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CHAPTERT"

INTRODUCTION AND BACKGROUND

Overview

Interaction between protein and ligand is a fundamental mechanism in biology.
Receptor-ligand interaction is the basis of modern pharmacology and many basic
cellular processes rely on functional interfaces between proteins and small ligands.
Endogenous and exogenous small-molecule and peptide ligands play numerous
critical roles in the biology of both normal and disease states, and in the battle
between host and pathogen. Knowledge and understanding of these interactions is
critical in medicine and the ability to manipulate them is essential in therapeutic
development. Although entire disciplines and industries have been created to
develop and design small ligands for therapeutic use, substantially less progress has
been made from the receptor side, in understanding and designing the protein

interfaces to bind small ligands.

The goal of my dissertation research was to develop a general and repeatable
method for designing and re-designing protein interfaces to small-molecules and

peptide ligands using in silico, rational design techniques. Establishing a successful

* Sections of Chapter I have been excerpted from Morin, A. et al,, 2011. Computational design of
protein-ligand interfaces: potential in therapeutic development. Trends in Biotechnology, 29(4),
pp-159-66. and the Dissertation proposal of Morin 2007.



and robust computational method for designing protein-ligand interactions would
have broad and significant application in both basic science and the development of

protein therapeutics to address disease.

To begin developing these computational methods, the D-amino acid peptide target
of the glycopeptide antibiotic vancomycin was chosen as proof-of-concept interface
system due to its medical and clinical relevance, and extensive prior study. Three
distinct protein scaffolds representing diverse binding modes underwent in silico
design using the ROSETTA protein design program to attempt to produce a novel
interface capable of binding the D-alanine target peptide ligand. The resulting
protein models were systematically produced and assayed in the laboratory for
binding to their intended target using multiple, complementary, high sensitivity
assay techniques. Although low affinity interactions were observed for some

ROSETTA designed proteins, no high affinity peptide binding proteins were created.

In an attempt to address the failure to produce high affinity binding proteins using
ROSETTA, structural characterization of unsuccessful protein designs and additional
computational studies of native protein-ligand interfaces were carried out. Taken as
a whole, the results obtained in the course of my dissertation research offer insights
into the strengths and weaknesses of computational ligand-interface design

methods and the structural and biophysical nature of protein-ligand interfaces.



Importance of protein therapeutic development

Protein therapeutics are an important and successful part of today’s medical
pharmacologic arsenal. The market for clinical protein therapeutics, some $94
billion in 2010, is expected to grow to half of total prescription drug sales by 2014
(1). As of 2008, over 130 therapeutic proteins had been approved for use in humans
and treat more than thirty different diseases (2). Therapeutic proteins offer
significant potential advantages over classical small-molecule drugs including high
specificity, low cross reactivity and off-target effects, novel therapeutic modes and
better patient tolerance (3)(2). For a thorough classification and review of the

recent state of protein based drugs, see Leader et al. 2008 (4).

CPD as a tool in drug development

Since its inception, computational protein design (CPD) has played an important
role in the successful creation and engineering of protein-based drugs. Post hoc CPD
methods have proven highly successful as a means to modify and refine therapeutic
proteins generated through non-computational methods, thereby increasing their
utility, functionality and desirable pharmacologic attributes (5). Post hoc
computational design methods are those used to supplement or extend primary
protein function, add additional functionality, or modify secondary protein
properties or attributes and in this capacity have proved highly successful. Reduced
immunogenicity (6), increased affinity (7), altered pharmacokinetic

/pharmacodynamic (PK/PD) properties (8; 9) and the thermostabilization of



medically important proteins (10) have all been successfully achieved using post hoc

computational methods.

Though a useful and successful part of the protein therapeutic development process,
post hoc computational methods are typically developed for a specific
protein/target system, and are therefore non-generalizable. This restricts the
broader applicability of a given post hoc method and limits its usefulness in the

development of novel therapeutic proteins and strategies.

De novo versus post hoc design

In contrast to post hoc design, de novo design is considered the gold standard for
computational protein design method development. Where post hoc methods may
potentially take advantage of intrinsic properties and attributes of a protein
undergoing design, de novo protein design, by definition, requires establishing
wholly new functionality in a protein that did not previously possess such function.
Thus, successful demonstration of a de novo design method is generally thought to
both require and reflect a more complete understanding of the fundamental
biophysics and physiology of a given protein system or function of interest, and is
therefore considered to be a necessary first step toward fulfilling the requirements
of repeatability and generalizability necessary for establishing CPD as a primary tool

for protein therapeutic development.



While post hoc CPD methods have been of primary impact to date in the
development of therapeutic proteins, recent years have also witnessed the
development of exciting new abilities and successful proof-of-concept experiments
in the basic science and understanding of de novo CPD. The successful de novo
computational design of novel enzymes (11)(12)(13), protein-protein interactions
(14) and DNA endonuclease specificity (15) each demonstrate the immense
potential of computational protein therapeutic design, both in the creation of novel

therapies as well as dramatically reduced time-to-market for biologic drugs.

Yet there is one specific and important area of the CPD field where basic progress
has lagged behind. Once considered a solved problem, the ability to de novo design
protein interfaces to peptide and small molecule ligands has remained tantalizingly
out of reach. In contrast to other basic protein functions, a generalized
computational method for the de novo creation of ligand binding has yet to be

demonstrated.

Biological role of protein-ligand interfaces

Protein-ligand interfaces are essential in biology and many fundamental cellular
processes are accomplished and regulated through the interaction of protein with
ligand. Such non-covalent protein-ligand interfaces form the functional basis of
classical small-molecule pharmacology (16)(3), are critical to endogenous and
exogenous receptor-ligand signaling pathways (17) and mediate protein-protein

interactions through binding of the unstructured amino acid loops or terminal tails



of larger proteins (18). For this work, we define a ligand as an unstructured amino

acid sequence of 10 residues or fewer, or a small molecule of 1,000 Da or below.

Traditional pharmacologics
Receptor regulation Protein vaccines
Molecular scavenging Engineered cytokines
Targeted payload delivery
Altered interaction pathways

Target Immune
Binding Modulation
Enzymatic
Catalysis Enzyme replacement

Augemnt existing catalytic pathway
Novel enzymatic function

Figure 1.1 = Therapeutic functional strategies. Target binding is one of three basic
strategies for achieving therapeutic effect, and by far the most commonly employed
in drug development. Target binding forms the basis of traditional pharmacology
and is the primary mechanism through which direct receptor regulation
(antagonistic, allosteric, etc.) may occur. The vast majority of drugs currently
available or in development utilizes binding interfaces as their primary mechanism
of therapeutic action. The Venn diagram shows the relationship between the three
strategies and lists some current and potential functional strategies available
through CPD methods.

Functional strategies for protein therapeutic design

Broadly, three basic functional strategies exist for proteins as therapeutic agents:
target binding, enzymatic catalysis and immune-modulation (Figure 1.1) (19)(20).

Each of these three fundamental strategies has proven successful in protein



therapeutic applications. Protein based conjugate vaccines and cytokines have
demonstrated efficacy against pneumococcal and meningococcal bacterial diseases
(21) and enzyme replacement therapy (ERT) has provided effective treatment
strategies for lysosomal and other enzymatic defect diseases traditional
pharmacologic agents could not (22). However, as in classical small-molecule
pharmacology, by far the most successful and prevalent functional strategy of the
protein based therapies has been target binding, as demonstrated by the
domination of the protein therapeutic market by antibody-based drugs (2) which
perform their function through tight binding to their targets. Yet, none of the
antibody-based therapeutics approved for clinical use have had their binding
interfaces designed fully in silico, instead relying on conventional laboratory based

engineering techniques to generate binding functionality.

This lack of de novo ligand binding design capability is unfortunate. Although
advancements in other areas of CPD have allowed the development of new types of
therapies and therapeutic modes, ligand binding is, and likely will continue to be,
the primary mode of therapeutic action for pharmaceutical development into the
foreseeable future. Without a reliable and generally applicable method for the de
novo design of protein interfaces to target ligands, a major avenue of computational

protein therapeutic development will remain out of reach.



Not a solved problem

As recently as 2007, the computational design of proteins capable of binding novel
peptide and small molecule ligands was considered by some to be a solved problem.
Most notably, beginning in 2001 the Hellinga group at Duke University published in
several leading peer reviewed journals results of a repeatable computational
method for designing proteins capable of binding a variety of ligands, including
metals, explosives, biowarfare agents and neurotransmitters (23)(24)(25). Thus, at
the time progress in interface design seemed to be keeping pace with other

advancements in the CPD field.

Questions arose, however, after researchers were unable to replicate several of the
Hellinga results, culminating in a 2009 PNAS article by Schreier et al. titled
“Computational design of ligand binding is not a solved problem” (26), and the
eventual retraction of key Hellinga group publications (27)(28)(29). With these
once accepted achievements in doubt, attention has again focused on demonstrating
basic progress in interface design method development. To date, success at de novo
design of ligand binding interfaces have been generally limited to coordinated
binding of metal ions (30), and a broadly applicable and automated computational

process for de novo design of protein-ligand interfaces has yet to be demonstrated.



Advantages of protein therapeutics over traditional pharmacologics

A critical motivation behind the use of proteins as scaffolds for the rational
development of therapeutics versus the design of traditional small molecule
pharmacologics lies in the flexibility and manipulability inherent in nature’s amino
acid building blocks. Using nature’s own fundamental machinery to construct
designed proteins greatly simplifies and streamlines difficulties associated with
their design, production and manufacture (31). The ease with which genetic and
amino acid sequences can be manipulated both in the laboratory and in silico allows
for extremely rapid design and re-design processes. Cloning, expression and large-
scale production of designed proteins are achieved via well established molecular
biology techniques (20) without the need to develop often complex and laborious

chemical synthetic strategies.

Beyond production considerations, the use of protein scaffolds for therapeutic
design also offers other engineering and physiologic advantages. The ideal protein
therapeutic scaffold would be relatively small (to reduce immunogenicity) (32)(33),
single-chain (to facilitate oligomerization or the addition of functional payloads)
(20), thermostable, and cysteine-free (to facilitate expression in the reducing

environments of the bacterial cytoplasim).

Each of these traits can be conveniently achieved through a combination of careful
scaffold selection and rational design. The ability to manipulate cysteine
composition also allows for the convenient site-directed coupling of effector

compounds (34). The potential fusion to other effector molecules such as toxins



(35) or cytokines (36; 37) expands the therapeutic potential for rationally designed
proteins. The design of multivalency or oligovalency (38) is also possible with
designed proteins as an effective means of increasing affinity for a target.
Additionally, site-directed chemical and post-translational modifications such as
PEGylation (39-41) and glycosylation (42) can be readily employed to modulate
properties such as serum half-life and tissue penetration (20), endocytic trafficking
(31), and immunogenicity (32; 43-45) as well as other pharmacokinetic and

metabolic properties (40-42).

Fundamentally, although proteins sometimes suffer from significant drawbacks
compared to traditional pharmacologics when used as therapeutic agents - .e.g.
immunogenicity, poor gastrointestinal uptake, proteolysis, etc. - the manipulability
and functional flexibility inherent in protein/peptide structure conveys

considerable advantages in ease and rapidity of design and production.

A large and growing market for protein therapeutics

For many of the above reasons, the market for protein therapeutics, which began in
the 1980’s, has boomed in the 90’s and into this century. Excluding immunoglobulin
based therapies, the market for recombinant protein therapeutics has more than
doubled in that last five years, and what is today a $51 billion market is projected to
continue growing to $87 billion by 2010 (46). Dozens of highly successful protein
therapeutics produced by an array of biotechnology companies are currently

available for clinical applications, and many dozens more are presently in the
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development pipeline. Examples of successful protein therapeutics span a wide
range of disease application, including diabetes, anemia, hepatitis, autoimmune
diseases and cancer, among others (47). This wide range of successful clinical
applications along with the large and rapidly expanding market demonstrates the
considerable potential for proteins as therapeutic agents. However, while the
market for protein therapies is rapidly growing and the science behind these
advances continues to mature, no manufacturer has yet brought to market a protein
based antimicrobial therapeutic. This is possibly due to the lack of economic
incentives discussed below, but nevertheless represents a critical failure of the

biotech and pharmacologic industries to address an urgent public health need.

The need for new antimicrobials and the proof of concept model system

Pharma and biotech are failing to meet the need for new antimicrobials

Modern drug development is a slow and costly endeavor. In 2003 the average time
to market for new drugs was estimated to be 15 years, at a cost of $0.8 to $1.7
billion per drug (48; 49). Fewer than 1 in 5000 (0.0002%) of the promising drug
candidates that enter pre-clinical testing ultimately receive regulatory approval
(50). Due to a convergence of economic and regulatory constraints in the
pharmaceutical and biotechnology industries, many urgently needed drugs not
fulfilling specific marketing requirements are failing to be developed. Among the

categories of therapeutics whose new research and development has been greatly
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curtailed or eliminated in recent decades are the antibiotic/antimicrobial

compounds (51).

In part, the rate at which antibiotic resistance to a drug arises is a major economic
disincentive for pharmaceutical companies and greatly discourages the allocation of
substantial resources to the problem (50). In the past 50 years, a total of ten new
classes of antibiotics possessing novel modes of action have been discovered, yet
just two of those new classes were discovered in the past 30 years (52).In 2002, out
of 89 new medicines entering the market, none was an antibiotic (53), and the
major industry development programs that remain focused primarily on creating
close chemical derivatives of existing antibiotics (51). Because they share a common
target and mechanism of action, the useful lifetime of these derivative antibiotics is
substantially more limited due to greater susceptibility to enhanced microbial
acquisition of multidrug-resistance than are novel classes of antibiotic. Particularly
disturbing is that there is no existing antibiotic class for which a bacterial resistance

mechanism has not already been documented (52).

The rapidly spreading threat of multidrug microbial resistance

Gram positive microbial pathogens are a major cause of morbidity and mortality
around the world. In the U.S,, an estimated 19 million hospital patients are at risk for
developing gram-positive infection annually, and more than 2 million each year
contract an infection from hospital visits (54). Of these hospital acquired

(nosocomial) infections, more than 70% do not respond to one or more of the first-
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line antibiotics and between 24% and 45% of all gram-positive microbial infections
are resistant to multiple classes of antibiotic (53; 55). The microbial pathogens
responsible for the majority of resistant infections are the Staphylococcus aureus
and Enterococci strains, which together account for greater than 65% of all life-
threatening infections (56). Most alarming has been the rapid emergence and
spread of multidrug- (or methicillin) resistant strains of S. aureus (MRSA) and
Enterococci (MRE) whose prevalence are now widespread and increasing in both
hospital and community settings (57; 58). Between 1987 and 1997, reported cases
of MRSA in intensive care units approximately doubled, and both MSRA and MRE
infections are now epidemic in many hospitals worldwide (59-61). This rapid
spread of multidrug-resistant microbes in clinical environments has begun to
impose serious limits on treatment options, as few pharmacologic agents remain

capable of combating these strains.

The antibiotic of last resort, under threat

Since its introduction in the 1960’s, the preferred therapy for treating multidrug
resistant microbial infection has been the glycopeptide antibiotic vancomycin. Often
referred to as the “antibiotic of last resort”, vancomycin’s continued utility as an
effective treatment for multiply resistant microbial infection is now in doubt due to
the recent emergence of additional vancomycin resistance in many of the MRSA and

MRE strains (57).
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Before 1987 no hospital in the U.S. had reported a case of vancomycin resistant
microbial infection. Today, cases of vancomycin-resistant S. aureus and Enterococci,
known as vancomycin-resistant S. aureus (VRSA) and vancomycin-resistant
Enterococci (VRE), have been reported worldwide and are the third most common
cause of healthcare associated infection (57). Equally troubling from a public health
perspective has been the recent emergence of reduced vancomycin susceptibility
among infections acquired in community settings, such as schools and other public
venues (62; 63), demonstrating that resistant microbial pathogens are no longer

confined to hospitals.

How vancomycin works

The molecular basis for vancomycin antimicrobial action against Gram-positive
bacterial strains is by interfering with proper cell wall biosynthesis. Specifically,
vancomycin inhibits peptidoglycan synthesis of the gram-positive bacterial cell wall
by binding and sequestering the D-alanyl-D-alanine portion of the cell wall
precursor glycopeptide, thereby preventing the peptidoglycan cross-linking
necessary for the cells structural integrity, resulting in bacterial lysis and death (64)
(Figure 1.2a,b). Studies have shown that binding only a small percentage of this D-
ala-D-ala glycopeptide target during cell wall biosynthesis is sufficient to kill gram-

positive bacteria (65).
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How vancomycin fails

The most common mechanism of acquired resistance to vancomycin observed in
pathogenic microbial strains is through the substitution of a D-lactate in place of the
D-alanine at the free C-terminus of the bacterial glycopeptide. This single
replacement of the C-terminal amino linkage by an ester linkage of the lactate
results in loss of an inter-molecular hydrogen bond and introduces a repulsive
interaction between oxygen lone pairs, with the latter believed to contribute more
to destabilization of the binding interface (66) (Figure 1.2c). This observation
suggested that removing the lone pair-lone pair clash might be sufficient to restore
vancomycin binding to D-ala-D-lac targets (67; 68). Using this strategy, a
vancomycin analogue was synthesized that bound both D-ala-D-ala and D-ala-D-lac
peptides with similar affinities and was more effective than vancomycin against VRE
(70). Binding, however, was in the millimolar range and therefore not amenable to
use as a therapeutic. Moreover, total chemical synthesis of this molecule as a drug is

not compatible with large-scale processing.

New approaches to antimicrobial development are urgently needed

Of greatest concern is the discovery that all of the genes necessary for resistance to
vancomycin have been found on a single transmissible plasmid, and that cross-
species transfer of this plasmid is believed to be responsible for acquisition of
bacterial resistance in the wild (71). These resistance genes are collectively known

as the VAN system, and numerous variants have been identified to date (72). It is the
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Figure 1.2  Vancomycin Binding Mode and Mechanism. (A) Biosynthesis of gram-
positive cell wall via transglycosylation and transpeptidation reactions are inhibited
by vancomycin binding the C-terminal -D-ala residues (blue). (B) Five hydrogen
bonds stabilize the interaction between vancomycin and the -D-ala-D-ala peptide in
a back-bone/f3-strand binding mode (lt. blue arrows). (C) Upon substitution of -D-
lac at the peptide C-terminus, the loss of a hydrogen bond and resulting lone pair
repulsion impart vancomycin resistance. Adapted from(69)

existence of this plasmid and its ability to efficiently confer vancomycin resistance

within and across species that constitutes the greatest threat to continued efficacy
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of current last-line antimicrobial therapeutics, and portends the greatest need for

new classes of therapeutic agents.

This confluence of factors - the rapid rise and spread of MSRA and MRE, the recent
emergence of vancomycin resistant microbial strains via a readily transmissible
genetic element, and the dismaying lack of industry innovation and investment in
discovering new classes of antibiotic, point to an urgent need for new approaches to

antimicrobial therapeutic development.

Past ROSETTA protein design studies and successes

The ROSETTA suite of programs encompasses a number of computational
functionalities focused on protein prediction and design (73; 74). A central idea
behind ROSETTA is to reduce the complexity of the conformational search space by
sampling discrete conformations of protein sidechains (rotamers) (75-78). ROSETTA
energy functions used for design and scoring of sampled models rely on statistical
parameters derived from databases of known protein structures. These
“knowledge-based potentials” increase the accuracy of scoring functions for

evaluating the designed sequences (79; 80).

In the past decade, ROSETTA has enjoyed tremendous success in application to a wide
variety of design problems, including the thermostabilization of an enzyme (81) and
design of a novel sequence and topology (80). The latter result was particularly

exciting as the designed protein, top7, was soluble, monomeric and exceptionally
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stable, and the accuracy of the design was confirmed by the high resolution crystal
structure which confirmed the design model to within 1.2A. The creation of an
entirely new fold represents a milestone in the design field as it demonstrates the

ability to access regions of protein space not yet observed in nature.

More recently, ROSETTA has been used to reengineer protein complexes (82-84)and
to successfully redesign the specificity of a protein-protein interface (85-87). In one
study, RoSETTA designed Dnase-inhibitor protein pairs exhibited sub-nanomolar
affinities in vitro, and a high-resolution crystal structure of the designed complexes
confirmed the computational model (88). Moreover, the designed proteins were
functional and specific in vivo. This study illustrates the potential of computational
interface design to create new protein pairs that are both specific and functional in

their biological context within living cells.

ROSETTA’s ability to predict protein-protein interactions has been demonstrated in
the Critical Assessment of PRedicted Interactions (CAPRI). Researchers are given
the structures of two proteins and challenged to predict the structure of the
complex. There, ROSETTA predictions for targets were strikingly accurate. Not only
were the rigid-body orientations of the two partners predicted perfectly, but

interface sidechains were also modeled with a high degree of accuracy (89; 90).

Most immediately relevant for this proposal are two RoSETTA developments. The
first is ROSETTA’s successful application to enhancing the affinity of a protein-peptide
complex. Peptide extensions were designed for p53 and dystroglycan-based

peptides that bind with increased affinity to the Mdm2 oncoprotein and to
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dystrophin (91). This experiment established ROSETTA’s applicability to the design of
protein-peptide interfaces similar to that attempted in this project. Second, was the
implementation and testing of a ROSETTA version that enables, for the first time,
design with modified amino acids and other small molecules such as the D-ala-D-lac
peptide (92) employed here. This work was completed by my advisor, Jens Meiler,
and is the primary enabling computational advancement underlying my dissertation

research.

General methods for computational interface design

De novo protein interface design is a specific branch of the larger CPD field.
Accordingly, the established computational tools used for interface design are
derived from generalized CPD and structure prediction methods. CPD is often
described as an inverse-folding problem, with the goal of identifying amino acid
sequences compatible with a given three-dimensional protein structure (93). This
definition can be extended to interface design, where the goal is to identify a
sequence capable of forming a three-dimensional ligand-binding interface. Thus, the
focus of interface design is more localized than general CPD, and requires higher

accuracy and precision.

Both the generalized protein and interface specific design methods share two
general components: a search algorithm to efficiently sample the often vast
sequence-conformation space, and a scoring function (also referred to as a fitness

function) for discriminating optimal from sub-optimal sequences. For in-depth
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reviews of general computational protein design methods, see Lippow & Tidor,

2007 and Alviso et al., 2007 (94)(95).

Sequence/structure search algorithms

Sequence space search algorithms can be classified as either stochastic, or
deterministic. Commonly used stochastic search algorithms are Monte Carlo-
Metropolis with simulated annealing (Metroplois et al. 1953)(Kirkpactric et al.
1983), fast and accurate side-chain topology and energy refinement (96), genetic
algorithms (97), and self-consistent mean-field optimization (98). Stochastic
algorithms have the advantage that they will always find a solution to a search
query, though the solution is not mathematically guaranteed to be the most optimal.
These algorithms can be scaled to take advantage of massively parallel or
distributed computing resources. For a review of the commonly used search

algorithms see Volgt et al., 2000 and Tian, 2010 (99)(100).

