687 0.02799 

250 -0.00062 0.00426 0.00488  0.00045 0.01406 0.01361 

500 -0.00023 0.00246 0.00270  0.00114 0.00991 0.00877 

1

2

1 2

.40043

.40434

.8011

uni

YM X

uni

YM X

M M Xr











 

50 0.06811 1.71655 1.64844  0.06875 1.73304 1.66428 

100 0.09128 1.15235 1.06107  0.09234 1.16189 1.06955 

250 0.17774 0.86390 0.68616  0.17938 0.87177 0.69239 

500 0.22469 0.68995 0.46526  0.22707 0.69679 0.46972 

1

2

1 2

.0016

.0016

.0989

uni

YM X

uni

YM X

M M Xr













 

50 -0.00400 0.03311 0.03711  -0.00358 0.03534 0.03892 

100 -0.00129 0.01719 0.01848  -0.00139 0.01610 0.01749 

250 -0.00021 0.00792 0.00813  -0.00026 0.00770 0.00797 

500 0.00013 0.00515 0.00502  0.00015 0.00523 0.00508 

50 -0.01932 0.02990 0.04922  0.00888 0.22339 0.21451 

100 -0.00850 0.01119 0.01970  0.01686 0.15114 0.13428 

250 -0.00338 0.00359 0.00697  0.02679 0.10573 0.07894 
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1

2

1 2

0

.05444

0

uni

YM X

uni

YM X

M M Xr











 500 -0.00163 0.00170 0.00332  0.03348 0.08730 0.05382 

1

2

1 2

.00101

.05256

.1816

uni

YM X

uni

YM X

M M Xr















 

50 -0.02582 0.04518 0.07100  0.00314 0.22050 0.21737 

100 -0.01188 0.01849 0.03037  0.01311 0.14349 0.13038 

250 -0.00659 0.00669 0.01328  0.02479 0.10264 0.07784 

500 -0.00455 0.00355 0.00810  0.03089 0.08417 0.05328 

1

2

1 2

.01179

.06535

.1184

uni

YM X

uni

YM X

M M Xr











 

50 -0.01115 0.08206 0.09322  0.00972 0.24567 0.23595 

100 -0.00201 0.04609 0.04810  0.01981 0.16452 0.14471 

250 0.00262 0.02868 0.02606  0.03303 0.12061 0.08758 

500 0.00479 0.02240 0.01761  0.04063 0.10100 0.06037 

1

2

1 2

1.22292

.35835

.8921

uni

YM X

uni

YM X

M M Xr



 









 

50 0.44148 2.63193 2.19045  -0.96614 0.15430 1.12044 

100 0.60728 2.08633 1.47906  -0.73964 -0.02839 0.71125 

250 0.82901 1.77482 0.94582  -0.60122 -0.15952 0.44170 

500 0.92165 1.58065 0.65900  -0.52061 -0.21759 0.30302 

6

1

2

1 2

.00005

4.9 10

.3

uni

YM X

uni

YM X

M M Xr



 








 

50 -0.00358 0.03062 0.03420  -0.00252 0.01598 0.01850 

100 -0.00143 0.01119 0.01262  -0.00077 0.00434 0.00510 

250 -0.00052 0.00363 0.00415  -0.00017 0.00106 0.00123 

500 -0.00029 0.00170 0.00199  -0.00005 0.00039 0.00043 

1

2

1 2

.10057

.09583

.8684

uni

YM X

uni

YM X

M M Xr











 

50 0.01323 0.72728 0.71405  0.01057 0.70093 0.69036 

100 0.02028 0.44658 0.42630  0.01862 0.43133 0.41271 

250 0.03494 0.26516 0.23022  0.03273 0.25454 0.22181 

500 0.04628 0.20036 0.15408  0.04368 0.19193 0.14825 

1

2

1 2

.05131

.04889

.8684

uni

YM X

uni

YM X

M M Xr











 

