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Chapter 1

Introduction

In his seminal paper [19], Stallings introduced a notion of foldings of a graph, which

were used to analyze and understand the structure of subgroups of free groups. This

language was used to recast many theorems about free groups and their subgroups

with straightforward proofs (e.g., see [15]). For example, Stallings foldings were used

to create an algorithm for solving the membership problem for finitely generated

subgroups of free groups. Specifically, given a set X of words over the generators of a

free group, each can be drawn as a closed path that starts and ends at a distinguished

vertex with edges labeled by the generators, and then adjacent edges with identical

labels can be “folded together” (i.e., identified with each other). After removing any

“hanging trees” (i.e., subgraphs which are trees and which intersect the rest of the

graph at only one point) and folding as many times as possible, the resulting graph

is called the Stallings core of 〈X〉. Moreover, each closed path that starts and ends

at the distinguished vertex is labeled by reduced words in 〈X〉, and any such word

corresponding to a path is said to be accepted by the core. It turns out that the

subgroup of all elements accepted by the core is exactly 〈X〉, and a spanning tree can

be used to determine a free set of generators.

In [7], Guba and Sapir extended the notion of Stallings foldings of edges to foldings

of cells and created the notion of a Stallings 2-cores to diagram groups. They defined

the Stallings 2-core of a subgroup H of a diagram group and gave a way to tell whether

any element in the given diagram group is accepted by the 2-core or not. Then they

showed that the subset of every element accepted by the 2-core is a subgroup that

included H, but in general could be larger than H. This provides a partial solution to

the membership problem and can be used in many ways. For example, if the 2-core of
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H does not accept the generators of the diagram group, then H is a strict subgroup.

In particular, Guba and Sapir showed that certain diagrams had what they called

components, and that if the 2-core of H accepts an element, it must also accept all its

components. Thus they made the conjecture around 1999 (see Section 2.4) that the

subgroup of a diagram group G accepted by the 2-core of H is precisely the smallest

subgroup of G containing H and closed with respect to components.

The proof of the conjecture remained completely open, however, until Golan

showed in [6] that the conjecture holds specifically for Richard Thompson’s group

F , which can be described as a diagram group (see Section 2.2). In Chapter 3, we

examine Guba and Sapir’s conjecture in the case of free groups, and show that their

construction completely generalizes Stallings’ original construction by analyzing the

Stallings 2-core of any subgroup of a particular and natural representation of a free

group as a diagram group. We also show that given groups which satisfy their conjec-

ture, closed subgroups and direct products of these groups also satisfy the conjecture.

In particular, we use this to generalize Golan’s result to the generalized Thompson

groups Fn.

In Chapter 4, we show how to extend the construction of the Stallings 2-core to

subgroups of Richard Thompsons’s group T , and there we give a characterization of

what a 2-core of a subgroup H accepts, showing that it is exactly the collection of

all functions from T which are dyadically-piecewise-H. We use this to examine the

2-cores of many different subgroups of T , including the pointwise stabilizers of any

finite subset U of [0, 1]. Along the way we also prove that T and V are quasi-residually

finite, answering a question of Golan and Sapir from [5].

Finally, in Chapter 5 we present work which was joint with Yunxiang Ren. Specif-

ically, we examine a subgroup of T which Jones discovered while investigating a re-

construction problem in subfactor theory. The subgroup in question was denoted ~T ,

and among other things Jones proved that for certain representations of F and T ,
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every link arises as the matrix coefficient with respect to the vacuum vector of some

element of F and T , and every oriented link arises as the matrix coefficient of some

element of ~F and ~T .

He also showed how to test directly if an element f of F or T is in ~F or ~T

respectively by constructing the Thompson graph of f and showing that f is in ~F

or ~T respectively if and only if f has bipartite Thompson graph. Sapir and Golan

studied ~F in [4] using this characterization. In particular, they proved ~F is isomorphic

to F3 and showed that ~F was precisely the subgroup of F of all elements that preserve

the parity of the sums of digits of all dyadic rationals in [0, 1] as binary words. They

also proved that ~F was its own commensurator in F , and observed that this implies

that the corresponding representation of F is irreducible.

In Chapter 5 we likewise explore the subgroup ~T , Jones’ subgroup of T . We present

a finite set of generators for ~T in Theorem 5.2.1, describe the relationship of ~T to the

stabilizer of the parity of the sums of digits of the dyadic rationals in Theorem 5.3.1,

and show in Corollary 5.4.2 that ~T coincides with its commensurator in T , which

implies that the corresponding unitary representation of T which Jones considered

is irreducible. We also provide an explicit finite presentation for ~T as an abstract

group. Moreover, we use the extended notion of the Stallings 2-core developed in

Chapter 4 to further analyze ~T . We prove that the 2-core of ~T is itself, which in turn

gives a presentation of ~T as an annular diagram group that is curiously similar to one

possible presentation of the generalized Thompson group T3, even though we show

that ~T and T3 are not isomorphic, unlike the case of ~F and F3.
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Chapter 2

Background Information

2.1 Diagram Groups

A sufficient overview of diagram groups is given here, but for a more formal and

detailed discussion, see [7]. Here we largely follow the language in [17].

Recall that a directed graph is a collection of vertices V and edges E, where each

edge is an ordered pair of vertices. Given an edge e = (v1, v2), v1 is called the initial

vertex and v2 is called the terminal vertex. Moreover, there are maps ι and τ from

E to V such that ι(e) is the initial vertex of e and τ(e) is the terminal vertex of e. A

directed path of length n is a sequence of edges e1, . . . , en such that τ(ei) = ι(ei+1).

In this case, ei is called the ith edge of the path, and a vertex is said to be on a path

if it is either the initial or terminal vertex of some edge on the path. The path is

said to be simple if each vertex on the path is the initial vertex of at most one edge

and the terminal vertex of at most one edge. The path is called closed if the initial

vertex of the first edge and the terminal vertex of the last edge are the same vertex.

Moreover, the graph is said to be labeled by X if there is a map l from E to X. In

this case, l(e) is called the label of e.

Consider a semigroup presentation 〈X|R〉, and let u be a word over X. A diagram

over the semigroup presentation is a type of directed graph labeled by X which can be

constructed in one of the ways described in the following paragraphs. In particular,

each diagram ∆ also has two distinguished vertices, ι(∆) and τ(∆), called the initial

and terminal vertex of ∆ respectively, as well as two distinguished paths, top(∆) and

bot(∆), called the top path and bottom path of ∆ respectively.

The first type of diagram which we define is called a trivial diagram. For each
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x ∈ X, the trivial diagram ε(x) is a directed labeled graph consisting of a single

directed edge labeled x and two distinct vertices. The initial vertex of ε(x) is the

initial vertex of the single edge in the diagram, while the terminal vertex of ε(x) is

the terminal of vertex of that same edge. The top path and bottom path of ε(x) both

consist of the single edge in the diagram.

The second type of diagram we can define is called a cell. For each r ∈ R, where

r is a relation x1 . . . xn = y1 . . . ym with xi, yj ∈ X, the cell ∆r is the planar directed

graph consisting of two directed simple paths, top(∆r) and bot(∆r), where top(∆r)

has length n and the ith edge is labeled xi for every i, and the bot(∆r) has length m

and the jth edge is labeled yj for every j. Furthermore, top(∆r) and bot(∆r) both

start at the same vertex ι(∆r) and end at the same vertex τ(∆r), but share no other

vertices in common.

All other diagrams can be obtained from trivial diagrams and cells by using the

following operations of addition, multiplication, and inversion. Given two diagrams

∆1 and ∆2, ∆1 + ∆2 is the diagram ∆ obtained by identifying τ(∆1) and ι(∆2), as

shown in Figure 2.1. Then ι(∆) = ι(∆1), τ(∆) = τ(∆2), top(∆) is the path top(∆1)

followed by the path top(∆2) (this is well defined since the end of top(∆1) and the

beginning of top(∆2) have been identified), and likewise bot(∆) is the path bot(∆1)

followed by bot(∆2).

∆1 + ∆2 = ∆1 ∆2

Figure 2.1: Addition of two diagrams ∆1 and ∆2 produces the diagram on the right,
where τ(∆1) and ι(∆2) have been identified.

Given two diagrams ∆1 and ∆2 with bot(∆1) and top(∆2) sharing the same label,

their multiplication ∆ = ∆1 · ∆2 is defined by identifying bot(∆1) with top(∆2) as

shown in Figure 2.2. Then top(∆) = top(∆1), bot(∆) = bot(∆2), ι(∆) = ι(∆1),
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τ(∆) = τ(∆1).

u

v

∆1 ·

v

w

∆2 =
∆1

∆2

u

w

v
v

Figure 2.2: Multiplication of two diagrams ∆1 and ∆2 where bot(∆1) = v = top(∆2)
produces the diagram on the right, where bot(∆1) and top(∆2) have been identified.

Finally, given a diagram ∆, the diagram ∆−1 is the same diagram except that

the top and bottom paths are swapped so that top(∆−1) = bot(∆) and bot(∆−1) =

top(∆). The initial and terminal vertices remain unchanged: τ(∆−1) = τ(∆) and

ι(∆−1) = ι(∆). Note that if ∆r is a cell, ∆−1r is also called a cell, but no other

diagrams are called cells.

A diagram ∆ with top(∆) labeled by u and bot(∆) labeled by v is called a (u, v)-

diagram over 〈X|R〉. For any diagram ∆, the diagram ∆ ·∆−1 is called a dipole, and

a diagram is said to be reduced if it contains no dipoles. A dipole ∆ · ∆−1 can be

removed from a diagram by identifying the paths along the top of the dipole and the

bottom of the dipole together. The diagram group D(〈X|R〉, u) is the group of all

reduced (u, u)-diagrams over 〈X|R〉 with multiplication of ∆1 and ∆2 being defined

as the diagram obtained by removing all dipoles from ∆1 ·∆2.

Another equivalent way to construct diagrams from trivial diagrams and cells is

as follows. Given a word w = x1 . . . xn over X, ε(w) is defined as ε(x1) + . . .+ ε(xn).

An atomic diagram is any diagram of the form ε(u) + ∆r + ε(v) for words u, v over

X and cell ∆r corresponding to some relation in r ∈ R. Note that if ∆ is an atomic

diagram, then ∆−1 is also called an atomic diagram, since for any cell ∆r, ∆−1r is also

a cell. Then every diagram is simply a product of atomic diagrams.

Annular diagram groups can be defined similarly. Given a semigroup presentation

6



〈X|R〉, every annular diagram ∆ is a labeled directed graph with two distinguished

paths inn(∆) and out(∆), called the inner path and outer path of ∆ respectively,

which are both simple closed directed paths with counterclockwise orientation. More-

over, inn(∆) must be inside the area bounded by out(∆), and all vertices and edges

of ∆ must be between inn(∆) and out(∆). Furthermore, both inn(∆) and out(∆)

have distinguished vertices i(∆) and o(∆), called the inner and outer vertex of ∆

respectively.

Annular diagrams can be constructed much like diagrams, by defining atomic

annular diagrams and their multiplication. Specifically, for every atomic diagram ∆

over 〈X|R〉 (in the sense of a diagram group), define the atomic annular diagram

∆a to be the same directed labeled graph except with ι(∆) and τ(∆) identified.

Both the inner vertex and the outer vertex of this annular diagram are the newly

identified vertex ι(∆). The annular diagram has inner path top(∆) and outer path

bot(∆), which are both now closed paths since their initial and terminal vertices were

identified.

If inn(∆) has label u as read starting from i(∆) and out(∆) has label v as read

starting from o(∆), then ∆ is said to be annular diagram of type (u, v). The mul-

tiplication an annular diagram ∆1 of type (u, v) and ∆2 of type (v, w) is denoted

∆1 ·∆2, and it is the annular diagram obtained by identifying inn(∆2) and i(∆2) with

out(∆1) and o(∆1) respectively. The inner path of the new diagram is inn(∆1) with

distinguished vertex i(∆1), and the outer path of the new diagram is out(∆2) with

distinguished vertex i(∆2).

An annular diagram over 〈X|R〉, then, is some product of atomic annular dia-

grams over 〈X|R〉. Just as dipoles can be removed from diagrams, dipoles can be

removed from annular diagrams, and doing so is called reducing the diagram. An

annular diagram is called reduced if it contains no dipoles. The annular diagram

group Da(〈X|R〉, w) is the collection of all (w,w) reduced annular diagrams with the

7



multiplication of ∆1 and ∆2 being the annular diagram obtained by removing all

dipoles from ∆1 ·∆2.

2.2 Thompson’s Groups F , T and V

The three equivalent ways to define F , T , and V which we will use throughout the

paper are defining the groups using functions, pairs of trees, and diagrams. A good

survey of all three Thompson groups is given in [2], which uses both the function and

the pairs of trees definitions of all three groups. For more details on F as a diagram

group, T as an annular diagram group, and V as a braided diagram group, see [7].

In this paper, we choose to do function multiplication from left to right, and so to

preserve the familiar relations of F , T , and V described in [2], we use the inverse

generators as our canonical generators. For example, what we refer to as x0 here is

called x−10 in [2].

The first and most well-known definition of F is the following: the collection of all

piecewise-linear orientation-preserving homeomorphism of the unit interval to itself,

where there are only finitely breakpoints between each piece, each breakpoint is dyadic

rational, i.e., of the form a2−n for some non-negative integers a and n, and the slope

on each linear piece is an integer power of 2. More generally Fm is the collection of all

piecewise-linear orientation-preserving homeomorphism of the unit interval to itself,

where there are only finitely breakpoints between each piece, and each breakpoint

is m-adic rational, i.e., of the form am−n for some non-negative integers a and n,

the slope on each linear piece is an integer power of m. Thus F = F2. The group

operation is composition, and a well-known generating set is {x0, x1}, where x0 and

x1 are defined in Figure 2.3.

T can be defined similarly, by identifying the unit circle S1 with [0, 1]/∼ where 0

and 1 are identified with 0 ∼ 1. Generally, Tm is the collection of all piecewise-linear
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x0(t) =


2t t ∈ [0, 1

4
)

t+ 1
4

t ∈ [1
4
, 1
2
)

1
2
t+ 1

2
t ∈ [1

2
, 1]

x1(t) =


t t ∈ [0, 1

2
)

2t− 1
2

t ∈ [1
2
, 5
8
)

t+ 1
8

t ∈ [5
8
, 3
4
)

1
2
t+ 1

2
t ∈ [3

4
, 1]

c(t) =


1
2
t+ 1

2
t ∈ [0, 1

2
)

t+ 1
4

t ∈ [1
2
, 3
4
)

2t− 3
2

t ∈ [3
4
, 1)

Figure 2.3: Two elements which generate F are x0 and x1 as defined above. Together
with c, they generate T .

orientation-preserving homeomorphism of the unit circle to itself, where there are

only finitely breakpoints between each piece, each breakpoint is m-adic rational, and

the slope on each linear piece is an integer power of m. T = T2, just as in the case of

F , and notice that F can be viewed as StabT (0), the subgroup of all functions in T

that stabilize 0. The function c defined in Figure 2.3 can be added to the generators

of F to generate T .

To extend T to V , simply add the generator π0 defined by

π0 =



1
2
x+ 1

2
0 ≤ x < 1

2

2x− 1 1
2
≤ x < 3

4

x 3
4
≤ x < 1

Notice that this function is no longer continuous, but it is right continuous. It

turns out that V consists of all right continuous piecewise-linear bijections from S1 =

[0, 1]/∼ to itself, where again there are only finitely many points of discontuity or

breakpoints between each piece, each breakpoint is dyadic rational, and the slope on

each linear piece is an integer power of 2. The groups Vm can be defined analogously,

though we do not use them in this paper.

The next characterization of F utilized in this paper uses pairs of binary trees. A

9



full binary tree is a rooted binary tree such that each vertex has 0 or 2 children. A

caret is a binary tree where the root has two children which are both leaves. Then

the elements of F are ordered pairs of full binary trees (R, S) such that R and S

both have the same number of leaves, and there is an equivalence relation induced

by the following equivalence: given such a pair (R, S), let R′ be the tree obtained

by attaching a caret at the ith leaf of R for some i counting leaves from left to

right, and S ′ be the tree obtained by attaching a caret at the ith leaf of S for the

same i, then (R′, S ′) is equivalent to (R, S). This process of adding a caret to the

same leaf in both R and S is called adding a dipole. Multiplication of (R1, S1) and

(R2, S2) is done by adding dipoles to (R1, S1) and (R2, S2) until S1 = R2. Then

(R1, S1) · (S1, S2) = (R1, S2).

Such a pair of trees (R, S) will be depicted in this paper by drawing the two trees

side by side with an arrow from the left tree R to the right tree S labeled by the

name of the element. For example, 2.4 shows two pairs of trees corresponding to x0

and x1, and such diagrams are called tree diagrams of x0 and x1.

x0 x1

Figure 2.4: Pairs of trees corresponding to the standard two element gener-
ating set of F .

