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CHAPTER I: INTRODUCTION 

 

Overview 

The concepts of vulnerability and resilience have been gaining attention in the realm of 

hazards and climate change adaptation in the past couple decades, with a variety of approaches 

and definitions utilized in their assessment. In recent years, more efforts have been made to link 

these concepts under the umbrella of sustainability science, and adaptive capacity has emerged as 

a common factor that holds particular relevance in the context of climate adaptation and 

management/governance of social-environmental, or socio-environmental, systems (Engle, 2011; 

Turner et. al., 2003). 

Adaptive capacity is often described as the ability to adapt when faced with stressors or 

shocks that adversely impact a system, and is usually seen to be a universally positive attribute 

that can be shaped by human actions. From a vulnerability standpoint, adaptive capacity is seen as 

an attribute that allows the system to prepare for and respond to stressors and shocks, thereby 

having a moderating effect on the exposure and sensitivity components of vulnerability (Adger, 

2006; Engle, 2011). In the resilience literature, adaptive capacity is often seen as the ability of 

actors to facilitate interactions between the human and environmental components of a system in 

order to increase the likelihood that a system will be resilient (Engle, 2011). In both cases, 

governance structures and the ability of humans to act, which is constrained by resource 

availability, are defining features of adaptive capacity that link the two concepts of resilience and 

vulnerability. 

While there is nearly universal agreement that increased adaptive capacity of social-

environmental systems is a positive attribute that should be encouraged, efforts to build adaptive 

capacity are hampered by a number of ongoing issues. Lack of consensus on the determinants of 
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adaptive capacity and how they relate to concepts of vulnerability and resilience are apparent in 

climate adaptation and hazard response literature (Eakin & Luers, 2006; Engle, 2011; Gallopín, 

2006; Hinkel, 2011). The diversity of ideas and approaches taken towards adaptive capacity, 

vulnerability, and resilience assessment is in part fueled by the contextual nature of these concepts, 

but also by a lack of evidence-based measurement (Eakin & Luers, 2006; Engle, 2011; Hinkel, 

2011).  

The use of composite indices to describe or characterize these concepts is heavily favored 

in the vulnerability literature as they provide a generalizable inductive approach to indicator 

selection and simplify complexity to a single value. However, without some sense of the actual 

effect vulnerability, resilience, and adaptive capacity, as represented by these indices, have on 

hazardous event outcomes, the usefulness of the indices as a planning tool is questionable (Hinkel, 

2011). Evidence-based validation of composite indices is hampered in part by a lack of relevant 

and appropriately scaled data, by the nature of composite indices, which aggregate complexity to 

a form from which causal relationships cannot be untangled, and also by the lack of a clearly 

operationalized framework for assessing relationships between vulnerability, hazard-induced 

impacts, resilience, and adaptive capacity. This suggests that context-specific deductive selection 

of indicators, spatial modeling methods, and an operational framework that proposes causal 

pathways, may be necessary for evidence-based measurement of vulnerability, resilience, and 

adaptive capacity to bear fruit. While deductive context-specific approaches may reduce the 

generalizability of results, this may be a necessary sacrifice, as without a clear understanding of 

the determinants of vulnerability, resilience, and adaptive capacity, and the mechanisms that link 

them to impacts on communities, the costs of maladaptation remain unquantified, and it becomes 

difficult to justify expenditures toward increasing a system’s adaptive capacity.  
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Outline of the Dissertation 

Several gaps in vulnerability, resilience, and adaptive capacity research continue to linger. 

The most predominate of these gaps include: (1) continued confusion about the conceptual links 

between vulnerability, resilience, and adaptive capacity (and sustainability), (2) lack of an 

assessment framework that can account for the multi-scalar (through space and time) and dynamic 

processes related to all of these inter-dependent concepts, (3) lack of secondary verification of 

measurements of the aforementioned concepts and determinants, and (4) lack of quantitative 

analytical assessment of impacts of these concepts on outcomes to disrupted systems. The work 

presented in this dissertation attempts to begin addressing these gaps by building theory on 

adaptive capacity, vulnerability, and resilience, and by developing and demonstrating methods that 

enable the assessment and verification of qualities that influence the survivability and well-being 

of complex, adaptive social-environmental systems subject to environmental stressors or shocks.  

The research objectives for this work are as follows: 

 Develop a framework for assessing the connections between the concepts of 

vulnerability, resilience, and sustainability. 

 Develop and/or demonstrate use of a spatial disaggregation technique and a spatial 

modeling method that can be used to support assessment of vulnerability and 

resilience for social-environmental systems. 

 Apply the developed framework and spatial analysis techniques to empirically 

assess the effects of an urban flood adaptation strategy. 

Chapter II of this dissertation presents a review of the literature on vulnerability, resilience, 

sustainability, and adaptive capacity and a conceptual synthesis of these topics (Gillespie-
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Marthaler, Nelson, Baroud, & Abkowitz, under review). Furthermore, a framework for empirical 

assessment of sustainable resilience, which integrates aspects of vulnerability, resilience, and 

sustainability concepts in an adaptive cycle is proposed (Nelson, Gillespie-Marthaler, Baroud & 

Abkowitz, working paper).  The work presented in Chapter II addresses the confusion about the 

conceptual links between core concepts (vulnerability, resilience, adaptive capacity, and 

sustainability) in social-environmental studies (Gap 1) and proposes an assessment framework 

capable of accounting for multi-scalar dynamic processes in these core concepts (Gap 2).    

In Chapter III, a spatial disaggregation technique and a spatial modeling method that may 

be used to support assessment of sustainable resilience using the framework described in Chapter 

II are described and demonstrated (Nelson & Burchfield, 2016; Nelson & Burchfield, 2017; 

Nelson, Camp, & Abkowitz, 2015). In Chapter II, the ability to account for the multi-scalar nature 

of social-environmental system processes is identified as a critical concern. The work in Chapter 

III begins to bridge the gap between framework and operationalization by developing and 

demonstrating an approach for downscaling census data to a spatial scale that is more 

representative of coincidence with flooding hazards and urban flood adaptation processes, the tax 

parcel (Nelson et al., 2015). Chapter III also demonstrates the use of hierarchical Bayesian 

spatiotemporal modeling as a method for empirically validating and investigating relationships 

between vulnerability and resilience in social-environmental systems (Nelson & Burchfield, 2016; 

Nelson & Burchfield, 2017).  

Chapter IV presents an application of the developed sustainable resilience assessment 

framework presented in Chapter II and the two spatial analysis methods presented in Chapter III. 

This work serves as a first demonstration of operationalization of the developed framework for 

empirical assessment. This “proof-of-concept” work is grounded in a case study of an urban flood 
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event and adaptation strategy in the Nashville, Tennessee, area. Finally, Chapter V synthesizes the 

findings of the work described in Chapters II through IV, summarizes the contributions of this 

dissertation, and discusses the broader impacts of the body of work.   
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CHAPTER II: VULNERABILITY, RESILIENCE, AND SUSTAINABILITY: AN 

INTEGRATED ASSESSMENT FRAMEWORK FOR COMPLEX ADAPTIVE SYSTEMS   

 

Introduction 

Though the concepts of vulnerability, resilience, adaptive capacity, and sustainability are 

often used independently, a great deal of conceptual overlap exists and assessments of each 

concept are frequently conducted in similar ways and used to address similar issues. Depending 

on the framework used and the type of application, the concepts of resilience and vulnerability can 

be seen as inversely related, interdependent, or intersecting (e.g., vulnerability as a part of 

resilience or resilience as part of vulnerability) (Engle, 2011; Turner, 2010; Lam, 2015; Gallopín, 

2006; Bahadur et al., 2010). Often, decreasing vulnerability is considered to be an approach to 

increasing resilience (Sahely et al., 2005, Cutter et al., 2008; Bahadur et al., 2010). Some argue 

that resilience is a subset of vulnerability, and therefore that increasing resilience can be seen as a 

way of decreasing vulnerability (Gallopín, 2006; Turner et.al., 2003; Adger, 2006), and others 

consider vulnerability a subset or factor in resilience metrics (Henry & Ramirez-Marquez, 2012; 

Baroud et al., 2014). Increasing adaptive capacity, on the other hand, is seen as a way to both 

increase resilience and decrease vulnerability and has been highlighted as a bridging concept 

between resilience and vulnerability (Engle, 2011).   

Resilience and vulnerability concepts are also frequently used within the umbrella of 

“sustainability science”, which usually implicitly considers sustainability concepts in analysis and 

assessment of resilience and vulnerability by linking adaptive capacity to the availability of 

resources (Turner, 2010). However, concerns about either the environmental or the social 

component being under-considered in social-environmental system resilience and vulnerability 

assessments continue due to difficulties in trying to encompass many different variables and 
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perspectives within a single conceptual framework or multiple frameworks operationalized in 

parallel. These shortcomings, and the typically short to mid-term temporal horizon and localized 

spatial window used in vulnerability and resilience assessments, lead to narrowed views that can 

ultimately result in unsustainable outcomes. In the sections below, I briefly discuss vulnerability, 

resilience, adaptive capacity, and sustainability concepts, identify challenges in their assessment 

for social-environmental systems, suggest a framework for thinking about interdependencies 

between the concepts, and propose an integrated framework for empirical assessment of social-

environmental system sustainable resilience. 

 

Core Concepts in Social-environmental Systems Studies 

Vulnerability 

The concept of vulnerability results from the standard risk concept that specifically 

addresses differential impacts from disturbances among populations, assets, and systems. 

Vulnerability is generally described as the extent to which a system is likely to experience losses 

from some hazard (impactful event), and as such, it is a universally negative quality (Adger, 2006; 

Turner et. al., 2003).  Vulnerability assessment has evolved along two dominant tracks; the natural 

hazards community and the social science community.  Different vulnerability assessment 

frameworks use quantitative, semi-quantitative, or qualitative methods, and many make use of 

composite indices to characterize vulnerability.  In the natural hazards literature, vulnerability 

historically uses a risk-hazard model, where vulnerability is described as the combination of a risk 

factor, and the potential for loss in the system at risk (Turner et. al., 2003; Eakin & Luers, 2006). 

This approach equates the negative outcome of some hazardous event (typically a physical 

manifestation) that has been realized to vulnerability (Eakin & Luers, 2006). 
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In the social science community, vulnerability traditionally focuses on inequities in 

sensitivity and exposure (social equity) resulting from social-structural characteristics, such as 

socioeconomic and political status, demographics, culture, and governance (Adger, 2006; Cutter, 

2003; Turner et. al., 2003; Eakin & Luers, 2006).  In this approach, less emphasis is placed on the 

physical damage incurred by a specific hazard, with a greater emphasis placed on identifying who 

may be vulnerable and why they may be vulnerable (Adger, 2006; , 2003; Eakin & Luers, 2006).  

In both cases, imbalance can occur in assessing either the physical or social aspects of 

vulnerability, leading to an incomplete understanding of vulnerability within systems (social, 

ecological, engineered, and coupled social-environmental). 

A more recently developed social-ecological systems approach to vulnerability attempts to 

merge both perspectives and defines vulnerability as the “state of susceptibility to harm from 

exposure to stresses associated with environmental and social change and from the absence of 

capacity to adapt” (Adger, 2006). In this application, vulnerability includes three components: 

exposure, sensitivity, and adaptive capacity. Exposure is simply the magnitude and extent to which 

a disruption or stress is experienced, sensitivity is the expected degree of impact from a disruption 

or stress given a certain exposure, and adaptive capacity is the ability to prepare for and respond 

to disruptions and stress (Adger, 2006; Engel, 2011), which is dependent upon the system’s ability 

to effectively access and use necessary resources.  Despite this broad definition of vulnerability, 

little consensus on the appropriateness of different methods for measuring or characterizing 

vulnerability across social-environmental systems has arisen.   

The lack of consensus around vulnerability assessment mentioned above is due in part to 

continuing challenges in the ability to operationalize the different components of vulnerability and 

how to account for the differences between short-term and long-term vulnerability (Engle, 2011; 
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Gallopín, 2006; Fekete, 2012; Fussel, 2007; Eakin and Luers, 2006; Hinkel, 2011). The dynamic 

qualities of vulnerability are inextricably tied to adaptive capacity, as the ability to respond is a 

quality that describes pre-event readiness and immediate response, which occurs on short time 

scales, while the ability to plan and prepare is a quality that describes post-event learning process 

and associated change that occur on longer time scales. This dynamism can lead to confusion when 

selecting indicators of the sensitivity component of vulnerability as an indicator of sensitivity at 

one time scale (e.g., poverty may be an indicator of sensitivity during an active emergency as fewer 

resources are immediately available to respond to the crisis at hand), and may be an equally valid 

indicator of adaptive capacity at another time scale (e.g., poverty may also be an indicator of 

adaptive capacity as fewer resources are available to adequately prepare for future emergencies).  

Resilience 

The concept of resilience originates from ecological science, where it was originally 

defined as a system’s ability to “absorb changes of state variables, driving variables, and 

parameters, and still persist” (Holling, 1973). Resilience is seen in this conceptualization as a 

property that results in a system’s level of persistence.  A commonly accepted definition of 

resilience today is the “capacity of a system to absorb disturbance and re-organize while 

undergoing change so as to still retain essentially the same function, structure, identity and 

feedbacks” (Folke, 2006). This conceptualization of resilience considers both system persistence 

and adaptability, and does so in the context of complex system interactions such as cross-scale 

dynamics, multiple equilibria, and feedback loops (Folke, 2006; Turner et al., 2003).   

The concept of resilience of social-environmental systems is still under development and 

is used in diverse ways across fields of study. A recent analysis of resilience definitions yielded 

the following common attributes: 1) most refer to the ability of a system to absorb/respond and 



10 

 

adapt to disruptive events, 2) recovery from disturbance is considered a critical component, 3) 

some require a return to a steady or pre-disturbance state, while others allow for system 

degradation or the possibility of an enhanced or transformed state, and 4) many include emphasis 

on preparedness and recovery activities (Hosseini et al., 2016).  Recent definitions of resilience 

associated with social and economic systems incorporate the concepts of coping, adaptive, and 

transformative capacities (Engle, 2011; Keck & Sakdapolrak, 2013), and the ability to adapt or 

reconfigure to achieve strategic goals (Martin, 2012). In nearly all cases, the attainment of 

resilience is linked to a desired end state or functionality. In the case of social, engineered, or 

coupled systems, that end state is typically some combination of achieving social health and 

wellbeing.   

The concept of resilience is clearly related to the concept of vulnerability, and in some 

cases resilient systems are even characterized by assessment of other system attributes including 

robustness, vulnerability, sustainability, and adaptive capacity.  Due to the dynamic, multi-scalar, 

and interdependent nature of resilience of social-environmental systems, as it is currently 

understood, resilience assessment efforts are hampered by many of the same issues that plague 

social-environmental system vulnerability assessment. 

Adaptive Capacity 

The concept of adaptive capacity, as stated previously, is commonly defined as the ability 

to prepare for and respond to disturbance (Adger et al, 2004; Adger, 2006; Engle, 2011). This 

concept is less developed than the concepts of vulnerability, resilience, and sustainability, and not 

widely utilized by practitioners.  However, it is gaining traction in social-environmental system 

assessment as it is commonly recognized as playing a supporting role in both vulnerability and 

resilience concepts (Engle, 2011). In addition, it is widely recognized that the adaptive capacity of 
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a system is dependent upon the resources available to that system, linking the concept to that of 

sustainability via the availability of sustainability capital (Adger et al., 2004; Adger & Vincent, 

2005; Engle, 2011; Turner, 2010). While the concept of adaptive capacity is not one of the primary 

concepts commonly used in complex system assessment today, and hence not a focus of this study, 

it is implicit within any assessment oriented towards understanding adaptive systems, and plays a 

key role in linking the three aforementioned concepts of vulnerability, resilience, and sustainability 

(Engle, 2011). 

Sustainability 

The classic definition of sustainability can be traced to the Brundtland Report, in which 

sustainable development was described as development that included trans-generational (long-

term) equity by requiring that development be able to meet the needs of the present without 

compromising the ability of future generations to meet their own needs (WCED, 1987). The 

concept of recognizing present and future needs is related to the interdependence between critical 

human-centric (social), finance-centric (economic), and ecological-centric (natural) resources. A 

sustainable social-environmental system is understood as a system with the ability to provide 

sufficient resources to the human population without endangering the viability of the natural 

system, and is essentially concerned with, “address[ing] threats to provisioning society and to 

maintaining life support systems,” (Turner, 2010) through management of critical resource capital. 

Critical resource capital, or sustainability capital, must be managed strategically over appropriate 

spatial and temporal scales to ensure future viability.  In this sense, “capital” refers to the amount 

of a critical resource (social, economic, or natural) that may be available at a point in time.  

Strategic management of sustainability capital includes consideration of both risk and opportunity 

to provide desired outcomes and overall system quality.  Sustainability is primarily future-focused 
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and seeks to achieve environmental equity, long-term allocative efficiency, and distributive 

efficiency (Bithas & Christofakis, 2006) across sustainability capital in order to maintain system 

viability and wellbeing.   

When used to characterize system quality, sustainability assessment without adequate 

consideration of changes to sub-system/component vulnerability and resilience can lead to sub-

optimal system performance and assessment. Where specific applications of sustainability 

assessment may require that a system is optimized to reduce material flows, the same system may 

also require an increase in materials to achieve decreased vulnerability and/or increased resilience 

through protective measures such as robustness and adaptability (Ahern, 2011; Bocchini et al., 

2014; Minsker et al., 2015). This is especially true over time and under changing circumstances 

that may not have been fully anticipated, or may not be fully definable without a high degree of 

uncertainty (Minsker et al., 2015), such as climate variability, extreme weather events, market 

trends, and population shifts.  While sustainability is inherently multi-generational in scope, typical 

sustainability assessments offer only a snapshot in time related to a specific set of resource 

trajectories.  This does not allow for evaluation of sustainability over time and under dynamic 

conditions. However, due to interdependence with vulnerability and resilience concepts, 

consideration of sustainability dynamics is also bound to be subject to the same limitations and 

challenges as vulnerability and resilience assessment, where this is expected to be most apparent 

in evaluation of social resources. 

 

Challenges in Assessment 

Assessment of vulnerability, resilience, adaptive capacity, and sustainability of social-

environmental systems (SESs) are challenging due to the latent nature of the concepts and the 
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dynamic, multi-scalar, and interdependent qualities of SESs. The latency of the concepts means 

that they must be represented by indicators suggested by theory. A large number of indicator 

studies have been conducted for all of these concepts, however the theoretical framing that drives 

indicator selection is often underdeveloped, and relatively little validation of indicators has been 

conducted to support indicator choice. In addition, in many cases selected indicators are used to 

create a composite index that is intended to serve as a measure of the concept in question. However, 

few validation studies of composite indices using external data sources have been conducted, and 

analyses of composite indicators have shown they are sensitive to indicator selection and 

aggregation methods. The lack of validation is, in large part, the result of a lack of external 

measures of the concepts, but is also hampered by the complexity of SESs and the lack of 

appropriate tools to model dynamic and interdependent processes through space and time. Below, 

I discuss the state of the knowledge in indicator selection, the importance of scale of analysis, and 

emerging tools for spatiotemporal analysis.  

Indicator Selection 

In the natural hazards literature, vulnerability is often examined as the intersection of social 

vulnerability and exposure, where exposure is some standardized measure of the magnitude or 

severity of exposure (e.g., flood inundation depth). In this literature, social vulnerability indices 

are typically based on a definition of vulnerability that posits that social stratification and local 

infrastructure factors are the primary contributors to the vulnerability or resilience of a population 

(Chakraborty, 2005; Cutter, 1996; Cutter, et al., 2003; Rygel, et al., 2006). The vulnerability 

indicators (such as age, gender, socioeconomic status, living arrangements, access to medical care, 

and race/ethnicity) used in construction of most social vulnerability indices are heavily based on 

socio-demographic information measured in census data and are generally consistent from one 
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study to another (Azar, 2007; Cutter, et al., 2003; Rygel, et al., 2006). However, choice of which 

specific census variable to use to represent a vulnerability indicator and the number of indicators 

and variables used for an index varies widely, with the number of variables used ranging from less 

than ten to more than fifty depending on the type of analysis and the index construction method 

(Chakraborty, 2005; Cutter, et al., 2003; Fekete, 2009; Krishnamurthy, 2011; Rygel, et al., 2006; 

Shepard et al., 2012; Wilhelmi, 2013).  

Often, studies that used the above mentioned framework for construction of vulnerability 

indices do not specify the relationship of the indicators selected with a specific component of 

vulnerability (sensitivity or adaptive capacity), suggesting that the index represents vulnerability 

across time-scales (Cutter, 2003; Fekete, 2009). On the other hand, some studies create separate 

indices for each component of vulnerability, often using the same indicator more than once (for 

both sensitivity and adaptive capacity) (Frazier, 2014). The sub-indices are usually combined to 

create an overall composite index which then represents vulnerability across time scales. In 

addition to these issues of sensitivity and adaptive capacity confusion, physical environment and 

governance factors that relate to vulnerability are typically given only cursory attention.  While 

infrastructure is included in these assessments, its inclusion is typically limited, leading to 

misrepresentation of the interconnectedness of the social and environmental in coupled systems.  

In 2007, Eriksen and Kelly emphasized that credible selection of indicators depends on 

explicating a clear theoretical and conceptual framework, understanding the relationship between 

indicators and the processes that drive vulnerability, and on verification of indicators against 

independent measures of vulnerability. This call has been taken up by many researchers in the 

years since, with a limited response, in part due to the difficulty in obtaining appropriate 

independent measures of vulnerability (Hinkel, 2011; Engle, 2011; Fekete, 2009; Dominey-
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Howes, 2007; Ignacio & Andres, 2016).  In addition, multiple studies have drawn attention to 

possible mischaracterizations of vulnerability in composite index vulnerability assessments 

(Stafford, 2016; Dominey-Howes, 2007; Tate, 2012).  Despite this, composite indices built using 

loosely justified indicators remain a common way of assessing vulnerability for planning purposes 

and index verification efforts are rare (Stafford, 2016; Eriksen and Kelly, 2007; Dunning, 2013; 

Cutter et al., 2013). 

Resilience assessments, particularly those that attempt to include aspects of community or 

social resilience, often rely on similar loose theoretical frameworks, index construction techniques, 

and indicator sets as social vulnerability assessments (Keck & Sakdapolrak, 2013; Sherrieb, Norris 

& Galea, 2010; Mayunga, 2009; Burton, 2012). Hence, they are subject to many of the same issues 

with regards to potential for mischaracterization and lack of verification. The outcome of 

sustainability assessment is dependent upon the scale of analysis and level of detail included in 

defining objectives, indicators and performance measures.  As with resilience and vulnerability 

assessment, challenges exist in sustainability assessment when attempting to aggregate indices and 

metrics across sub-systems and components, especially when considering extended spatial and 

temporal scales. 

Scale of Analysis 

The analytical problems associated with coincidence analysis of hazards and populations 

have been well documented to show that scale does matter, particularly when examining the 

intersection of two or more areal units of different scales and spatial extents (Chakraborty, 2011; 

Mennis, 2003). Different interpretations of intersection or overlap of census units with hazard 

zones have been shown to have a large influence on the results of hazard risk analysis, leading to 

both overestimation and underestimation of at-risk populations, an issue referred to as the 
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Modifiable Areal Unit Problem (MAUP) (Maantay, et al., 2007; Mennis, 2002). In particular, the 

use of census data, which is heavily relied upon for social vulnerability and environmental justice 

studies, restricts spatial interpretation of socio-demographic data to areal units (e.g., census tracts) 

that may not correlate well with the spatial scale of the hazard of interest (e.g., floodplains), or 

with the actual boundaries of spaces in which people are located (e.g., residences). 

Dasymetric mapping techniques have recently received attention as a valuable tool for 

vulnerability and environmental justice analyses as they provide a way to disaggregate socio-

demographic data to a finer scale which may be more representative of the area affected by a 

hazard (Chakraborty, 2011; Maantay, et al., 2007; Mennis, 2003). Dasymetric mapping is a form 

of areal interpolation that utilizes an ancillary dataset containing supplementary information that 

can be used to redistribute data to smaller areal units. Land use classification raster data sets are 

commonly used as an ancillary dataset for this purpose, allowing census data to be redistributed to 

raster grids of 30m to 100m in edge length by attributing a population density to different land use 

classifications (Mennis, 2002; Mennis, 2003). An alternative to land use classification rasters as a 

supplementary dataset is cadastral (tax parcel) data (Maantay, et al., 2007; Tapp, 2010). Using 

cadastral data as an ancillary dataset allows population data to be redistributed to individual 

parcels, a spatial unit highly relevant to municipal planning. While dasymetric mapping provides 

a way to intelligently disaggregate data, and hence remove some of the loss of information that 

can occur when performing regression analyses on census data, treating disaggregated data as if it 

is not clustered in regression analyses can lead to biases in the estimates of standard errors.  

A complementary approach for analysis of multi-scalar effects is to use a multi-level or 

hierarchical modeling framework.  Wu and David (2002) point out the loose hierarchical 

structuring of ecosystems, where different levels in the hierarchy correspond to processes that 
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occur at different rates. Like ecosystems, SESs too can be considered to be hierarchal structured 

systems. Higher levels in the hierarchy typically represent processes that occur at larger spatial 

scales and longer time scales than lower level processes.  The hierarchical modeling approach, 

multi-level modeling, is widely used in regression studies in the social sciences, as it provides a 

way to account for variance resulting from grouping (one classic example is students in 

classrooms). (Note: Hereafter, I will refer to multi-scalar modeling as “multi-level modeling” and 

reserve the term “hierarchical” for Bayesian analyses where it refers to nested prior distributions.) 

Use of multi-level modeling approaches for analysis of spatially nested processes has been 

advancing quickly over the past decade, propelled in large part by the fields of epidemiology and 

ecology (Arcaya, 2012; Chaix, 2005; da Roza, 2012; Pisano, 2015; Blangiardo et al., 2013).  

The complexity of analyses including spatial effects has led many in epidemiology to 

utilize Bayesian methods that account for complex covariance structures. Increasing demand for 

more computationally efficient software that can model more complex processes has driven 

development of software packages that can model effects that exhibit spatial and temporal 

dependency. One such software package is R-INLA (Blangiardo et al., 2013), a package 

developed for the free statistical software R that uses an integrated nested Laplace approximation 

approach to Bayesian analysis of multi-level, spatial, temporal, and spatiotemporal data. Use of 

the package has been demonstrated for ecological, environmental, social, and epidemiological 

datasets, and more recently for datasets combining two or more of these data types, subject to 

different types of spatial and temporal processes (Raghavan et al., 2016; Scott, 2015; Lindgren & 

Rue, 2015). These studies demonstrate the flexibility of Bayesian multi-level spatiotemporal 

modeling using the R-INLA package, and provide support for adoption of these methods for 

examining the concepts of vulnerability, resilience, adaptive capacity, and sustainability.  
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Conceptual Links 

General and widely accepted definitions of the concepts of vulnerability, resilience, 

sustainability, and adaptive capacity were compiled from the literature and are specified as 

follows:   

 Vulnerability is defined as the likelihood of experiencing loss due to hazard as a function 

of exposure, sensitivity, and adaptive capacity;  

 Resilience is defined as the ability to resist disruption, recover, adapt, and/or transform 

given a hazardous event in order to maintain desired system performance; 

 Sustainability is defined as the long-term ability to operate without failure through 

balanced management of critical social, economic, and environmental capital (Adger, 

2006; Folke, 2006; Hosseini et al., 2016; Minsker et al., 2015).  

 Adaptive capacity is defined as the ability to cope with, recover from, and adapt/transform 

in response to hazardous events (Adger et al., 2004; Adger and Vincent, 2005; Smit and 

Wandel, 2006).   

Drawing from these definitions, and from literature on the theoretical foundations and 

practical applications of each concept, possible causal relationships relating to cross-scalar 

processes (e.g. emergence) and time frame of analysis were identified. The suggested links 

between the concepts are shown in Figure 1.  
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Figure 1: Conceptual interdependencies between vulnerability, resilience, sustainability, and 

adaptive capacity. 

 

In Figure 1, large arrows indicate relationships between primary and contributing concepts 

(e.g., adaptive capacity is a key component of both vulnerability and resilience). Dashed arrows 

indicate conceptual dependencies/interdependencies between concepts.   As shown, sustainability 

is presumed to have a direct impact on adaptive capacity, which is inherently dependent on the 

availability (access to needed quality and quantities) of sustainability capital. Sustainability is itself 

seen to be dependent on the ability of the system to resist systemic disruption, recover, adapt, and 

transform, which we define as resilience, as these abilities directly impact deposits and 

withdrawals from sustainability capital. This implies that the concept of adaptive capacity has an 

indirect effect on sustainability (through interactions between sustainability capital and system 

requirements to maintain desired levels of functionality, performance, and overall quality). In order 

to sustain functionality, performance, and quality through time, a system should have the ability 



20 

 

to cope, recover, adapt, and/or transform, where the capacity to do so is moderated by the 

vulnerability and/or resilience of the system.  

Adaptive capacity is itself seen to be one component in the set of components that comprise 

vulnerability and resilience. Contextual vulnerability, which is a discrete interpretation of 

vulnerability at a specific moment in time, also belongs to the complete set of vulnerability. At 

any discrete moment in time, a sub-system/component has an existing ability (or inability) to cope 

with change.  Contextual vulnerability therefore, takes into account existing plans or capabilities 

that improve the effectiveness and range of actions available in response to a disruptive event, 

termed “anticipatory coping capacity” (Cutter, 2008; Gallopín, 2006; Turner, 2003). The ability to 

resist systemic disruption, a component of resilience, belongs to the complete set of resilience and 

is presumed to be dependent on contextual vulnerability.  The ability to resist systemic disruption 

is based on interactions between critical sub-systems/components and their relative abilities to 

cope with a disruptive event, resulting in an overall system ability to either resist or succumb to 

disruption.  

These relationships imply that the concepts of vulnerability and resilience are 

interdependent, and as formulated, are composed of the same basic building blocks. Despite this, 

differences in the scale, resolution, and unit of comparison that define the lenses of vulnerability 

and resilience mean that these concepts are not simple inverses of each other. In addition, both 

vulnerability and resilience are indirectly dependent upon sustainability capital and its ability to 

promote or constrain adaptive capacity through availability and effective use of critical resources. 

Based on these conceptual dependencies, the selection and implementation of system adaptation 

strategies resulting from an integrated assessment could inform and modify:  
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• sustainability (capital) through management (withdrawals and investments) in critical 

resources needed to effect changes in vulnerability and resilience over time; 

• exposure, sensitivity, and/or coping through changes in adaptive capacity (increasing 

and/or decreasing critical sub-system/component vulnerability and system-wide 

resilience); and  

• the need to consider and/or implement system transformation (where transformation 

strategies may lead to the definition of new hazards and a new set of vulnerability 

indicators).  

