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CHAPTER	1	
	
	

BACKGROUND	AND	SIGNIFICANCE	
	
	

The	Human	Obesity	Epidemic	
	

During	the	past	40	years	the	prevalence	of	obesity	spread	across	US	state	and	

international	borders	making	obesity	a	top	ranking	national	and	global	health	

concern.			According	to	the	CDC	obesity	and	its	comorbid	conditions	are	amongst	the	

leading	causes	of	preventable	death,	therefore	understanding	the	pathways	leading	

to	obesity	has	potential	for	tremendous	impact	on	healthcare	and	health	outcomes.  

In	the	United	States,	as	of	2012,	greater	than	one-third	of	adults	and	17%	of	children	

are	obese	with	a	body	mass	index	(BMI)	of	greater	than	30	[1].		The	National	Heart,	

Lung,	and	Blood	Institute	as	well	as	many	other	national	medical	and	scientific	

special	interest	groups	have	documented	an	increased	risk	for	a	number	of	

comorbidities	linked	to	obesity	including	type-2	diabetes,	cardiovascular	disease,	

cancer,	and	stroke.		The	obesity	epidemic	incurs	staggering	work	productivity,	

economic,	healthcare,	and	even	national	security	costs	annually.		In	2008		$147	

billion	in	direct	annual	medical	costs	in	the	United	States	were	attributed	to	obesity	

[2]	suggesting	that	there	are	vast	public	health	and	economic	consequences	to	this	

epidemic	that	threatens	the	nation.		These	harrowing	statistics	and	quality	of	life	

issues	emphasize	the	importance	of	investigation	into	the	underlying	mechanisms	

that	control	body	weight	among	individuals	in	order	to	understand	and	eventually	

treat	human	obesity	with	the	ultimate	goal	of	reversing	the	current	trends	in	order	

to	restore	a	healthy	population.		

Within	the	individual,	body	weight	is	controlled	by	a	number	of	complex	and	

interwoven	factors.		However,	in	the	simplest	sense,	energy	balance	and	weight	

maintenance	are	achieved	by	adequately	balancing	energy	intake	with	energy	

expenditure	so	that	there	is	no	caloric	excess	or	deficit.		Energy	intake	is	affected		

____________________________________________________________________________________	
Text	and	figures	have	been	modified	from	Anderson	et	al.	(2016).	
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solely	by	feeding	behaviors	and	nutrient	absorption,	in	itself	highly	complex,	while	

energy	expenditure	is	accounted	for	by	physical	activity,	basal	metabolic	rate,	and	

diet-induced	thermogenesis.		Normally,	our	bodies	adequately	regulate	long-term	

energy	balance	via	a	complex	network	of	homeostatic	factors.		A	variety	of	genes	are	

known	to	play	roles	in	regulation	of	energy	balance	and	serve	as	useful	tools	in	

elucidating	the	pathophysiologic	basis	of	human	obesity.		A	key	player	in	

coordinating	energy	intake	with	energy	expenditure	is	the	central	melanocortin	

system	[3].		Mutations	in	components	of	the	central	melanocortin	system	are	

responsible	for	genetic	obesity	syndromes.		Continuing	to	elucidate	the	roles	of	the	

melanocortin	system	in	energy	homeostasis	will	provide	valuable	insight	into	the	

treatment	of	human	obesity	

	
The	Central	Melanocortin	System	

	
					The	melanocortin	system	was	originally	understood	in	terms	of	the	biological	

actions	of	α-melanocyte	stimulating	hormone	(α-MSH)	on	pigmentation	by	binding	

the	melanocyte	stimulating	hormone	receptor	(MSH-R),	and	adrenocorticotropic	

hormone	(ACTH)	on	adrenocortical	glucocorticoid	production	by	binding	the	

adrenocorticotropin	receptor	(ACTH-R).		With	the	discovery	of	other	receptor	

homologues,	a	family	of	five	melanocortin	receptors	was	defined.		MSH-R	and	ACTH-

R	were	renamed	MC1R	and	MC2R	respectively,	and	the	three	receptors	subsequently	

cloned	were	named	MC3R,	MC4R,	and	MC5R.		The	knowledge	of	POMC	mRNA,	and	

melanocortin	peptides	in	the	CNS	generated	enterprising	inquiries	directed	at	

understanding	the	direct	biological	actions	of	melanocortins	in	neurobiology.		

Ultimately,	discovery	of	unique	melanocortin	receptors	expressed	in	the	central	

nervous	system,	the	melanocortin-3	and	melanocortin-4	receptors,	resulted	in	the	

development	of	pharmacological	tools	and	genetic	models	leading	to	the	

demonstration	that	the	central	melanocortin	system	plays	a	critical	role	in	the	

regulation	of	energy	homeostasis.		Herein	I	will	focus	on	MC4R,	a	G-protein	coupled	

receptor	(GPCR)	whose	agonist	α-MSH,	a	POMC	cleavage	product,	and	inverse	

agonist	AgRP,	mediate	a	variety	of	physiological	processes	critical	for	energy	

homeostasis,	including	food	intake,	energy	expenditure	through	sympathetic	and	
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parasympathetic	tone,	adaptive	thermogenesis,	reproductive	biology,	and	glucose	

homeostasis.		By	studying	MC4R	in	humans	and	a	variety	of	analogous	model	

systems,	an	expanding	understanding	of	MC4R	in	regulating	energy	homeostasis	has	

emerged.		Indeed,	mutations	in	the	MC4R	are	now	known	to	be	the	most	common	

cause	of	early-onset	syndromic	obesity,	accounting	for	2-5%	of	all	pediatric	obesity	

cases.		While	much	effort	has	focused	on	understanding	MC4R	neurocircuitry	and	

targeting	MC4R	agonists	for	drug	discovery	as	a	treatment	for	common	obesity,	to	

date	only	one	α-MSH	analogue	(Setmelanotide/RM493)	has	achieved	success	in	the	

clinic.		Even	so,	setmelanotide	is	most	successful	as	hormone	replacement	therapy	

for	patients	with	POMC	null	or	leptin	receptor	mutations,	thus	there	is	still	much	to	

be	understood	about	the	physiologic	structure	and	function	down	to	the	molecular	

and	cellular	level	of	the	melanocortin	system.			

	
Types	of	receptors	in	the	melanocortin	family		
	
						Understanding	of	the	physiological	roles	and	sites	of	action	of	the	five	

melanocortin	receptors	and	their	corresponding	peptide	ligand(s)	began	to	

significantly	accelerate	with	their	cloning	in	1992	[4].	While	the	first	two	receptors	

reported	corresponded	to	the	previously	characterized	melanocyte	stimulating	

hormone	receptor	(MSHR	or	MC1R)	and	adrenocorticotropin	hormone	receptor	

(ACTHR	or	MC2R),	ultimately	five	melanocortin	receptors	were	cloned,	and	referred	

to	as	the	MC1R	–	MC5R	due	to	the	absence	of	any	known	physiological	roles	for	the	

MC3R,	MC4R,	or	MC5R	at	that	time.	All	melanocortin	receptors,	except	MC2R,	bind	

melanocortin	peptides	containing	the	conserved	heptapeptide	core	“MEHFRWG,”	

found	in	α-MSH,	while	the	ACTHR	further	requires	a	peptide	motif	C-terminal	to	the	

13	amino	acids	found	in	α-MSH.		Each	melanocortin	receptor	mediates	diverse	

physiological	responses	based	on	unique	affinities	to	POMC	peptide	cleavage	

products	α-MSH,	β-MSH,	γ-MSH,	or	ACTH	in	the	case	of	the	MC2R.		

	
Anatomical	distribution	of	melanocortins	
	
					Interest	in	the	biology	of	α-MSH	prompted	identification	of	its	binding	sites	from	a	

human	melanoma	sample.		The	first	receptor	to	be	characterized,	MSHR	renamed	
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MC1R,	was	used	as	the	preliminary	sequence	to	clone	ACTHR	renamed	MC2R	[4].		

MC1R	is	primarily	expressed	in	melanocytes	of	the	skin	and	hair	and	is	known	for	its	

role	in	pigmentation,	particularly	in	response	to	UV	exposure.		The	primary	agonist	

α-MSH	binds	MC1R	to	stimulate	synthesis	of	eumelanin	(black-brown	pigment),	

whereas	the	antagonist	agouti	(agouti	signaling	protein	or	ASP)	binds	MC1R	thereby	

competitively	inhibiting	the	agonist	binding	and	switching	the	melanocyte	to	

produce	pheomelanin	(yellow-red	pigment).		MC2R	is	expressed	solely	in	the	adrenal	

cortex	where	its	regulation	of	adrenocortical	steroidogenesis	helps	to	maintain	cell	

proliferation	and	production	of	glucocortiocoids	[5].	MC2R	does	not	bind	α-MSH;	

instead	the	agonist	ACTH,	produced	and	released	from	the	anterior	pituitary	gland,	

activates	MC2R.		Whereas	evidence	for	MC1R	or (7366),	MC2R	in	the	central	nervous	
system	(CNS)	was	negligible,	pioneers	of	the	field	suspected	additional	receptors	

based	on	demonstrated	effects	of	melanocortin	peptides	on	learning,	behavior,	and	

other	central	processes.		Thus	three	orphan	receptors	were	identified	and	cloned.			

MC3R	and	MC4R	are	both	primarily	expressed	in	the	CNS.		Cloned	in	1993	[6]	

in	situ	hybridization	studies	delineated	the	narrow	distribution	of	MC3R	within	the	

adult	CNS	to	approximately	30	mapped	nuclei.	The	highest	density	is	found	in	

concentrated	sub-regions	of	the	hypothalamus	including	the	arcuate	nucleus	(ARC),	

ventromedial	nucleus	of	the	hypothalamus	(VMH),	the	limbic	system	regions	of	

ventral	tegmental	area	(VTA)	and	nucleus	accumbens	(NuAcc),	central	linear	raphe,	

with	moderate	expression	in	the	anteroventral	preoptic	nucleus,	lateral	

hypothalamic	area	(LH),	posterior	hypothalamic	area,	medial	habenular	nucleus,	and	

paraventricular	nucleus	of	the	hypothalamus	(PVH),	and	weak	signals	from	a	few	

brainstem	nuclei	(notably	not	the	nucleus	of	the	solitary	tract	(NTS)[7-9]	[10]	[11]	

[12].		Double	labeled	in	situ	hybridization	validated	prior	pharmacologic	studies	by	

showing	that	a	large	component	of	ARC	neurons	expressing	MC3R	are	also	positive	

for	AgRP	or	POMC	mRNA	[13].				MC3R	preferentially	binds	to	agonist	γ-MSH,	another	

POMC	cleavage	product,	although	the	receptor	potently	responds	to	α-MSH	as	well.	

and	is	antagonized	by	AgRP	(agouti-related	peptide).		Various	MC3R	knockout	

models	have	demonstrated	that	disruption	of	MC3R	in	mice	induces	a	non-

hyperphagic	increase	in	adiposity	with	reduced	lean	mass,	reduced	bone	density,	and	
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modest	body	mass	change	[14]	[15]	[16].		Further	physiological	studies	suggest	

MC3R	regulates	fast-induced	refeeding	[17]	and	entrainment	of	anticipatory	

behavior	to	nutrient	intake	(54).	MC3R	in	the	VTA	has	a	role	as	a	sexually	dimorphic	

node	for	regulating	the	mesolimbic	dopaminergic	system	and	reward	[12].	MC3R	

peripheral	expression	is	detectable	in	the	stomach,	duodenum,	kidneys,	placenta,	

heart,	monoctyes	and	macrophages,	however	the	function	of	the	gene	at	these	sites	of	

action	has	not	been	well	explored	[18].	Nonetheless,	it	is	apparent	that	one	of	the	

central	MSH	peptides	likely	mediates	some	effects	on	feeding	and	energy	

homeostasis	via	the	MC3R.	

In	1993	two	laboratories	independently	cloned	and	mapped	the	human	MC4R	

using	polymerase	chain	reaction	with	primers	having	sequence	homology	to	other	

members	of	seven	transmembrane	G-protein	coupled	receptors	and	homology	

screening	[19,	20].		This	gene,	identified	on	chromosome	18	(q21.3)	in	human,	was	

comprised	of	one	large	exon	with	an	open	reading	frame	of	about	1	kbp	that	encodes	

a	protein	of	332	amino	acids.		Based	on	sequence	alignment	analysis,	the	closest	

identified	GPCR	was	MC3R,	with	58%	homology	[21,	22].		MC4R	is	a	member	of	the	

rhodopsin-like,	Class	A,	G	protein-coupled	receptor	with	seven	transmembrane	

domains	connected	by	alternating	intracellular	and	extracellular	loops.		MC4R	has	

relatively	short	N	and	C	-termini,	and	intracellular	and	extracellular	loops,	rendering	

it	one	of	the	shortest	GPCRs.		As	a	GPCR,	MC4R	couples	to	Gαs	protein	to	activate	

adenylyl	cyclase,	resulting	in	production	of	intracellular	cAMP.		There	is	also	

evidence	that	this	receptor	can	raise	intracellular	calcium	levels	through	recruitment	

of	Gαq	and	IP3	production	in	heterologous	overexpression	systems	[23-25].			

In	situ	hybridization	studies	revealed	MC4R	is	widely	expressed	throughout	

the	central	as	well	as	peripheral	nervous	system,	and	was	later	discovered	in	

intestinal	colonic	L	cells—a	neuroendocrine	cell	type	(B.L.	Panaro	et	al.,	2014).		In	the	

hypothalamus	MC4R	is	concentrated	in	the	PVH,	LH,	and	dorsomedial	nucleus	

(DMH).		Beyond	the	hypothalamus,	CNS	expression	of	MC4R	is	found	in	a	variety	of	

nuclei	including	the	dorsal	motor	nucleus	of	the	vagus	(DMX),	the	intermediolateral	

(IML)	column	of	the	spinal	cord,	the	amgydala,	and	the	bed	nucleus	of	the	stria	

terminalis	(BNST).		The	role	of		MC4R	in	neuroendocrine	and	autonomic	control	was	
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alluded	to	early	in	its	discovery	due	to	expression	concentrated	in	hypothalamic	and	

brainstem	nuclei	[26].	

					MC5R	was	the	final	melanocortin	receptor	family	member	identified	and	its	

presence	in	exocrine	cells	appears	to	promote	synthesis	and	secretion	of	multiple	

exocrine	gland	products	such	as	sebaceous	lipids	in	response	to	the	agonist	α-MSH	

[27].	

					A	summary	of	the	types,	hallmark	sites	of	expression,	function,	and	ligand	

interactions	of	the	five	melanocortin	receptors	is	provided	in	Table	1.		

	
	
	
Table	1-1.	The	Melanocortin	receptors	

	
	 	

 L-cells 
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MC4R	and	feeding	behavior	
	

When	the	expression	of	the	MC4R	gene	in	the	CNS	was	mapped	by	in	situ	

hybridization	in	1994,	the	distribution	suggested	a	role	in	neuroendocrine	and	

autonomic	control	[19].		Historically,	the	earliest	physiologic	evidence	of	the	role	of	

melanocortins	in	feeding	behavior	originated	before	cloning	of	MC4R,	with	reports	

that	ICV	injection	of	ACTH	(1-24)	and	α-MSH	inhibited	the	feeding	drive	induced	by	

IP	injection	of	kappa-opiate	receptor	agonist	in	in	rats.	[28,	29].			Stimulation	of	food	

intake	by	α-MSH	had	also	been	reported	[30],	and	thus	the	characterization	of	

receptors	for	α-MSH	in	the	brain	was	ultimately	needed	to	clarify	these	conflicting	

findings.				

