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chapter i

introduction

Chapters II–IV of this thesis consist of adapted versions of the papers [29, 30] and

[31], respectively, and can be read independently of each other. Finally, chapter V

contains an analysis of two age–structured models from population dynamics.

In the work presented in chapter II, we investigated the diffusional motility of p53,

a key tumor suppressor protein, in living cells using fluorescence recovery after pho-

tobleaching (FRAP). It is of great interest to understand the mechanisms by which

proteins move in cells or membranes. Different photophysical methods have been

developed over the past 30 years which allow researchers to study the mobility prop-

erties of membranous, cytoplasmic and nuclear proteins as well as other biomolecules

or tracer particles. Commonly, a fluorescently labeled version of the protein of in-

terest is constructed and transfected into suitable cells. In the case of FRAP, a

non–equilibrium situation is created by applying a strong bleaching laser beam. The

recovery of fluorescence due to movement of unbleached molecules is recorded and

analyzed. This is where mathematical models enter the game as they are used to

analyze and interpret the experimental data. In most cases, the first choice for a

model is a partial differential equation that describes diffusion, driven by standard

Brownian motion. If this first (simple) model turns out to be inadequate to describe

observed experimental data, a second (more elaborate) model has to be considered,

which can, for example, be a reaction–diffusion equation. In the case of p53, we found

that diffusion of p53–GFP within the cell nucleus is well described by a mathematical

model for diffusion of particles that bind temporarily to a spatially homogeneous im-

mobile structure [30]. On the other hand, the inert protein GFP was found to diffuse

freely and therefore provided a negative control. In the course of the analysis of our
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experimental data we used a new statistical method to establish the significance of

a parameter in a family of nested models. The data indicate that p53 undergoes

nonspecific DNA binding (characterized by short residence times in the bound state)

in unstressed cells. We also found evidence that p53–GFP is present in oligomers, in

agreement with other biological data for p53.

The work that forms chapter III is likewise rooted in biophysics. An open problem

is to understand how DNA–binding proteins (such as p53) find their specific target

sequences in the genome. For example, one mechanism proposed in the literature is

that of crawling, where a protein stays in contact with the fiber as it moves along

the fiber. In contrast, the protein can also use hopping, where periods of association

and disassociation interchange. In either case, the linear mass density profile of the

fiber is expected to change in space and time. The goal of single molecule studies

becomes to measure that density profile. In fact, this is precisely the objective of

seismology, where the mathematics of inverse problems have been employed with

success. Commonly, waves are sent into an elastic medium and responses are recorded

and analyzed. We argue in [29] that inverse problems in elastic media can be directly

applied to biophysical problems of fiber–ligand association. An additional difficulty

is created by the fact that DNA fibers in an experiment will be supported in a viscous

fluid. On the one hand this creates a loss of energy due to friction, on the other hand

random forces act on the vibrating string and create a noise–contaminated response.

We demonstrate that robust algorithms exist to perform density reconstruction in the

condensed phase.

In chapter IV we turn to mathematical modeling of cytostatic and cytotoxic effects

of the anticancer drug lapatinib. Human tumor cells are characterized by the dysreg-

ulation of gene expression. Over– and/or underexpression of select genes make them

susceptible to treatment with targeted anti–cancer drugs that typically cause more

damage to tumor–derived cells than to healthy cells. One example for this strategy
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is the growth factor receptor HER2 and the targeted drug lapatinib that inhibits the

activity of HER2. Lapatinib acts by slowing the progression of cells through the cell

cycle (this is called a cytostatic effect), rather than inducing cell death (this would

be called a cytotoxic effect). The cytostatic action is, however, cell cycle specific.

Cells are affected according to their position in the cell cycle. Our goal in [31] was

to quantitatively separate cytostatic and cytotoxic effects of lapatinib. As was seen

through a combination of in vitro experiments and mathematical modeling, lapatinib

slows preferentially the progression of cells through G1 phase, the phase of the cell

cycle during which most of the volume growth occurs. The data also indicated a

previously unreported cytotoxic effect after long periods of drug exposure. Moreover,

we investigated the temporal dynamics of the drug action and found that a gradual

onset of cytostatic effects describes the data much better than a sudden onset. Our

mathematical model is fully continuous with respect to time and maturity (the posi-

tion of a cell in its cell cycle) and contains only a small number of parameters. These

parameters have a straightforward biological interpretation and can be determined

by examining the control scenario of the experiment. The model can be applied to a

variety of drugs that have cell cycle specific cytostatic and cytotoxic effects.

Finally, in chapter V we analyze mathematically two age–structured models of

population dynamics. A characteristic of many growth processes is that as the num-

ber of individuals reaches a certain threshold, the population growth slows. The

Gompertzian growth model has been widely applied to such populations. In the case

of a tumor cell mass, cells can belong to two distinct subpopulations, namely those

of proliferating versus nonproliferating cells. The two models considered in chapter

V differ in their interpretation of the “age” variable. In the first model, which was

already used in chapter IV, age is interpreted as maturity, that is the position of a

cell in its cell cycle. Nonproliferating cells do not progress in their cell cycle anymore,

however, they are counted towards the total population. The transition from the pro-
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liferating to the nonproliferating class is modeled by a nonlinear term that depends

on the total population. We show that for such a model, both species approach finite

limits as time approaches infinity. In the second model, age is interpreted as chrono-

logical age, that is the time since the last mitotic event from which the cell originated.

In contrast to the first model it is also possible that nonproliferating cells return to

the proliferating class. For a linear model of the same structure (with transitions

between proliferating and nonproliferating classes independent of the total popula-

tion), Dyson, Villela–Bressan and Webb [19] proved the property of asynchronous

exponential growth. Intuitively, one expects the age distributions to reach a limit

shape and the total mass to grow to infinity or decay to zero. The rate at which

this growth occurs is called the Malthusian or intrinsic growth parameter and is

determined as the solution of a characteristic equation. The situation is different in

the nonlinear model under consideration, where transition rates between proliferating

and nonproliferating classes depend on the total population. Under a certain natural

condition, namely that both 0 and ∞ are repelling in the total population space, we

show that the nonlinear population dynamic model based on chronological age must

have a nontrivial equilibrium solution.

We end this thesis with a short outlook on ongoing and future research in chapter

VI.
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chapter ii

the p53 dna binding activity

II.1 Introduction

A valuable tool to probe the architecture of the cell nucleus is fluorescence recovery

after photobleaching (FRAP), see [14, 33, 48] for reviews and section II.2 for a short

description. FRAP studies have revealed that many proteins involved in nuclear pro-

cesses are highly mobile, yet diffuse more slowly than non–reactive, inert proteins of

comparable size (such as green fluorescent protein, GFP) in vivo [54, 55, 71]. Careful

analysis has revealed that for some nuclear proteins, FRAP curves cannot be ade-

quately described by models based on free diffusion alone [12]. It has been proposed

that fluorescently labeled molecules bind transiently to a spatially homogeneous im-

mobile structure (immobile on the time scale of the experiment). This behavior can

be described by a mathematical model [12, 71, 76] based on a reaction–diffusion equa-

tion for a mobile and an immobile species that interact through first–order chemical

reactions.

Analytical solutions for the reaction–diffusion model have been derived for both

circular and rectangular bleach geometries [71, 76]. For the latter case, the model

assumes that the spatial domain available for diffusion of the fluorescent molecule

of interest is a rectangle with one of its sides identified with the interval [0, `]. The

density of the fluorescent molecules is assumed to be independent of the longitudinal

variable of the rectangle and thus is a function u(x, t) of x ∈ [0, `] and time t [76]. The

mathematical model is based on a reaction–diffusion equation for the density u(x, t)

set in the interval [0, `] for all times t > 0, starting from its initial datum u0. At

x = 0 and x = ` homogeneous Neumann boundary conditions are imposed, since the
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fluorescent molecules do not leave the compartment. The parameters at play are the

diffusion constant D, the binding rate k1 to the immobile structure, and the release

rate from it, k2. The values k1 = k2 = 0 would correspond to absence of immo-

bile binding structures and thus free diffusion for u(x, t). The density of fluorescent

molecules u(x, t) is integrated over a subset of [0, `], called region of interest (ROI),

and generates a theoretical, time–dependent, fluorescence signal F (t;D, k1, k2), de-

pending upon the unknown diffusion parameters {D, k1, k2}. By fitting the theoretical

function to the experimental data one obtains estimates for these parameters.

Motivated by the key role of p53 in cancer biology and its well–characterized

biochemistry, we determined whether the diffusional mobility of p53 within the nu-

cleus can be described by the reaction–diffusion model. The tumor suppressor p53

is the most commonly mutated gene in human cancers. In response to cell stress,

such as oncogene activation or DNA damage, p53 can function as a sequence–specific

DNA binding transcription factor. p53 activates the transcription of genes involved in

the processes of cell cycle arrest, DNA repair, and apoptosis, thereby protecting the

genome from mutations and the organism as a whole from tumor formation. Using

confocal FRAP, we analyzed the diffusion of a GFP–tagged form of p53. We extended

the reaction–diffusion model to allow for flexibility in choosing the initial data by dis-

tinguishing the region where the bleaching laser beam is concentrated from the initial

distribution profile of fluorescent molecules. This permits one to take into account the

diffusion of unbleached molecules into the bleach spot and the diffusion of bleached

molecules out of the bleach spot during the application of the bleaching laser beam,

factors that can otherwise lead to an erroneous estimation of diffusion constants from

confocal FRAP measurements [82, 86]. In addition, we used a nested model approach

to test the statistical significance of fitting the data using the reaction–diffusion model

versus simple free diffusion.
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II.2 Experimental Procedures

For a detailed description of the Materials and Methods we refer to [30]. Fluorescence

recovery after photobleaching (FRAP) rests on the following fact. The ability of a

molecule to absorb and re–emit fluorescence photons can be lost after a certain number

of such events. This chemical reaction just described is known as photobleaching and

makes technologies such as FRAP possible. Further details can be also found in [28].

To study the mobility properties of a certain protein it is necessary to construct

a covalent fusion of the protein of interest with a fluorophore. An often used natural

fluorophore is green fluorescent protein (GFP), a protein that was cloned from the

Pacific jellyfish Aequoria victoria in 1992. Typically a DNA plasmid that encodes

the protein of interest together with the GFP tag is transfected into suitable cells

which will then start to express the protein combination. The resulting protein then

has to be tested whether it still localizes and functions as the wild–type (wt) protein

does. For instance, in the case of a transcription factor (such as p53) the GFP–fusion

should localize to the cell nucleus and induce the transcription of the target genes of

the wild–type protein.

A uniform pool of fluorescently labeled protein is excited with a laser beam and

resulting light is observed and recorded. A strong pulse of the same laser is then

applied to irreversibly bleach a portion of the protein in a well–defined spot, see

Figure 1. After the bleaching process the unbleached protein molecules will diffuse

into the dark spot, hence an increase in fluorescence can be measured. In our study

[30] we transfected p53–GFP into H1299 lung cancer cells which do not express p53

of their own. The length of a nucleus was typically ` = 20µm, whereas the width of

the bleached strip was r = 1.1µm (with notations as if Figure 1). The bleach time

was 530ms. Fitting the theoretical recovery functions to the experimental recovery

curves was done with the matlab standard function lsqcurvefit.
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II.3 Mathematical Modeling

II.3.1 Geometrical Setup

We will employ two mathematical models for the recovery process. The first is based

on free diffusion of a single species and contains one parameter, the diffusion constant

D [14]. The second accounts for temporary binding of fluorescent molecules to an

immobile structure [12, 13, 71, 76]. It contains three parameters, the (free) diffusion

constantD as well as rate constants for the binding and unbinding reaction, k1 and k2,

respectively. We will extend these models by choosing a more flexible initial condition

which allows to factor in the effects of diffusion in and out of the bleach spot during

the bleach time.

ROI ROC

0 l xc

2r

2h

1

Θ

uHx,0L

Figure 1: The geometrical setup of the FRAP experiment.

We assume a strip bleach geometry as shown in Figure 1. The compartment

available to the fluorescent molecules (solid ellipse) is approximated by the dashed

rectangle which in turn is projected onto its long side of length `. The scanned bleach

strip spans the full width of the rectangle and is indicated by the solid rectangle. It

is centered at c and has half–width r. The region of interest (ROI) and the region of

control (ROC) from which the signal respectively the background signal are collected

are shaded gray. The initial datum to the recovery process is piecewise constant, with

θ the bleach depth and h the half–width of the bleached region. The concentration

8



u(x, t) of the fluorescent molecules is assumed to be independent of the longitudinal

variable on the rectangle. The mathematical spatial domain thus becomes the in-

terval [0, `]. Homogeneous Neumann conditions (zero flux condition) are imposed on

u(x, t) at x = 0 and `. This means no exchange takes place across the boundary of

the compartment (the nuclear membrane respectively the plasma membrane). The

observation region is the interval centered at c and has length 2r, modeled by an

indicator function

I(x) =















1 if |x− c| ≤ r

0 otherwise
. (1)

II.3.2 Free Diffusion

Let u(x, t) denote the concentration of fluorescent molecules at position x at time

t. The concentration is normalized to be one in the steady–state of the pre–bleach

phase. The differential equation, boundary condition and initial condition for u are

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t),

∂

∂x
u(0, t) =

∂

∂x
u(`, t) = 0,

u(x, 0) =















1 if |x− c| > h

θ if |x− c| ≤ h.