Conversely, deterministic search algorithms such as dead-end elimination will not
always be able to arrive at a solution to a given design problem and can be difficult
to scale. However, when a deterministic search algorithm is able reach a solution, it
can be mathematically proven to be the global minimum-energy conformation for

the given input parameters (Desmet et al. 1992).

A common method to further facilitate efficient search of the sequence-

conformation space are predefined rotamer libraries. Roatmers are preferred low
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energy conformations of each amino acid side chain, derived statistically from the
protein data bank (PDB). Rotamer libraries are pre-computed sets of the most
common rotamers for each residue type, and can be either backbone-dependent, or
backbone-independent (101). By using rotamers as the basis of a sequence-
conformation search, the two variables of amino acid identity and conformation can

be combined, greatly reducing compute times.

Energy, scoring and fitness functions

Once the search algorithm identifies a specific protein sequence-conformation, a
potential energy function is used to evaluate each protein model based on the
overall energetics of the system. There are two general approaches to the potential
energy functions used in protein design, knowledge-based and physics-based
energy potentials. For in-depth reviews of potential energy functions used in protein

design, see Boas & Harbury, 2007 and Lippow & Tidor, 2007 (94; 102).

The knowledge-based energy potentials are derived statistically from structures
deposited in the PDB, where the 3D coordinates of each protein are converted first
into a statistical potential, and then into an energy potential for a given sequence-
structure parameter (103). Knowledge based energy potentials typically contain
individual terms for van der Waals, electrostatic, hydrogen-bonding, internal

entropy, solvation and other energy components.
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Knowledge based approaches have the advantage of being able to capture large
amounts of empirically derived data into efficient mathematical functions. These
functions can then be used to score and evaluate protein sequence-structure models

(104).

Physics based energy potentials rely on more complex mathematical models of the
basic physical forces that constitute a protein free energy (105). They can be more
accurate than knowledge-based methods, but are computationally more expensive.
Protein design applications are typically performed using knowledge-based
methods due to combinatorial and compute time constraints involved in sampling
large sequence-conformation spaces. However, recent attempts to validate physics-
based molecular mechanics potential energy functions in protein design have met
with modest success in the design of low affinity ligand interfaces (106) and may
find further application in the long-term with continued increases in generalized

computing power.

General protein design algorithms and protocols

Repetitive, cyclical application of search and scoring algorithms form the basis of a
generalized protein design algorithm (Figure 1.3). 3D structure coordinates for
starting ligand and protein design scaffold are input, along with an appropriate
rotamer library, into the sequence-structure search algorithm. Multiple cycles (often
tens to hundreds of thousands or more) of sequence-structure search followed by

scoring of the identified protein model are used to evaluate the design search space.
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Figure 1.3  General components of an interface design algorithm. Protein-ligand
interface design algorithms require the input of a 3-dimentional protein scaffold and
ligand on which to perform design. Various rotamer libraries of statistically likely,
low-energy conformations of amino acid sidechains or ligands may also be input to
reduce search degrees-of-freedom. The design algorithm proceeds through repeated
rounds of sequence-conformation search, followed by scoring of each resulting
model. If a given sequence-conformation model does not meets predetermined
scoring criteria, that model undergoes further sequence-conformation perturbation
by the search algorithm. The cycle continues until a sequence-conformation model
meets scoring criteria and is output as a sequence and/or 3D protein-ligand model.
Typically, multiple models are output for further iterative rounds of design and
evaluation.

Models that the scoring function determines meet specified criteria are output as 3D
coordinate files. Typically, many thousands of protein models are generated to
assure sufficient and unbiased sampling of the sequence-structure search space.
These accepted output models might then be further evaluated for other desirable
design characteristics not otherwise encompassed by the scoring function such as
ligand pose, sequence diversity, etc. Design protocols composed of multiple,
iterative rounds of design and model generation can be tailored to a specific design

goal.
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Figure 1.4  Example of an iterative design protocol. Many protocols for protein-
ligand interface design use consecutive rounds of computation and enrichment of
the best scoring models. The black portion in the upper leftmost bar represents the
starting 3D structures of protein with crudely placed ligand. The computed free
energy of these starting models is generally high due to clashes of the ligand with
protein atoms in the interface intended for design. During the first iteration, the
design algorithm identifies and outputs models lower in computed free energy. Of
the models generated in the first iteration, a portion possessing the lowest energy
scores (orange) are used as starting structures for the second iterative round of
design in which the search permutation parameters (e.g. translation, rotation,
sequence, conformation, etc.) are narrowed. This narrowing of search parameters
serves to decrease the total size of the search space, and increase the sampling
density. This iterative process of enrichment and increase in sampling resolution
continues until computed energy levels begin to plateau and/or sequences converge
- often several rounds or more, depending on the size of the interface under design
and degrees of search freedom (e.g. ligand flexibility, multiple ligands, co-factors,
etc.). At the end of the iterative design process, a small portion of the protein-ligand
interface models possessing the lowest overall free energy are often evaluated
manually to assess success.
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A typical iterative design protocol for an MCM search function is shown in Figure
1.4. In each iterative round of design, low energy models are selected and carried
over to the next design round. At each successive round, the size of the search space
decreases through eliminating non-productive areas of the sequence-structure
space, causing the sampling density of the remaining search to increase. When
decreases in free energy of the protein-ligand complex plateau, a small number of
the best scoring models are output as the end product of the design protocol. These
proteins may then go on to be expressed and tested experimentally for their

predicted function.

The protein design search space

The calculations necessary to perform in silico protein design can be vast and
difficult to conceptualize. For this reason, it can be helpful to imagine the multiple
parameters involved in generating and evaluating a good from a bad protein design
- things like protein core stability, satisfied H-bond donors and acceptors, amino
acid identity and conformation, van der Waals interaction, etc. - as a multi-
dimensional space on which each given permutation of the parameter set is a point.
This multi-dimensional parameter space is often referred to as the “search space”

for a given protein design computation.

Systematic or brute-force computation of all possible permutations in the search
space can quickly grow beyond astronomical scales for even relatively simple

systems. For example, varying just a single parameter such as the primary sequence

25



using only the 20 natural amino acids, in a relatively modest sized protein of 100
amino acids, yields the following search space size: 20100 ~ 10130 which is 50 orders
of magnitude larger than the estimated number of atoms in the observed universe.
Add to this that the average amino acid contains ~3 rotatable bonds conferring a
near-infinite number of possible conformational states, and that amino acid
substitutions will often result in changes in backbone phi/psi angles. Further add
conformational flexibility, rotational and translational degrees of freedom of a
ligand, etc. and we see that an already intractable calculation expands exponentially
still. Indeed, in mathematical terms, protein design has proven to be an NP-hard
calculation (107), the most difficult category of computational problems to solve.
Needless to say, systematic evaluation of even simple protein design problems is

infeasible for the foreseeable future.

To address the difficulties of a vast search space, several approximations are
typically made. First, the conformational flexibility of amino acid sidechains are
represented by a set of discrete, low energy conformations called rotamers (101).
The use of rotamer libraries during design thus combines the identity and
conformational degrees of freedom into a single pool of sequence-conformation
parameters. Second, the protein backbone is often kept fixed during the early
rounds of design computations. Third, computational design protocols consisting of
multiple, iterative rounds of increasing resolution and complexity are used to
exclude large regions of the search space, which cannot result in productive protein
designs, while subsequently focusing more intensely on potentially productive

regions (See Figure 1.4). However, even with the use of these approximations to
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reign in the potential search space, a systematic evaluation remains infeasible. Thus,
efficient algorithms are employed to sample the large multi-dimensional search
space in a fashion that insures both sufficient density and breadth to identify low

energy designs (see Figure 1.3).

These and similar methods have made feasible the computational design of proteins
and protein interfaces. Nevertheless, all but the simplest computational protein
design efforts are undertaken on modern grid- and supercomputing clusters and can

require tens and even hundreds of thousands of CPU-hours per design.

Overview of ROSETTA design methods

The ROSETTA program uses a combination of Monte-Carlo and gradient-based search
algorithms together with knowledge-based statistical analysis and rotamer libraries
to create protein models. This combination of search methods assures an unbiased
sampling of the global conformational energy landscape of the protein system.
Sampled structures are scored by environmentally dependent, atomic resolution
energy functions derived from first-principle calculations and knowledge-based
statistical methods (108). The ROSETTA program code is designed to take full
advantage of modern advances in grid-computing architecture such as Vanderbilt’s

Advanced Computing Center for Research and Education (ACCRE).

In the ROSETTA dock/design mode utilized in my dissertation research, peptide

conformers from a pre-computed ligand library are placed into the binding site of
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the protein scaffolds to create starting template structure files, one for each ligand
conformer scaffold pair. ROSETTA then performs a “random” Monte-Carlo translation
and rotation of the peptide ligand, followed by Monte-Carlo substitutions of
sidechains in the protein binding site - referred to as “repacking” - using rotamer
libraries with simulated annealing. All amino acids in the first and second shell of
the peptide binding site are included in the design process. Following each
permutation, the free energy of the model is calculated and accepted or rejected
using the Metropolis criterion (109). If the energy of the new model is lower, the old
model is discarded based on probability criteria and the permutation and scoring
process begins again using the new model. If the new model possesses higher
energy than the previous model, the new model is discarded based on probability
criteria and the process is repeated using the previous best scoring model as a start
point for further permutations. ROSETTA repeats this process until the desired
number of low energy models for each starting structure is reached. A dock/design
computational round is complete upon outputting the desired number of designed

models.

At the completion of each computational round, the models are sorted based on
lowest overall free energy of the system, and the best scoring models - at some
user-designated level of energy cutoff - are carried into the next cycle. A minimum
of five cycles of computation are performed. The intent of this multi-round, iterative
approach is to achieve sufficient sampling density of the total conformation/energy

search space, while progressively increasing the sampling density of a subset of the
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search space shown to be enriched for low energy conformational minima of the

protein-ligand complex.

After all design rounds are complete, selected lowest energy models undergo
gradient based minimization and repacking without design using a “hard-repulsive”
scoring function that is more accurate, but too computationally slow and restrictive
to use during the design rounds. Further holistic evaluation of these lowest energy
models yields a small number of designed structures that can be prioritized for

laboratory expression and assay.
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CHAPTERII

RESEARCH DESIGN AND EXPERIMENTAL STRATEGY

The experimental proof-of-concept of my dissertation research employed a rational
design approach to develop and test computational methods for the de novo design
of protein interfaces to small ligands. Naturally occurring PDZ, TPR and 1m4w
proteins were used as scaffolds to design high affinity binding to the D-alanine-D-

alanine and vancomycin resistant D-alanine-D-lactate target peptides.

Vancomyecin resistant bacteria replace an amide bond with an ester bond at the C-
terminus of the vancomycin target peptide (Figure 1.2e). This loss of a stabilizing
hydrogen bond along with the resulting oxygen lone pair repulsion is sufficient to
eliminate vancomycin activity. The proposed designed proteins were intended to be
capable of counteracting this D-ala to D-lac substitution by providing a
compensating hydrogen bond donor while retaining the potential to bind both D-ala
and D-lac peptides, thus potentially generating a bi-modal binder equally effective

against resistant and non-resistant bacterial strains.

My dissertation sought to implement three specific Aims: Aim 1 focused on the
identification of suitable protein scaffolds, and the computational design of the

proposed protein-ligand interface using ROSETTA. Aim 2 involved the laboratory
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production of the designed proteins and development and validation of assays to
measure protein/peptide binding. Aim 3 was to quantify the binding affinities of the
designed proteins for their intended peptide targets, and initiate high resolution
structural characterization of the designed proteins to assess the accuracy and

efficacy of the in silico design process.

The logical flow of this research design implemented stepwise filtering and
enrichment of results from one research phase to the next (Figure 2.1). At each
phase, only the most promising design candidates were carried forward to the next
step in the protocol. The computational process generated and evaluated the energy
of hundreds of millions protein-peptide permutations, and output the 0.1% (several
thousand) lowest energy models from each cycle of computation. At the end of each
stage, additional filters were applied to select the most promising candidates for
protein production. Such filters seek to remove designs with limited access of the
peptide N-terminus to the protein binding site, minimize the total number of

mutations, and ensure native-like binding modes and energies.
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Design models: 104
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| Designed Protein-Ligand Complex | | Model of Protein-Ligand Complex | Manual Assessment |
T of Models

Figure 2.1 = Diagram of computational protocols and strategies. (A) Flowchart of
ROSETTA computational process showing the multi-step, iterative nature of the
ROSETTA design and scoring procedures. Only models that achieve specified
minimum energies are accepted and output. (B) Schematic of design protocol. At
each cycle, starting structures are used to create a large number of designs, which
then undergo filtering before being carried to the next cycle. In each of five cycles,
the sampling density is increased by reducing the design perturbation parameters.
After the final round of design, the output models are manually assessed to
determine the best overall candidate designs.

Subsequent to computations, but before synthesis and expression of the designed
proteins had begun, a structure/function alignment of all candidate sequences of a
given scaffold design was performed to identify overlapping binding modes. Since
many of these sequences shared mutations, by evaluating the binding-sequence
space, it was possible to devise a maximally efficient strategy for gene synthesis that
minimized redundancy between designs. Following protein expression, proper
folding was initially confirmed using CD and NMR spectroscopy and the solution
properties of the proteins were determined. Binding affinities and kinetics were

quantified using a combination of ITC, fluorescence methods and/or NMR
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spectroscopy. The rationale behind using a variety of methods with overlapping
sensitivity ranges was the expectation of a wide range of binding constants and

thermodynamic properties (Figure 2.2).

Molar 107 108 107 10 107 10 103 e

Fluorescence

Backscattering Interferometry

Figure 2.2  Complementary, Overlapping Assays. Representation of the optimal
concentration ranges (in M) of the proposed assays for quantifying the binding
constants of the designed proteins. Assay complementarity assures that accurate
assessment of binding affinities can be obtained even if one or more techniques fail
to yield results.

Expressed protein designs of interest were selected for high-resolution structural
characterization to assess the accuracy and efficacy of the in silico design process at
the atomic level. The objective of structural characterization was to assess the
causes for lack of observed binding in all of the designed proteins. Defects or
noteworthy deviations from prediction were assessed and potential refinements to
the computational protocols and ROSETTA program code were evaluated. Due to the
unsuccessful design of high affinity binding in any of the produced proteins,
preliminary studies into application of the developed methods to other microbial

targets were not initiated.
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The above research design enabled comprehensive sampling of protein
conformational and sequence space in silico while permitting experimental

characterization of a practical number of proteins at different levels of resolution.

Computational design of high affinity protein binder to peptide targets

Identifying protein scaffolds suitable for design

The first step of the design process was the proper selection of a native protein
scaffold on which to begin computations. This was accomplished by searching the
PDB for proteins possessing high-resolution crystal structures and a molecular
weight of between 10 and 40 kDa. This molecular weight range was supported by
studies which have shown the size exclusion limit for the peptidoglycan cell wall of
gram positive microbes to be approximately 50 kDa (110; 111). Another highly
desirable trait of the scaffolds is thermostability, which was assumed to permit
manipulation of binding site residues with decreased risk of destabilizing the overall

protein fold.

At the end of the selection process, three protein scaffolds (referred to as PDZ, TPR

and 1m4w) were chosen (see Figure 2.3), each possessing a distinct binding mode.

All of the chosen scaffolds are stable at temperatures well above physiologic norms,
while one of the scaffolds - 1m4w - is derived from a thermophillic organism and

possesses a wild-type melting transition above 100°C (112).

34



m PDB I.D. Protein Family Topology Molecular Function Biological process m m

Multi-specific protein Homo
interaction sapiens

Mainly beta PDZ domain Protein-protein interaction

Alpha-alpha Tetratricopeptide
superhelix repeat (TPR)

Aerine threonine protein Homo

Horseshoe| Protein-protein interaction . .
phosphatase 5 sapiens

Twisted Xylanase/
beta-shet endoglucacase

Hydrolase activity, Carbohydrate metabolism, Nonomuraea
polysaccharide binding phospahte transport flexuosa

Jelly role

Figure 2.3  Biochemical characteristics of chosen protein design scaffolds. The
native species and molecular weight are of particular consideration when designing
a protein therapeutic due to immunogenic and pharmacodynamic properties.

Vancomycin

B-sheet De Novo

Yes Yes Yes

Yes Yes

Yes Yes

Figure 2.4  Scaffold progression. The logical progression of scaffold choice and
design goals for the D-ala-D-ala andD-ala-D-lac vancomycin target peptide, from
replication of backbone binding mode (PDZ), to design of a sidecain binding mode
(TPR), to de novo redesign of a peptide binding interface (1m4w).

Because vancomycin is a glycopeptide and employs a backbone/[3-sheet type
binding mode, the first design milestone was to replicate this binding interaction
using a PDZ domain scaffold. PDZs are mixed a/f3 domains of ~8 kDa that recognize
4-7 residues at the C-terminus of their peptide targets. Their native mode of binding
is primarily by forming highly stable (3-sheet type hydrogen bond networks in a
manner similar to that of vancomycin (Figure 2.4, 1.2). Although the shared features

of this binding mode make it an ideal starting point for designs, analogous lone-pair

35



clashing of backbone/ester oxygen may prove difficult for these PDZ designs to
overcome, and thus make it unlikely for the PDZ designs to be able to efficiently bind

D-ala-D-lac peptide targets (Figure 2.5).

The TPR domain is a repeating helix-turn-helix motif of ~16 kDa (Figure 2.3) that,
like PDZ domains, natively bind C-terminal residues of protein targets. Unlike the
PDZs, the ligand binding mode of the TPRs is exclusively sidechain-mediated. For
design applications, sidechains offer a more diverse set of functional groups and
increased conformational flexibility. Thus, individual designs created using the TPR
scaffolds were anticipated to be capable of binding both D-ala-D-ala and D-ala-D-lac

peptides with similar affinities (Figure 2.5).

1m4w is a ~23 kDa thermophilic 3-1,4-xylanase which possesses a mainly -sheet
“jelly-roll” topology (Figure 2.3). 1m4w was selected as a design scaffold not only
for its high thermostability, but also for the distinct and suitable geometry of its
catalytic cleft. This represented the logical next step in the scaffold selection
strategy. By designing a peptide binding site de novo it was thought possible to
create a binding mode that exploits both the high stability of backbone mediated

bonds and the flexibility of sidechain mediated bonds (Figure 2.5).
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Figure 2.5  Detailed View of Binding Modes of ROSETTA Designed Proteins. (A) Top
panel illustrates the backbone mediated hydrogen bond network of a designed PDZ
domain. The two bottom panels show close-ups of computed interactions with -D-
ala-D-ala (left) and -D-ala-D-lac (right) peptides. The green arrow (lower right
panel) denotes a repulsive lone pair interaction identical to that seen for
vancomycin, suggesting that the backbone binding mode of PDZ will not allow for -
D-ala-D-lac binding. At top, mutations from wild-type are summarized for each
design. (B,C) Respective information for TPR (B) and 1m4w (C) designs. Both
proteins exhibit a sidechain binding mode. [llustrated in the bottom panels is a
single asparagine residue binding both the amide of the -D-ala-D-ala and the ester
oxygen of the -D-ala-D-lac peptides through conformational rearrangement, thus
acting as a bi-modal binder.

Scaffold progression

The above choice of protein design scaffolds represents a logical, step-wise
progression in binding mode, ligand binding functionality and algorithmic
complexity involved in the design process. Figure 2.4 shows this progression from
vancomycin’s mode of binding and inability to bind the D-lac peptide, through the

PDZ, TPR and finally de novo scaffold of 1m4w with its predicted ability to bind both
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D-ala and D-lac peptide equally. This progression also traces the technological
complexity of interface design toward progressively more difficult scaffolds, from
minimal redesign on PDZ domains which maintain a similar native beta-sheet
binding mode, through the design of sidechain binding functionality in the TPR
scaffold, to the design novel functionality utilizing both sidechain and backbone
binding in the 1m4w scaffold (see Figure 2.5). This step-wise progression was
anticipated to permit the incremental testing and validation of ROSETTA’s design
capabilities at each stage, while also allowing a thorough exploration of the

structural and physical properties of the distinct design scaffolds and strategies.

Generation of target peptide conformational library

The peptidoglycan cell wall precursors of all gram positive bacteria share a common
sequence, L-lysine-D-alanine-D-alanine, at their C-terminus. Beyond these three
residues, the peptidoglycan compositions of different species diverge. It was
therefore decided to limit the length of the target peptides to the backbone atoms of
the three terminal amino acids plus the methyl sidechains (Figure 2.6). This
approach removes the conformational variability of the lysine sidechain,
substantially simplifying ligand conformation and protein design calculations while

preserving the common gram-positive target sequence.

Because the ROSETTA design mode employed at the time these studies were initiated
was unable to impart conformational flexibility to the peptide ligand during the

design process, prior to the start of computations, it was necessary to create a
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library of target peptide conformations against which to perform the designs.
Library creation was accomplished by first calculating allowed ¢, angles for the D-
ala-D-ala peptide ligand. These computed angles were then used to generate an
ensemble of ligand conformations representing systematic permutations around
each rotatable bond. For efficiency, the ligand library was parsed to ~2600 peptide
conformations for each of the D-ala-D-ala and D-ala-D-lac peptides, which were then

used during design.

C-Terminus

C-Terminus

D-Ala

Figure 2.6 = Model of D-ala-D-ala and D-ala-D-lac peptide ligands used in
computations. D-ala-D-ala (green) and D-ala-D-lac (cyan) ligand models. Only the
substitution of a oxygen in place of the C-terminal amide nitrogen distinguishes the
two. The remainder of the glycopeptide precursor denoted by grey dashed line, was
left unmodeled.

Performance of ROSETTA design computations

Prior to design computations, scaffold structures were subjected to gradient energy
minimization to remove atomic level clashes or other defects present from the

original crystallographic structure refinement calculations.
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[terative ROSETTA dock/design calculations were performed on ACCRE using a single
processor for each staring protein-ligand structure file. (See “Overview of ROSETTA
design methods” above.) In the first round of design, 50 low energy models of each
of the 2600 starting structures were output for both the D-ala and D-lac ligands (2 x
2600 x50 = 260,000, Figure 2.1b). Between each computational design round,
filtering of output models was performed. Models that occluded egress of the N-
terminus of the peptide from the binding pocket were discarded because connection
to the remainder of the non-modeled glycopeptide would be impossible. The
remaining models were then sorted based on lowest overall free energy of the
system, and the best scoring 10,000 were carried into the next iteration of the
design commutations. In subsequent rounds of design computation, 100 low energy
models are produced for every starting structure for both ligands (2 x 10,000 x 100
= 2,000,000, Figure 2.1b). For all of the designs computations conducted on each

protein scaffold, a minimum of five iterative cycles of computation was performed.

