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Chapter I 

 

Introduction 

 

We intuitively understand that humans vary in many aspects. Some people are taller 

than others, some smarter than others and some more extraverted. These cases exemplify 

more apparent aspects of variability, but other areas of variability may be harder to detect. One 

such area of variability is that of individual differences in high-level vision, meaning how people 

vary in aspects of complex visual processing (e.g. recognizing birds or global processing style, as 

opposed to low-level variability in acuity or color perception). Efforts to better understand 

individual differences in visual processing can lead to insights into underlying mechanisms 

(Mollon, Bosten, Peterzell, & Webster, 2017; Wilmer, 2008), have clinical (Reavis et al., 2017; 

Sunday, Donnelly, & Gauthier, 2017; Trueblood et al., 2017) and professional applications 

(Biggs, Cain, Clark, Darling, & Mitroff, 2013; Davis, Lander, Evans, & Jansari, 2016), and can shed 

light on differences for which we have poor intuitions (as demonstrated by poor correlations 

between self-reported visual abilities and performance on visual tasks; Barton, Hanif, & Ashraf, 

2009; McGugin, Richler, Herzmann, Speegle, & Gauthier, 2012; Palermo et al., 2017; Richler, 

Wilmer, & Gauthier, 2017).  

Most initial efforts to measure and study individual differences in high-level visual 

processing focused on separating individuals with face recognition deficits from those with 

normal face recognition abilities (Benton, Hamsher, Varney, & Spreen, 1983; Duchaine & 

Nakayama, 2006; Warrington, 1984). These studies demonstrated that variability in visual 
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abilities (skills that cannot be directly observed) could be measured with specific behavioral 

tasks. This opened the door for more studies investigating, among other things, how face 

recognition ability relates to object recognition ability (Gauthier et al., 2014; Gauthier, 

Behrmann, & Tarr, 1999; Kanwisher, 2000) and holistic processing (DeGutis, Wilmer, Mercado, 

& Cohan, 2013; Konar, Bennett, & Sekuler, 2010; Richler, Cheung, & Gauthier, 2011; Richler, 

Floyd, & Gauthier, 2015). More recently, McGugin and coauthors developed a test battery 

aimed at capturing variation between individuals in the recognition of several object categories 

(McGugin, Richler, et al., 2012). These tests, called the Vanderbilt Expertise Tests or VETs, used 

a learning exemplars paradigm similar to what has been successfully used to measure face 

recognition ability (Duchaine & Nakayama, 2006). Critically, these tests produced reliable scores 

(Cronbach ’s > .7), demonstrating that there is measurable variability in object recognition 

between individuals and that these tests have the psychometric properties necessary to 

capture this variability (McGugin, Richler, et al., 2012). 

Performance on the VET (or any object recognition measure) can be influenced both by 

domain-specific experience and domain-general ability. There is evidence that domain-specific 

experience with real-world categories (indexed, for instance, by hometown population or self-

reported experience) relates to recognition performance (Balas & Saville, 2015, 2017; Barton et 

al., 2009; Ryan & Gauthier, 2016; Sunday, Donnelly, & Gauthier, 2018; Van Gulick, McGugin, & 

Gauthier, 2016). To better characterize how experience relates to object recognition 

performance, Van Gulick and coauthors related VET scores to a measure of domain-specific 

semantic knowledge, the Semantic Vanderbilt Expertise Test or SVET (Van Gulick et al., 2016). 

SVETs and VETs showed domain-specific correlations (e.g. VET-Car with SVET-Car) and, for all 
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categories except birds, these domain-specific correlations were stronger than domain-general 

correlations (VET-Car with averaged VET from seven other categories), supporting the VET’s 

validity as measures of recognition ability in a given category. The overlap between VET and 

SVET performance within categories was largely accounted for by self-reported experience, 

further supporting the idea that experience plays a role in familiar object recognition (Van 

Gulick et al., 2016).  

As more measures of visual abilities are developed it becomes easier to study not only 

how task- or domain-specific abilities relate to one another, but also how performance for 

multiple tasks and categories inter-relate. For instance, when analyzing car recognition ability 

within a set of several familiar object categories, it becomes apparent across several studies 

that car recognition ability is strikingly less correlated with other categories as compared with 

how those other categories correlate with one another (Ćepulić, Wilhelm, Sommer, & 

Hildebrandt, 2018; Richler et al., 2017; Sunday, Dodd, Tomarken, & Gauthier, 2018). More 

generally, when examining correlations between performance on several different familiar 

object recognition tests (from a VET battery), it is clear that these tests share common variance 

(on average, ~9%; McGugin, Richler, Herzmann, Speegle, & Gauthier, 2012; Van Gulick, 

McGugin, & Gauthier, 2016). Moreover, this shared variance exists despite variability in 

experience across familiar categories and the presence of measurement error in these zero-

order correlations. This hints at an underlying construct responsible for the common variance 

across object categories.  
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Evidence for a domain-general object recognition ability 

To formally investigate the possibility of a domain-general object recognition construct, 

Richler and colleagues measured recognition abilities using five novel object categories (to 

control for experience levels) and three different tasks (Richler et al., 2019). They found 

evidence of a latent visual factor accounting for a large portion of the variance shared between 

categories and tasks, which they called “o” (Figure 1). Indeed, o was able to account for 

approximately 89% of the variance between the lower-order factors for each novel object 

category.  

 

 

 
 

Figure 1. Standardized solution of the Confirmatory Factor Analysis performed in Richler et al., (2019), 
showing strong evidence of a 2nd-order factor, o. Here, tasks load onto each novel object category, 
which then load onto o (MA = Matching task, CO = Composite task, LE = Learning Exemplar task).  
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Though the latent variable model provided strong evidence for a higher-order factor 

accounting for much of the variability in recognition performance, this did not necessarily imply 

that this latent factor tapped into a new construct distinct from any that have been previously 

identified. An important question was whether this observed shared variance was driven by 

extant constructs like fluid intelligence, working memory capacity or even conscientiousness 

(i.e. some individuals will be self-motivated to diligently perform all tasks as compared with 

others). A follow-up to the initial Richler et al. work aimed at dissociating domain-general novel 

object recognition from several such constructs (Richler et al., 2019). To do this, subjects 

completed versions of the three tests used in the original study for two novel object categories 

and measures of constructs like fluid intelligence, perceptual style and visual short-term 

memory. The correlation between average performance with the two novel object categories 

(r52 = 0.71, p < .001) was significantly higher than the correlation between either novel object 

category and performance on any other test (e.g. average performance with one novel category 

and fluid intelligence; Richler et al., 2019). More importantly, there was little difference 

between the zero-order correlations between average performance with the novel categories 

and partial correlations between average performance with the novel categories after 

controlling for any given discriminating test. These results, along with work showing that none 

of the shared variance between novel object recognition tasks was accounted for by 

intelligence measures (Richler et al., 2017), provide evidence that o is distinct from several 

existing cognitive constructs.  
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While there is evidence that o diverges from individual differences in complex cognitive 

skills like intelligence, it remains to be determined whether o relates to individual differences in 

low-level visual perception. There is evidence that variability in low-level visual perception 

exists. For example, in 1999, Halpern and coauthors reported that performance on low-level 

visual tasks covaried across individuals (within an admittedly small sample of 20; Halpern, 

Andrews, & Purves, 1999). More recently, Ward and coauthors found that performance on 

seven low-level visual tasks (e.g. motion coherence and contrast sensitivity) loaded onto two 

latent factors, which mirrored a high- and low-spatial frequency distinction (Ward, Rothen, 

Chang, & Kanai, 2016). Notably, they also found that two indices (peak gain in contrast 

sensitivity and temporal order discrimination) loaded equally onto both latent factors, 

providing some evidence of a more general visual construct (Ward et al., 2016). Future studies 

will need to determine if this general visual construct found in low-level visual tasks relates to o.   

Generally, these findings suggest the existence of a domain-general, experience-

independent visual ability ripe for exploration. To help guide work on individual differences in 

any given trait, the prolific intelligence researcher Ian Deary listed three goals: “to describe 

them accurately, to discover the real-life impact of trait differences and to discover the 

aetiologies of trait differences, including their biological bases” (Deary, Penke, & Johnson, 

2010). The behavioral work presented in Chapter II speaks to the first goal. Recent work, 

discussed in Chapter IV, analyzing how novel object recognition relates to radiological 

abnormality detection skills indicates that o may manifest in real-world situations (Sunday, 

Donnelly, et al., 2017). The neuroimaging work presented in Chapter III speaks to the last goal 
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of searching for o’s biological bases by relating MRI measures to behaviorally measured 

domain-general object recognition.  
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Chapter II 

 

Behavioral Study 

 

The work reviewed above suggesting the existence of a domain-general object 

recognition construct used novel object categories as stimuli. Though this choice ensures that 

the measured construct is independent from experience, it does raise the question of how this 

domain-general object recognition construct operates in familiar categories. One possibility is 

that o is predictive of performance in both novel and familiar object recognition tasks (i.e. that 

novel and familiar object recognition abilities relate). Such a finding would have several 

implications. First, this would provide evidence that o can be measured equally well using either 

novel or familiar stimuli, suggesting o would have “indifference to the indicator” (Spearman, 

1904). Second, finding that novel and familiar object recognition abilities relate would suggest a 

common mechanism underlying both, which could inform potential studies into neural 

correlates (for example, see Chapter III). Third, a strong correlation between novel and familiar 

object recognition abilities would imply a large portion of shared variance between experienced 

and un-experienced (novel) categories. This would suggest that variability in familiar object 

recognition is not completely due to variability in experience. While we would refrain from 

over-interpreting such a finding, given in the present study we only used a small subset of 

familiar objects, this could lend some insight into the limitations of experience’s influence on 

familiar object recognition performance.  
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Another possibility is that novel and familiar object recognition abilities do not relate. 

This would imply that something about the familiar domains causes recognition of these objects 

to rely on different abilities from those used to recognize novel objects. This could be simply 

due to some inherent properties of familiar objects that are not present in the novel objects. 

However, if the categories are diverse enough, it seems unlikely that some emergent visual 

property only present in real-world categories would exist (e.g. some visual property common 

across birds, planes and transformer toys but not common with novel objects). Rather, it seems 

more likely that if novel and familiar object recognition abilities do not relate, this would stem 

from the fact that our subjects will have some degree, however small, of experience with 

familiar categories that they will not have with novel categories. This domain-specific 

experience could confer knowledge (perceptual or otherwise) that would recruit different 

mechanisms or processing strategies from those used with novel objects. For example, 

behavioral performance can be influenced by the acquisition of domain-specific semantic 

knowledge (Gilbert, Regier, Kay, & Ivry, 2006; Lupyan, 2008; Richler, Gauthier, & Palmeri, 2011; 

Roberson & Davidoff, 2000), or knowledge of how to manipulate objects (Chua, Bub, Masson, & 

Gauthier, 2017; Herbort & Butz, 2011; Jax & Buxbaum, 2010; Yoon, Heinke, & Humphreys, 

2002). In addition, learning semantic associations for objects can also change the viewpoint-

dependency of the processing of those objects (Collins & Curby, 2013) as well as the relative 

contribution of each hemisphere to perceptual judgments (Curby, Hayward, & Gauthier, 2004). 

Moreover, with individuation training, individuals sometimes show a unique style of perceptual 

processing known as holistic processing (often characterized as a failure of selective attention) 

for objects from the trained category (Busey & Vanderkolk, 2005; Gauthier, Curran, Curby, & 
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Collins, 2003; Gauthier & Tarr, 2002; A. Wong, Palmeri, & Gauthier, 2009), though this relation 

is complex and can vary with task context (Hsiao & Cottrell, 2009; Robbins & McKone, 2007; Y. 

Wong & Gauthier, 2010, see Richler, Wong, & Gauthier, 2011 for a discussion). It is possible 

that when holistic processing arises with experience, this could further dissociate performance 

on familiar object recognition measures from novel object recognition measures.  

Richler and colleagues suggested that o relates to familiar object recognition, evidenced 

by the significant correlations between performance on several VET tests and a measure of face 

recognition ability with o (rs ranging from .27-.60). However, in this case, familiar object 

recognition ability for each category was indexed by a single task, meaning domain-specific 

variance and measurement error influenced these correlations. In the present study, both novel 

object recognition ability and familiar object recognition ability were analyzed using a latent 

variable framework, which allowed the relation between these two constructs to be estimated 

free from measurement error and domain-specific variance. Moreover, using a latent variable 

framework (specifically, confirmatory factor analysis) also allowed for the estimation of model-

fit parameters and proportion of variance explained by higher-order factors, which provided 

further insight into the relation between novel and familiar object recognition.  

The Richler et al. study found that the novel categories for which subjects completed an 

exposure component did not show any evidence of loading onto o differently from the non-

exposed categories, suggesting that exposure to a category does not inherently lessen how that 

category loads onto o. The exposure in this previous work was accomplished with an at-home 

training game, which took approximately 90 minutes to complete, so while the results suggest 

that domain-specific experience may not impact how domain-specific recognition relates to o, it 
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is entirely possible that more exposure of a differing nature (i.e. more realistic exposure that 

would occur for real-world categories) may impact how familiar object recognition relates to o. 

Given this, in the present study, none of the novel objects were accompanied by a training 

component; this manipulation is expected to further sharpen the potential distinction between 

novel and familiar objects (i.e. if experience influences how domain-specific recognition relates 

to o, then excluding any training component should cause the novel and familiar latent factors 

to dissociate). Furthermore, to quantitatively assess how experience impacts the relation 

between novel and familiar object recognition, the present study included an objective 

experience index for each familiar object category (the Semantic Vanderbilt Expertise Test).  

The broad goal of this study was to better characterize the domain-general ability 

initially reported by Richler and coauthors by evaluating the extent to which it generalizes to 

familiar object recognition. Several studies have investigated experience-dependent and 

experience-independent influences on face and object recognition (Anastasi & Rhodes, 2005; 

Balas & Saville, 2015, 2017; Barton et al., 2009; De Heering, De Liedekerke, Deboni, & Rossion, 

2010; Gauthier et al., 2014; Picci & Scherf, 2016; Ryan & Gauthier, 2016; Sangrigoli, Pallier, 

Argenti, Ventureyra, & De Schonen, 2005; Shakeshaft & Plomin, 2015; Short, Balas, & Wilson, 

2017; Sunday, Dodd, et al., 2018; Sunday, Donnelly, et al., 2018; Van Gulick et al., 2016; Wilmer 

et al., 2010). The present study extends this line of research by assessing how the proposed 

experience-independent o relates to experience-dependent recognition abilities.  
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Methods 

Subjects 

 Subjects were recruited through the Vanderbilt SONA subject pool as well as through 

flyers posted throughout Vanderbilt campus. Two-hundred-and-ninety-four Vanderbilt 

University community members were recruited (100 male, 194 female; mean age = 22.6, SD age 

= 6.5, age range = 18-63, 259 right-handed). Subjects were compensated with either course 

credit or pay ($15/hour).  

