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CHAPTER I

INTRODUCTION

We produce and consume goods and services that have gone through networks.

Airlines, railroads, computer networks, and social networks are a few examples. However,

those goods and services are not always beneficial to everyone. For example, firms may earn

less profits because the products of their rival firms are brought to markets through supply

chains. Revenue services may earn less tax revenue because taxable assets are transferred

through financial networks and can be concealed in other countries. Websites and network

service providers may suffer from malicious software sent through the Internet. Countries

and their citizens may suffer from hazardous materials carried through transportation sys-

tems. In these contexts, competing products, concealed assets, malicious software, and

hazardous materials are viewed as bads, as opposed to goods, because they are harmful to

some economic agents. My research on the economics of network flows is motivated by (i)

the possibility of bads being carried through networks, together with goods, (ii) the analy-

sis of strategic behavior of agents in networks, and (iii) the experimental test of theoretical

predictions about strategic behavior.

Chapter II develops a strategic model of network interdiction in a non-cooperative

game of flow. An adversary, endowed with a bounded quantity of bads, chooses a flow spec-

ifying a plan for carrying bads through a network from a base to a target. Simultaneously,

an agency chooses a blockage specifying a plan for blocking the transport of bads through

arcs in the network. The bads carried to the target cause a target loss while the blocked

arcs cause a network loss. The adversary earns and the agency loses from both target loss

and network loss. The adversary incurs the expense of carrying bads. In this model I
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study Nash equilibria and find a power law relation between the probability and the extent

of the target loss. My model contributes to the literature of game theory by introducing

non-cooperative behavior into a Kalai-Zemel (cooperative) game of flow. My research also

advances models and results on network interdiction.

Chapter III introduces a strategic network model where bads, such as infectious

diseases and liquidity shocks, arise at a source node and may be transmitted to a sink

node as a flow through a network. Two players wish to decrease network bads, which is

determined by the extent of bads at the source node and by the maximum transmission of

bads through the network. One player can act to mitigate the extent at the source node

while the other player can act to reduce the maximum transmission through the network.

Each player incurs the cost of action but benefits from the decrease in network bads. The

bottlenecks of the network affect the maximum transmission of bads and the behavior

of the players. I characterize efficient profiles and equilibria in terms of the bottlenecks.

Interestingly, the player who acts in an equilibrium may not be the player who must act

in the efficient profile. Overall, strategic inaction leads to inefficiency. Unless there is an

efficient equilibrium where neither player acts, no efficient profile is an equilibrium and no

equilibrium is efficient. I study cooperative solutions where the players jointly choose an

efficient profile and make transfers to each other. Such cooperative solutions always exist.

Chapter IV builds a strategic model that exhibits the power law of conflict.1 The

power law of conflict is the name given to an empirical regularity that the frequency of

conflict events, such as murders, insurgencies, and wars, scales as an inverse power of the

severity of conflict events. In this model there are two adversarial players. Attacker can

carry bads through a route to damage a target while Defender can block the route to stop
1This chapter is based on Chapter II and joint work with John Wooders. Besides allowing the study

of comparative statices leading to a power law, this chapter aims to provide a theoretical foundation for
empirical and experimental testing of the power law.
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the transport of bads. In the unique equilibrium both Attacker and Defender choose mixed

strategies. The comparative statics of the mixed strategy equilibrium yields a power law.

The parameters of the power law can be estimated from data. The power law is a good fit

to the Iraqi data in Global Terrorism Database.
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CHAPTER II

STRATEGIC NETWORK INTERDICTION

Introduction

This chapter introduces a model with two players, an adversary and an agency,

interacting strategically in a given network. The adversary is given a bounded quantity of

bads at a base node and plans to carry bads to a target node. The adversary chooses a

flow of bads that specifies a plan for carrying bads through the network from the base to

the target. The agency is operating the network and wishes to stop the transport of bads

to the target. The agency chooses a blockage of arcs that specifies a plan for stopping the

transport of bads through the network. The bads carried to the target cause a target loss

while the blocked arcs cause a network loss. The adversary earns and the agency loses from

both target loss and network loss. The adversary incurs the expense of carrying bads.

In this model I analyze the equilibrium behavior of the players. If the bounded

quantity of bads is small, there are pure strategy Nash equilibria. In these equilibria,

the adversary carries bads up to the bounded quantity in a dispersed way through the

network, but the agency does not block any arcs. If the bounded quantity of bads is either

intermediate or large, there are mixed strategy Nash equilibria in which each player chooses

only two pure strategies with positive probability. In these equilibria, the adversary carries

no bads or carries a positive amount of bads to the target. Meanwhile, the agency blocks no

arcs or blocks all the arcs necessary to make the target unreachable through the network.

My analysis shows which arcs the agency blocks and how often she blocks them. My analysis

also shows how the adversary carries bads through the network and how often he does.
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In these Nash equilibria, the adversary successfully carries bads to the target if

and only if the adversary carries a positive amount of bads to the target and the agency

does not block any arcs. By computing the probability of this joint event, we can calculate

the equilibrium probability of the target loss. If the bounded quantity of bads is either

intermediate or large, there is a power law relation between the probability and the extent

of the target loss. This theoretical finding is consistent with empirical evidence.1

This paper contributes to the game theory literature by introducing noncooper-

ative behavior into a Kalai-Zemel network flow model. Kalai and Zemel (24) define a

(transferable utility) cooperative game, called a flow game, where the worth of a coalition

is defined as the value of a maximum flow in the network restricted to the members of the

coalition.2 Their main result is that a cooperative flow game is totally balanced and thus

has a nonempty core (that is, there are distributions of the total payoff of the game that

are stable against the formation of coalitions). The core of a flow game depends on the

structure of a network and the ownership of arcs in the network. My framework differs

in that players interact strategically. The agency owns and operates all arcs in a network

while the adversary abuses the network.

This paper also contributes to the literature on network interdiction. Washburn

and Wood (40) introduce a zero-sum game, where an evader chooses a path to move through

a network and an interdictor chooses an arc at which to set up an inspection site. If the

evader traverses a path that includes the inspected arc, the evader is detected with some

exogenously given positive probability. Otherwise, the evader is not detected. Both players

are allowed to choose mixed strategies. Given a mixed strategy profile, the interdiction
1In empirical research Bohorquez et al. (5) and Clauset et al. (11) show that the fatality distribution of

terrorist events follows a power law.

2For other studies on cooperative flow games, see Kalai and Zemel (25), Granot and Granot (20), Potters
et al. (34), and Reijnierse et al. (35).
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probability is defined to be the average probability of the evader being detected. The

evader aims to minimize the interdiction probability by choosing a path-selection mixed

strategy, while the interdictor aims to maximize the interdiction probability by choosing an

arc-inspection mixed strategy. By using linear programming and network flow techniques,

Washburn and Wood (40) study the Nash equilibria of this game.3

My model differs from the existing models on network interdiction in four aspects:

(i) The definition of a network is different in that each arc has a capacity.

(ii) The adversary is endowed with a quantity of bads, which may, in equilibrium, be

binding.

(iii) Both players have larger sets of strategies. The adversary chooses a flow rather than

a path. If there are multiple paths in a network, the adversary can use them all at

once. The agency chooses a blockage rather than an arc. That is, the agency can

block multiple arcs at once.

(iv) My model is not a zero-sum game nor even a strictly competitive game.

Because of (i), we do not need to take the detection probability as given. In my model this

probability is determined endogenously. By virtue of (ii), we can analyze how the adver-

sary’s resource constraint affects the adversary’s and the agency’s equilibrium behavior. By

virtue of (iii), my model creates a more tractable environment and gives sharper results on

equilibrium behavior. Because of (iv), we need to use a different solution technique to find

equilibria. I exploit the idea that in any Nash equilibrium each player is indifferent between

the pure strategies played with positive probability.
3Other than these papers, most of the literature on network interdiction deals with an interdictor’s

optimization problem subject to some budget constraints. See Cormican et al. (13), Israeli and Wood (22),
and Wood (41).
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Security in network games has attracted significant interest. For example, Ballester

et al. (4) study the interaction between players whose payoffs depend on a network. They

obtain a proportional relationship between how much effort a player exerts and how central

the player’s position is in the network. Baccara and Bar-Isaac (3) study the formation of

networks between criminals and terrorists and find optimal policies for law enforcement

agencies. Goyal and Vigier (19) study the design and protection of networks robust to

attacks from outside on the networks’ nodes.4

The remainder of this chapter is organized as follows. Section 2 develops a game-

theoretic model of network interdiction. Section 3 studies the Nash equilibria of the model.

Section 4 discusses my theoretical finding, together with empirical evidence, and also dis-

cusses future research topics.

Model

Two players, player 1 and player 2, strategically interact with each other in a

given network. Players can be thought of as firms in the context of market competition,

as a taxpayer and a revenue service in the context of tax evasion, as a malicious hacker

and a network operator in the context of network security, or as a terrorist group and a

security agency in the context of national security. Having these security applications in

mind, player 1 is called an adversary and player 2 is called an agency.
4For a survey on other literature on networks, see Jackson (23).
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Networks

A network consists of a set of nodes, N , a set of arcs, A ⊂ N × N , and a (row)

vector of arc capacities, c := (cij)(i,j)∈A. Each arc is an ordered pair of distinct nodes and

has a positive capacity. For each i, j ∈ N with i 6= j, if (i, j) ∈ A, node i is connected to

node j through arc (i, j) with capacity cij > 0. Formally a network is defined as a collection

(N,A, c).

Strategies

Player 1, the adversary, is given a bound quantity q > 0 of bads at a node. This

node is called base s. Player 1 plans to carry bads to another node. This node is called

target t. Player 1 chooses a flow of bads specifying a plan for carrying bads through network

(N,A, c) from base s to target t.

For each j ∈ N , denote by IA(j) := {(i, j) : (i, j) ∈ A} the set of the arcs coming

into node j and by OA(j) := {(j, i) : (j, i) ∈ A} the set of the arcs going out from node j.

Formally a flow of bads from base s to target t with bound quantity q in network

(N,A, c) is a (column) vector f := (fij)′(i,j)∈A satisfying the following constraints:

0 ≤ fij ≤ cij for each (i, j) ∈ A, (II.1)

fis = 0 for each (i, s) ∈ IA(s), (II.2)∑
(s,i)∈OA(s)

fsi ≤ q and (II.3)

∑
(i,j)∈IA(j)

fij −
∑

(j,i)∈OA(j)

fji = 0 for each j ∈ N \ {s, t}. (II.4)

Constraint (II.1) says that each arc flow is at least zero and at most the arc capacity.

Constraint (II.2) says that each incoming flow to the base is zero. Constraint (II.3) says

that the total outgoing flow from the base does not exceed the bound quantity. Constraint
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(II.4) says that at each node, except for the base and the target, the total incoming flow

equals to the total outgoing flow.

Denote by F (s, t, q, N, A, c) the set of all flows of bads from base s to target t with

bound quantity q in network (N,A, c). When there is no ambiguity, I use F instead of

F (s, t, q,N, A, c). Then the set of pure strategies for player 1 is denoted by F . By choosing

a flow f = (fij)′(i,j)∈A ∈ F , player 1 carries fij amount of bads through arc (i, j).

The value of a flow is defined as the total incoming flow to the target less the

total outgoing flow from the target. Thus, the value of a flow shows how many bads

player 1 carries to the target. Let v := (vij)(i,j)∈A be a (row) vector with vit = 1 for each

(i, t) ∈ IA(t), vti = −1 for each (t, i) ∈ OA(t), and vij = 0 for each (i, j) /∈ IA(t) ∪ OA(t).

Then the value of a flow f ∈ F is calculated as

v · f =
∑

(i,t)∈IA(t)

fit −
∑

(t,i)∈OA(t)

fti. (II.5)

Constraints (II.1) through (II.4) imply that the value of a flow is non-negative and

constrained by the bound quantity. That is, for each f ∈ F , it holds that

0 ≤ v · f ≤ q. (II.6)

A flow fo ∈ F is the zero flow if fo is the vector of zeros. A flow f τ ∈ F is trivial

if v · f τ = 0. Notice that the zero flow fo is trivial. A flow f∗ ∈ F is a maximum flow if for

each f ∈ F , we have v · f∗ ≥ v · f . Notice that the value of a maximum flow is constrained

by the bound quantity.

Player 2, the agency, wishes to stop the transport of bads to the target. Player

2 chooses a blockage of arcs specifying a plan for stopping the transport of bads through

network (N,A, c) to target t. Formally a blockage of arcs in network (N,A, c) is a (column)
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vector b := (bij)′(i,j)∈A with bij ∈ {0, 1} for each (i, j) ∈ A.

Denote by B(N,A, c) the set of all blockages of arcs in network (N,A, c). When

there is no ambiguity, I use B instead of B(N,A, c). Then the set of pure strategies for

player 2 is denoted by B. By choosing a blockage b = (bij)′(i,j)∈A ∈ B, if bij = 1, player 2

blocks arc (i, j), and if bij = 0, player 2 does not block the arc. For each b ∈ B, denote by

Ab := {(i, j) ∈ A : b = (bij)′(i,j)∈A and bij = 1} the set of all blocked arcs.

The capacity of a blockage is defined as the total capacity of the blocked arcs.

Thus, the capacity of a blockage shows how much total arc capacity player 2 blocks in the

network. The capacity of a blockage b ∈ B is calculated as

c · b =
∑

(i,j)∈A

cijbij . (II.7)

A cut (C,C) in network (N,A, c) is a partition of the node set N with s ∈ C

and t ∈ C. For each cut (C,C), an arc (i, j) ∈ A is a cut arc if i ∈ C and j ∈ C. That

is, through a cut arc (i, j), node i in C is connected to node j in C. For each cut (C,C),

denote by A(C,C) := {(i, j) ∈ A : i ∈ C and j ∈ C} the set of all cut arcs.

A blockage bo ∈ B is the zero blockage if bo is the vector of zeros. A blockage

b ∈ B is a cut blockage if there is a cut (C,C) such that A(C,C) = Ab. A blockage b∗ ∈ B

is a minimum cut blockage if for each cut blockage b, we have c · b∗ ≤ c · b.

The set of mixed strategies for player 1 is denoted by ∆(F ) and the set of mixed

strategies for player 2 is denoted by ∆(B).

Net Flows

We want to know how many bads player 1 successfully carries to the target when

player 1 chooses a flow of bads and player 2 chooses a blockage of arcs. To answer this
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question I introduce the definition of net flows. For each flow of bads and each blockage of

arcs, the net flow of bads to the target is obtained by (i) decomposing the flow of bads into

cycle flows and path flows and (ii) removing all the cycle flows and all the path flows with

blocked arcs.

An s − t path in network (N,A, c) is a sequence of distinct nodes i1, . . . , iK such

that (ik, ik+1) ∈ A for each k ∈ {1, . . . ,K − 1} with i1 = s and iK = t. In this case we say

that the s − t path includes arcs (i1, i2), . . . , (iK−1, iK). A cycle in network (N,A, c) is a

sequence of distinct nodes i1, . . . , iK such that (ik, ik+1) ∈ A for each k ∈ {1, . . . ,K − 1}

with (iK , i1) ∈ A. In this case we say that the cycle includes arcs (i1, i2), . . . , (iK−1, iK),

and (iK , i1). Denote by H the set of all s− t paths and cycles in network (N,A, c).

The arc-path-cycle incidence matrix of (N,A, c) is M := (mah)a∈A,h∈H with

mah =


1 if h ∈ H includes a ∈ A;

0 otherwise.

A cycle flow is a flow of bads along a cycle. A path flow is a flow of bads along

an s − t path. By the flow decomposition algorithm, which will be presented in Appendix

A, we can decompose a flow of bads into cycle flows and path flows.5 Formally, for each

f ∈ F , we can find a (column) vector x := (xh)′h∈H such that f = Mx. That is, either

along a cycle h ∈ H, or along an s− t path h ∈ H, player 1 carries xh amount of bads.

For vector x and each blockage b, let xb := (xb
h)′h∈H be a (column) vector with

xb
h =


xh if h is an s− t path including no blocked arcs;

0 otherwise.

That is, only along an s− t path h ∈ H with no blocked arcs, player 1 successfully carries
5The flow decomposition algorithm is developed by Ford and Fulkerson (14). For a discussion see Ahuja

et al. (1). In my model I use this algorithm to find net flows.
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xb
h = xh amount of bads to the target.

We are ready to define net flows. For each f ∈ F and each b ∈ B, the net flow

of bads to target t under flow f and blockage b is a (column) vector f b := (f b
ij)

′
(i,j)∈A such

that Mxb = f b. Then the value of the net flow f b is calculated as v · f b, which shows how

many bads player 1 successfully carries to the target.

Notice that the net flow f b under a flow f and a blockage b contains no cycle flows.

Furthermore, the net flow f bo
under a flow f and the zero blockage bo contains all path

flows but no cycle flows. A flow f ∈ F is acyclic if f = f bo
. Also notice that the net flow

f b under a flow f and a cut blockage b is the zero flow fo. That is, if b is a cut blockage,

for each f ∈ F , we have f b = fo.

Example 1

Suppose that a network is given as (N,A, c), where N = {s, i1, i2, t} is the set of nodes,

A = {(s, i1), (s, i2), (i1, i2), (i2, t), (t, i1)} is the set of arcs, and c = (csi1 , csi2 , ci1i2 , ci2t, cti1) =

(4, 1, 2, 5, 2) is the vector of arc capacities. A bound quantity is given as q = 3. Suppose

that player 1 chooses a flow f = (fsi1 , fsi2 , fi1i2 , fi2t, fti1)
′ = (1, 1, 2, 3, 1)′. In Figure 1, each

solid circle indicates a node, each arrow indicates an arc. In each pair of numbers, the first

bold number indicates an arc flow, and the second light number indicates the arc capacity.

In network (N,A, c) there are two s− t paths s, i1, i2, t and s, i2, t and one cycle i1, i2, t, i1.
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The arc-path-cycle incidence matrix of network (N,A, c) is

M =



1 0 0

0 1 0

1 0 1

1 1 1

0 0 1


where the first column corresponds to path s, i1, i2, t, the second column corresponds to

path s, i2, t, and the third column corresponds to cycle i1, i2, t, i1. By using the flow de-

composition algorithm, we find a vector x = (1, 1, 1)′ such that f = Mx. Each entry

of the vector x shows the amount of bads player 1 carries along path s, i1, i2, t, path

s, i2, t, and cycle i1, i2, t, i1, respectively. Now suppose that player 2 chooses a blockage

b = (bsi1 , bsi2 , bi1i2 , bi2t, bti1)
′ = (0, 1, 0, 0, 0)′. Then path s, i1, i2, t is the only s− t path with

no blocked arcs. Thus, xb = (1, 0, 0)′. Therefore, the net flow of bads to target t under flow

f and blockage b is f b = Mxb = (1, 0, 1, 1, 0)′ and the value of this net flow is v · f b = 1. �

s •H
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1 1

���
���

��*
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Figure 1. Network
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Payoff Functions

The bads carried to the target cause a target loss. This target loss is determined

by the value of the net flow of bads, v ·f b, as well as by the marginal target loss, `t > 0. For

each f ∈ F and each b ∈ B, the target loss amounts to `t(v · f b). Player 1 earns `t(v · f b)

and player 2 loses the same amount from the target loss.