After the multiple design rounds were completed, several thousand of the lowest
energy models underwent gradient based minimization and repacking using a
“hard-repulsive” energy function. One hundred to two hundred of these output
lowest energy models were then manually examined and assessed for “desirable”
qualitative binding properties that ROSETTA energy functions may not adequately

capture.

Structure/function alignments of the binding sequence space for the selected

designs were then made and a maximally efficient strategy for expression is devised
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that agrees with the gene synthesis strategy (Figure 2.7). Typically, 6 to 12 of the

protein designs are chosen for production.

Wild-Type TPR

Mutations Energy (kCal)

1|

N

3 -15
N12Q 4 -18
K16R 5 -19
T39N 6 21

Figure 2.7  Example production strategy for TPR designs. Experimental
production strategy for the TPR designs intended to maximize efficiency of protein
production and minimize redundancy of sampled binding modes. The four primary
target designs highlighted in grey were assembled using recursive PCR, while the
remaining designs were produced in a second stage using mutational PCR, starting
from the primary set of designed mutants. At right, number of mutations from wild-
type for each design, and the ROSETTA predicted energies of binding.

Laboratory production of designed proteins and development of binding
assays

Synthesis, expression and purification of designed proteins

Once ROSETTA computations had been completed and an experimental production
strategy developed, amino acid sequences were obtained directly from the chosen
ROSETTA designed models. Following cloning of the genes, the designed proteins

were individually over-expressed and purified. 1°N-labeled proteins for NMR studies
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were produced in similar fashion using minimal media for which 15N-NH4Cl was the
sole nitrogen source. Pure proteins were then concentrated and assayed for proper
folding using CD and NMR spectroscopy and the solution properties of the proteins

were determined.

Below is an outline of the general methods used for the production and purification
of the ROSETTA designed proteins. All methods and techniques used in the
production phase of this proposal followed established laboratory protocols, and
whenever possible made use of the previously published experimental conditions

for the chosen scaffolds (112-114).

A gene encoding the wild-type scaffold protein was constructed via re-cursive PCR,
an efficient method of assembling small to medium size genes (115). Long
overlapping oligonucleotides are assembled in a ‘one pot’ reaction and then
amplified to obtain the full-length gene. Mutations for each of the ROSETTA designed
sequences were introduced into each PCR assembled scaffold protein gene by
simply swapping oligonucleotides. Once assembled, each gene was cloned into a T7-
driven E. coli expression vector, which expresses the protein with an N-terminal 3C
protease cleavable hexa-histidine tag. Subsequent sequence mutations were
achieved using StrataGene QuickChange site-directed mutagenesis method (116).

All constructs were confirmed by DNA sequencing.

Following gene synthesis, designed proteins were expressed in E. coli BL21 Star
(DE3) cells under standard 37°C growth conditions in LB medium. Protein over-

expression is induced by isopropyl-D-thiogalactopyranoside (IPTG) and cells were
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harvested 3-4 hours post-induction. The histidine tagged fusion proteins were
purified by immobilized metal affinity chromatography (IMAC). Final purity level of
all proteins was greater than 90% as assessed by SDS-PAGE and molecular weights
were confirmed by electrospray ionization mass spectrometry (ESI-MS) (See
Appendix E). The concentration of the proteins was originally assessed by

colorimetric Bradford assay and thereafter by absorbance at 280nm.

Assay for proper folding and solution properties

The secondary structure of each of the purified proteins was determined by far-UV
CD spectroscopy and the raw data are converted to mean residue ellipticity. Several
designed proteins of each scaffold type underwent 1D 1H-NMR spectroscopy on a
600 MHz Bruker Advance spectrometer equipped with a cryoprobe to confirm that
the protein was properly folded. Dynamic light scattering (DLS), SDS-PAGE and
analytical Size-Exclusion Chromatography (SEC) were also used to assure proper
aggregation state, solubility, high-order structure and the general solution
properties of the designed proteins. The DLS measurements were performed with

the cooperation of Martin Egli.
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Assay of designed proteins to target peptides

Quantify binding of designed proteins using multiple assays

Fluorescence techniques provide a rapid and sensitive means of quantifying
binding, and were the primary means of assaying binding in this work. Binding
assays using a 5-dimethylamino-1-naphthalenesulfonyl (dansyl-) D-ala-D-ala
peptide are well-established for studying vancomycin (117). For these studies,
binding titration experiments using dansyl-labeled D-ala-D-ala peptides were
performed in solution by adding unlabeled protein to labeled peptide and
monitoring both fluorescence emission and anisotropy. The resulting data formed
saturation binding curves from which the equilibrium dissociation constants were
calculated. Fluorescence experiments were carried out with the assistance of the

Beth lab on a T-type polarimeter.

[sothermal titration calorimetry (ITC) was used to measure the change in heat upon
complexation of the protein with ligand with no chemical tagging, immobilization or
other potentially confounding chemistry required. When applicable, it allowed
accurate determination of binding constants, reaction stoichiometry, enthalpy and
entropy. However, in the course of these studies, only the TPR based designs were
amenable to ITC analysis, as aggregation of the PDZ and negligible evolved heats of

complexation of the 1m4w designs prevented their analysis with this method.

NMR chemical shift perturbation assays were used extensively to determine the 2-
dimensional 1H-1>N HSQC spectra and were collected using >N -labeled proteins

produced and purified as described previously. The uniformly labeled proteins were
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concentrated and the target peptide titrated into to the labeled protein solution at
specific molar ratios. 1H-15N HSQC spectra were obtained after each titration of the
peptide, and the change in chemical shift for each peak was determined and plotted

as a saturation binding curve.

Alternative assay methods

Development of a medium throughput antibody-based ELISA screen to rapidly
identify binding candidates was briefly pursued, but abandon due to the suitability
of other established assay methods and the decision not to produce large numbers

of designed proteins.

A Backscattering interferometry (BI) assay was also evaluated in cooperation with
Daryl Bornhop’s lab as an extremely sensitive, label-free method of detecting
protein-ligand interaction. However, following several preliminary experiments, the
technology at the time of evaluation was judged to be of insufficient maturity to

justify continued testing and validation.

(See Appendix A & B for details of these assays.)

High-resolution structural characterization

Atomic level structural characterization was originally planed on select designed

proteins to allow high-resolution confirmation and refinement of the computational
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design process through comparison of the predicted in silico designed structures to
those demonstrated in vitro. Though full NMR assignments are available for the PDZ
scaffold (118), published crystallization conditions were available for all three -
PDZ, TPR, and 1m4w (112-114). The published crystallization conditions for each
design scaffold were to be used as a starting point for screening conditions of the
mutants. If a protein design demonstrated high affinity binding to its target peptide,
crystallization in complex with the ligand was to be attempted. However, in the
absence of tight binding, an atomic detail structure of the apo protein would
nonetheless be informative. Its structure could be compared with the computational
prediction to pinpoint inaccuracies in the computational design protocol and

identify the reasons for failure.

Unfortunately, the PDZ scaffold designs exhibited significant aggregation upon
purification and were unsuited for both NMR characterization and crystallization
trials. Although the TPR based designs possess good solution properties, further
examination of the literature revealed that crystallization required the presence and
binding of peptide ligand. Thus, initial crystallization screens of the TPR designs
were attempted, but abandon upon failure to obtain crystal “hits”. The 1m4w
designs however, after extensive screening, were crystallized successfully and

several high-resolution structures were determined.
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CHAPTER III"

COMPUTATIONAL DESIGN OF AN ENDO-1,4-3-XYLANASE LIGAND BINDING SITE

Abstract

The field of computational protein design has experienced important recent success.
However, the de novo computational design of high-affinity protein/ligand
interfaces is still largely an open challenge. Using the ROSETTA program, we
attempted the in silico design of a high-affinity protein interface to a small peptide
ligand. We chose the thermophilic endo-1,4-3-xylanase from Nonomuraea flexuosa
as the protein scaffold on which to perform our designs. Over the course of the
study, twelve proteins derived from this scaffold were produced and assayed for
binding to the target ligand. Unfortunately, none of the designed proteins displayed
evidence of high-affinity binding. Structural characterization of four designed
proteins revealed that although the predicted structure of the protein model was
highly accurate, this structural accuracy did not translate into accurate prediction of
binding affinity. Crystallographic analyses indicate the lack of binding affinity is
possibly due to unaccounted for protein dynamics in the “thumb” region of our

design scaffold intrinsic to the family 11 (3-xylanase fold. Further computational

* Chapter Il is excerpted from Morin, A. et al., 2011. Computational design of an endo-1,4-{beta}-
xylanase ligand binding site. Protein engineering, design & selection
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analysis revealed two specific, single amino acid substitutions responsible for an
observed change in backbone conformation, and decreased dynamic stability of the
catalytic cleft. These findings offer new insight into the dynamic and structural

determinants of the [3-xylanase proteins.

Introduction

The ability to rationally design proteins through computational methods has long
been a goal of biotechnology and pharmaceutical researchers. The development of
widely applicable, repeatable and accurate rational protein design methods is
expected to enable the development of protein based therapeutics for human
medical applications and improved enzymatic processes essential in industry and
manufacturing. The market for clinical protein therapeutics, some $94 billion in
2010, is expected to grow to half of total prescription drug sales by 2014 (1), and

industrial use of engineered proteins will soon reach over $5 billion per year (119).

Computational protein design has experienced important success in recent years,
with significant achievements in the design of novel enzymes (11; 12; 120),
biocatalysts (121)(122), antivirals (123)(124), protein-protein interfaces
(125)(126)(84), diagnostics (127)(128), and novel protein folds (80). However, a
particular aspect of computational protein design that has proved more difficult is
the design of protein-ligand interfaces, particularly the design of proteins capable of

tightly binding small-molecules and peptides (129)(130).
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The goal of the current study was to develop and experimentally validate
computational tools and protocols for designing high-affinity protein-ligand
interfaces using the ROSETTA protein design program
{http://www.RosETTAcommons.org/}. The protein design functionality of the
ROSETTA program has demonstrated prior success at designing enzymes
(12)(11)(131), altering the specificity of protein-protein interactions (84)(83)(87),
creating novel protein folds never before seen in nature (80), and predicting
protein-peptide specificity (91). Here we set out to expand the application of

ROSETTA to the design of a de novo, high-affinity interface to a small peptide ligand.

The target ligand system we chose for our proof-of-concept study was the D-
alanine-D-alanine C-terminal dipeptide of the peptidoglycan precursor from
Staphylococcus aureus. These terminal D-ala-D-ala peptides are critical to S. aureus
cell wall biosynthesis and are the primary target for the glycopeptide antibiotic
vancomycin, an antibiotic of last resort for treating multiple resistant gram-positive
infection (132). Vancomycin acts by binding and sequestering the D-ala terminus of
the peptidoglycan precursor (Figure 3.1a) preventing its incorporation into the
bacterial cell wall (Figure 3.1c). This compromises the integrity of the bacterial cell
wall, rendering it vulnerable to lysis due to normal osmotic pressure changes (133).
Some bacteria acquire resistance to vancomycin by replacing this C-terminal

dipeptide with a D-alanine-D-lactate moiety (D-ala-D-lac) (134).

We attempted to use ROSETTA to perform the de novo re-design of the family 11

endo-1,4-B-xylanase from Nonomuraea flexuosa (PDB ID 1m4w) to replicate the
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binding and sequestration mode of action of the vancomycin antibiotic. This protein
was chosen due to its available 2.1A-resolution 3D coordinates, thermostability,
expression and production characteristics, molecular mass and the geometry and
size of its enzymatic cleft (112). We were encouraged that previously successful
ROSETTA enzyme design work had been performed using this protein, proving its

feasibility as a scaffold for computational design (12)(11).
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Figure 3.1 = The D-ala-D-ala peptidoglycan and vancomycin’s mode of action. (A)
Vancomyecin (light grey) forms 5 critical hydrogen bonds to terminal D-ala-D-ala
residues of the S. aureus peptidoglycan precursor anchored in the cytoplasmic
membrane. (B) Space filling model showing how vancomycin binds and sequesters
the terminal D-ala peptides, thus preventing the peptidyl transfer cross-linking (C)
of glycopeptide chains essential for cell wall biosynthesis.

In the course of ROSETTA computations, the scaffold protein’s enzymatic cleft is
mutated in silico to form an interface capable of binding to the target D-ala-D-ala or
D-ala-D-lac dipeptides (Figure 2.6). Following computations, the in silico designed
protein sequences were produced in the laboratory and assayed for binding to the

target dipeptide using multiple, complementary methods.
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Unfortunately, none of the designed proteins demonstrated high-affinity binding to
their target ligands (Kq<100uM). Subsequent structure determination of four of the
ROSETTA designed proteins revealed conformational changes in the protein
backbone and altered protein dynamics as significant contributing factors to the
lack of observed ligand binding affinity. The results presented here can additionally
be utilized as a benchmark case for the further development of computational

design algorithms.

Materials and methods
Selection of thermostable scaffold protein

To identify protein scaffolds suitable for ROSETTA design, a search of the PDB was
conducted for proteins with high-resolution crystallographic structures (<2.54),
possessing no structurally important metal atoms, having a molecular weight below
50 kDa and a binding surface or pocket of the appropriate geometry to
accommodate a dipeptide ligand. Preference was give to thermostable proteins
under the assumption that their robustness would allow more extensive design

mutations without destabilizing the overall protein fold.

The PDB file of the selected scaffold was prepared for ROSETTA design by the
removal of all redundant protein chains and non-proteinacious molecules, including
crystallographic water and reagent molecules. All ligand atoms were removed, and

any “anisou” or alternate atom positions or sidechain rotamers were discarded,
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retaining only the 3D coordinates and identities of protein main-chain and sidechain

atoms.

Ligand model and generation of ligand ensemble

The D-ala-D-ala dipeptide ligand moiety consists of 25 atoms - the 12 heavy atoms
and 12 hydrogen atoms of the D-ala-D-ala terminus of the target glycopeptide, plus
the carbonyl carbon of the preceding lysine residue comprising the peptido linkage.
A D-ala-D-lac ligand representing a resistant form of the S. aureus glycopeptide was
generated by substituting the C-terminal amide nitrogen of the D-ala-D-ala
ensemble with oxygen (Figure 2.6). To account for potential conformational
flexibility of the dipeptide, an ensemble of conformers was created using the MOE
(Molecular Operating Environment) software. The ensemble was populated by
systematically rotating the backbone phi/psi angles of the target peptide in 10°
increments, then removing all conformers not possessing “allowed” beta-sheet
Ramachandran angles for D-amino acids. Each conformer was then output as an
individual .pdb file. Design calculations were performed with a representative

conformer ensemble of 225 D-ala-D-ala and 225 D-ala-D-lac dipeptide structures.

ROSETTA computations

De novo computational design and ligand docking of the chosen scaffold with the

target ligand ensemble was performed using the ROSETTALIGAND module of ROSETTA
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version 2.3 (92). RoSETTALIGAND utilizes a monte carlo/metropolis (MCM) simulated
annealing search algorithm to dock the ligand molecule with three translational and
two rotational degrees of freedom. Simultaneously, ROSETTALIGAND designs the
protein scaffold by varying the identities of the amino acids comprising the binding
interface (Figure 2.1a). The knowledge-based energy function combines Van der
Waals (VDW) attractive and repulsive interactions, hydrogen bonding energy, a
desolvation penalty and pair-wise electrostatics (135), as well as sidechain rotamer

probabilities derived from the PDB (136).

All peptide conformations were placed manually into the ligand binding site. In an
iterative protocol, ROSETTALIGAND simultaneously optimizes ligand position and
protein sequence. During computations, ligand position and orientation are
randomly perturbed before all interface residues are redesigned to optimize protein
ligand interactions. This “dock-design” protocol is repeated five times in an iterative
fashion. Following each round of dock-design, 10,000 of the 100,000 models
generated were selected based on predicted ligand binding energy normalized by
the number of mutations from wild-type, degree of ligand burial, ligand hydrogen-
bond donor/acceptor saturation, and egress of the N-terminal extension of the
glycopeptide ligand. These best scoring 10,000 models were then used as starting
models in the following round of dock-design computations (Figure 2.1b). At each
successive round, perturbation of the initial ligand position and orientation was
narrowed, leading to increased conformational search density from round-to-round.
While the first round allowed for complete ligand reorientation and movement of up

to 5A, the final round limited movement to 5° and 0.5A. The protocol uses a softened
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repulsive VDW scoring potential to smooth the energy landscape. After five dock-
design iterations, predicted ligand binding energies plateaued and the amino acid
sequences of designed proteins converged. In a final step, 10,000 models were
energy minimized using hard-repulsive VDW scoring potentials to discriminate the
best protein sequences based on predicted ligand binding energy. This process

allowed for minimal ligand movement and optimization of sidechain conformations.

Selection of designed mutant proteins for expression

The resulting protein designs were clustered according to binding pose and
sequence and the top scoring models of each sequence group were ranked
according to predicted binding energy. Interestingly, the best scoring models shared
the same principal binding mode and a subset of mutations. Models were then
analyzed at atomic detail on a residue-by-residue basis, examining for hydrogen
bonding geometries, hydrophobic packing, burial of polar groups, and binding
pocket access/occlusion. Additional filtering of the models for each of the 1m4w
scaffold designs was performed to accommodate egress of the N-terminal extension
of the glycopeptide target. The best nine models for each target ligand were chosen
for experimental evaluation of predicted ligand binding (Table 3.1). Later, three

additional point mutants of the design 1m4w_6 were created (see below).
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Maximally efficient gene synthesis strategy

A hierarchical strategy for gene construction of the nine mutant proteins was
devised to minimize mutational primers and reaction steps (Figure 3.2a). Genes
were assembled using recursive PCR (137) from E. coli codon-optimized
oligonucleotides designed using the Gene20ligo web server

(http://berry.engin.umich.edu/gene2oligo/) (138). Once assembled, the genes were

cloned into a T7-driven pET29b expression vector. Point mutations were introduced
using Quickchange™ (Stratagene). All constructs were confirmed by DNA

sequencing.
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Im4w/1-99 DTTITQNQTCYDNGYFYSFWTDAPGTVSMTLHSGGSYSTSWRNTGNFVAGKGWSTGGRRTVTYNASFNPSGNAYLTLYGWTRNPLVEYY IVESWGTYRP
Imaw_1/1-99 DTTITQNQTGYDNGYFYSFWTDAPGTVSMTLHSGGSYSTSWRNTGRFIFACKGWSTGGRRTVTYNASFNPSGYAWLTLYGWTRNPLVSYYIVESWGTYRP
Im4w_2/1-99 DTTITQNQTGYDNGYFYSFWTDAPGTVSMTLHSGGSYSTSWRNTGRFFAGKGWSTGGRRTVTYNASFNPSGYAFLTLYGWTRNPLVSYY IVESWGTYRP
Im4w_3/1-99 DTTITQNQTGYDNGYFYSFWTDAPGTVSMTLHSGGSYSTSWRNTGRFIFACKGWSTGGRRTVTYNASFNPSGYAILTLYGWTRNPLVSYYIVESWGTYRP
Imaw_4/1-99 DTTITQNQTGYDNGYFYSFWTDAPGTVSMTLHSGGSYSTSWRNTGRFVAGKGWSTGGRRTVTYNASFNPSGYALLTLYGWTRNPLVSYYIVESWGTYRP
Im4w_5/1-99 DTTITQNQTGYDNGYFYSFWTDAPGTVSMTLHSGGSYSTSWRNTGRFIKAGKGWSTGGRRTVTYNASFNPSGYALLTLYGWTRNPLVSYYIVESWGTYRP
Im4w_6/1-99 DTTITQNQTGYDNGYFYSFRTDAPGTVSMTLHSGGSYSTSWRNTGLFLAGCKGWSTGGRRTVTYNASFNPSGNARLTLYGWTRNPLVSYHIVESWGTYRP
Imaw_7/1-99 DTTITQNQTGYDNGYFYSFRTDAPGTVSMTLHSGGSYSTSWRNTGLFWAGKGWSTGGRRTVTYNASFNPSGNARLTLYGWTRNPLVSYHIVESWGTYRP
Im4w_8/1-99 DTTITQNQTGYDNGYFYSFRTDAPGTVSMTLHSGGSYSTSWRNTGLFFAGCKGWSTGGRRTVTYNASFNPSGNARLTLYGWTRNPLVSYHIVESWGTYRP
Im4w_9/1-99 DTTITQNQTGYDNGYFYSFRTDAPGTVSMTLHSGGSYSTSWRNTGFEFIACKGWSTGGRRTVTYNASFNPSGNARLTLYGWTRNPLVSYHIVESWGTYRP

100 110 120 130 140 150 160 170 180 190
' ' ' ' | 1

1m4w/100-197 TGTYKGTVTTDGGTYDIYETWRYNAPS | EGTRTFQQFWSVRQQKRTSGT IT1GNHFDAWARAGMNLGSHDYQIMATEGYQSSGSSTVS | SEGGNPGNP
1m4w_1/100-197 TGTYKGTVTTDGGTYDIYETMHYNV,PS | EGTRTHQSFWSVRQQKRTSGT I TIGNHFDAWARAGMNLGSHDYQ IMATIGYQSSGSSTVS I SEGGNPGNP
1m4w_2/100-197 TGTYKGTVTTDGGTYDIYETTHYNVPS | EGTRTHQSFWSVRQQKRTSGT I TIGNHFDAWARAGMNLGSHDYQ IMATIGYQSSGSSTVS I SEGGNPGNP
1m4w_3/100-197 TGTYKGTVTTDGGTYDIYETTHYNVPS | EGTRTHQS FWSVRQQKRTSGT I T I GNHFDAWARAGMNLGSHDYQ IMAT/IGYQSSGSSTVS | SEGGNPGNP
1m4w_4/100-197 TGTYKGTVTTDGGTYDIYETTHYNVPS | EGTRTHQSFWSVRQQKRTSGT I TIGNHFDAWARAGMNLGSHDYQ IMATIGYQSSGSSTVS I SEGGNPGNP
1m4w_5/100-197 TGTYKGTVTTDGGTYDIYETTHYNV.PS | EGTRTHQSFWSVRQQKRTSGT I TIGNHFDAWARAGMNLGSHDYQ IMATIIGYQSSGSSTVS I SEGGNPGNP
1m4w_6/100-197 TGTYKGTVTTDGGTYDIYETWRYNAPS | EGTRTYQQFWSVRQQKRTSGT I TIGNHFDAWARAGMNLGSHDYQIMATEGYQSSGSSTVS I SEGGNPGNP
1m4w_7/100-197 TGTYKGTVTTDGGTYDIYETWRYNAPS | EGTRTYQQFWSVRQQKRTSGT ITIGNHFDAWARAGMNLGSHDYQIMATEGYQSSGSSTVS I SEGGNPGNP
1m4w_8/100-197 TGTYKGTVTTDGGTYDIYETWRYNAPS | EGTRTYQQFWSVRQQKRTSGT I T I GNHFDAWARAGMNLGSHDYQ IMATEGYQSSGSSTVS | SEGGNPGNP
1m4w_9/100-197 TGTYKGTVTTDGGTYDIYETWRYNAPS | EGTRTYQQFWSVRQQKRTSGT ITIGNHFDAWARAGMNLGSHDYQ IMATEGYQSSGSSTVS I SEGGNPGNP

) Eeaaa) ) /\/\/\/\——— )

Figure 3.2  Experimental protein synthetic strategy and sequence alignment of
1m4w designs. (A) Chart of sequence mutations from wild-type, synthetic methods
and predicted binding properties. Diagram shows at each step in the gene synthetic
process by which method mutations were introduced. White-filled circle and box
indicate synthesis by gene assembly, beginning with the wild-type sequence at top.
Solid boxes indicate mutagenesis by PCR. Italicized text indicates which residues
were mutated at each stage. Bold text at line termini denote completed ROSETTA
designed proteins. Table at right of diagram shows number of mutations at each
synthetic step, approximate predicted energy of binding (in r.e.u.) and synthetic
method used. (B) Sequence alignment of wild-type 1m4w (top, grey type) and the
nine ROSETTA designed proteins designated 1m4w_1 through 1m4w_9. Mutations
from wild-type are indicated by grey boxes and secondary structure is below.
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Expression and purification of designed proteins

Proteins were expressed in e. coli BL21(DE3) pLysS cells (Stratagene). Cells were

grown in LB media supplemented with kanamycin at 37°C until an OD(600nm) of
0.4-0.6 was reached. The cells were then transferred to 16°C. After 30 minutes, the
samples were induced with IPTG to a final concentration of 150uM and grown

approximately 14 hours . Cells were then harvested by centrifugation.