Within a risk management framework, the typical end goal of a system assessment is to 

minimize adverse impacts, such as those addressed in the ability to resist systemic disruption (the 

discrete representation of resilience as shown in Figure 1). Therefore, evaluation of system 

resilience should serve as a reasonable focal point for integrated system assessment. Given the 

discussed conceptual linkages and the suggested use of resilience as a system assessment focal 

point, we define sustainable resilience as the ability of a system to maintain desired system 

performance by changing in response to expected and unexpected challenges over time, while 

simultaneously considering intra-system and inter-generational distribution of impacts and 

sustainability capital.  

 

An Integrated Assessment Framework 

The integrated sustainable resilience assessment framework has been developed for 

application to complex adaptive systems, specifically social-environmental systems. Like any 

system, social-environmental systems are defined by both their function and structure. As complex 

adaptive systems, social-environmental systems are expected to be subject to multi-scalar 
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relationships between the system, sub-systems, and external systems where direct and indirect 

causal relationships, both physical and non-physical in nature, can result in impacts to overall 

system performance and quality. Complex, coupled social-environmental systems undergo 

adaptive cycles, where change is triggered by disruptive events (Adger, 2006; Engle, 2011). This 

is consistent with the characterization of resilience as the ability to resist disruption, recover, adapt, 

and/or transform given a hazardous event in order to maintain desired system performance. These 

systems are generally assumed to be metastable, in that adaptive cycles often lead to changes that 

do not significantly alter the state of the system as defined by its objectives and functional 

relationships (Adger, 2006; Engle, 2011). However, it is possible that significant change, resulting 

in transformation can redefine the objectives or functional relationships of the system (Engle, 

2011; Martin, 2012; Keck & Sakdapolrak, 2013).  

The proposed framework uses a serial and cyclical process, allowing users to assess 

observed hazard-related impacts (outcomes), evaluate relationships between outcomes and factors 

that define the contextual vulnerability of the system (drivers), identify resource constraints that 

influence adaptation options and strategy selection, and simulate the effects of adaptation scenarios 

on drivers and associated outcomes and resources. While the basic form of the framework may be 

applied to planning processes (Nelson, et al., working paper), the specific process flow and steps 

described in the section below and illustrated in Figure 2 are intended for empirical assessment of 

systems using observed hazardous event data and prediction of possible future impacts.  

The proposed assessment process begins with a baseline system definition and 

identification of critical system relationships, followed by an assessment cycle. The system 

definition includes identification of system goals, and critical system components and sub-systems, 

given a hazardous event of interest. System goals may refer to both short-term direct impacts and 
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long-term indirect impacts. Critical relationships between system characteristics, or drivers, and  

direct and indirect impacts of the hazardous event of interest are then evaluated by: (1) identifying 

and quantifying measurable outcomes of the hazardous event that relate to system goals (Ability 

to Resist Systemic Disruption), (2) identifying and quantifying characteristics of the system that 

are expected to affect the outcomes of the hazardous event experienced by the system (Contextual 

Vulnerability Assessment), and (3) using quantitative modeling (e.g. regression, agent-based 

simulation, physical process-based) to measure or define the effect of the drivers on the outcomes. 

These relationships are used within the assessment cycle to simulate the effects of adaptation 

strategies.  

 

Figure 2: Proposed integrated sustainable resilience empirical assessment framework. 
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The assessment cycle then begins with a sustainability assessment that quantifies the 

impacts of the hazardous event and resulting system disruptions on the availability of critical 

resources including social capital, economic capital, and environmental capital. The availability of 

resources is assumed to inform the development of adaptation or transformation strategies and 

constrain the selection of implemented strategies. For systems where an adaptation strategy has 

been implemented, observed changes to drivers resulting from the adaptation process are 

quantified and the values of these drivers at some time point following the hazardous event are 

used, together with the previously established relationships between drivers and outcomes, to 

estimate the potential impact of a similar hazard post-adaptation. For cases where the evaluation 

of alternative adaptation scenarios is desirable, potential future values of drivers should be 

simulated (simulated contextual vulnerability) and used with previously established relationships 

between drivers and outcomes to predict possible impacts of the hazard of interest given 

implementation of the adaptation strategy of interest (predicted ability to resist systemic 

disruption). In both cases, following prediction of hazard outcomes, a second sustainability 

assessment should be conducted to identify the potential impacts of the adaptation strategies on 

long-term resource availability. 

Given the significant linkages between the concepts of vulnerability, resilience, and 

sustainability, we conclude that a unifying framework is needed to properly characterize complex 

adaptive social-environmental systems and assess their behavior in response to short-term 

disruptions and long-term challenges in the context of decision-making. We suggest that when 

sustainability and vulnerability are explicitly considered within a resilience assessment 

framework, resilience becomes a universally positive system quality, as unit-of-analysis based 

inequities and long-term resource availability are both taken into account, and adaptation strategies 
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are developed within the bounds of pre-defined desired system performance end-states. Within 

such a framework, a system that is persistent and strongly resists change is not necessarily 

considered to be resilient. In order to be resilient, the system must also meet stakeholder 

performance and value expectations, and maintain adequate resource pools to sustain the system 

for future generations. We refer to this quality as sustainable resilience.  

The framework for empirical assessment of sustainable resilience described above is 

intended to be used to assist in making decisions regarding the prioritization and selection of 

adaptation strategies and for evaluating the effectiveness of an implemented strategy or set of 

strategies for systems that have recently experienced, and collected data on, hazardous events. It 

was intentionally developed to include consideration of multi-scalar and dynamic processes by 

iteratively considering micro-scale vulnerabilities, meso-scale risks, and macro-scale 

sustainability. The use of this cyclical and dynamic process enables evaluation of relationships 

between vulnerability, sustainability, and system performance objectives (and potential changes 

in these relationships over time), providing information which, from a decision-making standpoint, 

allows for integration and balancing of priorities from different perspectives and a more effective 

allocation of resources.  
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CHAPTER III: SPATIAL MODELING METHODS FOR SOCIAL-

ENVIRONMENTAL SYSTEM ASSESSMENT   

 

Introduction 

The spatial scale of analysis and multi-scalar processes were identified in Chapter II as 

areas of critical importance that pose challenges for vulnerability, resilience, and sustainability 

assessments, as well as environmental justice studies. This is due in part to the reality that many 

hazards occur at spatial scales that do not coincide with the spatial scales at which social-

environmental system data is available.  In addition, social and environmental phenomena often 

exhibit nested structures (Wu & David, 2002). In order to address scalar issues, methods for 

disaggregating data (particularly social data), and multilevel modeling methods were reviewed. 

Within the literature, dasymetry was identified as a growing area of interest in social data 

disaggregation techniques. However, current dasymetric techniques are primarily limited to 

redistribution of population counts and provide limited options for disaggregation of specific sub-

populations and social factors of interest. The first of two studies described below attempts to 

overcome spatial mismatches between identification of environmental hazards and socially 

vulnerable populations by developing a set of logic-based operations for disaggregating sub-

populations using tax parcel descriptions to inform spatial data redistribution (Nelson et al., 2015). 

This technique is expected to add value to vulnerability indicator validation efforts by representing 

characteristics of interest at spatial scales with greater relevance to hazardous events of concern.  

A review of the literature in multilevel spatial modeling techniques also suggested that new 

advances in Bayesian computing are enabling a growing field of work (currently limited primarily 

to work in the fields of ecology and epidemiology) in multilevel spatiotemporal modeling of 
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social-environmental systems. The second study described below illustrates the use of multi-level 

Bayesian regression modeling for conducting a spatiotemporal analysis of the effects of the legal 

structure of water rights on drought impacts in California (Blangiardo et al., 2013; Nelson &  

Burchfield, 2017; R-Core Team, 2013).While the subject area of this second study, an agricultural 

system, differs from that of the previously described study of Nashville, Tennessee, as well as 

from the subject area of the final case study presented in Chapter IV, this work is intended 

demonstrate how multilevel spatial Bayesian modeling can be applied to empirically validate and 

investigate relationships between vulnerability and resilience in social-environmental systems. 

 

Selective Redistribution of Census Demographic Information Using Cadastral 

Dasymetry  

 The availability of demographic information from census data has enabled the 

development of indices that describe the relative social vulnerability of populations at different 

locations. These indices are often used in conjunction with models of physical exposure to 

environmental hazards, such as flooding and hazardous waste emission, to identify populations at 

greatest risk. However, using standard census areal units to calculate social vulnerability can lead 

to significant underestimation of vulnerable populations as environmental hazards typically occur 

on a finer spatial scale than census units such as block groups. This study describes a method for 

disaggregating census demographic information to a higher spatial resolution by taking advantage 

of ancillary information within tax parcel datasets. Furthermore, the effects of utilization of higher 

resolution demographic information are illustrated via use of disaggregated census data in the 

creation of a tax parcel resolution social vulnerability index (SVI). This high resolution social 

vulnerability index shows notable differences from a standard block-group social vulnerability 
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index with implications for municipal planning processes that address existing or potential 

environmental justice issues.   

Vulnerability, Environmental Justice, and Associated Analytical Challenges 

The concept of social vulnerability to environmental hazards has gained increasing interest 

over the past few decades with many studies proposing composite indices for comparative analysis 

of vulnerability across spatial extents (Chakraborty, 2005; Cutter, et al., 2003; Krishnamurthy, 

2012; Shepard et al., 2012). In the natural hazards literature, social vulnerability indices are 

typically based on a definition of vulnerability that posits that social stratification and local 

infrastructure factors are the primary contributors to the vulnerability or resilience of a population 

(Chakraborty, 2005; Cutter, 1996; Cutter, et al., 2003; Rygel, et al., 2006). The vulnerability 

indicators (such as age, gender, socioeconomic status, living arrangements, access to medical care, 

and race/ethnicity) used in construction of most social vulnerability indices are heavily based on 

socio-demographic information measured in census data and are generally consistent from one 

study to another (Azar, 2007; Cutter, et al., 2003; Rygel, et al., 2006).  

Social vulnerability indices often utilize a hazards-of-place framework, which implies that 

only human environments, spaces containing human populations, are considered vulnerable, and 

are often mapped to show spatial relationships between social vulnerability and biophysical 

vulnerability to environmental hazards such as flooding (Azar, 2007; Cutter, 1996). These indices 

have been created as planning tools and metrics that can be used to inform policy development, 

funding allocations and educational efforts, to assist municipal and emergency planners in 

identifying populations at risk during evacuation scenarios, and to identify potential or existing 

environmental justice concerns (Burton, 2010; Chakraborty, 2005; Cutter, et al., 2003).  
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Related to the concept of social vulnerability to environmental hazards is the idea of 

environmental justice. Derived from the idea of environmental racism, which was focused on 

discrimination against people of color in environmental policy-making, environmental justice has 

been generally described as a type of distributive justice concerned in particular with the 

distribution of benefits and burdens among a population that is affected by decisions and actions 

made in relation to the environment (Cutter, 2012; Wenz, 1988). As a form of distributive justice, 

environmental justice analysis involves an assessment of the geographical distribution of 

environmental hazard burdens among the population. Therefore, it is an inherently spatial problem, 

and one where scalar mismatches between populations of interest and environmental hazards often 

hamper precise characterization of the at-risk population (Chakraborty, 2011; Mennis, 2003). 

Dasymetric mapping techniques have emerged as an approach for improving the precision 

of characterization of at-risk populations by facilitating disaggregation of socio-demographic data 

to a finer scale which may be more representative of the area affected by a hazard (Chakraborty, 

2011; Maantay, et al., 2007; Mennis, 2003). A form of areal interpolation, dasymetric mapping, 

utilizes an ancillary dataset containing supplementary information to inform the redistribution of 

data from original large areal units to smaller areal units represented by the ancillary information. 

Land use classification raster data, road networks, imagery and cadastral (tax parcel) data are 

common sources of ancillary information used in dasymetric mapping (Bhaduri, Bright, Coleman, 

& Urban, 2007; Maantay, et al., 2007; Mennis, 2002; Tapp, 2010).  

Dasymetric mapping techniques that make use of density of development categories in 

land-use classification rasters as a proxy measure of population density were utilized by Mennis 

(2002) for analysis of environmental justice risk. In an analysis of the proximity of ‘disadvantaged’ 

populations (minorities and those living below the poverty line) to a hazardous facility, Mennis 
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found that the percentage of the population that could be considered ‘disadvantaged’ peaked at a 

distance from the hazardous facility that is several times smaller than the length of many block 

groups and census tracts. Without disaggregation of the population to higher resolution sub-units, 

the relative increase in the percent of the population residing near hazardous facilities that are 

‘disadvantaged’, and the environmental justice risk associated with this disproportionate 

population distribution, would likely not be recognizable.  

Cadastral-based dasymetric mapping techniques have also been applied to analysis of 

environmental justice issues. Maantay and Maroko (2009) investigated the distribution of 

populations according to racial/ethnic group in New York City in relation to flooding risk. Their 

analysis found that the use of standard methods for evaluating flood affected populations using 

census block groups underestimated the at-risk population by as much as 72% when compared 

with a cadastral-based dasymetric mapping technique. They also found that while minority 

racial/ethnic groups did not disproportionately reside in high flood risk areas, they were 

disproportionately undercounted using standard methods for evaluating flood affected populations, 

indicating that decision-making tools that lack sufficient spatial resolution may provide faulty 

information that leads to the underestimation of ‘disadvantaged’ at risk populations. Tax parcel 

data, while less widely available than land-use classification data and not nationally standardized, 

is available in most urban areas and frequently includes zoning information, property size, and 

living area (or number of dwelling units) (Maantay, 2007; Tapp, 2010). Cadastral data also often 

includes information such as property value and land use information (i.e., designated nursing 

home, single family dwelling, boarding house, etc.) that can provide insight into the makeup of 

the population within a parcel (Maantay, 2009).  
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Both of the aforementioned environmental justice studies utilized dasymetric mapping to 

improve the precision of spatial distribution estimates of various populations relative to an 

environmental hazard, but examined only a few variables that describe ‘disadvantaged’ 

populations to assess environmental justice risk (Maantay, 2009; Mennis, 2003). These 

‘disadvantaged’ populations are groups that are believed to have higher degrees of social 

vulnerability than the population at-large, and are identified by variables that are often used in the 

construction of social vulnerability indices (Azar, 2007; Chakraborty, 2005; Cutter, 1996; Cutter, 

et al., 2003; Rygel, et al., 2006). As the concept of environmental justice commonly used today 

suggests that all people, regardless of socioeconomic or demographic character, should bear an 

equitable proportion of the burdens of both man-made and natural environmental hazards, and 

have equitable access to environmental benefits, and it is commonly accepted that a number of 

variables such as race, socioeconomic status, and cultural beliefs may interact to increase or 

decrease the overall extent of the vulnerability of specific sub-groups (Chakraborty, 2011; Cutter, 

et al., 2003; Maantay, 2009), a tool that provides a more comprehensive characterization of the 

social vulnerability of populations at high spatial resolution should prove valuable in the 

assessment of environmental justice risk (Padgett, 2013). 

Census Disaggregation Methods 

Census block groups from the American Community Survey (ACS 2012 5-year estimates) 

were used as the original socio-demographic data to be disaggregated to the parcel level, as they 

are the smallest census unit for which the detailed demographic information needed for 

construction of social vulnerability indices is available on an annual basis. Detailed parcel data 

(2013) for Davidson County, Tennessee, was used as the ancillary cadastral dataset. The parcel 

dataset included information at the parcel level such as property type, building type, living area, 
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dwelling units, and assessed property value. Geoprocessing necessary for dasymetric mapping and 

selective demographic variable distribution, as well as mapping of social vulnerability indices, was 

facilitated by ESRI’s ArcGIS.  

Population Disaggregation 

Cadastral dasymetric mapping techniques were adapted from the Cadastral-based Expert 

Dasymetric System (CEDS) developed by Maantay, Maroko, and Herrmann (2007). This system 

ensures that the sum of the population of all parcels in a census area is equal to the total population 

of the census area as defined by the original census data, also referred to as the pycnophylactic 

property (Mennis, 2002). The system also selects which of two types of ancillary data, living area 

or number of dwelling units, to use for disaggregation of census data on a block group by block 

group basis, by determining which data type minimizes errors in aggregation of parcel populations 

to census tracts (Maantay, et al., 2007). Although living area and/or dwelling unit values were 

missing for some of the parcels, these values were modified in the parcel data only where other 

information was available, implying that the accuracy of the dasymetric mapping is limited by the 

accuracy of the ancillary parcel data.  

Unlike the original CEDS, in the adapted version, no adjustments were made to residential 

areas or number of dwelling units beyond the cases described below due to lack of relevant 

adjustment information at the parcel level in the tax data (Maantay, et al., 2007). The majority of 

parcels with designated property type “mobile home” or “mobile home park” were missing both 

living area and dwelling unit values; for these cases, both dwelling unit and living area values were 

manually added following examination of current satellite imagery of the parcels. A few block 

groups contained no parcels with residential property type designations or contained no parcels 

with residential property type designations that also had dwelling unit or living area information. 
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In these cases, parcels in the block group that clearly contained residential areas, such as 

universities with an on-campus population, or that were identified as residential by their property 

type designation, were assigned a proportion of the block group population relative to the parcel 

area. Validation of population disaggregation was validated using the method described by 

Maantay, et al. (2007) in which the disaggregation procedure is replicated for an alternate spatial 

scale, such as census tracts, and the resulting dasymetrically estimated parcel populations are 

aggregated back to the original scale (block groups) for comparison with census populations. 

Produced dasymetric maps of Davidson County total population were tested for 

disaggregation errors by aggregating parcel populations to the block group level. Comparison of 

aggregated values to block group populations from census data confirmed that the pycnophylactic 

property was retained, indicating that any errors in disaggregation are confined within block 

groups.  While direct validation of data disaggregated from block groups to parcels is generally 

not feasible, disaggregation from census tracts to block groups was found to be accurate within 

thirteen percent (based on the sum of the absolute differences between dasymetrically assigned 

census tract populations and block group level census populations) (Maantay, et al., 2007).   

Sub-Population Disaggregation 

Sub-populations and physical variables relevant to social vulnerability in the area, as 

determined from a principal components analysis of social vulnerability indicators at the block 

group level, were joined with data at the parcel level based on block group identifiers (GEOID). 

The sub-populations were then disaggregated to residential parcels. 

Due to lack of related ancillary information, many of the sub-populations were distributed 

to parcels as a proportion of the total population at the parcel equal to the ratio of the sub-

population value at the block group level to the total population of the block group. Certain sub-
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populations (age 5 and under, age 65 and older, women, those living in group quarters) were 

selectively assigned to, or excluded from, certain parcels based on descriptive building type and 

land use information associated with each parcel (APPENDIX A, Table A 1). In addition, parcel 

information was utilized to provide parcel-level resolution for other physical and economic 

characteristics such as property value, residence type (i.e., mobile home, rental, or owner 

occupied), and access to medical care. 

Disaggregation logic for sub-populations was developed to retain the pycnophylactic 

property whereby the sum of all parcel sub-population values is equal to the block group sub-

population value. Using the disaggregation logic, an excluded property (EP) was considered a 

parcel where none of the sub-population is expected to be found, therefore the sub-population at 

that parcel was assigned a value of zero. An assigned property (AP) was considered a parcel where 

nearly the entire population of the parcel was expected to belong to the sub-population. In order to 

maintain the pycnophylactic property, the sub- population at APs was calculated as follows: 

 

If  ∑ 𝑇𝑃𝑜𝑝𝐴𝑃,𝐵𝐺 ≤  𝑆𝑃𝑜𝑝𝐵𝐺, 

then  𝑆𝑃𝑜𝑝𝐴𝑃 =  𝑇𝑃𝑜𝑝𝐴𝑃. 

Else if  ∑ 𝑇𝑃𝑜𝑝𝐴𝑃,𝐵𝐺 >  𝑆𝑃𝑜𝑝𝐵𝐺, 

then  𝑆𝑃𝑜𝑝𝐴𝑃 =  𝑇𝑃𝑜𝑝𝐴𝑃 (
𝑆𝑃𝑜𝑝𝐵𝐺

∑ 𝑇𝑃𝑜𝑝𝐴𝑃,𝐵𝐺
). 

 

where SPopAP is the designated sub-population at an assigned property, TPopAP is the 

total population at an assigned property, SPopBG is the sub-population value at the block group 

level, TPopBG is the total population value at the block group level, and TPopAP,BG  is the total 

population of an assigned property in a specified block group. Similarly, the sub-population at all 

properties that are not EPs or APs was calculated as: 
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𝑆𝑃𝑜𝑝𝑃𝑎𝑟𝑐𝑒𝑙 = 𝑇𝑃𝑜𝑝𝑃𝑎𝑟𝑐𝑒𝑙 (
𝑆𝑃𝑜𝑝𝐵𝐺 − ∑ 𝑆𝑃𝑜𝑝𝐴𝑃,𝐵𝐺

𝑇𝑃𝑜𝑝𝐵𝐺 − ∑ 𝑇𝑃𝑜𝑝𝐸𝑃,𝐵𝐺 − ∑ 𝑇𝑃𝑜𝑝𝐴𝑃,𝐵𝐺
) 

 

where SPopParcel is the sub-population at a parcel which is not an excluded or assigned 

property, TPopParcel is the total population at a parcel which is not an excluded or assigned 

property, SPopAP,BG is the sub-population at an assigned property in a specified block group, 

and TPopEP,BG is the total population at an excluded property in a specified block group. Here, 

the numerator represents the sub-population that is available for distribution to parcels that are not 

EPs or APs, and the denominator represents the total population in a block group among which 

the remainder of the sub-population may be proportionally distributed. 

Application of Disaggregated Census Data in a Social Vulnerability Index 

To illustrate one application of high resolution demographic information and its 

implications for planning purposes, a standard census block-group scale social vulnerability index 

(SVI) and a tax-parcel scale SVI using dasymetrically distributed census data were built and 

contrasted.  

Social Vulnerability Index Creation 

One widely accepted method for creating a SVI is the SoVI® analysis method, in which 

principal components analysis (exploratory factor analysis) is used to reduce a large number of 

demographic variables to a smaller subset of vulnerability factors (Cutter, et al., 2003). The 

vulnerability factors produced in the principal components analysis are linear combinations of 

variables that are highly correlated with each other, while the factors themselves are orthogonal to 

each other. In this way, each factor can be generally described as representing a certain unique 
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characteristic of vulnerability. This methodology was recently adopted by the United States Army 

Corps of Engineers (USACE) for use in water resources planning (Dunning, 2013). 

In order to create the block-group scale SVI (BGSVI) a principal components analysis was 

conducted on a set of 64 variables derived from ACS 2012 5-year block group estimate census 

data using the statistics package SPSS Statistics 22.0. This initial set of variables was composed 

of social vulnerability indicators commonly utilized in principal components construction of social 

vulnerability indices (Cutter et al., 2003; Kleinosky, 2007; Schmidtlein, 2008). The principal 

components analysis was conducted following the method generally outlined by Cutter et al. 

(2003). Block groups with no population values were removed from the dataset and cells with 

missing values were assigned a value of zero.  

An iterative process involving use of different normalization schemes and elimination of 

variables with low commonality scores, low component loading scores, and/or low measured 

sampling adequacy scores was applied to reduce the number of variables used in the principal 

components analysis and increase the amount of variance explained by the extracted components 

(Cutter, et al., 2003; Rygel, et al., 2006; Wood, 2009). The composite BGSVI was created using a 

weighted sum method where the percent variance explained by each component was used as the 

weighting factor for each component (Schmidtlein 2008; Wood, 2009).  As in the SoVI® method, 

directionality was assigned to each component in a manner that leads to high vulnerability being 

represented by highly positive index scores (+ if significant variables increase vulnerability, - if 

significant variables decrease vulnerability, or absolute value if the significant variable loadings 

produce mixed vulnerabilities). The z-scores of the raw BGSVI score were calculated to create a 

standardized index score and were mapped in ArcGIS as standard deviations. 
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The principal components analysis of 64 block group census variables at the block group 

level produced a reduced dataset of 37 variables (APPENDIX A, Table A 2) and yielded 10 

components with eigenvalues greater than 1.0 that explain 71 percent of the variance. Based on 

the loading of the variables, these components can be generally described as representing: 1. 

Race/Class (14%), 2. Economic Status (12%), 3. Foreign Born (9%), 4. Elderly (8%), 5). Women 

(7%), 6. Group Living (6%), 7. Families (5%), 8. Housing Quality (4%), 9. Hospice Care (3%), 

and 10. Rural (3%). 

To create the tax-parcel scale SVI (PSVI) a principal components analysis of the parcel 

dataset including the selectively redistributed demographic data was conducted using the same 

methodology as described above. The variables used in the parcel level principal components 

analysis were normalized as described in Table A 3 (this normalization means that values for 

variables for which selective assignment logic was not used are the same for each parcel in the 

block group). The resulting PSVI scores were also standardized using z-scores and mapped in 

ArcGIS as standard deviations.  

The principal components analysis of the social vulnerability indicator variables distributed 

to parcels reduced the number of relevant variables from 37 to 30 (APPENDIX A, Table A 3) and 

yielded nine components with eigenvalues greater than 1.0 that describe 66 percent of the variance. 

These nine components are similar in composition to the components extracted from the block 

group data analysis and generally represent: 1. Economic Status (11%), 2. Foreign Born (10%), 3. 

Race/Class (10%), 4. Elderly (8%), 5. Women (8%), 6. Families (7%), 7. Group Living (5%), 8. 

Renters/Population Density (4%), and 9. Mobile Homes (3%). In this case, 1. the Rural component 

from the block group level analysis drops out as the variability in population density within an 

analysis unit that is captured by this component is already fully explained by the 



38 

 

Renters/Population Density component, 2. the Housing Quality component from the block group 

level analysis which included both low value housing and mobile homes is relabeled as Mobile 

Homes as the number of mobile homes is the only variable that significantly contributes to this 

component, and 3. the Hospice Care component drops out as the significant variables in this 

component are incorporated into the Group Living, Race/Class, and Renters/Population Density 

components. Each component, with the exception of Foreign Born, includes at least one selectively 

assigned variable with a significant loading. The standardized BGSVI and PSVI scores for central 

Davidson County are shown in Figure 3. 

 

Figure 3: PSVI and BGSVI for the Nashville area. 
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Comparison of BGSVI and PSVI 

In order to compare the distribution and impact of the BGSVI and PSVI, dasymetrically 

estimated parcel total population, BGSVI values, and PSVI values were joined to parcels by parcel 

and block group identifier. Numbers of slightly vulnerable (index score greater than 0.5), 

moderately vulnerable (index score greater than 1), and highly vulnerable (index score greater than 

2) parcels, as well as the expected total population at these parcels, were extracted for comparison. 

When BGSVI are applied to parcels, it was observed that fewer occupied parcels in the 

county are considered vulnerable than when the PSVI is used (Table 1). The difference between 

parcel vulnerabilities using the BGSVI and PSVI in terms of a percent of all parcels in the county 

is misleadingly small. Using the BGSVI, approximately 2% of all parcels in Davidson County are 

classified as highly vulnerable.  This percentage increases to only 3% when the PSVI is used to 

identify highly vulnerable parcels. However, as the degree of vulnerability (as indicated by the 

index score) increases, the proportional difference between the numbers of parcels identified using 

BGSVI and PSVI increases, with the PSVI ultimately identifying nearly twice as many highly 

vulnerable parcels than the BGSVI.  

 Of greater note are the population trends associated with parcels classified as vulnerable 

(see Table 1 for details). While an estimated 3% of the total population in Davidson County is 

expected to reside in parcels that the BGSVI identifies as highly vulnerable, more than 22% of the 

total population is expected to reside in parcels that the PSVI identifies as highly vulnerable. As 

with the proportional differences between numbers of parcels, the proportional difference between 

estimated population numbers using the BGSVI and PSVI increases with increasing index score. 

The proportional difference between estimated resident populations in parcels identified as slightly 
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vulnerable to highly vulnerable using the BGSVI and PSVI increases from a factor of 

approximately 1.7 times for slightly vulnerable parcels to 7.5 times for highly vulnerable parcels. 

As the PSVI is derived primarily from block group level information and disaggregated 

block group information, the two indices are expected to be highly consistent. That is, it is expected 

that most parcels that are identified as vulnerable using the BGSVI will also be identified as 

vulnerable using the PSVI. The Pearson’s correlation coefficient for BGSVI and PSVI is 0.906 

(significant at the 0.01 level for a 2-tailed test), indicating that the two indices are highly correlated, 

and thus consistent.  

The co-occurrence of slightly vulnerable, moderately vulnerable, and highly vulnerable 

parcel identifications using both PSVI and BGSVI was also examined (see Table 2 for details); 

the differences between the two indices increases with increasing index score. All but 7% of 

parcels that are identified as at least slightly vulnerable using the BGSVI were also identified as at 

least slightly vulnerable using the PSVI (i.e., 7% of parcels with a BGSVI of 0.5 or more have a 

PSVI less than 0.5). This percentage of failure of vulnerability identifications to co-occur increases 

to 36% for parcels identified as highly vulnerable using the BGSVI. However, much of this 

variance between the BGSVI and PSVI can be attributed to the establishment of analytical cutoff 

points for differing severities/levels of vulnerability identifications. Nearly all parcels identified as 

moderately or highly vulnerable using the BGSVI have a PSVI vulnerability identification that is 

one level removed or less (i.e., more than 99% of parcels with BGSVI of at least 2 have a PSVI of 

at least 1 and more than 99% of parcels with a BGSVI of at least 1 have a PSVI of at least 0.5). 

An example of parcels with consistent vulnerability identifiers using PSVI and BGSVI is shown 

in Figure 4. 
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Table 1: BGSVI and PSVI comparison for Davidson County. 

Vulnerability 

Based on Index 

Score 

Number of 

Parcels 

Percent of all 

Parcels in County 

Proportional Difference 

in Parcel Count (PSVI/ 

BGSVI) 

Estimated Resident 

Population 

Percent of Total 

Population in 

County  

Proportional Difference in 

Estimated Population 

(PSVI/ BGSVI) 

  BGSVI PSVI BGSVI PSVI   BGSVI PSVI BGSVI PSVI   

Slightly Vulnerable 

(Index Score > 0.5) 
40,665 52,574 22 29 1.3 176,567 297,785 28 47 1.7 

Moderately 

Vulnerable (Index 

Score > 1) 

18,905 30,026 10 16 1.6 91,863 234,190 15 37 2.5 

Highly Vulnerable 

(Index Score > 2) 
3,075 5,863 2 3 1.9 18,754 141,250 3 22 7.5 

Table 2: Co-occurrence of BGSVI and PSVI vulnerability identifications at the parcel level. 

