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CHAPTER I 

 

INTRODUCTION 

 
Registration is the process of determining a geometric transformation aligning the 

objects in two views so that corresponding features can be related [1]. In other words, 

registration is the process of mapping specific points of the object in one view to 

corresponding points in another view [2]. The two views are typically acquired from the 

same object. In most applications those views are two-dimensional images, such as x-ray 

image, or three-dimensional images, such as computed tomography (CT), magnetic 

resonance image (MRI), positron emission tomography (PET), or single photon emission 

computed tomography (SPECT). Additionally, in computer-assisted surgery (CAS) a 

model created by a computer may be aligned to a three-dimensional image of a patient. In 

image-guided surgery (IGS) the physical arrangement of the object in space is aligned to 

a three-dimensional, or in some cases two-dimensional, image of the same object. 

Because our research is highly concerned with IGS and CAS, we restrict our work to the 

cases for which registration is rigid, which means that registration involves finding a rigid 

transformation. A geometrical transformation is called rigid if it preserves all distances. It 

can be shown that it also preserves the straightness of lines, the planarity of surfaces, and 

all angles between straight lines. Furthermore, any rigid transformation can be 

accomplished by means of rotation followed by translation (the other order works as 

well). From now, with the term “registration” we will refer to rigid registration. Though 

our proposed algorithms work with images of two or three dimensions, specific examples 

and equations in this work will be shown for three-dimensional cases only.  
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1. History 

 

Medical imaging as a new science was initiated with the discovery of x-rays in 

December 1895. Two weeks after the discovery, a first surgical procedure was 

undertaken with guidance by the pre-operative images: in order to remove an inserted 

broken needle, a radiograph of a patient’s hand was aligned with the hand [1]. Since then, 

many methods have been created to increase the quality of image registration. A very 

important advance in medical imaging was made in 1947 by Spiegel et al. [3]. To guide 

surgery in humans, they registered plain images to the anatomy of patients. They used a 

stereotactic frame, which was rigidly attached to a patient’s head and could stay in the 

same position from the beginning of acquiring images to the end of the surgery.  

In the past 35 years medical imaging in general and image registration in 

particular have made a remarkable progress. The progress is mainly caused by the 

invention of three-dimensional imaging techniques, such as CT, MRI, SPECT, and PET. 

A wide range of imaging modalities, which mean methods of acquiring images, exists 

nowadays. It all started in 1973, when Hounsfield demonstrated CT technology [4] and 

Lauterbur introduced a primitive version of MRI [5]. In about five years both CT and 

MRI were clinically available for the surgeons. The major principle of CT is as follows: 

CT image is obtained by constructing the three-dimensional image from a series of lower 

dimensional x-ray projections taken at known directions. The principle of MRI, which 

uses a powerful magnetic field to align the nuclear magnetization of hydrogen atoms in 

water in the body of the patient [6], is more complicated, but it also constructs a three-

dimensional image from a series of signals derived from lower dimensional projections.  
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All imaging modalities are good for showing the surgeon specific information 

about the patient. For example, PET and SPECT provide functional information, such as 

cellular activity. CT is good for highlighting bones, but not good for soft tissues. MRI, on 

the contrary, performs well on soft tissues and not so well on bones. Ultrasound provides 

information about discrimination of different tissue types. Doppler ultrasound shows 

flowing blood. Nowadays, in patients’ diagnosis and treatment, surgeons often use more 

than one modality. For many surgeries they are required to align images acquired via 

different modalities, for example, CT and PET images. Besides that, using pre-operative 

images and post-operative images is a common practice for several surgeries now. 

Because of this growing use of multiple images for diagnosis and treatment, image 

registration has evolved from being a minor procedure to a significant subdiscipline in 

itself.   

In the first half of the 1990s, a new big step in image registration was made when 

fully automatic retrospective algorithms were developed for aligning the images of the 

same modality [7], [8] and different modalities [8]-[12]. Currently, the usefulness of 

image registration methods is rapidly advancing because of the highly increasing power 

of computation systems. Some algorithms, which looked impossible 20 years ago 

because of complicated computations, now can be completed in a couple of seconds. 

 
2. Registration methods 

 

Since the introduction of multiple imaging modalities, a large number of 

registration approaches have been developed [13]-[15]. They can be classified in many 

ways, but in general all registration methods minimize some kind of cost function. For 
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several methods the cost function is a sum of distances between known corresponding 

points (point-based methods). For other methods it is the distance between the surfaces of 

the object (surface-based methods). For some methods it is a function of image intensities 

(intensity-based methods).  

Point-based methods [2], [16]-[21] are the most intuitive registration procedures. 

If some points of a rigid object can be identified a priori on both views, then a point-

based method can be used. The transformation that minimizes the sum of the squared 

distances between each pair of corresponding points needs to be found. (See “Derivation 

of ideal weighting” in Section 8 of Chapter II (page 70) for an explanation of the use of 

the squared distance.) Anatomical landmarks can be chosen as identified points for this 

type of registration. Often because of difficulties in accurate localization of anatomical 

points, special markers, which are designed in such a way that they can be accurately 

localized in both views, are used. The points used for point-based registration are called 

“fiducial points”, or “fiducials”. The markers from which the fiducials are derived are 

called “fiducial markers”. In the standard algorithm on which most point-based methods 

are based, the translation is calculated as the difference between the means of the two 

point sets. The “de-meaned” points in each set are then calculated by subtracting the 

respective mean from each point, and one of the de-meaned sets is then rotated to 

minimize the total squared sum of the de-meaned point differences. Closed-form 

solutions exist for determining the transformations [22]-[27].  

Surface-based methods [28]-[33] are based on aligning corresponding surfaces of 

the same object or two different objects in two views. Usually these methods are used 

when attachment of the fiducial is not feasible. Sometimes it is also hard to find good 

  4



natural landmarks for point-based registration. For example, the tip of the nose can be 

localized in physical space, but it is hard to localize it in CT or MRI. Even if it can be 

localized, there is a chance that skin-based landmarks will move relative to each other, 

which will cause additional error. In this situation, it is better to align the whole surface 

instead of a small number of landmarks. The most easily accessible surface on a patient’s 

body is the surface of the patient’s skin. When the surface is localized, only the 

coordinates in the direction perpendicular to the skin are important for determining the 

transformation. Thus, if the whole region slides along the surface, the registration will 

still appear be good.  

The most popular surface-based algorithm is “Iterative Closest Point” algorithm 

[29]. It aligns two surfaces by iteratively performing three major steps: the closest point 

on the surface is found for each localized point, then a point-based algorithm is used to 

align these two sets of points, and finally surface points are replaced with the found ones. 

This algorithm does not perform well if the initial two sets of points are not 

approximately aligned. Recent patient studies have consistently measured accuracy of 

this method of two to five millimeters [34]-[36]. 

Volume-based methods recently have became the most widely used registration 

basis for applications in which two images of different modalities need to be registered 

[7], [37]-[41]. This approach uses intensities of image voxels to calculate a similarity 

measure which then is optimized – maximized or minimized. The advantage of volume-

based methods is that they require less user-interaction than surface-based or point-based 

methods. The disadvantage is that there is no uniform algorithm that works for all images. 

Some similarity measures work well for one set of modalities and anatomical regions, but 
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fail for others. The most well known similarity measures are absolute difference, squared 

difference, correlation coefficient, ratio-image uniformity, partitioned intensity 

uniformity, joint histogram and joint probability distribution, joint entropy, mutual 

information, and normalized mutual information [2]. 

 

3. Image-guided surgery 

 

In image-guided surgery, registration is used to provide the mapping between the 

arrangement of the patient in physical space and a three-dimensional image. This 

procedure is called image-to-physical registration. Image-to-physical registration is one 

of the key procedures in neurosurgery.  

In 1906 Horsley and Clark performed the first image-guided surgery experiments 

on animals [42], [43]. They fixed a stereotactic frame on the head of an animal. About 40 

years later, the first surgery on a human was performed using the same idea of rigidly-

attached frame to allow guidance of the operation by the images. After the introduction of 

three-dimensional images, such as CT and MRI, image-guided surgery changed 

neurosurgery. In 1979 a surgery guided by CT image was performed [44]. It still used the 

stereotactic frame, though it was enhanced for three-dimensional nature of the images. In 

early 1980s, a new approach to image guidance became possible with the invention of 

methods for real-time updating of the images displayed on screens. Kelly with colleagues 

displayed tumor during surgery in the OR, updating the images and a cursor position 

based on the movement of the surgical microscope [45], [46]. Roberts with colleagues 

displayed similar image based on the tracking of a microscope [47]. An innovation in 

image-guided surgery was suggested by Allen in 1987 [48]. He suggested to use bone 
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implanted markers, or fiducials, instead of the stereotactic frame. Ten years later it was 

shown that with newly developed fiducial markers, it is possible to achieve the accuracy 

at the level of one millimeter in neurological guidance systems [20].  

The registration problem in neurosurgery can be defined as follows. One of the 

views is the patient’s three-dimensional image, usually CT or MRI. This image is 

typically obtained before the surgery. The other view is the physical arrangement of the 

patient in the space. During the surgery, the surgical tool is tracked, so that the position of 

the surgical tool’s tip can be displayed on the screen in image space after performing 

registration of the patient in the two views. The registration should be performed with 

high accuracy, otherwise the surgeon may be misled, which is potentially dangerous for 

the patient.  

The mapping between physical space and the image can be performed using any 

method from two categories – point-based registration and surface-based registration. 

Volume-based registration cannot be applied here because there is no good measure for 

intensities in physical space (ultrasound is blocked by the skull). 

Because of the rigidity of a human head provided by the skull, IGS is now an 

important part of many neurological surgeries, but in the field of otologic surgery, where 

anatomy is also kept rigid by bones, it is relatively new. The temporal bone, which in 

human anatomy protects the inner ear, can be assumed to be rigid during surgeries. So 

can the region surrounded by the temporal bone, which makes it possible to use IGS 

systems for otologic surgeries. Thus, otology represents an excellent opportunity for new 

IGS advances. Before operating on the inner ear, a surgeon performs mastoidectomy – 

drilling out a part of the temporal bone. Some critical structures are hidden behind this 
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part of the bone. They are the facial nerve (an injury may result in paralysis of the face), 

the inner ear (an injury may result in permanent hearing loss and vertigo), the floor of the 

cranial vault (an injury may result on leakage of cerebrospinal fluid), and the internal 

jugular vein and carotid artery (an injury may result in blood loss which may be life 

threatening) [49]. With the help of IGS systems, an otologic surgeon can be more 

confident in his or her actions because by having pre-operative tomographic images 

mapped to the patient in the OR during surgery, the surgeon will have an option to see on 

a display how far the surgical tool is from the critical structures.  

In 1999 the question of whether IGS is required in otologic surgeries was 

discussed [50]. In 2002 it was reported that using IGS might reduce the complications 

associated with procedures in sinus surgery [51]. Nowadays IGS is widely used for 

performing endoscopic sinus surgery in cases when landmarks are ambiguous or distorted. 

The use of IGS gives greater confidence and allows more complete exploration of the 

paranasal sinuses. The operation time is reduced, the accuracy of the system is within 2 

mm [52]. This success in sinus surgery gives strong evidence that IGS can be an 

important advantage in ear surgery as well. In 2008 a minimally invasive, image-guided, 

facial-recess approach to the middle ear using a single drill hole was performed [53]. It 

was shown that accessing the cochlea using customized drill guides based on pre-

operative CT scans and image-guided surgery technology can be safely accomplished 

with less destruction of the bone. This finding further predicts a bright future for IGS 

systems in otology.  

The specification of ear surgeries does not always allow invasive fiducial systems. 

They are usually used only in the most malignant cases. The systems with skin-affixed 
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markers have errors of at least 1.5 mm because of possible skin movement relative to the 

skull [54]. The other possibility is using a surface-based registration method by using 

laser skin contouring. The experiments show that this method is also not suitable for 

otologic surgeries because of the relatively large errors (two to five millimeters). 

Recently, new fiducial systems were suggested specifically for the otologic surgeries [57], 

[58]. The major principle of these fiducial systems is taken from the stereotactic frames. 

However, the new fiducial systems are much smaller in size, and they provide 

submillimetric accuracy. 

 

4. Computer-assisted surgery and robotic surgery 

 

Any computer-based procedure using technologies such as imaging and real-time 

planning can be called a computer-assisted surgery (CAS). The major purpose and 

advantage of CAS is allowing much better visualization of the operated region and more 

accurate pre-operative surgical planning. That means that a surgeon can plan the 

operation in a pre-operative virtual environment and make sure that no critical structures 

will be hit during procedure and no damage will be done to the patient. It also has the 

potential to help during the surgery by decreasing the chance of surgical error, reducing 

the operating time, and improving the accuracy of the surgeon’s gestures.   

Robotic surgery implies the use of a robot during an operation on a patient. There 

are different robotic systems. The difference between them can be described in terms of 

the level of the surgeon’s interactions during the surgery. There are three major 

categories: supervisory-controlled systems, telesurgical systems, and shared-control 

systems [79]. In supervisory-controlled system, the whole procedure is executed by a 
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robot which follows a pre-defined program that implements planning performed by the 

surgeon. The best known representative of this category is ROBODOC® (Curexo 

Technology Corp., Fremont, CA), which performs minimally invasive hip and knee 

replacement. In telesurgical systems, the robot does not follow a pre-defined program as 

in supervisory-controlled systems. Instead, with telesurgical systems the surgeon 

manipulates robotic arms during the surgery. The Da Vinci® surgical system (Intuitive 

Surgical Inc., Sunnyvale, CA) allows performing complicated minimally invasive 

surgeries with a low chance of surgical error and with reduced operating time. It provides 

the surgeon with a three-dimensional visualization of organs, such as heart, that are 

otherwise hard to see. It also gives the surgeon the opportunity to use tiny instruments. In 

shared-control systems, both the surgeon and the robot perform the operation. The robot 

is usually programmed in such a way that it recognizes safe territories and boundaries. If 

the surgeon is moving a surgical tool beyond the safety bounds, the robot warns the 

surgeon or limits the movement of the tool.  

The workflow of a robotic surgery is as follows [80]. First, pre-operative images 

of the patient are acquired. Second, a three-dimensional model of the region of interest is 

constructed. Third, computer-assisted planning of the surgical procedure is performed. 

Finally, after performing the registration of the computer model to the patient in 

operating room, the surgery plan is executed.  

Though robotic systems are widely used in urology, radiosurgery, orthopedics, 

neurosurgery, and other medical areas, there has not been such a wide usage of robots in 

otologic surgeries. The first method of computer-assisted surgery in head and neck 

surgery was developed in 1989 by Schloendorff [59]. During the next 15 years, there 
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were no reported ENT applications; only cadaveric and animal studies were made [60]. In 

2005 the first robotic otologic surgery was performed by McLeod and Melder [61].  

 

5. Definition of errors 

 

Regardless of the type of fiducial markers used for point-based registration and 

methods of fiducial localization, in real-life applications it is impossible to align the 

markers perfectly. The reason for that is that it is highly unlikely to get an absolutely 

accurate location of a point in any view. Fortunately, registration does not necessarily 

need to be perfect; it just needs to be adequate for the problem. To understand how good 

a registration is, the following error measures are used. 

Fiducial Localization Error: Fiducial localization is the process of estimating the 

geometrical positions of a fiducial point, such as the centroid of a fiducial marker. In all 

applications fiducial localization must be performed in both views. Regardless of the 

method used for localization, whether it is interactive visual identification of anatomical 

landmarks or an automatic algorithm for localizing a fiducial marker, the point will 

inevitably be erroneously displaced somewhat from its correct location [2]. This 

displacement is called “fiducial localization error” (FLE). FLE of each fiducial is present 

in both views, but its value is unknown. This error is the root cause of further errors in the 

registration process. In most cases, the mathematical definition of FLE is the Euclidean 

distance between the true point location and estimated fiducial location (if direction is 

considered to be important, it may be measured as a vector displacement).  

Systems for image-guided surgeries that are based on fiducials are implemented 

with fiducial registration algorithms that assume statistical independence of FLE of each 
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fiducial in the system (see “Derivation of ideal weighting” in Section 8 of Chapter II 

(page 70)). FLE of bone-implanted markers is modeled as random error produced by 

imaging artifacts, fiducial fixation defects, and intra-operative tracking in accuracy. The 

assumption about the independence of such FLE is reasonable for bone-implanted 

fiducials, but for skin-affixed markers FLE independence is highly questionable. The 

reason is that FLE of such markers will include, in addition to the errors listed above for 

bone-implanted markers, errors caused by fiducials movement as a result of skin 

movement. Because skin movement may span more than one marker, marker movements 

may be correlated, resulting in correlated FLE among them. Nevertheless, FLE among 

the markers is usually treated as approximately independent by the registration 

algorithms, regardless of whether they are bone-implanted or skin-attached. It is also 

assumed that FLE is normally distributed with zero-mean.  

Fiducial Registration Error: As mentioned earlier, because of the presence of FLE, 

the corresponding fiducial points in two views are not aligned perfectly after the 

registration. The Euclidean distance between the corresponding fiducial points after 

registration is called “fiducial registration error” (FRE) (if direction is considered to be 

important, FRE may be measured as a vector displacement). Though FRE can be 

calculated for each fiducial in the system and thus be used as a measure of registration 

accuracy, it is more common to use the root-mean-square (RMS) of the set of Euclidean 

distances between corresponding points in a given registration as a registration accuracy 

measure.  In this work we will refer to the latter definition when we talk about FRE. In 

the general case, FRE is weighted differently for different markers and/or different 

directions. Thus, FRE for different markers (and possibly different directional 
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components) may be multiplied by differing weights in the calculation of the RMS. 

Usually FRE is lacking in any intrinsic clinical meaning, because it only shows how well 

the fiducials are aligned. Moreover, as we discuss later, FRE is not a reliable measure of 

registration accuracy.  

Target Registration Error: A displacement between two corresponding points not 

used to determine the registration transformation but after applying the transformation is 

called “target registration error” (TRE). The term “target” is used because of the 

implication that the error is being measured at some important anatomical position within 

a region of interest. Because of the presence of FLE, targets are rarely aligned perfectly. 

If the direction of the error is important for an application of registration, the 

displacement vector of TRE is reported. Otherwise, typically the Euclidean distance 

between corresponding targets after registration is referred to as TRE. 

Figure 1 shows a schematic to explain the errors defined above. FLE, FRE, and 

TRE are here depicted as vector quantities, though they are usually reported as scalar 

RMS values. As said above, FRE does not have a practical use for the surgeon. TRE is 

the true measure of system accuracy. Only TRE gives the surgeon the understanding of 

how large the error is at certain position while using the system. 
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Figure 1. Schematic showing various errors in registration. Solid circles represent true position of the 
fiducials. Dashed circles and dashed triangles represent the localized position of the fiducials. Dashed 
triangles represent the transformed localized positions produced by registration. The filled circle represents 
the true target point in the right-hand space. The filled triangle represents the target point transformed from 
the left-hand space. Arrows depict errors: Arrows between solid and dashed circles are fiducial localization 
errors (FLE). Arrows between dashed triangles and circles represent individual fiducial registration errors 
(FRE). The arrow between the solid triangle and circle represent target registration error TRE(r) at position 
r. 

 

  

Target Localization Error: In systems using a probe to localize fiducials, there is 

one more important source of inherent error. Because the probe tip position is usually 

calculated using fiducials on the same probe, the localization errors of those fiducials 

cause an erroneous calculation of the probe tip location. The distance from the true tip 

position to the expected one is called “target localization error” (TLE).  

Total Target Error: If there is TLE present in the system, since it can be expected 

to be uncorrelated with TRE, the RMS value of the “total target error” (TTE) at target p 

can be calculated using this formula: ( )( )2
rmsTTE p = ( )( ) ( )( )2 2

rmsTRE rmsTLE+p p . 

In presence of a probe used to localize fiducials in the system, TTE is the proper measure 

to be reported to the surgeon to analyze the accuracy of the system.  
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6. Point-based registration 

 

Fiducial localization in two views produces two sets of corresponding fiducial 

points,  and  for . In point-based registration, a rigid transformation is 

sought of the form , where for the three-dimensional case R is a 3-by-3 

rotation matrix, which by definition means that 

ip iq  1...i = N

ti iR′ = +p p

tR R  equals the identity matrix, and t is a 

3-by-1 vector, whose elements are the components of translation along the x, y, and z 

axes. This optimum R and t are found, meaning that they maximize the goodness of fit of 

the fiducials, by minimizing a weighted sum of the squares of the distances, i i′ −p q , 

between corresponding fiducials after the transformation has been applied. In particular, 

the quantity, 

 

 ( ) 22

1

FRE
N

i i i
i

W
=

′= −∑ p q , (1) 

 

is minimized, where  represents 3-by-3 weighting matrix for the i-th marker.  may 

differ from fiducial to fiducial and may also depend on spatial direction as well. 

Directional dependence means that FLE is anisotropic. Up to today there is no closed-

form solution for this problem. Iterative approaches [62]-[65] are used to find registration 

parameters. However, for many applications the anisotropy is typically small and is 

ignored. Making this assumption, we get the isotropic problem, for which  is a scalar. 

In the statistics literature, the minimization of Eq. 

iW iW

iW

(1) is known as the “Orthogonal 

Procrustes Problem”. For this problem, closed-form solutions for rigid transformations do 
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exist. The first solution was given by Green [22], followed by other published solutions 

[23]-[27]. All of those solutions use singular-value decomposition, first introduced to this 

problem by Schönemann [23] for computation of rotation matrices or finding unit 

quaternions to represent rotations [26]. In our work, we will follow a simple solution 

described in [2] that uses singular-value decomposition of the cross-covariance matrix of 

the fiducial positions.  

 

7. Error Measures 

 

As mentioned above in Section 5 (page 11), during fiducial point-based 

registration there is one major source of errors – FLE. As was stated earlier, FLE cannot 

be measured directly. On the other hand, FLE can be characterized statistically. Typically, 

FLE for a particular marker is different in the two spaces. Let 
1

2FLE  and 2
2FLE  be 

the expected squared FLE in the two spaces, where .  represents expected value. Then 

making the usual and reasonable assumption that the errors are uncorrelated, the total 

FLE is related to FLE in the two spaces as follows [66]:  

 

 2 2
1 .FLE FLE FLE= + 2

2  (2) 

 

Because of the lack of a closed-form solution of anisotropic registration problem 

and the infeasibility of running iterative methods due to large computation time and 

resources, for most applications it was assumed that FLE is small relative to the spread of 

the fiducials. The following formulas are derived under this assumption.  
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In 1979 Sibson found a relationship between FRE and FLE that holds for small 

values of FLE and can be used to compute the expected value of the total FLE [67]. The 

relationship is 

 

 ( )2 1 2 ,FRE N FLE= − 2  (3) 

 

where  is the number of fiducials used for the registration. From this equation it is 

clear that FRE is independent of the fiducial configuration. 

N

The first formula for calculating the expected squared value of TRE was given by 

Fitzpatrick et al. in 1998 [68]. According to their theory, TRE at any target position r  

can be estimated using following formula: 

 

 ( )
23

2 2
2

1

1 11
3

k

k k

dTRE r FLE
N f=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ,  (4) 

 

where  is the distance of the target r  from the principal axis k of the fiducial set, and kd

kf  is the RMS distance of the fiducials from the same axis. This formula quantifies the 

effect on registration accuracy of the target’s position relative to the fiducial 

configuration. The following characteristics are derived from the above formula (omitting 

the expectation-value symbol): a) TRE is proportional to FLE, b) TRE depends on the 

configuration and the number of the fiducials used for the registration, c) TRE depends 

on the position of the target, d) the minimum value of TRE is equal to FLE N . This 

minimum is reached at the fiducial configuration centroid and is purely the translational 
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component of the registration error. Its value decreases as the number N of fiducials 

increases, e) TRE increases as the target point moves away from the centroid, and it 

exhibits ellipsoidal isocontours.  

A later result by Fitzpatrick and West [69] showed that TRE is anisotropic in 

nature. TRE’s component along the direction parallel to the line joining the origin of the 

principal axes to the target point has a lower value relative to the components along the 

other two perpendicular directions. 

In the last 10 years attempts have been made to find the formula for estimating 

TRE and FRE for the case without neglecting anisotropy. The reason is widely-used in 

real-life applications optical tracking systems. In those systems, the error along the 

direction parallel to the line from the tracking device to the object is about three times 

larger than errors in the two perpendicular directions. Wiles et al. [70], [73] and Moghari 

et al. [71], [72] recently derived formulas for estimating TRE and FRE. However, their 

derivations and equations work only for specific cases of FLE distribution.  

 

8. Overview of dissertation 

 

Here we briefly describe the main problems we set out to solve in our work and 

give an overview of the remainder of the dissertation. 

 

Finding a new general method of estimating the point-based registration accuracy 

(Chapter II)  

As was described above, for a long time in calculations of the registration 

accuracy measures it was assumed that the anisotropy is very small and thus can be 
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neglected. The formulas for estimating TRE and FRE were derived on this basis. But 

with the increase of usage of optically tracked systems in medical applications and the 

importance of accurate image alignment, the fact that FLE in one direction is much larger 

than FLE in other directions cannot be neglected anymore. A couple of research groups 

found formulas for estimating registration accuracy measurements in specific cases. Yet, 

neither of the developed methods was able to produce general formulas for TRE and FRE. 

In Chapter II we derive the general form of formulas estimating TRE and FRE. Our 

formulas work for any fiducial configuration, for any FLE distribution, and for any 

weighting during registration. Any FLE distribution means that FLE in either of two 

spaces can be homogeneous or inhomogeneous – same or different FLE for all fiducials – 

and isotropic or anisotropic – same or different FLE in all directions for each fiducials. 

Our formulas are a unification of first-order TRE and FRE statistics, which was 

previously developed piecewise for special cases. We present formulas for estimating 

TRE and FRE calculating covariance matrices for TRE and FRE and estimating 

individual FRE.  

In addition, for the case of ideal weighting we show that FRE and TRE are 

independent to first order for any FLE distribution. This result disproves a popular belief 

that small FRE corresponds to small TRE, previously disproved only for one special case 

– isotropic FLE with uniform weighting. Both analytically and experimentally we show 

that small FRE does not always lead to small TRE. Thus, even though there is 

dependence between the covariances of these two errors, for each given case the value of 

FRE does not give any good estimation of TRE. 
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To prove the correctness of our formulas and independence theory, we present the 

results of a set of experiments. In those experiments, we used computer simulations to 

find true values and compared them to values calculated using our new formulas.  

At the end of Chapter II we provide a computer program for calculating 

covariance matrices and estimates of TRE and FRE. 

 

Developing and evaluating a feasible method of solving the problem of anisotropic point-

based registration (Chapter III) 

As mentioned above, modern tracking systems cause high anisotropy in localizing 

fiducials in physical space. Using registration methods disregarding the anisotropy and 

instead looking for isotropic solution increases overall registration error. Because 

tracking systems are widely used for medical applications on real patients, the accuracy 

of such systems becomes an important issue. Thus, solving anisotropic point-based 

registration is of big value. To our knowledge, no closed-form solution of anisotropic 

point-based registration problem exists. Recently some iterative algorithms solving the 

anisotropic registration problem were developed. Most of them require multiple 

parameters adjustment before registration. In Chapter III we present and evaluate a new 

iterative algorithm solving the problem of anisotropic point-based registration that 

requires just one parameter adjustment.  