(2)

Here c is the center of the bleached region, 2h is its width, and 0 ≤ θ < 1 is the

bleach depth (Figure 1). Notice the different meaning of r and h and that r < h is

possible. To the best of our knowledge in the current literature piecewise constant

initial profiles are considered with r = h and θ = 0 only [12, 71, 76]. Thus in

particular no distinction is made between initial datum, and observation region, at

completion of the bleaching process.

A potential limitation of confocal FRAP measurements is that photobleaching is
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accomplished by scanning the laser across the bleach region of interest, a process which

takes a finite amount of time. As a result, during the bleach time unbleached molecules

diffuse into the bleach spot, and bleached molecules diffuse out of it [10, 82, 86]. This

results in an uncertainty about the initial datum of the recovery process. As remarked

by Weiss in [86], the width of the bleached spot is larger and its boundaries are less

sharp. This may cause an under–estimation of the diffusion constants by a factor of

two to four.

The greater flexibility in the choice of the initial datum permits one to account for

diffusion of fluorescent molecules into the bleach strip during the bleach time. The

total mass of the initial datum from equation (2) should match its observed ultimate

(asymptotic) recovery value,

∫ `

0
u(x, 0) dx = `− 2h+ 2hθ = F∞,obs`.

Thus the width of the initial datum h must be chosen according to

h =
`(1 − F∞,obs)

2(1 − θ)
.

The solution u(x, t) of the system (2) is obtained by a standard Fourier series. Let

λ0 = 0, λj =
(

πj

`

)2

,

ϕ0(x) =
(

1

`

)

1
2

, ϕj(x) =
(

2

`

)

1
2

cos
πjx

`
, j = 1, 2, . . .

denote the eigenvalues and normalized eigenfunctions of the Laplace operator on [0, `],

with homogeneous Neumann boundary conditions. Then the solution to (2) is given
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by the series

u(x, t) =
∞
∑

j=0

exp(−λjDt)

(

∫ `

0
u(ξ, 0)ϕj(ξ) dξ

)

ϕj(x)

=
`− 2h(1 − θ)

`
+

2(1 − θ)

π

∞
∑

j=1

exp

(

−
π2j2Dt

`2

)

1

j

×

[

sin
jπ(c− h)

`
− sin

jπ(c+ h)

`

]

cos
πjx

`
.

(3)

We multiply the series (3) by the intensity profile (1), integrate over [0, `] and divide

by 2r to obtain the theoretical recovery function

F1(t;D) =
1

2r

∫ c+r

c−r
u(x, t) dx

=
`− 2h(1 − θ)

`
+
`(1 − θ)

rπ2

×
∞
∑

j=1

exp

(

−
π2j2Dt

`2

)

1

j2

[

sin
jπ(c− h)

`
− sin

jπ(c+ h)

`

]

×

[

sin
jπ(c+ r)

`
− sin

jπ(c− r)

`

]

.

(4)

From this we compute the asymptotic level of recovery as

F1,∞
def
= lim

t→∞
F (t;D) = 1 −

2h(1 − θ)

`
< 1. (5)

The parameter D is recovered by fitting F (t;D) to the experimental data Fdata(ti),

i = 1, 2, . . . , n at the discrete time points ti.

II.3.3 Reaction–Diffusion Model

Suppose that fluorescent molecules are divided into mobile and immobile species,

denoted by u(x, t) and v(x, t), respectively. It is assumed that the diffusion region

contains a spatially homogeneous immobile structure, consisting of potential binding

sites, to which fluorescent molecules can bind at rate k1 and can be released from at
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rate k2. It is also assumed that the spatially homogeneous immobile structure always

contains enough free binding sites so that saturation does not occur [71]. The three

parameter model is given by

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t) − k1u(x, t) + k2v(x, t),

∂

∂t
v(x, t) = k1u(x, t) − k2v(x, t),

∂

∂x
u(0, t) =

∂

∂x
u(`, t) = 0,

u(x, 0) =
k2

k1 + k2















1 if |x− c| > h

θ if |x− c| ≤ h
,

v(x, 0) =
k1

k1 + k2















1 if |x− c| > h

θ if |x− c| ≤ h

(6)

where c, h and θ are as in figure 1. The choice of the initial distribution is based on

the assumption that an equilibrium between bound and unbound molecules has been

achieved before the bleaching process, i.e. u and v are in steady state [12]. If k1 = 0,

then v(x, 0) = 0 and the model reduces to the diffusion model (2). In this sense the

one–parameter free diffusion model (2) is “nested” in the three–parameter reaction–

diffusion model (6). This fact will be exploited in II.3.5 to discuss the statistical

significance of the parameter k1.

A solution to the model (6) is obtained by Fourier–Laplace transform techniques.

With eigenfunctions of the Laplace operator ϕj as in II.3.2 we make the ansatz

u(x, t) =
∞
∑

j=0

uj(t)ϕj(x), v(x, t) =
∞
∑

j=0

vj(t)ϕj(x), (7)

where uj(t), vj(t) are to be determined from (6), with initial conditions

uj(0) =
∫ `

0
u(x, 0)ϕj(x) dx, vj(0) =

∫ `

0
v(x, 0)ϕj(x) dx.
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The Laplace transform of uj(·) is

ūj(s) =
∫ ∞

0
e−stuj(t) dt.

We insert the series (7) into the first two equations of (6), multiply by ϕi(x) for a

fixed index i, integrate over [0, `] and take the Laplace transform of the resulting

term. This gives

sūj(s) − uj(0) = −
(

jπ

`

)2

Dūj(s) − k1ūj(s) + k2v̄j(s),

sv̄j(s) − vj(0) = k1ūj(s) − k2v̄j(s).

We solve for uj(s) and vj(s) and obtain

ūj(s) =
(s+ k2)uj(0) + k2vj(0)

(s+ (jπ/`)2D + k1)(s+ k2) − k1k2

,

v̄j(s) =
(s+ (jπ/`)2D + k1)vj(0) + k1uj(0)

(s+ (jπ/`)2D + k1)(s+ k2) − k1k2

,

(8)

provided the denominator of these fractions is non–zero. The solutions of the equation

(s+ (jπ/`)2D + k1)(s+ k2) − k1k2 = 0

are

s1,2;j = −
(jπ/`)2D + k1 + k2

2
±

√

((jπ/`)2D + k1 + k2)2 − 4k2(jπ/`)2D

2
.
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After a partial fraction decomposition of the expression (8), the Laplace transform

can be inverted to give

uj(t) =(s1;j − s2;j)
−1

×
(

[uj(0)s1;j + k2(uj(0) + vj(0))]e
s1;jt

−[uj(0)s2;j + k2(uj(0) + vj(0))]e
s2;jt

)

,

vj(t) =(s1;j − s2;j)
−1

×
(

[vj(0)(s1;j + (jπ/`)2D + k1) + k1uj(0)]e
s1;jt

−[vj(0)(s2;j + (jπ/`)2D + k1) + k1uj(0)]e
s2;jt

)

.

(9)

Both species are fluorescent and contribute to the normalized signal

F2(t;D, k1, k2) =
1

2r

∫ `

0
[u(x, t) + v(x, t)]I(x) dx

=
1

2r

∫ c+r

c−r
[u(x, t) + v(x, t)] dx.

(10)

To summarize, the theoretical recovery function is computed by first inserting the uj(·)

and vj(·) computed in equation (9), into the expressions (7), and then by inserting the

resulting u(x, t) and v(x, t) into (10). Since s1;0 = 0 and all other s1,2;k are negative,

we compute the ultimate (asymptotic) level of recovery as

F2,∞
def
= lim

t→∞
F2(t;D, k1, k2) = 1 −

2h(1 − θ)

`

which is the same as that in equation (5) for the free diffusion model. Observe further

that in case k1 = 0 we have vj(t) = 0 and consequently for all k2, k̃2

F2(t;D, 0, k2) = F2(t;D, 0, k̃2) = F1(t;D). (11)
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This implies that the level sets of the cost functional J from equation (13) in the

plane {k1 = 0} are the lines {D = const}.

II.3.4 Potential Immobile Fraction

In our experiments we used two strategies to test for an immobile fraction. Before any

bleaching the normalized fluorescence intensity is F0 = 1. Assume that the compart-

ment [0, `] contains mobile and fully immobile (at the timescale of the experiment)

fluorescent particles, their fractions being β and 1−β, respectively. Suppose now that

an interval of length 2h is completely depleted of fluorescent molecules. The recovery

is due solely to the mobile fraction, therefore the level of recovery after a sufficiently

long time will be, assuming conservation of mass

F1 = (1 − β)
`− 2h

`
.

If the same region is now bleached again, only mobile particles will be destroyed. The

second recovery will reach a level of

F2 = (1 − β)

(

`− 2h

`

)2

.

Hence, we have

1 − β =
F 2

1

F2

. (12)

In a second test, a region disjoint to the bleach region will be observed, in addition

to the bleach region. The fluorescence recovery level in the unbleached region will be

F ′
1 = β + (1 − β)

`− 2h

`
,
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since the immobile molecules were not affected. It follows that

β = F ′
1 − F1.

Notice that the actual size 2h of the bleached region in these experiments does not

matter.

II.3.5 Determination of Parameters and Model Discrimination

For both models we derived theoretical recovery functions Fl(t; q), l = 1, 2 by inte-

grating the solution of the initial value problem weighted with the intensity profile.

Denote by q = (q1, . . . , qp) the parameter of Fl (where p = 1 or p = 3). Given are the

data points (ti, Fdata(ti)), i = 1, . . . , n. We assume the existence of a “true” parameter

which, by definition, is a q∗ such that

Fdata(ti) = F (ti; q
∗) + εi,

where the εi are independent, identically distributed random variables with mean

E(εi) = 0 and variance V ar(εi) = σ2 < ∞. An estimate for q∗ is obtained by a

least–square fit of F (t; q) to the experimental data. That is, we minimize the cost

functional

J(q) =
n
∑

i=1

(F (ti; q) − Fdata(ti))
2 → min

q∈Qad

, (13)

where n is the number of data points making up the recovery part of the experiment

and Qad denotes the set of admissible parameters. The set Qad can be chosen to be

compact. Since the functional J is continuous with respect to q, the existence of a

minimizer is guaranteed, denote any such minimizer by q̂.

We now discuss the statistical test for the significance of the parameter k1 proposed

by Banks and Fitzpatrick in [5] applied to our situation. Choose the admissible
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parameter set Qad such that it is compact and that the true parameter lies in its

interior. Let

Q0 = {(D, k1, k2) ∈ Qad : k1 = 0}

be the restricted parameter set. We want to test the null–hypothesis H0 : q∗ ∈ Q0.

Indeed, as we have seen, fixing the binding rate constant k1 = 0 in equations (6)

reduces the model to the simple diffusion model (2). Following [5], we calculate the

statistic

U =
J(D̃, 0, ·) − J(D̂, k̂1, k̂2)

J(D̂, k̂1, k̂2)
. (14)

Because of equation (11), it is possible to store the optimal value of the cost functional

obtained from the one–parameter fit with the recovery function F1( · ;D) and use it in

calculating the statistic from equation (14). Under certain assumptions on the noise

process, the cost functional and the parameter space and if H0 is true, it is proved in

[5, Theorem 4.6] that the random variable U converges in distribution to a chi–square

distributed random variable with 1 degree of freedom, as the number n of data points

goes to infinity. We stress that the assumption on the noise process is only that it is

a sequence of independent, identically distributed random variables with mean 0 and

finite variance [5, Assumption (A1)].

II.4 Results

To ensure that the p53–GFP fusion protein was able to bind DNA and activate tran-

scription similar to unmodified p53, we examined the ability of the p53–GFP fusion

protein to upregulate p53 target genes. Ectopic (induced) expression of the p53–GFP

fusion protein resulted in elevated levels of the p53 target gene products, p21 and

mdm2 in a manner comparable to unmodified p53 protein. These data demonstrate

that the p53–GFP fusion protein retains proper DNA binding and transcriptional

activation capabilities. Furthermore, p53–GFP is correctly targeted to the nucleus of
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H1299 cells.

We next determined if p53–GFP behaves as a mobile or immobile protein. To test

for the presence of an immobile fraction (on the timescale of the experiment, 60 s), we

performed confocal FRAP experiments on H1299 cells expressing p53–GFP. In the

first series of experiments, we bleached a strip across the nucleus twice in succession

[72]. If an immobile fraction is present it should be bleached completely the first time

within the bleach strip but remain unaffected elsewhere. During the second bleach of

the same strip only mobile molecules will be bleached.