 

Behavioral task overview 

To measure both novel and familiar object recognition ability, subjects completed 

multiple tests in multiple domains. The previous study finding strong evidence for a domain-

general recognition ability used two similar matching tasks (Richler et al., 2019), suggesting that 

more variable tasks may increase the construct coverage of the latent variable derived from 

these tasks (the more different the tasks, the more general the construct). Thus, in the present 

study, subjects completed three tasks with differing requirements, for each of the six categories 

(Table 1). The first task, which was also used in the Richler et al study, was a learning exemplar 

(LE) task. This task employs a similar paradigm to several face and object recognition tests 

(Dennett et al., 2012; Duchaine & Nakayama, 2006; McGugin, Richler, et al., 2012; Richler et al., 

2017) and included a learning component (learning six exemplars which are then repeatedly 

tested) unique to this task. The second task was a classic matching (MA) task also used in the 

Richler et al study. The last task was an ensemble perception (EP) task modeled after previous 

work investigating individual differences in varying visual domains (Haberman, Brady, & 
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Alvarez, 2015). This task was chosen because its requirements (to estimate an average from a 

group) differ from those of the other two tasks (which both rely more on single object 

identification), thereby increasing the task-generality of any resulting latent construct. 

Moreover, preliminary work suggested this task strongly correlates with learning exemplars 

task performance from the same domain.  

 

 

 

To index experience with familiar object categories, subjects also completed the 

Semantic Vanderbilt Expertise Test or SVET (Van Gulick et al., 2016) for each familiar category. 

Over two two-hour sessions, subjects completed twenty-one tests. The tests were randomized 

first, and then each subject completed the tests in the same order; Session 1: EP-Greeble, LE-

 

Task Description Trial Requirements 
Response 
Options 

Study 
time 

Used in Richler et 
al, 2019 paper 

LE Study 6 exemplars that are 
repeatedly tested in subsequent 
trials 
 

Choose studied 
exemplar from 2 
distractors 

3 AFC unlimited Yes 

MA Determine if pairs of exemplars 
are the same or different 

Respond same or 
different to probe 
stimuli within 3000 
ms 
 

2 AFC 300 ms 
or 150 

ms 

Yes 

EP Estimate average of 4 exemplars Choose option closest 
to estimated average 
 

6 AFC 1000 ms No 

SVET Recognize object labels of 
familiar exemplars  

Identify real exemplar 
label from distractor 
labels 

3 AFC - No 

 

Table 1. Task details of the four tasks used in the present study. LE = Learning Exemplar, MA = 
Matching, EP = Ensemble Perception, SV = Semantic Vanderbilt Expertise Test, AFC = Alternative 
Forced-Choice 
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Bird, MA-Transformer, EP-Plane, LE-Sheinbug, MA-Bird, SVET-Plane, MA-Greeble, EP-Ziggerin, 

EP-Transformer; Session 2: MA-Ziggerin, LE-Transformer; EP-Sheinbug, MA-Sheinbug, LE-Plane, 

SVET-Transformer, MA-Plane, EP-Bird (Figure 2). All tests were administered using Matlab and 

Psychtoolbox-3 software (Brainard, 1997; Matlab, 2016). 

 

Behavioral stimuli 

The intraclass correlations of previous data revealed diminishing returns in the 

estimated reliability of averaged standardized scores after three categories (Richler et al., 

2019). Based on this, the present study used three novel and three familiar object categories. 

For novel object categories, we chose vertical Ziggerins (A. Wong, Palmeri, & Gauthier, 2009) 

 

 
 

Figure 2. Schematic of the study design and test orders. Session 1 tests are shown in the top box 
and Session 2 tests in the bottom box. Ensemble Perception = EP (orange), Learning Exemplar = LE 
(green), Matching = MA (yellow) and SVET = SV (blue). Categories are represented by silhouette 
figures (e.g. Greebles, Birds, Transformers, Planes, Sheinbugs and Ziggerins).  
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and symmetrical Greebles (Gauthier & Tarr, 1997) because of their high reliabilities in previous 

data (learning exemplar task Cronbach ’s of .84 and .89 respectively as compared with  = .74 

for asymmetric Greebles and .74 for horizontal Ziggerins; Richler et al., 2019). For the third 

novel object category, we chose Sheinbugs because of their visual distinctness from the other 

two categories.  

We selected familiar categories according to four criteria: 

1) Avoiding categories for which recognition performance appears to be “special”, in 

that it systematically fails to correlate with recognition performance for most other 

categories, such as faces or cars (see Ćepulić et al., 2018; Hendel et al., 2019; 

McGugin, Richler, et al., 2012; Sunday, Dodd, et al., 2018; Van Gulick et al., 2016)  

2) Choosing categories in which domain-specific experience is not strongly correlated, 

as this would make it more difficult to disentangle ability from experience 

3) Choosing categories that, everything being equal, represent a variety of different 

familiar categories (e.g., not all animals, or all large objects) 

4) Choosing categories with high naturally-occurring variability in experience in the 

population, as this has been the main explanation for the limited correlations among 

performance with different familiar categories  

  To address the first criterion, an examination of previous data relating performance on 

VETs for several categories (Van Gulick et al., 2016) found that recognition performance for 

birds, planes, leaves, dinosaurs, mushrooms  and transformers showed relatively high 

correlations with each other, as compared with categories like cars and shoes, which correlated 

to a lesser extent with other categories (Figure 3, left). To address the second criterion, we 
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considered correlations between both self-reported experience with categories and 

performance on a domain-specific semantic knowledge measure (Van Gulick et al., 2016). For 

both of these measures, birds, planes, transformers and mushrooms showed relatively low 

average correlations with other categories (Figure 3, right). We chose transformers because 

they met criteria one and two, and because the variability in experience with transformers also 

meets criterion four. To include the most variable categories possible (criterion three), we then 

chose birds (living, physically small) and planes (non-living, physically large) for the additional 

categories in the present study. Though this choice reflects compromises and accessibility of 

prior results, if o is truly domain-general, the choice of familiar object category should be 

relatively arbitrary. All familiar object images were obtained from the Internet and include the 

exemplar object and background (except on the ensemble perception task, in which the 

background was removed, Figure 4). Bird images include passerine bird species common to 

North America (Figure 5), transformer images include images of transformer figures, and plane 

images include a range of commercial and military plane models.  

 

Learning exemplars (LE) task 

This task required subjects to learn and subsequently recognize six exemplars from a 

given category. The paradigm was modeled after paradigms used in the Cambridge Face 

Memory Test (Duchaine & Nakayama, 2006), Vanderbilt Expertise Tests (McGugin, Richler, et 

al., 2012) and the Novel Object Memory Tests (Richler et al., 2017). The novel category tasks 

used here were identical to those used in Richler et al., 2019. The task began with subjects 

studying six exemplars from a given category for as long as they liked. Next, subjects completed 
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two 24-trial blocks (48 trials total) in which they made an unspeeded choice as to which of 

three objects presented together were one of the six studied exemplars (Figure 4). Subjects 

were allowed to review the target exemplars after trials 6 and 24 and instructed after trial 24 

that the subsequent targets would differ in viewpoint. Thirty-six total objects from each 

category were used, 6 as targets and 30 as distractors. In the first block, targets were an 

identical image to the studied image. In the second block the targets were shown from a 

different viewpoint than that of the studied image. Targets were never consecutively repeated 

 

 
 

Figure 3. Correlations between VET performance (left), SVET performance (right top) and 
self-reported experience (right bottom) from Van Gulick et al., 2016 (N = 213). Green 
indicates higher correlations and red indicates lower correlations. Categories are 
represented by silhouette figures (VET: cars, dinosaurs, leaves, mushrooms, planes, shoes 
transformers, owls; SVET and Self-report: dinosaurs, leaves, mushrooms, planes, 
transformers and owls). Cars and shoes are not shown in right two images because they did 
not meet Criterion 1 (instead showing relatively low correlations in comparison to other 
categories, see Vanderbilt Expertise Test image on left). Correlations between categories 
chosen for behavioral study are outlined in black. 
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across trials. Performance was indexed by percent accuracy. This task took approximately eight 

minutes to complete for each category.  

The familiar object learning exemplars tasks were the VET-Bird, VET-Transformer and 

VET-Plane used in Van Gulick et al. (2016), hereafter referred to as LE-Bird, LE-Transformer, and 

LE-Plane, respectively. These tasks were identical to the novel object learning exemplars 

measures with some exceptions. Subjects were allowed to review the target exemplars after 

trials 6 and 12 and received feedback on the first 12 trials, on which the target was identical to 

the studied image. On the transformers test, 48 total objects were used, 6 as targets and 42 as 

distractors (including 6 catch distractors meant to ensure subjects fully understood task 

instructions and were paying attention). On the bird task, 36 total objects were used, 6 as 

targets and 30 as distractors (including 6 catch distractors) and on the plane test 45 total 

objects were used, 6 as targets and 39 as distractors (including 6 catch distractors). The three 

catch trials from the original familiar category tests (which were added in prior work to 

evaluate compliance with instructions during online data collection) were also included for a 

total of 51 trials. 

 

Matching (MA) task 

This task required subjects to determine, on each trial, if a single probe object matched 

the identity of a single studied object, when presented sequentially. Each trial began with an 

object presented for 300 ms in the first block and 150 ms in the second block. This object was 

followed by a domain-specific scrambled mask for 500 ms, followed by a probe object and a 

500 ms fixation inter-stimulus interval (Figure 4). Subjects determined if the probe object was 
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the same or different identity from the studied object (regardless of viewpoint), within a 

maximum of 3000 ms to respond. There were 360 total trials and subjects were given a break 

every 90 trials. There were equal numbers of same and different trials. Fifty total objects were 

used, each in two different viewpoints of the objects rotated around a vertical axis (i.e. rotated 

out of the screen, see Figure 4, left trial). For the novel categories, the probe image size also 

varied randomly across trials, where half the trials presented the probe image in the same size 

as the study image (125x125 pixels) and half in a slightly smaller size (95x95 pixels). Objects 

repeated between the matching and learning exemplar task (70 objects for Ziggerins, 68 for 

Greebles, 72 for Sheinbugs).  

 

 

 
 

Figure 4. Schematics for the three behavioral tasks and three novel categories: learning 
exemplars with Ziggerins (top), matching with Sheinbugs (middle) and ensemble perception 
with Greebles (bottom). 
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The matching task for the familiar objects was identical to the task with novel objects 

with the exception of the stimuli. For each familiar category, 2 views of 80 exemplars from each 

category were used. Some of the exemplars were also used in the learning exemplars task. Half 

of the trials in which the correct response was “same” showed one view of the exemplar at 

study and a different view at test. For the other half of the “same” trials, the study and test 

exemplars were the same image. On these trials, to make visual information in the background 

less diagnostic, the backgrounds in both of these images (study and test images on these 

“same” trials) were slightly modified using Adobe Photoshop to create two new versions of the 

image (Figure 5).  This task took approximately 20 minutes to complete for each category. 

Performance on this task was indexed by calculating d' scores. 

 

Ensemble perception (EP) task 

This task required subjects to decide which of six objects most closely matches the 

average identity of four objects presented simultaneously. In this task, three objects from a 

given category were morphed together using MorphAge software (Creaceed SPRL, 2008) to 

produce all six possible 25%/75% and 75%/25% morphs. Each trial began with subjects studying 

a 2x2 array of four morphs for 1000 ms. Next, subjects were presented with an unspeeded six-

alternative forced choice in which they chose which of the six options was closest to the 

average of the studied array (Figure 4). The answer choices were always presented in the same 

order, though the leftmost choice varied across trials (e.g. choices could be 1, 2, 3, 4, 5, 6 or 3, 

4, 5, 6, 1, 2) There were 70 trials and none of the three original objects that were morphed 

were one of the six studied exemplars from the LE task. Each response was scored as the 
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absolute value of the difference between the response and the correct answer (e.g. if the 

correct answer was 3 and the subject responded 2, then response accuracy was scored as a 1). 

Summed scores were used as an index of performance, with higher scores indicating poorer 

performance. The task took approximately seven minutes per category to complete. 

 

 

Semantic vanderbilt expertise (SV) task  

In this task, subjects used their prior semantic knowledge of a given object category to 

identify the real subordinate-level object label from two plausible-sounding distractors across 

51 total trials. For example, on one trial of the SVET-Transformers, subjects should have 

 
 

Figure 5. Examples of stimuli used on the familiar domain matching task same trials. All 
images shown here are of a Carolina chickadee (Poecile carolinensis), thus correct responses 
for both trials is “same”. The original image (left) was photoshopped to create two new 
versions with differing backgrounds (top row, “Same Image”). Bottom row shows a trial in 
which the original image was shown with a different image of the same species (“Different 
Image”).  
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correctly identified “Megatron” and not “Uppercut” or “Outlook” as the correct transformer 

label. The SVET consisted of 48 trials plus three catch trials in which the two distractors were 

not plausible object labels (e.g. “JC Penny” or “Oatmeal Raisin”).  The task took approximately 

five minutes per category (birds, planes, transformers) to complete.  

 

Results 
 

All data from 12 subjects were excluded for having more than six tests on which the 

subject had either below chance accuracy (50% for matching, 33.33% for VET, -1.5 for ensemble 

perception), reaction times quicker than 2 standard deviations below the mean reaction time 

for each task and category, or more than 20 timed-out trials on the matching tests. 

Additionally, one subject chose to leave the study during the first test of the first session and so 

was excluded from analysis. Thus, data from 281 subjects (96% of sample; 94 male; mean age = 

22.7, age range = 18-63, 249 right-handed) were included in the analyses. Some tests were not 

administered (47 tests from 28 subjects, 0.8% of total data), either due to computer errors 

causing the test to be skipped entirely, or computer error occurring during the test so that only 

a few trials were completed. On matching tests in which subjects timed out (responded later 

than 3000 ms) on more than 20 trials, the data for that matching test only was omitted (86 

tests from 45 subjects, 5.1% of matching data). Additionally, one subject was accidentally run 

through session 2 twice, so only the first session 2 data was included. Fourteen subjects did not 

return for the second session. There were no significant differences between scores on the 

session 1 tests (MA-Greeble, MA-bird, MA-transformer, EP-Plane, EP-Transformer, EP-Greeble, 

EP-Ziggerin, LE-Sheinbug, LE-Bird, SVET-Plane) for the fourteen subjects who did not return for 
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Session 2 and the 268 non-excluded subjects who did both sessions (all ps > .30 except, VET-

Sheinbugs p = .06 on which the subjects who did not return for Session 2 had a higher average 

performance). 

