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CHAPTER 1: INTRODUCTION 

 

 Phonological encoding—the process of selecting and organizing phonemes for 

word production—is thought to consist of two main branches: segmental and metrical 

spell-out (e.g., Levelt et al., 1999). It has been proposed that segmental spell-out occurs 

in a serial sequence (Sevald & Dell, 1994) that requires processing time to complete 

(Watson et al., 2015); however, the nature of metrical spell-out is less obvious. This 

paper investigates the role of metrical stress in the phonological encoding process 

through the course of three empirical studies. The first chapter presents an overview of 

the role of prosody in spoken language, as well as word production studies that have 

provided a basis for theories of phonological encoding. The following chapters outline 

hypotheses, methods, and findings of three experimental designs. Based on the results of 

these experiments, we propose a novel theory of segmental and metrical encoding. 

 

1.1 ACOUSTIC FEATURES OF PROSODY 

 Prosody is a suprasegmental linguistic function that provides stress, intonation, 

and rhythm to an utterance, and it operates at multiple levels from phonemes and 

syllables to words and phrases (Kunert & Jongman, 2017; Dahan et al., 2002; Pitt & 

Samuel, 1990). Prosodic cues of an utterance indicate a speaker’s affect and intent 

(Scherer, 1986) as well as emphasis, sarcasm, and more nuanced emotional states 

(Zentner et al., 2008; Coutinho & Dibben, 2013). Take for instance a quote from George 

Bernard Shaw: “The trouble with her is that she lacks the power of conversation but not 

the power of speech.” We may interpret the speaker’s attitude toward the subject by the 
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way he may emphasize conversation and speech, as well as tonal characteristics of his 

voice. Certain prosodic cues can be interpreted cross-culturally even in an unfamiliar 

language due to the acoustic gestures in an utterance (Scherer et al., 2001; Thompson & 

Balkwill, 2006). For example, a non-Spanish-speaking listener may hear, “Cómo estás?” 

and recognize that this is a question–simply based on pitch inflection. Prosodic features 

interact with semantics, syntax, and pragmatics to express the meaning of a spoken 

message. Prosodic perception in infancy leads to vocabulary and grammar development 

(Gervain & Werker, 2013; Nazzi & Ramus, 2003; Soderstrom et al., 2003), and it is 

believed to impact later linguistic abilities, literacy, and social interactions (e.g., Gordon 

et al., 2015; Holt et al., 2017; Goswami et al., 2010; Grossman et al., 2010). Additionally, 

the prosodic contour of speech may be a fundamental feature that drives neural 

entrainment to speech (Myers et al., 2019). 

 The prosodic fluctuations in an utterance are conveyed through acoustic correlates 

such as duration, amplitude, and fundamental frequency. As any of these parameters 

changes, it influences the expression of stress, intonation, and rhythm of the spoken 

message (Fletcher, 2010; Lehiste, 1970). Hermione Granger emphasizes the importance 

of prosodic expression in Harry Potter and Sorcerer’s Stone, as she cleverly explains to 

Ron that the magical spell wingardium leviosa is pronounced “levi-OH-sa” not “levio-

SAH.” Here she uses syllable lengthening, pause boundaries, pitch inflection, and vocal 

intensity to get her point across. All of these features contribute to the acoustic 

prominence of syllables and words (Greenberg et al., 2003), which facilitates segmenting 

speech into syllable components and disentangling word boundaries (Jusczyk et al., 1992; 

Leong & Goswami, 2015). In English, speakers may adapt the acoustic structure of a 
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word in any number of ways, and the next section outlines some hypotheses for why 

these adaptations may occur. 

 

1.2 ACOUSTIC PROMINENCE: WORD DURATION 

 One facet of acoustic prominence that changes dynamically throughout 

production is word duration. Word duration can be tailored—through reduction or 

lengthening—to fit certain parameters of the discourse. For instance, speakers tend to 

reduce the duration of words that were recently uttered (e.g., Fowler & Housum, 1987; 

Breen et al., 2010; Buxó-Lugo et al., 2018). When the titular character in Richard III 

yells out, “A horse, a horse! My kingdom for a horse!,” the final horse will likely be 

shorter than the first two. On the other hand, speakers tend to lengthen a word that shares 

partial segmental overlap with previously uttered words (e.g., Sevald & Dell, 1994; 

O’Seaghdha & Marin, 2000; Yiu & Watson, 2015); when Peter Quince in A Midsummer 

Night’s Dream delivers his line, “With bloody blameful blade, he bravely broached his 

boiling bloody breast,” blade will likely be longer than usual because of the segmental 

overlap with the preceding blameful (not to mention the overall production difficulty due 

to alliteration throughout). Reduction and lengthening have been studied extensively, and 

there are generally two schools of thought to explain this phenomenon. 

 

1.2.1 Audience-Design Hypothesis 

 A common hypothesis is a communicative account that suggests we adapt 

duration for the benefit of the listener (e.g. Jaeger, 2010; Aylett & Turk, 2004; Bard et al., 

2000). For clarity in discourse, the speaker will hyperarticulate and thereby lengthen a 
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potentially confusable word to avoid contextual ambiguity (Buz et al., 2016). Buz et al. 

(2016) found that speakers hyperarticulated when a simulated partner experienced 

confusion; speakers used interlocutor feedback to evaluate and clarify their message. 

Furthermore, they found that speakers adapted subsequent productions based on 

unsuccessful trials—that is, in anticipation of confusion, they hyperarticulated new words 

to facilitate successful communication. Conversely, if a word has already been 

mentioned, the speaker can afford to reduce the care of articulation for that word since 

there is greater likelihood that the word will be recognized (e.g., Aylett & Turk, 2004).  

The Smooth Signal Redundancy Hypothesis (Aylett & Turk, 2004) suggests that 

redundancy should be evenly distributed throughout an utterance, and speakers use 

prosodic prominence to maintain an inverse relationship between linguistic and acoustic 

redundancy. In other words, speakers will lengthen words that are new and shorten words 

that are repeated for the sake of smooth signal redundancy. This suggests that speakers 

adapt their speech to facilitate information transfer for their communicative partners (Buz 

et al., 2016; Cohen Priva, 2015; Seyfarth, 2015; Pate & Goldwater, 2014; Tily & 

Kuperman, 2012; Galati & Brennan, 2010; Aylett & Turk, 2004). 

 

1.2.2 Internal Production Hypothesis 

 Another explanation is that durational adjustments occur as a result of production-

internal mechanisms (e.g., Dell, 1986; Baese-Berk & Goldrick, 2009); that is, word 

duration changes for the benefit of the speaker rather than for an audience. This theory 

suggests that reduction or lengthening reflect the amount of time needed for the 

production system to produce a linguistically easy or complex word (Bell et al., 2009; 
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Kahn & Arnold, 2012). While the audience-design account claims that repeated words 

are reduced to match the information load, the production approach claims that repeated 

words are reduced because they have already been primed in the production system 

(Pickering & Garrod, 2004). Both of these systems likely contribute to durational effects 

(Arnold & Watson, 2015), but the remainder of this study will focus on production 

processing mechanisms. 

 

1.2.2.1 Serial Ordering of Phonemes 

 Phonological encoding is the process of retrieving the form of a word by selecting 

and ordering phonemes to be used during production. Some models suggest that the 

phonological encoding process occurs incrementally while the word is being articulated, 

which affects word duration (e.g., Sevald & Dell, 1994; O’Seaghdha & Marin, 2000). 

These models suggest that the ordering of speech sounds is a serial sequencing process 

that takes time—harder words take more time to complete, easier words take less time—

and this has a direct impact on the length of a word (Watson et al., 2015).  

 In a seminal study, Sevald and Dell (1994) asked participants to repeat two-word 

phrases as quickly as possible, and they found that word-initial overlap (e.g., pick-pin) 

yielded slower production than word-final overlap (e.g., pick-tick). According to their 

model, phonemes are accessed in the order in which they appear in a word, and activation 

of one phoneme triggers activation for the next phoneme. Therefore, when word onsets 

overlap (pi-), both words in the pair become activated (pick and pin). Ambiguity arises 

because both words were recently activated, and the production system must decide 

which phoneme (-k or –n) should follow the initial segment. However, this competition 
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does not arise in overlapping offsets (-ik) because the appropriate phoneme sequence is 

established from the onset (p- or t-). That is, the words (pick or tick) are differentiated 

starting at the first phoneme. This model explains the consequences of word lengthening 

and reduction; namely, similar phoneme sequences create interference at the 

phonological level (Watson et al., 2015), and conversely repeating a given word can 

facilitate a speedier activation of that phonemic sequence (Kahn & Arnold, 2012; Lam & 

Watson, 2010).  

 Lengthening and reduction have also been measured in word priming picture 

description tasks. When repeating the name of an image, phoneme retrieval is easy for the 

production system and will result in word reduction (Kahn & Arnold, 2012; Lam & 

Watson, 2010). The same reduction has been observed with homophone word pairs, 

where participants name two images with the same phonemic sequence, and duration of 

the second word is reduced (Jacobs et al., 2015). This indicates that the effect is likely 

occurring at an acoustic-phonetic level rather than a lexical-semantic level of speech 

processing. Repetition reduction was also observed to a higher degree in overtly spoken 

words compared to words in inner speech (Kahn & Arnold, 2015; Jacobs et al., 2015). 