Cells were lysed using French-press in 25mM HEPES, 100mM NacCl, 5mM imidazole,
5% glycerol v/v, pH 7.6-7.8 buffer containing protease inhibitor cocktail (Roche). A
single step IMAC purification protocol using TALON™ cobalt-affinity resin
(Clontech) was sufficient to obtain greater than 95% purity as assessed by SDS-
PAGE. Following purification, proteins were immediately dialyzed into a buffer

containing 25mM HEPES, 100mM NaCl and 5% glycerol v/v at pH 7.6-7.8.

Molecular weights were confirmed by MALDI-MS on a PerSeptive Biosystems
Voyager-DE STR instrument. Protein aggregation state and solution properties were
assessed by dynamic light scattering using a DynaPro ProteinSolutions molecular
sizing instrument (Wyatt Technology Corporation). Proper protein folding was
confirmed by circular dichroism (CD) using a Jasco J-810 Spectropolarimeter and

1D-NMR on a Bruker Avance 600-MHz spectrometer.

15N-labeled proteins for NMR were obtained by expression in M9 minimal media
with 1>NH4Cl as the sole nitrogen source. For X-ray diffraction and NMR structural
characterization, proteins were purified by IMAC as described above followed by

size-exclusion chromatography using a HiLoad 16/60 Superdex 75 gel filtration
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column (GE Healthcare). This additional purification step gave >99% purity as

assessed by SDS-PAGE.

Peptides for protein-ligand binding studies

Peptides were purchased from Genscript. N-terminally acylated L-lys-D-ala-D-ala
tripeptide or L-lys-D-ala-D-lac were used in ITC and NMR titrations. Three
dansylated peptiedes were used for fluorescence studies: (Dansyl)-L-lys-D-ala-D-ala
peptide with the dansyl label covalently linked to the N-terminal nitrogen; L-lys-
(Dansyl)-D-ala-D-ala peptide with dansyl label attached to the lysine e-amino group,
and (Dansyl)-AEEAE-L-lys-D-ala-D-ala with a pentapeptide linker that separates the

target peptide from the dansyl group.

All assays were carried out in 100mM NaCl, 25mM HEPES, 5% glycerol v/v aqueous
buffer at pH 7.7 unless otherwise noted. Protein concentrations were measured at
280nm using a Shimadzu UV-mini 1240 spectrophotometer and calculated
extinction coefficients (ExPASy ProtParam server

{http://www.expasy.ch/tools/protparam.html}) See Appendix D.

Fluorescence anisotropy

Fluorescence anisotropy (FA) titrations were carried out at 25°C using a T-format
PTI Quantamaster 2000-7SE spectrofluorometer equipped with excitation and

emission polarizers. The fluorescence emission intensities parallel and
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perpendicular to the vertically polarized excitation light were analyzed to determine
the steady state anisotropy values for each point in the titration. During the
titrations, the concentration of dansyl labeled peptide ligand was held constant
while increasing concentrations of protein were added. Dansylated samples were
excited at 340nm and the fluorescence emission signal was monitored at 520nm

with both excitation and emission slit widths set to 1mm.

NMR chemical-shift perturbation assay

NMR experiments were performed using a Bruker Avance 600-MHz spectrometer
equipped with a cryoprobe. 1H-15N HSQC spectra were acquired with 1>N-labeled
proteins at 200-600 uM in 25 mM HEPES, pH 7.6-7.8, 100 mM NaCl and 2.5%
glycerol v/v H20/ 10% D20. A series of 15N-1H HSQC spectra were acquired of
protein titrated with 0, 1, 5, and 10 molar equivalents of peptide at 298K. Data were
processed using Topspin 2.0b (Bruker) and analyzed with Sparky

(http://www.cgl.ucsf.edu/home/sparky/).

Isothermal titration calorimetry

[sothermal titration calorimetry (ITC) experiments were performed at 30°C using a
MicroCal VP-ITC instrument. Unlabeled peptide was titrated into the cell containing

0.6-1.1mM protein in 100mM NacCl, 25mM HEPES, 5% glycerol v/v, pH 7.6-7.8
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buffer. Ligand concentrations were 15-20 times the molar concentration of the

protein.

Crystallization of proteins derived from model Im4w_6

Crystallization screens of designed 1m4w_6 as well as three derivative point
mutants (Table 3.1) were built from Hampton research HR2-130 Crystal Screen HT
reagents using a Thermo Fisher Scientific MaxCell™ crystallization workstation
incorporating a MicroLab Starlet™ (Hamilton Corporation, Reno, NV) liquid handling
robot and a Mosquito™ nanoliter drop setting robot (TTP LabTech, Oxford, UK). All
screening was performed using 96-well MRC plates (Hampton Research) and
experiments were visualized and recorded using a Thermo Fisher Scientific
Rhombix™ Tablestore automated imaging system. Protein was concentrated to
10mg/mL in 100mM NaCl, 25mM HEPES, 5% glycerol v/v, pH 7.8 buffer. Initial hits
from the robotic screen were optimized in 24-well sitting-drop plates using

individual Hampton Research Optimize reagents.

Diffraction data collection and processing.

Complete data sets were acquired in-house using a Bruker Microstar rotating-anode
X-ray generator and a Bruker Proteum PT135 CCD area detector. Crystals were
maintained at 100K using a Bruker Kryo-Flex cryostat. Data collection sweeps were

optimized using Cosmo (Bruker AXS, 2008) software and data integrated and scaled
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using SADABS (Bruker AXS, 2008) and XPREP (Bruker AXS, 2008) in the PROTEUM2
(Bruker AXS, 2008) package. The cryoprotectant used was the crystallization buffer

supplemented with 30% ethylene glycol v/v.

Additional X-ray diffraction data were collected at Southeast Regional Collaborative
Access Team (SER-CAT), beamline 22-ID, Advanced Photon Source, Argonne
National Laboratory using a MAR165 CCD area detector. A total of 360 frames with a
0.5° oscillation angle were collected at 100 K using a wavelength of 1.004A and a

crystal-to-detector distance of 150 mm.

Data processing and structure refinement

Diffraction data were phased by molecular replacement with the program MOLREP
(139), using the 1m4w coordinates obtained from the PDB or ROSETTA designed
models. Molecular replacement phases were then used to initiate automated model
building with the program, Arp/wArp (140). Model refinement was performed
using REFMACS (141) with iterated manual fitting using COOT (142). All data
analysis and refinement were performed using the CCP4 package (Collaborative

Computational Project, Number 4. 1994) and ccp4i gui (143).
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Results
Scaffold selection

We began by attempting of identify a suitable protein scaffold for our de novo
protein-peptide interface design effort. Im4w is a thermophilic endo-1,4-3-xylanase
(EC 3.2.1.8) from Nonomuraea flexuosa with a crystal structure determined at 2.10A
resolution (112). Its p-jelly-roll topology of two twisted beta-sheets forms a large
cleft where enzymatic endoxylanase activity occurs, typical to family 11 xylanases.
The protein does not naturally interact with peptide ligands, instead binding large
polysaccharides on its outer surface, while residues inside the cleft catalyze the
glycosidic cleavage of xylanose subunits. The overall molecular weight of
approximately 22 kDa, the size and geometry of its enzymatic cleft and the lack of
native ligand binding function were all well suited to a de novo redesign strategy.
Additionally, the thermostable nature of 1m4w was expected to allow a more
extensive redesign of residues in the binding cleft without significant destabilization

of the protein backbone.

ROSETTALIGAND computations

The ROSETTALIGAND module of the ROSETTA suite of programs was used to
accommodate the non-standard nature of the D-ala and D-lac ligands during design
of the protein-peptide interface. The goal of ROSETTALIGAND dock-design

computation is to identify the smallest set of mutations to the native scaffold protein
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sequence, which also provides the highest affinity binding to the target dipeptide
ligands. The best scoring nine sequences possessing binding energies of at least -1.5
ROSETTA energy units (r.e.u.) per amino acid mutation from wild-type were selected
for laboratory expression and assay (Table 3.1; Figure 3.2a). Each of the nine
proteins is 197 amino acids in length and displays a unique combination of between
seven and eleven mutations. All of the mutations are located in the catalytic cleft on
the inside of the concave jelly-roll protein fold, in one of three regions that directly
interact with the ligand. These regions are referred to as the “thumb”, “palm” or
“finger” (see Figure 3.3a)(112). The nine selected protein designs were labeled

sequentially as 1m4w_1, through 1m4w_9 (Table 3.1).

g
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w
ES
w
=N
N
oo
©

v48 w20 w20v48

AA position SS-type Region
20 W W W w W W w W
46 N Strand
48 Vv Vv \ \% Finger
72 N N N N N N N N Loop
74 Y
87 E Palm
89 Y Y Y Y Y Y
120 W W W W W W w W
121 R R R R R R R R Strand
124 A A A A A A A A Thumb
133 F
135 Q Q Q Q Q Q Q Q
176 E E E E E E E E Finger
# Mutations 0 11 11 11 10 11 7 7 7 7 6 6 5
Ligand - lac lac lac lac lac ala ala ala ala ala ala ala
Eypg (rew) ~ 199 199 199 202 198 176 174 172 17.1 129 133 154
Affinity* (kcal/mol) - 74 74 74 76 74 62 60 -59 59 35 -3.8 -4.9
PDB ID IM4W 3MF6 3MF9 3MFC 3MFA
Table 3.1 Sequence characteristics of the 1m4w protein designs. Amino acid

identities at given sequence positions for wild-type 1m4w plus twelve designed
mutants. Designation of each 1m4w_“X”" protein at top. Grey type denotes mutated
amino acids. Secondary structure and protein region of mutations shown at far
right. Number of mutations from wild-type, ligand target (D-ala-D-ala or D-ala-D-
lac), computed ROSETTALIGAND energy of binding in ROSETTA energy units (r.e.u),
ROSETTALIGAND predicted affinity (in kcal/mol from the method of Meiler & Baker
2006) and PDB IDs for the deposited structures are at bottom.
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Figure 3.3  Backbone opening of the binding pocket and prediction of interface
rotamer conformations between 1m4w_6 predicted model (light grey) and X-ray
structure (dark grey). (A) Cartoon representation of the model and X-ray structure
showing the 1.25A shift in the backbone configuration of the “thumb” region. (B)
Detailed comparison of the residues comprising the ligand interface. Most of the
residue sidechains are super-imposable, while several are out of position due to the
altered backbone conformation. Only two sidechain rotamers assume substantially
different conformations from prediction. (C) Residues identified as directly
responsible for binding pocket opening. W20-P125 (shown with VDW spheres)
form a hydrophobic interaction between “thumb” and “fingers” at the top of the
binding pocket, while V48 lies lower in the “palm” of the protein.

During the design process, many of the residues in the catalytic site of the Im4w
enzyme were altered in favor of the new peptide binding function, thus eliminating
the proteins native catalytic functionality. The wide and deep catalytic cleft of the
protein was transformed by the design process into a tightly fitting binding pocket,
closely contacting the target D-ala-D-ala or D-ala-D-lac dipeptide ligands on all sides
except the N-termini, thus allowing for egress of the un-modeled remainder of the

glycopeptide (Figure 3.4a and Figure 2.6). Predicted binding energies for the initial
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Figure 3.4  Detailed schematic of ligand interface. (A) ROSETTALIGAND predicted
interface of 1m4w_6 showing individual residues and H-bonds involved in binding,
and the degree of solvent accessibility to the ligand. Darker yellow, thicker lines
indicate low exposed surface area; lighter, thinner lines indicate more solvent
exposure. Grey dashed line denotes the path of the unmodeled portion of
glycopeptide ligand. (B) Detail of the X-ray determined 1m4w_6 apo interface with
ligand re-docked. Note the decrease in number of H-bonds and increase in degree of
solvent exposure. Solvent accessibility was computed with NACCESS (Hbbard &
Thornton, 1992) using a probe radius of 1.4A and visualized with LigPlot (144).

nine ROSETTALIGAND protein designs ranged from -17 to -20 r.e.u. (Table 3.1).
Previous studies by Meiler & Baker found that ROSETTA energy units correspond to
experimentally determined binding energies with a correlation of 0.63 (92). Using
the Meiler & Baker method, the ROSETTA energies for the initial nine chosen designs
correspond to a predicted free energy of binding of -5.82 to -7.50 + 1.9 kcal/mol and
a Kq of 54 + 34uM to 3 £ 2uM, respectively. Additionally, good hydrophobic packing
of both ligand methyl groups and strong binding of the carboxyl terminus were

common features in each of the nine protein designs.
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Expression characteristics and solution properties of designed proteins

Expression of the ROSETTALIGAND designed proteins proceeded as outline in the
Methods section. All of the 1m4w designed proteins expressed well, yielding
between 7 and 12 mg/L induction. All 1m4w proteins were found to express greater
than 50% soluble, with most greater than 75% soluble. Dynamic light scattering
(DLS) and size-exclusion chromatography of each of the expressed proteins
indicated that the 1m4w designs existed in solution as homogeneous, monomeric

species.

Far-UV CD spectra of the 1m4w designed proteins indicated secondary structure
composition similar or identical to wild type (Figure 3.5a). NMR results confirmed
that all of the 1m4w proteins were well folded and stable (See Appendix F).
Additionally, the 1m4w designed proteins exhibited a high degree of stability and
resistance to proteolysis. Samples left at room temperature for several weeks

following purification showed no signs of degradation.
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Figure 3.5 CDand
binding assay plots for
representative designed
1m4w proteins. (A) CD
spectra for the wild-type
1m4w, designed 1m4w_6
and re-designed
1m4w_6w20v48 proteins
demonstrating similar
tertiary structure
composition. (B) FA binding
assay plots for several of the
designed mutants titrated
with danslyated KdAdA
peptide. (C) FA plots for re-
designed proteins titrated
with danslyated EKdAdA
peptide. Non-linear
regression curves in B & C
were calculated by
GrpahPad Prism software
using a one site binding
(hyperbolic) curve fitting
equation. Concentration of
the dansylated ligand was
held constant at 10uM while
protein concentration was
diluted from the maximum
values as seen in the plot.



Assay of predicted binding affinity of designed proteins

Following computational design and expression of the chosen interface designs,
biophysical binding assays were performed to validate the predicted binding
affinities. Unfortunately, none of the designed proteins tested in this study yielded
evidence of specific, high affinity binding to their target peptide. We thus conclude

that the ROSETTALIGAND interface designs were not successful.

Using fluorescence anisotropy, several of the 1m4w designs indicated low to
moderate affinity binding, with Kq values between 367uM to 449uM (Figure 3.5b).
Non-specific, background binding affinities for the 1m4w designs during FA
measurements were observed to be at or above 850uM. These negative results for

high-affinity binding were later confirmed by ITC and NMR spectroscopy.

Structure determination of Im4w_6

To determine a cause for the lack of observed binding among the designed proteins,
a high-resolution X-ray diffraction structure of 1m4w6 was determined. After
numerous rounds of refinement an optimal crystallization buffer contained 0.1 M
NaCl, 1.125 M ammonium sulfate, 0.1 M Bis-Tris pH 5.5, 3% Jeffamine M600 pH 7.0
and grown at 20°C produced diffracting, single, rod shaped crystals of up to 150uM x
450uM (Figure 3.6). The final conditions differed significantly from that of the wild

type 1m4w structure (112). Data sets were collected for 1m4w_6 crystals in the apo
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form to a resolution of 1.28A. Refinement statistics for the structure of the 1m4w_6

designed mutant are listed in Table A.1.

Figure 3.6  Morphology of the 1m4w_6 crystals. This crystal was grown in sitting
drop, 24-well plate in buffer containing 0.1 M NaCl, 1.125 M ammonium sulfate, 0.1
M Bis-Tris pH 5.5, 3% Jeffamine M600 pH 7.0 and grown at 20°C. Dimensions of the
crystal were ~150pum by 450um. All 1m4w_6 derivatives had similar crystal
morphologies.
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Structural analysis of Im4w_6

Using the newly obtained high-resolution 3D structure of the designed 1m4w_6
protein, a comparative structural analysis was performed. The most identifiable
difference between the 1m4w_6 experimental structure (PDB IDs 3mf6) and
ROSELLALIGAND predicted 1m4w_6 model is an expansion of the binding pocket. This
expansion occurs through a 1.25A outward movement of the protein “thumb” region
when compared to the original 1m4w structure (Figure 3.3a). Moreover, the solvent
accessible (SA) surface area of the pocket increases 2.5 times, while normalized SA
volume expands by a factor of 2.3 (Figure 3.7c). Although flexibility of residue
sidechains within the pocket partially compensate for this “opening” relative to
prediction, a significant enlargement of the binding pocket is observed. The all atom
RMSD for the whole protein is 0.61A, but rises to 0.96 A within the binding pocket
(Figure 3.3b). Notably, interface residues that contribute most to RMSD are also
those possessing the highest crystallographic B-factors. The expansion of the
binding pocket disrupts interactions observed in the computational model. When
the ligand is re-docked into the crystallographic structure, only eight of eleven
predicted hydrogen bond interactions are able to assume correct bonding geometry,
while the ratio of ligand surface area in VDW contact with protein decreased from
0.79 to 0.63 (Figure 3.4b). Thus, we hypothesized that the lack of observed ligand
binding affinity was due to the expansion of the binding pocket and resulting

disruption of predicted binding contacts.
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Figure 3.7  Structural determinants of f-xylanase “thumb” destabilization. (A)
Loss of resolvable electron density in the “thumb” region is caused by an alternate
confirmation of W80 in the protein “palm”. (B) A “domino” effect of altered
sidechain packing results from the substitution of wild-type (light grey) V to
designed (dark grey) L at position 48. This added steric bulk pushes Y78 out of H-
bonding position, which then allows W80 to adopt an alternative conformation that
clashes with [127 and disrupts the hydrophobic packing of the two, thus
destabilizing the “thumb” loop. (C) Chart showing the relative degree of binding
pocket expansion for each sequence substitution. Wild-type (WT) and W20V48
proteins display a closed conformation, while the designed (Des) and V48
substitutions result in an “open” conformation. The W20 mutant, due to “thumb”
destabilization, dynamically inhabits a range of conformations between “open” and
“closed”.

RoSETTA analysis of Im4w_6

To investigate the hypothesis that binding pocket enlargement is responsible for the
lack of detected binding affinity, a detailed analysis of residue-level energy
contributions to binding affinity was performed comparing the 1m4w_6
experimental and predicted structures. In comparing the two structures,
ROSETTALIGAND calculations showed a modest but clear loss of binding affinity as
pocket backbone opening increased, as indicated by several of the contributing

energy terms (Table 3.2).
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Im4w_6 Rosetta model Im4w_6 x-ray structure re-docked with ligand

Residue atr rep sol hb cou Residue atr rep sol hb cou

20 -0.12 20 -0.01

22 -0.17 22 -0.16

45 -0.03

46 -0.50 0.00 0.22 0.22 46 -0.64 0.99 0.38 0.18

47 -0.03 0.04 -0.07 47 -0.02 0.04 -0.10

48 -0.28 0.32 -0.01 48 -0.16 0.20 -0.01

72 -0.13 0.39 -0.04 72 -0.03 0.16 -0.01

74 -1.36 242 -1.30 -0.60 74 -1.53 291 -1.62 -0.50

78 -1.29 1.74 -0.86 -1.02 78 -1.04 1.26 -0.23 -0.99

80 -0.56 0.61 0.02 80 -0.27 0.37 0.00

87 -0.73 1.20 -1.47 -0.75 87 -0.28 0.52 -0.08 -0.68

88 0.08 88 0.06

89 -0.78 0.90 -0.26 -0.80 89 -0.91 0.42 1.45 -0.44 -0.50

94 -0.41 0.00 94 0.00

97 0.00 97 0.00

99 0.00 99 0.00

121 -2.39 4.00 -1.91 0.81 121 -2.34 1.10 4.18 -1.82 1.35

122 -0.04 0.00

124 -0.08 0.01 0.04 124 0.01

125 -0.10 0.15 0.03 125 -0.03 0.04 0.03

126 -0.23 -0.08 126 -0.05

131 -0.04

133 -0.91 1.57 -0.93 -0.53 133 -0.18 0.40 0.14

135 -0.83 1.41 -0.06 -0.62 135 -0.52 0.97 -0.48

137 0.00 0.01 0.03 137 -0.03 0.07 0.02

176 -1.92 3.20 -1.18 -1.55 176 -1.82 293 -1.11 -1.26

177 -0.09 0.09 -0.20 177 -0.06 0.08 -0.16

178 -2.54 0.02 1.75 0.04 178 -0.47 0.30 0.00

179 0.03
-15.22 0.02 20.04 -7.99 -5.35 -8.49 -10.34 251 16.25 -5.29 -3.11 0.03
-0.72 0.01 111 -1.00 -0.18 -0.16 -0.61 0.84 0.96 -0.88 -0.12 0.04
0.80 0.40 0.60 2.00 0.25 Rosetta Weights 0.80 0.40 0.60 2.00 0.25 Rosetta Weights
-12.17 0.01 12.02 -15.97 -1.34 -17.45 -8.27 1.01 9.75 -10.59 -0.78 -8.88

Table 3.2 Decompositions of the Rosetta binding energy values (in r.e.u) for

each of three 1m4w derived proteins. Binding energies for each model are
decomposed into five energy terms: attractive, repulsive, solvation, hydrogen-
bonding and coulombic. The protein residues to which each term applies is listed in
the leftmost column of each table. The sum of each energy term column (shown in
grey at bottom) is multiplied by the ‘Rosetta Weights’ term, then each terms sum is
added to yield the total Rosetta ‘lig_sum’ energy of ligand binding. The left table
shows the individual energies terms of residues which participate in binding of the
target ligand for the Rosetta predicted 1m4w_6 model.