The	first	breakthrough	in	understanding	MC4R	physiological	function	came	

from	discoveries	made	in	MC1R	physiology	and	pharmacology	[31].		In	1994,	agouti,	

a	132-amino-acid	protein	that	is	produced	in	the	hair	follicle,	was	demonstrated	to	

be	a	high	affinity	ligand	of	the	MC1R,	competitively	blocking	α-MSH	binding	to	inhibit	

α-MSH	induced	cAMP	production	[31].		This	finding	correlated	with	observations	in	

vivo	that	agouti	blocked	eumelanin	production.		Strikingly,	agouti	was	also	found	to	

be	a	high	affinity	competitive	antagonist	of	α-MSH	action	at	the	MC4R,	but	no	other	

melanocortin	receptors	[31].	

Since	agouti	gene	mutations	were	found	to	result	from	gene	rearrangements	

that	produced	ectopic	expression	of	agouti	[32],	it	was	hypothesized	that	the	

inhibition	of	melanocortin	receptor(s)	in	the	brain	by	agouti	may	underlie	the	

obesity	and	metabolic	syndrome	observed	in	the	yellow	(Ay)	mouse	[31].	The	

development	of	the	first	MC4R	antagonist	(18),	and	the	creation	of	two	different	

genetic	mouse	models	would	ultimately	confirm	this	hypothesis	[33].		

In	1997,	several	studies	were	published	providing	direct	evidence	and	

establishing	a	central	role	of	MC4R	signaling	in	regulation	of	energy	homeostasis.	

ICV	injection	of	MTII,	a	cyclic	analog	of	α-MSH,	was	shown	to	suppress	food	intake	

tested	in	four	different	mouse	models:	fasted	C57BL/6J,	ob/ob,	and	(Ay)	mice,	and	

mice	injected	with	neuropeptide	Y,	and	this	inhibition	was	blocked	by	co-injection	of	

SHU9119,	a	cyclic	peptide	antagonist	of	MC3/4.		Furthermore,	ICV	injection	of	
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SHU9119	alone	increased	food	intake	in	mice	[33,	34].	These	findings	supported	the	

hypothesis	that	hypothalamic	POMC	expressing	neurons	releasing	α-MSH	tonically	

inhibit	feeding	via	activation	of	MC4R	target	neurons,	and	the	chronic	blockade	of	

this	signaling	pathway	by	agouti	produces	the	obesity	observed	in	Ay	yellow	mice	

[33].		Together,	these	findings	supported	the	hypothesis	that	hypothalamic	POMC	

expressing	neurons	release	α-MSH	tonically	and	inhibit	feeding	via	activation	of	

MC4R	target	neurons.	

Animal	models	manipulating	the	melanocortin	system	by	transgene	or	

knockout	have	been	pivotal	in	advancing	our	understanding	of	the	role	of	MC4R	in	

regulation	of	feeding	and	energy	homeostasis	(Table	2).	In	1997,	the	first	animal	

model	testing	the	role	of	MC4R	signaling	in	the	brain	was	created.	MC4R	knock-out	

mice	were	first	derived,	by	gene	targeting	via	insertion	of	a	neomycin-targeting	

cassette	in	embryonic	stem	cells	which	were	then	implanted	into	pseudo-pregnant	

dams	to	make	MC4R	knockout	mice.		This	model	system	was	used	to	test	the	

hypothesis	that	deletion	of	the	MC4R	would	recapitulate	the	agouti	obesity	

syndrome	[35].	Mice	lacking	both	alleles	displayed	an	early-onset	obesity,	

hyperphagia,	increased	linear	growth,	and	hyperinsulinemia.	Loss	of	a	single	allele	

resulted	in	intermediate	levels	of	all	the	phenotypes	compared	with	the	wild	type	

and	homozygous	siblings,	indicating	involvement	of	a	gene	dosage	effect,	a	rare	

finding	in	GPCRs	[35].			Later,	a	reversible	MC4R	knockout	model	was	generated	

through	the	insertion	of	a	floxed	transcriptional	blocking	cassette	in	the	5’	region	of	

the	gene	(MC4R-loxTB)	[80]	.	Along	with	the	MC4RloxP/loxP	mouse	[155,	278],	these	

tools	have	enabled	site-specific	reexpression	and deletion of MC4R in mice.	These	

findings	further	support	a	model	in	which	the	primary	mechanism	by	which	agouti	

induces	obesity	is	chronic	antagonism	of	the	MC4R,	therefore,	establishing	MC4R	as	

central	regulator	of	energy	balance.				
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Figure	1-1.	A	highly	simplified	schematic	of	the	central	melanocortin	system		
Receipt of long-term adipostatic signals and acute satiety signals by neurons in arcuate 
nucleus	and	brainstem,	respectively.	Light	blue	boxes	indicate	nuclei	containing	
POMC	neurons;	yellow	boxes	indicate	nuclei	containing	MC4R	neurons	that	may	
serve	to	integrate	adipostatic	and	satiety	signals;	and	pink	boxes	show	some	
circumventricular	organs	involved	in	energy	homeostasis.	Red	arrows	designate	
projections	of	POMC	neurons;	blue	arrows	show	projections	of	agouti-related	
protein	(AgRP	neurons).	AP,	area	postrema;	ARC,	arcuate	nucleus;	BST,	bed	nucleus	
of	the	stria	terminalis;	CCK,	cholecystokinin;	CEA,	central	nucleus	of	the	amygdala;	
DMV,	dorsal	motor	nucleus	of	the	vagus;	LH,	lateral	hypothalamic	area;	LPB,	lateral	
parabrachial	nucleus;	ME,	median	eminence;	NTS,	nucleus	tractus	solitarius;	PVH,	
paraventricular	nucleus	of	the	hypothalamus;	RET,	reticular	formation.	For	
simplicity,	only	a	fraction	of	the	>100	MC4R	target	sites	are	shown,	and	none	of	the	
MC3R	target	nuclei	is	indicated.	Adapted,	with	permission,	from	Fan	W,	Boston	BA,	
Kesterson	RA,	Hruby	VJ	&	Cone	RD	(1997)	Role	of	melanocortin	neurons	in	feeding	
and	the	agouti	obesity	syndrome.	Nature	385	165–168.	
	 	

Adiposity	Signals	
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Table	1-2.	Mouse	models	used	to	study	MC4R	and	corresponding	ligand	
signaling	in	obesity			
(Anderson,	EJP,	et	al.	(2016).	Regulation	of	feeding	and	energy	homeostasis	by	α-MSH.	JME)	
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AgRP,	the	endogenous	antagonist	of	MC4R	
	

Another	important	event	in	1997	was	the	discovery,	characterization	and	

mapping	of	AgRP,	an	analog	of	Agouti	[36-38].		AgRP	mRNA	is	mainly	expressed	in	

the	arcuate	nucleus	of	hypothalamus	and	its	levels	are	increased	during	fasting,	or	in	

ob/ob	mice,	suggesting	that	AgRP	was	downstream	of	leptin	action.			AgRP	binds	with	

high	affinity	to	MC3R	and	MC4R.		Like	agouti,	it	acts	as	competitive	antagonist	of	α-

MSH	at	these	receptors,	with	only	low	affinity	to	MC1R	[36].	A	single	ICV	injection	of	

AgRP	increases	food	intake	for	up	to	a	week,	and	its	co-injection	with	α-MSH	blunts	

the	anorexigenic	effects	of	α-MSH.		AgRP	also	functions	as	an	inverse	agonist	of	MC4R	

by	decreasing	cAMP	levels	produced	by	the	constitutive	activity	of	wild	type	MC4R	

[39-41].		This	finding	promoted	the	now	canonical	yin/yang	perspective	of	the	

regulation	of	feeding,	with	POMC	neurons	and	α-MSH	inhibiting	food	intake	and	

energy	storage,	and	AgRP/NPY	neurons	stimulating	food	intake	and	energy	storage,	

in	part	through	AgRP	antagonism	of	MC4R	signaling	(Figure	2).	

In	agreement	with	this	model,	transgenic	mice	ubiquitously	over	expressing	

human	AgRP	exhibit	obesity	but	not	yellow	fur,	suggesting	that	AgRP,	unlike	agouti	

protein,	is	MC3R/MC4R	specific,	and	unable	to	promote	pheomelanin	in	hair	follicle	

melanocytes	[36,	37].	Since	MC4R	knockout	mice	exhibit	morbid	obesity,	some	

expected	that	AgRP	knockout	mice	might	exhibit	leanness.		However,	at	first	glance,	

these	mice	exhibit	normal	food	intake,	body	composition,	growth	rates,	and	normal	

responses	to	starvation	[42].	Subsequently	it	was	demonstrated	that	homozygous	

AgRP	knockout	mice	at	6-months	of	age	do	exhibit	a	very	modest	reduction	in	body	

weight	and	adiposity	with	increased	metabolic	rate,	body	temperature,	and	

locomotor	activity	[43].	These	mice	also	exhibit	a	blunted	fast	induced	refeeding	

response,	a	phenotype	also	found	in	MC3R	knockouts.		It	is	now	known	that	AgRP	

neurons	are	GABAergic,	and	of	course	express	NPY	as	well,	and	all	three	agents	

regulate	downstream	MC4R	neurons	to	stimulate	feeding	[44].		Despite	this	

redundancy,	the	kinetics	of	each	neurotransmitter	is	unique.		GABA	functions	in	a	

fast	acting	manner,	regulating	bout-to-bout	food	intake,	while	NPY	and	AgRP	act	
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over	longer	periods	and	dictate	long	term	energy	homeostasis	[66].	These	findings	

underscore	the	importance	of	the	AgRP	neuronal	system,	as	well	as	AgRP	action	on	

MC4R	in	the	regulation	of	energy	homeostasis.		
 

 
Figure	1-2.	Yin-Yang	model	of	control	of	feeding	behavior	and	energy	
homeostasis	
NPY/AgRP	and	POMC	neurons	within	the	arcuate	nucleus	form	a	coordinately	
regulated	network	due	to	dense	NPY/	AgRP	fibers	that	project	to	POMC	cell	bodies.	
Some	of	the	receptors	for	a	large	number	of	hormones	and	neuropeptides	known	to	
regulate	the	network	are	indicated.	These	fibers	project	to	many	of	the	same	nuclei,	
where	dual	release	of	α-MSH	and	AgRP	were	proposed	to	compete	for	MC4R	
binding,	to	coordinately	regulate	food	intake	and	energy	homeostasis.	AgRP,	agouti-
related	peptide;	GABA,	γ-aminobutyric	acid;	GHS,	growth-hormone	secretagogue	
receptor;	Lep,	leptin;	MC3R,	melanocortin	3	receptor;	NPY,	neuropeptide	Y;	μ-OR,	μ-
opiate	receptor;	R,	receptor;	GLP-1,	glucagon-like	peptide	1.		Modified,	with	
permission,	from	Cowley	MA,	Smart	JL,	Rubinstein	M,	Cerdan	MG,	Diano	S,	Horvath	
TL,	Cone	RD	&	Low	MJ	(2001)	Leptin	activates	anorexigenic	POMC	neurons	through	
a	neural	network	in	the	arcuate	nucleus.	
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POMC	and	AgRP	Neurons:	Expression	of	endogenous	agonist,	inverse	agonist,	
and	biased	agonist	of	MC4R	
	

To	 truly	 understand	MC4R	 action	 in	 the	 CNS,	 it	 is	 critical	 to	 understand	 the	

neuroanatomical	substrate	underlying	the	central	melanocortin	system	(Figure	1-1).		

Neurons	 expressing	 MC3R,	 MC4R,	 POMC	 neurons	 and	 AgRP	 neurons	 collectively	

constitute	 the	 primary	 neural	 components	 of	 this	 system.	 POMC-derived	 peptide	

hormones	α-,	ß-,	and	γ-MSH	act	as	melanocortin	receptor	agonists	(Figure	1-3),	albeit	

at	different	affinities,	on	MC3R	and	MC4R	in	the	central	nervous	system	(CNS).	AgRP	

is	a	competitive	antagonist	of	MSH	binding	to	MC4R,	but	 is	also	a	biased	agonist	of	

MC4R	signaling,	as	discussed	in	more	detail	below	[45].	

AgRP	was	identified	by	its	homology	to	Agouti	and	its	expression	is	restricted	to	

ARC	and	adrenal	gland	with	very	low	expression	in	lung,	kidney,	testis	and	ovaries	[36,	

46].	 	 Within	 the	 CNS,	 AgRP	 neurons	 are	 restricted	 to	 arcuate	 nucleus	 of	 the	

hypothalamus	 (ARCAgRP).	 	 Most	 AgRP	 neurons	 (~90%)	 express	 another	 potently	

orexigenic	peptide	hormone,	neuropeptide	Y	(NPY).	 	Unlike	AgRP,	NPY	is	one	of	the	

most	 abundant	 and	 widely	 expressed	 neuropeptides	 in	 the	 mammalian	 brain.		

Likewise,	POMC	neurons	within	the	ARC	(ARCPOMC)	express	another	gene	coding	for	

an	anorectic	peptide	called	cocaine-	and	amphetamine-regulated	transcript	(CART).		

ARCAgRP/NPY	and	ARCPOMC/CART	neurons,	henceforth	referred	to	as	ARCAgRP	and	ARCPOMC,	

are	chemically	and	anatomically	distinct,	however	approximately	25%	of	the	ARCAgRP	

neurons	are	derived	from	the	same	lineage	as	ARCPOMC	neurons	during	development	

[47].	 	 In	 the	 rodent	 ARCAgRP	 neurons	 are	 expressed	 homogenously	 throughout	 the	

rostrocaudal	axis	of	the	ARC.		Reciprocally,	most	ARCPOMC	neurons	are	located	in	the	

anterior	and	medial	sector	of	the	ARC.		In	the	rat	ARCPOMC	neurons	are	more	laterally	

distributed	compared	to	the	mouse	[48].		Earlier	studies	quantifying	ARCPOMC	neurons	

by	 ß-Endorphin	 immunohistochemistry	 [49]	 or	 using	 mice	 expressing	 GFP	 under	

POMC	promoter	[48]	have	reported	around	3000-3500	POMC	neurons	in	the	rodent	

ARC.	 	 However	 a	 recent	 report	 quantifying	 the	 POMC	 neurons	 by	

immunohistochemistry	 using	 an	 antibody	 specific	 to	 POMC	 precursor	 estimated	

around	 9000	 POMC	 immunoreactive	 cells	 [50].	 	 The	 number	 of	 ARCAgRP	 neurons,	
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analyzed	using	mice	expressing	GFP	in	an	AgRP-dependent	manner.	was	estimated	to	

be	between	8000-10,000	[50,	51],		

Expression	of	POMC	follows	a	dynamic	pattern	throughout	gestation,	and	POMC	

positive	brain	regions	in	the	adult	mice	reveal	that	POMC	expression	in	many	regions	

in	the	developing	embryo	is	transient.		In	adult	rodents,	POMC	mRNA	was	detected	by	

northern	 blot	 in	 hypothalamus,	 amygdala	 and	 the	 cerebral	 cortex	 but	 was	 not	

detectable	in	midbrain	or	cerebellar	RNA	preparations	[52].	A	5`	truncated	version	of	

POMC	mRNA	lacking	the	signal	sequence	was	also	detected	in	amygdala,	midbrain	and	

cortex	as	well	as	in	several	peripheral	tissues.		The	role	of	this	truncated	version	is	

unclear	as	it	cannot	produce	active	POMC	derived	peptides	[53].		POMC	was	detected	

in	 the	 nucleus	 tractus	 solitaries	 (NTS)	 and	 lateral	 reticular	 formation	 of	

the	rat	brainstem	initially	by	immunohistochemistry	against	ACTH	[54,	55]	and	later	

by	 in	situ	hybridization	[56].	 	Most	neurons	 identified	as	POMC	positive	by	 labeling	

strategies	involving	POMC-Cre	mediated	recombination,	which	account	for	transient	

POMC	expression	that	does	not	persist	into	the	adulthood,	do	not	express	POMC	in	the	

adult	brain.		In	this	context,	mice	expressing	GFP	under	POMC	promoter	yielded	more	

satisfactory	anatomical	data	of	adult	ARCPOMC	neurons	as	there	is	almost	100%	overlap	

of	GFP	and	POMC	expressions	in	the	ARC,	but	not	in	other	brain	regions	[57].		More	

recent	and	comprehensive	studies	comparing	POMC-Cre,	POMC-GFP	and	sensitive	in	

situ	 hybridization	 techniques	 have	 concluded	 that	 POMC	 expression	 in	 the	 adult	

mouse	brain	is	restricted	to	ARC	and	NTS	(Figure	1-1)	[58].	
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Figure	1-3.	Structure	and	processing	of	the	POMC	hormone	precursor.		
Graphic	shows	the	processing	of	the	POMC	preprohormone	into	mature	
melanocortin	and	β-endorphin	peptides	in	the	pituitary	and	hypothalamus	
by	prohormone	convertases	1-3.	(Graphic	from	Endocrine	Review	2006)	
https://doi.org/10.1210/er.2006-0034	
	

ARCAgRP	and	ARCPOMC	receive	inputs	from	other	hypothalamic	nuclei	including	

the	PVH,	DMH,	VMH,	and	LH.	 	Extra-hypothalamic	nuclei	such	as	the	lateral	septum	

and	 BNST	 also	 innervate	 these	 neurons	 [59].	 	 	 Neurons	 with	 cell	 bodies	 in	 the	

hippocampus,	medial	mammillary	nucleus	and	VTA	appear	 to	 selectively	 innervate	

ARCPOMC	 neurons,	 but	 not	 ARCAgRP	 neurons	 [59].	 	 NTSPOMC	 neurons	 receive	 inputs	

primarily	 from	other	neurons	mostly	within	the	brainstem	[59].	 	However	neurons	

originating	from	PVH	and	amygdala	also	innervate	NTSPOMC	neurons	[59]		

ARCAgRP	 and	ARCPOMC	 neurons	 project	 to	 a	 large	 number	 of	 intra-	 and	 extra-

hypothalamic	 brain	 regions,	 and	 many	 reciprocal	 connections	 have	 been	 found.		