Vulnerability  

Based on Index  

Score 

Number of 

Parcels 

Percent of all 

Parcels in 

County 

Percent of BGSVI 

Parcels with Same 

Level PSVI 

Percent of BGSVI 

Parcels with PSVI 

Within 1 Level 

Percent of  PSVI 

Parcels with Same 

Level BGSVI 

Percent of PSVI 

Parcels with BGSVI 

Within 1 Level 

Slightly Vulnerable 

(Index Score > 0.5) 37,754 21 93 --- 74 --- 

Moderately Vulnerable 

(Index Score > 1) 17,004 9 90 99 59 96 

Highly Vulnerable 

(Index Score > 2) 1,956 1 64 100 36 94 
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Figure 4: PSVI and BGSVI along the Cumberland River where vulnerability identifications are 

consistent. 

 

The percent of PSVI identified vulnerable parcels that are also BGSVI identified 

vulnerable parcels is less than the previously described reverse relationship, as the BGSVI 

identifies a smaller number of vulnerable parcels overall, but the trend is the same, with co-

occurrence decreasing with increasing index score. However, while nearly all BGSVI vulnerable 

parcels had a PSVI within 1 level of the BGSVI, the reverse does not hold true. While 100% of 

parcels identified as highly vulnerable using the BGSVI were identified as at least moderately 

vulnerable using the PSVI, only 94% of the parcels that the PSVI identifies as highly vulnerable 

are also identified as at least moderately vulnerable using the BGSVI. In fact, more than 2% of 
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parcels identified as highly vulnerable using the PSVI are identified as not vulnerable using the 

BGSVI (see Figure 5 for an example), indicating that boundary conditions in the vulnerability 

scale are only part of the picture, and suggesting that the PSVI incorporates additional vulnerability 

attributes that are sensitive to parcel level spatial resolution and thus not considered using the 

BGSVI. 

 

Figure 5: PSVI and BGSVI in central Nashville where discrepancies are seen between the 

vulnerability identifications. 

 

This conclusion that discrepancies between the PSVI and BGSVI occur due to spatial 

sensitivity of certain vulnerability attributes is corroborated by examination of the parcel 

descriptions and associated social vulnerability indicator variables. All of the parcels identified as 

highly vulnerable using the PSVI and not vulnerable using the BGSVI are residences that are 
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classified as apartments, mobile homes, or some form of group-living quarters, such as boarding 

houses or nursing homes. These residence classifications are contained within parcel descriptions 

and were all used in the selective distribution of social indicator variables. In comparison, only 

25% of parcels that are identified as highly vulnerable using the PSVI and at least slightly 

vulnerable using the BGSVI have these same residence classifications.  

Comparison of selectively distributed social vulnerability indicator variable values for 

parcels with discrepancies between PSVI and BGSVI, and parcels for which PSVI and BGSVI are 

consistent in identifying vulnerability, shows that total population, renter population, group 

quarters population, senior population, and the numbers of mobile homes are all significantly 

elevated for parcels with discrepant PSVI and BGSVI. Estimated senior populations at discrepant 

parcels are about 1.5 times higher than at consistent parcels, estimated group quarter populations 

are 4 times higher, the number of mobile homes is 15 times higher, estimated total population is 

more than 20 times higher, and estimated renter populations are more than 25 times higher.  

This comparison of selectively distributed variables indicates that the PSVI is sensitive to 

parcel level population and to the heterogeneous spatial distribution of different types of living 

arrangements and their associated resident populations. Such sensitivity may prove most useful 

for urban areas; particularly for areas with mixed residential types, where block group level 

analyses tend to dilute the effects of non-conformity to the mean within each block group. 

Discussion 

Application of census data selectively redistributed to tax parcels in a social vulnerability 

index for the Davidson County, Tennessee, area found that a PSVI is consistent with a BGSVI 

constructed using standard principal components analysis methodology (Cutter, et al., 2003; 

Maantay, et al., 2007).  However, the high resolution PSVI is also sensitive to parcel level 
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population and to residence type. These added sensitivities make the PSVI useful for urban areas 

with mixed residential classifications and a high degree of local heterogeneity and illustrate the 

utility and potential benefits offered by downscaled census data (Chakraborty, 2011; Maantay, et 

al., 2007; Maantay, 2009). As the PSVI is produced at a spatial scale that is, on average for the 

case study area, 80 times smaller than block groups, when overlaid with maps displaying exposure 

to environmental hazards, the PSVI can help to more precisely identify regions where biophysical 

and social vulnerabilities overlap, creating potential for environmental injustice to occur 

(Chakraborty, 2011; Maantay, 2009; Mennis, 2003).  

It should be noted that despite the high spatial resolution provided, the selective 

redistribution methodology described is not intended to be used to evaluate or predict the 

characteristics of individuals, nor would it be desirable to do so. Even when demographic 

information is interpolated to smaller areal units, the base composition is aggregated survey data 

that is subject to measurement errors. Nor is the disaggregation methodology immune to errors in 

assignment as the selective disaggregation logic makes use of generalized assumptions about sub-

population locations which may or may not hold true in all cases. Additionally, while areal 

interpolation is a powerful tool, validation at this scale is difficult, and all disaggregated population 

data should be utilized as estimates (Maantay, et al., 2007).  

Instead, this methodology should be viewed from a municipal planner’s perspective as a 

tool that can provide information about the likelihood that a population residing at a particular 

parcel is relatively large or small and possesses certain characteristics of interest. This information 

may serve as supplementary justice-oriented information that can help planners locate areas where 

residents may lack the means to cope with and recover from the physical, emotional, and economic 

burdens associated with environmental hazards. 
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This work highlights the importance of scale and the mischaracterizations possible when 

using spatially aggregated data. However, this work does not address issues related to 

measurement error which is a particularly significant issue with U.S. Census American 

Community Survey (ACS) data. The deterministic disaggregation approach here may lead to 

mischaracterization of uncertainty in the spatial distribution of the data. This issue may be partially 

addressed using Monte Carlo approaches that incorporate ACS measurement error with the data 

disaggregation logic. An alternative approach is to utilize multilevel modeling approaches that 

account for variance existing at higher levels in the estimates of lower level outcomes. In the 

following section I describe one application of the multilevel modeling approach for evaluation of 

the effects of social and physical factors on the performance of a complex social-environmental 

system during hazardous conditions.  

 

Evaluating Relationships Between Social-Environmental System Hazard Outcomes 

and Social and Environmental Drivers Using Multi-Level Bayesian Regression 

In order to test the effectiveness of multilevel modeling methods for analytical assessment 

of multi-scalar processes in complex SESs, a study examining the effect of water rights structures 

on agricultural production in California’s Central Valley during drought was undertaken. In this 

study, the relationships between environmental factors such as drought conditions and 

groundwater availability, social factors such as competition between different water uses and 

structured legal access to surface water, and system performance, in terms of agricultural 

productivity, are evaluated using spatial analysis and multilevel Bayesian regression. This work 

demonstrates the utility of Bayesian modeling methods for assessing relationships between 

vulnerability and resilience in complex social-environmental systems.  
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California’s Central Valley region has been called the “bread-basket” of the United States. 

The region is home to one of the most productive agricultural systems on the planet. Such high 

levels of agricultural productivity require large amounts of fresh water for irrigation. However, the 

long-term availability of water required to sustain high levels of agricultural production is being 

called into question following the latest drought in California.  In this study, we use Bayesian 

multilevel spatiotemporal modeling techniques to examine the relationships between factors 

influencing the vulnerability of the system and agricultural production during the recent drought, 

with a specific focus on understanding the influence of the structure of surface water rights.  

Surface water rights are of particular interest as they are governed by state water policy, and hence 

are a likely target for intervention in potential adaptation planning.  

In this study, Bayesian spatiotemporal modeling is employed to account for spatial 

processes that have the potential to influence the effects of water right structures on agricultural 

production.  Results suggest that, after accounting for spatiotemporal dependencies in the data, 

seniority in surface water access significantly improves crop health and productivity on cultivated 

lands, but does not independently affect the ability to maintain cultivated extent.  In addition, 

agricultural productivity in watersheds with more junior surface water rights show less sensitivity 

to cumulative drought exposure than other watersheds, however the extent of cultivation in these 

same watersheds is relatively more sensitive to cumulative drought exposure.  

Introduction 

California’s Central Valley is one of the most productive agricultural systems on the 

planet (Diffenbaugh & Swain, 2015).  This system requires massive amounts of water to function; 

the agricultural sector accounts for 77 percent of the state’s water use (Swain et al., 2014).  The 

Central Valley experienced a state of prolonged drought starting in the mid-2000s that escalated 
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to severe drought conditions lasting from 2011 until 2017 (Howitt, Medellín-Azuara, & MacEwan, 

2014; U.S. Drought Monitor, 2017). The persistent drought conditions significantly strained 

agricultural production throughout the valley with an estimated economic cost of $2.7 billion in 

2015 alone (Howitt, MacEwan, Medellín-Azuara, Lund, & Sumner, 2015).  Research suggests that 

future changes in climate will continue to impact surface water availability, ultimately affecting 

plant growth rates as well as irrigation timing and runoff (Mann & Gleick, 2015; Schwarz, 2015).  

These changes will likely increase legal mandates curtailing surface water use.  In a study of the 

Sacramento-San Joaquin Delta, Schwartz (2015) estimates that water rights curtailments between 

2030 and 2059 may last 20% longer and occur with 10% greater frequency than they have in the 

past.  These changes, coupled with rapidly increasing population growth and shifts in agricultural 

demand will place significant strain on agricultural systems in the Central Valley in the future, 

threatening national food security.   

In the Central Valley, increased pumping of groundwater has enabled many farmers to 

continue to cultivate in spite of the current drought (Christian-Smith, Levy, & Gleick, 2015; 

Famiglietti et al., 2011).  Rates of groundwater depletion in the Central Valley have increased 

dramatically throughout the drought, exceeding groundwater recharge rates and putting future 

groundwater use at risk (Famiglietti et al., 2011; Howitt, MacEwan, Medellín-Azuara, Lund, & 

Sumner, 2015; Medellín-Azuara et al., 2015).  If current pumping rates continue, the region’s 

groundwater supplies may be over-drafted and the ability of farmers to use groundwater to mitigate 

surface water shortfalls during drought will be increasingly limited. Farmers have also engaged in 

water transfers among agricultural users, fallowing of land, and diversification towards less water-

intensive crops (Christian-Smith et al., 2015).  These farm-level adaptive practices are fairly short-

term responses to water scarcity; they leverage current technology, institutions, and infrastructures 
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to address drought.  Growing evidence suggests that California may enter a period of prolonged 

water stress in the future requiring more significant adaptation; therefore, it is important to assess 

the impact of how the institutions governing resource use impact agricultural responses to water 

scarcity (Hertel & Lobell, 2012; Zilberman, Dinar, MacDougall, Brown, & Castillo, 2002). 

This study focuses on the impact of the legal institutions governing California’s surface 

water on a remotely sensed metric of agricultural productivity and the likelihood of a field being 

left fallow during the recent drought in California’s Central Valley.  California is an important 

place to study these dynamics as it is the only state to recognize the two dominant approaches to 

surface water management in the United States:  riparian and appropriative rights.  The unique 

hierarchical legal structure of these surface water rights in California facilitates exploration of the 

impact of these distinct ways of managing surface water on agricultural systems. We hypothesize 

that during periods of extreme water stress, such as the recent drought, seniority in access to surface 

water significantly improves local capacity to cultivate and maintain crop health, and also 

decreases sensitivity to increasing precipitation deficits. In what follows, we discuss the nature of 

surface water rights and groundwater in California and outline the conceptual framing of the 

analyses conducted. We then describe the methods and novel dataset used in this study, the 

statistical analyses conducted, and the empirical results. Finally, the implications of the study for 

water management in a changing climate and limitations of the study are discussed.   

Understanding surface water rights in California 

Surface water access in the Central Valley is governed by a complex hierarchy of water 

rights.  California is the only state to recognize both riparian and appropriative rights (Schwarz, 

2015).  Riparian rights are water rights belonging to a land owner and apply to the use of naturally 

flowing water within, or adjoining, a parcel of land (California State Water Resources Control 
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Board (CA SWRCB), 2016a).  As riparian rights do not require licenses or permits and generally 

are not lost by non-use or transitions in land ownership, they are considered as “senior” to 

appropriative water rights (CA SWRCB, 2016b; Sawyers, 2005). However, riparian rights do not 

entitle a water user to divert water to storage (for use during the dry season) or to apply the water 

outside of the watershed in which the parcel of land lies (CA SWRCB, 2016b). While water 

diversion under riparian rights are by law limited to the amount of water which can be put to 

reasonable and beneficial use, because they are exempt from California State Water Resources 

Control Board (CA SWRCB) oversight diversion amounts are rarely quantified unless a stream 

system statutory adjudication process takes place (CA SWRCB, 2016a; Sawyers, 2005; Schwartz, 

2015). 

Appropriative water rights are rights that divert water from the original stream system for 

use on land that is not classified as riparian (CA SWRCB, 2016b; Sawyers, 2005).  Like riparian 

rights, appropriative rights are limited to the amount of water which can be put to reasonable and 

beneficial use, however as permitted and licensed rights, the diverted quantities of water are 

generally subject to more scrutiny than riparian rights.  In addition, any appropriative right may be 

lost if the right is not exercised for a period of five years (prescriptive period). In times of water 

shortage riparian water rights holders typically have higher priority access to water than 

appropriative rights holders, where each riparian right is given equal priority (CA SWRCB, 2016b; 

Sawyers, 2005).  

Appropriative rights are themselves subject to an internal hierarchy that is often described 

as “first in time, first in right” whereby rights holders with the oldest claim have higher priority 

access to water (CA SWRCB, 2016b). In California, appropriative rights are divided into two 

categories, Pre-1914 and Post-1914 rights. Pre-1914 appropriative rights are non-riparian rights 
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for which there is evidence that the right was claimed prior to the creation of a state-wide 

permitting system in 1914 (CA SWRCB, 2016b; Sawyers, 2005). These rights, similar to riparian 

rights, are not subject to CA SWRCB oversight and are senior to Post-1914 appropriative rights. 

Post-1914 appropriative water rights are subject to a great deal of oversight and are granted by the 

CA SWRCB only after demonstration of both unappropriated water availability and applicant 

ability to beneficially use that water. Priority of water access among Post-1914 appropriative rights 

holders is granted based on the date the water right permit application was filed, where the most 

recent rights are the first to discontinue use in times of water shortage (CA SWRCB, 2016b; 

Sawyers, 2005). 

While some farmers hold the rights to the surface water they use for irrigation, much of 

the surface water in California is distributed via contracts between a farmer with no legal water 

rights and a second party who holds the original water right, but does not directly use the water 

(Medellín-Azuara et al., 2015; Sawyer, 2005). While private water contracting is common, the 

largest water contractors, and holders of the largest share of water rights, are the state and federal 

government (California Department of Water Resources (CA DWR), 2017a; Sawyer, 2005). The 

California Department of Water Resources (CA DWR) and the U.S. Bureau of Reclamation 

(USBR) collectively hold an estimated 219 water rights with more than one thousand points of 

diversion across the state, and are estimated to supply approximately 25% of irrigation water in 

any given year (Medellín-Azuara et al., 2015). This water is diverted to water contract holders via 

the State Water Project (SWP) or the Central Valley Project (CVP), which are managed by CA 

DWR and USBR, respectively, and include large-scale water conveyance structures, such as the 

California Aqueduct (CA DWR, 2017b; Medellín-Azuara et al., 2015; USBR, 2017a).  
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As the SWP and CVP transport water across watersheds, and sometimes over great 

distances, water right point of diversion locations for contracted water are not necessarily directly 

associated with the location of water use. However, it is required that points of rediversion from 

natural and artificial water ways be reported to the California Water Resources Control Board 

suggesting that some records do exist that link contracted water to areas near the location of water 

use (California Water Boards, 2017). Contract water is typically used for municipal and 

agricultural uses and the contracts are often made with local governments and large irrigation 

management districts, but may be also held by individuals and small trusts (CA DWR, 2017b; 

Medellín-Azuara et al., 2015; USBR, 2017b). While those who contract for water with a second 

party do not have a direct legal claim to water, and their use of water may be restricted by the 

nature of their contract with the water right holder or a local distributer of water (such as an 

irrigation management district), the water they receive is associated with a legal water right and is 

subject to the same restrictions and privileges granted to that class of water rights. 

Groundwater in California  

Groundwater plays a critical role in the California agricultural system as during a typical 

year groundwater supplies about 30% of irrigation water, while during drought years this share 

can increase to over 50% (Medellín-Azuara et al., 2015). However, while increased groundwater 

extraction has been a prevalent response to recent droughts in California, a growing body of 

research suggests that this is not a sustainable response to projected future changes in water 

availability (Famiglietti et al., 2011; Howitt, MacEwan, Medellín-Azuara, Lund, & Sumner, 2015). 

At present, there is no state-wide groundwater use permitting and regulation process and the only 

regulation of groundwater use is limited to basin-specific court adjudication in a few regions (CA 

SWRCB, 2016b). The Sustainable Groundwater Management Act, signed into law in 2014, 



53 

 

requires High and Medium Priority basins subject to critical conditions of overdraft to be managed 

under a groundwater sustainability plan by January 31, 2020, leaving groundwater basins 

vulnerable to increased pumping rates over the next few years (CA DWR, 2015; Medellín-Azuara 

et al., 2015). Lack of groundwater monitoring is also a significant issue in the region with about a 

quarter of High and Medium priority basins inadequately monitored under the California Statewide 

Groundwater Elevation Monitoring Program (CASGEM) (CA DWR, 2014; Medellín-Azuara et 

al., 2015). Groundwater use is therefore constrained primarily by groundwater aquifer location and 

depth, the ability to drill new wells, and pumping costs (Mukherji & Shah, 2005; Schlenker, 

Hanemann & Fisher, 2007).  

Modeling agricultural production during water scarcity 

In this study, a farmer’s cultivation decision (what and how much to plant) during times 

of water stress is conceptualized as a function of expectations of water availability, recent weather 

trends, the portfolio of cultivation options available to the farmer, and expected crop values. 

Similarly, the health and productivity of cultivated crops is seen to be dependent on the choice of 

crop grown, weather conditions during the growing season, and access to and availability of water 

to apply to the cultivated crops. We hypothesize that the legal structure of surface water rights in 

the state is one of the factors at play in both farmer decision-making and crop productivity.  

California water code prioritizes water allocations based on the stated purposes of water 

use, the type of water right, and the timing of appropriation.  The structure of these prioritizations, 

e.g. domestic use over irrigation; Riparian over Appropriative; Pre-1914 appropriations over recent 

appropriations, has the potential to inform farmer cultivation decisions and constrain the amount 

of water available for application to fields, particularly for junior water rights holders.  Therefore, 

we hypothesize that during periods of extreme water stress, such as the recent drought, seniority 
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in access to surface water significantly improves local capacity to cultivate and maintain crop 

health and productivity.  In addition, we predict that access to senior appropriative water rights 

will decrease agricultural sensitivity to cumulative meteorological drought stress relative to 

riparian and junior rights. In what follows, we apply Bayesian spatiotemporal modeling to a novel 

dataset to test these hypotheses. 

 Methods and Data 

That water shortages have a negative impact on agricultural production is a logical and 

somewhat obvious deduction. However, analysis of the impacts of water shortages on agricultural 

production, including factors influencing access to water, is a non-trivial task. One of the largest 

contributors to heterogeneity in water stress impacts on the health and productivity of agricultural 

systems is location. Vegetation health exhibits strong autocorrelative spatial dependency that can 

be difficult to account for in regression analyses and which, if not considered, has the potential to 

bias results. In addition, temporal dependency, differences in crop type, the sources of water used 

for irrigation, the complexity of the physical water distribution system, and the scale of cultivation 

activities also contribute to variations in the impacts of drought on agriculture.   

In water resources research, simulation models of water use dynamics are commonly 

employed. There are many examples of agricultural water use models for California’s Central 

Valley that employ simulation strategies.  Medellín-Azuara et al. (2015) merge a model of 

economic and agricultural production (SWAP) with a groundwater use model (C2VISim) to 

estimate the economic costs of pumping groundwater during the drought, finding higher 

vulnerability in regions without access to wells and uncertain access to surface water.  Schwartz 

(2015) uses a series of linked models to estimate future water rights curtailments, finding that 

many more water rights holders will be affected by curtailments in the future.  While simulation 
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studies provide valuable information, it is prudent to assess the conclusions of simulations using 

alternate methods.  

Recent advances in computational power and Bayesian empirical modeling techniques, 

which offer advantages over traditional regression methods in consideration of uncertainty in 

estimates and the ability to accommodate missing data, have made Bayesian modeling approaches 

more tractable for analyses of complex systems (Blangiardo & Cameletti, 2015; Gelman & Hill, 

2007). Bayesian methods have been found to be particularly useful for analyses of spatial and 

hierarchically (multi-level) structured data and have been used to examine the space-time 

dynamics of disease (Schrodle et al., 2011; Raghavan et al., 2016), child malnutrition (Kandala et 

al., 2001), and wildlife population dynamics (Cosandey-Godin et al., 2015).  More recently the 

expansion of Laplace approximation-based Bayesian analyses, which are more computationally 

efficient than traditional Markov chain Monte Carlo-based Bayesian analyses, has led to a rapid 

increase in examination of spatiotemporal phenomenon in large datasets (Mantovan & Secchi, 

2010). 

In what follows, we present analyses that explore the role of surface water rights in 

modifying the effects of drought on a remotely sensed metric of agricultural productivity and the 

likelihood of a field being left fallow throughout the recent California drought.  We apply Bayesian 

multilevel modeling techniques that account for spatial and temporal effects to estimate the 

variation in the effects of surface water rights structure over the course of the drought. These 

techniques allow us to quantify the effects of key predictors after accounting for temporal and 

spatial patterns in the region.  The multilevel approach also allows us to explore factors driving 

agricultural response to drought at both the watershed and field levels. 
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Area of Interest 

In order to investigate the effects of the legal structure of surface water rights on 

agricultural production over the course of the drought a large spatiotemporal panel dataset was 

compiled (see Table B 1 in APPENDIX B for additional information on data sources and formats). 

Annual data for years 2010-2014 of the recent drought were obtained for the Central Valley with 

outcome, control, and predictor variables available at one of two different spatial scales: field-level 

(1km pixels) or watershed level (U.S. Geological Survey hydrologic unit code (12-digit 

designation). For the analyses described below the dataset was clipped to the subset of fields 

located in the California Central Valley that have been characterized as agricultural land (farmland 

or grazing land) in any of the biennial California farmland mapping surveys between 2006 and 

2014 (California Department of Conservation, 2016). Figure B 1 in the Appendix displays the 

spatial extent of the area of study, which contains 849 watersheds and 62,050 fields.   

Outcome data 

The spatiotemporal resolution of existing agricultural production datasets made public by 

the U.S. Department of Agriculture is at the county-year scale, however, given the size of counties 

in California, agricultural production data at this level can mask significant spatial variations that 

occur at the farmland field and watershed scale. In order to more precisely investigate relationships 

that link agricultural production to water use we opted for outcomes at the field-level. While data 

limitations inhibit consideration of the legal structure of water rights at the field-level, the use of 

the field-level outcome allows us to both account for localized factors such as land-use and to 

explicitly model the full extent of field-level variation within an area. 

To capture field-level production dynamics, we computed an index of total vegetative 

production (TVP) using remotely sensed metrics of vegetation health.  TVP is computed as the 
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integral of the annual smoothed Enhanced Vegetation Index (EVI) time series and represents the 

relative productivity of that pixel for the year of interest. To compute TVP we extracted measures 

of the observed EVI from a one-kilometer, 16-day resolution dataset from the NASA Moderate 

Resolution Imaging Spectroradiometer (MODIS) Terra MOD13A2 dataset (NASA LP DAAC, 

2015).  The EVI is measured as:  

 

𝐸𝑉𝐼 = 𝐺
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝐶1 𝑥 𝜌𝑅𝐸𝐷 − 𝐶2 𝑥 𝜌𝐵𝐿𝑈𝐸 + 𝐿
 

 

where ρ is atmospherically corrected surface reflectance, L is the canopy background 

adjustment, and C1 and C2 are the coefficients of the aerosol resistance term, which uses the blue 

band to correct for aerosols in the red band (Huete et al., 2002).  EVI values approaching one 

indicate higher levels of photosynthetic activity over the 16-day period.  The MODIS quality mask 

was applied to the full dataset, dropping low quality observations.  Pixels with more than 50 

percent of their values flagged as low quality through time were dropped from the analysis.  For 

the remaining pixels, missing observations were linearly interpolated and the full time series was 

smoothed using a Savitzky-Golay filter before computing the annual integral to obtain TVP 

(Savitzky & Golay, 1964).   

The EVI is highly correlated with both leaf area and vegetation fraction estimates 

(Gumma, 2011; Huete et al., 2002; Sakamoto et al., 2005; Small & Milesi, 2013; Xiao et al., 2006). 

A recent study compared MODIS vegetation indices, including EVI, to county-level yield data 

from the U.S. Department of Agriculture.  Crops studied include barley, corn, canola, cotton, 

potatoes, rice, sorghum, soybeans, sugarbeets and wheat.  The EVI was found to correlate strongly 

with yields across all these crops (Johnson, 2016). As the integral of the EVI time series, TVP 
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serves as a proxy for cumulative annual vegetative productivity. Integrated vegetation indices such 

as TVP have been shown to be a good measure of productivity and yield in a number of studies 

(Mkhabela, Bullock, Raj, Wang, & Yang, 2011; Wang, Rich, Price, & Kettle, 2005).   Higher 

values of TVP indicate higher amounts of vegetative health and productivity over a year (Jönsson 

& Eklundh, 2002; Jönsson & Eklundh, 2004). Figure B 2 in the Appendix provides a representative 

map of TVP spatial patterns.  

In order to probe the effects of the structure of surface water rights on cultivation 

decisions, a binary, field-level outcome was computed that represents whether a field is barren and 

fallow.  This outcome variable was derived from the National Agricultural Statistics Service 

CropScape dataset (USDA National Agricultural Statistics Service, 2016).   For each year, the 

mode of the 30-meter resolution CropScape dataset was computed for pixels within each field (1 

kilometer TVP pixel) and fields where the mode was categorized as barren and fallow were 

assigned a value of one while all other fields were assigned a value of zero.   

Surface water rights data 

Surface water use explanatory variables that describe the structure of water rights were 

computed at the watershed level. Watersheds are irregular spatial units that define local hydrologic 

dynamics that are topology dependent and are often the preferred unit of analysis for water use 

and water quality studies (Ficklin, Luo, Luedeling, & Zhang, 2009; Kollet & Maxwell, 2008).  

Point data identifying the location of surface water right points of diversion (PODs) and the legal 

status of each POD were downloaded from the CA SWRCB electronic water rights information 

management system (eWRIMS) (CA SWRCB, 2016c).  Digitized data currently does not exist to 

link a POD to a specific place of use, so this point data was aggregated to watersheds to reflect 

watershed-level patterns of surface water access.   Use of watershed scale or river basin data 
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aggregations in studies examining access to water and water allocations in relation to water rights 

are common in the literature, in large part due to the lack of data on water access at the field-level 

(Grantham and Viers, 2014; Schwarz, 2015; Tidwell et al. 2014).  

In this study, the legal structure of water rights is represented by three variables that give 

the percent of all active agricultural use PODs within a watershed that are classified as Riparian, 

Pre-1914 Appropriative (henceforth referred to as “Pre-1914”) and Post-1914 Appropriative 

(henceforth referred to as simply “Appropriative”) water rights (additional information on water 

rights data processing and aggregation is provided Text B 1 in the Appendix). We suggest that 

these newly developed metrics provide a measure of the distribution of legal access to surface 

water within watersheds. While legally structured differences in field-level access to surface water 

most certainly exist within watersheds, these metrics provide information about the relationship 

between the tendency towards certain types of legal access within a watershed that may influence 

the average level of agricultural production within that watershed. The legal structure of water 

rights in a watershed is expected to influence famer cultivation decisions by modifying 

expectations for water availability during the growing season. The legal structure of water rights 

is also expected to influence agricultural productivity of cultivated fields by modifying the 

availability of sufficient surface water to maintain cultivated fields during the growing season. Of 

the 849 watersheds within the study area, 333 have some Riparian water right PODs, 190 have one 

or more Pre-1914 right PODs, and 486 have Appropriative right PODs.  Additional summary 

statistics can be found in Table 3. Maps of the spatial distribution of water rights can be found in 

Figure B 3, Figure B 4, and Figure B 5 in APPENDIX B. 

As a single water right may be associated with multiple PODs this metric gives greater 

weight to water rights with multiple PODs. As water rights are frequently not held by individual 
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farmers, but instead by irrigation management districts who then distribute water via multiple 

PODs to a number of farmers that contract with the district for water supply, the POD based water 

rights metrics are intended to capture information about the number of farms receiving water 

associated with water rights and not just the number of water rights holding institutions and 

individuals (this assumes that the number of PODs is proportional to the number of water users in 

a watershed). It should also be noted that due to the lack of information on the point of application 

of water, these metrics assume that the majority of a water rights users are located within the 

watershed in which the POD is located, which disassociates a water right from use of water 

associated with that right occurring in other watersheds (see Text B 2 in the Appendix for 

information on contract water representation in the POD dataset).  

Drought severity data 

The effect of drought on agricultural production was examined using a measure of 

cumulative meteorological drought stress which is expected to influence both farmer cultivation 

decisions (for the following year) and growing-season agricultural productivity (for the current 

year). This predictor was calculated as the annual sum of the Standardized Precipitation Index 

(SPI). The SPI is measure of meteorological drought (a deficit in precipitation) that is given over 

a specified time period (in this case we use 9-month SPI data) and is presented on a normalized 

scale with a mean of zero and standard deviation of one (AghaKouchak and Nakhijiri, 2012).  

Negative values of SPI indicate dry conditions while positive values indicate wet conditions. The 

cumulative annual SPI predictor (henceforth referred to as “SPI”) was computed for each 

watershed-year using monthly SPI calculated from the NASA North American Land Data 

Assimilation System (NLDAS) precipitation data and made available by AghaKouchak and 

Nakhijiri (2012).  As SPI is a local measure of precipitation deficit it does not account for changes 
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in water availability that are due to precipitation and water storage occurring outside the study area 

such as alpine snowpack and reservoir storage. In this case, SPI provides a watershed localized 

measure of negative forcing on soil moisture and streamflow (Whan et al., 2015).  