Furthermore, reduction or lengthening can occur when either the speaker or someone else 

says the prime word (Kahn & Arnold, 2015; Buxó-Lugo et al., 2018), suggesting that the 

acoustic form of a word is enough to prime phonological encoding. Together, these 

findings demonstrate that lengthening and reduction are the result of priming the 

production system with auditory representations of word forms, rather than other types of 

representations (i.e., lexical, phonological, articulatory). 
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1.3 ACOUSTIC PROMINENCE: WORD STRESS 

 An important yet less investigated component of acoustic prominence is the 

metrical structure of a word. Meter refers to the pattern of stress given to consecutive 

syllables. Syllables may be stressed by accentuating pitch, intensity, and durational 

variations (e.g., Fry, 1955; Lieberman, 1960), which is thought to facilitate parsing 

speech into meaningful linguistic segments for the listener (Kunert & Jongman, 2017; 

Pitt & Samuel, 1990). Meter can also play a role in distinguishing between two 

phonologically similar words, such as DES-ert (a barren landscape) versus dess-ERT (a 

tasty treat). Disyllabic words such as these can be categorized as trochees—with stress on 

the first syllable—or iambs—with stress on the second syllable. While native speakers of 

English establish a metrical structure without much difficulty, it is altogether unclear how 

we build this structure during phonological encoding. 

 Current linguistic theory suggests that segmental and metrical information exist 

on separate representational levels and are retrieved independently in word-form 

generation (e.g., Goldsmith, 1990; Kenstowicz, 1994). Levelt and colleagues (1999) 

suggest that a metrical frame—consisting of the number of syllables and the location of 

stress—is retrieved during phonological encoding, and then segmental units are 

associated to the frame in syllabification. Roelofs & Meyer (1998) tested this theory as 

part of their Word-form Encoding by Activation and Verification (WEAVER) model 

(Roelofs, 1997). They used a series of implicit priming paradigms in which participants 

learned sets of word pairs; then the participants would see a prime word and were 

instructed to say the matching target word as quickly as possible. Their results showed a 

priming effect in which words with both segmental and metrical overlap were produced 
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in a shorter reaction time, suggesting that speakers could access the target words more 

quickly when they shared these features. They did not find an effect with only segmental 

or metrical overlap alone, which led to their claim that segmental and metrical spell-out 

occur in parallel and at the same time. However, one could argue that these features are 

closely connected, which explains the larger effect when they co-occur. Figure 1 presents 

an example schema of this theory. 

 

Figure 1. Models of metrical planning. In the parallel processes model, metrical and 

segmental information are planned simultaneously. In the prosody-first model, metrical 

information is planned first, and segments are then ordered within the metrical 

framework. Here, S denotes a stressed syllable and u denotes an unstressed syllable. 

 

 Other models have proposed a prosody-first approach to phonological encoding 

(e.g., Keating & Shattuck-Hufnagel, 2002), in which the prosodic structure of an entire 

utterance is planned prior to retrieving word segments. In this model, locations of syllable 

stress are determined first, and then segments are assigned to the appropriate positions 

within that metrical frame. Evidence for the prosody-first model comes from analyses of 
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speech errors. Speakers often make errors by misplacing sound segments or recruiting the 

wrong segment for a word, such as “well-boiled icicle” (well-oiled bicycle) or “Is the 

bean dizzy?” (Is the dean busy?). Misplaced segments generally maintain their position 

within a syllable (e.g., Boomer & Laver, 1968); that is, an onset exchanges for an onset, 

nucleus for nucleus, and coda for coda (MacKay, 1970; Motley, 1973; Nooteboom, 1969; 

Shattuck-Hufnagel, 1983, 1987; Stemberger. 1982), suggesting that there is a pre-

determined metrical outline that is independent of segments. In addition, when speakers 

produce segmental errors, the overall stress pattern of the utterance is typically preserved 

(Berg, 1990; Shattuck-Hufnagel & Turk, 1996; Fromkin, 1971). Lastly, there is work 

showing that stress in the initial syllable (i.e., trochaic stress pattern) creates a stable 

architecture for segmental spell-out, as evidenced by fewer segmental errors in trochees 

versus iambs (Beirne & Croot, 2018; Aichert et al., 2016; De Jong, 1995; Sulpizio et al., 

2015). 

 There is ample evidence that segmental encoding occurs incrementally (e.g., 

Meyer, 1990, 1992; Shattuck-Hufnagel, 1992; Sevald & Dell, 1994; Wheeldon & Levelt, 

1995; Yiu & Watson, 2015), and some have posited that metrical encoding is spelled out 

in a similar fashion (Schiller et al., 2006; Levelt et al., 1999). If meter is established in 

serial order like phonemic segments, one may expect to see word lengthening when 

words share overlapping metrical frames because competition for the initial stress value 

would slow production. To further investigate the organization of segmental and metrical 

spell-out, we conducted a series of three experiments. Experiments 1 and 3 were designed 

as picture description priming tasks (as in Yiu & Watson, 2015), and Experiment 2 was a 

minimal pair repetition task (as in Sevald & Dell, 1994). Experiment 1 investigated word 
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lengthening when prime-target pairs shared segmental overlap with and without metrical 

overlap. If metrical planning engages the same types of encoding mechanisms as 

segmental planning (Roelofs & Meyer, 1998), we should see similar overlap-driven 

lengthening effects, with longer productions of a target word when the prime shares the 

same metrical structure. Experiment 2 tested metrical structure as a serial ordering 

process using repeated word pairs with and without metrical overlap. If metrical planning 

is a serial process like segmental planning (Sevald & Dell, 1994), we should see similar 

lengthening effects with metrical overlap. In Experiment 3, we manipulated both 

segmental overlap and metrical overlap independently to directly test whether segmental 

and metrical planning engage independent processes (Roelofs & Meyer, 1998) or whether 

they share the same underlying representation. Together these experiments systematically 

examine whether metrical and segmental spell-out occur independently and in a similar 

manner during phonological encoding.
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CHAPTER 2: EXPERIMENT 1 

 

 The first experiment was designed to examine the role of meter in a word 

lengthening paradigm. In this experiment, we used a picture description task to elicit 

productions of prime-target word pairs that shared segmental overlap with and without 

metrical overlap. Previous evidence has shown that phoneme selection occurs serially 

(e.g., Sevald & Dell, 1994; Yiu & Watson, 2015), and words lengthen when they share 

initial phonological segments. If meter is planned in a similar manner to segmental spell-

out (as in Roelofs & Meyer, 1998), then we would expect the word lengthening effect to 

increase when words share both segmental and metrical overlap. That is, we predicted 

that word pairs with segmental and metrical overlap would lengthen more than word 

pairs with segmental overlap alone due to the increased complexity at the phonological 

encoding level. 

 

2.1 METHODS 

2.1.1 Participants 

 Sixty-nine healthy adults (age range: 18-27, M = 20.3 years, SD = 2.4, 51 female) 

participated in this study. Participants were native speakers of English recruited from the 

Vanderbilt University Psychology Department subject pool, and they either received 

course credit or $10 for participating in the study. All participants provided written 

informed consent in accordance with the Vanderbilt University Institutional Review 

Board. 
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2.1.2 Materials 

A set of 144 color images was selected from the Snodgrass and Vanderwart 

(1980) dataset (Rossion & Pourtois, 2001) and Clipart. A subset of 72 images served as 

the critical items, and the remaining 72 images were filler items. Critical trials consisted 

of 18 targets and 54 primes. Prime-target pairs were arranged into three conditions:  

1. Segmental & Metrical Overlap: The candy shrinks. The candle flashes. 

2. Segmental Overlap Alone: The canteen shrinks. The candle flashes. 

3. Control: The giraffe shrinks. The candle flashes. 

In the two experimental conditions, the prime-target pairs had segmental overlap 

for their initial segments, and the meter of the words either matched (1) or did not match 

(2). In the control condition (3), the prime-target pairs had no segmental overlap and had 

non-matching meter.  

A Latin square design yielded three counterbalanced lists of items, such that each 

participant was presented with 18 critical prime-target pairs. Each list had six critical 

pairs for each of the three conditions. An equal number of trochees and iambs were used 

as critical targets. In addition, participants were exposed to 38 non-critical pairs, drawn 

from the filler items, for a total of 56 trials in the experiment. Trials were randomized for 

each participant. See Appendix A for the list of critical prime-target pairs. 

 

2.1.3 Audio Recording 

Participant responses were recorded via a head-mounted microphone at a 

sampling rate of 44,100 Hz. Participants were instructed to speak directly into the 

microphone as they described the events on the computer screen. 
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2.1.4 Procedure 

 Participants completed the experiment on a Mac computer in Matlab using the 

CogToolbox (Fraundorf et al., 2014) and Psychophysics Toolbox 3 (Kleiner et al., 2007).  

Participants first completed a training task to learn the names of potentially difficult to 

name items (e.g., Trude & Brown-Schmidt, 2012). During training, items were displayed 

in the center of the screen with the intended label at the top of the screen, and participants 

recited the label aloud. They were encouraged to use these names during testing. 

Following item training, participants received instructions for the experiment. For 

each trial, four images were displayed equidistant around the center of the screen (see 

Figure 1). One image—the prime—would shrink, and participants described the action. 

Then another image—the target—would flash, and participants described the action. 

Events occurred in the same order for all trials (i.e., shrinking then flashing). Trials were 

randomized and separated into three blocks, allowing participants to take a break between 

blocks as needed. 

