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CHAPTER 1 

1. INTRODUCTION  

This dissertation details the research conducted in the Center for Intelligent Mechatronics 

(CIM) at Vanderbilt University in collaboration with King Abdulaziz City for Science & 

Technology (KACST) on the development of a myoelectric transhumeral prosthesis.  

The objective of this work is the development of highly functional and intuitive controller for 

an arm prosthesis that exhibits improved functionality relative to existing traditional transhumeral 

prostheses control methods, in order to enhance the ability of amputees to perform activities of 

daily living (ADLs). The work presented in this dissertation utilizes a previously developed a 

multigrasp prosthetic hand which was presented in several conference and journal publications [1-

11]. Specifically, this dissertation explores leveraging recent advances in microelectromechanical 

systems (MEMS) inertial measurement units (IMUs) in order to develop a controller that enables 

the simultaneous movement of the anatomical shoulder joint and prosthetic elbow joint, and also 

enables switching between control of a hand and elbow, and is used in conjunction with 

electromyogram (EMG) input to provide enhanced whole arm (hand and elbow) control, relative 

to the traditional sequential control approach which provides one joint control at a time.  

This dissertation is organized as follows: this chapter provide an introduction to the field of 

the upper limb prosthetics. Relevant literature is discussed in Chapter II. Preliminary assessment 

of a multigrasp myoelectric control approach for use by transhumeral amputees studies are 

presented in chapter III, which was published in Engineering in Medicine and Biology Society 

(EMBC), 2012 Annual International Conference of the IEEE. Chapter IV presents a novel controller 

for the coordinated control of a prosthetic elbow and hand using an inertial measurement unit 
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(IMU) and also an assessment of the presented controller and performance comparison with the 

traditional control method of transhumeral prosthesis, and was published in Robotics and 

Automation (ICRA), 2016 IEEE International Conference on 2016. An extended analysis of this work 

has been submitted to IEEE Transactions on Neural Systems and Rehabilitation Engineering and is 

currently in revision. Chapter V describes the implementation and assessment of an IMU-enhanced 

controller for a transhumeral myoelectric prosthesis and implementation of the controller on a 

myoelectric transhumeral prosthesis prototype. This work also presents a case study of a single 

transhumeral amputee subject testing the controller in a series of pick-and-place tasks, in which 

the subject used the combined IMU/EMG controller, and also a conventional EMG-only 

controller. The manuscript will be submitted to IEEE/ASME Transactions on Mechatronics. Chapter 

VI summarizes the contribution of this dissertation and discusses recommendations for future 

work.  

1.1 DEMOGRAPHIC AND DEMANDS OF UPPER LIMBS AMPUTEES 

The human arm is a complex system that allows us to interact with the surrounding 

environment and perform our daily needed activities. Several arm configurations can be performed 

by the human arm with ease, which outperforms even the most sophisticated man-made robotic 

manipulators. Therefore, losing such a coordinated system will limit the interaction with our 

environment, affect the body appearance, and may impose social and physical limitations [12].  

In 2005, studies indicated that there were approximately 1.6 million people affected by limb 

loss in the United States, and this number has almost certainly grown in subsequent years. Many 

of these individuals (35%) had amputations of their upper extremity. The vast majority of 

amputations are caused by either dysvascular disease, which has a higher incidence in persons 65 
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years or older (56%), or trauma, which has a higher incidence in persons under 65 (75%). Since 

approximately 92% of upper extremity amputations are caused by trauma and upper extremity 

amputations account for approximately 69% of all trauma-related amputations, it follows that the 

majority of upper limb amputees are most likely under the age of 65 [13, 14]. This means that even 

though there is a relatively small number of upper extremity amputees (relative to the lower 

extremity), and far fewer amputees with major (i.e., above wrist) amputations, the population 

contains a large number of young people who are probably more active and thus might find their 

lifestyles more drastically impaired by their loss of limb. To replace of the function of the lost 

limb, amputees turn to prosthetics as alternatives. However, due to the complexity of the replaced 

limb, the functional limitations of the prosthetic devices limit the benefit. The majority of the 

amputees rate their prostheses as “fair” or “not acceptable” [15]. Common complaints include poor 

socket fits, low functionality, and poor appearance [16]. Amputees also desire better control 

mechanisms that require less visual attention, and the ability to coordinate two or more joints 

simultaneously [17]. Amputees also desire better control mechanisms that require less visual 

attention, and the ability to coordinate two or more joints simultaneously [18]. 

1.2 TRANSHUMERAL PROSTHESIS OVERVIEW 

In general, a transhumeral prosthesis is comprised of hand, sometimes referred to as terminal 

device (TD), an elbow, and possibly a wrist. Transhumeral prostheses can be classified as: 

cosmetic prostheses, passive prostheses, body powered prostheses or electrically powered 

prostheses. Cosmetic prostheses are molded from different material like rubber and painted to 

mimic the shape of the natural human arm, but they are stationary and have no form of control. 

Instead, they are static and amputees use them for appearance. Passive devices are set in a certain 

configuration and position (e.g., flexing the elbow or closing the hand) and locked passively by 



4 

 

the use of the other extremity and in the same manner, passive prosthesis are unlocked or by 

pushing against a surface or object. Even though cosmetic and passive prostheses restore the 

cosmetic appearance and can appear remarkably life-like and often match the skin tone and 

contours of the wearer limb, they have no actively moving parts. These devices are the lightest and 

most simple type of upper extremity prosthesis and can be pre-positioned in specific positions to 

hold light objects. Many amputees may choose such devices to restore the cosmetic appearance of 

the arm. However, the gained benefit of these devices is limited to appearance which is not the 

case in body powered and electrically powered devices.  

1.2.1 BODY-POWERED DEVICES 

Body-powered devices generally utilizes a split-hook type TD (i.e., hand), where the hook is 

(typically) maintained in a closed configuration by elastic bands, and is opened via a cable and 

harness worn by the user. Specifically, movement of the shoulder (typically either scapular 

abduction or shoulder depression, depending on the type of harness) will generate cable excursion, 

which in turn opens the split-hook against the tension of elastic bands. This type of configuration 

is called voluntary opening where the TD remains closed until the harness pulled to open the TD. 

The configuration is called voluntary closing where the TD remains open until pulling on the cable 

occurs to close it. On the other hand, body-powered elbows are controlled by the same cable that 

operates the TD with an additional attachment or button that operates the elbow lock.  When the 

elbow is unlocked, pulling on the cable will flex (bend) the elbow.  When the elbow is locked or 

fully flexed, pulling on the cable will operate the terminal device. Body powered transhumeral 

prosthesis is depicted in Fig. 1.  



5 

 

 

Fig. 1 Body Powered (cable) Transhumeral Prosthesis 

This type of prosthesis is environmentally robust, relatively low cost, and offers to the user 

the benefits of some proprioception and force feedback, in which information regarding the 

movement and force of the prosthesis (in this case the terminal device) is registered by the shoulder 

musculature controlling the movement [19]. 

1.3 ELECTRICALLY-POWERED DEVICES 

Electrically-powered prostheses, usually referred to as myoelectric devices, utilizes electric 

motors for actuation rather than body power (i.e., rather than a harness and cable). Control of the 

prosthesis is provided by a pair of surface electrodes embedded in the socket, which measure the 

surface electromyogram (EMG) in the residual limb. Specifically, the opening and closing of the 

hand or flexion and extension of the elbow, are controlled “directly” via a pair of EMG electrodes, 

located for a transhumeral amputee on the biceps and triceps, respectively, of the residual upper 

arm. In the typical control structure, the velocity of opening or closing the hand or 

flexing/extending the elbow is commanded in proportion to the measured amplitude of the 

respective EMG electrode. A switching signal, typically a co-contraction (contracting the biceps 

and triceps momentarily at the same time) is required to select either elbow or hand control, a 

subsequent co-contraction will cycle the control back to the other component. Myoelectric 
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prostheses typically have a more anthropomorphic appearance than body powered prostheses, and 

they do not require shoulder movement or the associated harness to generate motion. However, 

shoulder movement is indeed required in reaching tasks like in pick-place tasks. 

Millstein [20] in 1986 conducted a study comparing the use of myoelectric and body-powered 

prostheses in upper extremity amputees, and found a greater acceptance rate (transhumeral and 

transradial) amongst those fit with a myoelectric prosthesis relative to a body-powered type. A 

study by Stein and Walley [21] in 1983 found that subjects fit with a body-powered prosthesis 

could perform activities of daily living (ADL’s) on average faster than those fit with a myoelectric 

prosthesis, but that performing the ADL’s with the body-powered device required “extreme” or 

awkward movements of the trunk, and that the body-powered prosthesis was usable in a smaller 

portion of the upper extremity workspace than the myoelectric device (due to the need for shoulder 

input).  

Body powered prostheses, however, are fundamentally low dexterity devices. That is, the 

number of control inputs (i.e., cables) is extremely limited, with the large majority of body 

powered prostheses having one control cable. Despite this, such devices have the potential to 

provide considerably more functionality, particularly with regard to the ability to control terminal 

device and elbow. Myoelectric devices on the other hand tend to be characterized by higher cost 

and less environmental robustness, but do not require a shoulder harness, enable full range of 

motion about the shoulder, and due to embedded sensing and control, have the potential for 

increased movement degrees-of-freedom (DOFs) and control sophistication (e.g., can provide 

assistive coordination). Moreover, in the last decade, advances in motors, microcontrollers, 

sensors, battery technology and mechatronics in general have enabled the development of 

multigrasp hands, advanced prosthetic elbow joints and wrist rotators as an improvement on 
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prosthetic devices [22-26]. Given the functional limitations of body powered devices indicated by 

[12, 18, 27], and given the potential of the myoelectric devices to enhance functionality, several 

research prosthetic arms have begun to evolve (e.g. DEKA Arm [26], RIC Arm [25], Parallel 

Myoelectric prosthesis [28]). In addition to research prototypes, several prosthetic companies 

(such as i-Limb, RSL Steeper, Otto Bock and Motion Control) have released commercial devices 

to the amputee community. Therefore, this dissertation focuses on a control approach for a 

myoelectric transhumeral prosthesis that is intended to enhance functionality through such 

enhanced control sophistication. 

1.4 TRADITIONAL MYOELECTRIC CONTROL METHOD 

Most of the current commercially available myoelectric devices utilize a “direct” control 

approach, in which the measured EMG from an agonist/antagonist pair of muscles is used to 

command motion of the prosthesis. In the case of a transhumeral prosthesis, surface EMG sites on 

the biceps and triceps aspects of the residual upper arm are used to open and close or flex and 

extend, respectively, the myoelectric hand or elbow. In order to minimize continuous contraction 

of muscles in the upper arm and reduce the cognitive load on the user, such devices are typically 

velocity controlled, such that the velocity of hand opening (or closing) or elbow flexion (or 

extension) is proportional to the amplitude of the EMG measured on the biceps and triceps. With 

a velocity controlled approach, the user need only be concerned with changes in (hand or elbow) 

position, rather than the position of the hand or elbow. Thus, once the hand is in a given position, 

the user can leave it there and not have to expend cognitive effort to maintain that given position. 

This is particularly important given the lack of sensory information conveyed to the user. In this 

manner, a user can grasp an object (e.g., a bottle of water), flex/ extend the elbow and carry the 

object around without having to continuously contract the muscles on the on the residual upper 
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arm, and without having to continuously (visually) monitor the hand and elbow to ensure that the 

grasp has been maintained. Rather, once grasped, the user need only perform a subsequent muscle 

contraction when wanting to release the grasped object or to adjust the elbow position. In such 

control method, the user can switch the control from the hand to the elbow (or vice versa) by 

contracting both agonist/antagonist muscles (biceps and triceps) of the residual limb where the pair 

of EMG electrodes affixed, simultaneously for a short period of time. Alternating control between 

the joints forces the user to control the joints of the arm in a sequential manner (i.e. one joint at a 

time) which is not intuitive in relative to the way healthy arm is being controlled. The healthy arm 

is controlled in a coordinated fashion and requires less cognitive effort. In addition, adding an 

additional joint to the arm prosthesis (e.g. wrist joint) will presumably increase the cognitive effort 

using such control method. This is attributed to the limited control inputs to the arm prosthesis 

which are the surface EMG. As indicated by [16, 17, 27, 29] amputees are not satisfied with their 

devices, particular due to lack of functionality and intuitiveness. In addition, amputees would like 

to have more joints (e.g., a wrist) with much visual attention and cognitive load [29, 30]. With 

fewer inputs to control more joints, new control strategies are required to provide a transhumeral 

amputee with control of a limb that feels intuitive and natural. Several research efforts addressing 

this problem have been conducted, which are briefly highlighted in Chapter II of this dissertation.  
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CHAPTER 2  

2. BACKGROUND AND RELATED WORK 

The problem with the use of direct surface EMG to control a prosthesis is that, like the body-

powered devices, the number of control channels is severely limited. Commercial devices typically 

incorporate measurement at two EMG sites, which provides a single (bidirectional) control 

command to the prosthesis. In the case of a multi-joint prosthesis (e.g., a transhumeral myoelectric 

prosthesis with an elbow and hand), the single control channel (consisting of the combined biceps 

and triceps EMG) is switched between elbow and hand control, such that only one is being 

controlled at any given time. 

Although not yet implemented in commercial devices, considerable research has been 

conducted in the control of myoelectric prostheses via pattern recognition approaches. Pattern 

recognition approaches offer the potential of simultaneously controlling a high number of degrees-

of-motion in a coordinated fashion from a lower number of command inputs in a largely intuitive 

manner. For example, such an approach could be used to control a hand capable of eight grasp 

patterns from two agonist/antagonist pairs of EMG electrodes (e.g., from four surface electrodes, 

such as on the dorsal/ventral and lateral/medial aspects of the forearm). Another Example in [31], 

such an approach could be used to perform hand open and close, pronation and supination of the 

wrist and extension and flexion of the elbow. In such an approach, the controller considers 

windows of EMG information (as opposed to single samples), and based on the pattern of 

information contained in the window, the controller infers the intent of the user to perform a given 

motion or grasp posture. Recent, representative examples of such work, incorporating various 

pattern classification techniques to classify a number of postures and motions for transradial and 
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transhumeral control from surface EMG measurements for upper limb myoelectric prostheses, for 

example, see [32-34]. 