The blocked arcs cause a network loss. This network loss is determined by the

capacity of the blockage of arcs, c · b, as well as by the marginal network loss, `k > 0. For

each b ∈ B, the network loss amounts to `k(c · b). Player 1 earns `k(c · b) and player 2 loses

the same amount from the network loss.

Player 1 incurs the expense of carrying bads. This expense is determined by the

value of the flow of bads, v · f , as well as by the marginal expense of carrying bads, e > 0.

For each f ∈ F , the expense of carrying bads amounts to e(v · f).

Player 2 earns a constant worth of operating the network, w.

For each (f, b) ∈ F ×B, the payoff function of player 1 is defined as

u1(f, b) = `t(v · f b) + `k(c · b)− e(v · f),

and the payoff function of player 2 is defined as

u2(f, b) = w − `t(v · f b)− `k(c · b).

For each σ = (σ1, σ2) ∈ ∆(F ) × ∆(B), the expected payoff functions are u1(σ1, σ2) =

Eσ[u1(f, b)] and u2(σ1, σ2) = Eσ[u2(f, b)]. Since expected payoff functions are unique up

to an affine transformation, without loss of generality, I assume that the marginal network

loss equals to one, that is, `k = 1.
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Results

I analyze the equilibrium behavior of the players in the model. In a Nash equi-

librium each player has no incentive to change his or her strategy. A strategy profile

(σ1, σ2) ∈ ∆(F )×∆(B) is a Nash equilibrium if for each σ′1 ∈ ∆(F ) and each σ′2 ∈ ∆(B),

u1(σ1, σ2) ≥ u1(σ′1, σ2) and u2(σ1, σ2) ≥ u2(σ1, σ
′
2).

Suppose that the marginal target loss is greater than the marginal expense of

carrying bads.6 The adversary has an incentive to carry bads through the network. Given

this, I want to answer the following questions: Does the agency have any incentive to block

arcs in the network? Which arcs does the agency block? And how often does the agency

block the arcs?

To answer these questions I divide my analysis into three cases depending on

the bound quantity. The bound quantity q is small if q ≤ (1/`t)c · b∗, intermediate if

(1/`t)c · b∗ < q ≤ c · b∗, and large if c · b∗ < q.

Denote by fα an acyclic maximum flow with large bound quantity q in network

(N,A, c). Because fα is acyclic,

fα = (fα)bo
. (II.8)

Because q is large,

v · fα = c · b∗. (II.9)

That is, the value of an acyclic maximum flow equals to the capacity of a minimum cut

blockage. This equality is called the max-flow min-cut theorem.7

6If the marginal target loss is no greater than the marginal expense of carrying bads, the adversary has
no incentive to carry bads through the network from the base to the target. Given this, the agency has no
incentive to block arcs in the network. Thus, any trivial-flow zero-blockage strategy profile (fτ , bo) is a Nash
equilibrium.

7Ford and Fulkerson (14) introduce the maximum flow problem in networks and show the max-flow

15



A flow fβ ∈ F is a binding flow if fβ = (q/(c · b∗))fα. Because fα is acyclic, fβ is

also acyclic. That is,

fβ = (fβ)bo
. (II.10)

In addition the max-flow min-cut theorem (II.9) implies that

v · fβ = q. (II.11)

That is, the value of a binding flow equals to the bound quantity.

First, suppose that the bound quantity is small. We call (fβ, bo) a binding-flow

zero-blockage strategy profile. In any binding-flow zero-blockage strategy profile, if the bound

quantity is small, each player has no incentive to change his or her strategy.

Proposition 1

If the bound quantity is small, that is, if q ≤ (1/`t)c ·b∗, then any binding-flow zero-blockage

strategy profile (fβ , bo) is a Nash equilibrium.

The proof of Proposition 1 is presented in Appendix B.

In any binding-flow zero-blockage Nash equilibrium, player 1 carries bads up to

the bound quantity in a dispersed way through the network, but player 2 does not block

any arcs in the network. The following is an example of this equilibrium.

Example 2

Consider network (N,A, c) in Example 1. Notice that fα = (2, 1, 2, 3, 0)′ is the only acyclic

maximum flow and b∗ = (0, 1, 1, 0, 0)′ is the only minimum cut blockage. Also notice that

min-cut theorem. For a detailed discussion see Ahuja et al. (1).
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the capacity of the minimum cut blockage is c·b∗ = 3. Suppose that the marginal target loss

is `t = 2, the marginal expense of carrying bads is e = 1, and the bound quantity is q = 1.

Then the binding flow is fβ = (2/3, 1/3, 2/3, 1, 0)′. Because the bound quantity is small,

the binding-flow zero-blockage strategy profile (fβ, bo) is a Nash equilibrium. However, if

player 1 carries bads up to the bound quantity only through arcs (s, i2) and (i2, t), player

2 has the incentive to block arc (s, i2). �

If the bound quantity is small and player 1 carries bads in a dispersed way through

the network, then player 2 has no incentive to block arcs. However, if the bound quantity

is not small, that is, if the bound quantity is either intermediate or large, then player 2 has

an incentive to block arcs in the network. Now we want to know which arcs player 2 blocks

and how often she blocks them. Consider the following example.

Example 3

Consider network (N,A, c) in Example 1. Suppose that player 2 chooses a cut blockage

b = (1, 1, 0, 0, 0)′, that is, suppose that player 2 blocks all the arcs from the base. Then

player 2 incurs a network loss of 5. However, if player 2 chooses the minimum cut blockage

b∗ = (0, 1, 1, 0, 0)′, she incurs a network loss of 3. Since both b and b∗ are cut blockages, for

each flow f , the net flow is the zero flow, that is, f b = fo and f b∗ = fo. Thus, the target

loss is zero. Therefore, b is a dominated strategy for player 2. �

In general, if b is a cut blockage but not a minimum cut blockage and b∗ is a

minimum cut blockage, then b is dominated by b∗ for player 2, that is, for each f ∈ F ,

u2(f, b) < u2(f, b∗). Thus, it may be a dominated strategy for player 2 to block all the arcs
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from the base or to block all the arcs into the target. If player 2 blocks arcs, she blocks

minimum cut arcs in the network.

Now imagine that player 2 blocks minimum cut arcs in the network with probability

1. Then player 1 has no incentive to carry bads through the network because he always

fails to reach the target. If player 1 carries no bads to the target with probability 1, player

2 has no incentive to block the arcs. This is because she wants to avoid the network loss if

there is no threat to the target. In turn, if player 2 blocks no arcs with probability 1, player

1 has an incentive to carry bads. If player 1 carries bads with probability 1, player 2 has

an incentive to block arcs. In general, if the bound quantity is either intermediate or large,

there is no pure strategy Nash equilibrium.

To study how often to block minimum cut arcs, I examine the mixed strategy Nash

equilibria of the model. Now, suppose that the bound quantity is large.

A mixed strategy σλ
1 ∈ ∆(F ) is a λ-scaled max-flow strategy, or simply a λ-flow

strategy, for player 1 if for some λ ∈ [1/`t, 1], σλ
1(f τ ) = 1 − 1/λ`t and σλ

1(λfα) = 1/λ`t.

By choosing a λ-flow strategy player 1 chooses a trivial flow f τ with probability 1− 1/λ`t

and a λ-scaled acyclic maximum flow λfα with probability 1/λ`t. For example, if λ = 1,

player 1 carries no bads from the base to the target with probability 1 − 1/`t and carries

the maximum possible amount of bads through the network with probability 1/`t. Here λ

is a scale to adjust the probability and the amount of bads.

A mixed strategy σ∗2 ∈ ∆(B) is a min-cut strategy for player 2 if σ∗2(b
o) = e/`t

and σ∗2(b
∗) = 1 − e/`t. By choosing a min-cut strategy player 2 chooses the zero blockage

bo with probability e/`t and a minimum cut blockage b∗ with probability 1− e/`t. That is,

player 2 blocks no arcs with probability e/`t and blocks minimum cut arcs with probability

1− e/`t.
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We call (σλ
1 , σ∗2) a λ-flow min-cut strategy profile.

Notice that player 1 chooses only two pure strategies f τ and λfα with positive

probability. Given that player 2 chooses a min-cut strategy σ∗2, by choosing a trivial flow

f τ , player 1 earns an expected payoff of

u1(f τ , σ∗2) = σ∗2(b
o)u1(f τ , bo) + σ∗2(b

∗)u1(f τ , b∗)

= (1− e/`t)(c · b∗),

because player 1 earns u1(f τ , bo) = 0 with probability σ∗2(b
o) = e/`t and earns u1(f τ , b∗) =

c ·b∗ with probability σ∗2(b
∗) = 1−e/`t. Given a min-cut strategy σ∗2, by choosing a λ-scaled

acyclic maximum flow λfα, player 1 earns an expected payoff of

u1(λfα, σ∗2) = σ∗2(b
o)u1(λfα, bo) + σ∗2(b

∗)u1(λfα, b∗)

= (1− e/`t)(c · b∗), (II.12)

because player 1 earns u1(λfα, bo) = (`t − e)(v · λfα) with probability σ∗2(b
o) = e/`t and

earns u1(λfα, b∗) = c · b∗− e(v ·λfα) with probability σ∗2(b
∗) = 1− e/`t. Thus, u1(f τ , σ∗2) =

u1(λfα, σ∗2). By choosing a min-cut strategy σ∗2, player 2 makes player 1 indifferent between

the two pure strategies f τ and λfα.

Now notice that player 2 chooses only two pure strategies bo and b∗ with positive

probability. Given that player 1 chooses a λ-flow strategy σλ
1 , by choosing the zero blockage

bo, player 2 earns an expected payoff of

u2(σλ
1 , bo) = σλ

1(f τ )u2(f τ , bo) + σλ
1(λfα)u2(λfα, bo)

= w − v · fα,

because player 2 earns u2(f τ , bo) = w with probability σλ
1(f τ ) = 1−1/λ`t and u2(λfα, bo) =
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w − λ`t(v · fα) with probability σλ
1(λfα) = 1/λ`t. Given a λ-flow strategy σλ

1 , by choosing

a minimum cut blockage b∗, player 2 earns an expected payoff of

u2(σλ
1 , b∗) = w − c · b∗, (II.13)

because player 2 earns w − c · b∗ whichever strategy player 1 chooses. Thus, the max-flow

min-cut theorem (II.9) implies that u2(σλ
1 , bo) = u2(σλ

1 , b∗). By choosing a λ-flow strategy

σλ
1 , player 1 makes player 2 indifferent between the two pure strategies bo and b∗.

In addition, we can show that for each player, these pure strategies are at least as

good as any other pure strategies. Thus, in any λ-flow min-cut strategy profile, each player

has no incentive to change his or her strategy.

Proposition 2

If the bound quantity is large, that is, if c · b∗ < q, then any λ-flow min-cut strategy profile

(σλ
1 , σ∗2) is a Nash equilibrium.

The proof of Proposition 2 is presented in Appendix B. The following is an example

of λ-flow min-cut Nash equilibria.

Example 4

Consider network (N,A, c) in Example 1. Recall that fα = (2, 1, 2, 3, 0)′ is the acyclic

maximum flow and b∗ = (0, 1, 1, 0, 0)′ is the minimum cut blockage. Suppose that `t = 4,

e = 1, and q = 5. Because the bound quantity is large, any λ-flow min-cut strategy

profile (σλ
1 , σ∗2) is a Nash equilibrium. For instance, in a λ-flow min-cut Nash equilibrium

with λ = 1, player 1 chooses the zero flow fo with probability σλ
1(fo) = 3/4 and the
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acyclic maximum flow fα with probability σλ
1(fα) = 1/4, and player 2 chooses the zero

blockage bo with probability σ∗2(b
o) = 1/4 and the minimum cut blockage b∗ with probability

σ∗2(b
∗) = 3/4. In Figure 2, the bold numbers indicate the acyclic maximum flow, and the

line segments indicate the minimum cut blockage. �
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Figure 2. Maximum Flow and Blockage

In any λ-flow min-cut Nash equilibrium there is a power law relation between

the probability and the extent of the target loss. In this equilibrium, player 1 successfully

carries bads to the target if and only if player 1 chooses a λ-scaled acyclic maximum flow

λfα and player 2 chooses the zero blockage bo. This joint event takes place with probability

(1/λ`t)(e/`t) = (1/λ)(e)`−2
t . Thus, with this probability, the bads carried to the target

cause the target loss. Therefore, in any λ-flow min-cut Nash equilibrium, the target loss

probability is pλ = (1/λ)(e)`−2
t .

In any λ-flow min-cut Nash equilibrium, if player 1 successfully carries bads to

the target, the target loss amounts to TLλ = (λ`t)(c · b∗). Because pλ = (1/λ)(e)`−2
t and

`t = (1/λ)(1/(c · b∗))TLλ,

pλ = (λ)(e)(c · b∗)2(TLλ)−2 (II.14)

where λ ∈ (1/`t, 1]. Furthermore, if λ = (`t)−θ for some θ ∈ [0, 1), equality (II.14) can be
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rewritten as

pλ = (e)(c · b∗)
θ−2
θ−1 (TLλ)

− θ−2
θ−1 (II.15)

because pλ = (e)(`t)θ−2 and `t = (c · b∗)
1

θ−1 (TLλ)
− 1

θ−1 . Thus, in any λ-flow min-cut Nash

equilibrium with λ = (`t)−θ for some θ ∈ [0, 1), the target loss probability pλ is a negative

power function of the target loss TLλ. However, if λ = 1/`t, then pλ = (e)`−1
t and TLλ =

c · b∗. Thus, if λ = 1/`t, the equilibrium probability pλ is independent of the target loss

TLλ.

Finally, suppose that the bound quantity is intermediate.

A mixed strategy σµ
1 ∈ ∆(F ) is a µ-scaled binding-flow strategy, or simply a µ-flow

strategy, for player 1 if for some µ ∈ [(1/`t)(1/q)(c · b∗), 1], σµ
1 (f τ ) = 1− (1/µ`t)(1/q)(c · b∗)

and σµ
1 (µfβ) = (1/µ`t)(1/q)(c · b∗). By choosing a µ-flow strategy player 1 chooses a

trivial flow f τ with probability 1− (1/µ`t)(1/q)(c · b∗) and a µ-scaled binding flow µfβ with

probability (1/µ`t)(1/q)(c · b∗). For example, if µ = 1, player 1 carries no bads from the

base to the target with probability 1− (1/`t)(1/q)(c · b∗) and carries bads up to the bound

quantity with probability (1/`t)(1/q)(c · b∗). Here µ is a scale to adjust the probability and

the amount of bads.

We call (σµ
1 , σ∗2) a µ-flow min-cut strategy profile.

Notice that player 1 chooses only two pure strategies f τ and µfβ with positive

probability. Given a min-cut strategy σ∗2, by choosing a trivial flow f τ , player 1 earns an

expected payoff of u1(f τ , σ∗2) = (1− e/`t)(c · b∗). Given a min-cut strategy σ∗2, by choosing
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a µ-scaled binding flow µfβ, player 1 earns an expected payoff of

u1(µfβ, σ∗2) = σ∗2(b
o)u1(µfβ, bo) + σ∗2(b

∗)u1(µfβ, b∗)

= (1− e/`t)(c · b∗), (II.16)

because player 1 earns u1(µfβ, bo) = (`t − e)(v · µfβ) with probability σ∗2(b
o) = e/`t and

earns u1(µfβ , b∗) = c · b∗− e(v ·µfβ) with probability σ∗2(b
∗) = 1− e/`t. Thus, u1(f τ , σ∗2) =

u1(µfβ, σ∗2). By choosing a min-cut strategy σ∗2, player 2 makes player 1 indifferent between

the two pure strategies f τ and µfβ.

Now notice that player 2 chooses only two pure strategies bo and b∗ with positive

probability. Given a µ-flow strategy σµ
1 , by choosing the zero blockage bo, player 2 earns an

expected payoff of

u2(σ
µ
1 , bo) = σµ

1 (f τ )u2(f τ , bo) + σµ
1 (µfβ)u2(µfβ , bo)

= w − c · b∗,

because player 2 earns u2(f τ , bo) = w with probability σµ
1 (f τ ) = 1 − (1/µ`t)(1/q)(c · b∗)

and earns u2(µfβ , bo) = w − (µ`t)q with probability σµ
1 (µfβ) = (1/µ`t)(1/q)(c · b∗). Given

a µ-flow strategy σµ
1 , by choosing a minimum cut blockage b∗, player 2 earns an expected

payoff of

u2(σ
µ
1 , b∗) = w − c · b∗, (II.17)

because player 2 earns w − c · b∗ whichever strategy player 1 chooses. Thus, u2(σ
µ
1 , bo) =

u2(σ
µ
1 , b∗). By choosing a µ-flow strategy σµ

1 , player 1 makes player 2 indifferent between

the two pure strategies bo and b∗.

In addition, we can show that for each player, these pure strategies are at least as
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good as any other pure strategies. Thus, in any µ-flow min-cut strategy profile, each player

has no incentive to change his or her strategy.

Proposition 3

If the bound quantity is intermediate, that is, if (1/`t)c · b∗ < q ≤ c · b∗, then any µ-flow

min-cut strategy profile (σµ
1 , σ∗2) is a Nash equilibrium.

The proof of Proposition 3 is presented in Appendix B. The following is an example

of µ-flow min-cut Nash equilibria.

Example 5

Consider network (N,A, c) in Example 1. Suppose that `t = 4, e = 1, and q = 3/2. Notice

that the binding flow is fβ = (1, 1/2, 1, 3/2, 0)′. Because the bound quantity is intermediate,

any µ-flow min-cut strategy profile (σµ
1 , σ∗2) is a Nash equilibrium. For instance, in a µ-flow

min-cut Nash equilibrium with µ = 1, player 1 chooses the zero flow fo with probability

σµ
1 (fo) = 1/2 and the binding flow fβ with probability σµ

1 (fβ) = 1/2, and player 2 chooses

the zero blockage bo with probability σ∗2(b
o) = 1/4 and the minimum cut blockage b∗ with

probability σ∗2(b
∗) = 3/4. In Figure 3, the bold numbers indicate the binding flow, and the

line segments indicate the minimum cut blockage. �

In any µ-flow min-cut Nash equilibrium the probability and the extent of the target

loss show a power law relation. In this equilibrium, player 1 successfully carries bads to the

target if and only if player 1 chooses a µ-scaled binding flow µfβ and player 2 chooses the

zero blockage bo. This joint event takes place with probability (1/µ`t)(1/q)(c · b∗)(e/`t) =
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Figure 3. Binding Flow and Blockage

(1/µ)(1/q)(c · b∗)(e)`−2
t . Thus, in any µ-flow min-cut Nash equilibrium, the target loss

probability is pµ = (1/µ)(1/q)(c · b∗)(e)`−2
t .