50 0.00425 0.48128 0.47703  0.00139 0.46538 0.46399 

100 0.00930 0.27034 0.26104  0.00785 0.26077 0.25292 

250 0.01471 0.14398 0.12926  0.01350 0.13845 0.12495 

500 0.02210 0.11112 0.08902  0.02069 0.10661 0.08592 

50 0.12788 1.60783 1.47996  -0.20112 0.28432 0.48544 

100 0.18741 1.20775 1.02034  -0.10200 0.17215 0.27415 

250 0.26506 0.87541 0.61035  -0.04931 0.09392 0.14323 
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1

2

1 2

.5184

.01356

.2075

uni

YM X

uni

YM X

M M Xr













 500 0.33360 0.76752 0.43392  -0.03092 0.06365 0.09457 

1

2

1 2

.00701

.00701

.0989

uni

YM X

uni

YM X

M M Xr













 

50 -0.00246 0.06265 0.06511  -0.00333 0.06047 0.06380 

100 0.00029 0.03364 0.03335  0.00024 0.03298 0.03274 

250 0.00185 0.01898 0.01713  0.00184 0.01895 0.01711 

500 0.00299 0.01441 0.01142  0.00302 0.01448 0.01146 

1

2

1 2

.58748

.57208

.6493

uni

YM X

uni

YM X

M M Xr













 

50 0.10081 2.34011 2.23930  -0.11998 2.00102 2.12101 

100 0.15015 1.67637 1.52622  0.07047 1.47073 1.40027 

250 0.24740 1.19706 0.94967  0.22729 1.08952 0.86223 

500 0.33091 0.99738 0.66647  0.32255 0.92302 0.60047 

1

2

1 2

.74535

.24294

.6493

uni

YM X

uni

YM X

M M Xr













 

50 0.16291 2.44720 2.28429  -0.30002 1.36388 1.66390 

100 0.24173 1.78934 1.54761  -0.14772 0.92446 1.07218 

250 0.36597 1.30473 0.93876  -0.03135 0.60049 0.63184 

500 0.45057 1.10975 0.65918  0.04523 0.48442 0.43919 

1

2

1 2

.46448

.51413

.7184

uni

YM X

uni

YM X

M M Xr











 

50 0.07157 1.75546 1.68389  0.09624 1.87684 1.78059 

100 0.15432 1.25956 1.10524  0.18235 1.35372 1.17138 

250 0.22888 0.85348 0.62460  0.26307 0.92734 0.66427 

500 0.28960 0.72876 0.43916  0.32697 0.79366 0.46669 

1

2

1 2

.01274

.03807

.1816

uni

YM X

uni

YM X

M M Xr













 

50 -0.00792 0.07655 0.08447  0.00502 0.17158 0.16656 

100 0.00034 0.04500 0.04466  0.01067 0.10957 0.09890 

250 0.00438 0.02875 0.02437  0.01824 0.07628 0.05804 

500 0.00649 0.02281 0.01632  0.02245 0.06186 0.03942 

1

2

1 2

.0025

.03807

.1816

uni

YM X

uni

YM X

M M Xr















 

50 -0.02009 0.03319 0.05327  0.00040 0.12965 0.12925 

100 -0.01197 0.01254 0.02451  0.00405 0.08094 0.07690 

250 -0.00750 0.00277 0.01027  0.00797 0.05161 0.04364 

500 -0.00547 0.00053 0.00600  0.01109 0.04063 0.02954 

50 0.02210 1.13860 1.11651  0.03985 1.20726 1.16740 

100 0.05466 0.73228 0.67761  0.07044 0.78355 0.71310 

250 0.10095 0.49462 0.39368  0.11817 0.53376 0.41559 
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1

2

1 2

.23698

.26231

.7184

uni

YM X

uni

YM X

M M Xr











 500 0.13155 0.39839 0.26684  0.15066 0.43231 0.28164 

1

2

1 2

.34948

.38373

.8921

uni

YM X

uni

YM X

M M Xr













 