 

Figure 2. Example of event description task. The images for candy and candle form a 

critical prime-target pair, and flower and button are filler items. 
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2.1.5 Acoustic Analysis 

 Speech recordings were analyzed in Praat (Boersma & Weenink, 2017), using 

manual segmentation to code the start and end times of target words. Each trial was 

segmented in isolation using spectrographic and waveform information, and coders were 

blinded to the experimental condition of trials. Target words were segmented such that 

they were not identifiable as anything other than the targets. 

 Coders were trained on segmenting the target words within the recorded 

utterance. To do this, they used a Praat script that opened a graphical user interface (GUI) 

in which they specified which trial to segment. A spectrographic and waveform display 

of the audio recording appeared, along with an annotation tier. The spectrogram display 

utilized the Praat features of Formant and Pitch, which were helpful in determining word 

boundaries. Coders then listened to the trial to identify the general location of the target 

word, and they zoomed in to the region of the word to get a clear view of the spectrogram 

and waveform. They used both audio and visual cues to locate the target word. They were 

trained on identifying phoneme-specific spectrographic information (e.g., the burst of 

energy in a plosive, the formant characteristics of vowels), and particular attention was 

given to distinguishing between the final consonant of a target word and the initial /f/ of 

“flashes” (which always followed the target word). Coders marked the start point of a 

target word by placing a boundary where the initial consonant energy began; this did not 

include any preceding silence or any part of the preceding word. Coders marked the end 

point of a target word by placing a boundary where the final consonant energy stopped; 

this did not include subsequent silence or any part of the following word. They played 

back the target word in isolation to determine if they accurately identified the target so 
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that the full length of the word was captured and nothing other than the word existed 

within the boundaries. After listening, they adjusted the boundaries as needed to ensure 

that they made an accurate segmentation. See Figure 2 for an example. When they were 

finished with a trial, they clicked “Continue” in the GUI, which automatically saved their 

annotation as a .TextGrid file and opened the next trial. See Appendix B for the Praat 

coding manual used in data analysis. 

 The duration for each target word was extracted from all trials using a Praat script 

that captures the amount of time between the two boundaries on either side of the target 

word. This script provided output signifying participant, condition, target word, and word 

duration for each trial, and this dataset was used in statistical analysis. 

 

Figure 3. Example of Praat segmentation in Experiment 1. The .wav file is a recording of 

a participant saying, “The parade flashes,” and the Praat window shows waveform, 

spectrogram, and annotation of highlighted target word parade. 
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2.1.6 Inter-Rater Reliability 

 Inter-rater reliability was assessed by comparing a random subset of trials from all 

coders to a standard coder. This sample consisted of a reasonable number of trials 

(~10%) from each coder with equal sample size across coders. The intraclass correlation 

coefficient (ICC) was calculated using a one-way single-measures approach (Shrout & 

Fleiss, 1979; Hallgren, 2012) to determine agreement between coders. Experiment 1 had 

two coders who coded unique samples, and the author served as a standard coder who 

coded 36 trials from each of the coders’ sets. Trials were randomly selected using a 

random number generator. The standard coder was blinded to the original measurements 

and experimental condition. The ICC was calculated between each coder and the standard 

(ICCCoder1 = 0.953, ICCCoder2 = 0.909), and the average of these was ICC = 0.931, 

indicating excellent agreement between coders. 

 

2.2 RESULTS 

 Target word durations across conditions were analyzed, and only target utterances 

that matched the intended label were considered in the analyses. Trials were excluded if 

participants mispronounced the prime or target, or if they used alternate names (e.g., boat 

for canoe, orchestra for quartet, cologne for perfume). A total of 97 out of 1242 trials 

met these criteria and were removed. Scripts and the complete data set are available at 

https://osf.io/zk4qv/. 
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2.2.1 Effect of Condition on Word Duration 

 To examine the effects of condition on word duration, results were analyzed using 

a linear mixed effects model with a maximal random effects structure (Barr et al., 2013). 

That is, the model had condition as a fixed effect and random slopes and intercepts by 

item and by participant. Models were built using R package lme4 version 1.1-10 (Bates et 

al., 2015). Data were log transformed and centered. Helmert contrasts were used in model 

development, such that each condition was compared with the average of its subsequent 

conditions. Significance was assumed for t-values with an absolute value greater than 

1.96 in a two-tailed test (Baayen, 2008). This is an appropriate method in mixed-effects 

modeling because the number of degrees of freedom is large (> 100), so the t-distribution 

approximates the normal distribution. 

We found that target items with segmental and metrical overlap were significantly 

longer than target items in the other conditions (β = 0.047, t = 3.729), and target items in 

the segmental overlap condition were significantly longer than target items with no 

overlap (β = -0.033, t = -2.446). Table 1 displays parameter estimates for the model. 

Additionally, iambs were significantly longer than trochees (β = -0.138, t = -2.707), 

regardless of condition; there was no interaction between meter type and overlap 

condition. Figure 3 displays average target durations by condition for this experiment. 
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Figure 4. Results for Experiment 1. Average duration (in seconds) of target words by 

condition in Experiment 1. Error bars represent standard error for each condition.  

 

Table 1. Fixed effects estimates for Experiment 1. Fixed effects consisted of the 

Helmerted contrasts between conditions. Asterisks indicate significance. 

 

2.2.2 Word Frequency Analysis 

 Word frequency refers to the occurrence of a word in a given text corpus, and 

frequency is associated with faster response times in picture naming (Jescheniak & 

Levelt, 1994). To confirm that word lengthening was not affected by frequency, we 
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conducted a post hoc statistical test investigating whether word frequency contributed to 

duration. The frequency for all target words was captured from the SubtlexUS database 

(Brysbaert & New, 2009). The model described above was modified to include word 

frequency as a control variable, and these models did not differ significantly from each 

other (χ2 = 1.54, p = 0.91). Because word frequency does not improve the fit of the 

model, and we had no a priori predictions about word frequency, we did not consider it 

further. 

 

2.2.3 Latent Semantic Analysis 

 Semantic interference has been shown to delay response times when naming 

pictures that are semantically related (Shao et al., 2013). To confirm that word 

lengthening was not affected by semantic information, we conducted a second follow-up 

statistical test using latent semantic analysis (LSA), which generates the degree of 

semantic similarity between two words. To determine semantic relatedness between 

words, we used a pairwise comparison application (lsa.colorado.edu) with a semantic 

space of college-level general reading, which yielded LSA scores from -1 to 1 for each 

word pair, where 0 means no similarity. The mean LSA score for word pairs in 

Experiment 1 was M = 0.05 (SD = 0.07). The model described above was modified to 

include semantic similarity as a control variable, and these models did not differ 

significantly from each other (χ2 = 3.03, p = 0.70). Because LSA does not improve the fit 

of the model, and the study was not designed to examine semantic relatedness, we did not 

consider LSA further. 
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2.3 DISCUSSION: EXPERIMENT 1 

 In this experiment we replicated previous findings that have shown that segmental 

overlap leads to significant word lengthening compared to prime-target pairs that do not 

overlap. We also found that the addition of metrical overlap leads to even more 

lengthening. This is potentially consistent with the notion that segmental and metrical 

spell-out occur through separate but similar processes (e.g., Roelofs & Meyer, 1998). 

However, it is unclear whether this effect is due to overlapping metrical structure or due 

to surface-level acoustic similarity between words. That is, the overlapping syllable in 

words with the same stress pattern (candy/candle) sound more alike than overlapping 

syllables in words with a conflicting stress pattern (canteen/candle). Thus, it is possible 

that surface-level acoustic similarity is driving the lengthening/competition effect.  

This question is critical because it addresses a central theme of this dissertation: 

do segmental and metrical planning occur independently or do they share 

representations? Because overlapping metrical structures elicit longer target word 

durations, it is possible that stressed syllable locations are planned serially and induce 

lexical competition between words that have similar metrical structure. Conversely, it is 

possible that metrical overlap does not interfere with metrical planning, but rather, a 

representation that encodes acoustic-phonetic details of a word is planned serially and 

induces lexical competition between words that sound similar. These possibilities will be 

examined further in Experiment 3. 

This experiment showed lengthening associated with segmental and metrical 

overlap, so it is possible that metrical values are encoded in serial order, much like the 

planning of phonemes (Sevald & Dell, 1994). In Experiment 2, we examine the 
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sequential cueing of metrical information with overlapping initial segments. Sevald & 

Dell (1994) used a phrase repetition experiment that supported the serial ordering of 

phonemes, and Experiment 2 is designed with comparable methods to determine if meter 

is planned in a similarly serial manner.  
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CHAPTER 3: EXPERIMENT 2 

 

 Experiment 1 used an event description task and found word lengthening when 

words shared segmental and metrical information with recently produced words, which 

suggests that these features create competition during phonological encoding. Another 

approach to measuring this competition is by using a parameter-remapping paradigm 

(Rosenbaum et al., 1986), in which participants repeat sequences as many times as 

possible in a fixed time period (à la tongue twisters). Sevald and Dell (1994) conducted 

such a task where speakers repeated word pairs, and they found fewer repetitions when 

words had initial segmental overlap (e.g., pick-pin) compared to final segmental overlap 

(e.g., pick-tick). They concluded that when initial segments are the same, the activation of 

the initial segment creates competition for the next segment to be activated, and thus the 

sequence must be “remapped”. If metrical values are planned similarly, then repetitions 

of the same stress pattern (e.g., candle-candy) should create more interference than 

opposing stress patterns (e.g., candle-canoe). In this experiment, we used a word pair 

repetition task (as in Sevald & Dell, 1994) and manipulated the location of stress in 

disyllabic words. 