To see that this is still F , consider a pair of trees (R, S). Associate with the root

of R and the root of S the interval [0, 1]. For each vertex in each tree associated with

the interval [a, b], associate its left child with [a, a+b
2

] and its right child with [a+b
2
, b]

(if it has children). Then (R, S) corresponds with the function that linearly maps the

interval associated with the ith leaf of R to the ith leaf of S for every S, and it is

10



easy to see that this is indeed an element of F . In this way, the ith leaf of R is said

to be identified with the ith leaf of S. For example, Figure 2.5 shows how an interval

is associated with each vertex in a pair trees, and the graph of the corresponding

function, which is x0. For this reason, R and S may be referred to as the input tree

and output tree respectively of (R, S).

[0, 1]

[0, 1
2
]

[0, 14 ] [14 ,
1
2 ]

[12 , 1]

x0

[0, 1]

[0, 12 ] [1
2
, 1]

[12 ,
3
4 ] [34 , 1]

0 1
4

1
2

1
0

1
2

3
4

1

Figure 2.5: Going from a pair of trees to a function in F

Furthermore, removing or adding dipoles to a pair of trees does not affect the

corresponding function, and it is easy to observe that the product of pairs of trees

corresponds to the composition of the corresponding functions. To see that these

groups are isomorphic, it only remains to check that x0 and x1 have corresponding

pairs of trees, but these are shown in Figure 2.4.

Every element of T likewise corresponds to some (R, S, n), a pair of full binary

trees R and S with the same number of leaves and additionally a number n which

indicates which leaf of S the first leaf of R is identified with, where the rest of the

leaves of R and S are identified cyclically. Often the k leaves of R and S are labeled by

1, . . . , k to clarify these identifications, as shown in Figure 2.6, which shows the pair

of trees corresponding to c. Likewise, a dipole can be added to (R, S, n) by adding a

caret to a leaf in R and a leaf in S which are identified. In this case, the left child

and right child of the caret in R and the left child and right child of the caret in S are

identified respectively, and some (or all) of the leaves may need to be renumbered to

reflect these new identifications. Likewise, n should be increased by one if the caret
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is added in S to the left of the leaf identified with the first leaf of R.

1

2 3

c
3

1 2

1

2 3

π0
2

1 3

Figure 2.6: The pair of trees corresponding to c on left and π0 on right, with
the leaves numbered to show which leaves are identified.

The pair of trees (R, S, n) is likewise associated with a function by associating

the root vertices of R and S with [0, 1), and then if a vertex is associated with

[a, b), associate its left child with [a, a+b
2

) and its right child with [a+b
2
, b). Then the

corresponding function is the one that sends each interval of each leaf of R to the

interval of the corresponding leaf in S linearly.

Extending this definition to V can be done by replacing n in (R, S, n) with σ, a

permutation of {1, . . . , n}. The ith leaf of R is then identified with the σ(i)th leave

of S, and each such pair of trees corresponds with a function from V in exactly the

same way as in T . The pair of trees diagram for π0 is shown in Figure 2.6.

It is also possible to define F as the diagram group D(〈x|x = x2〉, x). Indeed,

consider a pair of trees (R, S), and for every parent vertex in each tree with 2 children,

replace it with a cell x = x2 as shown in Figure 2.7. Then if R and S have n leaves,

the result is two (x, xn) diagrams ∆R and ∆S, so that ∆R ·∆−1S is an (x, x) diagram,

as shown in Figure 2.7. A dipole in a pair of trees clearly corresponds to a dipole in

a diagram, and from this it is clear that multiplication also corresponds, since given

two pairs of trees (R, S1) and (S1, S), the pair of trees (R, S) (possibly after removing

dipoles) corresponds to the diagram formed from multiplying the diagrams for (R, S1)

and (S1, S) and reducing. Finally, simply observe that the diagram ∆ for any element

of D(〈x|x = x2〉, x) has a longest directed path from ι(∆) to τ(∆), above which the

cells are all of the form x = x2 and below which the cells are all of the form x2 = x.
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Thus the portion of the diagram above this longest directed path corresponds to a

tree and the portion of the diagram below this path corresponds to a tree, thereby

giving a pair of trees.

Figure 2.7: The diagram for x0 as an element of D(〈x|x = x2〉, x) is
shown in black. Since every black edge is labeled x, the labels are
omitted from the figure. The pair of trees (R, S) for x0 are shown in
red, with R on top and S on bottom and flipped vertically.

In much the same way, T is the annular diagram group Da(〈x|x = x2〉, x), and

V can be described as the braided diagram group Db(〈x|x = x2〉, x), although we do

not go into braided diagram groups any further and refer the reader to [7].

2.3 Addition and Normal Forms of Elements of F

A useful operation on F is the following addition operator [4]. If f, g ∈ F , then

f ⊕ g is defined as

(f ⊕ g)(t) =


f(2t)
2

t ∈ [0, 1
2
)

g(2t−1)+1
2

t ∈ [1
2
, 1]

We can likewise demonstrate this operation on pairs of trees. If f = (R1, S1)

and g = (R2, S2), then f ⊕ g = (R, S) where R is a tree where the left child of the

root is a copy of R1 and the right child of the root is a copy of R2. S is likewise

defined. In terms of diagrams, if ∆1 and ∆2 are two (x, x) diagrams and ∆ is the cell
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corresponding to the relation x = x2 with one edge on its top path and two edges on

its bottom path, then ∆1 ⊕∆2 = ∆ · (∆1 + ∆2) ·∆−1.

Notice that although F is closed under addition, T is not. In fact, if g ∈ T \ F ,

then since g does not stabilize 0, g ⊕ f will not be a continuous function for any

f ∈ T .

With this notation, notice that x1 = 1 ⊕ x0. In general, another set of standard

generators of F are given by {xn}n∈N where xn = 1⊕xn−1, and x0 is as already defined.

These generators are useful in that every element of F be written as a product of

xa00 x
a1
1 . . . xann x

−bn
n . . . x−b11 x−b00 where n, ai, and bi are all non-negative integers [2].

Then if f = xa00 x
a1
1 . . . xann x

−bn
n . . . x−b11 x−b00 , xa00 x

a1
1 . . . xann is called the positive part of

f , and x−bnn . . . x−b11 x−b00 is called the negative part. If the negative part of f is trivial,

then f is said to be a positive element, and likewise if the positive part is trivial, then

f is a negative element.

Furthermore, given a pair of trees representation of f = (R, S), n, ai, and bi can

all be determined in the following way [2]: define the exponent of a vertex of a tree

to be the maximal length of a path of left edges that end at the vertex and begins

not on the right most path of the tree. Then n+ 1 is the number of leaves in R and

S, and ai is the exponent of the ith vertex of R numbered from 0 to n, and bi is the

exponent of the ith vertex of S numbered similarly.

This naturally leads to the following observation, which will be useful in Chapter

5 in describing the elements of ~T . Consider the tree Sn in Figure 2.8. If the output

tree in a tree diagram for an element of F is Sn for some n, then the exponents bi

are all 0, and hence the element is positive. Likewise, if the input tree is Sn, then the

exponents ai are all 0, and hence the element is negative.
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1

2

n+1 n+2

. . .

Figure 2.8: The tree Sn.

2.4 Stallings Cores and Stallings 2-Cores

In order to not confuse the free groups with the Thompson groups Fn, we will use

Fn to refer to the free group on n generators.

Recall the Stalling’s original construction of a core for subgroups of a free group

[19, 15]. Let Fn have free generators X = {x1, x2, . . . , xn}, and let H = 〈y1, . . . , yn〉.

A directed graph in the sense of Serre is a directed graph together with an involution

on edges. Specifically, given a set of vertices V , and a set of ordered pair of vertices

called edges E labeled by a some set L ∪ L−1, the inverse edge of e = (u, v) with

label l is the edge e−1 = (v, u) with label l−1. E is assumed to be closed under taking

inverses.

Then the Stallings core of H is a directed graph in the sense of Serre with edges

labeled by elements of X ∪X−1 constructed in the following way: begin with a single

vertex, which we will refer to as the distinguished vertex. For each generator of H yi,

let wi be the reduced word over X ∪X−1 which equals yi in Fn, and then construct a

directed path from the distinguished vertex to itself of the same length as wi, where

the kth edge along the path is labeled by the kth letter of wi. Proceed to do the

following foldings as many times as possible:

1. If two edges e1 and e2 share the same label and initial vertex, identify the edges

together.

2. If two edges e1 and e2 share the same label and terminal vertex, identify the
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edges together.

Note that when two edges are identified together, so are the corresponding initial

or terminal vertices. Since their labels must already be the same, no labels are ever

identified together.

A graph is said to have a hanging tree if it contains a tree as a subgraph and there

is only one vertex v in the tree such that v is adjacent to some edge in the graph

outside of the tree. Simplify the graph by removing any hanging trees, or in other

words, remove all edges and vertices of the hanging tree except v from the graph.

Not only is the core of H a directed graph, but it can be viewed as an automaton

over X ∪X−1, which is said to accept a word w over X ∪X−1 if there is a directed

path on the core of H from the distinguished vertex to itself whose label reads w.

It is not difficult to show that if a Stallings core is reduced, i.e., all possible foldings

have occurred and all hanging trees have been removed, then w is accepted by the

core implies that w is freely reduced.

Moreover, before the core is folded, it is clear that the core accepts exactly the

language of all unreduced products of words over the generators of H, since any loop

from the initial vertex to itself can only go through loops in their entirety or be

forced to backtrack. The key to proving that the reduced core of H accepts exactly

the words corresponding to reduced elements of H is then proving that folding two

edges together does not change the language that the automaton accepts (see Lemma

3.4 of [15]).

Guba and Sapir extended these notions in [8] to diagram groups, where they ap-

proach diagrams as labeled directed 2-complexes, which are 2-complexes with labeled

directed edges and where every cell has a top and bottom directed path, both of

which starts at the same initial vertex and end at the same terminal vertex. A homo-

morphism of labeled directed 2-complexes is a map between 2-complexes which takes

vertices to vertices, edges to edges of the same label, cells to cells, and respects the
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initial and terminal vertices of the edges and the top and bottom paths of each cell.

Now consider a diagram group G = D(〈X|R〉, w), and let H = 〈XH〉 be a sub-

group. The Stallings 2-core of H is constructed by the following steps. Consider the

set of all diagrams ∆x of elements x ∈ XH , and identify all the top paths and bottom

paths together to form a single 2-complex C0(H), and call this newly identified path

the distinguished path of C0(H). Then do the following as many times as possible

for all u = v ∈ R and any pair of cells corresponding to u = v:

1. If the paths of both cells labeled by u are identified, identify the paths labeled

by v.

2. If the paths of both cells labeled by v are identified, identify the paths labeled

by u.

Two cells are said to be identified if their top and bottom paths have been iden-

tified. The resulting 2-complex C(H) is called the Stallings 2-core of H. Notice that

every identification in the above process is essentially a homomorphism of directed

2-complexes, and thus C(H) contains a homomorphic image of the distinguished path

in C0(H) which will be called the distinguished path of C(H).

Just as with the Stallings core, the 2-core can be viewed as a 2-automaton, where

an element g ∈ G is said to be accepted by C(H) if there is a homomorphism of

labeled directed 2-complexes from the reduced diagram of g to the core of H which

takes top(g) and bot(g) to the distinguished path of C(H). For example, there

is a clear homomorphism from each generator of H to C0(H) and hence also to

C(H). Furthermore, if there is a homomorphism of directed 2-complexes from a

non-reduced diagram ∆ to C(H), then dipoles must be taken to dipoles, and so

there is a homomorphism of directed 2-complexes from any diagram obtained from

∆ by removing dipoles to C(H). Thus if g and h are accepted by C(H), then since

bot(g) and top(h) are simply identified in the non-reduced product of g and h, the
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∆

∆−1
∆1 ∆2

u

u

v1

v1

v2

v2

∆

∆−1

u

u

v2

v2

v1 ∆2

∆

∆−1
∆1

u

u

v1

v1

v2

Figure 2.9: Shown are three (u, u) diagrams. The middle and right diagrams are
called components of the left diagram and are accepted by any 2-core that accepts
the diagram on the left since there is a clear homomorphism of directed 2-complexes
from left diagram to the other two diagrams.

reduced product g · h is accepted by C(H). Finally, if g is accepted by C(H), then

since the diagrams for g and g−1 are isomorphic, g−1 is also accepted by C(H).

This shows that {g ∈ G|C(H) accepts g} is a subgroup of G containing H. Define

Core(H) = {g ∈ G|C(H) accepts g}.

This should of course sound very similar to the language used to define the

Stallings core of a subgroup of a free group, since the notion was motivated by

Stallings’ construction. In fact, we show in Section 3.1 that the Stallings 2-core

of a subgroup of F2, represented in a natural way as a diagram group, also accepts

exactly what the Stallings core of that same subgroup accepts.

To see that sometimes Core(H) is strictly bigger than H, consider the following

general example. Let G = D(〈X|R〉, u) be a diagram group such that there exists

a (u, v1v2) diagram ∆, a (v1, v1) diagram ∆1, and a (v2, v2) diagram ∆2. Let H be

the subgroup of G generated by ∆ · (∆1 + ∆2) ·∆−1. Then C(H) must accept both

∆ · (ε(v1) + ∆2) ·∆−1 and ∆ · (∆1 + ε(v2)) ·∆−1 shown in Figure 2.9. However, these

diagrams are often not in H.

Definition 2.4.1 (Guba and Sapir). Any diagram of the form ∆ · (∆1 + ∆2) ·∆−1,

where ∆1 is a (v1, v1) diagram and ∆2 is a (v2, v2) diagram, is said to have components

∆ · (ε(v1) + ∆2) · ∆−1 and ∆ · (∆1 + ε(v2)) · ∆−1, where · and + are the standard

multiplication and addition of diagrams.
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A subgroup H is called closed under taking components if for any element h and

component h′ of h, h ∈ H implies h′ ∈ H. Let Comp(H) be the smallest subgroup of

G containing H and closed under taking components. Then H is said to be closed if

H = Comp(H). Guba and Sapir observed that Comp(H) is a subset of Core(H) and

made the following conjecture around 1999, although it was never printed.

Conjecture 2.4.2. Let H be a subgroup of a diagram group D(〈X|R〉, w). Then

Comp(H) = Core(H).

Golan proved this conjecture true for the case of D(〈x|x = x2〉, x) = F by showing

that Comp(H) and Core(H) are both equal to a third subgroup which she called

the subgroup of all elements of F which are dyadically-piecewise-H. In Chapter 3,

we use Golan’s result to construct more diagram groups where the conjecture holds,

including the generalized Thompson groups Fn. Moreover, in Chapter 4, we generalize

the construction of the 2-Core to T , and characterize Core(H) for any subgroup of

H likewise as the subgroup of T of all functions that are dyadically-piecewise-T .
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Chapter 3

Subgroups of Diagram Groups Accepted by Stallings 2-Cores

3.1 The Stallings 2-Core for Subgroups of Free Groups

Suppose G = D(〈X|R〉, u) is a diagram group. Originally, diagram groups were

defined in terms of a string-rewriting system by Meakin and Sapir, and in this case it

is more intuitive to say that a cell of the form x = x is the same as its inverse, since

they would both rewrite words in the same way. However, in [8], Guba and Sapir

re-cast the definition of diagram groups into the language of directed 2-complexes.

In particular, rather than thinking of R as a set of relations, it is thought of as a

set of cells, and two different cells can have top paths and bottom paths which are

respectively labeled identically. Put another way, R can be thought of as a multiset of

relations, which could contain two different copies of the same relation. For example,

if R contained two copies of x = x2, each would correspond to a different cell. In this

case, if the first of the two relations corresponds to the cell ∆1 and the second to the

cell ∆2, then by definition of a dipole, ∆1∆
−1
2 is not a dipole (a dipole is only of the

form ∆∆−1).

In particular, it is worth noting that in this paper we specifically allow for cells

of the type x = x. Recall that for each relation r in R, there are two corresponding

cells, ∆r and ∆−1r . It is useful to distinguish between them by calling one of them,

say ∆r, positive and the other, ∆−1r , negative. Thus every cell is said to have positive

or negative orientation, and its inverse has the opposite orientation, so that a cell and

its inverse are never considered the same. Notably ∆2
r 6= ∆r∆

−1
r , and so ∆2

r is never a

dipole. As a result, F1 (recall that Fn is the free group of rank n) is isomorphic to the

diagram group D(〈x|x = x〉, x). Note that if we wanted to avoid the relation x = x
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and the ensuing discussion, we could use D(〈x, y, z|x = y, y = z, z = x〉, x), which is

also isomorphic to F1. The former diagram group representation for F1, however, is

more convenient.