For example, the total number of residues involved in the hydrogen bonding
network between ligand and protein decreased from 8 to 6, while the number of
total hydrogen bonds dropped from 11 to 8. Correspondingly, the total hydrogen
bond energy worsened from -8.1 to -5.3 r.e.u. while Van der Waals packing was
significantly reduced from -14.5 to -10.3 r.e.u. Similarly, solvation and electrostatic
interaction energies worsened as pocket expansion increased. A weighted
composite ROSETTA binding energy score for the protein-ligand system decreased

from -17.2 to -12.9 r.e.u. From this analysis, we concluded that ROSETTALIGAND can

72



discriminate between the binding energies of a wild-type backbone configuration
and that of an enlarged binding pocket, and that this energy differential could

potentially explain the lack of experimentally observed ligand binding.

Additional analysis of pair-wise ROSETTA energies revealed a potentially significant
contributor to the backbone opening of the “thumb” region: a Trp 20 to Arg
mutation that disrupts an interaction with Pro 125 in wild-type 1m4w. This
hydrophobic interaction in the wild-type protein appears to stabilize the “thumb”
loop in a “closed” configuration and help keep the binding pocket laterally compact
(Figure 3.3c). Additionally, the mutation of Val to the sterically bulkier Leu in
position 48 of 1m4w_6 further acts as a “wedge” to “prop-open” the binding pocket
in the “palm” region at a position of mechanical advantage (Figure 3.3c), causing
added strain within the interface. Evolutionary evidence for the crucial function of
these residues can be seen from a sequence alignment of 1m4w with its nearest 250
homologues. In all 250, the Trp 20, Pro125 and Val 48 residues are either strictly or

highly conserved.

Structure guided redesign of 1Im4w_6

Using the information gleaned from ROSETTALIGAND computational analysis, a
structure guided redesign of the 1m4w_6 protein was performed to test the
hypotheses that a) the observed lack of binding affinity was due primarily to the
unintended expansion of the binding pocket and resulting disruption of the

predicted binding interactions, and b) that either or both of two identified
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mutations (Arg20 and Leu48) from wild-type were largely responsible for the

opening of the “thumb” region and expansion of the binding pocket.

Three separate mutants were made starting from the 1m4w_6 sequence, by
reverting Arg 20, Leu 48 and a double reversion of both residues to the wild-type
amino acid identities (Table 3.1). These newly designed proteins were used to
identify the individual and cumulative contributions by each mutation to the
backbone conformational change seen in the 1m4w_6 design. Reverting these
mutations, it was hoped, would restore the binding pocket to the predicted (wild-

type) geometry thus conferring the originally predicted ligand binding affinity.

Following sight directed mutagenesis and expression of the revertant mutants (see
Methods) ligand binding assays for each of the three 1m4w_6 derived proteins were
performed using FA and ITC. None of the redesigned 1m4w_6 derived mutants
displayed observable binding affinities above those obtained from the original
1m4w_6 design. Using FA, the Im4w_6w20, 1m4w_v48 and the 1m4w_6w20v48

displayed 672uM, 536uM, and 392uM, respectively (Figure 3.5c).

To understand the lack of binding affinity among the three 1m4w_6 derived
revertant mutants, structure determination through X-ray crystallography was
again performed. Using close grids screens around successful 1m4w_6
crystallization conditions, high quality, diffracting crystals were obtained for the
1m4w_6v48, Im4w_6w20 and 1m4w_6w20v48 constructs (PDB IDs 3mf9, 3mfc and
3mfa, respectively). Multiple single crystals formed in several buffers centered

around wells containing 0.1 M NaCl, 1.25 M ammonium sulfate, 0.1 M Bis-Tris pH

74



5.5, 3.5% Jeffamine M600 w/v pH 7.0 at 20°C. Complete data sets down to 1.6-1.74
were obtained for the three protein constructs using the in-house defractometer
(see Appendix). The data sets for all three proteins were phased by molecular
replacement using MOLREP and models built using the Apr/warp software suite
(see Methods, Chapter II). Attempts to obtain liganded co-crystals were

unsuccessful. All protein structures obtained were in the apo configuration.

Structural analysis of 1Im4w_6 redesigned proteins

High-resolution structures of the redesigned 1m4w_6 derived revertant mutants
revealed the relative contributions of the respective mutations to backbone
conformation and binding pocket opening. In agreement with ROSETTALIGAND
prediction and part “b” of our hypothesis, the double revertant mutant
1m4w_6w20v48 possessed a native-like “closed” conformation, while the backbone
of the 1Im4w_6v48 mutant displayed an “open” configuration largely unchanged
from 1m4w_6 (Figure 3.7c). The backbone RMSD of 1m4w_6w20v48 was 0.38A
from wild-type, while 1m4w_6v48 was similar to the 1m4w_6 crystallographic
structure. Unexpectedly, the “thumb” region of the 1m4w_6w20 mutant was not
resolvable due to lack of electron density, indicating a high degree of mobility

(Figure 3.7a).
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Discussion

The intent of this study was to explore computational methods for designing de novo
high affinity protein-peptide interfaces. The protein designs described above did not
achieve our goal of high affinity binding to their target peptide. Nonetheless, four
high-resolution structures of endo-1,4-beta-xylanase derived proteins yielded

important insights into the structural dynamics of family 11 xylanase proteins.

Experimental design

The following paragraph summarizes our hypothesis and describes the layout of the
work performed: Our hypothesis at the outset of this study was that ROSETTALIGAND
was capable of de novo design of a high-affinity protein-peptide interface to a non-
standard dipeptide ligand. Experimental testing of our original nine protein-peptide
interface designs yielded negative results for high affinity ligand binding, thus failing
to prove this hypothesis. Subsequent structure determination and detailed analysis
of one of the designs, 1m4w_6, led to our second order hypothesis that backbone
opening and expansion of the designed ligand binding pocket, caused by specific
mutations, resulted in the disruption of predicted binding contacts and consequent
lack of ligand affinity. It was hoped that by reverting these specific residues to wild-
type, the ligand binding pocket would “re-close”, thus allowing the predicted ligand

biding interactions to form and bind the target dipeptide with high-affinity.
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Testing the second order hypothesis by expression and assay of three redesigned
proteins yielded similar negative results for ligand binding. Structure determination
and analysis of the three proteins yielded further important insights. Our hypothesis
was incorrect in predicting that “re-closing” of the binding pocket would result in
high affinity ligand binding. While an expanded, “open” geometry of the binding
pocket may contribute to a lack of high affinity binding, a closed geometry, as seen
in the structure of the double revertant mutant 1m4w_6w20v438, is not sufficient to

confer high affinity ligand binding.

However, part of the second order hypothesis was shown to be true. The two
specific residues identified by a detailed ROSETTA energy analysis comparing the
predicted and experimentally determined structures of 1m4w_6 were indeed
responsible for the binding pocket expansion, and reverting these residues to wild-
type restored the predicted geometry of the binding pocket. We speculate that
changes in the configurational dynamics of the protein as seen in crystallographic B-
factors may be partly responsible for the lack of high-affinity ligand binding.
However, confirmation of this hypothesis remains outside the scope of our
experimental data. An equally likely contributor to failure may be shortcomings in
the ROSETTA energy function, in particular its solvation energy function or treatment

of water molecules.
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ROSETTALIGAND can accurately predict both the fine and large-scale structure of
designed proteins and protein-ligand interfaces

Figure 3.3b compares the position of each sidechain atom for residues that comprise
the binding pocket between predicted and experimentally attained 1m4w_6
structures. We see that even with the “opening” of the binding pocket due to
expansion of the “thumb” region backbone, the majority of sidechains assume their
predicted conformations. Furthermore, even with this “thumb” region backbone
shift, the RMSD of all the sidechain atoms in the unliganded 1m4w_6 binding pocket
is 0.96A. This level of accuracy improves still further when the “thumb” region
backbone re-adopts the native “closed” conformation, as in the structure if
1m4w_6w20v48, where the residues comprising the unliganded binding pocket

attain an RMSD of 0.63A.

As described in the Results section, we tested ROSETTALIGAND’s ability to predict the
backbone changes observed in the mutant proteins. This test was omitted in the
original design protocol. The original protocol intentionally prevented the protein
backbone from adapting in response to mutations introduced during design. The
decision to use a fixed-backbone protocol initially was made to increase speed of the
calculations and was based on the erroneous assumption that a thermophilic
protein scaffold such as 1m4w would be unlikely to experience significant
conformational change from the mutation of a small number of residues in the
enzymatic cleft. When subsequently using protocols able to accommodate backbone
flexibility, ROSETTALIGAND is quantitatively able to predict the shift in backbone

configuration when the destabilizing Trp20 and Val48 mutations are alternately
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included or removed. If the respective mutations for the “open” 1m4w_6 and “re-
closed” 1m4w_6w20v48 are substituted onto the others backbone coordinates,
flexible-backbone relaxation protocols in ROSETTALIGAND can accurately recover the
backbone conformation observed in the experimental structures and account for
binding pocket expansion (Figure 3.8). When the Trp20 and Val48 mutations are
introduced onto a native “closed” backbone configuration, the pocket expands to
that seen in the 1m4w_6 structure (Figure 3.8c). When the mutations are removed,
the backbone “re-closes” to the native 1m4w configuration (Figure 3.8b). Had we
adopted a flexible-backbone protocol during our initial design calculations, it is

likely that “opening” of the 1m4w_6 design would have been predicted accurately.

Figure 3.8 ROSETTA flexible backbone protocols can recapitulate backbone
conformational shift. (A) 2.5A magnitude shift in backbone conformation between
the “closed” and “opened” confirmations of the 1m4w wild-type and designed
protein, respectively. (B) When the W20 and V48 sequence positions are substituted
onto an “open” backbone conformation (light grey), ROSETTALIGAND, using flexible
backbone protocols, recovers the “closed” configuration (dark grey). (C) Likewise,
substituting R20 and L48 onto a “closed” backbone will result in a “re-open”
conformation.

We thus conclude that ROSETTALIGAND is able to predict the structure of the 1m4w

designs to near atomic resolution of both the binding interface and protein as a
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whole, and that the modeling of backbone conformational changes is important

when designing protein-peptide interfaces.

Accurate structure prediction of the designed proteins did not translate into binding

affinity

Although ROSETTALIGAND can accurately predict large-scale changes in backbone
configuration observed in the designed protein structures, the computational
protocols employed in this study are significantly limited at addressing complex
protein dynamics and potential entropic factors of ligand binding. ROSETTA scoring
and binding energy calculations are performed using a single, static, atomic
representation of protein and ligand. Although recent advances in flexible backbone
and relaxation functionality within ROSETTA have expanded its ability to address
structural fluctuation during design (145), the ability to fully predict the effects of

dynamics at a protein-ligand interface remains limited.

Analysis of the crystallographic data from all four of the determined 1m4w mutants
when compared to wild-type 1m4w indicate a significant increase in both the
mobility of the loop forming segments of the proteins “thumb” region and an overall
increase in the crystallographic temperature factors (B-factors) of the protein
backbone comprising the ligand binding pocket. It is interesting to note that even
after the reversion mutations of the 1m4w_6w20v48 protein allowed the “re-
closing” of the ligand binding pocket to wild-type dimensions, the global B-factors of

the protein, and more significantly those of the “thumb” and “finger” regions which
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comprise the two sides of the binding cleft remain elevated an average of more than
60% (Figure 3.9). These elevated B-factors suggest a fundamental alteration in the
dynamics of the protein as a whole (146) that could significantly impact the

energetics of ligand binding.

Wi20V/48

Binding Pocket Expansion
SA volume / # b.p. residues

T2 14 16 18 20 22 24 26 28 30 32
Tm4w_6v48 Tm4w_6w20v48 Avg. Co. B-factor (al-finger-thumb)

Figure 3.9  Visualization of crystallographic B-factors for wild-type and four
1m4w mutant proteins. Panels A-E: backbone and residue sidechains colored and
sized by B-factor values for wild-type 1m4w and X-ray determined structures.
Red/thick = higher B-factor, blue/thin = lower B-factor. Panel F displays the average
B-factor values (x-axis) as a function of binding pocket volume (y-axis) for each
protein (WT = 1m4w; _6 = Im4w_6; V48 = 1m4w_6v48; W20 = Im4w_6w20;
W20V48 = 1m4w6w20v48). Note that while the average B-factor value for the
entire protein (all) decreases for some of the designs, the “thumb” and “finger” B-
factors are increased for all designed structures. This suggests a fundamental shift
in the overall dynamics of the protein. Also note that the binding pocket volume for
1m4w_6w20 (panel C) is shown as a value range in Panel F due to lack of electron
density in the “thumb” region. The binding pocket volume of 1m4w_6v48 and
1m4w_6 are equal. B-factor values for the whole protein (red, dashed line), “finger’
region (left extent of grey box) and “thumb” region (right extent of grey box).

)
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Increased dynamic mobility of the “thumb” region specifically can be observed in all
four designed structures when compared to wild-type (Figure 3.9). These B-factors
are 1.5 to 2.0 fold higher than in the wild-type 1m4w. In the case of the 1m4w_6w20
mutant, the lack of electron density in the “thumb” loop is indicative of increased
mobility. This “thumb” region contributes approximately 40% of the ligand interface
surface area and 5 of 11 of predicted hydrogen bonds to the ligand. Thus, this
observed change in dynamics in the 1m4w “thumb” region is hypothesized to be a

contributing factor to the lack of observed ligand binding.

Beyond the implications of altered proteins dynamics, standard ROSETTALIGAND
design protocols rely on a bulk, non-explicit solvation term (147) to represent water
molecules in and around the binding interface. Entropic factors of binding-pocket
desolvation are not well addressed by an implicit solvation term (148). Examination
of the four X-ray structures reveal 9 to 11 ordered water molecules within the
binding pocket. Due to the increased importance of predicting individual atomic
interactions in the design of high-affinity interfaces, the explicit modeling of water
molecules is desirable for successful design of protein-ligand interfaces (149)(150).
Although recent extensions to ROSETTA now allow explicit interfacial waters to be

modeled, this functionality did not exist at the time this study commenced.
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Ligand and scaffold selection are important determinants of design success

A dipeptide ligand composed of small, non-polar amino acids is a difficult target for
a proof-of-concept experiment and was intended to push the boundaries of
ROSETTALIGAND technology. This, however, may have been overly ambitious. A larger,
more apolar ligand possessing greater VDW surface area and opportunity for
charge-charge interactions would be preferred in future work. Also, it remains an
open question as to whether the selection of a “D” peptide target ligand, while
theoretically equivalent to “L” amino acids from a chemical and computational
standpoint, may have negatively contributed to the difficulty in achieving high

affinity binding (151)(152).

More important to the potential success of protein-ligand interface design are the
dynamics and conformational stability of a design scaffold protein. As found here,
even highly stable, thermophilic proteins with melting temperatures well above
100°C (153) potentially possess dynamic modes that can negatively impact high
affinity interface design due to increased entropic penalties for ligand binding. The
dynamics of the endo-1,4-beta-xylanase fold, as noted in recent work by Vieira et al.,
indicate that the 1m4w “thumb” is inherently mobile in solution at elevated in situ
temperatures (154). Evidence for intensified “thumb” and binding site dynamics can
be seen in the crystallographic B-factors of each of the four designed protein
structures. The relatively small number of mutations (in the case of 1m4w_6w20,
only six) necessary to cause significant destabilizing dynamics was unanticipated for

a thermophilic protein. This dynamic propensity is an undesirable trait in a protein
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scaffold when attempting to design a well-defined, stable, high-affinity interface.
Meticulous and deliberate care is advisable when choosing a de novo design scaffold,
and particular attention should be given to protein dynamic modes. In this respect,
scaffolds that have been extensively classified by NMR, SAXS, molecular dynamic
simulations or other methods which yield information on protein dynamics are

preferred.

The high-resolution structures of ROSETTALIGAND interface designs reveal critical
structural and dynamic determinants of p-xylanase proteins

The most notable feature of the 1m4w_6 designed protein when compared to the
wild-type 1m4w protein scaffold is the radial expansion of the binding pocket
defined by the “thumb”, “palm” and “finger” regions (Figure 3.3a). A similar degree
of expansion is also observed in the 1m4w_6v48 derivative of 1m4w_6, where Leu
at position 48 has been reverted to wild-type Val. These two designs share a
common mutation of Trp to Arg at position 20, which disrupts a critical hydrophobic
contact between “finger” (W20) and “thumb” (P125), resulting in expansion of the

binding pocket (Figure 3.3c).

Necessary but not sufficient for closure of the binding pocket of 1m4w_6 and its
derivatives is the restoration of the hydrophobic contact between residues Trp20
and Pro125. This interaction is crucial to maintaining a closed geometry under
crystallization conditions. At higher, in situ temperatures near 100°C where this

enzyme has evolved to function (112), this interaction may be important in
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regulating the dynamics and enzyme kinetics of the 1m4w protein. That this Trp-
Pro interaction is highly conserved across multiple species indicates it is likely a key

structural, dynamic and kinetic determinant common to family 11 xylanases.

While the hydrophobic Trp20-Pro125 interaction is necessary, it is not sufficient to
allow stable closing of the binding pocket. The destabilization and consequent lack
of electron density observed in the crystal structure of 1m4w_6w20 results from a
clash of an alternative configuration of Trp80 in the “palm” with Ile127 in the loop
which forms the “thumb” (Figure 3.7a). This clash is in turn due to the altered
packing of Tyr78, which is directly caused by the added steric bulk of the 11e48
mutation in the “fingers”. It is this “domino” effect leading from 148 > Y78 > W80 >
[127 (“fingers” to “palm” to “thumb”) that breaks the contact between Trp20 and
Pro125, thereby resulting in added mobility of the “thumb” loop (Figure 3.7b). Thus,
although reversion of position 20 to the wild-type Trp is necessary for binding
pocket closing, it is not in and of itself sufficient. The designed Leu at position 48
must also be reverted to wild-type Val to result in a “closed” pocket configuration

(Figure 3.7c).

[t is intriguing that the effects of a single, conservative substitution at a spatially
distal amino acid position can have such a pronounced effect on the stability of a
thermophilic protein at relatively low temperature - i.e. that the additional bulk of a
single carbon atom is transmitted from one side of the protein to the other, through
three (bulky) amino acid sidechains, to destabilize a large tertiary structural

element at well below physiologic temperature. This suggests that the amino acid
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sequence of the 1m4w protein, even in the protein core (palm region), is finely
tuned to accommodate this dynamic mobility. This further suggests that the
increased dynamic mobility of the “thumb” region due to mutations introduced
during design, mimics the effect of increased temperature. These mutations might
therefore be thought of as having enabled high-temperature, native-like dynamics at

low temperatures.

The continuing challenge of de novo protein-peptide interface design

While the lack of success experienced in the course of this particular study may or
may not be attributable to factors such as unfortunate scaffolds selection,
unanticipated protein dynamics or the lack of explicitly modeled interfacial waters,
it is important to note that progress in the field of de novo ligand interface design as
a whole has lagged significantly behind other areas of de novo protein design.
Though not long ago considered by some to be a solved problem, retractions in
several key papers in the last several years (29) have led to the conclusion that the
design of high affinity protein-ligand interfaces is one of the fundamental areas of

basic protein function to remain an open problem (26).

ROSETTA has proven adept at such challenging tasks as design of novel protein folds
(80), altered recognition and cleavage specificity of a DNA endonuclease (155) and
even the design of enzymes with catalytic modes not found in nature (11; 12; 131).
Protein-protein interfaces have been re-designed for altered and multi-specificity

(86; 156), while RoSETTA and other techniques have successfully re-designed
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protein-peptide interfaces for altered specificity and increased affinity (157;

158)(91).

What is it that makes de novo design of protein-ligand interfaces so difficult, and
why would de novo interface design be significantly more challenging than the re-
design of a protein-peptide interface, or the design of a novel enzyme? While a
completely satisfactory answer to these questions has yet to be established, one
contributing factor could be protein dynamics. The requirement to design and
manipulate dynamics may set a higher bar for the de novo design of ligand binding.
Unfortunately, protein dynamics is also one of the most difficult and least tractable

problems for current protein design programs.

De novo protein design by definition entails establishing entirely new functionality
in a protein that did not previously possess such function. It requires an ability to
recreate and manipulate all properties of a protein necessary for a given function.
Conversely, non- de novo design, where basic protein functionality is retained but
altered - as when re-designing the ligand binding specificity or increasing affinity -
relies on conserved intrinsic properties of the protein important to its function. Such
conserved intrinsic properties could include protein dynamic modes conducive to
ligand binding. Similarly, re-design of protein-protein specificity may benefit from
conserved functionality and dynamics, as well as having the added advantage of a
larger interface surface area and number of potential interactions to offset small

errors in the design algorithms. Such small errors may have a larger impact in ligand
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interface design where each of a small number of interactions must be optimal for

tight interaction.

Yet surely the creation of novel catalytic function in the de novo design of enzymes
(11; 12; 131) requires no less precision and accuracy than the design of ligand
binding. What has allowed these efforts to succeed where interface design has yet
to? A partial answer may lie in the nature of enzyme function. In this case, the
precise geometry of the catalytic mechanism is critical, and facilitating this
geometry can be thought of as “binding” the chemical transition state. However, the
timescale on which transition state “binding” occurs is extremely short, on the order
of 10-12 seconds, when compared to high affinity ligand binding interactions which
must be maintained for seconds or longer (159). Furthermore, recent studies
suggest that the chemical step in enzyme catalysis is insensitive to global protein
dynamics, which instead affect only enzyme kinetics (160; 161). In this light, it is
notable that all of the successful enzyme designs cited above were performed using
a naturally occurring enzyme as a design scaffold (some even used 1m4w) and that
all of these designed enzymes possess relatively poor kinetic properties, even after
undergoing multiple rounds of directed evolution to address the lack of kinetic
efficiency (11; 12; 131). The implication of these observations match the findings of
this study, which found that ROSETTA was capable of designing interfaces with a high
degree of structural/geometric accuracy - as would be needed to stabilize a catalytic
transition state intermediate - but lacked the ability to account for or design protein

dynamic modes necessary for binding or efficient kinetics. While these speculations
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are far from conclusive with the small amount of evidence presented here, it is an

intriguing line of thought that may warrant further attention in future studies.

Conclusion

Our attempts at using the ROSETTALIGAND program to design in silico a high-affinity
protein-peptide interface to a bacterial dipeptide target were unsuccessful. Twelve
proteins using 1m4w as a design scaffold were assayed for binding to their intended

target. No high-affinity binding was detected for any of these twelve designs.