 

3.1 METHODS 

3.1.1 Participants 

 Sixty native English speakers (age range: 18-32, M = 19.9 years, SD = 2.8, 47 

female) were recruited to participate in this study. Recruitment procedures were the same 

as Experiment 1, and participants provided written informed consent in accordance with 
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the Vanderbilt University Institutional Review Board. Two participants were excluded 

from analysis: one began but was unable to complete the experiment due to scheduling, 

and one had a speech sound disorder that inhibited accurate task performance. 

 

3.1.2 Materials 

A set of 80 disyllabic word pairs were used in this task, and all participants were 

exposed to the entire set. There were no filler items in this experiment. All word pairs 

shared initial segmental overlap and were arranged into four conditions based on the 

location of stressed syllables:  

1. trochee-trochee (e.g., ballot—ballad) 

2. iamb-iamb (e.g., ballet—balloon) 

3. trochee-iamb (e.g., ballot—ballet) 

4. iamb-trochee (e.g., ballet—ballot) 

Conditions 1 and 2 had the same meter in both words, and conditions 3 and 4 had words 

with opposing meter. For the different meter conditions, we included trials that began 

with a trochee (condition 3) and trials that began with an iamb (condition 4). Iambic 

words tend to have longer durations and are more error-prone than trochaic words 

(Aichert et al., 2016), so both orders were used to measure an effect of initial stress. See 

Appendix C for the complete list of stimuli. 

 

3.1.3 Procedure 

 Participants completed the experiment on a Mac computer in Matlab using the 

CogToolbox (Fraundorf et al., 2014) and Psychophysics Toolbox 3 (Kleiner et al., 2007).  
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Participants were instructed that they would see a two-word phrase on the computer, and 

their task was to repeat the phrase as fast as possible continuously for eight seconds. The 

experiment began with three practice trials. For each trial, participants saw the word pair 

printed in the middle of the computer screen for four seconds. Then, the words 

disappeared and the word “GO!” appeared. Participants then recited the word pair aloud 

continuously as fast as possible. After eight seconds of repetitions, an audible tone 

sounded and the word “STOP” appeared on the screen. Participants initiated the next trial 

by pressing the space bar. The experiment consisted of 3 practice trials and 80 test trials. 

All trials were randomized for each participant, and participants were allowed to take 

short breaks between trials as needed. 

 

3.1.4 Acoustic Analysis 

 As in Experiment 1, speech recordings were analyzed in Praat (Boersma & 

Weenink, 2014) using manual segmentation to code the start and end times of phrase 

repetitions. Coders ran a Praat script that displayed each 8-second audio recording with 

spectrographic and waveform information, along with an annotation tier. Coders were 

trained on segmenting the phrases within the recorded utterance; segments consisted of 

both words in the target phrase. As the recording consisted of numerous phrase 

repetitions, coders zoomed in as needed to get a clear view of the spectrogram and 

waveform for one repetition. They used both audio and visual cues to demarcate the start 

and end points of the full phrase so that both words in the phrase exist between the 

marked boundaries. Coders were trained as in Experiment 1 regarding phoneme 

identification based on spectrographic information. They placed a boundary at the start of 
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the initial phoneme of the first word and a boundary at the end of the final phoneme of 

the second word. They labeled the phrase by typing both words in between the 

boundaries on the annotation tier. If the 8-second recording stopped before a participant 

could finish a phrase, the coders did not segment this final incomplete utterance. When 

participants made speech errors, those segments were labeled as errors. Coders played 

back the phrase in isolation to determine if they accurately identified the full length of the 

phrase and nothing else. Then they adjusted the boundaries to ensure accurate 

segmentation. An example of this segmentation is provided in Figure 3. They continued 

segmenting all repetitions in a trial, and the Praat GUI then saved their annotation as a 

.TextGrid file and opened the next trial. See Appendix B for the coding manual that was 

provided to research assistants. 

 The duration for each phrase repetition was extracted from all trials using a Praat 

script that captured the amount of time between all annotated segments. This script 

provided output signifying participant, target phrase, number of repetitions, duration of 

each repetition, and number of errors for each trial, and this dataset was used in statistical 

analysis. 
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Figure 5. Example of Praat segmentation in Experiment 2. The .wav file is a recording of 

a participant repeating the phrase, “college collage,” and the Praat window shows 

waveform, spectrogram, and annotation of the phrase. For clarity, one repetition is 

highlighted in this figure, but coders annotated each repetition in the recording. 

 

 Additionally, as a post hoc exploratory analysis, coders were trained to 

descriptively classify speech errors. To do this, they ran a Praat script that opened each 

segment that was previously annotated as an error. The script opened the spectrographic 

and waveform window at the start and stop boundaries of the error, along with 0.75 

seconds on either end. Coders were given the target phrase, and they compared this to the 

actual utterance to determine the manner of speech error. They transcribed the 

participant’s error and used the following classifications to identify error type:  

1. Substitution (movement of phonemes that exist in the sequence) 

2. Insertion (addition of phonemes not formally in the sequence) 

3. Deletion (removal of phonemes without substitution) 

4. Word repetition (production of entire word twice in a row) 

5. Word shift (reversal of word order in sequence) 

6. Vowel distortion (incorrect production of vowel or blend of vowels) 
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Coders were trained by completing 40 trials with the first author to establish agreement. 

If a participant consistently said the wrong word throughout a trial, that trial was 

excluded from analysis. This was considered an incorrect response rather than a series of 

speech errors. See Appendix D for the speech error coding manual. 

 

3.2.5 Inter-Rater Reliability 

 Inter-rater reliability was assessed by comparing a random subset of duration 

measurements from all coders to a standard coder. This sample consisted of ~10% from 

each coder with equal sample size across coders. The intraclass correlation coefficient 

(ICC) was calculated using a one-way single-measures approach (Shrout & Fleiss, 1979; 

Hallgren, 2012) to determine agreement between coders. Experiment 2 had three coders 

who coded unique samples, and the author served as a standard coder who coded 32 trials 

from each of the coders’ sets. Trials were randomly selected using a random number 

generator. The standard coder was blinded to the original measurements. The ICC was 

calculated between each coder and the standard (ICCCoder1 = 0.979, ICCCoder2 = 0.925, 

ICCCoder3 = 0.944), and the average of these was ICC = 0.949, indicating excellent 

agreement between coders. 

 

3.2 RESULTS 

 Phrase durations across conditions were analyzed, and only target utterances that 

matched the intended phrase were considered in the analyses. Trials were excluded if 

participants consistently mispronounced the target phrase throughout the trial (e.g., 

despot pronounced as [ˈdεspoʊ], desert pronounced as [dɪˈzɜrt]). A total of 54 out of 
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4800 trials met these criteria and were removed. Scripts and the complete data set are 

available at https://osf.io/zk4qv/. Additionally, this experiment was pre-registered with 

the Open Science Framework (Myers & Watson, 2018). 

 

3.2.1 Effect of Meter on Phrase Duration 

 To examine the effects of metrical condition on phrase duration, results were 

analyzed using a linear mixed effects model with a maximal random effects structure 

(Barr et al., 2013). A model with this structure informs whether there is a main effect of 

overlapping metrical structure, a main effect of initial syllable stress, and an interaction 

effect between these two variables. Because the maximal model did not converge, 

specification of the random effects structure was systematically simplified by varying 

random slopes and intercepts for within-unit (participant or item) factors. Results 

presented are from the best fitting model based on AIC, BIC, and log-likelihood scores. 

The model was built using R package lme4 version 1.1-10 (Bates et al., 2015). Data was 

log transformed and centered. Significance was assumed for t-values with an absolute 

value above 1.96 in a two-tailed test as in Experiment 1 (Baayen, 2008). 

 There was a significant main effect of metrical overlap on average phrase duration 

(β = -0.039, t = -2.468), but there was no effect of initial stress, nor was there an 

interaction. That is, word pairs with matching meter had significantly longer durations 

than word pairs with different meter, regardless of the stress of the initial syllable. 

Similarly, there was a significant main effect of metrical overlap on the number of 

repetitions per trial (β = 0.087, t = 3.878), but there was no effect of initial stress, nor an 
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effect of their interaction. Figure 4 displays average phrase durations and number of 

repetitions across conditions, and Table 2 displays parameter estimates for the models. 

 

Figure 6. Results for Experiment 2. Top panel: average phrase duration (length of time to 

produce both words) in seconds. Middle panel: average number of phrase repetitions per 

trial. Bottom panel: average number of speech errors made per trial. Gold bars indicate 

overlapping metrical structure; black bars indicate different metrical structure. Error bars 

represent standard errors. 
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Table 2. Fixed effects estimates for Experiment 2. Estimates are for metrical overlap in 

phrase duration, number of repetitions, and number of speech errors. Asterisks indicate 

significant findings. No significant findings were observed for the fixed effect of initial 

stress, or for the interaction between initial stress and metrical overlap. 