Recall that given two diagram groups Gi = D(〈Xi|Ri〉, ui) for i = 1, 2 with X1 ∩

X2 = ∅ and a letter a 6∈ X1∪X2, the free product of G1 and G2, G1∗G2, is isomorphic

to D(〈X|R〉, a) where X = X1 ∪X2 ∪ {a}, R = R1 ∪ R2 ∪ {a = u1, a = u2} [7]. For

example, F2 is isomorphic to F1 ∗ F1 = D(〈x, y, a|x = x, y = y, a = x, a = y〉, a).

The goal of this section is to extend the list of known diagram groups where

Conjecture 2.4.2 holds. We begin this process by first observing through the following

proposition that the Stallings core of a subgroup of F2 and the Stallings 2-core of the

corresponding subgroup of D(〈x, y, a|x = x, y = y, a = x, a = y〉) both accept exactly

the corresponding subgroups themselves.

Proposition 3.1.1. Let H = 〈x1, . . . , xn〉 be a subgroup of F2, represented as a

diagram group by D(〈x, y, a|x = x, y = y, a = x, a = y〉). Then the 2-core of H

accepts exactly H.

Proof. Consider F2 = 〈axa−1, aya−1〉 as a subgroup of F3 = 〈a, x, y〉, then H can

be viewed as a subgroup both of this representation of F2 and the aforementioned

representation of F2 as a diagram group, which is generated by the diagrams in Figure

3.1. The goal is then to show that there is a correspondence between the core of H

and the 2-core of H in this case, and that they accept exactly the same elements of

F2 with respect to the isomorphism between these two representations of F2.

x

x

a

a

y

y

a

a

Figure 3.1: Two diagrams which generate F2, represented as the diagram group
D(〈x, y, a|x = x, y = y, a = x, a = y〉, a).
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Let us first show how to relate elements in the diagram group and {x±1, y±1, a±1}.

Consider the following correspondence between reduced (a, a) diagrams over P =

〈x, y, a|x = x, y = y, a = x, a = y〉 and directed paths labeled by {x±1, y±1, a±1}.

Since every cell over P has only one top edge and one bottom edge, a diagram can be

viewed as a sequence of cells corresponding to relations in P . Then given a diagram

that is a product of m cells ∆1, . . . ,∆m, we correspond it to a directed path of edges

e1, . . . , em labeled by {x±1, y±1, a±1} where the label of ei is determined as follows:

if ∆i is positively (respectively negatively) oriented and corresponds to the relation

x = x, label the edge x (respectively x−1). If ∆i is positively (respectively negatively)

oriented and corresponds to the relation y = y, label the edge y (respectively y−1).

If ∆i is positively (respectively negatively) oriented and corresponds to the relation

a = y or a = x, label the edge a (respectively a−1). In other words we are relating

every 2-path over P with a directed labeled path in a very natural way, which gives

a correspondence of elements in the diagram group with elements in 〈axa−1, aya−1〉.

This correspondence is also useful in looking at the 2-core of H as a subgroup of

a diagram group and the core of H as a subgroup of 〈axa−1, aya−1〉. To make a clear

distinction, in the rest of proof we will call the traditional Stallings core a 1-core.

To construct the 2-core of H, the first step is to identify the top and bottom

paths of the diagrams corresponding to x1, . . . , xn. In the 1-core, this corresponds to

identifying the first and last vertex of each path corresponding to a diagram together.

Observe that this correspondence also respects the process of folding: that is, if two

cells are being folded as in the construction of the 2-core, and the corresponding

to edges are folded as in the construction of the 1-core, the diagram and path still

correspond. Furthermore, the distinguished vertex of the core clearly corresponds to

the distinguished path of the 2-core.

Thus the 2-core and the 1-core are also in correspondence. Moreover if a diagram

∆ is accepted by the 2-core, there is a homomorphism of directed 2-complexes from the
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diagram to the 2-core. But since the homomorphism preserves labels of cells, using the

correspondence between diagrams and directed paths labeled by {x±1, y±1, a±1} and

distinguished vertex with distinguished path, this corresponds to being able to read

the word corresponding to ∆ as an element of F2 on a directed path that starts and

ends at the distinguished vertex of the 1-core of H. Thus the corresponding element

of F2 = 〈axa−1, aya−1〉 is also accepted by the 1-core of H. A similar argument gives

the other direction.

Section 3.2 will show that a similar proposition holds for Fn by viewing it as a

subgroup of F2. Thus the Stallings 2-core generalizes the notion of the Stallings core.

3.2 Direct Products and Subgroups

In another paper, Guba and Sapir show that not every subgroup of a diagram

group is a diagram group [10]. However, it is easy to observe that for any subgroup

H of a diagram group G, Core(H) is a diagram group.

Proposition 3.2.1. If H is a closed subgroup of a diagram group G = D(P , w), i.e.,

H = Core(H), then H is a diagram group.

Proof. The core of H consists of cells which are glued together, and this core can be

used directly to form the presentation for a diagram group isomorphic to H. Give

every edge e in the core of H a unique label, say xe. Edges which are identified are

given the same label since they are considered to be the same. Let R be the collection

of all cells of the form u = v, where u is the new label of the top path of some cell

in the core and v is the new label of the corresponding bottom path of that cell,

and let X be the collection of all new labels of edges in the core. Let u be the new

label of the distinguished path of the core. Then we claim that H is isomorphic to

H ′ = D(〈X|R〉, u). If an edge has new label xe, let φ(xe) be the old label of the edge

in the 2-core.
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For example, we compute the core of F in chapter 4 (see Example 4.1.3) using

tree diagram notation, and translating that back into the notation of diagram groups

would give 4 cells, each of which had the type x = x2 in F = D(〈x|x = x2〉, x). The

diagram group F ′ constructed from the core of F would be D(〈a, b, c, d|a = bc, b =

cd, c = dc, d = dd〉, a).

Then there is an obvious homomorphism Φ : H ′ → H which simply takes diagrams

over 〈X|R〉 to diagrams over P by replacing the label xe of each edge in a diagram

with the label φ(xe). Clearly this homomorphism is surjective, since any diagram in

H can be relabeled in the same way the core was relabeled. To see that it is injective,

it suffices to show that only dipoles go to dipoles, and thus reduced diagrams go to

reduced diagrams, implying that the kernel of the homomorphism is only the trivial

diagram. Suppose ∆′1 and ∆′2 are two different cells over 〈X|R〉 such that ∆′1∆
′−1
2 is

well-defined but not a dipole. Then it remains to check that Φ cannot send ∆′1∆
′−1
2

to a dipole. Suppose by way of contradiction that it does, that is, ∆′1 and ∆′2 are

relabeled by Φ to be the same cell ∆. But ∆′1 and ∆′2 also correspond to cells ∆1

and ∆2 in the core of H, and the fact that the multiplication ∆′1∆
′−1
2 is well-defined

means that bot(∆1) and bot(∆−12 ) are identified. Thus ∆1 and ∆2 are identified by

construction of the core, and so ∆′1 = ∆′2.

This structure allows us to extend results about which diagram groups satisfy

Conjecture 2.4.2 with the following proposition, for which we need some additional

notation for clarity. Given a diagram group G, a closed subgroup H, and a subgroup

K of both, let CoreG(K) denote the subgroup of G accepted by the core of K as

a subgroup of the diagram group G, while CoreH(K) denotes the subgroup of H

accepted by the core of K as a subgroup of the diagram group H. Likewise, let

CompG(K) and CompH(K) be defined.

Proposition 3.2.2. If G is a diagram group such that for any subgroup H of G,

CoreG(H) = CompG(H), then any for any closed subgroup H of G and any subgroup
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K of H, CoreH(K) = CompH(K).

Proof. From the proof of Proposition 3.2.1, we can consider H as a diagram group

with a natural homomorphism Φ from the diagrams of H as a diagram group to its

diagrams as a subgroup of G. Our goal is to show that CoreG(K) = CoreH(K). For

any set of generators of K in the diagram group H, there are corresponding generators

of K in the diagram group G whose diagrams are the same up to relabeling the edges

via Φ. Thus consider the construction of the core of K in G and the core of K in H.

After folding the distinguished paths of all generators of K together but before doing

any other foldings, the core of K in H and the core of K in G are the same up to

relabeling. Thus, it suffices to show that any folding that occurs in one also occurs

in the other, and hence any diagram accepted by one will correspond to a diagram

accepted by the other, and one of these diagrams is the image of the other under Φ.

Assume that for some number of foldings, the cores of K in H and G still coincide

up to relabeling, and suppose ∆1,H and ∆2,H can be folded together in the core of K

in H. Without loss of generality, they can be folded because bot(∆1,H) = bot(∆2,H)

in the core of H, and top(∆1,H) and top(∆2,H) have the same label. Then if ∆1,G and

∆2,G are the corresponding cells in the core of K in G, since the cores coincide up to

relabeling, we have that bot(∆1,G) = bot(∆2,G), and since the label of top(∆i,G) is

the label of Φ(top(∆i,H)), we must also have that top(∆1,G) and top(∆2,G) have the

same label, and hence ∆1,G and ∆2,G can be folded in the core of K in G.

Likewise suppose that ∆1,G and ∆2,G can be folded in the core of K in G. Then

without loss of generality, their bottom paths are identified in the core of K in G and

their top paths have the same label. Let ∆1,H and ∆2,H be the corresponding cells

in the core of K in H. Again since the cores coincide up to relabeling, their bottom

paths must also be identified, and it suffices to show that their top paths have the

same label.

Since ∆1,G and ∆2,G are cells in the core of K in G with their bottom paths iden-
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tified, there is a diagram ∆G accepted by the core of K in G containing ∆1,G∆−12,G.

Let ∆H be the corresponding diagram in H. Then CoreG(K) = CompG(K) ⊂

CompG(H) = CoreG(H), and so ∆G is accepted by CoreG(H). In particular, ∆1,G

and ∆2,G have homomorphic image in the core of H in G, and were thus folded to-

gether in the core of H in G. By the construction of H as a diagram group from its

core in G, this implies that the tops of ∆1,H and ∆2,H must have the same label in

H, exactly as desired.

Finally, observe that any diagram in the diagram group H with components also

has components in G. Conversely, our above proof demonstrates that if a diagram

∆ · (∆1 + ∆2) ·∆−1 from the diagram group G is in K as a subgroup of G, then the

cells on the core of H in G corresponding to the cells of ∆ and ∆−1 from the diagram

would be folded, and hence the corresponding diagram in the diagram group H would

also have components. Thus CompH(K) = CompG(K) = CoreG(K) = CoreH(K).

For example, Golan and Sapir found particular representations of the generalized

Thompson groups Fn in F [4], which we show are closed subgroups of F in the next

proposition, and hence there exist diagram group representations of Fn that satisfy

Conjecture 2.4.2.

Corollary 3.2.3. There exists a representation of Fn as a diagram group for every

n ≥ 2 such that for any subgroup H of Fn, Core(H) = Comp(H).

Proof. By Lemma 5.10 of [4] and Theorem 5.11 of [4], the group ~Fn is isomorphic

to Fn+1 for n ≥ 2. Fix n, and let Si be the subset of all of finite dyadic rationals

whose sums of digits are equivalent to i modulo n. Then ~Fn =
⋂n−1
i=0 StabF (Si). In

other words, f ∈ ~Fn if and only if for every i and every s ∈ Si, f(s) ∈ Si. Then if

f ∈ Core( ~Fn), it is dyadically-piecewise- ~Fn by Theorem 5.6 of [6], and in particular

f(s) ∈ Si for every i and s ∈ Si. Hence f ∈ ~FN , and so Core( ~Fn) = ~Fn. The proof is
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finished by Proposition 3.2.2.

Next, recall that given two diagram groups Gi = D(〈Xi|Ri〉, ui) for i = 1, 2

with X1 ∩ X2 = ∅, the direct product G1 × G2 is isomorphic to the diagram group

D(〈X1 ∪ X2|R1 ∪ R2〉, u1u2) [7], where every diagram in G1 × G2 is simply a sum

∆1 + ∆2 for some ∆i ∈ Gi and i = 1, 2.

Proposition 3.2.4. If for i = 1, 2, Gi is a diagram group such that for any subgroup

Hi of Gi we have Core(Hi) = Comp(Hi), then for any finitely generated subgroup H

of G1 ×G2, we also have Core(H) = Comp(H).

Proof. Let H = 〈(x1, y1), . . . , (xn, yn)〉, and consider one of the generators of H,

(xi, yi). Let ∆1 be the diagram in G1 corresponding to xi and ∆2 be the diagram

in G2 corresponding to yi. Then (xi, yi) corresponds to the diagram ∆1 + ∆2. In

particular, ε(l(top(∆1))) + ∆2 and ∆1 + ε(l(top(∆2))) are components of (xi, yi),

and hence accepted by the core. Thus (1, yi) and (xi, 1) are both accepted by the

core of H. Let H1 = 〈x1, . . . , xn〉 and H2 = 〈y1, . . . , yn〉. Notice that in the core

of H cells from G1 and cells from G2 have totally distinct labels and thus are never

identified, so any folding done of cells with labels from G1 are also folded in H1, and

cells from G2 are folded in H2. Thus if the core of H accepts (x, y) and ∆1 is the

diagram corresponding to x in G1 and ∆2 is the diagram corresponding to y in G2,

we have that x is also accepted by the core of H1 and is thus in Comp(H1), while

y is accepted by the core of H2 and is thus in Comp(H2), implying that Core(H)

is a subset of Comp(H1) × Comp(H2). It is clear that Comp(H1) × Comp(H2) is a

contained in Comp(H), which is contained in Core(H) by Guba and Sapir. Thus

Core(H) = Comp(H) = Comp(H1)× Comp(H2).
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Chapter 4

Extending the Stallings 2-Core Construction to Thompson’s Group T

4.1 Generalized Definition of the Stallings 2-Core

There are many possible approaches to generalizing the Stallings 2-core construc-

tion to annular and braided diagram groups, and in this section we look at one

way which works especially well for T . Specifically we translate the language of the

Stallings 2-core construction for diagram groups into the pair of trees language used

to describe F , since this language is the very natural for extending F to T and is

easy to depict. Just as Golan proved in [6] that given a subgroup H of F , Core(H)

is the subgroup of F consisting of functions that are dyadically-piecewise-H (see

section 4.2), we show that given a subgroup H of T and the appropriate definition

of Core(H), Core(H) is exactly the subgroup of T consisting of functions that are

dyadically-piecewise-H. One inclusion here is the same as F , but the other direction

is a rather different flavor.

It is also worth noting that trying to show that Core(H) = Comp(H) in T is not

exactly well-defined, since there is not a completely clear analog in annular diagram

groups of components of an element in a diagram group. For example, consider that

x0⊕x0 has components 1⊕x0 and x0⊕1. Indeed, it can be shown that all components

in F arise from repeatedly combining 1 with other elements of F via ⊕, where those

other elements fix 0 and 1, but no other elements of [0, 1]. However, as we have

already observed, given f, g ∈ T , f ⊕ g ∈ T if and only if f, g ∈ F . The notion

of being dyadically-piecewise-H does generalize well, and is our chosen method for

characterizing the core of a subgroup H of T .

Definition 4.1.1. The core of a finitely generated subgroup H = 〈x1, . . . , xn〉 ≤ T
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is a labeled directed graph constructed in the following way. First, begin with all

the reduced tree diagrams for x1, . . . , xn and identify all the roots of trees in these

diagrams together. This vertex formed by identifying all the roots is called the root

of the core. The label of each left edge is 0 and the label of each right edge is 1.

Proceed by doing the following steps as many times as possible:

1. If two vertices are identified, identify their left children and left edges, along

with their right children and right edges.

2. If two vertices have their left children and their right children identified respec-

tively, then identify the vertices.

This process will stop since there are only finitely many edges and vertices. Let C(H)

denote the core of H.

Observe that the root of the core corresponds to the distinguished path of the

core of a subgroup of a diagram group, and that the vertices correspond to edges

and a vertex together with its left and right children correspond to cells. Thus the

identification process used in creating the core also corresponds. We can also give an

analogous way to define acceptance by a core.

Definition 4.1.2. An element x ∈ T is said to be accepted by C(H) if there is a

homomorphism φ of labeled directed graphs from the reduced diagram of x to the

core, where a graph homomorphism is a map such that vertices are sent to vertices,

edges are sent to edges of the same label, and if u and v are vertices such that (u, v)

is a directed edge e, then (φ(u), φ(v)) is the directed edge φ(e).

Checking whether such a homomorphism exists is practically accomplished by first

mapping the roots of the reduced diagram of x to the root of C(H), and then identi-

fying edges and vertices from the diagram of x with edges and vertices of C(H) using

the same two steps outlined above repeatedly. Either a natural graph homomorphism
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to the core will arise from the identifications, or a contradiction (e.g., a vertex of in

the diagram of x being identified with two different vertices in the core, or a vertex

in x which has children is identified with a vertex in the core that has no children)

is reached and the process cannot continue, implying that no such homomorphism

exists. In particular, checking if x is accepted by C(H) is decidable.