Though EMG pattern classification methods show promise, they also entail some 

implementation challenges and limitations that hinder their use in commercial prostheses. First, 

they provide a quasi-real-time (as opposed to real-time) control. The amount of latency in pattern 

classification depends upon several factors, including the number of EMG sites, the number of 

pattern classes (or grasp patterns) being recognized, and the desired accuracy of classification. A 

recent survey of EMG pattern recognition methods indicates decision latencies between 50 ms and 

900 ms, depending on the number of inputs, number of classes, desired accuracy, and structure of 

the classifier [35]. The low end of that bracket (i.e., 50 ms) is unlikely to be an impediment to real-

time control, although the high end of the bracket (i.e., 900 ms) would likely impede the natural, 

real-time interaction with the prosthesis. Another drawback of classical pattern recognition 

approaches, which is arguably more fundamental, is the inability to move proportionally within a 

grasp posture or between grasp postures. For example, a pattern classification approach can 

provide either the pointing posture or the cylinder grasp, but in general cannot provide for the 

proportional position of the index finger between the two postures. Similarly, controlling the elbow 

using pattern recognition will lack the proportionality in controlling the elbow position. In 

addition, even more EMG channels are required in the case of transhumeral amputation which in 

return will increase the latency in the pattern classification. 

The pattern recognition approach presents a fundamental trade-off between the number of 

classes, the classification “bandwidth” and the accuracy of classification. That is, increasing one 

will fundamentally lower the other two. Therefore, a large number of pattern classes will entail 

either low classification bandwidth (i.e., a long classification latency) and/or a low classification 
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accuracy (i.e., a high incidence of incorrect classifications). Finally, a significant limitation of 

pattern-based approaches is that the output (i.e., the classification) is highly dependent upon the 

consistency of the input. In the case of surface EMG, a large number of factors contribute to 

inconsistency in the EMG input, including movement of the electrodes relative to the underlying 

muscle, which can be caused by changes in the posture of (the intact joints on) the affected limb 

(which is exacerbated in biarticular muscles) and movement of the socket (and thus the electrodes) 

relative to the underlying musculature. Due to these factors, the measured EMG patterns 

characteristic of a certain grasp posture or elbow control can vary significantly between a 

configuration in which the elbow (or shoulder) on the affected limb is fully flexed or fully 

extended. Note that if the position of the intact elbow (and shoulder) could be measured, this effect 

could be cancelled in the controller, but measurement of shoulder and/or elbow angles is not likely 

a feasible solution in a commercial product. In addition, since only one class can be selected in 

one decision, the control of the prosthesis will still be sequential control, in other words, a switch 

signal still needed to switch the control to other joint.  

The absence of clear EMG sites on an amputee’s residual limb is a problem in generally any 

control method involves EMG (e.g. in the case of high level transhumeral amputation or shoulder 

disarticulation), where the EMG signals required by the algorithms can be difficult or impossible 

to obtain, but it is even more problematic with pattern recognition control method, since so many 

more signals are required. In this case, a targeted muscle reinnervation (TMR), which is a surgical 

operation needed to create additional EMG sites, may improve EMG sites. TMR is a method by 

which a spare muscle (the target muscle e.g. chest muscle) of an amputated patient is denervated 

(its original nerves cut and/or de-activated), then reinnervated with residual nerves of the 

amputated limb. The resultant EMG signals of the targeted muscle now represent the motor 
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commands to the missing limb, and are used to drive a myoelectric prosthetic device [36, 37]. 

Although the signals obtained through this method have been shown to be effective and efficient 

enough to drive the prosthesis, the method requires an invasive surgery. 

Direct control approaches used in traditional control methods (e.g., sequential control) offer 

real-time proportional control and are not highly sensitive to EMG variation, and thus are used in 

commercially available devices, but as previously discussed cannot provide simultaneous or 

coordinated control of multi-joint devices (e.g., arm prosthesis with hand and elbow). Therefore, 

this dissertation describes a novel control method that uses the direct control approach but 

coordinates the control between the arm joints.  

2.1  PRIOR WORK ON THE TRANSHUMERAL PROSTHESIS  

Work on the transhumeral prosthesis started with creating a multigrasp hand prosthesis for 

transradial amputees. Most of the work done prior to the research detailed in this dissertation 

focuses on the development of a myoelectric multigrasp hand and myoelectric controller which 

are referred to as the Vanderbilt Multigrasp (VMG) hand and Multigrasp Myoelectric Controller 

(MMC), respectively. The VMG and MMC were both used in this work. Mainly, the hand was 

utilized as a terminal device.  

2.1.1 VANDERBILT MULTIGRASP HAND (VMG) 

VMG is an anthropomorphic prosthetic hand that incorporates four motor units in a unique 

configuration to explicitly provide both precision and conformal grasp capability. The hand is a 

self-contained system with an embedded control system located in the palm of the hand as depicted 
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in Fig. 2. The overall mass of the hand with the embedded system is 546 g. The VMG hand was 

designed and assessed previously as indicated in [7, 8, 10, 11]. 

 

Fig. 2 VMG with the embedded control system  

2.1.2 MULTIGRASP MYOELECTRIC CONTROLLER (MMC) 

The Multigrasp Myoelectric Controller (MMC) was developed alongside the VMG previously 

in order to provide intuitive access to the full functionality of a multigrasp prosthetic hand with 

only the standard 2-site EMG signals [5]. These electrodes provide two control signals that 

typically correspond to an “open” and “close” command for a single degrees of freedom (DOF) 

prosthesis. The MMC uses these two signals, along with tendon displacement and force 

measurements to navigate through a state machine where each state represent a certain hand 

posture. The MMC was used in this work along with the VMG in assessment of a transhumeral 

prosthesis which will be explained later in this dissertation.  



14 

 

CHAPTER 3 

3. ASSESSMeNT OF A MULTIGRASP MYOELECTRIC CONTROL APPROACH FOR USE 

BY TRANSHUMERAL AMPUTEES 

The VMG assessed previously for the use of transradial amputees (i.e. EMG placed on anterior 

and posterior muscles of the forearm) [5]. Hence, the previously developed hand controller for the 

use of a transradial amputee has been utilized and modified to be used for a transhumeral amputee. 

The aim of this work was to experimentally assess the ability of a non-amputee subjects to control 

a hand prosthesis using biceps and triceps muscles instead of forearm muscles. This experiment 

was performed using a virtual environment and the efficacy of the system has been demonstrated 

in which the performance of the controller maintaining certain postures has been compared to the 

performance of the native hand. This work is not the main contribution, however, it’s mainly an 

experiment using a previous work and modify it to fit transhumeral needs. The outcomes of this 

preliminary assessment of the MMC for use by transhumeral amputees was published in 

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of 

the IEEE  studies are presented in this chapter.  

3.1 ABSTRACT  

The authors have previously developed a multigrasp myoelectric controller, and assessed the 

ability of healthy subjects to control the configuration of a multigrasp hand prosthesis using 

musculature on the anterior and posterior aspects of the fore-arm, as would be representative of 

controller use by a transradial amputee population. In this paper, the authors conduct a similar 

study, this time to assess the capability of a transhumeral amputee to control a multigrasp hand 

from residual musculature on the upper arm. Specifically, experiments are conducted on five 
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healthy subjects, comparing their ability to obtain one of seven hand postures in a virtual prosthesis 

from EMG measurement of the respective biceps and triceps musculature. The ability to control 

the virtual hand prosthesis is compared with their ability to do so with their intact hand, as 

measured by a dataglove. Results indicate an average transition time using the EMG controller on 

the biceps and triceps of 1.86 seconds, relative to 0.82 seconds with the dataglove. 

3.2 INTRODUCTION  

As of 2005, there were approximately 41,000 persons living in the United States with major 

(i.e., excluding loss of fingers) upper limb amputations [13]. Extrapolating from a recent sampling 

of amputees [12], the two most common levels of major upper limb amputation are the transradial 

and transhumeral levels, each of which constitute approximately one third of the total upper 

extremity amputee population. After suffering limb loss, upper extremity amputees generally have 

two options in prosthesis types for functional replacement of the hand, which are either a body-

powered or a myoelectric type. A highly constraining factor in both types of prostheses is the 

limited number of control inputs with which the user can control the hand prosthesis (or terminal 

device). Specifically, whether the control input is a body-powered cable or a myoelectric signal, 

hand prostheses have traditionally been limited to a single control channel, which is typically used 

to open and close either a split hook (in the body-powered case) or a single degree-of-freedom 

hand (in the myoelectric case). 

Recent technological advances (i.e., the power density of rare-earth magnet brushless motors, 

the energy density of light metal batteries, the enhanced computational capability of 

microcontrollers, etc.) have brought to the near horizon the possibility of multigrasp hand 

prostheses, which are able to provide to the amputee a number of hand postures and grasps. For a 
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recent survey of several emerging multigrasp prostheses, see [38]. Despite the emergence of such 

devices, the enhanced functionality they offer is not useful to the amputee without a multigrasp 

control interface that offers intuitive, effective, and reliable access to the multiple grasps and 

postures they can provide. 

A number of approaches to multigrasp prosthesis control, based on the measurement of 

surface electromyogram (EMG) as the primary control signal, have been proposed. These fall 

largely into two categories, which are pattern recognition approaches (e.g., see [39-42]), and 

hierarchical approaches (e.g., see [43-48]). The authors have developed and previously published 

a hierarchical multigrasp hand prosthesis control approach, called Multigrasp Myoelectric Control 

(MMC) [49]. In that paper, the authors focused on the ability of a transradial amputee to control a 

multigrasp hand prosthesis via two surface EMG electrodes, one on the anterior and posterior 

aspects, respectively, of the user’s forearm. Note, again, that transradial amputees constitute 

approximately one third of the total upper extremity amputee population.  

In this paper, the authors conduct a similar study, but instead of focusing on the efficacy of 

the approach for transradial amputees, the authors focus on the efficacy of the approach for 

transhumeral amputees. As previously mentioned, like the transradial amputee population, the 

transhumeral amputee population constitutes approximately one third of the total upper extremity 

amputee population. The control method is similar for both populations, although rather than 

utilizing one electrode site on each of the anterior and posterior aspects of the forearm, 

respectively, as is the case for transradial amputees, a transhumeral amputee will utilize surface 

EMG sites on the biceps and triceps muscles, respectively. Such musculature is obviously further 

removed from operation of the native hand, and thus the authors intent in conducting this study 

was to assess the extent to which EMG of the upper arm musculature provided effective control of 
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a multigrasp prosthesis. As such, in this paper, the authors present the results of a study (on five 

healthy subjects) indicating the ability to control a multigrasp prosthesis from the upper arm, and 

compare those results to the capability to do the same with the native hand, and to the capability 

to control from electrode sites on the forearm. 

3.3 MULTIGRASP MYOELECTRIC CONTROL 

The MMC method involves an event driven finite-state machine that transitions between a 

finite set of fixed postures (states), where the future state of the prosthesis is determined by the 

current state and electromyogram (EMG) input to the state machine. This structure is illustrated in 

Fig. 3.  In this work, the MMC control method was modified to better address transhumeral 

amputations. That is, musculature on the upper arm, as opposed to the lower arm, has been utilized. 

Specifically, contraction of the biceps muscle (flexion) is associated with upward movement in the 

state chart, while contraction of the triceps muscle (extension) is associated with downward 

movement in the state chart.  Furthermore, the co-contraction event has been replaced with a 

double extension action to transition between the opposition and reposition states (which are 

associated with movement of the thumb).  The double extension consists of fully extending the 

prosthesis within the opposition (or reposition) state, relaxing, and extending again to initiate 

automatic reposition (or opposition) of the thumb. To this end, the muscle relaxation time has been 

accounted for in this implementation by determining the relaxation period for each subject during 

the signal conditioning process.  This preserves co-contraction for possible multiplexing between 

hand and elbow functions, and eliminates the necessity of performing co-contraction during hand 

motions. 
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Fig. 3 The Multigrasp Myoelectric Control State Chart. The structure of the MMC finite-state machine. The states 

are comprised of different hand postures. Transitions from state to state depend on EMG thresholds, and double 

extension detection logic. Contraction of the biceps is associated with upward movement in the state chart. 

Contraction of the triceps is associated with downward movement in the state chart. Double extension initiates an 

automated toggling motion between the opposition and reposition states. 



19 

 

3.4 METHODS 

Five non-amputee volunteers, aged 20-30 years, participated in this study. Each volunteer 

underwent six trials which involved controlling a virtual prosthesis to achieve a series of 

randomized target postures. In the first six trials, this was done using a dataglove to capture the 

motion of the native hand. This was followed by six other trials where the MMC was used to 

control the virtual prosthesis through a similar set of random postures. In this way, the performance 

of the MMC could be compared to that of the native hand.  The time between an individual 

subject’s trials ranged from one to four days with an overall experimental completion period of 

forty five days.  This study was approved by the Vanderbilt University Internal Review Board. 

3.4.1 VIRTUAL PROSTHESIS 

The virtual prosthesis model developed in [49] was implemented in this study to evaluate the 

performance of the native hand and the MMC. This model uses a virtual prosthesis which is 

displayed on a computer screen and controlled by the subject using either the native hand (via a 

dataglove) or by MMC (via EMG).  A virtual ghost (an overlaid duplicate of the virtual prosthesis) 

is used to display target postures for the user to acquire with the virtual prosthesis. 

3.4.2 DATAGLOVE  

In order to evaluate the ability of the native hand to obtain preset postures with the virtual 

prosthesis, a dataglove was used to obtain temporal and spatial data for later comparison with 

MMC. Specifically, the dataglove captured flexion/extension of the index and middle fingers, as 

well as flexion/extension and opposition/reposition of the thumb, using variable resistance bend 

sensors. In the virtual prosthesis, motion of the ring and little fingers was coupled to that of the 
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middle finger, allowing the achievement of all target postures.  Dataglove details may be found in 

[49]. 

3.4.3 EMG 

To obtain surface EMG data, two Ag/AgCl electrodes (Myotronics, Inc.) were affixed to the 

subject’s skin after each EMG site was sanitized with alcohol pads. The electrodes were positioned 

over the subject’s biceps and triceps muscle bellies (in parallel to the muscle fibers) with a 

reference electrode positioned proximal to the elbow. These positions were marked for consistent 

placement between subsequent trials. The output signals of the electrodes were then preamplified 

(K=100) and low pass filtered (fc = 500 Hz) near the electrode sites using custom analog circuitry. 