 

3.2.2 Speech Errors 

 The number of speech errors was counted for each trial as an indicator of when 

remapping failed. There was a significant main effect of metrical overlap on the number 

of speech errors produced (β = -3.13, t = -5.405), but there was no effect of initial stress, 

nor an effect of their interaction. Additionally, as a post hoc exploratory analysis we 

descriptively categorized speech errors to determine the types of errors that participants 

made during the task. Coders classified a total of 2345 speech errors into six distinct error 

categories (described in section 3.1.4). Overall, the conditions with metrical overlap had 

more speech errors (n = 1421) than the conditions with different meter (n = 924). Figure 

5 is a graphical display of speech errors by metrical overlap condition, and Table 3 
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provides the inventory of error types by counts and percentages. A chi-square test of 

independence revealed that metrical conditions had distinct distributions of speech error 

types (χ2 = 26.4, p < 0.01). Post hoc analyses revealed that there were more word 

repetitions in same meter conditions (χ2 = 10.3, p < 0.01), and there were more phoneme 

deletions in different meter conditions (χ2 = 3.8, p = 0.01). 

 

Figure 7. Distribution of speech errors in Experiment 2. Stacked bars represent 

percentage of errors for each condition. Percentages are based on a total of 1421 errors 

for Same Meter trials and 924 errors for Different Meter trials. Error categories that are 

proportionally distinct across metrical conditions are indicated with an asterisk. 
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Table 3. Speech errors in Experiment 2. Number of speech errors in each error category 

by metrical condition. Percentages reflect proportion of errors within metrical condition. 

 

3.2.3 Word Frequency Analysis 

 To confirm that phrase lengthening was not driven by an effect of word 

frequency, we conducted a post hoc statistical test investigating whether word frequency 

contributed to the effect of metrical condition on phrase duration. Word frequency refers 

to the occurrence of a word in a given text corpus, and the corpus used for this study was 

the SubtlexUS database (Brysbaert & New, 2009). The frequency for all target words was 

captured, and the frequency for each word pair was calculated by the sum of the two 

frequencies in the pair. The sum of frequencies was used because the word pairs did not 

have any occurrences as a single unit in the database; for instance, beaker beagle never 

appeared as a phrase in the database, so we added the frequency of beaker and the 

frequency of beagle for the trial. The models described above did not differ significantly 

when including word frequency as a control variable for phrase duration (χ2 = 1.88, p = 

0.17), repetitions (χ2 = 8.09, p = 0.32), and speech errors (χ2 = 10.41, p = 0.11). Because 
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word frequency does not improve the fit of the models, and we had no a priori 

predictions about word frequency, we did not consider it further. 

 

3.2.4 Latent Semantic Analysis 

 To confirm that phrase lengthening was not driven by an effect of semantic 

information, we conducted a second follow-up statistical test using latent semantic 

analysis (LSA), which generates the degree of semantic similarity between two words. To 

determine semantic relatedness between words, we used a pairwise comparison 

application (lsa.colorado.edu) with a semantic space of college-level general reading, 

which yielded LSA scores from -1 to 1 for each word pair, where 0 means no similarity. 

The mean LSA score for word pairs in Experiment 2 was M = 0.10 (SD = 0.12). The 

models described above did not differ significantly when including LSA as a control 

variable for phrase duration (χ2 = 7.34, p = 0.29), repetitions (χ2 = 7.25, p = 0.40), and 

speech errors (χ2 = 3.05, p = 0.80). Because LSA does not improve the fit of the models, 

and the study was not designed to examine semantic relatedness, we did not consider 

LSA further. 

 

3.3 DISCUSSION: EXPERIMENT 2 

3.3.1 Effect of Metrical Overlap 

 In this experiment word pairs in the four conditions were organized by same or 

different stress patterns and a stressed or unstressed initial syllable. We find evidence that 

metrical overlap in words leads to phrase lengthening, fewer repetitions, and more speech 
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errors. This finding is very similar to previous work showing slowed productions with 

phonemic overlap (e.g., Sevald & Dell, 1994), but this is the first time—to our 

knowledge—showing the effect in meter. The sequential cueing model suggests that 

when target phonemes are activated in a word, they also activate other words that share 

those phonemes, which causes sequencing difficulty in the system (Sevald & Dell, 1994; 

Meyer, 1991). Now we see that meter also plays a role in the speed of word production. 

When meter is consistent across words with overlapping phonemes, the system requires 

additional time to sort out the sequential cueing of the target words. It may be possible 

that metrical encoding occurs on a separate tier than segmental encoding (as in Roelofs & 

Meyer, 1998; Keating & Shattuck-Hufnagel, 2002). If that were the case, then in a 

parameter-remapping paradigm such as this one, the metrical structure would not need to 

be remapped because it stays consistent on its separate tier. In that scenario, the 

established metrical structure should expedite word production, much like the effect 

when repeated words have shorter durations (e.g., Kahn & Arnold, 2015). However, 

Experiment 2 shows the opposite effect, such that activating a consistent metrical 

structure is indeed more challenging than using varied stress patterns, which indicates 

that meter may not be established as its own parameter. 

 A more likely explanation for why this occurs may be that meter is not planned as 

a separate entity from phonemes, but rather the two representations may be merged 

during the planning process. Because we have reason to believe that meter does not exist 

independently (above), it is plausible that the competition effect is driven by surface level 

acoustic properties of the words (as discussed in Experiment 1). For example, in a phrase 

like corner coral, the initial segment of both words (cor-) is more or less identical in 
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phonemes and stress. Whereas the phrase corner correct has a similar initial sequence of 

phonemes (cor-), but the initial stress is different, making the first syllables acoustically 

distinct. Because corner coral elicits more competition and production difficulty, it is 

possible that the observed word lengthening is determined by the overall acoustic 

similarity between the words. To adjudicate between these two possible explanations 

(representation of abstract metrical structure versus acoustic-phonetic details), we 

conducted Experiment 3 to investigate word lengthening in word pairs that shared 

metrical structure without phonemic overlap. 

 

3.3.2 Speech Error Analysis 

 Our investigation into trends of speech errors was conducted as a speculative post 

hoc treatment, and we did not make predictions about this behavior in our research 

question. That being said, the sequential cueing model (Sevald & Dell, 1994) asserts that 

phonological encoding occurs from left to right, and competition for shared segments can 

incorrectly cue sounds later in the sequence. This was justified in our observation of 

phoneme substitutions as the largest category of speech errors; that is, the most common 

error was due to phonemes being cued out of order in the sequence. The number of 

substitutions was relatively consistent regardless of whether word pairs had the same or 

different metrical structure. The sequential cueing model predicts substitution errors 

between words that share the same initial phonological segments, and all of the word 

pairs in this experiment fit that description. Therefore, we find support for the model, but 

we are not able to draw conclusions about how meter may fit into that model because 

these are still speculative findings. 
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 Word repetitions were the second most prominent error category, and word pairs 

with the same metrical structure had significantly more word repetitions than different 

meter pairs. Word repetitions are much like substitutions in that they both rearrange 

phonemes for a new order in the sequence, only word repetitions miscue an entire word. 

Interestingly, this full word miscuing occurs more frequently in word pairs with matching 

meter, which indicates that meter does play a role in the cueing process. As discussed 

above, word pairs with the same initial segment and stress have greater acoustic 

similarity than words with opposing stress, and this potentially creates greater 

interference when cueing the next word in a sequence.  

 Phoneme deletions were observed proportionally more in word pairs with 

different metrical structure, and this is likely an indirect effect of phonological encoding. 

Deletions were characterized as simply removing a phoneme from the sequence without 

replacing it with another phoneme. Word pairs with alternating stress patterns were 

produced with a faster rate, and as with any rapid motor task, accuracy in achieving 

targets is often compromised. Therefore, deletions were not necessarily a reflection of the 

phonological plan and more so a consequence of motor performance. 

 Additionally, we excluded trials where words were incorrectly pronounced 

throughout the trial. These incorrect trials occurred more often in word pairs with the 

same meter (n = 46) than word pairs with different meter (n = 8). The same meter targets 

were sometimes incorrect because speakers would change the stress of the second word 

to create different metrical structures. For example, the same meter phrases corner coral 

and secure secrete were sometimes produced with different meter as corner chorale and 

secure secret. This desire to change the metrical structure so that the words are not the 
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same could indicate that speakers are aware (at some level) that the same meter pairs are 

more difficult to produce, so they devise an alternate plan to make the task easier. It is 

possible that speakers simply misread the target words, but the fact that this happened 

more in the same meter conditions alludes to a performance challenge in these trials. 

Even though this occurred in a very small fraction of trials, it raises the question again of 

how independent meter is from segmental spell-out. To specifically target this issue of 

metrical independence, we introduce Experiment 3, which focuses on distinguishing 

segmental and metrical spell-out in phonological encoding. 
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CHAPTER 4: EXPERIMENT 3 

 

 The third experiment was designed to determine the independence of metrical 

spell-out from segmental spell-out in phonological encoding. While Experiments 1 and 2 

observed additional word lengthening with segmental and metrical overlap, this does not 

test the assumption that segmental and metrical spell-out are separate processes (as in 

Roelofs & Meyer, 1998). In Experiment 3, we used the same task from Experiment 1 and 

introduced a condition specifically testing metrical overlap alone to examine whether 

meter is indeed planned independently. If meter is planned as an independent process—as 

predicted in the WEAVER model—we expect to observe word lengthening when words 

share only the same stress pattern because there should be competition for retrieving the 

initial stress value. If meter is not independent of segments, we expect no word 

lengthening in the metrical overlap alone condition because the competition for word 

retrieval is minimal. The lack of lengthening would be consistent with the acoustic 

similarity hypothesis from the previous experiments and suggest that meter is coupled 

with phonemic segments during phonological encoding. 