We have proposed several potential contributors to this apparent lack of success,
including overambitious target peptide selection and the lack of explicitly modeled
interfacial water molecules. However, extensive evidence indicates that possibly the
most significant negative contributor to the study outcome may be the
unappreciated nature and extent of dynamics inherent to the design scaffold

protein.

We have shown that ROSETTALIGAND is able to predict the structure of a designed
interface to near-atomic resolution, and of large-scale protein conformational
changes due to mutations introduced during the design process. However, accurate
structure prediction did not translate into successful design of high affinity ligand
binding. We therefore conclude that the computational design of proteins that
tightly bind small molecules remains possibly a greater challenge than the design of

enzymes. While computational enzyme design requires accurate structural
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prediction of catalytic residues, no tight substrate binding is needed for success, and

is less sensitive to the pervasive effects of protein dynamics.

In addition to the lessons and caveats learned above concerning protein design
applications, we have also gained new information regarding structural and
functional determinants of family 11 endo-1,4-beta-xylanase proteins. Specifically,
the four high-resolution X-ray structures complement prior reports of the catalytic
dynamics of the “thumb” region of in family 11 xylanases, as well as reveal new
insights into individual amino acids involved in the structural and functional
dynamics of the beta-xylanase protein fold. These xylanase structures may also
serve as benchmark systems for future computational design protocols that model

protein-peptide or protein-small molecule interfaces.
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CHAPTER IV

ROSETTA SEQUENCE CHARACTERIZATION AND RECAPITULATION OF PROTEIN
INTERFACES TO SMALL-MOLECULE AND PEPTIDE LIGANDS

Introduction

The prediction and design of protein-peptide and protein-small-molecule interfaces
is an important but relatively unproven capability of ROSETTA3. While significant
investigation into designing protein-protein interfaces (82), altering protein-protein
interaction specificity (85), engineering catalysis (11; 12), predicting small-molecule
binding affinity (162) and designing ligand affinity (91) has and is being addressed,
the design of the protein interface to peptides and small-molecules constitutes
something of a gap in ROSETTA research. As an initial step into investigating
ROSETTA3’s proficiency at designing protein-peptide and protein-small-molecule
interfaces, an extensive sequence recovery benchmark was performed on a diverse
and representative set of liganded protein holostructures derived from the Ligand
Protein Database (LPDB)(163). A statistical examination was also made of the
structural and sequence-specific properties of wild-type peptide and small-molecule
binding interfaces. These wild-type interface propensities were then compared to

ROSETTA designed interfaces.
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A prerequisite to the reliable design of novel, functional protein-ligand interfaces is
to demonstrate the ability to accurately predict and recapitulate native-like protein-
ligand structure and interactions. This may be accomplished on different levels of
precision, utilizing several different objective functions. Amongst the most
fundamental objective functions to be found in a protein design context is the
recapitulation of protein primary sequence. A central principle of structural biology
is that a protein primary amino acid sequence dictates the protein three-
dimensional structure, and thus its function. Therefore, the ability to accurately and
reliably recapitulate the primary sequence of a protein can act as an effective, if
somewhat incomplete, proxy for structure prediction, and can thereby be
considered a good first-order test of a computational design algorithm. While the
recovery of the primary amino acid sequence does not and cannot contain all of the
information of other more rigorous objective functions, such as deltaG of binding, it
is nonetheless a practical and effective way of assessing the basic competency of a
computational design method. These assessments can then be highly useful in

diagnosing and remedying flaws and deficiencies in the method under evaluation.

Such was the motivation for the following sequence recovery experiments within
the context of my dissertation work. Having previously established significant flaws
in ROSETTA’s ability to accurately design high affinity protein-ligand interfaces, [ set
out to determine whether ROSETTA could recapitulate this basic objective function of

“native” ligand binding interfaces using primary sequence as a metric.
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Results from the prior beta-xylanase design study revealed that ROSETTA is adept at
predicting the atomic level structure of a known protein scaffold given a specific set
of sequence modifications. However, because this accuracy did not translate into an
accurate prediction of high affinity binding, it was decided to take a step back down
the hierarchy of design objective functions and evaluate the prediction of protein

primary sequence.

In order to properly evaluate this effort, proteins known to natively bind small-
molecule and peptide ligands, whose high-resolution structures and thermodynamic
binding energies had been determined, were selected for study. ROSETTA was then
tasked with predicting the atomic level structure of a set of protein-ligand interfaces
without knowledge of the primary sequence. The success with which RoSETTA
recovered the native amino acid sequence was evaluated to determine ROSETTA’s
proclivities, aptitudes and weaknesses, thus yielding a starting point for

improvement of ROSETTA’s design function.

Furthermore, these sequence recovery experiments could be performed over a
spectrum of protocols, ranging from the idealized, to evaluate the theoretical
maximum performance of ROSETTA and its component functions, to the practical, by

emulating the protocols and functionality found in an interface design application.
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Prior Studies

Significant prior work has been performed in developing computational methods to
identify protein-ligand binding interfaces. Identifying where on a protein a ligand
binds greatly enhances rational approaches to synthetic and computational drug
design and promotes a more thorough understanding of the therapeutic mode of
action. Numerous computational approaches have demonstrated some level of
success in this regard, including machine learning techniques (164), statistical
analysis (165) and hybrid computational and experimental methods (166).
However, while these methods each display differing abilities at identifying the
location of ligand binding sites, they do not in and of themselves shed light on the

fundamental sequence level properties of a ligand interface.

Prior examinations of protein-ligand interfaces at the sequence level have been few,
and their findings largely lacking on agreement. Villar & Kauvar conducted an
analysis of the sequence characteristics of ligand interfaces on a set of 50 protein-
ligand complexes chosen from the PDB, 13 of which were enzymes. They found that
Gly, Ser, Arg, His, Trp and Tyr were overrepresented at binding sites, while Pro, Lys,
Glu and Ala were underrepresented. They also observed a peaking of hydrophobic
amino acids at intermediate distances from the binding site that they postulated
corresponded to the locations of the protein core relative to the surface ligand
binding sites (167). Different findings were reached by a separate group, which
examined a larger set of 756 protein-ligand complexes identified using automated

means. Their data saw an overrepresentation of Trp, His, Phe, Met, Tyr & Cys, and an
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underrepresentation of Pro, Lys, GIn, Ala, Thr and Gly (168). They also failed to
observe an increase in hydrophobic residues at intermediate distances form the
binding site. While there is some overlap in their findings, a significant discrepancy
remains. This discrepancy may be due to the differing compositions of the
respective protein-ligand structure test sets used in the studies. From this, I
concluded that creating my own test set composed specifically of hand curated,
diverse protein-ligand interfaces to small-molecule and peptide ligands was
necessary to assure accurate analysis of primary sequence characteristics in

protein-ligand interfaces.

Methods

Creation of a protein-ligand test set

For computational studies involving structure and or sequence prediction, it is
vitally important that protein structures used to measure the accuracy of a
prediction be highly accurate. Unfortunately, it is often the case that small-molecule
and non-proteinaceous ligand structures retrieved from the PDB possess significant
errors in bond angle, length or other parameterizations. Because computational
energy functions can be highly sensitive to these types of input errors, it is
important that correct protein-ligand complex structure files be used when
evaluating the properties of a ligand interface. To help address this need, the Ligand
Protein Database (LPDB)(163) was created. The LPDB combines experimentally

derived binding data with protein-ligand structures that have been minimized in the
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MSI CHARMM force field to correct ligand parameterization errors introduced in the

course of the normal crystallographic structure refinement process.

[ began compilation of a representative ligand interface structure set for use in this
study by selecting all proteins from the LPDB which possessed a single ligand of two
hundred total atoms or less, no interfacial of structurally relevant water molecules
or metal ions and whose protein was composed of a single, continuous polypeptide
chain. From the remaining files all water and crystallographic reagents were
removed, as were any alternate “aniso” atom statements. The files were then
renumbered, and the chain IDs of the protein and ligand were assigned “A” and “X”

respectively.

This process yielded a set of 174 protein-ligand complex files we designated the
“full” set. The full set was then further culled at a 30% sequence homology cutoff
using the PISCES server (169), and SCOP protein class, family, fold classifications to
assure diverse and non-overlapping structure, function and sequence identity of
each protein-ligand complex in the experimental test set. This final culled set is
comprised of 43 protein-ligand complexes and was named the “diverse” set.
Roughly half of the complexes in the diverse set possess experimentally derived
binding affinity data. Additional copies of all 174 complexes were also created with
the ligand entirely removed to evaluate the capabilities and propensities of ROSETTA

when no ligand is present.
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Preparation of protein-ligand test sets for ROSETTA

ROSETTA design computations that utilize non-proteinaceous ligand molecules
require each ligand be parameterized to match defined ROSETTA atom types in a
ROSETTA .params file. All ligands in the test set were downloaded in .mol file format,
and then used to generate .params files for each ligand using the standard RoSETTA
molfile_to_params.py script. This script outputs both a .params file and a .pdb
format file of the ligand atoms which then replace the ligand statements in the
original protein-ligand complex .pdb file. This process was performed for each of the

174 members of the full structure set.

Relaxation of LPDB structures in the ROSETTA force field

Prior to performing the ROSETTA design runs, each of the 174 protein-ligand
complexes was extensively minimized using the ROSETTA fast-relax algorithm.
Although all of the structures obtained from the LPDB had previously been
minimized using the CHARMM force field, because the recapitulation experiment
was to be conducted entirely using the RoSETTA design force field, it was desirable to
re-minimize the structure files in ROSETTA prior to computations. Each protein-
ligand complex underwent successive rounds of protein sidechain and backbone
minimization until the per round decrease in overall energy of the complex
plateaued, with consecutive energy drops between rounds of less than 2%. The
ligand pose and configuration were not altered, except for the rotation of methyl

groups. Although no clashes or large magnitude conflicts were observed between
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the two force fields, some of the larger protein complexes exhibited as much as a
10% change in overall energy between the CHARMM and ROSETTA minimum energy
states. For many of the structures, achieving this level of minimization required as

many as 70 or more rounds of relaxation.

Distance binning of the protein amino acids

In order to evaluate the change in native amino acid composition as well as the
ability of ROSETTA to design ligand interfaces at different distances, all of the protein
amino acids in each of the 174 members of the full protein-ligand complex test set
were divided into bins at set distances from the ligand as follows: Any protein
backbone beta carbon - or virtual beta carbon in the case of Gly, defined as a point
equidistant between each of the Gly alpha carbon hydrogens - within a prescribed
distance of any ligand atom was included in a distance bin (see Figure 4.1). Bins
were setat4,5,6,7,8,9,10,11, 12, 14, 16, 18, 20 and 22 angstroms and infinity,
inclusive - i.e, the infinite distance bin includes all of the members of the 22
angstrom and lower bins, etc. - however not all of these bins were used in every
study. Lists of the residues in each bin were then used to generate .resfiles which
describe to ROSETTA at which amino acid positions to perform a desired function, in

this case design.
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Figure 4.1  Ligand-sidechain distance binning of LPDB protein-ligand complexes.
Each protein is divided into eleven bins at 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
angstroms and oo based on C-beta to ligand atom distance.

ROSETTA interface design using the XML scripter

Utilizing each of the three previously generated file types (.pdb, .resfile and .params)
for all 43 of the protein-ligand complexes in the diverse structure set, a simple
design protocol was created using the newly developed XML scripting function of
ROSETTA3 (73). For each interface residue in a given distance bin, the XML protocol
sampled rotamer combinations of all 20 standard amino acids at each position
defined within the bin, without knowledge of the native primary sequence and with
minimal perturbation of the ligand pose. In all cases the ending perturbation of the
ligand was less than 0.05A RMSD. (Sample RoseTTA command lines and an example

XML script can be found in the Appendix.) The protocol therefore consisted of a
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simple repacking and minimization of each designated residue using an extended
set of backbone-dependent sidechain rotamers from all 20 amino acids without

preference or knowledge of the native sequence.

For each of the 43 complexes at each of the 15 design distance bins, with and
without ligand present in the binding site, 100 structures were output. Thus,
129,000 structures were created using ROSETTA for evaluation and analysis (43 x 15
x 2x 100 =129,000). Computations were performed on the Vanderbilt Advanced

Computing Center for Research and Education (ACCRE).

Analysis of ROSETTA recapitulated interfaces

Evaluation of the output .pdb files was accomplished using the Meiler lab BCL
library executable “bcl_app_calculate_sequence_recovery.cpp”, which uses a list of
output .pdb files, a native .pdb file and the design .resfiles to compute a table of
amino acid changes from the native sequence (an example command line for
bcl_app_calculate_sequence_recovery.cpp and sample output files can be found in
Appendix ##). Interface energies of the output .pdb files was extracted using shell
scripting from individual output .pdbs. Both of these data sets were then parsed

further and used to generate plots for analysis.
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Results and Discussion

Sequence characteristics of native protein-ligand interfaces

From the diverse set of 43 protein-ligand complexes divided into distance bins, an
analysis of the sequence level characteristics of ligand interfaces can be performed
and compared to results found in past studies (see “Prior Studies”, above). When
normalized to amino acid frequencies found globally (170), the amino acid
composition of residue positions close the ligand interface were seen to be highly
skewed. As seen in Figure 4.2, an overrepresentation of Asp, Cys, Gly, Trp and Tyr;
and an underrepresentation of Arg, Gln, Glu, Leu, Lys, Pro and Thr is observed, with
the frequencies becoming more, but not wholly, normal as we move more distant
from the ligand interface. While these observed amino acid frequencies agree in part
with the two cited prior studies, they nonetheless diverge significantly for specific
amino acids. It is also noted that we saw in increase in the frequency of hydrophobic
amino acids at intermediate distances, in agreement with Villar & Kauvar, (1994).
Worthy of note is that the four angstrom bin data is not displayed due to the
dramatic but trivial propensity towards small amino acids, as would be expected for

such a short distance cutoff.
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Figure 4.2  Heatmap of normalized amino acid frequency per distance from
ligand for 43 diverse proteins. Frequency scale at right denotes ratio of over or
under representation of amino acids in test set versus global amino acid frequency.

That three different studies arrive at three different answers to the same question is
somewhat disconcerting. The likely explanation is that this analysis is highly
dependent on the starting data set of protein complexes used for evaluation. Having
compiled a hand-curated and diverse set of highly non-homologous proteins, in
contrast to Soga et al.,, without an overrepresentation of enzymes, as was
intentionally done by Villar et al., we feel that our set of proteins yields the most
accurate results for the sequence evaluation of native interfaces to small-molecule

and peptide ligands.

From these amino acid frequency results of native binding sites, we have gained a

point of reference from which to evaluate the ROSETTA recapitulation of ligand
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interfaces using this same protein-ligand complex data set. By comparing the
ROSETTA results to these data, we now have the ability to identify flaws in the

ROSETTA design algorithm.

ROSETTA recapitulation of protein-ligand interfaces

Computational resources:

Using the RoSETTA3 XML scripter and basic design protocol described above, the
majority of the 43 protein-ligand complexes completed their 100 output structures
with 24-72 hours on individual ACCRE Opteron CPUs, depending on the size of the
distance bin, and hence number of residues being designed. Larger proteins
generally took longer to complete their runs than did smaller proteins in any given
distance bin, however, a few of the 43 complexes computed extremely slowly,
irrespective of protein size or bin. Some of these took more than one week to
complete 100 structures and required as much as 9GB of ram during design runs.
No satisfactory reason for this compute time or memory differential has been

discovered.

Percent sequence recovery:

To evaluate the degree of sequence recapitulation achieved by ROSETTA, a percent
recovery is calculated by comparing the native amino acid identities to all of the

designed amino acids in each distance bin. A plot of average sequence recovery for
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each of the 43 complexes in the diverse structure set at each of eleven distance bins
is shown in Figure 4.3 both with and without ligand. Here we see several interesting

features.

0.80

Percent sequence recovery

4 6 8 10 12 14 16 18 20 2 all
Angstroms

Figure 4.3  Plot of aggregate percent sequence recovery for diverse set of 43
protein-ligand complexes with and without ligand present at each distance bin.

First, we see a clear difference between liganded and non-liganded design runs. In
the presence of a ligand, the sequence near the binding site is far more likely to be
preserved than in the absence of a ligand. This denotes ROSETTA’s clear ability to
recognize sequence optimization for ligand interaction of a given interface. Note
also how the liganded percent recovery approaches parity with non-liganded as the
distance from the ligand grows. Second, the overall rate of sequence recovery is
quite good out to around eight angstroms - the extent of direct interaction with the

ligand. Third, even without ligand present ROSETTA demonstrates clear aptitude at
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recovering primary sequence between 10-16 angstroms, which corresponds
generally to the hydrophobic core of the proteins, as has been noted previously.
Furthermore, it is worth keeping in mind that some of the proteins included in this
experimental set may be promiscuous binders whose sequence is optimized to
interact with multiple ligands. In such cases the ideal sequence recovery rate would

be below 100%.

This average data can be broken down into percent recovery for each individual
amino acid type for each distance bin, both with and without ligand present, as seen
in the heatmaps of Figure 4.4. From this data we can clearly see that ROSETTA under
predicts Glu, and to a lesser extent Met and Arg at ligand interfaces, while under
predicting Lys in general throughout the protein, but especially at the interface. This
trend largely reverses itself at larger distances, where we see an under prediction of
predominantly charged amino acid types in the non-interfacial regions of the
protein. In contrast, the non-liganded designs tend to under predict the same
charged residue types throughout the protein. This result is generally encouraging,
suggesting that ROSETTA is fairly adept at predicting interfaces at the sequence level,
but may imply some need for improvement in ROSETTA’s ability to predict charged

amino acid interactions.
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Figure 4.4  Heatmaps of percent sequence recovery by amino acid type for each
of eleven distance bins, with and without ligand. Color bar at right denotes degree of
sequence recovery. +/- designate charges of specific amino acids.

Amino acid substitution propensity:

We may further break down the sequence recovery data by looking at the likelihood
of a specific amino acid change for a given distance bin. In Figure 4.5 we see a
substitution table constructed to show the propensity for each amino acid type to
change to any other amino acid for the eight angstrom distance bin. On the Y-axis is
the native (starting) residue type, and on the X-axis is what those native residues
were designed into. Thus we see that out to eight angstroms, all residues are most
likely to retain their native identity, demarcated by a dark diagonal from the top left
to lower right-hand corners. However, we also see that to a significant degree
ROSETTA considers Ser and Ala somewhat interchangeable. Less of a surprise is the

propensity for changing Asp to Asn in the 8 angstrom bin.
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Figure 4.5  Chart of individual amino acid substitutions for the 8 angstrom bin. Y-
axis denoted native amino acids while the x-axis denotes design substitutions. Color
bar at right denotes total amino acid count.

If we compile all of this type of propensity analysis for each of the eleven distance
bins, both with and without ligand present, we can construct an amino acid
propensity heatmap (see Figure 4.6). By subtracting the propensities without ligand
from the propensities with ligand, we generate a heatmap showing the difference in
design propensities between liganded and non-liganded designs of all 43 protein
complexes (Figure 4.7). While the 4 angstrom data is difficult to interpret due to the
strong size bias at such short bin lengths, we clearly see some irregularities in the
ROSETTA predictions. For instance, the large amino acids are highly over predicted

and there is an unwarranted preference for Glu over Gln.

107



w/ ligand w/0 ligand

Ala
Arg
Asn
Asp
cys

Glu

4 6 8 10 12 14 16 18 20 22 oo 4 6 8 10 12 14 16 18 20 22 oo
Angstroms Angstroms

Figure 4.6  Heatmaps of individual amino acid design propensity with and
without ligand at each of eleven distance bins. Colorbar at right denotes propensity
ratio to global amino acid frequency.
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Figure 4.7  Heatmap of difference in amino acid design propensity (propensity
w/ ligand - propensity w/o ligand) for each of eleven distance bins. Colorbar at
right denotes ratio of propensity difference.

108

<A-n3PTOTT



The six angstrom data more consistently indicate ROSETTA’s under and over
prediction of various amino acid types near the ligand interface. Ala, Asn, Met, Pro
and to some extent Val are all under predicted by RosETTA by between 0.40-0.85
times at the binding interface compared to the protein as a whole, while Arg, Asp,
Gln, His, Lys and Phe are over predicted. This type of data can be invaluable in

evaluating the strengths and weaknesses of the ROSETTA design energy functions.

Percent recovery as a function of other protein properties:

Beyond the evaluation of percent sequence recovery at designated distance cutoffs,
we also examined percent recovery as a function of both binding affinity and ligand
size. [t seems a reasonable hypothesis that the higher the affinity of the ligand
interface, the more optimized the interface sequence should be and therefore the
higher the sequence recovery we can expect. Unfortunately this was not the case as
seen in the data in Figure 4.8. There is no discernable correlation between
experimentally derived deltaG of binding and sequence recovery for our test set.
More encouraging findings can be observed in the plot of ligand size versus
sequence recovery (Figure 4.9). Here we find that, in general, as the number of
heavy atoms in the ligand increases, so too does the lower threshold for sequence

recovery.
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Figure 4.8  Plot of percent amino acid recovery versus experimental delatG of
binding for members of the diverse 43 protein-ligand complex test set. X-axis is in
kcal/mol.
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Figure 4.9  Plot of percent amino acid recovery versus size of ligand in number of
heavy atoms for members of the diverse 43 protein-ligand complex test set.
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Preliminary results from expanded protocols and a newer version of ROSETTA3

With the relative success of the basic sequence recovery experiments, efforts were
made to expand the experimental protocols to encompass more structurally probing
and realistic functionalities of ROSETTA more closely replicating real world interface

design applications and to evaluate recently updated RoSETTA3 dock/design code.

The same set of 43 diverse proteins were narrowed further by removing all
complexes containing ligands of over 100 atoms in size, thus biasing the data set
towards smaller, more drug-like ligands. The new “small-molecule” protein-ligand

set contained a total of 30 proteins taken from the previous diverse set.

Experimental design

In the time since the previous sequence recovery experiments commenced, updated
and expanded ROSETTA3 code has been developed which both integrates formerly
disparate RoSETTA dock/design functionality and adds new functionality to the XML
dock/design scripter. Thus, we set out to both replicate the prior sequence recovery
results and add new, expanded XML scripting protocols, which better approximate

potential ROSETTA interface design applications.

First, idealized sequence recovery using the native ligand conformation and pose
would be replicated as in the prior study. However, this time new XML scripting

functionality would allow finer control over ligand perturbations - reducing the
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overall translation and rotation from less than 0.05 angstroms to zero angstroms.

Percent sequence recovery would be evaluated as in the prior study.

Second, docking runs using new flexible-ligand /fragment functionality would be
undertaken where the primary protein sequence would not be altered from the
native, while the ligand underwent flexible docking and simultaneous protein
sidechain repacking against a rigid protein backbone. RMSD from the native ligand
pose versus predicted interface energy and structure recovery of the sidechain

rotamers comprising the protein interface would be evaluated.