The signals were then passed to Simulink Real Time Windows Target using a Humusoft MF624 

data acquisition card where they were digitally high-pass filtered (fc = 50 Hz) and rectified. The 

signals were then digitally low-pass filtered (fc=5 Hz) to obtain velocity references for the MMC. 

3.5 EXPERIMENTAL PROCEDURE 

As mentioned above, each trial consisted of achieving random sequences of target postures. 

The target postures coincide with the MMC states (reposition, point, hook, lateral pinch, 

opposition, tip and cylindrical). When a new target posture is displayed, the subject manipulates 

the virtual prosthesis using either the dataglove or the MMC.  For the dataglove this manipulation 

consists of movement of the native hand.  For the MMC this consists of isometric contraction of 

the biceps or triceps muscle (where the subject grasps a rigid handle to isolate movement of the 

arm).  When the virtual prosthesis closely matches the target posture (±25% range of motion) the 

virtual ghost disappears indicating that the target posture has been achieved. To be considered 

successful, a target posture must be held for 3 seconds. A new target posture is displayed after 
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successfully achieving a target posture, or if the target posture is not achieved within five seconds. 

If five seconds pass without achievement of the target posture the transition is considered a failure, 

and a new posture is displayed. The time it takes for the subject to achieve a target posture is 

recorded and defined in this study to be the transition time. The percentage of successful target 

postures achieved in less than five seconds is defined in this study to be the transition completion 

rate.  Note that the transition times in this study are influenced by intrinsic biological factors such 

as visual, cognitive, neural, and muscular delays.  

Each subject was given a period of up to 15 minutes to get accustomed to the operation of the 

dataglove and MMC before performing the experimental trials. Each trial lasted approximately 10 

minutes.  Note that there are a total of 42 possible transitions among the MMC states (i.e., from 

any of the seven states, there are six other possible states to which the user can transition). During 

a trial, each transition type is presented three times, resulting in a total of 126 transitions, with each 

posture appearing 18 times. 

3.6 RESULTS AND DISCUSSION 

3.6.1 PERFORMANCE TRENDS 

From Fig. 4 it can be seen that, in general, median transition times decreased with subsequent 

trials. This trend is presumably a result of subject learning over time. After the third trial, the 

median transition times for both the dataglove and the MMC fell within 10% of their respective 

means, indicating decreased improvement and minimal gain in the repetition of trials. For this 

reason, the final three trials were used to compile the data reported herein. 
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Fig. 4. Median motion completion times for each trial, where each box encompasses the 25th to 75th percentiles for 

that trial and control method. Whiskers extend to the minimum and maximum recorded times. 

3.6.2 TRANSITION TIME 

 The average transition times for the dataglove (native hand) and the MMC (EMG) trials for 

each transition type are shown in Table I and Table II, respectively. The standard deviations are 

noted in parentheses. The average overall transition times (the average time to go from any one 

posture, to any other) for the dataglove and the MMC were 0.82 seconds (standard deviation of 

0.23 seconds) and 1.86 seconds (standard deviation of 0.75 seconds). The difference in these times 

may be attributed to two primary factors.  First, the topography of the state chart dictates that the 

transition time between postures will be proportional to the distance between them (see Fig. 3.).  

Second, transitions which require opposition or reposition of the thumb (and therefore, the 

performance of the double extend action) will necessarily incorporate the muscle relaxation time 

of the subject, and increase transition times accordingly. Also, variations in relaxation time from 

subject to subject will lead to increased deviation in transition times for the MMC. In these 

experiments, the average muscle relaxation time was found to be 0.50 seconds, with a standard 
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deviation of 0.25 seconds.  The average overall transition times and relaxation times for each 

subject may be found in Table III. 

Table I Average Transition Times for All Subjects Using the Native Hand (Dataglove) 

 
Target Posture 

Lateral  Hook  Point Reposition Opposition Tip Cylindrical 

O
ri

g
in

al
 P

o
st

u
re

 

Lateral   
0.59  

(0.26) 
0.65 

 (0.22) 
0.68 

 (0.22) 
0.84 

 (0.50) 
1.12 

 (0.73) 
0.82 

 (0.69) 

Hook  
0.55 

 (0.18) 
 

0.60 

 (0.18) 

0.68 

 (0.38) 

0.89  

(0.50) 

1.20 

 (0.73) 

0.73 

(0.38) 

Point 
1.70  

(0.34 ) 

0.51 

 (0.16) 
 

0.65 

 (0.19) 

0.78  

(0.29) 

1.25 

 (0.73) 

0.83  

(0.38) 

Reposition 
0.87  

(0.32) 

0.59  

(0.23) 

0.73  

(0.32) 
 

0.64 

 (0.28) 

1.13 

 (0.73) 

0.85 

 (0.39) 

Opposition 
0.75  

(0.27 ) 

0.81 

 (0.38) 

0.82  

(0.34) 

0.62 

 (0.25) 
 

1.12 

 (0.73) 

1.13 

 (0.45) 

Tip 
0.72 

(0.22) 

0.69 

 (0.39) 

0.71  

(0.22) 

0.79 

 (0.38) 

0.81 

 (0.30) 
 

0.90 

 (0.50) 

Cylindrical 
0.69 

 (0.26) 

0.72 

 (0.42) 

0.67  

(0.25) 

0.69 

 (0.23) 

0.96  

(0.58) 

1.08 

 (0.73) 
 

 

Table II Average Transition Times for All Subjects Using MMC (EMG) 

 
Target Posture 

Lateral  Hook  Point Reposition Opposition Tip Cylindrical 

O
ri

g
in

al
 P

o
st

u
re

 

Lateral   
1.07 

 (0.43) 

1.31 

 (0.63) 

1.24 

 (0.19) 

1.89 

 (0.31) 

2.65 

 (0.66) 

2.93 

 (0.52) 

Hook  
0.83 

 (0.20) 
 

0.98 

 (0.31) 

1.04 

 (0.24) 

1.71 

 (0.45) 

2.39 

 (0.59) 

2.63  

(0.45) 

Point 
2.23 

 (0.97) 
0.99 

 (0.29) 
 

0.73 
 (0.2) 

1.46 
 (0.4) 

2.23 
 (0.55) 

2.65 
 (0.62) 

Reposition 
1.71 

 (0.55) 

1.42 

 (0.28) 

1.31 

 (0.44) 
 

1.57  

(0.64) 

2.34 

 (0.49) 

2.50 

 (0.40) 

Opposition 
3.00 

 (0.52) 

2.91 

 (0.62) 

2.51 

 (0.53) 

1.52  

(0.45) 
 

1.24 

 (0.64) 

1.31 

 (0.25) 

Tip 
2.87 

 (0.56) 

2.84 

 (0.74) 

2.42 

 (0.50) 

1.60 

 (0.43) 

0.63  

(0.16) 
 

0.98  

(0.34) 

Cylindrical 
3.10 

  (0.64) 

2.89 

 (0.48) 

2.60 

 (0.45) 

1.63 

 (0.18) 

1.71 

 (0.28) 

1.02 

 (0.35) 
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Table III Average Transition Time and Relaxation Time for Each Subject Using MMC 

Subject 
Transition Times 

(seconds) 
Relaxation Times 

(seconds) 

HS 1 1.94 0.70 

HS 2 1.92 0.38 

HS 3 1.84 0.54 

HS 4 1.52 0.49 

HS 5 2.10 0.41 

Average 1.86 0.50 

 

In a previous study, which investigated the use of MMC for transradial amputees [49], the 

dataglove and MMC transition times were found to be 0.81 seconds (standard deviation of 0.14 

seconds) and 1.49 seconds (standard deviation of 0.15 seconds).   Note that the transition times in 

the previous study do not include muscle relaxation time because muscle relaxation (double 

extension) was not required to transition among the opposition and reposition states.  Note, 

furthermore, that 24 of the 42 transitions in the state chart require opposition or reposition, while 

18 of the 42 transitions do not.  Therefore, the results of the previous study can be adjusted to 

arrive at a theoretical estimate of the average overall transition time, if double extension had been 

utilized, by adding the average muscle relaxation time to the 24 transitions which require 

opposition or reposition.  This is illustrated in the equation (1) below: 

 [(1.49 𝑠) (
18

42
)] + [(1.49 𝑠 + 0.50 𝑠) (

24

42
)] = 1.78 (1) 

By doing this, it can be seen that the transition times reported in the previous and current study 

are comparable.  Specifically, dataglove transition times for the previous and current study were 

0.81 and 0.82 seconds, respectively.  The MMC transition times for the previous and current study 

were 1.78 (as adjusted to reflect the use of double extension) and 1.82 seconds, respectively. 
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3.6.3 TRANSITION COMPLETION RATE 

The transition completion rates for the dataglove and the MMC in this study were found to be 

99.2% and 99.3%, respectively. These results indicate that the reported transition times are 

accurate regardless of whether or not the 5 second cutoff time is considered. These results are also 

consistent with the transition completion rates reported in [49], indicating that MMC control is 

dependable at both the transhumeral and transradial level. 

3.7 CONCLUSION  

This paper presents a version of a previously published multigrasp myoelectric controller 

which has been modified for use by transhumeral amputees, and investigates the ability of a person 

to control a multigrasp hand prosthesis from musculature in the upper arm (i.e., from the biceps 

and triceps muscles). Also, the MMC approach used in this paper utilized double extension to 

transition between the opposition and reposition states, preserving co-contraction for the future 

development of multifunction prostheses. The study of five healthy subjects indicates that on 

average the subjects were able to control the multigrasp capability of the virtual prosthesis using 

musculature in the upper arm essentially as well as subjects in a previous study were able to control 

the prosthesis with the musculature in their forearm. The study therefore indicates that the use of 

the MMC method should apply equally as well to either the transradial or transhumeral levels of 

amputation. 
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CHAPTER 4 

4.  SYNERGISTIC ELBOW CONTROL FOR A MYOELECTRIC TRANSHUMERAL 

PROSTHESIS 

After the successful assessment of the MMC for transhumeral use, the goal of this project was 

to design an intuitive coordinated controller as we move up the arm and include more joint. The 

primary goal of the work described in this chapter was to create a transhumeral prosthesis 

coordinated controller that would coordinate the control between the controlled components (i.e. 

hand and elbow control). This goal was achieved by leveraging recent advances in MEMS, 

specifically, Inertia Measurement Unit (IMU), in order develop a controller that enables the 

simultaneous movement of the anatomical shoulder joint and prosthetic elbow joint, and also 

enables switching between control of a hand and elbow, and is used in conjunction with EMG 

input to provide enhanced whole arm (hand and elbow) control, relative to the traditional 

sequential control approach. This work was published in Robotics and Automation (ICRA), 2016 

IEEE International Conference on 2016, and extended analysis of this work has been submitted to 

IEEE Transactions on Neural Systems and Rehabilitation Engineering and is currently in review. 

In addition to the published work, the coordinated controller design went through several 

iterative stages before converging to its final version.  

The main contribution to this dissertation is the design and assessment of the coordinated 

controller. Following the manuscript of the currently in review paper is an addendum discussing 

the design iterations of the coordinated controller, investigating the experience gained from each 

controller and how they led to the final version of the coordinated controller. 
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4.1 ABSTRACT  

This paper presents a control approach for a myoelectric transhumeral prostheses, specifically 

consisting of a myoelectric elbow and terminal device, which supplements a typical two-site EMG 

input with inertial measurement of arm motion to facilitate prosthesis control. The inertial 

measurement enables measurement of upper arm motion and is employed to 1) provide synergistic 

movement between the prosthetic elbow joint and intact shoulder joint, and 2) to switch control 

between the myoelectric elbow and hand. The objective of the control approach is to reduce the 

control burden on the amputee user. In order to assess the prospective efficacy of the control 

method, experiments were conducted on six healthy subjects who performed a series of pick-and-

place tasks within a virtual environment. The assessments compared the time required to complete 

the pick-and-place tasks using the proposed coordinated control approach, with the time required 

using a sequential control approach (i.e., the conventional approach used in commercial devices). 

Results of these assessments indicate that subjects on average completed the pick-and-place tasks 

32% faster with the coordinated control approach, relative to the conventional sequential EMG 

method, with no difference in compensatory torso motion. 

4.2 INTRODUCTION  

 It is well known that upper extremity prostheses fall short of expectations of the patient 

population. Surveys of upper extremity amputees indicate that less than half regularly use their 

prosthetic arms [12, 27], largely due to functional limitations. Similar surveys report a desire for 

devices with improved functionality and more intuitive and coordinated control [18]. Two major 

types of arm prostheses exist – body-powered and myoelectric types. The former offer advantages 

of relatively low-cost, high environmental robustness, and the ability to relay proprioceptive and 
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force information to the user [15]. Such devices also require the user to wear a shoulder harness, 

however, and precludes full range of motion about the shoulder (e.g., preclude use of the prosthesis 

while reaching overhead). Myoelectric devices tend to be characterized by higher cost and less 

environmental robustness, but do not require a shoulder harness, enable full range of motion about 

the shoulder, and due to embedded sensing and control, have the potential for increased movement 

degrees-of-freedom (DOFs) and control sophistication (e.g., can provide assistive coordination). 

Given the functional limitations indicated by [12, 18, 27], and given the potential of the latter to 

enhance functionality, this paper focuses on a control approach for a myoelectric transhumeral 

prosthesis that is intended to enhance functionality through such enhanced control sophistication. 

A myoelectric transhumeral prosthesis typically consists of the combination of a myoelectric 

hand and elbow. The conventional method for control of this type of myoelectric prosthesis (i.e., 

the method employed in commercial devices) incorporates a two-site EMG interface, in which a 

pair of EMG electrodes is placed over the biceps and triceps brachii muscle groups, respectively. 

The filtered and rectified signals measured by the agonist/antagonist pair of EMG electrodes 

collectively provide a single (bidirectional) control input to the prosthesis. As such, the user has 

only a single control input with which to control the two components (i.e., the hand and elbow) of 

the prosthesis. This limitation is addressed by multiplexing the single (bidirectional) myoelectric 

control signal between the myoelectric elbow joint and hand, where the multiplexing function is 

typically performed via a brief muscular co-contraction of the biceps and triceps muscles. 