 Descriptive statistics for each test are reported in Table 2. Mean performances on 

matching and learning exemplars tasks for novel categories were similar to previous work 

(Richler et al., 2019) and SVET mean performances were similar to previous work (Van Gulick et 

al., 2016). Cronbach ’s provided evidence of acceptable internal consistency, except for SVETs. 

Though most SVETs have produced measurements with good reliability in prior work (Sunday, 

McGugin, & Gauthier, 2017; Van Gulick et al., 2016), their reliabilities were low here (’s  .5). 

This low reliability has been reported previously for the SVET-Bird ( = .50; Sunday, Dodd, et al., 

2018), but we are unsure of why the SVETs here produced lower reliabilities than previous 

reports. Skewness and kurtosis indicated significant non-normality for several tests, most often 

on matching tests (Table 2). This is similar to the previous study using only novel objects, which 

also found evidence of non-normality for several tests (Richler et al., 2019). Skew and kurtosis 

values and qq-plots revealed non-normality was not severe for all tests except MA-

Transformers.  
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Task N Mean (SD) Range Skew Kurtosis 
Cronbach’s 

 

EP-Z 278 0.98 (0.23) 1.27 -0.59*** 0.17 0.86 

EP-G 278 0.94 (0.20) 1.09 -0.58*** 0.14 0.79 

EP-S 265 1.00 (0.25) 1.30 -0.23 -0.39 0.85 

EP-B 265 0.94 (0.27) 1.30 -0.58*** -0.22 0.89 

EP-P 278 1.10 (0.23) 1.21 -0.33* -0.33 0.81 

EP-T 278 0.85 (0.25) 1.30 -0.64*** 0.08 0.88 

MA-Z 253 1.42 (0.44) 3.00 -0.65*** 0.90* 0.96 

MA-G 265 1.22 (0.53) 2.48 0.03 -0.55* 0.95 

MA-S 248 0.70 (0.34) 2.05 0.08 0.24 0.92 

MA-B 264 1.95 (0.40) 2.60 -0.82*** 1.38* 0.96 

MA-P 252 1.88 (0.49) 3.39 -0.89*** 1.62*** 0.97 

MA-T 256 1.91 (0.51) 4.52 -1.63*** 8.14*** 0.98 

LE-Z 264 0.61 (0.15) 0.67 -0.07 -0.64** 0.83 

LE-G 266 0.60 (0.17) 0.77 0.04 -0.77*** 0.86 

LE-S 273 0.51 (0.12) 0.63 0.02 -0.12 0.69 

LE-B 277 0.69 (0.15) 0.67 -0.16 -0.84*** 0.87 

LE-P 266 0.68 (0.12) 0.65 -0.30* 0.25 0.78 

LE-T 267 0.76 (0.12) 0.58 -0.39* -0.46 0.83 

SV-B 266 0.46 (0.08) 0.65 0.89*** 3.10*** 0.41 

SV-P 278 0.44 (0.08) 0.42 0.38** -0.21 0.44 

SV-T 265 0.40 (0.09) 0.56 0.30* 0.25 0.50 

 

Table 2. Descriptive statistics for each behavioral test. EP = Ensemble Perception, MA = 
Matching, LE = Learning Exemplar, SV= Semantic Vanderbilt Expertise Test. Categories: Z = 
Ziggerins, G = Greebles, S = Sheinbugs, B = birds, P = planes, T = transformers. D’Agostino test 
of normality for skewness and Anscombe-Glynn tests of normality for kurtosis significance 
levels are reported, *p < .05, ** p <.01, *** p <.001 
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First-order correlations are reported in Figure 6.  

  

 
 

Figure 6. Heatmap of correlations between all tests with correlation coefficients. Categories 
are represented by silhouette figures. EP = Ensemble Perception, MA = Matching, LE = 
Learning Exemplar, SV= Semantic Vanderbilt Expertise Test. p < .05 if r > .11 (except MA-
Sheinbug with SV-Plane, where p = .07); p < .01 if r > .15; p < .001 if r > .20 (except LE-Greeble 
with EP-Plane, p < .001 and LE-Sheinbug with MA-Ziggerin, p = .001) 
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To compare the correlations between familiar and novel categories, we examined the 

strengths of these relations within each task (Table 3). Previous work has shown that, generally, 

novel categories tend to correlate to a greater extent than familiar categories (McGugin, 

Richler, et al., 2012; Richler, Cheung, et al., 2011; Richler et al., 2017; Van Gulick et al., 2016), 

presumably because variability in experience with familiar categories attenuates correlations 

between these categories (i.e. if you have differing levels of experience with different 

categories, this drives the recognition abilities of these categories to diverge). However, as can 

be seen in Table 3, this is not the case in the present study: familiar categories and novel 

categories intercorrelate to a similar extent in each task.  

 

 

 

 

 Familiar   Novel  

 Birds Planes Mean  Greebles Ziggerins Mean 

MA .60  .60 

Planes 0.69   Ziggerins 0.60   

Trans 0.58 0.53  Sheinbugs 0.60 0.59  

LE .43  .41 

Planes 0.42   Ziggerins 0.51   

Trans 0.34 0.52  Sheinbugs 0.37 0.35  

EP .52  .46 

Planes 0.45   Ziggerins 0.45   

Trans 0.62 0.48  Sheinbugs 0.54 0.39  

 

Table 3. Correlations between all tests grouped by task. N’s for each correlation range 
from 234-276 and all correlations are significant (all ps < .001). The average correlation 
for each task is shown in shaded columns (correlations were Fisher-transformed before 
averaging). EP = Ensemble Perception, MA = Matching, LE = Learning Exemplar 
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In fact, not only do familiar categories intercorrelate just as strongly as novel categories, 

but the variability in performance on each task with familiar and novel categories are similar 

(coefficient of variation ranges: MA-Familiar = 0.21-0.27; MA-Novel = 0.31-0.49; EP-Familiar = 

0.21-0.29; EP-Novel = 0.21-0.25; LE-Familiar = 0.16-0.22; LE-Novel = 0.24-0.28, see Figure 7 for 

distributions). As can be seen in Figure 7, in the ensemble perception tests, the distributions of 

performance are less similar (i.e. overlap less) for familiar categories as compared with novel 

categories. However, in the matching tests, distributions of performance with the novel 

categories are less similar than with familiar categories. Thus, it is not always the case that 

across-category distributions are more similar in novel categories for which there is no 

variability in experience.   

 

Do latent factors account for performance across recognition tests? 

 By examining the zero-order correlations, we see that the tests correlate with one-

another both across-tasks and across-categories. However, these correlations reflect the 

relation between the observed tests with both measurement error and category-specific 

variance present (both of which could attenuate correlations, Gauthier, 2018; Nunnally, 1970). 

Moreover, examining zero-order correlations only allows a comparison of two observed tests 

but here we are interested in the existence and relation between higher-order factors. Thus, 

the data were submitted to a 2nd-order structural equation model (SEM) using MPlus 8.2 

software (Muthén & Muthén, 1998). Given the non-normality of several tests, the MLR 

estimator was used in Mplus. The MLR estimator uses the expectation-maximization (EM) 

algorithm and numerical integration and provide standard errors using the Huber-White 
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sandwich estimator robust against nonnormality. For each category, one of the three tests’ 

loading was constrained to 1 and the variance of the 2nd-order factors were set to 1. Similar to 

Richler et al., (2019), a series of models was fit for both 2nd-order factors (n and f). In the first 

model (1n and 1f, Table 4), observed tests (MA, LE and EP, denoted by squares in Figure 8), 

loaded onto category-specific factors (e.g. Greeble factor). The second model (2n and 2f) added 

in correlated error terms within task to allow for method effects, which may occur because the 

same tasks were used across several categories (e.g. some of the variance shared between MA-

 
 

 
 

Figure 7. Density plots for subjects’ performances on each task separated in novel categories 
(bottom row) and familiar categories (top row). N’s for each distribution range from 234-
276. Birds = red, Planes = pink, Transformers = Yellow, Greebles = Blue, Sheinbugs = Green, 
Ziggerins = Purple  
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Bird and MA-Plane may result from the matching task itself). The third model (3n and 3f) 

required the factor loadings of the three tasks to be invariant across categories (i.e. equal) 

meaning that, for example, each of the three EP loadings were constrained to be equal. The last 

model (4n and 4f) added a higher-order factor of either general novel object recognition (n) or 

general familiar object recognition ability (f) 

 

 

Both models 1n and 1f showed evidence of poor fit (e.g. high RMSEA, low CFI), similar to 

what was found in the previous Richler et al. study. The fit improved in models 2n, 3n, 2f and 

 
Model Description df 2 RMSEA (90% 

CI) 
CFI SRMR AIC BIC SABIC 

1n Correlated novel 
categories 

24 176.954, 
p = 0.00 

0.151 (0.130, 
0.172) 

0.754 0.082 558.977 449.826 544.955 

2n 1n + errors across 
tasks 

15 17.007, 
p = 0.32 

0.022 (0.000, 
0.062) 

0.997 0.024 698.834 556.938 680.605 

3n 2n + within-tasks 
invariant loadings 
on category factors 

19 49.049, 
p = 0.00 

0.075 (0.049, 
0.101) 

0.952 0.083 674.417 547.075 658.059 

4n 3n + 2nd-order 
category factors 

20 49.048 
p = 0.00 

0.072 (0.047, 
0.098) 

0.953 0.083 676.379 552.675 660.487 

1f Correlated familiar 
categories 

51 318.124, 
p = 0.00 

0.137 (0.122, 
0.151) 

0.642 0.110 2263.425 2121.529 2245.197 

2f 1f + errors across 
tasks 

42 141.361 
p = 0.00 

0.92 (0.075, 
0.109) 

0.867 0.089 2426.018 2251.377 2403.583 

3f 2f + within-tasks 
invariant loadings 
on category factors 

48 159.682, 
p = 0.00 

0.091 (0.076, 
0.107) 

0.850 0.099 2418.628 2265.817 2398.997 

4f 3f + 2nd-order 
category factors 

46 113.532, 
p = 0.00 

0.072 (0.056, 
0.089) 

0.909 0.086 2464.627 2304.539 2444.061 

 

Table 4. Model fit indices for both novel (n) and familiar (f) 2nd-order factors. 2  = Satorra-Bentler 

2 test of model fit, RMSEA = root mean square error of approximation, CFI = comparative fit 
index, SRMR = standardized root mean square residual, AIC = Akaike Information Criteria, BIC = 
Bayesian Information Criteria, SABIC = sample-size adjusted BIC 
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3f. Model 4f, which adds a 2nd-order factor to model 3f, has a lower RMSEA and SRMR and 

higher CFI than model 3f (3f: RMSEA = .091, SRMR = 0.099, CFIs = 0.850; 4f: RMSEA = .072, 

SRMR = 0.086, CFIs = 0.909). Similarly, model 4n has lower RMSEA, equal SRMR and higher CFI 

than model 3n (3n: RMSEA = .075, SRMR = 0.083, CFIs = 0.952; 4n: RMSEA = .072, SRMR = 

0.083, CFIs = 0.953). These differences in model fit between models 3f and 4f, and 3n and 4n, 

are not large; this suggests adequate fit for all models. Since the final models with 2nd-order 

factors (4n and 4f) showed evidence of good fit (RMSEAs < .08, CFIs > 0.9, SRMR < .09) and 

allow for a correlation to be estimated between a general novel object recognition factor and a 

general familiar object recognition factor, we proceeded with these models in the subsequent 

analyses.  

 

Does experience explain some of the variability in recognition abilities? 

In the present study, we used both novel and familiar categories to test how experience 

influences recognition ability. As an indirect measure of experience, we included a measure of 

semantic knowledge about each familiar category (SVETs), and were interested in whether 

these tests could account for some of the variability in familiar object recognition performance. 

To test this, we fit model 4f both with and without SVETs included. SVETs were included as 

latent variables (with no error variance) because of their relatively low reliabilities (see Table 2). 

The SVETs showed little evidence of having an effect on the model. No category resulted in a 

significant parameter estimate (Bird: estimate = 0.05, SE = 0.22, p = 0.84; Plane: estimate = 

0.59, SE = 0.34, p = 0.08; Transformer: estimate = 0.13, SE = 0.50, p = 0.62). Additionally, adding 

SVETs did not result in a significant improvement in the R-squared values (SVETs included: Bird 
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R2 = 1.00, Plane R2 = 1.00, Transformer R2 = 0.88; SVETs not included: Bird R2 = 1.00, Plane R2 = 

1.00, Transformer R2 = 0.90; Bird R2 percent increase = 0.02, Plane R2 percent increase = 0.00, 

Transformer R2 percent increase = 0.00). 

 

Do novel and familiar object recognition rely on the same underlying ability (o) or does acquiring 

domain-specific experience led to the recruitment of differing abilities during recognition? 

 Our main question was to what extent (if any) novel and familiar object recognition 

abilities relate to one another. To determine the extent to which n and f relate, a full model was 

fit in which n and f were allowed to correlate (joining models 4n and 4f from Table 4, with 

factor invariance and errors across tasks, Figure 8). SVETs were included in the model, but not 

allowed to correlate with n or f. The model showed evidence of good fit (df = 143, 2= 230.14, p 

= 0.00, RMSEA= 0.047, RMSEA 90% CI = (0.035,0.057), CFI = 0.957, SRMR = 0.092). Parameter 

estimates of this model are shown in Figure 8. To have a model with admissible correlations 

(i.e. the correlation between n and f between -1 and 1), it was necessary to constrain MA-Bird 

errors to correlate with EP-Bird errors. Without this constraint the correlation between n and f 

exceeded 1, thus a constraint was clearly necessary. Loadings of observed tests onto category-

specific factors were moderately high and significant (all ps < .01 except SVETs, for which only 

SVET-Plane was significant with p = .02). MA generally showed the highest loading (range = .73-

.88), followed by LE (range = .38-.52), then EP with the lowest loadings (range = .21- .40). 

Category-specific factor loadings onto the 2nd-order factors were high (range = .87-.98, all ps < 

.001). Both 2nd-order factors showed evidence of good reliability (reliability of f = 0.84, CI = 

[0.77, 0.93]; reliability of n = 0.80, CI = [0.72, 0.88], Raykov, Goldammer, Marcoulides, Li, & 
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Menold, 2018), with reliability here meaning the proportion of true scores in the total score 

variance of the indicators (MA, LE and EP for either the familiar or novel domains for f and n 

respectively). The correlation between the 2nd-order n and f factors was extremely high at 1.00, 

suggesting these 2nd-order factors were strongly, if not perfectly, related.  