50 0.06061 1.50833 1.44772  -0.13082 1.22065 1.35148 

100 0.08991 1.00997 0.92006  0.04061 0.86303 0.82241 

250 0.13887 0.69185 0.55298  0.16285 0.64191 0.47906 

500 0.18782 0.57857 0.39075  0.22918 0.56552 0.33634 

1

2

1 2

.29948

.17759

.8921

uni

YM X

uni

YM X

M M Xr



 









 

50 0.04685 1.24486 1.19801  -0.53998 0.19071 0.73069 

100 0.07021 0.87210 0.80189  -0.41477 0.02812 0.44289 

250 0.11876 0.60578 0.48702  -0.31183 -0.05910 0.25273 

500 0.16261 0.50977 0.34715  -0.27535 -0.09764 0.17771 

1

2

1 2

.00088

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 

50 -0.00356 0.03768 0.04124  -0.00342 0.05622 0.05964 

100 -0.00090 0.01498 0.01588  -0.00033 0.02835 0.02868 

250 -0.00014 0.00586 0.00599  0.00089 0.01502 0.01413 

500 0.00007 0.00384 0.00377  0.00161 0.01096 0.00935 

1

2

1 2

.00245

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 -0.00304 0.04182 0.04485  -0.00290 0.04207 0.04496 

100 -0.00068 0.01745 0.01813  -0.00066 0.01809 0.01875 

250 0.00030 0.00925 0.00895  0.00026 0.00919 0.00893 

500 0.00066 0.00659 0.00593  0.00063 0.00645 0.00583 

1

2

1 2

.00479

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 

50 -0.00386 0.05075 0.05461  -0.00368 0.05318 0.05686 

100 -0.00104 0.02683 0.02787  -0.00068 0.02744 0.02812 

250 0.00073 0.01498 0.01426  0.00079 0.01538 0.01459 

500 0.00161 0.01111 0.00949  0.00160 0.01104 0.00944 

1

2

1 2

.00245

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 -0.00224 0.03981 0.04204  -0.00304 0.03747 0.04051 

100 -0.00059 0.01804 0.01863  -0.00060 0.01833 0.01893 

250 0.00022 0.00918 0.00895  0.00028 0.00942 0.00914 

500 0.00065 0.00655 0.00589  0.00064 0.00652 0.00588 

50 -0.00385 0.28105 0.28490  -0.01664 0.04003 0.05667 

100 0.01399 0.20037 0.18638  -0.00787 0.02140 0.02928 

250 0.02812 0.14099 0.11287  -0.00135 0.01350 0.01485 



148 

 

1

2

1 2

.07131

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 500 0.03753 0.11745 0.07993  0.00048 0.01011 0.00962 

1

2

1 2

.06113

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 0.00005 0.23894 0.23889  -0.01233 0.02301 0.03534 

100 0.01159 0.17045 0.15886  -0.00518 0.01335 0.01853 

250 0.02504 0.12370 0.09867  -0.00165 0.00777 0.00942 

500 0.03275 0.10109 0.06834  -0.00025 0.00578 0.00603 
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Table 10. Coverage, misses to the left and right for 
1

ˆuni

YM X  and 
2

ˆuni

YM X  

  
1

ˆuni

YM X   
 

2
ˆuni

YM X  

 n Cov <.025 >.975  Cov <.025 >.975 

1

2

1 2

0

.00005

0

uni

YM X

uni

YM X

M M Xr











 

50 98.6 1.4 0  99.6 0.4 0 

100 98.8 1.2 0  99.4 0.6 0 

250 99.2 0.8 0  99.2 0.8 0 

500 98.4 1.6 0  98.2 1.2 0.6 

1

2

1 2

00001

.00006

.3

.uni

YM X

uni

YM X

M M Xr











 