In any µ-flow min-cut Nash equilibrium, if player 1 successfully carries bads to the

target, the target loss amounts to TLµ = (µ`t)q. Because pµ = (1/µ)(1/q)(c · b∗)(e)`−2
t and

`t = (1/µ)(1/q)TLµ,

pµ = (µ)(e)(q)(c · b∗)(TLµ)−2 (II.18)

where µ ∈ ((1/`t)(1/q)(c · b∗), 1]. Furthermore, if µ = (q)−θ(c · b∗)θ(`t)−θ for some θ ∈ [0, 1),

equality (II.18) can be rewritten as

pµ = (e)(q)(c · b∗)−
1

θ−1 (TLµ)
− θ−2

θ−1 (II.19)

because pµ = (e)(q)θ−1(c · b∗)1−θ(`t)θ−2 and `t = (q)−1(c · b∗)
θ

θ−1 (TLµ)
− 1

θ−1 . Thus, in any

µ-flow min-cut Nash equilibrium with µ = (q)−θ(c · b∗)θ(`t)−θ for some θ ∈ [0, 1), the

target loss probability pµ is a negative power function of the target loss TLµ. However, if

µ = (1/`t)(1/q)(c · b∗), then pµ = (e)`−1
t and TLµ = c · b∗. Thus, if µ = (1/`t)(1/q)(c · b∗),

the equilibrium probability pµ is independent of the target loss TLµ.
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Discussion

First I relate my results to empirical studies on terrorist events and then discuss

related research in progress and further directions.

Fatality Distribution

Let z denote the number of fatalities in a terrorist event and let p(z) denote the

frequency of a terrorist event in which the number of fatalities is z. The fatality distribution

of terrorist events follows a power law if for each z ≥ zmin,

p(z) ∝ z−γ

where zmin and γ are the parameters of the distribution. The estimates of the parameters

are derived from data and denoted by ẑmin and γ̂.

Recent empirical studies show that the fatality distribution of terrorist events

follows a power law. Clauset et al. (11) use the database of National Memorial Institute

for the Prevention of Terrorism (MIPT) and conclude that the fatality distribution follows

a power law. The estimate of the scaling parameter is γ̂ = 2.38. Bohorquez et al. (5)

construct a data set on insurgent wars and conclude that for each insurgent war the fatality

distribution follows a power law. The estimates of the scaling parameter are clustered

around 2.5.

Recall that in any λ-flow min-cut Nash equilibrium with λ = (`t)−θ for some

θ ∈ [0, 1), the target loss probability pλ is a negative power function of the target loss TLλ.

Precisely, from equality (II.15),

pλ = (e)(c · b∗)
θ−2
θ−1 (TLλ)

− θ−2
θ−1 ,
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which can be rewritten as

pλ(TLλ) ∝ (TLλ)
− θ−2

θ−1 .

To link this theoretical finding and empirical evidence I make two additional assumptions.

Suppose that the target loss is measured by the number of fatalities and that the target

loss probability is proportional to the frequency of a terrorist event.

Now suppose that the estimate of the scaling parameter, γ̂ ≥ 2, is derived from

data. By setting γ̂ = θ̂−2
θ̂−1

and solving for θ̂, we have θ̂ = γ̂−2
γ̂−1 . Notice that θ̂ ∈ [0, 1).

Therefore, in the λ-flow min-cut Nash equilibrium with λ = (`t)−θ̂, the fatality distribution

is predicted to be

pλ(TLλ) ∝ (TLλ)−γ̂

and is consistent with data. Similarly, in the µ-flow min-cut Nash equilibrium with µ =

(q)−θ̂(c · b∗)θ̂(`t)−θ̂, the predicted fatality distribution, pµ(TLµ) ∝ (TLµ)−γ̂ , is consistent

with data.

Further Research

This paper presents a strategic model of network interdiction where two players

have complete information and simultaneously choose their strategies. Building on this

research we can study a model with incomplete information where players may not know

each other’s type. For example, a security agency may not know the strategies and payoffs of

an adversary. This extension to incomplete information is, in my view, of clear importance.

We can also study a model where players sequentially choose their strategies. For example,

a security agency may observe an adversary’s plots and choose her own strategy conditional
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on this observation or, alternatively, the agency may move first in setting up a security

system. Both these approaches are subjects of my current and future planned research.

Appendix A

In this appendix I provide the flow decomposition algorithm.8 A network is given

as (N,A, c). For each f ∈ F , we can find a vector x = (xh)′h∈H such that f = Mx. Initially

we are given a flow f and the zero vector x. At each step, construct a sequence of distinct

nodes, and obtain either an s − t path or a cycle. Then we modify vector x and flow f .

This algorithm terminates when the modified flow is the zero flow.

Algorithm 1 Flow Decomposition

Let f = (fij)′(i,j)∈A ∈ F be given. Let x = (xh)′h∈H be the vector of zeros.

At Step k = 1, 2, . . . , if f is the zero flow, this algorithm terminates and yields vector x. If

f is not the zero flow, there is an arc (i, j) ∈ A with fij > 0.

(i) Start from base s. If there is (i1, i2) ∈ A with i1 = s and fi1i2 > 0, begin the construction

of a sequence of distinct nodes with the two nodes i1 and i2. If there is (i2, i3) ∈ A with

fi2i3 > 0, add node i3 to the sequence. Repeat this until we add target t or a previously

added node to the sequence. In the former case, an s− t path is obtained and, in the latter

case, a cycle is obtained. Denote the outcome by h ∈ H. Replace xh = 0 with the minimum

flow of the arcs included in h. Also, replace fij with fij − xh if h includes (i, j). Proceed to

the next step.
8See Ahuja et al. (1) and Ford and Fulkerson (14) for reference.
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(ii) If there is no (i1, i2) ∈ A with i1 = s and fi1i2 > 0, find another arc (i, j) with fij > 0.

Start from node i. By applying the argument in (i), we obtain a cycle and modify vector x

and flow f . Proceed to the next step. �

Appendix B

Lemma 1

For each (f, b) ∈ F ×B, it holds that v · f bo − v · f b ≤ c · b.

Proof. Let f ∈ F be any flow. Because f bo
is the net flow of bads to the target under flow

f and the zero blockage bo, for each (i, j) ∈ A, we have f bo

ij ≤ cij . Thus, blocking arc (i, j)

decreases the value of the net flow by at most cij . Therefore, for each b = (bij)′(i,j)∈A ∈ B,

we have v · f bo − v · f b ≤
∑

(i,j)∈A cijbij . �

Lemma 2

If fα is an acyclic maximum flow with large bound quantity q in network (N,A, c), for

each b ∈ B, it holds that v · fα − v · (fα)b ≤ c · b. Furthermore, if q ≤ (1/`t)c · b∗ and fβ

is a binding flow, for each b ∈ B, it holds that `t(v · fβ)− `t(v · (fβ)b) ≤ c · b.

Proof. Lemma 1 implies that for each b ∈ B, v · (fα)bo − v · (fα)b ≤ c · b. Because

fα = (fα)bo
from equality (II.8), we have v · fα − v · (fα)b ≤ c · b. Now multiplying both

sides by (`t)(q/(c·b∗)), we have (`t)(q/(c·b∗))(v ·fα−v ·(fα)b) ≤ (`t)(q/(c·b∗))(c·b). Because

fβ is a binding flow and fβ = (q/(c · b∗))fα, we have (`t)(q/(c · b∗))(v · fα − v · (fα)b) =

`t(v · fβ)− `t(v · (fβ)b). Because q ≤ (1/`t)c · b∗, we have (`t)(q/(c · b∗))(c · b) ≤ c · b. Thus,

for each b ∈ B, we have `t(v · fβ)− `t(v · (fβ)b) ≤ c · b. �
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Proof of Proposition 1. Suppose that q ≤ (1/`t)c · b∗. We show that in any binding-

flow zero-blockage strategy profile (fβ, bo) each player has no incentive to change his or her

strategy. Since (fβ)bo
= fβ from equality (II.10) and v · fβ = q from equality (II.11), we

have u1(fβ, bo) = (`t − e)q. Suppose that player 1 chooses any flow f . Since v · f bo ≤ v · f

and v · f ≤ q,

u1(f, bo) = `t(v · f bo
) + c · bo − e(v · f)

≤ `t(v · f)− e(v · f)

≤ (`t − e)q.

Thus, player 1 has no incentive to change his strategy. Since (fβ)bo
= fβ from equality

(II.10) and v · fβ = q from equality (II.11), we have u2(fβ, bo) = w − (`t)q. Suppose that

player 2 chooses any blockage b. Since `t(v · fβ) − `t(v · (fβ)b) ≤ c · b from Lemma 2 and

v · fβ = q from equality (II.11),

u2(fβ, b) = w − `t(v · (fβ)b)− c · b

≤ w − `t(v · fβ)

= w − (`t)q.

Thus, player 2 has no incentive to change her strategy. Therefore, (fβ , bo) is a Nash equi-

librium. �

Proof of Proposition 2. Suppose that c · b∗ < q. In any λ-flow min-cut strategy profile

(σλ
1 , σ∗2) player 1 chooses only two pure strategies f τ and λfα with positive probability and

player 2 chooses only two pure strategies bo and b∗ with positive probability. In addition

each player is indifferent between the two pure strategies played with positive probability.

Thus, to show that (σλ
1 , σ∗2) is a Nash equilibrium, it suffices to show that (i) for each f ∈ F ,
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u1(λfα, σ∗2) ≥ u1(f, σ∗2) and (ii) for each b ∈ B, u2(σλ
1 , b∗) ≥ u2(σλ

1 , b).

(i) We show that for each f ∈ F , u1(λfα, σ∗2) ≥ u1(f, σ∗2). Let f ∈ F be any flow.

Calculate player 1’s payoffs. Since v · f bo ≤ v · f ,

u1(f, bo) = `t(v · f bo
) + c · bo − e(v · f)

≤ (`t − e)(v · f).

Since v · f b∗ = 0,

u1(f, b∗) = `t(v · f b∗) + c · b∗ − e(v · f)

= c · b∗ − e(v · f).

Since σ∗2(b
o) = e/`t and σ∗2(b

∗) = 1− e/`t,

u1(f, σ∗2) = σ∗2(b
o)u1(f, bo) + σ∗2(b

∗)u1(f, b∗)

≤ (e/`t)(`t − e)(v · f) + (1− e/`t)(c · b∗ − e(v · f))

= (1− e/`t)(c · b∗).

From (II.12) we know that u1(λfα, σ∗2) = (1 − e/`t)(c · b∗). Thus, for each f ∈ F ,

u1(λfα, σ∗2) ≥ u1(f, σ∗2).

(ii) We show that for each b ∈ B, u2(σλ
1 , b∗) ≥ u2(σλ

1 , b). Let b ∈ B be any

blockage. Calculate player 2’s payoffs. Since v · (f τ )b = 0,

u2(f τ , b) = w − `t(v · (f τ )b)− c · b

= w − c · b.
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Since v · (λfα)b = λ(v · (fα)b),

u2(λfα, b) = w − `t(v · (λfα)b)− c · b

= w − λ`t(v · (fα)b)− c · b.

Since σλ
1(f τ ) = 1− 1/λ`t, σλ

1(λfα) = 1/λ`t, and v · fα − v · (fα)b ≤ c · b from Lemma 2,

u2(σλ
1 , b) = σλ

1(f τ )u2(f τ , b) + σλ
1(λfα)u2(λfα, b)

= (1− 1/λ`t)(w − c · b) + (1/λ`t)(w − λ`t(v · (fα)b)− c · b)

= w − c · b− v · (fα)b

≤ w − v · fα.

Then the max-flow min-cut theorem (II.9) implies that u2(σλ
1 , b) ≤ w − c · b∗. From (II.13)

we know that u2(σλ
1 , b∗) = w − c · b∗. Thus, for each b ∈ B, u2(σλ

1 , b∗) ≥ u2(σλ
1 , b).

Therefore, (σλ
1 , σ∗2) is a Nash equilibrium. �

Proof of Proposition 3. Suppose that (1/`t)c · b∗ < q ≤ c · b∗. In any µ-flow min-cut

strategy profile (σµ
1 , σ∗2) player 1 chooses only two pure strategies f τ and µfβ with positive

probability and player 2 chooses only two pure strategies bo and b∗ with positive probability.

In addition each player is indifferent between the two pure strategies played with positive

probability. Thus, to show that (σµ
1 , σ∗2) is a Nash equilibrium, it suffices to show that (i)

for each f ∈ F , u1(µfβ , σ∗2) ≥ u1(f, σ∗2) and (ii) for each b ∈ B, u2(σ
µ
1 , b∗) ≥ u2(σ

µ
1 , b).

(i) We show that for each f ∈ F , u1(µfβ, σ∗2) ≥ u1(f, σ∗2). Let f ∈ F be any flow.

Calculate player 1’s payoffs. Since v · f bo ≤ v · f ,

u1(f, bo) = `t(v · f bo
) + c · bo − e(v · f)

≤ (`t − e)(v · f).
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Since v · f b∗ = 0,

u1(f, b∗) = `t(v · f b∗) + c · b∗ − e(v · f)

= c · b∗ − e(v · f).

Since σ∗2(b
o) = e/`t and σ∗2(b

∗) = 1− e/`t,

u1(f, σ∗2) = σ∗2(b
o)u1(f, bo) + σ∗2(b

∗)u1(f, b∗)

≤ (e/`t)(`t − e)(v · f) + (1− e/`t)(c · b∗ − e(v · f))

= (1− e/`t)(c · b∗).

From (II.16) we know that u1(µfβ, σ∗2) = (1 − e/`t)(c · b∗). Thus, for each f ∈ F ,

u1(µfβ, σ∗2) ≥ u1(f, σ∗2).

(ii) We show that for each b ∈ B, u2(σ
µ
1 , b∗) ≥ u2(σ

µ
1 , b). Let b ∈ B be any

blockage. Calculate player 2’s payoffs. Since v · (f τ )b = 0,

u2(f τ , b) = w − `t(v · (f τ )b)− c · b

= w − c · b.

Since v · (µfβ)b = µ(v · (fβ)b),

u2(µfβ, b) = w − `t(v · (µfβ)b)− c · b

= w − µ`t(v · (fβ)b)− c · b.
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Since σµ
1 (f τ ) = 1 − (1/µ`t)(1/q)(c · b∗), σµ

1 (µfβ) = (1/µ`t)(1/q)(c · b∗), and v · (fβ)b =

(q/(c · b∗))(v · (fα)b),

u2(σ
µ
1 , b) = σµ

1 (f τ )u2(f τ , b) + σµ
1 (µfβ)u2(µfβ, b)

= w − c · b− (1/q)(c · b∗)(v · (fβ)b)

= w − c · b− (1/q)(c · b∗)(q/(c · b∗))(v · (fα)b)

= w − c · b− v · (fα)b

≤ w − v · fα.

The last inequality comes from Lemma 2. Then the max-flow min-cut theorem (II.9) implies

that u2(σ
µ
1 , b) ≤ w − c · b∗. From (II.17) we know that u2(σ

µ
1 , b∗) = w − c · b∗. Thus, for

each b ∈ B, u2(σ
µ
1 , b∗) ≥ u2(σ

µ
1 , b).

Therefore, (σµ
1 , σ∗2) is a Nash equilibrium. �
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CHAPTER III

NETWORK BADS: HOW BOTTLENECKS MATTER

Introduction

When there is transmission of bads through a network, the structure of the net-

work affects the behavior of economic players. Players may want to control the source

of bads or the bottlenecks of the network. The structure of the network determines the

bottlenecks, and in turn, the bottlenecks determine the transmission of bads through the

network. Therefore, by controlling the bottlenecks, players can control the transmission of

bads. However, players behave strategically and equilibrium outcomes may not be efficient.

For example, when water pollutants are carried through rivers and pipelines, public

agencies can view the whole system of rivers and pipelines as a network and manage the

bottlenecks of the network. They can also manage the source of pollution. If public agencies

manage the source and the network separately, they may not take action that leads to

efficient outcomes.1

Cooperative approaches through transfers between players can help achieve effi-

cient outcomes. Sharing human resources and monetary funds can be examples of transfers.

During the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003, by sharing

human resources, public health agencies worked together to prevent the disease. Also, in

the ongoing debt crisis, European governments are seeking cooperative agreements includ-
1When infectious diseases are transmitted through social networks between individuals, public agencies

may want to control social networks to reduce the transmission of diseases. For studies on disease control,
see Glass et al. (17) and Viboud et al. (38). When liquidity shocks are contagious through financial networks
between banks, liquid banks may want to control financial networks to reduce the contagion of shocks. For
studies on financial contagion, see Allen and Gale (2) and Leitner (26).

35



ing the creation and expansion of a bailout fund, the European Financial Stability Facility

(EFSF), to resolve the crisis.

This paper examines a model where bads arise at a source node and may be

transmitted to a sink node through a network. Two players, player 1 and player 2, wish

to decrease the extent of bads transmitted to the sink node. Player 1 can act to mitigate

the Extent of Bads at the Source (EBS) while player 2 can act to reduce the Maximum

Transmission of Bads (MTB) through the network. The minimum of the mitigated EBS

and the reduced MTB is assumed to determine the extent of bads transmitted to the sink

node, which is called the extent of network bads. Each player incurs the cost of action but

benefits from the decrease in the extent of network bads. Each player’s action to decrease

the extent of network bads can be viewed as a public good.

I characterize efficient strategy profiles and equilibria in terms of the bottlenecks

of the network and the extent of bads at the source, as well as costs and benefits. In an

efficient profile the joint payoff is maximized. In an equilibrium each player maximizes his

own payoff given the other player’s strategy.

In every efficient profile and in every equilibrium, either (a) player 1 acts to mit-

igate the EBS or (b) player 2 acts to reduce the MTB through the network or (c) neither

player acts. Because the minimum of the mitigated EBS and the reduced MTB determines

the extent of network bads, it is neither an efficient profile nor an equilibrium for both

players to act. Thus, one player may free-ride on the other player’s action. In case (a),

player 2 free-rides on player 1’s action. In case (b), player 1 free-rides on player 2’s action.

If either player 1 or player 2 acts, in an efficient profile, the marginal cost of action

equals to the marginal joint loss from network bads, whereas in an equilibrium, the marginal

cost equals to the marginal private loss. Thus, in case (a) and in case (b), the equilibrium
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level of action is less than the efficient level.

For further comparison, my analysis is divided into three cases depending on the

bottleneck capacity. In a network a bottleneck is an arc used to its capacity when the max-

imum transmission occurs. The total capacity of bottlenecks, or the bottleneck capacity,

determines the maximum transmission of bads through the network. Whether the bottle-

neck capacity is small, intermediate, or large depends on the extent of bads at the source

and the efficient level of action.