Although simple and robust, this “sequential” control approach is considerably less efficient than 

the simultaneous joint movement characteristic of arm motions in healthy individuals. Further, the 

sequential method becomes increasingly inefficient with additional myoelectric degrees-of-

freedom (DOFs) in the arm (e.g., powered wrist DOFs or multigrasp hands). 
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 It is well known that arm movement in healthy individuals is characterized by the 

simultaneous movement of multiple joints. A control method that enables such simultaneous (or 

coordinated) movement of multiple arm joints could presumably increase the efficiency with 

which amputees with transhumeral prostheses perform activities of daily living (ADLs). One 

approach to providing coordinated control of multiple joints is to leverage known movement 

synergies between the (intact) shoulder and (prosthetic) elbow joints. Such synergies have been 

characterized in biomechanical research studies [19, 50-56]. Among these, Popovic et al. proposed 

to leverage shoulder-elbow joint synergies during reaching tasks to facilitate control of functional 

electrical stimulation (FES) in patients with tetraplegia[19, 52-56]. In their work, experiments were 

performed with healthy subjects to characterize the functional synergies between shoulders and 

elbow angular velocities during reaching movements. Based on data from these experiments, the 

resulting synergies were modeled using a proportional relationship between the joint angular 

velocities, where the constant of proportionality between the two was determined to be a function 

of the initial and final arm configurations [19, 54]. The authors subsequently further characterized 

shoulder and elbow joint synergies using radial basis function neural network models, additionally 

included synergies between the shoulder and forearm pronation/supination[30], and also 

incorporated these synergies into a “proximal segment controls distal segments” control method 

for control of FES to facilitate reaching in persons with tetraplegia. 

Kaliki et al. also proposed to use the measured orientation of the upper arm to predict distal 

arm posture for control of neuroprostheses (i.e., FES) and myoelectric transhumeral prostheses 

[50, 51]. In their research, Kaliki et al. also conducted experiments using healthy subjects to 

characterize the functional synergies between shoulder angle (i.e., abduction/adduction, 

flexion/extension, and internal/external rotation), elbow flexion/extension, and forearm 
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pronation/supination (i.e., wrist rotation) during multiple reaching movements, and additionally 

included consideration of shoulder location. In their research, the authors used artificial neural 

networks (ANNs) to construct (i.e., train) three models of arm synergies, and subsequently to 

characterize the validity of the models via the coefficient of determination (R2 value). The authors’ 

second model, which is of direct relevance to the work presented here, utilized shoulder location 

and angle as input, and elbow angle as output, and was characterized by an average R2 value of 

0.85, indicating a strong correlation between the ANN model and the kinematic shoulder/elbow 

synergy during reaching movements. Based on their results, the authors report that “it is clear [that 

shoulder angles can be used] to adequately predict the elbow angle for reaching movements in a 

large three-dimensional extra-personal space” [51]. 

Although [51] suggest the applicability of their work to transhumeral myoelectric prostheses, 

the paper is focused on modeling rather than control. Recently, Lauretti et al. [57] proposed a 

coordinated controller for a transhumeral prosthesis that leverages arm joint synergies similar to 

those experimentally characterized in the aforementioned studies. Specifically, the controller 

employs a pair of inertial measurement units (IMUs) on the trunk and residual limb, respectively, 

to provide a measure of shoulder flexion/extension and shoulder ab/adduction, and combines these 

measures with a two-site EMG interface, such that a sustained co-contraction of the EMG couples 

shoulder flexion/extension with elbow flexion/extension and wrist rotation with shoulder 

ab/adduction. In the absence of sustained co-contraction, EMG control is switched to the hand, 

and the elbow and wrist are immobilized. The authors implement their controller using healthy 

subjects in a virtual environment, and show improved completion times of the virtual tasks with 

the coordinated controller relative to a sequential control approach. 
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Like the work presented in [57], this paper proposes a control method for a transhumeral 

myoelectric prosthesis that also leverages the existence of shoulder/elbow synergies. The authors 

hypothesize that such a control method can enable faster performance of ADLs, specifically those 

involving reaching, relative to existing sequential EMG controllers. Since movement of the elbow 

is coordinated with movement of the residual limb (i.e., intact shoulder movement), the authors 

refer to the method as synergistic or coordinated control. The authors note, however, that the notion 

of coordination is specifically between the user and prosthesis, as opposed to the coordination of 

multiple joint motion within the prosthesis.   

The control method proposed here is similar to that reported in [57] (which was apparently 

concurrently developed) in that it also employs a kinematic synergy between shoulder 

flexion/extension and elbow flexion/extension. The control method, however, is different in at 

least three major respects. First, the method proposed here modulates the gain between the 

shoulder and elbow during movement using differential EMG. Second, EMG is not used to switch 

between elbow and hand control. Rather, the control is switched between the elbow and hand via 

the IMU, which detects when the hand is moving or stationary, relative to an inertial reference 

frame, and switches control accordingly. And third, although less fundamental, the method 

employs a single IMU located on the forearm of the prosthesis (rather than two on the body).  

The proposed control approach was implemented on a virtual prosthesis within a virtual 

environment, and the efficacy of the proposed control approach was assessed in a series of 

experiments on healthy subjects who conducted reaching tasks within the virtual environment, 

specifically comparing the ability of subjects to complete reaching tasks using the coordinated 

controller, relative to their ability to do so using a conventional sequential controller. 
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4.3 CONTROL METHODS 

As previously described, the conventional control approach for the control of a myoelectric 

transhumeral prosthesis with a myoelectric elbow and hand from a two-site EMG interface (i.e., 

EMG from biceps and triceps sites) is referred to herein as a sequential control approach. This 

section first briefly describes and defines this sequential control method, then describes the 

proposed coordinated control approach. Both the conventional (i.e., sequential) and coordinated 

control approaches utilize a standard two-site EMG electrode interface, corresponding to one 

electrode over the biceps muscle group, and one over the triceps. Both controllers also incorporate 

identical (and standard) signal conditioning of the EMG measurements (subsequently described). 

4.3.1 SEQUENTIAL CONTROL APPROACH 

The sequential controller employs a standard control structure for control of the hand and 

elbow joints. Namely, control of either the elbow or hand is selected at any given time by a short-

duration co-contraction of both EMG inputs, which toggles the control to one of the two 

components. The component not being controlled assumes a locked state. .When a component is 

under EMG control, the differential measurement of the two-site EMG is used to generate an 

angular velocity command, such that the user contracts the residual limb musculature to induce 

movement, and relaxes limb musculature to maintain the current configuration. Thus, if e1 and e2 

represent the filtered and rectified EMG from the biceps and triceps muscles, respectively, the 

angular velocity reference (or command) for the selected, or active, component is given by: 

 𝜔𝑒𝑚𝑔 = {
𝑘1𝑒1 𝑖𝑓 𝑒1 ≥ 𝑒2

−𝑘2𝑒2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 
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where 𝑘1 and 𝑘2 are normalizing gains, typically chosen to provide nominal symmetry of 

movement (i.e., similar angular velocity responses) in response to similar contractile efforts. 

Typical signal conditioning such as hysteresis and a dead band around an EMG noise floor are 

incorporated to facilitate well-behaved, deliberate control.  A finite state machine (FSM) depicting 

the sequential control structure for a typical transhumeral prosthesis is shown in Fig. 5. 

 

Fig. 5. FSM of sequential elbow/hand control structure 

4.3.2 SYNERGISTIC OR COORDINATED CONTROLLER 

A. Joint Synergy Approach 

This paper proposes a controller that leverages kinematic synergies between the intact 

shoulder joint and prosthetic elbow joint, particularly during reaching movements, patterned 

loosely after those experimentally characterized and modelled in [19, 50-54], with the intent of 

improving the control and functionality of transhumeral myoelectric prostheses. Although the 

precise form of the models proposed in previous studies were not incorporated as derived in those 

works for the control method here, the authors note that doing so could be an interesting extension 

of this work, particularly with regard to potential improvements or refinements associated with 

three-dimensional mapping of shoulder to elbow joint synergies, and also with regard to the 

potential to exploit synergies between the intact shoulder and prosthetic wrist joints (which were 

not considered here). In an effort to start an exploration of the extent to which such models may 
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offer value in the control of a transhumeral prosthesis, the authors incorporate here a relatively 

simple model of shoulder/elbow kinematic synergy, similar to the one described in [53, 54], 

specifically between the shoulder elbow angular velocity and the component of shoulder angular 

velocity that is collinear with it. As a ball-and-socket joint, the shoulder will in general have three 

components of angular velocity, while as a hinge joint, the elbow will have one. The method 

proposed here utilizes as input only the component of shoulder angular velocity collinear with the 

elbow angular velocity vector, and as such, when referenced hereafter, the term “shoulder angular 

velocity” refers exclusively to this component of the shoulder angular velocity (i.e., the component 

associated with shoulder flexion/extension). As described in [53, 54], the synergistic relationship 

between the shoulder and elbow angular velocities can be approximated as a single-valued 

nonlinear function, which can be reduced to a linear relationship within a given reaching motion, 

where the constant of proportionality is a function of the start and endpoints of the reaching motion. 

Such a model has two problems, however, for practical realization for the control of a transhumeral 

prosthesis. First, as pointed out in the paper in which it was presented, one cannot in general know 

the endpoint of the movement during the movement (i.e., the model is causal), and as such the 

synergistic model cannot be exactly known in real time. Second, although the arm frequently 

performs reaching tasks, it also performs a variety of other activities, and as such, an invariant 

algebraic relationship between these joints would likely interfere with other arm functions. 

  In order to address both these issues in a practical manner, the authors propose the use of a 

proportional relationship between shoulder and elbow angular velocities, as is described in [53, 

54], but unlike the model used there, the constant of proportionality (between joint velocities) can 

be modulated by the user by superimposing EMG command from the two-site EMG interface onto 

the nominal linear model of shoulder/elbow synergy. In this manner, a user can selectively 
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leverage the shoulder/elbow synergy that naturally exists during reaching movements, but can 

additionally modulate the strength of that synergy for a given task, or can override it completely 

via superposition of EMG, when necessary or desired for a given task. As such, motion of the 

myoelectric elbow is governed by the weighted combination of two inputs from the user: shoulder 

angular velocity and differential EMG, both of which drive elbow angular velocity in a 

proportional manner.  

B. Two Control Inputs: EMG and IMU 

It should be noted that the method proposed here actually utilizes upper arm angular velocity, 

rather than shoulder angular velocity, since the former can be directly measured from the prosthesis 

without the need for any instrumentation outside of the myoelectric prosthesis. The two quantities 

are approximately the same in the case that the torso angular velocity is small, relative to upper 

arm angular velocity. Specifically, upper arm angular velocity is measured in real time in the 

proposed control approach using an inertial measurement unit (IMU). Given the recent availability, 

compactness, and low cost of microelectromechanical systems (MEMS) based 6-axis (and 9-axis) 

inertial measurement units, upper arm motion is straightforwardly measured by mounting a MEMS 

IMU on the transhumeral prosthesis. Note that an IMU located on the forearm of a transhumeral 

prosthesis can, when combined with measurement of the prosthetic elbow angle, provide real-time 

measurement of the three-dimensional orientation of the upper arm. Since the control approach 

described here reproduces only the synergy between the collinear components of shoulder and 

elbow angular velocity, the controller requires only the addition of a single-axis gyroscope, aligned 

with its measurement axis collinear with the axis of the elbow. Thus, for the proposed coordinated 

controller, a standard two-site EMG interface is supplemented solely with measurement from a 

single-axis gyroscope, the combination of which provides elbow and hand control. This approach 
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is aligned with a recent opinion paper in which the authors advocated for the fusion of other sensor 

information with EMG in order to improve the control of upper extremity prostheses [58]. 

C. Controller Equations 

Given the above description, the coordinated controller is thus a straightforward modification 

of the standard elbow controller. Specifically, the EMG component of the commanded elbow 

angular velocity is proportional to the differential EMG measurement, as given in (2). The 

synergistic component (i.e., reaching component) of the elbow angular velocity is proportional to 

the measured shoulder angular velocity: 

 𝜔𝑠𝑦 = 𝑘3𝜔𝑢𝑎  (3) 

where 𝜔𝑠𝑦  is the synergistic component of the elbow angular velocity command, 𝑘3 is a 

coupling coefficient, and 𝜔𝑢𝑎 is the measured upper arm angular velocity, which as previously 

stated, can be assumed to be the shoulder angular velocity when the angular velocity of the torso 

is small. Note that, if this assumption is not true, the synergy thus becomes one between the upper 

arm angular velocity and elbow angular velocity, rather than strictly between the shoulder and 

elbow.  The commanded elbow angular velocity is the superposition of the EMG and synergy 

components of angular velocity, given by: 

 𝜔𝑒𝑏 =  𝜔𝑠𝑦 + 𝑘4𝜔𝑒𝑚𝑔 (4) 

where 𝜔𝑒𝑏  is the superposed elbow angular velocity command and 𝑘4 is a weighting factor 

between the two components of elbow angular velocity command. Thus, the coordinated controller 

is in implementation a relatively simple modification of the conventional EMG elbow controller. 