Within	the	hypothalamus,	ARCAgRP	and	ARCPOMC	neurons	send	overlapping	projections	

to	 many	 hypothalamic	 nuclei	 including	 PVH,	 LH,	 ventromedial	 nucleus	 of	 the	

hypothalamus	 (VMH),	 posterior	 hypothalamus	 (PH),	 DMH,	 and	 medial	 preoptic	

nucleus/area	(mPOA)	[13].		ARCAgRP	neurons	innervate	extra-hypothalamic	sites	such	

as	the	BNST,	the	lateral	parabrachial	nucleus	(LPB),	central	nucleus	of	the	amygdala,	

and	 periaqueductal	 gray	 (PAG)	 [51,	 59].	 	 ARCPOMC	 neurons	 innervate	 many	 extra-

hypothalamic	 regions	 including	BNST,	 lateral	septum,	nucleus	accumbens,	LPB,	 the	

periaqueductal	gray,	and	the	DMX.		NTSPOMC	neurons	send	projections	out	to	innervate	

other	neuron	types	within	the	brainstem	[59].		The	extensive	overlap	between	regions	
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innervated	 by	 both	 AgRP	 and	 POMC	 neurons	 also	 supports	 the	 dual	 regulation	 of	

central	melanocortin	signaling	by	α-MSH	and	AgRP	(Figure	1-2).		Collectively,	POMC	

neurons	appear	to	innervate	multiple	regions	not	receiving	AgRP	innervation,	such	as	

the	DMX.	

Besides	 neuronal	 inputs,	 ARCAgRP	 and	 ARCPOMC	 neurons	 are	 under	 direct	

regulation	 of	 hormonal	 and	 nutrient-related	 signals.	 Both	 neurons	 express	 leptin	

receptors,	 while	 only	 ARCAgRP	 neurons	 express	 ghrelin	 receptors.	 A	 recent	 report	

suggested	that	the	AgRP	neurons	that	project	within	the	hypothalamus	did	not	express	

LepRb,	which	was	not	true	for	ARCPOMC	neurons	[51].	Around	30-40%	of	AgRP	neurons	

exhibit	leptin-induced	STAT3	phosphorylation	[60].	Virtually	no	ARCPOMC	neurons	in	

the	 NTS	 exhibit	 leptin-induced	 STAT3	 phosphorylation	 or	 c-Fos	 induction	 [49].		

Nonetheless,	about	60%	of	ARCPOMC	neurons	are	leptin-responsive.	In	addition,	fasting	

decreases	POMC	expression	in	both	ARC	and	NTS,	but	only	ARC	POMC	expression	can	

be	rescued	by	leptin	[49,	61].	Deletion	of	LepRb	from	ARCAgRP	and	ARCPOMC	neurons	

results	in	obesity	and	hyperleptinemia	[60,	62]	in	both	genders	of	mice.		Deletion	of	

LepRb	from	both	neuronal	populations	is	additive	[60].	While	these	results	should	be	

evaluated	 taking	 into	 account	 the	 problems	 inherent	 with	 the	 developmental	

problems	 associated	with	 the	 Cre	 lines	 used,	 these	 studies	 suggest	 that	 POMC	 and	

AgRP	neurons	mediate	only	part	of	leptin’s	effects	on	energy	homeostasis	[58].			

Initial	studies	with	optogenetics	found	that	1	hour	hCh2R	stimulation	of	

ARCAgRP	neurons	induced	0.85g	of	food	intake	in	satiated	mice	[63]	[64].		The	

frequency	of	stimulation	was	proportional	to	the	magnitude	of	food	ingested	

indicating	that	this	effect	was	presumably	due	to	increased	action	potential	

frequency	[63].		Interestingly,	the	acute	phase	of	ARCAgRP	stimulated	food	intake	was	

maintained	on	the	Ay	background	and	therefore	independent	of	MC4R	inhibition	

[63].		Similar	experiments	using	designer	receptors	exclusively	activated	by	designer	

drugs	(DREADDS)	also	found	that	hM3Gq	activation	of	ARCAgRP	neurons	resulted	in	

increased	food	intake	and	reduced	oxygen	consumption.		hM4Gi	mediated	inhibition	

reduced	food	intake	indicating	that	ARCAgRP	regulated	feeding	is	bidirectional	[65].		

Furthermore,	chronic	hM3Gq	activation	of	ARCAgRP	neurons	was	found	to	cause	an	

obesity	phenotype	that	could	be	reversed	following	cessation	of	CNO	administration	
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[65].		By	combining	ARCAgRP	DREADDs	with	existing	KO	mouse	models,	follow	up	

studies	revealed	that	NPY	or	GABA	was	necessary	for	the	acute	effects	ARCAgRP	

activation	while	AgRP	was	sufficient	for	the	long-term	effects	of	ARCAgRP	activation	

[66].		More	recent	experiments	have	used	hCh2R	and	DREADDs	to	further	define	

how	ARCAgRP	neurons	encode	a	negative	valance	signal	for	energy	depletion	[67]	and	

how	they	evoke	typified	energy	seeking	behaviors	even	in	the	absence	of	food	[68].		

Together,	these	studies	establish	a	critical	role	of	AgRP	neurons	in	the	regulation	of	

feeding	behavior	and	serve	as	a	model	by	which	to	study	the	role	of	other	genetically	

defined	populations.	

					Optogenetics	and	DREADDs	have	also	been	used	to	study	the	role	of	POMC	

neurons	in	feeding	behavior.		Chronic	but	not	acute	optogenetic	stimulation	of	

ARCPOMC	neurons	was	found	to	reduce	food	intake	and	cause	weight	loss	[69,	70].		

Importantly,	unlike	ARCAgRP	dependent	feeding,	the	satiating	effect	of	ARCPOMC	

stimulation	was	lost	on	the	Ay	background	and	therefore	dependent	on	MC4R	

signaling	[63].		This	finding	has	been	repeated	with	hM3Dq	activation	of	ARCPOMC	

neurons	whereby	animals	displayed	a	50%	reduction	of	food	intake	and	a	6%	drop	in	

their	total	body	mass	[70].		Furthermore,	chronic	but	not	acute	hM4Di	mediated	

inhibition	of	ARCPOMC	neurons	was	found	to	cause	hyperphagia,	but	only	after	24	

hours.		Although	this	finding	points	toward	a	role	for	α-MSH	signaling	in	regulating	

long	term	energy	balance,	these	studies	are	at	odds	with	pharmacological	data	that	

have	shown	robust	acute	anorexic	effects	of	MC4R	agonists	[71].	While	it	is	possible	

that	supraphysiological	α-MSH	dosing	paradigms	used	during	pharmacological	

studies	might	be	responsible	for	some	of	this	effect,	NTSPOMC	neurons	have	also	been	

implicated	in	acute	feeding	behavior.	Indeed,	acute	hM3Dq	stimulation	of	NTSPOMC	

neurons	has	been	found	to	cause	acute	anorexia	while	chronic	activation	of	this	

population	does	not	seem	to	effect	food	intake	[70].	The	mechanism	that	underlies	

the	discordance	between	anatomical	subsets	of	POMC	neurons	remains	unknown,	

however,	it	is	likely	a	result	of	their	distinct	projection	fields	[59].	Alternatively,	

acute	stimulation	of	ARCPOMC	has	been	shown	to	promote	endocannabinoid	evoked	

feeding	which	may	be	responsible	for	the	delayed	response	of	ARCPOMC	neurons	but	

not	NTSPOMC	neurons	[72].			
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MC4R	Neurons	
	

MC4R	expressing	neurons	serve	to	integrate	energy	status	signals	from	

ARCAgRP	and	ARCPOMC	neurons	and	relay	the	assimilated	status	throughout	the	CNS	

(Figure	1-4).		The	MC4R	is	more	broadly	distributed	than	other	melanocortin	

receptor	family	members.		MC4R	exhibits	expression	in	many	CNS	nuclei	with	a	

striking	presence	in	the	hypothalamus,	NuAcc,	and	DMX.		Mapping	via	in	situ	

hybridization	localized	MC4R	to	over	100	distinct	nuclei	[26].		Hypothalamic	nuclei	

of	highest	concentration	include—the	suprachiasmatic	preoptic	nucleus,	

anteroventral	periventricular	nucleus	supraoptic	nucleus,	PVH,	VMH,	DMH,	

tuberomammillary	nucleus,	and	the	lateral	hypothalamic	area.		Notable	brainstem	

labeling	is	found	in	the	superior	colliculus,	DMX,	substantia	nigra,	raphe,	and	

reticular	formation.		Following	these	high	expression	zones,	several	regions	of	the	

amygdala	and	isocortex	have	moderate	expression.		MC4R	may	play	a	role	in	

olfactory	response	due	to	its	location	in	discrete	cortical	rejoins.		MC4R	has	also	been	

identified	in	CA1	and	CA2	regions	of	the	hippocampus,	throughout	the	bed	nuclei	of	

the	stria	terminalis	(BNST)	and	striatum,	and	with	minimal	expression	in	the	

thalamus	[7,	9,	26,	73]	[74-77]	[78].		Outside	of	the	CNS,	MC4R	mRNA	expression	has	

been	detected	in	astrocytes,	spinal	cord,	heart,	lung,	kidney,	and	testis	[18].		

Localization	and	distribution	of	MC4R	has	been	further	confirmed	by	studies	using	a	

mouse	model	expressing	GFP	under	control	the	MC4R	promoter	[79].	

Additional	genetic	and	pharmacologic	modeling	systems	inducing	or	

repressing	MC4R	gene	function	in	specific	neuronal	populations	have	mapped	some	

neuroanatomical	functions	of	these	cells	bodies	and	begun	to	reveal	how	the	MC4R	

serves	to	regulate	energy	homeostasis.		For	example	MC4R	in	the	PVH	is	essential	for	

regulating	appetite,	while	MC4Rs	expressed	in	cholinergic	preganglionic	

parasympathetic	neurons	are	necessary	for	regulating	energy	expenditure	[80,	81].	

One	peripheral	MC4R-mediated	pathway	was	described	after	detection	of	high	levels	

of	MC4R	expression	in	enteroendocrine	L	cells	[82].		Data	shows	the	receptor	

mediates	release	of	L	cell	products	PYY	and	GLP-1	in	both	mouse	and	human	[82],	in	

response	to	exogenous	administration	of	α-MSH	and	its	analogues,	and	of	course	
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these	peptides	have	known	secondary	effects	on	feeding.		The	physiological	role	of	

MC4R	at	this	site,	and	the	origin	of	the	ligand,	likely	an	α-MSH	peptide,	remains	

unknown.		

	 Optogenetics	and	DREADDs	have	also	been	used	to	characterize	the	MC4R	

target	sites	that	are	necessary	and	sufficient	and	for	evoked	feeding	behaviors.		

Despite	evidence	of	a	functional	inhibitory	ARCAgRP	->	ARCPOMC	projection,	co-

activation	of	these	two	populations	did	not	blunt	light	evoked	ARCAgRP	feeding	[64]	

[51].		However,	site-specific	photostimulation	of	GABAergic	ARCAgRP	terminals	

within	the	PVH	was	found	to	be	sufficient	for	acute	feeding	behavior	[64]	[83].		This	

effect	was	replicated	with	hM4Gi	mediated	silencing	of	PVHSIM1	neurons	indicating	

that	inhibition	of	this	population	is	sufficient	for	feeding	behavior.	Furthermore,	co-

activation	of	PVHSIM1	cell	bodies	and	ARCAgRP	efferents	did	not	cause	food	intake.	

Initially,	PVHOXT	neurons	(a	subpopulation	of	PVHSIM1	neurons)	were	thought	to	

be	the	mediators	of	ARCAgRP	->	PVH	induced	food	intake	[64].	However,	both	ex	vivo	

and	in	vivo	experiments	have	challenged	this	finding	[83]	Sutton	et	al.,	2014;	Z.	Wu	

et	al.,	2012).	Using	channelrhodopsin	(ChR1)-assisted	circuit	mapping	(CRACM),	

ARCAgRP	fibers	were	found	to	evoke	time	locked	IPSCs	within	83%	of	PVH	MC4R	cells	

and	0%	of	PVHOXT	expressing	cells	[83].	MC4R	neurons	were	also	found	to	be	

distinct	from	OXT	neurons	as	evidenced	by	immunohistochemistry.	Co	stimulation	

of	inhibitory	ARCAgRP	fibers	and	PVHMC4R	were	also	found	to	block	evoked	feeding	

behavior	while	PVHOXT	did	not.	PVHMC4R	neurons	also	displayed	projections	to	and	

elicited	activation	of	the	LPBN,	thereby	provoking	a	satiety	response	[83].		In	

addition	to	the	PVH,	ARCAgRP	neurons	are	known	to	project	to	numerous	other	brain	

regions.	Using	a	similar	efferent	projection	stimulation	strategy,	ARCAgRP	fiber	

activation	in	the	BNST,	LH	and	PVT	was	sufficient	for	evoked	feeding	behavior	[51].	

This	contrasts	with	ARCAgRP	fibers	that	project	to	ARCPOMC	neurons,	PBN,	CEA,	and	

PAG	which	do	not	evoke	feeding.	Interestingly,	while	the	BNST	and	the	LH	both	

express	MC4R,	inhibition	of	MC4R	neurons	within	these	sites	does	not	appear	to	be	

responsible	for	the	increased	food	intake	seen	with	ARC	AgRP	afferent	stimulation,	

suggesting	a	primary	role	for	GABA	[83].	These	studies	indicate	the	complexity	of	

MC4R	pathway	neuron	nodes	of	signaling,	kinetics,	as	well	as	receptor	coexpression	
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that	merits	further	study.	.	