Crop type data 

To account for aspects of field-level agricultural land and water use not attributable to the 

structure of surface water rights, we included two field-level datasets.  The first is a crop type 

categorical variable derived from the National Agricultural Statistics Service CropScape dataset 

(USDA National Agricultural Statistics Service, 2016).  This land use categorical variable is 

expected to influence the agricultural productivity of cultivated fields. The CropScape data for 

each year was aggregated into six generalized categories of land use: barren and fallow, grasses, 

grains, row crops, fruits and nuts, and uncultivated cover (additional information on CropScape 

data aggregation is provided in Table B 2).  The mode of the 30-meter resolution CropScape data 

was computed for pixels within each field (1 kilometer TVP pixel) and this land use category was 

assigned to each field-year.  The average farm size in California is 1.3 kilometers, so while this 

aggregation approach may mask some intra-farm diversity, it largely captures farm-level variations 

in land use (California Department of Food and Agriculture, 2016). Within the final dataset of 

62,050 square kilometers of agricultural fields over 5 years, 7.4% of all fields were classified as 

barren and fallow, 6.1% were classified as grasses, 11.7% were classified as grains, 5.5% were 

classified as row crops, 16.1% were classified as fruits and nuts, and 53.1% were classified as 

uncultivated cover. In addition, 37.2% of all fields were classified as barren and fallow at some 

time during the drought. Figure B 7 displays the spatial variation in crop type in a representative 

year. 
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Groundwater data 

The second field-level dataset is the depth to groundwater in January of each cultivation 

year.  This provides an estimate of the accessibility of groundwater at a particular location prior to 

the start of the growing season. The depth to groundwater is expected to influence both cultivation 

decisions, by modifying expectations for groundwater availability prior to the growing season, and 

agricultural productivity, by modifying access to groundwater for irrigation during the growing 

season. The quality of groundwater extraction data in California and across the U.S. is notoriously 

poor (CA DWR, 2014).  California’s Groundwater Information Center monitors well levels for a 

subset of wells covering the state through the California Statewide Groundwater Elevation 

Monitoring Program (CASGEM) program, however the temporal and spatial coverage of this 

monitoring network is lacking, particularly in key critical regions (CA DWR, 2014).   

In order to account for reductions in surface water being offset by groundwater use, and 

in an attempt to avoid omitted variable bias, we applied spatiotemporal kriging to the CASGEM 

groundwater elevation point dataset using the R package Spacetime to produce a gridded depth to 

groundwater dataset for the region (GeoTracker GAMA, 2016; Gräler, Pebesma, & Heuvelink, 

2016).  This method uses an “exact estimator” to interpolate values for spatial locations and time 

points for which no data is available using the available space-time information and a provided 

model of spatiotemporal correlation. Following recommended model-fitting procedures as 

outlined by Gräler, Pebesma, & Heuvelink (2016), we tested the fit of a number of variogram 

structures to our data and found a simple-sum metric spatiotemporal model to best fit our data.  

The point data was then kriged through space-time to generate a 10-kilometer monthly 

gridded groundwater elevation dataset which was compared to a held-out dataset of groundwater 

elevation observations for verification purposes.  Our model performed well with a mean 
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normalized RMSE of 0.08 against the held-out observations and a Nash-Sutcliffe efficiency of 

0.80. To convert the groundwater elevations to depth to groundwater and aggregate this monthly 

dataset to an annual time-step, we subtracted the groundwater elevation in January of each year 

from the ground-level elevation using the Elevatr package to estimate depth to groundwater 

(Hollister and Shah, 2017).  This value of depth to groundwater was extracted to each field-year.  

More information on the groundwater space-time kriging procedure is provided in Text B 3. Figure 

B 12 displays the spatial distribution of depth to groundwater in a representative year. 

Additional control data 

To account for agricultural dynamics at the watershed level, we computed an index of 

agricultural diversity to indicate whether the agricultural system of a watershed tends towards 

monoculture. This metric captures the complexity of the agricultural system, where areas with less 

diversity are expected to have a greater amount of permanent or semi-permanent physical irrigation 

infrastructure in place that might constrain farmer cultivation decisions.  The CropScape data from 

USDA were aggregated for each watershed-year using the diversity indexing method described by 

Turner, Neill, Gardner, & Milne (1989) where diversity is described as the linear sum of the 

proportion of a landscape area that is covered by each crop type. As the crop diversity metric is 

expected to influence pre-season cultivation decisions this variable was lagged by one year.  

As access to surface water is expected to influence both farmer cultivation decisions and 

growing season productivity we also control for physical accessibility and proximity of surface 

water in each watershed using a measure of the density of agricultural surface water right PODs.  

This metric was computed by taking the ratio of the total number of agricultural surface water 

rights PODS in a watershed and the area of all farmland in a watershed and controls for watershed 

scale variations in agricultural production related to proximity to streams and rivers, where PODs 
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tend to be clustered, that are independent of the legal structure of water rights. In addition, as 

competition between different types of water uses (e.g. agricultural, municipal, and industrial) 

during times of water scarcity is expected to influence the availability of surface water for 

agricultural purposes we computed a metric of completion as the percent of all surface water right 

PODs in a watershed that are reported to be used for agricultural purposes. This metric is expected 

to influence both farmer cultivation decisions and growing season productivity within a watershed. 

Geographically referenced annual data was unavailable for a number of factors thought 

to be relevant to cultivation decisions and agricultural health and productivity such as surface water 

availability, climatic conditions, and changes in crop value. In order to take into consideration 

these omitted variables categorical indexes for year and watershed were included in the dataset so 

that omitted variable influences that varied with time but not location, or that varied by watershed 

but remained constant over time could be controlled for using year and watershed specific effects. 

 

Table 3: Descriptive statistics for continuous variables. 

 
Spatial Scale Mean  Standard 

Deviation 

Minimum Maximum 

Total Vegetative Production field 0.55 0.16 0 1.35 

Annual Cumulative SPI watershed -2.04 3.15 -12.96 8.76 

Percent Riparian watershed 28.5 33.8 0 100 

Percent Pre-1914 watershed 15.6 28.1 0 100 

Percent Appropriative watershed 61.6 38.1 0 100 

Depth to Water Table (ft) field 189.8 242.3 0.02 1731.8 

Crop Diversity watershed 14.6 6.2 0 36.8 

Water Rights Density 

(PODs/square km farmland) 

watershed 0.08 0.33 0 35 

Percent Agricultural Use watershed 39.37  35.38 0 100 
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Statistical Analyses 

 Multi-level structure 

The importance of multi-level structuring on the growing season agricultural productivity 

outcome variable (TVP) was tested by fitting a three-level null model and calculating the intraclass 

correlation coefficient (ICC). The null model takes the form, 

𝑦𝑖𝑗𝑘 =  𝛽0𝑗𝑘 +  𝑒𝑖𝑗𝑘           (1.1) 

𝛽0𝑗𝑘 =  𝛽00𝑘 + 𝑢0𝑗𝑘        (1.2) 

𝛽00𝑘 =  𝛾000 + 𝑢00𝑘      (1.3) 

 

which can be expressed in reduced form as:  

𝑦𝑖𝑗𝑘 =  𝛾000 + 𝑢00𝑘 + 𝑢0𝑗𝑘 +  𝑒𝑖𝑗𝑘      (1.4) 

 

where yijk is TVP for a time-ordered measurement during year i, at field j, in watershed k, 

γ000  is the intercept coefficient, u00k is a random effect accounting for variability between 

watersheds k, u0jk is a random effect accounting for variability between fields j  in watershed k, 

and  eijk   is a random effect accounting for the remaining within field variability over time. TVP 

was modeled using a Gaussian likelihood distribution, and for the null model we model all random 

effects using a random Gaussian correlation structure (iid).  The intraclass correlation coefficient 

was calculated as the proportion of the total variance attributable to between unit variance at levels 

i, j, and k. The ICC ranges from 0 to 1 where 0 indicates that grouping conveys no information 

and 1 indicates that all group members are identical (Gelman & Hill, 2007).  The resulting ICCs 

of 0.2 for level i, 0.3 for level j, and 0.5 for level k indicate that significant variance is found at 
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each level and suggests that dynamics at all three levels should be taken into consideration. Given 

the large size of the dataset used in this study (5 years, ~62,000 fields, and 849 watersheds) we 

prioritize consideration of spatial processes occurring at level k to reduce the computational 

demands of model estimation. 

Bayesian model specification 

In order to test the hypothesis that seniority in access to surface water improves local 

capacity to maintain crop health and productivity and reduces agricultural sensitivity to cumulative 

meteorological drought stress during times of water scarcity the observed TVP was fit to a multi-

level mixed-effects model with water right-SPI interactions, which can be expressed generally as: 

 

𝑦𝑖𝑗𝑘 =  𝛽0𝑗𝑘 +  𝛽10𝑘𝑆𝑃𝐼 + 𝜷20𝑘𝑿 + 𝜷30𝑘𝑿 ∗ 𝑆𝑃𝐼 + 𝜷4𝑗𝑘𝑪 +  𝑠00𝑘 + 𝑒𝑖𝑗𝑘   (2.0) 

 

where, β0jk is an intercept term, β10k represents the linear effect of cumulative 

meteorological drought stress (SPI) on TVP, β20k is a vector of coefficients that describe the effects 

of water rights on TVP at the watershed level, X is a vector of water rights predictors (Percent 

Riparian, Percent Pre-1914, and  Percent Appropriative), β30k is a vector of coefficients that 

describe the effect of interactions between water rights predictors and SPI, β4jk is a vector of 

coefficients for controlling variables, C is a vector of controlling variables (year, crop type 

category, water rights density, competing uses, and depth to groundwater), s00k is a watershed level 

spatial effect, and eijk is the residual within field variability. Both year and crop type category are 

modeled as fixed effects while the watershed spatial effect is modeled as a random effect. All 

continuous variables were scaled to a mean of zero and standard deviation of one to ease 

interpretation of the intercept and coefficients.  
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In order to account for spatial effects in the large spatiotemporal dataset modeling was 

performed using the R package R-INLA, a Bayesian modeling package utilizing integrated nested 

Laplace approximations that includes a number of models for spatial and non-linear random effects 

(Blangiardo, Cameletti, Baio, & Rue, 2013). Spatial effects at the watershed level were modeled 

using an intrinsic conditional autoregressive (iCAR) model coupled with an exchangeable (iid) 

random effect, also known as a Besag-York-Mollié (BYM) model. The addition of the spatial 

random effects can be interpreted as a random intercept term that accounts for both spatially 

random differences across watersheds and autocorrelation between neighboring watersheds. 

The fit of the above described model (Model A) was compared to a model of only the 

described linear predictors and interactions using the calculated DIC (deviance information 

criterion). The proposed model (Equation 2.0) showed better performance (see Table B 3). In 

addition, recognizing that the effects of weather are not necessarily linearly related to agricultural 

production, models adding polynomial terms for SPI were compared with Model A (Schlenker 

and Roberts, 2006). While polynomial terms for SPI were found to be significant, the linear effect 

of SPI, and more importantly, the main effects of the water right predictors and their interaction 

effects with SPI were not significantly different from those observed in Model A (see Table B 4). 

In addition, the DIC for these models did not offer great improvements over Model A and the 

range of the full SPI effect for these models remained similar to Model A. Given that the focus of 

this study is to examine the impacts of the structure of water rights the more parsimonious Model 

A was selected for further analysis of impacts to agricultural productivity. 

In order to test the hypothesis that during periods of extreme water stress, seniority in 

access to surface water significantly improves local capacity to cultivate crops and decreases the 

sensitivity of cultivation decisions to cumulative meteorological drought stress, a Bernoulli 
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likelihood model examining the effect of water rights and SPI on the likelihood that a field of 

agricultural land is classified as barren and fallow was also run. The model (Model B) takes the 

same basic form as Equation 2.0 (with the addition of the farmland crop diversity control, use of a 

lagged SPI variable, and minus the land use category control), however, the outcome in this case 

is binary, where a value of one indicates that a field is barren and fallow and a value of zero 

indicates the field belongs to some other land use category.  

As water use dynamics in the Central Valley are subject to feedbacks and simultaneity 

that can lead to endogeneity issues, factors whose values in any year are dependent on processes 

related to other independent variables or the outcomes (e.g., the amount of groundwater applied to 

fields is dependent on the crop type and amount of surface water applied to fields) were avoided 

in the above described models. In addition, due to lack of appropriate data for known factors 

influencing agricultural productions and other unknown excluded factors, endogeneity due to 

omitted variable bias was also a concern. In order to test the robustness of our models and identify 

potential biases in coefficient estimates, a series of models were run testing the sensitivity of our 

estimates of interest (surface water rights predictors) to the inclusion and exclusion of controlling 

variables and spatial random effects, while holding the crop type and temporal fixed effects 

constant.  

These sensitivity tests were conducted for both Model A and Model B and a subset of the 

results are provided in Table 4 and Table 5, respectively (complete results are provided in Table 

B 5 and Table B 6). To test the validity of the random effects assumption (random effects are 

assumed to be uncorrelated with controlling variables in a regression), Model A was run with fixed 

effects for watersheds and compared to the same model with spatial random effects. Coefficient 

estimates for the predictors of interest in the watershed fixed effects and watershed spatial random 
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effects model were not significantly different at the 95% credibility interval, providing confidence 

that no watershed-scale omitted variables that might significantly bias results remain unaccounted 

for (see Table B 7). Key results of the Bayesian multi-level spatiotemporal models given as the 

median estimates of posterior parameters are summarized in Table 4 and Table 5 in the Results 

section (full model results for Models A and B, including 95% Credibility Intervals, are provided 

in Table B 8 and Table B 9). 

Results 

The posterior Bayes estimates for Model A indicate that cumulative meteorological 

drought stress and one of the three water rights predictors have a significant effect on agricultural 

production after accounting for crop type, year, and watershed (Table 4). The effect for SPI 

indicates that when each water right’s predictor is at zero (its mean), and cumulative drought stress 

becomes less severe, total annual vegetative production (TVP) shows, on average, slight increases. 

The water rights predictor Percent Pre-1914 also shows a positive and significant effect on 

agricultural productivity, while the effect of Percent Riparian and Percent Appropriative water 

rights are not significant (Figure 6).  
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Table 4: Posterior Bayes median effect estimates for models evaluating field level TVP in the Central 

Valley. 

Variable Model A  Model A.2 Model A.3 Model A.4 Model A.5 Model A.6 

Intercept 0.1623* 0.1631* 0.1628* -0.1000 * -0.0806* -0.1016* 

SPI 0.0623* 0.0624* 0.0623* 0.1081* 0.1113* 0.1120* 

Percent Riparian -0.0007 0.0014 0.0008 -0.0661* -0.0587* -0.0464* 

Percent Pre-1914 0.0536* 0.0540* 0.0538* 0.0125* 0.0174* 0.0300* 

Percent 

Appropriative 
-0.0062 -0.0050 -0.0062 -0.0377* -0.0439* -0.0198* 

Percent 

Riparian*SPI  
0.0060 0.0058 0.0060 -0.0515* -0.0517* -0.0477* 

Percent Pre-

1914*SPI 
-0.0009 -0.0010 -0.0009 0.0114 0.0109* 0.0166* 

Percent 

Appropriative* 

SPI  

-0.0226* -0.0228* -0.0226* -0.0798* -0.0763* -0.0752* 

Depth to 

Groundwater 
0.0024 0.0024 0.0024 -0.0213* -0.0428* -0.0213* 

Water Rights 

Density 
0.0020 0.0020 --- 0.0387* 0.0494* --- 

Percent 

Agricultural Use 
-0.0042 --- -0.0039 0.1087* --- 0.1157* 

Spatial Random 

Effects 
Yes Yes Yes No No No 

       

DIC 619551 619552 619552 772393 774797 772950 

*Indicates effect estimate is significantly different from zero at a 95% credibility level. 

 



71 

 

 

Figure 6: Estimated effect of key predictors on TVP. 

 

The effect for Percent Pre-1914 water rights indicates that when SPI is zero (at its mean) 

watersheds with a larger proportion of water rights that are classified as Pre-1914 have, on average, 

higher TVP (indicating better crop health and productivity) than watersheds with a low proportion 

of Pre-1914 water rights. In addition, Appropriative water rights have a significant interaction 

effect with SPI, such that the effect of SPI on TVP is reduced from ~0.06 to ~0.04 when the percent 

of Appropriative water rights in a watershed increases by one standard deviation. Figure 7 
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illustrates how the effect of SPI on TVP changes as a function of each water right type. These 

results rather surprisingly indicate that agricultural productivity in watersheds with a higher 

proportion of Appropriative water rights is, on average, less sensitive to precipitation deficits than 

watersheds with a higher proportion of Pre-1914 or Riparian water rights. 

 

 

Figure 7: The effect of SPI on TVP as a function of standardized water rights predictors.  
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Both the primary predictor effect estimates and the interaction effect estimates remain 

stable in Model A through Model A.3 as control variables are included or excluded when temporal 

and crop type fixed effects and watershed spatial random effects are held constant, providing some 

confidence in the robustness of the results. The estimates do shift considerably when the watershed 

spatial random effects are removed (Models A.4-A.6) suggesting that a significant amount of the 

variation in the predictors is related to omitted variables correlated with location (e.g. location of 

contract water districts and volume of water contract allotment).  

Surprisingly, the coefficient for the depth to groundwater variable is not significant in 

Model A. In comparison, the coefficient for depth to groundwater estimated in Model A.4, where 

watershed spatial random effects are not included, shows that increasing depth to groundwater 

results in, on average, lower TVP outcomes. This would suggest that after controlling for crop type 

and year, areas where it may be more difficult or costly to access groundwater are less able to 

utilize groundwater to offset surface water shortages and maintain crop health. However, variation 

in this effect seems to occur at the watershed spatial scale and does not vary consistently over time, 

leading groundwater effects to be soaked up by the watershed spatial effects.  

The density of water rights PODs within a watershed is also not significant in Model A. 

Comparison with Model A.4 where there is no watershed spatial effect indicates that this metric 

does positively effect TVP outcomes, but that these effects vary primarily across watershed and 

hence are accounted for with the spatial random effect in Model A. As with the density of water 

rights and depth to groundwater variables, the percent of all water rights PODs in a watershed that 

are used for agricultural purposes does not show a significant effect on agricultural productivity in 

Model A, but does in Model A.4 where its positive effect suggests that watersheds where a greater 

proportion of water rights go to agriculture are better able to maintain crop health. 
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Table 5: Posterior Bayes median effect estimates for models of the likelihood of a field being classified 

as barren and fallow in the Central Valley. 

Variable Model B† Model B.2† 

Intercept 0.0122 * 0.0436* 

SPI 0.9198 * 1.0539* 

Percent Riparian 0.9804 0.8733* 

Percent Pre-1914 1.0577 0.8756* 

Percent Appropriative 1.0399 1.0341* 

Percent Riparian*SPI  1.1023* 1.2695* 

Percent Pre-1914*SPI 1.0956* 1.1163* 

Percent Appropriative*SPI  1.2081* 1.2839* 

Depth to Groundwater 0.4269* 0.4222* 

Water Rights Density 1.0382* 0.9534* 

Percent Agricultural Use 1.1430* 1.0989* 

Farmland Crop Diversity 0.9629* 1.0868* 

Spatial Effects Yes No 

   

DIC 130682 156065 

 

†Anti-logit of the intercept estimate and exponentiated predictor effect estimates are 

reported.  

*Indicates effect estimate is significantly different from zero at a 95% credibility 

level. 

 

The posterior estimates of the marginal distributions for Model B as shown in  

Table 5indicate that there is generally a low average likelihood that any agricultural field 

is classified as barren and fallow. The estimate of the intercept suggests that the chances of a field 

being barren and fallow given average conditions for SPI in the previous year, water rights 

predictors, and controls, and after accounting for year and watershed, are about 12 in 1,000. The 

estimates of the predictor effects can be interpreted as an incremental change in the probability of 
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a field being classified as barren and fallow. The effect of SPI suggests when the water rights 

predictors equal zero and SPI increases by one standard deviation (decreasing cumulative drought 

stress), the probability that a field will be barren and fallow decreases by ~8%.  

None of the three water rights predictors have a significant main effect on the likelihood 

that a field is barren and fallow, however all three water rights predictors have significant 

interaction effects with SPI. The interaction effects can be interpreted as the ratio by which the SPI 

effect changes due to variations in the water rights predictors. The resulting effect of SPI given an 

increase of one of the interacting variable can be calculated as the exponentiated sum of the focal 

predictor (SPI) effect and the interaction effect (this is equivalent to the product of the 

exponentiated focal effect and interaction effect) (Chen, 2003). This indicates that increasing the 

value of the Appropriative water rights predictor from zero to one (from the mean to one standard 

deviation above the mean) modifies the effect of SPI such that a one standard deviation increase 

in SPI increases the probability of a field being barren and fallow by ~11% instead of decreasing 

it by ~8%. Conversely, this implies that in watersheds with a lower percentage of Appropriative 

water rights, as SPI increases, the likelihood of a field being barren and fallow decreases. A one 

standard deviation reduction in the percent Appropriative rights corresponds to a reduction in the 

likelihood of a field being barren and fallow of ~24% when SPI also increases by one standard 

deviation.  

The interaction effects for Riparian and Pre-1914 waters are also significant. An increase 

of one standard deviation in the percent Pre-1914 water rights corresponds to 0.01% increase in 

the likelihood of a field being barren and fallow when SPI increases by one standard deviation, 

and an equivalent change in the percent Riparian water rights corresponds to a 1.4% increase in 

the likelihood of a field being barren and fallow when SPI increases by one standard deviation. 
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These interaction effects suggest that, on average, when cumulative drought stress is more severe, 

watersheds with a higher than average proportion of senior water rights will be less likely to have 

barren and fallow fields than watersheds with more junior rights. 

While the main effect estimates for the water rights predictors were not significant in 

Model B the estimates for all controls were significant. The estimate for depth to groundwater 

suggests that when the depth to groundwater increases by one standard deviation the likelihood of 

a field being barren and fallow decreases dramatically (~57% less likely). This result is 

counterintuitive as it suggests that farmers located in areas where it may be more difficult to access 

groundwater choose to cultivate a greater extent of crops. In order to investigate whether this result 

reflects the influence of permanent crops such as Almonds, which cannot be left to fallow as annual 

crops can regardless of groundwater accessibility, and high value crops which may drive increased 

groundwater use despite increasing pumping costs, a model including a control for type of crop 

grown in the previous year was run. The results of this model (Table B 10) show that while crop 

type grown in the previous year does strongly influence the likelihood of a field being classified 

as barren and fallow and does significantly change the groundwater effect, it does not produce a 

meaningful change the groundwater effect. This suggests that the unexpected groundwater effect 

on cultivation choices is more likely to be related to other factors such as the presence of existing 

groundwater wells, for which statewide data is not yet publicly available. (As with Model A we 

note that while we cannot control for all confounding factors in these models the lack of significant 

movement in the water rights variables of interest when controls are added and removed (see Table 

B 6 and Table B 10) provides some confidence in their robustness.)  

The farmland crop diversity estimate in Model B suggests that increasing crop diversity 

slightly reduces the likelihood of fields being barren and fallow, and may indicate a shift from 
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cultivation of only a few traditional crops towards cultivation of more acreage of alternative 

drought-resistant crops in some watersheds. The effects for the controls for surface water access, 

water rights density and percent agricultural use, indicate that increases in the water rights density 

and in the amount of water rights associated with agricultural use are correlated with increases in 

the likelihood of a field being barren and fallow. This suggests that farmers in heavily agricultural 

watersheds that are reliant on surface water were more likely to cultivate less farmland during the 

drought.  When comparing Model B and Model B.2, which has no watershed spatial random 

effects, it is clear that unlike the model of agricultural productivity (Model A) the estimates of the 

control variables in the logistic model are relatively insensitive to the addition of spatial effects, 

suggesting that they are accounting for variance within watersheds and over time. The effect 

estimates for the water rights predictors in Model B.2 are all significant and for Percent Riparian 

and Percent Pre-1914 indicate that watersheds with a higher percentage of Riparian or Pre-1914 

water rights are less likely to have fields classified as barren and fallow. That these effects are not 

significant in Model B suggests that these effects are not strong after accounting for watershed 

properties that influence cultivation that are consistent over time. 

Discussion 

Given the importance of governance in creating opportunities to improve the capacity of 

people to respond to adverse situations, particularly in complex coupled social-ecological systems 

such as agricultural systems, a better understanding of the impacts of legally institutionalized 

structures granting and limiting access to surface water may positively inform water managers’ 

decision-making during times of water scarcity. The models presented in this study represent, to 

our knowledge, the first attempt to investigate the overall impacts of the legal structure of surface 

water rights in California on total annual vegetative productivity and the likelihood of a field being 
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left barren and fallow for the entire Central Valley. Starting with the assumption that the legal 

structure of surface water rights in the state affects agricultural productivity, we test the hypotheses 

that (1) farmers with seniority within the hierarchical legal structure of Californian surface water 

rights were able to achieve better than average agricultural productivity and maintain cultivated 

extent during the recent drought and that (2) they experienced less sensitivity to cumulative 

drought stress than did those with junior access to surface water. 

The model results partially support the general hypothesis that the legal structure of surface 

water rights, as represented by the proposed metrics of watershed-scale distribution of water rights 

types, in the state affects agricultural production. In line with expectations, the model results 

suggest that areas with a large proportion of the most senior water rights, Pre-1914, did, on average 

have better agricultural productivity outcomes during the drought than areas with more junior, 

Appropriative, water rights. However, contrary to expectations, the model results also suggest that 

areas with a high proportion of junior water rights exhibit less sensitivity to cumulative 

meteorological drought stress, as decreases in SPI in areas with a high proportion of Appropriative 

water rights are associated with less severe decreases in agricultural productivity. Conversely, 

these same watersheds may not experience significant improvements in TVP when local drought 

conditions improve, perhaps signaling a reliance on distant water sources or a tendency for short-

term increases in available surface water to go to higher priority beneficial water uses or senior 

water rights holders. Significant effects were not found for the main effects of Riparian and 

Appropriative water rights in spatiotemporal models of agricultural productivity, indicating that 

any effects of these predictors did not produce sufficient variation in TVP to be differentiated from 

watershed spatial effects. This may in part be due to the strong influence of groundwater and 
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contract water use for agricultural irrigation that consistently occurs in many watersheds in the 

Central Valley.  

The estimated effect sizes reported for the models examining effects on agricultural 

productivity may be small, however, it is important to note that these significant effects remain 

after accounting for variations in watershed characteristics that may influence agricultural 

productivity, time-invariant watershed-level factors, space-invariant temporal changes, and after 

controlling for land use decisions in each field. This implies that neither correlation between water 

rights and type of crop cultivated nor spatial correlation in locations of water rights contribute to 

the observed water rights effects, which are a reflection of the legal structures governing farmers’ 

expectations for, and access to, surface water.  In addition, it should be recognized that the size of 

the effect of the water rights predictors on TVP is of a similar magnitude as the linear SPI predictor. 

That the effect observed for SPI is of such a small magnitude suggests that the short-term capacity 

of farmers in the Central Valley to mitigate the impacts of drought are considerable. Given likely 

increases in drought conditions in the area in the future, and state regulations related to sustainable 

groundwater management, this short-term capacity may be reduced in favor of long-term 

agricultural system viability, suggesting that the effect of SPI on crop health and productivity may 

be greater in the future (CA DWR, 2015).  

While the results of models examining the role of the legal structure of water rights on 

agricultural productivity during times of water stress suggest that crop health and productivity was 

generally higher in areas with a high proportion of Pre-1914 water rights than in other areas, the 

results of the logistic model examining the likelihood of an agricultural field being left as barren 

and fallow indicate that the structure of water rights alone does not have a significant direct effect 

on the likelihood that a field is barren and fallow. However, the interaction effects from the logistic 
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regression suggest that when cumulative meteorological drought stress is more severe, areas with 

a high proportion of Appropriative water rights are more likely to have barren and fallow fields, 

while areas with a high proportion of Pre-1914 water rights are least likely to have barren and 

fallow fields. This finding supports the hypothesis that seniority in access to surface water 

decreases the sensitivity of cultivation decisions to cumulative meteorological drought stress. 

Interestingly, the effect of depth to groundwater has a strong and stable effect in the logistic model 

that indicates that the likelihood of a field being barren and fallow is much less in areas where the 

depth to groundwater is greater. This finding, may reflect the importance of the locations of 

existing groundwater wells and lack of groundwater pumping restrictions which were not 

explicitly controlled for in this model.  

Limitations of the study 

Accounting for the spatiotemporal dynamics of agricultural response to water availability 

is a complex task.  Despite our best efforts to leverage the power of R-INLA to model complex 

spatiotemporal error structures, our results remain limited by data resolution and availability 

(Blangiardo, Cameletti, Baio, & Rue, 2013).  Without data clearly linking points of diversion to 

farmers’ fields, we can only approximate vegetative responses and cultivation decisions to the 

general configuration of water rights in the surrounding watershed, and must rely on spatial effects 

to control for aspects of the agricultural system such as contract water. In addition, these analyses 

rely on the assumption that the amount of surface water and groundwater applied to agricultural 

fields can be approximated by metrics of access, availability, and water right priority. Reduction 

in surface water availability is assumed to be accounted for by year fixed effects, while issues 

related to dissociation between water right POD locations and point of water use, and between 
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depth to groundwater and locations of actual groundwater wells, are assumed to be accounted for 

by the spatial random effects.  

While the use of spatial random and fixed effects can be a powerful tool for addressing 

issues related to incomplete data, applying these controls successfully and without loss of 

explanatory power can be difficult. In our analyses incorporation of spatial random effects was 

associated with a reduction in significant effect estimates. However, the stability of the estimates 

in the spatiotemporal models when control variables are included or excluded provides some 

confidence in the robustness of the findings. While models without the spatial random effects 

provided more significant effect estimates the same level of robustness cannot be claimed as effect 

estimates do vary significantly with inclusion and exclusion of controls.  

With higher resolution data linking fields to specific water rights, modeling field-level 

agricultural responses to surface water institutions would be possible.  This data, coupled with 

increased groundwater monitoring could generate crucial research required to understand the 

complex dynamics of agricultural water use in the Central Valley.  As more data becomes available 

describing access to groundwater and surface water in the region, research can be developed to 

explore how specific configurations of surface water rights affect agricultural production, how 

agricultural groundwater and surface water use interact during periods of drought and during years 

without drought, and how future groundwater policies such as the Sustainable Groundwater 

Management Act initiative could impact surface water access in the Central Valley.  Additional 

research is also needed to determine how the portfolio of surface water use (e.g. industrial, 

domestic and agricultural use) influences agricultural response to drought.  Knowledge about the 

impact of these structures on agriculture may help to support more comprehensive water use 
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planning at the state and national levels and may assist farmers in mitigating the impacts of future 

drought.   

Conclusion 

The work described in this study advances the use of Bayesian modeling to control for 

complex dynamics in large social-environmental datasets.  We utilized multilevel Bayesian 

modeling methods that included consideration of temporal effects and spatially autocorrelated 

effects to test the hypotheses that  farmers with seniority within the hierarchical legal structure of 

California surface water rights were able to achieve better than average agricultural productivity 

and maintain cultivated extent during the recent drought, and that they also experienced less 

sensitivity to cumulative drought stress than did those with junior access to surface water. Our 

results suggest that: 

1. Watersheds with a higher proportion of senior water rights had better agricultural 

health and productivity during the drought than watershed with less seniority in 

surface water access; 

2. That agricultural productivity in watersheds with a higher proportion of junior 

water rights was, on average, less sensitive to meteorological drought conditions 

than other watersheds; and 

3. That watersheds with a higher proportion of junior water rights were more likely to 

reduce the extent of cultivation, by allowing fields to fallow in response to 

increasingly severe meteorological drought conditions.  