If the bottleneck capacity is small, the maximum transmission of bads (MTB) is

less than the extent of bads at the source (EBS) mitigated to the efficient level. Thus,

even if player 1 mitigates the EBS to the efficient level, the extent of network bads does

not decrease. Similarly, when he mitigates to the equilibrium level, the extent does not

decrease. Therefore, in every efficient profile and in every equilibrium, player 1 does not

act at all. Either (b) player 2 acts or (c) neither player acts.

If the bottleneck capacity is large, the EBS is less than or equal to the MTB

reduced to the efficient level. Thus, even if player 2 reduces the MTB to the efficient level,

the extent of network bads does not decrease. Therefore, in every efficient profile, player

2 does not act at all. Either (a) player 1 acts or (c) neither player acts. However, in

equilibrium, player 1 always acts. That is, there is no equilibrium where player 2 acts or

neither player acts.

If the bottleneck capacity is intermediate, the MTB is greater than or equal to

the EBS mitigated to the efficient level, and the EBS is greater than the MTB reduced

to the efficient level. Thus, both players can decrease the extent of network bads to the

efficient level. In every efficient profile, either (a) player 1 acts or (b) player 2 acts. Costs

and benefits determine who takes action in an efficient profile. However, in equilibrium,
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both players may take no action or wrong action while they try to free-ride on each other’s

action. Specifically, there may be an inefficient equilibrium where neither player acts. More

interestingly, the player who acts in an equilibrium may not be the player who must act

in the efficient profile. That is, the efficient player may not act in equilibrium. Overall,

strategic inaction leads to inefficiency.

Unless there is an efficient equilibrium where neither player acts, no efficient profile

is an equilibrium and no equilibrium is efficient. Thus, players 1 and 2 may not have

incentives to choose an efficient profile. To provide incentives for efficiency, I introduce

cooperative solutions, where players 1 and 2 jointly choose an efficient profile and make

transfers to each other. Each player is better off by using a cooperative solution than by

maximizing his payoff alone. I show that such cooperative solutions always exist. Therefore,

both players can always achieve efficiency by using cooperative solutions. If the bottleneck

capacity is intermediate, in every cooperative solution, the efficient player acts to decrease

the extent of network bads and gets a positive net transfer from the other.

The contribution of this chapter is threefold.

First, this chapter contributes to the literature on public goods in networks by

considering public bads transmitted through networks. Public goods, and also public bads,

are transmitted through various networks. Knowledge and information can be examples of

public goods.2 Infectious diseases and liquidity shocks can be examples of public bads. In

the literature there are two different approaches: The network interaction approach assumes

that networks are given and fixed; the network formation approach assumes that networks

are chosen by players. Bramoullé and Kranton (6) is an example of the former; Galeotti
2Conley and Udry (12) show how farmers learn agricultural practices from other farmers.
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and Goyal (16) is an example of the latter.3 A third approach is explored in this chapter:

A network is given but not fixed. Some player may have limited discretion to control the

network. For example, suppose that a disease breaks out in one area connected through a

transportation network. This disease can be transmitted through the network to another

area. An agency may want to reduce the transmission of the disease by controlling the

network. The agency’s efforts to reduce the transmission can be viewed as public goods in

the network.

Second, this chapter contributes to the literature on adversarial networks by in-

troducing non-adversarial players. While these players are affected by network bads, they

have different tools to deal with the bads. Thus, it is important to coordinate the players’

behavior to achieve better outcomes. In the literature, however, it is assumed that players

are adversarial. Washburn and Wood (40) study a zero-sum game between an evader and

an interdictor in a given network. The evader chooses a path to move through the network

while the interdictor chooses an arc in the network to stop the evader. Baccara and Bar-

Isaac (3) study a game between a law enforcement agency and a criminal organization. The

agency allocates its resources to detect criminals while the criminals form an organization to

carry out illegal activities. In this chapter, players are non-adversarial. Players coordinate

with each other to decrease network bads. Cooperative solutions are studied to help the

coordination.

Third, this chapter contributes to the literature on flow games by introducing

strategic behavior. Kalai and Zemel (24) introduce a coalitional game, called a flow game,

where the worth of a coalition is defined as the value of a maximum flow through the

network restricted to the members of the coalition. Every flow game is totally balanced
3Cho (9) also studies a network model for public goods. For a review of the literature, see Goyal (18)

and Jackson (23).
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and thus has a non-empty core. A minimum cut is used to find a core allocation.4 In this

chapter, players make strategic choices to decrease the extent of network bads, which is

constrained by the value of a maximum flow through a network. Equilibrium strategies, as

well as efficient strategies, are constructed on the concept of a minimum cut.

The rest of this chapter is organized as follows. Section 2 develops a strategic net-

work model. Section 3 analyzes efficient profiles and equilibria and introduces cooperative

solutions. Section 4 concludes.

Model

Let N := {1, 2, . . . , n} be the set of nodes with n ≥ 2. Node 1 is called the source

and node n is called the sink. Let A ⊆ {(i, j) ∈ N × N : i 6= j} be the set of arcs, where

each arc is an ordered pair of distinct nodes. Each arc (i, j) is directed from node i to node

j. The Extent of Bads at the Source (EBS) is described by a number x > 0. These bads

are transmitted through an arc from one node to another node. For each (i, j) ∈ A, the

maximum transmission of bads through arc (i, j) from node i to node j is described by a

number yij > 0, which is called the capacity of arc (i, j).5 Let y := (yij)(i,j)∈A be the vector

of arc capacities. The collection (N,A, y) is called a network.

Two players, player 1 and player 2, wish to decrease the extent of bads transmitted

to the sink. Both players choose their strategies simultaneously and independently.

Player 1 can act to mitigate the extent of bads at the source. Player 1 chooses

a mitigation strategy m with 0 ≤ m ≤ x. The set of mitigation strategies for player 1 is
4For studies on flow games, see Granot and Granot (20), Kalai and Zemel (25), Potters et al. (34), and

Reijnierse et al. (35). Also, see Granot and Maschler (21) and Van den Nouweland et al. (37) for related
studies on spanning network games.

5This capacity can be viewed as a plausible upper bound for the transmission of bads through arc (i, j).
For a discussion of plausible upper bounds in risk analysis, see Paté-Cornell (33).
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denoted by M . By choosing m ∈ M , player 1 mitigates the extent of bads at the source to

x−m.

Player 2 can act to reduce the maximum transmission of bads through network

(N,A, y). Player 2 chooses a reduction strategy r := (rij)(i,j)∈A with 0 ≤ rij ≤ yij for

each (i, j) ∈ A. The set of reduction strategies for player 2 is denoted by R. By choosing

r = (rij)(i,j)∈A ∈ R, player 2 reduces the maximum transmission of bads through arc (i, j)

to yij − rij .

For each (m, r) ∈ M ×R, the extent of bads transmitted to the sink is called the

extent of network bads and denoted by e(m, r). How to define e(m, r) will be explained

later.

Both players lose l(e(m, r)) from e(m, r), where l(·) is a loss function with l(0) = 0.

In other words, both players benefit from the decrease in the extent of network bads.

However, each player incurs the cost of action. Player 1 pays c1(m) for m ∈ M , where

c1(·) is a mitigation cost function with c1(0) = 0. Player 2 pays c2

(∑
(i,j)∈A rij

)
for

r = (rij)(i,j)∈A ∈ R, where
∑

(i,j)∈A rij is the capacity of reduction strategy r, and c2(·)

is a reduction cost function with c2(0) = 0. Assume that l(·), c1(·), and c2(·) are twice

continuously differentiable, strictly increasing, and strictly convex. That is, l′(·) > 0, l′′(·) >

0, c′1(·) > 0, c′′1(·) > 0, c′2(·) > 0, and c′′2(·) > 0. Players earn a constant worth w.

For each (m, r) ∈ M ×R, the payoff of player 1 is

u1(m, r) = w − c1(m)− l(e(m, r))

and the payoff of player 2 is

u2(m, r) = w − c2

 ∑
(i,j)∈A

rij

− l(e(m, r)).
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Here the transmission of bads creates a public bad. Both mitigation strategy and reduction

strategy are public goods to decrease the public bad.

A strategy m̃ ∈ M is a best response of player 1 to r ∈ R if for each m ∈ M ,

u1(m̃, r) ≥ u1(m, r). For each r ∈ R, let BR1(r) ⊆ M be the set of player 1’s best

responses to r. A strategy r̃ ∈ R is a best response of player 2 to m ∈ M if for each

r ∈ R, u2(m, r̃) ≥ u2(m, r). For each m ∈ M , let BR2(m) ⊆ R be the set of player 2’s best

responses to m. A strategy profile (m̃, r̃) ∈ M ×R is an equilibrium if m̃ is a best response

to r̃ and r̃ is a best response to m̃.

For each (m, r) ∈ M×R, the joint payoff is U(m, r) = 2w−c1(m)−c2

(∑
(i,j)∈A rij

)
−

2l(e(m, r)). A strategy profile (m̃, r̃) ∈ M × R is efficient if for each (m, r) ∈ M × R,

U(m̃, r̃) ≥ U(m, r). That is, an efficient (strategy) profile maximizes the joint payoff.

Now I define e(m, r) the extent of network bads. The transmission of bads from

the source to the sink is modeled as a flow through a network. Formally, for each r ∈ R,

a flow through network (N,A, y − r) is a vector f := (fij)(i,j)∈A satisfying the following

constraints:

0 ≤ fij ≤ yij − rij for each (i, j) ∈ A; (III.1)

fi1 = 0 for each (i, 1) ∈ A; (III.2)

fni = 0 for each (n, i) ∈ A; (III.3)∑
j:(j,i)∈A

fji =
∑

j:(i,j)∈A

fij for each i ∈ N \ {1, n}. (III.4)

Constraint (III.1) says that each arc flow fij is non-negative and constrained by the reduced

arc capacity yij − rij . Constraint (III.2) says that there is no arc flow to the source.

Constraint (III.3) says that there is no arc flow from the sink. Constraint (III.4) says that

at each node i, except for the source and the sink, the total arc flow to node i equals to the
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total arc flow from node i. That is, there is no change in the total arc flow at node i 6= 1, n.

For each r ∈ R, let F (r) be the set of all flows through network (N,A, y − r).

For each r ∈ R, the value of a maximum flow through network (N,A, y − r) is

defined as

f(r) = max
∑

(i,n)∈A

fin (III.5)

subject to f ∈ F (r).

That is, f(r) is the maximum total arc flow to the sink through network (N,A, y − r).

The value of a maximum flow through network (N,A, y − r) is also called the Maximum

Transmission of Bads (MTB).

For each (m, r) ∈ M ×R, the extent of network bads is defined as

e(m, r) = min{x−m, f(r)}.

That is, the extent of network bads is the minimum of x−m, the mitigated extent of bads at

the source, and f(r), the reduced maximum transmission of bads. For each (m, r) ∈ M×R,

if x−m ≤ f(r), the extent of network bads is e(m, r) = x−m. If f(r) ≤ x−m, however,

the extent of network bads is e(m, r) = f(r).

The following example shows how to find the extent of network bads.

Example 6

Suppose that a network is given as (N,A, y), where N = {1, 2, 3, 4} is the set of nodes,

A = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)} is the set of arcs, and y = (y12, y13, y23, y24, y34) =

(50, 10, 10, 10, 50) is the vector of arc capacities. The extent of bads at the source is given as

x = 36. Suppose that player 1 chooses a mitigation strategy m = 16 and player 2 chooses a

reduction strategy r = (r12, r13, r23, r24, r34) = (10, 10, 0, 0, 0). Thus, x−m = 20 and y−r =
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(40, 0, 10, 10, 50). Note that there is a unique maximum flow f = (f12, f13, f23, f24, f34) =

(20, 0, 10, 10, 10) through network (N,A, y−r). The value of the maximum flow is f(r) = 20.

Thus, the extent of network bads is e(m, r) = 20. In Figure 4 each solid circle indicates a

node and each arrow indicates an arc. In each pair of numbers the first bold number shows

the maximum flow and the second light number shows the reduced arc capacity. �
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Figure 4. Maximum Flow

The vector of zeros 0 is called the zero reduction strategy. The value of a maximum

flow through network (N,A, y) is denoted by f(0).

A cut C := (C1, Cn) is an ordered partition of the node set N with 1 ∈ C1 and

n ∈ Cn. For each cut C = (C1, Cn), an arc (i, j) ∈ A is a cut arc of C if i ∈ C1 and j ∈ Cn.

For each cut C = (C1, Cn), let A(C) := {(i, j) ∈ A : i ∈ C1 and j ∈ Cn} be the set of all

cut arcs of C.

For each cut C, the value of a maximum flow through network (N,A, y) is less

than or equal to the total capacity of cut arcs of C. Formally, for each cut C, it holds that

f(0) ≤
∑

(i,j)∈A(C)

yij . (III.6)
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For each r ∈ R, a cut Cr is a minimum cut in (N,A, y − r) if for each cut C,

∑
(i,j)∈A(Cr)

yij − rij ≤
∑

(i,j)∈A(C)

yij − rij . (III.7)

The left hand side of inequality (III.7) is called the capacity of a minimum cut in (N,A, y−r).

A minimum cut in a network determines the bottlenecks of the network. For each

r ∈ R, if Cr is a minimum cut in network (N,A, y − r), then A(Cr) is the set of all cut

arcs of Cr. Each cut arc (i, j) ∈ A(Cr) is called a bottleneck of network (N,A, y − r). The

capacity of a minimum cut is also called the bottleneck capacity.

The max-flow min-cut theorem says that for each r ∈ R, the value of a maximum

flow through network (N,A, y−r) equals to the capacity of a minimum cut in the network.6

Formally, for each r ∈ R, it holds that

f(r) =
∑

(i,j)∈A(Cr)

yij − rij . (III.8)

In other words, the maximum transmission of bads through network (N,A, y− r) equals to

the bottleneck capacity of the network.

From inequality (III.6) and the max-flow min-cut theorem (III.8), for each r ∈ R,

we can show that

f(0)− f(r) ≤
∑

(i,j)∈A

rij . (III.9)

A reduction strategy r ∈ R is a bottleneck reduction strategy if there is a minimum

cut C in network (N,A, y) such that for each (i, j) ∈ A(C), rij > 0, and for each (i, j) /∈

A(C), rij = 0. Note that each cut arc (i, j) ∈ A(C) is a bottleneck of network (N,A, y) and

player 2 reduces the maximum transmission of bads through the bottlenecks.
6Ford and Fulkerson (14) introduce the maximum flow problem (III.5) and show the max-flow min-cut

theorem. For a detailed discussion, see Ahuja et al. (1).

45



From the max-flow min-cut theorem (III.8), if r ∈ R is a bottleneck reduction

strategy, we can show that

∑
(i,j)∈A

rij = f(0)− f(r). (III.10)

The following is an example of a bottleneck reduction strategy.

Example 7

Consider network (N,A, y) in Example 6. There is a unique minimum cut C = ({1, 2}, {3, 4})

in network (N,A, y). The set of all cut arcs of C is A(C) = {(1, 3), (2, 3), (2, 4)}. Suppose

that player 2 chooses a bottleneck reduction strategy r = (0, 10, 5, 5, 0). The value of a

maximum flow through network (N,A, y − r) is f(r) = 10. In Figure 5, the bold numbers

indicate the maximum flow, and the light numbers indicate the reduced arc capacities. �
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Figure 5. Bottleneck Reduction Strategy
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Analysis

I want to analyze strategic behavior in my model. Specifically, how does network

(N,A, y) affect strategic behavior? How much mitigation and reduction do players choose?

Do players have incentives for efficiency? To answer these questions, I characterize efficient

(strategy) profiles and equilibria.

Recall that x is the extent of bads at the source and f(0) is the maximum trans-

mission of bads through network (N,A, y). I make two assumptions on the loss and cost

functions.

(A1) The marginal private loss at x is greater than the marginal mitigation cost at 0, i.e.,

l′(x) > c′1(0). The marginal joint loss at 0 is less than the marginal mitigation cost at

x, i.e., 2l′(0) < c′1(x).

(A2) The marginal private loss at f(0) is greater than the marginal reduction cost at 0,

i.e., l′(f(0)) > c′2(0). The marginal joint loss at 0 is less than the marginal reduction

cost at f(0), i.e., 2l′(0) < c′2 (f(0)).

Efficient Profiles

There are two necessary conditions for efficient profiles. In every efficient profile

there is at most one player who acts to decrease the extent of network bads.

47



Remark 1

For each (m, r) ∈ M ×R, if both players act, that is, if m 6= 0 and r 6= 0, then (m, r) is not

efficient. To see this, let (m, r) ∈ M ×R be such that m 6= 0 and r 6= 0. Consider two cases.

First, if x−m ≤ f(r), then e(m, r) = x−m and U(m, r) = 2w−c1(m)−c2

(∑
(i,j)∈A rij

)
−

2l(x−m). Because c2(·) is strictly increasing and r 6= 0, we have U(m, r) < U(m, 0). Second,

if f(r) ≤ x−m, then e(m, r) = f(r) and U(m, r) = 2w−c1(m)−c2

(∑
(i,j)∈A rij

)
−2l(f(r)).

Because c1(·) is strictly increasing and m 6= 0, we have U(m, r) < U(0, r). In both cases,

(m, r) is not efficient. Henceforth, we only consider (m, r) ∈ M ×R with m = 0 or r = 0 or

both. �

From inequality (III.9), for each r ∈ R, it holds that
∑

(i,j)∈A rij ≥ f(0) − f(r).

If (m, r) is an efficient profile such that f(r) ≤ x −m, then
∑

(i,j)∈A rij = f(0) − f(r). In

words, there is no wasted reduction capacity to decrease the extent of network bads.

Remark 2

For each (m, r) ∈ M × R with f(r) ≤ x − m, if
∑

(i,j)∈A rij > f(0) − f(r), then (m, r)

is not efficient. To see this, let (m, r) ∈ M × R be such that
∑

(i,j)∈A rij > f(0) − f(r).

Also, let (m, r̃) ∈ M ×R be such that
∑

(i,j)∈A r̃ij = f(0)− f(r̃) and f(r̃) = f(r). Because

f(r) ≤ x − m, we have U(m, r) = 2w − c1(m) − c2

(∑
(i,j)∈A rij

)
− 2l(f(r)). Because

f(r̃) = f(r) and f(r) ≤ x−m, we have U(m, r̃) = 2w−c1(m)−c2

(∑
(i,j)∈A r̃ij

)
−2l(f(r̃)).

Because
∑

(i,j)∈A r̃ij <
∑

(i,j)∈A rij and f(r̃) = f(r), we have U(m, r) < U(m, r̃). Thus,

(m, r) is not efficient. Henceforth, if f(r) ≤ x−m, we only consider (m, r) ∈ M × R with∑
(i,j)∈A rij = f(0)− f(r). �

Define m̄ and q̄ for efficient profiles.
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Let m̄ be a level of mitigation such that 2l′(x− m̄) = c′1(m̄). That is, the marginal

joint loss at x− m̄ equals to the marginal mitigation cost at m̄. Let Ū1(m) = 2w− c1(m)−

2l(x −m). The function Ū1(m) is maximized at m = m̄. The existence of a unique value

for m̄ is guaranteed by the assumption (A1). Note that 0 < m̄ < x.