Third, the first two protocols would be combined into a simultaneous
docking/design protocol that would measure sequence recovery concurrent with
pose and structure recovery of the ligand and protein interface, respectively. This
protocol would most closely resemble a protocol used in applications of the

dock/design functionality.

Preparation of flexible-ligand fragment files

In addition to the .pdb, .resfile and .params files, new ligand fragment input files
were created which augment the previous .pdb and .params files. These new files
contain structural and conformational information about the ligand fragments used

during docking and design.

To begin, a set of ligand conformations is generated using “Schrodinger Maestro

ConfGen Advanced” ligand conformer generation function. Ligand files in .sdf format
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from each of the 30 protein-ligand complexes are used to generate ligand
conformations. (see Figure 4.10 for ConfGen parameters). The parameters were set
to output between 1-150 conformers for each ligand depending on the number of
rotatable bonds and degree of conformational restraints inherent in each ligand.
The resulting conformations are saved as a single .pdb file containing all ligand
conformations for a given ligand. The standard ROSETTA script “auto_conformers.sh”
can then be invoked by supplying both the .sdf file of the ligand and the .pdb file
containing all Maestro generated ligand conformers. (see Appendix for sample
auto_conformers.sh command line. ) The output .pdb and .params files from the
“auto_conformers.sh” script are then appended to the ROSETTA3 dock/design XML

scripter command line (see Appendix for sample ROSETTA3 command lines and all

input files).
(v) ConfGen Advanced =E=)) (v ConfGen Advanced [=1=)x)) (v ConfGen Advanced =)=
Use structures from: Use structures from Use structures from
Force field Method Maximum number of search moves: | 10000
Solvent: M e O ierarinng Use (16 | steps per rotatable bond
)| | Electrostatic treatment: | | Preminimization of input structures: |0 ) Save atmost: (500 | conformations per ligand
| | Dielectric constant: 1.0 Postminimization of generated structures: |0 Retain mirror-image conformations
Charges from Search mode: @ Rapid O Thorough
Convergence threshold: |0.05
Van der Waals: [0.0 | : Sample rings
Electrostatic: [0.0 | Maximum ring conformations: |24
{/| 2l Suppress hydrogen bonding electrastatics Energy window for saving conformations: [9999.0 | kj/mol
Compare conformers by: [Heavy atoms -
) | | Eliminate redundant conformers using:
K ® Maximum atom deviation Cutoff: [1.0 | A
: O RMSD Cutoff: |3.0 A
) 1| | Maximum torsional angle difference for polar Hs: [180.0 | degrees
Close |[ Help || |[EiStat [ write Close |[ Help || |[ start.. | write

Figure 4.10 Screen captures of the parameter setting of the ConfGen utility in
Schrodinger Maestro used to generate ligand conformational ensembles. Each panel
shows the parameters for each of 3 different tabs from the configuration window.

113



Unexpected results and debate

Early results from the first design protocol yielded unexpectedly high sequence
recovery results of near 100%. Closer inspection of the output structures revealed
that the large majority of the 30 protein-ligand complexes recovered 100% of the
correct sequence, while a handful of the protein complexes experienced 60-90%
sequence recovery, thus bring down the overall average to approximately 97%. This
high sequence recovery was judged unrealistic and was thought must be due to a
bug in the ROSETTA code where native rotameric information from the input .pdb file
was being passed inappropriately to the design algorithm. After much effort
however, it was determined that in fact no sequence or rotamer information was
being passed to the docking algorithm. Instead, if the ligand translation and rotation
perturbations were held to zero, the majority of the complexes would exhibit
perfect sequence recovery. This is a startling result that far exceeds the percent
recovery of prior work both from my own previous study and anecdotal studies of
other members of the ROSETTA community. Furthermore, a structural
superimposition of the output and input structures revealed that there was near

zero RMSD between the native relaxed complex and the designed complexes.

After much discussion and debate, a consensus was reached that the cause of the
abnormally high sequence recovery results is a combination of the unprecedentedly
rigorous relaxation protocol these protein-ligand complex were subjected to prior
to design, and a coincident improvement in the accuracy of the ROSETTA energy

functions relating to the backbone-dependent rotamer library used in both
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relaxation and design of the complexes. In effect, the complexes were relaxed so
extensively that all of the backbone phi/psi angles and sidechain conformations
within the protein came to take on a value exactly or near exactly represented in the
backbone-dependent rotamer library. Thus, even when all native sidechain
information is removed from a given amino acid position, the remaining backbone
geometry is sufficient to favor a single rotamer, and therefore amino acid identity,
above all others in the library. It can alternatively be stated that use of the
backbone-dependent rotamer libraries in ROSETTA imparts a strong “memory” to the
backbone configuration such that, following extensive minimizations, backbone
geometry alone contains sufficient information to recover the correct specific

rotamer.

Further experiments were conducted allowing the ligand to rotate up to 15 degrees
during design and separate experiments using the non-relaxed .pdb files of the 30
protein-ligand complexes. Consistent with the “backbone memory” hypothesis,
perturbing the interface by allowing the ligand to rotate produced an average
sequence recovery of 86%, while using the non-relaxed .pdb complex files resulted

in an average sequence recovery of 27%.

There remains debate over whether these results constitutes a significant scientific
finding or are merely an insubstantial artifact and flaw in the RosETTA knowledge-

based energy functions dealing with backbone-dependent rotamer libraries.
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Further experiments involving the 30 diverse LPDB complexes

Once a satisfactory explanation and understanding has been found for the unusually
high sequence recovery results, experiments examining the remaining two
protocols encompassing docking and combined dock/design may be resumed.
These should yield important information on the efficacy and utility of other

ROSETTA functionality.

However, these protocols can be expanded still further to address interesting
questions and capabilities in that have yet to be examined. For example, adding
backbone flexibility to the flexible-ligand dock/design protocol would go even
further towards replicating a “real world” interface design application. Also, further
examination into the promiscuous binding of multiple ligands by single proteins
might help elucidate sequence and structure mechanisms of multi-specific binding.
Using proteins from the LPDB, for example HIV protease, possessing multiple
deposited high-resolution protein-ligand holostructures as well as experimental
binding data could constitute a significant and important project. Design of protein-
ligand interface using individual ligands might be predicted to result in divergent
sequences, while the use of a simultaneous ensemble of all known ligands might be
predicted to recapitulate the native sequence more faithfully, thus confirming the
native protein sequence to be optimized for binding multiple ligands. Subsequent
laboratory expression and assay of the protein sequences optimized for binding
individual ligands and compared the affinities of wild-type multi-ligand binding

proteins would make for a significant investigation.
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CHAPTER V*

DISCUSSION AND LESSONS LEARNED

Summary of research

The ROSETTA protein design program was use to design three complementary
protein scaffolds to bind D-peptide ligands. The chosen scaffold proteins each
represented a distinct ligand-binding mode, as well as degree of functional flexibility
and computational complexity. The model ligand interface system was the D-ala and

D-lac peptide targets of the glycopeptide antibiotic vancomycin.

Multiple, iterative rounds of ROSETTA design computation were performed on each
scaffold, sampling hundreds of millions of model ligand interfaces in silico. Between
5 and 12 of the best scoring PDZ, TPR and 1m4w designed proteins were produced
in the laboratory and assayed for binding to their target ligand using multiple
assays. The PDZ domains were found to be largely insoluble and unamenable to
assay, and were thus excluded from the remainder of the study. Both the TPR and
1m4w designs demonstrated no detectable, to low affinity binding to their intended
ligands. Due to the nature and goal of the study, this was considered a failure of the

computational design process.

* Portions of Chapter V have been excerpted from Morin, A. et al,, 2011. Computational design of
protein-ligand interfaces: potential in therapeutic development. Trends in biotechnology. Additional
material from the Dissertation proposal of Morin 2007.
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To help understand the lack of successful interface design, structural
characterization was pursued of both the TPR and 1m4w designs. Four high-
resolution X-ray structures were obtained of distinct 1m4w mutants. Examination of
the determined structures revealed that although ROSETTA had accurately predicted
the fine-scale structure of the protein-ligand interfaces, this accuracy did not

translate into high-affinity binding.

Due to these experimental results, my dissertation research was shifted to
exclusively computation, toward a more detailed focus on examining ROSETTA’s
abilities and deficiencies in predicting native protein-ligand interfaces. A diverse set
of native small-ligand binding protein structures were culled from the LPDB. This
protein set was analyzed to assess the properties of native protein-ligand interfaces
at the sequence level. ROSETTA docking and design protocols replicating the prior
interface design work were devised carried out, and results compared the native set
to evaluate ROSETTA’s sequence-recovery objective function in the design of protein-
ligand interfaces. Although interesting findings regarding ROSETTA’s propensities in
recapitulating ligand interfaces and the strong backbone-dependence of rotamer
libraries have been encountered, a full evaluation of these and further necessary

experiments await completion at a later date.
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Interface design capabilities are just beginning to reflect modern ligand
binding paradigms

The first accepted theory for the physical basis of ligand binding, offered in 1894 by
Emil Fischer, is known as the lock-and-key principle. It posits that specificity and
affinity are the result of preexisting, rigid shape and chemical complementarity
between the ligand and receptor. As knowledge of protein dynamics and kinetics
continued to grow, D. E. Koshland, Jr. extended the lock-and-key paradigm in 1958
with a new theory of ligand binding known as the induced-fit model. This model
proposes that both ligand and receptor are flexible and can mutually induce shape
and chemical complementarity. The induced-fit theory was able to help explain
many newly recognized phenomenon such as cooperativity, regulation and aspects
of specificity. As our understanding of ligand binding continued to evolve, the
conformational-selection model of ligand binding was proposed, first in 1965 by
Monod et al. (171) relating to protein allostery, then was generalized in 2000 by
Kumar et al. (172) to ligand-receptor interactions. The conformational-selection
model proposes that receptors exist in an ensemble of conformations and that a
ligand binding will select energetically preferred conformations, thereby altering

ensemble conformation equilibrium.

Since the introduction of these models, and as our understanding of ligand binding
continues to mature, it has been generally accepted that all three are in fact correct,
and that one or all of these models may apply to a given protein-ligand system.
Indeed, a hybrid fourth model, combining the induced fit and conformational

selection paradigms has been recognized where pre-binding interactions of a ligand
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with a favored conformer of an ensemble induces conformational changes in both
the ligand and protein, which then form the low energy interface (173). Although
each of these models of ligand-protein interaction has shown to be involved in
ligand binding, lively scientific debate continues as to the relative importance and
contributions of each model (174-177). Evidence has even shown that a given
protein-ligand system may process from one binding paradigm to another
depending on conditions, such as concentration, temperature, etc. (178). For the
computational design of protein-ligand interfaces to be successful, it must be able to
account for the complex physical nature of ligand-receptor interactions as described

by these overlapping and interrelated binding paradigms.

Traditionally, protein design has relied on methods approximating the lock-and-key
model of ligand interfaces. Protein backbones were held fixed, while only residue
sidechains were allowed to change conformation. In some cases, small phi/psi angle
adjustments were allowed on the protein backbone during gradient minimization of
the protein-ligand complex to accommodate slight changes in protein conformation.
However, the magnitude of these phi/psi changes are too small to sample significant
backbone conformational space, and thus these methods were only able to model
rigid protein-ligand interfaces. For example, Reina et al. was able to redesign the
specificity of class I PDZ protein PSD-95 to bind naturally incompatible class I
ligands by performing correlated mutations on both protein and ligand using the
backbone atom positions found in the liganded co-crystal structure (Figure 5.1)
(179). However, they were unable to achieve a specificity switch from class I to class

[II PDZ ligands using fixed backbone design due to greater structural diversity in the
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class III protein and ligand conformations than could be modeled using a rigid

backbone protocol.

Figure 5.1 Ribbon diagrams of the PDZ-ligand complexes. a,PSD-95 PDZ3 (PDZ-
wt) and its natural ligand (KQTSV). b, PDZ-hyd-hyd peptide (KITWV). c, PDZ-pol-
pol peptide (KRTWV). d, PDZ-Eg5-Eg5 peptide (TSINL). The residues of the ligand
(red), as well as those selected for mutagenesis (green), are numbered in (a). Only
the ligand (red) and the mutations suggested by Perla (green) are shown in (b-d). e,
Alignment of the target sequences discussed in this work, including the Class I and
Class II consensus, Eg5, hyd, pol and the two sequences known to bind the wild type
domain, CRIPT (referred to in this work as wt peptide) and NL.

With increases in computational power, new methodologies were introduced
attempting to approximate the conformational selection binding model through the

use of pre-calculated ensembles of protein backbone and ligand conformations.
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Ensembles were often derived from experimental NMR data or calculated using
molecular dynamics programs or other computational methods. While these
ensemble methods are able to approximate large conformational changes in the
protein and ligand, they nonetheless rely on a rigid backbone during ligand docking
and sidechain repacking, and are thus unable to account for smaller scale

conformational changes which occur during design of the binding interface (180).

More recently, the introduction of backbone flexibility and kinematic loop sampling
methodology has allowed computational design of protein-ligand interfaces to
match the induced fit binding paradigm more closely (181)(182). Medium-scale
sampling of “backrub” phi/psi angle changes in the protein backbone allows
efficient approximation of protein conformational changes (183; 184), while
kinematic loop modeling (185; 186) allows extra sampling of flexible loops which

often explore more conformational space than the protein core.

Ligands can also be modeled flexibly during design calculations. Peptide ligands
composed of standard amino acids can be modeled using techniques identical to the
protein backbone. However, small-molecule or non-standard amino acid ligands
must be specially parameterized to assure that low energy configurations are
preferentially sampled. A recent technique for modeling ligand flexibility is to
generate fragment based ligand rotamers using the Cambridge Structural Database
(CSD) of small molecules (145). Statistical potentials are generated similar to those
for the protein design energy functions and used to populate a predefined ligand

rotamer library. The computational search algorithm then adds the ligand rotamers
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to the amino acid rotamers when sampling the multi-dimensional search space
during design (162). Another approach to modeling ligand flexibility was used by
Sood et al. They combined loop-modeling and protein design techniques to achieve
modest binding affinity increases in the design of N- and C-terminal extensions to

natural peptide ligands bound to proteins (91).

Computational design strategy
Binding paradigm

> Rigid BB Rigid BB & lig

\ 4 Dock + design Dock + design
=~ ig ensemble
Lig bl
- Rigid BB + ensembles
Rigid BB bl
cs « =] *+ensembles Rigid lig + ensembles
N Dock + design N
< Relax BB Dock + design
Relax BB & lig

Relax BB & lig

> Flex BB +/- ensembles E:ex EB +5- ensemlglles
Dock + design ex lig +/- ensembles
E = E @ Relax BB ? Dock + design
4 Multiple, iterative protocols Muiltiple, iterative protocols

L
E ~ 4 Rigid BB Rigid BB & lig
“ “ Dock + design Dock + design

4 Flex BB +/- ensembles Rigid BB + ensembles

g \ @ Flex BB +/- bles Rigid BB + bl Flex lig +/- ensembles Rigid lig + ensembles
S Dock + design Dock+design Dock + design Dock + design
Relax BB Relax BB Relax BB & lig Relax BB & lig

Figure 5.2  Ligand binding paradigms and their corresponding computational
design strategies. The four binding paradigms outlined in the text are listed in the
colored badges: LK= lock-and-key (orange); CS= conformational selection (purple);
[F=induced fit (blue); CS/IF= hybrid conformational selection/induced fit (green).
Immediately to the right are schematic representations of the corresponding
binding modes. The two rightmost columns are examples of possible computational
design strategies for each binding mode in cases of protein conformational change
alone (left) and protein plus ligand conformational change (right). Prior interface
design methods were limited to addressing the LK binding mode where no protein
conformational change occurs, with some limited ability to explore CS binding
modes with the use of structural ensembles and gradient relaxation of protein and
ligand. Recent design techniques have allowed the potential exploration of IF
binding modes through the combination of structural ensembles and protein/ligand
flexibility functionality. Current work is investigating potential methods for
applications to the hybrid CS/IF modes and requires iteration through multiple
combined protocols.
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Using methods such as these the computational design of ligand-protein interfaces
has begun to simulate the three fundamental physical models of protein-ligand
interaction. By combining the above techniques, the hybrid conformational
selection/induced fit binding paradigm may also be approximated (Figure 5.2).
However, while these techniques can approximate the conformational change
observed in the induced fit and conformational selection ligand binding paradigms,
they are unable to model the dynamics of the protein or ligand separately or in

complex. (See below for further discussion of dynamics in interface design.)

Localized water molecules in the ligand interface are critical to successful
design

A critical component to consider in the design of ligand binding is water at the
interface (187). Water molecules have significant effects on the change in free
energy of ligand binding and contribute significantly to both its entropic and
enthalpic energy components (148). The effects of solvation on polar and
hydrophobic sidechains and atoms in both the protein and ligand, the displacement
of coordinated water molecules and the formation and breaking of bridging
hydrogen bonds can each, individually, be sufficient to overwhelm the energetics of
ligand binding (188). Studies by Teyra & Pisabarro on a representative set of
protein-ligand complexes from the PDB have shown that ~40% of interface forming
residues interact through bridging water molecules and that ~15% interact solely

by means of water-mediated hydrogen bonds (189). Furthermore, even well
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classified ligand interfaces such as the recognition of proline-rich sequences by SH3
domains that have traditionally been regarded as being hydrophobically driven, in
fact form a dual-mode interface complemented by a network of bridging water-
mediated hydrogen bonds (Figure 5.3) (190). It is therefore critical that the effects
of water at the protein-ligand interface be included in the evaluation of interface

designs.

Figure 5.3  Water at the binding interface. Water molecules at the Abl-SH3/p41
binding interface for WT (a), N114A (b), and N114Q (c). The structure of the Abl-
SH3domainisshownin a gray schematic. Residues defining the canonical binding site
for polyproline recognition are shown as gray sticks. The structure of the p41
peptide is shown as cyan sticks. Fully buried water molecules at the binding
interface are shown as green spheres (sites occupied by water molecules are labeled
from 1 to 5). Peripheral water-coordinating residues in the 310 and n-Src regions
are shown as purple and dark pink sticks, respectively. Water-mediated hydrogen
bonds are depicted as dotted green lines. (190)
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The most common method for modeling the effects of water at the protein-ligand
interface during design is the use of an implicit solvation model that typically
includes solvent accessibility and Gaussian-shaped solvent exclusion terms to
compute bulk solvent effects. These models have the advantage of being quick to
compute and are generally measured over an intact protein-ligand system (94).
However, in the design of ligand interfaces, where the steric clash of a single
coordinated water molecule or the electrostatic repulsion of one unaccounted for
electron pair can potentially disrupt ligand binding, the average accuracy of fast
implicit solvation calculations may not always be sufficient (191). In many cases, the

explicit modeling of water molecules in the interface will be necessary.

A partial solution to the need for explicit solvation of the protein-ligand interface is
the inclusion of solvated rotamers (192). Solvated rotamer libraries are constructed
in a fashion similar to normal roatmer libraries (see above), but include the most
common positions for coordinated water atoms as observed in the PDB, along with
residue sidechain atoms (Figure 5.4). These solvated rotamer libraries can then be
included with the normal rotamer libraries during sequence-conformation sampling
of the residues comprising the interface. Solvated rotamers are limited by the fixed
orientation of the water in relation to the coordinating sidechain atoms, and the
concerted coordination of a single water by more than one residue cannot be
accommodated. Additionally, expansion of the rotamer libraries dictates a
corresponding expansion of the design search space and required computational

resources (94).
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Figure 54  Water placement in solvated rotamers. Protein atoms are colored
using the CPK convention (nitrogen, blue; oxygen, red; carbon, black; hydrogen,
white). Oxygen atoms in water molecules are colored in purple. Hydrogen bonds are
indicated by yellow dashed lines. For serine and threonine, two views are shown.
These figures were prepared with Molscript. (94).

More recent progress in computational protein design methods has enabled the
explicit modeling of limited numbers of water molecules as independent ligands
within the interface (Lemmon et al,, in preparation). Using these methods, each
water is allowed compete degrees of freedom within a defied interface area and can
potentially more accurately predict direct hydrogen-bonding, electrostatic and
hydrophobic effects of individual water molecules. A disadvantage of these methods

is the significantly increased computational complexity accompanying the addition

127



of each explicit water. This currently limits the practical use of the technique to the
inclusion of only a handful of explicit water molecules. Future increases in raw
computational power and optimization of search and scoring algorithms should
soon allow the modeling of sufficient numbers of water to hydrate most small to

medium sized ligand binding interfaces during design.

Expanding functionality and applications of interface design

While the addition of limited explicit modeling of water in the ligand binding
interface denotes a significant expansion in interface design capability, other design
functionality has also recently been developed which may potentially expand the
rage of medically relevant targets and applications to which interface design

methods may applied.

Ashworth et al. has demonstrated the ability to redesign the homing specificity and
catalytic cleavage functions of a DNA endonuclease (Figure 5.5) (193-195). The
inclusion of DNA and RNA as designable ligand interface targets holds great promise

for therapeutic applications.
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Figure 5.5  Comparison of the predicted interactions in cognate and non-cognate
binding complexes, illustrating the designed specificity switch. a, Wild-type I-Mso], -
6CG (wild type). A water molecule present in the original structure16 is shown. b,
Wild-type I-Msol, -6GC. ¢, I-Msol-K28L/T83R, -6CG. d, I-Msol-K28L/T83R, -6GC. In
parts c and d, the van der Waals surfaces of Leu 28 and +6C are shown in grey.
Figures were generated using the molecular graphics program PyMOL (Delano
Scientific). WT, wild type; DES, designed; blue strands, protein backbone; beige
spheres and sticks, DNA backbone; other spheres, constant nucleotides; dashed
lines, hydrogen bonds. (193-195).

Negative and multi-state design strategies have also proven successful at creating
specificity and multivalency in protein-protein interfaces, and may be similarly
useful at ligand interface applications. Humphris & Kortemme computationally
designed multivalent protein-protein interfaces (156) using multi-state design

protocols, whereas Bolon et al. found that inclusion of negative design strategies
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was necessary for establishing specificity at a dimer interface (196). The integration
of similar strategies into ligand interface design protocols could enable analogous

functionality.

Computational protocols comparable to those that allow multiple explicit waters to
be modeled in the interface can also allow the simultaneous modeling and design of
multiple ligand types as well. Yosef et al. achieved a 900-fold increase in binding
specificity when re-designed calmodulin interfaces to large alpha-helical ligands in
the presence of Ca2+ co-factors necessary for interface formation (Figure 5.6)(197).
The ability to perform interface design while including biologically important
molecules such as inorganic cofactors like metal ions and clusters, organic cofactors
such as NADH or ATP, or other combinations of small-molecules and ligand could

greatly expand the range of targets computational methods can address.
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Figure 5.6  X-ray structures of CaM in complex with the two targets. (a) CaM-
CaMKIIp complex (PDB code: 1CM1). CaM is shown in blue, and CaMKIIp is shown in
red. CaM residues included in the optimization of the CaM-CaMKIIp binding
interface are shown in green. Calcium ions are indicated as yellow spheres.