Like the formulas for estimating errors presented in Chapter II, the registration 

algorithm presented in Chapter III is general. Specifically, it works for any non-linear 

fiducial configuration (no solution exists for a linear configuration), any type of FLE – 

homogeneous or inhomogeneous, isotropic or anisotropic, and any set of weights.  
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To evaluate the new algorithm, we selected for comparison two other iterative 

algorithms that solve anisotropic point-based registration. The criterion for selecting the 

algorithms was the number of parameters which need to be set. We selected two 

algorithms which similar to our new algorithm require just one parameter – the stopping 

criterion. For those selected algorithms, we ran computer simulations as well as an 

experiment with real data. All the experiments showed that our new algorithm produces a 

smaller TRE than either of the selected algorithms or the standard approach (closed-form 

solution for uniform weighting) 

We explored the space of point registration problems to examine the robustness of 

the new algorithm. The goal was to find cases for which the algorithm “fails”. By failing 

we mean not converging or producing error bigger than other algorithms. Because an 

exhaustive search of such a large space is not possible, we limited the search to the case 

of surgical operations. We ran computer simulations for all reasonable fiducial 

configurations for a medical surgery. There were no cases noted when the new algorithm 

presented in this chapter failed.  

We then looked at the case when fiducial positions are nearly collinear, which is 

known to cause trouble for the majority of registration methods. We found that for some 

nearly linear configurations, the new algorithm fails, but for any medically applicable 

fiducial configuration the new algorithm converges well and produces good results. 

We also looked at the time and the number of iterations required for converging. 

We compared those values of our new algorithm to the ones of the two selected methods. 

While the number of iterations is larger than for the other two methods, each iteration 

takes a much smaller amount of time, which leads to the smaller overall time of execution. 
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Increasing the accuracy of IGS (Chapter IV) 

Potentially IGS might be executed with more accuracy than it is now. A set of 

factors influences the resulting error. To minimize the overall error, all errors of the 

surgical system should be minimized. One of those is tracking error. The algorithm used 

to track objects in modern systems is as follows: localize each trackable marker of an 

object, and then run point-based registration of the localized markers to a model of the 

configuration of markers of that object, which is stored in an object’s configuration file. 

In the standard tracking algorithm it is assumed that the markers are localized with no 

anisotropy or inhomogeneity. Homogeneity is a reasonable assumption (see next  

paragraph for an explanation), but for the majority of tracking systems there is a high 

localization error in the direction from the tracking system to the object in comparison to 

the two perpendicular directions. Taking this anisotropy into consideration has the 

potential to decrease the registration error, and thus, decrease the tracking error.  

In Chapter IV we present a new tracking algorithm, which takes the anisotropy 

created by the tracking system into consideration. The new tracking algorithm consists of 

two phases: (1) FLE covariance estimation and (2) anisotropic point-based registration.  

For FLE covariance estimation, we modified an existing estimation algorithm. FLE 

covariance is estimated from FRE covariance, which can be measured. For this 

estimation procedure, FLE homogeneity of the fiducial system is assumed. This 

assumption can be made because for many tracking systems the distance from the 

tracking system to the object is much larger than the distances between the fiducials. For 

FLE covariance estimation we also tested a method based on the equation relating FRE to 

FLE derived in Chapter II. This method is more general than the existing method (with or 

  22



without modification) and we found that it gives the same results. Because it is more 

general, it requires more execution time. We therefore used the modified existing 

algorithm in our validation experiments.  

For the second phase of the tracking algorithm – anisotropic point-based 

registration – we used the iterative algorithm examined in Chapter III. First, we find the 

FLE covariance using the modified version of the existing estimation algorithm. Then we 

calculate the ideal weighting for the fiducials using the estimated FLE covariance. Finally, 

we register the localized fiducials using calculated weights in the iterative anisotropic 

algorithm.  

We performed an experiment on real data to compare the new tracking algorithm 

with the standard tracking algorithm. The experiment showed that the new tracking 

algorithm notably improves the accuracy. Moreover, the new tracking algorithm works 

fast enough to be used in tracking systems in real-time.  

 

Building a medical application for researching the effect of point-based registration in 

presence of anisotropic FLE (Chapter V) 

In Chapter V we describe a new study in which we performed robotic 

mastoidectomy [78]. Mastoidectomy is a process of removing mastoid – part of the 

temporal bone. Nowadays this medical operation is performed only manually. The goal 

of the study was to use a robotic system for performing this operation. That would allow 

performing it more accurately and with a guarantee that no critical structures, such as the 

facial nerve, would be damaged.  
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During the robotic mastoidectomy, one fiducial frame is attached to a patient, and 

two more fiducial frames are attached to the robot. The three fiducial frames are tracked 

by the tracking system. Because the robotic system’s error is very low, the major source 

of the error is the tracking error. In the study we used a tracking system that produces a 

high anisotropy in physical space. Thus, the presented robotic system should serve as an 

ideal platform for studying the effect of anisotropic FLE on the accuracy of a medical 

operation.  

In Chapter VI we give conclusions and suggest some directions for future work. 
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CHAPTER II 

 

GENERAL APPROACH TO FIRST-ORDER ERROR PREDICTION IN RIGID POINT 
REGISTRATION 

 

This chapter is adapted from the following paper: 

• Danilchenko, A. and Fitzpatrick, J.M. General approach to first-order error 

prediction in rigid point registration, IEEE Transactions on Medical Imaging, 

30(3), 679-693, 2011. 

 

1. Introduction 

 

nI  2009, a new method of first-order analysis of the point-registration problem 

was introduced [1]. The method was developed to facilitate the statistical analysis of a 

phenomenon that had been observed years earlier, first by Steinmeier using phantoms [2] 

and more recently by Woerdeman in-vivo [3]. These investigators attempted to establish 

for several fiducial-based, surgical navigation systems, a correlation between the 

displayed estimates of accuracy and the true accuracy. Steinmeier found no correlation, 

and Woerdeman observed a negligible correlation coefficient of only 0.08. Thus, lower 

than normal estimated accuracies were not accompanied by lower than normal true 

accuracies, nor were there correlations for higher than normal values. The navigational 

systems’ estimates of accuracy are based on the goodness of fit of the fiducial points after 

registration, and the surprising result that these estimates seem to be unrelated to truth, 

suggests that there is an underlying problem with this method of error prediction. The 
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2009 work [1] investigated this problem for a special case in which expected error in 

fiducial localization is isotropic and identical for all fiducials, and it proved to first order 

that fluctuations in registration accuracy are statistically independent of the fluctuations 

of any estimate of that accuracy based on the goodness of fit. In the present work, we 

extend this analysis to the general case. We show that, when ideal weighting is used for 

each fiducial, this independence is maintained, and we show by simulations that, without 

weighting, the correlation between them is on the order of that low value observed by 

Woerdeman. In addition, we provide new expressions for error statistics that are more 

general than those previously provided. We begin with Section 2 by providing 

background on and precise definitions of error in these navigation systems. In Section 3 

we present our new approach and derive independence and the new statistical expressions. 

In Sections 4 and 5 we compare our results to previously published results and to results 

from computer simulations. In Sections 6 and 7 we discuss our theory and its results and 

present our conclusions.   

 

2. Background 

 

Fiducial-based navigation has become a ubiquitous adjunct to surgery when rigid 

anatomy – bone or soft tissue constrained by bone – is involved. The major commercial 

guidance systems – the StealthStation Surgical Navigation System (Medtronic, Inc., 

Minneapolis, MN) and the VectorVision System (BrainLAB AG, Feldkirchen, Germany), 

each provide it as an option in addition to surface-based navigation, and both options 

incorporate rigid point registration in their algorithms to determine the position of the 
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surgeon’s tracked probe or tracked instrument. The registration approach analyzed in the 

following sections is employed by both of these systems. Fiducials, often called 

“markers”, are provided that typically adhere to the skin, but the selection of anatomical 

“fiducials” are supported by these systems as well. Both fiducial and surface registration 

approaches are often called “frameless” stereotaxy, in reference to the cumbersome 

stereotactic frame that they are designed to replace. These frameless approaches are 

offered by virtually every surgical center as an adjunct to neurosurgery, spine surgery, 

and orthopedic surgery, and they are provided as well by radiation oncology centers as an 

adjunct to radiosurgery.  

Because fiducials by their nature are discrete objects, they provide positional 

information only at isolated regions of the anatomy. Information about the position or 

movement of anatomy outside these regions can be inferred only if all these regions move 

as a single rigid object. As a result, fiducial-based navigation systems employ only rigid 

transformations during the registration process. To the extent that the anatomy is non-

rigid, rigid transformations are inappropriate, but for surgical resections involving bone, 

such as a vertebra or a femur, or tissue and bone that move as a single rigid object, such 

as the head, rigidity is a reasonable assumption. Failure of the anatomy to remain rigid 

will cause systems’ predictions of fiducial-registration accuracy, such as those studied by 

Steinmeier and Woerdeman, to fail, but non-rigidity is not the source of failure that we 

present here. Indeed Steinmeier’s experiments involved only rigid phantoms. Instead we 

confine our attention to those applications in which rigidity is a valid assumption. 

For rigid anatomy, the image-guidance problem is reduced to the determination of 

the rigid transformation that the anatomy has undergone between image acquisition and 

  32



intervention. That transformation can be estimated via fiducials that are attached to the 

anatomy before imaging and remain in place through the registration procedure. The 

position of each fiducial is localized in both image space and physical space, and then a 

transformation from image space to physical space is usually chosen such that it 

minimizes the fiducial registration error (FRE), where, in the simplest method, which is 

employed by commercial systems, FRE is the root-mean-square of distances between 

corresponding fiducials after the registration, i.e., the distance between the localized 

position of each fiducial as transformed from image space to physical space and the 

position of that corresponding fiducial localized in physical space. In the general case, the 

displacement between the transformed image point and the physical point is multiplied by 

a “weighting” matrix, which may be different for each fiducial, and FRE is the root-

mean-square of the lengths of the resulting vectors. The weighting matrix is used in cases 

when some information about the nature of fiducials localization procedure is available. 

The simplest method described above is equivalent to uniform weighting, and it is 

employed by commercial systems in the absence of such information. Because of fiducial 

localization error (FLE), the registration is invariably flawed to some degree, and FRE is 

a readily available measure of registration error that serves as the most commonly used 

indicator of the goodness of fit of the of the corresponding points.  

Sibson in 1979 investigated the statistical relation between FRE and FLE for the 

case of isotropic FLE and provided an expression that can be used to relate their expected 

root-mean-square values as follows [4]: 

 

 ( )2FRE 1 2 FLEN= − 2 , (1) 
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where 〈⋅  means “expected value of”. Expressions for FRE for each individual fiducial 

have also been derived [9]. FRE is an easily measured quantity, but it is not as important 

as target registration error, TRE, which is the displacement from its true position of a 

registered point not used as a fiducial.

〉

1 The target error ( )rTRE  at a point r of interest to 

the surgeon is the true measure of registration error. In 1998 and 2001, the statistical 

relation between TRE and FLE was investigated for isotropic FLE and expressions were 

provided relating their expected root-mean-square values [5], [6],  
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232 2
2

1

1 11 F
3

k

k k

dr
N f=

⎛ ⎞
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∑TRE LE , (2) 

 

where  is the distance of r from k-th principal axis of the fiducial configuration, kd 2
kf  is 

the mean of the squared distances of the fiducials from that axis. Eq. (1) can be used to 

estimate the distribution of FLE from measurements of FRE for many cases. With this 

estimate available, Eq. (2) can then be exploited to predict TRE based on the fiducial 

configuration when fiducials are used (a) on a patient, (b) on a coordinate reference frame 

attached to a patient, and (c) on a surgical probe [7]. Eq. (2) is not appropriate for FLE 

that is anisotropic, which means that it varies with direction, inhomogeneous, which 

means that it is different for different points. For anisotropic and inhomogeneous FLE, 

more complex expressions than that of Eq. (2) have recently been derived by Wiles [8], 

[22] and Moghari [10]. 

                                                 

1 for FLE, FRE, and TRE, we use boldface (only) when we are denoting a vector quantity 
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Since both 2FRE  and ( ) 2
rTRE  are proportional to 2FLE , it might be 

expected that for a given registration, if FRE is small, then ( )rTRE  will be small and 

when one is large the other will be large. While it may seem intuitive to expect the size of 

TRE to be correlated with that of FRE, it is easy to construct counter-examples, as is 

shown by Figure 1. That figure shows two examples. For one of them FRE is zero while 

( )rTRE  is large, and for the other ( )rTRE  is zero while FRE is large. The key 

difference is that in the first example the set of FLEs are equivalent to a rigid 

transformation, while in the second example, they are not. Figure 1(a) shows image space, 

while (b) and (d) show physical space. The localizations are assumed to be perfect in 

image space. The “rigid” set of localization errors occur in (b), while the errors in (d) 

cannot be represented exactly or even approximately by any rigid transformation. 

Figure 1 shows schematically that, despite the fact that 2FRE  and ( ) 2
rTRE  

are related functionally through Eqs. (1) and (2), TRE is not necessarily related to FRE 

for specific registration instances. Thus, the fact that their means are related does not 

imply that their variations around those means are related. It is easy to construct such 

examples, but no example or set of examples can answer the question, “Are the 

fluctuations2 of FRE and TRE about their means correlated?” In the next sections we will 

show that, for the case of small FLE, when either of the two most common weighting 

schemes is employed, the answer to this question is, “No”.  

We begin by proving this answer mathematically to first order in localization 

error for the case of so-called “ideal weighting”. That proof requires a statistical analysis 
                                                 

2 also called “deviations” 
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of a linear model of the problem of rigid point registration.  Recently a new approach [1] 

for such an analysis was developed for the special case of isotropic, homogeneous FLE 

with uniform weighting (i.e., unweighted). In the next section, we extend that approach to 

the general case of anisotropic, inhomogeneous FLE with arbitrary weighting, and we use 

the approach both to investigate the dependence of FRE and TRE and to provide unified  

 

 

(d) 

(b) (a) 

(e) 

(c) 

(a) 

FRE = 0, but 
TRE is large. 

TRE = 0, but 
FRE is large. 

R  

 

Figure 1. FRE and TRE for two example registrations. (a) Image space showing patient (dashed outline), 
three fiducials (dotted circles), and an anatomical target (dotted cross). For simplicity localization errors are 
zero. (b) Physical space showing a set of fiducial localization errors. Arrows show the displacements from 
true positions (dotted outlines) to localized positions (solid outlines). The same anatomical target is shown 
(solid cross). This set of localization errors can be duplicated exactly by a rigid transformation that 
comprises a clockwise rotation R  about the “bull’s eye” that is located just to the right of the nose. (c) 
Point registration has been applied to the image to register the localized positions in (a) with those in (b). 
The transformation is incorrect by the same rotational error R  (dashed arrow) about the bull’s eye, but it 
achieves an FRE of zero. TRE (arrow) is large, however, because R  is large. (d) Physical space showing a 
second set of fiducial localization errors. This set of localization errors can be duplicated by expansion 
from the target point but cannot be approximated by any rigid transformation. (e) Point registration has 
been applied to the image in (a), and the resulting rigid transformation is perfect. Since the transformation 
is perfect, TRE is zero, but since no rigid transformation can approximate the localization errors, the 
fiducial fit is poor, as can be seen from the relatively large size of the individual FREs (distance between 
circles with dotted and solid outlines, so the root-mean square FRE is large. 
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formulas for their respective covariances that are more general than any previous 

expressions. 

 

3. Derivations 

 

Our derivations are based on a linearization of the rigid, point registration 

problem. We begin with a statement of the registration problem, followed by the 

linearization of the problem for small FLE.  

 

The registration problem 

The fundamental problem of rigid, fiducial registration is to find the rotation 

matrix R  and translation vector t  that minimize the expression, 

 

 ( ) ( )( ) 22

1

FRE
N

i i i i i
i

W R x x t y y
=

= + Δ + − + Δ∑ , (3) 

 

where FRE is the weighted fiducial registration error ix , iy  are 3-by-1 vectors 

representing corresponding points in two spaces, where at least three of the ix  are not 

collinear, ixΔ  and iyΔ  represent localization errors in the two spaces,  is a 3-by-3 non-

singular weighting matrix, which may be a function of R (see the discussion of “ideal 

weighting” at the beginning of ”Statistical independence of FRE and TRE for ideal 

weighting” in Section 3 (page 52)). Clearly the solution, R, t, obtained by minimizing 

 in Eq. 

iW

2FRE (3) is unchanged if all the  are multiplied by the same factor w, while iW
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2FRE  itself is multiplied by . Thus, size of FRE as defined by Eq. 2w (3) is somewhat 

arbitrary. For example, the general form for the uniform weighting scheme employed by 

commercial systems is  = , where iW wI I  is the 3-by-3 identity matrix, and for this 

weighting FRE equals w times the root-means square of the distance between fiducials 

after registration. We can remove this arbitrary factor of w from FRE by stipulating that 

the  be normalized such that iW
2

1

N
iW∑  = ( )1

traceN t
i iW W∑  = 3. With this stipulation, 

uniform weighting requires that  = iW 1 2N I− , and FRE recaptures its meaning as the 

unweighted root-mean square of the fiducial fitting errors and satisfies Eq. (1).  

The rotation matrix is restricted to be orthogonal, which means that tR R I= . The 

points iy  arise from the application of the true, but unknown, rigid transformation, 

( ) ( )0 0,R t , to the ix , as follows: 

 

 ( ) ( )0 0
i iy R x t= + .  (4) 

 

( )0R ,  is the transformation that is sought by the minimization of FRE in Eq. ( )0t (3), but 

because of fiducial localization error, the transformation that minimizes FRE, namely R,t, 

will differ from the true transformation ( ) ( )0 0,R t .  We model the ixΔ  and iyΔ  as random, 

independent vectors of fiducial localization error, with each of their three components 

being normally distributed with zero means and covariances ( )1
iΣ  and ( )2

iΣ , respectively. 

Thus, the localization errors in the two spaces may be anisotropic and inhomogeneous. 

While these statistics are known, it is assumed that no other information about the errors 

themselves is available. If any relationships among the specific errors for a given set of 
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localizations or if any components of any of the errors were known, that information 

could be employed in the registration process, and the derivations and proofs below 

would need to be modified.  It is helpful to rewrite Eq. (3) as 

 

 ( ) 22

1
FRE

N

i i i i
i

W Rx t y ξ
=

= + − − Δ∑ ,  (5) 

 

where i i iy R xξΔ = Δ − Δ  is the “two-space” localization error vector for point-pair i, and 

its elements are normally distributed with zero means and covariances ( ) ( )1 t
iR RΣ +Σ 2

i .  We 

define  ( ) ( )1 t
i iR RΣ = Σ +Σ 2

i  to be the “two-space” covariance of FLE. Once the rotation 

and translation that minimize  have been found, they can be used to determine the 

vector TRE of target registration error at any point r that is not used as a fiducial point: 

2FRE

 

 ( ) ( ) ( )( )0 0r Rr t R r t= + − +TRE .  (6) 

 

 

Linearization 

Sibson showed how derivations of error statistics for this problem could be made 

tractable by (a) assuming that FLE is small, (b) approximating to first-order in FLE, (c) 

moving the origin of the coordinate system to the centroid of the ix , (d) reorienting the 

coordinate system along the principal axes of the ix , and (e) separating the rotational and 

translational problems [4]. He used this approach to investigate FRE; we and others have 

used it to investigate TRE [5], [6], [8], [10] and FRE [9], [18]. For our present 
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investigation, we have developed a new approach. We employ (a) and (b), but we omit 

(c), (d), and (e). Thus, we solve to first order in FLE, but we retain the laboratory 

coordinate system, and we solve for both the rotation and the translation simultaneously. 

Solving the first-order problem allows us to cast the problem as a simple, unconstrained 

set of 3  linear algebraic equations in six unknowns of the form: Cq , where C  is a 

3N-by-6 matrix, e is a 3N-by-1 vector, and q  is a 6-by-1 vector whose elements are 

N e=

1 2 3 1 2, , , , ,t t t3θ θ θΔ Δ Δ Δ Δ Δ , where kθΔ  is an angle of rotation (in radians) about axis k , 

and  is a translation along that axis.  ktΔ

We begin by defining ( ) ( )0 0
i ix R x= , and ( )0t t tΔ = − , which allows us to transform 

the vector whose squared length appears in the summation in Eq. (3) as follows: 
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= + Δ + − − −Δ

= − + Δ − Δ − Δ + − Δ
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  (7) 

 

where we have used Eq. (4) and have defined 

 

 ( )0
t

R RR IΔ = −   (8) 

 

and 

 

 ( ) ( )( )0 0
i i iy R xξΔ = Δ − Δ .  (9) 
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Using Eq. (7) in Eq. (3) gives us 

 

 ( ) ( ) ( )( ) 2
0 0 02

1
FRE

N

i i i i
i

W Rx t RR xξ
=

= Δ + Δ − Δ + Δ Δ∑ .  (10) 

 

From assumption (a), we know that the components of ( )0
iξΔ  and ixΔ  will be 

small. If they were all zero, then Eq. (10) tells us that we could achieve a perfect 

minimum of zero for Eq. (3) by setting RΔ  and tΔ  to zero. For finite but small ( )0
iξΔ  

and ixΔ , we see from this same equation that, when FRE is minimized, the elements of 

both RΔ  and  will be of first order in tΔ ( )0
iξΔ  and ixΔ . We note that the elements of 

tR RΔ Δ  can be expected to be small relative to those of RΔ  and that the elements of 

( )0
iRR xΔ Δ  will be small relative to those of ( )0

iξΔ , because they are all of second degree 

in the elements of ( )0
iξΔ  and ixΔ , which themselves can be expected to be small. 

Following Sibson, we now make the assumption that the ( )0
iξΔ  and ixΔ  are small enough 

to render the elements of tR RΔ Δ  negligible in comparison to the elements of RΔ  and the 

elements of ( )0
iRR xΔ Δ  negligible in comparison to the elements of ( )0

iξΔ . We note that 
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where we have used the orthogonality of rotation matrices to go from the first line to the 

second. From Eq. (11), we see that, if the elements of tR RΔ Δ  are indeed negligible in 

comparison to the elements of RΔ , then 0tR RΔ + Δ ≈ , which means that RΔ  is 

antisymmetric, i.e., tR RΔ = −Δ . Thus, the non-linear restriction tR R I= is replaced by a 

linear one. 

This relaxed constraint is essential to the original approach of Sibson on the 

statistics of FRE [4], the approaches of the subsequent work on the statistics of TRE [5], 

[6], [8], and our current approach. However, we show in simulations below that our 

results hold to an excellent approximation even without linearization. The difference 

being that for the linearized equations we can prove that they hold for all configurations, 

all ( )1
iΣ  and all ( )2

iΣ , whereas for the non-linear version, we can show agreement only for 

those cases that are simulated. Using our definitions of RΔ  and tΔ  in Eq. (6) gives 

 

 ( ) ( )( ) ( ) ( ) ( )0 0 0 0t
r RR I R r t t Rr t= − + − = Δ +TRE Δ , (12) 

 

where we have defined ( ) ( )0 0r R= r  (similarly to our definition above of ( )0
ix ). We note 

finally, that, to first-order . ( ) ( ) ( ) ( )0 01 2
i i

t
R RΣ = Σ + Σi

 

Some useful results from linear algebra 

The minimization of Eq. (10), subject to tR RΔ = −Δ  with ( )0
iRR xΔ Δ  ignored in 

comparison to ( )0
iξΔ  is equivalent to finding the least-squares solution to the following 
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over-determined set of 3N linear equations in the six unknowns, 

1 2 3 1 2, , , , ,t t t3θ θ θΔ Δ Δ Δ Δ Δ : 

 

 ( )( ) ( ) ( )( )0 0 ,  1,2,... ,   1,2,3i i i i ijj j
W Rx W t W i N jξΔ + Δ = Δ = = ,  (13) 

 

where  

 

 
3 2

3

2 1

0
0

0
R 1

θ θ
θ θ
θ θ

−Δ Δ⎡ ⎤
⎢ ⎥Δ = Δ −Δ⎢ ⎥
⎢ ⎥−Δ Δ⎣ ⎦

, (14) 

 

and the subscript j enumerates the components of the three-dimensional vectors.  

The meaning of RΔ  can be understood by adding I  to both sides of its definition 

in Eq. (8) and multiplying on the right by ( )0R . The result, ( ) ( )0I R R+ Δ  = R  shows that 

the rotation matrix that we seek by minimizing Eq. (3) is the equivalent to the true 

rotation followed by a “rotation” I R+ Δ . Thus, I R+ Δ  approximates the rotation away 

from the truth caused by fiducial localization error. If localization error were zero, then 

RΔ  would also equal zero. Our assumption that localization error is merely small results 

in the approximation, tR RΔ = −Δ . The displacement rΔ  of a point r  caused by that 

small rotation is  = rΔ ( )I R r+ Δ  –  = r RrΔ , which, because tRΔ  is equal to R−Δ , can 

be written in the form of the familiar cross product for small rotations,  = rΔ RrΔ  = 

rθΔ × , where θΔ  = ( 1 2 3, , )θ θ θΔ Δ Δ . This cross product produces the exact expression 

for  in the limit of small rotation angle rΔ θΔ  = ( )1 22 2 2
1 2 3θΔ + θ θΔ + Δ . Eq. (14) can also 
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be derived by representing the exact rotation I R+ Δ  in terms of Euler angles, expanding 

each sine and each cosine in that representation via a Taylor’s series in the angles 1θΔ , 

2θΔ , and 3θΔ , and dropping all but zeroth and first order terms from those expansions. 

The first order terms all equal one and give rise to the identity I; the first order terms 

produce the expression given for RΔ  in Eq. (14). 

We now define the 3N-by-6 matrix C,  

 

 

( )

( )

( )

0
1 1 1

0
2 2 2

0

... ...

N N N

W X W

W X WC

W X W

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (15) 

 

where 

 

 ( )

( ) ( )

( ) ( )

( ) ( )

0 0
3 2

0 0 0
3

0 0
2 1

0

0

0

i i

i i i

i i

x x

X x x

x x
1  

⎡ ⎤−
⎢ ⎥

= −⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

, (16) 

 

and ( )0
ikx  is the k-th component of ( )0

ix . By defining the 3N-by-1 vector e as follows:  

 

 ( )
( )( )0

3 1 , 1,..., ,  1,2,3i ii j j
e W i N jξ− + = Δ = =   (17) 

 

and using our definition of C,  we can transform Eqs. (13) into  
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 Cq e= .  (18) 

 

With Eq. (18), we have transformed the problem into a generic linear-algebra 

problem, and we need to establish some properties of the least-squares solution to that 

problem. We begin by considering the singular-value decomposition [14] of C, 

 

 tC U V= Λ ,  (19) 

 

where U is a 3N-by-3N orthogonal matrix, Λ  is a 3N-by-6 diagonal matrix whose 

diagonal elements  are the singular values of C, and V is a 6-by-6 orthogonal matrix.iiΛ 3 

We will require that the six singular values iiΛ  of C all be nonzero. Since all the  are 

non-singular, this is equivalent to the requirement that the columns of C be independent 

when . We can prove that they are independent via proof by contradiction. Thus, 

we assume instead that the columns of C are linearly dependent, which means that for 

some set of six constants, , 

iW

iW I=

1 2 6, ,...,a a a 6

1
a C

=
0i ii

=∑ , where each  is a column of C. 