We denote the asymptotic levels of recovery measured after the first and the second

bleaching procedure by F1 and F2, respectively. Let β be the normalized volume of a

possible immobile fraction. By the theoretical arguments II.3.4, equation (12) one has

β = 1 − F 2
1 /F2. The experimental data however give F 2

1 /F2 ≈ 1, which yields β ≈ 0

and provides evidence against the presence of an immobile fraction (Figure 2 A).

This experiment was performed three times with similar results. Thus we attribute

the loss of fluorescence solely to the bleaching and do not assume the existence of an

immobile p53–GFP fraction on the time scale of the experiment.

A
0

0.2

0.4

0.6

0.8

1

t

F(t)

B
0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

t (s)

F(t)

Figure 2: Tests for an immobile fraction.

A second test for an immobile fraction was conducted by bleaching a circular spot

and measuring the asymptotic, normalized fluorescence at the bleach spot, and at

another, unbleached circular region of equal radius, disjoint from the bleach spot, but
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within the same domain of diffusion [53]. Let F1 and F ′
1 be the respective ultimate

recovery levels. Conservation of mass implies β = F ′
1 − F1, whereas the data give

F ′
1 ≈ F1 (Figure 2 B). Thus β ≈ 0. These data are representative of four independent

experiments.

Having determined that p53–GFP is fully mobile, we next assessed its diffusional

mobility compared to that of GFP alone. Representative recovery curves obtained

for p53–GFP and GFP in the nucleus are shown in Figure 3. We first tried to fit all

curves with the theoretical recovery function F1( · ;D) from equation (4). However,

apart from a few exceptional cases, the one parameter diffusion model was not able

to explain the experimental data satisfactorily (Figure 3 A). Notice that the residuals

of the optimal fit with the one parameter model in Figure 3 A are bimodal. We took

this as reason to reject the one parameter diffusion model for p53–GFP.
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Figure 3: Representative fluorescence recovery curves for p53–GFP (A) and GFP
(B).

We then proceeded to fit the theoretical recovery function F2(·;D, k1, k2), obtained

from the three parameter model, equation (10), to the p53–GFP recovery curves. The

diffusion constant of p53–GFP was estimated to be Dp53–GFP = 15.4µm2s−1, signifi-

cantly slower than that of GFP alone, which was found to be DGFP = 41.6µm2s−1.

For GFP, on the other hand, in 7 out of 10 cases the one parameter model provided an

acceptable fit of the experimental data, see Figure 3 B . Therefore we accept the hy-
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pothesis that GFP is freely diffusing inside the cells. The experimentally determined

mean parameter values for both p53–GFP and GFP are given in table II.1.

The diffusion constant obtained for GFP in the nucleus is in close agreement with

values published in the literature, e.g. D = 43 ± 11µm2s−1 [89], D = 58 ± 9µm2s−1

[32] (although smaller values around 15µm2s−1 have also been reported, [71] and

references therein).

The values of k1 and k2 obtained for p53–GFP using the reaction–diffusion model

are suggestive of weak, non–specific binding [71], see section II.5.1 for more expla-

nation of this terminology. In order to further test the contribution of specific DNA

binding events to the apparent diffusion of p53–GFP, we performed FRAP experi-

ments using tumor–derived p53 mutants that are deficient in sequence–specific DNA

binding activity, R175H and R273H (arginine → histidine). Like p53–GFP, both p53

R175H–GFP and p53 R273H–GFP were targeted to the nucleus (data not shown).

Approximately 40 FRAP experiments were carried out on each mutant protein, us-

ing the same experimental setup as for the wild type p53–GFP. For both mutants,

the one parameter model was insufficient to fit the recovery curves, while the three

parameter model provided an excellent fit. Significantly, the parameters of the three

parameter fit were identical within error for those obtained for the sequence–specific

DNA–binding mutants and the wild type p53 fusion protein. This further substan-

tiates the notion that specific DNA binding does not contribute significantly to the

slowed diffusion of p53–GFP compared to GFP.

Table II.1: The mean parameter values together with their standard deviations are
shown.

protein D (µm2s−1) k1 (s−1) k2 (s−1)
GFP 41.6 ± 13.6 − −
p53–GFP 15.4 ± 5.6 0.31 ± 0.22 0.40 ± 0.13
R175H–GFP 17.9 ± 8.6 0.41 ± 0.30 0.41 ± 0.13
R273H–GFP 17.6 ± 8.2 0.39 ± 0.22 0.34 ± 0.12
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II.5 Discussion and Conclusion

We have examined the nuclear diffusional mobility of p53–GFP using confocal FRAP.

We show that p53–GFP is fully mobile, but exhibits slowed diffusion compared to

GFP alone. We find that a free diffusion model is sufficient to explain the diffusional

mobility of GFP in the nucleus. In contrast, p53–GFP exhibited more complex

behavior consistent with a reaction–diffusion model, in which free diffusion is coupled

with binding and release from an immobile structure. The lack of a difference between

the diffusion properties of wild–type and the tumor–derived mutant p53 proteins

suggests that under steady–state conditions the protein binds DNA in a sequence–

independent manner. These data are consistent with a model that under steady

state conditions, p53 is latent and continuously scans DNA, requiring activation for

sequence–specific DNA binding.

Our data provide evidence against the existence an immobile fraction for p53–

GFP. Immobile fractions have been suggested as a way of explaining the discrepancy

between the observed, experimental partial recovery, versus the corresponding theo-

retical full recovery of fluorescent molecules.

II.5.1 The Mass of the Diffusing p53–GFP particle

The free diffusion constant for p53–GFP obtained from the reaction–diffusion model

suggests that p53–GFP diffuses as an oligomer rather than a monomer. The free

diffusion constants D1 and D2 of two spherical proteins of molecular weights m1 and

m2 are linked by the formula

D1

D2

=
(

m2

m1

) 1
3

. (15)

Formula (15) is based on the assumption that the mass of a particle is proportional to

the third power of its radius. Further, the diffusion constant is inversely proportional

to the radius, according to the Einstein–Stokes formula [20]. The mass of GFP has
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been reported to be mGFP = 27 kg/mole [87]. We estimate the mass of a single p53–

GFP molecule to be 53+27 = 80 kg/mole. Using the averages Dp53–GFP = 15µm2s−1

and DGFP = 40µm2s−1 in formula (15) one can estimate the mass of the diffusing

p53–GFP particles to be

mp53–GFP = mGFP

(

DGFP

Dp53–GFP

)3

> 500 kg/mole.

This mass suggests that p53–GFP is present in an oligomerized form in the cell

nucleus, that is, several individual p53–GFP molecules combine to form a larger

particle. This estimate is robust qualitatively, in the sense that even assuming a

smaller diffusion constant for GFP, say DGFP = 30µm2s−1 would still give a mass

mp53–GFP > 200 kg/mole, again indicating the presence of an oligomerized form. We

want to stress however, that this can serve only as a plausibility argument, since

no information is presently available about the shape of the p53–GFP construct.

Nonetheless, our data are consistent with early studies showing the predominant

form of native, immunopurified p53 is a tetramer and that these tetramers can bind

directly to DNA [22]. Several studies have convincingly shown that oligomerization is

important for regulation of p53 transcriptional and tumor suppressive activities [15].

It is well known that transcription factors bind non–specifically to DNA, in ad-

dition to tight binding to their promoter sites. The inverse k−1
2 is considered as

the average lifetime of the bound state. In this sense, Sprague et al. [71, p. 3482]

have termed release rate constants k2 around 10 s−1 as typical for non–specific DNA

binding whereas values near 10−6 s−1 indicate specific binding. We are aware that

our experimental system overexpresses p53–GFP to some degree. Nevertheless we

take our value k2 = 0.4 s−1 as a sign of non–specific DNA binding of unmodified

p53. This conclusion is supported by our observation that the diffusional mobility

of DNA binding mutants and wild type p53–GFP are identical within error (Table
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II.1). For comparison, Sprague et al. [71] estimate a binding rate k1 = 500 s−1 and a

release rate k2 = 86.4 s−1 for GFP–tagged glucocorticoid receptor (GFP–GR) to be

D = 9.2µm2s−1.

II.5.2 Statistical Analysis

A novel contribution of [30] is the statistical analysis of acceptance or rejection of a

model, as opposed to a statistical test of accepting or rejecting a specific value of a

parameter. It has already been observed that the free diffusion model can be obtained

from the reaction–diffusion model for the choice of the parameter k1 = 0. This is a

particular case of a family of “nested” models, that is an ordered finite collections

of models. Roughly speaking, models of this family are generated by a preceding

model by the inclusion of further hypotheses and parameters, in such a way that

the preceding model is a particular case of the subsequent model, for special choices

of the parameters. For such families, Banks and Fitzpatrick [5] have introduced a

statistical method to test the significance of the subsequent model with respect to the

preceding one. Given a model how statistically significant is it to expand the model

by introducing new mechanisms and parameters? The statistical method of [5] was

applied to test the significance of the binding rate constants k1. It was found that the

diffusion of p53–GFP cannot be explained by the free diffusion alone (k1 = 0). This

method of model discrimination can be applied to any protein, nuclear or otherwise,

that is suspected to undergo binding events, provided that the mathematical models

in use are nested.
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chapter iii

molecular seismology

III.1 Introduction

In many situations and applications it is of interest to understand the dynamics of

interaction between a biopolymer fiber and a ligand, a particle that binds to the fiber.

For instance one would like to understand how proteins move along and around DNA

fibers and interact with the various sequence elements in space and time. Crystal

structures of proteins bound to DNA have shown how certain classes of transcription

factors physically recognize specific DNA sequences, but these data contain very few if

any clues about the dynamical processes that led to the observed static associations.

The suggestion has been made that DNA binding proteins do not undergo three

dimensional diffusion in the nucleus, but rather that they engage in essentially one

dimensional diffusion by hopping or crawling on, along or between the fibers, possibly

biased toward the DNA by a potential [23, 26, 81]. How does a DNA binding protein

acquire a target site? Do DNA binding proteins home in on their cis regulatory

elements (CRE) like a docking space shuttle guided by a potential? Is it possible for

a DNA binding protein to collide with a fiber and then corkscrew along the double

helix like a monorail, riding either the major or the minor groove?

At the core of the approach that we are proposing lies an inverse problem. Many

problems in experimental science are inverse problems of one sort or another, since it

is often easy to measure the output of a system as a whole. If the output is uniquely

determined by some internal property then it becomes possible to invert the known

output to determine the internal property.

The classic example of this is exploration seismology, where the elastic medium
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is the ground, and how it vibrates in response to a sound wave is used to deter-

mine its material properties and perhaps the presence of low density pockets of oil.

Consequently, there is a large literature and significant interest in inverse problems

involving elastic media.

Waves and vibrations have tremendous discriminatory power. This power has

been exploited in many disciplines and applications, but surprisingly not in biophys-

ical assays involving polymer association. This omission seems purely historical and

not technical. In this chapter we report our work on an inverse problem to detect

molecular association of single molecules, and describe an algorithm that could con-

ceivably be used for what we shall refer to as molecular seismology.

As said above, it is currently of great interest to measure how proteins are binding

to an individual DNA fiber in space and time. For this application the DNA can

usefully and practically be conceptualized as an elastic fiber along whose length there

exists a well defined density profile ρ. As a ligand interacts and becomes associated

with a fiber, the density profile will change in space along the fiber and in time if

the ligand moves along the fiber or disassociates. Knowledge of the function ρ(x, t)

should inform us about the dynamics of the association process between the ligand

and the fiber.

The central idea of molecular seismology is to subject single, solvated fibers to

oscillation. How the induced waves propagate and scatter can depend sensitively and

robustly on the material properties of the elastic fiber. Conversely, it is possible to

determine the material properties of an elastic fiber from a measured trace of its

vibration in response to a known impulse. If one can induce and measure vibrations

along a single DNA molecule, incubated with proteins, the dynamics of the density

profile will reveal the associated motion of the proteins along the fiber.

There is strong theoretical and practical evidence to suggest that dsDNA fibers

can be accurately modeled as elastic fibers. Bishop et al. [9] investigate propagation
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of bend and shear waves through and elastic rod and conclude that the chemical

structure of DNA supports elastic wave propagation.

Well posed problems posses unique solutions that change continuously as a func-

tion of the input. For deterministic, semi–infinite strings as well as finite strings,

the reconstruction of material profiles from data have been shown to be well posed

under mild smoothness assumptions on the profile of the material property. Several

algorithms have been proposed in the literature. We have extended one of these to

fit our needs and use it to examine a set of feasible problems. As DNA–protein inter-

actions take place in the condensed phase, thermal fluctuations and viscosity become

important and can confound and degrade the ability to measure vibrations. Very

little is known theoretically. A contribution of [29] is to examine these effects.