Like the standard sequential controller, the coordinated controller is intended to control only one 
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myoelectric component (i.e., elbow or hand) at any given time, and thus the control must similarly 

be switched between the elbow and hand component. Since the kinematic synergy does not apply 

between the shoulder and hand, when the hand control is active, the prosthesis utilizes the standard 

proportional EMG control (i.e., equation (2)). When the elbow control is active, the prosthesis 

utilizes the coordinated control equation (i.e., equation (4)). Rather than use co-contraction to 

switch between the two controllers, the coordinated controller is further modified (relative to the 

standard sequential control) to leverage the presence of the IMU to facilitate the process of 

switching between hand and elbow control. Specifically, when the elbow velocity (4) remains 

essentially zero for a short duration, and when both components on the right-hand side of (4) also 

remain essentially zero for this duration (i.e., both the upper arm angular velocity and EMG 

command are zero), the prosthesis control is automatically switched to the hand. Note that this 

condition implies that the hand is essentially remaining fixed relative to the user’s body, such as 

would be the case if a user were about to grasp a stationary object. When in the hand control state, 

as previously mentioned, the hand is controlled by (2). When in this state, and when the upper arm 

angular velocity becomes essentially non-zero (i.e., the upper arm begins to move in the plane 

orthogonal to elbow rotation), the EMG control automatically switches back to the elbow. In this 

manner, all elbow movement must by initiated by shoulder movement. The use of this rubric 

obviates the need to use co-contraction to toggle control between components. As such, co-

contraction can either be eliminated from the control structure, or can be preserved for use for the 

control of other components. Fig. 6 shows a FSM of the coordinated controller, depicting the 

switching structure of the coordinated control approach. 
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Fig. 6. FSM of coordinated elbow/hand control structure 

4.3.3 Experimental implementation and assessment 

The relative performance of the coordinated controller was assessed and compared with a 

conventional sequential EMG control approach in a set of experiments in which six healthy 

subjects performed several different pick-and-place tasks within a virtual environment. The virtual 

tasks were performed with a virtual transhumeral myoelectric prosthesis, which was alternately 

controlled using either the standard sequential EMG controller or the previously described 

coordinated controller. The virtual environment enabled both a well-controlled experimental 

environment, and a well-controlled assessment of performance.  

A. Virtual Assessment Task  

The virtual assessments consisted of a series of pick-and-place tasks in which each subject 

was required to pick up a ball resting on a table and place the ball into a target box, which was 

randomly positioned in one of twelve target locations. The twelve target locations corresponded 

to a spatial matrix of box locations, configured to be two boxes across, three boxes high, and two 

boxes deep. Each box (i.e., cell) was open in the front and approximately cubic, with a 

characteristic dimension approximately twice the ball diameter. See representative cell in Fig. 7. 
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A trial consisted of 36 pick-and-place tasks, in which each targeted location appeared three times 

in a randomized order. A representative pick-and-place task is depicted in the sequence of screen 

shots shown in Fig. 7, where the activity associated with each frame is described in the caption. 

The details of the virtual environment in which the tasks were performed are given in the following 

subsection. 
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Fig. 7. The virtual environment used in the controller assessments. (A) The elbow joint starts each task fully extended, 

and must be controlled by the user to configure the arm to pick the ball. (B) The hand starts fully opened; the ball 

changes color from green to yellow when the hand is positioned to grasp it; the hand must be closed by the user 

around the ball in order to grasp it; the ball changes color from yellow to blue to indicate that it has been grasped. 

(C) Once grasped, control is switched to the elbow to perform the reaching motion toward the target box. (D) The 

ball must be positioned in the middle of the box, after which it changes color to light blue, to indicate that it is ready 

to be released. Control must be switched to the hand to release the ball. (E) After successful release, the ball changes 

color to orange, the completion time is recorded, and (F) a new ball and box appear for the next reaching task. The 

tasks are performed continuously, such that the timer for the next task starts when the ball is released from the previous 

task. 
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B. Virtual Environment 

The virtual environment in which the assessments were performed included an 8-DOF virtual 

arm, where the 8-DOFs included: 1) the three-dimensional location of the shoulder joint within 

the virtual space (3 DOFs); 2) the angular orientation of the upper arm in the virtual space (3 

DOFs); 3) the elbow angle (1 DOF); and 4), the hand configuration, which in this case was a 

single-DOF device, the grasp of which was characterized by a single angle and corresponding 

angular velocity (1 DOF). As described subsequently, instrumentation on each subject provided 

real-time input that defined motion of the upper arm and shoulder DOFs, such that the upper arm 

and shoulder tracked in real-time the physical motion of each subject. Motion of the elbow and 

hand DOFs, however, were based on the (real-time) output of either the sequential or coordinated 

arm controllers, depending on which controller was being used at any given time. These controllers 

were driven by real-time EMG measurements from the user’s healthy arm, and in the case of the 

coordinated controller, an IMU affixed to the subject’s arm to measure upper arm angular velocity. 

Thus, the virtual arm emulated a transhumeral prosthesis, in which the torso and upper arm 

movement tracked in real-time the corresponding movement of the seated subject, while both the 

hand and elbow components of the prosthesis were controlled via real-time EMG measured from 

the subject (in the case of the sequential controller), or by both real-time EMG and IMU 

measurement (in the case of the coordinated controller).  

In addition to the arm, the virtual environment also included a table, a small ball 

(approximately the size of a baseball or tennis ball) that can be grasped, held, and released by the 

hand, and a small box, in which the ball can be deposited. The box was alternately located in one 

of twelve target locations, in order to cover a representative workspace of reaching motions. 
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4.3.4 INSTRUMENTATION AND APPARATUS  

In order to perform the assessments, each subject was instrumented with sensors to provide 

real-time input to drive the virtual prosthesis. Measurement of torso motion was also used to 

characterize movement of the torso for purposes of performance assessment. In total, the 

experimental instrumentation consisted of: 1) a pair of EMG electrodes; 2) an elbow immobilizer; 

3) an upper arm-mounted IMU; and 4) a trunk-mounted IMU. The trunk IMU was not used for 

prosthesis controller input, but rather was used to 1) provide Cartesian motion of the trunk (i.e., 

shoulder joint) relative to the task frame to drive the virtual torso motion and 2) to characterize 

compensatory movement of the trunk. The upper arm IMU was used to provide upper arm motion 

in the task frame, in order to drive the movement of the virtual upper arm, and also as an input to 

control the prosthesis for the coordinated control approach. Since movement of the intact elbow, 

wrist, and hand were not used in the experiments, a hand, wrist, and elbow joint immobilizer was 

employed to preclude movement of the (non-virtual) joints during the experiments and better 

represent the muscular conditions in the residual limb of an amputee subject.  Use of the 

immobilizer, however, impinged on the upper arm EMG electrodes and obstructed upper arm 

EMG measurement. In order to provide unobstructed EMG input for the prosthesis controller(s), 

the EMG electrodes were moved to the forearm, where they were free of impingement by the 

immobilizer. Although such placement is less representative of the musculature employed by 

transhumeral amputees, since both controllers employed the same EMG sites in the same manner 

(i.e., equation (2)), any substantial effect from this modification should wash out of the 

comparison, thus indicating the relative value of superimposing the synergistic component of 

control on top of the EMG component. 
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A. EMG Measurement and Signal Conditioning  

EMG data was acquired using two disposable conductive gel Ag/AgCl electrodes (Norotrode 

20, Myotronics, Inc.) positioned over the subject’s anterior and posterior surfaces of the left 

forearm with a reference electrode positioned proximal to the elbow. The acquired raw EMG 

signals of the electrodes were preamplified with a gain of 100 and digitally sampled using an EMG 

processing chip (Texas Instruments ADS1298), which also provided bandpass filtering (between 

20 Hz and 500 Hz) and rectification. The rectified signal was sent via serial peripheral interface 

(SPI) to a PIC32 microcontroller (Microchip, Inc.), where it was low-pass-filtered at 5 Hz to 

provide an envelope of spatially integrated EMG activity. The (two) processed EMG signals were 

then streamed from the PIC32 via a controller area network (CAN) bus to the real-time 

environment provided by Simulink Real-Time Workshop (RTW) 

B. Shoulder/Arm Angular Velocity Measurement 

An IMU was incorporated on the same circuit board used for EMG data acquisition and signal 

processing, which was affixed to the arm immobilizer affixed to the subject’s upper arm. The IMU 

used for upper arm motion was a high-performance 9-axis unit that combined a 3-axis 

accelerometer, 3-axis gyro, and 3-axis magnetometer that provided high-bandwidth real-time 

three-dimensional orientation of the upper arm (VectorNav Technologies VN-100 SMD). The 

upper arm orientation measurement was sent from the IMU to the PIC32 via an SPI bus on the 

board, and then streamed from the PIC32 to the RTW environment via a CAN bus. This 

measurement was used to both drive the upper arm orientation within the virtual environment (for 

both controllers), and also to provide the angular velocity command for the coordinated controller. 
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C. Torso Motion Measurement 

The torso motion was measured using a separate 6-axis IMU (Invensense MPU-6555) 

mounted to a separate circuit board via an elastic band to the center of each subject’s chest, 

approximately at the xiphoid process. The torso IMU sent 3-axis acceleration and 3-axis 

gyroscopic information to a PIC32 via an SPI bus, which streamed the data via a CAN bus to the 

RTW environment. The acceleration and angular velocity signals were combined with the RTW 

environment with a complementary filter using a crossover frequency (between the accelerometer 

and gyroscope) of 1 Hz (i.e., the roll-off for both the low-pass and high-pass filters of the fused 

data), which provided real-time torso orientation in both the sagittal and coronal planes, which was 

in turn used to: 1) drive the torso motion within the virtual environment, and 2) provide a measure 

of compensatory motion during the experiments. Note that the experiments assume that the 

subject’s chair remains stationary during the experiments (which was consistent with the conduct 

of the experiments). 

4.3.5 HUMAN SUBJECTS 

Six healthy, non-amputee subjects participated in the experiments, which were approved by 

the Vanderbilt University Institutional Review Board. Each subject participated in five trials for 

each controller where, as stated above, each trial consisted of 36 pick-and-place tasks. All subjects 

were seated in a chair in front of the computer monitor, which remained in a fixed location once 

the trial began. Subjects were required to use their left arm in the experiments, since both the 

instrumentation and virtual prosthesis model were configured for the left arm. The trials for each 

subject were generally conducted over a one-week period. In order to account for order effects, 

half of the subjects used the sequential controller first, followed by the coordinated controller, 
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while the other half of subjects performed the trials in the reverse order. Note that each subject 

was required to complete each pick-and-place task – if the ball was dropped prior to placement in 

the box, the ball would be automatically reset in the starting position for the subject to re-attempt 

the task, until the task was successfully completed. Once the task was successfully completed, the 

ball was reset in the starting position, and another target location (i.e., box location) was randomly 

presented.  

4.3.6 SUBJECT TRAINING 

For each subject, an initial session was used to establish EMG thresholds and normalization 

gains, followed by an introduction to the control method, and a practice period during which the 

subject could practice controlling the elbow and hand, and could practice performance of the pick-

and-place tasks. The duration of the training/practice phase varied by subject, but typically lasted 

between 15 and 30 minutes, as per each subject’s preference. Once sufficiently practiced, the 

subject performed a series of trials with the prescribed control approach, each consisting of 36 

pick-and-place tasks. The completion times associated with each of the pick-and-place tasks were 

recorded, in addition to the torso motion during the respective trials. Once each subject had 

completed the series of five trials using the assigned controller, the subject was introduced to the 

other control approach, and aside from calibration of the EMG, followed the same process of 

training and evaluation. 

4.3.7 CONTROLLER THRESHOLDS AND GAINS 

The two elbow controllers collectively employ four controller gains, which were established 

for each subject prior to performing the virtual assessments. Note that once these gains were 

established, they were maintained in the controller for each subject throughout all experimental 
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sessions (i.e., for the several-day duration of the each subject’s involvement in these experiments). 

The gains 𝑘1 and 𝑘2 ensure that the maximum EMG for each subject and each EMG channel 

corresponds to a maximum elbow angular velocity. These were established in pre-trial experiments 

for each subject, in which several maximum voluntary contractions were performed, and the 

respective gains were established by correlating the mean EMG corresponding to the contraction 

with the maximum commanded elbow angular velocity (set at 50 deg/s). The coordinated 

controller also employs two additional gains, 𝑘3 (which determines the degree of kinematic 

coupling between the shoulder and elbow) and 𝑘4 (which determines the relative weighting of 

EMG command to IMU command in the controller. For all trials and all subjects, both these gains 

were set to one. As such, in the absence of EMG, elbow extension angular velocity would exactly 

equal shoulder flexion angular velocity, while in the absence of shoulder motion, the coordinated 

controller reduced to exactly the sequential EMG controller. 

4.4 RESULTS 

4.4.1 REPRESENTATIVE ELBOW CONTROLLER RESULTS  

Fig. 8 through Fig. 11 show controller data during performance of a representative pick-and-

place task (i.e., while picking and placing the ball into box number 2) while using the sequential 

EMG controller and the coordinated controller, respectively.   

Fig. 8 shows the EMG command over the task performance period, where the gray bands 

indicate periods of hand control and the white bands indicate periods of elbow control. One can 

note the co-contraction “spikes” in the EMG signals that separate the period of hand and elbow 

control. The essential features of the EMG correspond to: 1) co-contraction to switch to elbow 

control; 2) flexing the elbow to position the hand at the ball (~0-4 s); 3) co-contraction to switch 
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to hand control; 4) grasping the ball (~4-8.5 s); 5) co-contraction to switch to elbow control; 6) 

extending the elbow (while flexing the shoulder) to reach out toward the box (~8.5-14 s); 7) co-

contraction to switch to hand control; and 8) releasing the ball (~14-16 s). The asterisk at the end 

of the data indicates task completion (in this case at ~16 s). Fig.9 shows for the same representative 

pick-and-place task the EMG angular velocity command (equation 1) during periods of elbow 

control only, showing the initial period of elbow flexion and subsequent period of elbow extension, 

and also shows the root-mean-square (RMS) value of elbow angular velocity command over the 

duration of the task, which has a value of 22.8 deg/s (i.e., the elbow joint moved with an average 

angular velocity of 22.8 deg/s during the task). 

  

Fig. 8. Arm (elbow and hand) velocity commands during 

a representative pick-and-place task (box no. 3) 

performed with the sequential EMG controller. The gray 

bands indicate the periods of hand control, while the 

white bands indicate the periods of elbow control. 

 

Fig.9. Elbow velocity commands during a 

representative pick-and-place task (box no. 3) 

performed with the sequential EMG controller, and 

RMS average of elbow EMG angular velocity command 

over the task duration (dashed line). 