 

 

Discussion 

 The primary goal of the present study was to investigate how domain-specific 

experience influences recognition ability. Specifically, we were interested in determining the 

 

 

Figure 8. Full SEM model standardized solution (both observed tests and factors are standardized). 
Categories are represented by silhouette figures. EP = Ensemble Perception, MA = Matching, LE = 
Learning Exemplar, SV= Semantic Vanderbilt Expertise Test. 
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role o, the recently-discovered domain-general object recognition ability, plays in recognition of 

categories for which we have variable real-world experience. Using a latent variable framework, 

we found strong evidence that novel and familiar object recognition factors are related. In fact, 

given the correlation between these two factors was perfect, the evidence suggested these 

factors are actually indistinguishable, meaning that knowing how well an individual performs on 

several novel object recognition tests allowed for a perfect prediction of that individual’s 

general familiar object recognition factor.  

The final SEM model (Figure 8), replicated the Richler et al., previous finding that first-

level domain-specific factors strongly load onto higher-order domain-general factors (here, 

loadings ranged from .87- .98), with these higher-order factors accounting for a large portion of 

the shared variance. We found this to be true not only for novel object categories, but familiar 

object categories as well. Because we used more variable tasks than in the initial Richler et al. 

work (by including the ensemble perception task instead of the part-matching composite task 

used in Richler et al.), our findings showed that strong factor-loadings onto o can still be found 

with a wider range of object recognition tasks. This result extends the task-generality of o.  

Given that novel categories are inherently equated for experience (i.e. no experience), 

one might expect novel categories to correlate more strongly with one another than familiar 

categories in which experience varies. Previous work supports this prediction, reporting 

average correlations around 0.30 for familiar categories (McGugin, Richler, et al., 2012; 

McGugin, Van Gulick, Tamber-Rosenau, Ross, & Gauthier, 2015) and average correlations 

around 0.50 for novel categories (Richler et al., 2019). However, this does not seem to be the 

case in the present study (average MA correlation: novel: 0.60, familiar: 0.60; average LE 
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correlation: novel: 0.41, familiar: 0.43; average EP correlation: novel: 0.46, familiar: 0.52, Table 

3); though it should be noted that these categories were partially chosen because they have 

previously demonstrated relatively strong correlations with other categories (Criterion 1). The 

results here suggested that the variability in experience present in familiar but not novel object 

categories does not limit how performance with these categories correlate, at least for cases 

where categories like faces or cars are avoided. Thus, it is possible that with the familiar 

categories chosen here, our three tasks are not influenced by experience as much as we might 

have expected based on previous work (Barton et al., 2009; Van Gulick et al., 2016). 

Our findings demonstrated the utility of latent variable approaches for investigating 

how familiar and novel object recognition relate; using latent variable models of familiar object 

recognition allowed for more insight into this relation than in the Richler et al. work (in which 

familiar object recognition was measured with only single domain-specific tests). This previous 

work found significant correlations between o and familiar object learning exemplar tests (rs = 

.26-.54), suggesting a moderate relation between novel and familiar object recognition. More 

specific to the present study, the pairwise correlations between o and birds and o and planes 

were much lower than the correlation reported here between n and f (birds: r =  0.39; planes: r 

=  0.46; Richler et al., 2019). The latent variable framework, which allowed for correlations 

between factors to be estimated free from attenuations due to measurement error and 

domain-specific variance, enabled us to further probe the strength of this relation. We found 

that o can be measured equally well using either novel or familiar object categories. 

 We also found that including measures of domain-specific semantic knowledge did not 

result in significant improvement in model fit, providing little evidence for an influence of 
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semantic knowledge on the relation between familiar and novel object recognition abilities. It is 

possible that measuring semantic knowledge was not the best measure of domain-specific 

experience pertinent to recognition performance (i.e. some other aspect of experience could be 

more relevant to how well an individual can recognize objects from a given domain). However, 

these measures have been found to correlate with single recognition measures and self-

reported experience measures (Van Gulick et al., 2016). To be clear, we do not interpret our 

results as suggesting that experience has no impact on object perception. Indeed, there is 

ample evidence that domain-specific experience affects the processing of objects from that 

domain. For example, experts often exhibit evidence of holistically processing exemplars for 

their domain of expertise (Busey & Vanderkolk, 2005; Gauthier et al., 2003; Gauthier & Tarr, 

2002; A. Wong, Palmeri, & Gauthier, 2009; Y. Wong & Gauthier, 2010) and improvements in 

performance resulting from perceptual training can transfer to objects from the trained domain 

that were not used during training (Scott, Tanaka, Sheinberg, & Curran, 2006; Tanaka, Curran, & 

Sheinberg, 2005; Tanaka & Pierce, 2009; B. Xu, Rourke, Robinson, & Tanaka, 2016). This does 

not contradict our findings here as it is entirely possible for o to be predictive of an individual’s 

recognition performance in two domains even if the individual processes the domains 

differently. This is congruent with Richler et al.’s finding that the domain that subjects were 

exposed to showed increased holistic processing but correlated equally well with the un-

exposed categories (Richler et al., 2019). Taken together, these results suggest that experience 

with domains can affect perceptual processing in measurable, quantitative ways. With regard 

to variability in recognition performance across individuals, however, the processing differences 

do not result in differences in the recruitment of the underlying skill that drives performance, o. 



 36 

As a comparison, work in artificial intelligence has shown that it is possible for different visual 

strategies to produce similar performance on the Raven’s Progressive Matrices test (Kunda, 

Mcgreggor, & Goel, 2011), which could suggest that individuals with the same level of fluid 

intelligence can engage in different processing strategies. In a similar way, experience could 

modulate the processing of objects from various domains, but the underlying skill driving the 

manifest observations remains the same regardless of changes in processing.   

 Though we specifically chose our familiar object categories to maximize how 

representative they were of a typical familiar object category, it of course remains possible that 

the results might differ if other categories were chosen. Future replications could test new sets 

of familiar categories, like mushrooms, shoes or leaves. Critically, the familiar categories we 

used had to result, relative to novel objects, in higher basic-level familiarity and some variability 

in subordinate-level familiarity in our subjects. That is, our subjects had knowledge regarding 

what a plane or a bird is, which they could not have had for a Greeble or a Ziggerin. 

Furthermore, some of them likely also had knowledge about individual exemplars in a way they 

could not have had for novel objects. Our results therefore clearly demonstrate that o can be 

measured equally well under these conditions. However, this may not apply to all familiar 

categories equally. For instance, faces and cars often dissociate from other familiar object 

categories (Ćepulić et al., 2018; Hendel et al., 2019; McGugin, Richler, et al., 2012; Sunday, 

Dodd, et al., 2018; Van Gulick et al., 2016), and future work could address how face and car 

recognition relate to novel object recognition within a latent variable framework. Especially 

given that several studies have found evidence that experience can influence face recognition 

(e.g. the other-race effect Brigham & Malpass, 1985; Sangrigoli, Pallier, Argenti, Ventureyra, & 
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De Schonen, 2005; Tanaka, Kiefer, & Bukach, 2004; or the hometown effect Balas & Saville, 

2015, 2017; Sunday et al., 2018), determining if or why o diverges from face or car recognition 

may yield insight into theories about how experience and o interact.  

Given the present findings, we might speculate that as a domain-general ability, o could 

be considered analogous to fluid intelligence. Similar to fluid intelligence, o does not require 

any previous experience to be relevant but is still pertinent in tasks that involve familiar stimuli. 

Recognition ability in domains with which we have substantial experience (for example faces 

and cars), may rely more on a type of crystallized, experience-dependent ability. To continue 

with this analogy, using novel objects to measure o would be similar to measuring fluid 

intelligence using novel stimuli like the abstract matrices used in the Raven’s Progressive 

Matrices test (Raven, 2000). Using familiar objects that meet the criteria outlined here 

(specifically that they aren’t too “special”) is like measuring fluid intelligence with IQ measures 

like the Wechsler Adult Intelligence Scale (Wechsler, 1955), which uses letter and numbers with 

which adults are certainly familiar. Lastly, measures of domain-specific face or car recognition 

would be similar to measures of crystallized abilities, for example a baseball trivia quiz where 

performance mostly reflects specific experience with baseball. In both of these last instances, 

we would not expect such crystallized measures to strongly relate to their fluid counterparts. In 

this vein, previous work has reported distinct face, car and general object recognition factors 

(Ćepulić et al., 2018). Future work could more explicitly test this theory using a large battery of 

multiple tasks (note that Ćepulić et al, 2018 used only one task) and multiple novel, familiar and 

“special” categories like faces or cars.  
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 Overall, this work further characterizes the newly proposed domain-general object 

recognition ability, o. At this point, o has been shown to account for a large portion of shared 

variance between novel object categories, to dissociate from other constructs like fluid 

intelligence, and to relate to domain-general familiar object recognition. These promising 

findings generate an exciting new line of research exploring, for example, if o extends into other 

perceptual modalities or if o has useful applications in various perception-heavy professions 

(e.g. radiology or security screening). In Chapter III, we pursue another research avenue by 

exploring potential neural correlates of o.  
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Chapter III 

 

Neuroimaging Study 

 

Several studies have looked for correlations between neural activity (or activity 

patterns) and domain-specific recognition abilities (Bilalic, Grottenthaler, Nagele, & Lindig, 

2016; Bilalić, Langner, Ulrich, & Grodd, 2011; Gauthier, Skudlarski, Gore, & Anderson, 2000; 

Martens, Bulthé, van Vliet, & Op de Beeck, 2018; McGugin, Newton, Gore, & Gauthier, 2014; Y. 

Xu, 2005), though no work to date has investigated neural correlates of a domain-general 

object recognition ability. In the present study we attempted to localize the neural correlates of 

o using functional magnetic resonance imaging (fMRI). In doing so, we hope to begin research 

into the neural underpinnings of individual differences in domain-general object recognition. Is 

there measurable variability in individuals’ neural structures or functions that corresponds with 

variability in domain-general object recognition? If such neural underpinnings exist, localizing 

them could inform theories about the mechanisms responsible for variability in object 

recognition abilities.  

When considering what brain regions may support domain-general object recognition 

ability, we first considered neuroimaging work localizing domain-specific recognition abilities. 

Many studies report correlations between cortical activation and behavioral object recognition 

measures for domains like cars (Gauthier, Skudlarski, et al., 2000; McGugin, Gauthier, Gatenby, 

& Gore, 2012; McGugin et al., 2014; Y. Xu, 2005), faces (Furl, Garrido, Dolan, Driver, & 

Duchaine, 2011; Huang et al., 2014)  and birds (Gauthier, Skudlarski, et al., 2000; Y. Xu, 2005). 
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Most of these studies focus on perceptual expertise effects in the fusiform face area (FFA), a 

cortical region in the ventral temporal cortex that responds preferentially to faces (Kanwisher, 

McDermott, & Chun, 1997) and objects of expertise (Bilalic et al., 2016; Bilalić et al., 2011; 

Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; McGugin et al., 2014). Anatomical and 

functional studies have shown that this FFA region is composed of two distinct clusters (one 

posterior and one more anterior), which have been named FFA1 and FFA2 respectively (Pinsk et 

al., 2008; Weiner, Sayres, Vinberg, & Grill-Spector, 2010). There is recent evidence that FFA2s 

tend to more strongly relate to behavioral object recognition measures than FFA1s (McGugin, 

Ryan, Tamber-Rosenau, & Gauthier, 2017; McGugin, Van Gulick, Tamber-Rosenau, et al., 2015), 

supporting the utility in analyzing these regions separately when relating neural signals to 

behavioral performance. Given the work focusing on correlates of perceptual expertise in the 

fusiform gyrus, this region was also examined in a region-of-interest (ROI) analysis in the 

present study. Indeed, functionally defining and analyzing ROIs (like the FFA and other object-

selective regions discussed below) will help to increase power and is necessary to account for 

variability in the location of these functional regions (since the exact coordinates of FFA1s and 

FFA2s differ between individuals so anatomical landmarks are less helpful). Critically, all of the 

previous work has related behavioral measures of familiar object recognition to neural activity. 

Thus, because those behavioral measures included variability due to experience, the results 

then localized correlates of recognition abilities potentially influenced by experience. Indeed, 

recent work has found that the relation between behavioral face recognition measures and FFA 

activation can be amplified by manipulating experience with faces (McGugin et al., 2017), 

specifically within the right FFA2. However, given the goal of the present work is to find 
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correlates of domain-general object recognition ability, independent of experience, there is no 

reason to limit our search to just the regions that relate to domain-specific recognition abilities. 

Thus, in addition to exploring potential correlates in ROIs, we also analyzed data from the entire 

cortex so that possible correlates outside the ROIs could be localized.   

In designing the present study, we considered both where to search for correlates 

(discussed above) and what neural indices to use for our search. Should we use univariate 

activation differences, or would it be more informative to use more complex indices? Here, we 

chose to use a functional adaptation paradigm (a-fMRI) to index neural sensitivity. We chose to 

measure neural sensitivity because it reflects not only responsiveness to objects but also neural 

capability to perform functions critical to object recognition (like detecting subtle visual 

information) that could be diagnostic of object identities. This paradigm is based on the 

phenomenon (also called repetition suppression) that neural responses are reduced with the 

repetition of stimuli (Grill-Spector & Malach, 2001), which has been measured in object-

selective regions across species (De Baene & Vogels, 2010; Li, Miller, & Desimone, 1993; 

Sawamura, Georgieva, Vogels, Vanduffel, & Orban, 2005; Verhoef, Kayaert, Franko, 

Vangeneugden, & Vogels, 2008) and using several methods, like single-cell recordings (De 

Baene & Vogels, 2010; McMahon & Olson, 2007; Verhoef et al., 2008), local field potentials (De 

Baene & Vogels, 2010), and MR spectroscopy (Apšvalka, Gadie, Clemence, & Mullins, 2015). 

Notably, using an adaptation paradigm also allows us to measure overall activity, so we can 

explore both how neural sensitivity and general responsiveness relate to o.  

Our study follows a long line of work using a-fMRI paradigms to probe neural 

representations of varying object properties (Grill-Spector et al., 1999; Kourtzi & Kanwisher, 
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2000; Kourtzi, Tolias, Altmann, Augath, & Logothetis, 2003; Vuilleumier, Henson, Driver, & 

Dolan, 2002), including representations within the fusiform gyrus (Gauthier, Tarr, et al., 2000; 

Grill-Spector et al., 1999; Rotshtein, Henson, Treves, Driver, & Dolan, 2005; Winston, 2004). The 

underlying concept behind these adaptation studies is that if a cortical region is sensitive to a 

given property (size, viewpoint, identity, etc.), then it should show more release from 

adaptation to an object set with more variation in this property (i.e. less repetition of the 

property). Conversely, a cortical region insensitive to a given property should show release 

from adaptation of equal magnitude since that region has no means of representing the 

differences between stimuli. Though the precise mechanisms underlying this reduction are still 

unclear and could include firing-rate adaptation, synaptic and long-term depression, and 

potentiation (Grill-Spector, Henson, & Martin, 2006), a-fMRI has proven to be a useful tool to 

probe neural representations (for reviews, see Barron, Garvert, & Behrens, 2016; Larsson, 

Solomon, & Kohn, 2016). 