50 98.8 1.2 0  99 1 0 

100 99.2 0.8 0  99.4 0.6 0 

250 99.2 0.8 0  99.4 0.6 0 

500 99.4 0.6 0  98.8 0.4 0.8 

1

2

1 2

00146

.00151

.9

.uni

YM X

uni

YM X

M M Xr











 

50 96.4 3.6 0  96.6 3.4 0 

100 97.8 2.2 0  97.2 2.8 0 

250 98.6 1.4 0  98.4 1.6 0 

500 97 2.6 0.4  96.8 2.8 0.4 

1

2

1 2

00075

.00077

.9

.uni

YM X

uni

YM X

M M Xr











 

50 97.2 2.8 0  96.8 3.2 0 

100 98.6 1.4 0  98.2 1.8 0 

250 97.4 2.6 0  97 3 0 

500 98 1.2 0.8  97.6 1.4 1 

1

2

1 2

00084

.00001

.0316

.uni

YM X

uni

YM X

M M Xr













 

50 98.8 1.2 0  99.4 0.6 0 

100 98.6 1.4 0  99.6 0.4 0 

250 96.8 2.8 0.4  99.2 0.8 0 

500 95.6 3.2 1.2  99 1 0 

1

2

1 2

.10733

.1065

.8684

uni

YM X

uni

YM X

M M Xr











 

50 95.6 2.2 2.2  95.6 2.2 2.2 

100 94 3 3  94.2 2.8 3 

250 94.6 2.6 2.8  95.2 2 2.8 

500 94.2 2.2 3.6  94.2 2.2 3.6 

50 95.6 1.6 2.8  97 0.8 2.2 

100 94.2 2.2 3.6  96.2 1.2 2.6 

250 91.4 3.2 5.4  94.2 2.4 3.4 
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1

2

1 2

1.703

.06736

.2075

uni

YM X

uni

YM X

M M Xr













 500 96 2.6 1.4  95.8 1.4 2.8 

1

2

1 2

3.10872

1.47306

.0925

uni

YM X

uni

YM X

M M Xr











 

50 93.2 2.8 4  95.2 1.4 3.4 

100 94.6 2.6 2.8  94.6 2.2 3.2 

250 94.8 2.6 2.6  96 1.6 2.4 

500 95.2 1.4 3.4  92.6 3.4 4 

1

2

1 2

0

.00479

0

uni

YM X

uni

YM X

M M Xr











 

50 100 0 0  98.4 0.8 0.8 

100 100 0 0  96.6 1.4 2 

250 100 0 0  94.4 2.8 2.8 

500 99.4 0.6 0  94.8 2 3.2 

1

2

1 2

.39211

.3969

.9

uni

YM X

uni

YM X

M M Xr











 

50 94.6 5.4 0  94.6 5.4 0 

100 96.2 3.2 0.6  95.8 3.6 0.6 

250 94.4 3.2 2.4  94.2 3.4 2.4 

500 93.4 3 3.6  93.4 3 3.6 

1

2

1 2

.00022

.00413

.0989

uni

YM X

uni

YM X

M M Xr













 

50 98.8 1.2 0  98.2 1.2 0.6 

100 99.2 0.8 0  95.2 1.8 3 

250 99.2 0.8 0  95 1.6 3.4 

500 97.6 2.4 0  95.6 1.2 3.2 

1

2

1 2

.40043

.40434

.8011

uni

YM X

uni

YM X

M M Xr











 

50 94.6 2.2 3.2  94.2 2.4 3.4 

100 92.4 3.4 4.2  92 3.4 4.6 

250 95 2.4 2.6  95 2.4 2.6 

500 92.6 4.2 3.2  92.4 4.2 3.4 

1

2

1 2

.0016

.0016

.0989

uni

YM X

uni

YM X

M M Xr













 