	

	
Figure	1-4.	Interactions	between	AgRP	and	α-MSH	at	distal	MC4R	sites	in	the	
PVN	
POMC	neurons	produce	α	-MSH	that	acts	on	MC4Rs	in	the	PVN	to	suppress	food	
intake.	Increased	activity	of	AgRP	neurons	causes	the	release	of	AgRP	peptide	from	
nerve	terminals	in	the	PVN.	AgRP	binds	to	the	MC4R	and	antagonizes	the	effect	of	α	
-MSH	at	the	MC4R.	By	preventing	the	actions	of	α	-MSH	in	the	PVN,	AgRP	helps	to	
increase	food	intake.	AgRP	neurons	also	produce	NPY,	however	NPY	acts	on	NPY	Y1	
and	Y5	receptors	in	the	PVN	independently	from	the	MC4R.	Reichenbach,	Alex	&	
Stark,	Romana	&	Andrews,	Zane.	(2012).	Hypothalamic	control	of	food	intake	and	
energy	metabolism.	The	Human	Hypothalamus:	Anatomy,	Functions	and	Disease.	
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MC4R	signal	transduction	
	

Melanocortin	receptors	(MCR)	are	members	of	the	rhodopsin-like,	Class	A	branch	of	

the	seven	transmembrane-spanning	domain	G	protein	coupled	receptor	(GPCR)	

superfamily.	An	extended	set	of	co-receptors,	signaling	partners,	and	alternate	endogenous	

ligands	enrich	the	tapestry	of	responses	that	result	from	α-MSH	or	other	POMC	cleavage	

product	stimulation	at	each	receptor	(Figure	1-3).	This	functional	diversity	played	an	

important	role	in	the	discovery	of	many	of	the	components	of	this	system	[5].	

α-MSH	binding	to	MC4R	leads	to	dissociation	of	the	coupled	heterotrimeric	G-

protein	complex	by	stabilizing	an	active	form	of	the	receptor	[84]	[85].		This	process	

leads	to	a	conformational	change	in	the	complex	that	facilitates	the	exchange	of	GDP	

for	GTP	on	the	Gαs	[86].	Upon	dissociation,	Gαs	associates	with	and	activates	

adenylyl	cyclase	through	a	direct	protein-protein	interaction	[87].		This	process	

continues	until	GTP	is	converted	to	GDP	by	the	GTPase	activity	of	Gαs.		During	the	

time	it	is	activated	by	Gαs,	adenylyl	cyclase	catalyzes	conversion	of	ATP	to	cAMP	

[88]	cAMP	goes	on	to	function	as	a	diffusible	second	messenger	until	it	is	cleaved	

into	AMP	by	phosphodiesterases	[89].		cAMP	is	able	to	bind	to	the	PKA	regulatory	

subunits	causing	a	conformational	change	in	the	protein	structure	[90].		This	

enables	the	catalytic	subunits	of	PKA	to	phosphorylate	target	proteins	including	

channels	that	regulate	neuronal	excitability	[91]	[92].		In	addition	to	PKA,	cAMP	can	

activate	PKA	independent	pathways	including	the	EPAC	pathways	[93].		This	

pathway	appears	to	be	essential	for	MC4R	mediated	changes	in	gene	transcription	

in	cell	lines	and	also	appears	to	be	essential	for	MC4R	action	in	vivo,	at	least	in	the	

sense	that	deletion	of	Gαs	in	MC4R	neurons	recapitulates	the	obesity	syndrome	seen	

with	MC4R	deletion	[94].	There	is	also	evidence	that	MC4R	can	increase	

intracellular	calcium	levels	through	recruitment	of	Gαq	and	IP3	production	in	

heterologous	overexpression	systems	[25]	[95]	[23].			

Furthermore,	studies	on	AgRP	signaling	have	found	that	AgRP	leads	to	MC4R	

activation	of	the	pertussis	toxin	sensitive	Gi/o	inhibitory	protein	in	the	hypothalamic	

GT1-7	cell	line	[96].	The	ability	to	signal	through	Gi/o	led	to	the	hypothesis	that	

MC4R	could	potentially	couple	to	G-protein	inwardly	rectifying	potassium	channels	
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(GIRKs);	known	to	be	activated	by	Gβγ	binding	following	release	from	Gi	

heterotrimers	[97].		These	results	highlight	the	possibility	that	MC4R	can	signal	

through	different	G-proteins	with	opposing	actions	depending	on	the	ligand,	the	

classical	Gαs	stimulatory	protein	activated	by	α-MSH	binding,	versus	Gi/o	inhibitory	

protein	activated	by	AgRP	binding.		The	ability	to	signal	through	Gi/o	led	to	the	

hypothesis	that	MC4R	could	potentially	couple	to	GIRKs	that	are	activated	by	Gβγ	

binding	following	release	from	the	Gi	complex	[98].		However,	this	finding	has	not	

been	seen	in	ex	vivo	brain	slices.	

Data	on	the	mechanism	of	α-MSH	and	AgRP	signaling	through	MC4R	also	relies	

on	the	use	of	electrophysiological	slice	preparations	from	mice	in	which	MC4R	

neurons	have	been	transgenically	labeled	with	GFP	[99]		[100]	[79].		In	this	

preparation,	a-MSH	depolarizes	and	AgRP	hyperpolarizes	MC4R	neurons	when	

added	to	the	bath	[278].		PKA	mediated	MC4R	signaling	has	been	shown	to	cause	

neuronal	hyperpolarization	within	the	DMX	through	activation	of	a	KATP	channel,	

thereby	showing	PKA	regulates	aspects	of	MC4R	signaling	in	many	nuclei.		In	this	

study,	the	adenylyl	cyclase	activator	forskolin	as	well	as	the	PKA	activator	8-BrcAMP	

were	able	to	mimic	the	effect	of	the	MC4R	agonist	MTII.		Inhibition	of	PKA	with	H89	

or	KT-5720	was	further	shown	to	abolish	the	MTII	mediated	hyperpolarization.		

Within	the	IML	of	the	spinal	cord,	PKA	was	found	to	be	essential	for	MC4R	mediated	

depolarization.	In	this	cell	population,	MC4R-PKA	signaling	was	dependent	on	the	

activation	of	a	non-specific	cation	channel.		Within	the	hippocampus,	MC4R	induces	

synaptic	strengthening	in	a	PKA	dependent	manner	[91].		This	results	in	an	increase	

in	synaptic	spine	number	and	AMPA	surface	expression	via	PKA	phosphorylation	of	

GluA1.		Furthermore,	deletion	of	the	inhibitory	domain	of	PKA	(RIIβ)	is	able	to	

reverse	the	obesity	syndrome	in	Ay	mice	[101].		Together	these	studies	demonstrate	

a	critical	role	of	PKA	in	α-MSH	induced	activation	and	inhibition	of	MC4R	within	the	

IML,	DMX,	and	hippocampus	–	regions	that	lack	AgRP	innervation.	Additional	

studies	have	found	a	distinct	MC4R	signaling	modality	within	the	PVN	–	a	region	

with	high	amounts	of	AgRP	innervation	[102].	
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Using	a	ex	vivo	slice	preparation	and	high	throughput	flux	assay	a	novel	MC4R	

signaling	pathway	through	the	inward	rectifying	potassium	channel	Kir7.1	was	

discovered	in	2015	([103]	[104]	.		The	details	and	impact	of	this	discovery	on	our	

evolving	understanding	of	MC4R	signaling	are	discussed	further	in	the	following	

section,	“Discovery	of	a	Role	for	Kir7.1	in	the	Melanocortin	System,”	and	depicted	in	

Figure	1-5.			
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Figure	1-5.	A	new	model	of	MC4R	microcircuitry		
The	Yin–Yang	model	of	α-MSH	and	AgRP	action	(Fig.	1)	suggested	competitive	
binding	of	these	peptides	to	individual	MC4R	sites	(orange	box),	and	anatomical	
data	suggest	in	regions	where	these	peptides	undergo	volume	release,	that	
competition	for	binding	to	the	MC4R	may	occur.	New	subcellular	anatomical	data	
suggest	that	in	the	PVH,	AgRP	synaptic	contacts	predominate	at	cell	bodies,	while	
POMC	synaptic	contacts	predominate	at	distal	dendrites.	Along	with	the	fact	that	
AgRP	immunoreactive	fibers	are	only	observed	in	a	subset	of	MC4R	expressing	
nuclei	containing	POMC-immunoreactive	fibers,	α-MSH	may	this	often	act	
independently	of	AgRP	(right	circle).	At	these	sites,	α-MSH	may	be	expected	to	signal	
through	both	cAMP,	and	Kir7.1.	The	ability	of	AgRP	to	act	independently	of	α-MSH	
as	a	potent	hyperpolarizing	agonist,	via	regulation	of	Kir7.1,	suggests	the	likely	
existence	of	independent	AgRP	sites	of	action	(left	circle).	Another	MC4R	signaling	
pathway,	involving	cAMP/PKAdependent	activation	of	KATP	channels	and	α-MSH-
induced	hyperpolarization,	has	been	demonstrated	in	MC4R	neurons	in	the	dorsal	
motor	nucleus	of	the	vagus	in	the	brainstem	(bottom	right).	Thus,	α-MSH	and	AgRP	
utilize	a	diversity	of	signaling	modalities	to	regulate	feeding	and	energy	homeostasis	
through	the	MC4R.	Modified,	with	permission,	from	Ghamari-Langroudi	M,	et	al.	
(2015).		
	 	



	 25	

	
Phenotype	of	MC4R	mutations	in	humans	and	mice	
	

The	primary	function	of	MC4R	is	to	regulate	food	intake	and	energy	

expenditure,	and	this	role	for	the	receptor	has	been	shown	to	be	evolutionarily	

conserved	in	vertebrates	from	fish	to	human.		MC4R	knockout	mice	as	well	as	

human	mutants	present	with	an	early-onset	severe	obesity	associated	with	

increased	fat	mass,	and	lean	mass	[35,	105].		Additionally,	MC4R	regulates	insulin	

secretion,	lipid	metabolism,	bone	mineral	density,	and	body	length.		The	MC4R-

induced	phenotypes	also	exhibit	a	gene-dosage	effect,	unusual	for	GPCR	genes.		

Herein	we	describe	the	methods	for	understanding	the	phenotype	and	types	of	

genetic	alleles	leading	to	MC4R	mutations.			

In	1998	the	Froguel	and	O’Rahilly	research	groups	conducted	two	independent	

analyses	of	the	MC4R	gene	in	individuals	with	childhood	obesity	and	in	a	non-obese	

control	population.		Through	these	studies	they	identified	the	first	frameshift	

mutations	in	the	MC4R	gene	in	children	with	severe	early	onset	obesity	[105,	106].		

The	vast	majority	of	MC4R	deficient	obese	individuals	have	deleterious	heterozygous	

mutations	of	the	receptor,	which	underscores	the	notion	of	a	MC4R	gene	dosage	

effect.		This	finding	demonstrated	the	evolutionarily	conserved	role	of	MC4R	in	

energy	balance	in	humans,	and	generated	great	interest	in	α-MSH	signaling	in	the	

CNS	in	general,	and	the	MC4R	in	particular	in	regard	to	development	of	new	obesity	

therapeutics.	

Initial	studies	estimated	a	mutation	prevalence	of	6%	in	cohorts	of	pediatric	

obesity	(Farooqi	et	al.,	2003).	More	recent	estimates	place	the	incidence	at	closer	to	

2%	in	this	population,	although	the	numbers	refer	exclusively	to	coding	mutations	

[107].	In	the	general	population,	the	rate	of	MC4R	mutations	is	0.05%	with	a	

substantial	enrichment	in	the	obese	population	to	about	0.5-1%	.		166	unique	MC4R	

mutations	have	been	identified	by	receptor	coding	analysis	from	patient	cohorts	

representing	an	array	of	ethnic	origins	(Figure	1-6)	[108]	[109]	[110]	[111]	[112]	

[113]	[114]	[115]	[116]	[117]	[118]	[119]	[120]	[121]	[122]	[123]	[124]	[125]	[126].		

Ethnic	origin	may	also	contribute	to	prevalence	of	MC4R	mutations,	severity	of	

obesity,	and	age	of	obesity	onset.		Amongst	these	mutations	at	least	122	are	
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missense,	7	nonsense,	two	in-frame	deletion,	and	dozens	of	frame	shift	mutations	

have	been	documented	throughout	the	MC4R	structure.		No	mutations	have	been	

identified	in	the	MC4R	promoter	and	although	some	polymorphisms	and	SNPs	near	

MC4R	exist,	defective	MC4R	transcription	does	not	appear	to	be	a	major	contributor	

to	severe	disease	pathology	[127].			

		The	clinical	spectrum	of	MC4R	associated	obesity	closely	aligns	with	the	

syndrome	in	the	mouse.		Both	organisms	display	severe	hyperphagic	obesity,	

increased	linear	growth,	severe	hyperinsulinemia,	incomplete	growth	hormone	

suppression,	reduced	rates	of	obesity	associated	hypertension,	reduced	urine	

norepinephrine	levels,	increased	lean	mass	and	increased	bone	mineral	density	

[120]	[112]	[128].		Furthermore,	loss	of	the	MC4R	enhances	a	preference	for	fat	over	

sucrose	in	both	mice	[129]	[130]	and	humans	[131].			

The	discovery	of	MC4R	mutations	in	human	cohorts	has	also	furthered	the	

understanding	of	MC4R	receptor	pharmacology.	MC4R	mutations	have	been	grouped	

into	5	distinct	classes	(Figure	1-6).		Class	I	mutations	include	nonsense,	frameshift,	

and	missense	mutations	that	cause	an	absence	or	reduction	of	protein	synthesis,	or	

are	hypomorphic	alleles.		These	mutations	include	the	nonsense	mutations	Y16Stop,	

Y35Stop,	C277Stop	and	Y287Stop	and	missense	mutations	R7C,	I69M,	M79I,	S94N,	

D146N,	&	I301T.	Class	II	mutations	cause	reduced	surface	expression	largely	due	to	

defects	in	receptor	folding	and/or	trafficking.		Many	of	mutations	in	this	class,	

including	S58C,	E61K,	N62S,	I69T,	G98R,	T162I,	R165W,	W174C,	C271Y,	and	P272L,	

P299H,	[132]	remain	trapped	intracellularly,	get	polyubiquitinated	and	are	degraded	

by	the	proteasome	[133].		This	process	appears	reversible	as	MC4R	selective	

receptor	chaperones	can	act	to	promote	receptor	trafficking,	indicating	the	necessity	

for	potential	therapies	to	be	used	in	a	mutation	specific	manner	[134].		Class	III	

mutations	exhibit	normal	expression	levels,	but	result	in	reduced	ligand	binding	and	

include	P48S,	V50M,	F51L,	I102S,	D126Y,	R165Q,	A175T,	A219,	G238D,	L250Q,	

S295P,	and	D298A.		Class	IV	mutations	have	normal	receptor	expression	and	ligand	

binding	but	have	reduced	ligand	stimulated	signaling	or	reduced	basal	activity	in	

cAMP	activation	assays.		These	include	the	obesity	associated	N	terminal	region	

mutations	R7H,	T11S/A,	R18C/H/L,	S30F,	and	D37V	which	have	been	shown	to	
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reduce	basal	receptor	activity	without	altering	ligand	mediated	signaling	[85],	as	well	

as	a	number	of	mutations	that	reduce	Emax	for	cAMP	activation.		Indeed,	SNPs	in	the	

MC4R	non-coding	sequence	are	a	major	GWAS	signal	contributing	to	BMI.	Class	V	

mutations	are	mutations	with	an	obesity	association	without	differences	in	protein	

expression,	ligand	binding	or	signaling.		In	addition	to	discovering	obesity	associated	

MC4R	mutations,	a	V103I	allele	(2-9%	of	the	general	population)	[135]	and	I251L	

allele	(0.41-1.21%	of	the	general	population)	[136]	have	increased	ligand	mediated	

receptor	activity	and	basal	receptor	activity,	respectively.		Not	surprisingly,	these	

receptors	are	associated	with	both	leanness	and	reduced	serum	triglyceride	levels	

[137].		The	sum	effect	of	the	majority	of	melanocortin	defects	is	early	onset	obesity	in	

both	mice	and	humans.	The	broadening	catalog	of	melanocortin	receptor	mutations	

and	their	associated	diversity	of	defects	indicates	a	possibility	for	a	multiplicity	of	

class	specific	pharmacologic	targets.	These	designer	drugs	could	thus	target	both	

syndromic,	nonsyndromic,	and	common	obesity.	Concurrently	the	catalog	of	

melanocortin	receptors	represents	multiple	points	of	accessing		studies	to	

understand	the	melanocortin	rheostat	of	energy	homeostasis.	
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Figure1-6.	Human	mutations	of	the	MC4R	
MC4R	mutations	have	been	found	throughout	the	receptor	and	cause	obesity.			
Catalogued	mutated	residues	account	for	32%	of	the	MC4R.		Mutations	affect	a	
variety	of	functions	including	those	that	reduce	protein	levels,	lead	to	hypomorphic	
proteins,	and	reduce	basal	activity.	Certain	mutations	can	also	increase	receptor	
activity	and	are	associated	with	a	lean	phenotype.	Modified	from	[77].	
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MC4R	and	energy	expenditure	
 

Early	studies	elucidated	the	role	of	MC4R	in	regulating	food	intake.		