Fig. 10  shows the corresponding controller data, for the same subject, during the same pick-

and-place task (i.e., box number 3), while using the coordinated controller (i.e., equation 3), 
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showing both the IMU component of elbow angular velocity (equation 2) and the EMG component 

(equation 1), over the entire task performance period. Since the weighting gains are unity, the total 

elbow angular velocity command (equation 3) is the direct sum of these components. As in Fig. 8 

the gray bands indicate periods of hand control and the white bands indicate periods of elbow 

control. As in Fig. 8 the periods of activity correspond to positioning the elbow to pick up the ball, 

grasping the ball, extending the elbow (and flexing the shoulder) to place the ball, and releasing 

the ball.  The asterisk at the end of the data indicates task completion (in this case at ~10.5 s). Note 

that co-contraction is not present at the transitions between elbow and hand control, since it is not 

used in the coordinated controller. Fig. 11 shows for the same data the IMU and EMG angular 

velocity commands during periods of elbow control only, and also shows the root-mean-square 

(RMS) values of the respective commands. For this task, the average RMS angular velocity 

command resulting from the IMU component was 16.0 deg/s, while the RMS command resulting 

from the EMG component was 12.0 deg/s. As such, for this representative task, the majority 

(~60%) of elbow movement resulted from the IMU component. Further, the average speed of 

elbow movement across the trial was 28.0 deg/s (the sum of the components), which is 

approximately 27% faster than the corresponding average speed with the sequential control 

approach. 
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Fig. 10. Arm (elbow and hand) velocity commands 

during a representative pick-and-place task (box no. 3) 

performed with the coordinated controller, showing 

both the EMG and the IMU components of angular 

velocity command. The gray bands indicate the periods 

of hand control, while the white bands indicate the 

periods of elbow control 

Fig. 11. EMG (thin dark trace) and IMU (thick light 

trace) elbow angular velocity commands during a 

representative pick-and-place task (box no. 3) 

performed with the coordinated controller, and 

corresponding RMS averages over the task duration 

(dashed lines). 

  

4.4.2 VIRTUAL TASK PERFORMANCE RESULTS 

Fig. 12 shows the distribution of task completion times averaged across all subjects for each 

of the five trials, for each controller type. Fig. 12 also shows the mean completion time for each 

trial across all subjects, which is the black line connecting all trials. Note that all subjects 

demonstrated a general learning trend consistent with the mean. The numerical values of the mean 

completion times corresponding to each trial, in addition to the standard deviation for each, are 

enumerated in Table IV.  



50 

 

 

Fig. 12 Distribution of task completion times averaged across all subjects for each of the five trials, for each 

controller type 

 

Table IV 

AVERAGE TASK COMPLETION TIMES 

Trial 
Sequential Completion  

Times (s) 

Coordinated Completion 

Times (s) 
 mean (SD) mean (SD) 

1 14.8 (5.0) 10.5 (5.5) 
2 13.1 (4.9) 9.3 (4.0) 

3 12.5 (3.9) 8.4 (3.1) 

4 11.1 (3.8) 7.6 (2.5) 

5 11.4 (3.9) 7.8 (2.7) 

Average trials 3-5 11.7 (3.9) 7.9 (2.8) 
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In order to account for learning, performance data was only considered after the average 

performance reached essentially a steady-state condition, which was defined by the authors as the 

case when the mean completion time varied by less than 10% between trials. Based on this 

criterion, the last three trials were considered for the performance assessment. Specifically, for the 

sequential controller, the mean completion time for the last three trials fall within 7%, 5%, and 2% 

of the 3-trial mean, respectively. For the coordinated controller, the last three fall within 6%, 4%, 

and 2%, respectively, of the 3-trial mean. As such, trials 3 through 5 only were considered for the 

performance assessment. As given in Table IV, the average task completion time for the sequential 

controller (across all subjects and across trials 3 through 5) was 11.7 s, while the average task 

completion time for the coordinated controller (also across all subjects and trials 3 through 5) was 

7.9 s. As such, the coordinated controller enabled completion of the pick-and-place tasks on 

average 32% faster than the sequential controller (i.e., the tasks were completed with the 

coordinated controller in 68% of the time required by the sequential controller). The average task 

completion times for each target box location, averaged across the last three trials and across all 

subjects are shown in Fig. 13. As shown in the figure, the task completion times were reduced 

consistently across all pick-and-place tasks (i.e., across all target box locations).  As such, the 

proposed method appears to provide a consistent performance advantage, relative to the sequential 

approach, for all reaching movements represented in this study (i.e., the method appears to provide 

a performance advantage regardless of specific reaching location). A paired t-test was performed 

for the distribution of completion time data corresponding to each of the locations, indicating that 

the difference in means in all cases was significant with greater than a 99% confidence level. 



52 

 

 

Fig. 13 Average task completion times across all subjects and trials, corresponding to each respective target box 

location, representing a variety of reaching movements. 

In addition to task completion time, each subject’s performance of each task was also 

characterized by the compensatory torso motion employed for each pick-and-place task. 

Specifically, the torso angles, with respect to the vertical, in the sagittal and coronal (or frontal) 

planes were recorded at the time each reaching task was completed (i.e., when the ball was 

successfully released in the target box). These measurements in effect characterized the torso 

configuration upon completion of each reaching task, and specifically how much forward and 

sideways lean was employed to reach the target location. The magnitude of respective torso angles, 

averaged across all subjects for each target location and each controller type, are shown in Fig. 14, 

and Fig. 15, respectively, along with error bars indicating plus and minus one standard deviation 



53 

 

for each. Although slight differences exist in the means, a paired t-test of the data indicates in all 

cases that the average compensatory torso motions are not statistically different between the two 

controllers, for all target locations and for both biomechanical planes of movement. As such, task 

completion times were on average 37% faster with the coordinated controller, with no difference 

in compensatory torso motion.   

 

Fig. 14 Comparison of the average forward lean employed to reach each target location. 
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Fig. 15 Comparison of the average sideways lean employed to reach each target location. 

 

4.4.3 SUBJECTIVE FEEDBACK 

Although subjective feedback has clear limitations, following the trials, subjects indicated that 

the synergistic method of elbow control provided more intuitive elbow movement that was easier 

to use than the EMG-only (sequential) elbow controller. Subjects also reported that switching 

between hand and elbow control was considerably easier without the need for co-contraction. 

4.4.4 LIMITATIONS 

Based on the virtual experiments, use of an EMG-modulated shoulder/elbow synergy, 

combined with an IMU-based approach to toggling between active components, appears to provide 

a significant reduction in task completion times for pick-and-place reaching tasks, without altering 
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the extent of corresponding torso motion. Limitations in the study include: 1) use of healthy rather 

than amputee subjects; 2) use of a virtual rather a physical environment; 3) use of a virtual rather 

than physical prosthesis; 4) use of forearm rather than upper arm EMG; and 5) only reaching tasks 

were characterized. Another limitation of this study is that the data does not explicitly indicate the 

relative functional value provided by the IMU component of the elbow controller, versus the value 

of using the IMU to perform switching of control between the hand and elbow components. 

Finally, the authors note that, while a myoelectric wrist was not employed in this study, the control 

method could be used with one. Since EMG co-contraction is not required for switching between 

control of the elbow and hand with the proposed approach, such co-contraction can be reserved 

for switching between control of a myoelectric hand and wrist (i.e., there is one less component 

associated with EMG multiplexing). Alternatively, although beyond the scope of this paper, 

methods similar to that proposed could be developed by extracting control information from the 

IMU and fusing it with EMG in order to facilitate improvements in the control of a myoelectric 

wrist joint. 

4.5 CONCLUSION 

This paper proposed a control method for the control of a transhumeral prosthesis with 

myoelectric hand and elbow components. The control method supplements the standard two-site 

EMG control with an IMU, which provides 1) coordinated motion between the (prosthetic) elbow 

and (intact) shoulder joints, and 2) automatic switching between hand and elbow control (i.e., 

based also on movement of the intact shoulder). The authors conducted an assessment of the 

coordinated control approach on six healthy subjects in a virtual environment involving a series of 

pick-and-place tasks, where location of the object placement were varied widely. Results from this 

assessment indicated that subjects were on average able to complete the tasks 32% faster with the 
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coordinated controller, relative to completion with a traditional sequential transhumeral 

myoelectric control approach, without affecting the extent of compensatory torso movement. In 

future work, the authors plan to conduct these assessments with amputee subjects using a 

myoelectric transhumeral prosthesis. 

4.6 ADDENDUM  

The coordinated controller design went through several iterative stages before converging to 

its final version which was described in the above manuscript. The work presented in the 

manuscript involved building Simulink models, designing the electronics board, writing the code 

for the embedded systems in C language, and building the virtual environment in order to build an 

effective test-bed to investigate different control methodologies for transhumeral prostheses.  As 

described in the manuscript, the coordinated controller leverages movement synergies between the 

intact shoulder joint and prosthetic elbow joint, particularly during reaching movements. Several 

versions of coordinated controller were investigated during the development. The following 

sections illustrate some of the implemented versions of the controller. 

4.6.1 COORDINATED CONTROLLER VERSION I 

The first version of the coordinated controller attempted to coordinate the motion of the elbow 

and intact shoulder joint with the ability to control the hand and elbow simultaneously. Fig. 16 

illustrates the state chart of the first version of the coordinated controller. In this version, the user 

controlled the hand via the EMG signal as in (2), and if a co-contraction was detected, the 

controller switched to elbow EMG control mode, similar to a traditional sequential controller 

where both hand and elbow are controlled as given in (2). However, if the upper arm angular 

velocity (ωua) was greater than a certain threshold, the controller switched to a coordinated control 
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state where the elbow position was a function of the upper arm angular velocity (ωua) and the elbow 

control given by: 

 
syeb    (5) 

Also, in this state, the EMG signal controlled the hand (as given in (2)) which allowed the 

simultaneous control of the elbow (using the upper arm angular velocity as given (5)) and hand 

(using the EMG as given (2)). While in the coordinated control state, if the upper arm angular 

velocity (shoulder angular velocity) dropped below a certain threshold, the controller switched to 

the sequential control state where the user could adjust the position of the elbow using EMG signal 

or co-contractions to switch the control mode to hand EMG control. 

 

Fig. 16. First Version of Coordinated Controller Finite State Machine 

Even though this version of the coordinated controller coordinates the elbow position with the 

intact shoulder motion and allows simultaneous control of both hand and elbow, the co-contraction 

signal still needed to switch the EMG signal to hand control if EMG signal is controlling the elbow. 
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Also, adjusting the elbow angle requires ωua to drop below a certain threshold. Observations of the 

experiments using this controller indicated that it relied heavily on the co-contraction signal. The 

performance of the controller in performing reaching task was degraded using this controller due 

to frequent switching using co-contraction and inability to modulate the elbow angle during the 

reaching task. In addition, co-contraction was physically tiresome during reaching tasks. 

Furthermore, simultaneous hand/elbow control is not needed in simple reaching tasks and 

adjusting the elbow position requires changing the arm configuration (i.e., ωua < threshold – δ or 

ωua ≥ threshold +δ). 

4.6.2 COORDINATED CONTROLLER VERSION II 

The second version of the coordinated controller utilized co-contraction in both of the states 

of the controller in order to better utilize the switching signal as presented in Fig. 17. In other 

words, when the controller was in the coordinated control mode, if a co-contraction was detected, 

the controller switched to a locked state where the elbow position was locked and EMG controlled 

the hand as in (2). This version maintained the same sequential control mode state and transition 

conditions as in the first version. The main difference in this version is the addition of the elbow 

lock state, which the controller transitioned to when in the coordinated control state and a co-

contraction signal was detected. 
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Fig. 17. Second Version of Coordinated Controller Finite State Machine 

By having a locked state, the user was able to move the arm in space while maintaining the 

elbow position with the ability to control the hand using EMG. With the further testing, locking 

the elbow position is an important feature in reaching tasks that the first version didn’t have; 

however, co-contraction was still required as a switch signal to switch to either the hand or elbow 

when the controller was in the coordinated control state. Therefore, the same drawbacks of the first 

version persist in this version. 

4.6.3 COORDINATED CONTROLLER VERSION III 

The previous versions of the coordinated controller used co-contraction to switch between 

hand control and elbow control or to lock elbow position. The experimental results of the previous 

versions showed a slow performance during reaching tasks due to use of co-contraction to 

frequently switch between the two controls components (hand/elbow). Therefore, the third version 

of the coordinated controller relied heavily on the IMU to minimize the use of co-contraction. 
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Specifically, in the sequential control mode, co-contraction was still used to switch between the 

hand and elbow control and both components (hand or elbow) were controlled as given in (2); 

however, the transition to coordinated control mode was performed by moving the intact shoulder 

joint in the coronal plane. Such movement in the coronal plane allows the gyroscope to detect the 

angular velocity of the subject’s upper arm in the corresponding plane (ωua-y). If the ωua-y exceeds 

a certain threshold, the controller switches to the coordinated control mode. Fig. 18 illustrates the 

FSM of the version of the coordinated controller.   

 

Fig. 18. Third Version of Coordinated Controller Finite State Machine 

The two states (sequential control mode and coordinated control mode) of the previous 

versions of the coordinated controller were still used in this version, however, the transition 

between the two states was performed by a flick motion instead of a co-contraction. The flick 

motion enhanced the temporal performance of the coordinated controller but degraded the spatial 

performance. For example, the user manipulated the arm to position the hand in order to pick an 
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object, once the object is picked up, then the user needed to flick to switch to a coordinated control 

mode where the elbow position was controlled by the upper arm angular velocity and the 

superimposed EMG command as in (4). Once the hand was in the target position and the user 

needed to adjust the elbow position, the user flicked again to adjust the elbow position using EMG, 

which causes the hand to deviate from the target location and the user needed to re-configure the 

arm to position the hand in the target location and then the user needed to either flick or co-contract 

to open the hand to place the object. In this version of the controller, the user needed to remember 

the last state before the transition occurred, which increased the cognitive load and reduced the 

level of intuitiveness using the controller. In addition, more training was needed to learn the use 

of the controller. 