Most a-fMRI studies have examined neural sensitivity at the group level, but some have 

looked for correlations between adaptation indices and individual behavioral measures (similar 

to the present study). Epstein and co-authors found a correlation between navigational ability 

and adaptation magnitude to scene stimuli in the parahippocampal place area (Epstein, Higgins, 

& Thompson-Schill, 2005). Natu and co-authors found a relation between the slope of a 

subject’s adaptation function and an index of that subject’s perceptual face discrimination 

ability (Natu et al., 2016). These studies demonstrate how a-fMRI can provide insight into 

neural correlates of individual differences that might not be evident with univariate methods. 

The present study used a similar individual differences approach, because the goal is not to 
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localize regions that are sensitive to object identity but rather to localize regions where 

sensitivity to object identity is related to an individual’s domain-general object recognition 

ability. Regions that, on average, show adaptation effects to object identity are not of interest 

here, unless they also correlate with behavioral ability. We would, however, expect to see 

average adaptation effects in object-selective regions, since our stimuli are objects (similar to 

other studies using novel objects; Kourtzi, Erb, Grodd, & Bülthoff, 2003; Kourtzi & Kanwisher, 

2000; Vuilleumier et al., 2002). Along these lines, because we would not expect face-selective 

regions to be particularly selective to novel objects on average, we would expect less average 

adaptation to occur in these regions than in object-selective regions.  

 In summary, based on previous neuroimaging work investigating neural correlates of 

domain-specific recognition abilities, the present study uses an a-fMRI paradigm to search for 

neural correlates of o in both ROI and whole brain analyses. Importantly, no study to date has 

specifically searched for neural correlates of individual differences in experience-independent 

object recognition, making the present study inherently exploratory. Drawing from the previous 

work finding experience-dependent correlates in FFA2s (McGugin et al., 2017; McGugin, Van 

Gulick, Tamber-Rosenau, et al., 2015), we can make one of two predictions. The first is that we 

find neural correlates with o only in FFA2s (which show strong relations with experience-

dependent object recognition measures), which would suggest that these regions relate to 

recognition ability both when variability in domain-specific experience is present and when it is 

absent. The second prediction is that we find correlates outside FFA2s, which would suggest 

that regions correlating with experience and domain-general ability form parts of a network 

involved in object learning and recognition. We would expect these correlates of o outside of 
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FFA2s to be found in regions associated with high-level visual processing, but it is of course 

possible that these correlates could be found elsewhere (for example, we might find correlates 

in frontal regions if o derives from top-down feedback from areas responsible for executive 

functioning, or correlates in early visual areas like V1 if o relates to bottom-up modulations 

arising early in visual processing). Importantly, as compared with areas like V4 and MT, 

adaptation effects in high-level visual regions seem to be more intrinsic as opposed to inherited 

from top-down or bottom-up effects (De Baene & Vogels, 2010; McMahon & Olson, 2007, see 

Barron et al., 2016), thus the possibility of our results stemming for inherited effects would be 

minimal if we only find correlates within high-level visual regions. If we find evidence for this 

second prediction (correlates of o outside FFA2s), this could indicate that FFA2s correlate with 

experience either because they have a propensity for plasticity or because they code for 

features that are well-suited for individuating objects. If the first hypothesis is true, with FFA2s 

being particularly plastic, this would imply that various regions in the ventral visual stream 

represent objects, but only specific regions (like the FFA2s) are capable of the plasticity that 

supports learning to individuate objects. Thus, the high-level object recognition system may be 

both capable of becoming specialized and maintaining flexibility (i.e. we can become experts at 

discriminating between cars, while not losing the ability to tell apart objects we have never 

encountered before). If the second hypothesis, that FFA2s code for features useful in object 

individuation, is true, this would imply that (1) FFA2s contains neuronal populations capable of 

representing object features complex enough for within-domain individuation (e.g. 

distinguishing a Toyota Camry from a Honda Accord) and general enough to transfer to new 

exemplars from experienced domains (e.g. distinguishing new car models from one another) 
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and (2) the other high-level visual regions, like the lateral occipital complex (Malach et al., 

1995), contain neuronal populations capable of encoding more general features better suited 

for distinguishing between any two objects from any domain.  

  

Methods 
 

 

Subjects 

Subjects were recruited from a previous behavioral study (Chapter II), attempting to 

sample a range of object recognition abilities. Thirty-seven subjects were scanned roughly 1-9 

months after completing the behavioral study, though scanner malfunction lead to functional 

data collection for only thirty-six subjects (19 female, mean age = 21.5, SD = 3.9). A power 

analysis using G*Power software (Faul, Erdfelder, Lang, & Buchner, 2007) based on the 

correlation reported in Natu et al. revealed that to detect a similar correlation with 80% power 

required a sample size of 30 subjects (correlation between neural sensitivity and face 

perceptual discriminability in inferior occipital gyrus r = 0.47, see Figure 9 of Natu et al., 2016).   

 

Functional localizer 

 To localize face and object-selective regions using independent data, subjects 

completed one localizer run. It is important to define face- and object-selective regions with 

data independent from the subsequent analyses, to avoid invalidating statistical inferences by 

using the same data to select regions for analysis and test for effects (Kriegeskorte, Simmons, 

Bellgowan, & Baker, 2009). During the localizer run, subjects were presented with 21 16-second 
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blocks of faces, body parts (with no faces), household objects and scrambled images. Each block 

consisted of 16 trials in which a stimulus is presented for 900 ms followed by a 100 ms fixation. 

Stimuli were greyscaled images of 35 faces, 35 objects, 37 scrambled images and 54 body parts 

shown on a white background. A specific image repeated 1-2 times per block and subjects were 

tasked with indicating these repeats with a button press. Stimuli were also presented randomly 

in three different sizes, which never repeated in immediate succession. Variations of this 

localizer have been used in prior work to localize medial and posterior FFA peaks (McGugin et 

al., 2017; McGugin, Van Gulick, & Gauthier, 2015; McGugin, Van Gulick, Tamber-Rosenau, et al., 

2015). Total, this run lasted 5.6 minutes and stimuli were presented using Matlab and 

Psychtoolbox-3 software (Brainard, 1997; Matlab, 2016).  

 
 
Functional adaptation  

 Stimuli 

Because our goal was to correlate neural sensitivity with domain-general object 

recognition ability, we used a wide range of novel object domains as stimuli during the 

adaptation runs. De Baene and Vogels (2010) showed that similarity between objects drives 

adaptation effects in inferior temporal regions of rhesus monkeys (a homologue to the lateral 

occipital complex or LOC in humans, Denys et al., 2004; Sawamura et al., 2005), thus we would 

expect that a range of novel object similarities should result in variable levels of adaptation, 

hopefully helping us to discriminate among individuals whose neural activity show variable 

levels of adaptation. If o is truly domain-general, then measuring neural sensitivity with many 

novel object domains should afford more construct coverage than selecting only a few 
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domains. Moreover, the range of novel object domains used here will vary in attributes that 

have been shown to engage differing neural substrates, like animacy (e.g. Noppeney, Price, 

Penny, & Friston, 2006; Wiggett, Pritchard, & Downing, 2009), surface texture (Echavarria, Nasr, 

& Tootell, 2016) and curvilinearity/rectilinearity (Nasr, Echavarria, & Tootell, 2014; Yue, 

Pourladian, Tootell, & Ungerleider, 2014). Any region showing evidence of sensitivity to object 

identity in a set of novel domains with varying levels of these attributes is more likely to reflect 

attribute-general (and thus domain-general) neural correlates. Many of these domain choices 

were relatively subjective, but pilot data suggested these domains varied in their similarity and 

produced variable levels of adaptation. 

A set of novel objects was collected from several sources and include 17 computer-

generated novel object domains (Biederman et al., 2014; Horst & Hout, 2016; Leek et al., 2012; 

Op de Beeck, Torfs, & Wagemans, 2008; Watson, Voloh, Naghizadeh, & Womelsdorf, 2017; A. 

C.-N. Wong & Hayward, 2005; stimuli adapted by Erez Freud from Farley Norman, Norman et 

al., 2016; stimuli downloaded from http://wiki.cnbc.cmu.edu/Novel_Objects, see Figure 8). 

Additional stimuli were gathered from the Internet, including images of abstract three-

dimensional sculptures, three-dimensional printed abstract chess pieces and dog toys (Figure 

8). None of the three novel domains used in the behavioral study (vertical Ziggerins, Sheinbugs 

and symmetric Greebles, Chapter II) were used during scanning. All images were transformed 

to greyscale and equated for low-level images properties using the Matlab SHINE toolbox 

(Willenbockel et al., 2010).  
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From each novel domain, three exemplars were chosen. For each set of three 

exemplars, there were three possible pairs. Our goal in selecting novel object pairs was to 

maximize the range of similarities between novel pairs (i.e. have some very similar pairs, some 

very dissimilar pairs, and pairs in between). Having a range of similarities between object pairs 

allows us to discriminate along the entire continuum of neural sensitivity to novel objects. In 

comparison, using, for example, one level of pair similarity would only allow us to group the 

responses across subjects in a given brain region into two groups (similar to how a test of 

intelligence should have questions varying in difficulty rather than only very easy and very hard 

questions). To get similarity ratings for each of these object pairs, each pair was presented in a 

matching task conducted online. In this task, subjects studied one object for 800 ms followed by 

 

 
 

Figure 9. Example SHINED functional adaptation novel object stimuli. Top row, left to right: 3D 
printed abstract chess pieces, YUFOs from http://wiki.cnbc.cmu.edu/Novel_Objects, blobs used 
with permission from Erez Freud. Bottom row, left to right: dog toys, abstract sculpture, 
Fribbles from http://wiki.cnbc.cmu.edu/Novel_Objects  
 

http://wiki.cnbc.cmu.edu/Novel_Objects
http://wiki.cnbc.cmu.edu/Novel_Objects
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a mask for 500 ms, and then another probe object. Subjects decided whether the probe object 

was the same or different identity as the studied object. On trials in which the correct response 

was same, the studied object was rotated 15 degrees in-plane clockwise so that the images did 

not match exactly. There were 87 trials in which the correct response was different (the 3 

possible pairs for 29 domains), and 87 trials in which the correct response was same (one trial 

for each object). The order of the 174 trials was randomized. Subjects completed three practice 

trials with feedback and were given feedback on the first three experimental trials. Data from 

45 subjects were collected via Amazon Mechanical Turk. Five subjects were excluded for 

clicking through the study periods, leaving 40 subjects for analysis (29 male, mean age = 36.2 

years). For each object pair, average accuracy and the correlation between subjects’ average 

accuracy and item response were calculated (Table 5). In addition, hit rates were calculated for 

each “same” trial and false alarm rates were calculated for each “different” trial. Then the 

difference between hit and false alarm rates were calculated for each object pair. We chose 

which two object pairs to use in the adaptation runs based on these values. Importantly, our 

decisions of which of the three object pairs to exclude was relatively ambiguous for some 

object pairs for which all the behaviorally measured values were similar (for example, 

3DPrintedAbstract domain). For other domains, the choice of which object pair to exclude was 

more obvious (for example object pair round_5050/round5000). Additionally, to shorten the 

length of the scans and reduce redundancy, we excluded three sub-domains taken from a 

broader domain that showed low accuracies and item-total correlation (Op De Beeck’s rect_d2, 

spiky objects and FribblesC).  
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Study test HIT-FA rate Acc Correl 

1A1B7_Art_F21.jpg 1A3B2_Art_F21.jpg -0.15 0.08 -0.08 

1A3B2_Art_F21.jpg 1A4B6_Art_F21.jpg -0.30 0.05 0.06 

1A4B6_Art_F21.jpg 1A1B7_Art_F21.jpg -0.20 0.03 -0.24 

1tool1v1.jpg 1tool3v1.jpg -0.13 0.08 0.04 

1tool3v1.jpg 1tool6v1.jpg 0.00 0.08 -0.13 

1tool6v1.jpg 1tool1v1.jpg 0.15 0.20 0.22 

3DPrintedAbstract1.jpg 3DPrintedAbstract2.jpg 0.68 0.88 0.31 

3DPrintedAbstract2.jpg 3DPrintedAbstract4.jpg 0.68 0.78 0.45 

3DPrintedAbstract4.jpg 3DPrintedAbstract1.jpg 0.78 0.80 0.46 

chesspiece1.jpg chesspiece2.jpg -0.20 0.53 0.31 

chesspiece2.jpg chesspiece3.jpg 0.63 0.93 0.16 

chesspiece3.jpg chesspiece1.jpg 0.53 0.75 0.30 

dogtoy2.jpg dogtoy5.jpg 0.35 0.40 0.29 

dogtoy5.jpg dogtoy6.jpg 0.65 0.73 0.27 

dogtoy6.jpg dogtoy2.jpg 0.68 0.73 0.32 

EdittDavidovici1.jpg EdittDavidovici2.jpg 0.75 0.93 0.31 

EdittDavidovici2.jpg EdittDavidovici3.jpg 0.93 1.00 NA 

EdittDavidovici3.jpg EdittDavidovici1.jpg 0.63 0.93 0.31 

F1FAPOS3.jpg F1FFPOS3.jpg 0.10 0.20 0.38 

F1FFPOS3.jpg F1MEPOS3.jpg 0.10 0.30 0.47 

F1MEPOS3.jpg F1FAPOS3.jpg 0.18 0.35 0.22 

Fa1_1111.jpg Fa1_2222.jpg 0.50 0.65 0.28 

Fa1_2222.jpg Fa1_3333.jpg 0.88 0.95 0.33 

Fa1_3333.jpg Fa1_1111.jpg 0.68 0.80 0.56 

Fb4_1111.jpg Fb4_2222.jpg 0.48 0.68 0.47 

Fb4_2222.jpg Fb4_3333.jpg 0.58 0.75 0.41 

Fb4_3333.jpg Fb4_1111.jpg 0.63 0.70 0.39 

Fc2_1111.jpg Fc2_2222.jpg 0.23 0.33 0.25 

Fc2_2222.jpg Fc2_3333.jpg 0.10 0.18 0.17 

Fc2_3333.jpg Fc2_1111.jpg 0.28 0.43 0.42 

G3_240.jpg GP1_240.jpg 0.63 0.75 0.23 

GO10_150.jpg GO5_90.jpg 0.50 0.70 0.55 

GO5_90.jpg GO7_60.jpg 0.78 0.93 0.26 

GO7_60.jpg GO10_150.jpg 0.73 0.78 0.28 

GP1_240.jpg GP3_240.jpg 0.83 0.88 0.26 

GP3_240.jpg G3_240.jpg 0.53 0.60 0.24 

KarsMarshall1.jpg KarsMarshall2.jpg 0.80 0.93 0.36 

KarsMarshall2.jpg KarsMarshall3.jpg 0.95 0.95 0.39 

KarsMarshall3.jpg KarsMarshall1.jpg 0.88 1.00 NA 

LenaAriceLucas1.jpg LenaAriceLucas2.jpg 0.83 0.90 0.04 

LenaAriceLucas2.jpg LenaAriceLucas3.jpg 0.78 0.85 0.30 

LenaAriceLucas3.jpg LenaAriceLucas1.jpg 0.75 0.90 0.24 

nam1_0.jpg nam2_0.jpg 0.48 0.53 0.33 

nam2_0.jpg nam3_0.jpg 0.38 0.48 0.62 

nam3_0.jpg nam1_0.jpg 0.10 0.23 0.43 
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ng1-f-7-a.jpg ng1-m-13-a.jpg 0.05 0.30 0.46 