III.2 Statement of the Inverse Problem

We consider the one dimensional non–homogeneous wave equation with damping as

a model for the transverse oscillation of the centerline of a double–stranded dsDNA

fiber immersed in an aqueous heat bath,

%(x)utt(x, t) + νut(x, t) − Euxx(x, t) = F (x, t). (16)

The variable x represents the distance along the centerline and takes values in a finite

interval [0, `]. Here u represents the transverse displacement of the centerline. The

mass density % > 0 is assumed to be twice differentiable, see [74, section 3]. The opti-

mal, or weakest, conditions under which inversion theorems can be proved appear to

be unresolved. The friction coefficient ν and the tension E are assumed to be positive,

known constants. The external force F can be either deterministic, stochastic or some

combination of both. A large part of this investigation is devoted to demonstrating

that density inversion is possible for signals from elastic fibers immersed in a frictive
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heat bath.

Throughout the remainder of this chapter, the function ϕ(t) will denote a bound-

ary source. The function ψ(t) will represent additional information corresponding to

a measured response at a boundary point. The boundary data considered here are

either of Dirichlet u(0, t) := ϕ(t), or Neumann ux(0, t) := ϕ(t) type. The function

ϕ is usually chosen to be an approximation of the Dirac δ–function, although it can

be chosen quite arbitrarily, since by linearity of equation (16) any particular choice

determines the response to an impulse δ(t), and this in turn determines the complete

Neumann–to–Dirichlet map [36, section 8.1]. Given initial and boundary conditions

and a density profile it is possible to solve the wave equation (16) and determine the

function ψ, the complementary boundary value. The goal is to study the inversion of

this parameter–to–solution map % 7→ ψ.

The dynamics of the wave equation can be considered with a variety of initial and

boundary conditions. Historically, in exploration geology, shear waves are induced

into a quiescent elastic medium at a boundary and the reflected response is measured

at the same boundary, the surface of the earth.This setup, born of necessity, is in fact

extremely powerful and robust. The setup where excitation source and measurement

occur at the same boundary point is called a reflection problem. In contrast, if the

excitation takes place at one boundary point and the measurement at an interior

point (possibly the other boundary point) one speaks of a transmission problem.

Theoretical results concerning the identifiability of material properties are gen-

erally formulated for wave equations that have been transformed into travel time

coordinates. With the wave speed

c(x) =

√

E

%(x)
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one defines the new space variable z using the transformation

z(x) =
∫ x

0
c−1(ξ) dξ (17)

and calls z the travel time. Since the density is assumed to be strictly positive, the

travel time transformation (17) is injective. This transformation is extremely useful

because it “straightens out” the characteristic curves, see for instance [11] and [74,

Figure 1]. It also makes it possible to define the parameter–to–solution map as a

map between suitable function spaces. In the absence of friction and external forcing,

i.e. if ν = 0 and F = 0 in (16), the wave equation is transformed into

η(z)utt(z, t) − (η(z)uz(z, t))z = 0, (18)

where

η(z) =
√

E%(z)

is called the acoustic impedance. For the case uz(0, t) = δ(t), Symes [73, Theorem

2] proved that ψ(t) = u(0, t) on [0, 2T ] determines the impedance η(z) on z ∈ [0, T ],

provided η ∈ H1[0, T ]. In addition Symes characterized the range of the map η 7→ ψ

and provided a Lipschitz estimate of the type

||η1 − η2||H1[0,T ] ≤ C||ψ1 − ψ2||H1[0,2T ] (19)

where the ψi are the responses corresponding to the impedances ηi. The inequality

(19) is local, i.e. it holds for all η2 in a ball centered at η1. An estimate of the type

(19) is important with regard to the numerical stability of inversion algorithms.

It was shown in [62] and [1] that for a semi–infinite string whose impedance is

constant after a certain point, the transmission and reflection problems are equivalent

for the case of the Neumann–to–Dirichlet map (i.e. where uz(0, · ) is prescribed and
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u(T, · ) is measured). For an impedance η ∈ H1[0, 2T ] that is constant for T ≤

t ≤ 2T , Rakesh and Sacks [62, Theorem 1] showed that ψ(t) = u(T, t) for t ∈ [T, 3T ]

uniquely determines η. Rakesh [60, 61] also showed that impedance inversion from the

Dirichlet–to–Neumann map is well posed for a transmission problem and characterized

the range of the parameter–to–solution map. However, the proof of this result depends

on the fact that the string is semi–infinite and continues past the point of measurement

with constant impedance.

III.3 The Inversion Algorithm

Many algorithms have been proposed to solve inverse problems stemming from one

dimensional wave equations similar to equation (16). We want to mention here the

paper by Santosa and Schwetlick [65], where the related impedance inversion problem

for equation (18) is studied. We have extended and implemented a variational method

proposed by Tadi in [75]. We have chosen this approach because it is flexible with

respect to the model, flexible with respect to the boundary data, works directly with

signals measured in real time (as opposed to travel time), and is robust with respect

to noise. The robustness in the face of noise is not limited simply to additive noise

in the measurement, but the method is robust with respect to natural noise arising

from a frictive heat bath and modeled directly in the equations governing the elastic

media.

The principal idea is to write the density profile as a separable function of space

and time, with a fixed spatial basis and time varying coefficient functions. The time

dependent coefficient functions are allowed to evolve from an arbitrary initial state

to some final equilibrium that presumably fits the true density. For a measurement

ψ on [0, T ], we follow [75] and define a regularized, least squares type, cost functional
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for a pair (u, %) by

J(u, %) =
1

2

∫ T

0
(ψ(t) − u(0, t))2 dt+

α

2

∫ T

0

∫ `

0
%2

t (x, t) dx dt. (20)

The constant α > 0 is a regularization parameter [21, 40] which will play the role of a

numerical damping constant in the iterative algorithm. Notice that the regularization

term goes to zero when the density profile becomes stationary in time. The Euler–

Lagrange equations that result from the cost functional (20) describe the equations of

motion for the time dependent coefficient functions and these equations form the basis

for an iterative numerical algorithm. We will explain the details in the remainder of

this section.

III.3.1 Formulation of the Variational Problem

We begin by considering the reflection problem with boundary conditions

u(x, 0) = ut(x, 0) = 0, ux(0, t) = ϕ(t), u(`, t) = 0,

where, as stated before, the measurement takes place at the same point as the exci-

tation

ψ(t) = u(0, t).

Define the set of admissible functions

D = {(u, %) ∈ C2([0, `] × [0, T ]) × C1([0, `] × [0, T ]) : % > 0, u satisfies (16) }.

Let

G(x, t, u, %) = %(x, t)utt(x, t) + νut(x, t) − Euxx(x, t) − F (x, t).
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The cost functional J is constrained to the level set

G(x, t, u, %) = 0.

The augmented Lagrangian J∗ becomes

J∗(u, %, λ) =
1

2

∫ T

0
(u(0, t) − ψ(t))2 dt+

∫ T

0

∫ `

0

[

α

2
%2

t + λG(x, t, u, %)
]

dx dt,

where λ(x, t) is the Lagrange multiplier. If (ũ, %̃, λ̃) is an admissible variation at

(u, %, λ) then the variation of the augmented cost functional J ∗ in this direction is

δJ∗(u, %, λ; ũ, %̃, λ̃) =
∫ T

0
(u(0, t) − ψ(t))ũ(0, t) dt

+
∫ T

0

∫ `

0
[α%t%̃t + (%utt + νut − Euxx − F ) λ̃

+ λ(utt%̃+ %ũtt + νũt − Eũxx)] dx dt.

Performing integration by parts on all terms that contain %̃t, ũtt, and ũxx gives

δJ∗(u, %, λ; ũ, %̃, λ̃)

=
∫ T

0
(u(0, t) − ψ(t))ũ(0, t) dt+ α

∫ `

0

[

[%t%̃ ]T0 −
∫ T

0
%tt%̃ dt

]

dx

+
∫ T

0

∫ `

0
[(%utt + νut − Euxx − F )λ̃+ λutt%̃ ] dx dt

+
∫ `

0

[

[λ%ũt − (λ%)tũ+ νλũ]T0 +
∫ T

0
[(λ%)tt − νλt ]ũ dt

]

dx

− E
∫ T

0

[

[λũx − λxũ]
`
0 +

∫ `

0
λxxũ dx

]

dt.

The boundary conditions on u require that we add variations ũ which respect these,

i.e.

ũ(x, 0) = 0, ũt(x, 0) = 0,

ũx(0, t) = 0, ũ(`, t) = 0.
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This renders some of the boundary terms in the equation for δJ ∗ zero. We impose

final conditions on the Lagrange multiplier

λ(x, T ) = 0, (21)

∂

∂t
(λ(x, t)%(x, t))

∣

∣

∣

∣

t=T
= λt(x, T )%(x, T ) + λ(x, T )%t(x, T ) = 0. (22)

Because of condition (21), condition (22) only implies that

λt(x, T ) = 0

is necessary. In addition, λ must satisfy the spatial boundary condition

λ(`, t) = 0.

The boundary term containing % must vanish,

%t(x, 0)%̃(x, 0) = %t(x, T )%̃(x, T ) = 0.

This can only be achieved by requiring

%t(x, 0) = %t(x, T ) = 0,

since the alternative, imposing an initial respectively a final condition on % itself is

not sensible. We obtain the following necessary condition for a critical point of the

augmented cost functional J∗

∫ T

0

∫ `

0

{[

(−α%tt + λutt) %̃+ (%utt + νut − Euxx − F ) λ̃+ ((λ%)tt − νλt − Eλxx) ũ
]

dx

+ (u(0, t) − ψ(t) − Eλx(0, t)) ũ(0, t)
}

dt = 0,
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for all admissible variations. With the help of the Lagrange lemma [78] we obtain the

following partial differential equations as necessary conditions to a minimizer

%utt + νut − Euxx = F,

(λ%)tt − νλt − Eλxx = 0,

−α%tt + λutt = 0.

(23)

together with the boundary condition

u(0, t) − ψ(t) = Eλx(0, t). (24)

These equations are supplemented by the initial, final and boundary conditions.

To adapt the above strategy to the transmission problem (32) it is necessary to

modify the cost functional to take into account the boundary conditions

J(u, %) =
1

2

∫ T

0
(ψ(t) − u(`, t))2 dt+

α

2

∫ T

0

∫ `

0
%2

t (x, t) dx dt.

The same partial differential equations (23) are obtained. The backward adjoint

equation has to be supplied with the boundary condition

λx(0, t) = 0, Eλx(`, t) − (ψ(t) − u(`, t)) = 0.

For the problem with homogeneous Dirichlet boundary conditions (33)–(34) the cost

functional J becomes

J(u, %) =
1

2

∫ T

0

(

(ψ1(t) − ux(0, t))
2 + (ψ2(t) − ux(`, t))

)2
dt+

α

2

∫ T

0

∫ `

0
%2

t (x, t) dx dt.
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The boundary conditions to the backward adjoint equation are derived

Eλ(0, t) − (ψ1(t) − ux(0, t)) = 0, −Eλ(`, t) − (ψ2(t) − ux(`, t)) = 0.

For the inverse problem with homogeneous Neumann boundary conditions, the cost

functional J becomes

J(u, %) =
1

2

∫ T

0

(

(ψ1(t) − u(0, t))2 + (ψ2(t) − u(`, t))2
)

dt+
α

2

∫ T

0

∫ `

0
%2

t (x, t) dx dt.

The boundary conditions to the backward adjoint equation are derived

−Eλx(0, t) − (ψ1(t) − u(0, t)) = 0, Eλx(`, t) − (ψ2(t) − u(`, t)) = 0.

III.3.2 The Iterative Algorithm

We describe the iterative algorithm used to solve the Euler–Lagrange system that

results for the inversion problem from reflection data for the case of the Neumann–

to–Dirichlet map. The method of solution for the other cases is completely analogous.

First we argue that there exists a unique optimal solution. Let the true density

%∗ = %∗(x) be given. Let u∗ be the corresponding solution of the wave equation (16)

with boundary conditions (30). Then clearly the second equation of (23) together

with boundary condition (24) imply that the Lagrange multiplier vanishes identically.

This in turn implies that %tt = 0, and with %t(0, x) = 0 it follows that % is independent

of time. In summary, the triple (u∗, %∗, λ∗ ≡ 0) is the unique solution of the system

of partial differential equations (23). This implies that the pair (u∗, %∗) is a critical

point of the regularized cost functional J from equation (20) constrained to the level

set {G(u, %) = 0}, with J(u∗, %∗) = 0 as the critical value. Of course, since α > 0,

this is the global minimal value of J .
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Suppose that an approximate density %n = %n(x), n ≥ 1 has already been calcu-

lated. During an iteration step this time–independent density is used to determine

the solution un of the forward wave equation and the solution λn of the backward

adjoint equation

%n(x)un
tt(x, t) + νun

t (x, t) − Eun
xx(x, t) = F,

%n(x)λn
tt(x, t) − νλn

t (x, t) − Eλn
xx(x, t) = 0,

subject to the boundary condition

−(ψ(t) − un(`, t)) + Eλn
x(`, t) = 0.

Using un and λn, the equation

%tt(x, t) = −
1

α
λn(x, t)un

tt(x, t) (25)

is integrated forward in time, with initial conditions %(0, x) = %n(x), %t(0, x) = 0.