These results generally suggest that, as expected, seniority in access to surface water 

granted via the hierarchical legal structure of water rights in California enables farmers to cultivate 

more land with healthier crops. However, the finding that crop health and productivity in 
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watersheds with relatively more junior water rights are less sensitive to changes in drought 

conditions may indicate that farmers in watersheds with a large proportion of junior water rights 

are better prepared to take action to mitigate the impacts of surface water deficits via groundwater 

pumping and other mechanisms. Considering that watersheds with more junior water rights are 

more likely to have more barren and fallow fields but also more improved agricultural productivity 

outcomes when drought severity increases, it may be inferred that farmers in watersheds with more 

junior access to surface water prioritize maintaining crop health over increasing the extent of 

cultivation. The findings of this study provide some evidence that the legal structure of surface 

water rights in California affects the ability of farmers to cultivate crops and maintain crop health 

during periods of drought, and suggests that attention to the effects of legal institutions governing 

access to water for agricultural uses should not be neglected in revisions of current water policies 

and creation of new water policies and institutions.   

The study described above suggests that consideration of spatial and temporal effects in 

social-environmental systems can significantly alter the results of regression analyses and that it 

is possible to identify significant effects for processes related to vulnerability and resilience in 

complex SESs. While complex, Bayesian spatiotemporal modeling has the potential to account for 

dynamic, multi-scalar processes in SESs, and may lead to greater confidence in the identification 

of vulnerability, resilience, adaptive capacity, and sustainability indicators. In addition, the ability 

to model processes through space and time may be used to analyze trends in vulnerability, 

resilience, adaptive capacity, and sustainability over time.  
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Implications of Spatial Modeling Methods for Analysis of Social-Environmental 

Systems 

 

The findings of the two studies described in this chapter confirm that spatial effects and 

scale of analysis are of considerable importance when evaluating issues related to the vulnerability, 

resilience, and sustainability of complex social-environmental systems.  The first study 

demonstrates that the scale at which social vulnerability is computed significantly alters 

conclusions about the number and characteristics of vulnerable persons, where application of 

aggregated census data underestimates the vulnerability of specific demographic groups such as 

senior citizens. The second study demonstrates the importance of accounting for underlying spatial 

processes that shape the characteristics of systems, where models that lacked consideration of 

watershed-scale autocorrelative spatial effects tended to overestimate the effects of the structure 

of water rights on vegetative health and cultivation outcomes.  

In addition, these two studies demonstrate possible methods for addressing both issues. In 

the first study a method for downscaling demographic information to a resolution that more 

accurately reflects intersections between vulnerable populations and hazard exposure is presented 

and applied to the Nashville, TN case study area. The second study applies multi-level Bayesian 

spatiotemporal modeling methods to assess multi-scalar processes in an agro-ecosystem, 

demonstrating the potential of these methods for empirical evaluation of policies and social and 

physical processes related to system performance. In the following chapter I apply both of these 

techniques to evaluation of the performance of a community system (Nashville, TN) that has 

experienced a severe flood event and responded by implementing a home buyout program. 
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CHAPTER IV: COMMUNITY SUSTAINABLE RESILIENCE TO FLOODING  

 

Introduction 

In May 2010, central Tennessee experienced a severe precipitation event where more than 

13 inches of rain reportedly fell in Nashville in 32 hours, more than twice the historic record. This 

storm event led to severe flooding issues across the region, with the highest amount of damage 

being concentrated in the heavily developed Nashville metropolitan area. Following the 2010 

Nashville flood, the City of Nashville took measures to ensure that it would be less vulnerable to 

extreme flood events by reducing exposures, both personal and property-related, through purchase 

and removal of flood-damaged properties in some high-risk flood areas.  The activities of the Metro 

Water Services (MWS) buyout program are intended to make Nashville more resilient and 

sustainable by adding shared community value while decreasing future flood loss through 

development of new green spaces.   

This strategic conversion of developed landscapes from high-loss and liability to enhanced 

value, multi-benefit, shared spaces can be seen as an adaptive capacity building model for urban 

centers. However, while many in the community recognize the inherent benefit of reducing high-

risk areas and replacing them with such spaces, quantification of those benefits has not yet fully 

been realized. In-depth evaluation of the relationships between the provision of spaces that may 

offer these services and economic and other community well-being outcomes is needed in order 

to accurately assess the value of avoided damage and losses and potential secondary benefits 

resulting from these actions.  In addition, there is a need to go beyond quantification of standard 

costs and benefits of the program and to also examine the effectiveness of the buyout program in 

building adaptive capacity by reducing vulnerability, increasing resilience, and increasing 
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sustainability. Such information will provide a measure of less tangible benefits of the program 

and may provide information to justify replication of similar programs in other areas of both the 

Nashville community and beyond.   

Background 

The Nashville Flood Case 

In May of 2010, Middle Tennessee and more specifically, the greater Nashville area 

(Davidson County), experienced catastrophic flooding following a record-setting rainfall event in 

which more than 13 inches (330 mm) of rain fell within a 48 hour period (NOAA, 2011). This 

amount of rainfall exceeds expectations for a 1,000 year, 48-hour rainfall event in the area (NOAA, 

2018). At least eleven fatalities occurred due to flash flooding of streams and tributaries of the 

Cumberland River, more than 150 water rescues were conducted and more than 11,000 buildings 

were damaged at an estimated cost of about $2 billion (NOAA, 2011).  

Following the flood, Nashville took steps to improve emergency response and mitigate 

flood impacts. The Nashville Office of Emergency Management put in place improved emergency 

communication plans and Nashville Metro Water prepared a Unified Flood Preparedness Plan that 

assessed the effectiveness of different flood response and mitigation strategies, including 

modifications to water and wastewater treatment plants and construction of flood walls (MWS, 

2013). In addition, Metro Water Services (MWS) utilized FEMA funding to significantly expand 

the small home buyout program that had been in place since the late 1970s.  

The objective of the MWS home buyout program started in the 1970s was to remove homes 

that had experienced repetitive flood damage. The expansion of the buyout program also targeted 

areas of repetitive flood damage and high flood risk. Though the primary goals of the program 

were to remove people and property from direct physical harm, MWS also recognized the 



87 

 

additional value provided to the community by increasing riparian buffering along streams and 

creating greenspace and additional tree cover (ecosystem services). These last points have become 

especially pressing giving the high rate of development in the Nashville area which has 

experienced rapid population growth over the past decade (9.4% growth from 2010-2016) and is 

expected to continue to grow at a rapid pace in the near future (United States Census Bureau b, 

2017).  

New Directions in Resilience Research 

In both sustainability and resilience fields, researchers often examine historical hazardous 

events to try to gain insight into what characteristics make system resilient, vulnerable, or 

sustainable, and via which processes this occurs (Redman, 2014). However, it has been recognized 

that it is critical to go beyond post-ante analysis and try to determine what alternative system forms 

were possible before the event and how these alternative forms might have changed how the 

system responded to the event, in other words, to examine alternate histories (Redman, 2014). 

Analyses of this kind that combine post-ante analysis with prediction may be used to inform 

adaptation strategies by providing insight into the effectiveness and potential shortcomings of 

various adaptation options in advance of future hazardous events.  

In addition, it has been noted that standard conceptions of resilience do not include value 

judgments, such that it is possible to have a resilient system that has undesirable qualities. 

However, as the goal of system planning in the context of resilience is typically to not just maintain 

current system states, but to simultaneously improve the ability of the system to weather shocks 

and to maintain or transition towards desirable system states, identification of desired system goals 

and preferred system performance are often used to guide resilience planning processes (Gillespie-

Marthaler et al., under review; Olsson, 2006). Finally, system sustainability, which is not 
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necessarily positively correlated with resilience, should be considered in system planning. This 

may require identification of separate sustainability measures and evaluation of tradeoffs between 

advances in resilience and in sustainability. (Gillespie-Marthaler et al., under review; Walker et al. 

2004).  

This work aims to address some of the areas of need in resilience research pointed out 

above. However, in order to accomplish the goals of quantifying the costs and benefits of the 

buyout program described above, a framework that operationalizes links between contextual 

vulnerability, hazard impacts, resource availability and the influence of policies and adaptation 

programs is needed to structure analyses. In addition, spatial disaggregation of census data and use 

of regression techniques that account for spatial dependency may be necessary in order to identify 

significant effects. Therefore, this study makes use of the sustainable resilience assessment 

framework described in Chapter II, and the spatial modeling methods described in Chapter III 

(Nelson et al., 2015; Nelson et al., working paper; Nelson & Burchfield, 2017).  

The process flow connection between contextual vulnerability and the ability to resist 

systemic disruption identified in the sustainable resilience assessment framework will be used as 

the foundation for spatial and spatiotemporal regression analyses using disaggregated and original 

scale census data to validate community vulnerability indicators. Observed trends in the 

vulnerability indicators, observed impact data, and observed sustainability capital trends will be 

used to provide estimates of changes in community resilience over time within the context of the 

framework. Lastly, vulnerability indicator effects will be used in predictive spatiotemporal models 

to estimate flooding impacts incurred and avoided as a result of the MWS buyout program by 

comparing observed impacts to predicted impacts under buyout restriction and expansion scenarios 

within the framework. This final step will attempt to provide an accounting of the costs and 
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benefits of an adaptation strategy to the community and estimate the potential for the strategy to 

build future adaptive capacity.  

Conceptual Framing 

Drawing from the proposed integrated assessment framework for sustainable resilience and 

hypothesized conceptual linkages between vulnerability, resilience, adaptive capacity, and 

sustainability present in Chapter II, I attempt to operationalize the assessment framework using 

deductively selected indicators, empirical regression, and predictive modeling. In this case, I 

assume that the goal of system adaptation is to improve system performance.  

System performance is not some general directly quantifiable quality, instead it is defined 

by the goals and purpose of the system (as understood by system stakeholders), and is quantified 

using proxy measures or indicators of the status of specific system goals and purposes.  At any 

time, system performance is presumably affected by the distribution of social and bio-physical 

characteristics in the system. During hazardous events system performance is presumed to be 

strongly affected by bio-physical and social characteristics that suggest increased vulnerability to 

hazards, and the distribution and coincidence of these characteristics throughout the system.  

At any time, system performance is expected to affect future availability of and access to 

economic resources, natural resources, and social capital, the combination of which I refer to as 

sustainability capital. During hazards, system performance, and conversely, system failure, are 

expected to strongly impact sustainability capital. Sustainability capital itself, is expected to 

constrain adaptation options, and also to directly affect long-term changes in social and bio-

physical characteristics of the system.  
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Adaptation that occurs in response to hazards often uses interventions that directly target 

bio-physical and social vulnerability, and less frequently interventions that target sustainability 

capital (see Figure 8). In addition to adaptation to hazards, systems also undergo deliberate changes 

intended to improve some aspect of system performance. These changes often take the shape of 

long-term development planning and social welfare systems, and can be implemented at multiple 

large scales, often outside the bounds of system analysis. 

 

 

 

 

Figure 8: System performance cycle and location of adaptation entry points. 

 

In this work, I draw from the NashvilleNext 2016 report to identify general goals of the 

Nashville community system (NashvilleNext, 2016). The NashvilleNext 2016 report identifies a 
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series of  four foundational pillars (Opportunity and Inclusion; Economic Prosperity; 

Environmental Stewardship; Efficient Government), seven elements (Land Use, Transportation & 

Infrastructure; Art, Culture and Creativity; Economic & Workforce Development; Education & 

Youth; Health, Livability & the Built Environment; Housing; Natural Resources & Hazard 

Adaptation), and seven guiding principles (Be Nashville; Ensure Opportunity for All; Foster 

Strong Neighborhoods; Expand Accessibility; Advance Education; Create Economic Prosperity; 

Champion the Environment) which in many cases have overlapping objectives and which I 

reduced to the following three broad system goals: 

1. Maintain or improve the health and safety of community residents. 

2. Maintain or improve the economic prosperity of the community and its residents. 

3. Maintain or improve the ability of all residents to live comfortable and productive 

lifestyles. 

These system goals are quite broad and easily tens of proxy measures could be identified 

for each of these goals. However, for this work, I was most concerned with issues concerning 

flooding and the home buyout program. Therefore, I relied on the guiding question below when 

identifying candidates for specific proxy measures of these three system performance goals.  

What do you expect the flood and flood adaptations (green space creation) to change or 

impact in the short term and in the long term?  

Table 6 lists all candidate proxy measures for System Performance identified. As the target 

of adaptation, these measures are assumed to be the outcomes of interest that are dependent on 

vulnerability and that impact future sustainability capital. 
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Table 6: System goals and associated candidate measures of system performance. 

Health and Safety Economic Prosperity Livability and Opportunity 

Mortality rate Per capita municipal net revenue Net migration rate into the city 

Percent population in good 

health  

Per capita infrastructure 

operations and maintenance costs  

Relocation rate to suburbs 

Hospitalization rate Percent of municipal spending on 

emergency and disaster relief  

Percent renters 

Emergency room visitation 

rate 

Count of building permits  Percent homes vacant  

Hazard deaths Per capita property taxes  Ratio of population growth to regional 

population growth 

 Per capita sales taxes  Mean length of tenure 

 Per capita hours worked Ratio of income to cost of living 

 Unemployment rate Change in percent population with no 

post-secondary education  
 

Ratio of hazard damage to 

property value 

Change in percent population below 

poverty level 
 

Percent properties with hazard 

damage 

Change in population age 65 and older 

  Change in non-white population 

  Change in Hispanic population 

   

  

The drivers of these outcomes are factors that define local neighborhood, asset, and 

population contextual vulnerability. As described in Chapter II, contextual vulnerability is a 

discrete interpretation of vulnerability at a specific moment in time and operationalizes the concept 

of vulnerability by focusing on pre-hazard characteristics of sub-systems/components that describe 

the extent to which they may be expected to experience negative impacts of a hazard based on 
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expected exposure, current sensitivity, and current anticipatory coping capacity (Cutter et al., 

2008; Gallopín, 2006). In identifying drivers, I consider the following: 

 Exposure includes consideration of the magnitude and extent of a hazard.  

 Sensitivity includes consideration of the innate characteristics that influence the 

degree to which impacts will be suffered given a certain level of exposure. 

 Anticipatory coping capacity includes consideration of existing plans or 

capabilities that improve the effectiveness and range of actions available in 

response to a hazard. 

In order to distinguish sensitivity from coping capacity, I suggest that sensitivity include 

variables related to structure, such as societal factors that influence and limit a system’s or 

component’s set of possible actions (e.g., social class, cultural acceptance, aesthetic norms), as 

well as intrinsic physical characteristics (e.g., physical design, structural integrity, code/legal 

requirements). On the other hand, variables used to represent anticipatory coping capacity should 

reflect the ability of the system parts to survive and adjust during a hazardous event via individual 

actions/choices or systematic policies and programs in place at the time of the disturbance (e.g., 

flood insurance; emergency notification system; evacuation or shelter-in-place plan; property 

protection plan) (Adger et al., 2004; Gallopín, 2006; Turner et al., 2003).  

Based on the considerations above, several driver classes were identified for each class of 

system goals. In order to operationalize these driver classes, a set of candidate proxy measures was 

identified for each driver class. Again, as the focus of the study is on flooding and the buyout 

program, I relied on the guiding question below in identifying the candidate proxy measures for 

the drivers of system performance. 



94 

 

What characteristics do you expect to moderate or mediate the short term and long term 

impacts of the flood and flood adaptations on the system goal of interest?  

In addition to this guiding question, additional considerations were made specifically for 

social aspects contained within the sensitivity and anticipatory coping capacity components of 

vulnerability. As we would not necessarily expect that an individual’s race or ethnicity would 

directly make them more vulnerable to flooding, social pressures that drive, maintain, and often 

exacerbate non-institutionalized segregation and disparities in education and socio-economic class 

often lead to minority groups being forced into the highest-risk areas of a system and left with 

relative lesser means to cope with and recover from hazards. Drawing on theories of social justice, 

I identify three types of oppression most relevant to issues of community resilience for the case 

study area: marginalization, exploitation, and powerlessness (Young, 1990; Harvey, 1992).   

Marginalization is the process (intentional or otherwise) of obstructing entrance into or 

promotion within the labor system based on individual characteristics such as race, ethnicity, and 

gender. As a consequence, marginalized groups tend to have less material resources that may be 

used to cope with health issues, economic hardships, community change, and hazardous events. 

Exploitation is the process of taking advantage of marginalized and needy populations within the 

workplace by requiring employees to work, for example, in more hazardous conditions or with 

reduced pay or no benefits. As a consequence, exploited groups tend to struggle to improve their 

economic situation and are more likely to work in conditions hazardous to their health. Immigrant 

populations, particularly those that do not speak English well, may be more prone to exploitation 

than other groups.  Powerlessness refers to lack of ability to effect change due to a lack of respect 

and accompanying disregard for expressed opinions and difficulties in mobilization of a critical 

mass of lick-minded individuals. In many cases marginalized, exploited, and powerless groups 
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tend to overlap, where minority, immigrant, and high-needs groups such as the disabled and those 

with low levels of education can fall within either or all of these categories of oppressed groups. 

In an attempt to fully consider the social aspects of community resilience, the following 

questions were used to guide selection of additional measures of vulnerability. 

1. Are there minority, immigrant, or high-needs groups that may lack the ability or the means 

to prepare for and protect their health and safety during hazardous events?  

2. Are there minority, immigrant, or high-needs groups that may reside in lower value, poor 

quality or higher flood-risk housing due to lack of materials resources? 

3. Are there minority, immigrant, or high-needs groups that may be more likely to not be able 

to secure full-time employment or well-paying jobs? 

4. Are there minority, immigrant, or high-needs groups that may lack the means to recover 

from hazardous events, or to respond to changing neighborhood conditions? 

5.  Are there groups that may lack the power needed to shape local changes in neighborhood 

conditions? 

Table 7, Table 8, and Table 9 list all drivers of the system performance measures identified 

(column headings) and associated candidate proxy measures for these drivers. These measures are 

expected to reflect the social and bio-physical vulnerability of the system, to be dependent on 

sustainability capital, and to be determinants of system performance. As most adaptation 

interventions target vulnerability, and most frequently bio-physical aspects of vulnerability 

(exposure), these measures are expected to change significantly in response to implementation of 

adaptation plans. 
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Table 7: Drivers of health and safety and associated candidate proxy measures. 

Hazard 

Exposure 

Living Conditions  Pre-existing 

Conditions 

Demographics Health and 

Social 

Services  

 Hazard 

Planning 

Flood zone  Residence age Prevalence of 

chronic health 

conditions 

(diabetes, asthma, 

COPD) 

Non-English 

speakers 

Proximity to 

health clinic 

 Proximity to 

emergency 

sirens 

Inundation 

level 

Residence quality  Prevalence of 

obesity 

Age over 65 Proximity to 

hospital 

 Proximity to 

emergency 

shelter 

Topography Persons per bedroom 

in residence 

Prevalence of 

cancer and heart 

disease 

Age under 18 

 

Proximity to 

police or fire 

station 

 Emergency 

shelters per 

1,000 residents 

 Seniors living alone  Disabled Health service 

providers per 

1,000 residents 

  

 Rent or own  Income    

   Percent income 

spent on 

housing 

   

  
 African 

American 

   

   Hispanic    
  

 Gender    
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Table 8: Drivers of economic prosperity and associated candidate proxy.  

Hazard 

Exposure 

Infrastructure 

Quality 

Community 

Desirability 

Spending 

Capacity 

External 

Funding 

 Hazard 

Planning 

Flood zone  Type of structure Median Education 

Level 

Income Federal 

development 

grant funds 

 Residents 

with flood 

insurance 

Inundation 

level 

Structure quality  Median Age Individual debt FEMA 

individual 

grants 

 Municipality 

flood 

insurance 

coverage 

Topography Roadway conditions Property Sales Individual wealth FEMA business 

grants 

  

Impermeable 

surface area 

 Population 

Density 

Unemployment, 

SS, and disability 

support 

   

Water 

retention 

capacity 

 New businesses     

Tree canopy  New residences     

  Jobs available by 

sector 

    

  New jobs created     
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Table 9: Drivers of community livability and associated candidate proxy measures.  

Hazard Exposure Access to Services Affordability Equity Community 

Engagement & 

Support 

Flood zone  Proximity to work Median rent Median 

Income by 

race 

Public welfare 

spending 

Inundation level Proximity to schools Median sale 

value 

% Non-

white 

population 

# of churches and 

community groups 

Topography Proximity to healthcare Median income % Hispanic 

population 

% population 

volunteerism 

Distance to 

stream/river 

Proximity to public 

transit 

 Median 

income by 

gender 

% population voting 

for winner of 

presidential election 

 Proximity to greenspace  Access to 

services by 

race 

 

 Proximity to recreation    
 

Students per class    
 

Auto ownership density 
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Sustainability capital of the system is expected to be impacted by system performance (and 

system failure). It also impacts future vulnerability, and more importantly, constrains adaptation 

options that can be implemented to improve system performance. In this work, sustainability 

capital is examined as total system availability of environmental capital, economic capital, and 

social capital. As with the measures of vulnerability and system performance, sustainability capital 

measures that directly related to flooding and the home buyout program were identified. Candidate 

measures are presented in Table 10. 

Table 10: Sustainability capital classes and associated candidate measures. 

Environmental Capital Economic Capital Social Capital 

Impervious surface area  Total property taxes Total population 

Water retention capacity/ 

Runoff production 

Net government revenue Total number of jobs 

Riparian buffer area Total government encumbrances Total housing stock 

Riparian buffer width Total disaster damages Total volunteer hours 

Tree canopy Infrastructure operations and 

maintenance costs 

 

Greenspace Federal government disaster relief 

and recovery funds 
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In order to fully understand the sustainable resilience of the Nashville community system 

to flooding events and related changes and the impacts of the home buyout program as a flood 

adaptation strategy, ideally all of the system performance outcome measures, contextual 

vulnerability driver measures, and sustainability capital measures identified, as well as any number 

of factors not identified, such as flooding outcomes and drivers related to the transportation 

network, water infrastructure, and energy infrastructure, would be examined closely. (Note that 

the system conceptual and analytical model would become unmanageably complex if all possible 

direct and indirect impacts were considered in detail.) However, restrictions in data availability for 

both extended time scales and fine sub-system spatial resolution constrains the analytical modeling 

possibilities. While some of this data can be downscaled using the techniques described in Chapter 

III, and multi-level modeling can be used to help to account for multiple scales of analysis, these 

methods cannot be applied for all of the measures of interest. Due to data limitations, evaluation 

of system performance, vulnerability and sustainability capital was performed on a reduced set of 

measures that includes the six system performance outcomes, eighteen contextual vulnerability 

measures, and six sustainability capital measures shown in Table 11.  
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Table 11: Measures of system performance, contextual vulnerability, and sustainability capital used 

in analyses of the flood resilience of the Nashville community and effectiveness of the home buyout 

program as a flood adaptation strategy. 

 System Performance 

Measures 

Contextual Vulnerability Measures Sustainability Capital 

Measures 

 Hazard deaths Distance to stream/river Property size Impervious surface area  

 Water rescues Floodzone Property type Runoff Production 

 Hazard damages Flood inundation Median Income Riparian buffer area 

 Damaged structures  Depth of inundation Percent population 

with no GED  

Riparian buffer width 

 Exposed population  Distance to greenspace Percent population 

below poverty level  

Total property taxes 

 Total property value Total population  Percent population 

non-white  

Net property revenue 

  Population age 65 and older  Percent population 

foreign born 

 

  Renter population Percent population 

that speaks English 

poorly 

 

  Property value Percent households 

with social security 

income 

 

     

 

 

Data and Methods 

Data used for the analyses described below was drawn from tax parcel geodatabases, 

building footprint survey shapefiles, U.S. Census American Community Survey (ACS) 5-year 

estimate tables, IPUMS National Historical Geographic Information System (NHGIS) time series 

tables, United States Geological Survey (USGS) earth surface and water system geodatabases, 

Nashville Metropolitan Government reports, and Nashville Metro Water Services (MWS) internal 

data. Census data was collected for ACS years 2009-2016 and all other data was collected for years 
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2005-2016 (Manson, Schroeder, Van Riper, & Ruggles, 2017; United States Census Bureau c, 

2017). With the exception of some data provided privately by MWS and publicly available at-cost 

tax parcel data, all of these data can be downloaded from online sources at no cost (Metro Maps, 

2017). In addition, data processing scripts and modeling scripts are openly available at 

https://github.com/katesnelson/Flood_Adaptation.1 All scripts were written for, and run in, R on a 

machine with 72 threads and 100 GB RAM (Team, R. Core, 2013). Spatial data processing was 

carried out primarily using the R package sf while Bayesian spatial modeling was carried out using 

the R package R-INLA (Blangiardo, Cameletti, Baio, & Rue, 2013; Pebesma, 2017).  

Data Processing 

In order to evaluate characteristics relevant to system processes and relationships between 

characteristics, substantial manipulation of the data was conducted to produce measures at the 

appropriate scales. For example, hydrological processes governing flooding severity, such as 

overland runoff production, are most commonly assessed at the watershed or drainage catchment 

scale, however relevant data on characteristics that impact these hydrological processes was 

available at a building or tax-parcel scale. In this work, ecosystem and land cover characteristics 

of the system were computed at the micro-watershed scale, flood damage and inundation were 

computed at the parcel and building scale, property values and taxes were computed at the parcel 

scale, flood exposed population was computed at the parcel scale, and demographic and socio-

economic characteristics at the census tract scale were utilized.  

                                                 
1 Note that one process, micro-watershed delineation, was performed in the commercial software ArcGIS 

10.2.2, and no scripts are available to replicate this process. 

https://github.com/katesnelson/Flood_Adaptation
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Micro-Watershed Delineation 

As the home buyout program is conducted at the tax parcel scale, and the amount of area 

converted from building cover to greenspace is very small in comparison to the size of the county 

or typical watershed boundaries made available by USGS (there are only twenty-three watersheds 

that intersect the county using the finest available resolution HUC-12 data), it is likely that no 

significant effect would be discernable if the buyout program activities were aggregated to USGS 

watersheds. For these reasons, ecosystem and land cover characteristics were aggregated up to a 

micro-watershed scale, where 410 micro-watersheds were delineated in ArcGIS 10.2.2 using 

USGS 1/3rd arc second resolution digital elevation models of the Davidson County area (USGS, 

2017). The ArcGIS hydrology toolbox was used to delineate the micro-watershed boundaries using 

points on the USGS National Hydrology Dataset (NHD) stream and river flow lines where the 

flow accumulation was more than one standard deviation above the mean as pour points (drainage 

outlets) in the delineation (USGS b, 2017). The ArcGIS eliminate tool was used to remove 

excessively small polygons and polygon slivers (polygons with area less than the mean minus one 

standard deviation of all micro-watershed areas), and waterbodies within each watershed were 

erased to provide a final shapefile of micro-watershed land areas. Characteristics such as volume 

of runoff produced, impervious building area, riparian area and riparian width are discussed in 

terms of micro-watershed and county-wide totals or averages. 

Impervious Area 

In order to provide annual estimates of impervious land cover, building footprint 

information provided by MWS was used. Other potential land cover datasets including USGS 

National Land Cover Datasets (NLCD) were eliminated as viable options due to lack of annually 

updated information. As the focus of this study was on flooding issues in the context of the home 
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buyout program, impervious land cover from paved areas, which are not impacted by the buyout 

program (and for which annually information was not available), were not considered in this study. 

The building footprint shapefiles themselves also lacked annually updated information as building 

footprint survey results were only available for 2005, 2014, 2015, and 2016, however, via 

association with annual tax parcel information it was possible to build estimated building footprint 

shapefiles for each year (Metro Maps, 2017). Building footprint shapefiles for years without 

original data were constructed by removing buildings on parcels not present in that year from the 

2005 building footprint shapefile, and adding building footprints from the 2014 building footprint 

shapefile for parcels that were newly identified in that year and that remained in the 2014 shapefile 

(see Figure 9 for a process diagram). This method captures changes in building area that result 

from demolition of properties and addition of new properties and buildings, but does not capture 

changes in building area due to construction of additions on existing buildings or 

construction/removal of new sheds or outbuildings.2  

                                                 
2 Note that while tax parcel data and shapefiles were used to identify removal and addition of parcels and 

associated buildings the living area attribute included in these files were not used for impervious building area 

calculations due to inconsistencies in reporting, lack of data for non-residential buildings, and lack of knowledge 

regarding distribution of living area across multiple building stories. 
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Figure 9: Process for creating an interpolated building footprint shapefile for years for which there 

is no observed building footprint data using 2010 as an example. 

 

Runoff 

The expected runoff produced from impervious building cover and permeable greenspaces 

was estimated for each micro-watershed using the curve number method for a 100-year, 24-hour, 

rainfall event (NRCS-USDA, 1986). This estimation assumes unconnected imperviousness (no 

runoff channeling infrastructure, therefore assume overland flow) and characterizes permeable 

surfaces as grass/lawn in good condition, and hence, may overestimate runoff depths at locations 

that are connected to gray infrastructure. The estimates also do not consider accumulation and 

concentration of runoff at outflow points. The expected runoff in inches was converted to a volume 
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by multiplying the runoff depth in a micro-watershed by the total surface area of the micro-

watershed.  

Riparian buffers 

Riparian buffers around streams and buffers were delineated by first creating a 100 meter 

buffer around all streams and rivers in Davidson County as provided in the National Hydrologic 

Dataset NHDAreas (USGS b, 2017). To determine the effective extents of riparian buffering, built-

up areas were removed from this buffered area. Built-up areas were delineated by triangulating 

building footprints in each micro-watershed (Figure 10) and removing triangulations with an area 

larger than the average area (Figure 11) or edge length longer than the average length (Figure 12) 

in that micro-watershed. The triangulated polygons for each watershed were merged and areas of 

intersection with the 100-meter buffer area were erased leaving only non-built-up areas in the 

riparian buffer.3 Riparian buffer widths were calculated by computing the shortest straight-line 

distance from the edge of the riparian buffer to the stream bank at regular intervals across each 

micro-watershed. 

                                                 
3 Note that roadways and paved areas were not included in the built areas that were removed from the riparian 

buffer zone as these remain relatively constant over the time period of interest, are typically not affected by the buyout 

program, and due to lack of consistently available data on paved areas or a means of interpolating these areas between 

years. Nor do these riparian buffer areas account for different types of vegetation growth for which limited information 

is available.  
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Figure 10: Example of buildings triangulations (black lines) with original building footprints (colored 

polygons) in a single micro-watershed before (left) and after (right) removal of large triangle areas 

and large triangle edge lengths. 
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Figure 11: Example of removal of triangulations with large areas in built-up area delineation. All 

triangulated areas shown on the left and remaining triangulations after removal of large areas on the 

right. Scale bars correspond to area in square feet. 
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Figure 12: Example of removal of long triangle edge lengths in built-up area delineation process. All 

remaining triangulated edges shown on the left while the right shows the edges remaining after 

removal of large edge lengths. Scale bars correspond to edge length in feet. 