50 99.2 0.8 0  98.2 1.8 0 

100 98 1.8 0.2  99.2 0.8 0 

250 96 1.6 2.4  96 1.2 2.8 

500 94.4 2.6 3  95.8 2.2 2 

50 99.8 0.2 0  94 1.8 4.2 

100 100 0 0  94.2 2.4 3.4 

250 100 0 0  94.6 3 2.4 
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1

2

1 2

0

.05444

0

uni

YM X

uni

YM X

M M Xr











 500 100 0 0  94.4 3.8 1.8 

1

2

1 2

.00101

.05256

.1816

uni

YM X

uni

YM X

M M Xr















 

50 96.2 3.8 0  95 1 4 

100 96.2 3.8 0  94.8 2.2 3 

250 97.4 2.4 0.2  93.4 3 3.6 

500 94.2 4.6 1.2  94 2.6 3.4 

1

2

1 2

.01179

.06535

.1184

uni

YM X

uni

YM X

M M Xr











 

50 98 0.2 1.8  94.4 1.2 4.4 

100 95.8 0.2 4  94.6 1.4 4 

250 93 1.4 5.6  95.4 2.4 2.2 

500 93.4 2.2 4.4  94.6 2.4 3 

1

2

1 2

1.22292

.35835

.8921

uni

YM X

uni

YM X

M M Xr



 









 

50 95.6 1.6 2.8  91.6 7.8 0.6 

100 95.4 2.8 1.8  92.2 6.6 1.2 

250 91.8 3.6 4.6  94.6 4 1.4 

500 93.6 3.2 3.2  93.8 4.2 2 

6

1

2

1 2

.00005

4.9 10

.3

uni

YM X

uni

YM X

M M Xr



 








 

50 90 10 0  96.8 3.2 0 

100 83.2 16.8 0  97.8 2.2 0 

250 80.6 19.4 0  96 4 0 

500 80.8 19.2 0  97.2 2.8 0 

1

2

1 2

.10057

.09583

.8684

uni

YM X

uni

YM X

M M Xr











 

50 96.8 1.8 1.4  97 1.6 1.4 

100 95.2 1.6 3.2  95.4 1.4 3.2 

250 94.8 1.8 3.4  94.6 2 3.4 

500 94 2 4  93.6 1.8 4.6 

1

2

1 2

.05131

.04889

.8684

uni

YM X

uni

YM X

M M Xr











 

50 97 1.4 1.6  97.4 1 1.6 

100 95.4 2 2.6  95.6 2.2 2.2 

250 94.2 1.4 4.4  94 1.4 4.6 

500 92.8 2.8 4.4  93.4 2.2 4.4 

50 93.8 3.6 2.6  99.2 0.4 0.4 

100 93.4 3.4 3.2  97.4 1 1.6 

250 93.8 2.8 3.4  95.4 2 2.6 
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1

2

1 2

.5184

.01356

.2075

uni

YM X

uni

YM X

M M Xr













 500 95.8 3 1.2  95.2 2.6 2.2 

1

2

1 2

.00701

.00701

.0989

uni

YM X

uni

YM X

M M Xr













 

50 98.2 0.8 1  98 0.4 1.6 

100 96 0.8 3.2  94.8 1.8 3.4 

250 94.6 1.6 3.8  94 1.4 4.6 

500 93.4 2.4 4.2  95.8 1.2 3 

1

2

1 2

.58748

.57208

.6493

uni

YM X

uni

YM X

M M Xr













 

50 94.2 3.6 2.2  93 3.2 3.8 

100 93.8 3.8 2.4  93.6 3.2 3.2 

250 95.2 2.4 2.4  95.6 1.6 2.8 

500 92.8 4.6 2.6  93.4 3.6 3 

1

2

1 2

.74535

.24294

.6493

uni

YM X

uni

YM X

M M Xr













 

50 93.4 3.4 3.2  94.2 3 2.8 

100 95.2 2 2.8  94.2 2.6 3.2 

250 94.4 2.6 3  95.6 1.8 2.6 

500 94.2 3.6 2.2  95 2.2 2.8 

1

2

1 2

.46448

.51413

.7184

uni

YM X

uni

YM X

M M Xr











 