To ensure that the value of the cost functional is decreased, we have to switch the

“direction” along which %(x, t) evolves, hence the minus sign in equation (25), [90].

The density is updated according to

%n+1(x) = %n(x) −
1

α

∫ T

0

∫ τ

0
λn(s, x)un

tt(s, x) ds dτ.

III.4 The Frictive Heat Bath

A principal difference between the inverse problem in seismology and biology, apart

from the scale, is the addition of a frictive heat bath. Intracellular biology happens

in the condensed phase and the DNA fibers we wish to investigate are suspended

in aqueous solution. The fiber is constantly hit by the molecules of the fluid which
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act as a driving force. The effects of a heat bath are traditionally and elegantly

incorporated into molecular models through the combination of viscous dissipation

and random forcing.

We model viscous dissipation by adding νut(x, t) on the left hand side of equation

(16). We also add a random force F (x, t) := Ẇ (x, t) on the right hand side of equation

(16). The notation Ẇ stands for white noise, the (distributional) derivative of the

Brownian sheet W , see [83]. The number of molecules hitting a portion dx of the

string during a time ds will be essentially independent of those hitting a different

portion dy during a time dt. Thus we think of the external force F as of a stochastic

process with expectations

E[F (x, t)] = 0,

E[F (x, t)F (y, s)] = σ2δ(t− s)δ(x− y).

(26)

The solution of the stochastic wave equation is defined as a stochastic process that

satisfies the weak (integral) form of the partial differential equation [83]. See also the

papers by Belinskiy and Caithamer [6, 7].

As described in section III.3, the cost functional J can be utilized with equations

that model a heat bath. We have utilized this approach to study density recon-

struction from various boundary and initial conditions corresponding to potential

experimental designs for manipulating dsDNA fibers in solution. We have identified

two distinct and natural numerical approaches. In an approach denoted as average

over realizations (AOR), a signal is recorded from the model with a realization of

the random force F . The Euler–Lagrange equations (23) directly model this force,

but while we have measured the system response ψ(t), we do not have access to the

particular realization of the random force. Thus, we perform the numerical recon-

struction to convergence, with a random realization of the force that has the same

parameter σ. The reconstruction procedure is performed m times, and results in m
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reconstruction %i, from different realizations Fi of the random force. It is natural to

consider the pointwise average of these

%̄ =
1

m

m
∑

i=1

%i. (27)

In a second approach denoted as average over signals (AOS) we take advantage of

the fact that the average of the random force is zero. In this approach we average

several recorded signals to produce

ψ̄ =
1

m

m
∑

i=1

ψi. (28)

and apply the reconstruction algorithm with mean force equal to zero.

III.5 Results

A standard finite–difference leapfrog scheme was used for the numerical integration

of all occurring wave equations [59]. Spatial discretization was accomplished using

piecewise constant functions. The tension parameter was chosen E = 1. Computa-

tions were performed with matlab and the random force was implemented using the

function randn.

We anticipate, at least initially that a single protein will be binding a DNA fiber.

For this reason, and because it is imagined that signal to noise issues will pose the

dominant experimental challenge, it is sufficient for us to confine ourselves to the

consideration of a simple density profile. The behavior of the cost functional for

a reflection problem, without intrinsic noise and damping, was thoroughly explored

on a large variety of density profiles in [75]. Our focus is on alternative boundary

conditions and reconstructibility in the condensed phase. In order to meaningfully

compare the performance as a function of noise strength it is important to have a gold
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standard density profile. Therefore, we confine our attention to the reconstructibility

of the following smooth density profile

%∗(x) = 1 + exp

(

−
(x− 1/2)2

(1/5)2

)

. (29)

The natural starting density profile for the iterative algorithm is a constant density.

In the AOR procedure it may be desirable to converge solutions from a variety of

independent initial conditions, although we do not focus on this possibility here.

A finite width, smooth approximation of a delta pulse was used as excitation in the

Neumann–to–Dirichlet transmission and reflection problems. As with most iterative

algorithms, one must choose a heuristic stopping criterion. A reasonable criterion

for terminating the iteration procedure is to consider the improvement of the cost

functional

S(n) =
J(%n)

J(%1)
.

Through preliminary reconstructions it was observed that the presence of damping

did not prevent convergence but rather only slowed the rate of convergence. Values

of S as a function of damping strength are reported in table III.1. Given the data

in table III.1 and the theory described in [6, 7] it is reasonable to fix the damping

parameter ν = 1 in subsequent reconstructions and explore a range of noise strengths.

Table III.1: Normalized improvement of the cost functional S after 200 and 400
iterations for a reflection (R) and a transmission (T) problem.

ν SR(200) SR(400) ST (200) ST (400)
0 1.23 · 10−5 1.47 · 10−6 1.53 · 10−4 2.24 · 10−5

1 2.2 · 10−3 1.18 · 10−4 2.96 · 10−2 9.11 · 10−3

2 3.23 · 10−2 1.08 · 10−2 5.7 · 10−2 3.9 · 10−2
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III.5.1 Reconstruction from Reflection

Suppose the source ϕ(t) and the measurement ψ(t) are placed at the same boundary

point, 0, of the interval [0, `]. There are 4 choices of boundary conditions that give

rise to a well–posed direct problem. Since the boundary condition at the far end

does not influence the response up to the two–way travel time only two choices are

relevant,

ux(0, t) = ϕ(t), u(`, t) = 0, ψ(t) = u(0, t), and (30)

u(0, t) = ϕ(t), u(`, t) = 0, ψ(t) = ux(0, t). (31)

The Neumann–to–Dirichlet boundary setup (30) proved to be the most robust in the

sense that it produced the highest quality reconstructions with the fewest iterations,

and the algorithm showed excellent convergence toward the true density, under all

conditions of noise for both reconstruction strategies and with all density profiles.

Reconstructions from signals with damping but without random forcing converge

rapidly to the true density %∗, as can be seen in Figure 4 A, where the 200th and

400th iterates are shown against the true density (29). An AOS reconstruction is

shown in Figure 4 B in comparison with the true density. To obtain this picture 20

responses were averaged according to equation (28), with noise strength σ2 = 4 (see

equation (26)) and damping ν = 1.

Forty reconstructions from a randomly forced (σ2 = 4), damped string (ν = 1),

each using a different realization of the random force are shown in Figure 5 A. Their

average according to equation (27) is shown in Figure 5 B.

In contrast, the Dirichlet–to–Neumann reflection problem (31) was more subtle

and we were not able to converge reconstructions through the cost functional op-

timization using simple delta forcing. This generic forcing was not able to induce

discrimination between the responses to constant and unimodal impedances as can
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Figure 4: Results of the iterative reconstruction algorithm.
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Figure 5: Results of the AOR reconstruction procedure.

be seen in Figure 6 A, B. Figure 6 A shows the Dirichlet responses u(0, t) of a wave

equation in impedance form (18) (without damping and external forcing) to a pulse

uy(0, t) = δ(t), where one string has constant impedance and the other string has an

impedance similar to (29). One sees a clear separation of the responses. This has to

be contrasted against Figure 6 B, where the Neumann responses uy(0, t) are shown,

after the strings were excited by a pulse u(0, t) = δ(t). The failure of the cost func-

tional optimization algorithm in this situation is purely numerical in the sense that

theorems exist, as described in section III.2, that guarantee that the inverse problem

has a unique solution. Furthermore, the algorithm of Santosa and Schwetlick [65],

that is completely symmetric with respect to ϕ and ψ and consequently with respect

to the two distinct boundary conditions, was able to exactly reconstruct the true
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density profile from impulse forcing for an undamped, inhomogeneous wave equation

in impedance form without random forcing. However, the algorithm of [65] failed

when even the slightest damping and/or noise were introduced. There seems to be

no analytical result comparable to that of [73] if damping is present. It is important

to observe that the two algorithms are founded on completely different principles and

that the algorithm of [65] determines the impedance directly from a single response

through its behavior along a special characteristic line y = t. We were able to ob-

tain convergent reconstructions for problem (31) with cost functional optimization

using sinusoidal forcing (data not shown). In Figure 6 C we show the Neumann

responses uy(0, t) of the same strings when they are subjected to sinusoidal forcing

u(0, t) = 8 sin(2πt). The obvious drawback is that in contrast to the generic impulse

forcing, sinusoidal forcing requires a choice of frequency. Given that we know the

true density in our theoretical experiments, it is straightforward to find such a fre-

quency, but in an actual experiment this will be more difficult unless we can discover

a systematic and natural solution to this problem.

III.5.2 Reconstruction from Transmission

If the source and receiver are placed at opposite ends of the fiber then four distinct

well–posed problems result. Of these we focus on the Neumann–to–Dirichlet problem

ux(0, t) = ϕ(t), ux(`, t) = 0, ψ(t) = u(`, t). (32)

The AOS procedure was relatively insensitive to noise in the transmission problem

(32), just as in the reflection problem. In contrast, however, the AOR procedure

produced not only more accurate results than the AOS procedure, but the accuracy

improved with increasing noise strength, in sharp contrast to the behavior observed

in the reflection problem. A partial understanding of this phenomena is provided
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Figure 6: Different discriminative powers for Neumann–to–Dirichlet and Dirichlet–
to–Neumann problems.

by observing and contrasting the individual reconstructions used to compute the

AOR average. In the reflection problem it was observed that independent of the

starting value of the constant density profile, the iterations generally approached

the true density from below. While, in the transmission problem, the individual

reconstructions, that differ in the particular realization of the random force, were far

more uniformly distributed about the true density. In this way the noise appears to

have allowed the iterations to approach the global minimizer from different directions

on the cost surface.

III.5.3 Homogeneous Boundary Conditions

In both the transmission and reflection problems described above, the motion of the

fiber was actuated at a boundary point. In this and the following section we consider

two problems in which data are collected at the boundaries but the vibrations are
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induced through initial data

u(x, 0) = u0(x), ut(x, 0) = v0(x). (33)

The problems are homogeneous in the sense that the boundary conditions are the

same at both ends of the fiber. Two measurements are taken, the complementary

data at both ends. Thus in the Dirichlet case we have

u(0, t) = 0, u(`, t) = 0,

ψ1(t) = ux(0, t), ψ2(t) = ux(`, t).

(34)

The homogeneous Neumann case

ux(0, t) = 0, ux(`, t) = 0,

ψ1(t) = u(0, t), ψ2(t) = u(`, t).

behaved in a qualitative and quantitatively similar way and we omit these results.

III.6 Conclusions

We have demonstrated in [29] that robust density reconstruction from synthetic sig-

nals of an elastic fiber in a viscous heat bath is possible from at least four different

boundary conditions. Based on the premise that some material profile along a sin-

gle molecule of DNA will change as ligands associate with it, we have proposed an

inverse problem to image this change in space and time. We have shown that both

theoretically and numerically it is possible to invert density profiles from simple elas-

tic models. Moreover we have shown that it is possible to do so from fibers immersed

in a frictive heat bath in a natural way. Informed by known mathematical theorems,

our numerical results, and the key technical developments in the field of nanofabrica-
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tion and single molecule detection, we have proposed an experimental strategy with

which it may be possible to record the signals required by our theory of molecular seis-

mology. Preliminary experiments with DNA fibers suspended in solutions are under

way in the laboratory of Dr. Charles Brau, Department of Physics and Astronomy,

Vanderbilt University.
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chapter iv

cytostatic and cytotoxic action of a her2
tyrosine kinase inhibitor

IV.1 Introduction

Molecule–targeted anti–cancer drugs have been developed as a result of our under-

standing of tumor cell and molecular biology. Compared to “traditional” cancer

therapies, targeted drugs such as the tyrosine kinase inhibitors (TKIs) have higher

specificity and relatively lower toxicity in selected patients with corresponding onco-

gene expression. Members of the type 1 receptor tyrosine kinase (RTK) family, which

includes the epidermal growth factor receptor (EGFR), HER2 (ErbB2), HER3 and

HER4 play a crucial role in growth and differentiation of both normal and malig-

nant mammary epithelial cells [34, 63]. Binding of receptor–specific ligands to the

ectodomain of EGFR, HER3 and HER4 results in the formation of receptor dimers

and hetero–oligomers to which HER2 is recruited as the preferred heterodimeriza-

tion partner [88]. HER2 gene amplification has been reported in approximately 20%

of breast cancers, where it is associated with poor patient outcome [68]. Studies

with HER2–overexpressing breast cancer cell lines and human tumors have shown

constitutive phosphorylation of HER2 [2, 77]. Overexpression of HER2 is associated

with transformation of mammary epithelial cells [50, 56] as well as shorter survival

in patients with breast carcinoma [64, 68]. These findings make HER2 a rational

therapeutic target in human breast cancer.

Lapatinib is a selective reversible inhibitor of both EGFR and HER2 tyrosine

kinases. Lapatinib mimics ATP (adenosine triphosphate) and binds to the ATP

site in the tyrosine kinase domain of HER2, resulting in blockade of the receptor’s

catalytic activity [69]. Preclinical data have shown that tumor cells overexpressing
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EGFR or HER2 are growth inhibited by lapatinib both in vitro and in vivo [37, 42, 51].