Because each column is of length 3N, this constraint is equivalent to 3N equations, which 

have the form 

iC

 

 

( ) ( )

( ) ( )

( ) ( )

0 0
2 3 3 2 4

0 0
3 1 1 3 5

0 0
1 2 2 1 6

for 1, 2,...,
i i

i i

i i

x a x a a

x a x a a i N

x a x a a

⎫− =
⎪⎪− = =⎬
⎪

− = ⎪⎭

. (20) 

 
                                                 

3 For convenience, we have augmented both U  and Λ  relative to the decomposition described in reference 
[14] by adding 3  columns to U  so as to make it orthogonal and adding 3  rows of zeros to 6 6N − N − Λ .  
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These 3N equations are in turn equivalent to the N vector equations ( )0
1,2,3ix a×  = 

, where 4,5,6a , ,aα β γ  is the 3-by-1 column vector whose elements are , ,a a aα β γ . In order 

for all N of these cross products to be equal to the same constant vector, all N points ( )0
ix  

must be collinear. We note from “The registration problem” of Section 3 above (page 37) 

that at least three of the points ix  must not be collinear and that rotating and translating 

these points to produce the points ( )0
ix  does not change the linearity of the points. Thus, 

our assumption that the columns of C are dependent has led to a contradiction. Therefore, 

the columns of C are in fact independent, and therefore the singular values of C are all 

nonzero.  

The least-squares solution of Eq. (18) is given as follows [14], 

 

 minq C e+= ,  (21) 

 

where  

 

  (22) ,tC V U+ += Λ

 

and  is a 6-by-3N diagonal matrix for which +Λ ii
+Λ  = 1

ii
−Λ . We note that  are well 

defined because, as we have shown above, the 

ii
+Λ

iiΛ  are non-zero. The elements of the 3N-

by-1 vector 

 

 min minf e Cq= − , (23) 
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are the residual errors in the solution and can be rewritten as follows, 

 

 ( )min CCf I += − e , (24) 

 

where I  is the 3N-by-3N identity matrix. Using Eqs. (19) and (22) in Eq. (24), we have    

 

 

( )
(
( )

min CC

 .

t

t

f I e

)I U U e

U I U e

+

+

+

= −

= − ΛΛ

= −ΛΛ

 (25) 

 

For i,j = 1, …, 3N, we have ( )
ij

+ΛΛ  = 6

1 ik kjk
+

=
Λ Λ∑  = 6 1

1 ik kjk
−

=
Λ Λ∑ , from which 

we find that the first six diagonal elements of +ΛΛ  are equal to 1 and the last 3N−6 are 

equal to 0. Furthermore, we see that the first six diagonal elements of I +− ΛΛ  are equal 

to 0 and the last 3N 6 are equal to 1. Using these diagonal elements of − I +− ΛΛ  in the 

last line of Eq. (25), and defining  

 

  (26) te U e=�

 

we find that 

 

 ( )
6 3 3

min
1 7 7

0 1
N N

kj j kj j kj jk
j j j

f U e U e U e
= = =

= ⋅ ⋅ + ⋅ ⋅ =∑ ∑ ∑� � �  . (27) 
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Thus we see that each element of minf  is a function of only the last 3N − 6 

elements of . e�

 

FRE in terms of e  �

We now return to the registration problem. We note that the elements of minf  in 

Eq. (27) are the components of the individual fiducial registration error vectors, , of 

those points. Thus, ( )

iFRE

( )min 3 1i
f

j− +
 =  for FREij 1,..., ,  1, 2,3i N j= = . Therefore, each 

component of  for each fiducial point is a function of only the last 3N−6 elements 

of . 

iFRE

e�

 

TRE in terms of  e�

Our expression for ( )rTRE  in Eq. (12) can be transformed into a simple matrix-

times-vector multiplication, 

 

 Dqδ =   (28) 

 

by defining , and defining the 3-by-6 matrix ( )TRE ,   1, 2,3j j
r jδ = =

 

  (29) 

( ) ( )

( ) ( )

( ) ( )

0 0
3 2

0 0
3 1

0 0
2 1

0 1 0

0 0 1 0     

0 0 0 1

r r

D r r

r r

⎡ ⎤−
⎢ ⎥

= −⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

0
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where ( )0  kr  = the k-th component of ( )0r . In Eq. (28), we use the least-squares solution of 

Eq. (18), as given by Eq. (21), and the decomposition of C +  as given by Eq. (22), to get 

 

   (30) min min
tDq DC e DV U e DV eδ + += = = Λ = Λ �+

j
Λ �

 

Thus, 

 

 ,  (31) ( ) ( ) ( )
6 3 6

1
min

1 1 1

N

jl l jj jk kj k
j l j

DV e DV eδ + −

= = =

= Λ =∑∑ ∑�

 

where, in the second step, we have used the explicit form of +Λ  given just after Eq. (22). 

From Eq. (31) we see that each component of ( )rTRE  is a function of only the first 6 

elements of . e�

 

General formulation for the covariances of FRE and TRE 

Eq. (31) can be employed to derive a general expression for , the covariance 

of FRE, and , the covariance of TRE. First, we define two 3N-by-3N block-diagonal 

matrices: a covariance matrix 

FREΣ

TREΣ

Σ  for the entire set of FLEs and a weighting matrix W  for 

the entire set of fiducial points. Each matrix is nonzero only within 3-by-3 blocks on the 

diagonal. Specifically, ( ) ( )3 1 ,3( 1) ii j i j jj′− + − + ′Σ = Σ  and ( ) ( )3 1 ,3( 1) ii j i j jj
W W′− + − + ′= , for 

, , , and all other elements of each matrix equal zero. With 

these definitions it can be seen from the definition of  given by Eq. 

1...i N= 1, 2,3j = 1, 2,3j′ =

e (17) that 
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 tee W W t= Σ . (32) 

 

Our expression for  can be gotten by noting that ( )FREΣ ( ) ( )FRE min min
t

kl k l
f fΣ =  

and then using Eq. (27), followed by Eqs. (26) and (32), to get 

 

 ( ) (
3 3

FRE
, 7 , 7

N N
t t

kj lj j j kj ljkl )
jj

j j j j
U U e e U U U W W U′ ′ ′ ′

′ ′= =

Σ = = Σ∑ ∑� � . (33) 

 

The summation over three diagonal elements corresponding to the same marker 

provides an expression for an individual weighted FRE of that marker: 

 

 
( )

3 3
2

3 2 , 7

3 3

3 2 , 7

FRE
i

i N

kj kj j j
k i j j

i N
t t

kj kj jj
k i j j

U U e e

U U U W W U

′ ′
′= − =

′ ′
′= − =

=

= Σ

∑ ∑

∑ ∑

� �
 (34) 

 

The trace of  provides a general expression for FREΣ 2FRE : 

 

 

( ) ( )

( )

3 3 3
2

FRE
1 1 , 7

3

7

FRE
N N N

t t
kj kjkk jj

k k j j

N
t t

jj
j

U U U W W U

U W W U

′ ′
′= = =

=

= Σ = Σ

= Σ

∑ ∑ ∑

∑
 (35) 

 

The expressions in Eqs. (33) through (35) give statistics for the weighted FRE. 

Statistics for unweighted FRE (but with weighting used in the registration step), which 
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we designate by using lower case, fre , are given by replacing jkU  and  by kjU ′ ( )1

kj
W U−  

and (  in each of these equations, resulting in )

)

1

kj
W U−

′

 

 ( ) ( ) ( ) (
3

1 1
fre

, 7

N
t t

kl kj lj jj
j j

W U W U U W W U− −

′ ′
′=

Σ = Σ∑  , (36) 

 

 ( ) ( ) ( )
3 3

2 1 1

3 2 , 7
fre

i N
t t

i kj kj jj
k i j j

W U W U U W W U− −

′ ′
′= − =

= Σ∑ ∑  , (37) 

 

and 

 

 ( ) (
3

2 2

, 7
fre

N
t t t )

jj j
j j

U W U U W W U−

j′ ′
′=

= ∑ Σ . (38) 

 

For isotropic weighting, i.e. i iW w I= , it can with some manipulation be shown 

that 2FRE
i

 = 2frei iw . 

Our expression for  can be gotten by remembering that TREΣ ( )TRE jj
r δ=  in Eq. 

(31). Therefore, 

 

 ( ) ( ) ( ) ( ) ( )
6

TRE min min
, 1

j j

kl k l kj lj
j j jj j j

e e
DV DVδ δ ′

′
′= ′ ′

Σ = =
Λ Λ∑
� �

. (39) 

 

By applying Eqs. (26) and (32) to j je e ′� � , we achieve the following result, 
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 ( ) ( ) ( )
( )6

TRE
, 1

t t

jj
kl kj lj

j j jj j j

U W W U
DV DV ′

′
′= ′ ′

Σ
Σ =

Λ Λ∑ . (40) 

 

The trace of  provides a general expression for TREΣ 2TRE : 

 

 

( )

( ) ( )
( )

3
2

TRE
1

3 6

1 , 1

TRE
kk

k

t t

jj
kj kj

k j j jj j j

U W W U
DV DV

=

′
′

′= = ′ ′

= Σ

Σ
=

Λ Λ

∑

∑ ∑
. (41) 

 

It should be noted that Eqs. (33) through (41) are completely general. Thus they 

are appropriate both for general fiducial localization error (i.e., possibly inhomogeneous 

and possibly anisotropic) and for general weighting (i.e., possibly not ideal). We have 

included in “Computer code to implement the derived formulas” in Section 8 (page 80) 

an implementation of Eqs. (33), (35), (40), and (41) written in Matlab (MathWorks, Inc., 

Natick, MA). This function is likewise completely general. While these equations have 

all been derived specifically for three-dimensional space, they all hold for the two-

dimensional case as well with only minor changes to accommodate the reduced 

dimensionality. The details are given in “Two dimensional case” in Section 8 (page 76). 

 

Statistical independence of FRE and TRE for ideal weighting 

In Figure 1, we show examples for which FRE is zero and TRE is nonzero. It can 

easily be seen from Eq. (5) that the number of such examples is infinite. Indeed, 

whenever there exists a rigid transformation ,R t  for which iRx t+  = i iy ξ+ Δ  for all i, 

  52



then FRE is zero, but unless all the iξΔ  are zero, TRE will be nonzero. The simplest 

example is for the localization errors in a given space to be equivalent to a global 

translation, i.e. all the ixΔ  are equal to the same nonzero vector xv , and all the iyΔ  are 

equal to some other nonzero vector yv  ≠  xv . As a result, each iξΔ  = y xv v− , the rigid 

transformation that minimizes  is, 2FRE R  = ( )0R ,  t  = ( )0
yt v vx+ − , and ( )rTRE  = 

y xv v−  ≠  0. Substituting these values into Eq. (5) reveals that each of the terms in the 

summation is zero. Thus, each  = 0. There is likewise infinity of examples in which 

TRE is zero and FRE is nonzero. These examples occur when no rigid transformation can 

reduce the effect of the localization errors, and the transformation that minimizes Eq. 

iFRE

(5) 

is the identity. One such example is also shown in Figure 1. These examples suggest that 

FRE may not be a good predictor of TRE, but they provide little insight into their 

statistical relationship. In this section we examine the statistical relationship between 

FRE and TRE for our model of independent, normally distributed localization errors 

when an important weighting scheme—“ideal weighting”—is employed, and we show 

that for this weighting scheme FRE and TRE are statistically independent. 

Ideal weighting is important in the rigid point registration problem because it 

maximizes the probability that the resulting transformation is the true one. We derive 

ideal weighting in “Derivation of ideal weighting” in Section 8 (page 70) and show that it 

has the form  =  = iW 1/2
iw −×Σ ( ) ( )( ) 1 21 2t

i iw R R
−

× Σ + Σ , where w  is a constant, which for 

normalized weighting is equal to ( )( ) 1 2
1 2 1

1
raceN

i

−
−Σ∑3 t . Ideal weighting is not new. It 

was introduced into point registration as early as 1998 by Ohta and Kanatani [15], and it 

  53



was employed by West et al. in 2001 [16] and Moghari et al. in 2009 [10], [18]. In both 

of these 2009 papers a first-order registration equation equivalent to Eq. (18) was derived 

for the special case in which ideal weighting is employed and ( )1
iΣ  = 0.4 As mentioned at 

the end of “Linearization” in Section 3 (page 42), to first order R  can be replaced by 

( )0R  in the expression for . This approximation is adequate for our purposes, and with 

it we can see that the 

iΣ

R  dependence of ideal weighting does not affect the first-order 

character of  Eq. (13). Using this weighting in Eq. (32) gives us 

 

 2 1 2 1 2 2t tee W W w w I− −= Σ = ×Σ ΣΣ =  . (42) 

 

Since tee  is diagonal, the elements  are uncorrelated; since they are 

uncorrelated and also normally distributed, they are statistically independent [1], [17]. 

Because the diagonal elements equal , the variance of each  is . As shown in 

“Statistical independence of the elements of e ” in Section 8 (page 73), since U  is 

orthogonal, the elements of e  are also independent and normally distributed with 

variance equal to . In ”FRE in terms of e ” in Section 3 (page 48), we found that each 

component of  for each fiducial point, which is also an element of  

ie

2w ie 2w

�

�

2w �

iFRE minf , is a function 

of only the last 3N 6 elements of , while in ”TRE in terms of ” in Section 3 (page 48) 

we found that each component of 

− e� e�

( )rTRE , which is also a component of minδ , is a 

function of only the first 6 elements of e . Since the elements of e  are independent of 

each other, any functions of non-overlapping subsets of them are independent each other 

� �

                                                 

4 Eq. (30) of [10] and Eq. (9) of [18]. 
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as well. It is important to note that this conclusion depends crucially on the fact that all 

3N of the elements of e  are mutually independent. That independence is a consequence 

of ideal weighting.  

�

Therefore, for the case of ideal weighting, every component of  of every 

one of the N fiducial points is statistically independent of any component of the vector 

 at any point r. Thus, fluctuations in 

iFRE

( )rTRE ( )rTRE  are, in our first-order 

approximation, independent of fluctuations of any and all functions of the goodness of fit. 

We note that the overall fiducial registration error, FRE, from Eq. (3), is given in the 

linearized problem by  Eq. (10) and can be expressed in terms of minf  as 

( )1 2

min minFRE tf f=  and that the length of the vector ( )rTRE  can be expressed in terms 

of minδ  as ( ) ( )1 2

min min
tr δ δ=TRE . Since the elements of minf  are statistically 

independent of those of minδ , any function of only minf  is statistically independent of any 

function of only minδ . As primary examples, FRE is statistically independent of 

( )rTRE . Since they are independent, they are also uncorrelated. We let 

 be the correlation coefficient of FRE and (CC FRE,TRE) ( )rTRE , 

 

 ( ) ( )( ) ( )FRE TRE FRE TRECC FRE,TRE FRE TREμ μ σ= − − σ , (43) 

 

where we have abbreviated ( )rTRE  as TRE,  and  are letting μ  and σ  denote means 

and standard deviations. It easy to see that, to first order in FLE,  = 0, 

meaning that there is to first order no correlation between FRE and TRE. 

( )CC FRE,TRE
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Two-dimensional space 

The results of this section hold not only for three-dimensional space, but for two-

dimensional space as well. The details are provided in “Two dimensional case” in Section 

8 (page 76) along with the two-dimensional forms of Eqs. (33) through (41), but these 

equations can be transliterated to two dimensions merely by making the following 

changes to the summation limits: 3 2 , , , N N→ 7 4→ 3 2i i→ 3 2 2 1i i− → − , and . 6 3→

 

Comparison with previously published derivations 

We compare our formulations with five previous derivations. These derivations, 

which are spread among many publications with differing notations, are, unlike our 

general derivation, limited in every case to uniform weighting (i.e., no weighting) or to 

ideal weighting. In our validation section below, we compare our formulas with these 

other authors’ formulations on specific cases and find agreement in every case. 

The first result is an expression for the probability density of  when ideal 

weighting is employed. We note that  =

2FRE

2FRE min min
tf f  = ( )3 2

min1

N

kk
f

=∑ , which by Eq. (27) 

equals   , and since U  is orthogonal, we have   = 

. As noted in “Statistical independence of FRE and TRE for ideal weighting” in 

Section 3 (page 52), when ideal weighting is employed, the 

3 3 3

7 7 1

N N N
j l kl kjj l k

e e U U
= = =∑ ∑ ∑� � 2FRE

3 2
7

N
jj

e
=∑ �

je�  become statistically 

independent and normally distributed with equal variances (= ). Therefore,  is 

chi-square distributed with 3N-6 degrees of freedom. The probability density of such a 

function is well known [21],  

2w 2FRE
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 ( )
( ) ( )

( ) ( )

2

3
2

FRE3 8
2

32 3
2

2FREFRE
2 3

N

N
p

w N

e−

−

−

=
Γ −

, (44) 

 

where  denotes the Gamma function.Γ 5  This probability density is identical to that 

derived by Sibson for the case of isotropic, homogeneous FLE with no weighting [4]. 

Here we have not only re-derived a thirty-year-old result but also shown that it applies to 

a more general case, namely inhomogeneous, anisotropic FLE with ideal weighting. It 

differs from the distribution for ideal weighting published recently by Moghari [18] for 

fre (instead of FRE). Also, for ideal weighting, since the je�  are independent and normally 

distributed with variances equal to , we have 2w 2FRE  = , and for 

normalized weighting,  

( ) 23 6N w−

 

 ( ) ( )2
1

FRE 3 3 6 traceN
iN −1= − Σ∑ . (45) 

 

For the special case of homogeneous FLE Eq. (45) reduces to 2FRE  = 

( ) 3 23 3 6 kk
N σ −− ∑ , where 2

kσ  is the variance of FLE along one of its principal axes, 

and for the case of homogenous, isotropic FLE, which is the case originally treated by 

Sibson, it reduces exactly to Eq. (1).   

The second result is an expression for 2TRE  for ideal weighting, first derived 

for the case of isotropic, homogeneous FLE in 1998 [5] and given above by Eq. (2) and 
                                                 

5 If the distribution for FRE is desired, we note that ( )FREρ  = ( )22 FRE FREρ . 
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derived for general FLE in 2009 [10]. With ideal weighting we find from Eqs. (32) and 

(42) that (  = )t t

jj
U W W U

′
Σ jj 'δ  (i.e., the Kronecker delta). Using this result in Eq. (41) 

yields  

 

 ( ) ( )3,6 22
, 1

TRE jjkjk j
DV

=
2= Λ∑ . (46) 

 

Despite the considerable detail in our derivations of this result, its calculation is 

quite simple, requiring evaluation only of Eqs.(16), (15), (19), (29), and (46) in that order.  

The third result is an expression for 2TRE  when FLE is inhomogeneous and 

anisotropic but no weighting is employed, first derived in 2009 by Wiles first for the 

homogeneous case [8] and then for the general case [22]. Our expression for this case is 

gotten simply by removing W  from the expression in Eq. (41) and noting that, in the 

construction of the block-diagonal covariance matrix Σ , the nonzero blocks, iΣ  are all 

equal. 

The fourth result is the decomposition of TRE into three statistically independent 

orthogonal normally distributed components when FLE is homogeneous and isotropic 

and no weighting is employed, which was first accomplished in 2001 [6].  We begin by 

noting that, for this case, having no weighting is equivalent to employing ideal weighting 

with  = 1. We then have  w ( )t t

jj
U W W U

′
Σ  = ijδ , as in the second result above. Using 

this result in Eq. (39), we find that ( )TRE kl
Σ  = ( ) ( )

6
2

, 1
jjkj lj

j j

DV DV
′=

Λ∑ . Performing an 

eigen decomposition yields TREΣ  = ( )TRE
TRE TRE

tV VΛ . Since TREΣ  is symmetric,  is TREV
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orthogonal. If we define η  = min
tVδ δ , then, since  is orthogonal and the elements of 

 are independent and normally distributed, the three components, 

TREV

e� kη , are uncorrelated, 

normally distributed, orthogonal components of TRE with variances equal to kη .  

The fifth result is the set of expressions in Eqs. (36) through (38) for the statistics 

of the unweighted individual fiducial registration error with ideal weighting used the 

registration step when FLE is homogeneous or isotropic. Analytical expressions for these 

two cases were first derived in 2009 [18]. They reduce in the homogeneous and isotropic 

case to expressions first derived in 2008 [9]. 

 

4. Validation 

 

Our theory has three major results, which can be summarized as follows: For 

arbitrary weighting and arbitrary FLE, (a) Eq. (33) gives the covariance of FRE, (b) Eq. 

(40) gives the covariance of TRE, (c) FRE and TRE are statistically independent. Our 

other results are derived from (a) and (b). We tested our results as follows: (1) We 

compared Eqs. (33), (37), (41), and (46) to previously published analytic expressions for 

special cases. (2) We compared Eqs. (33) and (39) to true values obtained by means of 

simulations, and we measured their cross correlation and dependence. All calculations 

were performed using Matlab on a Dell Latitude D830 with an Intel Centrino Duocore 

2.2 GHz CPU with 2 GBytes RAM. 
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Comparisons to true values via simulations 

For each simulation experiment, the following was performed: Randomly select a 

set S(N) of N unperturbed fiducial positions ix  inside a 200 mm cube and one random 

target position r inside a 400 mm cube (the cubes share a common corner). Then repeat 

the following 15 times: 

(1) For each ix , define a covariance FLE matrix ( )1
iΣ  = , where 

the columns of 

( ) ( ) ( )( )1 1 1 t

i i iV VΛ

( )1
iV are the principal axes of FLE and the diagonal 

elements  = ( )( )1
i jj

Λ ( )( )21
i j

σ  are the variances of the independent 

components of FLE.  

(2) Construct a random rotation ( )0R  and a random translation  and apply 

them to the 

( )0t

ix  to produce N corresponding unperturbed positions  (see 

Eq.

iy

(4)).  

(3) Generate a covariance FLE  matrix ( )2
iΣ  for each  in a similar manner to 

that used to define 

iy

( )1
iΣ .  

(4) Generate a weighting matrix  for each point. iW

(5) Repeat the following steps 10,000 times:  

1. Perturb each fiducial position in each space to produce ix x+ Δ  and 

i iy y+ Δ  according to ( )1
iΣ  and ( )2

iΣ , respectively, with random, 

normally distributed, zero-mean components. 

2. Employ a registration algorithm to find R and t that minimize the 

exact registration formula of Eq. (3). 
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3. Calculate ( )TRE r  and FRE. 

(6) Calculate ( )CC FRE,TRE  for the 10,000 registrations of Step (5).  

(7) Perform the chi-square test described in “Chi-square test for dependence” 

in Section 8 (page 79) to detect dependence between FRE and TRE for the 

10,000 registrations of Step (5).  

(8) Compute RMS(TRE) and RMS(FRE) for the 10,000 registrations of Step 

(5). 

(9) Calculate RMS(TRE) = 
1 22TRE  and RMS(FRE) = 

1 22FRE  using our 

formulas. 

(10) Calculate CC between RMS(TRE) from Steps (8) and (9); calculate CC 

between RMS(FRE) from Steps (8) and (9). 

The registration algorithm employed to accomplish Step (5), Part (5)2 depends on 

the weighting being used. For uniform weighting, the method of singular-value 

decomposition was employed (e.g., Algorithm 8.1 of reference [19]). For ideal weighting, 

the algorithm of [20] was employed, except that in Step 1 of that algorithm, 

( ) ( )( ) 1 21 2t
i i iW w R R

−
= × Σ +Σ , as given in “Statistical independence of FRE and TRE for 

ideal weighting” in Section 3 (page 52). This amendment to the algorithm is necessary 

for ideal weighting when FLE is anisotropic and/or inhomogeneous. 

We employed these simulation experiments to determine the accuracy of (a) our 

expressions for TRE and FRE and (b) our claims that TRE and FRE are statistically 

independent and hence uncorrelated. As pointed out in [1], a failure to detect dependence 

does not guarantee that correlation is zero. The more specific correlation test may 
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succeed where the dependence test fails, so we apply separate tests for correlation and 

dependence—the t-test to detect correlation and the chi-square test based on contingency 

tables to detect dependence [21]. The latter test is described “Chi-square test for 

dependence” in Section 8 (page 79). For all tests we chose  = 0.05 with Bonferroni 

correction applied where appropriate. These tests were also used in [1]. 

p

 

5. Results 

 

Comparison to previously published expressions 

We compared Eqs. (33), (37), (41), and (46) with previously published and 

validated analytic expressions for the first three cases and the fifth case in “Comparison 

with previously published derivations” in Section 3 (page 56). Regarding Eq. (33), as 

pointed out in “Comparison with previously published derivations” in Section 3, the 

simplification of that equation produced by the assumption of isotropy and homogeneity 

for FLE yields Eq. (45), which agrees exactly with the formula for  derived by 

Sibson that case. We compared the outputs of Eq. 

2FRE

(41) to the formulas for 2TRE  

published by Moghari [10] and Wiles [8] for a large set of inputs. Similarly we compared 

Eq. (37) to the formula for 2frei  published by Moghari [18]. For each comparison, we 

repeated the following 1000 times: We generated sets S(N) of random fiducials and a 

random target and in the manner described above for the simulations, with N = 3 , 4, 5, …, 

10, 20, 30, and 40 fiducials. We generated a two-space covariance  in the same manner 

as that used in the simulations to generate 

iΣ

( )1
iΣ , based on  and iV ( )i j

σ . We chose 
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random orientations for each set of principle axes and chose random values of ( )i j
σ . We 

compared Eq. (46), with the formulation of Moghari, who provided an analytic formula 

for the case of isotropic, inhomogeneous FLE with ideal weighting [10], and we 

compared Eq. (41) with W  set to the identity (i.e., no weighting) to the formula given by 

Wiles for the case of anisotropic, homogeneous FLE with no weighting [8]. We 

compared Eq. (37) to Moghari’s formula for the case of isotropic inhomogeneous FLE 

with ideal waiting [16]. In every case, our outputs agreed with those of these previously 

published formulas (maximum difference = 1.2 1010−× ). In summary, our new general 

formulas agree with existing formulas, each of which is limited to a special case. 

 

Comparison with simulations 

The important new feature that our theory supports is arbitrary weighting for 

arbitrary FLE. The sets of possible weightings and FLEs are each infinite, but we focused 

on two types of weighting—ideal weighting and uniform weighting, which is equivalent 

to no weighting—and on two sizes of FLE—small, which we defined as RMS(FLE) < 1 

mm, and large. For the latter case we used RMS(FLE) = 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 

40, 50, 60, and 70 mm. Our motivation for the small-versus-large-FLE dichotomy is to 

explore the limitations of our linear approximation, which is strictly correct only in the 

limit of small FLE. For small FLE, we tested with N = 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, and 

40 fiducials. For the large FLE values, we limited our testing to four fiducials in order to 

control the requisite simulation time, which for each value of N requires 24 hours for 15 

values of RMS(FLE). For the case of no weighting, we investigated only the case of 

small FLE, because we found correlation without moving above 1 mm. 
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Utilizing the simulation scheme above, in every case, we found the values 

calculated in Steps (8) and (9) to be statistically equivalent (no significant difference via 

paired t-test at p < 0.05). The maximum absolute percentage differences were less than 

1.5% for FLE in the range from 1 to 10 mm (n = 555) and were less than 4.1% for FLE in 

the range from 1 to 50 mm (n = 120). For Step (9), in which we calculated the CC 

between the values of RMS(TRE) of Steps (8) and (9), and the CC between the values of 

RMS(FRE) calculated in Steps (8) and (9), we found in both cases that CC was well 

above 99.9%. The minimal lower bound of 95% confidence was 99.99%.  Thus, our 

formulas for both FRE and TRE agree with simulation and show only a slight 

degradation in accuracy even when FLE is far larger than any value that would be 

tolerated in surgical guidance (50 mm is equal to one-fourth of the side of the 200 mm 

cube within which the fiducials were randomly placed for this simulation). 