ng1-m-13-a.jpg ng1-m-25-a.jpg 0.00 0.25 0.29 

ng1-m-25-a.jpg ng1-f-7-a.jpg 0.05 0.35 0.31 

nre12_1.jpg nre8_1.jpg 0.18 0.48 0.30 

nre8_1.jpg nre9_1.jpg 0.15 0.43 0.62 

nre9_1.jpg nre12_1.jpg 0.18 0.45 0.63 

nz2_31_a.jpg nz2_41_b.jpg 0.43 0.63 0.32 

nz2_41_b.jpg nz2_78_b.jpg 0.40 0.63 0.62 

nz2_78_b.jpg nz2_31_a.jpg 0.65 0.73 0.41 

ob1-50.jpg ob3-40.jpg 0.30 0.93 0.19 

ob3-40.jpg ob5-40.jpg 0.35 0.80 0.14 

ob5-40.jpg ob1-50.jpg 0.68 0.93 0.07 

offset5Object11.jpg offset5Object16.jpg 0.25 0.55 0.58 

offset5Object16.jpg offset5Object7.jpg 0.55 0.73 0.26 

offset5Object7.jpg offset5Object11.jpg 0.15 0.48 0.45 

quaddle1.jpg quaddle2.jpg 0.40 0.63 0.41 

quaddle2.jpg quaddle3.jpg 0.50 0.55 0.52 

quaddle3.jpg quaddle1.jpg 0.63 0.83 0.34 

rect_0000.jpg rect_0005.jpg 0.20 0.35 0.24 

rect_0005.jpg rect_0055.jpg 0.33 0.38 0.27 

rect_0055.jpg rect_0000.jpg 0.50 0.53 0.29 

rect_d2_0500.jpg rect_d2_0505.jpg -0.20 0.10 0.14 

rect_d2_0505.jpg rect_d2_0550.jpg 0.20 0.25 0.39 

rect_d2_0550.jpg rect_d2_0500.jpg 0.20 0.23 0.39 

round_5000.jpg round_5005.jpg 0.10 0.18 0.31 

round_5005.jpg round_5050.jpg 0.15 0.23 0.27 

round_5050.jpg round_5000.jpg -0.18 0.08 -0.30 

S1_SD.jpg S1_SS.jpg 0.65 0.73 0.19 

S1_SS.jpg S2_SS.jpg 0.78 0.98 0.24 

S2_SS.jpg S1_SD.jpg 0.90 0.95 0.23 

SeymourMeyer1.jpg SeymourMeyer2.jpg 0.80 0.90 0.11 

SeymourMeyer2.jpg SeymourMeyer3.jpg 0.40 0.93 0.34 

SeymourMeyer3.jpg SeymourMeyer1.jpg 0.65 0.85 0.43 

spiky_5500.jpg spiky_5505.jpg 0.08 0.08 0.34 

spiky_5505.jpg spiky_5550.jpg 0.13 0.18 0.42 

spiky_5550.jpg spiky_5500.jpg -0.08 0.05 0.41 

string1.jpg string2.jpg 0.45 0.63 0.33 

string2.jpg string3.jpg 0.38 0.38 0.12 

string3.jpg string1.jpg 0.58 0.68 0.39 

TrevorAskin1.jpg TrevorAskin2.jpg 0.65 0.88 0.48 

TrevorAskin2.jpg TrevorAskin3.jpg 0.80 0.98 0.15 

TrevorAskin3.jpg TrevorAskin1.jpg 0.70 0.83 0.15 
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Stimulus presentation 

A total of 52 object pairs were selected, using 26 novel object domains (2 object pairs 

per domain). The reliability of the measurements gathered online for this subset of trials was 

0.91 (Cronbach ), suggesting these object pairs will tap into a sufficient range of visual ability 

and, by extension, the neural correlates of the mechanisms that support this ability. 

In the scanner, each pair was presented once in a repeating block and once in an 

alternating block. To minimize adaptation across the entire scan (e.g. to avoid showing a 

repeating and an alternating block from the same domain in immediate succession), all 26 

objects pairs were shown once (domains 1 to 26 across runs 1 and 2) and then shown again in 

the same order (1 to 26 again across runs 3 and 4). In this way, 25 object pairs were shown 

between each presentation of one domain. Based on previous work (Grill-Spector & Malach, 

2001), this should have allowed enough time to minimize any domain-specific adaptation. 

Repeating and alternating blocks were interleaved. Fourteen fixation blocks of 6000 ms were 

randomly inserted in each run. During these blocks, a red fixation cross was presented in the 

center of the screen on a grey background. Though other studies separate each adaptation 

block with a fixation block (Andrews, Baseler, Jenkins, Burton, & Young, 2016; Davies-

Thompson, Newling, & Andrews, 2013; Harris, Young, & Andrews, 2012), our stimuli were more 

variable and thus adaptation across blocks was not as much of a concern. 

Adaptation effects can be measured with both event-related (e.g. Kourtzi, Tolias, 

Altmann, Augath, & Logothetis, 2003) and block designs (e.g. Gauthier, Tarr, et al., 2000). Here, 

Table 5. Results from novel domain pair piloting on Amazon Mechanical Turk. Italicized rows 
are the excluded object pairs.  
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we chose a block design (1) to ensure that the hemodynamic response for each domain was as 

strong as possible with as little noise as possible (Grill-Spector et al., 2006) and, (2) because use 

of blocked designs has resulted in adaptation effects for objects in prior work (Gauthier, Tarr, et 

al., 2000; Natu et al., 2016). Each block included the presentation of eight images. On repeating 

blocks, the same object was shown on each trial (though the image did increase in size once per 

block, see below). On alternating blocks, an object pair was shown in an ABABABAB format 

(Figure 10). Previous work has used similar numbers of repetitions (Andrews et al., 2016; Natu 

et al., 2016) and both single-cell recordings and fMRI responses often plateau after 

approximately eight repetitions (Grill-Spector et al., 2006). For repeating blocks, every other 

image was rotated 15-degrees clockwise so that while the same exact object was shown on 

subsequent trials, the same exact image (in the same orientation) was not (Figure 10). Previous 

work has found that in-plane rotations of 2D objects did not cause a reduction in adaptation 

effects in the LOC (Kourtzi, Erb, et al., 2003). Moreover, pilot data indicated that this rotation 

did not cause release from adaptation during these blocks. Each 1000 ms trial consisted of a 

900 ms stimuli presentation followed by a 100 ms inter-stimulus interval. Several studies using 

block-designs to find adaptation effects within the FFA have used similar stimulus presentation 

and inter-stimulus interval timing (Andrews et al., 2016; Davies-Thompson et al., 2013; Harris et 

al., 2012).   

 

Task 

Subjects performed a size-detection task in which they pressed a response button when 

the stimulus size increased (425x425 to 500x500 for 7 subjects, 525x525 to 600x600 for the 
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remaining subjects for which stimuli were presented using a different computer). The FFA has 

shown invariance to size changes of up to three-fold increases (Andrews & Ewbank, 2004), and 

anterior LOC regions have invariance to size changes from 7x7 images to 22x22 (Grill-Spector et 

al., 1999). Thus, this size change should not be large enough by itself to cause a release from 

adaptation in high-level visual processing regions. A size increase occurred once per block and 

never occurred on the first stimuli presentation. This task ensured that subjects attended to the 

stimuli without requiring attention to object identity, keeping subjects visually engaged but 

lessening the likelihood that activation differences would be driven by modulations of attention 

 

  
 

Figure 10. Schematic of alternating (left) and repeating (right) blocks used in adaptation 
runs. Each stimulus was presented for 900 ms with a 100 ms inter-stimulus interval between 
each presentation. Red outlined image represents the change in size that occurred once per 
block, and the size change is exaggerated for illustrative purposes.   
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to object identity. Moreover, the size detection task encouraged subjects to maintain central 

fixation throughout the scans as, regardless of size, the stimuli were always centered on the 

screen.  

 

Scanning parameters 

Subjects were scanned on a Philips 7-Tesla (7T) Achieva human magnetic resonance scanner 

with a 32-channel parallel receive array coil (Nova). A 3D TFE (Turbo Field Echo) acquisition 

sequence with sensitivity encoding (TR = 4.3 ms, TE = 1.90 ms (minimum), flip angle = 7°, 

sagittal plane acquisition, for 7 subjects: FOV = 256 mm x 256 mm, matrix size = 224 x 224, 170 

slices, slice gap = 0 mm, for 30 subjects: FOV = 256 mm x 256 mm, matrix size = 224 x 224, 200 

slices, slice gap = 0 mm, for an isometric voxel size of 1 mm3) was used to acquire high-

resolution T1-weighted anatomical volumes. All functional scans were acquired using standard 

gradient-echo echoplanar T2*-weighted imaging (TR = 2000 ms, TE = 25 ms, flip angle = 65°, 

axial plane acquisition, FOV = 240 mm x 240 mm, matrix size = 80 x 79, slice gap = 0 mm, for an 

isometric 3 x 3 x 3 mm voxel). Following 5 dummy scans, for 31 subjects, 40 ascending 

interleaved slices were acquired (for 1 subject: 42 slices, for 4 subjects: 45 slices). Subjects were 

scanned in the following order: anatomical, functional localizer, adaptation runs (4 runs), 

diffusion, resting-state, diffusion. The total scan time was approximately 1 hour and 15 

minutes. For some scans in which the subject appeared to move during the scan (6 structural 

scans) or subjects either fell asleep or a scanner error occurred (2 functional scans), these scans 

were redone within the same session. Technical scanner issues resulted in poor or no 
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acquisition of structural, diffusion or resting states scans for several subjects. Thus 16 subjects 

returned for a second session to complete the scan series. 

 

Preprocessing 

All MRI data were processed using SPM12 and in-house matlab (Matlab, 2016) scripts. 

Functional data were first realigned and then slice-time corrected. Next, the functional images 

were co-registered to the structural image using a skull-stripped structural image as a source 

image. Both structural and functional images were then transformed into the standard 

Montreal Neurological Institute (MNI) space. No spatial smoothing was applied.  

 

ROI identification 

For each subject, a linear model was fit to the localizer run with a regressor for each 

domain (face, object, body part, scrambled images) as well as six movement parameters (x-

translation, y-translation, z-translation, pitch, roll, yaw). The linear model was then convolved 

with the standard HRF function and a high-pass temporal filter of 128 seconds was applied. A 

contrast of face>object was used to define face-selective areas in the fusiform gyrus and an 

object>face contrast was used to define object-selective areas in the lateral occipital complex 

(LOC) and parahippocampal (PHG) regions (using the Marsbar toolbox, Brett, Anton, 

Valabregue, & Poline, 2002). For each identified ROI, an in-house matlab script selected the 

peak functional voxel (27 mm3). Given previous research has found maximal reliability of 

individual differences in face selectivity in the center of face-selective ROIs, without an 

advantage (and sometimes a decrease in reliability) of larger ROIs (McGugin & Gauthier, 2016), 
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this peak voxel was used for all subsequent analyses. A summary of the ROI coordinates is 

reported in Table 6 and Figure 11 provides a schematic of ROI locations.  

 

 
ROI Mean X Mean Y Mean Z t-value p-value N 

lFFA1 -36.6 (7.1) -68.9 (5.8) -16.6 (4.0) 6.2 0.0 33 

lFFA2 -38.9 (5.1) -52.2 (6.1) -19.5 (4.2) 6.3 0.0 37 

lLOC -43.7 (5.3) -70.6 (6.3) -5.5 (5.9) 7.0 0.0 37 

lPHG1 -26.7 (4.0) -65.9 (5.8) -12.6 (5.8) 7.8 0.0 35 

lPHG2 -27.5 (4.1) -49.2 (4.7) -15.3 (5.3) 7.4 0.0 37 

rFFA1 36.2 (6.7) -66.0 (5.9) -15.8 (5.1) 6.5 0.0 30 

rFFA2 37.5 (5.3) -49.8 (5.3) -18.6 (4.0) 6.2 0.0 34 

rLOC 44.9 (6.6) -69.1 (8.5) -5.2 (5.1) 5.6 0.0 34 

rPHG1 27.3 (4.5) -64.2 (5.4) -10.6 (5.0) 7.5 0.0 36 

rPHG2 29.6 (4.6) -47.2 (5.8) -13.3 (5.7) 7.1 0.0 35 

 

Table 6. Average (and standard deviations) MNI coordinates of independently localized ROIs, 
along with average t-values and p-values. N is the number of subjects in whom we localized each 
ROI. 
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Results 

 

Behavioral measure of domain-general object recognition 

Factor scores were extracted for every subject using Mplus software (Muthén & 

Muthén, 1998). Because of the perfect correlation between n and f factor scores (R = 1.00, see 

 
 

Figure 11. Schematic showing the approximate average location of ROIs used in the ROI 
analysis overlaid onto a MNI glass brain template shown in a ventral view. R = Right, L = 
Left, P = Posterior, A = Anterior. ROIs are shown in each hemisphere with green 
representing LOCs, pink representing FFAs and blue representing PHGs.  
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Figure 8), n factor scores (hereafter referred to as o-factors) were used as indices of domain-

general object recognition ability for all following analyses. Scanned subjects showed a range of 

o-factors (range = -2.97-1.74, Figure 12).  

 
Factor score reliability was indexed by internal consistency coefficients calculated from 

standard errors of the factor scores using the following formula: 

 

 

 
 

Figure 12. Histogram of o-factors for the 282 subjects from the behavioral study in Chapter II (+ 
2 additional subjects). Scanned subjects’ o-factors are indicated with red tick marks.  
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𝑟 =  

1
𝐽 − 1
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2𝐽
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1
𝐽 − 1

∑ (𝜃𝑗̂ − 𝜃̅)
2𝐽

𝑗=1

 

 

where J is the number of subjects (36), MSE is the mean error variance across subjects, 𝜃 is the 

factor score and 𝜃̅ is the mean of the factor scores across subjects. The reliabilitys across all 36 

subjects was r = 0.78, showing acceptable reliability.    