In a study in which over 30 breast cancer cell lines were tested for their responses

to lapatinib, concentration–dependent antiproliferative effects of lapatinib were seen

in all cells but varied significantly between individual cell lines [42]. Response to

lapatinib is significantly correlated with HER2 expression and its ability to inhibit

the phosphorylation of HER2 and downstream effectors. In phase II clinical trials,

treatment with lapatinib resulted in objective tumor responses in 28% of patients with

HER2–positive advanced breast cancer [37]. Modeling the antiproliferative effects of

this oncogene inhibitor using mathematical tools will lead to novel insights into the

functioning features and mechanisms of the inhibitor. The model may also provide

constructive clinical implications, such as the predictive effects of the inhibitor in

first–line therapy in combination with chemotherapy.

In the study [31] we used MCF10A human mammary epithelial cells engineered

to overexpress HER2 in order to determine the anti–tumor effects of lapatinib. Com-

pared to control MCF10A cells that do not overexpress HER2, MCF10A/HER2 cells

exhibit a gain–of–function phenotype including increased proliferation, as a result of

oncogene overexpression [84]. Lapatinib inhibits the phosphorylation and function of

HER2 in these cells and suppresses growth [84]. Quantitative models can separate

the strengths of drug action on individual phases of the cell cycle. Previous molecular

biological studies have shown that HER2 is associated with increases of both G1–S–

specific cyclins (cyclins D and E) and G2–M–specific cyclin (cyclin A) [27, 43], which

are crucial for G1–S and G2–M progression, respectively. Our objective in [31] was

to use quantitative models to determine if HER2 inhibitors abolish the function on

both phase transitions and how this contributes to cell cycle blockage.

Mathematical modeling has been applied extensively to study the growth kinetics

of tumors, with and without treatment; for a small selection see [8, 24, 25, 38, 39, 46,

70, 80] and the references therein. These authors have focused on phenomena such
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as decelerated growth, quiescence, homeostasis and chemotherapy scheduling. Most

often, partial differential equation models have been used, with spatial position or

age of cells as independent variables.

It has been recognized that, apart from killing cells outright, anticancer drugs can

also act by delaying the progression through the cell cycle. Moreover, this blocking

effect can be phase specific [49]. Transition through one phase of the cell cycle may be

delayed while transition through another phase is unaffected. Mathematical modeling

here provides the tool to test possible alternative scenarios against each other and to

gain new insight. In a series of papers, Ubezio and collaborators used a mathematical

modeling approach to investigate phase–specific cytotoxic and cytostatic effects of

drugs such as cisplatin, melphalan and topotecan in vitro [44, 45, 49, 80]. The model

of Ubezio et al. [49] uses discrete compartments for the maturity of cells and the time

likewise proceeds in discrete steps. The model is difficult to handle as it relies on a

large number of parameters that are not easily interpreted biologically. On the other

hand, a continuous partial differential equation model has been used by Agur and

coworkers [38] to theoretically predict the effect of periodic treatments with cycle–

specific cytotoxic drugs.

IV.2 Experimental Procedures

For a detailed description of the Materials and Methods we refer to [31]. Briefly,

MCF10A/HER2 (engineered to overexpress HER2) cells were grown on 6–well plates

over a time course of 6 days. In addition to the control scenario, cells were treated with

different concentrations (0.1, 0.5, 1 and 2µM) of lapatinib that was added and left in

the medium throughout. At certain time points (every 8 respectively 24 hours), the

total cell number was counted and the cell cycle distribution was determined using

flow cytometry. First, the DNA in each cell of a large population (say 104 cells)

is tagged with the fluorescent marker propidium iodide. The flow cytometer then
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determines from the strength of the fluorescence signal the DNA content in each cell

and produces a histogram. Cells can then be grouped into compartments according

to their DNA content (n 7→ G1, 2n 7→ G2/M); see also [80] for a detailed description.

Recall that during the growth phases G1 and G2 the cell increases its volume while

during the synthesis phase S the DNA is duplicated. Finally, during mitosis M, the

DNA is split evenly among the resulting daughter cells.

The mathematical model was designed to quantify the cytostatic and cytotoxic ef-

fects of the drug on the basis of the population dynamics observed in the experiments.

The model consists of a system of differential equations describing these dynamics

over the 6 day time course (see section IV.3 for a detailed description). Cells are

classified as proliferating or nonproliferating. In the model, proliferating cells are

tracked according to position in the cell cycle by assigning to each cell a variable

called maturity. Maturity in the control scenario (0 µM lapatinib) corresponds to

cell age (i.e. time that has passed since the last mitosis). The maturity values in

the control delimiting the phases of the cell cycle are set at 0 − 7h (G1), 7 − 11h

(S), and 11− 30h (G2/M) (see Figure 7 B and section IV.3 for further explanation).

The model takes into account the variability of intermitotic times with mean age of

division approximately 19h in the control (see Figure 7 A). The mathematical model

was programmed using matlab. A standard upwind scheme is used for the numerical

solution of the partial differential equations [59].

IV.3 The Mathematical Model

Let t ≥ 0 denote the time since the beginning of the experiment and a ∈ [0, a1] denote

the maturity of a cell. This maturity variable can be thought of as the position of a cell

in its cell cycle. We wish to emphasize that in the absence of cytostatic effects of drugs,

maturity coincides with chronological age, the time since cell division. In experimental

terms, maturity is measured by differential DNA–content. See the discussion in [80]
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Figure 7: A Distribution of intermitotic times ϕ. B The relative tendency to enter
the nonproliferating class.

for further information.

Let p(a, t) and q(a, t) denote the densities of proliferating and nonproliferating

cells, respectively, of maturity a at time t. The total number of cells at time t is

obtained by integrating both densities over the age space

N(t) =
∫ a1

0
(p(a, t) + q(a, t)) da. (35)

We state our model equations which balance the biological processes occurring in

time

∂

∂t
p(a, t) +

∂

∂a
((1 − δ(a, t))p(a, t)) = −(β(a) + µ̃(a,N(t)) + ε(t))p(a, t), (36)

∂

∂t
q(a, t) = µ̃(a,N(t))p(a, t) − ε(t)q(a, t), (37)

(1 − δ(0, t))p(0, t) = 2
∫ a1

0
β(a)p(a, t) da, (38)

p(a, 0) = p0(a),

q(a, 0) = q0(a).

The left hand side of equation (36) describes the aging process for proliferating cells.

On the right hand side of the same equation we find that cells of maturity a are

lost due to three independent processes. Firstly, cells undergo mitosis, at a rate β
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depending on a. Such a cell shows up as two proliferating cells of maturity 0, hence the

boundary condition (38). Secondly, proliferating cells are also lost due to a transition

into the nonproliferating class. In contrast to proliferating cells, the nonproliferating

cells do not mature and do not give rise to new cells. The rate at which the transition

between the two classes occurs, µ̃, depends on the maturity a of the respective cell as

well as on the total number of cells N . We set

µ̃(a,N) = µ(a)















c(N −N0) if N ≥ N0

0 otherwise
. (39)

The function µ(a) is depicted in Figure 7 B and its parameters are given in table IV.1.

The particular choice of a piecewise constant function is a result of the experimental

observations for the control scenario (Figure 8 B). Indeed we saw that the percent-

ages of cells in specific phases change after day 4, as more and more cells enter the

nonproliferating class. We find it plausible that a cell that has entered S–phase will

finish it and therefore be less prone to entering nonproliferation. Thirdly, there is an

additional time–dependent cytotoxic effect ε for both classes in the presence of drug.

We assume the log–kill hypothesis, i.e. the cell kill is proportional to the instanta-

neous population [67]. Both equations are supplied with initial maturity distributions

p0 and q0 at time 0.

The cytostatic action of the drug changes the maturation velocity 1 − δ of the

proliferating cells. The ordinary differential equation

da

dt
= 1 − δ(a, t) (40)

describes the characteristic curves of equation (36). Since maturation is irreversible,

the function δ must satisfy 0 ≤ δ(a, t) ≤ 1. In the absence of cytostatic effects, we

have δ = 0. Then a − t = const, that is cells age one–to–one with time, as stated
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earlier. On the other hand, if δ ≈ 1, cell maturation is (almost) completely blocked.

Observe from equation (40) that δ is a dimensionless quantity.

The model predicts the total cell number (35) as well as the percentages of cells in

the three stages of the cell cycle. (Cells in G2– and M–phases are counted together.)

These are defined as

G1(t) =
∫ aG1

0
(p(a, t) + q(a, t)) da

/

N(t),

S(t) =
∫ aS

aG1

(p(a, t) + q(a, t)) da

/

N(t),

G2(t) =
∫ a1

aS

(p(a, t) + q(a, t)) da

/

N(t),

(41)

where the boundaries between compartments aG1
and aS are chosen on the basis of

experimental observations and a1 is the maximum age (see Table IV.1 and Figure

7 B). More precisely, the control scenario data were used to fix the parameters aG1

and aS. We compared the fractions of cells in each phase over time, determined by

analysis of DNA content, to the model simulation from equations (41).

Following [17], we have chosen the distribution of intermitotic times ϕ to be a

specific shifted Γ–distribution

ϕ(a) = Φ(a− am; ρ, σ) =
(a− am)e−(a−am)/σ

σ2
. (42)

Here am is the minimal maturity a cell has to reach before it can divide. The param-

eter σ determines the standard deviation of φ (see table IV.1 and Figure 7 A for our

choice of ϕ and β). The corresponding age–dependent proliferation rate is given by

β(a) =
ϕ(a)

α(a)
,

where

α(a) =
∫ ∞

a
ϕ(s) ds
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is the fraction of cells that reach age a without division (see Figure 7 A). We allow

for a certain percentage to reach maximum age a1 without division. As argued by

Tubiana [79], the mean duration of the cell cycle in solid tumors is relatively constant

and therefore not influenced by the total cell number N .

Another source of uncertainty lies in the initial age distributions p0 and q0 at

time 0. The experimental data indicated that initially proliferating cells in all stages

of the cell cycle were present while there were no nonproliferating cells. It should

be remarked that in the absence of nonlinear crowding effects one would observe

asynchronous exponential growth (see section V.2 for more explanations of this ter-

minology). That is, the total cell number would grow exponentially with a certain

well–defined rate λ while the percentage of cells in each age bracket would approach a

steady state. This phenomenon has been widely studied in the population dynamics

literature; we refer here to [19] and the references therein.

How do we let the drug act on the cells? We want to test the hypothesis that only

cells in G1–phase are blocked while cells in other phases remain unaffected. Hence,

we let

δ(a, t) = δG1
(d)

t

T















1 if 0 ≤ a ≤ aG1

0 otherwise
, (43)

where d is the drug concentration, δG1
(d) ≤ 1 is a concentration–dependent rate corre-

sponding to maximum blocking effect and T = 144h is the duration of the experiment.

We decided to let the action increase linearly with respect to time throughout the

entire duration of the experiment. When we tried the simplest way to model time

dependence, namely a sudden switch from 0 to a constant δG1
> 0, the model pre-

dicted oscillations in the percentages that were not present in the experimental data.

At the higher concentration of 2µM it becomes necessary to introduce an action of

the drug on cells in G2/M–phase, similar to equation (43). In order to explain the

decrease of cell counts from day 5 to day 6 we assume that the additional mortality
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is of the type

ε(t) = max{0, ε0(d) · (t− 120)}.

We list the numerical values of the parameters that are fixed throughout all sce-

narios in table IV.1. The values of the parameters δG1
(d) and ε0(d) that differ for the

specific concentrations are stated in table IV.2.

Table IV.1: Numerical values of the parameters that are fixed throughout all scenar-
ios.

parameter numerical value remarks
aG1

7h G1/S–boundary in absence of drugs
aS 11h S/G2–boundary in absence of drugs
am 15h minimal age for division
a1 30h maximal cell age
σ 2 standard deviation of intermitotic times
c 0.22 nonproliferation constant
N0 6 · 105 cells crowding threshold for nonproliferation
µ(a) {1, 0.25, 0.6} see Figure 7 B

IV.4 Results

In the control scenario (without treatment) the experimental data showed an initial

exponential increase of the population and then a leveling off (see Figure 8 A). Dis-

crete symbols in Figure 8 mark experimental measurements while continuous curves

are the predictions of the model. To explain this leveling off, the nonproliferating

cell class was incorporated into the model. Nonlinear models with nonproliferating

subpopulations have been used extensively to explain Gompertzian growth kinetics

of tumors [24, 25]. Proliferating cells enter the nonproliferating class irreversibly at a

rate dependent on their maturity and the total population count of both proliferating

and nonproliferating cells. This nonlinearity in the model accounts for the confluence

observed in the control study on day 6. Staining of cells with the marker for prolifer-
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ation Ki–67 showed a dramatic decrease of the proliferating fraction from 100 % on

day 4 to 4% on day 6 (data not shown), well borne out by the numerical simulation

(Figure 8 A, open circles). In the model, nonproliferating cells arrested their matu-

rity value at the moment of transition from proliferation (see equations (36)–(37)).