 

4.1 METHODS 

4.1.1 Participants 

 Sixty native English speakers (age range: 18-32, M = 19.9 years, SD = 2.8, 47 

female) participated in this study. Recruitment procedures were the same as Experiment 

1, with the caveat that participants were not permitted to participate in both experiments. 
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One participant was excluded from statistical analysis due to technical difficulties in 

recording.  

 

4.1.2 Materials 

A set of 160 color images was selected from the Snodgrass and Vanderwart 

(1980) dataset (Rossion & Pourtois, 2001) and Clipart, which included 80 critical items 

and 80 filler items. Critical items consisted of 16 targets and 64 primes. Prime-target 

pairs were arranged into four conditions:  

1. Metrical & segmental overlap: The ballet shrinks. The balloon flashes. 

2. Segmental overlap alone: The ballot shrinks. The balloon flashes. 

3. Metrical overlap alone: The guitar shrinks. The balloon flashes. 

4. No overlap: The trumpet shrinks. The balloon flashes. 

 We used a Latin square design, which yielded four counterbalanced lists of items, 

such that each participant was exposed to 16 critical prime-target pairs—four pairs for 

each of the four conditions. An equal number of trochees and iambs were used in each 

list. In addition, participants were exposed to 32 non-critical pairs, drawn from the filler 

items, for a total of 48 trials in the experiment. See Appendix E for the list of critical 

prime-target pairs. 

 

4.1.3 Procedure 

 The design and instructions were the same as in Experiment 1. The primary 

difference between experiments was in the materials used. The predictions and data 
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analysis strategy for Experiment 2 were pre-registered through the Open Science 

Framework (Myers & Watson, 2018). 

 

4.1.4 Acoustic Analysis 

 Acoustic analysis was performed in the same manner as Experiment 1. Speech 

recordings were analyzed in Praat (Boersma & Weenink, 2017), using manual 

segmentation to code the start and end times of target words. Coders were blind to the 

experimental condition of trials. Target words were segmented such that they were not 

identifiable as anything other than the targets. Coders were trained on segmentation as in 

Experiments 1 and 2. As in Experiment 1, the duration for each target word was extracted 

from all trials using a Praat script that captured the amount of time between the two 

boundaries on either side of the target word. This script provided output signifying 

participant, condition, target word, and duration for each trial, and this dataset was used 

in statistical analysis. See Appendix B for the coding manual used in data analysis. 

 

4.1.5 Inter-Rater Reliability 

 Inter-rater reliability was assessed by comparing a random subset of trials from all 

coders to a standard coder. This sample consisted of a reasonable number of trials 

(~10%) from each coder with equal sample size across coders. The intraclass correlation 

coefficient (ICC) was calculated using a one-way single-measures approach (Shrout & 

Fleiss, 1979; Hallgren, 2012) to determine agreement between coders. Experiment 3 had 

two coders who coded unique samples, and the author served as a standard coder who 

coded 32 trials from each of the coders’ sets. Trials were randomly selected using a 
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random number generator. The standard coder was blinded to the original measurements 

and experimental condition. The ICC was calculated between each coder and the standard 

(ICCCoder1 = 0.948, ICCCoder2 = 0.958), and the average of these was ICC = 0.953, 

indicating excellent agreement between coders. 

 

4.2 RESULTS 

 Target word durations across conditions were analyzed, and only target utterances 

that matched the intended label were considered in the analyses. Trials were excluded if 

participants mispronounced the prime or target, or if they used alternate names (e.g., boat 

for canoe, orchestra for quartet, cologne for perfume). A total of 59 out of 944 trials met 

these criteria and were removed. Scripts and the complete data set are available at 

https://osf.io/zk4qv/. 

 

4.2.1 Effects of Segmental and Metrical Overlap on Duration 

 Maximal mixed effects models were built in the same manner as in Experiment 1 

to examine the fixed effects of segmental overlap, metrical overlap, and their interaction. 

An ANOVA was carried out to determine the best fitting model, which included random 

slopes and intercepts for the segmental by metrical interaction by item, as well as the 

segmental and metrical manipulations by participant.1 Data were log-transformed and 

                                                

1 Two models converged that were one step down from the maximal model. These models did not differ 
significantly from one another. Both models yielded a significant segmental by metrical overlap interaction 
using the 1.96 criteria. However, the lmerTest function yielded an interaction that was marginal for one 
model but significant for the other. We report findings from the best fitting model based on AIC, BIC, and 
log-likelihood scores although the interaction in this model (t=-2.030) was marginally significant according 
to lmerTEST but significant using the 1.96 threshold. 
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centered. Significance was assumed by t-values with absolute value above 1.96 in a two-

tailed test as in Experiment 1 (Baayen, 2008). There was a significant main effect of 

segmental overlap (β = 0.054, t = 5.038) and a significant interaction between segmental 

and metrical overlap (β = -0.038, t = -2.030). No main effect of metrical overlap was 

observed. Table 2 displays parameter estimates for the model. Additionally, iambs had 

longer durations than trochees on average (β = -0.162, t = -3.216), regardless of 

condition; there was no interaction between metrical type and overlap condition. Figure 6 

displays average target durations by condition for this experiment, and Table 3 displays 

model statistics. Appendix F summarizes findings from all three experiments. 

 

Figure 8. Results for Experiment 3. Average duration (in seconds) of target words by 

condition. Error bars represent standard error for each condition. 
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Table 4. Fixed effects estimates for Experiment 3. 

 

4.2.2 Word Frequency Analysis 

 To confirm that word lengthening was not driven by an effect of word frequency, 

we conducted a post hoc follow-up statistical test investigating whether word frequency 

contributed to the effects of segmental and metrical overlap on word duration. Word 

frequency refers to the occurrence of a word in a given text corpus, and the corpus used 

for this study was the SubtlexUS database (Brysbaert & New, 2009). The frequency for 

all target words was captured. The model described above was modified to include word 

frequency as a control variable, and these models did not differ significantly from each 

other (χ2 = 2.89, p = 0.89). Because word frequency does not improve the fit of the 

model, and we had no a priori predictions about word frequency, we did not consider it 

further. 

 

4.2.3 Latent Semantic Analysis 

 To confirm that word lengthening was not affected by semantic information, we 

conducted a second follow-up statistical test using latent semantic analysis (LSA), which 

generates the degree of semantic similarity between two words. To determine semantic 
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relatedness between words, we used a pairwise comparison application (lsa.colorado.edu) 

with a semantic space of college-level general reading, which yielded LSA scores from -1 

to 1 for each word pair, where 0 means no similarity. The mean LSA scores for word 

pairs in Experiment 3 was M = 0.05 (SD = 0.07). The model described above was 

modified to include semantic similarity as a control variable, and these models did not 

differ significantly from each other (χ2 = 3.00, p = 0.88). Because LSA does not improve 

the fit of the model, and the study was not designed to examine semantic relatedness, we 

did not consider LSA further. 

 

4.3 DISCUSSION: EXPERIMENT 3 

 We replicated the findings from Experiment 1 by showing that segmental overlap 

alone leads to significant word lengthening, and metrical and segmental overlap lead to 

even longer word durations. However, speakers did not lengthen words with metrical 

overlap alone; word durations in this condition were no different from those in the control 

condition without any overlap. Although we hesitate to draw conclusions from a null 

result, the data are most consistent with lengthening being contingent on surface-level 

acoustic similarity of words. That is, word pairs with overlapping segments and meter 

(e.g., locket and locker) have more acoustic similarity than word pairs with opposing 

meter (e.g., locket and lacrosse), which have more acoustic similarity than word pairs 

with only meter in common (e.g., locket and spider). The level of acoustic-phonetic 

likeness in our word pairs is reflected in the relative amount of word lengthening across 

conditions. Because meter by itself did not have a significant impact on word duration in 

Experiment 3, we do not see evidence of a planning stage for abstract metrical structure, 



 45 

but instead we argue that stress is closely bound to segmental representations during 

phonological encoding. 
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CHAPTER 5: GENERAL DISCUSSION 

 

 In three experiments, we tested the hypothesis that metrical and segmental spell-

out occur as distinct but parallel processes (Roelofs & Meyer, 1998). We used word 

lengthening driven by segmental and metrical overlap as an index of whether these two 

types of linguistic structure are planned independently or together. All three experiments 

revealed lengthening when word pairs had metrical and segmental overlap. Experiments 

1 and 3 also showed lengthening to a lesser degree when primes and targets had 

segmental overlap alone. However, in Experiment 3 we found no evidence of lengthening 

from metrical overlap alone. This suggests that representations for metrical stress are 

tightly linked to segmental structure in speech production. We also conducted post hoc 

analyses on word frequency and semantic similarity to confirm that these processes were 

not contributing to the word lengthening effect. Furthermore, because segmental overlap 

leads to some degree of word lengthening regardless of metrical structure, it seems that 

phonemic representations play a more central role in word planning than metrical 

representations. These findings lead us to conclude that the word lengthening observed in 

these experiments may be driven by the acoustic representations of target words. 

 

5.1 IMPLICATIONS AND FUTURE DIRECTIONS 

5.1.1 Acoustic Representations in Phonological Encoding 

 One explanation for the lengthening observed in these experiments is that the 

surface-level, fine-grained acoustic properties of sounds—rather than abstract metrical 

and segmental representations—serve as the building blocks of speech planning. It is 



 47 

possible that the production system maintains individuated representations for stressed 

(/ca-/ in candle) and unstressed (/ca-/ in canoe) syllables and uses these bound 

representations when ordering the sounds of the word. There is ample evidence 

suggesting that contextual information is maintained in long-term linguistic 

representations alongside segmental information; this can include variability in 

productions, as well as features pertaining to gender, age, and dialect (see Pierrehumbert, 

2016 for review). This suggests that at the very least, speakers maintain detailed acoustic 

forms of words and syllables, and this almost certainly would include whether a syllable 

is stressed or not.  