(b) CaM fused to CaNp showing two CaM molecules (blue and light blue) and two
CaNp molecules (red and purple) (PDB code: 2F20). The same CaM residues as in
(a) are shown in green. (Yosef et al. 2009).

Is de novo enzyme design easier?

The most succinct answer to that provocative question is: certainly not. The work
performed in 2008 in the laboratory of David Baker at the University of Washington
on the de novo design of novel enzymes (11)(12) was both innovative and a
powerful demonstration of the potential of computational protein design. Very little,

if any, of the work that went into these groundbreaking studies could be called easy.
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Yet the question remains: why has progress in the computational design of the
seemingly more basic functionality of ligand binding lagged behind
accomplishments in the in silico creation of enzymes not previously observed in
nature? After all, binding a ligand would seem to operate through less complex and
sensitive mechanisms than enzymatic catalysis. Although the answer to that
question is undoubtedly a complex one, clues to understanding the different
outcomes in each of the sub-fields lay in both the fundamental physical processes of
each protein function, and the limitations of the computational tools used to model

them.

Proteins are inherently dynamic. At the most basic level, all protein functions
depend on dynamic processes (198). Continued advancement in researchers
understanding of the ways in which protein dynamics effects the formation of
protein-ligand interfaces have led to development of more a sophisticated
understanding of the mechanisms of ligand binding. Similarly, an ongoing and lively
debate amongst scientists in the biophysics, structural and computational biology
fields regarding the roles of protein dynamics in enzyme catalysis may help to
identify at least one reason ligand interface design may be a larger challenge than

enzyme design.

One side in this debate, relying on newly developed computational and biophysical
methods, argues that the chemical step in catalysis is insensitive to protein
dynamics and is instead almost entirely a function of active site geometry. This

group further conclude that the major role of protein dynamics in enzyme function
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is in determining the kinetics of the enzyme (160; 161; 199). Their opponents in the
debate argue for the central importance of dynamics in both enzyme catalysis and

kinetics to enzyme function (200-202).

While we await the resolution of this debate, results from the computational protein
design field may offer some intriguing insights. Indeed, if the first group in the
debate is correct, the chemical step in catalysis is less sensitive to protein dynamics
and is strictly a function of geometry (structure), this may offer some explanation as
to why enzyme design succeeded where interface design has yet to. The
computational tools commonly used for protein design, like those employed in the
Baker lab enzyme design studies, have proven to be quite adept at accurately
predicting protein structure and conformation down to the atomic level (203), but
are largely unable to model protein dynamics on the timescales involved in many
functional processes - such as ligand binding or catalytic active-site motion. If
dynamics subordinate to structure (geometry) when designing enzymes, but not
when creating ligand-interfaces, this could be one reason for the lack of success in
computational interface design. Enzyme design is playing to the strengths of the
computational methods, whereas interface design is dependent on its weaknesses.
Evidence for this possibility might be seen in the results of the Baker enzyme design
efforts, where although a high proportion of the tested designed enzymes displayed
catalytic activity, none of the enzymes, even after subsequent rounds of directed

evolution, were shown to possess more than a low kinetic efficiency.
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Thus, it is quite possible that although ligand-interface design seeks to reproduce a
more basic function than catalysis, it may in the end have the more difficult task,
requiring the further development of new and more advanced computational

methods.

Elephant in the room: the dynamic nature of proteins

Although many new capabilities have recently been developed to aid in the
computational design of protein-ligand interfaces, there remain significant
outstanding questions in the field that have yet to be effectively addressed, and
which may require carful consideration when performing interface design

calculations. Chief among these is the role of protein dynamics in ligand binding.

Proteins are intrinsically dynamic macromolecules possessing a range of vibrational
modes. These dynamic modes can operate on both fast (femtosecond to
microsecond) and slow (millisecond to second) time-scales and with motional
amplitudes ranging from sub bond-length vibrations to concerted motions of large
protein domains. Recent advances in our understanding of protein dynamics in
biological processes has lead to the extension of the classic structure-function
paradigm to include dynamics as crucial to a complete description of protein
function (198). Indeed, an April 2009 special issue of the journal Science (Science,
April 10, 2009) was dedicated to the rapidly evolving understanding of dynamics in

protein biology, cellular function and drug development.
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As the role of dynamics in protein function has become better appreciated, the role
of dynamics in protein-ligand binding has also become more clear, and more clearly
important. Time-dependent intra- and inter-protein motions directly affect every
element of a protein-ligand interface, from the energetics of ligand interaction (204)
to the conformational populations available for binding (205). While significant
debate remains on the details of how dynamics affect the formation of protein-
ligand interfaces (206), it is nonetheless clear that dynamics is a major, and
potentially overriding factor in protein-ligand binding. It is therefore a cause for
concern that current protein design methods are not able to fully model and account

for protein dynamics.

Recent interface design work performed in our lab offers a good example of the
unexpected and potentially confounding role of protein dynamics in the design of
ligand binding (Morin et al,, 2010). Attempts to de novo design a ligand interface
using a thermophilic enzyme failed to produce the computationally predicted high
affinity binding in experimental binding assays. Subsequent high resolution X-ray
structure determination of four of the designed proteins revealed that although the
predicted structures of the ligand interfaces were highly accurate, this structural
accuracy did not translate into binding affinity. Crystallographic analysis revealed
that in all of the designed proteins, five or fewer of the designed mutations in a
putative binding pocket lead to a fundamental change in global dynamics of the
protein (Figure 3.9). This alteration of the protein dynamics was sufficient to
eliminate high affinity ligand binding. This degree of sensitivity to design mutations

of a thermophillic protein’s inherent dynamics was unanticipated. An additional

135



instructional finding from this study was the clear distinction between
conformational change and protein dynamics. Although our design algorithms were
able to accurately predict an induced conformational change in the designed
protein, these algorithms were unable to discern the resulting change in dynamics
and consequent effects on ligand affinity. Thus, we see that although protein
conformational changes can be effectively modeled, they comprise only a subset of
the dynamic information necessary to accurately describe and predict ligand

binding.

Similar to protein dynamics, the dynamic properties of ligands are also an important
consideration when performing interface design. Not only can ligand dynamic
properties influence protein-receptor structure vis-a-vis the induced-fit binding
model, but dynamics within the ligand can potentially dominate changes in free
energies upon binding used to discriminate successful models during computational
design (205), and thus may also require careful consideration in interface design

efforts.

Currently, no generalized CPD method is able to effectively compute protein
dynamic information. These types of computations remain solely in the domain of
the much more computationally expensive molecular and quantum mechanical
computation methods, which have not yet become practical for de novo design
applications (106). Until a more comprehensive modeling of protein dynamics can

be achieved using CPD techniques, many functionally important design
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considerations relating to protein dynamics will remain outside of the abilities of

computational interface design.

Careful scaffold selection will continue to be crucial to successful interface
design efforts

The usefulness and functionality of de novo computational protein-ligand interface
design is still developing, and the lack of protein dynamic information in the design
process will continue to necessitate careful consideration of the protein systems

chosen to undergo design.

De novo interface design is normally performed on a natural, naive scaffold protein.
De novo scaffold proteins are typically selected for favorable characteristics such as
molecular weight and stability, laboratory qualities such as expression system, yield
and published production protocols, and end-application traits such as percent
human sequence content and in vivo characteristics (19). Due to the current
limitations of de novo computational interface design, additional considerations
when selecting not only a scaffold protein, but also ligand target will be critical to

successful design outcomes.

Due to the inability of current design methods to adequately model dynamic
processes, a rigorous vetting of potential interface design scaffolds for dynamics is
advisable. Experimental tools such as NMR (207), mass spectrometry (208) and x-
ray scattering and diffraction techniques (209-211) in combination with

computational tools such as molecular dynamics (212; 213) can help provide insight
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into the dynamic properties of potential design scaffolds. Removing from
consideration scaffolds possessing large-scale dynamic modes at the proposed
ligand interface site, extensive conformational dynamics or other potentially
disruptive dynamic processes opaque to computational design methods will help
prevent unexpected design difficulties. This requirement raises difficulties of its
own however, as the experimental information on a protein scaffolds dynamic
properties may not be readily available, and when available, is often non-trivial to
interpret. Therefore, it is likely that in the near-term, the best strategy for choosing
a design scaffold protein remains to select one possessing the least amount of
inherent dynamics. This aim has been greatly aided by the recent establishment of
database repositories for protein dynamic information such as Dynameomics (214),

DynDom (215) and Molmovdb.org (216).

De novo interface design in drug development

De novo interface design holds great potential for the development of new and novel
therapies and modes of therapeutic action. The ability to reliably design ligand
binding functionality against any target using a chosen protein scaffold would
enable applications in all areas of medicine and greatly expand an already
burgeoning protein therapeutic market - a market that his so far achieved success

using only post hoc computational design techniques.

Though the full potential of de novo ligand interface design has not yet been fulfilled,

innovations and techniques in related areas of computational protein design, newly
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applied and adapted to ligand interfaces, portend a coming renaissance in the

rational and rapid computational design protein drugs.

Yet there remain significant challenges to be overcome before reliable and
repeatable methods for the de novo design of protein-ligand interface can be
achieved. Foremost among these challenges is the open question of the role of
protein dynamics in ligand binding and how to effectively and efficiently model it
during design. Thus far, the modeling of such dynamics remains solely the purview
of computationally intensive molecular mechanics simulations; methods that are
currently, and for the foreseeable future, too computationally expensive to sample

the vast sequence-structure search space on a practical timescale.

Similar difficulties apply to the inclusion of explicit water molecules in the design of
ligand interfaces. While the role and importance of individual waters in ligand
binding is generally appreciated and understood, the ability for computational

design methods to model them remains limited.

In the near-term, it appears the best way to avoid the negative effects of these open
and unsolved questions in de novo interface design is through the careful selection
of design target and scaffold. Choosing to apply the current techniques to targets
and proteins which do not possess significant dynamic properties or extensive
bridging water-mediated H-bond networks in the interface may offer the best

chance for immediate success in interface design.

Though solving these outstanding challenges appears to be a prerequisite to

establish de novo interface design as a standard tool in drug design and
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development, once these outstanding challenges have been addressed, the de novo
computational design of protein interfaces to target ligands has the potential to

radically alter the way in which therapeutic protein drugs are created.
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CHAPTER VI

FUTURE DIRECTIONS

The results and findings of my dissertation work indicate a need for further
development of Rosetta design functionality to accommodate information on the
dynamic nature of proteins (203). Additional improvements to the accuracy of the

hydrogen bonding scoring function may also be desirable.

Beyond the efforts to improve Rosetta’s hydrogen bonding terms already underway,
two potential aims, one medium and one long-term in scope and implementation
would help accomplish these improvements. The first and medium term aim would
be the identification and validation of design protein scaffold set of known dynamic
and other protein design qualities. The second, longer-term aim would be the
development and incorporation of knowledge-based protein dynamics scoring

function into Rosetta.

While these aims differ in scope and ultimate level of utility and usefulness to the
broader protein design community, the fundamental knowledge and information
developed over the course of their completion are broadly complimentary. This
suggests that an incremental approach, beginning with the first aim, and upon

completion, proceeding to the second would be advisable.
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Identification and validation of design protein scaffold set

The development of a validated design protein scaffold set possessing known
dynamics and other physical, structural and biochemical properties suitable for a
given design objective function (e.g. ligand binding, catalysis, protein-protein
interaction, etc.) requires the understanding of several phenomena fundamental to
protein function (213), as well as the experimental means and techniques used to
investigate and classify them. The phenomena include the basic physical,
thermodynamic and structural-dynamic basis for protein-ligand, protein-substrate
or protein-protein interaction, concordant to the desired design objective function.
While the experimental techniques used to elucidate these and other properties of

interest span a wide range of physical, chemical and technological disciplines(146).

Additional consideration and evaluation of properties relating to protein
production, assay, characterization and application would also require investigation.
For example, in addition to obtaining the fullest understanding possible of the
dynamic properties of a candidate design scaffold protein, one would also have to
classify and select each based on suitability to a specific end-application - such as
human therapeutic, industrial process, scientific reagent, etc. - as well as the

techniques used to assess and characterize the success of the design process.

Beyond the necessity to develop a phenomenistic understanding of the fundamental
processes involved in an objective protein function, a thorough understanding of the
experimental techniques and resulting data used in classifying, describing and

comprehending protein dynamics would be required. Theoretical and practical
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knowledge of NMR (207), x-ray scattering and diffraction (210; 211),
fluorescence/photonic and computational molecular and quantum mechanical
methods and others (213) would be necessary to understand their significance and
consequence in the protein design process. Gaining this knowledge in itself would

be a non-trivial process.

Once a thorough understanding these two critical elements - a theoretical basis of
dynamic protein function and the experimental techniques used to elucidate them -
have been acquired, they could then be applied to identifying proteins suitable for

manipulation through protein design.

The process of selecting and parsing candidate protein design scaffold would rely
primarily on the databases that currently exist as repositories for the structural,
functional and dynamic information - databases for dynamic information (214-
216), structural and biochemical information (170; 217), binding and

thermodynamic data (163; 218), etc.

For example, one might first cull the PDB for proteins matching the basic
biochemical and laboratory properties needed to facilitate production and end-
application of the proteins (e.g. molecular weight, origin species, expression strain,
number of peptide chains, etc.). This might be expected to yield several hundreds to
thousands of matching proteins. These proteins might then be categorized
according to native protein function for classification as either de novo or re-design
utilization, before being cross-referenced and parsed against other databases

containing experimental data on binding thermodynamics or affinity, NMR
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experiments, solution dynamics or molecular dynamics calculation information -
each of which may reside in separate databases. After the candidate proteins have
been parsed and identified, additional experiments to fill in missing information or

confirm or resolve conflicting data may be necessary.

At the end of this vetting process, one would expect to have identified and validated
no more than a handful of proteins suitable for design applications, possibly no
more than 3-5 protein scaffolds initially, with more added over time. However, due
to the substantial knowledge and expertise necessary in the execution of this project
and the broad and disparate nature of the information involved, this project may
very well constitute several years of work of an advanced graduate, or more likely,
post-doctoral level. Nevertheless, the benefits and impact of the work would be

substantial and could be of great use to the entire protein design field.

Development and incorporation of knowledge-based protein dynamics
scoring function into Rosetta

A important, and likely crucial, longer-term goal would be the incorporation of a
knowledge-based protein dynamics scoring function into Rosetta protein design.
This would endow Rosetta with some ability to predict and approximate the
dynamic modes and functions of proteins critical to design applications, whilst
maintaining Rosetta’s advantage in computational efficiency over the more

demanding physics-based computational methods such as molecular dynamics.
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There are however two significant hurdles which must be overcome in the course of

this endeavor.

The first hurdle applies equally to both this aim and the more modest goal
mentioned above - the assembly of a protein design scaffold set. This first
significant hurdle is the current lack of a standard set of experimental techniques or
methods to comprehensively characterize a proteins dynamics across the applicable
time-domains of protein function(198). Indeed, the experimental elucidation of the
comprehensive dynamics for even a single protein is often beyond any single
technique, and may require the application of several different methods, including

molecular mechanical and/or quantum mechanical simulations (213).

This relates directly to the second hurdle to the implementation of knowledge-based
protein dynamics scoring function in Rosetta, the general lack of protein dynamic
data. It seems likely that a relatively large dataset will be required to construct a
knowledge-based potential of this kind. To be useful, this dataset could require
extensive dynamic characterization data on hundreds to thousands of proteins.
Given that no such database currently exists, and that, as mentioned above, there is
also no standard or agreed upon set of experiments for gaining such data, the
prospects for developing a knowledge-based dynamics score seem increasingly
long-term. However, it is conceivable that even a very “low-resolution” score, one
that simply indicated that a given sequence change might lead to a significant
change in the overall dynamics of the protein, would be useful in the design of

protein function.
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Prospects and importance

[t is my opinion that the second and most difficult of these aims - the development
of a knowledge-based protein dynamics scoring function - is both inevitable and
necessary before Rosetta can become a robust, reliable and useful tool for protein
functional design. The design of protein-ligand interfaces may rely more heavily on
this ability to address the dynamic nature of proteins than other design applications
such as enzyme design, but the fundamentally dynamic nature of all proteins
indicate that all protein prediction and design methods would benefit from this
added functionality. Due to the long-term nature of this ambitious undertaking
however, the intermediate step of creating a validated protein design scaffold set
may prove highly useful to rational design efforts, and would constitute a significant

achievement in its own right.
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APPENDIX

APPENDIX A:Development of medium-throughput ELISA assay

Aim: Develop qualitative, medium-throughput antibody-based screen to rapidly

identify binding candidates

The motivation for developing an ELISA screen is to enhance the throughput of the
experimental design by allowing screening of proteins directly from cell lysates.
Once implemented, the screen will take less than one week to perform and can

reduce the number of nonproductive designs by more than half.

The designed proteins will be screened for initial binding from whole-cell lysates
using an indirect enzyme-linked immunosorbent assay (ELISA) with target peptides
immobilized on 96-well plates. The biotinylated D-ala-D-ala target peptide will be
added to the plate and bound to the immobilized avidin. The designed histidine
tagged proteins will then be added to the wells containing bound peptide, incubated,
and washed. Detection of any bound proteins will util-ize an anti-histidine 12
antibody and 22 antibody with an alkaline phosphatase fusion protein for detection
by the addi-tion of nitrophenyl phosphate. The signal will be measured at 405 nm
using a plate reader. To ensure specificity, con-trol wells without peptide and

without designed protein will be included.

Expected Outcome and Interpretation: Development of the ELISA assay will be

accomplished using published methods and commercially available reagents, and is
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expected to take several months to complete. Caveats and Challenges: A potential
problem with the use of the ELISA assay on cell lysates is interference by the high
quantity of E. coli proteins. One solution is a rapid purification of the expression
products using cobalt affinity resin prior to ELISA screening. This step can be done
to quickly remove a high percentage of the contaminating proteins and will increase

the chance of identifying even low-binding affinity designs.

APPENDIX B:Testing of Backscattering Interferometry binding assay

Aim: Validate and benchmark Backscattering Interferometry binding assay

Backscattering interferometry (BI) is a new technique currently undergoing
development in the laboratory of Daryl Bornhop in the Vanderbilt Department of
Chemistry. In its current implementation, Bl can be used to detect label-free
protein/ligand interaction in solution at femtomolar concentrations in either a
substrate immobilized or free-solution mode74. The principal behind Bl is a change
in the phase of a reflected light beam compared to reference that is de-pendent upon
the radius of gyration of the molecular assembly in solution. Thus, binding affinity of
ligand to protein can be measured as a function of light phase change, and plotted to

obtain standard hyperbolic saturation binding curves75.

The ligand/substrate systems used to validate the efficacy of the Bl assay will be the
same as those which have al-ready been used to test the standard binding assays

listed in Aim 3. Specifically, well established literature Kd values of the antibiotic
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vancomycin binding its target -L-lys-D-ala-D-ala peptide ligand9, and a wild-type

TPR protein binding its native MEEVD peptide ligand76 will be replicated.

APPENDIX C: Table A.1, Crystallographic statistics for the 1m4w derived

proteins
Data Collection 1mdw 6 1mdw _6w20 1mdw_6v48 1mdw_6w20v48
Wavelength, A 1 1.5418 1.5418 1.5418
Resolution (outer shell), A 55.30-1.28 (1.34-1.28) 38.48-1.69 (1.79-1.69) 49.01-1.70 (1.79-1.70) 55.32-1.63 (1.73-1.63)
Rmerge*, % 7.6 (53.3) 8.6 (40.2) 8.9 (29.6) 4.6 (21.1)
Mean I/sigma(l) 54.89 (3.52) 2322 (3.63) 28.48 (3.34) 26.44 (3.01)
Completeness, % 99.8 (96.4) 99.7 (97.9) 100.0 (100.0) 88.5 (48.1)
Redundancy 9.70 (5.5) 18.78 (6.77) 21.80 (12.06) 7.53(1.22)
Unique observations 62177 (4534) 28769 (4289) 28204 (3957) 28568 (2549)
Refinement
Reryst/Rfree, % 1 18.07/19.37 17.62/21.62 16.40/20.38 18.42/22.63
No. protein atoms 1169 1077 1155 1157
No. solvent waters 386 438 404 366
Bond length rmsd, A 0.030 0.026 0.028 0.013
Bond angle rmsd, °© 2.235 1.952 1.954 1.274
Avg. protein B, A2 12.476 17.679 15.363 19.194
Ramachandran plot, % 1
Most favored 88.3 89.5 89.0 86.3
Allowed 10.5 9.9 9.7 124
Generously allowed 1.2 0.6 1.3 1.2
Disallowed 0.0 0.0 0.0 0.0

Outer resolution bin statistics are given in parentheses.
*Rmerge = Shkl(Si[ThkLi - <IhkI>))/Shkl,i<Ihkli>, where IhkLi, is the intensity of an individual measurement of the reflection with Miller indices h, k and 1, and <IhkI> is the mean

intensity of that reflection.

FReryst = S|[Fobs, hkl| - |Fcale, hkl||/|Fobs, hkl|, where |Fobs, hkl| and |Fcalc, hkl| are the observed and calculated structure factor amplitudes. Rfree is equivalent to Reryst but calculated
with reflections (5%) omitted from the refinement process.

fCalculated with the program PROCHECK
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APPENDIX D: Extinction coefficients for 1m4w wild-type and designs

Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in water.

Im4w WT: Ext. coefficient 66350
Im4w _1: Ext. coefficient 67840
Im4w 2: Ext. coefficient 62340
1m4w _5: Ext. coefficient 62340
1m4w_6: Ext. coefficient 60850
1m4w 9: Ext. coefficient 60850
Im4w_6w20: Ext. coefficient 66350
Im4w_6v48: Ext. coefficient 60850

Im4w_6w20v48: Ext. coefficient 66350

For full biochemical data of the above proteins, see morina archive DVD
/1m4w_xylanase_study/1m4w-a/ProtParam_1m4w/
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APPENDIX E: Mass spectra of selected 1m4w proteins
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Mass spectra of 1m4w wild-type, 1Im4w_1 and 1m4w_6 proteins showing relative
purity and correct mass. Analysis performed by Vanderbilt Mass Spectrometry Core
Facility.

151



APPENDIX F: NMR Spectra of 1m4w protein titrated with EKAA peptide
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Overlaid 2D NMR spectra of 1m4w wild-type (left) and 1m4w_6 designed (right)
proteins titrated with increasing concentrations of Glu-Lys-Ala-Ala (EKAA) peptide
ligand using a Bruker Avance 600-MHz spectrometer equipped with a cryoprobe.
Protein concentrated to 240uM titrated with concentrations of EKAA peptide in 0,
0.1, 0.25, 0,5 and 1 molar ratios. Chemical shift perturbations are consistent with
non-specific binding, low affinity binding observed in fluorescence anisotropy
assays.
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