Notice the observed shift in the cell cycle distribution from day 4 on (Figure 8 A). No

mortality of cells was assumed in the model for the control, since no decrease in cell

numbers was observed. In addition, staining for the marker of apoptosis Caspase–3

was negative for the control (data not shown).

The model for the control case was used as a reference for the treatment cases,

with two separate effects of the drug added. The first was the cytostatic effect,

which slowed maturation velocity. Our numerical simulations indicate that lapatinib

preferentially blocks cells in G1–phase. At higher concentration (2µM) the model

also incorporates blocking effects in G2/M phase. We find that the strength of the

cytostatic effect saturates at higher concentrations (see Table IV.2 and Figure 9 A).

The second effect of the drug was a cytotoxic action. This was incorporated into the

model to explain the decrease in cell counts from day 5 to day 6, which was not present

in the control (Figure 10). In the model it was assumed that this cytotoxic action only

set in after 5 days. The model simulations agreed substantially with the experimental

data, both in the total population counts and the flow cytometric data (Figure 8

C, D, where curves for the particular concentration 1µM are shown). Owing to

uncertainty in the experimental measurements, there were some discrepancies in the

fit, particularly for the flow cytometric data during days 1 − 3.

Table IV.2: Cytostatic and cytotoxic effects as functions of drug concentration.

drug concentration (d, µM) 0.1 0.5 1 2
δG1

(d) 0.3 0.6 0.77 0.92
δG2

(d) 0 0 0 0.8
ε0(d) 6 · 10−4 1.1 · 10−3 1.3 · 10−3 1.8 · 10−3
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Figure 8: Total cell counts and flow cytometric data for untreated and treated cells.

We find that the dependence of δG1
(d) on the drug dosage d is described very well

by the equation

δG1
(d) =

c1d

1 + c1d
(44)

with c1 = 3.5 (Figure 9 A). The effect increases linearly at first and saturates at

higher concentrations. A similar behavior can be surmised for the dependence of the

cytotoxic effect ε0(d), which follows

ε0(d) =
c2d

1 + c3d
(45)

with c2 = 4.7 · 10−3 and c3 = 2.1 (Figure 9 B). The functional relationships (44) and

(45) are usable for any concentration within a certain range.
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IV.5 Discussion and Conclusion

The mathematical model provided a means to separate the cytostatic and cytotoxic

action of the drug in the experiments. We summarize our findings as follows.

IV.5.1 Cell Cycle Specificity of Cytostatic Effects

The strength of the cytostatic effects depends on the drug dosage; the drug shows

saturation kinetics (see the last section and Figure 9 A for details). At low concen-

trations (0.1 − 1µM) only cells in G1–phase are delayed. At higher concentrations

(2µM) we hypothesize, on the basis of our model simulations, that cells in G2–phase

are delayed as well and may be prevented from entering mitosis. It was not necessary

to introduce a cytostatic effect for cells in S–phase. We therefore suggest that cells

in S–phase remain unaffected at all concentrations.

IV.5.2 Dynamic Behavior

Our numerical simulations indicate a buildup phase for the drug action that stretches

over several days. Initially we assumed a sudden onset of the cytostatic action after

a certain time. The simulations showed pronounced oscillations in the fractions of

cells in each phase that were not observed in the data (simulations not shown). We
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Figure 10: Combined cell counts and simulations for the control and various drug
concentrations (in µM).

then assumed a gradual increase (with respect to time) of the cytostatic effects. As

the cycle time of an average cell is less than one day, we conjecture that the initial

effects of the drugs alters a cell’s protein contents but still allows division. Only after

several generations is the progression of the cells through the respective cell cycle

phases fully retarded. The same holds for the loss of cells. This can be explained

by the functional mechanism of the drug and the nature of cell mitosis. Oncogene

inhibitors such as lapatinib affect the activities of oncogene downstream effectors,

which usually include regulatory proteins crucial for proliferation and survival. As

cytoplasmic division occurs during mitosis, the inhibitory effect of lapatinib on these

crucial effectors can be “inherited” as protein concentration in the cytosol, where

the drug effect can further accumulate. Once the concentrations of these crucial

proteins exceed certain thresholds, physiological effects such as growth arrest and

apoptosis will be induced in the descendant cells. The conclusions that the length
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of lapatinib treatment is crucial for the overall drug effects, and that it takes several

cell generations for the drug to show a clear cellular effect, especially at a lower

concentration, may have potential clinical implications.

IV.5.3 The Cytotoxic Effect

A model with cytostatic action alone cannot lead to a decrease in total cell number,

which made it necessary to introduce a cytotoxic effect. To explain the additional

mortality of cells after 120 hours, we propose that cells in which progression through

the cell cycle has been retarded for too long become prone to apoptosis in the presence

of lapatinib. We conjecture that the strength of the cytotoxic effect also saturates at

higher concentrations, as is suggested by Figure 9 B.

While it is difficult to extrapolate conclusions from our in vitro study to the in

vivo situation, the following suggestions are plausible. Lapatinib acts chiefly through

slowing the progression of proliferating cells in monolayer culture. Furthermore, it is

advisable to combine lapatinib with cytotoxic therapeutic agents that kill not only

proliferating cells but also quiescent cells, such as some alkylating agents. These

drugs may complement the antitumor effect of lapatinib and therefore serve as good

candidates to be tested in combined treatment in the future.

We have shown that a mathematical model based on population dynamics can be

applied to interpret the cytostatic and cytotoxic effects of lapatinib. Earlier math-

ematical models [49] used a discrete partition of the cell cycle in age compartments

and also a discrete time scale. We find that continuum models are advantageous from

the viewpoint of parametrization and computability. In particular, the number of free

parameters in our model is significantly smaller than in previously proposed models

and each has a straightforward biological interpretation. Our model can certainly be

applied to other oncogene inhibitors that have cytostatic effects on cells of a specific

phase during the cell cycle.
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chapter v

investigation of the age–structured models

In this chapter we consider two models for structured populations with proliferating

and nonproliferating cells. The first is characterized by the fact that nonproliferating

cells do not mature and was used in chapter IV. The second model has aging non-

proliferating cells. There the age is the chronological age, the time that has passed

since the last mitotic event.

V.1 The Maturity Structured Model

We consider a model for proliferating and nonproliferating cells, structured by a

variable that we call maturity age. Nonproliferating cells do not mature, they are

“stuck” at their last stage in the proliferation cycle. Only a transition from the

proliferating to the nonproliferating class is possible and the rate of this transition

depends on both age and the total number of cells. The birth process is linear and

not affected by the total number of cells.

Our first model consists of the following equations

∂

∂t
p(a, t) +

∂

∂a
p(a, t) = −(β(a) + σ(a,N(t)))p(a, t),

∂

∂t
q(a, t) = σ(a,N(t))p(a, t),

p(0, t) = 2
∫ ∞

0
β(a)p(a, t) da,

p(a, 0) = p0(a),

q(a, 0) = q0(a).

(46)
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Here and throughout this chapter

N(t) = ||p(t)|| + ||q(t)|| =
∫ a1

0
(p(a, t) + q(a, t)) da (47)

will be the total population1 with a1 finite or infinite. The age space will be the

half–line [0,∞) in the first subsection and the bounded interval [0, a1] in the second.

We assume that σ(a,N) is nonnegative, not identically zero for every N > 0, and

increasing with respect to N . We assume throughout this chapter that σ(a,N) is

Lipschitz continuous with respect to N on bounded subsets, i.e. for N, N̄ ≤M there

exists a constant C = CM such that

|σ(a,N) − σ(a, N̄) ≤ C|N − N̄ |

for all a ∈ [0, a1]. Further, we assume there exists an ε > 0 and N ∗ > 0 such that

β(a) − σ(a,N) ≤ −ε < 0 (48)

for all a and N ≥ N ∗ and an upper bound γ > 0

σ(a,N) ≤ γ (49)

for all a and N . These hypotheses will be used to show the global boundedness of p

and q later on. We assume that β is measurable, essentially bounded and positive.

We assume the compatibility condition for boundary and initial data

p0(0) = 2
∫ ∞

0
β(a)p0(a) da,

for p0 ∈ L1(0,∞).

1Here and in the sequel || · || denotes the L
1–norm, all other norms will be indexed.
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There are essentially two ways to show existence of mild solutions to problem

(46). One is through Volterra integral equations and is carried out in the book by

Iannelli [35]. An alternative way to prove existence of solutions is through semigroups

of operators (linear or nonlinear) on a Banach space. The references are the books

by Pazy [52] and by Webb [85].

Definition 1. Let (Y, || · ||) be a Banach space. A family (U(t))t≥0 of linear, bounded

operators is called a strongly continuous semigroup (or a C0–semigroup) if

(i) U(0) = I,

(ii) U(t+ s) = U(t)U(s), and

(iii) limt→0+ ||U(t)y − y|| = 0 for all y ∈ Y .

The influence of the second equation of (46) on the first is very weak in the sense

that

σ(a, ||p|| + ||q||) ≥ σ(a, ||p||),

thus a presence of nonproliferating cells only increases the loss rate for proliferating

cells. Let Y = L1(0,∞) with positive cone

Y+ = {p ∈ Y : p ≥ 0 a. e. }

and define

D(A) =
{

p ∈ W 1,1(0,∞) : p(0) = 2
∫ ∞

0
β(a)p0(a) da

}

,

Ap = −(p′ + βp).

The domain D(A) is dense in Y [85, Proposition 3.8], and A is a closed operator [57].

Furthermore, A is the infinitesimal generator of a positive C0–semigroup (U(t))t≥0

on the Banach space Y , i.e. Y+ is invariant under U [57]. The semigroup U has the
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growth bound

||U(t)|| ≤ e||β||∞t.

Now we consider the abstract nonlinear equation

d

dt
p = Ap+ F (p),

p(0) = p0,

(50)

with p0 ∈ Y+. The nonlinearity has the form F : Y → Y ,

F (p) = −σ( · , ||p||)p, p ∈ Y. (51)

The nonlinearity F satisfies a Lipschitz condition with respect to p on bounded sets,

by the assumptions on σ. The unique mild solution p(t) ∈ Y+ of (50) is given by

p(t) = U(t)p0 +
∫ t

0
U(t− s)F (p(s)) ds.

F is bounded (F (B) is bounded for all bounded sets B ⊂ Y ) and satisfies

(F (p), p)− ≤ 0,

where the semi–inner product is defined by

(u, v)− = min{(u, v∗) : v∗ ∈ Y ∗, ||v∗|| = ||v||, (v, v∗) = ||v||2}.

Therefore, [57, Theorem B (iii)] guarantees that mild solutions exist for all t, they

remain positive for positive initial valueas, depend continuously of the initial value p0

and satisfy a growth estimate

||p(t)|| ≤ ||p0||e
||β||∞t.
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Moreover, if σ is differentiable with respect to N and p0 ∈ D(A) ∩ Y+ then the mild

solution is also a strong solution, i.e. p(t) ∈ C1([0,∞);D(A)∩Y+) and the differential

equation (46) is satisfied.

We will now show that solutions to model (46) remain bounded. As abbreviations

we set P (t) = ||p( · , t)|| and Q(t) = ||q( · , t)||.

Theorem V.1.1. Let the conditions (48) and (49) hold and let (p, q) be a strong

solution of (46). Then

P̄ = lim
t→∞

P (t) (52)

and

Q̄ = lim
t→∞

Q(t) (53)

exist and are finite.

Proof. Assume that N(t) → ∞ as t→ ∞. Since

N ′(t) =
∫ ∞

0
β(a)p(a, t) da ≥ 0

(for a strong solution N ′(t) exists), N is nondecreasing. Thus there exists a time t1

such that N(t) ≥ N ∗ for all t ≥ t1. Using condition (48) we find the estimate

P ′(t) =
∫ ∞

0
(β(a) − σ(a,N(t)))p(a, t) da ≤ −εP (t)

for t ≥ t1 and therefore

P (t) ≤ e−ε(t−t1)P (t1)

for t ≥ t1. Hence P remains bounded. For the rate of change of Q we have the

estimate

Q′(t) =
∫ ∞

0
σ(a,N(t))p(a, t) da ≤ γP (t) ≤ e−ε(t−t1)P (t1)
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for t ≥ t1, where we have used condition (49). Thus

Q(t) ≤ Q(t1) +
γP (t1)

ε

(

1 − e−ε(t−t1)
)

for t ≥ t1. In summary, N(t) = P (t) +Q(t) is bounded and increasing, let

N̄ = lim
t→∞

N(t).

Since Q′(t) ≥ 0 and Q(t) ≤ N̄ , the limit of Q(t) as t → ∞ exists and the claim (53)

is shown. Finally

lim
t→∞

P (t) = lim
t→∞

N(t) − lim
t→∞

Q(t) = N̄ − Q̄,

the claim (52) holds. �

V.2 The Model with Aging Nonproliferating Cells

In the model (46) the nonproliferating cells do not mature. An alternative model was

proposed by Arino et al. [4, 19]. In that model, the age variable has the interpretation

of chronological age, that is the time since the last mitotic event.