 

Behavioral scanning task 

Average performance on the 1-back localizer task was 90% (SD = 13%) and average 

performance on the size-detection task for the adaptation runs was 62% (SD = 23%). Subjects’ 

average accuracies on the adaptation runs did not correlate with o-factors (r34 = 0.29, p = .09). 

 

Adaptation results 

 ROI analysis 

For all ROIs, the raw signal for each adaptation run was extracted. For every data point, 

a pre-period signal was calculated by averaging the signal at the timepoints two seconds before 

the onset of every block and the timepoints at the onset of every block. This pre-period signal 

was calculated separately for alternating and repeating conditions and for each run, resulting in 

eight pre-period signal averages (e.g. Run 1 alternating or Run 3 repeating). Every data point 

was then normalized using the respective average pre-period signal, producing percent signal 

changes (PSC) from this baseline for every datapoint ((signal - pre-period/pre-period)*100). 

Figure 13 shows the PSC for each of the 10 ROIs.  
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To quantify the maximum response for each block, the PSCs for each block (from 6-12 

seconds after block-onset) were averaged together. The average responses for alternating and 

repeating conditions are shown in Figure 14. On average, responses during alternating blocks 

were significantly larger than during repeating blocks in all object-selective ROIs (lPHG1, lPHG2, 

lLOC, rPHG1, rPHG2, rLOC, ps < .01), but were not significant in face-selective ROIs.  

 

 
 

Figure 13. Percent signal changes for each ROI (top row: left hemisphere, bottom row: right 
hemisphere), averaged across runs and subjects. The PSC timecourse is shown from 4 seconds 
before each block to 6 seconds after the block end, for a total of 14 seconds. Alternating PSC is 
shown in pink and repeating PSC in blue. 
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To index sensitivity to object identity, each subject’s PSCs for repeating blocks were 

regressed out of the respective alternating blocks and these alternating residuals were used for 

all subsequent correlations. Reliabilities for these residuals, in each ROI, were calculated using 

the following formula (Rogosa, Brandt, & Zimowski, 1982): 

 

 
 

Figure 14. Average PSC for each ROI, with 95% confidence interval error bars. Alternating PSC is 
shown in pink and repeating PSC in blue. ** p <.01, *** p <.001 
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𝜌(𝑈) = 
ρ(Χ1)+ ρ(Χ2)ρx1x2

2 −2ρx1x2
2

1−ρx1x2
2  

 

Where ρx1x2 is the correlation between the two measures, ρ(Χ1) is the Guttman’s λ2 

for the alternating condition and ρ(Χ2) is the Guttman’s λ2 for the repeating condition. 

Reliabilities for each condition and associated residuals are reported in Table 7.  

 

 
 

Before examining the relation between neural sensitivity and o, we first explored 

whether general activity in any ROI was related to o. To do this, we examined the correlations 

between average alternating, average repeating and overall (average alternating and repeating) 

PSCs with o-factors (Table 8). Average alternating PSC significantly correlated with o-factors in 

lPHG2, rFFA1 and rPHG1 (lPHG2: r34 = 0.49, 95% CI [.20, .71], r2 = 0.24 p = .002, rFFA1: r27 = 

0.42, 95% CI [.07, .68], r2 = 0.18 p = .02, rPHG1: r33 = 0.54, 95% CI [.25, .74], r2 = 0.29, p < .001). 

 
ROI Alt Guttman’s λ2 Rep Guttman’s λ2 Residual reliability 

lFFA1 0.57 0.52 0.56 

lFFA2 0.70 0.14 0.61 

lLOC 0.77 0.74 0.37 

lPHG1 0.50 0.48 0.48 

lPHG2 0.73 0.34 0.69 

rFFA1 0.74 0.24 0.68 

rFFA2 0.66 0.43 0.53 

rLOC 0.79 0.67 0.60 

rPHG1 0.71 0.52 0.66 

rPHG2 0.62 0.37 0.61 

 

Table 7. Guttman’s λ2 for alternating and repeating conditions, and the reliabilities of the 
alternating residuals for each ROI.  
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Average repeating PSC did not significantly correlate with o-factors in any ROIs. The average 

overall signal significantly correlated with o-factors in lPHG2 and rPGH1 (lPHG2: r34 = 0.46, 95% 

CI [.15, .68], r2 = 0.21 p = .005, rPHG1: r33 = 0.39, 95% CI [.07, .64], r2 = 0.15, p = .021). 

 

 
 

Our main analysis aimed to localize cortical regions in which variability in neural 

sensitivity to object identity relates to variability in domain-general object recognition. To this 

end, we examined the correlations between alternating residuals across ROIs and o-factors, 

(reported in Table 9 and illustrated in Figure 15). rFFA1, lPHG2, rPHG1 and lLOC significantly 

correlated with o-factors (rFFA1: r27 = 0.49, 95% CI [.14, .72], r2 = 0.24 p = .008, lPHG2: r34 = 

0.47, 95% CI [.17, .69], r2 = 0.22 p = .004, rPHG1: r33 = 0.55, 95% CI [.27, .75], r2 = 0.30, p < .001, 

lLOC: r34 = 0.43, 95% CI [.11, .66], r2 = 0.18, p < .001). 

 
 

 
 lFFA1 lFFA2 rFFA1 rFFA2 lPHG1 lPHG2 rPHG1 rPHG2 lLOC rLOC 

Alternating -0.06 0.05 0.42 0.26 0.12 0.49 0.54 0.19 0.24 0.12 

Repeating 0.18 0.14 -0.20 -0.17 -0.13 0.15 0.00 0.18 -0.12 -0.12 

Overall 0.08 0.13 0.24 0.13 -0.01 0.46 0.39 0.27 0.07 0.01 

 

Table 8. Correlations between alternating PSC, repeating PSC, and overall activity with o-factors across 
ROIs. Correlations > 0.38 have p-values < .05 and are bolded, correlations > 0.45 have p-values < .01, 
correlations > 0.53 have p-values < .001 
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 lFFA1 lFFA2 rFFA1 rFFA2 lPHG1 lPHG2 rPHG1 rPHG2 lLOC rLOC 

lFFA2 0.21          

rFFA1 -0.07 0.22         

rFFA2 0.21 -0.03 0.66        

lPHG1 0.15 0.18 0.23 0.11       

lPHG2 0.23 0.11 0.43 0.28 0.03      

rPHG1 0.07 0.23 0.42 0.37 -0.11 0.51     

rPHG2 0.38 0.36 0.36 0.27 0.04 0.47 0.30    

lLOC -0.03 0.44 0.37 0.11 0.17 0.34 0.41 0.21   

rLOC 0.37 0.11 0.20 0.30 -0.08 0.37 0.47 0.28 0.37  

           

o -0.04 0.09 0.49 0.21 0.14 0.47 0.55 0.20 0.43 0.21 

 

Table 9. Correlations between alternating residuals across ROIs and o-factors. Correlations > .36 
have p-values < .05 and are bolded, in addition to lLOC with lPHG2 (p = .04) and rPHG2 with lFFA2 
(p = .04). Correlations > .42 have p-values < .01 except lPHG2 with rFFA1 (p = .02) and correlations 
> .54 have p-values < .001.  
 

 

 
 

Figure 15. Scatterplots of o-factors versus alternating residuals for each ROI. Shaded regions 
represent 95% confidence intervals. 
 



 66 

 The ROIs that significantly correlated with o-factors also all significantly correlated with 

one another (rs = 0.34-0.51, Table 9), suggesting common variance between these ROIs. 

Indeed, if the common variance between these ROIs is removed by using a multiple regression 

to predict o-factors with rFFA1, lPHG2, rPHG1 and lLOC alternating residuals, none of the ROIs 

are significant predictors (ts = 0.99-1.38, ps = 0.18-0.33). This further suggests that the 

correlations between these ROIs and o is driven by variance shared across a network. Future 

work could use more complex statistical methods to further examine this shared variance.    

 

Whole brain analysis 
 
 We conducted an exploratory search throughout the brain for correlates of o, first 

fitting a linear model to the four adaptation runs with a regressor for each condition 

(alternating, repeating and fixation), six movement parameters (x-translation, y-translation, z-

translation, pitch, roll, yaw), and a regressor for each run. This model was convolved with the 

standard HRF function and filtered with a high-pass, 128-second temporal filter. To get one 

index of the signal for each condition, the beta-weights for each run were averaged together by 

condition for each subject voxelwise (using SPM’s ImCalc function, e.g. beta-weights for the 

repeating condition for runs 1, 2, 3, and 4 were averaged per subject). Then a multiple 

regression was performed across subjects, using AFNI’s 3dMVM function (Chen, Saad, Adleman, 

Leibenluft, & Cox, 2015). The model predicted average alternating beta-weights from o-factors 

and average repeating betas-weights entered as a voxelwise covariate.  The resulting t-values 

for the o-factor regressor were used to find significant clusters. Ten clusters survived an 
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uncorrected threshold of p < .001 and cluster-size minimum of 3 voxels (Table 10, Figure 16, 

made using SUMA software; Saad, Reynolds, Argall, Japee, & Cox, 2004). 

  

Because the cluster analysis of the multiple regression was performed voxelwise at 

thresholds not corrected for multiple comparisons (because no voxels survived this correction), 

we analyzed the data from each cluster as a whole (averaged across voxels) to better 

understand the correlations between o-factors and alternating residuals. Moreover, the 

multiple regression was conducted with beta-weights because of software constraints, so to 

provide a more direct comparison of these results with those from the ROI analysis, we 

characterized the effects of each cluster using PSCs extracted from these regions. To this end, 

data from these clusters were extracted and analyzed in the same way as in the ROI analysis 

(extracting PSCs, regressing repeating PSC from alternating PSC, etc.). Notably, using either 

 

Cluster 
Num 

Voxels 
Mean 

X 
Mean 

Y 
Mean 

Z 
Alt λ2 

Rep 
λ2 

Residual 
reliability 

r Brain Region 

1 21 -41.4 -75.6 0.60 0.84 0.65 0.59 0.59 Left Inferior Occipital Gyrus 
2 7 -36.0 -66.6 -16.4 0.71 0.34 0.62 0.47 Left Fusiform Gyrus 

3 7 -22.7 -79.9 30.7 0.80 0.67 0.27 0.62 Left Middle Occipital Gyrus 

4 3 28.0 -66.0 -10.0 0.80 0.66 0.68 0.62 Right Fusiform Gyrus 

5 3 -49.0 -63.0 -10.0 0.56 -0.50 0.43 0.24 Left Inferior Occipital Gyrus 

6 3 18.0 -71.0 6.0 0.10 0.71 0.06 0.20 Right Lingual Gyrus 

7 3 -2.0 -71.0 10.0 0.62 0.71 0.62 0.32 Left Lingual Gyrus 

8 3 42.0 -75.0 11.0 0.59 0.26 0.43 0.60 
Right Middle Occipital 
Gyrus 

9 3 37.0 -45.0 48.0 0.83 0.49 0.83 0.49 
Right Inferior Parietal 
Lobule 

10 3 -34.0 -59.0 35.0 0.70 0.41 0.24 -0.20 Left Angular Gyrus 

 

Table 10. Clusters from multiple regression analysis. Mean of MNI coordinates and number 
of voxels for each cluster are reported along with the approximate brain region of each 
cluster, Guttman’s λ2 for alternating and repeating conditions, reliabilities of alternating 
residuals for each cluster, and correlation coefficient from PSC analysis. 
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averaged beta-weights or PSCs produced similar results (correlations between beta-weights 

and PSCs across subjects within clusters ranging from 0.47-0.87), and none of the results 

qualitatively differed when beta-weights were used rather than PSCs (i.e. the correlations 

between beta-weights with o-factors and PSCs with o-factors across clusters were very similar 

with r8 = 0.93, p < .001). Thus, for consistency with the ROI analysis, we report the results using 

average PSCs extracted from each cluster. Reliabilities for each cluster are reported in Table 10. 

Alternating PSC residuals from all clusters correlated significantly with o-factors (Cluster 1: r34 = 

0.59, 95% CI [.32, .77], r2 = 0.35, p < .001, Cluster 2: r34 = 0.47, 95% CI [.16, .69], r2 = 0.22 p = 

 

 
 

Figure 16. Map of clusters from whole brain analysis. T-statistics of each cluster overlaid 
onto an inflated cortex of the MNI N27 brain template for visualization purposes using 
SUMA. L=Left, R=right, S = superior. 
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.004, Cluster 3: r34 = 0.62, 95% CI [.36, .79], r2 = 0.38, p < .001, Cluster 4: r34 = 0.62, 95% CI [.37, 

.79], r2 = 0.38, p < .001, Cluster 7: r34 = 0.32, 95% CI [-.01, .59], r2 = 0.10, p = .05, Cluster 8: r34 = 

0.60, 95% CI [.33, .77], r2 = 0.36, p < .001, Cluster 9: r34 = 0.49, 95% CI [.19 .70], r2 = 0.24, p = 

.003; Figure 17), except clusters 5, 6, and 10 (which showed trending significance with ps of 

0.17, 0.24 and 0.25 respectively, although they had correlations between their beta-weights 

and o-factors below the p < .05 level). All significant correlations with o-factors were positive 

except Cluster 10, which showed a negative, relatively weak correlation (r34 = -0.20, 95% CI [-.49 

.14], r2 = 0.04, p = .25). 

 None of the clusters overlapped with any group-averaged ROIs that significantly 

correlated with o (lLOC, lPHG2, rFFA1 and rPHG1). The smallest Euclidean distance between any 

 
 

Figure 17. Correlations between alternating residuals and o-factors in each cluster. Shaded 
regions represent 95% confidence intervals. 
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regions showing a relation with o (both ROIs and clusters) was between rPHG1 and Cluster 4 

(distance ~ 2.0 mm), with group-averaged rPHG1 residing approximately 1.5 mm anterior to 

Cluster 4. Cluster 1 was also located relatively close to group-averaged lLOC (distance ~ 8.2 

mm), with lLOC residing approximately 7 mm superior and 5 mm posterior to Cluster 1.  

 

Discussion 
 

 This chapter presented exploratory findings about the neural correlates of domain-

general object recognition ability, o. We found evidence for a positive relation between o-

factors and neural sensitivity in regions throughout temporal and parietal lobes. In the ROI 

analysis, neural sensitivity in several functionally-defined, object-selective regions and one face-

selective region correlated with o-factors. The whole brain analysis revealed other brain regions 

located primarily near the fusiform, lingual and occipital gyri where sensitivity in these regions 

correlated with o-factors. Together, these results indicated the first evidence that neural 

correlates of domain-general object recognition ability can be found in occipito-temporal 

regions where neural sensitivity to objects varies across subjects. 