Example 4.1.3. For example, we can compute C(F ) by using the generators x0 and

x1 of F . This example is depicted in Figure 4.1, where numbers are used for the

vertices to signify that they are identified. The first step of constructing the core

would be to label both roots of trees in the diagrams of x0 and x1 by 1, to show that

they are all the same vertex on the core.

1

2

3

1

2

3

4

1

2

3

4

4 4 3

1

3

3

1

2 3

4

=⇒

Figure 4.1: An intermediary step in constructing the core of 〈x0, x1〉 is shown on the
left, with The identified pairs of trees for x0 on the left and x1 in the middle. The
final core is shown on the right.

Next identify all left children of vertex 1 as vertex 2, and identify all right children

of vertex 1 as vertex 3. Notice that from the diagram of x0, we see that vertex 2 has

left child 2 and vertex 3 has right child 3, so we can label all corresponding children

of vertices labeled 2 and 3 accordingly. Next, since it has not yet been identified with

other vertices, let us label the right child of 2 by 4, and do so for all instances of
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the vertex 2 in the diagram. Then 4 is also in one instance the left child of 3, so

update the core once again. Finally, all possible identifications and labels have been

completed, so the core is complete, and it has 4 vertices and is shown on the right in

the figure.

Let the subset of T accepted by the core of a finitely generated subgroup H

be denoted by Core(H). Then the next proposition proves that Core(H) is also a

subgroup of T that contains H, although it may be larger.

Lemma 4.1.4. Core(H) is a subgroup that contains H.

Proof. By construction, C(H) accepts the generators of H, so it suffices to prove that

Core(H) is a subgroup. Suppose x ∈ Core(H). It is clear that x−1 ∈ Core(H) since

the diagrams for x and x−1 are isomorphic.

Suppose x, y ∈ Core(H). Then the unreduced tree diagram corresponding to xy is

accepted by C(H), since the only overlap between the two diagrams in the unreduced

product diagram is the root, which is sent to the same place in the core. Furthermore,

if a dipole is removed from a diagram accepted by the core, then the vertices which are

identified by removing the dipole were also identified in the core, so the core accepts

the reduced diagram. Thus xy ∈ Core(H).

4.2 The Closure of a Subgroup of T

A subgroup H ≤ T is said to be closed if Core(H) = H, in which case determining

whether any element g ∈ T is in H is very simple. In order to investigate which

subgroups of T are closed, we need to first characterize Core(H), which is the goal of

this section.

A function f ∈ T is said to be dyadically-piecewise-H if there exists functions
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fi ∈ H and dyadic rationals αi for i = 1, . . . , n such that

f(t) =



f1(t) t ∈ [0, α1]

f2(t) t ∈ (α1, α2]

...

fn(t) t ∈ (αn−1, 1]

Thus f , although it may not be in H itself, is composed of pieces of functions from

H. The subgroup of T of all elements which are dyadically-piecewise-H is written

as Piec(H). For example, it is an observation that if f ⊕ g is in Core(H), then so is

1 ⊕ g, which is the identity on [0, 1
2
] and f ⊕ g on [1

2
, 1]. Nevertheless, the subgroup

generated by f ⊕ g need not contain 1⊕ g, and so Core(H) may indeed contain more

than H, just as was the case for F .

When proving that Core(H) = Comp(H), Golan proved that Core(H) ⊂ Piec(H)

in the case of F [6], but it is also true for T with very little alteration. The proofs

presented here for Lemmas 4.2.1 and 4.2.2 are the result of discussions between the

author with Golan.

Since edges on trees and the core are labeled with 0 for left and 1 for right, paths

and their labels will be referred to interchangeably. For every leaf in a pair of trees

diagram of x ∈ T , let t+, t− ∈ {0, 1}∗ be the labels of the unique positive and negative

paths to the leaf. Thus x is associated with t+ → t−, since the final vertex on the

path t+ is associated with the final vertex on the path t−. It also has the following

equivalent meaning. Viewing x as a function on binary words, t+ → t− means that x

applied to a binary word beginning with t+ replaces the prefix with t−. For example,

x0 contains 00→ 0, and rewrites binary words as follows, where α is any finite binary
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word:

00α→ 0α

01α→ 10α

1α→ 11α

This hearkens back to the original definition of diagram groups using rewriting sys-

tems.

Lemma 4.2.1. Let H = 〈x1, . . . , xn〉 ≤ T , and let u, v be a vertices of the diagrams

for some xi, xj respectively. If u and v are identified in the core of H, then there exists

a non-negative integer lu,v such that for any directed path with label tu to u in xi and

any directed path with label tv to v in xj, as well as for any finite binary word α with

|α| ≥ lu,v, there exists a not necessarily reduced diagram for some g ∈ H containing

tuα→ tvα.

Proof. We proceed by considering the construction of the core. At the beginning,

only roots are identified, so either they are roots from different trees or u = v, and

they are vertices from the same xi. If they are roots, the only directed path from the

root to the root is the empty path, and hence for l = 0 and any finite binary word α

we can simply take g to be the unreduced trivial diagram of depth |α|.

If u = v and they are vertices in xi, either they are leaves, in which case there

are two directed paths to u = v from the root, or they are not leaves in which case

there is only one directed path to u = v from the root. Observe that if there is g ∈ H

containing tu → tv, then up to simply adding dipoles to g, g contains tuα → tvα for

any finite binary word α. Thus if both paths are the same, g can once again be the

trivial diagram, and if both paths are different, then g can be a diagram of xi. Then

l = 0 still works, and by the above observation, we are done with the base case of
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induction.

Now suppose that the result holds up to a certain point in the construction of the

core, and then two vertices are identified in the core. Since there are two ways to

identify vertices, we have two cases to consider.

First, assume that u and v are the left or right children of two identified vertices,

wu and wv from xi and xj respectively. Since the cases are symmetric, assume they

are both left children. If neither u nor v are leaves, then any directed path in xi

or xj from the root to u or v go through wu or wv respectively. Thus, given any

directed paths from the root to u or v with labels tu and tv respectively, we have

tu = twu0 and tv = twv0 for some directed paths with label twu and twv to wu and

wv. By induction there exists l′ = lwu,wv such that if |α| ≥ l′, then there exists g ∈ H

containing twuα→ twvα. Thus if |α| ≥ l′−1, there exists g ∈ H containing tuα→ tvα

since tu = twu0, and tv = twv0. Therefore lu,v = max{l′ − 1, 0} suffices.

Suppose that u is a leaf and v is not a leaf. Up to taking x−1i instead of xi, we

may suppose that wu is in the negative part of the diagram of xi, hence xi contains

tu,+ → twu0 where tu,+ is the unique positive path to u (recall that a path is positive

if it is in the input tree for the pair of trees representation of g, and it is called

negative if it is in the output tree). Then if tu is a path in xi to u, either tu goes

through wu, in which case we can use the same argument as when u is not a leaf, or

tu = tu,+. Thus xi contains tu,+ → twu0, and by the previous case there is lwu,wv such

that for any finite binary word α of length at least lwu,wv , there is a g ∈ H containing

twuα→ twvα, where twv0 is any path in xj to v which must go through wv. Thus for

any finite binary word α of length at least lwu,wv − 1, xi · g contains tu,+α → twv0α.

Since tu = tu,+, tv = twv0, xi · g contains tuα→ tvα as desired.

For the second case, suppose that the children of u and v have already been

identified, and hence u and v are being identified. This time, as u and v have children,

they are clearly not leaves. Let ul, ur, vl, vr be the left and right children of u and v
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respectively. Then choose l = max{lul,vl , lur,vr} + 1. Then if |α| ≥ l, we can write α

as 0α′ or 1α′. Since both cases are similar, we will consider the former case. Then

|α′| ≥ lul,vl , hence there exists g ∈ H taking tulα
′ → tvlα

′. Since tulα
′ = tuα and

tvlα
′ = tvα, we are done.

This lemma generalizes to any two directed paths in the core from the root to the

same end point.

Lemma 4.2.2. Let H = 〈x1, . . . , xn〉 ≤ T , and let p and q be the labels of directed

paths in C(H) from the root to the same vertex. Then there exists a non-negative

integer l such that for every α ∈ {0, 1}∗ with |α| ≥ l, there exists g ∈ H containing

pα→ qα.

Proof. Observe that any directed path in the core can be decomposed into p1, . . . , pk

where each pi is the label of some directed path (not necessarily from the root) in

some xji , and the concatenation p1 ·p2 · . . . ·pk is well-defined and the original directed

path.

Thus let p = p1, . . . , pk and q = q1, . . . , ql be such decompositions. We proceed by

induction on k+l, with the base case of k+l = 2 being the previous proposition. Now

suppose m = k + l ≥ 3. Up to swapping the roles of p and q and taking the inverse

of the element g that we find, we may assume that k ≥ 2. Let p1 ∈ xi and p2 ∈ xj,

with u the last vertex of p1 and v the first vertex of p2. Since v is on a directed path

in xj, it is not a leaf, so there exists a unique path p′1 in xj to v. Now, since p1 and

p′1 satisfy the conditions of the previous proposition, there exists l′ such that for any

|α′| ≥ l, there exists g′ ∈ H containing tuα
′ → tvα

′. Thus if |α| ≥ l − |p2 . . . pk|,

then g′ contains tup2 . . . pkα → tvp2 . . . pkα. Since p′1 and p2 are in the same tree, by

induction there is a g ∈ H containing tvp2 . . . pkα → q1 . . . qlα if |α| ≥ l′′ for some

l′′. Up to originally taking a larger quantity, we may assume l′ ≥ l′′, and hence the

element g′g contains pα→ qα.

35



In particular, this last proposition directly implies that every element of Core(H)

is dyadically-piecewise-H. Notice that this implies that if H ≤ F , then any element in

Core(H) is dyadically-piecewise-H, and since every element of H stabilizes 0, so does

every element in Core(H). Thus Core(H) ≤ F and this extension of the Stallings

2-core to T coincides with its definition in F .

In our next step towards proving that Core(H) = Piec(H), we need the following

technical lemma.

Lemma 4.2.3. For i = 1, 2, let hi be the linear bijection from some standard dyadic

interval [ a
2n
, a+1

2n
] ⊂ [0, 1] to [ bi

2ni
, bi+1

2ni
] ⊂ [0, 1] for some non-negative integers a, n, b1, b2, n1, n2.

If there exists a dyadic rational γ ∈ ( a
2n
, a+1

2n
) such that h1(γ) = h2(γ), then h1(t) =

h2(t) for all t ∈ [ a
2n
, a+1

2n
].

Proof. By definition, hi(t) = 2n−ni(t − a
2n

) + bi
2ni

. Since h1(γ) = h2(γ), we have the

following:

2n−n1(γ − a

2n
) +

b1
2n1

= 2n−n2(γ − a

2n
) +

b2
2n2

2n2(2nγ − a) + b12
n2 = 2n1(2nγ − a) + b22

n1

b12
n2 − b22n1 = (2nγ − a)(2n1 − 2n2)

Since γ ∈ ( a
2n
, a+1

2n
) is a dyadic rational, 2nγ − a is a dyadic rational in (0, 1).

Since n2, n1, b1, b2 are non-negative integers, b12
n2 − b22n1 is an integer. Thus (2nγ −

a)(2n1 − 2n2) must be an integer.

There are then two cases to consider, either n1 = n2 or n1 6= n2. If n1 = n2, then

since h1(γ) = h2(γ), the above equation simplifies to b1 = b2, and thus h1 and h2 are

the same linear function. If n1 6= n2, then without loss of generality n1 > n2. Since
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2nγ − a is a dyadic rational, let 2nγ − a = c
2m

for some integers m ≥ 0 and c. Then

b12
n2 − b22n1 = (2nγ − a)(2n1 − 2n2)

b12
n2 − b22n1

2n1 − 2n2
=

c

2m

2m2n2(b1 − b22n1−n2)

2n2(2n1−n2 − 1)
= c

2m(b1 − b22n1−n2)

(2n1−n2 − 1)
= c

Notice that 2m and 2n1−n2 − 1 are relatively prime, and thus
2m(b1 − b22n1−n2)

(2n1−n2 − 1)

is an integer if and only if
(b1 − b22n1−n2)

(2n1−n2 − 1)
is an integer. But

c

2m
=

(b1 − b22n1−n2)

(2n1−n2 − 1)
.

Observe that 0 < c
2m

= 2nγ − a < 1 since γ ∈ ( a
2n
, a+1

2n
), and thus 2nγ − a = c

2m
∈

(0, 1). Therefore
(b1 − b22n1−n2)

(2n1−n2 − 1)
cannot be an integer, which is a contradiction since

c =
(b1 − b22n1−n2)

(2n1−n2 − 1)
is an integer. Thus n1 > n2 is impossible.

Lemma 4.2.4. Let H be a subgroup of the Thompson group T , and let g ∈ T be

dyadically-piecewise-H. Then g ∈ Core(H).

Proof. Since g is dyadically-piecewise-H,

g(t) =



h1(t) t ∈ [α0, α1]

h2(t) t ∈ [α1, α2]

...

hm(t) t ∈ [αm−1, αm]

where αi are all dyadic rationals and α0 = 0 ≡ 1 = αm, and each hi ∈ H. Since

every such interval with dyadic rational endpoints can be subdivided into standard

dyadic intervals of the form [ a
2n
, a+1

2n
] for some integers n ≥ 0 and a, without loss

of generality each [αi, αi+1] = [ ai
2ni
, ai+1

2ni
] for some integers ni ≥ 0 and ai. We can
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furthermore assume g restricted to any particular [αi, αi+1] is linear, up to simply

dividing into more intervals.

With each standard dyadic interval [ a
2n
, a+1

2n
] ⊂ [0, 1], there is a unique finite

binary word u associated with that interval, where 0.u = a
2n

and 0.u111 . . . = a+1
2n

.

For example, associated with the interval [1
4
, 2
4
] is u = 01, noting that 0.01 = 1

4
in

binary and 0.01111 . . . = 0.1 = 1
2

in binary.

Let ui be the finite binary word associated with [αi−1, αi] = [ ai−1

2ni−1 ,
ai−1+1
2ni−1 ]. Recall

that each ui also corresponds to the label of a directed path on a binary tree consisting

of choices of left indicated by 0 and right indicated by 1. Likewise, let vi be the finite

binary word associated with g([αi−1, αi]), which is also a standard dyadic interval. To

show g is accepted by the core, it suffices to prove that for each ui and vi, both ui and

vi are the labels of paths on the core of H starting from the root and ending at the

same vertex on the core, as this will allow us to explicitly construct a homomorphism

of labeled directed graphs from g to C(H). For the rest of this proof, we will refer to

ui and vi as both the labels of the directed paths and the directed paths themselves.

Since hi linearly maps [αi−1, αi] to g([αi−1, αi]), up to adding dipoles, the pairs of

tree diagram for hi must contain a path labeled by ui from the root to a leaf on the

input tree of hi, and a path labeled by vi from the root to a leaf on the output tree

of hi, such that the corresponding leaves are identified in the diagram. Thus in the

reduced diagram for hi, there exist paths u′i and v′i from the root to identified leaves

in the domain and output trees respectively such that u′iα = ui and v′iα = vi for some

possibly empty finite binary word α.

Then since each hi is accepted by the core, u′i and v′i are paths on the core of H

from the root to the same vertex. It suffices to prove that ui and vi are also paths on

the core of H from the root to some vertices. Indeed, since u′i and v′i end at the same

vertex on the core of H, and since ui = u′iα, vi = v′iα, ui and vi must end at the same

place if the paths exist on the core of H. We can further simplify it to proving that
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ui is a path on the core, since if u′iα is a path on the core and u′i and v′i end in the

same place, then v′iα must also be a path on the core.

Let u′i be associated with the standard dyadic interval [α′i−1, α
′
i]. For the rest of

the proof, it will be convenient to use a finite binary word interchangeably with the

associated standard dyadic interval. For example, since u′i is a prefix of ui, treating

them as intervals we have ui ⊂ u′i.

Suppose now that ui ends with a 0. Then if v is any other binary word such that

v1n = ui1
n, we must have that ui is a prefix of v. Said another way, [αi−1, αi] is the

largest standard dyadic interval with αi as a right endpoint. Thus if αi = α′i, then

u′i ⊂ ui, and since ui ⊂ u′i as well, we have ui = u′i. Hence ui would be a path on the

core of H as desired.

Otherwise, if αi 6= α′i, then ui is strictly contained in u′i. Given any two dyadic

intervals, their intersection is either empty, a single end point, or one of the two

intervals. In particular, consider u′i+1, defined in the same way as u′i (replace each

instance of i in the above paragraphs defining u′i with i+1 to define u′i+1). Notice that

hi restricted to u′i and hi+1 restricted to u′i+1 are linear maps, and since g is continuous,

hi+1(αi) = hi(αi). Since αi is not the right end point of u′i, since αi ∈ u′i ∩ u′i+1, and

since u′i+1 contains elements to the right of α′i, αi must also be interior to u′i+1. Thus

we can apply Lemma 4.2.3 to hi and hi+1 restricted to u′i∩u′i+1 to get that they must

actually be the same linear function.