 

Damaged Assets and Exposed Populations  

Direct flooding impacts in terms of number of inundated buildings, number of inundated 

properties (tax parcels), and population in inundated buildings were calculated using spatial 

coincidence of building footprint and tax parcel shapefiles with the 2010 inundation boundaries. 

As multiple tax parcels may be located in the same building, tax parcel characteristics such as 

dwelling unit count, living area, and appraisal value were aggregated to buildings prior to spatial 

coincidence analysis. For impacted population counts, populations from census tracts were 
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distributed to residential tax parcels using the dasymetric mapping techniques described in Chapter 

III that use information in tax parcel datasets (living area, number of dwelling units, and class of 

property) to inform redistribution of census tract populations to the finer resolution tax parcels. 

For this work, the dasymetric method was further extended to produce a count-based 

distribution of population instead of a continuous population distribution. This means that the 

smallest non-zero population assigned to any tax parcel is one. Further information on this 

extended dasymetric process can be found at https://github.com/katesnelson/Flood_Adaptation, 

and an example population distribution is plotted in Figure 13. Note that only total population, 

senior citizen, and renter population were redistributed.4 As multiple tax parcels may be co-located 

at the same location in 2-dimensional space, tax parcel count, dwelling unit count, living area, and 

appraisal value for multiple tax parcels in the same location were aggregated leaving a single 

record for each unique tax parcel location.  

Similarly, metrics for damaged buildings and properties, and population in damaged 

buildings were calculated based on spatial coincidence of unique tax parcel locations with damage 

point locations provided from the MWS windshield survey of the 2010 flood damage. As multiple 

buildings may be located in the same tax parcel boundaries, the count of buildings in each tax 

parcel was aggregated to unique tax parcel locations.  

 

                                                 
4 Senior citizens were prioritized as 8 out of 11 fatalities that occurred in the Nashville area during the 2010 

flood were for people aged 65 and older, and the tax parcel data lacked ancillary information that could inform the 

selective redistribution of vulnerable minority, immigrant, and high needs populations. Renter populations had also 

been identified as a sub-population of interest by MWS. 

https://github.com/katesnelson/Flood_Adaptation
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Figure 13: Example of dasymetric count distributed population 

 

Economic Impacts of Direct Damage  

To estimate cost of damages incurred due to physical exposure to the flood, the estimated 

depth of inundation from a windshield survey5 conducted by MWS immediately after the flood, 

and improvement appraisal values were used together with Federal Insurance Administration 

(FIA) depth-damage curves used by the Federal Emergency Management Agency in the HAZUS® 

hazard modeling and loss estimation software (FEMA, 2013). The FIA depth damage curves were 

                                                 
5 This windshield survey involved MWS employees driving down county roads and noting the estimated 

inundation depth of each homes as they drove by. 
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used to estimate structural damage for one story and multiple story buildings and mobile homes. 

In addition, a second estimate of structure damage was generated using average estimated personal 

economic losses from a survey conducted by Vanderbilt following the 2010 flood (note that these 

estimates are based on a very small sample size, n=74, of single-family dwelling owners). The first 

approach is expected to provide a more conservative (high-end) estimate while the second 

approach is expected to provide a low-end estimate. These estimates were conducted for all 

buildings within the county based upon available parcel data.  

In addition to structural damages, contents damages, relocation costs and labor costs for 

debris cleanup and rebuilding were also estimated. Contents damages were estimated using FIA 

depth damage curves for residential and non-residential building contents and building to content 

value ratios from HAZUS. Relocation costs were estimated using building areas and depth-

restoration time tables and average daily relocation cost per square foot from HAZUS and depth-

restoration time relationships and average daily relocation cost per square foot established using 

data from the Vanderbilt survey. Cleanup and rebuilding labor costs were estimated using a depth 

to labor hours table built using the Vanderbilt survey results and the average cost of volunteer 

labor for the state of Tennessee in 2010 (Independent Sector, 2018). 

Scenario Development 

Redman (2014) suggests that resilience science should strive to examine not only what 

happened during a hazardous event and  what the outcomes of the event were, but to also examine 

what alternative histories would have been possible and what each would have offered in terms of 

improved (or worsened) outcomes. Therefore, in order to quantify direct flood damages of the 

2010 flood, damages avoided via the home buyout program, and potential damages avoided given 

expansion of the buyout program, a set of shapefiles representing four buyout program adoption 
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scenarios were created and analyzed in reference to the 2010 flood inundation boundaries and the 

observed depth of inundation from the Metro windshield survey. The scenarios include: observed 

conditions (With Buyouts), presumed conditions had no buyouts taken place (No Buyouts), 

presumed conditions had all completed buyouts (as of 2016) been completed prior to 2010 (All 

Buyouts), and presumed conditions had all buyouts on the buyout “wish list” (full selection of 

buyout properties plus proposed MWS buyout expansions) been completed prior to 2010 (Wish 

List). Shapefiles were produced for each year between 2005 and 2014 in order to track the potential 

for damage avoidance offered by the buyout program each year.  

The shapefiles for the No Buyouts scenario were created by adding building footprints of 

all homes bought out prior to 2010 from the 2005 building footprint shapefile and adding them to 

the building footprint shapefile for all other years. For the All Buyouts scenario, shapefiles were 

created by removing all homes on the buyout list from the 2010 and following years building 

footprint shapefiles. For the Wish List scenario, all homes on the original buyout list and the 

proposed expansion list were removed from the 2010 and following years building footprint 

shapefile. These shapefiles were used in the calculations described above such that more than thirty 

different annual datasets (at multiple scales: building, parcel, and watershed) were produced and 

analyzed. 

Bayesian Modeling and Prediction 

Multilevel Bayesian spatial regression was used on the dataset produced for observed 

conditions to estimate effects of contextual vulnerability drivers on resilience outcomes and the 

effects of sustainability capital, particularly ecosystem services, on contextual vulnerability. These 

models, described in more detail in the Results section, use spatial modeling functions of the R-

INLA package. Models using the stochastic partial differential equation (spde) approach, model 
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the spatial effect as a Gaussian Markov random field that accounts for continuous spatial processes 

such as elevation that affect the outcome variable independent of other explanatory variables. 

Models using an intrinsic conditional autoregressive (iCAR) model coupled with an exchangeable 

(iid) random effect, also known as a Besag-York-Mollié (BYM) model, as a spatial effect that 

account for variations in outcomes variables that are based on location within local areas or 

neighborhoods and accounts for dependency between adjacent areas/neighborhoods. 

Estimated effects from some models were used to predict contextual vulnerability, 

resilience outcomes, and associated sustainability capital levels for the hypothetical scenarios. 

Predictions of outcome variable values (response) for alternate scenarios was accomplished by 

taking the linear sum of the posterior effects times the value of the predicting variable and the 

spatial effect. Sums were computed using 0.025 quantile, 0.5 quantile, and 0.975 quantile posterior 

effect values to provide a credible range for each response computed. This “naïve”, but 

computationally efficient, method of building the predicted values was compared with a set of 

predicted values computed during the estimation process in R-INLA as a consistency check. The 

predicted results provide an estimate of the annual damage avoidance potential, and the expected 

net benefits of different buyout program adoptions rates and extents.  
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Results 

This study produced information on individual measures of contextual vulnerability, 

system performance, and sustainability capital for four different buyout program scenarios and in 

some cases for seven different years. In this section, I describe the results of models used to 

determine measure significance and relevance to the processes of interest, the results of 

deterministic modeling and predictions, and the results of one set of Bayesian model-based 

predictions describing feedbacks between measures of sustainability capital, contextual 

vulnerability, and system performance. 

Contextual Vulnerability 

Proposed contextual vulnerability measures that significantly impacted system 

performance measures (see Table 11) were retained as valid indicators of the vulnerability of the 

Nashville community system to flooding.6 Measures associated with exposure were assumed to be 

valid based on well established relationships between flood exposure and property damages 

(FEMA, 2013). The direct relationships between flooding exposure and property damages account 

for flood inundation boundaries, depth of inundation, type of property (residential or commercial, 

single-story or multi-story), property value, and property size therefore all five of these 

characteristics were considered to be valid indicators of contextual vulnerability to flooding. 

Similarly, total population was assumed to be a valid indicator of vulnerability as it is directly 

related to exposed population as modeled using dasymetric mapping (which is also based on 

property size and type) and spatial coincidence with flood inundation boundaries.  

                                                 
6 Note that while the senior citizen population was not significant in any of the models there is sufficient 

anecdotal evidence (eight out of eleven people that died during the flooding in 2010 were senior citizens) that suggest 

that senior citizens have higher health and safety risks during flooding to retain this variable in further analyses. 
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Regression models were used to determine which of the remaining proposed contextual 

vulnerability indicators were valid indicators of vulnerability to flooding in the Nashville 

community system.  Models evaluating the effect of proposed vulnerability indicators on system 

performance measures of property value (economic prosperity), hazard deaths and water rescues 

(health and safety), and income to cost of living ratio (opportunity) were estimated using multilevel 

Bayesian spatial regression. Finally, two models estimating the relationships between social 

characteristics and the depth of inundation in 2010 and between social characteristics and holding 

flood insurance (social vulnerability models) were estimated to identify social groups that were 

most severely impacted during the flood and that may have lacked personal means to recover 

following the flood. While these models do not directly relate to any of the evaluated system 

performance measures, they do provide information relevant to overall system performance as they 

relate to the amount of volunteer and social system support needed during the flood recovery phase 

as well as to long term recovery and issues of neighborhood blight. 

Economic Prosperity Models 

Economic prosperity models examined the effects of proximity to greenspace and flood 

risk on residential property values. Two models were run, one for the three years prior to the year 

of the flood (2007-2009) and one for three post flood years (2011-2013) where the outcome was 

assessed property value at the tax parcel scale and neighborhood spatial effects were accounted for 

using a BYM model. As the buyout program only applies to residences, the models were conducted 

only on the subset of properties in the county that are classified as residential by metro land-use 

codes.   

The pre-flood model examined location in high risk flood zones and proximity to 

greenspace (metro parks and bought-out parcels).  After controlling for year (accounts for changes 
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in property values due to external economic drivers), local neighborhood, and residence 

characteristics (building size, number of dwelling units, and property acreage), increased 

proximity to greenspace was found to have a small positive, but not significant effect on residential 

property value (see Table 12 for model results).  In line with the literature, the model also indicates 

that the property values of homes located in the high risk floodway and FEMA one hundred year 

floodplain areas are on average lower than homes not located in these areas (Bin, Kruse, & Landry, 

2008; Bin & Polasky, 2004). These results suggest that prior to the flood in 2010 the removal of 

homes from high risk flood areas removed homes that had depressed property values. While there 

is evidence within the literature that increased proximity to greenspace can increase property 

values, this effect seems to be non-significant in the Nashville system and the buyout program 

should not be seen as a way to elevate property values by increasing greenspace (Kroll & Cray, 

2010).   

The model for the post-flood period from 2011 to 2013 adds consideration of previous 

flood damage to the pre-flood model. The results of this model suggest that proximity to 

greenspace has no effect on property values, that property values are increasingly lower in higher 

risk flood areas, and that properties that were flooded during 2010 have lower values. This again 

suggests that the buyout program is removing homes that have depressed values, therefore the 

losses in property tax revenue to the municipal government produced by removal of these homes 

is minimized.  
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Table 12: Economic prosperity model results. 

Variable Pre-Flood Model (2007-

2009) Posterior Mean and 

Standard Deviation † 

Post-Flood Model (2011-

2013) Posterior Mean and 

Standard Deviation † 

Intercept 0.0132* (0.0056) -0.0053 (0.0137) 

Year 2 0.0007 (0.0019) 0.0001 (0.0019) 

Year3 0.0007 (0.0019) 0.0009 (0.0019) 

Dwelling Units 0.0862* (0.0008) 0.0804* (0.0009) 

Living Area  0.7609* (0.0009) 0.7587* (0.0009) 

Property Acreage -0.0124* (0.0008) -0.0128* (0.0009) 

Distance to Greenspace -0.0032 (0.0023) 0.0007 (0.0024) 

Floodway -0.0451* (0.0089) -0.047* (0.0093) 

100 Year Floodplain -0.0179* (0.0046) -0.0079* (0.0052) 

Previous Inundation NA -0.0188* (0.0053) 

Depth of Previous Inundation NA -0.0053 (0.0035) 

* Indicates effect is significant at a 95% credibility interval. 

† Note that all effects for continuous variables are reported for models run on standardized values and 

are not directly interpretable.  

 

Health and Safety Models 

The effects of vulnerability indicators on hazard fatalities and water rescues were estimated 

using zero-inflated binomial logistic Bayesian spatial models. These models estimated the effects 

of dasymetrically distributed population, census demographics, watershed runoff production, and 

flood risk while controlling for location and spatial dependency using the spde approach on 

reported flood fatalities and water rescues in 2010. The outcome data is available at point locations 

associated with tax parcels and models were estimated only using tax parcel locations where there 

was flood damage or inundation. Non-significant indicator variables in preliminary models were 

removed from the final estimated models.  



119 

 

The final flood fatality model indicates that there was a higher likelihood of flood related 

fatalities in areas that experience deeper flood inundation, and in watersheds where more runoff is 

produced (see Table 13 for model results). Dasymetrically assigned population and census 

demographic characteristics were not found to be significantly associated with flood fatality risk. 

This suggests that flood fatality risk is primarily associated with physical characteristics of the 

natural and built environment. Locations in the floodway were found to be negatively associated 

with increased flood fatality risk, perhaps indicating a higher level of flooding awareness and 

willingness to evacuate among populations who reside nearest to streams and rivers. 

The water rescue model indicates that emergency water rescues were more likely in the 

FEMA one-hundred year floodplain, in areas with deeper flood inundation, and in watersheds with 

greater amount of storm water runoff. This model also suggests that water rescues were less likely 

in locations with higher populations, but greater in locations with higher renter populations, 

perhaps indicating that tenants in low-density rental properties such as duplexes were more likely 

to require a water rescue. In addition, emergency water rescues during flooding were found to be 

more likely in areas where there are relatively high populations of people that do not speak English 

well, that are foreign born, or that are not White, indicating potential barriers in flood safety 

communication in immigrant neighborhoods. Finally, the water rescue model indicates that higher 

poverty levels and lower education levels were not associated with increased risk of a water rescue. 
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Table 13: Health and safety model results. 

Variable Fatality Model Posterior 

Mean † 

Water Rescue Model Posterior 

Mean † 

Intercept 2.323x10-5 * 0.65* 

Zero-probability parameter 0.586* 0.708* 

Population 1.088 0.732* 

Senior Population 0.660 0.908 

Renter Population 0.925 1.398* 

Median Income 1.012 NA 

Population without GED 0.829 0.385* 

Population in Poverty NA 0.569* 

Population with Poor English NA 3.642* 

Population that is Foreign Born NA 1.873* 

Population that is White NA 0.549* 

Floodway 1.186x10-9 * 0.031* 

FEMA 100 year floodplain NA 3.184* 

Distance to Stream 0.004 NA 

Depth of Inundation 1.859* 1.721* 

Volume Runoff 1.858* 1.569* 

* Indicates effect is significant at a 95% credibility interval. 

† Note that all effect estimates for continuous variables are reported for models run on standardized 

values and are presented as exponentiated or anti-logit transformed effects.  

 

Social Vulnerability Models 

The relationship between flooding severity (flood inundation depth) and the demographic 

characteristics of those who were flooded was modeled using an spde model to account for spatial 

dependency. Only tax parcels which were damaged or within the 2010 flood inundation boundaries 

were retained for estimation. The model results, as shown in Table 14, suggest that areas with 

relatively lower populations, lower median income, higher population in poverty, higher white 
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population, and higher population without a GED, on average, experienced greater flood 

inundation depths. Areas with relatively more foreign born population and population that have 

Social Security income experienced, on average, less deep flooding.  

The relationship between holding flood insurance and demographic characteristics of the 

population at tax parcels that were damaged or within the flood inundation boundaries was 

modeled using a binary logistic model with a spde spatial dependency structure. The model results 

suggest that about fifty percent of the tax parcels that were damaged or within the flood inundation 

boundaries during the 2010 flood did not have flood insurance. In addition, the results suggest that 

areas with higher population, with relatively less educated population, and with more foreign born 

population were less likely to have flood insurance. They also suggest that areas with less people 

in poverty, higher median incomes, and relatively more people with Social Security income were 

more likely to have flood insurance. Taken together these models suggest that populations with 

lower education levels are both more likely to experience more severe flooding and less likely to 

have flood insurance to assist with flood recovery.  

Contextual Vulnerability Indicator Trajectories 

In order to evaluate how indicators of contextual vulnerability that effect system 

performance and that are altered by the buyout program might change over time as a result of the 

buyout program and different buyout program scenarios, net measures of the indicators at all flood 

damaged or inundated tax parcels were plotted over time and compared with net measures of the 

indicators across the county. (Trajectories for census demographic variables that were not 

dasymetrically distributed were not produced due to lack of information on the direct impacts of 

the buyout program.)  
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Table 14: Results of social vulnerability models. 

Variable Flood Inundation Model 

Posterior Mean † 

Flood Insurance  Model 

Posterior Mean †† 

Intercept -0.0216 0.464* 

Population 0.0144 0.731* 

Senior Population -0.0032 1.178 

Renter Population -0.0222 1.189 

Median Income -0.1967* 0.678* 

Population without GED 0.0448* 0.869* 

Population in Poverty 0.1037* 1.382* 

Population with Social Security 

Income 

-0.0702* 1.157* 

Population with Poor English -0.0074 0.929* 

Population that is Foreign Born -0.1039* 0.857* 

Population that is White Only 0.1207* 1.004 

* Indicates effect is significant at a 95% credibility interval. 

† Note that all effects for continuous variables are reported for models run on standardized values.  

†† Note that all effects for continuous variables are reported for models run on standardized values. 

The anti-logit of the intercept exponentiated predictor effects are reported. 

 

For example, in Figure 14 it can be seen that while the total population of senior citizens 

in the county increased between 2010 and 2013, the expected percent of the population that would 

be exposed to a 2010-like flood that are senior citizens, while somewhat higher than the county 

average, is relatively stable. This might suggest that relatively more senior citizens are 

participating in the buyout program and relocating to lower flood-risk areas. In addition, it is seen 

that the percent of the expected flood-exposed population that are renters is greater than the percent 

of the total county population that are renters, that this population has increased proportionally 

with increases in total county renter population, and that the buyout program has actually increased 

the percent of the exposed population that are renters. This increase in exposed renter population 
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is a natural reflection of the buyout program targeting single family dwellings, and may indicate 

that there is increased risk for emergency water rescues during flood events as renter populations 

were positively associated with water rescue risk in the model presented in the preceding section. 

 

 

Figure 14: Trajectories for senior citizen and renter populations. 

 

System Performance 

The measures of system performance were computed and/or recorded for each scenario 

and year, where data was available.7  Hazard damages, damaged structure count, exposed 

                                                 
7 Note that hazard death (flood fatalities) and water rescue data was only available for a single year (2010) 

and no deterministic models were available for estimating these values for other years and for the buyout scenarios.  
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population count, and total property values were estimated for each year for each scenario, where 

hazard damages were estimated using the deterministic modeling methods described in the 

Economic Impacts of Direct Damage section. 

Hazard Deaths and Water Rescues 

There were eleven reported flood-related deaths due to the May 2010 flood. Eight of the 

eleven who were killed during the flood were senior citizens. In addition, there were more than 

150 emergency water rescues conducted during the flood. The locations of each of the reported 

fatalities and water rescues is shown in Figure 15.  

 

Figure 15: Fatality (red) and water rescue (blue) locations during the May 2010 flood. 
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Damaged Assets and Exposed Populations 

Spatial coincidence analysis indicated that nearly 12,000 tax parcels (both commercial and 

residential) were either damaged or within the flood inundation boundaries during the May 2010 

flood. It is estimated that more than 46,000 people resided within these flood impacted parcels. In 

comparison, an additional thirty-three properties and estimated twenty-seven people would have 

been directly impacted by the flood had the buyout program not been active between 2005 and 

2010, and about 281 fewer properties and 691 fewer people would have been impacted had all the 

buyouts been carried out prior to 2010 (see Table 15 for a summary of damage counts in 2010 for 

the buyout scenarios).   

Table 15: Summary of direct flood damage counts in 2010. 

Scenario Scale 
Damaged 

Properties 

Exposed 

Population 

Exposed 

Senior 

Population 

Exposed 

Renter 

Population 

No Buyouts 

 

County 11,998 46,703 5,507 23,806 

Micro-watersheds 

with Buyouts 
3,641 16,957 1,652 10,883 

Buyout Parcels 398 980 111 293 

With Buyouts  

 

County 11,965 46,697 5,537 23,853 

Micro-watersheds 

with Buyouts 
3,608 16,948 1,654 10,890 

Buyout Parcels 365 953 103 281 

All Buyouts  

 

County 11,684 46,091 5,458 23,703 

Micro-watersheds 

with Buyouts 
3,327 16,323 1,601 10,705 

Buyout Parcels 84 262 25 74 

Wish List  

County 11,600 45,897 5,446 23,576 

Micro-watersheds 

with Buyouts 
3,243 16,130 1,588 10,630 

Buyout Parcels 0 0 0 0 

 

Examination of the trajectories for these measures between 2007 and 2013 (Figure 15), 

produced using deterministic modeling methods suggest that the number of properties that would 
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be impacted by a 2010-like flood event in each year between 2010 and 2013 would remain the 

same if buyouts had not taken place (suggests that no new properties were constructed within the 

flood inundation boundaries between 2010 and 2013). However, due to increases in population the 

trajectories suggest that the exposed population in any year given a 2010-like flood would be 

increasingly high. 

 

Figure 16: Trajectories for damaged structures and population exposed. 

 

Hazard Damages 

The cost of direct damage to structures and structure contents resulting from flood 

inundation in 2010 was estimated to be between $1,564M and $1,740M across the entire county, 

with damages to buyout properties estimated to be about $21.9M to $22.4M. Hazard damage 
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associated with relocation and labor costs at flood damaged properties in 2010 was estimated to 

be $823M to $1,515M, where the cost of relocation and labor at buyout properties was $19M to 

$22M. This suggests total direct hazard damages in 2010 were approximately $3,567M to 

$2,387M. Had no buyout taken place prior to 2010 these damages would have been about $6M 

more, and had all the buyouts taken place prior to 2010 these damages would have been about 

$38M less (or total damages avoided of $44M) (see Table 16 for a summary of all damage 

estimates in 2010 for the buyout scenarios). Given an acquisition cost of $38.88M for all of the 

buyouts the damages avoided by their removal prior to the 2010 flood would have exceeded the 

cost of acquisition.  

Table 16: Direct damage economic impacts in millions of 2010 dollars. 

Scenario Scale Structural 

Damages 

Contents 

Damages 

Relocation 

Costs 

Labor 

Costs 

Total 

Damages 

Acquisition 

Cost 

Appraisal 

Value 

No Buyouts 

 

County 
1030.75-

542.07 
1024.9 

713.97-

19.86 
806.11 

3575.73-

2392.94 
NA NA 

Micro-watersheds 

with Buyouts 

173.08-

123.91 
132.33 156.08-4.52 180.11 

641.6-

440.87 
NA NA 

Buyout Parcels 15.94-15.8 8.95 3.45-0.55 21.81 
50.15-

47.11 
38.88 52.46 

With 

Buyouts  

County 
1029.16-

540.13 
1024 713.5-19.79 803.21 

3569.87-

2387.13 
NA NA 

Micro-watersheds 

with Buyouts 

171.49-

121.96 
131.42 155.6-4.45 177.2 

635.71-

435.03 
NA NA 

Buyout Parcels 14.35-13.85 8.05 2.98-0.48 18.9 
44.28-

41.28 
31.54 47.12 

All Buyouts  

 

County 
1017.15-

527.74 
1017.33 

711.08-

19.37 
786.47 

3532.03-

2350.91 
NA NA 

Micro-watersheds 

with Buyouts 

159.49-

109.58 
124.75 153.18-4.02 160.46 

597.88-

398.81 
NA NA 

Buyout Parcels 2.35-1.47 1.38 0.56-0.05 2.16 6.45-5.06 0 11.42 

Wish List  

 

County 
1014.81-

526.27 
1015.95 

710.52-

19.31 
784.31 

3525.59-

2345.84 
NA NA 

Micro-watersheds 

with Buyouts 

157.14-

108.11 
123.38 152.62-3.97 158.3 

591.44-

393.76 
NA NA 

Buyout Parcels 0-0 0 0-0 0 0-0 0 0 
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Examination of the hazard damage trajectories over time from 2007 to 2013 as shown in 

Figure 17 suggests that removal of the buyout homes reduced the potential relocation and labor 

costs associated with a 2010-like flood, but that trends across the county have contributed to a 

general decline in the potential for relation and labor costs over time. This decline may be the 

result of reduced building footprint area of flood damaged homes. In contrast, while the buyout 

program has reduced the potential for structural and contents damages, these values are highly 

dependent on property values and hence can fluctuate a great deal from year to year. Given the 

general increase in property values in the Nashville area in recent years the potential for structural 

and contents damages from a 2010-like flood has increased noticeably since 2010. 

 

Figure 17: Trajectories for hazard damages. 
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Property Values 

The net county property value was computed using tax parcel information for each year 

and for each scenario. The trajectories shown in Figure 18 suggest that property values have been 

steadily increasing since 2009. Removal of buyout properties, as expected, initially produces a 

noticeable reduction in net property value. When comparing the No Buyouts scenario with the All 

Buyouts scenario in 2007 this difference is about $0.42M. This difference in net property value 

for these two scenarios is $0.46M in 2013 (assuming the buyout program did not significantly 

affect property values of remaining properties). Given the difference between the cost of 

acquisition of these properties and the damages that would have been avoided, the $5M in 

economic savings to the system provided by the All Buyouts scenario would be reduced to zero 

within eleven to twelve years provided no other flooding events occur and no beneficial effects of 

the buyout program on property values. 

Sustainability Capital 

 Sustainability capital measures relating to ecosystem services and system economic capital 

were computed for each scenario and year between 2007 and 2013 using deterministic spatial 

analysis methods as described in the Data and Methods section. 
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Figure 18: Trajectory of property values. 

 

Impervious Area and Runoff 

The analysis of impervious land cover from building footprints in Davidson County 

demonstrated that high rates of development have driven significant increases in impervious cover 

in the county. The total increase in observed building cover from 2007 to 2013 was approximately 

163 acres.  The buyout program removed more than 10 acres of impervious building cover by 2013 

and expansion of the buyout program to the wish list would have removed about 18 acres of 

imperious cover by 2013. This impervious cover is directly related to the expected amount of 

runoff produced during rainfall events. Increases in impervious cover have led to an increase in 

total runoff volume of more than seven million gallons (MG) between 2007 and 2013. Buyouts 

that took place between 2007 and 2013 reduced runoff volumes by an estimated 0.46 MG and 
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expansion of the buyout program to the wish list would have led to a reduction of runoff volumes 

of 1.02 MG by 2013.  

 

Figure 19: Trajectories for impervious cover and runoff. 

 

Estimated impervious area and storm water runoff volumes for all years and all scenarios 

are shown in Figure 19. The trends in Figure 19 and the summary for the year 2010 provided in 

Table 17 indicate that while the buyout program marginally reduces local micro-watershed 

neighborhood impervious cover and storm runoff, the scale of the program is too small to have a 

significant effect on system-wide sustainability capital and without massive expansion will not 

significantly curb development-driven trends in impervious cover and runoff production. This is 

unfortunate, as one potential pathway for flood mitigation via the buyout program is by reduction 
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of flood severity by decreasing storm water runoff. While it may be possible that the buyout may 

produce some of these flood mitigating effects in micro-watersheds it is unlikely that they will be 

significant in the future due to network connectivity of the stormwater conveyance system. As the 

buyouts typically occur in or near micro-watersheds where stormwater runoff accumulates, 

increased development in non-buyout micro-watersheds will produce more stormwater that will 

negatively impact buyout micro-watersheds (see Figure 20 for a map of impervious cover across 

the county). 

Table 17: Landcover and associated runoff characteristics in 2010 for four scenarios. 

Scenario Spatial Unit Impervious Building 

Area (Acres)  

Percent 

Area that is 

Impervious 

Cover 

Runoff 

Volume 

(MG) 

No Buyouts  County  14,425.875 4.488 21,113.027 

Buyout Micro-

watersheds  

2,698.152 7.120 2,540.627 

With Buyouts County  14,424.057 4.487 21,112.942 

 Buyout Micro-

watersheds  

2,696.334 7.114 2,540.542 

All Buyouts   County  14,412.666 4.484 21,112.410 

 Buyout Micro-

watersheds  

2,684.943 7.083 2,540.010 

Wish List  County  14,408.599 4.482 21,112.219 

Buyout Micro-

watersheds  

2,680.876 7.072 2,539.819 
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Figure 20:  Impervious building cover in 2010 as a percent of total micro-watershed area. 

 

Riparian Buffers 

Estimated riparian buffer area and average riparian buffer width for all years and all 

scenarios are shown in Figure 21. Analysis of riparian buffers in Davidson County demonstrated 

that the average width of un-built riparian buffer areas around streams and rivers in 2010 was 

less than 100 meters (328 feet), which was chosen as an initial baseline desired riparian width.8  

                                                 
8 Research suggests for flood attenuation riparian buffer widths of at least 20 to 150 meters are recommended 

(de Sosa et al., 2018; Hawes & Smith, 2005; NRCS-USDA, 2003) 
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Indeed, in many micro-watersheds containing riparian areas there are buildings that are located 

less than 50 feet distant from a stream or river. The average riparian width increased slightly 

from 291.3 feet in 2007 to 291.7 feet in 2013 (See Figure 21). Expansion of the buyout program 

to include homes on the “wish list” would have added about 0.3 feet to the average riparian 

width.  

 

Figure 21: Trajectories for riparian width and riparian area 

 

Within the county there were about 10,504 acres of un-built riparian area in 2010. This 

area increased by 8 acres from 2007 to 2013. The buyouts conducted prior to 2010 converted one 

acre of built area in riparian zones to undeveloped riparian buffer area. Completion of buyouts on 

the Wish List would have created an additional ten acres of riparian buffer area by 2013. As with 

impervious cover and runoff production, the trends in Figure 21 and summary for the year 2010 
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provided in Table 18, indicate that the buyout program marginally increases riparian buffer area 

and average riparian buffer width in local micro-watershed neighborhoods where buyouts take 

place, but that the scale of the program is too small, and development trends too strong, for a 

significant effect on county-wide values to be observed. Unlike impervious cover and runoff 

production though, as the impacts of riparian buffering on flood attenuation are primarily local, 

negative trends in riparian buffer area in other areas is not necessarily expected to adversely 

impact flood severity in buyout micro-watersheds. Therefore, changes in local riparian 

conditions may produce significant positive effects on flood severity within watersheds 

regardless of county-wide trends (see Figure 22 and Figure 23 for maps of riparian 

characteristics). 