50 94.2 1.4 4.4  94.6 1.4 4 

100 93.2 3.4 3.4  93.8 3.4 2.8 

250 95.4 1 3.6  95 1.2 3.8 

500 95.6 2.4 2  95.4 2.6 2 

1

2

1 2

.01274

.03807

.1816

uni

YM X

uni

YM X

M M Xr













 

50 98.4 1 0.6  96.2 1.4 2.4 

100 93.6 2.4 4  95.6 2 2.4 

250 94.8 1.4 3.8  91.8 4.8 3.4 

500 93.4 2.8 3.8  95.2 1.6 3.2 

1

2

1 2

.0025

.03807

.1816

uni

YM X

uni

YM X

M M Xr















 

50 90.4 9.6 0  96.6 1.2 2.2 

100 90.2 9.8 0  94.4 2.2 3.4 

250 91.8 8.2 0  94.8 2.8 2.4 

500 92.6 7 0.4  95 1.8 3.2 

50 96.4 1.4 2.2  96.6 1.4 2 

100 93.8 2.2 4  93.4 2.8 3.8 

250 95.8 1.6 2.6  96 1.4 2.6 
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1

2

1 2

.23698

.26231

.7184

uni

YM X

uni

YM X

M M Xr











 500 93.4 2.2 4.4  94.2 2 3.8 

1

2

1 2

.34948

.38373

.8921

uni

YM X

uni

YM X

M M Xr













 

50 94.6 3.2 2.2  92.6 1 6.4 

100 93.8 3.2 3  94.6 1.4 4 

250 93.6 2.8 3.6  93.8 2 4.2 

500 94.8 2.4 2.8  95 2 3 

1

2

1 2

.29948

.17759

.8921

uni

YM X

uni

YM X

M M Xr



 









 

50 95.4 3.6 1  90.8 9 0.2 

100 93.6 2.4 4  91.2 8 0.8 

250 95.4 2 2.6  94.8 4.2 1 

500 93.6 4.4 2  93.4 5 1.6 

1

2

1 2

.00088

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 

50 99.2 0.8 0  98.2 1.2 0.6 

100 98.6 1.4 0  94.6 2 3.4 

250 98 1.8 0.2  94.8 1 4.2 

500 95.8 2.4 1.8  93.8 2.2 4 

1

2

1 2

.00245

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 99.2 0.8 0  98 1.8 0.2 

100 97.2 1.2 1.6  97.6 1.2 1.2 

250 94 2.6 3.4  95.6 1.4 3 

500 95.4 2.4 2.2  95.6 1.2 3.2 

1

2

1 2

.00479

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 

50 98.4 0.6 1  97.8 1.4 0.8 

100 93.8 2 4.2  95.6 1.8 2.6 

250 93 2.2 4.8  95 1.4 3.6 

500 95 2 3  94.2 1.8 4 

1

2

1 2

.00245

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 99.2 0.8 0  99.4 0.6 0 

100 98 1.4 0.6  96.6 1.6 1.8 

250 94.6 1.8 3.6  93.8 2.2 4 

500 94 2.6 3.4  96.6 0.6 2.8 

50 94.4 3.2 2.4  95.8 3 1.2 

100 94 2.4 3.6  93.8 2.2 4 

250 94.4 2.4 3.2  94.4 3.4 2.2 
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1

2

1 2

.07131

.00479

.0089

uni

YM X

uni

YM X

M M Xr













 500 94 2.6 3.4  95.6 2.4 2 

1

2

1 2

.06113

.00245

.0089

uni

YM X

uni

YM X

M M Xr













 

50 95.4 2.4 2.2  95.4 2.4 2.2 

100 94.6 2.6 2.8  96.4 1.4 2.2 

250 94.4 2.8 2.8  95.4 2.2 2.4 

500 95.6 1.4 3  97.4 1.2 1.4 

 

 

 