There is also evidence that this type of detailed acoustic representation may play a 

pivotal role in the encoding process by serving as the basis of feedback to the production 

system during articulation. We know that auditory feedback is important in monitoring 

the state of the production system during articulation, and it has been argued that one 

function of auditory feedback is to provide information about deviations from the 

intended output (see Guenther, 2014; Hickok, 2014 for review). Data from Jacobs et al. 

(2015) suggests that phonological overlap interference effects may be driven in part by 

auditory feedback. They found that producing a prime aloud affects a subsequent target 

word’s duration, but producing the prime as inner speech or silent mouthing does not. 

That is, the interference does not come from the lexical-conceptual or articulatory levels. 

Similarly, Buxó-Lugo et al. (in revision) found that subjects lengthened a target word 

when they produced a phonologically overlapping prime, and lengthening also occurred 

when a different speaker produced the prime. No target lengthening occurred when the 

subject silently mouthed the prime. These previous results show that the acoustic 
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realization of a prime creates interference, possibly by influencing representations that 

are used in feedback mechanisms for speech encoding. Taken together, these studies 

suggest that detailed fine-grained acoustic representations of words and syllables may 

serve as building blocks for sequencing the sounds of words, possibly through auditory 

feedback. The results of the three experiments presented here suggest that these building 

blocks may consist of a detailed, unitary representation of segmental and metrical 

information. 

 

5.1.2 An Integrated Model of Segmental and Metrical Planning 

Our primary purpose for these experiments was to test the hypothesis that 

segmental and metrical spell-out occur as distinct but parallel processes (Roelofs & 

Meyer, 1998). When spoken words share initial phonemic segments, the word duration 

becomes longer (i.e., Yiu & Watson, 2015). Therefore, if meter is planned on a separate 

analogous track—as in the WEAVER model—then one might expect to see word 

lengthening when words share stress patterns. In Experiments 1 and 2, we indeed 

observed word lengthening related to metrical overlap (only in the presence of segmental 

overlap), and on the surface this may seem like support for the separate track model. That 

is, words lengthen with segmental overlap, and they lengthen even more by adding 

metrical overlap, so it could be possible that these are separate entities that contribute to 

word lengthening independently. However, Experiment 3 revealed that word lengthening 

does not occur from metrical overlap alone, which we suggest negates the possibility of 

an independent track for metrical spell-out. One could argue for the separate track model 

by suggesting that word lengthening requires segmental overlap first, and then metrical 
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overlap creates a secondary lengthening effect. While this is theoretically plausible, a 

brief look into the speech motor planning literature will demonstrate that this is 

computationally inefficient and uncharacteristic of the speech production system (e.g., 

Guenther, 1995), and this is considered below.  

It has been suggested that sequences of phonemes and sequences of syllables in 

common words and phrases are coded as larger units that can be retrieved as higher-level 

motor chunks (Cholin et al., 2006; Levelt & Wheeldon, 1994; Levelt et al., 1999). These 

established motor sequences allow for expedient production, and they may be stored in 

what Levelt calls a mental syllabary (Levelt, 1989). If this system of chunking were not 

in place, word representations would consist of individual phonemes, their sequence, as 

well as the location of stress. However, if a word is coded at a more holistic level, then 

phonemes and stress can be part of a higher-level code that efficiently guides motor 

control. Hickok (2014) suggests that acoustic targets are similarly chunked for motor 

sequences, so it is reasonable that acoustic stress would have a role in realizing these 

targets. This brings us back to the acoustic representations in speech planning. If the /ca/ 

of candle is different from that of canoe, it is conceivable that two representations of the 

syllable—stressed and unstressed—are stored in the syllabary. When a speaker retrieves 

this syllable, he or she is selecting the acoustic target with the appropriate stress value 

attached. 

In this model, not all syllables will have stressed and unstressed versions readily 

available in the syllabary. The system must learn the relation between stress and 

phonemic segments, and only those sequences that are highly familiar will be “strongly 

chunked” in storage (Hickok, 2014). Take for instance the stressed syllable chair; in 
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American English, there is typically no case where this phonemic sequence appears 

unstressed, so it is likely stored with a strong connection to a stress accent. Now consider 

a sequence like gest. This most commonly appears in stressed form, such as gesture, 

congested, digest, but it can also appear unstressed as in gestation. Because this 

phonemic sequence is more frequently associated with a stress accent, the stressed 

version will likely be a stronger chunk than the unstressed version. Nevertheless, both 

versions may exist simultaneously in the syllabary, as with the aforementioned stressed 

and unstressed versions of /ca/. 

 One could argue that the stressed and unstressed versions of syllables are 

phonemically distinct and therefore do not refer to the same segments. For example, 

candle is pronounced with a low front vowel [kæ], but the unstressed vowel in canoe is a 

more neutralized [kə]. In our model, this is explained by placing feature-specific 

phonemes at a later stage in the speech processing system, as described in Hickok (2014). 

Our working hypothesis is that syllables are retrieved or formed with at least partial 

contribution from auditory targets, and then the context-specific motor trajectories ([kæ] 

vs. [kə]) are defined from somatosensory targets. We posit that the word lengthening 

from these experiments is due to interference at the level of syllable retrieval, and the 

difference in vowel shape is executed at a later stage. This model is consistent with the 

proposal from Hickok (2014), only now with the addition of metrical assignment as an 

auditory target in speech processing. 
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5.1.3 Implications for Rhythm and the Brain 

 Metrical regularity at the utterance level has been shown to facilitate language 

processing in speech perception. The ebbing and flowing stress patterns provide cues to 

the listener for parsing the unfolding speech signal (Pitt & Samuel, 1990), and an event-

related potential (ERP) component has been observed related to processing metrical 

properties of speech, such that listeners are sensitive to when stress falls outside of a 

regular rhythm (Böcker et al., 1999). Even in the absence of a regular temporal rhythm, 

listeners generate metrical expectancies when listening to speech (Schmidt-Kassow & 

Kotz, 2009; Magne et al., 2016). Other ERP studies have shown that unexpected stress 

patterns lead to difficulties in lexical access (Friedrich et al., 2004; Knaus et al., 2007). 

By definition, stress contributes to rhythmic patterns, but how much is this rhythm 

dependent on segmental structures?  

 The acoustic make-up of a speech signal consists of fast-moving temporal fine 

structure (e.g., frequency characteristics of phonemes) and the subsequent temporal 

envelope (e.g., amplitude contour of syllables), which captures the broad variations in the 

signal. Speech information can be broken down to generic timescales where the envelope 

occurs at the rate of suprasegmental features of prosody, and the fine structure correlates 

with phonemic qualities (Keitel et al., 2018). Phonemes have a faster rate of production, 

which is nested within the slower rate of stressed syllables, and this hierarchy is reflected 

in neural entrainment to speech stimuli (Ding et al., 2017). Therefore, it is possible that 

phonemic segments may influence speech rhythm and likewise contribute to neural 

entrainment to the speech envelope (Di Liberto et al., 2015; see Myers et al., 2019 for 

review). 
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 It has been suggested that English-learning infants have a preference to trochees 

rather than iambs (Jusczyk et al., 1993; Jusczyk, 1999), likely due to higher frequency in 

the language (Cutler & Carter, 1987). However, this preference appears in adult-directed 

speech but not infant-directed speech (Wang et al., 2016). Infant-directed speech reduces 

the salient phoneme-specific spectral cues, which provides fewer cues to contrast stressed 

and unstressed syllables. Therefore, perception of speech rhythm seems to be related to 

segmental structure. Indeed, linguistic theories have suggested that word stress is 

dependent on phonemic properties of a word (Halle & Vergnaud, 1987; Hayes, 1995); 

namely, elements that contrast in intensity form trochees, and elements that contrast in 

duration form iambs (The Iambic/Trochaic Law, Hayes, 1995). Iversen et al., (2008) 

showed that this rhythmic grouping is dependent on auditory experience, such that 

English-speaking adults could predict trochaic and iambic patterns, but Japanese-

speaking adults could only predict trochaic sequences. Auditory experience influences 

rhythmic grouping and speech segmentation even in infancy (Hay & Saffran, 2012). 

Younger infants have been shown to rely more on phonemic cues, whereas older infants 

rely more on metrical cues (Thiessen & Saffran, 2003). This implies that listeners may 

develop metrical associations to phonemic properties with auditory experience. 