Since ui as a binary word ends with a 0, we can write ui = u′′i 0. Then ui+1 = u′′i 10n

for some n ≥ 0. If n = 0, then [αi−1, αi+1] is a dyadic interval, and so we can replace

the intervals [αi−1, αi] and [αi, αi+1] in the definition of g as dyadically-piecewise-H

with the single interval [αi−1, αi+1]. By induction on m, where m is the number of

functions required in the decomposition of g as dyadically-piecewise-H, we are done

(if m = 1, the statement is obvious).

Thus suppose that n > 0. Then ui+1 ends with a 0, and we can use the same
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argument to show that either ui+1 is a path on the core of H or hi+1 and hi+2 are the

same function. Continuing in this way, we will eventually stop, since either we will

get a path on the core, or we will get to some k such that hi, hi+1, . . . , hi+k are all

the same function. If we get that ui+1 is a path on the core, then in particular u′′i 1

is a path on the core. Since no vertex on the core has a right child and not a left,

u′′i 0 = ui is a path on the core as desired. In the second case, the endpoint that we

stop at is αi+k = 1, since this is the furthest right we can go without wrapping back

around. However, this cannot actually happen, since 1 is only the right end point

of a standard dyadic interval if the corresponding binary word ends is a sequence of

1’s. Each ui+j in our sequence was shown to end with 0, since if it ended with a 1 we

could have already concluded that ui was a path on the core of H.

The final case to consider is when ui ends with a 1. In this case, if v is a binary

word corresponding to the same fraction as ui, then ui must be a prefix of v. Thus

[αi−1, αi] is the largest standard dyadic interval with αi−1 as a left endpoint, and we

can use an analogous argument considering hi−1 and hi together, rather than hi+1

and hi.

Taken together, Lemmas 4.2.2 and 4.2.4 directly prove the following theorem,

which is the main goal of this section.

Theorem 4.2.5. Let H = 〈x1, . . . , xn〉 be a subgroup of T . Then g ∈ T is accepted by

the core of H if and only if g is dyadically-piecewise-H. That is, Core(H) = Piec(H).

In particular, the core of H does not depend upon the chosen set of generators of

H. It also makes the proof of the following proposition quite simple.

Proposition 4.2.6. Let H ≤ T and g ∈ T , then Piec(gHg−1) = g Piec(H)g−1

40



Proof. Suppse h ∈ Piec(H). Then

h(t) =



h1(t) t ∈ [0, α1]

h2(t) t ∈ (α1, α2]

...

hn(t) t ∈ (αn−1, 1]

for some h1, . . . , hn ∈ H and dyadic rationals αi.

Then we must also have

ghg−1(t) =



gh1g
−1(t) t ∈ g−1([0, α1])

gh2g
−1(t) t ∈ g−1((α1, α2])

...

ghng
−1(t) t ∈ g−1((αn−1, 1])

Since elements of T are bijections that take dyadic rationals to dyadic ratio-

nals, g−1([0, α1]), . . . , g
−1((αn−1, 1]) is still a dyadic partition of [0, 1]. Thus ghg−1 ∈

Piec(gHg−1), and so g Piec(H)g−1 ⊂ Piec(gHg−1). The reverse inclusion is proved

similarly.

4.3 Examples of Closed Subgroups

Our next goal is to explore some of the ramifications of Theorem 4.2.5 by looking

at examples of closed subgroups of T .

Corollary 4.3.1. If H is any subgroup of T , then Core(H) is closed.

Proof. Since Core(H) = Piec(H), and since Piec(Piec(H)) = Piec(H), Core(Core(H)) =

Core(H). Thus Core(H) is closed.
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Since a similar result is true in F , that is, the subgroup of F accepted by the core

of a subgroup H of F is exactly Piec(H) [6], we also have the following immediate

corollary.

Corollary 4.3.2. If H ≤ F is closed, then H is also closed in T .

Proof. If h ∈ T is accepted by the core of H in T , then h is in Piec(H). Since every

function in H fixes 0, so must h. Thus h ∈ F and h ∈ Piec(H) by Theorem 5.6 of

[6]. As Piec(H) = H, h ∈ H.

A natural question one might ask about T is whether any subgroup H such that

Core(H) = T must itself be equal to T . We can show by example that this is not

true, however.

Example 4.3.3. Let H = 〈x0, c0〉, where x0 and c0 are the elements whose tree

diagrams are depicted in Figure 4.2. Then Core(H) = T , but H 6= T .

Proof. The fully simplified core of H is shown in Figure 4.2, as well as an intermediary

step in computing the core. In short, vertices with the same number in the figure are

identified in the process of constructing the core. For example, for the diagram of

c0 on the left of the figure, the first identification are the roots on top and bottom,

which are both thus labeled 1. The left and right children of these two nodes are then

identified, but we notice the the left child of the root of the top tree is the right child

of the root of the bottom tree, thus we can label both left and right children as 2.

Taking both diagrams for x0 and c0 together, we see that vertices 2 and 3 must be

identified, as the children of 1 in both trees are identified. From this, the right child

of 2 is 4 and the right child of 3 is 3 from x0, and hence 4 = 3 as well. We also see

that the left child of 2 is 2, and thus vertices 1 and 2 both have 2 as the left and right

children. Therefore vertices 1 and 2 are identified, and so the core of 〈x0, c0〉 consists

of a single vertex which is its own left and right children. This is exactly the core

depicted on the right in the figure.

42



Observe that there is a graph homomorphism from any full binary tree to the core

of 〈x0, c0〉, given by simply sending every vertex of any tree to the vertex labeled 1.

Since the single vertex in the core is its own children, any relation between vertices

and edges is preserved by this homomorphism. Thus every element of T is accepted

by this core, and we immediately get that T ⊂ Core(H), and hence Core(H) = T .

1

1

2

32

3

4

1

1

2 2 =⇒
1

Figure 4.2: The core of 〈x0, c0〉 on the right, computed from initial identifications
done to the diagrams for x0 (left) and c0 (middle).

However, in order to show that H 6= T , it suffices to check that H ∩ F 6= F . In

order to do this, recall that c0 = x0c1, where c31 = 1. Since c20 = 1, every element of

H can be written as xn0
0 c0x

n1
0 c0 . . . c0x

nk
0 , for some k, ni ∈ Z, and ni 6= 0 if i 6= 0, k.

Since c0 = x0c1, we have x−10 c0 = c1, and so (x−10 c0)
3 = 1. Therefore we have

c0x
−1
0 c0 = x0x

−1
0 (c0x

−1
0 c0)x

−1
0 c0c0x0

= x0(x
−1
0 c0)

3c0x0

= x0c0x0
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Thus, if n is a positive integer, we have

x−n0 = c0(c0x
−1
0 c0)

nc0

= c0(x0c0x0)
nc0

Therefore every element of H can be written as xn0
0 c0x

n1
0 c0 . . . c0x

nk
0 , for some

k, ni ∈ Z, ni 6= 0 if i 6= 0, k, and ni ≥ 0, i.e., no negative powers of x0 need be used.

Furthermore, observe that since (c0x0)
3 = 1, we have x0c0x0c0x0 = c0. In particular,

if 1 < i < k − 1, then if ni = 1 we can replace the subword x
ni−1−1
0 x0c0x

ni
0 c0x0x

ni+1−1
0

with simply xni−1−1c0x
ni+1−1
0 and further reduce the word. Thus we may assume that

ni ≥ 2 except possibly for i = 0, 1, k − 1, k, and if nk 6= 0, then nk−1 ≥ 2 as well.

Finally, we will show if h1, h2 ∈ H have the forms h1 = xn0
0 c0x

n1
0 c0 . . . c0x

nk
0 and

h2 = xm0
0 c0x

m1
0 c0 . . . c0x

ml
0 as above, then h1(0) = h2(0) if and only if h1h

−1
2 is an

integer power of x0. Thus H ∩ F = 〈x0〉. If h1h
−1
2 is an integer power of x0, then

clearly h1(0) = h2(0), since x0(0) = 0.

For the other direction, it suffices to prove statement for n0 = 0 and m0 = 0.

Indeed, if it is true for all such h1 and h2 with n0 = 0 and m0 = 0, then take h1

and h2 arbitrary. Then h′1 = x−n0
0 h1 and h′2 = x−m0

0 h2 have the desired form with

n0 = 0 = m0. Since x0(0) = 0, we still have that h′1(0) = h′2(0), and thus h′1h
′−1
2

is a power of x0. Thus x−n0
0 h1h

−1
2 x−m0

0 is a power of x0, and so h1h
−1
2 is as well, as

desired.

We can view x0 and c0 as functions which rewrite binary words as described in
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the following table:

x0 c0

00α→ 0α 0α→ 1α

01α→ 10α 1α→ 0α

1α→ 11α

where a binary string represents a dyadic rational. For example, 1
2

is the binary

number 0.1, hence corresponding to the string 1, 3
8

is the binary number 0.011, and

thus corresponds to the binary string 011. Since x0(
1
2
) = 3

4
, we think of x0 as rewriting

1 to 11.

Using this notation allows us to compactly compute that h1 rewrites 0 in the

following way (recall that functions are applied from left to right):

h1(0)→ c0x
n1
0 c0 . . . c0x

nk
0 (0)

→ xn1
0 c0 . . . c0x

nk
0 (1)

→ c0x
n2
0 . . . c0x

nk
0 (1n1+1)

→ xn2
0 c0 . . . c0x

nk
0 (01n1)

→ xn2−1
0 c0 . . . c0x

nk
0 (101n1−1)

→ c0x
n3
0 . . . c0x

nk
0 (1n201n1−1)

→ xn3
0 c0 . . . c0x

nk
0 (01n2−101n1−1)

→ xn3−1
0 c0 . . . c0x

nk
0 (101n2−201n1−1)

→ c0x
n4
0 . . . c0x

nk
0 (1n301n2−201n1−1)

...
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→ c0x
nk
0 (1nk−101nk−2−20 . . . 01n2−201n1−1)

→ 1nk01nk−1−20 . . . 01n2−201n1−1

assuming nk > 0. Note that we do use the fact that each ni ≥ 2 for 2 ≤ i < k, in

order to guarantee that 1ni−1 is not an empty string as we use the above rewriting

rules. Similarly, if nk = 0, then h1 rewrites 0 to 01nk−1−101nk−2−20 . . . 01n2−201n1−1.

Likewise h2 rewrites 0 to 1ml01ml−1−20 . . . 01m2−201m1−1 if ml > 0 and to

01ml−101ml−1−20 . . . 01m2−201m1−1 if ml = 0.

Thus if h1(0) = h2(0), we must have nk = ml. Likewise, either h1 and h2 rewrite

0 to the exact same binary string, or one of them rewrites 0 to a binary string which

ends with some number of 0s. In the first case, h1 = h2, and in the second case,

without loss of generality, h1 takes 0 to a longer binary string than h2. In this case,

we still must have nk−i = ml−i for each i < l, and then nk−i = 2 for each i ≥ l, with

the exception that n1 = 1. It is possible either for m1 = nk−l+1 or m1 = 1.

Thus h1h
−1
2 = c0x0(c0x

2
0)
n(c0x0)

−ε for ε = 0 or ε = 1 and n ≥ 0 (since h1 rewrites

0 to a longer string than h2). If ε = 0, it is easy to verify that c0x0 rewrites 0 to

110, and that c0x
2
0 rewrites 110α to 1100α. Thus if ε = 0, h1h

−1
2 (0) 6= 0, which is a

contradiction. Thus ε = 1.

To finish the proof, we show that c0x0(c0x
2
0)
n(c0x0)

−1 = x−n0 , and hence h1h
−1
2 is

a power of x0, as desired. The statement is clearly true for n = 0, and for n = 1 the

statement is x−10 = c0x0c0x
2
0x
−1
0 c0 = c0x0c0x0c0. This is equivalent to 1 = (c0x0)

3,

which is true since c0x0 = c−11 is an element of order 3.

We proceed by induction on n, with n > 1:
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c0x0(c0x
2
0)
n(c0x0)

−1 = c0x0(c0x
2
0)
n−1(c0x0)

−1(c0x0)(c0x
2
0)(c0x0)

−1

= x
−(n−1)
0 x−10 (by induction)

= x−n0

In the previous example, since x0c1 = c0, we have H = 〈x0, c1〉 = 〈x0, c0〉, where

c0 and c1 are finite order elements. Thus it so happens that 〈x0, c1〉 ∩ F = 〈x0〉 =

〈x0, c0〉∩F , and so one might ask whether a similar situation occurs for any subgroup

H of F , and any finite order element t ∈ T . However, one of the defining relations

of T is c1 = x1x
−1
0 c1x1 [2]. From this it is clear that x0 ∈ 〈x1, c1〉, hence we have the

following example.

Example 4.3.4. T = 〈x1, c1〉, and thus F ∩〈x1, c1〉 = F , which is strictly larger than

〈x1〉.

We can still make an effort to begin to classify the cores of subgroups of T of the

form 〈H, t〉 for H ≤ F and t ∈ T of finite order, however. Let us first suppose H = 1

is the trivial subgroup of F , the simplest case possible, and that t = cn.

Corollary 4.3.5. Core(〈cn〉) = 〈cn〉 for any n ≥ 0.

Proof. Since both trees in the reduced pair of trees representation of cn are the same,

any power of cn simply permutes their leaves. In particular, ckn and cjn have no

intersection as functions unless k ≡ j mod (n + 2). Thus the only functions which

are piecewise 〈cn〉 are themselves in 〈cn〉, and since Core(H) = Piec(H), we thus have

Core(〈cn〉) = Piec(〈cn〉) = 〈cn〉.
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We can actually prove a similar statement about not only 〈t〉, but any finite

subgroup of T .

Proposition 4.3.6. If H is a finite subgroup of T , then Core(H) = H.

Proof. By Theorem 1.3 in [3], H is conjugate to any other finite subgroup of the same

order. In particular, since cn generates a finite subgroup of order n + 2, H is either

trivial or conjugate to some 〈cn〉. If H is trivial, then its core consists of a single vertex

with no children, and hence the core only accepts the trivial element. Otherwise,

Core(H) = Piec(H) = Piec(〈gcng−1〉) for some g ∈ T , and so by Proposition 4.2.6,

Piec(〈gcng−1〉) = g Piec(cn)g−1 = 〈gcng−1〉 = H. Thus Core(H) = H as desired.

We next turn our attention to a collection of subgroups of T which are all of

quasi-finite index. A subgroup H of a group G is said to be of quasi-finite index if

there are only finitely many subgroups of G containing H [5]. In particular, if H

is a subgroup of T of quasi-finite index, then there are only finitely many options

for Core(H), and hence if we can classify those options, we can easily test for which

subgroup of T that Core(H) happens to be.

Fortunately, there is a nice class of such subgroups of T . Given any α ∈ [0, 1),

the pointwise stabilizer of α, PStabT (α), is a maximal subgroup as the next lemma

shows. Savchuk showed a similar result in [18] by proving that PStabF (α) is a maximal

subgroup of F . In order to prove this result in T , we first prove the following technical

lemma.

Lemma 4.3.7. Let α, β, γ, δ be dyadic rationals in [0, 1) with α 6= γ and β 6= δ. Then

there exists an element h ∈ T such that h(α) = β and h(γ) = δ.

Proof. Let k be the smallest positive integer such that 2k(δ − β), 2k(γ − α), and

2kα are integers, and let ∆α,γ ∈ [0, 1) such that ∆α,γ ≡ γ − α mod 1. Likewise let

∆β,δ ∈ [0, 1) such that ∆β,δ ≡ β − δ mod 1. Then there exists k1, . . . , kj such that
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2k1 + . . . + 2kj = 2k∆β,δ, and each ki is an integer. Moreover, they can be chosen so

that j = 2k
′+k∆α,γ for some non-negative integer k′, since 2k∆α,γ is a positive integer,

and j can always be increased by 1 by replacing 2kj with 2kj−1 + 2kj−1.

Our goal is to define h as a piecewise function, and we can now begin to do that.

Since 2kα is an integer, [α, α + 1
2k+k′ ) is a standard interval. Thus we can define h

on [α, γ] in the following way, recalling that 0 ∼ 1, so for example [9
8
, 10

8
) is the same

interval as [1
8
, 2
8
).

h(t) =



2k1+k
′
t+ c1 t ∈ [α, α + 1

2k+k′ )

2k2+k
′
t+ c2 t ∈ [α + 1

2k+k′ , α + 2
2k+k′ )

...
...

2kj+k
′
t+ cj t ∈ [α + j−1

2k+k′ , α + j

2k+k′ ]

where c1 is a dyadic rational chosen so that h(α) = γ, and the remaining c2, . . . , cj

are dyadic rationals chosen to make the function continuous. Thus we have h(γ) =

h(α + ∆α,γ) = h(α + j

2k+k′ ), and since each interval has the same width of 1
2k+k′ , we

have h(α+ j

2k+k′ ) = h(α)+ 2k1+k′

2k+k′ + . . .+ 2kj+k′

2k+k′ = β+2−k(2k1 + . . .+2kj) = β+∆β,δ = δ.