 

Table 18: Riparian buffer characteristics in 2010 under four buyout program scenarios. 

Scenario Spatial Unit Riparian Buffer 

Area (Acres) 

Average Riparian 

Buffer Width 

(Feet) 

No Buyouts  County  10,503.020 291.186 

 Buyout Micro-watersheds  1,851.588 269.851 

With Buyouts  County  10,504.207 291.231 

Buyout Micro-watersheds  1,852.854 270.158 

All Buyouts  County  10,519.636 291.894 

 Buyout Micro-watersheds  1,868.164 272.879 

Wish List  County  10,524.679 292.039 

 Buyout Micro-watersheds  1,873.207 273.907 

  



136 

 

 

Figure 22: Map of riparian buffer area (in acres) by micro-watershed.  

 

Figure 23: Maps of average (left) and minimum (right) riparian buffer width (in feet) by micro-

watershed. 
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Property Taxes and Net Property Revenue 

Total property taxes for the county and the difference between property taxes and hazard 

damages to properties where calculated for each scenario and year using appraised property values 

in tax parcel data. The property taxes that are collected by the county government are derived from 

appraised property values, an assessment ratio, and the annual tax rate set by the county property 

assessor’s office (Property Assessor, 2018). In Davidson County, property taxes constitute 

approximately forty percent of the metropolitan government’s total revenue stream and hence are 

an important source of economic capital (NashvilleNext, 2016). The net property revenue suggests 

the potential economic deficit between property-based revenue and property-based damages at the 

system level which will need to be overcome using other sources of economic capital such as 

personal funds, federal funds, and credit lines.  

As can be seen in Figure 24, property taxes collected by the municipal government are not 

significantly impacted by the buyout program. The difference between the No Buyout scenario 

and Wish List scenario in 2010 is $0.54M. Instead, the current tax rate is responsible for most 

changes in property taxes collected, where about $68M less was collected in 2010 than in 2007 

due to changes in the tax rate put in place during the recession. The trajectories in Figure 25, 

however, show that the buyout program does significantly reduce the potential deficit between 

property tax revenue and property damages due to a 2010-like flood event. The difference between 

the No Buyout and Wish List scenarios in 2010 is about $15.4M, where a $15.9M difference in 

the property losses in the two scenarios is slightly blunted by the $0.5M reduction in property tax 

income in the Wish List scenario. 
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Figure 24: Trajectory for total property taxes. 
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Figure 25: Trajectory for net property revenue. 

 

Feedback from Sustainability Capital to Contextual Vulnerability 

One of the primary changes made by the home buyout program, as discussed in the 

previous section, is an increase in greenspace and an associated reduction in impervious land cover 

and increase in riparian buffer areal extent and width. These changes are related to natural 

processes that govern water movement within the Nashville community ecosystem such as surface 

water runoff production and flood attenuation (ecosystem services). As such, the changes to these 

ecosystem characteristics produced by the buyout program are expected to impact, even if very 

slightly, flood severity.  
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In order to account for changes in ecosystem services produced by the buyout program, 

regression analysis was used to estimate the relationship between ecosystem services, flood risk, 

and the depth of inundation observed during the 2010 flood. The analyses use depths estimated 

from the windshield survey as the outcome and examine the effect of riparian buffer width and 

extent, impervious building cover, runoff production, and location within the riparian buffer, 

floodway, or FEMA 100 year and 500 year floodplains on the observed depths. Non-significant 

predictors in preliminary models were removed for estimation of the final model. These analyses 

also control for distance from waterways and local spatial characteristics using a spde model. The 

distance from waterways control accounts for the fact that flooding is more severe nearer to 

streams and rivers regardless of the ecosystem flood buffering characteristics of micro-watersheds 

while the spatial effect controls for local characteristics such as elevation that impact flood depths 

independent of ecosystem characteristics. Models were built using tax parcel scale data, where 

locations are represented by points at the centroid of each parcel polygon, and only parcels with 

observed damage were retained for evaluation. 

The final model provides evidence that a targeted buyout program has the potential to 

create both direct benefits in terms of removal of high-risk homes and secondary benefits in terms 

of providing flood exposure buffering. After controlling for location  and distance from streams 

and rivers I find that riparian buffering and landcover characteristics in micro-watersheds have a 

significant effect on flood inundation depths reported in the windshield survey. In addition, 

buildings located within high-risk flood areas are significantly associated with greater flood 

inundation depths. A summary of final model results is presented in 19 and the spatial effect is 

plotted in Figure 28.  
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Table 19: Results of final flood inundation model. 

Variable Mean and Standard 

Deviation of Posterior Effect 

Estimate† 

Intercept -0.1655* (0.0179) 

Distance to Stream -0.2698* (0.0103) 

Riparian Zone 0.3637* (0.0300) 

Floodway -0.0279 (0.0315) 

100 Year Floodplain 0.1305* (0.0191) 

500 Year Floodplain 0.1069* (0.0250) 

Average Riparian Width -0.0666* (0.0116) 

Percent Building Cover 0.0692* (0.0096) 

* Indicates effect is significant at a 95% credibility interval. 

† Note that all effects for continuous variables are reported for 

standardized values and are not directly interpretable.  

 

Model results suggest that the increasing the average riparian buffer widths in micro-

watersheds has a positive effect on inundation depth, where an increase in the average riparian 

width is associated with a reduction in inundation depth. In addition, being located within the 

baseline 100 meter riparian buffer zone is associated with an increase in inundation depth. 

Increased impervious cover in micro-watersheds is also associated with increased inundation 

depth. Finally, the model indicates that buildings located in higher risk flood areas are subject to 

greater inundation depths, on average. (Note that the effect for buildings located in the floodway 

is not significant, likely due to collinearity with other locational variables and a small sample size.)  
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Figure 26: Spatial effect for models of flood inundation depth. Mean of the posterior distribution for 

the spde spatial effect shown on the left and the standard deviation of the posterior on the right. 

 

The estimated predictor effects and spatial effects were then used to predict the response 

of flood inundation depth (for a May 2010-like flood event) to changes in watershed and riparian 

ecosystem service characteristics. The predicted 2.5%, 50%, and 98.5% depths for years 2007, 

2010, and 2013 were computed for all four scenarios using the method described in the Bayesian 

Modeling and Prediction section. An example map of the predicted flood inundation depths is 

given in Figure 27. Note that as estimation was limited to properties where flood inundation was 

observed in 2010, the predictions are also limited to locations where flood inundation was 

previously observed and does not account for increases or reductions in the number of inundated 

properties. This suggests that the net impacts of the ecosystem service characteristics on flood 

severity presented in this analysis may be underestimated.  
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Figure 27: Example of predicted median flood inundation depth (feet) for 2010 all buyouts scenarios. 

 

Feedback from Modified Contextual Vulnerability to System Performance 

While damage estimates were previously produced for each scenario and year, these 

estimates were based on the assumption that only the removal or addition of homes was of 

importance and that no significant changes in flood severity were produced by the buyout program. 

However, given the results of models showing significant relationships between ecosystem 

services and flooding depths the predicted flood inundation depths were used to recalculate the 
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expected hazard damages. This step accounts for changes in expected contextual vulnerability that 

are the result of changes in sustainability capital produced by the buyout program. The range (95% 

credibility) of estimated damages based on predicted flood inundation depths for years 2007, 2010, 

and 2013 for each scenario are shown with the original damage estimates in Figure 28. The 

predicted damages are skewed towards lower values due to compression of high outlier depths 

towards the mean in depth prediction models. This compression towards the mean is amplified in 

damage calculations due to non-linear depth-damage relationships. (Note that this skew towards 

lower values is of a similar size to alternative damage estimates made using reported damage costs 

from a Vanderbilt survey of flood impacted households conducted following the May 2010 floods, 

and also with estimates of damages calculated using a the depth grid from a 1,000 year storm event 

modeled in HAZUS™, both of which are generally about $1,000M lower than damage estimates 

using FIA depth-damage curves and observed flooding depths from the windshield survey.) In 

addition, the predictive models, while skewed towards lower values, suggest that changes in the 

ecosystem services induced by the buyout program may offset expected increases in flood damages 

over time due to increasing property values, stabilizing the damages expected from a severe flood 

similar to the May 2010 flood by improving flood attenuation near streams and rivers. 

The difference between the predicted damages for the No Buyouts and Wish List scenarios 

in both 2010 and 2013 ranges from $75M for the low-end predictions to $141M for the high-end 

predictions. In comparison the difference between these scenarios using the original damages 

estimates is only $50M. This suggests that improving flood attenuation via buyout activities may 

provide more than double the damage savings expected when only considering the value of the 

home removed from harm’s way. 
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Figure 28: Estimated range of damages given predicted flood depths. Colored bands represent the 

95% credibility range for predicted damages while black lines represent the original damage 

estimations. 

 

The buyout program also directly changes the contextual vulnerability indicators of 

distance to greenspace, location within flood zones, and flood inundation which affect (although 

not always significantly) the system performance measures of property value and hazard damages. 

In addition, the buyout program may directly alter the distribution of contextual vulnerability 

indicators such as total population and renter population. These indicators, together with 

inundation depths and runoff production of watersheds, which are also directly and indirectly 
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changed by the buyout program, produce significant effects on health and safety. While generating 

predictions of changes in these metrics would be interesting and make for a more complete 

consideration of feedbacks between the concepts of vulnerability, resilience, and sustainability, 

due to the very broad range of uncertainty and difficulty in producing accurate predictions these 

models are not conducted in this study. 

Feedback from Modified System Performance to Sustainability Capital 

Finally, while most of the sustainability capital measures of interest are directly impacted 

by the buyout program, sustainability capital measures related to economic capital are indirectly 

impacted via expected changes in property value and hazard damages system performance 

measures. The net property revenue was recalculated for each scenario for years 2007, 2010, and 

2013 using the predicted property damages as estimated in the previous section.  Updated net 

property revenue estimations are plotted with the original calculations in Figure 29. As with the 

predicted damages in the previous section the values for net revenue are somewhat skewed, in this 

case towards larger (less negative) values. The trend for net revenue remains the same as seen in 

the original calculations, however the difference in the property tax-property damage deficit across 

buyout scenarios is increased such that a difference between the No Buyout and Wish List 

scenarios in 2010 of about $15M (in the original calculations without the feedback considerations) 

is increased to about $33M. Again, this difference is due to estimated reduced property damages 

resulting from reduced flood inundation depths that are the predicted result of increases to 

ecosystem services provided by the buyout program. 
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Figure 29: Predicted net revenue. Colored bands represent the 95% credibility range for predicted 

values while the black lines represent the original estimations. 

 

Discussion 

Taken together the results of the analyses conducted in this study suggest that physical 

exposure to flooding and risk of flood exposure as represented by indicators of flood inundation 

depth, distance to streams and rivers, and location within flood zones significantly affects system 

health and safety and economic prosperity in the context of flooding.  Model results also indicate 

that characteristics of the built environment and populations also significantly affect system health 
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and safety and economic prosperity. In addition, the results suggest that certain populations were 

subjected to relatively high severity of flooding and that likelihood of carrying flood insurance 

also varied across population types.  

These findings suggest that the following measures are valid indicators of the contextual 

vulnerability of the Nashville community system to flooding: distance to stream/river, flood zone, 

depth of inundation, total population, renter population, property value, property size, property 

type, median income, percent population without GED, percent population below poverty level, 

percent population white only, percent population foreign born, percent population that speaks 

English poorly, and percent households with Social Security Income. While this is not by any 

means an exhaustive list of valid indicators of community vulnerability to flooding, these are 

indicators for which there is observed evidence, either produced in this study or in previous work, 

that they are related to the level of harm experienced during a hazardous event.  

This study also shows how changes in these measures of vulnerability, over time and across 

hypothetical buyout program scenarios, have the potential to influence the impact of a severe 

flooding event on system performance measures. The ability of the system to maintain high levels 

of system performance given a hazardous event is a key characteristic of resilient systems. The 

results of deterministic and Bayesian predictions indicate that the buyout program does produce 

significant benefits in terms of reduced numbers of damaged properties and exposed populations, 

as well as reduced hazard damage costs. These results indicate that while some system 

performance measures may be slightly negatively impacted by the buyout program (property 

values), the economic benefits of an expanded buyout program outweigh the negative economic 

impacts.  



149 

 

In addition, the buyout program produces non-economic benefits in terms of removing 

people from harm’s way. Removal of homes in high-risk flood areas should reduce the risk of 

flood fatalities and water rescues. However, examination of the trajectory of renter populations 

also indicates that more renters are likely to be exposed to severe flooding. Together with models 

indicating an increasing risk of needed a water rescue for renter populations, this might indicate 

that water rescues may be increasingly likely during future severe flooding events, particularly if 

steps are not taken to improve flood safety communication and education among non-native 

English speakers, and that this increase might be negatively impacted by the buyout program. 

Finally, this study demonstrates how the buyout program modified sustainability capital in 

the form of ecosystem services and economic capital. Economic capital is shown to be slightly 

negatively impacted by expansion of the buyout program, however this impact is minor in 

comparison to non-flood related factors such as changes in tax rates, which appear to be driven 

primarily by external economic forces such as the recession. While expansion of the buyout 

program does improve the level of ecosystem services in the localized micro-watersheds where 

buyouts take place, at the system-scale these changes are far outweighed by county-wide trends in 

development. However, model results do indicate that the extent of impervious cover and riparian 

buffer width are associated with flood inundation depths, suggesting that the buyout program does 

provide some secondary benefits in terms of localized flood attenuation.  The impact of these 

ecosystem services on flood inundation depths was predicted and used to reevaluate potential flood 

damages and net property revenue and show that these secondary benefits may produce added 

economic benefits to the system. 
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Conclusions 

In this study, I show how deterministic modeling, spatial analysis, and Bayesian modeling 

can be used to show that a home buyout program provides long term benefits to the Nashville 

community system. In doing so, I utilize a relational framework between the concepts of 

vulnerability, resilience, and sustainability that posits that there are causal relationships that exist 

between these concepts and lead to feedback between system properties at different scales and 

examined from different perspectives. This work is intended to illustrate some of the tradeoffs 

between different scenarios of a home buyout program as a flood adaptation strategy and tradeoffs 

across aspects of community vulnerability, resilience and sustainability.  

While this work only examined a small subset of factors related to community flooding, 

the examination of multiple factors across time and across scenarios in addition to modeling of 

interactions between factors meant that this analysis quickly became very large and complex. 

Future work should be done to improve predictive capabilities so that the influence of feedbacks 

between vulnerability, resilience, and sustainability can be more carefully examined. In addition, 

future work should examine ways in which the multiple factors examined in this analysis can be 

consolidated to produce single values that represent system vulnerability, resilience, and 

sustainability, such that tradeoffs between the concepts can be more easily identified. In addition, 

future work should endeavor to examine additional system performance factors, particularly those 

related to long-term change, and the vulnerability and sustainability factors related to those system 

performance factors. This will require acquisition of additional data and or examination of these 

concepts at a larger spatial scale. 

While improvements and expansion of this work is ongoing, the analyses presented thus 

far illustrate that the home buyout program has produced economic benefits in terms of reduced 
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hazard damage potential and that expansion of the program will continue to offer additional 

benefits. In short, the cost of  buyouts conducted prior to 2010 were nearly paid for solely in direct 

damages avoided during the 2010 flood, and assuming that these homes were subject to repetitive 

flooding, a benefit-to-cost ratio for the buyouts of about 3:1 can be expected over a 75-year time 

frame (NIBS, 2017). In addition, the buyout program has contributed to the creation of greenspaces 

that provide flood attenuation services that counteract some of the continuing negative trends in 

ecosystem services provisioning created by high levels of development in the area, and have 

removed people from high flood-risk areas, preventing future emergency water rescues and flood 

fatalities. Finally, the results of this study show that the buyout program has had a positive impact 

on vulnerability, resilience, and sustainability in the Nashville community system, but indicate that 

early expansion of the program would have produced even greater benefits. This suggests that 

home buyout programs may be an effective urban flood adaptation strategy for building 

community sustainable resilience, and that such programs should aim to remove as many homes 

as possible from flood prone areas, as early as possible, in order to increase program effectiveness. 
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CHAPTER V: CONCLUSION 

 

 

With increasing recognition of the negative impacts of natural hazards and the potential for 

climate change to exacerbate these hazards, an increasing number of nations, states, municipalities, 

and corporations are attempting to reduce hazard risks by formulating mitigation and adaptation 

plans. As the natural hazards literature has evolved and begun to interface with climate science, 

the standard risk formulations have been supplemented with insights from parallel developments 

in sustainability science, social justice and vulnerability, behavioral psychology and social 

learning, and systems resilience. From this work, the concepts of adaptive capacity and of social-

environmental systems have emerged and grown in recent decades. Social-environmental systems 

science explicitly considers relationships between human, technological, and natural components 

of multi-scalar systems to provide information that identifies unexpected and unintended 

consequences of actions, decisions, and events. Yet, along with the added value that social-

environmental systems science brings there is also added complexity and potential for confusion.  

As a whole, researchers in social-environmental systems science and related fields, have 

embraced the concepts of social-environmental system vulnerability, resilience, sustainability, and 

adaptive capacity. However, it is also apparent that confusion as to the definitions and applications 

of these concepts is rampant. Nevertheless, research in this area has increased rapidly over the last 

decade and an increasing number of calls from leaders in the field have been issued trying to draw 

attention and focus to several areas in need of development. These areas include: elucidation of 

the links between vulnerability, resilience, sustainability, and adaptive capacity concepts; 

development of integrated assessment methodologies; validation and empirical verification of the 

theoretical indicators of these concepts and of assessment methods in wide use today; and 
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translation of complex theories and methods into operational assessment and evaluation methods 

accessible to researchers and practitioner alike. 

Recognizing the potential value that social-environmental systems conceptualizations of 

vulnerability, resilience, sustainability, and adaptive capacity may provide to our society, as well 

as some of the shortcomings of social-environmental systems approaches, in this dissertation I 

attempt to address some of the known gaps in the field. This dissertation work endeavored to 

provide a solid conceptual framing on which to ground further work; a generic framework for 

evaluating adaptation options by integrating assessment of vulnerability, resilience, and 

sustainability over time; demonstrations of spatial analysis and modeling methods that may be 

applied in empirical analyses; and a case study that applies the aforementioned concepts, 

framework, and methods. This work provides a foundation on which to build further work on 

adaptation in social-environmental systems using a micro-scale lens and empirical methodologies. 

In addition, this work demonstrates ways in which spatial analysis and modeling may be applied 

in order to approach true validation of vulnerability, resilience, and sustainability indicators and, 

by association, conceptual understandings. 

Chapter II of this work addressed the conceptual underpinnings of social-environmental 

system vulnerability, resilience, adaptive capacity, and sustainability. A relational diagram for 

these four key concepts was presented and serves as the basis for development of the proposed 

framework for integrated assessment of adaptation. Chapter II also identifies some of the barriers 

and challenges associated with assessment processes in social-environmental systems and suggests 

possible methods and tools that may be employed to address these issues.  

In the following Chapter, I identify two approaches to addressing assessment issues related 

to scale. I develop a method for downscaling select demographic variables from census data scales 
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to tax parcel scales and demonstrate the use of these downscaled variables in a social vulnerability 

index. In addition, I demonstrate how Bayesian spatio-temporal modeling may be applied to 

evaluating process in complex multiscalar social-environmental systems.   

Finally, in Chapter IV I demonstrate how the components of conceptual analysis, spatial 

analysis, and spatial modeling can be brought together and operationalized in the proposed 

integrated framework for sustainable resilience assessment.  As shown in Figure 30 the spatial 

analysis and modeling techniques described in Chapter III can be leveraged to support use of the 

integrated framework described in Chapter II by aiding in the definition of contextual vulnerability 

in a system as well as by enabling identification of relationships between contextual vulnerability 

and the ability to resist systemic disruption. These same techniques can also be utilized to support 

simulation of alternate scenarios and prediction of expected consequences of these alternate 

scenarios. 
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Figure 30: Illustration of the areas of the integrated framework that can be supported by spatial 

analysis and modeling techniques. 

In order to illustrate how the framework and the spatial analysis and modeling techniques 

might be operationalized Chapter IV presents a micro-scale analysis of flood adaptation for the 
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Nashville, TN community. This case study uses observed data from the May 2010 flood and data 

on the home buyout program run by Nashville Metro Water Services to evaluate the benefits 

offered by the buyout program and predict the value of damages avoided by the program and the 

value of expansion of the program. Evidence is presented of the effectiveness of one adaptation 

strategy at building sustainable resilience to flooding, and also serves as a blueprint for other 

micro-scale, empirically-based assessments of natural hazard adaptation strategy evaluation. 

As a body of work, this dissertation offers only glimpses at a few of the numerous areas 

for expansion in social-environmental system assessment and adaptation strategy evaluation. 

Further research could focus on methods of spatial interpolation of social, human, and 

technological information for micro-scale studies; on Bayesian prediction methods for simulation 

of adaptation strategy effectiveness; on system-dynamics and agent-based  models for developing 

relationships between interdependent components of systems and expected outcomes during 

hazardous events; on improved consideration of recovery within the proposed integrated 

assessment framework; or on translation of the framework to multiple scales of analysis. In 

addition, it is imperative that additional case studies using the same or similar methods be carried 

out in order to build a body of work that is able to provide some generally applicable findings 

about adaptation to hazards and factors that contribute to or detract from social-environmental 

system sustainable resilience. Finally, it is of critical importance that the methods and findings of 

this work be made accessible to practitioners and policy makers. Areas of expansion of this work   

related to this concern might include development of open-source tools for adaptation assessment;  

describing research-practitioner partnerships for implementation of the described methods, 

frameworks, and tools; and analysis of state and national policies that impact hazard adaptation 

using cross-sectional and longitudinal  data. 
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APPENDIX A 

Table A 1: Selectively Distributed Variables 
 Variable Excluded Properties Assigned Properties 

D
is

ag
g

re
g

at
ed

 S
u

b
-p

o
p
u

la
ti

o
n
 

Age 5 and Under Nursing Home, Elderly Housing, 

Jail, Women’s Jail, 

Dormitory/Boarding House, School 

or College, Sanitarium 

N/A 

Age 65 and Over Dormitory/Boarding House (if not 

also Elderly Housing), School or 

College 

Nursing Homes, Elderly Housing 

Age 65 and Over in 

Group Quarters 

Dormitory/Boarding House (if not 

also Elderly Housing), School or 

College 

Nursing Homes 

Women Jail Women’s Jail 

Employed Women Jail Women’s Jail 

Population in Group 

Quarters 

N/A Nursing Home, Dormitory/Boarding 

House, School or College, 

Orphanage/Charitable Service (unless 

also Single Family Dwelling), Sanitarium, 

Jail, Women’s Jail 

P
ar

ce
l-

S
p

ec
if

ic
 E

co
n

o
m

ic
 o

r 
P

h
y

si
ca

l 
C

h
ar

ac
te

ri
st

ic
 

Rental/Semi-

Permanent Housing 

All Others Duplex(s), Triplex(s), Quadplex(s), 

Nursing Home, Parsonage, 

Orphanage/Charitable Service, 

Dormitory/Boarding House, Apartment 

Owner Occupied 

Housing with Value 

Greater than 

$200,000 

All Others Single Family Dwelling, Residential 

Condominium Unit, Residential Zero Lot 

Line, Mobile Home, Residential 

Combination, Mobile Home Park, Rural 

Combination where the total appraisal 

value was greater than $200,000 

Mobile Homes All Others Mobile Home, Mobile Home Park 

Rural All Others Single Family Dwelling, Mobile Home, 

Duplex, Triplex, Combination where also 

designated as Rural 

Number of Hospitals 

Within 3 Mile Radius 

N/A All parcels within a 3 mile radius of a 

Davidson County hospital or medical 

clinic. 

Property Total 

Appraisal Value 

N/A All Properties 
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Table A 2: Block-Group Social Vulnerability Index Variables 

Social Dimension Variable Type 
ACS 2012 5yr Block-Group Estimates Variable/s 

Short Name 
Variable Normalization 

Component Variable Loads 

on Significantly 

Age 

Median Age B01002e1 None Elderly 

Age Under 5 Years B01001e3 + B01001e27 Total Population (B01003e1) Families 

Age Over 65 Years B09020e1 Total Population (B01003e1) Elderly 

Gender 

Female B01001e26 Total Population (B01003e1) Women 

Female Civilian Employed, Age 16 

and Up 
C24010e38 

Total Civilian Employed, Age 16 and Up 

(C24010e1) 
Women 

Race/Ethnicity 

African American Alone B02001e3 Total Population (B01003e1) Race/Class 

Some Other Race/Races 
B02001e4+B02001e5+ B02001e6 + B02001e7+ 

B02001e8 
Total Population (B01003e1) Foreign Born 

Hispanic or Latino B03003e3 Total Population (B01003e1) Foreign Born 

Employment 

Unemployed In Labor Force, Age 

16 and Up 
B23025e5 Total Civilian Labor Force (B23025e2) Race/Class 

Participating Civilian Labor Force, 

Age 16 and Up 
B23025e2 

Total Population, Age 16 and Up 

(B23025e1) 
Institutional and Group Living 

Occupation 

Service Workers C24010e19 + C24010e55 Total Civilian Labor Force (C24010e1) Race/Class 

Natural Resources, Construction, 

Maintenance Workers 
C24010e30 + C24010e66 Total Civilian Labor Force (C24010e1) Foreign Born 

Production, Transportation, Material 

Moving Workers 
C24010e34 + C24010e70 Total Civilian Labor Force (C24010e1) 

Economic Status & Housing 

Quality 

Medical Services 
Healthcare Workers C24010e16 + C24010e20 + C240101e52 + C240101e56 Total Population (B01003e1) Institutional and Group Living 

Number of Hospitals Not Available (Use Tax Info) Total Population (B01003e1) Hospice Care 

Family Structure 

Population in Occupied Housing 

Units 
B25008e1 

Total Occupied Housing Units 

(B25007e1) 
Families 

Female Householder, No Husband 

Present 
B09002e15 

Total Households with Children 

(B09002e1) 
Race/Class 

Housing Quality Number of Mobile Homes  Total Housing Units (B25001e1) Housing Quality 

Renters Renter-Occupied Housing Units B25056e1 
Total Occupied Housing Units 

(B25007e1) 
Race/Class 
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Median Gross Rent B25064e1 None Institutional and Group Living 

Education 
Over Age 25 with No High School 

Diploma 
B15003e16 Population Over Age 25 (B15003e1) Foreign Born & Rural 

Special Needs 

Over Age 65 in Group Quarters B09020e21 Population Over Age 65 (B09020e1) Hospice Care 

With a Disability, Age 16-64 C23023e3 + C23023e14 Population Age 16-64 (C23023e1) Women 

Population in Group Quarters B09019e38 Total Population (B01003e1) Institutional and Group Living 

Social Dependence 

Households with Social Security 

Income 
B19055e2 Total Households (B16002e1) Elderly 

Households Receiving Food 

Stamps/ SNAP in Past 12 Months 
B22010e2 Total Households (B16002e1) Race/Class 

Immigrants 

Households Where No One Age 14 

or Older Speaks English Only or 

English “Very Well” 

B16002e4 + B16002e7 + B16002e10 + B16002e13 Total Households (B16002e1) Foreign Born 

Wealth and Income 

Per Capita Income (2012 Adjusted 

$) 
B19301e1 None Economic Status 

Household Income > $100,000 B19001e14 + B19001e15 + B19001e16 + B19001e17 Total Households (B16002e1) Economic Status 

Population Below Poverty Level in 

the Past 12 Months 
B17021e2 Total Population (B01003e1) Race/Class 

Median Home Value B25077e1 None Economic Status 

Owner Occupied Housing Units 

with Value < $100,000 

B25075e2 + B25075e3 

+B25075e4+B25075e5+B25075e6+B25075e7+ 

B25075e8 +B25075e9+ B25075e10 +B25075e11 

+B25075e12+ B25075e13+ B25075e14 

Total Owner Occupied Housing Units 

(B25075e1) 
Housing Quality 

Owner Occupied Housing Units 

with Value $100,000 - $200,000 
B25075e15+B25075e16+B25075e17+ B25075e18 

Total Owner Occupied Housing Units 

(B25075e1) 
Economic Status 

Owner Occupied Housing Units 

with Value > $200,000 

B25075e19+B25075e20+B25075e21+ 

B25075e22+B25075e23+B25075e24+ B25075e25 

Total Owner Occupied Housing Units 

(B25075e1) 
Economic Status 

Transportation 

Population Using Public 

Transportation to Get to Work, Age 

16 and Over 

B08134e61 Total Worker Population (B08134e1) Race/Class 

Occupied Housing Units with No 

Vehicle Available 
B25044e3 + B25044e10 

Total Occupied Housing Units 

(B25007e1) 
Race/Class 

Rural Land in Farms/Rural Use Not Available (Use Tax Info) Total Population (B01003e1) Rural 
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Table A 3: Parcel Scale Social Vulnerability Index Variables 

Social Dimension Variable Type 
ACS 2012 5yr Block-Group Estimates 

Variable/s Short Name 
Variable Normalization 

Component Variable Contributes 

to Significantly 

Age 

Age Under 5 Years B01001e3 + B01001e27 Total Population per Parcel Families 

Age Over 65 Years B09020e1 Total Population per Parcel Elderly 

Gender 

Female B01001e26 Total Population per Parcel Women 

Female Civilian Employed, Age 16 

and Up 
C24010e38 

Total Civilian Employed, Age 16 and 

Up per Parcel 
Women 

Race/Ethnicity 

African American Alone B02001e3 Total Population (B01003e1) Race/Class 

Some Other Race/Races 
B02001e4+B02001e5+ B02001e6 + 

B02001e7+ B02001e8 
Total Population (B01003e1) Foreign Born 

Hispanic or Latino B03003e3 Total Population (B01003e1) Foreign Born 

Employment 

Unemployed In Labor Force, Age 16 

and Up 
B23025e5 

Total Civilian Labor Force 

(B23025e2) 
Families 

Participating Civilian Labor Force, 

Age 16 and Up 
B23025e2 

Total Population, Age 16 and Up 

(B23025e1) 
Elderly 

Occupation 

Service Workers C24010e19 + C24010e55 
Total Civilian Labor Force 

(C24010e1) 
Race/Class 

Natural Resources, Construction, 

Maintenance Workers 
C24010e30 + C24010e66 

Total Civilian Labor Force 

(C24010e1) 
Foreign Born 

Production, Transportation, Material 

Moving Workers 
C24010e34 + C24010e70 

Total Civilian Labor Force 

(C24010e1) 
Economic Status 

Medical Services 

Healthcare Workers 
C24010e16 + C24010e20 + C240101e52 + 

C240101e56 
Total Population (B01003e1) Economic Status 

Number of Hospitals in 3 mile radius 

of parcel 
Davidson County Tax Info None Race/Class 

Family Structure 

Population per tax lot/household B01003e1 Tax Lot Footprint Area Renters/ Population Density 

Female Householder, No Husband 

Present 
B09002e15 

Total Households with Children 

(B09002e1) 
Race/Class 

Housing Quality Number of Mobile Homes per parcel Tax Info None Mobile Homes 

Renters 
Population in Renter-Occupied 

parcels 
Tax Info None Renters/ Population Density 

Special Needs Over Age 65 in Group Quarters B09020e21 Population Over Age 65 per parcel Institutional and Group Living 
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With a Disability, Age 16-64 C23023e3 + C23023e14 Population Age 16-64 (C23023e1) Women 

Population in Group Quarters B09019e38 Total Population per Parcel Institutional and Group Living 

Social Dependence 

Households with Social Security 

Income 
B19055e2 Total Households (B16002e1) Elderly 

Households Receiving Food Stamps/ 

SNAP in Past 12 Months 
B22010e2 Total Households (B16002e1) Race/Class 

Immigrants 

Households Where No One Age 14 

or Older Speaks English Only or 

English “Very Well” 

B16002e4 + B16002e7 + B16002e10 + 

B16002e13 
Total Households (B16002e1) Foreign Born 

Wealth and Income 

Household Income > $100,000 
B19001e14 + B19001e15 + B19001e16 + 

B19001e17 
Total Households (B16002e1) Economic Status 

Population Below Poverty Level in 

the Past 12 Months 
B17021e2 Total Population (B01003e1) Race/Class 

Parcel Value Davidson County Tax Info Total population per parcel Economic Status 

Owner Occupied Housing with 

Value > $200,000 
Davidson County Tax Info None Economic Status 

Transportation 

Population Using Public 

Transportation to Get to Work, Age 

16 and Over 

B08134e61 Total Worker Population (B08134e1) Race/Class 

Occupied Housing Units with No 

Vehicle Available 
B25044e3 + B25044e10 

Total Occupied Housing Units 

(B25007e1) 
Race/Class 
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APPENDIX B 

 

Summary of the Appendix Material  

This study involved compilation of a large spatiotemporal dataset and use of novel 

Bayesian spatial modeling techniques. Here we provide additional information regarding primary 

data sources and data transformation in Table B 1. Additional information regarding crop type 

aggregation is provided in Table B 2. Figure B 1 displays the extents of the study area and 

individual watershed boundaries. Figures B 2 through B 5, Figure B 7, and Figure B 12 provide 

visualizations of some of the data described in Table B 1 and in the Methods and Data section of 

the paper. Additional information on water rights data processing procedures is provided in Text 

B 1. Text B 2 and Figure B 6 provide additional information on contract water representation 

within the dataset used for the analyses described in the paper. Additional information on 

groundwater modeling procedures and results are provided in Text B 3 and Figures B 8 through B 

11. In addition, complete model results providing full summaries of marginal posterior effect 

estimates for all non-spatially varying variables are provided in Tables B 8 and B 9. Additional 

information used to justify model selection is provided in Tables B 3 through SB 7 and Table B 

10. Scripts used for dataset compilation, modeling, and figure creation are available at the authors’ 

GitHub repository (https://github.com/katesnelson/CA_drought) or upon request. Note that model 

runs are computationally intensive. All models were run on a computer with 72 available threads 

and > 100 GB RAM. Despite this, model runs in excess of 24 hours of real time were not 

uncommon. 
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Table B 1: Summary of data sources, types, and transformations used in the compiled dataset.   