Therefore, it is likely that segmental and metrical structures become chunked together 

into a single auditory representation and contribute to the overall rhythm of speech, 

which is consistent with the findings from the current studies in this dissertation. 
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5.1.4 Future Directions 

 Additional experiments may be conducted to support the notion that segments and 

meter are combined into a singular auditory representation. In our studies, we measured 

durations of full words or phrases, but this does not allow us to determine which part of 

the word was particularly challenging. Watson et al. (2015) measured overlapping initial 

or final morphemes, and they found that speakers slowed down during the non-

overlapping segment. This suggests that the production system provides more time for 

phoneme selection when faced with competition. A similar study could manipulate 

segmental and metrical structures to determine if they are separate or unified. For 

instance, metrical patterns could be consistent while changing the location of segmental 

overlap. As predicted by Yiu & Watson (2015), the non-overlapping segment should be 

longer in words with initial overlap (e.g., candy-candle) compared to final overlap (e.g. 

girdle-candle). Since we believe meter is tied to phonemic segments, the same results 

should also occur when stress is on the second syllable; that is, initially overlapping 

iambs (e.g., canal-canoe) should be longer than finally overlapping iambs (e.g., renew-

canoe). Based on our findings herein, we believe that trochees and iambs will behave 

similarly to each other, but if the results vary based on stress pattern, that would 

contradict our hypothesis and indicate that meter uses unique mechanisms in speech 

production.  

 In the current experiments, our participants spoke aloud the prime-target word 

pairs, thus establishing motor chunks for phonemic segments. A subsequent experiment 

could control the acoustic properties of the chunked segments by having another speaker 

with a distinct dialect say the prime. That is, if the participant hears a segment that sounds 
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different from how s/he would say it, lengthening may not occur because the perceptual 

acoustic cue does not interfere with the auditory target in production. This type of study 

design could be used to test dialects that vary in either phonemic features or metrical 

structures. In a separate experiment, pseudo-word primes could be used to test that this 

interference occurs at the level of lexical retrieval. Sevald and Dell (1994) predicted that 

words with pronounceable phonemic structure but no semantic meaning would not elicit 

word lengthening because they do not have an existing lexical representation.  

 The connection of meter and segments can also be tested in perceptual brain 

studies. Magne et al. (2016) showed sensitivity to speech meter by capturing an ERP 

response to words with unexpected stress patterns compared to others in a list. For 

instance, a trochee in a list of iambs (e.g., morale, embrace, delight, pedal) elicited an 

increased negativity response from the centro-frontal region of the scalp compared to the 

response elicited from a trochee in a list of trochees (e.g. zebra, bacon, Easter, pedal). 

This effect was observed despite variable durations of inter-stimulus intervals, suggesting 

sensitivity to meter at the word level because meter at the phrase level was irregular. A 

potential replication of the Magne et al. (2016) study could test whether word-level meter 

is linked to phonemic segments in perception by measuring a response to an unexpected 

stress pattern in a list that includes or does not include segmental overlap. For instance, 

we may expect a greater negativity response in an overlapping list (e.g., candle, candy, 

canvas, canteen) compared to a non-overlapping list (e.g., flower, jacket, llama, canteen). 

If this finding were realized, that would provide evidence in the perceptual domain for 

the connection of meter and segments. 
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5.2 CONCLUSIONS 

 This dissertation investigated the role of metrical spell-out in word lengthening 

experiments. Metrical overlap did have an effect on word lengthening but only when 

combined with segmental overlap, indicating that segments may be intimately integrated 

with stress during phonological encoding. While we did not find support for an abstract 

metrical structure in words, our results suggest that metrical structure is tied to segmental 

structure in a critical way. We propose that syllable retrieval or formation is informed by 

acoustic representations of the target speech sounds. Acoustic similarity of words is 

greatest with segmental and metrical overlap, and we provide evidence that this degree of 

similarity leads to increased phonological competition as seen in slower word 

productions. Our data support the claims that word duration can be primed by recent 

auditory experience and that phonemic segments and metrical structure are integrated 

during phonological encoding. 
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APPENDIX A: STIMULUS LIST FOR EXPERIMENT 1 

 

Target words were paired with primes that met one of three conditions. Three lists were 

counterbalanced so that each target appeared only once per list. 
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APPENDIX B: PRAAT CODING MANUAL 

Instructions for Manual Segmentation in Praat 
1. Open Praat. 
2. In the menu bar, select: Praat > Open Praat script… and open the file called 

“OpenTextGrid Script”. 
3. Click “Run” and a pop-up GUI will appear. Enter the folder directory where you 

will find the sound files for each participant. Click OK.  

4. A window will appear displaying the spectrogram and waveform of the first 
sound file in the folder. Identify the target word (which is in the file name), and 
demarcate the start and end points of the word. All target words will be embedded 
in the phrase: “The (target) flashes.” 

a) Place a boundary using Command + 1. 
b) Onset: All target words in this experiment begin with a consonant; to 

identify the start point of the word, look for the change in energy from the 
end of “The” into the initial consonant. This will often be a sudden burst, 
but it may also be a gradual shift in formant characteristics. Place a 
boundary where the consonant begins to form, making sure not to include 
any portion of the preceding “The”. Playback the selection to ensure that 
you placed the boundary at the onset. 

c) Offset: Identify the end of the word by where the final consonant energy 
shifts into the /f/ of “flashes”. The /f/ will be characterized by high 
frequency energy with weaker intensity. Place a boundary at the end of the 
final consonant but before the onset of /f/. Playback the selection to ensure 
that you placed the boundary at the offset.  
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5. Select the word area in the annotation tier, which will highlight yellow. Listen to 
your selection (by pressing Tab or the play bar directly below the annotation tier), 
and verify that you have segmented the complete word with nothing extra at 
either end. Type the target word into the segment as it appears in the file name. 

6. When you are satisfied with your segmentation, press Continue in the GUI bar. 
This will automatically save your TextGrid file to the directory and open the next 
sound file for you. 

 
Here are some example spectrogram representations of consonants to help in your 
segmentation. 
 

 
Reproduced from https://www.utdallas.edu/~kilgard/Engineer_NatureNeuroscience_2008_supplement.pdf 
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APPENDIX C: STIMULUS LIST FOR EXPERIMENT 2 

 

Target phrases consisted of word pairs with initial segmental overlap, and metrical overlap 

varied across conditions. 
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APPENDIX D: SPEECH ERRORS CODING MANUAL 
 

Speech Error Analysis Instruction Manual 
The following are guidelines for coding speech errors in the tongue twister study. In this study, 
participants were asked to repeat two-word phrases as fast as possible. Naturally, they made some 
errors in this task. We will be using these categories to classify the types of speech errors that were 
made. 
 
Type of Error Code Definition Example 1 

Target: 
pastor passive 

Example 2 
Target: 

exit exam 
Word 
Repetition 

WR Producing the same word twice 
in a row 

pastor pastor exam exam 

Word 
Shift 

WS Changing the word order in the 
sequence 

passive pastor exam exit 

Phoneme 
Substitution 

PS Misplacing a sound that exists 
elsewhere in the sequence 

pastor pastive exams exit 

Phoneme 
Insertion 

PI Producing a sound not 
belonging to the sequence 

pastor passik lexam exit 

Phoneme 
Deletion 

PD Removing a sound from the 
sequence 

pastor passi xam exit 

Vowel 
Distortion 

VD Producing an incorrect vowel 
or blend of vowels 

pastor possive exerm exit 

 
We will code these errors in an Excel document named: SEQ Error Tracking. The document has 
a list with all trials that include an error. 
The “Errors” column gives a total number of errors in that trial. If there is more than one error in a 
trial, you will need to insert additional rows for each error. Please copy the trial information into 
subsequent rows. 
In the “Error Type” column, you will enter the category code for that error. 
In the “Annotation” column, you will write what the participant actually said. 
 
Note: In some trials, the participant mispronounces a word or says the wrong word on every 
repetition (for example: pronouncing despot as despo). In this case, we cannot classify the 
utterance as a speech error, but rather we will mark the entire trial as incorrect. In the “Error 
Type” column, place an X. In the “Annotation” column, write their pronunciation of the target. 
Do not insert additional rows for each repetition; one row will suffice for this type of trial. 
 
To listen to trials: Open Praat > Open Praat script… > “play Sound” > Run 
This will cycle through all .Sound files in the directory. These files are the error clips that were 
extracted from full-length trials; they include the error, as well as 750 ms on either side of the 
error. 
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APPENDIX E: STIMULUS LIST FOR EXPERIMENT 3 
 
 

 

Target words were paired with primes that met one of four conditions. Four lists were 

counterbalanced so that each target appeared only once per list. 
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APPENDIX F: SUMMARY OF STATISTICAL FINDINGS 

Experiment 1 		 		
	Fixed Effects β t p 

Segmental & Metrical 
vs Segmental, Control* 

0.047 3.729 < 0.001 

Segmental vs Control* -0.033 -2.446 0.023 

	 	 	 	Experiment 2 		 		 		
Fixed Effect:         
Metrical Overlap β t p 
Duration* -0.039 -2.468 0.016 
Repetitions* 0.087 3.878 < 0.001 
Speech Errors* -3.13 -5.405 < 0.001 
Initial Stress β t p 
Duration 0.008 0.510 0.611 
Repetitions 0.014 0.514 0.514 
Speech Errors -0.617 -1.103 0.274 
Interaction β t p 
Duration 0.030 0.933 0.354 
Repetitions -0.067 -1.535 0.129 
Speech Errors 1.199 1.039 0.302 

	 	 	 	Experiment 3 		 		 		
Fixed Effects β t p 
Segmental Overlap* 0.054 5.038 < 0.001 
Metrical Overlap -0.017 -1.714 0.102 
Segmental x Metrical* -0.038 -2.030 0.062 

 

Statistical findings from three experiments are summarized here. Statistical significance 

was determined by a t-value with an absolute value above 1.96 in a two-tailed test 

(Baayen, 2008). Significant effects are indicated with an asterisk. In addition, p-values are 

provided for supplementary reference. 

 