Let q̄ be a level of reduction such that 2l′(f(0)− q̄) = c′2 (q̄). That is, the marginal

joint loss at f(0)− q̄ equals to the marginal reduction cost at q̄. Let Ū2(q) = 2w − c2 (q)−

2l(f(0)− q), where 0 ≤ q ≤ f(0). The function Ū2(q) is maximized at q = q̄. The existence

of a unique value for q̄ is guaranteed by the assumption (A2). Note that 0 < q̄ < f(0).

Let R̄ := {r̄ ∈ R :
∑

(i,j)∈A r̄ij = q̄ and q̄ = f(0) − f(r̄)} be a set of reduction

strategies with capacity q̄. From equality (III.10), if r ∈ R is a bottleneck reduction strategy

with capacity
∑

(i,j)∈A rij = q̄, then r ∈ R̄.

My analysis is divided into three cases depending on the bottleneck capacity of

network (N,A, y), which equals to the maximum transmission of bads through the network.

The bottleneck capacity of network (N,A, y) is small if f(0) < x − m̄, intermediate if

x− m̄ ≤ f(0) and f(r̄) < x, and large if x ≤ f(r̄).

If the bottleneck capacity is small, that is, if f(0) < x − m̄, the maximum trans-

mission of bads (MTB) through network (N,A, y) is less than the extent of bads at the

source (EBS) mitigated to the efficient level. Thus, even if player 1 acts to mitigate the

EBS to the efficient level x− m̄, the extent of network bads does not decrease. Therefore,

in every efficient profile, player 1 does not act at all. Whether player 2 acts depends on the

loss and cost functions. The following proposition summarizes this result. All proofs are

presented in Appendix A.
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Proposition 4

If the bottleneck capacity is small, that is, if f(0) < x − m̄, every efficient profile is (0, 0)

or (0, r̄). Furthermore, if 2l(f(0)) < c2 (
∑

r̄ij) + 2l(f(r̄)), then (0, 0) is the only efficient

profile. However, if 2l(f(0)) > c2 (
∑

r̄ij) + 2l(f(r̄)), then (0, r̄) is the only efficient profile.

If the bottleneck capacity is intermediate, that is, if x − m̄ ≤ f(0) and f(r̄) < x,

the MTB through network (N,A, y) is greater than or equal to the EBS mitigated to the

efficient level, and the EBS is greater than the MTB through network (N,A, y − r̄). Thus,

both players can decrease the extent of network bads to the efficient level. Therefore, in

every efficient profile, either player 1 or player 2 acts to decrease the extent of network bads.

There is no efficient profile in which neither player acts. Whether player 1 acts or player 2

acts depends on the loss and cost functions.

Proposition 5

If the bottleneck capacity is intermediate, that is, if x − m̄ ≤ f(0) and f(r̄) < x, every

efficient profile is (0, r̄) or (m̄, 0). Furthermore, if c2 (
∑

r̄ij)+2l(f(r̄)) < c1(m̄)+2l(x−m̄),

then (0, r̄) is the only efficient profile. However, if c2 (
∑

r̄ij)+2l(f(r̄)) > c1(m̄)+2l(x−m̄),

then (m̄, 0) is the only efficient profile.

The followings are examples of efficient profiles.
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Example 8

Consider network (N,A, y) in Example 6. The MTB through network (N,A, y) is f(0) = 30.

Suppose that x = 36. Assume that l(e(m, r)) = (e(m, r))2, c1(m) = m2, and c2 (
∑

rij) =

(
∑

rij)
2. Because 4(x− m̄) = 2m̄ and x = 36, we have m̄ = 24. Because 4(f(0)− q̄) = 2q̄

and f(0) = 30, we have q̄ = 20. Suppose that player 2 chooses r̄ = (0, 10, 5, 5, 0). The

MTB through network (N,A, y − r̄) is f(r̄) = 10. Because x − m̄ = 12 ≤ 30 = f(0)

and f(r̄) = 10 < 36 = x, the bottleneck capacity is intermediate. Because c2 (
∑

r̄ij) +

2l(f(r̄)) = 600 < 864 = c1(m̄) + 2l(x− m̄), from Proposition 5, (0, r̄) is efficient. �

In the example above, (0, r̄) is efficient and player 2 reduces the MTB to the

efficient level f(r̄). However, in the example below, (m̄, 0) is efficient and player 1 mitigates

the EBS to the efficient level x− m̄.

Example 9

Consider Example 8 but now assume that c2 (
∑

rij) = 4 (
∑

rij)
2. Because 4(f(0)− q̄) = 8q̄

and f(0) = 30, we have q̄ = 10. Suppose that player 2 chooses r̄ = (0, 4, 3, 3, 0). The MTB

through (N,A, y−r̄) is f(r̄) = 20. Because x−m̄ = 12 ≤ 30 = f(0) and f(r̄) = 20 < 36 = x,

the bottleneck capacity is intermediate. Because c2 (
∑

r̄ij) + 2l(f(r̄)) = 1200 > 864 =

c1(m̄) + 2l(x− m̄), from Proposition 5, (m̄, 0) is efficient. �

If the bottleneck capacity is large, that is, if x ≤ f(r̄), the EBS is less than or

equal to the MTB through network (N,A, y − r̄). Thus, even if player 2 acts to reduce the

MTB to the efficient level f(r̄), the extent of network bads does not decrease. Therefore,

in every efficient profile, player 2 does not act at all. Whether player 1 acts depends on the

loss and cost functions.
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Proposition 6

If the bottleneck capacity is large, that is, if x ≤ f(r̄), every efficient profile is (0, 0) or

(m̄, 0). Furthermore, if 2l(x) < c1(m̄) + 2l(x− m̄), then (0, 0) is the only efficient profile.

However, if 2l(x) > c1(m̄) + 2l(x− m̄), then (m̄, 0) is the only efficient profile.

To sum up, in every efficient profile, either (a) player 1 acts to mitigate the extent

of bads at the source or (b) player 2 acts to reduce the maximum transmission of bads

through the network or (c) neither player acts. In case (a), player 2 free-rides on player 1’s

mitigation effort. The efficient level of mitigation is m̄, where the marginal joint loss equals

to the marginal mitigation cost. In case (b), player 1 free-rides on player 2’s reduction effort.

The efficient level of reduction is
∑

(i,j)∈A r̄ij = q̄, where the marginal joint loss equals to

the marginal reduction cost.

As in Proposition 4, if (0, 0) is the only efficient profile, the extent of network bads

is e(0, 0) = f(0). As in Propositions 4 and 5, if (0, r̄) is the only efficient profile, the extent

is e(0, r̄) = f(r̄). As in Propositions 5 and 6, if (m̄, 0) is the only efficient profile, the extent

is e(m̄, 0) = x − m̄. As in Proposition 6, if (0, 0) is the only efficient profile, the extent is

e(0, 0) = x. Later I will compare these with the extent of network bads in equilibrium.

Equilibria

Define m̂ for player 1’s best response. Let m̂ be a level of mitigation such that

l′(x − m̂) = c′1(m̂). That is, the marginal private loss at x − m̂ equals to the marginal

mitigation cost at m̂. Let û1(m) = w− c1(m)− l(x−m). The function û1(m) is maximized

at m = m̂. The existence of a unique value for m̂ is guaranteed by the assumption (A1).

Note that 0 < m̂ < x and m̂ < m̄.
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Lemma 3

The set of player 1’s best responses to r ∈ R is

BR1(r) =



{0} if f(r) < x− m̂;

{0} if x− m̂ ≤ f(r) < x and l(f(r)) < c1(m̂) + l(x− m̂);

{0, m̂} if x− m̂ ≤ f(r) < x and l(f(r)) = c1(m̂) + l(x− m̂);

{m̂} if x− m̂ ≤ f(r) < x and l(f(r)) > c1(m̂) + l(x− m̂);

{m̂} if x ≤ f(r).

Given r ∈ R, the maximum transmission of bads through network (N,A, y − r) is

f(r), and player 1’s best response depends on f(r). Player 1’s best response to r ∈ R is

m = 0 or m = m̂ or both.

There is a necessary condition for player 2’s best responses, which is analogous

to Remark 2. If r ∈ R is a best response to m ∈ M such that f(r) ≤ x − m, then∑
(i,j)∈A rij = f(0) − f(r). Thus, there is no wasted reduction capacity to decrease the

extent of network bads.

Remark 3

For each (m, r) ∈ M × R with f(r) ≤ x −m, if
∑

(i,j)∈A rij > f(0) − f(r), then r is not a

best response to m. To see this, let r ∈ R be such that
∑

(i,j)∈A rij > f(0) − f(r). Also,

let r̃ ∈ R be such that
∑

(i,j)∈A r̃ij = f(0)− f(r̃) and f(r̃) = f(r). Because f(r) ≤ x−m,

we have u2(m, r) = w− c2

(∑
(i,j)∈A rij

)
− l(f(r)). Because f(r̃) = f(r) and f(r) ≤ x−m,

we have u2(m, r̃) = w − c2

(∑
(i,j)∈A r̃ij

)
− l(f(r̃)). Because

∑
(i,j)∈A r̃ij <

∑
(i,j)∈A rij and

f(r̃) = f(r), we have u2(m, r) < u2(m, r̃). Thus, r is not a best response to m. Henceforth,

if f(r) ≤ x−m, we only consider r ∈ R with
∑

(i,j)∈A rij = f(0)− f(r). �
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Define q̂ for player 2’s best responses. Let q̂ be a level of reduction such that

l′(f(0) − q̂) = c′2(q̂). That is, the marginal private loss at f(0) − q̂ equals to the marginal

reduction cost at q̂. Let û2(q) = w − c2(q)− l(f(0)− q), where 0 ≤ q ≤ f(0). The function

û2(q) is maximized at q = q̂. The existence of a unique value for q̂ is guaranteed by the

assumption (A2). Note that 0 < q̂ < f(0) and q̂ < q̄.

Let R̂ := {r̂ ∈ R :
∑

(i,j)∈A r̂ij = q̂ and q̂ = f(0) − f(r̂)} be a set of reduction

strategies with capacity q̂. From equality (III.10), if r ∈ R is a bottleneck reduction strategy

with capacity
∑

(i,j)∈A rij = q̂, then r ∈ R̂.

Lemma 4

The set of player 2’s best responses to m ∈ M is

BR2(m) =



{0} if x−m ≤ f(r̂);

{0} if f(r̂) < x−m and l(x−m) < c2 (
∑

r̂ij) + l(f(r̂));

{0} ∪ R̂ if f(r̂) < x−m and l(x−m) = c2 (
∑

r̂ij) + l(f(r̂));

R̂ if f(r̂) < x−m and l(x−m) > c2 (
∑

r̂ij) + l(f(r̂)).

Given m ∈ M , the mitigated extent of bads is x−m, and player 2’s best response

depends on x−m. Player 2’s best response to m ∈ M is r = 0 or r = r̂ or both.

From Lemma 3, player 1’s best response is m = 0 or m = m̂. From Lemma 4,

player 2’s best response is r = 0 or r = r̂. Consider strategy profiles (0, 0), (0, r̂), (m̂, 0), and

(m̂, r̂). At a glance we can see that (m̂, r̂) is not an equilibrium. If (m̂, r̂) is an equilibrium,

m̂ is a best response to r̂. From Lemma 3, if m̂ is a best response to r̂, it is necessary that

x− m̂ ≤ f(r̂). From Lemma 4, if x− m̂ ≤ f(r̂), then r̂ is not a best response to m̂. This is

a contradiction.
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Now there remain three strategy profiles (0, 0), (0, r̂), and (m̂, 0) for equilibria. In

these strategy profiles there is at most one player who acts to decrease the extent of network

bads. In strategy profile (0, 0), neither player acts. In strategy profile (0, r̂), player 2 acts

to reduce the maximum transmission of bads through network (N,A, y) by
∑

(i,j)∈A r̂ij = q̂.

In strategy profile (m̂, 0), player 1 acts to mitigate the extent of bads at the source by m̂.

We want to know when these strategy profiles are equilibria. From Lemma 3,

player 1’s best response to r ∈ R depends on f(r). From Lemma 4, player 2’s best response

is r = 0 or r = r̂. There are six cases for equilibria. Table 1 shows these cases. In Table 1

there are three contradictions. Because f(r̂) < f(0), if f(0) < x−m̂, we have f(r̂) < x−m̂,

which contradicts x − m̂ ≤ f(r̂) and x ≤ f(r̂). Similarly, if f(0) < x, we have f(r̂) < x,

which contradicts x ≤ f(r̂).

Table 1. Six Cases for Equilibria
r = 0 r = r̂ Results

f(r̂) < x− m̂ Proposition 7
f(0) < x− m̂ x− m̂ ≤ f(r̂) < x Contradiction

x ≤ f(r̂) Contradiction
f(r̂) < x− m̂ Proposition 8

x− m̂ ≤ f(0) < x x− m̂ ≤ f(r̂) < x Proposition 9
x ≤ f(r̂) Contradiction

f(r̂) < x− m̂ Proposition 10
x ≤ f(0) x− m̂ ≤ f(r̂) < x Proposition 11

x ≤ f(r̂) Proposition 12

Proposition 7 Suppose that f(0) < x− m̂.

(i) If l(x) < c2 (
∑

r̂ij) + l(f(r̂)), then (0, 0) is the only equilibrium.

(ii) If l(x) > c2 (
∑

r̂ij) + l(f(r̂)), then (0, r̂) is the only equilibrium.

Because f(0) < x− m̂, from Lemma 3, we know that m̂ is not a best response to

0. Thus, (m̂, 0) is not an equilibrium. In Proposition 7, every equilibrium is (0, 0) or (0, r̂).
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Proposition 8 Suppose that x− m̂ ≤ f(0) < x and f(r̂) < x− m̂.

(i) If l(f(0)) < c1(m̂) + l(x − m̂) and l(x) < c2 (
∑

r̂ij) + l(f(r̂)), then (0, 0) is the only

equilibrium.

(ii) If l(f(0)) < c1(m̂) + l(x − m̂) and l(x) > c2 (
∑

r̂ij) + l(f(r̂)), then (0, r̂) is the only

equilibrium.

(iii) If l(f(0)) > c1(m̂) + l(x− m̂) and l(x) < c2 (
∑

r̂ij) + l(f(r̂)), then (m̂, 0) is the only

equilibrium.

(iv) If l(f(0)) > c1(m̂) + l(x − m̂) and l(x) > c2 (
∑

r̂ij) + l(f(r̂)) > l(x − m̂), then (0, r̂)

and (m̂, 0) are the only pure strategy equilibria.

(v) If l(f(0)) > c1(m̂) + l(x − m̂) and l(x − m̂) > c2 (
∑

r̂ij) + l(f(r̂)), then (0, r̂) is the

only equilibrium.

If x− m̂ ≤ f(0) < x and l(f(0)) < c1(m̂)+ l(x− m̂), from Lemma 3, we know that

m̂ is not a best response to 0. Thus, (m̂, 0) is not an equilibrium. Therefore, in (i) and (ii)

of Proposition 8, every equilibrium is (0, 0) or (0, r̂).

However, if x− m̂ ≤ f(0) < x and l(f(0)) > c1(m̂) + l(x− m̂), from Lemma 3, we

know that 0 is not a best response to 0. Thus, (0, 0) is not an equilibrium. Therefore, in

(iii) through (v) of Proposition 8, every equilibrium is (0, r̂) or (m̂, 0).

The followings are examples of equilibria.
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Example 10

Recall Example 8. Since 2(x−m̂) = 2m̂ and x = 36, we have m̂ = 18. Since 2(f(0)− q̂) = 2q̂

and f(0) = 30, we have q̂ = 15. If player 2 chooses r̂ = (0, 5, 5, 5, 0), the MTB through

(N,A, y − r̂) is f(r̂) = 15. From (iv) of Proposition 8, both (0, r̂) and (m̂, 0) are equilibria.

�

In the example above, there are two equilibria (0, r̂) and (m̂, 0). In Example 8,

however, (0, r̄) is efficient. Player 2 does not act in the equilibrium (m̂, 0) but he must act

in the efficient profile (0, r̄). If player 2 does not act by choosing 0, knowing that player 1’s

best response to 0 is m̂, player 2 can free-ride on player 1’s action in the equilibrium (m̂, 0).

Proposition 9 Suppose that x− m̂ ≤ f(r̂) and f(0) < x.

(i) If l(x) < c2 (
∑

r̂ij) + l(f(r̂)) and l(f(0)) < c1(m̂) + l(x − m̂), then (0, 0) is the only

equilibrium.

(ii) If l(x) < c2 (
∑

r̂ij) + l(f(r̂)) and l(f(0)) > c1(m̂) + l(x− m̂), then (m̂, 0) is the only

equilibrium.

(iii) If l(x) > c2 (
∑

r̂ij) + l(f(r̂)) and l(f(0)) < c1(m̂) + l(x − m̂), then (0, r̂) is the only

equilibrium.

(iv) If l(x) > c2 (
∑

r̂ij)+ l(f(r̂)) and l(f(0)) > c1(m̂)+ l(x− m̂) > l(f(r̂)), then (0, r̂) and

(m̂, 0) are the only pure strategy equilibria.

(v) If l(x) > c2 (
∑

r̂ij) + l(f(r̂)) and l(f(r̂)) > c1(m̂) + l(x− m̂), then (m̂, 0) is the only

equilibrium.
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If f(0) < x and l(x) < c2 (
∑

r̂ij)+ l(f(r̂)), from Lemma 4, r̂ is not a best response

to 0. Thus, (0, r̂) is not an equilibrium. In (i) and (ii) of Proposition 9, every equilibrium

is (0, 0) or (m̂, 0).

If f(0) < x and l(x) > c2 (
∑

r̂ij) + l(f(r̂)), from Lemma 4, 0 is not a best re-

sponse to 0. Thus, (0, 0) is not an equilibrium. In (iii) through (v) of Proposition 9, every

equilibrium is (0, r̂) or (m̂, 0).

The followings are examples of equilibria.

Example 11

Recall Example 9. Recall Example 9. Since 2(x − m̂) = 2m̂ and x = 36, we have m̂ = 18.

Since 2(f(0)− q̂) = 8q̂ and f(0) = 30, we have q̂ = 6. If player 2 chooses r̂ = (0, 2, 2, 2, 0),

the MTB through (N,A, y − r̂) is f(r̂) = 24. From (iv) of Proposition 9, both (0, r̂) and

(m̂, 0) are equilibria. �

In the example above, there are two equilibria (0, r̂) and (m̂, 0). In Example 9,

however, (m̄, 0) is efficient. Player 1 does not act in the equilibrium (0, r̂) but he must act

in the efficient profile (m̄, 0). If player 1 does not act by choosing 0, knowing that player 2’s

best response to 0 is r̂, player 1 can free-ride on player 2’s action in the equilibrium (0, r̂).