Additionally,	MC4R	has	been	implicated	in	the	regulation	of	energy	expenditure.		

This	hypothesis	has	been	examined	across	multiple	modalities	including	basal	

energy	expenditure,	adaptive	thermogenesis,	and	sympathetic	tone.		An	initial	study	

using	indirect	calorimetry	found	a	reduction	of	body	weight	normalized	VO2	in	8-9	

week	old	male	Mc4r-/-	mice	[138].		However,	this	time	point	is	after	a	detectable	

increase	in	adiposity	[139].		This	fact	is	critical	for	the	proper	interpretation	of	the	

experiment	as	the	authors	correct	VO2	by	dividing	by	the	larger	MC4R	body	weight.		

Furthermore,	this	correction	assumes	a	linear	relationship	between	body	weight	

and	energy	expenditure	that	does	not	intersect	at	Y=0	implying	that	an	organism	

with	a	mass	of	0g	could	somehow	expend	energy.		The	authors	do	find	that	pair	

feeding	was	unable	to	normalize	body	weight	in	Mc4r-/-	females.		However,	this	was	

not	present	in	males	suggesting	a	sexual	dimorphic	component	to	MC4R	regulated	

energy	expenditure.		When	food	intake	and	energy	expenditure	measurements	were	

analyzed	from	day	21-35	of	MC4R-/-	Weide	et	al.	(2003)	conclude	that	excessive	fat	

deposition	is	driven	by	hyperphagia	rather	than	hypometabolism,	supported	by	

disregulation	of	NPY	and	POMC	expression	[140].		Butler	et	al.	(2001)	reported	no	

difference	in	basal	VO2	when	dividing	by	body	weight	raised	to	the	0.75	power	to	

correct	for	allometric	scaling	[141].		Rather	than	dividing	by	body	weight,	the	body	

weight-VO2	interaction	should	be	compared	by	ANCOVA	as	is	now	standard	in	the	

field	[142].		A	more	recent	study	compared	the	basal	VO2	and	energy	expenditure	in	

Mc4r-/-	rats	using	the	ANCOVA	methodology	found	no	difference	in	co-variation	

between	body	weight	and	energy	expenditure	[143].		Despite	no	difference	in	basal	

VO2,	most	studies	on	Mc4r-/-	mice	have	found	a	significant	increase	in	the	

respiratory	exchange	ratio	suggesting	increased	glucose	utilization	in	these	animals	

[143]	[144].			

The	absence	of	MC4R	is	further	exacerbated	in	conditions	of	caloric	excess	

such	as	high	fat	diet	induced	obesity.		Typically,	mice	exposed	to	high	fat	diet	

respond	by	rapidly	increasing	diet-induced	thermogenesis	and	increasing	physical	
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activity.		Studies	by	Butler	et	al.	and	collaborators	found	that	MC4R-/-	mice	have	an	

impaired	response	to	an	increase	in	fat	content,	resulting	in	decreased	insulin	

sensitivity	in	addition	to	impaired	energy	expenditure	and	hyperphagia	[144]	[145].		

Restoration	of	MC4R	expression	solely	in	the	PVN	and	amygdala	showed	that	MC4R	

in	these	nuclei	is	responsible	for	food	intake,	whereas	MC4R	in	other	neurons	

regulate	energy	expenditure	[80].		Indeed	this	study	concludes	that	change	in	food	

intake	accounts	for	60%	of	the	effect	of	MC4R	loss	of	function	on	energy	balance,	

while	the	remaining	40%	is	due	to	changes	in	energy	expenditure.	

Pharmacological	studies	have	also	been	used	to	examine	the	role	of	MC4R	

tone	in	basal	whole	animal	energy	expenditure.		Studies	have	found	that	

administration	of	an	MC4R	agonist	leads	to	an	increase	in	basal	energy	expenditure	

in	mice	[146],	rats	[147]	[148]	and	humans	[149].		In	mice,	IP	administration	of	MTII	

causes	a	biphasic	modification	of	energy	expenditure	[146].		Within	ten	minutes	of	

compound	administration,	total	animal	energy	expenditure	is	suppressed	while	RER	

is	increased	for	approximately	one	hour.		This	effect	appears	to	be	non-specific	as	it	

occurs	in	MC4R	knockout	animals.		Following	the	initial	suppression,	there	is	then	a	

dose	dependent	two-hour	increase	in	energy	expenditure	and	decrease	in	RER.		This	

effect	is	mirrored	by	an	increase	in	body	temperature	and	that	is	due	to	brown	fat	

thermogenesis.		In	rats,	MTII	administration	displayed	a	dose	dependent	increase	in	

3	hour	VO2	in	both	lean	and	diet	induced	obese	and	lean	Zucker	rats	[147].		

Furthermore,	the	respiratory	quotient	is	reduced	in	animals	injected	with	α-MSH	

indicating	an	increase	in	fat	utilization.		MC4R	agonists	have	also	been	administered	

to	humans,	in	attempt	to	test	efficacy	for	MC4R	drug	therapies	for	metabolic	

syndrome.		Subcutaneous	administration	of	RM-493	–	an	MC4R	agonist	that	lacks	a	

pressor	effect	in	primates	[150]–	was	able	to	raise	resting	energy	expenditure	by	

6.4%	(95%CI:	0.68-13.2)	as	well	as	lower	the	respiratory	quotient	(from	0.848	±	

0.022	to	0.833	±	0.021)	[149].		MC4R	modification	of	whole	organism	VO2	has	also	

been	shown	to	be	bi-directional.		Both	acute	[151]	and	chronic	[152]	ICV	

administration	of	AgRP	leads	to	a	suppression	of	oxygen	consumption	in	rats	[152].		

Whether	this	effect	is	due	to	a	reduction	in	basal	MC4R	signaling	is	unclear.		In	some	

reports,	the	neutral	antagonist	HS014	is	unable	to	suppress	VO2	[148]	while	in	
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others,	HS014	lead	to	a	reduction	in	energy	expenditure	and	VO2	[153].		Thus,	while	

the	loss	of	MC4R	plays	an	unclear	role	in	basal	energy	expenditure,	a	change	in	

MC4R	signaling	tone	is	able	to	modulate	energy	expenditure.	

The	underlying	mechanism	behind	how	MC4R	changes	energy	expenditure	

has	been	examined.		The	degree	of	MC4R	tone	has	been	shown	to	correlate	with	the	

metabolism	of	several	peripheral	organs.		Brown	adipose	tissue	(BAT)	was	the	first	

peripheral	organ	that	MC4R	was	found	to	regulate.		MTII	injection	dose-dependently	

increased	sympathetic	nerve	traffic	to	thermogenic	BAT,	and	this	effect	was	blocked	

by	SHU9119	[154].		RFP	labeled	pseudorabies	virus	injection	into	the	interscapular	

brown	fat	pad	of	MC4R-GFP	mice	leads	to	co-localization	in	nuclei	that	regulate	

sympathetic	tone	[155].		Furthermore,	when	Mc4r-/-	mice	were	placed	on	high	fat	

diet,	there	was	no	induction	of	the	mitochondrial	uncoupling	protein	-	UCP1	–	

within	the	BAT.		An	independent	study	confirmed	this	finding	pharmacologically	

and	further	described	how	MC4R	regulates	peripheral	lipid	metabolism	[156].		ICV	

injection	of	SHU9119	led	to	an	increase	in	lipid	uptake	and	triglyceride	storage	in	

white	adipose	tissue	(WAT).		Mc4r-/-	mice	were	also	found	to	have	increased	

insulin	sensitivity	of	WAT	while	pharmacological	inhibition	of	MC4R	decreased	

sympathetic	nerve	activity	and	muscle/BAT	glucose	utilization.	While	the	precise	

mechanism	for	this	effect	remains	undetermined,	it	is	presumed	to	due	to	MC4R	

regulation	of	sympathetic	tone.	

	
MC4R	cardiovascular	pressor	effect	and	therapeutic	implications	
	

While	MC4R	modulation	of	BAT,	WAT	and	skeletal	muscle	metabolism	is	a	

useful	therapeutic	tool,	a	barrier	to	successful	drug	design	has	been	that	MC4R	also	

regulates	cardiovascular	function.	ICV,	but	not	intravenous,	injection	of	α-MSH	has	

been	found	to	increase	heart	rate	and	blood	pressure.		This	effect	is	lost	in	Mc4r-/-	

animals,	who	concordantly	exhibit	hypotension,	relative	to	BMI	matched	controls,	

and	can	be	blocked	through	administration	of	an	MC4R	antagonist	[157]	[158].		

However,	chronic	administration	of	α-MSH	eventually	leads	to	a	reduction	in	mean	

arterial	pressure	[159]	and	physical	activity.	The	acute	effects	of	α-MSH	injection	on	

the	cardiovascular	system	are	nucleus	dependent.		Injection	of	a	MC4R	agonist	into	
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the	PVN	causes	a	subsequent	increase	in	blood	pressure	and	renal	sympathetic	

nerve	activity	[160].		Likewise,	injection	of	a	MC4R	agonist	directly	into	the	C1-T3	

region	of	the	IML	was	found	to	increase	heart	rate	without	changing	blood	pressure	

[161]	and	overexpression	of	α-MSH	in	the	NTS	also	increases	heart	rate	[162].		An	

increase	in	blood	pressure	and	heart	rate	can	be	blunted	by	the	addition	of	a	

combined	α/β	blocker	thus	demonstrating	the	role	of	sympathetic	nervous	system	

in	this	process	[163	2003].		This	increase	in	sympathetic	output	contrasts	with	what	

happens	when	α-MSH	is	injected	into	the	DMX	[160]	[164].	Injection	of	MTII	into	

this	region	results	in	a	rapid	reduction	of	blood	pressure	and	heart	rate.		This	effect	

is	MC4R	specific	as	it	can	be	blocked	by	SHU9119	or	HS014	in	a	dose	dependent	

manner.		Similar	to	the	set	of	energy	expenditure	experiments	discussed	above,	the	

ability	of	MC4R	to	regulate	blood	pressure	is	bi-directional.		Inhibition	of	the	MC4R	

with	SHU9119	or	AgRP	leads	to	hypotension	and	bradycardia	[165]	[166	&	Hall,	

2004]	[167].		This	effect	is	centrally	mediated,	as	IV	injection	does	not	replicate	this	

effect.		MC4R	compounds	lacking	a	cardiopressor	activity	have	been	synthesized	and	

tested	in	humans	[149]	[168	Wulff,	&	Hansen,	2014],	validating	the	use	of	MC4R	

agonists	in	the	treatment	of	common	obesity.	

Beyond	acute	regulation	of	blood	pressure,	MC4R	signaling	is	further	

implicated	in	autonomic	control	of	heart	function	as	a	critical	mediator	of	obesity-

associated	hypertension.		Blood	pressure	recordings	of	Mc4r-/-	mice	showed	that	

they	were	normotensive	despite	being	profoundly	obese,	hyperinsulinemic	and	

hyperleptinemic	[169].	Furthermore,	the	Mc4r-/-	mice	did	not	become	hypertensive	

on	a	high	salt	diet	[170].		This	effect	can	be	replicated	pharmacologically.		MC4R	

inhibition	with	SHU9119	to	obese	Zucker	rats	resulted	in	a	greater	reduction	of	

blood	pressure	than	lean	controls	[171].		Since	both	insulin	[172]	and	leptin	[173]	

have	been	shown	to	cause	hypertension	through	increases	in	sympathetic	tone,	this	

finding	has	implicated	MC4R	as	a	common	mediator	of	leptin	and	insulin’s	effects.		

Studies	in	humans	have	replicated	this	finding	as	patients	with	heterozygous	loss	of	

the	MC4R	are	protected	from	the	hypertensive	effects	of	obesity	and	have	reduced	

24	hour	urinary	catecholamine levels	[128].		Selective	knockout	studies	have	been	

informative	with	respect	to	the	nucleus	that	regulates	obesity	associated	increases	



	 33	

in	blood	pressure.		The	prevention	of	leptin-induced	hypertension	in	POMCLepR	

knockout	mice	has	implicated	the	hypothalamus	and	brainstem	in	this	process	

[174].		An	initial	attempt	was	made	to	see	if	this	effect	was	specific	to	the	

hypothalamus	or	autonomic	neurons	by	re-expressing	MC4R	in	the	loxTB	MC4R	

mouse	with	SIM-1-	Cre	as	a	paraventricular	neuron	marker	[80]	or	ChAT	as	a	

general	autonomic	neuron	marker	[175].		While	both	SIM1-Cre;	MC4R	lox-TB+/+	and	

ChAT-Cre;	MC4R	lox-TB+/+	became	similarly	obese,	only	the	ChAT-Cre;	MC4R	lox-	

TB+/+	animals	became	hypertensive	in	response	to	obesity	[176].		Based	on	these	

studies,	it	appears	that	the	hindbrain	Leptin->	NTSPOMC	->	IMLMC4R	pathway	is	

essential	in	this	process	but	the	role	of	presynaptic	parasympathetic	MC4R	neurons	

within	DMX	remains	to	be	determined.		Recently,	Litt	et	al.	identified	a	novel	

mechanism	for	cardiomyopathy	in	patients	with	MC4R	loss	of	function.			MC4R	null	

mice	develop	dilated	cardiomyopathy	due	to	underlying	mitochondrial	defects	

promoting	reactive	oxygen	species	production	which	mediates	cardiomyocyte	

tissue	damage	[177].		Thus	even	though	defective	MC4R	results	in	bradycardia	and	

reduced	obesity-associated	hypertension,	MC4R	regulation	of	autonomic	tone	

implies	other	complications	may	arise	leading	to	heart	failure	in	individuals	with	

mutated	MC4R.	