 Because previous work found strong expertise effects in FFA2s (Golarai, Liberman, & 

Grill-Spector, 2017; McGugin et al., 2014, 2017; McGugin, Van Gulick, Tamber-Rosenau, et al., 

2015), we could have found domain-general correlates within the same regions, to suggest that 

the neural correlates of experience-dependent and experience-independent object recognition 

performance overlap. Another possibility was that we would find effects in regions outside 

FFA2, either localized effects in a single region (for example, finding correlates of o only in FFA1) 

or distributed effects in several regions. Our results generally supported the latter possibility, 
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that the neural correlates of o are distributed and do not overlap with the effects of expertise 

that are found in FFA2. Specifically, our ROI analysis revealed that neural sensitivity in object-

selective right-parahippocampal, left-parahippocampal, left lateral occipital and face-selective 

right fusiform regions (rPHG1, lPHG2, lLOC and rFFA1) correlated with o-factors and the whole 

brain analysis implicated other regions, bilaterally, along the fusiform, occipital and lingual gyri. 

Generally, we found that repetition effects in small regions (27-567 mm3 voxels) that have been 

associated with high-level visual-processing (e.g. Malach et al., 1995) throughout the temporal 

and parietal lobes correlated with o. This suggests the neural processing underlying experience-

independent, domain-general object recognition is both distributed and bilateral. This finding 

may not be surprising given that other constructs like intelligence tend to show distributed 

correlates (Basten, Hilger, & Fiebach, 2015; Jung & Haier, 2007). Interestingly, neither FFA2s, 

which have shown relatively local correlations with experience-dependent measures in past 

research (Golarai et al., 2017; McGugin et al., 2014, 2017; McGugin, Van Gulick, Tamber-

Rosenau, et al., 2015), correlated with o-factors in the present study. We speculate that novel 

object processing in novices recruits several distributed high-level visual regions. Then, as an 

individual gains domain-specific experience, more specialized processing of objects from a 

domain can occur (perhaps by honing in on domain-specific diagnostic features), and this 

processing recruits representations in the FFA2. An important aspect of this hypothesis is the 

type of domain-specific experience. Specifically, work has shown that subordinate-level training 

can produce focal effects in FFA regions whereas basic-level training produces more distributed 

effects in occipitotemporal regions (Wong, Palmeri, Rogers, Gore, & Gauthier, 2009). These 

focal effects in FFA2 are correlated with individual differences in holistic processing (Ross et al., 
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2018), which also increases with subordinate-level experience (Chua & Gauthier, in press; 

Gauthier & Tarr, 2002; Gauthier, Williams, Tarr, & Tanaka, 1998; A. Wong, Palmeri, & Gauthier, 

2009). Conversely, other types of experience, or even just simple exposure, may modify pre-

existing representations that are distributed throughout high-level visual areas (Op de Beeck & 

Baker, 2010). Thus, in relation to the present findings, the hypothesized narrowing to FFA2 may 

only occur (or be more pronounced) with subordinate-level experience as compared with basic-

level experience. 

 In addition to the location of neural correlates of o, the nature of these correlations is 

also informative. The correlations between o and neural sensitivity were consistently positive, 

meaning that increased neural sensitivity predicted increased domain-general object 

recognition ability. This indicates that individuals in the upper range of o are more sensitive to 

differences between objects, as reflected in the corresponding neural representations, giving 

rise to greater release from adaptation. Further studies replicating this work and extending it 

using neuroimaging methods capable of probing neural representations (like multi-voxel 

pattern analysis) could further investigate how the neural representations of objects relates to 

domain-general object recognition ability. Future studies could also investigate what 

differences between objects are driving this suppression, which could help inform what object 

features (e.g. shape or configuration) are most relevant to individual differences in o.  

Along with the direction of observed correlations, the strengths of these correlations 

were also fairly consistent, ranging from 0.43 - 0.55 in the ROI analysis and 0.22 - 0.62 in the 

whole brain analysis. These moderate correlations suggest moderate effects of o, accounting 

for approximately one-fourth of the variance in neural sensitivity. Future work can explore how 
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other constructs, either behavioral (e.g. fluid intelligence) or neural (e.g. structure or 

connectivity) may account for additional portions of this variance. It is also important to note 

that the reliabilities of each region found to correlate with o were not perfect (Tables 7 and 10, 

Guttman’s λ2 ranging from 0.37 - 0.69 in the ROI analysis and 0.27 - 0.83 in the whole brain 

analysis), and thus could have attenuated the observed correlations (Nunnally, 1970). After 

correcting for attenuation due to measurement error, the range of correlations from the ROI 

analysis is 0.57-0.71 and 0.41-1.0 in the whole brain analysis, which represent upper limits for 

these correlations if both measures being correlated contained no measurement error.  

 In investigating the nature of the correlations between neural sensitivity and o, we also 

found that the shared variance indicated by these correlations tends to overlap within our ROI 

analysis, suggesting that the regions found to correlate with o do so through common variance 

between ROIs. We found evidence for this both in the fact that neural sensitivity in these 

regions correlate with one another (Table 9, minimum r = 0.34 (lPHG2 and lLOC), maximum r = 

0.51 (lPHG2 and rPHG1)) and in our multiple regression model (in which none of the ROIs were 

significant predictors of o-factors, ts = 0.99-1.38, ps = 0.18-0.33). It is also interesting to note 

that neural sensitivity in rFFA1 significantly correlated with o-factors (r = 0.49) even though no 

significant difference between alternating and repeating conditions was observed on average 

for this region (Figure 14). This exemplifies the difference between group approaches 

concerned with average effects compared with individual differences approaches focused on 

variability. 

 Lastly, though our main focus in the present work was relating neural sensitivity to o, we 

also found that overall activity in lPHG2 and rPHG1 correlated with o-factors. This indicates that 
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the general responsiveness of these regions to the presentation of objects can predict an 

individual’s domain-general object recognition ability. Interestingly, these regions also show 

correlations between their neural sensitivity and o-factors, such that no region was found 

where overall activation in response to objects was related to o without further finding that this 

region responded specifically to changes in object identity. On the one hand, it is possible that 

increased sensitivity in parahippocampal areas results in increased activation (i.e. more energy 

is required to support this increased sensitivity) such that the correlation between o and 

general activation follows from the correlation between o and neural sensitivity. On the other 

hand, it is possible that, with regard to parahippocampal regions, domain-general object 

recognition performance is driven both by functions performed on the neural representations 

of object identity (reflected in neural sensitivity) and general increases in activity, such that the 

coupling of increased activation and increased sensitivity results in better performance, but 

each contribute separately. Though we cannot parse out these two possibilities in the present 

data, it is worth noting that neural sensitivity and general activation significantly correlated in 

all ROIs (rs = 0.42-0.95, ps  .01). Follow-up work can further assess these relations using 

paradigms better optimized to measure both adaptation and overall activity, unlike the current 

paradigm (which was optimized only for adaptation). 

 The findings discussed here result from exploratory analyses and have several 

limitations. First, the clusters localized in the whole brain analysis were found using a threshold 

not corrected for multiple comparisons (because no clusters survived this correction) and 

should thus be interpreted cautiously. Second, though our sample size of thirty-six was larger 

than previous work looking at correlations with neural sensitivity (Epstein et al., 2005; Furl et 



 75 

al., 2011; Natu et al., 2016) and was based on a power analysis, it was only a fraction of the 100 

or even 250 subjects some have suggested is desirable for individual differences MRI work 

(Dubois & Adolphs, 2016; Schönbrodt & Perugini, 2013). Because of this, we believe it will be 

critical for confirmatory studies to not only attempt to replicate the correlations reported here 

with larger sample sizes, but also to assess the predictive power of neural sensitivity to predict 

o-factors in individuals outside the correlation sample (see Dubois & Adolphs, 2016). Lastly, our 

current sample had a fairly restricted age range (range = 18-34), and so the results found here 

may not generalize to older or younger samples. Age modulates face recognition ability 

(Germine, Duchaine, & Nakayama, 2011), and studies have found evidence for age-related 

differential item functioning (using Item Response Theory) in a test of car recognition ability but 

not in a test of face recognition ability (Cho, Wilmer, Herzmann, McGugin, & Fiset, 2015; Lee, 

Cho, McGugin, Van Gulick, & Gauthier, 2015), though some of this differential item functioning 

may be due to format of these specific tests (Sunday, Lee, & Gauthier, 2018). The age range in 

our sample reflected not only our choice to recruit subjects from the behavioral study in 

Chapter II, which relied mostly on an undergraduate student research pool, but also safety 

limitations imposed by the 7T scanner (i.e. younger subjects are less likely to have any medical 

implants, surgeries, etc. that would exclude them from being scanned at the high field 

strength). Future work could use samples with larger age ranges to determine not only how or 

if o fluctuates with age, but also whether this impacts the neural correlates of o, as neural 

representations and the sensitivity of BOLD responses have also been shown to fluctuate with 

age (Goh, Suzuki, & Park, 2010; Liu et al., 2013).  
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 In sum, the present study is the first attempt to localize cortical regions related to 

domain-general object recognition. We find several bilateral regions throughout the temporal 

and parietal lobes that positively correlate with o, suggesting distributed neural correlates. 

These neuroimaging results open the door for future studies aimed at replicating and further 

characterizing these correlates, and the neural mechanisms that support object recognition 

ability. Furthermore, analysis of the data collected but not reported in this study (structural, 

resting-state and diffusion data) will provide more insight into the structural and connectivity 

correlates of o. 
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Chapter IV 

 

General Discussion 

 

The work presented here serves to further characterize the recently-discovered domain-

general object recognition construct o (Richler et al., 2019). Using a latent variable framework, 

the behavioral work presented in Chapter II furthers our understanding of how a domain-

general novel object recognition construct relates to domain-general familiar object 

recognition. The results show that novel and familiar object factors relate quite strongly, which 

has important implications. Researchers wishing to measure familiar object recognition will 

need to consider that performance on a given measure will be influenced both by experience 

and domain-general ability. Moreover, the finding that familiar and novel domains recruit o to 

similar extents suggests that individuating objects from familiar domains, at least domains with 

basic-level familiarity (e.g. knowledge of what is a bird versus a plane), is similar to individuating 

objects from novel domains. This could mean that basic-level familiarity does not influence 

recognition performance and it is only once subordinate-level familiarity is reached that 

recognition performance begins to reflect both o and experience. Further work is needed to 

test this hypothesis with several familiar domains, especially with either sets of domains for 

which we would expect greater variability in subordinate-level familiarity or samples recruited 

specifically to vary in their subordinate-level familiarity with chosen domains.   

The results additionally hint at the real-world relevance of o, which presents exciting 

new avenues for translational research. Applications of future research could be especially 
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useful in professions where recognition abilities are critical. For example, radiologists are faced 

with an enormous challenge of finding malignant abnormalities in radiological images and 

airport security agents must search for dangerous items quickly and efficiently as luggage is 

scanned. There is already some evidence that individual differences in medical detection may 

relate to novel object recognition ability (Sunday, Donnelly, et al., 2017, 2018; Trueblood et al., 

2017) and that visual search consistency may relate to airport screening accuracy in security 

screening professionals (Biggs et al., 2013). These studies suggest possible starting points for 

investigations into the predictive validity of o. When investigating the role of o in professions 

like these, it will be critical to consider o in conjunction with constructs like experience and fluid 

intelligence, since for complex tasks like nodule detection there will likely be multiple sources 

of variance. For example, recent work in a sample of radiologists found that about fifty percent 

of variance on a measure of nodule detection ability could be accounted for by self-reported 

experience, but that an additional fifteen percent of the variance could be accounted for by 

fluid intelligence and novel object recognition ability (Sunday, Donnelly, et al., 2018). In 

addition, translational work should cautiously and conservatively draw inferences since 

confounds like self-selection and variability in medical training are difficult to control in 

correlational work. In high-stakes occupations like medical imaging and security, overstated 

conclusions can have unfortunate consequences (the least of which could be a loss of trust in 

the researchers). Nevertheless, empirically addressing the real-world value of o will 

undoubtedly further interest in the field and provide concrete examples of the field’s relevance. 

 The neuroimaging work presented in Chapter III describes the first attempt to find 

neural correlates of a domain-general object recognition ability. Neural sensitivity in temporal 
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and parietal regions were found to positively correlate with o, suggesting that experience-

independent neural correlates of object recognition reside in brain regions often implicated in 

general object processing. This result paves the way for more studies into the neural 

mechanisms underlying o by localizing regions that may causally relate to domain-general 

object recognition. For example, this work can inform future studies investigating questions like 

whether o can be manipulated through neuromodulators like transcranial direct current 

stimulation. Moreover, in perceptual expertise research, correlates to expertise levels are often 

distributed (Harel, Gilaie-Dotan, Malach, & Bentin, 2010; Martens et al., 2018; McGugin, 

Gauthier, et al., 2012; Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006), but only some of these 

distributed regions still correlate with expertise levels when attentional demands are raised 

(McGugin, Van Gulick, Tamber-Rosenau, et al., 2015). Future work could explore whether a 

similar effect occurs with correlates to o, in which some of the distributed correlates found 

here would no longer correlate with o with increased attentional demands, leaving only the 

most robust correlates of o.  

When considering the neuroimaging results in conjunction with neuroimaging perceptual 

expertise work, these results raise the intriguing possibility that experience-independent object 

recognition may be supported by distributed processing throughout the visual cortex, and with 

the acquisition of experience these correlates are replaced with local representations in regions 

implicated in many perceptual expertise studies (like the FFA2). If this were true, one might 

predict that individuals with higher levels of o, and therefore high levels of neural sensitivity in 

distributed occipito-temporal regions, would show selectivity for trained domains in FFA2 

regions more quickly than individuals with lower levels of o, or reach greater levels of 
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selectivity. Before any training studies are done to empirically assess this prediction, the 

findings presented in Chapter II will have to be addressed. Specifically, since familiar and novel 

object recognition were found to correlate in the present study, it will be important to 

determine if there is a point at which enough experience is acquired for recognition in a given 

domain to diverge from o. In other words, is there something akin to a saturation level at which 

experience begins to account for a significant portion of variance in recognition, and if so, how 

much training is required to reach this level. 

Overall, both the behavioral and neuroimaging work further the burgeoning line of 

research on individual differences in high-level vision and open the door for future work. For 

example, work investigating the heritability of a domain-general object recognition ability 

(similar to the work done in Shakeshaft & Plomin, 2015; Wilmer et al., 2010) or potential 

relations between this ability and brain chemistry will help to further characterize this ability. In 

addition, research into whether evidence can be found for the existence of o in other species 

could lead to animal models and elucidate the possible evolution of o (similar to Arden & 

Adams, 2016). 
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