The equations for proliferating and nonproliferating cells are

∂

∂t
p(a, t) +

∂

∂a
p(a, t) = −(β(a) + σ(a,N(t)))p(a, t) + τ(a,N(t))q(a, t),

∂

∂t
q(a, t) +

∂

∂a
q(a, t) = σ(a,N(t))p(a, t) − τ(a,N(t))q(a, t),

p(0, t) = 2f
∫ a1

0
β(a)p(a, t) da,

q(0, t) = 2(1 − f)
∫ a1

0
β(a)p(a, t) da,

p(a, 0) = p0(a),

q(a, 0) = q0(a).

(54)
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The age space is now the finite interval [0, a1]. Individuals can move back and forth

between the proliferating and nonproliferating classes, at rates that depend on the

total population defined as in equation (47). For fixed N we assume that the func-

tions σ( · , N) and τ( · , N) are bounded and measurable. The constant 0 < f ≤ 1

determines the probability of entering the proliferating class upon birth. The birth

rate satisfies β ∈ L∞(0, a1). Loss of cells occurs through proliferating and nonpro-

liferating cells that reach the maximum age a1. For fixed a we assume that σ(a, · )

is increasing, τ(a, · ) is decreasing and that both functions are Lipschitz continuous

(with respect to N) on bounded sets. We define

D(A) =
{

(p, q) ∈W 1,1(0, a1) ×W 1,1(0, a1) : p(0) = 2f
∫ a1

0
β(a)p(a) da,

q(0) = 2(1 − f)
∫ a1

0
β(a)p(a) da

}

,

A =









−
(

∂
∂a

+ β
)

0

0 − ∂
∂a









and

F









p

q









=









−σ(a,N(t)) τ(a,N(t))

σ(a,N(t)) −τ(a,N(t))

















p

q









.

Let U be the positive C0–semigroup generated by the operator A. We consider the

nonlinear problem (51) with the new choices for A and F . It was shown in [19]

that the C0–semigroup corresponding to the linear problem (i.e. where σ and τ are

independent of N) possesses the property of asynchronous exponential growth, which

we are going to define now. The following assumptions are made in [19], that we

adopt as well for the remainder of this section. There exists ε0 > 0 such that

∫ a1

a1−ε
β(a) da > 0, (55)

for all 0 < ε < ε0. That is, the oldest cells in the proliferating class are still able to
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proliferate. This avoids trivial cases where the support of the initial datum p0 lies

beyond the support of β (this would result in a complete loss of proliferating cells).

In addition
∫ a1

a1−ε
τ(a) da > 0 (56)

for all 0 < ε < ε0. That is, the oldest cells in the proliferating class still proliferate

and the oldest nonproliferating cells can still return to the proliferating class. If f = 1

then the additional assumption

∫ ε

0
σ(a) da > 0 (57)

for all 0 < ε < ε0 is made. That means, some of the youngest proliferating cells can

exit their class. Roughly speaking, conditions (55) and (56) guarantee the “spreading”

over the entire age space of a population that initially consists only of old proliferating

or only of nonproliferating cells. Condition (57) guarantees that nonproliferating cells

of all ages will occur, in case all cells are born proliferating.

Definition 2. A semigroup U(t) on the Banach space X has asynchronous exponen-

tial growth if there exists λ ∈ R and a rank one projection P0 on X such that

lim
t→∞

e−λtU(t)x = P0x

for all x ∈ X.

In the context of population dynamics the parameter λ is commonly known as the

Malthusian or intrinsic growth parameter. It was shown in [19, Theorem 2] that the

linear semigroup V (t) associated with the problem (54), but with σ and τ independent

of N has asynchronous exponential growth. Moreover, the parameter λ is determined
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as follows. Let W : [0, a1] →M2, the set of positive real 2 × 2 matrices

W (a) =









w11(a) w12(a)

w21(a) w22(a)









be the solution of the matrix ordinary differential equation

W ′(a) =









−(β(a) + σ(a)) τ(a)

σ(a) −τ(a)









W (a), W (0) = I.

Then λ is the unique solution of the characteristic equation

∫ a1

0
2β(a)e−λa(fw11(a) + (1 − f)w12(a)) da = 1. (58)

Notice that the parameter λ is completely determined by the parameters of the prob-

lem σ, τ and β and it may be either positive or negative.

In [19] the authors raised the question how the growth behavior would change for

transition functions σ and τ that are nonlinearly dependent on the total population.

We want to show in the remainder of this section that nontrivial equilibrium solutions

exist.

To find an equilibrium solution of (54) we set the time derivative in the first two

equations of (54) to zero. Let

B(a,N) =









−(β(a) + σ(a,N)) τ(a,N)

σ(a,N) −τ(a,N)









.

By our assumptions on the Lipschitz continuity of σ and τ and the boundedness of

β, B(a,N) is clearly a continuous and bounded matrix function with respect to N.
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We obtain the ordinary differential equation









p

q









′

= B(a,N)









p

q









(a),

where

N =
∫ a1

0
(p(a) + q(a)) da = ||p|| + ||q||.

Let

W (a,N) =









w11(a,N) w12(a,N)

w21(a,N) w22(a,N)









∈M2

be the fundamental solution of the matrix ordinary differential equation [16, chapter

3, section 2]

W ′(a,N) = B(a,N)W (a,N), W (0, N) = I.

Closely related to the Malthusian growth parameter from equation (58) is the net

reproductive rate at constant population N which is given by

R(N) = 2
∫ a1

0
β(a)(fw11(a,N) + (1 − f)w12(a,N)) da,

compare this to [19, Theorem 2]. Notice that R(N) is completely determined by the

parameters of the problem σ, τ and β and may be greater or less than 1. For given

(p0, q0) and N set








P

Q









(a) = W (a,N)









p0

q0









. (59)
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Note that









P

Q









(a) ∈ R
2
+. Clearly









P

Q









′

(a) = B(a,N)









P

Q









(a),









P

Q









(0) =









p0

q0









.

We notice for further use that P and P ′ are bounded on bounded sets of arguments

p0, q0, N and 0 ≤ a ≤ a1

|P (a)| ≤ C1, |P ′(a)| ≤ C2, (60)

the same holds for Q and Q′.

We can now reformulate the problem of finding an equilibrium solution to problem

(54) as a fixed point problem. Let X be the Banach space X = L1(0, a1)
2 × R

2 with

norm

||(p, q, p0, q0)||X = ||p|| + ||q|| + |p0| + |q0|

and let C be the standard positive cone in X. For a 4–tuple (p, q, p0, q0) ∈ C define

T (p, q, p0, q0) =

























P ( · ; p, q, p0, q0)

Q( · ; p, q, p0, q0)

2f
∫ a1

0 β(a)P (a; p, q, p0, q0) da

2(1 − f)
∫ a1

0 β(a)P (a; p, q, p0, q0) da

























,

where P and Q are defined as in equation (59) with N = ||p|| + ||q||. Since T is

a composition of bounded and continuous maps it is itself bounded and continuous

with respect to all its arguments. We look for a fixed point in C,

T (p, q, p0, q0) = (p, q, p0, q0).
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We proceed as in the proof of and [58, Theorem 1] and [85, Theorem 4.1]. There, the

following theorem due to H. Amann [3, Theorem 12.3] is used.

Theorem V.2.1. Let X be a Banach space, let C be a closed convex cone in X, let

γ > 0 and set Cγ = C ∩ BX(0, γ). Suppose f : Cγ → C is a continuous map and

f(Cγ) is relatively compact. Assume further that

(i) f(x) 6= λx for all x ∈ Cγ with ||x|| = γ and all λ > 1, and

(ii) there exists δ ∈ (0, γ) and x1 ∈ C, x1 6= 0, such that

x− f(x) 6= λx1

for all x ∈ C with ||x|| = δ and all λ > 0.

Then f has a fixed point x0 ∈ C with δ ≤ ||x0|| ≤ γ.

We need conditions to guarantee that both 0 and ∞ are repelling, i.e. that the

total population does not die out or grows beyond every bound. These conditions are

(a) There exists N∗ > 0 such that the triple (σ( · , N), τ( · , N), β) has the property

that R(N) > 1 for all N ≤ N∗.

(b) There exists N ∗ > N∗ such that the triple (σ( · , N), τ( · , N), β) has the property

that R(N) < 1 for all N ≥ N ∗.

These conditions are quite natural, as a small population is expected to grow while

a large population is expected to shrink. We state the theorem.

Theorem V.2.2. Let conditions (a) and (b) be satisfied. Then there exists at least

one nontrivial equilibrium solution of (54).

Proof. We fix γ = N ∗(1 + 2||β||∞). The map T was shown to be continuous and

bounded earlier. The image T (Cγ) has compact closure as will be shown now. We
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use Kolmogorov’s criterion for compactness in L1, [18, Theorem 20.3]. It says that a

closed and bounded set M ⊂ L1(0, a1) is compact if and only if

lim
h→0

∫ a1

0
|φ(a+ h) − φ(a)| da = 0, (61)

uniformly in h, for all φ ∈M . Here we define φ(a+ h) = 0 if a+ h /∈ [0, a1]. To show

(61) for P ( · ; p, q, p0, q0) ∈M =: T (Cγ)), let h > 0 and compute

∫ a1

0
|P (a+ h) − P (a)| da =

∫ a1−h

0
|P (a+ h) − P (a)| da+

∫ a1

a1−h
|P (a)| da

≤
∫ a1−h

0

∫ a+h

a
|P ′(b)| db da+

∫ a1

a1−h
|P (a)| da

≤ h(C2a1 + C1),

where we use the bounds provided by (60) and (61) follows. (The bounds from (60)

continue to hold for the closure of T (Cγ).) The case h < 0 is treated analogously and

(61) holds for the function Q as well.

We show condition (i) of Theorem 2. Suppose there exists λ > 1 such that

λ(p, q, p0, q0) = T (p, q, p0, q0)

with ||(p, q, p0, q0)||X = γ. Observe that in this case

q0 = p0 1 − f

f
.
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If p0 = 0 then it would follow q0 = 0 and hence p ≡ q ≡ 0 by equation (59). Thus

p0 6= 0 and

λp0 = 2f
∫ a1

0
β(a)P (a; p, q, p0, q0) da

= 2f
∫ a1

0
β(a)(p0w11(a,N) + q0w12(a,N)) da

= 2p0
∫ a1

0
β(a)(fw11(a,N) + (1 − f)w12(a,N)) da = p0R(N)

(62)

implies that λ = R(N) > 1. By assumption (b), ||p|| + ||q|| < N ∗. It follows

γ = ||p|| + ||q|| + p0 + q0 < N∗ + 2λ−1
∫ a1

0
β(a)P (a; p, q, p0, q0) da

= N∗ + 2
∫ a1

0
β(a)p(a) da ≤ N ∗(1 + 2||β||∞)

!
= γ.

This is a contradiction, by the choice of γ.

Finally, to show condition (ii) of Theorem 2, choose δ = N∗ and x1 = (0, 0, 1, 0).

Assume there exists λ > 0 such that

(p, q, p0, q0) − T (p, q, p0, q0) = λx1

with ||(p, q, p0, q0)||X = δ. Then, as in equation (62)

p0 − 2f
∫ a1

0
β(a)P (a; p, q, p0, q0) da = λ.

This implies p0(1 − R(||p|| + ||q||)) = λ > 0. By assumption (a), R(||p|| + ||q||) > 1

and thus p0 < 0. This is a contradiction to the assumed positivity. The conditions of

Theorem 2 are satisfied and a nontrivial equilibrium solution of problem (54) exists.

�
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chapter vi

conclusion and outlook

In summary, we have used successfully partial differential equation models to study a

range of diverse phenomena. While age–structured population models been used for

more than 80 years [47, 66], their application to growing of cell populations – to the

best of our knowledge – new.

As this thesis is being prepared and submitted we have just started a new col-

laboration with Emily Wang and Glenn Webb. The goal is to investigate the pro–

and antitumor effects of the transformed growth factor TGF–β. It is known from

biological experiments that TGF–β on the one hand increases the motility of cells

(thereby potentially promoting invasion and metastasis) and on the other hand slows

down the growth of cells. We have developed a mathematical model based on the

Kolmogorov–Fisher equation

∂

∂t
u(x, t) = D∆u(x, t) + αu(1 − βu). (63)

Here D denotes the diffusion constant and α the growth rate. It is well known that

equation (63) exhibits traveling wave solutions [41]. What makes this model interest-

ing and challenging is the fact that both proliferation and random motility contribute

to the spatial spread of the cell population. Thus both effects must be incorporated

into the diffusion constantD in equation (63). Experiments are currently underway to

determine the influence of TGF–β on the random motility of MCF10A cells and also

its effects on cell–cell adhesion. At later stages we plan to include further variables

such as extracellular matrix and matrix–degrading enzymes.
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