4.7 SUMMARY  

Observations from the previous versions indicated that, neither the co-contraction signal nor 

the flick motion seem to enhance the level of intuitiveness using the coordinated controller. The 

co-contraction slowed the performance of the coordinated controller during reaching tasks. The 

flick signal is an interesting switch signal; however, reconfiguring the arm after every flick signal 

is required for accurate positioning of the hand, which also slowed the performance during 

reaching tasks.  These drawback were taken into consideration in the final version of the 

coordinated controller which is described in the manuscript. Following the experiment presented 

in the manuscript, subjects indicated that the coordinated controller provided more intuitive elbow 

movement that was easier to use than the EMG-only (sequential) elbow controller. Subjects also 

reported that switching between hand and elbow control was considerably easier without the need 

for co-contraction. 
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CHAPTER 5  

5. ASSESSING A COMBINED IMU/EMG CONTROL APPROACH IN A MYOELECTRIC 

TRANSHUMERAL PROSTHESIS 

5.1 ABSTRACT 

This paper describes the implementation and assessment of an IMU-enhanced controller for a 

transhumeral myoelectric prosthesis. The controller supplements EMG commands with 

information from a prosthesis-mounted IMU, with the objective of improving the efficacy of 

control of a myoelectric hand/elbow prosthesis. The controller was implemented on a myoelectric 

transhumeral prosthesis prototype, and tested on a single transhumeral amputee subject in a series 

of pick-and-place tasks, in which the subject used the combined IMU/EMG controller, and also a 

conventional EMG-only controller. Results of these assessments indicate that subject was able to 

perform the pick-and-place tasks approximately twice as fast on average with the combined 

IMU/EMG control method, relative to the conventional EMG method.  

5.2 INTRODUCTION  

Surveys of upper limb amputees indicate a general desire for improved function in their 

prostheses [18, 27, 59, 60]. Among the preferences for users of transhumeral prostheses in 

particular is the desire to “coordinate motions of two joints at the same time” [27]. Transhumeral 

prostheses are typically controlled by the electromyogram (EMG) from an agonist-antagonist 

muscle pair (specifically the EMG from the biceps and triceps brachii muscle groups), which 

together provide a single bi-directional control signal. Since a myoelectric transhumeral prosthesis 

typically includes at least a myoelectric hand and elbow, the single EMG control channel must be 
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switched (or multiplexed) between control of the hand and elbow component, such that movement 

of each component is conducted in a conventional EMG manner. In a typical prosthesis, switching 

the EMG control between arm components (i.e., between the hand and elbow) is conducted via 

brief co-contraction of the agonist-antagonist muscle pair. Conventional EMG controlling the arm 

components is simple and robust, but considerably less efficient than the simultaneous joint 

movement observed during healthy arm function. Various approaches have been developed to 

improve the efficacy of EMG-controlled myoelectric transhumeral prostheses, including the use 

of pattern recognition techniques (see, for example, [61-63]), neural network approaches [64], and 

predictive control techniques [65].  

 Rather than use EMG as the sole communication and control channel between the user and 

prosthesis, this paper employs a controller that supplements EMG with information from an 

inertial measurement unit (IMU) mounted on the prosthesis. The IMU specifically provides 

information about the movement of the residual limb (i.e., upper arm motion), which therefore 

provides additional information about movement intent. The use of IMUs to supplement the 

control of lower limb prostheses has been well-documented [66], and researchers have recently 

begun to exploit them to improve control of upper limb prostheses [57, 58, 67, 68]. Unlike EMG 

information, an IMU can provide information about movement of the residual limb in space that 

is not encoded in, or difficult to extract from EMG alone, and thus an IMU adds information 

regarding the volition, movement, and potentially the movement intent of the user. In previous 

works, the authors have proposed a control approach that supplements a standard two-channel 

transhumeral EMG interface (i.e., biceps and triceps) with information from a prosthesis-mounted 

IMU. The control method consists primarily of two components. First, the IMU is used to provide 

a nominal elbow joint movement that is coupled to the upper arm movement (as measured by the 
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IMU), such that shoulder joint flexion results in elbow joint extension. The EMG is then used as 

it typically would be in an EMG-controlled elbow, but the movement commanded by the EMG is 

superimposed onto the nominal shoulder/elbow coupling. Second, rather than require a brief co-

contraction to switch the EMG between the elbow and hand components, the controller uses the 

IMU to detect whether or not the hand is moving in space, and automatically switches control to 

the hand when it is still, and to the elbow when the hand is moving. In a prior paper, this control 

approach was assessed in a set of experiments on healthy subjects in a virtual environment, and 

shown to provide improved ability to conduct pick-and-place tasks relative to a conventional EMG 

control approach as described in the previous chapter. In this paper, the authors have implemented 

the control approach in a myoelectric transhumeral prosthesis prototype, and conducted an 

assessment of the control approach on a single subject, comparing the ability of the subject to 

perform pick-and-place tasks with the combined IMU/EMG control approach, relative to her 

ability to perform the same tasks with a conventional EMG control approach. 

5.3 CONTROL METHODS 

This section briefly describes the conventional control method, referred to as conventional 

EMG control, and the proposed control approach, referred to as combined IMU/EMG control. 

Both the conventional EMG and combined IMU/EMG control approaches utilize a standard two-

site EMG electrode interface, corresponding to one electrode over the biceps muscle group, and 

one over the triceps in addition to a reference electrode. These controllers are described in the 

previous chapter, and therefore only summarized here. Note that both controllers incorporate 

identical (and standard) signal conditioning of the EMG measurements, which includes a bandpass 

filter stage (to remove DC potentials and high-frequency noise), followed by a rectification and 
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additional low-pass filter stage (to provide the magnitude envelope of spatially integrated EMG 

activity).  

5.3.1 CONVENTIONAL EMG CONTROL  

In the conventional EMG control mode, control of either the elbow or hand is selected at any 

given time by a short-duration co-contraction of both EMG inputs, which toggles the control to 

one of the two components. The component not being controlled assumes a locked state. When a 

component is under EMG control, the differential measurement of the two-site EMG is used to 

generate a velocity command, such that the user contracts the residual limb musculature to induce 

movement, and relaxes limb musculature to maintain the current configuration. Thus, if 𝑒1 and 𝑒2 

represent the filtered and rectified EMG from the biceps and triceps muscles, respectively, the 

angular velocity command for the active component is given by (2).  

Typical signal conditioning such as hysteresis and a dead band around an EMG noise floor 

are incorporated to facilitate well-behaved, deliberate control. As previously mentioned, the EMG 

control (2) is switched between the hand and elbow components using a brief co-contraction of 

the two EMG signals (𝑒1 and 𝑒2). The finite state control structure that governs the switching 

between the hand and elbow components is shown in Fig. 19.  

Hand EMG Control

ωemg = k1e1-k2e2

Elbow EMG Control

ωemg = k1e1-k2e2Co-contraction

Co-contraction

 
Fig. 19 conventional EMG control Finite State Machine 
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5.3.2 COMBINED IMU/EMG CONTROL 

The combined IMU/EMG controller employs EMG in a similar manner to the conventional 

controller, but employs two additional components. First, an IMU is used to measure the angular 

velocity of the upper arm collinear with the elbow, which is used to command an elbow angular 

velocity equal and opposite to it, such that  

 𝜔𝑘𝑖𝑛 = −𝜔𝑢𝑎  (6) 

where 𝜔𝑘𝑖𝑛  is the nominal kinematic coupling component of the elbow angular velocity 

command and 𝜔𝑢𝑎  is the measured upper arm angular velocity. The coupling component 

essentially couples elbow extension to shoulder flexion, and thus provides an underlying or 

nominal kinematic synergy between the prosthetic elbow and intact shoulder joints. A video 

showing a subject wearing a prosthesis prototype and using the nominal kinematic coupling 

component of the controller (6) is shown in the supplemental material that accompanies this paper. 

This nominal coupling is supplemented with an EMG component of control, which is used exactly 

as it is in (2), although the resulting angular velocity is superposed onto the angular velocity 

associated with the kinematic coupling (6), such that the combined elbow angular velocity is:  

 𝜔𝑒𝑙𝑏 =  𝜔𝑘𝑖𝑛 + 𝜔𝑒𝑚𝑔 (7) 

where 𝜔𝑒𝑙𝑏  is the superposed elbow angular velocity command and 𝜔𝑒𝑚𝑔  is the angular 

velocity command associated with the EMG. Thus, the coordinated controller is in implementation 

a relatively simple modification of the conventional EMG elbow controller, although rather than 

have the EMG command elbow velocity about a zero nominal angular velocity, it commands the 

elbow about a nominal kinematic coupling with the upper arm. 
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The second control component that distinguishes the combined IMU/EMG controller from 

the conventional EMG controller is the means by which the controller switches control between 

the elbow and hand. As in the conventional EMG controller, only one of the two components is 

controlled at any given time. Rather than use co-contraction to switch between the two, however, 

the IMU/EMG controller automatically switches control based on the measured motion of the 

hand, with respect to the inertial reference frame (IRF). Specifically, if the hand remains fixed 

relative to the IRF (for a brief period, approximately one sec), control automatically switches to 

the hand. If the hand moves relative to the IRF (above a minimum velocity), control automatically 

switches to the elbow. As such, the user must always initiate elbow movement with the shoulder. 

When the controller is in the elbow control state, the control equation is given by (7). When the 

controller is in the hand control state, the control equation is the same as the conventional EMG 

controller, and is given by (2). A state diagram of the combined IMU/EMG controller is shown in 

Fig. 20.  

Hand EMG Control

ωemg = k1e1-k2e2

Elbow Synergistic 
Control

ωelb = ωkin + ωemg

(ωUA     threshold +δ ) and (ωemg = 0)

After T (sec)

(ωUA <   threshold  -δ ) and (ωemg = 0)

 

Fig. 20 Combined IMU/EMG Control 
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5.4 EXPERIMENTAL IMPLEMENTATION AND ASSESSMENT 

The combined IMU/EMG control approach was implemented in a myoelectric transhumeral 

prosthesis prototype, and assessed in a set of experiments involving a single transhumeral amputee 

subject. Specifically, the ability of the subject to perform pick-and-place tasks was assessed when 

using the prosthesis prototype with the IMU/EMG controller, relative to her performance when 

using a conventional EMG controller.  

5.4.1 MYOELECTRIC PROSTHESIS PROTOTYPE 

The controller assessments were performed using a transhumeral prosthesis prototype, shown 

in Fig. 21 and previously described in [69], although for these experiments, the prosthesis was 

used with a powered wrist joint (i.e., consisted of a powered elbow and hand only). The hand 

prosthesis has been previously described in [11]. Although the hand is capable of multiple degrees 

of actuation, as used in this study the hand was limited to a single-degree-of-freedom power grasp.  

 

Fig. 21 Myoelectric hand and elbow prosthesis prototype 

The essential characteristics of the arm are as follows. The elbow joint has a range of motion 

of 130 deg (15 deg to 145 deg flexion), and is capable of a maximum torque of 18 Nm and 
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maximum angular velocity of 80 deg/s. The hand is capable of a maximum grasp force of 

approximately 45 N and motion bandwidth of approximately 3 Hz. The elbow has a mass of 1050 

g, and hand has a mass of 550 g (both including their respective embedded systems), such that the 

total prosthesis mass was 1.6 kg (not including the socket or battery). The prosthesis was powered 

by a 12 v, 2.9 Ah lithium ion battery pack consisting of three 18650 lithium ion cells, with a total 

mass of 145 g. For the experiments described here, the battery pack was placed on a table next to 

the experimental setup, in order to minimize the mass worn by the subject. 

The embedded system on the arm includes: power conditioning circuitry; a brushless motor 

servo-amplifier and a PID controller for the elbow joint; an absolute encoder on the elbow joint; a 

9-axis IMU (on the forearm); 8-channels of EMG signal conditioning (only two of which were 

used here); a CAN bus for communication with the embedded system in the hand, and for 

communication with a supervisory laptop computer. The embedded system in the hand includes 

four brushless motor servo-amplifiers – one for each brushless motor in the hand – and PID 

controllers for each. Although all control can be embedded on the arm, for purposes of the 

assessments conducted here, the arm was operated in a tethered mode of operation, in which sensor 

information from the embedded system (i.e., both EMG signals, joint position and velocity signals 

for the hand and elbow, and IMU measurements from the arm) were sent via the CAN bus to a 

laptop PC running Simulink with MATLAB Real-Time Windows Target, and hand or elbow motor 

position commands were sent back to the embedded system on the arm via the same CAN bus. 

Tethered operation facilitated controller development and implementation, as well as parameter 

adjustment and data acquisition. In order to provide an indication to the subject which component 

(hand or elbow) is active, an LED was affixed to the back of the hand and was illuminated when 
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the hand control was active, and was turned off otherwise. Similar visual indicators are often 

employed in commercial transhumeral myoelectric devices. 

5.4.2 AMPUTEE SUBJECT 

The subject was a left arm amputee, female, 40 years old. The subject was an experienced 

user of myoelectric transhumeral prostheses, although had no “daily-use” myoelectric prosthesis 

at the time the experiments were conducted. The prosthesis was affixed to the subject’s residual 

limb via a standard socket and suspension sleeve.  

5.4.3 EMG MEASUREMENT AND SIGNAL CONDITIONING  

Disposable conductive-gel EMG electrodes (Rythmlink model DECUG10026) were 

positioned under the subject’s socket, specifically on the anterior and posterior surfaces of the 

residual limb of the upper left arm with a reference electrode positioned proximal to the shoulder 

joint. The EMG leads were connected to the arm embedded system, where the differential signals 

were pre-amplified with a gain of 100 and digitally sampled using an EMG processing chip (Texas 

Instruments ADS1298), which also provided bandpass filtering (between 20 Hz and 500 Hz) and 

rectification. The rectified signal was sent via serial peripheral interface (SPI) to a PIC32 

microcontroller (Microchip, Inc.), where it was low-pass-filtered at 5 Hz to provide an envelope 

of spatially integrated EMG activity. The (two) processed EMG signals were then streamed from 

the PIC32 via the CAN bus to the real-time environment provided by Simulink Real-Time 

Workshop (RTW). 
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5.4.4 EXPERIMENT SETUP AND PROTOCOL 

The experimental assessments consisted of a series of pick-and-place tasks in which the 

subject was required to pick up a (tennis) ball resting on a table and place the ball into a target 

location inside one box of a four-box cabinet. The four-box cabinet was configured as a two-by-

two box array, specifically two boxes across and two boxes high. Each box (or cell) measured 

approximately 25 cm wide by 17.5 cm high by 30 cm deep (10 in wide by 7 in high by 12 in deep), 

and each included a hole in the bottom, somewhat smaller in diameter than the tennis ball, to retain 

the ball when placed in it.  