	

MC4R	therapeutic	design	
	

	 A	variety	of	drug	design	strategies	can	and	have	been	implemented	to	

address	defects	in	naturally	occurring	MC4R	mutations.		For	example	synthetic	

ligands	could	be	derived	to	correct	class	III	and	class	IV	mutants	in	order	to	provide	

customized	exogenous	ligand	in	the	absence	of	receptor	response	to	endogenous	

ligand.		Small	molecule	pharmacological	chaperones	may	increase	surface	

expression	of	class	II	intracellularly	retained	MC4R	mutants	by	assisting	their	

trafficking.		Upon	agonist	stimulation	MC4R	undergoes	receptor	desensitization	by	

PKA	and	GPCR	kinase	receptor	phosphorylation	and	arrestin-conveyed	receptor	

internalization	[92],	however,	recently	a	novel	twist	to	positive	allosteric	modulator	

drug	design	called	biased	unmatched	bivalent	ligand	(BUmBL)	has	been	
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implemented	to	design	heterobivalent	MC4R	ligands.		These	ligands	link	agonist	to	

antagonist	small	peptide	moieties	to	enhance	Gαs	while	minimally	activating β	-
arrestin	recruitment	[178]	(Figure	1-7).		This	is	an	intriguing	approach	that	may	

offer	promising	therapies	in	the	future.		Furthermore	some	MC4R	peptide	agonists	

have	been	shown	to	more	efficiently	recruit	receptor	internalization	[179].		This	

presents	an	attractive	target	for	some	MC4R	mutants,	but	may	not	be	as	effective	for	

common	obesity.			

Designer	agonists	of	MC4R	have	long	been	sought	as	a	therapeutic	target	for	

treating	common	obesity.		Yet	despite	rigorous	efforts,	multiple	proposed	selective	

compounds,	and	tremendous	need,	successful	human	clinical	trials	of	compounds	

designed	to	target	MC4R	have	largely	been	hampered	by	adverse	cardiovascular	

affects	and	treatment	of	sexual	dysfunction.		[168]	[180].		Some	preliminary	success	

in	compound	discovery	has	been	made	using	high	throughput	screening	methods	to	

delineate	MC4R-active	organic	compounds	or	analogue	structures	that	can	serve	as	

motifs	of	natural	peptides	[181].		Synthetic	chemistry	has	generated	cyclic	

modifications	to	non-selective	agonist,	lactam-cycles	MTII	and	antagonist,	SHU9119,	

commonly	used		[182]	[183].		MTII	has	also	been	modified	to	generate	

bremelanotide,	which	has	been	used	in	clinical	trials	to	treat	erectile	dysfunction	

and	female	hypoactive	sexual	desire	disorder	(HSDD)	[184]	[185].  Much	like	other	

melanocortin	agonists,	the	positive	clinical	outcomes	of	bremelanotide	did	not	

outweigh	efficacy	concerns	regarding	the	cardiovascular	effects	and	clinical	trials	

for	application	other	than	female	HSDD	have	been	halted.	

	 Few	anti-obesity	drugs	have	passed	and	been	approved	by	the	FDA	draft	

guidance	[186].		The	clinical	parameters	for	successful	drug	induced	weight	loss	are	

>5%	of	initial	body	weight	sustained	for	at	least	12	months.		Because	obesity	is	the	

manifestation	of	a	multilayered	physiologic	syndrome,	with	complex	etiology,	and	

intertwines	many	organ	systems	and	pathologies,	few	drugs	have	met	the	bar	in	

regard	to	safety	[186]		In	2016	the	FDA	did	award	orphan	drug	status	to	the	first	α-

MSH	based	therapeutic	for	obesity,	RM-493,	or	setmelanotide.		This	α-MSH	analogue	

was	awarded	orphan	drug	status	for	POMC	deficiency	and	Prader-Willi-Syndrome	

[187].		Setmelanotide,	an	analogue	significantly	more	potent	than	α-MSH,	induces	



	 35	

weight	loss	in	wild-type	rodents,	is	less	sensitive	in	MC4R	heterozygous	mice,	and	is	

inactive	in	MC4R	null	mice,	therefore	although	setmelanotide	leads	to	weight	loss	in	

patients	with	MC4R	deficiency,	meaningful	weight	loss	in	some	MC4R	patients	may	

not	be	achievable.		Short-term	weight	loss	appears	to	be	achieved	by	an	increase	in	

REE	and	a	shift	in	substrate	oxidation	to	fat,	with	no	adverse	effect	on	heart	rate	or	

blood	pressure	[149].		Improvements	in	energy	homeostasis	have	been	effectively	

observed	in	patients	with	mutations	in	the	POMC	mechanism	pathway	including	

POMC	and	LEPR	deficient	patients	[188]	[189].	Remarkably,	the	weight	loss	in	these	

patients	was	between	10-30%	rather	than	the	clinically	accepted	5%.	This	weight	

loss	has	been	maintained	for	at	least	a	year,	far	longer	than	drugs	for	common	

obesity	on	the	market	and	seemingly	avoiding	tachyphylaxis.	Despite	potential	

pitfalls	the	emergence	of	an	approved	MC4R	agonist	therapy	affirms	the	necessity	

for	further	research	into	MC4R	pharmacology	and	signaling	as	a	latent	potential	

target	for	treatment	of	obesity.			
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Figure	1-7.	Schematic	comparison	of	models	for	biased	agonism.			
A)	Common	model	for	biased	ligand	action	wherein	a	ligand	binds	to	a	monomeric	
unit	of	a	GPCR	such	as	MC4R	and	thereby	induces	the	conformational	changes	in	the	
GPCR	to	signal	increased	interaction	with	one	effector	(Gαs)	and	diminished	
interaction	with	another	effector	(arrestin).		B)	Proposed	model	for	biased	ligand	
action	wherein	each	of	the	two	pharmacophores	of	a	heterobivalent	ligand	interacts	
with	its	respective	GPCR	homodimer	such	that	the	interaction	of	each	
pharmacophore	with	its	respective	GPCR	monomer	and/or	the	interactions	
between	the	GPCR	monomers	induce	the	conformational	changes	in	the	GPCR	
dimers	to	signal	increased	interactions	with	one	effector	(Gαs)	and	diminished	
interactions	with	another	effector	(arrestin).		Modified	from	(Topiol,	S,	2018).	
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Discovery	of	a	Role	for	Kir7.1	in	the	Melanocortin	System	
	
	 As	a	GPCR	the	canonical	pathway	for	MC4R	signaling	has	long	been	

established	as	a	mechanism	whereby	agonist	binding	promotes	conformational	

change,	generating	intracellular	signaling	via	coupling	with	heterotrimeric	G-

proteins.		Conventionally,	Gas-coupled	mediated	activation	of	MC4R	is	the	most	

vigorously	and	broadly	investigated	signaling	pathway.		This	pathway	has	many	

physiologic	implications	critical	for	the	MC4R	loss	of	function	phenotype,	including	

anorexigenic	signaling	in	the	hypothalamus	resulting	in	negative	energy	balance.		

Paradoxically,	MC4R	mutation	analysis	from	obese	individuals	has	shown	that	some	

mutations	increase	receptor	basal	activity,	cAMP	production,	and	respond	to	

antagonists,	yet	obesity	prevails	[190]	[191,	192]	[193].		Several	mechanisms	may	

contribute	to	this	phenotype.		MC4R	is	known	to	undergo	constitutive	endocytosis	

in	Neuro2A	cells	[194],	however	in	vivo	studies	of	other	constitutively	active	GPCRs	

show	the	increase	in	cAMP	is	degraded	by	desensitization	and/or	induction	of	

phosphodiesterase	[195]	[196].		A	particularly	interesting	hypothesis	for	this	

phenotype	is	that	Gas	signaling	through	MC4R	may	operate	in	parallel	with	another	

G-protein	independent	pathway	to	regulate	energy	homeostasis.		Ghamari-

Langroudi	et	al.	investigated	this	hypothesis	by	pharmacologically	blocking	

consecutive	components	affiliated	with	G-protein	signaling	in	an	ex-vivo	slice	

preparation	to	identify	an	apparent	G-protein	independent	pathway	downstream	of	

MC4R	[104].		These	studies	leading	to	the	discovery	of	Kir7.1	mediated	

depolarization	of	MC4R	PVN	neurons	are	further	described	herein.		

	
Ex-vivo	slice	
	

Using	an	ex-vivo	slice	preparation	of	the	PVN,	α-MSH	was	found	to	depolarize	

MC4R	neurons	identified	via	GFP	fluorescence,	while	AgRP	infusion	led	to	

hyperpolarization	thereby	inhibiting	MC4R	neuron	firing	ability.		To	examine	the	

Gαs–adenylyl	cyclase-cAMP-PKA	pathway	specifically,	cells	were	exposed	to	a	

series	of	specific	inhibitors.		Unlike	previous	studies,	the	α-MSH	induced	

depolarization	result	remained	in	the	presence	of	the	G-protein	inhibitors	GDPβS	
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and	gallein,	a	Gβg	blocker,	and	U0126,	a	MAPK	inhibitor,	narrowing	out	the	role	of	

GIRKs	in	a-MSH	induced	depolarization.		Remarkably,	Gas,	adenylyl	cyclase,	and	

cAMP	signaling	were	also	ruled	out	because	α-MSH	induced	depolarization	was	also	

retained	in	the	presence	of	the	adenylyl	cyclase	inhibitor	SQ22536,	the	cAMP	

inhibitor	Rp-cAMPs	and	the	PKA	inhibitor	H-89	[45].			

Subsequently,	current-voltage	ramp	analysis	indicated	that	α-MSH	generates	

an	inward	current	closure	of	a	steady-state-K+-mediated	inward	rectifier	(Kir)	

current,	thus	a	Kir	channel	was	responsible	for	the	effect.		In	this	experiment	α-MSH	

was	shown	to	reduce	the	inward	rectification	current	of	the	cell	while	AgRP	was	

able	to	increase	it.		From	there,	a	specific	Kir	subunit,	Kir7.1,	was	proposed	to	be	a	

component	of	the	channel	responsible	for	this	result	using	a	panel	of	specific	Kir	

channel	blockers	developed	by	Swale	et	al.	[197].		Studies	described	below	in	

HEK293	cells	reinforced	the	finding	that	α-MSH	and	AgRP	regulate	Kir7.1	

conductance.		Furthermore,	other	inward	rectifiers	such	as	Kir2.3	and	Kir4.1	

channels	did	not	couple	to	MC4R	in	cultured	cells.		However,	the	molecular	

mechanism	by	which	AgRP	mediates	this	effect	currently	remains	unknown	and	will	

require	further	studies	to	be	definitively	clarified.		As	Kir	channels	form	homo	and	

hetero-tetramers,	it	remains	to	be	determined	whether	MC4R	modulates	homo-

tetramers	of	Kir7.1	or	hetero-tetramers	with	other	Kir	channel	subunits.			

The	discovery	of	G	protein	independent	coupling	of	MC4R	to	Kir7.1	has	

suggested	that	AgRP	is	both	a	competitive	antagonist	of	α-MSH	action	at	the	MC4R	as	

well	as	a	biased	agonist	that	can	act	independently	through	MC4R	binding	to	open	

Kir7.1	and	hyperpolarize	neurons	(Figure	1-5).		New	neuroanatomical	data	supports	

both	the	original	yin-yang	model	of	α-MSH	and	AgRP	competing	for	MC4R	binding	in	

areas	of	volume	release	from	POMC	and	AgRP/NPY	neurons	(Figure	1-2),	as	well	

independent	α-MSH	and	AgRP	actions	in	different	brain	regions	and	on	different	

subcellular	domains	of	the	target	MC4R	neurons.		Briefly,	both	confocal	microscopy	

[198]	and	electronmicroscopy	[199]	of	PVH	neurons	suggests	that	while	there	are	

areas	of	likely	volume	release	of	both	peptides,	PVH	cell	bodies	receive	mostly	AgRP	

synaptic	contacts,	while	small	distal	dendrites	receive	mostly	POMC	synaptic	
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contacts.	Thus,	the	microcircuitry	is	far	more	complex	than	originally	suggested,	in	

turn	having	profound	impact	on	models	of	α-MSH	and	AgRP	action	in	vivo	(compare	

Figure	1-1	and	1-5).		

	
Thallium	assay	in	HEK293	cells	
	

In	addition	to	using	conventional	patch	clamp	techniques,	Ghamari-

Langroudi,	Digby	[200]	employed	a	high	throughput	thallium	(Tl+)	flux	assay	to	

further	investigate	the	kinetics	of	MC4R-Kir7.1	signaling	in	vitro.		This	assay	was	

originally	designed	to	quickly	and	quantifiably	detect	potassium	channel	opening	in	

order	to	characterize	small	molecule	modulators	of	Kir	channels	[201].		It	was	

adapted	to	characterize	MC4R	mediated	regulation	of	Kir7.1	signaling	and	its	

modulators	by	Litt	et	al.	[202].		To	study	the	molecular	mechanism	of	this	

interaction,	HEK293	cells	stably	expressing	MC4R	and	Kir7.1-M125R,	improving	the	

assay	signal	by	increasing	channel	conductance,	were	exposed	to	α-MSH	to	induce	

channel	closure.		Tl+	and	K+	are	equally	permeant	ions	through	K+	channel,	thus	

detection	of	an	intracellular	Tl+	-sensitive	dye	can	be	used	to	determine	channel	

conformation	and	activity.		Similar	to	whole	cell	recordings,	a	competitive	inhibitor	

of	cAMP-dependent	protein	kinases,	Rp-cAMP	was	unable	to	block	to	α-MSH	

induced,	MC4R	mediated	Kir7.1	flux.		Co-expression	of	a	dominant	negative	Gαs-

construct	that	blocks	the	canonical	Gαs-AC-cAMP	signaling	pathway	also	did	not	

affect	the	EC50	of	the	α-MSH	dose-response	curve.		In	this	system	α-MSH	mediates	

closure	of	Kir7.1	channels	with	an	IC50	of	10-7.5	M,	while	AgRP	mediates	an	increase	

in	Tl+	flux	through	Kir7.1	with	an	EC50	of	10-8.6M	[104].			Furthermore	AgRP	did	not	

appear	to	couple	to	cAMP	inhibitory	protein	Gαi,	or	to	recruit	arrestin.		This	

response	is	specific	to	an	interaction	between	MC4R	and	Kir7.1	as	determined	by	

expression	of	other	melanocortin	family	members	and	inward	rectifying	potassium	

channels	within	this	system.		Ghamari-Langroudi	et	al.	reported	changes	in	potency	

for	well	characterized	tool	compounds	of	MC4R,	where	MSH	analogue	MC4-NN2-

0453,	with	an	EC50	of	4.9x10-9	M	in	intracellular	cAMP	accumulation	assays,	was	

found	to	have	an	increased	potency	of	4.9x10-10	M	in	a	thallium	flux	assay,	used	to	

measure	Kir7.1	coupling.		This	suggests	a	synergistic	effect	of	α-MSH	and	cAMP	on	
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Kir7.1	closure.		Taken	together,	these	findings	reveal	a	novel	MC4R	signaling	

pathway,	and	some	interesting	pharmacological	paradigms	for	the	receptor,	

whereby	some	ligands	have	been	found	to	favor	the	typical	Gas	pathway	versus	

Kir7.1.		This	opens	an	avenue	for	potential	creation	of	biased	ligands	that	favor	the	

ion	channel	direct	interaction/activation	paradigm	over	classical	G-protein	signaling	

[203]	[201]	[204].	

Kir7.1	and	the	Inward	Rectifier	Channels	
	

Since	the	experiments	in	this	thesis	are	focused	on	Kir7.1,	a	brief	

introduction	of	the	inward	rectifier	potassium	channels	is	in	order.		Inward	

rectifying	K+	currents	(Kir)	were	first	identified	more	than	a	half	a	century	ago	

[205].		Since	their	discovery	Kir	channels	have	been	characterized	and	classified	

into	seven	subfamilies	(Kir1.x-Kir7.x)	(Figure	1-8.B)	[206].		These	subfamilies	are	

described	by	functional	groups:	1)	classical	Kir	channels	(Kir2.x),	2)	G	protein-gated	

Kir	channels	(Kir3.x),	3)	ATP-sensitive	K+	channels	(Kir6.x),	and	4)	K+-	transport	

channels	(Kir1.x,	Kir4.x,	Kir5.x,	and	Kir7.x).		Kir	channels	regulate	critical	cellular	

parameters	including	resting	membrane	potential,	action	potential	duration	and	

hormone	release	via	alleviating	movement	of	K+	into	rather	than	out	of	the	cell.		Due	

to	their	role	in	regulating	these	processes,	Kir	channels	are	critical	for	the	proper	

function	of	cardiac	myocytes,	neurons,	pancreatic	β-cells,	renal	epithelial	cells,	glia	

and	epithelial	cells.	Thus,	a	better	understanding	of	how	Kir	channels	are	regulated	

holds	potential	for	future	drug	discovery.	