Proposition 10 Suppose that x ≤ f(0) and f(r̂) < x− m̂.

(i) If l(x) < c2 (
∑

r̂ij) + l(f(r̂)), then (m̂, 0) is the only equilibrium.

(ii) If l(x) > c2 (
∑

r̂ij) + l(f(r̂)) > l(x − m̂), then (0, r̂) and (m̂, 0) are the only pure

strategy equilibria.

(iii) If l(x− m̂) > c2 (
∑

r̂ij) + l(f(r̂)), then (0, r̂) is the only equilibrium.
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Proposition 11 Suppose that x ≤ f(0) and x− m̂ ≤ f(r̂) < x.

(i) If l(x) < c2 (
∑

r̂ij) + l(f(r̂)), then (m̂, 0) is the only equilibrium.

(ii) If l(x) > c2 (
∑

r̂ij) + l(f(r̂)) and l(f(r̂)) > c1(m̂) + l(x− m̂), then (m̂, 0) is the only

equilibrium.

(iii) If l(x) > c2 (
∑

r̂ij) + l(f(r̂)) and l(f(r̂)) < c1(m̂) + l(x − m̂), then (0, r̂) and (m̂, 0)

are the only pure strategy equilibria.

If x ≤ f(0), from Lemma 3, we know that 0 is not a best response to 0. Thus,

(0, 0) is not an equilibrium. Therefore, in Propositions 10 and 11, every equilibrium is (0, r̂)

or (m̂, 0).

Proposition 12 If x ≤ f(r̂), then (m̂, 0) is the only equilibrium.

If x ≤ f(r̂), from Lemmas 3 and 4, we know that m̂ is the only best response to

0 and r̂, and 0 is the only best response to m̂. Thus, in Proposition 12, (m̂, 0) is the only

equilibrium.

To sum up, in every equilibrium, either (a) player 1 acts to mitigate the extent

of bads at the source or (b) player 2 acts to reduce the maximum transmission of bads

through the network or (c) neither player acts. In case (a), player 2 free-rides on player

1’s mitigation effort. The equilibrium level of mitigation is m̂, where the marginal private

loss equals to the marginal mitigation cost. In case (b), player 1 free-rides on player 2’s

reduction effort. The equilibrium level of reduction is
∑

(i,j)∈A r̂ij = q̂, where the marginal

private loss equals to the marginal reduction cost.
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Now I compare equilibria with efficient profiles. Table 2 summarizes the results.

If either (a) player 1 acts or (b) player 2 acts, in an efficient profile, the marginal

cost of action equals to the marginal joint loss. In an equilibrium, the marginal cost of action

equals to the marginal private loss. Thus, in case (a), the equilibrium level of mitigation

is less than the efficient level, that is, m̂ < m̄. Also, in case (b), the equilibrium level of

reduction is less than the efficient level, that is,
∑

r̂ij <
∑

r̄ij .

From Proposition 4, if the bottleneck capacity of network (N,A, y) is small, that is,

if f(0) < x−m̄, every efficient profile is (0, 0) or (0, r̄). From Proposition 7, if f(0) < x−m̂,

every equilibrium is (0, 0) or (0, r̂). Because f(0) < x − m̄ implies f(0) < x − m̂, if the

bottleneck capacity of network (N,A, y) is small, every equilibrium is (0, 0) or (0, r̂). Thus,

in every efficient profile and in every equilibrium, either (b) player 2 acts or (c) neither

player acts. There may be an efficient equilibrium (0, 0) in which neither player acts.

From Proposition 5, if the bottleneck capacity of network (N,A, y) is intermediate,

that is, if x−m̄ ≤ f(0) and f(r̄) < x, every efficient profile is (0, r̄) or (m̄, 0). Thus, in every

efficient profile, either (a) player 1 acts or (b) player 2 acts. However, no efficient profile is

an equilibrium and no equilibrium is efficient. There may be an equilibrium (0, 0) in which

neither player acts. Further, as shown in Examples 10 and 11, there may be an equilibrium

where the player in action is not the player who must act in the efficient profile.

From Proposition 6, if the bottleneck capacity of network (N,A, y) is large, that

is, if x ≤ f(r̄), every efficient profile is (0, 0) or (m̄, 0). Thus, in every efficient profile, either

(a) player 1 acts or (c) neither player acts. From Proposition 12, if x ≤ f(r̂), then (m̂, 0)

is the only equilibrium. Because x ≤ f(r̄) implies x ≤ f(r̂), if the bottleneck capacity of

network (N,A, y) is large, (m̂, 0) is the only equilibrium. Thus, in equilibrium, player 1

always acts. However, the equilibrium level of action is less than the efficient level.
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Table 2. Efficient Profiles (EF) versus Equilibria (EQ)
Bottleneck capacity Profiles (a) Player 1 acts (b) Player 2 acts (c) Neither acts

Small EF No EF (0, r̄) (0, 0)
EQ No EQ (0, r̂) (0, 0)

Intermediate EF (m̄, 0) (0, r̄) No EF
EQ (m̂, 0) (0, r̂) (0, 0)

Large EF (m̄, 0) No EF (0, 0)
EQ (m̂, 0) No EQ No EQ

Unless (0, 0) is an efficient equilibrium, no efficient profile is an equilibrium and no

equilibrium is efficient. The exception is observed only if the bottleneck capacity is small.

Therefore, except for this case, we can conclude that players 1 and 2 do not have incentives

to choose efficient profiles.

In equilibrium (0, 0), the extent of network bads is e(0, 0) = f(0). Thus, the

maximum transmission of bads through network (N,A, y) is allowed.

In equilibrium (0, r̂), the extent of network bads is e(0, r̂) = f(r̂). In efficient

profile (0, r̄), the extent is e(0, r̄) = f(r̄). Because f(r̄) < f(r̂), the extent of network bads

is greater in equilibrium (0, r̂).

In equilibrium (m̂, 0), the extent of network bads is e(m̂, 0) = x − m̂. In efficient

profile (m̄, 0), the extent is e(m̄, 0) = x − m̄. Because m̂ < m̄, the extent of network bads

is greater in equilibrium (m̂, 0).

Cooperative Solutions

In my strategic model players may not have incentives to choose efficient profiles.

Now transfers are allowed between players. We want to know if it is possible to make

transfers that provide incentives to choose efficient profiles. I introduce a coalitional game

and study cooperative solutions for the game.
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A coalition S ⊆ {1, 2} is a non-empty set of players. A coalitional game v is a

function that associates with each coalition S a number v(S), which is called the value of

coalition S. In my model a coalitional game v is defined as follows:

v({1}) = max
m∈M

u1(m, 0);

v({2}) = max
r∈R

u2(0, r);

v({1, 2}) = max
(m,r)∈M×R

U(m, r).

That is, each player maximizes his payoff without any reduction or mitigation from the

other if he belongs to a singleton coalition. Players 1 and 2 maximize the joint payoff if

they belong to the same coalition.

Player 1 maximizes u1(m, 0) by choosing a best response to 0. From Lemma 3,

player 1’s best response is 0 or m̂. If 0 is a best response to 0, then v({1}) = u1(0, 0). If m̂

is a best response to 0, then v({1}) = u1(m̂, 0).

Player 2 maximizes u2(0, r) by choosing a best response to 0. From Lemma 4,

player 2’s best response is 0 or r̂. If 0 is a best response to 0, then v({2}) = u2(0, 0). If r̂

is a best response to 0, then v({2}) = u2(0, r̂).

Players 1 and 2 maximize the joint payoff U(m, r) by choosing an efficient profile.

The coalitional game v is superadditive if v({1})+v({2}) ≤ v({1, 2}). An allocation

(a1, a2) is a vector of payoffs with transfers, where ai is the allocation of player i = 1, 2.

An allocation (a1, a2) is in the set of imputations of the coalitional game v if a1 ≥ v({1}),

a2 ≥ v({2}), and a1 + a2 = v({1, 2}). If the coalitional game v is superadditive, the set of

imputations of v is non-empty.
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Proposition 13

The coalitional game v is superadditive.

If (m, r) is an efficient profile and (a1, a2) is an allocation in the set of imputations

of v, players 1 and 2 jointly choose (m, r) and make transfers in a way that player i = 1, 2

gets a net transfer of ai − ui(m, r). Each player is better off by using this cooperative

solution than by maximizing his payoff alone. Therefore, it is possible to make transfers

that provide incentives for efficiency.

Remark 4

If the bottleneck capacity is intermediate, in every cooperative solution, the efficient player

acts to decrease the extent of network bads and gets a positive net transfer from the other.

If player 1 is the efficient player, he gets at least v({1})− u1(m̄, 0) from player 2. However,

if player 2 is the efficient player, he gets at least v({2})− u2(0, r̄) from player 1. �

For every coalitional game with two players, superadditivity is equivalent to con-

vexity. Thus, the coalitional game v is convex. Because every convex game is totally

balanced and every totally balanced game is a flow game, the coalitional game v is a flow

game. Kalai and Zemel (24) show how to construct a flow game.
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Conclusion

This chapter introduces a strategic network model where bads are transmitted

from a source to a sink as a flow through a network. Two players wish to decrease network

bads. One player can act to mitigate the extent of bads at the source. The other player can

act to reduce the maximum transmission of bads through the network. Each player incurs

the cost of action but benefits from the decrease in network bads.

I characterize efficient profiles and equilibria in this model. The equilibrium level of

action is less than the efficient level. Interestingly, the player who acts in an equilibrium may

not be the player who must act in the efficient profile. Further, there may an equilibrium

where neither player acts. However, this equilibrium may not be efficient. Therefore,

strategic inaction may lead to inefficiency.

Unless there is an efficient equilibrium where neither player acts, no efficient profile

is an equilibrium and no equilibrium is efficient. Thus, the players may not have incentives

to choose efficient profiles. I also study cooperative solutions where the players jointly choose

an efficient profile and make transfers to each other. The players can achieve efficiency by

using cooperative solutions.

An extension of this model is to consider multiple network players. Networks

may be controlled by various players. Coordination between players is a key to reduce the

transmission of bads through networks. Another extension is to study the transmission

of network goods. Online data streaming can be an example. Content providers, such as

Netflix and YouTube, and network service providers, such as AT&T and Verizon, have dif-

ferent interests that may lead to inefficient use of networks. In these extensions cooperative

solutions can help achieve social efficiency.
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Appendix A

Proof of Proposition 4. Suppose that f(0) < x− m̄. From Remark 1, we only consider

(m, r) ∈ M × R with m = 0 or r = 0. First, let (0, r) be any profile with m = 0.

Because f(0) < x− m̄, we have f(r) < x. Thus, the extent is e(0, r) = f(r), and the joint

payoff is U(0, r) = 2w − c2

(∑
(i,j)∈A rij

)
− 2l(f(r)). From Remark 2, we only consider

(0, r) ∈ M × R with
∑

(i,j)∈A rij = f(0) − f(r). Now the joint payoff is U(0, r) = 2w −

c2 (f(0)− f(r)) − 2l(f(r)). Because f(0) < x − m̄, we have f(r̄) < x. Also, f(r) < x.

Thus, the joint payoff is maximized when f(r) = f(r̄). The maximum joint payoff is

U(0, r̄) = 2w − c2 (
∑

r̄ij)− 2l(f(r̄)).

Second, let (m, 0) be any profile with r = 0. If x − m ≤ f(0), the extent is

e(m, 0) = x − m, and the joint payoff is U(m, 0) = 2w − c1(m) − 2l(x − m). Because

x − m ≤ f(0) and f(0) < x − m̄, the joint payoff is maximized at m = x − f(0). The

maximum joint payoff is U(x − f(0), 0) = 2w − c1(x − f(0)) − 2l(f(0)). If f(0) ≤ x − m,

the extent is e(m, 0) = f(0), and the joint payoff is U(m, 0) = 2w − c1(m) − 2l(f(0)),

which is maximized at m = 0. The maximum joint payoff is U(0, 0) = 2w − 2l(f(0)).

Because f(0) < x− m̄, we have x− f(0) > 0. Because c1(·) is strictly increasing, we have

U(x− f(0), 0) < U(0, 0).

Thus, if the bottleneck capacity is small, that is, if f(0) < x − m̄, every efficient

profile is (0, 0) or (0, r̄). Further, if 2l(f(0)) < c2 (
∑

r̄ij) + 2l(f(r̄)), then U(0, 0) > U(0, r̄),

and (0, 0) is the only efficient profile. However, if 2l(f(0)) > c2 (
∑

r̄ij) + 2l(f(r̄)), then

U(0, 0) < U(0, r̄), and (0, r̄) is the only efficient profile. �
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Proof of Proposition 5. Suppose that x − m̄ ≤ f(0) and f(r̄) < x. From Remark 1,

we only consider (m, r) ∈ M × R with m = 0 or r = 0. First, let (0, r) be any profile

with m = 0. If x ≤ f(r), the extent is e(0, r) = x, and the joint payoff is U(0, r) =

2w − c2

(∑
(i,j)∈A rij

)
− 2l(x), which is maximized at r = 0. The maximum joint payoff

is U(0, 0) = 2w − 2l(x). If f(r) ≤ x, the extent is e(0, r) = f(r), and the joint payoff is

U(0, r) = 2w − c2

(∑
(i,j)∈A rij

)
− 2l(f(r)). From Remark 2, we only consider (0, r) with∑

(i,j)∈A rij = f(0)−f(r). Now the joint payoff is U(0, r) = 2w−c2 (f(0)− f(r))−2l(f(r)).

Because f(r) ≤ x and f(r̄) < x, the joint payoff is maximized when f(r) = f(r̄). The

maximum joint payoff is U(0, r̄) = 2w − c2 (
∑

r̄ij)− 2l(f(r̄)).

Second, let (m, 0) be any profile with r = 0. If x − m ≤ f(0), the extent is

e(m, 0) = x − m, and the joint payoff is U(m, 0) = 2w − c1(m) − 2l(x − m). Because

x −m ≤ f(0) and x − m̄ ≤ f(0), the joint payoff is maximized at m = m̄. The maximum

joint payoff is U(m̄, 0) = 2w−c1(m̄)−2l(x−m̄). If f(0) ≤ x−m, the extent is e(m, 0) = f(0),

and the joint payoff is U(m, 0) = 2w− c1(m)− 2l(f(0)), which is maximized at m = 0. The

maximum joint payoff is U(0, 0) = 2w − 2l(f(0)).

Now compare the joint payoffs for profiles (0, 0), (0, r̄), and (m̄, 0). If x ≤ f(0), we

have U(0, 0) = 2w− 2l(x) and U(m̄, 0) = 2w− c1(m̄)− 2l(x− m̄). Thus, U(0, 0) < U(m̄, 0).

If f(0) ≤ x, we have U(0, 0) = 2w−2l(f(0)) and U(0, r̄) = 2w−c2 (
∑

r̄ij)−2l(f(r̄)). Thus,

U(0, 0) < U(0, r̄). In both cases, (0, 0) is not efficient.

Therefore, if the bottleneck capacity is intermediate, that is, if x − m̄ ≤ f(0)

and f(r̄) < x, every efficient profile is (0, r̄) or (m̄, 0). Further, if c2 (
∑

r̄ij) + 2l(f(r̄)) <

c1(m̄) + 2l(x− m̄), then U(0, r̄) > U(m̄, 0), and (0, r̄) is the only efficient profile. However,

if c2 (
∑

r̄ij) + 2l(f(r̄)) > c1(m̄) + 2l(x− m̄), then U(0, r̄) < U(m̄, 0), and (m̄, 0) is the only

efficient profile. �
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Proof of Proposition 6. Suppose that x ≤ f(r̄). From Remark 1, we only consider

(m, r) ∈ M×R with m = 0 or r = 0. First, let (0, r) be any profile with m = 0. If x ≤ f(r),

the extent is e(0, r) = x, and the joint payoff is U(0, r) = 2w − c2

(∑
(i,j)∈A rij

)
− 2l(x),

which is maximized at r = 0. The maximum joint payoff is U(0, 0) = 2w−2l(x). If f(r) ≤ x,

the extent is e(0, r) = f(r), and the joint payoff is U(0, r) = 2w−c2

(∑
(i,j)∈A rij

)
−2l(f(r)).

From Remark 2, we only consider (0, r) ∈ M ×R with
∑

(i,j)∈A rij = f(0)− f(r). Now the

joint payoff is U(0, r) = 2w − c2 (f(0)− f(r)) − 2l(f(r)). Because f(r) ≤ x and x ≤ f(r̄),

the joint payoff is maximized when f(r) = x. The maximum joint payoff is U(0, r) =

2w− c2 (f(0)− x)−2l(x). Because x ≤ f(r̄), we have f(0)−x > 0. Because c2(·) is strictly

increasing, we have U(0, r) < U(0, 0).

Second, let (m, 0) be any profile with r = 0. Because x ≤ f(r̄), we have x−m <

f(0). Thus, the extent is e(m, 0) = x−m, and the joint payoff is U(m, 0) = 2w − c1(m)−

2l(x−m). Because x ≤ f(r̄), we have x− m̄ < f(0). Also, x−m < f(0). Thus, the joint

payoff is maximized at m = m̄. The maximum joint payoff is U(m̄, 0) = 2w−c1(m̄)−2l(x−

m̄).

Thus, if the bottleneck capacity is large, that is, if x ≤ f(r̄), every efficient profile

is (0, 0) or (m̄, 0). Further, if 2l(x) < c1(m̄) + 2l(x− m̄), then U(0, 0) > U(m̄, 0), and (0, 0)

is the only efficient profile. However, if 2l(x) > c1(m̄) + 2l(x− m̄), then U(0, 0) < U(m̄, 0),

and (m̄, 0) is the only efficient profile. �

Proof of Lemma 3. Let r ∈ R be any reduction strategy. We divide into three cases.

Case 1. Suppose that f(r) < x−m̂. For each m ∈ M , if x−m ≤ f(r), the extent of

network bads is e(m, r) = x−m, and the payoff of player 1 is u1(m, r) = w−c1(m)−l(x−m).

Because x−m ≤ f(r) and f(r) < x− m̂, the payoff is maximized at m = x− f(r), and the
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maximum payoff is u1(x− f(r), r) = w − c1(x− f(r))− l(f(r)).

For each m ∈ M , if f(r) ≤ x −m, the extent is e(m, r) = f(r), and the payoff is

u1(m, r) = w− c1(m)− l(f(r)). Because c1(·) is strictly increasing, the payoff is maximized

at m = 0, and the maximum payoff is u1(0, r) = w − l(f(r)).

Because x− f(r) > m̂ and m̂ > 0, we have x− f(r) > 0. Because c1(·) is strictly

increasing, we have u1(0, r) > u1(x− f(r), r). Thus, m = 0 is the only best response.

Case 2. Suppose that x − m̂ ≤ f(r) < x. For each m ∈ M , if x − m ≤ f(r),

the extent of network bads is e(m, r) = x − m, and the payoff of player 1 is u1(m, r) =

w − c1(m) − l(x −m). Because x −m ≤ f(r) and x − m̂ ≤ f(r), the payoff is maximized

at m = m̂, and the maximum payoff is u1(m̂, r) = w − c1(m̂)− l(x− m̂).