Thus h(γ) = δ and h(α) = β as desired.

Repeat the process to define h on (γ, α) to get the desired element of T .

Proposition 4.3.8. For any α ∈ [0, 1), PStabT (α) is a maximal subgroup of T .

Proof. Let f, g ∈ T \ PStabT (α). If we show that g ∈ 〈PStabT (α), f〉, then since g

is arbitrary, 〈PStabT (α), f〉 = T , and hence PStabT (α) is a maximal subgroup. Let

β = f(α) and γ = g(α). Since f and g are piecewise linear functions of the form

2kx+m where m is a dyadic rational, we immediately get that β − α and γ − α are

dyadic rational, and hence γ − β is dyadic rational.

Since f(α) 6= α 6= g(α), we also have that α 6= β and α 6= γ. Let [aα, bα],

[aβ, bβ], and [aγ, bγ] be standard dyadic intervals of the same width such that α, β,
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and γ are in their respective intervals, and such that [aα, bα] is disjoint from both

[aβ, bβ] and [aγ, bγ]. Up to possibly choosing smaller intervals, we can assume that

[aβ, bβ] + γ − β = [aγ, bγ], since γ − β is a dyadic rational.

By Lemma 4.3.7, there exists h1, h2 ∈ T such that h1(bα) = bα, h1(aβ) = aγ,

h2(bα) = bα, and h2(bβ) = bγ. Then define h by

h(t) =



t t ∈ [aα, bα)

h1(t) t ∈ [bα, aβ)

t+ γ − β t ∈ [aβ, bβ)

h2(t) t ∈ [bβ, aα)

Thus h(α) = α and h(β) = γ, and so h ∈ PStabT (α). Hence fhg−1(α) =

hg−1(β) = g−1(γ) = α, and so fhg−1 ∈ PStabT (α). In particular, g ∈ 〈PStabT (α), f〉

as desired.

As an immediate corollary, we get that for any α ∈ [0, 1) and for any g ∈ T \

PStabT (α), Core(〈PStabT (α), g〉) = 〈PStabT (α), g〉) = T .

The next natural question is to extend the result to stabilizers of multiple points.

It turns out that if U is any finite collection of points from [0, 1), then PStabT (U)

also has quasi-finite index. Before proving this, we need a technical lemma similar to

Lemma 4.2 from [2]. Elements u1, u2, . . . , un ∈ [0, 1) are said to be cyclically ordered

if there exists j such that uj < uj+1 < . . . un < u1 < . . . uj−1.

Lemma 4.3.9. If u1, u2, . . . , un and v1, v2, . . . , vn are cyclically ordered elements of

[0, 1)/ ∼ with vi − ui dyadic rational, then there exists g ∈ T such that g(ui) = vi for

every i = 1, . . . , n.

Proof. First, assume u1 < u2 < . . . un and v1 < v2 < . . . vn using the natural order

on [0, 1). Take dyadic rationals ai,j and bi,j such that ai−1,2 < ai,1 < ui < ai,2,
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bi−1,2 < bi,1 < vi < bi,2, ai,2 − ai,1 = bi,2 − bi,1, and ai,2 − ui = bi,2 − vi for all i. Then

by Lemma 4.2 of [2], there is an element g ∈ F such that g(ai,j) = bi,j, and moreover,

g can be taken to have slope 1 on [ai,1, ai,2], hence g(ui) = vi.

If u1 and v1 are not the smallest elements of {u1, . . . , un} and {v1, . . . , vn} respec-

tively, then simply take dyadic rationals α, β so that u′1 − α < u′2 − α < . . . < u′n − α

and v′1 − β < v′2 − β < . . . < v′n − β, where u′i − α = ui − α or ui − α + 1 and

v′i − β = vi − β or vi − β + 1, depending on which is in [0, 1). Then we can use the

result from the first case to get g ∈ F such that g(u′i−α) = v′i− β. Let gα(t) = t−α

mod 1 and gβ(t) = t+ β mod 1. Then gαggβ(ui) = ggβ(u′i−α) = gβ(v′i− β) = vi, so

gαggβ is the desired element of T .

Theorem 4.3.10. Let U be a finite subset of [0, 1). Then PStabT (U) is a subgroup

of T of quasi-finite index.

Proof. Enumerate U as U = {u1, . . . , un} where u1 < u2 < . . . < un, and let g ∈

T \ PStabT (U). We proceed by induction on n. If n = 1, the statement is proven by

the previous proposition. For n > 1, there are two cases to consider. Either there is

some ui ∈ U such that the orbit of ui under g is infinite, or the orbit of every ui is

finite under g. Let Ug = {u ∈ U |g(u) 6= u}.

In the first case, for each i such that ui has finite orbit, there is some ki such that

gki(ui) = ui. Thus if k is the product of all such ki, then for every ui ∈ U , gk(ui) is

either ui or ui has infinite orbit under g. It suffices to prove that 〈PStabT (U), gk〉 is of

quasi-finite index rather than 〈PStabT (U), g〉, since 〈PStabT (U), gk〉 ≤ 〈PStabT (U), g〉.

Thus, without loss of generality, for any u ∈ Ug, we have gk(u) = u if and only if

k = 0. Moreover, Ug is not empty since at least one element of U has infinite order

under g.

The remainder of this case follows an argument similar to that in the proof of

Theorem 4.1 of [5]. There exists k ∈ N such that gk(Ug)∩U is empty, since U is finite

and the orbit of each element of Ug is infinite. Since Ug is non-empty by assumption,
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choose one element u ∈ Ug and fix it for the rest of this case. By Lemma 4.3.9,

there exists h ∈ T that pointwise fixes U ∪ gk(Ug \ {u}) and does not fix gk(u). In

particular, we may choose h ∈ PStabT (U). Then define g1 = gkhg−k, and observe

that g1 pointwise fixes U \{u} and g1(u) 6= u by construction. It suffices now to prove

that 〈g1,PStabT (U)〉 is of quasi-finite index, since it is a subgroup of 〈g,PStabT (U)〉.

In particular, we will show that 〈g1,PStabT (U)〉 = PStabT (U \ {u}), which is of

quasi-finite index by induction.

Clearly 〈g1,PStabT (U)〉 ≤ PStabT (U \ {u}). Let f ∈ PStabT (U \ {u}). Without

loss of generality, f(u) 6= u, since otherwise f ∈ PStabT (U) already. Since elements

of T preserve the cyclic order of elements of [0, 1), by Lemma 4.3.9, there exists

h1 ∈ PStabT (U) such that fh1(u) = g(u). In particular, g−1fh1(u) = u, and so

f ∈ 〈g1,PStabT (U)〉 as desired.

Thus, in this case, 〈g1,PStabT (U)〉 = PStabT (U \{v}) for some v ∈ U . As U is fi-

nite, there are only finitely many possibilities for subgroups containing 〈g1,PStabT (U)〉

by induction.

In the second case, the orbit of ui under g is finite for every ui ∈ U . Let V =

{gk(ui)|k ∈ Z, ui ∈ U}. Then V is finite, and either U ( V , or V = U . If U ( V ,

then there exists v ∈ V \U and u ∈ U such that g(u) = v. Choose h ∈ PStabT (U) so

that v has infinite order under h. This is always possible, since there exists a dyadic

rational a
2m

such that [ a
2m
, a+1

2m
] contains v strictly inside and no elements of U , and

then we can simply let h be defined as follows:

h(t) =



2t− a
2m

t ∈ [ a
2m
, a+1/4

2m
)

t+ 1
4
· 1
2m

t ∈ [a+1/4
2m

, a+1/2
2m

)

1
2
t+ 1

2
· a+1

2m
t ∈ [a+1/2

2m
, a+1

2m
)

t otherwise

52



Notice that h is a copy of x0 shrunk down to the interval [ a
2m
, a+1

2m
] and the identity

everywhere else. Thus v has infinite orbit under h, since all of (0, 1) has infinite order

under x0, and h fixes every u ∈ U since none of them are inside [ a
2m
, a+1

2m
]. Consider

the function ghg−1, and compute ghg−1(u) = hg−1(v) 6= u. Since the orbit of v under

h is infinite, hkg−1(v) 6= u for any k > 0. In particular, u has an infinite orbit under

ghg−1, and so we are back in case 1, which is already solved.

Finally, it remains to check if V = U , that is, the orbit of every element of U

is finite under g, and g(u) ∈ U for every u ∈ U . By Lemma 4.3.9, there exists

h1, . . . , hn−1 ∈ T such that hj(ui) = ui+j, where ui+j = ui+j−n if i + j > n. Since g

preserves cyclic order, there exists some k such that g(ui) = ui+k for each i. Then

gh−1k ∈ PStabT (U), and so 〈PStabT (U), g〉 = 〈PStabT (U), hk〉. Thus there are at

most n possibilities for 〈PStabT (U), g〉. In particular, 〈PStabT (U)〉 is determined by

U and some cyclic permutation σ of {1, . . . , n}, where hk(ui) = uσ(i).

It remains to see that each of these subgroups 〈PStabT (U), hk〉 is of quasi-finite in-

dex. But the argument is basically the same as we have already seen, and we can show

that every subgroup of T containing 〈PStabT (U), hk〉 is of the form 〈PStabT (V ), h′k′〉

for some V ⊂ U and h′k′ which cyclically permutes the elements of V .

Indeed, let g ∈ T \〈PStabT (U), hk〉. Either g permutes the elements of U , in which

case 〈PStabT (U), hk, g〉 = 〈PStabT (U), hj〉 for some j, or there exists u ∈ U such that

g(u) 6∈ U . In this case, we first restrict ourselves to considering 〈PStabT (U), g〉, which

we have already seen is of quasi-finite index and of the form 〈PStabT (V )〉 for some

V ⊂ U . Thus 〈PStabT (U), g, hk〉 = 〈PStabT (V ), hk〉, and either hk permutes the

elements of V or, as we showed in the beginning of the second main case of these

proof, we can add a single element v to V so that 〈PStabT (V ), hk〉 = 〈PStabT (V ′)〉,

where V ′ ⊂ V ∪ {v}. Without loss of generality, v ∈ U \ V , and so we are done.

If {un}n∈N is an enumeration of all dyadic rationals, then
⋂
n∈N PStabT ({u1, . . . , un}) =

{1}, and so T is quasi-residually finite, answering a question of Golan and Sapir from
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[5]. Moreover, we can now classify Core(〈PStabT (U), g〉) where U is a finite subset of

[0, 1) and g ∈ T .

Corollary 4.3.11. Let U = {u1, . . . , un} be any finite subset of [0, 1), and g ∈ T .

Then there exists a subset V ⊂ U and a cyclic permutation of {1, . . . , n} such that

for any h ∈ T with h(ui) = uσ(i) for each i, 〈PStabT (U), g〉 = 〈PStabT (V ), h〉 =

Core(〈PStabT (V ), h〉). Thus 〈PStabT (U), g〉 is closed, and its core is one of only

finitely many possibilities.

Proof. If g is the trivial element, then Core(PStabT (U)) = PStabT (U), since any

element of Core(PStabT (U)) is dyadically-piecewise PStabT (U), and in particular

must fix every element of U .

For any other element g, by the proof of Theorem 4.3.10, there exists V ⊂ U and

a permutation σ of V such that 〈PStabT (U), g〉 = 〈PStabT (V ), h〉 for some subset

V ⊂ U and any element h such that h(v) = σ(v) for every v ∈ V . The subgroup is

determined uniquely by V and σ (or any other permutation σ′ ∈ Sym(V ) such that

〈σ〉 = 〈σ′〉). To see that Core(〈PStabT (V ), h〉) = 〈PStabT (V ), h〉, observe that every

element of 〈PStabT (V )〉 permutes the elements of V . For f ∈ Core(〈PStabT (V ), h〉),

f is dyadically-piecewise 〈PStabT (V ), h〉, and hence f(v) ∈ V as well. In particular,

for a fixed element v0 ∈ V , there exists k such that f(v0) = σk(v0). As f ∈ T ,

f preserves the cyclic order of V , and any cyclic permutation of V is determined

uniquely by the permutation’s action on any single element of V . Hence f(v) = σk(v)

for all other v ∈ V as well. Thus fh−k ∈ PStabT (V ), and so f ∈ 〈PStabT (V ), h〉.

For the sake of completeness, we also include a proof here that V is quasi-residually

finite, again answering a question of Golan and Sapir.

Lemma 4.3.12. Let U be a finite collection of dyadic rationals of S1, and let u, v ∈

S1 \ U . Then there exists h ∈ H = PStabV (U), the pointwise stabilizer of U in V ,

such that h(u) = v.
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Proof. Let α be any dyadic rational, and let φα(f)(t) = f(t+ α)− α. φα is an inner

automorphism of V that simply rotates the unit circle, and hence takes pointwise

stabilizers to pointwise stabilizers. Thus without loss of generality, up to a rotation

of S1, we may assume that 0 ∈ U . Thus neither u nor v are 0, and without loss of

generality we may assume that u < v. Let k ∈ N be the smallest natural number such

that every element of U ∪ {u, v} is a multiple of 2−(k−2). Define P = {a2−k ∈ S1|a ∈

Z}. Clearly P contains U ∪ {u, v}, and moreover contains at least two elements

between u and v and at least one element larger than both u and v. Denote the

elements of P as p1, . . . , pm. Then there exists i, j such that pi = u, pj = v. Now

we may define h as the function that linearly sends the following pieces of S1 to each

other (see Figure 4.3 for a graphical depiction of h):

[0, pi−1) → [0, pi−1)

[pi−1, pi+1) → [pj−1, pj+1)

[pi+1, pj−1) → [pi+1, pj−1)

[pj−1, pj+1) → [pi−1, pi+1)

[pj+1, 1) → [pj+1, 1)

By the choice of k, we have that i + 1 < j − 1 since there are least two elements

of P between u = pi and v = pj, hence all the intervals are well-defined. Moreover,

observe that by construction of P , the slope of h on each piece is 1. Finally, by the

choice of k, we have that pi−1, pj−1, pi, pj 6∈ U , hence h ∈ PStabV (U), and clearly

h(pi) = pj, that is, h(u) = v.

From this lemma, we derive a corollary, which will be the base case of induction

in proving that V is quasi-residually finite.
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0
. . .pi−1 u pi+1

. . .pj−1 v pj+1
. . .

1
0

...

pi−1

u

pi+1

...

pj−1

v

pj+1

...

1

Figure 4.3: Function h ∈ V that sends u to v and fixes everything else outside of
small dyadic neighborhoods of u and v.

Corollary 4.3.13. Let α be a dyadic rational. Then StabV (α) is a maximal subgroup.

Proof. Let H = StabV (α), and f, g ∈ V \ H. The goal is to show that f ∈ 〈H, g〉,

hence for every g ∈ V \ H, we would have V = 〈H, g〉, proving directly that H is

maximal.

Since f, g 6∈ H, f(α) 6= α 6= g(α). Thus by the Lemma 4.3.12, there exists h ∈ H

such that h(f(α)) = g(α). Since g−1(h(f(α))) = α, g−1hf ∈ H, hence f ∈ 〈H, g〉.

Proposition 4.3.14. V is quasi-residually finite.

Proof. Our goal is to show that for every finite set of dyadic rationals U , PStabV (U)

is of quasi-finite index, by performing induction on |U |. By the Corollary 4.3.13, the

base case is proven, so assume for every |U | < n, PStabV (U) is of quasi-finite index,

and let |U | = n, and H = PStabV (U).

Let g ∈ V \H, and let Ug = {u ∈ U |g(u) 6= u}. By assumption Ug is non-empty,

and as in the proof of Theorem 4.3.10, we may assume up to taking a power of g that

either the orbit of every u ∈ Ug under the action of g is infinite, or that g permutes

U . If g permutes U , then we can show just as in the proof of Theorem 4.3.10 that

〈H, g〉 is one of finitely many options, each of which is of finite index by induction.
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Otherwise, using another technique from the previous proof, up to taking g−khgk

for some h ∈ H and k ∈ N, we may assume that |Ug| = 1, i.e., Ug = {u} for some

u. Let Û = U \ Ug and Ĥ = PStabV (Û). To show that H is of quasi-finite index, it

suffices to prove Ĥ ⊂ 〈H, g〉.

Let f ∈ Ĥ. If f(u) = u, there is nothing to prove, so assume f(u) 6= u. We

also have g(u) 6= u, and hence by Lemma 4.3.12, there exists h ∈ H such that

h(f(u)) = g(u). Thus g−1(h(f(u))) = u, and since all elements involved stabilize

U \ {u}, g−1hf ∈ H, so f ∈ 〈H, g〉.