Variable Data Source 

Spatial Data Type/ Spatial 

Resolution/ Temporal 

Resolution  

Data Transformation 
Spatial Scale in 

Analyses 
Definition 

Agricultural 

Land  

CA Farmland Mapping and 

Monitoring Program  

Spatial Polygons/ Sub-

watershed/ Biennial 
Spatial union across all years.  NA 

Land classified as farmland 

or grazing land. 

TVP 
NASA LP DAAC: 

MOD13A2 
Raster/ 1km pixel/ 16 day 

Calculated integral of annual time series for each 

pixel and year. 
Field 

Total vegetative production. 

(Proxy for agricultural 

production.) 

Crop Type USDA CropScape Raster/ 30m pixel/  Annual 
Aggregated categories into six general land use 

types. 
Field Crop or land cover type. 

Depth to 

Groundwater 
GeoTracker GAMA Point/ NA/ Daily 

Spacetime kriging used to interpolate 

groundwater elevations (in ft above msl) to a 

10km grid on a monthly time step. Depth to 

groundwater in January was calculated for each 

grid cell and year.  

Field 
Pre-growing season depth 

to groundwater (ft). 

Water Rights 

Density 

CA SWRCB: eWRIMS  

 
Point/ NA/ Daily 

Calculated as the count of all surface water right 

PODs with stated beneficial uses of irrigation, 

heat control, and frost protection (agricultural 

uses) in a watershed per square kilometers of 

farmland area in a watershed. 

Watershed 

Density of all agricultural 

use surface water right 

PODs associated with 

farmland in a watershed. 

Percent Riparian  CA SWRCB: eWRIMS        Point/ NA/ Daily 

Count of Riparian status agricultural use water 

right PODs in a watershed divided by the count 

of all agricultural use surface water right PODs in 

the watershed.  

Watershed 

Percent of agricultural  

surface water right PODs in 

a watershed that have 

Riparian status. 

Percent        Pre-

1914  
CA SWRCB: eWRIMS                Point /NA/ Daily 

Count of Pre-1914 status agricultural use water 

right PODs in a watershed divided by the count 

of all agricultural use surface water right PODs in 

the watershed. 

Watershed 

Percent of agricultural 

surface water right PODs in 

a watershed that have Pre-

1914 status. 

Percent 

Appropriative  
CA SWRCB: eWRIMS                  Point /NA/ Daily 

Count of Post-1914 Appropriative agricultural 

use water right PODs in a watershed divided by 

the count of all agricultural use surface water 

right PODs in the watershed. 

Watershed 

Percent of agricultural 

surface water right PODs in 

a watershed that have Post-

1914 Appropriative status. 

Crop Diversity USDA CropScape    Raster/30m pixel/ Annual 
Calculated index of watershed crop diversity. 

(Turner et.al., 1989) 
Watershed 

Diversity of crops grown in 

a watershed. 

Percent 

Agricultural 
CA SWRCB: eWRIMS                  Point /NA/ Daily 

Count of agricultural use water right PODs in a 

watershed divided by the count of all surface 

water right PODs in the watershed. 

Watershed 

Percent of water rights 

PODs in a watershed that 

are associated with 

agricultural water use. 

SPI AghaKouchak and Nakhijiri   
Raster/ 1/8th degree grid/ 

Monthly 

Annual sum of monthly records of the 9-month 

SPI index . 
Watershed 

Annual cumulative index of 

the 9 month precipitation 

deficit. 
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Figure B 1: Spatial extents and watershed boundaries (purple lines) of California Central Valley used 

in analyses. Spatial extent of the study area was determined as the intersection of watersheds, the 

alluvial central valley boundary [U.S. Geological Survey, 2012] and the NASA Moderate Resolution 

Imaging Spectroradiometer (MODIS) tile (NASA LP DAAC, 2015) covering the majority of 

California. 
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Figure B 2: Spatial pattern of total vegetative production for the area of study in 2014. Lower total 

vegetative production (TVP) shown as dark colors and higher TVP as light colors. 

 

Text B 1 

Water rights data used in this study were obtained from the CA SWRCB electronic water 

rights information management system (eWRIMS) and aggregated to watersheds for analyses (CA 

SWRCB, 2016c). All available digitized water rights records were downloaded in Microsoft Excel 
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format from the CA SWRCB electronic water rights information management system (eWRIMS) 

by their beneficial use category (CA SWRCB, 2016c). Water right descriptive information and 

point of diversion (POD) information on different worksheets were joined by the water rights 

application identification number. Water right PODs were then classified according to a simplified 

beneficial use scheme including categories of agriculture (irrigation, heat control, and frost 

protection), animal husbandry (stock watering, aquaculture), domestic (domestic, municipal, 

aesthetic), industrial (industrial, dust control, power, mining, milling, incidental power), fish and 

wildlife (fish and wildlife preservation and enhancement, fire protection), and recreation 

(recreational, other, snow making). Duplicate records, records without geospatial location 

information, and spatial duplicates of water rights POD locations with the same beneficial use 

were then removed. To create a panel dataset of active water right POD records the dataset was 

divided into annual sets such that all the water rights in each year’s set were classified as active 

(status not cancelled, closed, inactive, rejected, or revoked) and had a “status date” that 

corresponding to the current or any previous year. This effectively restricts each year’s water right 

POD records to water rights that were active for all or some part of the year of interest. To 

aggregate water right PODs to the watersheds a spatial join of the Central Valley watershed 

polygon shapefile and the water right POD point shapefile was conducted for each of the annual 

water right POD records. The count of PODs for each type of water right of interest was computed 

for each watershed-year and the resulting annual watershed water rights datasets were merged by 

the watershed identification code into a single wide format spatiotemporal dataset. Due to 

inconsistency in digital records prior to 2010 only data for years 2010-2014 were used in this study. 
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Figure B 3: Spatial distribution of percent Riparian water rights in watersheds for the area of study 

in 2014.   



186 

 

 

Figure B 4: Spatial distribution of percent Pre-1914 water rights in watersheds for the area of study 

in 2014. 

 



187 

 

 

Figure B 5: Spatial distribution of percent Appropriative water rights in watersheds for the area of 

study in 2014. 

 

Text B 2 

The location of water right PODs associated with known State Water Project (SWP) and 

Central Valley Project (CVP) water contractors was examined to determine the extent of contract 

water representation within the compiled dataset. Agricultural water contractor names listed by the 

California department of Water Resources (CA DWR, 2017b) and the U.S. Bureau of Reclamation 
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(USBR, 2017b) were associated with Primary Owner names for each water right in the water rights 

data collected from the CA SWRCB electronic water rights information management system 

(eWRIMS) (CA SWRCB, 2016c). In all, an estimated 103 known water contractors 

(approximately 40% of all reported water contractors) were associated in some way with a water 

right within our dataset. The water right points of diversion associated with these water contractors 

were mapped in order to determine the spatial coverage associated with these rights and is given 

in Figure B 6. 

 

Figure B 6: Spatial distribution of water right points of diversion associated with known SWP and 

CVP water contractors. Green points indicate the water right is held by either the state or federal 

government. Red points are all other water right owners who are also identified as water 

contractors. 
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Table B 2: Aggregation scheme for USDA CropScape land use classifications based on range of TVP 

values for each land use type in 2009. 

Barren & 

Fallow 
Grasses Grains Row Crops Fruit & Nuts 

Uncultivated 

Cover 

USDA CropScape Land Use Name / Numerical ID 

Barren  131 Sod 59 Triticale 205 Dry Beans 42 Grapes 69 Mixed 

Forest 

143 

Fallow  61 Clover 58 Rice 3 Potatoes 43 Almonds 75 Shrubland 152 

  Hay 37 Winter 

Wheat 

24 Cotton 2 Walnuts 76 Woody 

Wetlands 

190 

  Alfalfa 36 Corn 1 Sunflowers 6 Olives 211 Herb 

Wetlands 

195 

    Durum 

Wheat 

22 Safflower 33 Cherries 66 Grassland 176 

    Oats 28 Tomatoes 54 Peaches 67   

    Rye 27       
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Figure B 7: Spatial distribution of crop types across the Central Valley in 2014. 

 

Text B 3 

In order to create a gridded depth to groundwater dataset with consistent time steps we 

conducted spatiotemporal kriging of groundwater elevations. Wells monitored by the California 

Statewide Groundwater Elevation Monitoring Program (CASGEM) program and falling within 

the Central Valley were extracted from the full CASGEM dataset (n = 109,318) (GeoTracker 

GAMA, 2016).  Wells with extremely high or low groundwater elevations were removed from the 



191 

 

sample (> - 50 and < 4000 were included; < 2 % of the entire dataset was dropped). The raw 

elevation data was log transformed so ensure it followed a normal distribution, as high skewness 

and outliers may have an undesirable impact on semivariogram structure and kriging estimates 

[Gundogu and Guney, 2007].  We randomly selected 60 % of the data for sample variogram 

construction (n = 61,675); the other 30% of the data was held out for testing (n = 47,643).  Using 

the spacetime package in R, we plotted empirical variograms for space and time (Figure B 8) and 

visually assessed each variogram to define boundaries for upper and lower parameters [(Graler et 

al., 2016).   

Our spatial variogram showed a strong Gaussian shape, so we estimated models with 

spatial Gaussian components.  A spatial cutoff of 60 kilometers was included in the variograms, 

which reduces the risk of over fitting the variogram model to large distances not used for prediction 

(Graler et al., 2016; Skøien & Blöschl, 2003]).  Conversely, a temporal cutoff of 180 days and 

minimum interval time of 30 days was used for the temporal component of the variogram model 

in order to avoid over fitting to short-term trends [(Skøien & Blöschl, 2003). Multiple semi-

variogram models were fit to the data and the MSE was compared across models.  We found that 

the sum-metric variogram had the lowest unweighted MSE, suggesting better fit (Figure B 9). 

Well point data was kriged through space-time onto a 10 kilometer grid at monthly 

intervals using the sum metric variogram estimated for our dataset.  The predicted gridded 

elevation values were compared to the held out observations at actual wells located within a kriged 

10 x 10 kilometer grid cell for each month-time interval.  The mean normalized RMSE of the 

kriged data against the held-out observations is 0.08 and the Nash Sutcliffe efficiency is 0.80. The 

average differences between observed and predicted elevations across space and time are shown 

in Figures S10 and S11. 
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Figure B 8: Empirical space-time variogram of groundwater elevation data for the Central Valley. 

 

Figure B 9: Unweighted MSE for the fit of different variogram models to the empirical space-time 

variogram. 
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Figure B 10: Average difference between held out observations and predicted estimates across time 

(monthly intervals). 

 

Figure B 11: Average difference between held out observations and predicted estimates (in feet) across 

space. 
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Figure B 12: Estimated depth to groundwater for the Central Valley in 2014. 
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Table B 3: Model fit for various agricultural production (TVP outcome) models. 

Model Description 
Deviance Information 

Criterion (DIC) 

Model A: Includes SPI and water rights predictors, SPI-Water rights 

interactions, all controls (including temporal and crop-type effects), and 

spatial effects. 

619551 

No spatial effects model: Variation of Model A without the spatial effects. 878882 

Quadratic SPI model: Variation of Model A that includes a squared SPI 

term. 
619631 

Spatial fixed effects model variation of Model A that uses watershed fixed 

effects instead of spatial random effects 
619476 
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Table B 4: Summary of marginal posterior effect estimates for all non-spatially varying variables in 

a model of total vegetative production (TVP) with quadratic SPI. 

Variable Mean 
Standard 

Deviation 

0.025 

quantile 

0.5 

quantile 

0.975 

quantile 

Intercept 0.1606 0.0063 0.1482 0.1606 0.1731 

Riparian -0.0007 0.0106 -0.0216 -0.0008 0.0201 

Pre-1914 0.0534 0.0103 0.0332 0.0534 0.0735 

Appropriative -0.0065 0.0109 -0.028 -0.0065 0.0149 

SPI 0.0785 0.0049 0.0688 0.0785 0.0882 

SPI squared 0.0173 0.0032 0.0111 0.0173 0.0235 

Depth to Groundwater 0.0016 0.003 -0.0044 0.0016 0.0075 

Water Right Density 0.0018 0.0032 -0.0044 0.0018 0.008 

Percent Agricultural -0.0027 0.0112 -0.0247 -0.0027 0.0193 

Grasses 0.974 0.0069 0.9604 0.974 0.9877 

Grains 0.4516 0.006 0.4398 0.4516 0.4633 

RowCrops 0.416 0.0072 0.4018 0.416 0.4302 

Fruit&Nuts 0.5339 0.0058 0.5226 0.5339 0.5452 

Cover -0.0006 0.0055 -0.0113 -0.0006 0.0101 

2011 -0.1893 0.0046 -0.1984 -0.1893 -0.1802 

2012 -0.5542 0.0041 -0.5621 -0.5542 -0.5462 

2013 -0.5888 0.0039 -0.5963 -0.5888 -0.5812 

2014 -0.7724 0.0041 -0.7805 -0.7724 -0.7644 

Riparian*SPI  0.0069 0.0059 -0.0048 0.0069 0.0185 

Pre-1914*SPI -0.0011 0.0044 -0.0097 -0.0011 0.0075 

Appropriative*SPI -0.0244 0.007 -0.0382 -0.0244 -0.0107 
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Table B 5: Summary of posterior median effect estimates for all non-random variables in spatiotemporal models of total vegetative 

production (TVP) given inclusion and exclusion of control variables and spatial random effects. 

Variable 
Model      

A 

Model   

A.2 

Model   

A.3 

Model 

A.7 

Model 

A.8 

Model 

A.4 

Model 

A.5 

Model 

A.6 

Model 

A.9 

Intercept 0.1623 0.1631 0.1628 0.1626 0.1631 -0.1 -0.0806 -0.1016 -0.092 

Riparian 0.0007 0.0014 0.0008 0.0006 0.0007 -0.0661 -0.0587 -0.0464 -0.0657 

Pre-1914 0.0536 0.054 0.0538 0.0535 0.0538 0.0125 0.0174 0.03 0.0122 

Appropriative -0.0062 -0.005 -0.0062 -0.0063 -0.0063 -0.0377 -0.0439 -0.0198 -0.0364 

SPI 0.0623 0.0624 0.0623 0.0625 0.0625 0.1081 0.1113 0.112 0.1071 

Depth to Groundwater 0.0024 0.0024 0.0024 --- --- -0.0213 -0.0428 -0.0213 --- 

Water Right Density 0.002 0.002 --- -0.0043 --- 0.0387 0.0494 --- 0.0387 

Percent Agricultural -0.0042 --- -0.0039 0.002 -0.0042 0.1087 --- 0.1157 0.1145 

Grasses 0.9736 0.9736 0.9736 0.9736 0.9736 1.5248 1.5541 1.5278 1.527 

Grains 0.4509 0.4509 0.4509 0.4509 0.4509 0.802 0.8346 0.8051 0.8039 

RowCrops 0.4157 0.4157 0.4157 0.4157 0.4157 0.5674 0.586 0.5649 0.5695 

Fruit&Nuts 0.5341 0.5341 0.5341 0.5341 0.5341 0.9841 0.9991 0.9814 0.9861 

Cover -0.0003 -0.0003 -0.0003 0.0002 0.0002 0.2564 0.2069 0.2582 0.2409 

2011 -0.1915 -0.1915 -0.1915 -0.1914 -0.1913 -0.1478 -0.1486 -0.1442 -0.1494 

2012 -0.5574 -0.5573 -0.5574 -0.5573 -0.5573 -0.5312 -0.5341 -0.5295 -0.5321 

2013 -0.5911 -0.5911 -0.5911 -0.5911 -0.5911 -0.5875 -0.5921 -0.5872 -0.588 

2014 -0.7732 -0.7731 -0.7731 -0.7732 -0.7732 -0.7787 -0.7829 -0.7797 -0.7788 

Riparian*SPI  0.006 0.0058 0.006 0.0059 0.006 -0.0515 -0.0517 -0.0477 -0.0476 

Pre-1914*SPI -0.0009 -0.001 -0.0009 -0.0009 -0.0009 0.0114 0.0109 0.0166 0.0109 

Appropriative*SPI -0.0226 -0.0228 -0.0226 -0.0226 -0.0225 -0.0798 -0.0763 -0.0752 -0.0762 

Spatial Random Effects Y Y Y Y Y N N N N 

DIC 619551 619552 619552 619549 619550 772393 774797 772950 772518 
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Table B 6: Summary of untransformed posterior median effect estimates for all non-random variables in spatiotemporal logistic models of 

the likelihood that a field is barren and fallow given inclusion and exclusion of control variables and spatial random effects. 

Variable 
Model    

B 

Model 

B.3 

Model 

B.4 

Model 

B.5 

Model 

B.6 

Model 

B.2 

Model 

B.7 

Model 

B.8 

Model 

B.9 

Model 

B.10 

Intercept -4.397 -4.4231 -4.3988 -4.4024 -4.5855 -3.0886 -3.0936 -3.0865 -3.0875 -2.9142 

Riparian -0.0197 -0.0552 -0.0166 -0.0203 -0.0241 -0.1354 -0.139 -0.1568 -0.1486 -0.1173 

Pre-1914 0.0562 0.039 0.067 0.058 0.0822 -0.1329 -0.137 -0.1517 -0.1339 -0.141 

Appropriative 0.0393 -0.0109 0.0414 0.037 0.05 0.0336 0.0155 0.0146 0.025 0.0993 

SPI (lagged) -0.0835 -0.0834 -0.0826 -0.0824 0.0043 0.0526 0.0557 0.0478 0.0553 0.0148 

Depth to Groundwater -0.8512 -0.8542 -0.8499 -0.8524 --- -0.8621 -0.9199 -0.8625 -0.8263 --- 

Water Right Density 0.0375 0.0379 --- 0.0366 0.0294 -0.0477 -0.0278 --- -0.0508 -0.0505 

Percent Agricultural 0.1338 --- 0.1363 0.1368 0.1908 0.0943 --- 0.087 0.0857 0.3495 

Crop Diversity (lagged) -0.0377 -0.0387 -0.0369 --- -0.0441 0.0776 0.0688 0.0785 --- -0.0907 

2011 0.5143 0.5123 0.5148 0.5145 0.521 0.4859 0.485 0.484 0.4878 0.4772 

2012 0.3228 0.32 0.3238 0.322 0.3832 0.3896 0.3897 0.3858 0.3951 0.3679 

2013 0.2771 0.2744 0.2781 0.2758 0.3126 0.3102 0.3089 0.3078 0.3159 0.3047 

2014 0.4939 0.4921 0.4945 0.4916 0.4869 0.447 0.4451 0.4466 0.4533 0.4536 

Riparian*SPI 0.0975 0.0942 0.0976 0.095 0.0997 0.2388 0.2318 0.2302 0.2288 0.3471 

Pre-1914*SPI 0.0914 0.0918 0.0933 0.0916 0.0899 0.11 0.1088 0.1007 0.1104 0.1018 

Appropriative*SPI 0.1892 0.1895 0.1901 0.1872 0.1794 0.25 0.2498 0.2398 0.2354 0.3486 

Spatial Random Effects Y Y Y Y Y N N N N N 

DIC 130722 130714 130721 130725 131788 156065 156162 156083 156146 160591 
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Table B 7: Summary of marginal posterior effect estimates for all non-spatially varying variables in 

a model of total vegetative production (TVP) with watershed fixed effects. 

Variable Mean 
Standard 

Deviation 

0.025 

quantile 

0.5 

quantile 

0.975 

quantile 

Intercept 1.2082 0.0616 1.0873 1.2082 1.329 

Riparian -0.0072 0.012 -0.0308 -0.0072 0.0164 

Pre-1914 0.068 0.0123 0.0438 0.068 0.0921 

Appropriative -0.0248 0.0118 -0.048 -0.0248 -0.0016 

SPI 0.0613 0.0039 0.0536 0.0613 0.069 

Depth to Groundwater 0.0019 0.003 -0.004 0.0019 0.0078 

Water Right Density 0.0836 0.0094 0.0651 0.0836 0.1022 

Percent Agricultural -0.0345 0.0139 -0.0617 -0.0345 -0.0073 

Grasses 0.9716 0.0068 0.9582 0.9716 0.985 

Grains 0.45 0.0059 0.4384 0.45 0.4616 

RowCrops 0.4148 0.0071 0.4008 0.4148 0.4288 

Fruit&Nuts 0.5323 0.0057 0.5211 0.5323 0.5434 

Cover 0.0004 0.0054 -0.0102 0.0004 0.0109 

2011 -0.1941 0.0046 -0.2031 -0.1941 -0.1852 

2012 -0.5597 0.004 -0.5675 -0.5597 -0.5519 

2013 -0.594 0.0038 -0.6014 -0.594 -0.5865 

2014 -0.7757 0.0041 -0.7837 -0.7757 -0.7678 

Riparian*SPI 0.007703 0.005947 -0.00397 0.007703 0.01937 

Pre-1914*SPI -0.0009 0.004389 -0.00952 -0.0009 0.00771 

Appropriative*SPI -0.02138 0.007017 -0.03516 -0.02138 -0.00761 
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Table B 8: Summary of marginal posterior effect estimates for all non-random variables in the 

spatiotemporal model of total vegetative production (TVP) as a function of surface water rights, 

drought conditions, depth to groundwater, crop type, and other controls (Model A). 

Variable Mean 
Standard 

Deviation 

0.025 

quantile 

0.5 

quantile 

0.975 

quantile 

Intercept 0.1623 0.0062 0.15 0.1623 0.1746 

Riparian 0.0007 0.0105 -0.0199 0.0007 0.0212 

Pre-1914 0.0536 0.0101 0.0337 0.0536 0.0735 

Appropriative -0.0062 0.0108 -0.0274 -0.0062 0.0149 

SPI 0.0623 0.0039 0.0547 0.0623 0.07 

Depth to Groundwater 0.0024 0.003 -0.0035 0.0024 0.0082 

Water Right Density 0.002 0.0031 -0.0041 0.002 0.0082 

Percent Agricultural -0.0042 0.0111 -0.026 -0.0042 0.0176 

Grasses 0.9736 0.0068 0.9602 0.9736 0.987 

Grains 0.4509 0.0059 0.4393 0.4509 0.4625 

RowCrops 0.4157 0.0071 0.4018 0.4157 0.4297 

Fruit&Nuts 0.5341 0.0057 0.523 0.5341 0.5452 

Cover -0.0003 0.0054 -0.0108 -0.0003 0.0103 

2011 -0.1915 0.0045 -0.2004 -0.1915 -0.1826 

2012 -0.5574 0.004 -0.5652 -0.5574 -0.5496 

2013 -0.5911 0.0038 -0.5985 -0.5911 -0.5837 

2014 -0.7732 0.004 -0.7811 -0.7732 -0.7653 

Riparian*SPI 0.006 0.0058 -0.0055 0.006 0.0174 

Pre-1914*SPI -0.0009 0.0043 -0.0094 -0.0009 0.0076 

Appropriative*SPI -0.0226 0.0069 -0.0361 -0.0226 -0.0091 
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Table B 9: Summary of marginal posterior (untransformed) effect estimates for all non-random 

variables in the spatiotemporal logistic model of the likelihood that a field is barren and fallow as a 

function of surface water rights, historic drought conditions, depth to groundwater, and other 

controls (Model B).    

Variable Mean 
Standard 

Deviation 

0.025 

quantile 
0.5 quantile 

0.975 

quantile 

Intercept -4.3978 0.0517 -4.5017 -4.397 -4.2988 

Riparian -0.0197 0.0589 -0.1356 -0.0197 0.0958 

Pre-1914 0.0563 0.0568 -0.0548 0.0562 0.1679 

Appropriative 0.0395 0.0607 -0.0793 0.0393 0.1589 

SPI (lagged) -0.0835 0.0241 -0.1309 -0.0835 -0.0362 

Depth to Groundwater -0.8513 0.0261 -0.9026 -0.8512 -0.8003 

Water Right Density 0.0371 0.0117 0.013 0.0375 0.0591 

Percent Agricultural 0.1336 0.0494 0.0361 0.1338 0.2301 

Crop Diversity (lagged) -0.0377 0.0155 -0.0682 -0.0377 -0.0072 

2011 0.5143 0.0247 0.4659 0.5143 0.5627 

2012 0.3228 0.0315 0.2609 0.3228 0.3847 

2013 0.2772 0.028 0.2222 0.2771 0.3321 

2014 0.4939 0.0246 0.4457 0.4939 0.5422 

Riparian*SPI 0.0975 0.0467 0.0058 0.0975 0.1891 

Pre-1914*SPI 0.0914 0.0349 0.023 0.0914 0.1598 

Appropriative*SPI 0.1892 0.0533 0.0843 0.1892 0.2937 
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Table B 10: Summary of marginal posterior (untransformed) effect estimates for all non-random 

variables in the spatiotemporal logistic model of the likelihood that a field is barren and fallow as a 

function of surface water rights, historic drought conditions, and other controls when previous year 

crop-type fixed effects are added and the depth to groundwater control is included and excluded. 

Variable 

Groundwater Included Groundwater Excluded 

0.025 

quantile 

0.5 

quantile 

0.975 

quantile 

0.025 

quantile 

0.5 

quantile 

0.975 

quantile 

Intercept -2.5199 -2.4161 -2.317 -2.6136 -2.5051 -2.4018 

Riparian -0.1131 -0.0029 0.1069 -0.1273 -0.0102 0.1063 

Pre-1914 -0.0498 0.0518 0.1541 -0.0373 0.0736 0.1851 

Appropriative -0.0699 0.0464 0.1636 -0.0672 0.0545 0.177 

SPI (lagged) -0.1284 -0.0782 -0.028 -0.0623 -0.0127 0.0368 

Depth to 

Groundwater 
-0.7832 -0.7296 -0.6764 --- --- --- 

Water Right Density 0.0103 0.034 0.0543 0.0014 0.0279 0.0502 

Percent Agricultural 0.0678 0.157 0.2451 0.1092 0.2073 0.3039 

Crop Diversity 

(lagged) 
-0.0991 -0.0671 -0.0352 -0.1086 -0.0763 -0.044 

Grasses -2.5084 -2.4293 -2.3514 -2.4891 -2.41 -2.3322 

Grains -1.6881 -1.6392 -1.5905 -1.674 -1.6252 -1.5766 

RowCrops -2.0238 -1.9556 -1.888 -1.997 -1.9288 -1.8613 

Fruit&Nuts -2.5645 -2.5064 -2.4489 -2.5537 -2.4957 -2.4382 

Cover -2.0265 -1.982 -1.9377 -2.1292 -2.0852 -2.0413 

2011 0.4916 0.5422 0.5928 0.4913 0.5419 0.5925 

2012 0.0974 0.163 0.2287 0.1281 0.1935 0.2589 

2013 0.0922 0.1505 0.2088 0.1037 0.1619 0.2201 

2014 0.3718 0.423 0.4742 0.3526 0.4037 0.4548 

Riparian*SPI -0.0014 0.0933 0.1878 -0.0025 0.093 0.1883 

Pre-1914*SPI -0.0058 0.0634 0.1326 -0.0118 0.0587 0.1294 

Appropriative*SPI 0.0429 0.1517 0.2601 0.0315 0.1414 0.251 

 

 

 