Invariably,	Kir	channels	are	regulated	by	the	signaling	lipid	PIP2,	which	

enables	channel	opening	through	direct	binding	with	elements	of	the	Kir	channel	

[207]	[208].		Besides	PIP2,	factors	that	gate	Kir	channel	conductance	are	unique	to	

each	sub-family	and	may	include	ions,	polyamines,	nucleotides,	lipids,	

phosphorylation,	and	a	variety	of	intracellular	proteins.		For	instance,	the	G	protein-

coupled	inward-rectifying	channels	(GIRK,	Kir3.x)	are	opened	by	the	βγ	subunits	of	

heterotrimeric	G	proteins	[209],	while	Kir6.2	(KATP)	is	sensitive	to	intracellular	ATP	

levels	and	regulated	by	the	accessory	sulfonylurea	receptor	[210].		Because	Kir	

channels	are	insensitive	to	membrane	voltage,	when	mechanisms	like	the	
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aforementioned	are	absent,	the	channel	is	active	at	all	Em.		Despite	extensive	

understanding	of	some	Kir	channels,	the	regulatory	mechanisms	of	other	Kir	

channels,	including	Kir7.1	remain	largely	uncharacterized.	

	
Structure	and	expression	
	
	 Like	all	ion	channels,	the	Kir	family	channels	serve	as	a	protein	pore	for	a	

specific	ion,	K+,	to	pass	through	the	cell	membrane	in	order	to	passively	maintain	

resting	membrane	potential	and/or	to	actively	facilitate	electrical	properties	such	as	

neuronal	firing	of	cells.		The	first	two	Kir	channels,	Kir2.1	and	Kir1.1,	were	isolated	

by	expression	cloning	techniques	in	1993	[211].		The	primary	structure	derived	

from	these	channels	is	the	same	motif	as	Kir7.1,	two	membrane-spanning	domains	

(TM1	and	TM2),	linked	by	an	extracellular	pore-forming	region	(H5)	otherwise	

known	as	the	“ion	selectivity	filter”,	and	cytoplasmic	amino	(NH2)-	and	carboxy	

(COOH)-terminal	domains	(Figure	1-8.A).		The	sequence	of	Kir7.1	is	unique	from	

other	channel	subtypes	as	it	only	shares	~38%	homology	with	its	closest	family	

member,	Kir4.2.		Studies	from	Tateno	et	al.	indicated	that	the	C-terminus	of	Kir7.1	is	

a	critical	determinant	for	the	plasma	membrane	localization	of	Kir7.1	protein	[212].		

Indeed	the	amino	acid	1-54	N-terminus	resides	had	no	effect	on	plasma	membrane	

transport,	but	by	cleaving	the	original	length	of	the	C-terminus	204	amino	acid	

residues	down	to	166	amino	acid	residues,	Kir7.1	failed	to	traffic	to	the	plasma	

membrane.		An	intracellular	blocker,	often	Mg2+	or	polyamines	block	outward	K+	

flux.			

A	functional	Kir	channel	is	comprised	of	four	transmembrane	couplet	strands	

forming	a	tetrameric	complex	[213]	[214].		Due	to	the	homology	of	the	basic	Kir	

subunit,	both	homotetramers	and	heterotetramers	have	been	observed,	although	

heteromerization	is	most	commonly	found	between	members	of	the	same	subfamily	

[215].		One	isoform	of	Kir7.1	has	been	sequenced;	and	while	Kir7.1	may	form	

heterotetramers,	no	such	assembly	has	been	identified	so	far.		In	addition	to	

sequencing	domain	analysis,	x-ray	crystallography	has	provided	details	of	the	three-

dimensional	structure	of	Kir	channels	Kir1.1,	Kir2.1,	Kir3.1,	and	Kir3.2	subunits	

down	to	the	atomic	level	[216]	[217]	[218]	[219]	[220].		Notably,	both	NH2	and	
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COOH	terminals	extend	into	the	cytoplasm	and	may	interact	with	each	other	to	form	

a	cytoplasmic	gating	regulator	domain	that	is	linked	to,	but	distinct	from	the	

transmembrane	domain.			

	 Broadly,	Kir	channels	are	expressed	in	a	vast	array	of	cell	types	including:	

cardiac	myoctyes,	neurons,	blood	cells,	osteoclasts,	endothelial	cells,	epithelial	cells,	

glial	cells,	and	oocytes	[206].		Kir7.1	has	notable	expression	density	in	a	diverse	set	

of	tissues,	including	kidney,	uterine	muscle,	retinal	pigment	epithelium,	intestine,	

lung,	melanophores,	and	brain,	where	its	localization	is	known	to	be	polarized	in	

membrane	“macrodomains.”	The	first	noted	expression	of	Kir7.1	in	the	CNS	was	

found	by	in	situ	hybridization	in	the	choroid	plexus	[221].		Later,	

immunolocalization	improved	this	resolution	by	showing	Kir7.1	at	the	apical	

membrane	of	the	rat	choroid	plexus	epithelium	[222].		Recently	a	knock-in	mouse	

expressing	a	Kir7.1	haemagglutinin	(HA)-tagged	protein	was	created	to	further	

improve	characterization	of	tissue	distribution	and	as	a	modeling	tool	for	

localization	studies	[223].		This	mouse,	Kir7.1-HA,	was	made	using	a	CRISPR/Cas9	

knock-in	strategy,	and	the	HA-epitope	had	no	adverse	effect	on	channel	function	as	

detected	by	whole-cell	current	and	native	cell	patch-clamp.		The	distribution	of	

Kir7.1	as	determined	by	Western	blot	and	HA-fluorescent	immunoreactivity	

confirmed	and	added	granularity	to	prior	localization	knowledge	of	Kir7.1.		Kir7.1-

HA	was	detected	in	the	choroid	plexus,	rentinal	pigment	epithelium,	ileum	of	small	

intestine,	inner	medulla	of	kidney,	basolateral	expression	in	the	respiratory	tract	

epithelium	from	trachea	to	bronchiole,	and	the	epithelium	of	the	nasal	cavity	and	

nasopharnyx	of	newborn	animals.		This	presence	no	doubt	contributes	to	the	

embryonic	lethality	phenotype	seen	in	prior	attempted	knockout	studies[224].		The	

Kir7.1-HA	is	a	convenient	and	reliable	animal	model	that	will	be	useful	to	further	

parse	Kir7.1	function.	
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Figure	1-8.	Basic	structure	and	Kir	channel	phylogenetic	tree.		
A)	Primary	structure	of	the	Kir	channel	subunit	(left).	Each	Kir	subunit	contains	two	
transmembrane	(TM1	and	TM2)	regions,	a	pore-forming	(H5)	loop,	and	cytosolic	
NH2	and	COOH	termini.		As	a	comparison,	the	structure	of	voltage-gated	K+	(Kv)	
channel	subunit,	which	possesses	six	transmembrane	(TM1-TM6)	regions,	is	shown	
on	the	right.		B)	Amino	acid	sequence	alignment	and	phylogenetic	analysis	of	the	15	
known	subunits	of	human	Kir	channels.	These	subunits	can	be	classified	into	four	
functional	groups.		Modified	from	(Hibino	et	al.,	2010).	
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Functional	studies	in	electrophysiology	and	uterine	smooth	muscle	
	

The	physiological	activity	and	function	of	Kir	channels	is	dependent	upon	

regulation	of	pore	opening,	ion	flux,	and	channel	localization	within	the	cell.		There	

is	still	much	to	understand	regarding	channel	subtype	regulation	although	some	

functional	studies	have	been	conducted.		Changes	in	Kir	channel	conformation	can	

modulate	ion	flux	and	channel	pore	opening	kinetics.		Furthermore,	localization	of	

Kir	channels,	whether	on	epithelial	cell	apical	or	basolateral	membrane	or	pre-or	

post-synaptic	sites	in	neurons,	greatly	impacts	the	functional	role	and	consequence	

of	Kir	channel	activity.		Kir	channel	subfamily	members	have	varying	degrees	of	

inward	rectification	from	weak	to	strong	where	Kir1	<<	Kir3	<Kir2.		Kir7.1	is	distinct	

from	other	Kir	channels	due	to	its	exceptionally	small,	single	channel	conductance	

(~50fS)	[225],	low	sensitivity	to	external	barium	cationic	blockade,	and	inward	

rectification	independent	of	external	K+	concentration	[226].		Since	its	discovery	20	

years	ago	by	three	independent	groups,	knowledge	of	the	physiological	roles	of	

Kir7.1	has	been	sparse,	but	the	studies	available	have	yielded	important	

perspectives	on	the	consequences	of	receptor	mutations	and	downstream	systemic	

effects	of	normally	functioning	Kir7.1	[221]	[227]	[228].	

Kir7.1	appears	to	play	a	role	in	cerebrospinal	fluid	(CSF)	secretion	as	well	as	

cell	volume	regulation	due	to	its	presence	in	the	lateral	and	fourth	ventricle	choroid	

plexus	on	the	apical	membrane	of	epithelial	cells.		From	this	location	

electrophysiological	analysis	suggests	Kir7.1	may	contribute	to	the	resting	potential	

of	the	cell	as	well	as	serving	as	an	apical	leak	pathway	for	~90%	of	the	K+	ions	

pumped	into	the	cell	by	the	Na+/K+-ATPase	[229].	

Recent	studies	have	found	upregulated	Kir7.1	expression	in	uterine	myocytes	

hyperpolarizes	the	uterus,	promoting	quiescence	during	gestation	[230].		Kir7.1	as	a	

target	for	uterine	dysfunction	therapy	was	initially	defined	by	GWAS	enrichment	in	

myometrial	smooth	muscle	[231].		Kir7.1	is	important	in	this	tissue	for	regulating	

uterine	excitability	during	pregnancy.		During	the	majority	of	pregnancy,	labor	may	

be	in	part	inhibited	by	high	expression	of	Kir7.1	promoting	quiescence	during	

gestation.			Subsequently	during	labor	the	decline	of	Kir7.1	expression,	as	mimicked	
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by	lentiviral	miRNA	knockdown	in	mice,	promotes	contractile	force	and	duration	by	

depolarizing	the	plasma	membrane	and	promoting	voltage-gated	calcium	entry.		

The	Kir7.1	specific	inhibitor,	VU590,	was	tested	in	mice	in	the	absence	or	presence	

of	oxytocin	to	induce	and	support	long	contractions	in	uterine	tissue.		Thus,	this	

single	channel,	Kir7.1,	has	direct	and	profound	functional	implications	for	uterine	

contractility	[231].		Additionally,	the	effects	of	blocker	VU590	on	spontaneous	and	

agonist-induced	contractions	of	human	pregnant	myometrium	were	tested	in	vitro	

[232].		While	VU590	modifies	contractility,	confirming	the	role	of	Kir7.1,	it	does	not	

produce	the	types	of	contractions	that	would	be	necessary	for	use	as	a	clinical	

therapeutic.		Nevertheless	these	studies	have	exciting	implications	for	magnitude	of	

physiologic	effects	Kir7.1	can	induce.	

	
Known	mutants	–jaguar	and	autosomal	dominant	vitreo-retinopathies	
	

Several	naturally	occurring	Kir7.1	mutations	with	functionally	deleterious	

properties	have	been	catalogued	in	zebrafish	and	humans.		These	mutations	result	

in	a	variety	of	channel	defects	including	depolarization	of	the	resting	membrane	

potential,	disruption	of	Kir7.1	currents,	premature	truncation	and	degradation,	and	

altered	protein	localization.		Similar	to	the	functional	effect,	the	types	of	mutated	

alleles	also	manifest	from	a	variety	of	sequenced	point	mutations	(Table	1-3).	

Table	1-3.	Known	point	mutations	in	Kir7.1	human	and	fish	mutants	
Allele	
inheritance		

cDNA	
sequence	

Protein	
sequence	

Functional	effect	 Disease	
association	

Reference	

Homozygous,	
missense	

359T>C	 Ile120Thr	 Cone-rod	dysfunction,	
clumped	pigmentation	

LCA?	early	
onset	cataract	

Khan,	2014	

Homozygous	
nonsense	

496C>T	 Arg166X	 Cone-rod	dysfunction,	
clumped	pigmentation	

LCA	 Sergouniotis,	
2011	

Homozygous	
missense	

722T>C	 Leu241Pro	 Cone-rod	dysfunction,	
clumped	pigmentation	

LCA	 Sergouniotis,	
2011	

Dominant-
negative	

484C>T	 Arg162Trp	 Depolarized	and	fragile	
cells	

SVD	 Hejmancik,	
2008	

Compound	
heterozygote	

314G>T	&	
655C>T	

Ser105Ile	
&	Gln219*	

Cone-rod	dysfunction,	
clumped	pigmentation	

LCA	 Perez-
Roustit,	2017	

Haploinsufficient?	 Obetc271d	 Thr128Met	 Abnormal	pigment	
pattern	formation	

Jaguar/obelix	 Iwashita,	
2006	

Haploinsufficient?	 Obetd15	 Leu130Phe	 Abnormal	pigment	
pattern	formation	

Jaguar/obelix	 Iwashita,	
2006	

Haploinsufficient?	 Jagb230	 Phe168Leu	 Abnormal	pigment	
pattern	formation	

Jaguar/obelix	 Iwashita,	
2006	
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Prior	studies	have	identified	that	a	mutation	disrupting	Kir7.1	conductance	is	

responsible	in	a	dose	dependent	manner	for	disorganizing	the	stripe	pattern	in	

obelix	(aka	jaguar)	zebrafish	[233].		The	appearance	of	a	homozygous	jaguar	mutant	

is	spots	rather	than	broader	dark	stripes	due	to	defective	xanothophores	(yellow	

pigment)	appearance	adaption	in	response	to	melanophores	(black	pigment),	which	

express	MC1R,	depolarization	and	dispersion	signal	[234].		In	fish,	Kcnj13/Kir7.1	is	

required	for	melanophore	function	[235].		When	Kir7.1	is	disrupted,	mutant	

melanophores	cannot	respond	correctly	to	the	melanosome	dispersion	signal	

derived	from	the	sympathetic	neuron	and	the	melanosome	aggregation	is	

constitutively	activated.		Interestingly,	the	defect	in	jaguar/obelix		melanophores	

may	segregate	to	neuronal	signaling	as	the	melanorphores	were	still	responsive	to	

hormone	epinephrine.		Because	pigment	pattern	appeared	to	have	near	complete	

penetrance,	the	dominant	phenotype	of	jaguar	mutations	may	be	caused	by	

haploinsufficiency	for	the	gene	[236].		From	sequencing	analysis	thus	far,	jaguar	is	a	

mutation	that	appears	to	occur	in	the	pore	region	(T128M	and	L130F)	or	in	the	TM2	

helix	(F168L),	resulting	in	suppression	of	Kir7.1	currents.			

	
Two	diseases	have	been	associated	with	mutations	in	human	KCNJ13.		Both	

are	vitreoretinopathies,	progressive	congenital	eye	disorder	often	ultimately	

resulting	in	blindness—snowflake	vitreoretinal	degeneration	[237]	(SVD)	and	

Leber’s	congenital	amaurosis	[238]	(LCA).		Both	disease	mechanisms	have	families	

whose	sequence	results	have	traced	mutated	genes	of	interest	back	to	a	large	array	

of	culprits,	including,	but	not	exclusive	to	Kir7.1	dysfunction	[239]	[240].	