Thus there are only finitely many subgroups of V containing 〈H, g〉, and since g

was unique only up to the element of U that it did not fix. Since U is finite, H is

therefore of quasi-finite index.
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Chapter 5

Jones’ Subgroup of T

5.1 Thompson Graphs

Given any full binary tree with n leaves, the associated Thompson graph is defined

by Jones [12] in the following way. Arrange all the leaves on a horizontal line, and

call them l1, . . . , ln. The vertices of the Thompson graph are points v1, . . . , vn on the

same horizontal line, with v1 to the left of l1, and more generally vi between li−1 and

li. For every left edge e of the tree, there is a unique pair of vertices vi and vj such

that a path can be drawn connecting vi and vj which passes through the tree only at

the edge e and stays above the horizontal line. Connect every such pair of vertices.

An example Thompson graph is depicted in Figure 5.1.

Figure 5.1: Example of a Thompson graph in red of a binary
tree in black.

An alternative way to construct the Thompson graph was given by Golan and

Sapir in [4], in which they recognize it as a subgraph of the diagram associated with a

particular pair of trees. Recall that a tree can be associated with a diagram consisting

of cells with one top edge and two bottom edges by replacing each caret in the tree

with such a cell, where the top edge goes through the top vertex of the caret and the

left child goes through the left bottom edge of the cell and the right child likewise
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goes through the right bottom edge of the cell (see Figure 2.7). Note that the edges

in this diagram are considered oriented from left to right.

The Thompson graph can then be obtained from the diagram in the following

way. Its vertices consist of all vertices of the diagram except the terminal vertex

(the right-most vertex). For each internal vertex of the diagram (any vertex except

the right-most or the left-most), the top-most incoming edge is also an edge of the

Thompson graph, and these are the only edges in the Thompson graph.

Either way, we can now use the Thompson graph associated with a tree to define

the Thompson graph associated with an element of T . Specifically, the Thompson

graph associated to any element f ∈ T with reduced pair of trees representation

(R, S, n) is obtained by identifying the vertices of the Thompson graphs of R and S

in the same way that their leaves are identified. An example is depicted in Figure

5.2, with the Thompson graph both depicted on the pair of trees and then simplified.

=⇒

Figure 5.2: Thompson graph in red of an element of T depicted both
on the pair of trees diagram and simplified.

The subgroup ~T of T then is the collection of all elements of T with bipartite

Thompson graphs, and was first defined by Jones when he also defined ~F similarly.

We will use the terms bipartite and 2-colorable interchangably. For more about ~F ,
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see [4], in which Golan and Sapir found explicit generators of ~F and discovered many

other properties and characterizations of the subgroup.

5.2 Generators of ~T

Denote by cn the element depicted in Figure 5.3.

1

2

n+1 n+2

. . . cn
n+2

1

n n+1

. . .

Figure 5.3: The element cn from T .

Notice that c = c1 is one of the standard generators of T , and cn in general is an

order n+ 2 element. Let f 1
2

denote the function given by f 1
2
(x) = x+ 1

2
mod 1. Its

pair of trees diagram is depicted in Figure 5.4, and f 2
1
2

= 1.

1 2

f 1
2

2 1

Figure 5.4: The element f 1
2
.

By Theorem 1 of [4], we have ~F = 〈x0x1, x1x2, x2x3〉, where xi are the generators

defined in Section 2.2. The goal of this section is the following theorem, which adds

just one element to the set of generators of ~F to get the generators of ~T .

Theorem 5.2.1. ~T = 〈~F , f 1
2
〉 = 〈x0x1, x1x2, x2x3, f 1

2
〉

Before we prove the theorem, we need the following lemma to establish the struc-

ture of the tree diagrams of elements of ~T .
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Lemma 5.2.2. Every element f ∈ ~T can be represented with a pair of trees (R, S,

k) such that both trees have an even number of vertices, and such that there is a

2-coloring on the Thompson graphs of R and S where the colors on each vertex from

left to right alternate.

Proof. Let (R, S, k) be the reduced pair of trees representation for f ∈ ~T . By defini-

tion of ~T , the Thompson graph of f has a valid 2-coloring, which induces a 2-coloring

on the vertices of the Thompson graph of R. Suppose that the Thompson graph of f

contains two adjacent vertices m and m+ 1 with the same color, and consider insert-

ing a dipole at vertex m+1, i.e., adding a caret to the m+1 vertices of both R and S.

Adding a caret adds one left edge and right edge to R, and hence the corresponding

Thompson graph of R is changed by adding a vertex in the middle of the caret, and

connecting that vertex through the new left edge to the existing vertex on its left. A

likewise addition is made to the Thompson graph of S, so that the new Thompson

graphs of both R and S are obtained by adding a vertex in between vertices m and

m + 1, with an edge connecting the new vertex to m. Since m and m + 1 have the

same color, we may choose the other color for the new vertex, and the 2-coloring is

still valid.

Continue adding dipoles in R and S in this way to add vertices to the Thompson

graphs of R and S between all two vertices with the same color, ensuring that the

colors alternate as desired. Likewise add a dipole at the last vertex of R and S if

necessary to ensure that R and S has an even number of vertices.

Proof of Theorem 5.2.1. Let ~F+ denote the positive elements of F that are in ~F and

~F− denote the negative elements of F that are in ~F , where positive and negative

elements are as defined in Section 2.2. Let Sn be the tree depicted in Figure 2.8, and

note that Sn is both the input and output tree for cn in Figure 5.3. Then to prove

the theorem we can use the previous lemma to first prove that elements of ~T can be

written in the form pcm2nq, where p ∈ ~F+ and q ∈ ~F−, which is very similar to the
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form of elements for T given in Theorem 5.7 of [2]. Thus we will have proven that

~T = 〈~F+, ~F−, {f 1
2
}, {c2n|n ∈ N}〉, and to finish the proof it will suffice to show that

each of these generators is in 〈x0x1, x1x2, x2x3, f 1
2
〉.

Let f ∈ ~T , then by Lemma 5.2.2, there exists (R, S, k), a pair of trees represen-

tation of f , such that the Thompson graphs for R and S have 2n + 2 vertices and

are both 2-colorable with the colors on the vertices alternating. Consider the reduced

pair of trees representation for c2n denoted (S2n, S2n, 2). It is easy to observe that the

Thompson graph corresponding to S2n is simply the path of length 2n+ 2, and hence

it is 2-colorable with the colors on the vertices alternating, just like the Thompson

graphs of R and S.

In particular, (R, S2n, 1), (S2n, S2n, k), and (S2n, S, 1) are all bipartite elements

of T since the 2-colorings of all of the trees are compatible. Furthermore, by the

observation given in section 2.2, (R, S2n, 1) is in F+ and (S2n, S, 1) is in F−. We also

have (S2n, S2n, k) = ck−12n . Therefore f ∈ 〈~F+, ~F−, {c2n|n ∈ N}〉, which is a subgroup

of ~T since all generating elements have bipartite Thompson graphs and are in T .

Finally, since ~F is generated by {x0x1, x1x2, x2x3}, it suffices to show that c2n ∈

〈~F , f 1
2
〉. Observe that f 1

2
c−1n ∈ F :

1

2

n n+1

. . .

n+2

f 1
2

n+2

1

2

n n+1

. . .

c−1n

1

2

3

n+1 n+2

. . .

Therefore, since f 1
2

and c2n are bipartite, f = f 1
2
c−12n is a bipartite element of ~F .

In particular, c2n = f 1
2
f−1, so c2n ∈ 〈~F , f 1

2
〉.
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5.3 ~T and Dyadic Parity

Every dyadic fraction has either an even or odd sum of binary digits, and we will

refer to this parity as the dyadic parity of the number. For example,
7

8
= 0.111 in

binary, and the sum of its digits is 3, so the fraction has odd dyadic parity. Observe

that since every function f ∈ T is piecewise of the form ax+ b, where a is an integer

power of 2 and b is dyadic, if f stabilizes odd dyadic parity, it also stabilizes even

dyadic parity.

Since the generators of ~F preserve dyadic parity [4], and since f 1
2

switches dyadic

parity, the subgroup ~T that they generate has the property that every element either

exclusively preserves dyadic parity or exclusively switches dyadic parity. In fact, this

property characterizes ~T .

Theorem 5.3.1. Let f ∈ T either stabilize the dyadic parity of every dyadic rational

or switch the dyadic parity of every dyadic rational. Then f ∈ ~T .

Proof. Let f have reduced pair of trees representation (R, S, k). Label left edges of

R and S with 0 and right edges with 1, and label each leaf with the label of the path

from the root of the tree to that leaf. Then each vertex v in the Thompson graph

of R is to the left of some leaf a in R. If a has even dyadic parity then color the

corresponding vertex in the Thompson graph “even”, and otherwise color it “odd”.

Likewise the vertices in the Thompson graph of S can be colored.

If a1 and a2 are the labels of leaves in R and S respectively that are identified, then

f(a1) = a2. Therefore, if f stabilizes the dyadic parity then a1 and a2 have the same

parity. and if f switches the dyadic parity, then they have opposite parity. Thus,

when the Thompson graphs of R and S are identified, up to swapping the colors, the

colorings are identical.

It remains to show that for the Thompson graphs of R and S, this is indeed a

valid 2-coloring, i.e., that no two adjacent vertices have the same color. Suppose two
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vertices v1 and v2 in the Thompson graph of a R are adjacent, and the leaves to their

right are labeled by a1 and a2. Then either one of them is directly beneath a caret,

or neither is. Both situations are depicted in Figure 5.5, and when one is directly

beneath a caret, it is easily verified that a1 and a2 differ only by the last digit, and

hence v1 and v2 have opposite colorings. In second case, the edge between v1 and

v2 crosses a left edge e in R, which is labeled 0, and let k be the length of the path

from the root to e, including e. Now the vertex in R labeled by a1 is to the left of

this edge in R, hence the kth digit of a1 is 0, while the kth digit of a2 is labeled 1.

Furthermore, until the kth digits, a1 and a2 have the same digits. Finally, note that

after the digits past the kth digits of a1 and a2 are all 0s, as that is the only way for

these two vertices to be on either side of e. Indeed, if the path to either vertex ever

went right, then the edge between the vertices in the Thompson graph would have to

cross more than just the edge e of R. Thus the dyadic parity of a1 and a2 are exactly

opposite, and the 2-coloring is valid.

...

a1

0

a3

1

. .
.

0
e

a2

0

. .
.

1

v1 v2v3

Figure 5.5: The two possible types of adjacencies in a Thompson graph,
between v1 and v2 and v1 and v3. The leaves labeled a1 and a2 have
different dyadic parity, as do the leaves labeled a1 and a3.
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5.4 ~T Coincides With Its Commensurator in T

The following Lemma formalizes the statement that for any element f ∈ T , for t

small, f either preserves the dyadic parity of all such t, or switches the dyadic parity.

The proof simply relies on the fact that elements of T are piecewise linear with slopes

equal to an integer power of 2.

Lemma 5.4.1. Let f ∈ T , and let Si denote the collection of dyadic rational numbers

with sum (i mod 2). Then there exists m such that for all t ∈ Si with t ≤ 2−m and

i = 0, 1, either f(t) is always in Si or it is always in S1−i.

Proof. First, there exists m such that on [0, 2−m], f is given by f(t) = 2nt + α for

some n ∈ Z and α a dyadic rational. Let t ∈ Si. Consider the length of α to be

l, then m be chosen to be large enough that for t ≤ 2−m, t · 2n can be written as a

binary decimal of the form 0lβ for some finite binary string β depending on t, where

β ∈ Si, the same as t. Then f(t) = 2nt + α as a binary string is simply αβ, hence if

α ∈ S0, then f(t) does not change the dyadic parity on [0, 2−m], and if α ∈ S1, then

f(t) does switch dyadic parity on [0, 2−m].

With this technical fact, we can now prove that ~T coincides with its commensu-

rator in T as a corollary of Theorem 5.3.1, where the commensurator of ~T is defined

as {t ∈ T | t~T t−1 ∩ ~T has finite index in both ~T and t~T t−1}.

Corollary 5.4.2. The commensurator of ~T in T is ~T .

Proof. Let f ∈ T \ ~T . Then to check that f is not in the commensurator of ~T , it

suffices to show that there exists g ∈ ~T such that for large enough n, (gn)f 6∈ ~T .

Choose g = (x0x1)
−1, and note that for any t ∈ (0, 1), gn(t) can be made arbitrarily

small by taking n large enough.

Since f 6∈ ~T , there exists t0 ∈ Si and t1 ∈ Sj for some i, j ∈ {0, 1} such that

f(t0) ∈ Si and f(t1) 6∈ Sj. Let t′k = f(tk) for k = 1, 2. Then consider (f−1gnf)(t′k) =
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f(gn(f−1(t′k))) = f(gn(tk)). For large enough n, gn(ti) is small enough that Lemma

1 applies to f . Now t′1 ∈ Si and t′2 6∈ Sj by assumption, noting that elements of T

preserve dyadic rationals, so t′2 ∈ S1−j. Since g ∈ ~F , gn(t1) ∈ Si and gn(t2) ∈ Sj.

By the previous lemma there are two cases. Suppose that for small enough val-

ues of t, f preserves dyadic parity. Then f(gn(f−1(t′1))) ∈ Si with t′1 ∈ Si, and

f(gn(f−1(t′2))) ∈ Sj with t′2 6∈ Sj, showing that f−1gnf 6∈ ~T . The other case where f

switches the dyadic parity is similar.

It was proven in [16] that the quasiregular representation of a subgroup is ir-

reducible if the commensurator of the subgroup coincides with itself. Thus from

Corollary 5.4.2, we have the following theorem:

Theorem 5.4.3. The quasiregular representation `2(T/~T ) of T is irreducible.

5.5 A Finite Presentation of ~T

In this section, we determine first an infinite classical presentation for ~T , and then

deduce a finite presentation. Our infinite set of generators consists of all xn−1xn = gn

and c2n, for n ∈ Z and n ≥ 0, using c0 = f 1
2

for convenience. Note that each gn is

indeed in ~F by Lemma 4.5 of [4].

In the proof of Lemma 5.5.1, we will use the following relations of T from [2] which

hold for any integers n, k such that 0 ≤ k ≤ n:

x−1k xnxk = xn+1, k < n; (T1)

cn = xncn+1; (T2)

cnxk = xk−1cn+1, 1 ≤ k; (T3)

cnx0 = c2n+1; (T4)

cn+2
n = 1; (T5)
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Lemma 5.5.1. If n is a non-negative integer then

g−1k gngk = gn+2, 1 ≤ k < n; (5.1)

c2n+2
2n = 1; (5.2)

c2n = g2n+1c2n+2; (5.3)

c2ngk = gk−1c2n+2; 1 < k < 2n+ 2 (5.4)

c2ng1 = c32n+2 (5.5)

Proof.

g−1k gngk = (x−1k x−1k−1)(xn−1xn)(xk−1xk)

= x−1k x−1k−1xn−1(xk−1x
−1
k−1)xnxk−1xk

T1
= x−1k xnxn+1xk

= x−1k xn(xkx
−1
k )xn+1xk

T1
= xn+1xn+2

= gn+2

Thus (5.1) holds. (5.2) is the same as (T5).

c2n
T2
= x2nc2n+1

T2
= x2nx2n+1c2n+2 = g2n+1c2n+2

Hence (5.3) holds. Relations (5.4) and (5.5) are proven similarly:
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c2ngk = c2nxk−1xk

T3
= xk−2c2n+1xk

T3
= xk−2xk−1c2n+2

= gk−1c2n+2

c2ng1 = c2nx0x1

T4
= c22n+1x1

T3
= c2n+1x0c2n+2

T4
= c32n+2

These relations also determine directly the following relations.

Corollary 5.5.2. Suppose n is a non-negative integer and 1 ≤ m ≤ 2n+ 1, then

cm2n = g2n+1−(m−1)c
m
2n+2 (5.6)

cm2n = cm+2
2n+2g

−1
m (5.7)

Proof. The first relation is proven in the following way:

cm2n = cm−12n c2n
(5.3)
= cm−12n g2n+1c2n+2

(5.4)
= g2n+1−(m−1)c

m
2n+2

For the second relation, we instead prove that cm2ngm = cm+2
2n+2.

cm2ngm
(5.4)
= c2ng1c

m−1
2n+2

(5.5)
= cm+2

2n+2
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Corollary 5.5.3. Let k, n, and m be non-negative integers such that k < 2n+ 2 and

1 ≤ m < 2n+ 2. Then

cm2ngk =


gk−mc

m
2n+2 k > m

cm+2
2n+2 k = m

g2n+2+k−mc
m+2
2n+2 k < m

Proof. If k > m, repeatedly apply (5.4) to get the first relation. If k = m, the relation

is the same as (5.7). If k < m, then we use the same technique to get

cm2ngk = cm−k2n ck+2
2n+2

(5.6)
= g2n+1−(m−k−1)c

m−k+k+2
2n+2 = g2n+2+k−mc

m+2
2n+2

Corollary 5.5.4. Suppose i, j, k, l are positive integers and i < 2j + 2, k < 2l + 2,

then there exists m,n are positive integers with m < 2n + 2, and p, q are positive

elements in {gt, t ≥ 1} such that

ci2jc
k
2l = pcm2nq

−1

Proof. By using relations (5.6) and (5.7), we can increase j or i until i = j, up to

multiplying by a postive element on the left or a negative element on the right. Since

c2n is an order 2n+ 2 element, we may assume that 0 ≤ m < 2n+ 2.