For each m ∈ M , if f(r) ≤ x −m, the extent is e(m, r) = f(r), and the payoff is

u1(m, r) = w− c1(m)− l(f(r)). Because c1(·) is strictly increasing, the payoff is maximized

at m = 0, and the maximum payoff is u1(0, r) = w − l(f(r)).

If l(f(r)) < c1(m̂) + l(x − m̂), then u1(0, r) > u1(m̂, r). Thus, m = 0 is the only

best response. If l(f(r)) = c1(m̂) + l(x − m̂), then u1(0, r) = u1(m̂, r). Thus, both m = 0

and m = m̂ are the best responses. If l(f(r)) > c1(m̂) + l(x− m̂), then u1(m̂, r) > u1(0, r).

Thus, m = m̂ is the only best response.

Case 3. Suppose that x ≤ f(r). Because x ≤ f(r), for each m ∈ M , we have

x−m ≤ f(r). Thus, the extent of network bads is e(m, r) = x−m, and the payoff of player

1 is u1(m, r) = w− c1(m)− l(x−m). The payoff is maximized at m = m̂. Thus, m = m̂ is

the only best response. �

Proof of Lemma 4. Let m ∈ M be any mitigation strategy. We divide into two cases.

Case 1. Suppose that x − m ≤ f(r̂). For each r ∈ R, if x − m ≤ f(r), the

extent of network bads is e(m, r) = x − m, and the payoff of player 2 is u2(m, r) = w −
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c2

(∑
(i,j)∈A rij

)
− l(x−m). Because c2(·) is strictly increasing, the payoff is maximized at

r = 0, and the maximum payoff is u2(m, 0) = w − l(x−m).

For each r ∈ R, if f(r) ≤ x − m, the extent is e(m, r) = f(r), and the payoff is

u2(m, r) = w − c2

(∑
(i,j)∈A rij

)
− l(f(r)). From Remark 3, we only consider r ∈ R with∑

(i,j)∈A rij = f(0) − f(r). Now the payoff is u2(m, r) = w − c2(f(0) − f(r)) − l(f(r)).

Because f(r) ≤ x−m and x−m ≤ f(r̂), the payoff is maximized when f(r) = x−m. The

maximum payoff is u2(m, r) = w − c2(f(0)− x + m)− l(x−m).

Because x − m ≤ f(r̂) and f(r̂) < f(0), we have x − m < f(0). That is, f(0) −

x + m > 0. Because c2(·) is strictly increasing, we have u2(m, 0) > u2(m, r). Thus, 0 is the

only best response.

Case 2. Suppose that f(r̂) < x − m. For each r ∈ R, if x − m ≤ f(r), the

extent of network bads is e(m, r) = x − m, and the payoff of player 2 is u2(m, r) = w −

c2

(∑
(i,j)∈A rij

)
− l(x−m). Because c2(·) is strictly increasing, the payoff is maximized at

r = 0, and the maximum payoff is u2(m, 0) = w − l(x−m).

For each r ∈ R, if f(r) ≤ x − m, the extent is e(m, r) = f(r), and the payoff is

u2(m, r) = w − c2

(∑
(i,j)∈A rij

)
− l(f(r)). From Remark 3, we only consider r ∈ R with∑

(i,j)∈A rij = f(0) − f(r). Now the payoff is u2(m, r) = w − c2(f(0) − f(r)) − l(f(r)).

Because f(r) ≤ x−m and f(r̂) < x−m, the payoff is maximized when f(r) = f(r̂). The

maximum payoff is u2(m, r̂) = w − c2 (
∑

r̂ij)− l(f(r̂)).

If l(x − m) < c2 (
∑

r̂ij) + l(f(r̂)), then u2(m, 0) > u2(m, r̂). Thus, 0 is the only

best response. If l(x −m) = c2 (
∑

r̂ij) + l(f(r̂)), then u2(m, 0) = u2(m, r̂). Thus, 0 and r̂

are the best responses. If l(x−m) > c2 (
∑

r̂ij) + l(f(r̂)), then u2(m, r̂) > u2(m, 0). Thus,

r̂ is the only best response. �
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Proof of Proposition 7. Because f(0) < x − m̂, we have BR1(0) = {0}. Because

f(r̂) < f(0) and f(0) < x − m̂, we have f(r̂) < x − m̂ and BR1(r̂) = {0}. Because

f(r̂) < x−m̂, we have f(r̂) < x. As in (i), if l(x) < c2 (
∑

r̂ij)+ l(f(r̂)), then BR2(0) = {0},

and (0, 0) is the only equilibrium. As in (ii), if l(x) > c2 (
∑

r̂ij)+ l(f(r̂)), then BR2(0) = R̂,

and (0, r̂) is the only equilibrium. �

Proof of Proposition 8. (i) Because x−m̂ ≤ f(0) < x and l(f(0)) < c1(m̂)+ l(x−m̂), we

have BR1(0) = {0}. Because f(r̂) < x− m̂, we have BR1(r̂) = {0}. Because f(r̂) < x− m̂,

we have f(r̂) < x. Because l(x) < c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(0) = {0}. Thus, (0, 0)

is the only equilibrium.

(ii) Because x− m̂ ≤ f(0) < x and l(f(0)) < c1(m̂) + l(x− m̂), we have BR1(0) =

{0}. Because f(r̂) < x − m̂, we have BR1(r̂) = {0}. Because f(r̂) < x − m̂, we have

f(r̂) < x. Also, because l(x) > c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(0) = R̂. Thus, (0, r̂) is

the only equilibrium.

(iii) Because f(r̂) < x − m̂, we have f(r̂) < x. Also, because l(x) < c2 (
∑

r̂ij) +

l(f(r̂)), we have BR2(0) = {0}. Because l(x) < c2 (
∑

r̂ij) + l(f(r̂)), we have l(x − m̂) <

c2 (
∑

r̂ij) + l(f(r̂)). Also, because f(r̂) < x − m̂, we have BR2(m̂) = {0}. Because

x− m̂ ≤ f(0) < x and l(f(0)) > c1(m̂) + l(x− m̂), we have BR1(0) = {m̂}. Thus, (m̂, 0) is

the only equilibrium.

(iv) Because f(r̂) < x − m̂, we have BR1(r̂) = {0}. Because f(r̂) < x − m̂, we

have f(r̂) < x. Also, because l(x) > c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(0) = R̂. Because

x − m̂ ≤ f(0) < x and l(f(0)) > c1(m̂) + l(x − m̂), we have BR1(0) = {m̂}. Because

f(r̂) < x− m̂ and l(x− m̂) < c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(m̂) = {0}. Thus, (0, r̂) and

(m̂, 0) are the only pure strategy equilibria.

(v) Because f(r̂) < x − m̂, we have f(r̂) < x. Because l(x − m̂) > c2 (
∑

r̂ij) +
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l(f(r̂)), we have l(x) > c2 (
∑

r̂ij) + l(f(r̂)) and BR2(0) = R̂. Because f(r̂) < x − m̂ and

l(x−m̂) > c2 (
∑

r̂ij)+l(f(r̂)), we have BR2(m̂) = R̂. Because f(r̂) < x−m̂, BR1(r̂) = {0}.

The only equilibrium is (0, r̂). �

Proof of Proposition 9. Because x− m̂ ≤ f(r̂) and f(0) < x, we have x− m̂ ≤ f(0) < x

and x− m̂ ≤ f(r̂) < x.

(i) Because x − m̂ ≤ f(0) < x and l(f(0)) < c1(m̂) + l(x − m̂), BR1(0) = {0}.

Because l(f(0)) < c1(m̂) + l(x − m̂), we have l(f(r̂)) < c1(m̂) + l(x − m̂). Also, because

x − m̂ ≤ f(r̂) < x, BR1(r̂) = {0}. Because f(r̂) < x and l(x) < c2 (
∑

r̂ij) + l(f(r̂)), we

have BR2(0) = {0}. Thus, (0, 0) is the only equilibrium.

(ii) Because f(r̂) < x and l(x) < c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(0) = {0}.

Because x− m̂ ≤ f(r̂), we have BR2(m̂) = {0}. Because x− m̂ ≤ f(0) < x and l(f(0)) >

c1(m̂) + l(x− m̂), we have BR1(0) = {m̂}. Thus, (m̂, 0) is the only equilibrium.

(iii) Because x− m̂ ≤ f(0) < x and l(f(0)) < c1(m̂)+ l(x− m̂), we have BR1(0) =

{0}. Because l(f(0)) < c1(m̂)+ l(x−m̂), we have l(f(r̂)) < c1(m̂)+ l(x−m̂). Also, because

x−m̂ ≤ f(r̂) < x, we have BR1(r̂) = {0}. Because f(r̂) < x and l(x) > c2 (
∑

r̂ij)+ l(f(r̂)),

we have BR2(0) = R̂. Thus, (0, r̂) is the only equilibrium.

(iv) Because x− m̂ ≤ f(r̂) < x and l(f(r̂)) < c1(m̂)+ l(x− m̂), we have BR1(r̂) =

{0}. Because f(r̂) < x and l(x) > c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(0) = R̂. Because

x − m̂ ≤ f(0) < x and l(f(0)) > c1(m̂) + l(x − m̂), we have BR1(0) = {m̂}. Because

x − m̂ ≤ f(r̂), we have BR2(m̂) = {0}. Thus, (0, r̂) and (m̂, 0) are the only pure strategy

equilibria.

(v) Because l(f(r̂)) > c1(m̂)+ l(x− m̂), we have l(f(0)) > c1(m̂)+ l(x− m̂). Also,

because x − m̂ ≤ f(0) < x, we have BR1(0) = {m̂}. Because x − m̂ ≤ f(r̂) < x and

l(f(r̂)) > c1(m̂)+ l(x−m̂), we have BR1(r̂) = {m̂}. Because x−m̂ ≤ f(r̂), BR2(m̂) = {0}.
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The only equilibrium is (m̂, 0). �

Proof of Proposition 10. (i) Because f(r̂) < x − m̂, we have f(r̂) < x. Also, because

l(x) < c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(0) = {0}. Because l(x) < c2 (
∑

r̂ij) + l(f(r̂)), we

have l(x− m̂) < c2 (
∑

r̂ij) + l(f(r̂)). Also, because f(r̂) < x− m̂, we have BR2(m̂) = {0}.

Because x ≤ f(0), we have BR1(0) = {m̂}. Thus, (m̂, 0) is the only equilibrium.

(ii) Because f(r̂) < x − m̂, we have BR1(r̂) = {0}. Because f(r̂) < x − m̂, we

have f(r̂) < x. Also, because l(x) > c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(0) = R̂. Because

x ≤ f(0), we have BR1(0) = {m̂}. Because f(r̂) < x−m̂ and l(x−m̂) < c2 (
∑

r̂ij)+l(f(r̂)),

we have BR2(m̂) = {0}. Thus, (0, r̂) and (m̂, 0) are the only pure strategy equilibria.

(iii) Because l(x − m̂) > c2 (
∑

r̂ij) + l(f(r̂)), we have l(x) > c2 (
∑

r̂ij) + l(f(r̂)).

Also, because f(r̂) < x, we have BR2(0) = R̂. Because f(r̂) < x − m̂ and l(x − m̂) >

c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(m̂) = R̂. Because f(r̂) < x − m̂, BR1(r̂) = {0}. Thus,

(0, r̂) is the only equilibrium. �

Proof of Proposition 11. (i) Because f(r̂) < x and l(x) < c2 (
∑

r̂ij) + l(f(r̂)), we have

BR2(0) = {0}. Because x− m̂ ≤ f(r̂), we have BR2(m̂) = {0}. Because x ≤ f(0), we have

BR1(0) = {m̂}. Thus, (m̂, 0) is the only equilibrium.

(ii) Because x ≤ f(0), we have BR1(0) = {m̂}. Because x − m̂ ≤ f(r̂) < x and

l(f(r̂)) > c1(m̂)+ l(x−m̂), we have BR1(r̂) = {m̂}. Because x−m̂ ≤ f(r̂), BR2(m̂) = {0}.

Thus, (m̂, 0) is the only equilibrium.

(iii) Because x− m̂ ≤ f(r̂) < x and l(f(r̂)) < c1(m̂)+ l(x− m̂), we have BR1(r̂) =

{0}. Because f(r̂) < x and l(x) > c2 (
∑

r̂ij) + l(f(r̂)), we have BR2(0) = R̂. Because

x ≤ f(0), we have BR1(0) = {m̂}. Because x − m̂ ≤ f(r̂), BR2(m̂) = {0}. The only pure

strategy equilibria are (0, r̂) and (m̂, 0). �
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Proof of Proposition 12. Because x ≤ f(r̂), we have x < f(0) and BR1(0) = {m̂}.

Because x ≤ f(r̂), we have BR1(r̂) = {m̂}. Because x ≤ f(r̂), we have x − m̂ < f(r̂) and

BR2(m̂) = {0}. Thus, (m̂, 0) is the only equilibrium. �

Proof of Proposition 13. We show that v({1})+ v({2}) ≤ v({1, 2}). First, suppose that

x− m̂ ≤ f(0) < x.

From Lemma 3, player 1’s best response is 0 or m̂. If 0 is a best response to 0, then

v({1}) = u1(0, 0). Because f(0) < x, we have u1(0, 0) = w− l(f(0)). If m̂ is a best response

to 0, then v({1}) = u1(m̂, 0). Because x−m̂ ≤ f(0), we have u1(m̂, 0) = w−c1(m̂)−l(x−m̂).

Thus, v({1}) = w − l(f(0)) or v({1}) = w − c1(m̂)− l(x− m̂).

From Lemma 4, player 2’s best response is 0 or r̂. If 0 is a best response to 0,

then v({2}) = u2(0, 0). Because f(0) < x, we have u2(0, 0) = w − l(f(0)). If r̂ is a best

response to 0, then v({2}) = u2(0, r̂). Because f(r̂) < f(0) and f(0) < x, we have u2(0, r̂) =

w − c2(
∑

r̂ij) − l(f(r̂)). Thus, v({2}) = w − l(f(0)) or v({2}) = w − c2(
∑

r̂ij) − l(f(r̂)).

We divide into four cases.

Case 1. If v({1}) = w − l(f(0)) and v({2}) = w − l(f(0)), we have

v({1}) + v({2}) = 2w − 2l(f(0)) = U(0, 0) ≤ v({1, 2}).

Case 2. If v({1}) = w − l(f(0)) and v({2}) = w − c2(
∑

r̂ij) − l(f(r̂)), because

f(r̂) < f(0) implies v({1}) < w − l(f(r̂)), we have

v({1}) + v({2}) < 2w − c2(
∑

r̂ij)− 2l(f(r̂)) = U(0, r̂) ≤ v({1, 2}).

Case 3. If v({1}) = w − c1(m̂) − l(x − m̂) and v({2}) = w − l(f(0)), because
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x− m̂ ≤ f(0) implies v({2}) ≤ w − l(x− m̂), we have

v({1}) + v({2}) ≤ 2w − c1(m̂)− 2l(x− m̂) = U(m̂, 0) ≤ v({1, 2}).

Case 4. If v({1}) = w − c1(m̂) − l(x − m̂) and v({2}) = w − c2(
∑

r̂ij) − l(f(r̂)),

we consider two subcases. If x− m̂ ≤ f(r̂), then v({2}) ≤ w − l(x− m̂). Thus,

v({1}) + v({2}) ≤ 2w − c1(m̂)− 2l(x− m̂) = U(m̂, 0) ≤ v({1, 2}).

However, if f(r̂) ≤ x− m̂, then v({1}) ≤ w − l(f(r̂)). Thus,

v({1}) + v({2}) ≤ 2w − c2(
∑

r̂ij)− 2l(f(r̂)) = U(0, r̂) ≤ v({1, 2}).

Second, suppose that f(0) < x − m̂. From Lemma 3, 0 is the only best response

to 0, and v({1}) = u1(0, 0). Because f(0) < x − m̂ and x − m̂ < x, u1(0, 0) = w − l(f(0))

and v({1}) = w − l(f(0)).

From Lemma 4, player 2’s best response is 0 or r̂. If 0 is a best response to

0, then v({2}) = u2(0, 0). Because f(0) < x, we have u2(0, 0) = w − l(f(0)). Thus,

v({2}) = w − l(f(0)). As in Case 1, we have v({1}) + v({2}) ≤ v({1, 2}).

However, if r̂ is a best response to 0, then v({2}) = u2(0, r̂). Also, if r̂ is a

best response to 0, we have f(r̂) < x and u2(0, r̂) = w − c2(
∑

r̂ij) − l(f(r̂)). Thus,

v({2}) = w − c2(
∑

r̂ij)− l(f(r̂)). As in Case 2, we have v({1}) + v({2}) ≤ v({1, 2}).

Third, suppose that x ≤ f(0). From Lemma 3, m̂ is the only best response to 0,

and v({1}) = u1(m̂, 0). Because x− m̂ < x and x ≤ f(0), u1(m̂, 0) = w− c1(m̂)− l(x− m̂)

and v({1}) = w − c1(m̂)− l(x− m̂).

From Lemma 4, player 2’s best response is 0 or r̂. If 0 is a best response to 0, then

v({2}) = u2(0, 0). Because x ≤ f(0), we have u2(0, 0) = w− l(x). Thus, v({2}) = w− l(x).

Because x − m̂ < x, we have v({2}) < w − l(x − m̂). Thus, as in Case 3, we have
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v({1}) + v({2}) < 2w − c1(m̂)− 2l(x− m̂) ≤ v({1, 2}).

However, if r̂ is a best response to 0, then v({2}) = u2(0, r̂). Also, if r̂ is a

best response to 0, we have f(r̂) < x and u2(0, r̂) = w − c2(
∑

r̂ij) − l(f(r̂)). Thus,

v({2}) = w − c2(
∑

r̂ij)− l(f(r̂)). As in Case 4, we have v({1}) + v({2}) ≤ v({1, 2}).

Therefore, v is superadditive. �
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CHAPTER IV

THE POWER LAW OF CONFLICT

Introduction

Power law distributions have been observed in various contexts. Distributions of

wealth, city populations, academic citations, and stock market returns are a few exam-

ples. Clauset et al. (10) and Gabaix (15) present empirical examples exhibiting power law

distributions.

In particular, the power law of conflict is an empirical regularity that the frequency

of a conflict event scales as an inverse power of the severity of the conflict event. Precisely,

the frequency f(x) of a conflict event with severity x ≥ xmin scales as f(x) ∝ x−α, where

xmin is the minimum level above which the power law holds and α is the scaling parameter

of the power law. The power law of conflict is first observed by Richardson (36) in a broad

context that includes murders and wars.