Figure 2 and Figure 3 summarize the results of our investigation into the 

correlation and dependence of FRE and TRE. As predicted by our theory, neither 

correlation nor dependence is detectable when ideal weighting is employed, and FLE is 

less than 1 mm (Figure 2a). For FLE > 20 mm, correlation is statistically significant but 

remains negligible (CC < 0.1) even for FLE = 70 mm (Figure 2b). For uniform weighting 

(i.e., no weighting) a very small correlation is observed, CC ≤ 0.1 that decreases with 

increasing N (Figure 3a). This correlation is statistically significant for all values of N, 

showing that, while FRE has some predictive power when higher order terms are 

included, that power is negligible. The dependence that this tiny correlation implies was 

undetectable for all but a very few cases. Detection is achieved when the chi-square 

statistic q (”Chi-square test for dependence” in Section 8 (page 79)) rises above a critical 
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value shown by the horizontal line in Figure 3(b). Such values were observed very rarely, 

as can be seen by the sub-critical means and, for N ≥ 20, the sub-critical values of mean + 

standard deviation.  

Finally, we repeated our experiments with targets positions chosen to be equal to 

fiducial positions in order to determine whether some dependence between TRE and FRE 

might appear in the special case in which a target is close to a fiducial. No such 

correlation is possible according to our theoretical development, but we explored this 

case to eliminate the possibility that appreciable second-order dependence might appear. 

The results were the same as for the randomly chosen target positions—no detectable 

dependence and no significant correlation. 

 

(a) (b) 

 

 

Figure 2. FRE-TRE correlation coefficient CC for ideal weighting. (a) FLE < 1 mm with varying number of 
fiducials. (b) Varying FLE with four fiducials. In each case, the solid line is the mean of 15 sets of 10,000 
registrations for randomly selected fiducial and target positions (see text). The dashed lines are mean ± one 
standard deviation. Correlation is insignificant at p < 0.05 for all of (a) and for FLE < 10 mm in (b). 
Statistically significant but negligible (< 0.1) correlation occurs for FLE ≥ 20 mm, showing that, while FRE 
has some predictive power when higher order terms are included, the power is negligible. 

 

  65



(b) 
(a) 

 

 

Figure 3. FRE-TRE statistics for FRE < 1 mm when uniform weighting (i.e., no weighting) is employed. (a) 
Correlation coefficient CC versus number of fiducials. A statistically significant but negligible (< 0.1), 
correlation is apparent that decreases with increasing number of fiducials. (b) The chi-square statistic q for 
dependence versus number of fiducials. The dashed lines are mean ± one standard deviation.  The 
horizontal solid line in (b) is the critical level above which values of q indicate dependence. The slight 
dependence implied by the small correlation in (a) is not detected by q, whose mean remains below the 
critical level. 

 

6. Discussion 

 

We have generalized a method of first-order analysis of the point-registration 

problem introduced in 2009 [1] so that it accommodates inhomogeneous and anisotropic 

FLE with arbitrary weighting. With this generalization we are able to provide first-order 

expressions for the covariance matrices of FRE and TRE—Eqs. (33) and (40)—an 

expression for individual FRE—Eq. (34)—and expressions for 2FRE  and 2TRE —

Eqs. (35) and (41). As a result, we have unified the theory of first-order FRE and TRE 

statistics, which has heretofore been solved piecemeal only for special cases, each of 
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which involved a separate formulation [5], [6], [8], [10], [18]. We have included in 

“Computer code to implement the derived formulas” in Section 8 (page 80) an 

implementation of Eqs. (33), (35), (40), and (41) in Matlab. With this implementation, we 

have reduced to 25 lines of Matlab not only all the many special cases of weightings and 

FLE anisotropies heretofore spread over many pages of many papers with different 

notations but also all other possible combinations of weightings, inhomogeneities, and 

anisotropies.  

In addition, by means of our new method we are able to generalize the major 

result of [1]: namely, that, to first order, FRE and TRE are independent when FLE is 

homogeneous and isotropic. Our generalization reveals that, in addition, if ideal 

weighting is employed, FRE and TRE are independent to first order when FLE is 

inhomogeneous and/or anisotropic. Ideal weighting, which we define in “Statistical 

independence of FRE and TRE for ideal weighting” in Section 3 (page 52), is not a new 

concept. It was introduced to point registration by Ohta and Kanatani in 1998 [15] and 

used by West et al. in 2001 [16] and by Moghari et al. in 2009 [10], [18] as well, but the 

proof that it produces independence between FRE and TRE is new.  

We note that this independence in no way detracts from the importance of Eqs. 

(1) and (2), from the generalizations of these expressions provided in the excellent work 

by Wiles [8], [22], Balachandran [9], and Moghari [10], [18], or from further 

generalizations given in Eqs. (33) through (38), (40), and (41), each of which relates one 

expectation value to another. Both Eq. (1) and Wiles’ generalization of that relationship 

[22] can be used to estimate the FLE covariance from measurements of FRE obtained 

from multiple registrations based on independent fiducial localizations. Based on this 
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estimate, Eq. (2) or one of its generalizations can then be used to estimate an expectation 

value for TRE for a given fiducial configuration and target position. What we have 

shown is that for any given FLE covariance the value of FRE observed for a given 

registration is unreliable as means to estimate the deviation of TRE from its expected 

value for that same registration.  

To validate our new formulation, we have compared our results to previously 

published formulas for FRE and TRE and to our own simulations. While there is an 

infinite variety of FLE patterns and weighting schemes available, we focused on 

inhomogeneous and anisotropic FLE with both ideal weighting and uniform weighting. 

We generated random fiducial and target positions and used both small FLE—RMS(FLE) 

< 1 mm, and large FLE—up to 70 mm. We found excellent agreement in all cases. We 

also used simulations to evaluate correlation and dependence between FRE and TRE 

when the first-order approximation is not made. We found, in agreement with our 

theoretical results, that correlation and dependence approach zero for both weighting 

schemes as FLE approaches zero, for every case tested. We found for very large FLE that, 

while there is clearly a statistically significant correlation at higher order, that correlation 

is so small as to have negligible value as a predictor of TRE. 

Our experiments on uniform weighting explain why neither Steinmeier nor 

Woerdeman, both of whom experimented with systems that apply this weighting scheme, 

were able to detect appreciable correlation between FRE and TRE, and it provides further 

support for the argument advanced in [1] that estimates of fluctuations of registration 

accuracy, i.e., TRE, based on the goodness of fit of the fiducials, e.g., FRE, are unreliable. 
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7. Conclusion 

 

By means of a new unified approach to the first-order analysis of the point 

registration problem, we are able to provide general expressions for the covariances of 

fiducial registration error and of target registration error. These two expressions and all 

the other expressions that we derived from them are appropriate for any set of fiducial 

localization error patterns, whether inhomogeneous or not and whether anisotropic or not. 

Furthermore, they are appropriate for any arbitrary set of weightings in the point 

registration problem, including ideal weighting and uniform weighting. Furthermore, this 

approach allows us to show that, for ideal weighting, FRE and TRE are to first order 

neither correlated nor dependent. We have verified these results by means of comparisons 

to previous derivations and to simulations. Finally, by means of simulation we have 

shown that, for all cases examined, correlation between FRE and TRE is also negligible 

for uniform weighting even in the exact case. These results reinforce the message 

delivered in [1] that for a given localization covariance, whether registration is performed 

with ideal or uniform weighting, the latter of which is used in commercial guidance 

systems, fluctuations of measures of the goodness of fit of the fiducials, e.g., fiducial 

registration error, bear no statistical relationship, or at most a negligible relationship, to 

fluctuations of individual measures of registration accuracy, i.e., target registration error. 

Therefore, while the covariance of FRE can be estimated from multiple registrations, and 

while valid expressions exist relating the covariances of FRE, FLE, and TRE, any 

estimation of registration accuracy based on a single fiducial fit should be approached 
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with extreme caution both by the purveyors of guidance systems and by the practitioners 

who use them. 

 

8. Appendix 

 

Derivation of ideal weighting 

The standard approach to finding the rigid transformation by minimizing Eq. (3) 

is based on maximum likelihood. Maximum likelihood was introduced into the point 

registration problem by Ohta and Kanatani in 1998 [15] and used by West et al. in 2001 

[16] and by Moghari et al. in 2009 [10], [18]. It has also been invoked for intensity-based 

registration methods [22].  The goal in point registration is to find the transformation that 

is most likely to be correct given the measured positions of the fiducial points in the two 

spaces. That goal can be reached only if the matrices  in that equation provide “ideal 

weighting”. In this section we derive the ideal weighting matrices and show that they 

provide the maximum-likelihood solution. We begin with the given sets {

iW

}ix′  and { }iy′  , 

 = 1,…,  of measured vector positions in two spaces, where i N i i ix x′ = + Δx  and 

i i iy y′ = + Δ i, y x  and iy  are the true but unknown positions of corresponding points in the 

respective spaces, and ixΔ  and iyΔ  are their unknown localization errors. We wish to 

find the most likely rigid transformation, but, as we do, we will also find the most likely 

true positions. Specifically, we wish to find the rotation matrix and translation vector ,R t  

and the { }ix  and { }iy  that together maximize the conditional probability density 

{ } { } { }( , , | ,i i i )p R t y x y′ ′ . The set of true points { }ix  is missing from the variables in this 
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density because they are completely determined by ,R t , and the { }iy , since by definition 

t t
i ix R y R t= − .  

Thus, we wish to maximize  { } { } { }( ), , | ,i i ip R t y x y′ ′  with respect to ,R t , and 

{ }iy  for fixed { }ix′  and { }iy′ . From Bayes’ law, we have that  

 

 
{ } { } { }( )

{ } { } { }( ) { }( ) { } { }( )
, , | ,

, | , , , ,
i i i

i i i i i i

p R t y x y

p x y R t y p R t y p x y

′ ′

′ ′ ′ ′=
 , (47) 

 

and, absent prior knowledge of { }( ), , ip R t y , we neglect its dependence on ,R t , and 

{ }iy . Furthermore, { } { }( ,i i )p x y′ ′  is fixed because both { }ix′  and { }iy′  are fixed. 

Therefore, we may achieve our goal by maximizing the conditional probability, 

{ } { } { }( ), | , ,i i ip x y R t y′ ′  with respect to ,R t , and { }iy . 

We now assume that all localization errors are independent and that their 

components have zero mean and are normally distributed about their principal axes. With 

this assumption we have 

 

 

{ } { } { }( )

( )1 1

1

, | , ,

exp

i i i

N
t t
i xi i i yi i

i

p x y R t y

c x x y− −

=

′ ′

⎛
= − Δ Σ Δ + Δ Σ Δ⎜ ⎟

⎝ ⎠
∑ y ⎞ , (48) 

 

where xiΣ  and yiΣ  
are respectively the covariances of ixΔ  and iyΔ . It can be seen from 

our definitions above and from minor manipulation that 1t
i xi ix x−Δ Σ Δ  equals 
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( ) (t
i i xi i )iRx t y S Rx t y′ ′+ − + − , where xiS  = 1 t

xiR R−Σ , and that  equals 

, where 

1t
i yi iy −Δ Σ Δy

)−( ) (t
i i yi i iy y S y y′ ′− yiS  = 1

yi
−Σ . After these substitutions, we have 

{ } { } { } { }( ), , , | ,i i i ip R t x y x y′ ′  = { } { } { }( )( )exp , , , ,i i ic G R t x y y′ ′− , where   

 

 

{ } { } { }( )

( ) ( ) ( ) (1

1

, , , ,i i i

N
t t

i i xi i i i i yi i i
i

G R t x y y

)tRx t y R R Rx t y y y S y y−

=

′ ′ =

′ ′ ′+ − Σ + − + − −∑ ′
. (49) 

 

Thus, in order to maximize the likelihood, we need to minimize 

{ } { } { }( ), , , ,i i iG R t x y y′ ′  with respect to ,R t , and { }iy . We minimize with respect to the 

{ }iy  by taking the derivative of G with respect to each of the components of each of the 

iy  and setting all 3N derivatives to zero. The result is  

 

 ( ) ( )( )1

i xi yi xi i yi iy S S S Rx t S y
−

′ ′= + + +  . (50) 

 

We note that the expression for iy  given in Eq. (50), which is a weighted mean of 

the i-th transformed measured point in x space and its corresponding measured point in y 

space, provides the best available approximation for the true positions needed in all the 

expressions for TRE and FRE statistics derived in the body of this work. In the case of 

isotropic, homogeneous FLE, as, for example, in Eq. (2), this expression reduces to 

( )( ) 2i i iy Rx t y′ ′= + + , i.e., a simple unweighted average.  
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Finally, we substitute our expression for iy  into G to obtain (after considerable 

manipulation)  

 

  , (51) { } { } { }( ) ( )( ) ( )2

1
, , , ,

N t
i i i i i i i i i

i
G R t x y y W Rx t y W Rx t y

=

′ ′ ′ ′ ′ ′= + − +∑ −

)

 

where ( 1 2t
i xi yiW R R

−
= Σ + Σ . In order to reach our goal, the remaining task is to find the 

transformation ,R t  that minimizes G. In this minimization process, we can use 

( ) 1 2t
i xi yW w R R

−
= × Σ +Σ i

)

, where w is any constant. For this reason we refer to 

( 1 2t
i xi yW w R R

−
= × Σ +Σ i

ke

 as “ideal weighting”. The right side of Eq. (51) has the same 

form as the right side of Eq. (3), but the weighting is unspecified in Eq. (3), whereas the 

derivation above shows that only ideal weighting can achieve maximum likelihood. 

 

Statistical independence of the elements of e  �

In this section we show that, if the M elements of the vector e  are statistically 

independent, normally distributed variables with zero mean, then, if the M-by-M matrix V 

is orthogonal, the following vector has these same three characteristics: 

 

  (52) 
1

M

i ki
k

e V
=

= ∑�

 

1) If the mean of e is zero, then the mean of e�  is zero. 
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That the mean is zero is easily seen by computing the expectation value, which 

we denote by . , of both sides of Eq. (52): 

 

 
1 1 1

0 0
M M M

i ki k ki k ki
k k k

e V e V e V
= = =

= = = ⋅∑ ∑ ∑� =  (53) 

 

2) If the elements of e are uncorrelated with equal variances and V is orthogonal, then the 

elements e�  are uncorrelated. 

Because of Eq. (53), the correlation of   and ie� je�  is equal to 

( )( )i i j je e e e− −� � � � : 

 

 

( )( )
( ) ( )

( )( )

2 2 ,

i i j j

M M

ki k k lj l l
k l

M M

ki lj k k l l
k l

M M M

ki lj kl ki kj ij
k l k

e e e e

V e e V e e

V V e e e e

V V V V 2σ δ σ σ δ

− −

= − −

= − −

= =

∑ ∑

∑∑

∑∑ ∑

� � � �

=

 (54) 

 

where we used the fact that the elements of e are uncorrelated and equal in going from 

the first line of Eq. (54) to the second, defined 2σ  = 2
ie  to be the variance of an 

element of e, and used the orthogonality of V in the last step. 
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3) If the elements of e are independent and normally distributed with equal variances and 

V is orthogonal, then the elements of �e  are independent and are normally distributed with 

the same variance. 

We note that, since the elements  are independent and normally distributed with 

variance 

ie

2σ , their joint probability density has the form 

 

 

( )

( ) ( )( )

( )

1,2,..., 1 2

1
2 2

1

2
2

1

, ,...,

2 exp / 2

12 exp
2

M N

M

i
i

MM

i
i

p e e e

e

e

σ π σ

σ π
σ

−

=

−

=

= −

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏

∑ ,

  (55) 

 

where we have used the fact that the means of the  are zero.ie 6 Because each  is a 

linear combination of the , their joint density has the form (by generalizing the 

derivations on pages 199-201 of [17] from two variables to M  variables), 

ie�

ie

 

 ( ) (1
1,2,..., 1 2 1,2,..., 1 2, ,... , ,...,M M Mq e e e J p z z z−=� � � )M , (56) 

 

where J =  and z = ( )det tV ( ) 1tV
−
�e . Since V is orthogonal, J  = 1 and ( ) 1tV

−
 = V.  

Using these properties and Eq. (55) in Eq. (56) gives us that 

 

                                                 

6 Zero means are not necessary for this derivation. They simply reduce its complexity. Since the means are in fact zero, 
we take advantage of that fact to simplify the equations. 
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( )

( ) ( ) ( )

( ) ( )( )
( ) ( )
( ) ( )

( )

1,2,..., 1 2

2 2

1

2

2

2

2 2

1

, ,...

2 exp 2

2 exp 2

2 exp 2

2 exp 2

2 exp 2 ,

M M

MM

i
i

M t

M
t t

M
t

MM

i
i

q e e e

Ve

Ve Ve

e V Ve

e e

e

σ π σ

σ π σ

σ π σ

σ π σ

σ π σ

−

=

−

−

−

−

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= −

= −

= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑

∑

� � �

�

� �

� �

� �

�

 (57) 

 

where we have used the orthogonality of V in going from the second line of Eq. (57) to 

the third line. Eq. (57) can be written as a product of functions of the individual  as 

follows: 

ie�

( )1,2,..., 1 2
1

, ,...
M

( )M M i
i

q e e e q
=

=∏� � � �ie , where ( )i iq e�  = ( ) ( )( )1
2 22 exp 2ieσ π σ

−
− � , 

which is of normal form. Since the joint probability density of the  is equal to the 

product of individual functions, the  are mutually statistically independent. Since the 

individual functions are of normal form, they are normally distributed with variance 

ie�

ie�

2σ . 

 

Two dimensional case 

The formulas and the proof of independence are derived in Section 3 only for 

three-dimensional transformations, but they all carry over to the two-dimensional case as 

well. We highlight here the salient changes that result when the points and the 

transformations are two dimensional. First, ix , iy  ixΔ , iyΔ , iξΔ , and ( )0
iξΔ  are 2-by-1. 

Second, , iW R , ( )0R , ( )1
iΣ , ( )2

iΣ , iΣ , I , and RΔ , are now 2-by-2 matrices, t  and tΔ  are 

2-by-1 vectors, and  
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. (58) 

 

Third, C is a now a 2N-by-3 matrix, and q is a three-element vector whose 

elements are 1, ,t t2θΔ Δ Δ . Fourth,  

 

 ( )
( )

( )

0
0 2

0
1

i
i

i

x
X

x

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (59) 

 

and 

 

 ( )
( )( )0

2 1 , 1,..., ,  1,2i ii j j
e W i N jξ− + = Δ = =  . (60) 

 

Fifth,  is 2N-by-3, V is 3-by-3, Λ +Λ  is 3-by-2N, and the proof that all singular 

values (there are now only three of them) are nonzero involves only the third of the three 

equations in Eqs. (20). It is now the first three (instead of first six) diagonal elements of 

 that are equal to 1, and the last 2N+ΛΛ −3 (instead of the last 2N−6) are equal to 0. As a 

result, each component of  for each fiducial point is a function of only the last 

2N − 3 elements of e , and each component of 

iFRE

� ( )rTRE  is a function of only the first 3 

elements of e . The proof that the 2N elements of e  are independent makes no reference 

to the dimension of the space (see “Statistical independence of the elements of e ” in 

� �

�
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Section 8 (page 73)). Therefore,  and iFRE ( )rTRE  are statistically independent for the 

two-dimensional case, just as they are for the three-dimensional case. 

Sixth, the block-diagonal matrices have slightly different forms to accommodate 

the reduced spatial dimensionality: ( ) ( )2 1 ,2( 1) ii j i j jj′− + − + ′Σ = Σ  and ( ) ( )2 1 ,2( 1) ii j i j jj
W W′− + − + ′= , 

for  , ,  with all other elements equaling zero. 1...i N= 1, 2j = 1, 2j′ =

Seventh, Eqs. (33) through (41) must be altered to accommodate the reduced 

dimensionality, as follows: 

 

 ( ) (
2 2

FRE
, 4 , 4

N N
t t

kj lj j j kj ljkl jj
j j j j

U U e e U U U W W U′ ′ ′ ′
′ ′= =

Σ = = Σ∑ ∑� � )  (61) 

 

 

( )

2 2
2

2 1 , 4

2 2

2 1 , 4

FRE
i

i N

kj kj j j
k i j j kk

i N
t t

kj kj jj
k i j j kk

U U e e

U U U W W U

′ ′
′= − =

′ ′
′= − =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞
= Σ⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑

� �

 (62) 

 

 

( ) ( )

( )

2 2 2
2

FRE
1 1 , 4

2

4

FRE
N N N

t t
kj kjkk jj

k k j j

N
t t

jj
j

U U U W W U

U W W U

′ ′
′= = =

=

= Σ = Σ

= Σ

∑ ∑ ∑

∑
 (63) 

 

 ( ) ( ) ( ) ( )
2

1 1
fre

, 4

N
t t

kl kj lj jj
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 Chi-square test for dependence 

To detect dependence, we employ the standard chi-square test based on the 

contingency tables [21]. Each element, ( ),C i j , 1, 2,..., Ci N= , 1, 2,... Cj N= , of an 

 contingency table is a count of the number of registrations for which 

 and 

CN N× C

1FRE FRE FREi i+≤ < 1TRE TRE TREj j+≤ < , where the thresholds, F  and REi

TRE j  can be chosen arbitrarily. The resulting table is then used to calculate the 

following test statistic: ( ) ( )( ) ( )2
0 0, 1

, ,CN

i j
q C i j C i j C i j

=
= −∑ , ), where   is the 

count that is to be expected when FRE and TRE are independent, namely, 

(0 ,C i j

( ) ( ) ( )0 1 2,C i j C i C j M= , where M is the total of all counts, ( ) ( )1 1
,CN

j
C i C i j

′=
′= ∑ , and 

. The variance in q over repeated experiments (i.e., with different ( ) ( )2 1
,CN

i
C j C i j

′=
′=∑
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random localization errors) can be reduced by choosing the thresholds F  and TRREi E j  

such that ∑    ( )11
,CN

j
C i j

′=
′ ≈ )( 21

,CN

j
C i j

′=
′∑  and ( )11

,CN

i
C i j

′=
′∑  ≈  . If q is 

sufficiently large, then it can be concluded that FRE and TRE are dependent. A 

“sufficiently large” value is that of the chi-square distribution (i.e., cumulative 

distribution) 

( 21
,CN

i
C i j

′=
′∑ )

)(2
01 pνχ − , 7  where 01 p−  is the desired confidence in the truth of 

dependence. The number v  of degrees of freedom for this problem equals ( )21CN − . 

Thus, a value of q that is larger than ( )2
01 pνχ −  indicates that dependence between FRE 

and TRE is detected at 0p p≤ . Failure to detect q exceeding ( )2
01 pνχ −  suggests that our 

theory of independence can be extended from the linear approximation to the exact 

problem encountered in surgical guidance. 

 

Computer code to implement the derived formulas 

We provide below a Matlab function to implement our new formulas for FRE and 

TRE. The values that it returns correspond to our equations as follows: ( )  = 2RMS_TRE

2TRE  from Eq. (41), ( )  = 2RMS_FRE 2FRE  from Eq. (35), Cov_TRE =  from 

Eq. 

TREΣ

(40), and Cov_FRE =  from Eq. FREΣ (33). The inputs correspond to our definitions 

above as follows:  X0(:,i) = ( )0
ix  = ( )0

iR x , W(:,:,i) = ,  Cov_FLE(:,:,i) = iW iΣ  = 

, and r0 = ( ) ( ) ( ) ( )0 01
i

t
R RΣ + Σ 2

i
( )0r  = ( )0R r .  

                                                 

7 Note that 2
νχ  denotes a variable, while ( )2

01 pνχ −  denotes a distribution. 
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Like the formulas that it implements, this code is general. This relatively simple 

function handles the special cases of uniform weighting for homogeneous, isotropic FLE, 

first solved by Fitzpatrick et al. [5], uniform weighting for homogeneous, anisotropic 

FLE first solved by Wiles et al. [8], and ideal weighting for inhomogeneous, anisotropic 

FLE first solved by Moghari et al. [10] , and it handles all other cases as well.  

 

function [RMS_TRE,RMS_FRE,Cov_TRE,Cov_FRE]... 
   = TRE_FRE_approx(X0,W,Cov_FLE,r0) 
% [RMS_TRE,RMS_FRE,cov_TRE,cov_FRE] =  
%            TRE_FRE_approx(X0,W,Cov_FLE,r0) 
%  
% Calculates root-mean-squares of TRE and FRE 
% and covariance matrices of TRE and FRE for 
% fiducials X0, weightings W, FLE covariance 
% matrices Cov_FLE and target r0. X0 is a 
% 3-by-N matrix with a fiducial point in each 
% column, W is 3-by-3-by-N with a weighting 
% matrix for one fiducial on each page. 
% Cov_FLE 3-by-3-by-N with an FLE covariance 
% matrix for one fiducial on each page. r0 is 
% the 3-by-1 target. Note that FRE is the 
% weighted fiducial registration error. 
%  
% Authors: Andrei Danilchenko and J Michael 
% Fitzpatrick Created: August 2010 
  
N = size(X0,2); 
  
% Create matrix C and decompose it 
W1 = W(:,1,:); W2 = W(:,2,:); W3 = W(:,3,:); 
X1 = X0(1,:); X2 = X0(2,:); X3 = X0(3,:); 
Xreshaped = reshape([repmat(X1,3,1);... 
   repmat(X2,3,1);repmat(X3,3,1)],size(W)); 
X1 = Xreshaped(:,1,:); X2 = Xreshaped(:,2,:); 
X3 = Xreshaped(:,3,:); 
C = [-W2.*X3+W3.*X2, +W1.*X3-W3.*X1, ... 
   -W1.*X2+W2.*X1, W1, W2, W3]; 
C = reshape(permute(C,[1,3,2]),[],6); 
[U,S,V] = svd(C); 
  
% Create 3N-by-3N block-diagonal matrices  
% and matrix M: 
temp = num2cell(W,[1 2]);  
Wlarge = blkdiag(temp{:}); 
temp = num2cell(Cov_FLE,[1 2]);  
Cov_FLElarge = blkdiag(temp{:}); 
M = U' * Wlarge * Cov_FLElarge * Wlarge' * U; 
  
% FRE 
U(:,1:6) = 0; 
Cov_FRE = U*M*U'; 
RMS_FRE = sqrt(trace(Cov_FRE)); 
  

  81



% TRE 
Dleft = [0,r0(3),-r0(2);-r0(3),0,r0(1);... 
   r0(2),-r0(1),0]; 
D = [Dleft,eye(3)]; 
DV = D * V; 
S1 = [inv(S(1:6,1:6)),zeros(6,3*N-6)]; 
Cov_TRE = DV*S1*M*S1'*DV'; 
RMS_TRE = sqrt(trace(Cov_TRE)); 
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CHAPTER III 

 

ITERATIVE SOLUTION FOR RIGID-BODY POINT-BASED REGISTRATION 
WITH ARBITRARY WEIGHTING 

 

1. Introduction 

 

The key component of image-guided systems is the ability to register multi-modal 

pre-operative and intra-operative images of a patient or an atlas to the patient in physical 

space during the operation. Since the introduction of fiducial-based systems in image-

guided surgery, point registration has become an important aspect of the whole procedure. 