Experiments consisted of three sets of pick-and-place tasks, where each set required the 

subject to pick up the ball and place it in one of the four box locations. The order for each set of 

tasks was randomized. The subject completed three sets of the four pick-and-place tasks for each 

of the two controller types (i.e., twelve pick-and-place tasks per controller type). For each trial, the 

subject was required to stand with feet planted on a mat in front of a table, upon which the cabinet 

of boxes was located. The subject was required to start with her prosthetic arm by her side, with 

the elbow fully extended and hand open. For each pick-and-place task, the experimenter gave a 

start command and simultaneously started a timer, and subsequently stopped the timer when the 

ball was released from the hand and rested in the target box location (within the hole).  Note that 

subject was required to complete each pick-and-place task fully – if the ball was dropped prior to 

placement in the box, the ball would be placed back at the starting position for the subject to re-

attempt the task, until the task was successfully completed. Once the task was successfully 

completed, the ball was placed in the starting position, and the next target location (i.e., box 

location) was attempted. A photographic sequence of the subject performing the pick-and-place 

task with the prosthesis prototype is shown in Fig. 22. 
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Fig. 22 Photographic sequence of subject performing pick-and-place task (box 4). 

So that the subject could accommodate to each controller, the trials were conducted over a 

two consecutive days – first with the conventional EMG controller, and second with the combined 

IMU/EMG controller. On each day, an initial session was used to establish EMG thresholds and 

normalization gains, followed by an introduction to the control method, and a practice period 

during which the subject could practice controlling the elbow and hand, and could practice 

performing the pick-and-place tasks. The duration of the training/practice phase was generally 

between 15 and 30 min. Once sufficiently practiced, the subject performed a series of trials with 

the prescribed control approach, during which completion times associated with each of the pick-

and-place tasks were recorded. Torso motion during the respective trials was also recorded, as 

subsequently described. The experimental protocol was approved by the Vanderbilt University 

Institutional Review Board. 

5.4.5 MEASUREMENT OF TORSO MOTION  

An IMU motion capture system was used to measure the extent of upper body movement 

required to complete the pick-and-place tasks. Specifically, an IMU motion capture  (Xsens, MTw 

Awinda) was mounted on the chest of the subject via an elastic band, approximately at the xiphoid 

process. The torso IMU sent torso movement information wirelessly to a Bluetooth receiver which 

is connected to a laptop station via a USB cable. The torso data were recorded using the software 

associated with the IMU motion capture system (Xsens, MVN Studio). 
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5.5 RESULTS 

The efficacy of the combined EMG/IMU controller in enabling the previously described pick-

and-place tasks, relative to the conventional EMG controller, was assessed by the relative average 

time required to perform the tasks with one controller, relative to the other. Torso motion of the 

subject was also measured during the tasks, to assess the relative extent of compensatory torso 

motion when using the two controllers. Note that the subject was required to stand in place during 

the tasks, so that all compensatory body motion employed during the tasks should be captured by 

torso movement. A video showing trials from the experiments of both the controllers is provided 

in the supplementary material. 

The data representing the task completion times each task and each trial, along with the 

average times and standard deviations for each box location and each iteration, are given in      

Table V and Table VI for the conventional EMG controller and the combined EMG/IMU 

controller, respectively. As shown in Table V, for Iteration 2, Box 2 using the conventional EMG 

controller, the subject dropped the ball several times, and therefore required 1 min and 46 sec (106 

sec) to complete the task. Since this time was not representative of the other times for that box 

location and controller (which were 30.4 and 26.4 sec, respectively), and since it was likely a result 

of insufficient practice with the controller and prosthesis prototype, the authors omitted this data 

point from the average. Specifically, rather than use the average and standard deviation resulting 

from the three trials – 54.4 sec and 45 sec, respectively – the authors used instead only the average 

of the two representative trials – which was 28.4 sec and 2.87 sec, respectively. These values are 

shown in Table V within brackets in the average and standard deviation columns. Thus, the 

outlying data point was excluded from all comparative assessment of the two controllers. This data 

is summarized in Fig. 23, which shows the completion time averages and standard deviations for 
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each controller (excluding the outlying data point).  As summarized in the tables, the overall 

average completion time for the conventional EMG controller was 21.5 sec, and was 10.8 sec for 

the combined EMG/IMU controller. As such, the subject was able to complete the pick-and-place 

tasks on average approximately 50% faster with the combined controller. As indicated by the bar 

chart, the performance advantage was roughly consistent across box locations. Paired t-tests 

assessing significant differences in means between the two controllers for each box location, and 

for the overall average completion times, indicated that the differences in means for boxes 2 and 

3 were significant at 5% confidence levels, while the differences in means for boxes 1 and 4 were 

significant at approximately 15% confidence levels.  

Table V  

Completion times for all trials for the conventional EMG controller 

 
Iteration 1 

(sec) 

Iteration 2 

(sec) 

Iteration 3 

(sec) 

Average 

(sec) 

Std. 

Dev. 

Box 1 31.6 16.0 21.5 23.0 7.9 

Box 2 30.4 106.3 26.4 54.4 [ 28.4] 45.0 [2.9] 

Box 3 14.0 17.4 22.0 17.8 4.0 

Box 4 20.8 15.4 13.7 16.6 3.7 

Average 24.2 16.3 20.9 21.5 4.6 

 

Table VI 

Completion times for all trials for the combined EMG/IMU controller 

 
Iteration 1 

(sec) 

Iteration 2 

(sec) 

Iteration 3 

(sec) 

Average 

(sec) 

Std.  

Dev. 

Box 1 7.7 12.9 17.7 12.7 5.0 

Box 2 8.2 6.4 11.4 8.7 2.5 

Box 3 8.6 10.8 9.6 9.7 1.1 

Box 4 9.2 13.9 13.7 12.3 2.7 

Average 8.4 11.0 13.1 10.8 2.8 
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Fig. 23 Average task completion times across all trials, corresponding to each respective target box location, 

representing a variety of reaching movements 

Torso motion was measured during all pick-and-place tasks, in order to ensure that the 

performance difference was not a result of substantive changes in compensatory torso motion. 

Specifically, the torso angles, with respect to the vertical, in the sagittal and coronal planes were 

recorded at the time each reaching task was completed (i.e., when the ball was successfully 

released in the target box). These measurements in effect characterized the torso configuration 

upon completion of each reaching task, and specifically how much forward and sideways lean was 

employed to reach a given target location. The magnitude of respective torso angles, averaged for 

each target location and each controller type, are shown in Fig. 24 and Fig. 25, respectively, along 

with error bars indicating plus and minus one standard deviation for each. Paired t-tests assessing 

significant differences in means of torso angles between controllers indicate that no significant 

differences exist between torso motion means for any of the trials at a 5% confidence level.  



76 

 

 

Fig. 24 Comparison of the torso motion in the sagittal plane 

 

Fig. 25 Comparison of the torso motion in the sagittal plane 
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5.6 DISCUSSION 

Fig. 23 through Fig. 25 indicate that the combined EMG/IMU controller enabled an average 

of approximately 50% faster completion times, without necessitating additional compensatory 

torso motion relative to the conventional EMG control. 

5.6.1 REPRESENTATIVE DATA 

Fig. 26 and Fig. 27 show controller data during performance of a representative pick-and-

place task (i.e., while picking and placing the ball into box number 3) using the conventional EMG 

controller (Fig. 26) and the combined EMG/IMU controller (Fig. 27), respectively. Specifically, 

Fig. 26 shows the elbow EMG command for the conventional EMG controller over the task 

performance period, where the gray bands indicate periods of hand control and the white bands 

indicate periods of elbow control. The periods of activity correspond to positioning the elbow to 

pick up the ball, grasping the ball, adjusting the elbow by either flexing or extending (and flexing 

the shoulder) to place the ball, and releasing the ball. One can note the co-contraction “spikes” in 

the EMG signals that separate the period of hand and elbow control. 

Fig. 27 shows the corresponding controller data during the same pick-and-place task (i.e., box 

number 3), while using the combined EMG/IMU controller, showing both the IMU component of 

elbow angular velocity (6) and the EMG component (2), over the entire task performance period. 

The total elbow angular velocity command (7) is the direct sum of these components. The gray 

bands in Fig. 27 indicate periods of hand control and the white bands indicate periods of elbow 

control. Note that co-contraction is not present at the transitions between elbow and hand control, 

since it is not used in the coordinated controller. As shown in the figure, the subject employs both 

components when controlling the elbow during the task.  
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Fig. 26 Elbow commands during a representative pick-and-place task (box no. 1) performed with the sequential 

EMG controller. The gray bands indicate the periods of hand control, while the white bands indicate the periods of 

elbow control. Positive and negative elbow commands indicate elbow flexion and extension respectively. 

 

Fig. 27 EMG and IMU elbow angular position commands during a representative pick-and-place task (box no. 1) 

performed with the coordinated controller. The gray bands indicate the periods of hand control, while the white 

bands indicate the periods of elbow control. Positive elbow angular position commands indicate flexion while 

negative commands indicate extension 
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5.6.2 LIMITATIONS 

The intent of this paper was to assess the extent to which supplementing EMG input from a 

user with movement information about the residual limb, provided by an IMU, could potentially 

improve prosthesis control. The experiments performed here appear to indicate that the added 

control information can improve prosthesis control, although the work has a number of limitations. 

First, the assessments involved only a single amputee subject. The authors found that locating 

transhumeral amputee subjects with appropriate range of shoulder motion and good EMG sites is 

challenging, but nonetheless, these assessments should be performed on multiple subjects to better 

assess the potential value of the proposed combined control approach. Second, this assessment 

entailed only pick-and-place tasks. In order to vary the geometry of the pick-and-place tasks, the 

authors used multiple box locations. Nonetheless, it’s not clear how the underlying kinematic 

coupling between the upper arm and elbow joint would affect other activities of daily living 

(ADLs). Conducting assessments employing a more complete set of tasks would provide valuable 

information regarding the extent to which the proposed coupling either enhances or impairs the 

conduct of other ADLs.  

Another limitation of this work is that, since the two control components (kinematic coupling 

and motion-based state-switching) were not separately assessed, it’s difficult to assess the relative 

value of each. Data (such as that shown in Fig. 27) shows that the subject employed both 

components, but without conducting experiments that separate the two components, the relative 

value of each cannot be fully assessed.  

A limitation of the controller is that both the biceps and triceps brachii span the shoulder joint. 

As such, shoulder movement results in muscular contraction. This is the case for both the 
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conventional and the combined controllers. Shoulder flexion generally results in biceps EMG, 

which provides a flexive angular velocity at the elbow, as given by (2). The same shoulder flexion, 

however, results in an elbow extension command associated with the kinematic coupling 

component (6). As such, these two components can cancel each other if signal conditioning is not 

appropriately configured. This tendency to cancel can be seen in the two angular velocity control 

components shown in Fig. 27. In order to avoid such cancellation, the thresholds associated with 

EMG control were increased for the combined EMG/IMU controller, so that the low-amplitude 

EMG associated with shoulder flexion would not cancel the component provided by the kinematic 

coupling. 

5.6.3 GENERAL COMMENTS 

One of the major challenges in the control of myoelectric prostheses, and transhumeral 

myoelectric prostheses in particular, is the extremely limited amount of control information by 

which the user can communication volitional intent to the device. In the case of a transhumeral 

prosthesis, a user must control multiple components with limited control information, typically 

with a single channel of (agonist/antagonist) EMG. The movement of the residual limb potentially 

offers a considerably amount of addition control information, specifically with regard to shoulder 

motion, which is directly associated with the user’s neuromuscular and musculoskeletal system. 

This information is readily measured in a repeatable, reliable, high-bandwidth, low-noise manner 

via an IMU, which is easily added onto a myoelectric prosthesis. Based on the limited study 

presented here, this information can substantially improve performance during the tasks performed 

in this assessment. The authors believe the measurement of residual limb motion could be further 

exploited by measuring movement in multiple planes of motion (i.e., motion was generally 

measured in a single plane in this work, at least with respect to the kinematic coupling component), 
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and also potentially by using measured residual limb motion with other control methodologies, 

such as pattern recognition methodologies, which would presumably complement such approaches 

and increase their efficacy, relative to using EMG alone.    

5.7 CONCLUSION 

The authors conducted a limited investigation on the value of incorporating residual limb 

motion into the control of a transhumeral myoelectric prosthesis. Specifically, an IMU on a 

prosthesis prototype was employed to measure the motion of the upper arm, and was in turn used 

to modify a conventional EMG controller in two ways: 1) a nominal kinematic coupling was 

implemented at the elbow joint, upon which standard EMG control was superposed; and 2) the 

control was automatically switched to the hand when the hand was essentially motionless relative 

to an inertial reference frame. The control approach was implemented on a transhumeral prosthesis 

prototype, and functional assessments were performed on a single amputee subject, indicating that 

the subject was able to perform a series of pick-and-place tasks 50% faster when the controller 

was supplemented with information from the IMU. Although the work has several limitations, the 

authors believe the use of an IMU to supplement control information has real promise in improving 

the control of myoelectric prostheses, both with the control method proposed, and by 

supplementing other proposed control methods with IMU measurements. 
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CHAPTER 6  

6. CONCLUSION 

This dissertation has presented a control method and assessment of an upper extremity 

prosthetic system. Through the process of many design iterations, the combined IMU/EMG control 

method was shown to enhance the conduct of activities of daily living involving reaching tasks. In 

addition, the combined IMU/EMG control method delivered an intuitive control relative to the 

commercially available devices and a simple control method relative to the recent research 

prosthetic control methods. The combined IMU/EMG control method was assessed by healthy 

subjects using a virtual environment and by amputee using a transhumeral prosthesis prototype to 

assess the performance of the controller in real-world applications. Finally, the novel controller 

presented in this work represents a convenient testbed for the development of additional novel 

upper limb controllers, which will enhance the capabilities of amputees. 

6.1 FUTURE WORK  

The controller presented in this work is one of the first controllers that coordinates between 

arm joints intuitively. However, further fine tuning of this controller should be considered in future 

work. Specifically, fine tuning the EMG signals while flexing the shoulder joint as described in 

the limitation section in chapter VI. The use of the IMU has enabled coordination between arm 

joints and therefore examining the control of additional arm joints, such as a wrist, should also be 

investigated.  While the current prosthesis prototype has provided convenient testbed, experiments 

indicated that the weight of the prosthesis should be decreased, and therefore a lighter prototype 

design should be taken into consideration in future work.  
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