Now we determine an infinite presentation for the subgroup ~T .

Theorem 5.5.5. ~T is generated by gk, k ≥ 1 and cn, n ≥ 0 and is defined by the
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following relations:

g−1k gngk = gn+2 1 ≤ k < n

c2n+2
2n = 1

c2n = g2n+1c2n+2

c2ngk = gk−1c2n+2 1 < k < 2n+ 2

c2ng1 = c32n+2

Before we proceed to the proof, we need some lemmas to establish the structure

that these relations provide. For the rest of this section, we will refer to G as the

group with presentation given in Theorem 5.5.5, and show that G is isomorphic to ~T .

Lemma 5.5.6. ~F is a subgroup of G.

Proof. Since the relations of G also hold in ~T , there is a natural homomorphism φ

from G to ~T , sending generators to generators. Since ~F has a finite presentation [7],

and its relations are included in the relations of G (using gk as its generators), there

is also a homomorphism α from ~F to G that takes generators to generators. Thus

α ◦ φ is a homomorphism taking gk to gk, and hence is the identity isomorphism of

~F , implying that α is also an isomorphism, and that ~F is a subgroup of G.

Lemma 5.5.7. For every g ∈ G, we have

g = pcm2nq
−1, 0 ≤ m < 2n+ 2,

where p, q are positive elements in ~F = {gk, k ≥ 1} ≤ G.

Proof. Let H be the subset of G consisting of all elements of the form pcm2nq
−1, with

m < 2n + 2, and p and q positive elements in ~F . Since H contains the generators

of G and is closed under taking inverses, it suffices to prove that H is closed under
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multiplication, and hence H = G. Let p1c
m1
2n1
q−11 and p2c

m2
2n2
q−12 be two elements of H,

and note that the product of two positive elements of F is still a positive element of F

[2], hence the same is true in ~F . Moreover, p1c
m1
2n1
q−11 p2c

m2
2n2
q−12 = p1c

m1
2n1
p3q
−1
3 cm2

2n2
q−12

for some positive elements p3 and q3, since q−11 p2 is in ~F .

First we show that p1c
m1
2n1
p3 can be written as p4c

m3
2n3

for some positive element p4

and n3,m3 natural numbers. Let gk to be the first letter in p3. By Corollary 5.5.3,

gk can be moved to the left of cm1
2n1

, with possibly increasing n1 or m1. Continue in

this way to move all of p3 to the left of cm1
2n1

, to get the desired form p4c
m3
2n3

, since the

product of positive elements of ~F is still a positive element.

Similarly, since (q−13 cm2
2n2
q−12 )−1 = q2c

−m2
2n2

q3, we can rewrite q−13 cm2
2n2
q−12 as cm4

2n4
q−14 .

Finally, cm3
2n3
cm4
2n4

can be written as p5c
m
2nq
−1
5 by Corollary 5.5.4. Thus

p1c
m1
2n1
q−11 p2c

m2
2n2
q−12 = p1c

m1
2n1
p3q
−1
3 cm2

2n2
q−12 = p4c

m3
2n3
cm4
2n4
q−14

= p4p5c
m
2nq
−1
4 q−15 = pcm2nq

−1

Lemma 5.5.8. If φ : G→ G/N is a proper quotient homomorphism, then φ restricted

to ~F is a proper quotient of ~F as well.

Proof. Let g ∈ G such that φ(g) = 1 and g 6= 1. It follows from Lemma 5.5.7 that

g is of the form g = pcm2nq
−1, where m < 2n + 2 and p and q are positive elements

in ~F ≤ G. Since φ(g) = 1, we have φ(cm2n) = φ(p−1q), and since the order of c2n is

2n + 2, then φ((p−1q)2n+2) = φ(c2n+2
2n ) = φ(1) = 1. We now have two cases: either

p = q or p 6= q. If p 6= q, then since ~F is torsion free, (p−1q)2n+2 6= 1, implying that φ

restricted to ~F is a proper quotient of ~F .
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If p = q, since g 6= 1, it must be that cm2n 6= 1, and in particular m > 0. Then

1 = φ(p−1q) = φ(cm2n)

(5.6)
= φ(g2n+1−(m−1)c

m
2n+2)

Note that m < 2n + 2, so 2n + 1 − (m − 1) > 0. Then φ(g2n+4
2n+1−(m−1)) =

φ(c
−(2n+4)m
2n+2 ) = 1, but g2n+1−(m−1) 6= 1. Thus once again, φ restricted to ~F is a

proper quotient of ~F .

Proof of Theorem 5.5.5. Let φ : G→ ~T be the surjective homomorphism that sends

generators to generators. By Lemma 5.5.6, φ restricted to ~F is an isomorphism. By

Lemma 5.5.8, φ must then have trivial kernel. Thus φ is an isomorphism

Now we can show that only finitely many of these relations are needed, and thus

give a finite presentation.

Corollary 5.5.9. ~T has a finite presentation with generators {g1, g2, g3, c0} and re-
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lations

g−11 g3g1 = g−12 g3g2

g−31 g2g
3
1 = g−13 g−21 g2g

2
1g3

g−21 g3g
2
1 = g−12 g−11 g3g1g2

g−21 g3g
2
1 = g−13 g−11 g3g1g3

g−21 g2g
2
1 = g−12 g−11 g2g1g2

g−21 g2g
2
1 = g−13 g−11 g2g1g3

c2g2 = g1c4

c2g3 = g2c4

c4g4 = g3c6

c0g1 = c32

c2g1 = c34

c20 = 1

where the elements c2n and gn are defined inductively by c2n = g−12n−1c2n−2 and gn =

g−1n−2gn−1gn−2.

Proof. Thorem 5.2.1 proves that the choice of generators is correct, so it remains to

prove that the set of relations given in Lemma 5.5.1 follow, since these are shown to

be the defining relations of ~T in Theorem 5.5.5. We will refer to these relations by

their numbering given in Lemma 5.5.1.

The first six relations imply (5.1), since these are the relations for F3 with gener-

ators g1, g2, and g3 given in [7].

By definition of c2n in this corollary, (5.3) is trivial. To prove (5.4), we do induction

on both n for fixed base values of k, and then induct on k. For k = 2 and n = 1,

k = 3 and n = 1, and k = 4 and n = 2, the corresponding relations are given in the
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finite presentation. For these fixed values of k, we induct on n then in the following

way, referring to the induction step with abbreviation ind:

c2ngk
(5.3)
= g−12n−1c2n−2gk

ind
= g−12n−1g1c2n

(5.1)
= g1g

−1
2n+1c2n

(5.3)
= g1c2n+2

For the remaining cases, we induct on k ≥ 5, assuming that for smaller values of

k and all values of n that (5.4) holds. We will refer to using (5.4) when k = 2 as

the base case, or base for short, and smaller values of k by ind, standing for proof by

induction.

c2ngk
base
= g−11 c2n−2g2gk

(5.1)
= g−11 c2n−2gk−2g2

ind
= g−11 gk−3c2ng2

= g−11 gk−3g1g
−1
1 c2ng2

(5.1)
= gk−1g

−1
1 c2ng2

base
= gk−1c2n+2

Next we prove that (5.5) follows by induction on n, noting that the base cases of

induction n = 0 and n = 1 are assumed in the finite relations. Similar to before, ind

will stand for induction on n.
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c2ng1
(5.4)
= g−11 c2n−2g2g1

(5.1)
= g−11 c2n−2g1g4

ind
= g−11 c32ng4

(5.4)
= g−11 g1c

3
2n+2

= c32n+2

We can now prove (5.2), the final set of relations.

c2n+2
2n = c2nc

2n
2nc2n

(5.3)
= c2nc

2n
2ng2n+1c2n+2

(5.4)
= c2ng2n+1−2nc

2n
2n+2c2n+2

= c2ng1c
2n+1
2n+2

(5.5)
= c32n+2c

2n+1
2n2

= c2n+4
2n+2

Thus since c20 is a relation, (5.2) follows by induction on n.

To understand more about the structure of ~T , we can use the observation in

Lemma 5.5.8 to show that every proper homomorphism of ~T factors through a certain

homomorphism from ~T to the infinite dihedral group.

Corollary 5.5.10. Any proper homomorphism of ~T factors through the homomor-

phism α from ~T to the infinite dihedral group, 〈c0, g1|c20 = 1, g1c0g1c0 = 1〉, where

α(c2n) = c0, α(g2n+1) = g1, and α(g2n+2) = 1 for all n ≥ 0.

Proof. Let φ be a proper homomorphism of ~T . Then by Lemma 5.5.8, φ restricted
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to ~F is also proper, and hence the image of ~F under φ is abelian [1, Theorem 4.13].

Therefore, since g−1k gngk = gn+2 in ~T , φ(gn) = φ(gn+2), where n > 1. In all the

equalities that follow, we will use φ(gn) = φ(gn+2) extensively, along with all other

equalities that we prove hold true in the image of φ.

We also have

φ(c4g4)
(5.4)
= φ(g−11 c2g2g4) = φ(g−11 c2g

2
2)

φ(c4g4)
(5.4)
= φ(g3c6)

(5.4)
= φ(g3g

−2
1 c2g

2
2)

As a result, φ(g3g
−1
1 ) = 1, so φ(g3) = φ(g1), extending φ(gn) = φ(gn+2) to n = 1.

We also have

φ(c4)
(5.3)
= φ(g5c6) = φ(g3c6)

(5.4)
= φ(g3g

−1
1 c4g2) = φ(c4g2)

This shows that φ(g2) = 1, and hence φ(g2n) = 1.

Next we show that φ(c22n+2) = 1 for any n ≥ 1, noting that if n = 0 we already

have c20 = 1.

φ(c2ng1) = φ(c2ng3)
(5.4)
= φ(g2c2n+2) = φ(c2n+2)

φ(c2ng1)
(5.5)
= φ(c32n+2)

To extend this to φ(c22) = 1, we use that φ(c2)
(5.3)
= φ(g3c4) = φ(g1c4), hence φ(g1) =

φ(c2c
−1
4 ) = φ(c2c4). Now φ(c2g1) = φ(c2g3)

(5.4)
= φ(g2c4) = φ(c4), so φ(g1) = φ(c−12 c4).

Combining these gives φ(c2c4) = φ(c−12 c4), so φ(c22) = 1 as well, showing that φ(c22n) =

1 for any n ≥ 0.

Thus φ(g1) and φ(c0) generate the image of φ, and we can use the relations shown

to hold in φ(~T ) and the finite presentation given in Corollary 5.5.9 to verify that the

relations in the infinite dihedral group hold, proving the corollary. We will call the
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generators φ(g1) and φ(c0) as simply g1 and c0. The first six relations in the finite

presentation are all trivial. Since φ(c22) = 1, the relation c0g1 = c32 becomes c0g1 = c2.

This follows naturally from the definition of c2 = g−11 c0 by inverting both sides, since

c0 and c2 are their own inverses. Likewise, since φ(g2) = 1, c2g3 = g2c4 becomes

c4 = c2g1 = c0g1g1, which follows from the definition c4 = g−13 c2 = g−11 c2 in the same

way. The relation c2g2 = g1c4 then becomes c0g1 = g1c0g1g1, which simplifies to

c0 = g1c0g1, which can be rewritten as one of the two relations in the presentation of

the infinite dihedral group: g1c0g1c0 = 1. The relation c20 = 1 remains unchanged and

is the other relation in the presentation of the infinite dihedral group. The remaining

relations are easily verified to be unnecessary.

5.6 An Annular Diagram Group Presentation for ~T

The proof of the following proposition is basically identical to the proof of Propo-

sition 3.2.1.

Proposition 5.6.1. If H < T is such that H = Core(H), then H is an annular

diagram group.

Proof. The core of H consists of carets with labels, which can be used directly to

form the presentation for the annular diagram group. Let e be the name of the vertex

in the core which was identified with all the roots of the generators of H. Suppose a

caret in the core has label x on the root, y on the left child, and z on the right child.

Then the corresponding rewriting is x = yz. Let S be the set of all distinct vertices

in the core, and R be the set of all rewriting rules for every caret in the core. Then

we claim that the collection of all annular (e, e) diagrams over the presentation 〈S|R〉

is an annular diagram group A isomorphic to H.

Indeed, let φ : A → H be a homomorphism described as follows. For ∆ ∈ A a

reduced annular diagram, every cell in ∆ has exactly one top edge and two bottom

77



edges, and thus each cell can be identified with a caret as in Figure 2.7, which describes

a similar situation for going between annular diagrams and tree diagrams for elements

of T . Since each vertex in the core of H has at most two children, there are no two

distinct rewriting rules x = yz and x = uv. Moreover, since ∆ is reduced, then

since each unique pair of left and right children in the core of H have at most one

parent, there are no dipoles created in this identification. As a result, replacing the

cells of ∆ with carets as described results in a tree diagram, in exactly the same way

as annular diagrams in Da(〈x|x = xx〉) correspond to tree diagrams. Call this tree

diagram (R, S, n), and define φ(∆) = (R, S, n). Since every reduced representation

of an element of H has a unique identification with the core of H consisting of carets

labeled by the rewriting rules of A, it is clear that φ is surjective. Likewise, since

no dipoles are created, no non-trivial diagram is sent to the identity, hence φ is

injective. Finally, φ is a homomorphism since reduction of diagrams in A corresponds

to removing dipoles in H, thus multiplication and reduction of two elements in A

gives the same element of H.

Proposition 5.6.2. Core(~T ) = ~T , and in particular ~T = Da(〈e, f |e = ff, f =

fe〉, e).

Proof. Let f ∈ Core(~T ). Then f is dyadically-piecewise-~T , and can be written as

f(t) =



f1(t) t ∈ [0, α1)

f2(t) t ∈ [α1, α2)

...

fn(t) t ∈ [αn−1, 1)

Now, each fi(t) either preserves or switches dyadic parity. Since f is continuous,

fi(αi) = fi+1(αi), where fn+1 := f1. Thus if fi preserves the dyadic parity of αi,

so does fi+1. By induction, all fi do the same, i.e., all preserve dyadic parity or all
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switch it. Thus f does the same, and hence f ∈ ~T by Theorem 5.3.1.

The particular presentation for ~T as an annular diagram group is a simple com-

putation of the core of ~T .

Notice that the presentation in the annular diagram group definition for ~T is

a simple Tietze transformation away from Da(〈f |f = f 3〉, f 2). Compare this with

the following presentation for T3 as an annular diagram group: Da(〈f |f = f 3〉, f).

Although they are quite similar, and although ~F is isomorphic to F3, it turns out

that ~T and T3 are not isomorphic.

Proposition 5.6.3. T3 does not contain any element of order two, hence it is not

isomorphic to ~T .

Proof. First, note that elements of T3 have pairs of trees representations exactly

like elements of T , except that the trees are ternary rather than binary, just as the

functions have slopes integer powers of 3 and breakpoints at 3-adic rationals.

Now suppose that f ∈ T3 has order 2. Let f(0) = α. Then since f 2 = 1,

f 2(0) = f(α) = 0. Since f is continuous then, f([0, α]) = [α, 1] and f([α, 1]) = [0, α].

Now, let (R, S, k) be a pair of trees representation of f with each tree containing

n leaves. Then since f(0) = α, f sends the first leaf of R to a leaf of S corresponding

to some interval that begins with α. Likewise, since f(α) = 0, f sends some vertex

in R whose interval begins with α to the first leaf of S. In particular, both R and

S contain leaves whose intervals begin with α. Let R−,α and S−,α be the leaves of

R and S respectively whose intervals combine to give [0, α]. Similarly, let R+,α and

S+,α be the remaining leaves in each tree.

There is a smallest full ternary tree that contains such a leaf whose interval begins

with α, which is a subtree of R and S. Since adding vertices to the tree consists of

giving one of the leaves three children, there is a net gain of 2 leaves, so the parity of

the number of leaves of the tree doesn’t change. Moreover, the intervals associated
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with the three children of a vertex partition the interval associated with that vertex,

hence the parity of the number of leaves whose intervals partition [0, α] does not

change. In other words, |R−,α| and |S−,α| have the same parity. But since the leaves

in R−,α are identified with the leaves in S+,α, |R−,α| and |S+,α| have the same parity.

Thus |S−,α| + |S−,α| is even. But by a similar argument, every full ternary tree has

an odd number of leaves, since the smallest full ternary tree has 1 leaf, the root, and

adding three children to a leaf changes the number of leaves by 2. Thus |S−,α|+ |S−,α|

is odd, a contradiction.
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