The process of point-based registration involves identifying two sets of corresponding 

points in the two spaces that need to be aligned by means of a transformation, or 

“mapping”, of one of the data sets and determining the transformation that aligns the two 

spaces. Each set of points consists of three or more points in a space, e.g. three-

dimensional image volume or patient in physical space, each of which represent a fiducial 

marker. 

For surgeries, such as neurosurgery, fiducial markers are rigidly attached to the 

patient’s skull to achieve submillimetric accuracy while accessing regions close to critical 

structures. Fiducial markers are bone-implanted before acquisition of pre-operative 

images and are removed at the end of the procedure. Since the skull is rigid and the 

fiducials are rigidly attached to the skull, the point mapping is assumed to be a rigid 

transformation, and that is also the assumption in the present work.  
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For a typical surgical-guidance system, the two spaces for point-based registration 

are the pre-operative image of the patient, such as CT and MRI, and physical space. The 

sets of fiducial points are obtained by localizing each fiducial marker both in the pre-

operative image and in physical space of the operating room. It is almost impossible to 

localize fiducials without appreciable error. This error in localizing the fiducials is called 

the fiducial localization error (FLE). If FLE is the same for all fiducials, FLE is termed 

“homogeneous”, otherwise it is termed “inhomogeneous.” FLE is called “isotropic” if it 

is the same in all directions, otherwise it is called “anisotropic.” Due to FLE, perfect 

registration between the two sets of fiducial points is not possible. The resultant error in 

aligning corresponding fiducial points is called the fiducial registration error (FRE). In 

the general case, FRE is the root-mean-square (RMS) of the lengths of the displacements 

between corresponding fiducials after registration with each displacement multiplied by a 

weighting matrix. The same terminology—homogeneous or inhomogeneous, isotropic or 

anisotropic—is used to describe the weighting scheme. When weighting matrices are 

employed, FRE may be called a “weighted FRE”. If each weighting matrix is the identity, 

then FRE is the “unweighted FRE”.  Registration of points in one space with points in 

another space is a process of finding the transformation that minimizes FRE. A least-

squares approach is commonly utilized to determine the transformation. (See “Derivation 

of ideal weighting” in Section 8 of Chapter II (page 70) for a justification of the least-

squares approach.) A closed-form solution exists for this least-squares problem when the 

weighting matrices are isotropic (whether or not they are homogeneous) [1], [2]. 

However, there is no known closed-form solution when the weighting matrices are 
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anisotropic, which is required for ideal registration when the statistical distribution of 

FLE is anisotropic.  

For image-guided surgery applications, FLE in image space is made highly 

isotropic by using fiducials of size larger than the size of a voxel. However, FLE in 

physical space typically suffers from noticeable anisotropy because of the limitations of 

tracking techniques [3]. For example, physical positions are often acquired via optical 

tracking systems such as the Polaris Spectra (Northern Digital Inc., Waterloo, Ontario, 

Canada), whose localization error is known to be larger in the direction from the camera 

to the object than in the other two orthogonal directions. Furthermore, the positions are 

often calculated relative to a coordinate reference frame (CRF) that is rigidly attached to 

the patient. The use of a CRF enables compensation for patient movement relative to the 

tracking system during the procedure, but it tends to increase the anisotropy [3]. Thus, a 

solution that allows for anisotropy is of value. Such a solution is obtained by defining 

anisotropic (and possibly inhomogeneous) weighting matrices that are determined by the 

known spatial distributions of FLE and then minimizing the resultant weighted FRE. We 

call this procedure “anisotropic registration”.  While no closed-form solution exists, 

several approximate iterative solutions to anisotropic registration exist. Koschat [4] and 

Chu [5] each look at the problem of mapping two point sets with anisotropic errors as a 

Procrustes problem. Moghari [7] and Pennec [8] each make use of Kalman filtering to 

find the approximate solution. Balachandran [6] proposes a non-iterative algorithm that 

finds an approximate solution to the registration problem with anisotropic FLE, but 

anisotropy is incorporated only in the calculation of the centroids of the marker 

configuration and in one space.  
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Each iterative algorithm requires some stopping criterion. In addition, each of the 

algorithms above requires that additional parameters be set as well. In some cases, as few 

as one additional parameter must be chosen, as for example in Koschat and in Chu, but 

some require as many as three or four, as for example Moghari. However, there are two 

previously published algorithms that require no additional parameters. The first of these 

methods is by Ohta [9], which estimates the rotation that is optimal in the sense of 

achieving the lower bound of a first-order level of accuracy. The method makes use of a 

quaternion renormalization technique to solve the non-linear problem. However, in the 

case when translation is present, this algorithm loses its optimality. The second method is 

by Matei [10]. This algorithm extends the idea of the Ohta algorithm to keep the 

optimality of the found solution for cases when both rotation and translation are present. 

Matei interprets the anisotropic registration problem as a heteroscedastic regression 

problem.   

In this chapter we present an alternative iterative algorithm that, like Ohta and like 

Matei, has no additional parameters other than a stopping threshold. This algorithm is 

considerably simpler and more intuitive than existing algorithms of solving the 

anisotropic registration problem. At each stage of iteration of the new algorithm, a non-

linear problem, which has no closed-form solution, is replaced with a linear one, which 

has a closed-form solution. The solution of the linear problem is used to compute the 

closest rotation matrix for the non-linear problem and to update the fiducial points for the 

next iteration. We show that in the presence of anisotropic FLE, a substantial 

improvement in the target registration error (TRE) is achieved when the new algorithm is 

used instead of the commonly used closed-form solutions. We also compare the new 
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algorithm with Matei’s algorithm using simulation and using experimental data for an 

image-guided surgery application. We show that for clinically-applicable cases the new 

algorithm improves the TRE at clinically-relevant targets relative to the other algorithms. 

Our choice of the two iterative algorithms for comparison is based on the fact that these 

two algorithms require no parameter other than a stopping threshold to be set, just like the 

new proposed algorithm.  

 

2. Method 

 

The problem of point-based registration in the presence of inhomogeneous 

anisotropic FLE is a problem of finding the rigid transformation that minimizes the 

anisotropically-weighted FRE. We let { }, 1...iX i= =x N , be the set of N 3-by-1 fiducial 

points to be transformed (e.g., points in image space), called the “moving” fiducials 

because they are being transformed, and { } , 1...iY i= =y N

)

, be the set of corresponding 

fiducial points (e.g., points in physical space), called the “stationary” fiducials. The only 

requirement for the fiducials is that at least three of the N fiducials are not collinear. Our 

goal is to find the 3-by-3 rotation matrix R and the 3-by-1 translation vector t that 

minimize weighted FRE, which is defined as follows: 

 

 ( 22

1

FRE
N

i i i
i

W R
=

= + −∑ x t y , (1) 
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where  is a 3-by-3 non-singular weighting matrix of fiducial i. In this expression the 

weighting matrices could be functions of R. With this definition of weighted FRE, it is 

clear that R and t minimizing Eq. (1) will not be changed if all  are multiplied by the 

same factor w, and  is multiplied by a positive factor . Therefore the scale of 

FRE is somewhat uncertain. To remove this uncertainty, we normalize all the weighting 

matrices such that 

iW

iW

2FRE 2w

2

1

N
iW∑  = ( )1

traceN t
i iW W∑  = 1. The problem of minimizing Eq. (1) 

is made difficult by the non-linear constraint on the rotation matrix. The rotation matrix is 

restricted to be orthogonal, which means that equality tR R I=  must be satisfied, where I 

is the identity matrix. 

The weights account for the variation in the localization accuracy among the 

fiducials, a variation with respect to the direction and with respect to the markers. By 

definition, if  for all i,j, then FLE is homogeneous. We assume that FLE for each 

fiducial is normally distributed with zero mean and can be resolved into three 

uncorrelated components along a set of orthogonal principal axes, with standard 

deviations 

iW W= j

ikασ , where ,x yα =  indicates the space and 1, 2,3k =  indicates the principal 

axis. If ik ikα ασ σ ′=  for all ,k k ′ , the problem reduces to the isotropic problem, which can 

be solved by closed-form methods, both for the homogenous and the inhomogeneous 

cases [11]. In this chapter we treat the anisotropic case, for which there is no known 

closed-form solution. This is the situation that arises in surgical navigation, in which the 

localization error of the physical tracking system in the operating room suffers from a 

relatively larger standard deviation in the direction from the camera to the fiducials than 

in the perpendicular directions. 
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In general case the weighting matrix has the form 

 

 

 ( ) 1/22 2t
i xi yiW RW R W

−− −= + , (2) 

 

where xiW  and yiW  are weighting matrices of fiducial i in the image and physical spaces 

correspondingly. 

A special case of weighting is “ideal weighting”. (See “Derivation of ideal 

weighting” in Section 8 of Chapter II (page 70)). It is an important case because ideal 

weighting maximizes the probability for the resulting transformation to be the true one 

[12]. The ideal weighting for the fiducial i in space α  is defined as the inverse of FLE. 

The ideal weighting matrix for fiducial i in space α  is the defined as 

 

 ( )( ) 1 22 2 2
1 2 3diag , , t

i i i i i iW V Vα α α α α ασ σ σ
−

− − −=  

 

where . The columns of t
i iV V Iα α = iVα  are the principal axes in space α  of the FLE for 

fiducial i. The overall weighting matrix  then becomes  iW

 

 ( ) ( )( ) 1 22 2 2 2 2 2
1 2 3 1 2 3diag , , diag , ,t t t

i xi xi xi xi xi yi yi yi yi yiW RV V R V Vσ σ σ σ σ σ
−

= +  (3) 

 

Ideal weighting was first introduced by Ohta [9]. Later it was used by Matei in 

[10], West in [13] and Moghari in [14], [15]. Note that the derivations and algorithms 
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presented in this paper work with general weighting as well as with ideal weighting. 

However, ideal weighting is employed in all our validation experiments. 

 

Algorithm 

The strategy of the new iterative method of anisotropic point-based registration is 

that the non-linear problem is replaced with a simple linear problem at each stage of 

iteration and the exact solution to the linear problem is found by means of linear algebra. 

This method is a common way of dealing with non-linear problems [16], [17]. The 

simplification allowing transformation of the non-linear problem into linear one involves 

replacing the rotation matrix by its linear approximation, which is subject just to a linear 

constraint. As a result of this simplification, the exact solution of the linear problem is 

also an approximate solution to the non-linear registration problem. The rotation matrix is 

then found as the matrix which is closest in the least-squares sense to the solution of the 

linear problem. Finally, we apply the found rotation matrix to the moving fiducials to 

bring them incrementally closer to the stationary fiducials. In summary, we repeat the 

following steps: (1) solve the linearized problem, (2) find the closest rigid transformation 

to the linear solution, and (3) apply the rigid transformation to the moving fiducials. The 

algorithm stops when a measure of the movement of the fiducials is below selected 

threshold. That threshold is the single adjustable parameter of the algorithm. 

The inputs to the algorithm are N pairs of 3-by-1 points  and ix iy , and 3-by-3 

weighting matrices xiW  and yiW  for 1, ,i N= … . At each stage of the iterative process, the 

rotation matrix, the translation vector, and the set of moving fiducials are updated to new 

values. At iteration stage n, matrix ( 1)nR − , vector ( 1)n−t , and the points ( )1n
i
−x  are updated 
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to ( )nR , , and ( )nt ( )n
ix . Before starting the iterative process, a good initialization is 

required and is provided as the R and t that minimize Eq. (1) with isotropic, 

homogeneous FLE, i.e. the weighting matrices  are omitted. The solution is found by 

means of the closed-form solution based on singular value decomposition provided in 

Algorithm 8.1 of [11]. The found rotation matrix and translation vector are labeled 

iW

( )0R  

and . Using these transformation parameters and the coordinates of the moving 

fiducials, the initial moving points for the iterative algorithm are calculated using the 

following expression: 

( )0t

( ) ( ) ( )0 0
i iR= +x x 0t N, for 1,..,i = . The rotation matrix and 

translation vector solution of the anisotropic registration problem are initialized as 

( )0R R=  and ( )0=t t . 

Following initialization, the iterative process begins. Each stage n of the iteration 

comprises the following steps: 

 

1. Solve the linear problem: In Eq. (1),  is replaced by ix ( )1n
i
−x , R  is replaced by an 

approximate rotation operator ( )nI +ΔΘ , where ( )nΔΘ  is a 3-by-3 antisymmetric 

matrix with the linear constraint ( ) ( )n t nΔΘ = −ΔΘ . The following approximation 

of Eq. (1) is minimized: 

 

 ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )1 12 2

1

FRE
N t

n n n n n n
i i i i

i

I W I− −

=

= + ΔΘ + − + ΔΘ + −∑ x t y x t y i , (4) 
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where ( ) 1 22 2t
i xi yiW RW R W

−− −= +  is calculated using the current R.  

The matrix  and the translation vector ( )nΔΘ ( )nt  that together minimize 

approximation Eq. (4), can be found exactly. The solution method is given below 

in “Solution of the approximate equation” in Section 2 (page 94).  

2. If n > 1, compute ( ) ( ) ( )( )1 2n n n−ΔΘ = ΔΘ + ΔΘ  and ( ) ( ) ( )( )1 2n n n−= +t t t . 

3. Perform singular value decomposition of matrix ( )nI +ΔΘ : ( )ntU V IΛ = +ΔΘ , 

where U and V are 3-by-3 rotation matrices and Λ  is a 3-by-3 diagonal matrix 

with non-negative elements. 

4. Calculate the 3-by-3 matrix ( )n tR UV= . ( )nR  is a proper rotation matrix that is 

closest in the least-squares sense to ( )nI + ΔΘ  (see “Finding the closest rotation 

matrix” in Section 2 (page 96)).  

5. Update the rotation matrix and translation vector: ( )nR R R=  , ( ) ( )n nR= +t t t . 

6. Updated the moving point set: ( )n
i iR= +x x t , for 1,..,i N= . 

7. Calculate the relative change in points configuration:  

( ) ( ) ( ) ( )( )1 221
1 1

N Nn n n n
i i ii i

X −

= =
Δ = − −∑ ∑x x x x

2
, where ( )nx is the centroid of the 

points configuration ( ){ }n
ix . 

8. If XΔ  > threshold, update n to n+1 and go to Step 1. 

A Matlab (MathWorks, Inc., Natick, MA) implementation of this algorithm is provided in 

Section 7 (page 126). 
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Solution to the linear approximate problem 

In Step 1 of the new algorithm, we must find ( )nΔΘ  and  that minimize the 

approximate expression for  in Eq. 

( )nt

2FRE (4). We note that this minimization is equivalent 

to finding the least-squares solution of the set of 3N equations: 

 

 ( ) ( ) ( ) ( )1n n n n
i i i i iW W W 1− −ΔΘ + = Δx t , (5) 

  

where ( ) ( )1n
i i i
−Δ = −y x 1n− . The unknowns in these equations are the six non-zero elements 

of the 3-by-3 antisymmetric matrix ( )nΔΘ  and the three elements of vector . We note 

that for an antisymmetric matrix all diagonal elements equal zero and the off-diagonal 

elements have the relationship: 

( )nt

( ) ( )n
ij ji

nΔΘ = −ΔΘ . Thus, there are only three independent 

unknown elements in matrix ( )nΔΘ : ( )
32
nΔΘ , ( )

13
nΔΘ , and ( )

21
nΔΘ . To understand the 

meaning of these three elements, recall that ( )nI + ΔΘ  is an approximation of rotation R. 

If the angle of rotation R about its axis is small, then the movement ( ) ( )n
i iR −x x n  can be 

approximated as a cross-product between the axis of rotation R and vector ( )n
ix . If the 

elements of 3-by-1 vector Δ  are θ ( )
1 32

( )nθ 2 13
nθ = ΔΘ , and ( )

3
nθΔ = ΔΘΔ = ΔΘ , Δ 21 , then for 

small rotations the axis of rotation lies approximately along vector Δ  and the angle of 

rotation is approximately equal to the length of 

θ

Δθ . Thus, we get the following formula:  

 

 ( ) ( ) ( )n n
i i iR − ≈ Δ ×x x θ x n . (6) 

 

The vector  can be used to transform Eq. Δθ (5) into the form, 
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 Cq e= , (7) 

 

where C is a 3N-by-6 matrix, q is a 6-by-1 vector of unknowns, and e is a 3N-by-1 vector. 

The elements of q are defined as follows: 

 

 1 1 2 2 3 3 4 1 5 2 6, , , , ,q q q q t q t q 3tθ θ θ= Δ = Δ = Δ = Δ = Δ = Δ . (8) 

 

To give expressions for calculating the elements of matrix C and vector e, we 

specify the jk-th element of the weighting matrix  in the following form: iW ,jk iW . We 

separate the third subscript with a comma to emphasize that it is not a matrix index, but a 

fiducial index. Additionally, we specify element j of vector ( )n
iΔ  with two subscripts: ( )

,
n
j iΔ . 

Here also we separate the second subscript with a comma to emphasize that it is not a 

vector index, but a fiducial index. With these notations established, after detailed 

inspection of Eq. (5), we get the expressions for elements of matrix C: 

 

 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

( )

( )

2, 3 3, 23 1 ,1

1, 3 3, 13 1 ,2

1, 2 2, 13 1 ,3

1,3 1 ,4

2,3 1 ,5

3,3 1 ,6

,

,

,

,

,

,

n n
j i i j i ii j

n n
j i i j i ii j

n n
j i i j i ii j

j ii j

j ii j

j ii j

C W x W

C W x W

C W x W

C W

C W

C W

− +

− +

− +

− +

− +

− +

= − +

= + −

= − +

=

=

=

x

x

x
 (9) 

 

and the expressions for elements of vector e: 
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 ( )
( ) ( ) ( )

1, 1, 2, 2, 3, 3,3 1 ,1
n n n

j i i j i i j i ii je W W W− + = Δ + Δ + Δ . (10) 

 

With these definitions, the solution minimizing Eq. (4) is found by solving Eq. (7) 

for q by using any appropriate numerical method, and then setting 

 

 ( )
3 2

3

2 1

0
0

0

n

q q
q
q q

−

1q
⎡ ⎤
⎢ ⎥ΔΘ = −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (11) 

 

and 

 

 ( ) [ ]4 5 6
tn q q q=t . (12) 

 

Finding the closest rotation matrix 

In Step 4 of the new algorithm, we set ( )n tR UV= , where U and V are 3-by-3 

rotation matrices obtained from the singular value decomposition of the approximate 

rotation matrix: ( )ntU V IΛ = +ΔΘ . We can prove that ( )nR  found in Step 4 of the new 

algorithm is the closest rotation matrix to ( )nI +ΔΘ  in the least squares sense as follows. 

Define matrix ( )nM I= + ΔΘ . Let matrix R be the rotation matrix that is closest to M. 

Form the difference matrix E M R= − . We define operator 2A  as the sum of squared 

elements of A. With the above definitions we get:   
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( )
( ) ( )

( ) ( )

22

,

trace

trace 2 trace trace .

ij iji j

t

t t

E M R

M R M R

M M M R

= −

= − −

= − +

∑

I

 (13) 

 

Matrix R that we are looking for is the one that minimizes 2E . From the last line 

of Eq. (13), it is easy to see that 2E  is minimized when ( )trace tM R  is maximized. To 

maximize ( )trace tM R , we employ the singular value decomposition of matrix M: 

, where U and V are 3-by-3 rotation matrices and tU V MΛ = Λ  is 3-by-3 diagonal matrix 

with non-negative elements. Substituting this for M, 

 

 

( ) ( )
( )
( )

3

1

trace trace

trace

trace

,

t t

t

ii iii

M R V U

U RV

Z

Z
=

= Λ

= Λ

= Λ

= Λ∑

R

 (14) 

 

where tZ U RV= . To get from the first line to the second line in Eq. (14), we used the 

property of the trace that trace( ) trace( )AB BA= . We note that, by virtue of its being a 

product of rotation matrices, Z is also a rotation matrix. The maximum value for any 

element of a rotation matrix is 1. Since each iiΛ is non-negative, the maximum of the sum 

in the last line of Eq. (14) is reached when iiZ  = 1 for i = 1,2,3. Thus, Z is 3-by-3 identity 

matrix I. Therefore, I = . By multiplying this equation on the left by U and on the 

right by , we find that R =  (this proof is patterned after a method published by 

Golub and van Loan in [18]). 

tU RV

tV tUV

  97



To prove that matrix R is a proper rotation, we note that an improper rotation 

matrix always has a negative determinant. Thus, all we need to show is that the 

determinant of R is non-negative. Noting that ( ) ( ) (det det det )AB A= B , we get: 

 

 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

det det det det

det det

det det .

t

t

I U V

UV

R

+ ΔΘ = Λ

= Λ

= Λ

 (15) 

 

The determinant of a diagonal matrix equals the product of the matrix diagonal 

elements. All diagonal elements of matrix Λ  are non-negative by the definition of 

singular value decomposition. Thus, the sign of the determinant of R is equal to the sign 

of . We find an expression for the latter determinant directly: (det I + ΔΘ)

1

 

 
( )

3 2

3

2 1

2 2 2
1 2 3

1
det det 1

1

1 .

I
θ θ

θ θ
θ θ

θ θ θ

−Δ Δ⎡ ⎤
⎢ ⎥+ ΔΘ = Δ −Δ⎢ ⎥
⎢ ⎥−Δ Δ⎣ ⎦

= + Δ + Δ + Δ

 (16) 

 

Therefore, and correspondently the determinant of R is also non-

negative. 

( )det 0I + ΔΘ >

 

3. Validation 
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Our validation is based both on simulations and on real data. For each trial in each 

experiment of our validation, a set { }, 1...iX i= =x N , of fiducial points is transformed to 

match a second set { } , 1...iY i= =y N . In our simulations, each point is obtained from a 

“true” point that is perturbed by a randomly selected FLE selected from a distribution 

with mean zero and a known covariance. In the experiments on real data, true points are 

unknown, but highly accurate measurements are available to approximate true points. 

Five algorithms are compared. Three of these are iterative, and each iterative algorithm 

requires that a stopping threshold be set. This threshold serves as the minimum change in 

an internally defined quantity for continued iteration, such as in Step 8 of the new 

algorithm (“Algorithm” in Section 2 (page 91)). All experiments reported on below were 

run with a threshold 10-6 for each algorithm. For convenience in the descriptions that 

follow, we define “convergence” to mean reduction of the internally defined quantity to a 

value below this threshold and a failure to converge to mean that more than 1000 

iterations were completed without convergence. To determine whether the results were 

sensitive to threshold, additional experiments were run with thresholds of  and 310− 910−  

with almost identical results when convergence was achieved, suggesting that, when they 

converge, their relative performance has a low sensitivity to the choice of threshold.  

 

A. Comparison by Matlab simulations of Ohta’s algorithm to the new algorithm modified 

for zero translation. 

The comparison was performed by running simulations in Matlab R2010b. Four 

values of N were chosen for the tests: N = 3, 4, 5, and 10. For each value of N, we 

randomly chose that number of fiducial locations in image space from a cube of edge 200 
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mm with center at the origin to build the fiducial set X in image space. The corresponding 

fiducial set Y in physical space was obtained by rotating the X fiducial configuration 

arbitrarily: 10, , and 30 degrees rotation about the x, y, and z axes. The X and Y sets 

represent the “true” fiducials. Note that no translation was involved in this experiment 

because Ohta’s algorithm cannot handle translation. The elements of point sets X and Y 

were randomly perturbed to simulate inhomogeneous anisotropic FLE. The FLEs in 

image space and in physical space in the k-th direction for the i-th fiducial were drawn 

correspondingly from  and 

20−

( )0,FLEXikΝ ( )0,FLEYikΝ , where all FLEXik  and  were 

randomly chosen from interval [0,1]. The perturbed X and Y were then registered. To 

have a fair comparison, we modified the new algorithm so that transformation is 

performed just in the form of rotation. A random target was chosen inside a cube with an 

edge 400 mm centered at the origin, and the TRE was computed for each registration 

method. This configuration (200-mm cube for the fiducials and 400-mm cube for the 

target) was chosen because it has been used by other authors in [7], [19], [20]. 100,000 

iterations of generating true point sets X and Y and the target, generating FLE variances, 

perturbing X and Y, computing new registration transformations, and computing TRE 

values to come up with an overall RMS TRE value. 

FLEYik

 

B. Comparison by Matlab simulations of the new algorithm to the closed-form solution 

with and without isotropic weighting, to Ohta’s algorithm, and to Matei’s algorithm. 

We tested the new algorithm by performing computer simulations using Matlab. 

The same four values of N were chosen as in Section 3.A, the same protocol for choosing 

point sets and targets was used, and the same number of trials was run to produce the 
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RMS TRE value. All elements of both point sets X and Y were randomly perturbed to 

simulate FLE with chosen properties (described in Experiments B1, B2, and B3 below). 

X and Y were then registered. Five registration methods were compared: (1) the closed-

form solution with  set to the identity matrix I for all i, (2) the isotropically weighted 

closed-form solution with  set to  

iW

iW ( ) 1 23 2
1 i Iαα
σ

−

=∑  for all i, (3) Ohta’s algorithm, (4) 

Matei’s algorithm, and (5) the new algorithm with  defined according to Eq. iW (3). To 

improve the results for Ohta’s algorithm, both point sets were de-meaned. Only a rotation 

matrix is the result of its registration.  

The new algorithm can handle arbitrary FLE for each fiducial and for each 

direction in the two spaces. Different experiments were performed to study the effect on 

TRE of using different algorithms for different FLE configurations. 

 

Experiment B1 (homogeneous, isotropic FLE in image space and inhomogeneous, 

anisotropic FLE in physical space): A fiducial system with isotropic and homogeneous 

FLE for all fiducials in image space and different FLE in all directions for all fiducials in 

physical space was used for this experiment. This experiment mimics the common 

situation in which a pre-operative image with a small slice thickness can produce a 

homogeneous, isotropic FLE, while a physical tracking system produces an anisotropic 

FLE that is a function of the displacements between the fiducials, the camera, and 

possibly a CRF, and these displacements vary from fiducial to fiducial. The FLE in image 

space was chosen randomly from ( )0, FLEXΝ , where F  was randomly chosen 

from the interval [0,1]. The FLE in physical space in the k-th direction for the i-th fiducial 

LEX
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was drawn from ( )0, FLEYikΝ , where all F  were randomly chosen from the interval 

[0,1]. 