There are no theoretical explanations for the power law of conflict. It is a complex

task to understand what causes conflict, and in turn, the power law of conflict. There may

be cultural, economic, historical, and political circumstances. However, the power law of

conflict has been universally observed across time and region. Cederman (8) observes the

power law in interstate wars between 1820 and 1997. Bohorquez et al. (5) and Clauset et

al. (11) also observe the power law in terrorist events and insurgent wars in recent decades.

Thus, there may be common circumstances that lead to the power law of conflict across

time and region.
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The power law of conflict may be caused by strategic behavior of players in an

adversarial relationship. With cultural, economic, historical, and political circumstances,

an adversarial relationship may evolve between players. Strategic behavior of these players

leads to the power law of conflict. See Figure 6. To test the hypothesis that strategic

bahavior causes the power law, we need to develop a simple model amenable to experimental

analysis. The purpose of this chapter is to provide a theoretical foundation for experimental

and empirical testing.

We build a strategic model with a unique mixed strategy equilibrium. There are

two adversarial players, Attacker and Defender. Given a quantity of bads, Attacker chooses

how many bads to carry through a route to a target. Simultaneously and independently,

Defender chooses whether to block the route to stop the transport of bads to the target.

When Attacker successfully carries bads to the target, that is, when Attacker carries bads to

the target and Defender does not block the route, the target is damaged. Defender suffers

from target loss, which is determined by the amount of bads and the marginal target loss.

Attacker gains from target loss, which is scaled up by the target loss power. Attacker incurs

the cost of carrying bads while Defender incurs the cost of blocking the route.

Figure 6. Common Circumstances
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In equilibrium both players choose mixed strategies. Attacker carries no bads

or the maximum amount of bads while Defender blocks the route or not. Target loss is

caused when Attacker carries the maximum amount of bads and Defender does not block

the route. The probability of target loss can be calculated as a function of target loss.

If the marginal target loss is a random variable distributed uniformly on an interval, the

probability distribution of target loss follows a power law. The scaling parameter of the

power law is determined by the target loss power.

The driving force of the power law in our model is strategic behavior of players

in an adversarial relationship. Both players create unpredictability in equilibrium because

they are adversarial against each other. For example, if Defender’s action is perfectly

predictable, Attacker will take advantage of Defender. Thus, both players make their actions

unpredictable by playing mixed strategies. Furthermore, changes in mixed strategies, due

to changes in the marginal target loss, generate a power law distribution. That is, in our

model, equilibrium play and its comparative statics yield the power law of conflict.

The parameters of the power law are estimated from data by using the procedure

of Clauset et al. (10). Our data are based on Global Terrorism Database (28). The power

law is a good fit to the data.

The rest of this chapter is organized as follows. Section 2 presents a strategic

model. Section 3 analyzes equilibrium behavior in this model. Section 4 studies a power

law. Section 5 discusses future research.
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Model

There is a route that connects Source to Target. Two players, Attacker and De-

fender, choose their strategies simultaneously and independently. See Figure 7 for an illus-

tration.

Attacker is endowed with a quantity q ≥ 1 of bads at Source. Attacker chooses a

strategy a with 0 ≤ a ≤ q. The set of strategies for Attacker is denoted by A. By choosing

a ∈ A, Attacker carries an amount a of bads from Source to Target.

Defender wishes to stop the transport of bads to Target. Defender chooses a

strategy b ∈ {0, 1}. The set of strategies for Defender is denoted by B. If b = 1, Defender

blocks the route, and if b = 0, Defender does not block the route.

Players are allowed to choose mixed strategies. The set of mixed strategies for

Attacker is denoted by ∆(A) and the set of mixed strategies for Defender is denoted by

∆(B).

If Defender does not block the route, that is, if b = 0, Attacker successfully carries

an amount a of bads to Target. The bads carried to Target cause a target loss. Defender

loses la from the target loss, where l > 1 denotes a marginal target loss. Attacker earns

(la)k, where k > 1 denotes a target loss power.

If Defender blocks the route, that is, if b = 1, Attacker fails to carry bads to Target.

No target loss is caused. However, Defender incurs a cost c ≥ 1 of blocking the route.

If Attacker carries an amount a of bads to Target, he incurs an expense ea, where

e > 0 denotes a marginal expense. Assume that l > e.

Attacker earns a constant worth w1 and Defender earns w2.
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For each (a, b) ∈ A×B, Attacker’s payoff is

u1(a, b) =


w1 + (la)k − ea if b = 0;

w1 − ea if b = 1,

and Defender’s payoff is

u2(a, b) =


w2 − la if b = 0;

w2 − c if b = 1.

For each σ = (σ1, σ2) ∈ ∆(A) × ∆(B), Attacker earns an expected payoff of u1(σ1, σ2) =

Eσ[u1(a, b)] and Defender earns an expected payoff of u2(σ1, σ2) = Eσ[u2(a, b)].

Figure 7. Route from Source to Target

Equilibrium Analysis

To analyze mixed strategy equilibrium, we assume that c < lq. In words, the

blocking cost is less than the maximum target loss. However, if c > lq, strategy profile

(q, 0) is the only equilibrium. Thus, in equilibrium, Attacker carries the maximum amount

of bads and Defender does not block the route.
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Proposition 14

Any amount a with 0 < a < q is a dominated strategy for Attacker.

Proof. Let a be any strategy with 0 < a < q. Let σ1 be a mixed strategy such that

σ1(0) + σ1(q) = 1. We show that a is dominated by σ1. If Defender chooses b = 0, then

u1(σ1, 0) = w1 + σ1(q)((lq)k − eq) and u1(a, 0) = w1 + (la)k − ea. Thus, if σ1(q) > (la)k−ea
(lq)k−eq

,

we have u1(σ1, 0) > u1(a, 0). If Defender chooses b = 1, then u1(σ1, 1) = w1−σ1(q)(eq) and

u1(a, 1) = w1 − ea. Thus, if σ1(q) < a
q , we have u1(σ1, 1) > u1(a, 1). Because (la)k−ea

(lq)k−eq
< a

q

and a
q < 1, there is σ1(q) with (la)k−ea

(lq)k−eq
< σ1(q) < a

q . Thus, a is dominated by σ1. �

After removing dominated strategies, our model can be represented in a matrix

game. See Table 3.

Table 3. Matrix Game
1 \ 2 0 1

0 w1, w2 w1, w2 − c

q w1 + (lq)k − eq, w2 − lq w1 − eq, w2 − c

For Attacker, a = 0 is the best response to b = 1 and a = q is the best response to b = 0.

The set of rationalizable strategies for Attacker is {0, q}. For Defender, b = 0 is the best

response to a = 0 and b = 1 is the best response to a = q. The set of rationalizable

strategies for Defender is {0, 1}. Furthermore, there is no pure strategy equilibrium.

Now we study mixed strategy equilibrium. Let σ∗1 be a mixed strategy such that

σ∗1(0) = 1 − c/(lq) and σ∗1(q) = c/(lq). Let σ∗2 be a mixed strategy such that σ∗2(0) =

(eq)/(lq)k and σ∗2(1) = 1− (eq)/(lq)k.
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Proposition 15

Strategy profile (σ∗1, σ
∗
2) is the only equilibrium.

Proof. It suffices to show that each player makes the other player indifferent between the

pure strategies played with positive probability. By choosing σ∗1, Attacker makes Defender

indifferent between b = 0 and b = 1. Given σ∗1, Defender’s payoffs are

u2(σ∗1, 0) = σ∗1(0)u2(0, 0) + σ∗1(q)u2(q, 0)

= (1− c/(lq))(w2) + (c/(lq))(w2 − lq)

= w2 − c

and

u2(σ∗1, 1) = σ∗1(0)u2(0, 1) + σ∗1(q)u2(q, 1)

= w2 − c.

Thus, u2(σ∗1, 0) = u2(σ∗1, 1). By choosing σ∗2, Defender makes Attacker indifferent between

a = 0 and a = q. Given σ∗2, Attacker’s payoffs are

u1(0, σ∗2) = σ∗2(0)u1(0, 0) + σ∗2(1)u1(0, 1)

= w1

and

u1(q, σ∗2) = σ∗2(0)u1(q, 0) + σ∗2(1)u1(q, 1)

= ((eq)/(lq)k)(w1 + (lq)k − eq) + (1− (eq)/(lq)k)(w1 − eq)

= w1

Thus, u1(0, σ∗2) = u1(q, σ∗2). Therefore, (σ∗1, σ
∗
2) is the only equilibrium. �
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In equilibrium, Attacker carries no bads with probability 1−c/(lq) and carries the

maximum amount of bads with probability c/(lq). Defender does not block the route with

probability (eq)/(lq)k and blocks the route with probability 1− (eq)/(lq)k.

In equilibrium, Attacker earns a payoff of w1 and Defender earns a payoff of w2−c.

Thus, equilibrium (σ∗1, σ
∗
2) is Pareto dominated by strategy profile (0, 0), where Attacker

earns w1 and Defender earns w2. However, strategy profile (0, 0) is not an equilibrium,

because Attacker is better off by choosing a = q.

In equilibrium, target loss is caused when Attacker carries the maximum amount

of bads and Defender does not block the route. Let L = lq and let C = ceq. Target loss

X = L occurs with probability CL−k−1 and no target loss X = 0 occurs with probability

1 − CL−k−1. Thus, given L, equilibrium target loss X|L follows a binomial distribution.

Precisely,

P (X = 0|L) = 1− CL−k−1 and P (X = L|L) = CL−k−1. (IV.1)

Power Law

The power law of conflict states that the frequency of a conflict event scales as an

inverse power of the severity of the event. Precisely, if the severity X of a conflict event is

measured by a number x ≥ xmin, that is, if X = x, the probability of the event conditional

on X > 0 scales as

p(X = x|X > 0) ∝ x−α,

where xmin is the minimum level above which the power law holds and α is the scaling

parameter of the power law.
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We want to show that the probability distribution of target loss X conditional on

X > 0 follows a power law.1

Suppose that all parameters are given and fixed except the marginal target loss

l, which is a random variable distributed uniformly between lmin and lmax. Suppose that

c/q < lmin and lmin < lmax.

When l is realized, it is observed by both players. In equilibrium, target loss X =

L = lq occurs with probability CL−k−1 and no target loss X = 0 occurs with probability

1− CL−k−1.

Because l is uniformly distributed between lmin and lmax, L is uniformly distributed

between Lmin = qlmin and Lmax = qlmax. Precisely, the probability distribution of L is

fL(L) = 1
Lmax−Lmin

.

We present the Cumulative Distribution Function (CDF) of target loss X condi-

tional on X > 0.

Proposition 16

For each x with Lmin ≤ x ≤ Lmax, the CDF of target loss X conditional on X > 0 is

P (X ≤ x|X > 0) =
L−k

min − x−k

L−k
min − L−k

max

, (IV.2)

where Lmin, Lmax, and k are the parameters of the distribution function.

1In empirical data, such as Global Terrorism Database (28), the severity of a conflict event is measured by
the number of fatalities in the event. Conflict events with no fatalities are often ignored by media and may
not be included in empirical data that are based on media reports. Thus, we study a power law distribution
conditional on X > 0, that is, on a positive number of fatalities.
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Proof. Note that for each x > 0,

P (X ≤ x|X > 0) =
P (0 < X ≤ x)

P (X > 0)
=

P (X ≤ x)− P (X = 0)
1− P (X = 0)

.

Calculate P (X ≤ x) and P (X = 0). Note that

P (X ≤ x|L) =


1 if x ≥ L;

1− CL−k−1 if x < L.

Or equivalently,

P (X ≤ x|L) = 1− (CL−k−1) · 1(x < L),

where 1(·) is an indicator function.

Because
∫ Lmax

Lmin
fL(L)dL = 1, for each x with Lmin ≤ x ≤ Lmax,

P (X ≤ x) =
∫ Lmax

Lmin

P (X ≤ x|L)fL(L)dL

=
∫ Lmax

Lmin

(1− (CL−k−1) · 1(x < L))fL(L)dL

=1−
∫ x

Lmin

(CL−k−1) · 1(x < L)fL(L)dL−
∫ Lmax

x
(CL−k−1) · 1(x < L)fL(L)dL.

Because 1(x < L) = 0 for Lmin ≤ L ≤ x and 1(x < L) = 1 for x ≤ L ≤ Lmax, for x with

Lmin ≤ x ≤ Lmax,

P (X ≤ x) =1−
∫ Lmax

x
(CL−k−1)fL(L)dL

=1−
∫ Lmax

x
(CL−k−1)

(
1

Lmax − Lmin

)
dL

=1−
(

C

Lmax − Lmin

)(
x−k − L−k

max

k

)
.
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Also,

P (X = 0) =
∫ Lmax

Lmin

P (X = 0|L)fL(L)dL

=
∫ Lmax

Lmin

(
1− CL−k−1

)( 1
Lmax − Lmin

)
dL

=1−
(

C

Lmax − Lmin

)(
L−k

min − L−k
max

k

)
.

Thus,

P (X ≤ x)− P (X = 0) =
(

C

Lmax − Lmin

)(
L−k

min − x−k

k

)

and

1− P (X = 0) =
(

C

Lmax − Lmin

)(
L−k

min − L−k
max

k

)
.

Therefore, for each x with Lmin ≤ x ≤ Lmax, the CDF of target loss X conditional

on X > 0 is

P (X ≤ x|X > 0) =
L−k

min − x−k

L−k
min − L−k

max

,

where Lmin, Lmax, and k are parameters. �

By differentiating the CDF (IV.2), we can show that the Probability Distribution

Function (PDF) of target loss X conditional on X > 0 follows a power law. Precisely, for

each x with Lmin ≤ x ≤ Lmax,

p(X = x|X > 0) =
dP (X ≤ x|X > 0)

dx
=

(
k

L−k
min − L−k

max

)
x−k−1, (IV.3)

where Lmin is the minimum level above which the power law holds and k + 1 is the scaling

parameter of the power law. Interestingly, the scaling parameter is determined by the target

loss power k.
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The Complementary Cumulative Distribution Function (CCDF) of X conditional

on X > 0 is

P (X > x|X > 0) = 1− P (X ≤ x|X > 0) =
x−k − L−k

max

L−k
min − L−k

max

. (IV.4)

We want to estimate parameters Lmin, Lmax, and k from data. We use Global

Terrorism Database (28) and focus on terrorist events occurred in a single country. Suppose

that target loss is measured by the number of fatalities in a terrorist event.

In Iraq there were 2233 terrorist events from 1976 to 2007. The number of fatalities

ranged from 1 to 202. Figure 8 shows the empirical CCDF of the Iraqi data.

Figure 8. Empirical Distribution
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We assume that L̂max equals to the maximum number of fatalities in the data

and estimate Lmin and k by using the two-step procedure of Clauset et al. (10). In the

first step we take Lmin as given and estimate k by the method of maximum likelihood.

Note that estimate k depends on the value of Lmin. To make this clear, we denote the

estimate by k(Lmin). In the second step we choose the value of L̂min that makes the

probability distributions of the data and the model as close as possible above the minimum

level L̂min. The Kolmogorov-Smirnov or KS statistic is used to define the distance between

two probability distributions. Finally, the estimate for k is k̂ = k(L̂min). This two-step

procedure will be presented more precisely in Appendix A.

Figure 9. Power Law Distribution
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From the Iraqi data we estimate parameters as L̂min = 8, L̂max = 202, and k̂ =

1.27. Figure 9 shows the empirical CCDF above the minimum level L̂min = 8 in black

circles as well as the model CCDF (IV.4) with estimated parameters in a gray curve. The

KS statistic is 0.01 between these two distributions. Our model is a good fit to the data.2

Future Research

This chapter examines how strategic behavior leads to the power law of conflict.

Equilibrium play and its comparative statics yield a power law. The scaling parameter of

the power law is determined by the target loss power. The parameters of the power law can

be estimated from data. We cannot, however, empirically test whether equilibrium play

and its comparative statics yield a power law because we cannot observe whether players

use equilibrium mixed strategies. In empirical data on conflict events, we only observe the

realized (and reported) actions of players.3 The model developed in this chapter, however,

can be used to test the power law of conflict in the laboratory. In experiments we can

test if subjects use equilibrium mixed strategies and if subjects adjust strategies as the

experimenter adjusts payoffs.4

We can also test if laboratory data exhibit a power law distribution. The power

law of conflict has been studied only in empirical data. It will be interesting to study the
2During the period of the data there may be “regime shifts” that affect the nature of conflict in Iraq.

If we restrict the data to the period between 2003 and 2007, there were 2149 events with the maximum
number of fatalities being 202. Parameters are estimated as L̂min = 10, L̂max = 202, and k̂ = 1.40 with the
KS statistic 0.005. Thus, it may give a better fit to restrict the data to a specific time period.

3In other contexts, especially in sports, it is possible to track down players’ actions to infer their strategies.
Walker and Wooders (39) obtain field data from matches between professional tennis players and test if the
players follow equilibrium mixed strategies. Palacios-Huerta (31) studies penalty kicks in professional soccer
games.

4Mixed strategy play has been studied in experiments. For example, see Brown and Rosenthal (7), Levitt
et al. (27), Ochs (29), O’Neill (30), Palacios-Huerta and Volij (32), and Wooders (42).
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power law in laboratory data. If we observe the power law in experiments, we may be able

to support our theory that strategic behavior in conflict events causes the power law.

Another interesting line of research would be to make the payoff functions of

Chapter II strictly convex so that the equilibrium would be unique and then investigate the

comparative statics properties in the general case.

Appendix A

We estimate parameters Lmin and k by using the two-step procedure of Clauset et

al. (10).

In the first step we take Lmin as given. From data {xi}n
i=1 with xi ≥ Lmin for

i = 1, . . . , n, we estimate k by the method of maximum likelihood. From (IV.3), the PDF

of target loss X conditional on X > 0 is

p(X = x|X > 0) =

(
k

L−k
min − L−k

max

)
x−k−1.

Thus, the probability that the data {xi}n
i=1 is drawn from the PDF is

p({xi}|k) =
n∏

i=1

(
k

L−k
min − L−k

max

)
x−k−1

i ,

which is also called the likelihood of the data. Given Lmin, the Maximum Likelihood

Estimator (MLE) for k is

k(Lmin) = arg max
k

p({xi}|k). (IV.5)

However, it is impossible to solve for k(Lmin) analytically. We can use a numerical method

to find k(Lmin).

In the second step we choose the value of L̂min that makes the probability dis-
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tributions of the data and the model as close as possible above L̂min. Given Lmin and

k = k(Lmin), let F (x) denote the CDF (IV.2) of our model. Given Lmin, let G(x) denote

the empirical CDF of the data {xi}n
i=1. The Kolmogorov-Smirnov or KS statistic is defined

as the maximum difference in absolute value between F (x) and G(x). That is,

D = max
x

|F (x)−G(x)|. (IV.6)

Because both F (x) and G(x) depend on Lmin, the KS statistic D also depends on Lmin.

To make this clear, we denote D by D(Lmin). Our estimate L̂min is the value of Lmin that

minimizes D(Lmin). That is,

L̂min = arg min
Lmin

D(Lmin).

Finally, the estimate for k is k̂ = k(L̂min).
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