LEYik

 

Experiment B2 (homogeneous, anisotropic FLE in both image and physical 

spaces): This experiment mimics the common situation in which the pre-operative image 

with a large slice thickness produces a homogeneous, anisotropic FLE, and the 

displacements between the fiducials and the camera and a CRF are relatively constant 

from fiducial to fiducial. A fiducial system with different FLE in all directions, but equal 

for all fiducials in both image and physical space, was used for this experiment. The 

FLEs in image and physical spaces in the k-th direction were drawn correspondently from 

( )0, FLEXkΝ  and , where all F  and  were randomly chosen from 

interval [0,1]. 

(0, FLEYkΝ ) LEXk FLEYk

 

Experiment B3 (inhomogeneous, anisotropic FLE in both image and physical 

spaces): This experiment mimics the situation in which a pre-operative image whose 

quality varies in both direction and position (e.g., for a cone-beam CT) produces an 

inhomogeneous, anisotropic FLE, and (as in Experiment B1) the displacements of the 

fiducials from the tracking camera and a CRF vary from fiducial to fiducial. A fiducial 

system with different FLE in all directions for all fiducials in both image and physical 

spaces was used for this experiment. The FLE in image and physical space in the k-th 

direction for the i-th fiducial were drawn from ( )0, FLEXikΝ  and ( )0, FLEYikΝ , where 

all F  and  were randomly chosen from interval [0,1]. LEXik FLEYik
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C. Comparison of the new algorithm to Matei’s algorithm using real data and by Matlab 

simulations using specific fiducial configuration. 

Experiment C1 (using real data from a surgical guidance application acquired 

with an optical tracking system): To compare the new algorithm with Matei’s approach, 

we ran the following experiment, which has been previously described [21].  

Eight retro-reflecting spheres were used as fiducial markers in physical space and 

were tracked in real time by a Polaris Spectra optical tracking system. No true target 

location is ever known exactly, thus a good estimator should be found. We used two 

fiducial markers frames rigidly attached to each other (Figure 1) with the centroid of four 

markers in one frame used as the target. The benefit of such a target is that the RMS 

localization error during real-time position acquisition is half that of the RMS error of an 

individual marker. The markers on the other frame were used for registration. Thus, in 

this experiment N = 4.  

 

 

Figure 1. Photo and schematic of two rigidly attached tools. The tool whose markers were subjected to 
registration (a) is the one on the left. The right tool (b) was used to estimate the true location of the target, 
which is the centroid of the right tool (marked with x in the schematic). 
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Before the real-time acquisition began, a tool definition procedure was performed 

for the combination of the tools on the left and on the right using standard tool definition 

software. This procedure includes thousands of measurements of the tools’ poses with an 

average taken over all measurements. We assume that the errors of these multiple 

measurements are statistically independent. Therefore, the level of FLE for each average 

measurement is an order of magnitude or more smaller than an individual measurement. 

We let Y equal the resulting average configuration of the left tool and assume that the 

FLE in this space is negligible. Thus, we treat the three quantities, 2 2 2
1 2, , 3yi yi yiσ σ σ , in Eq. 

(3) as being equal to zero, which is equivalent to setting 2
yiW −  equal to zero in Eq. (2) and 

is equivalent to treating  as infinity (specified by Inf in Matlab). The target is 

selected as the centroid of the right tool, and from the tool definition procedure the 

position  of that target relative to Y is determined with high accuracy.  

yiW

0r

During real-time acquisition, the two rigidly attached tools are moved together 

within a region of about 10 cm, and both tools are tracked by the optical tracking system 

placed at a distance of approximately 1.5 m (recommended distance by the tracking-tool 

manufacturer), but the registration is performed only using the left tool, whose real-time 

measured configuration serves as X. Thus, X is repeatedly registered to Y. In this 

experiment, because the displacements between the markers and the camera do not vary 

appreciably from marker to marker (and there is no CRF), we assume that FLE is 

homogenous and anisotropic. The registration algorithms require the covariance of that 

FLE as input, and we used the method described in [22] to estimate that covariance. The 

accuracy of the registration of X to Y is then validated in terms of its agreement with 

movement of the measured position centroid of the right tool.  
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After a buffer of 200 sets of three-dimensional positions has been gathered, for 

every subsequent frame of measured data the following actions are performed: 

1)  Three-dimensional positions of all markers are gathered. 

2)  The target  is calculated as a mean of four markers from the right tool. refr

3)  For each of the previous 200 sets of three-dimensional positions, the tool 

on the left is registered (X to Y) using isotropic registration, and the 

algorithm from [22] is employed to estimate the covariance of FLE from 

the observed 200 fiducial registration errors of each fiducial 

4)  The estimated covariance found at Step 3 is used as input to the new 

algorithm to register the left tool (X to Y). The target location  is 

calculated by applying the found transform to . 

anisor

refr

5)  The estimated covariances found at Step 3 is used as input to Matei’s 

algorithm to register the left tool (X to Y). The target location  is 

calculated by applying the found transform to . 

mateir

refr

6)  The TRE vectors are calculated for the two algorithms: 

, aniso aniso ref= −TRE r r matei matei ref= −TRE r r . 

A total of 1000 data frames are collected for this experiment. For each data frame 

after the first 200 buffer set, the above steps are executed and the TRE using the two 

algorithms are compared. 

 

Experiment C2 (using Matlab simulations): Matlab simulations were run for a 

case similar to the one described in Experiment C1 to make sure that our simulations 

agree with real data. A simulation scheme similar to the one described in Section 3.B was 
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employed, but exactly the same fiducial configuration as in Experiment C1 was 

employed and the weights in stationary space were set equal to infinity (see above), while 

in moving space the FLE was homogeneous and anisotropic. The FLE in the moving 

space in the k-th direction was drawn from ( )0, FLEYkΝ , where all F  were 

randomly chosen from interval [0,0.25]. The number of fiducials N was set to 4. 

LEYk

 

D. Comparison of the new algorithm to the closed-form solution with and without 

isotropic weighting, to Ohta’s algorithm, and to Matei’s algorithm for image-guided 

surgical configurations performed by Matlab simulations. 

Fiducial configuration parameters that influence the results of anisotropic 

registration were explored. The goal of this experiment is to find out whether there are 

some special cases for which the new algorithm might fail. By “failing” we mean not 

converging at all or producing a TRE larger than the TRE using any of the following 

methods: (1) the closed-form solution with iW αα  set to 1 for all the fiducials and 

directions, (2) the closed-form solution with  set to  iW ( ) 1 23 2
1 i Iαα
σ

−

=∑   for all i, (3) 

Ohta’s algorithm, (4) Matei’s algorithm. 

The space of the parameters influencing the registration is very large. It includes 

FLE in all directions of each marker in two spaces, the number of markers, the size of the 

region from which the fiducials are selected, the size of the region from which the target 

is selected, and the principal axes of FLE in the two spaces. Clearly, it is impossible to 

carry out the complete exploration of such a large space. However, we can reduce the 

space by restricting our experiments to those of interest for a particular application. We 

have chosen surgical guidance as that application.  
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First, we note that if the size of the fiducial is larger than the size of the image 

voxel, then localization can be made highly isotropic in image space. With high quality 

CT and MRI scanners this becomes an easy problem. Moreover, medical images like CT 

and MRI are for most scanners quite homogeneous. Thus, we concentrate on 

homogeneous, isotropic FLE in image space. Second, in many commercial tracking 

systems, the distance from the camera to the fiducials is much larger than the distances 

between the fiducials. As a result, the displacement from the camera to the fiducials is 

approximately equal. This lets us make the assumption that FLE is homogeneous in 

physical space.  

In regard to the degree of anisotropy of FLE, we note that there are three possible 

cases: 1) FLE is isotropic – the variances of the FLE are equal in all three directions, 2) 

FLE is partly anisotropic – the variances of the FLE are equal in two directions but 

different in the third direction, 3) FLE is fully anisotropic – the variances of the FLE are 

different in all three directions. For these experiments, we chose the most common 

scenario in image-guided surgery, which is the second case: the component of FLE in 

optical tracking systems is higher in the direction from the camera towards the tracked 

object, while the components in the two other perpendicular directions are nearly the 

same. In particular, the higher component is a factor of three times the other components, 

and those components were chosen randomly and repeatedly from the range [0.1,0.4]. 

We set the following constraints for the size of the regions containing the 

fiducials and the targets: because the typical human head can be approximated by a 

sphere of diameter 200 mm, we chose 200 mm by 200 mm by 100 mm cuboid region for 

the fiducials to represent image-guided neurosurgery applications. The region chosen for 
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targets is a cube with an edge of 200 mm. We also considered a more focused region in 

which all dimensions were reduced by half. Finally, we considered “border” cases, in 

which all points were chosen from the surfaces of these regions. We ran a total of 2.5 

million simulations divided equally among these four scenarios. 

 

E. Comparison of the new algorithm to the closed-form solution with and without 

isotropic weighting, to Ohta’s algorithm, and to Matei’s algorithm for nearly linear 

configurations performed by Matlab simulations. 

There is one case that is well known to cause registration problems. It is the case 

in which the fiducials’ positions are nearly collinear, i.e. insufficient information is 

available for registration in three-dimensional space. We now examine that case when all 

fiducials are nearly collinear. We use the same general scheme for simulations as in the 

previous experiments, except for the set of dimensions of the box from which we 

randomly draw the coordinates of the fiducials. To simulate collinear fiducials, one side 

of the box was set to D = 200 mm, and two other sides to d, where  d  and its value is 

changed during the experiment. In order to characterize the degree of linearity, we 

introduce a heuristic measure of linearity for a fiducial configuration, which we call the 

linearity coefficient, l, as follows: 

D≤

 

1

1

d
D dDl d D d

D

− −
= =

++
. 
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This coefficient takes values from interval [0,1] for d D≤ . When all fiducials lie 

on a single line, l equals to 1. When D is equal to d, or in other words, the fiducials are 

chosen from a cube with an edge equal to D, the coefficient l = 0.  

We ran linearity experiments for all configurations described in Section 3.B: 1) 

homogeneous, isotropic FLE in the image space and inhomogeneous, anisotropic FLE in 

physical space, 2) homogeneous, anisotropic FLE in image and physical spaces, 3) 

inhomogeneous, anisotropic FLE in image and physical spaces. The goal of this 

experiment is to determine how the approach to linearity affects the new algorithm’s 

performance relative to other algorithms and to determine how linearity influences 

convergence.  

 

F. Number of iterations and time required  

We ran simulations to determine the number of iterations and the time required 

for registration. While these data are important to the feasibility of any algorithm in any 

application, they are most critical during real-time registration, e.g. surgical navigation. 

Therefore, we monitored the number of iterations and the time taken for registration for 

the optical-tracking application described in Section 3.C above. Furthermore, because 

nearly linear fiducial configurations require by far the largest number of iterations, we 

made similar measurements for varying levels of linearity. 

For the optical-tracking application described in Section 3.C above we assumed 

partial anisotropic configuration wherein the FLE in two directions are the same and the 

FLE in the third direction equals FLE in the first two directions multiplied by a constant 

which we call “anisotropy coefficient”. For this experiment, the anisotropy coefficient 
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took values from range [1,5.5]. We compare by simulations the time and the number of 

iterations required for the new algorithm and Matei’s algorithm to converge. 

For nearly linear fiducial configurations we run simulations similar to those 

described in Section 3.E above. We measured the time and the number of iterations to 

converge for the new algorithm, Ohta’s algorithm, and Matei’s algorithm depending on 

the value of the linearity coefficient. 

 

4. Results 

 

A. Comparison by Matlab simulations of Ohta’s algorithm with the new algorithm 

modified to for zero translation. 

Ohta’s algorithm and the new algorithm were compared. In [9], Ohta’s algorithm 

is proved to be optimal in the sense of reaching the lower bound of some level of 

accuracy. However, no optimality is proved for this algorithm in the case when 

translation is present in the transformation between the point sets. Thus, we compared the 

new algorithm with Ohta’s optimal algorithm without translation between point sets. To 

make the comparison fair, we modified the new algorithm so that only rotation is 

searched. The results of the experiments are listed in Table 1. For all employed numbers 

of fiducials, RMS TRE obtained with the new algorithm are compared to RMS TRE 

obtained with Ohta’s algorithm. The table also includes the mean and the standard 

deviation of the difference between TRE values of the two methods. The results in the 

table show that the new algorithm produces a notable improvement in TRE over Ohta’s 

algorithm.   
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B. Comparison by Matlab simulations of the new iterative algorithm to the closed-form 

solution with and without isotropic weighting, Ohta’s algorithm, and Matei’s algorithm. 

To compare the new iterative algorithm with closed-form solution for isotropic 

FLE, isotropically weighted closed-form solution for isotropic FLE, Ohta’s algorithm, 

and Matei’s algorithm, we performed Matlab simulations. We ran three experiments 

which differed by the properties of FLE in the two spaces. In the first experiment FLE in 

image space was isotropic and homogeneous, and FLE in physical space was 

inhomogeneous and anisotropic. After the simulations performed with the parameters 

configured as described in the previous section of this chapter, the new algorithm proved 

to be working better, giving smaller RMS TRE than the other four methods. The results 

of the simulations are listed in Table 2. In the second experiment FLE was homogeneous 

and anisotropic in both image and physical spaces. The results are listed in Table 3. The 

third experiment included the most general case of inhomogeneous and anisotropic FLE. 

The results are listed in Table 4.  

The new iterative method produced an improved TRE in all experiments with all 

numbers of fiducials. Depending on the properties of FLE, the values of other four 

methods were different. For example, in the first and in the second experiment the closest 

results to the new algorithm were produced by the closed-form solutions. In the case of 

inhomogeneous and anisotropic FLE in both spaces, Matei’s algorithm produced the 

values very close to the new algorithm. However, even in this case the new algorithm 

performed better. Ohta’s algorithm was the worst in all cases, as might have been 

predicted by the fact, that it loses its optimality in the presence of a translation.  
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RMS TRE (mm) Difference in TRE: Ohta – New (mm) N New algorithm Ohta’s algorithm Mean  Std. Dev.  
3 0.94609 1.06431 0.09939 0.36 
4 0.71180 0.83287 0.09944 0.30 
5 0.58391 0.70231 0.09905 0.26 
10 0.35660 0.47331 0.09622 0.20 

Table 1. TRE statistics for the modified new algorithm and Ohta's algorithm for the case when no 
translation is involved in the transformation. 

 

N New CF  IWCF Ohta Matei 
3 4.43255 4.62104 4.62102 4.92407 4.64518 
4 1.46800 1.54842 1.54856 1.68080 1.55675 
5 1.08517 1.16106 1.16161 1.31043 1.18830 
10 0.62820 0.69384 0.69509 0.88736 0.78198 

Table 2. RMS values of TRE (mm) for the new algorithm, closed-form (CF) solution, isotropically 
weighted closed-form (IWCF) solution, Ohta's algorithm, and Matei's algorithm for Experiment B1 
(homogeneous, isotropic FLE in image space and inhomogeneous, anisotropic FLE in physical space). 

 

N New CF IWCF Ohta Matei 
3 4.23894 4.55000 4.55143 4.69227 4.59405 
4 1.42086 1.53653 1.54452 1.71623 1.63941 
5 1.08520 1.16035 1.17155 1.34415 1.30463 
10 0.65265 0.69129 0.70290 0.89194 0.89067 

Table 3. RMS values of TRE (mm) for the new algorithm, closed-form (CF) solution, isotropically 
weighted closed-form (IWCF) solution, Ohta's algorithm, and Matei's algorithm for Experiment B2 
(homogeneous, anisotropic FLE in image and physical space). 

 

N New CF IWCF Ohta Matei 
3 4.23560 4.39486 4.39080 4.71989 4.36872 
4 1.38691 1.52786 1.50594 1.57102 1.40187 
5 1.00989 1.15289 1.12554 1.17779 1.02370 
10 0.55087 0.69246 0.66386 0.70861 0.56667 

Table 4. RMS values of TRE (mm) for the new algorithm, closed-form (CF) solution, isotropically 
weighted closed-form (IWCF) solution, Ohta's algorithm, and Matei's algorithm for Experiment B3 
(inhomogeneous, anisotropic FLE in image and physical space). 
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C. Comparison of the new iterative algorithm to Matei’s algorithm using real data and 

by Matlab simulations using specific fiducial configuration 

Experiment C1: Using the algorithm described in the Section 3.C, we performed 

the experiment to compare the two methods. The resulting TRE comparisons are shown 

in Figure 2. We allowed 200 frames for initialization, thus TRE calculations started just 

at 200-th frame. The fiducial marker frames were translated and rotated randomly during 

the time of the measurements. As can be seen in the figure, the TRE of the new algorithm 

is always smaller than the TRE of the Matei’s algorithm for this experiment with real 

data. (As shown in the earlier experiments Ohta’s algorithm is inappropriate when 

translation is present. Because of the large translations involved in this experiment it 

performed considerably worse on this data, and is therefore omitted from these results.)  

Experiment C2: Simulations were run using the scheme described in Section 3.C. 

In this experiment, we assumed no localization error in image space. In physical space, 

the FLE was considered homogeneous and anisotropic. The RMS TRE values achieved 

using the new algorithm and Matei’s algorithm were 0.26625 mm and 0.32685 mm 

respectively. These values agree with the real data results from Experiment C1, which are 

shown as horizontal lines in Figure 2. This agreement suggests that our simulations 

results are reliable predictors for real applications. 

 

D. Comparison of the new algorithm to the closed-form solution with and without 

isotropic weighting, to Ohta’s algorithm, and to Matei’s algorithm for image-guided 

surgical configurations performed by Matlab simulations. 
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Figure 2. Results of Experiment C1: Comparison of the new algorithm with the Matei’s algorithm using 
data collected using an optical tracking system. Horizontal lines represent the RMS TRE value over 800 
frames. 

 

 

The object of this evaluation was to determine whether there are cases in typical 

surgical guidance applications for which the closed-form solution, the isotropically 

weighted closed-form solution, Ohta’s algorithm, or Matei’s algorithm perform better 

than the new algorithm. Results of all the simulations showed that the new algorithm 

performs better than the other algorithms. 

 

E. Comparison of the new algorithm to the closed-form solution with and without 

isotropic weighting, to Ohta’s algorithm, and to Matei’s algorithm for nearly linear 

configurations performed by Matlab simulations. 

The results of the three experiments are shown in Figures 3  through 5. The new 

algorithm performs better than the other four algorithms for all values of the linearity 

  114



coefficient for which RMS TRE is ≤ 20 mm. Other algorithms produced lower TRE only 

for a very large linearity. In all three experiments, Ohta’s algorithm, when it converges, 

performed best for almost linear configurations with . Matei’s algorithm 

produced a smaller RMS TRE than the new algorithm in the experiment with anisotropic 

and inhomogeneous FLE in two spaces for . The closed-form solution with and 

without isotropic weightings performed better than the new algorithm for the experiment 

with homogeneous, isotropic FLE in image space and inhomogeneous, anisotropic FLE 

in physical space for .  However, for these highly linear fiducial configurations 

for all experiments and for all methods, TRE is so large that none of the methods would 

provide reasonable guidance for any applications, especially clinically-relevant 

applications. Thus, we can conclude that for all reasonable fiducial configurations that 

can achieve at least moderate values of TRE (TRE < 10 mm) the new algorithm performs 

better than the four other algorithms.  

0.97l ≥

0.93l ≥

0.99l ≥

The other goal of this experiment was to determine the effect of linearity on the 

convergence of the iterative algorithms. As explained above, we determined that 

convergence occurred only if the threshold was reached in no more than 1000 iterations. 

For all three experiments the new algorithm failed to converge only for linearity 

coefficient . For l = 0.99 the new algorithm failed to converge for 1.5% of 

registrations. For comparison, for the same linearity coefficient Matei’s algorithm failed 

to converge for 14.4% of registrations and Ohta’s algorithm failed to converge for 63% 

of registrations. These high failure percentages again reiterate that almost linear fiducial 

configurations are not applicable to providing guidance via registration. 

0.99l ≥
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Isotropically weighted closed-form solution 

Figure 3. RMS values of TRE (mm) for the new algorithm, closed-form solution, isotropically weighted 
closed-form solution, Ohta's algorithm, and Matei's algorithm with varying linearity coefficient in the 
fiducial configuration. Homogeneous, isotropic FLE in the image space and inhomogeneous, anisotropic 
FLE in the physical space were used for this experiment. 
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Isotropically weighted closed-form solution 

 

Figure 4. RMS values of TRE (mm) for the new algorithm, closed-form solution, isotropically weighted 
closed-form solution, Ohta's algorithm, and Matei's algorithm with varying linearity coefficient in the 
fiducial configuration. Homogeneous, anisotropic FLE was assumed in both image and physical spaces. 
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Isotropically weighted closed-form solution 

 

Figure 5. RMS values of TRE (mm) for the new algorithm, closed-form solution, isotropically weighted 
closed-form solution, Ohta's algorithm, and Matei's algorithm with varying linearity coefficient in the 
fiducial configuration. Inhomogeneous, anisotropic FLE was assumed in both image and physical spaces. 
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F. Number of iterations and time required  

The results of the experiments for the optical-tracking application are presented in 

Figure 6 and Figure 7. These figures show with the increasing anisotropy of the fiducial 

system the number of iterations to converge increases and correspondingly the time for 

convergence also increases. The new algorithm requires more iterations to converge than 

Matei’s algorithm. However, the average speed of executing each iteration of the new 

algorithm is higher than that of Matei’s algorithm, and hence the overall time of 

registration is smaller for the new method. 

 

 

 

Figure 6. The average number of iterations before a registration algorithm converged for the new algorithm 
and for Matei’s algorithm as a function of the value of the anisotropy coefficient. 
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Figure 7. The average time of registration for the new algorithm and for Matei’s algorithm as a function of 
the value of the anisotropy coefficient. 

 

 

Figure 8 and Figure 9 present the results of the simulations for fiducial 

configurations that are nearly linear. The number of iterations to converge and the time of 

registration increase when the linearity coefficient increases. The new algorithm 

converges after larger number of iterations compared to Ohta’s algorithm and Matei’s 

algorithm. However, the overall time of registration using the new algorithm is 

comparable with the overall time using Matei’s algorithm and smaller than Ohta’s 

algorithm registration time. 
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Figure 8. The average number of iterations before a registration algorithm converged for the new algorithm, 
Ohta’s algorithm and Matei’s algorithm as a function of the linearity coefficient value. 

 

 

 

Figure 9. The average time of registration for the new algorithm, Ohta’s algorithm and Matei’s algorithm as 
a function of the linearity coefficient value. 
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5. Discussion 

 

We presented in this chapter a new and relatively simple iterative algorithm for 

solving the point-based registration problem when anisotropic weightings are used to 

compensate for anisotropic FLE. In contrast to the existing solutions, the new algorithm 

is more intuitive, easy to understand and implement, and has no adjustable parameter 

other than a stopping criterion. Through simulations we have shown a substantial 

improvement in TRE when the new algorithm is employed for fiducial systems with 

anisotropic FLE instead of the commonly used closed-form solutions. We also compared 

our algorithm with two other iterative methods that have no adjustable parameters other 

than a stopping criterion. One of them, Ohta’s algorithm [9], is designed only for 

registrations in which only rotation and no translation is involved in the point sets 

transformation. The second method is Matei’s algorithm [10]. Our simulations showed 

that the new algorithm improved the TRE compared to these two methods. An especially 

large increase in accuracy compared to Matei’s algorithm is noted when FLE is 

homogeneous or isotropic in even just one space. The two algorithms show the closest 

results when transformation is zero or extremely small. The explanation that these 

algorithms do not produce the best results is that they assume transformations that are 

very close to the identity. When the difference from the identity is negligible, both Ohta’s 

algorithm and Matei’s algorithm produce nearly the same results as the new method. 

However, even for those cases, the new algorithm almost always performs notably better.  

Beside the simulations, we used real data from a surgical guidance application 

acquired with an optical tracking system. For acquiring the experimental data we used the 
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same approach as that used in the experiment reported in [21]. A combination of two 

rigidly attached frames and highly accurate measurements of the configuration of 

fiducials on the frames allowed us to assume that in one space FLE is zero. In the other 

space FLE was assumed to be homogeneous and anisotropic. With those assumptions we 

ran point registrations using our new algorithm and Matei’s algorithm. The results of this 

experiment showed that the new algorithm provides much higher accuracy.  

To make sure that our simulations correspond to real registrations, we ran Matlab 

simulations with a fiducial configuration similar to that of the experiment with the optical 

tracking system and defined FLE statistics to be approximately the same as in that 

observed in the experiment. These simulations produced results comparable to the results 

received after registering point sets with the real data. These comparable results suggest 

that all our simulations can be trusted as predictors of experiments with real data. 

We explored the space of all parameters influencing the results of registration 

using the new method to determine whether there are some fiducial and FLE 

configurations for which the algorithm does not converge or performs worse than other 

algorithms. We limited our research just to the case of surgical guidance, which limited 

the fiducial configurations and their FLE statistics, and ran Matlab simulations. The new 

algorithm performed better than the other algorithms in those cases.  

We also considered the case in which the fiducial coordinate vectors are nearly 

collinear. For this case other algorithms were superior near the limit of complete linearity, 

where RMS TRE exceeds 20 mm, but we found that for fiducial systems with linearity 

small enough to achieve a TRE small enough for use with surgical systems, our new 

method always performs better than the other methods. Finally, we found that for all such 
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reasonable fiducial systems our method always converged (used fewer than 1000 

iterations). 

Finally, we explored the number of iterations and the required time for the 

algorithms. We found that with the increased anisotropy or increased linearity of the 

fiducial system, the number of iterations to converge and the overall time of registration 

increase. Comparing the new algorithm to Ohta’s and Matei’s algorithms, the new 

algorithm takes more iterations to converge. However, the time of executing each 

iteration is much smaller for the new algorithm, so that the overall time of execution of 

the new algorithm is not higher than the time of performing registration using Ohta’s or 

Matei’s algorithms. 

In conclusion, by means both of simulations and of real data obtained with an 

optical tracking system, we have shown that the new algorithm increases the accuracy of 

point registration in comparison to the standard closed-form solution, the isotropically 

weighted closed-form solution, Matei’s algorithm, and Ohta’s algorithm for all cases 

feasible during surgical guidance.  

 

6. Conclusion 

 

A new iterative algorithm for performing point-based registration in the presence 

of arbitrary (homogeneous or inhomogeneous, isotropic or anisotropic) FLE in two 

spaces was introduced. This new method is more intuitive than existing iterative methods 

and it has no adjustable parameters other than its stopping criterion. By means of 

simulations and by using real data acquired with an optical tracking system, we showed 
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that the new method produces smaller TRE. Our simulations were performed for cases 

that are likely to happen in surgical applications. We also compared the results of the 

registration of real data with registration of fiducial configuration with similar 

characteristics defined in simulations. The results were comparable which suggests that 

our simulations provide a reliable predictor for real situations.  

We compared the new algorithm to four existing solutions: the standard closed-

form solution with equal weighting for all fiducials, the closed-form solution with 

isotropic weightings, Ohta’s algorithm [9], and Matei’s algorithm [10]. The latter two 

algorithms are iterative and, like the new algorithm, involve no adjustable parameters 

other than their stopping criteria. Except for fiducial configurations that are far too linear 

to be useful, the new algorithm produced lower TRE than each of the other four 

algorithms in all cases tested. Comparing the new algorithm to the two closed-form 

methods, the maximum increase in accuracy is achieved when FLE is both anisotropic 

and inhomogeneous in at least one of the two spaces. Comparing the new algorithm with 

Ohta’s and Matei’s algorithms, the maximum increase in accuracy is noted when FLE is 

homogeneous or isotropic (or both) in at least one space. Conversely, the accuracy of the 

closed-form solution with and without anisotropic weightings is closer to that of the new 

method when FLE is isotropic and homogeneous. Ohta’s algorithm and Matei’s 

algorithm are very close to the new algorithm in the presence of anisotropic and 

inhomogeneous FLE in both spaces. 

We analyzed the reliability of our new method with regard to the collinearity of 

the fiducial system. By means of Matlab simulations we showed that for realistic fiducial 

systems that produce a useful registration, our method performs better than the four other 
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tested methods. Moreover, the simulations demonstrated our new method’s convergence 

for such fiducial systems. 

 

7. Appendix 

 

The following are Matlab functions that implement the algorithm presented in this 

chapter: 

 

function [R,t,FRE,n,isConverged] = 
anisotropic_point_register(X,Y,Wx,Wy,threshold) 
% X is the moving set, which is registered to the static set Y. Both are 3 
% by N, where N is the number of fiducials. Wx and Wy are a 3-by-3-by-N 
% arrays, with each page containing the weighting matrix for the Nth pair 
% of points in spaces X and Y. THRESHOLD is the size of the change to the 
% moving set above which the iteration continues. 
% 
% R and t are found registration parameters, FRE is a weighted fiducial 
% registration error, n is the number of performed iterations, isConverged 
% shows if the method converged 
% 
% Creation: 
% A. Danilchenko, R. Balachandran and J. M. Fitzpatrick 
% December 2010 
if nargin<2 
    error('X and Y must be given as input'); 
end 
if size(X,1)~=3 && size(Y,1)~=3 
    error('X and Y must be 3 by N.'); 
end 
N = size(X,2); 
if size(Y,2)~=N 
    error('X and Y must have the same number of points.'); 
end 
  
isConverged = 1; 
  
% Initial estimate of the transformation assumes anisotropy: 
[R,t,FRE] = point_register(X,Y); 
if nargin<3 % if W not given, then give the isotropic solution 
    n = 0; 
    return 
end 
if nargin<4 
    threshold = 1e-6; 
end 
n = 0; % iteration index = 0; 
config_change = Inf; 
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Xold = R*X+repmat(t,1,N); 
W = zeros(3,3,N); 
while (config_change>threshold) 
    if n > 1000 
        isConverged = 0; 
        return; 
    end 
    n = n+1; 
    for j1 = 1:N 
        W(:,:,j1) = (R * Wx(:,:,j1)^(-2) * R' + Wy(:,:,j1)^(-2))^(-0.5); 
    end 
    C = C_maker(Xold,W); 
    e = e_maker(Xold,Y,W); 
    q = C\e; 
    if n > 1 
        q = (q + oldq)/2;  
    end %damps oscillations 
    oldq = q; 
    delta_t = [q(4) q(5) q(6)]'; 
    delta_theta = [1 -q(3) q(2); q(3) 1 -q(1); -q(2) q(1) 1]; 
    [U,~,V] = svd(delta_theta); 
    delta_R = U*V'; 
    R = delta_R*R; % update rotation 
    t = delta_R*t+delta_t; % update translation 
    Xnew = R*X+repmat(t,1,N); % update moving points 
    config_change = sqrt(sum(sum((Xnew-Xold).^2))/... 
    sum(sum((Xold-repmat(mean(Xold,2),1,N)).^2))); 
    Xold = Xnew; 
end 
for ii = 1:N 
    D = W(:,:,ii)*(Xnew(:,ii)-Y(:,ii)); 
    FRE(ii) = D'*D; 
end 
FRE = sqrt(mean(FRE)); 
 
 
function C = C_maker(X,W) 
N = size(X,2); 
C = zeros(3*N,6); 
for ii = 1:N 
   X0ii =  [       0,  X(3,ii), -X(2,ii);  
            -X(3,ii),        0,  X(1,ii); 
             X(2,ii), -X(1,ii),       0]; 
   C(3*ii-2:3*ii,:) = [W(:,:,ii)*X0ii, W(:,:,ii)]; 
end 
 
  
function e = e_maker(X,Y,W) 
N = size(X,2); 
e = zeros(3*N,1); 
for ii = 1:N 
   e(3*ii-2:3*ii) = W(:,:,ii)*(Y(:,ii)-X(:,ii)); 
end 
 
  
function [R, t, FRE] = point_register(X, Y) 
% This function performs point-based rigid body registration with equal  
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% weighting for all fiducials. It returns a rotation matrix,  
% translation vector and FRE. 
if nargin < 2 
    error('At least two input arguments are required.'); 
end 
[Ncoords Npoints] = size(X); 
[Ncoords_Y Npoints_Y] = size(Y);  
if Ncoords ~= 3 | Ncoords_Y ~= 3 
    error('Each argument must have exactly three rows.') 
elseif (Ncoords ~= Ncoords_Y) | (Npoints ~= Npoints_Y) 
    error('X and Y must have the same number of columns.'); 
elseif Npoints < 3 
    error('X and Y must each have 3 or more columns.'); 
end 
Xbar = mean(X,2);  % X centroid 
Ybar = mean(Y,2);  % Y centroid 
Xtilde = X-repmat(Xbar,1,Npoints); % X relative to centroid 
Ytilde = Y-repmat(Ybar,1,Npoints); % Y relative to centroid 
H = Xtilde*Ytilde';  % cross covariance matrix 
[U S V] = svd(H);    % U*S*V' = H 
R = V*diag([1, 1, det(V*U)])*U'; 
t = Ybar - R*Xbar; 
FREvect = R*X + repmat(t,1,Npoints) - Y; 
FRE = sqrt(mean(sum(FREvect.^2,1))); 
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CHAPTER IV 

 

IMPROVED METHOD FOR POINT-BASED TRACKING 

 

 This chapter is adapted from the following paper:  

• Danilchenko, A., Wiles, A.D., Balachandran, R., and Fitzpatrick, J.M. 

Improved method for point-based tracking, MICCAI 2010 Lecture Notes in 

Computer Science, 6363, 587-594, 2010. 

 

1. Introduction 

 

Image-guided surgery (IGS) systems have improved the standard of care in brain, 

spine, and orthopedic interventions by combining pre-operative medical images and 

virtual reality using spatial tracking technologies [1]. Recently, real-time imaging 

techniques, such as ultrasound and endoscopy, and robotics technology have been 

integrated with traditional IGS systems by tracking the imaging and robotic devices 

similarly to tracked surgical tools. The real-time images and robotic devices are displayed 

in the virtual reality environment resulting in an augmented view of the surgical target. 

One such application is the robotic drilling system for a mastoidectomy [2] where a 

section of bone is resected from behind the ear of a patient for various otolaryngology 

procedures. In this application, an optical tracking system (NDI Polaris Spectra, Waterloo, 

ON, Canada) is used to track the poses of both the patient and the robot. If the patient 

moves during the drilling procedure, the drilling plan is automatically updated to reflect 

the change in patient positioning using the real-time information provided by the optical 
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tracking system. This procedure serves as an example of applications in which a high 

degree of tracking accuracy is crucial to success. Such applications motivate the focus of 

this chapter, which is the development and validation of an improved method for highly 

accurate optical tracking. 

A pose is determined by means of point registration: the configuration of N 

markers measured repeatedly in real time by the tracking system is registered to a model 

of the configuration. The method presented in this chapter is the combination of two 

recently developed algorithms: (i) a method to estimate the anisotropic fiducial 

localization error (FLE) at each of the optically tracked markers [3], which we have 

modified to improve its numerical stability and (ii) the registration procedure studied in 

Chapter III, which allows for anisotropic weighting at each of the markers [4]. We show 

that the FLE covariance statistics can be used as an anisotropic weighting function in the 

registration procedure. Accuracy improvements of 20 – 45% are demonstrated and this 

improvement is deemed important for applications that rely on highly accurate real-time 

tracking such as fully automatic robotic mastoidectomy.  

 

2. Method 

 

The goal of this chapter is to demonstrate that the anisotropic weighted point-

based registration algorithm [4] provides better results than the standard isotropic point-

based registration method [5], [6]. The comparison is done using the target registration 

error (TRE) statistics for both registration methods. 
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Computing the real-time weightings 

The weighting for the anisotropic registration algorithm at each marker is 

determined using a modification of the FLE estimates from the algorithm presented in [3]. 

The distance between the markers is much smaller than the distance from the centroid of 

the markers and the tracking system. Since the markers are identical, the FLE covariance 

matrix is a function only of the displacement of the markers from the tracking system, 

and therefore we assume that the FLE covariance matrices are the same for all markers. 

Thus, while FLE is expected to be anisotropic, it is assumed to be homogeneous. The 

tracking system captures a sequence of “frames”, where a frame consists of the x,y,z 

coordinates of the N markers on a tracked rigid tool captured within a time short enough 

such that motion can be ignored (requires that the tool is moved sufficiently slowly by 

hand or by robot). The FLE covariance matrix is found in [3] by solving a set of six linear 

equations that relates the FLE statistics to the estimated FRE statistics. For each marker 

,  there is one set of such equations: 1,...,i = N iiA x b=  where  is a 6-by-6 matrix 

determined by the configuration of the markers on the tracked rigid body, 

iA

x  is a column 

vector whose elements are the six independent FLE covariance components and  is a 

column vector containing the six independent fiducial registration error (FRE) 

components estimated from the point registrations of the previous M frames to the model. 

For an optical tool with N tracked markers, there are N sets of such equations, each of 

which can be solved in order to obtain an estimate of the FLE covariance matrix. 

However, to improve numerical stability we modify this procedure by solving an over-

determined set of equations for a single FLE covariance matrix obtained by stacking the 

matrices and vectors such that 

ib
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Taking the six independent FLE covariance components from avgx  (with or 

without stacking) and rewriting them as a FLE covariance matrix Σ , the weighting 

matrix elements are computed as follows: 

 

 1 2W −= Σ . (3) 

 

Alternative FLE estimation scheme 

A slight disadvantage of the FLE estimation algorithm discussed above is the 

assumption of homogeneity of FLE. Though FLE for typical tracking systems this 

assumption is valid, it would be useful to be able to estimate FLE without making that 

assumption. We consider the estimation of inhomogeneous FLE from FRE using Eq. (33) 

from Chapter II. This equation is quite general. Unlike the FLE estimation method above, 

it accounts for inhomogeneous FLE and even allows for both nonzero inter-fiducial FRE 

covariance, and nonzero inter-fiducial FLE covariance. When, as in this case, inter-
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fiducial FLE covariance is known to be zero, there are more equations- --

represented by Eq. (33) than unknowns—6N. For example, for N = 4 fiducials, there are 

144 equations and 24 unknowns (6N). The solution of such a system for FLE may be 

approached with a least-square solution (e.g., via the pseudo-inverse or via Matlab’s 

backslash operator). However, because the sum on the right side of Eq. (33) goes only 

from 7 to 3N, some information for FLE is lost, making the system underdetermined for 

N < 5. For example, for N = 4, the rank is only 18 (i.e., less than 24).  However, with the 

assumption of homogeneity of FLE, this more general equation can be solved for FLE 

when N > 3.  

( )23N

For this alternative FLE estimation method we ran a limited number of 

experiments using the assumption of homogeneity with N = 4 to compare this scheme 

with the FLE estimation algorithm described earlier in this section.  

 
 

Obtaining a good estimate of the true target location 

In the work previously presented in the literature, the algorithms were tested using 

only Monte Carlo simulations, whereby the true location of the target was known exactly. 

However, experimentally the true target location is never known exactly and therefore a 

method of estimating the true target location is needed so that the TRE can be computed. 

Here we use two rigidly connected optically tracked tools, as shown in Figure 1, to solve 

this problem. 

In Figure 1, the four markers on the left represent tracking markers rigidly 

attached to a tracked tool (e.g., drill or hand-held pointer tool). The four markers on the 

right are arranged so that, for the robotic application, the centroid (denoted by ×  in the 
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schematic) is at the tip of the drill and for the hand-held-tool application the centroid is at 

the tip of the probe pointer. Previous to the frame acquisitions a standard “tool definition” 

calibration was carried out to determine the model. The robotic arm was held stationary 

in several poses while the positions of the tool markers on the left and the target markers 

on the right were measured repeatedly (1000s of times). The average of these 

measurements over the various poses for each marker provides a highly accurate standard 

configuration, which serves as the model. The centroid of the four markers on the right is 

defined to be the “target” position (e.g., drill tip, or probe pointer tip). Then, during the 

tracking experiments (see Step 4 below), each detected configuration of the tool is 

registered to the standard tool. Therefore, using the right-hand rigid body to estimate the 

true location of the target, the target is estimated with target localization error (TLE) 

statistics of 

 

 
Figure 1 Photograph and schematic of the tracked rigid bodies used in the experiment. The tracked tool 
under test is on the left and the tracked tool used to estimate the true location of the target is on the right. 
The target is the centroid of the right-hand tool, which is marked by an × in the schematic. Measurements 
are in millimeters and coordinate frame is the local tool coordinate frame. 

 

 

 2tle
fle,1 fle,2 fle,N

N
Σ +Σ + +Σ

Σ =
…

, tle tleRMS trace( )= Σ , (4) 
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where N is the number of markers on a tool (N = 4 for our example) and RMS is the root-

mean-square statistic. If the FLE is indeed homogeneous across the markers, then the 

covariance matrix and RMS reduce to tle fle NΣ = Σ  and tle fleRMS RMS N= , respectively. 

 

Comparing isotropic and anisotropic registrations 

The TRE statistics of the isotropic and anisotropic registrations algorithms are 

compared using the centroid of the right-hand tracked tool as the target ground truth. The 

two rigid bodies are rigidly attached to one another and moved together. 

The experimental protocol is to carry out these steps for every frame of data 

returned from the tracking system: 

 
1. The 3D positions of each of the markers on both rigid bodies are measured with 

the optical tracking system at an instance in time—a frame of data.  

 
2. The target location, , is obtained by taking the mean of the four markers on the 

right-hand tracked tool. 

refr

 

3. The right-hand tracked tool is registered using isotropic registration and the FLE 

estimates are updated for these markers. The TLE statistics of the target are 

obtained using Eq. (4). 

 
4. The left-hand tracked tool is registered using isotropic registration and the FLE 

estimates are updated for these markers. The target location, , is computed 

using the transform computed from isotropic registration. 

isor
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5. The left-hand tracked tool is registered using anisotropic registration using the 

FLE estimates of the markers for the weighting as per Eq. (3) based on isotropic 

registrations of the M = 200 previous frames. The target location, , is 

computed using the transform computed from anisotropic registration. 

anisor

 
6. The TRE vectors for both registration methods are computed such that 

 and iso iso reftre r r= − aniso aniso reftre r r= − . 

 

After 1000 frames of data are collected, the results are plotted and a set of 

observational statistics is computed. The results section provides a comparison of the 

algorithms for different dynamic paths over which the tool traveled, and also provides 

examples of the FLE estimates for the markers obtained with the algorithm in [3]. 

 

3. Results 

 

Using the method described in Section 2, we compared the new tracking method, 

performed using anisotropic registration [4], with traditional tracking method, performed 

using isotropic registration [5], [6]. The tracked tools were placed at a distance of 

approximately 160 cm from the tracking system. We noticed that the results of the 

comparisons are distinct for different types of motion, thus we collected data under the 

following conditions: 

Test A: translate approximately 10 cm parallel to Polaris’ x-axis (up–down) 

Test B: translate approximately 10 cm parallel to Polaris’ y-axis (left–right) 

Test C: translate approximately 10 cm parallel to Polaris’ z-axis (front–back) 
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Test TLE RMS TRE RMS 

Isotropic 
TRE RMS 
Anisotropic 

TRE RMS  
% Diff. 

TRE RMS 
% Diff. 
Corr. 

A 0.08 mm 0.22 mm 0.18 mm -19.3% -22.6% 
B 0.07 mm 0.33 mm 0.19 mm -42.4% -45.2% 
C 0.08 mm 0.32 mm 0.18 mm -42.8% -46.8% 
D 0.06 mm 0.34 mm 0.24 mm -28.7% -29.9% 
E 0.08 mm 0.60 mm 0.46 mm -23.2% -23.7% 
F 0.06 mm 0.34 mm 0.22 mm -34.5% -36.0% 

 
Table 1. Results of tests A-F. All statistics are computed over the usable 800 frames. The estimate of the 
TLE RMS is provided using Eq. (4). The TRE RMS statistics are computed for all the distance errors in a 
given test. The percent difference between the two methods is shown using the isotropic RMS as the 
reference. Finally, noting that the TLE contributes to the measured TRE RMS statistic, see Eq. (5), we 
correct the TRE RMS statistics and recompute the TRE RMS percent difference. 
 
 

 
Test D: translate in all directions 

Test E: rotate in all directions 

Test F: random path including translations and rotations 

A total of 1000 frames of data was collected for each test. Since a sliding window 

of M = 200 frames was used to estimate the FLE, only the last 800 frames are used for 

statistical analysis because it takes 200 frames for the FLE estimate to stabilize.  

Three key sets of results are presented in Table 1. First, an estimate of the TLE 

RMS is given using Eq. (4) with estimates of the FLE covariance matrices found from the 

same FLE estimation algorithm used to determine the weightings for the anisotropic 

registration algorithm. FLE was estimated for Table 1 using the over-determined system 

of Eq. (1). 

Next, the TRE RMS computed for both the isotropic and anisotropic registrations 

are provided. We notice that the anisotropic TRE RMS is lower for each test and the 
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percent difference between the two statistics is provided8. Finally, we note that the TRE 

RMS for each registration has a contribution from the TLE where the measured TRE 

RMS can be related to the actual TRE RMS by 

 

 , (5) 2 2
tre,mean tre,actual tleRMS RMS RMS= + 2

                                                

  

Taking into consideration this relationship, we correct the percent differences 

between isotropic and anisotropic TRE RMS statistics by using the  and 

show this new percent difference in the last column of Table 1. A small increase in the 

accuracy is observed with this correction. 

tre,actualRMS

Moving beyond the observational statistics, we provide details of the data 

measured during Test F. In Fig. 2, the FLE RMS estimates are provided for (i) solving 

each of the individual sets of six equations (marker 1 to 4) and (ii) solving the over-

determined system of Eq. (1). It can be seen that the over-determined system give a 

solution that falls within the variation of the plots from the individual sets of equations, 

demonstrating the improved numerical stability that approach provides. 

 

 

8 The percent difference is computed using the isotropic registration as the reference value so that 
%Diff = 100 × tre, tre, tre,(RMS RMS ) RMSaniso iso iso− . 
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Equations for marker 1 
Equations for marker 2 
Equations for marker 3 
Equations for marker 4 
Stacked equations 

Figure 2. Sample of the FLE RMS for Test F. The RMS is computed by (i) solving the 6 equations for each 
marker and (ii) using the stacked, over-determined system of equations described in Eq. (1). 

 

 

Figure 3. Sample of the FLE directional components for Test F. The directional components are singular 
values of the covariance matrix where the principal axes of the covariance matrix are approximately 
aligned with the axes of the optical tracking system. 
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Figure 4. TRE distance errors for Test F. The distance errors are smoothed using a moving average of 200 
frames to better view the trend. Horizontal lines represent the RMS for each test. 

 

In Fig. 3, the magnitudes in the three principal directions of the average FLE 

covariance matrix are given. Here we observe the common behavior of optical tracking 

systems where one of the components is much larger than the other two directions. The 

direction of the higher magnitude error is along the viewing direction of the optical 

tracking system (z–axis of the Polaris Spectra). 

The last plot in Fig. 4 shows the TRE distance errors at each frame in Test F. We 

clearly demonstrate here that the anisotropic registration provides a better estimate of the 

target location. The RMS TRE computed over the entire data collection is shown with the 

horizontal lines. We also performed a paired t-test for this case and found , 

suggesting that the difference in TRE between isotropic and anisotropic registration is 

statistically significant. 

0.05p�

The results of the experiments comparing the modified version of the existing 

FLE estimation algorithm [3] to the alternative FLE estimation scheme, which employs 

Eq. (33) from Chapter II, showed no difference in accuracy when using the alternative 
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scheme. Therefore, we do not present detailed accuracy numbers for it. Not surprisingly, 

the time of execution of this more general scheme was higher. 

 

4. Discussion 

 

We have presented a modification of a recently developed  method for point-

based tracking of rigid bodies and have provide the first test of the method on real data. 

The improvement is accomplished by replacing the isotropic point-based registration 

method typically employed with one that takes into consideration the anisotropy of 

tracking system’s FLE (see also Chapter III). Our method combines a modification of a 

recently published algorithm [3] for estimating the covariance matrix of anisotropic FLE 

with a novel rigid registration algorithm [4] that accommodates anisotropic weighting. 

The modification involves augmenting a set of linear algebraic equations to produce an 

over-determined set. The equations are employed to estimate an FLE covariance matrix 

from measured FRE components. We present evidence that this change improves the 

numerical stability of that estimation. Incorporating automatically generated weighting 

matrices optimized from the estimated FLE covariance matrices into the anisotropic 

registration algorithm exhibits a surprising level of accuracy, surpassing the current state 

of the art. Further improvements might be made by controlling for outliers or applying 

additional weightings during the solution of the equations, such as maximum-likelihood 

methods, M-estimators, regularization, etc. [7], [8]. 

The method was tested on data obtained with NDI Polaris Spectra® with various 

motions of the tracked tool in the region approximately 160 cm from the tracking system. 
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For a variety of motions, including pure translation, pure rotation, and combinations of 

both, we measured an increase in tracking accuracy in the range of 20 – 45%, and in 

every case accuracy was improved. A statistical analysis confirmed that the tracking of 

optical rigid bodies using our new approach is more accurate than tracking using the 

standard method .  0.05p�

The input to each FLE calculation is a set of previous FRE vectors collected from 

the most recent M frames, using the isotropic registration algorithm. We found that the 

size of the window, M, used for estimating the FLE statistics is an important factor in the 

tracking accuracy for our algorithm. The size of the window was investigated 

experimentally and we found that a contiguous collection of M = 200 frames of FRE 

measurements produced the best results. Larger windows gave only a very small 

improvement in accuracy but also increased the lag in obtaining a good estimate of the 

FLE statistics. With a window size of M = 200, one must allow the system to perform 

200 data collections, before the improved tracking can commence. For the experiments 

described in this article, our method was implemented to run off-line in Matlab (Version 

2009b, MathWorks, Inc., Natick, MA) on an Intel Core 2 Duo 2.2 GHz with 2GB of 

RAM while utilizing only one CPU. Each complete update, comprising FLE estimation 

and registration, required less than 6.4 milliseconds. For the NDI Polaris Spectra®, 

whose update rate is 60 Hz (period of 17 ms), our improved tracking algorithm can run in 

real-time. Furthermore, at 60 Hz with the NDI Polaris Spectra®, a delay of only four 

seconds is required to obtain the first set of 200 frames of FRE data to begin providing 

accurate estimates of the FLE statistics. In summary, the algorithm has promise to be 
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included in imaged-guided surgery applications that use point-based registration for 

highly accurate optical tracking. 
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CHAPTER V 

 

ROBOTIC MASTOIDECTOMY 

 

This chapter is adapter from the following paper: 

• Danilchenko, A., Balachandran, R., Toennies, J.L., Baron, S., Munske, B., 

Fitzpatrick, J.M., Withrow, T.J., Webster, R.J., 3rd, and Labadie, R.F. Robotic 

Mastoidectomy, Otology & Neurotology, 32(1), 11-16, 2011. 

 

1. Introduction 

 

Taylor [1] has proposed that surgical robots be classified as either (a) surgical-

assist devices, which modulate a surgeon’s motions, or (b) autonomous robots (which he 

calls “Surgical CAD/CAM” systems to illustrate the analogy to industrial computer-aided 

design and manufacturing), which are programmed to replace a portion of the surgical 

task. Perhaps the most widely known example of a surgical-assist system is the da 

Vinci® Surgical System (Intuitive Surgical Inc., Sunnyvale, CA, USA), which mimics 

and modifies the surgeon’s motions. These modifications can include elimination of 

tremor and scaling of motions such that large motions by the surgeon can be duplicated in 

a much smaller surgical field. This system has been most heavily used in urologic surgery 

[2]. Within the field of otolaryngology, it has been implemented for tongue-based 

resections to avoid splitting the mandible for access [3]. 

Of autonomous robots, the ROBODOC® System (Integrated Surgical Systems, 

Davis, CA, USA) is the most widely used and referenced. This system was designed to 
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bore a receiving lumen for orthopedic reconstructive joint surgery and has been used in 

more than 20,000 cases. In practice, the device is rigidly affixed to the long bone for the 

procedure. While it was shown that this system can accomplish the task better than a 

human operator, a class-action law suit was brought in Europe claiming that the wider 

surgical exposure necessary for the rigid linkage of the robot to the patient led to various 

complications including muscle and nerve damage, bone dislocation, and chronic pain. 

Because of these legal troubles, the company ceased operations in 2005 and was acquired 

by Curexo Medical Technologies (Freemont, CA), who received FDA approval for the 

ROBODOC® in 2008. The clinical status of the ROBODOC® is in question at the time 

of this writing. 

Because surgical-assist devices are controlled directly by human manipulation, 

regulatory approval is more straightforward, and they have been first to achieve 

widespread clinical adoption. Since autonomous robots are not widely commercially 

available for surgical applications, few surgeons have any experience with them 

whatsoever. The surgical-assist device has the advantage of continuous human control, 

but the disadvantage that it cannot function appropriately unless the controlling human 

maintains continuous visual access both to the anatomy being resected and to those 

critical structures in the vicinity of the resection that are to be spared. The autonomous 

robot by contrast (which is also usually subject to continuous monitoring by the surgeon), 

relies on the human operator only as a backup while it follows the path prescribed by pre-

operative planning. That planning, which can be performed in the surgeon’s office before 

the patient is brought to the operating room, is based on three-dimensional tomographic 

images, and as a result, the autonomous robot can resect tissue that remains invisible to 
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the human controller, whose role is primarily to stop the process if a technical problem 

develops. 

This scenario, in which preplanning determines the path followed by an 

autonomous robot, is well-suited for procedures involving rigid tissues such as bone. It is 

much more challenging to implement any degree of autonomy in robotic procedures 

involving soft tissues because of their deformation between imaging and intervention, but 

strategies for doing so are the topic of active research in the engineering community. As 

these results mature and are brought to clinical use, it is likely that we will see a blurring 

of the line between surgical-assist devices and autonomous robots, as limited autonomy is 

introduced to the former, while increasing levels of human control are incorporated into 

the latter. Regardless of the type or classification of robot used, the intent of 

incorporating robotic technology into a surgical procedure is to produce a better outcome, 

which can take the form of many metrics including decreased operative time, improved 

accuracy, smaller incision, decreased recovery time, or overall decreased cost.  

In the field of otology, a core component of otological cases is the mastoidectomy, 

in which bone is milled away exposing but not damaging vital anatomy. Mastoidectomy 

lends itself to an autonomous robotic approach for two reasons: (a) the tissue to be 

resected is encased in rigid bone, and (b) critical anatomical features remain hidden until 

they are revealed by ablation. The first of these two reasons makes surgery with the 

autonomous robot feasible; the second makes it useful. The rigidity of bone is essential 

because it ensures that the three-dimensional structure of the target anatomy is the same 

during pre-operative imaging and planning as it is during subsequent intervention. The 

presence of critical hidden anatomy (nerves and other structures that must be spared but 
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are embedded in the bone), exploits the utility of the autonomous robot, because three-

dimensional imaging pinpoints the positions of subsurface structures whose general 

locations can only be estimated during incremental, manual human intervention. As a 

result, the robot, guided by images that see beneath the surface, can safely ablate bone to 

which the human operator would be blind. 

Once we have chosen a surgical situation, like the mastoidectomy, in which rigid 

bone comprises the target and critical anatomy is hidden from view, the central issue in 

autonomous robotics becomes the accurate determination of the single point in the three-

dimensional pre-operative image that corresponds to a point in the surgical field, and vice 

versa. This determination of corresponding points in two spaces is termed “registration”, 

and the success of the robotic approach hinges on the accuracy of registration from the 

space of the pre-operative tomographic image to the space of the intra-operative patient. 

This problem is not new. It has, for example, been faced for decades by stereotactic 

surgeons and others who have provided geometrical guidance intra-operatively based on 

pre-operative images [4]. To achieve it, an autonomous robot must register these two 

spaces either through rigid fixation, as is done by the stereotactic frame and by 

ROBODOC®, or via optical or magnetic tracking, such as that achieved with image-

guided surgical (IGS) systems via the alignment of skin surfaces or fiducial markers. 

In this chapter, we describe the use of an autonomous robot to perform a 

mastoidectomy using infrared tracking to monitor the motion of both the specimen and 

the robot. The method is applied to cadaveric temporal bone specimens. To accomplish 

this task, fiducial markers were implanted in the specimens, which were subsequently CT 

scanned. A surgeon identified the boundaries of the mastoid on the CT scan, the 
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trajectory was built for the robotic movement, and the robot was programmed to mill out 

the mastoid according to the identified boundaries. With both the robot and the specimen 

being tracked, any movement of the specimen during ablation was continuously 

compensated for by corrective motions of the robot. While the robot is subject to human 

control via a manual emergency stop button, it otherwise operates completely 

autonomously.  

 

2. Materials and methods 

 

Our goal is to successfully develop an autonomous robot system that can mill the 

regions identified by the surgeon in a CT scan. To achieve this goal, we developed the 

OTOBOT™ system (Figure 1), which incorporates an industrial robot, the Mitsubishi 

RV-3S (Mitsubishi Electric & Electronics USA, Inc., Cyprus, CA), controlled by custom 

software written in Matlab® and Simulink (The MathWorks Inc., Natick, MA) with real-

time feedback of the robot’s movement provided via a Polaris Spectra® optical tracking 

system (NDI, Waterloo, ON, Canada) [5]. Figure 1 shows the experimental setup of the 

system. We custom-built the end effector of the robot to hold a surgical drill. To enable 

continuous, accurate tracking of both the patient (a temporal bone specimen in the current 

study) and the robot, three separate coordinate reference frames each of which comprises 

four reflective spherical markers are attached rigidly to the robot’s end effector, to the 

robot base, and to the patient. This arrangement enables real-time tracking of the robot 

movement, and hence the drill tip location, relative to the patient, whether or not the 

patient moves. That tracking is performed by the NDI Polaris, which is not shown but  
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Figure 1. OTOBOT™ robotic system set up to perform mastoidectomy on patient (temporal bone specimen 
in this current study). The robotic system consists of a Mitsubishi RV-3S industrial robot controlled by 
custom software. Coordinate reference frames with markers are attached rigidly to the robot end effector, 
robot base, and patient to allow tracking of the movements of the robot, drill, and patient during milling. 
An NDI Polaris optical tracking system (not shown here) is used to track the markers. 
 

 

which faces the robot from approximately the position of the camera that acquired the 

picture shown in Figure 1—about 1-1.2 meters away. 

While the three coordinate reference frames provide the means to determine the 

instantaneous positions and poses of the robot and patient relative to physical space in 

which the actual milling will take place, they provide no means to register that physical 

space to CT image space, in which the boundaries of the regions to be milled are 

specified. For that purpose, we employ bone-implanted fiducial markers. This choice was  
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Figure 2. Temporal bone specimen with coordinate reference frame attached. Bone-implanted fiducial 
markers are used for registration of image and physical space. 
 

 

made because bone-implanted markers are the most accurate available option, 

consistently enabling accuracies of 1.5 millimeters or better [6]. Three markers are 

screwed into bone in an arrangement surrounding the mastoid region, as shown in Figure 

2. These markers, which are made of titanium, show up clearly in a CT scan and can be 

localized using image processing techniques. Their locations can also be acquired in 

physical space via a calibrated probe that is tracked by the NDI Polaris system. 

Prior to the start of the milling procedure, three fiducial markers are bone-

implanted into the temporal bone specimen, and a clinically-applicable temporal bone CT 

scan is subsequently acquired. The boundaries of the desired region to be milled are  
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Figure 3. Screenshot of the software used for the segmentation. The surgeon contours the region to drill in 
the axial view of the image (bottom left). A three-dimensional shape of the region chosen for milling is 
displayed to the surgeon at the end of the segmentation. 
 

 

contoured on this same CT scan by the surgeon using custom segmentation software 

(Figure 3). The surgeon outlines the boundaries on axial slices of the image while 

simultaneously viewing intersecting coronal and sagittal slices. The boundaries are 

chosen to encompass the region to be ablated while maintaining a safe distance from the 

critical structures to be spared, including the facial nerve, the tegmen, the sigmoid sinus, 

the external auditory canal, and the labyrinth. At the conclusion of the contouring phase, 

a three-dimensional rendering of the region that is to be milled is displayed. At this point 

the surgeon can make modifications to the contours if required. When the surgeon is 

satisfied with the segmentation, the region is transformed into a set of points that 
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determine the trajectory of the drill tip to be executed by the robot. For building the robot 

trajectory we used the algorithm developed specifically for this type of application. The 

description of the algorithm is presented in Section 3 of this Chapter.  

The fiducial markers are localized in the CT image (may be done before or after 

segmentation is done). A coordinate reference frame is then rigidly attached to the 

specimen, and the locations of the fiducial markers are acquired in physical space using 

the calibrated probe. The CT image and physical space are registered by applying point-

based rigid-body registration [7] to the two sets of fiducial points—one in each space. 

Using the registration thus found, the trajectory points for the robot are transformed from 

CT space to physical space, and the transformed points are given as input to the software 

that controls robot movement. 

The specimen with the coordinate reference frame is then placed within the 

workspace of the robot. Care is taken to make sure that the markers in all three coordinate 

reference frames are within the field of view of the optical tracking system. The milling is 

then initiated by starting the robot-control software application. The movements of the 

robot and patient are continuously tracked, and the control software compensates for any 

movement of the patient during milling. A manual emergency stop button is available for 

the robot if the robot moves in an undesired fashion. A continuous computer screen 

update is provided showing the progress of the milling as percentage of the total points 

covered.  

Robotic mastoidectomy was performed on three temporal bone specimens using 

the procedure described above. A 6 mm diameter surgical drill tip was used for the 

milling, and a pneumatic drill was run at pressure level equal to 100 psi throughout the  
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Figure 4. Temporal bone after completion of robot milling. (a) Temporal bone overview. (b) Close-up of 
the milled region. All three fiducials are visible in (a); one is visible in (b). 
 

 

milling. We included a 1 mm safety region during milling to compensate for possible 

small penetrations of the drill tip beyond the region of interest (arising from small 

inaccuracies in registration, real-time tracking, or robot control). For this initial study, the 

robot was set to move at the constant speed of 2.5 millimeter per second (mm/s) during 

milling. We observed no undesired movement of the robot during milling, and hence we 

did not use the emergency stop button at any time. 

 

3. Trajectory building algorithm 

 

Though many algorithms exist for building trajectories for robots, we did not find 

any algorithms which would exactly suit our application of robotic mastoidectomy. Thus, 
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we built our own algorithm. There were three factors that we needed to take care of for 

mastoidectomy application. First, the algorithm has to perform in the shortest time 

possible. Second, the trajectory should cover all the points of the selected region. Third, 

we must approach the points on the surface of the patient’s skull before we approach 

points below the surface points.  

In our algorithm we combine the following two ideas: (1) neighborhood “marks”, 

which are values set for each point in the region and show the neighborhood relationships 

of all the points in the region, and (2) the shortest distance to the outside of the skull. 

Here are the steps of the algorithm: 

1) Select a point outside of the patient’s skull in front of the region to be 

drilled, or in other words, select a spot from which the drill, attached to the 

robot, will be approaching the region. We call this point the “initial point”. 

It will be used to calculate the shortest distances from each point of the 

region to the outside of the region. 

2) Fill in a “Neighborhood Table” which contains the neighborhood marks 

for all the points. For this, first set all neighborhood marks to an infinitely 

big number. Then for the point in the selected region which is the closest 

one to the initial point, set its neighborhood mark to 1. Add this point to 

the “To-Process” list. Recursively process the points from the To-Process 

list in the following manner: if the current point has the neighborhood 

mark k, for all the neighbors (or points which can be achieved by iterating 

one of the indexes by 1) inside of the region to be drilled, update their 

neighborhood marks to k+1 and add them to “to-process” list if their 
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neighborhood marks are bigger than k+1. Remove the current point from 

the To-Process list and go to the next point from the list. Continue the 

procedure until the list is empty and all the points are processed.  

3) Calculate the distances from the initial point to each point of the region 

and save them in the Distance Table. 

4) Build the trajectory following these directions: go through all the points in 

the Neighborhood Table. Go only to the points not visited before. First 

visit the points with smaller neighborhood marks. If there are several 

points available with neighborhood marks that have the same value, first 

go to the ones having smaller distances to the initial point in the Distance 

Table. If at some point of time there are no unvisited neighbors, but there 

are still points in the region that have not yet been visited, find an 

unvisited neighbor by backtracking through the previously visited list of 

points. If such a neighbor is found, go to that point. Figures 5, 6, and 7 

show a two-dimensional example of a Neighborhood Table, a Distance 

Table, and a resulting trajectory. Backtracking is shown in pink. 

Moving just to neighbor points makes the algorithm time efficient because no 

time is wasted for the robot to travel through already drilled region. During neighbor-to-

neighbor movement, the drill always removes part of the bone. If all points in the region 

are connected, then the algorithm can be shown to include in the final trajectory all points 

in the region. Fortunately for our application – mastoidectomy – the surgeon always 

selects a region in which all points are connected. Going first to points with smaller  
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Figure 5. Example two-dimensional Distance Table 

 

 

 

Figure 6. Example of two-dimensional Neighborhood Table 
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Figure 7. Example of building the trajectory based on the Neighborhood and Distance Tables 

 

 

distances from the initial point guarantees, that the points on the surface are visited before 

the points below the surface. 

Because the edges of the region might have a complex shape, a security check is 

performed after building the trajectory to make sure that no “illegal” bone is drilled while 

going from one point of the trajectory to the other one. By “illegal” bone we mean a part 

of the bone that is not in the outlined region and thus should not be drilled. 

 

4. Results 

 

Figure 4 shows the results of the milling of a temporal bone specimen. All three 

milled temporal bone specimens were CT scanned after the procedure for the purpose of 
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analyzing the results of the milling. On analysis of the scan, no damage to any critical 

structure was identified. To determine whether the targeted bone was in fact removed, the 

pre-operative and post-operative CT scans of each bone were registered using the three 

fiducial markers, and the originally delineated region was superposed from the pre-

operative CT scan onto the post-operative CT scan. For the three bones, we calculated the 

percentage of each targeted volume that was removed. For the three bones, these 

percentages were 97.70%, 99.99%, and 96.05%. Maximum error was identified as 0.6 

mm. The time spent for completing the mastoidectomy was 14 minutes. 

 

5. Discussion 

 

Herein, we have described a first step along what will likely be a lengthy road 

towards clinical testing and implementation of mastoidectomy via an autonomous robot. 

This first step involved the modification of an industrial robot to perform complex 

milling on a cadaveric specimen under infrared tracking of both robot and specimen. In 

our testing on three specimens, we found that the surgeon’s pre-operative plan was 

successfully executed by the robot with at least 96% of the targeted bone removed 

without damage to critical structures. Excitement at this success is tempered, however, by 

the realization that a great deal of work remains before this concept can be tested in the 

operating room. While the fundamental engineering concepts behind the robotic 

technique are well developed, less well studied is the translation of such concepts to 

clinical applications. Issues such as maintenance of sterility, logistics regarding 

transportation and set-up of the robot, and redundant safety constraints will need to be 
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incorporated, as have been done with both the da Vinci® and ROBODOC® systems, 

both of which took decades to go from bench top to clinical use. 

We acknowledge limitations of the proposed system, most notably the lack of 

soft-tissue work, which comprises at least a substantial portion of any ear surgery. 

Working with existing technology, we designed our system to aid the surgeon by 

automating the most predictable component of the surgery, mastoid milling, based on CT 

scan of the specimen. The potential advantages of this approach include (a) reliability and 

positional accuracy of the robot, (b) “X-ray vision” afforded by the registration of the 

pre-operative CT to the intraoperative patient, and (c) possible economic benefits (e.g. 

reduced time of intervention, improved productivity, or other, as yet to be identified, 

metrics).  

Regarding (a), robots are highly reliable and precise. The Mitsubishi RV-3S robot 

used in this study has a repeatability of 0.02 mm. In addition to high precision, robots are 

highly reliable in repetitive tasks, with error rates lower than humans and no risk of 

performance degradation due to fatigue [8]. In short, properly calibrated robots can 

perform specified tasks with high accuracy and efficiency. Regarding (b), coupling IGS 

with an autonomous robot leads to “X-ray vision” which allows such systems to see 

subsurface features before they may be injured. In the bone component of mastoid 

surgery, this “X-ray vision” offers a potentially large benefit in that the robot could be 

used to perform a highly accurate three-dimensional mastoidectomy—leaving a 1-2 mm 

margin of safety over vital anatomy—freeing the human operator to perform the more 

high-level fine dissection where human judgment is paramount.  
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Despite benefits (a) and (b), we recognize that catastrophic failure is a possibility 

as, for example, if the registration between the CT and the target tissue was performed 

incorrectly, thereby placing the robot at the wrong starting point. Given the consequences 

of such damage, we believe that—particularly in initial cases—there is no substitute for 

continuous monitoring by a trained surgeon. Put another way, the robot may be trusted to 

carry out the surgeon’s plan only so long as a human is there to verify that it is doing 

what it was told. As such we envision, and are working on, human oversight systems 

such as having the surgeon depress the foot pedal to keep the robot moving and the drill 

spinning, a hand-held pause button, and the possibility of slow-motion control to reduce 

robot speed when in close proximity to vital anatomy. 

Regarding (c), there are many possible ways in which a robotic mastoidectomy 

may be economically beneficial. This may include reduced time of intervention. For the 

experiment when we used our new trajectory building algorithm 14 minutes were 

required for completing the operation. The 2.5 mm/sec was chosen as an initial speed of 

the robot movement velocity based on our desire to carefully monitor the progress of the 

robot. We are confident that we can increase this speed to 5 mm/sec, as has been reported 

in the milling of cranial bone by others [9]. This increase in speed alone might reduce the 

14 minute intervention to 10 minutes or even less.  

Future economic assessments will be necessary to justify clinical use of such a 

system, as has been underway for the da Vinci® system, which retails for $1.4 million. 

Use of the da Vinci® robot for prostatectomy adds over $2,500 to the cost of each 

surgical intervention [10]. To date, the offsetting benefits include decreased recovery 

time and decreased complications [10]. Because our system is far from routine clinical 
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use, we can report, in terms of economics, only the cost of the system, which is 

approximately $40,000 (robot $19,900, infrared tracking system $15,000, and control 

computer $5,000). Estimating the cost of development and experimentation required to 

obtain FDA approval and commercialize the robot, we feel the machine may retail for 

$500,000.  As wear on the robot, whose movements are far smaller and slower than those 

required for routine industrial applications, will allow it to be used on thousands of cases 

with minimal maintenance, we predict its cost per procedure will be below $100. Other 

costs accruing from this technology will be associated with markers and drapes, which 

per case should be below $100.   

Noting that the typical outcomes associated with mastoid surgery (e.g. post 

operative hearing, success of tympanic membrane grafting, recurrence of disease, 

acquisition of speech after cochlear implant) are independent of whether the drill is held 

by a human or a robot, the major potential benefit offered by this technology may be 

reduced operative time. However, until the robot can completely replace the surgeon, its 

benefit will be bound by the need for the surgeon or an assistant to monitor the procedure 

thus tying up operating room time.  At this point, we predict that the savings from 

reduced operating room time can be expected to more than offset the additional costs 

(predicted above to be $200 or less) associated with this technology.  There may be other 

benefits that we are as yet unaware of (e.g. fewer drill bits per case, fewer complications) 

that may make the economic argument for this technology more compelling. 

Before such a clinical system is deployed, many intermediate steps need to be 

taken. Our near-term future work will be focused on improving the efficiency of the path 

plan so that the milling time can be reduced. Medium-term future work will include 
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redundant safety checks including monitoring force feedback at the point where the robot 

grips the drill, potentiometers on robot joints (in addition to the optical encoders used in 

industrial robots), improvements to the user interface for the surgeon, and the 

development of techniques for bagging and sterilization of robot components. Only after 

these steps have been accomplished will our system be ready for clinical testing. 

 

6. Conclusion 

 

The preliminary work we have presented here, given the relatively simple and 

controlled conditions of a cadaveric specimen in a laboratory, shows that an autonomous 

robotic system is capable both of determining a trajectory and of directing a drill along 

that same trajectory so as to perform a prescribed mastoidectomy with 96% removal of 

desired bone volume and with no damage to critical structures. There is much to do, 

however, before such a system can be considered for clinical use. The major issue is to 

establish a level of patient safety that is at least at the level of current clinical practice. 

This safety level will require that a surgeon remain in charge of the procedure including 

sitting at the surgical bed, monitoring the robot’s progress, and stopping the system if a 

problem develops. This work is only a start, but it provides encouragement that, with a 

plan based on pre-operative tomographic images that give information about what is 

below the bone surface, an accurate registration to transfer that information to the patient 

in the operating room, and an obedient robot continuously monitored by the surgeon, 

robotic mastoidectomy is technologically feasible. 
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CHAPTER VI 

 

CONCLUSION AND FUTURE WORK 

 

1. Conclusion 

 

In this work we have developed methods for working with image registration 

when fiducial localization error is arbitrary. Our methods work when FLE is 

homogeneous or inhomogeneous – same or different for each marker, and isotropic or 

anisotropic – same or different in all directions for each marker. First, we developed 

methods for estimating TRE and FRE. The uniqueness of our formulas is that they work 

for any fiducial configuration and any FLE configuration. We also looked at some special 

cases that have been investigated by others and simplified our formulas for those cases. 

In addition, we researched the question of FRE and TRE independence. We showed that 

contrary to a wide-spread belief, a small FRE in a given case does not imply a small TRE. 

Thus, using FRE as a measure of registration accuracy should be done with a caution. 

Second, we developed a new method of registration when FLE is anisotropic or isotropic. 

This new method is more intuitive than the existing ones and performs with more 

accuracy in less time. Third, we developed a new tracking method. This method uses our 

new registration algorithm combined with FLE estimation algorithms. As FLE estimation 

algorithms, we first used an existing method, and then we used the expression that we 

derived for estimating FRE from FLE, but we used it “in reverse” instead to estimate FLE 

from FRE. Finally, we developed a robotic system for performing a medical procedure—
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the mastoidectomy. This system allows for patient movement via tracking using a 

standard tracking algorithm.  

In Chapter II we derived formulas for estimating TRE and FRE. The input 

parameters for the estimation equation are the fiducial configuration and FLE 

configuration. Our formulas work for any arbitrary fiducial configuration, for any FLE 

configuration – FLE can be homogeneous or inhomogeneous and isotropic and 

anisotropic – and for any set of weightings. Previously several methods existed for 

estimating TRE and FRE. However, all of them dealt with some particular FLE and/or 

some particular set of weightings. The uniqueness of our formulas is that they have the 

same form for all FLE configurations and all weightings. We compared our formulas to 

the previously published expressions. Our formulas produced the same results that the 

previously published expressions did. We also compared the results of our formulas with 

Matlab simulations. The simulations showed the same values, which supports the 

correctness of our formulas. Finally, by means of simulations we showed that FRE and 

TRE are independent. This result is important because of a wide-spread erroneous belief 

that FRE can be a good measure of accuracy of registration. In fact, using FRE as a 

measure of accuracy must be done with extreme caution.  

In Chapter III we developed a new iterative algorithm for performing point-based 

registration. This algorithm allows an arbitrary FLE configuration – FLE can be 

homogeneous or inhomogeneous and isotropic and anisotropic. Our new algorithm is 

more intuitive and, moreover, more accurate and faster than other existing algorithms. 

Our method has just one adjustable parameter – the stopping criteria. By means of Matlab 

simulations and using real data acquired with a tracking system we showed that our new 
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method works better than four other existing methods. It produces a smaller error and 

converges more quickly compared to other iterative methods (no closed-form methods 

handle arbitrary FLE). Our simulations were performed for the cases most likely to 

happen in surgical applications. A decreased TRE was observed in all those cases. We 

also performed simulations to research the reliability of our new algorithm with regards 

to the collinearity of the system. For all fiducial configurations usable in real-life 

applications, our new method converges better and produces smaller TRE compared to 

the four other methods we studied.  

In Chapter IV we developed a new tracking method. We combined an FLE 

estimation algorithm with a new registration method presented in Chapter III. For 

estimating FLE we used first an existing FLE estimation algorithm and then an 

expression for calculating FRE derived in Chapter II. The advantage of our new tracking 

method over the standard tracking method used in commercial systems is that our 

algorithm takes into consideration FLE anisotropy. Our new tracking algorithm was 

tested on the real data with a considerable improvement in TRE observed during the 

experiments. 

In Chapter V we presented our newly developed robotic system for performing 

mastoidectomy. Mastoidectomy is a medical operation of removing part of the human 

temporal bone called mastoid. Nowadays this operation is performed by humans only. 

The difficulty of this operation is the presence of several critical structures in the area 

close to a temporal bone. Thus while the operation is performed by a human surgeon 

there will always be a probability of an error and damaging one of the critical structures. 

To eliminate that probability of an error, we built a robotic system for performing this 
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operation. The robotic system consists of an industrial robot, an optical tracking system, a 

real-time module, and a host machine. Before the operation, CT scans of the patient are 

acquired. Then a surgeon outlines the region to be drilled using special software. 

Afterwards based on the outline a trajectory is built using the new trajectory building 

algorithm. We built our new trajectory building algorithm to deal with the specific 

demands of the mastoidectomy procedure – all points of the outlined region should be 

visited, points on the surface should be visited before points below them, and time for 

visiting all points should be as small as possible. We combined two ideas – neighborhood 

marks and distance marks in our new algorithm. We performed several experiments 

drilling temporal bones. The results of the experiment show that on the average 97% of 

the outlined region was drilled and no critical structures were damaged during robotic 

drilling. Using our new trajectory building algorithm it took only 14 minutes to remove a 

mastoid which beats the average time of a human surgeon (~ 20 minutes). We believe 

this time can be reduced even more. 

 

2. Future work 

 

In Chapter III our new algorithm was compared to two existing iterative methods. 

Our criterion for the choice of methods for comparison was the number of adjustable 

parameters required for each algorithm. In both algorithms we selected and our new 

algorithm there is only one parameter to adjust – a stopping criterion. However, several 

more methods exist to perform registration in presence of anisotropic and inhomogeneous 
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FLE which require adjusting more than one parameter. As future work our new method 

can be compared to those methods using simulations or real data.  

The registration algorithm presented in Chapter III was validated using Matlab 

simulations and one experiment with real data. However, more real data based validation 

is needed to be performed for this algorithm. One of the ways to perform such a 

validation would be using some very accurate measuring devices, such as FARO Arm, 

and less accurate devices.  

As it was mentioned in Chapter IV, all current FLE estimation algorithms assume 

that FLE is homogeneous. Though it is almost true for many tracking systems, having an 

inhomogeneous FLE estimation algorithm would be of value. One possible solution can 

be to use Eq. (33) from Chapter II. Without any additional information it can be used for 

estimating homogeneous FLE. For estimating inhomogeneous FLE, either a larger 

number (> 4) of fiducials is required or some additional information is required. Thus, 

experiments with a larger number of fiducials or with the determination of restrictions 

that would allow the use of Eq. (33) from Chapter II with fewer than five fiducials can be 

done in the future. 

To compare our new tracking method presented in Chapter IV with the traditional 

tracking method used in commercial tracking systems on a real-life application, robotic 

mastoidectomy procedure can be performed using both methods. For this matter two 

identical objects should be created. Both of them should be drilled with the same 

trajectory. Different tracking methods should be used during the objects tracking. After 

drilling, the drilled regions of both objects should be compared to the outlined region. 

Based on those result a conclusion can be made about the quality of the new tracking 
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algorithm in real-life applications. Finally, methods to allow effective monitoring of the 

robot’s progress through its trajectory should be developed. 

  170


	ACKNOWLEDGEMENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	INTRODUCTION
	1. History
	2. Registration methods
	3. Image-guided surgery
	4. Computer-assisted surgery and robotic surgery
	5. Definition of errors
	6. Point-based registration
	7. Error Measures
	8. Overview of dissertation
	9. References

	GENERAL APPROACH TO FIRST-ORDER ERROR PREDICTION IN RIGID POINT REGISTRATION
	1. Introduction
	2. Background
	3. Derivations
	The registration problem
	Linearization
	Some useful results from linear algebra
	FRE in terms of  
	TRE in terms of  
	General formulation for the covariances of FRE and TRE
	Statistical independence of FRE and TRE for ideal weighting
	Two-dimensional space
	Comparison with previously published derivations

	4. Validation
	Comparisons to true values via simulations

	5. Results
	Comparison to previously published expressions
	Comparison with simulations

	6. Discussion
	7. Conclusion
	8. Appendix
	Derivation of ideal weighting
	Statistical independence of the elements of  
	Two dimensional case
	 Chi-square test for dependence
	Computer code to implement the derived formulas

	9. References

	ITERATIVE SOLUTION FOR RIGID-BODY POINT-BASED REGISTRATION WITH ARBITRARY WEIGHTING
	1. Introduction
	2. Method
	Algorithm
	Solution to the linear approximate problem
	Finding the closest rotation matrix

	3. Validation
	4. Results
	5. Discussion
	6. Conclusion
	7. Appendix
	8. References

	IMPROVED METHOD FOR POINT-BASED TRACKING
	1. Introduction
	2. Method
	Computing the real-time weightings
	Alternative FLE estimation scheme
	Obtaining a good estimate of the true target location
	Comparing isotropic and anisotropic registrations

	3. Results
	4. Discussion
	5. References

	ROBOTIC MASTOIDECTOMY
	1. Introduction
	2. Materials and methods
	3. Trajectory building algorithm
	4. Results
	5. Discussion
	6. Conclusion
	7. References

	CONCLUSION AND FUTURE WORK
	1. Conclusion
	2. Future work