SVD	is	an	autosomal	dominant	pathology	characterized	as	a	developmentally	

progressive	eye	disease	affecting	the	retina	and	vitreous	with	an	end	stage	of	retinal	

detachment	[241].		A	low	prevalence	the	disorder	has	been	described	in	multiple	

families.		Genomic	analysis	of	SVD	patients	has	revealed	a	heterozygous	mutation	

(484C>T,	R162W)	in	the	Kir7.1	gene	(Table	1-3)	(Figure	1-9).		This	mutation	was	

mapped	to	the	short	polypeptide	chain	between	the	TM2	α-helix	and	the	COOH	
terminus,	which	may	play	a	role	in	channel	activation	by	prematurely	depolarizing	
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RPE	cells	resulting	in	Ca2+	overload	and	cell	death	[242]	[237].		As	an	example	of	

one	channelopathy	mutant,	the	R162W	Kir7.1	channel	carries	a	nonselective	cation	

current	that	disrupts	the	channel-closed	state	in	a	CHO-K1	cell	overexpression	

system,	depolarizing	the	cells	and	increasing	their	fragility.	Additionally,	this	

mutation	resulted	in	a	non-functional	channel	in	heterologous	expression	studies	

that	rendered	wildtype	channel	nonfunctional	too	through	a	dominant	negative	

mechanism.		Although	Kir7.1	is	not	a	structural	component	of	the	vitreous,	the	

degeneration	of	cell	types	like	the	RPE	where	Kir7.1	is	expressed,	may	cause	the	

abnormalities	in	the	retina	of	SVD	patients	as	well.			

LCA	is	a	particularly	rare,	severe	and	early-onset	form	of	retinal	

degeneration.		At	least	25	genes	have	been	implicated	in	70%	of	LCA	cases,	one	of	

which	is	KCNJ13	[243].		Using	genome-wide	scans,	sequencing,	and	immunoreacivity	

assays	Kcnj13	was	identified	as	a	critical	gene	responsible	for	inward	rectification	of	

retinal	pigment	epithelial	(RPE)	cells	[244]	[238]	[245]	(Table	1-3)	(Figure	1-9).		

Multiple	studies	have	been	conducted	to	determine	how	point	mutations	in	Kir7.1,	

mainly	expressed	on	the	RPE	apical	membrane,	induce	such	detrimental	effects	on	

neighboring	cell	types.		Recently,	Shahi	et	al	conducted	an	in	depth	analysis	of	

electroretinograms	(ERG)	after	Kir7.1	suppression	by	shRNA	or	blocker	VU590.		

These	ERGs,	which	reflect	photoreceptor	hyperpolarization	in	response	to	light,	

suggest	that	a	decrease	in	RPE	Kir7.1	channel	activity	contributes	directly	to	the	

abnormal	ERG	associated	with	blindness	via	alterations	in	sub-retinal	space	K+	

homeostasis	in	the	vicinity	of	the	photoreceptor	outer	segment	[240].		Kir7.1	mRNA	

and	protein	expression	is	much	higher	in	RPE	cells	than	retinal	cells,	thus	Kcnj13-

related-blindness	originates	at	the	RPE	cells	and	is	not	due	to	defective	retina.		

Additionally,	York	et	al	recently	described	the	interaction	of	GPCR–Kir7.1	in	RPE	

cells	in	vitro	where	a	oxytocin	(OXT)-stimulated	inhibition	of	Kir7.1	activity	is	

through	a	PIP2-dependent	Ca2+	response	of	the	oxytocin	receptor	[246].		This	

discovery	of	Kir7.1	interacting	indirectly	with	another	GPCR	in	a	different	tissue	

type	further	validates	the	necessity	to	study	G-protein	independent	regulation	

mechanisms	by	ion-channels.			
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The	Cone	lab’s	discovery	of	MC4R’s	unique	signaling	pathway	through	Kir7.1	

in	a	brain	slice	preparation	and	in	transfected	cells	suggests	that	this	channel	may	

also	play	a	crucial	role	in	MC4R	function	in	vivo.		Indeed	an	in	vivo	role	for	an	AgRP	

Kir7.1	signaling	pathway	is	supported	by	evidence	from	an	AgRP	analogue,	mini-

AgRP,	which	has	normal	affinity	for	MC4R	yet	weaker	induction	of	food	intake	in	

rats,	and	reduced	ability	to	couple	MC4R	to	Kir7.1	[247,	248].			Additionally,	

zebrafish	with	Kir7.1	morpholino	knockdown	exhibit	reduced	linear	growth,	a	

phenotype	identical	to	a	response	induced	by	MC4R	activation	(Figure	1-10)	[45].		

Data	presented	in	this	thesis	sought	to	test	the	hypothesis	that	Kir7.1	is	required	for	

normal	function	of	the	MC4R	in	vivo.	
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Figure	1-9.	Kir7.1	membrane	topology	and	mutations	causing	LCA	and	SVD.		
Localization	of	consensus	sites	for	phosphorylation	by	Casein	Kinase	II	(T321	
and	T337),	PKA	(S287)	and	PKC	(S14,	S169	and	S201)	shown	in	red	filled	squares,	as	
well	as	various	protein	trafficking	signals	(green	boxes:	ER	retention	signal;	purple	
diamonds:	diacidic	motif;	blue	diamonds:	dileucine	motif).		LCA	and	SVD	mutation	
locations	are	also	shown	as	filled	circles	indicated	by	arrows.	Localization	of	
mutations	on	the	topological	image	is	based	on	the	TOPO2	program.	TM	–	
transmembrane.		(Modified	from	Kumar,	et	al.	2014).[249]	
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Figure	1-10.	Effects	of	Kir7.1	and	MC4R	signaling	in	larval	zebrafish.	
A-C)	Knock-down	of	the	Kcnj13	gene	by	kcnj13	morpholino	oligonucleotide	(MO)	
suppresses	the	axial	growth	of	larvae	in	wild-type	and	mc4r	null	zebrafish.	Sibling	
wild-type	or	mc4r-null	zygotes	were	bred	and	injected	with	antisense	kcnj13	
morpholino	oligonucleotide	at	day	0.	A)	The	axial	body	length	was	measured	at	
5	dpf.	Each	group	of	30	fish	was	harvested	for	RNA	extraction	and	cDNA	
synthesis.	B)	Relative	expression	of	ghrh	mRNA	was	measured	and	normalized	to	
the	house	keeping	gene	ef1a	with	qRT–PCR.	The	wild	type	fish	that	were	injected	
with	MO	against	kcnj13	expressed	significantly	higher	copies	of	ghrh	mRNA	than	
those	that	were	injected	with	control	MO.	(control	MO,	n	=	9,	1.056	±	0.116	
vs	kcnj13	MO,	n	=	9,	1.935	±	0.294,	unpaired	t-test,	P	<	0.05).		MC4R-null	fish	that	
were	injected	with	kcnj13	MO	have	significantly	higher	GHRH	expression	than	
MC4R-null	fish	that	were	injected	with	control	MO	(control	MO,	n	=	9,	
1.040	±	0.164	vs	KCNJ	MO,	n	=	8,	2.395	±	0.461,	one-way	ANOVA,	P	<	0.05).	c,	
Representative	WT	fish	injected	with	kcnj13	MO	vs	control	MO.	D-E)	jaguar	wild-
type	and	null	mutant	siblings	were	bred	and	injected	with	7.5	ng	non-targeting	
standard	control	or	7.5	ng	antisense	morpholino	oligonucleotide	
targeting	agrp	or	kcnj13.	D)	Knockdown	of	AgRP	with	agrp	MO	in	the	absence	of	
Kir7.1	also	reduces	larval	growth	(mean	±	s.e.m.,	n	=	43,	P	<	0.001,	unpaired	t-
test).	e,	The	deletion	of	Kir7.1	in	jaguar	null	blocks	effects	of	Kcnj13	MO	on	MC4R-
mediated	inhibition	of	growth	(mean	±	s.e.m.,	n	=	58,	unpaired	t-test).	Data	are	
representative	of	three	independent	experiments.	(From	Ghamari-Langroudi,	et	
al.,	2015) 
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Knockout	attempts	
	

In	2015	two	attempts	were	made	to	generate	a	Kcnj13	knockout	mouse	

model	using	1)	the	CRISPR-Cas9	zygote	injection	system	[250]	and	using	2)	the	

Velocigene	method	for	targeted	deletion	of	the	full	coding	sequence	in	mice	[224]	in	

order	to	verify	and	further	study	the	pathogenic	role	of	human	Kcnj13	mutations,	

such	as	LCA	and	SVD.		Both	strategies	achieved	germline	transmission,	however	all	

homozygous	null	Kcnj13-/-	mutant	mice	died	within	a	couple	hours	after	birth	on	

postnatal	day	zero	(P0).		This	is	an	interesting	discovery	as	ablation	of	KCNJ13	in	

humans	by	point	mutation	as	seen	in	LCA	does	not	appear	to	have	adverse	off	target	

effects	outside	of	the	eye,	and	zebrafish	with	homozygous	Kcnj13	mutations	have	

only	a	pigmentation	phenotype.		This	may	be	a	consequence	of	tetramer	formation,	

tissue	specific	localization,	or	cell	specific	regulation.		Herein	phenotypic	

characteristics	of	both	mouse	models	will	be	described.			

Because	complete	ablation	of	Kcnj13	resulted	in	postnatal	lethality,	Zhong	et	

al.	worked	upstream	of	founder	line	breeder	crosses,	using	another	strategy	within	

the	CRISPR-Cas9		by	using	F0-generation	mice	which	showed	80%	mosaicism	in	the	

RPE	[250].		Indeed	mosaic	expression	correlated	with	decreased	response	to	light	

and	photoreceptor	degeneration,	mimicking	the	human	LCA	RPE	phenotype.		By	

using	mosaic	animals,	regions	with	healthy	wt	RPE	cells	and	Kcnj13	mutant	cells	

were	compared	within	the	same	eye.		Whereas	RPE	cells	with	defective	Kir7.1	

survived,	adjacent	photoreceptors	showed	signs	of	cell	degeneration.		Interestingly,	

the	functionality	of	wildtype	RPE	cells	was	sufficient	to	rescue	tangential	

photoreceptors	affected	by	mutant	RPE	cells.		Thus	it	appears	Kir7.1	acts	in	a	non-

cell	autonomous	manner	and	is	necessary	in	RPE	cells	to	indirectly	regulate	and	

maintain	photoreceptor	survival	(as	detected	by	TUNEL	staining).			

	 Later	in	2015	Villanueva	et	al.	delineated	prominent	mechanisms	underlying		

early	postnatal	lethality	in	mice	lacking	Kir7.1	in	a	transgenic	model	where	ablation	

of	Kcnj13	is	concordant	with	expression	of		inserted	lacZ-reporter	to	drive		β-

galactosidase	expression	under	transcriptional	control	from	the	Kcnj13	promoter	as	

an	internal	reporter	of	channel	tissue	distribution	[224].		Heterozygous	Kcnj13	+/-	
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female	x	Kcnj13	+/-	breeding	pairs	produced	fetal	offspring	with	expected	Mendelian	

distribution	of	25%	Kcnj13	+/+,	25%	Kcnj13	-/-	and	50%	Kcnj13	+/-	and	typical	in	utero	

development	from	11.5-18.5	days	post	coitum	(dpc).		Thus	postnatal	embryonic	

lethality	was	not	due	to	extreme	defective	embryonic	development,	and	lethal	

abnormalities	must	accumulate	during	the	final	days	of	development	and	at	P0.		It	is	

well	established	that	Kir7.	1	is	present	in	epithelial	tissues	where	it	colocalizes	with	

the	Na+/K+pump,	likely	serving	to	recycle	K+	in	order	to	maintain	a	negative	

membrane	potential	compatible	for	the	pump.		By	examining	sections	from	several	

tissues	and	organ	systems	with	established	Kcnj13	expression	for	changes	in	

histology	and	presence	of	pathological	morphology	indicators	by	β-galactosidase	in	

Kcnj13	-/-	the	likely	cause	of	postnatal	lethality	was	determined.		Lung	morphometry,	

showed	that	Kcnj13	-/-	P0	lungs	did	not	appear	to	be	fully	distended,	however,	this	

was	not	the	likely	cause	of	lethality	as	retardation	was	only	moderate.		Strikingly,	

Kir7.1	is	expressed	extensively	in	epithelial	cells	along	the	respiratory	tree	from	the	

trachea	to	the	bronchioles	and	alveoli,	where	it	may	have	a	role	in	gas	exchange,	

mucocilliary	clearance,	and/or	adsorption	or	secretory	functions	of	fluid	along	the	

airway.		Another	potential	cause	of	postnatal	lethality	is	craneo-facial	malformation	

in	Kcnj13	-/-	mice.		Indeed,	these	mice	had	complete	secondary	cleft	palate	and	the	

expression	of	Kcnj13	in	epithelium	covering	the	palatal	processes	coincides	with	the	

point	palate	sealing	should	take	place	(14.5-16.5	dpc).		Kcnj13	also	appears	to	

regulate	tracheal	smooth	muscle	cell	organization,	polarity	and	cartilage	formation	

during	development	(Yin,	et	al.	2018).	Without	functional	Kcnj13,	mutant	postnatal	

mice	died	due	to	defects	in	tracheal	tubulogenesis	and	respiratory	air	sacs.		Thus	

Kcnj13	-/-	PO	pups	failed	to	thrive	in	part	due	to	lack	of	nutritional	uptake.		It	has	

been	hypothesized	that	channel	activity,	controlling	membrane	potential	mediating	

fluxes	in	K+	may	invoke	cell	migration,	proliferation,	or	differentiation	critical	for	

palatal	sealing	and	these	mechanisms	all	merit	further	investigation	as	means	by	

which	Kir7.1	may	regulates	cellular	functions.			

					Prior	studies	of	characterizing	Kir7.1	were	limited	to	in	vitro	systems,	acute	slice,	

or	global	knockout.	Because	it	appears	that	MC4R	has	two	distinct	modes	of	

signaling,	through	Gαs	and	Kir7.1,	that	have	yet	to	be	interrogated	with	regard	to	
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their	control	of	either	the	diverse	physiological	functions	of	the	MC4R,	or	the	

kinetics	of	the	responses	of	the	MC4R	to	its	endogenous	ligands.	I	originally	

proposed	to	evaluate	the	physiological	roles,	and	kinetics,	of	variant	MC4R	signaling	

modalities	through	tissue	specific	and	systemic	knockout	mouse	models,	and	

through	pharmacological	assessment.	I	hypothesize	that	MC4R	functions	as	a	

rheostat	of	energy	homeostasis	by	utilizing	both	tissue	specific	Gαs	and	Kir7.1	

signaling	modalities	as	well	as	unique	kinetic	aspects	of	these	modalities.		
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CHAPTER	2	
	
	

LOSS	OF	Gαs	FUNCTION	IN	MC4R		
	
	

Introduction	
	

Heterotrimeric	G-proteins	are	a	group	of	membrane	associated	complexes	

that	are	critical	for	signaling	at	the	plasma	membrane	and	convey	the	signal	to	other	

intracellular	sites	through	signaling	partners.		Each	G-protein	is	comprised	of	an α-
subunit	which	binds	guanine	nucleotide	and	mediates	signals	from	GPCRs	to	

downstream	effectors	as	well	as	a	βγ	dimer,	all	of	which	are	encoded	on	distinct	

genes.		When	G-protein	Gas	couples	to	cell	surfaces	receptors	it	stimulates	adenylyl	

cyclase	and	downstream	production	of	cAMP.		Because	Gas	is	ubiquitously	

expressed	and	interacts	with	many	GPCRs,	changes	in	Gas	expression,	be	it	gain	of	

constitutive	signaling	function	or	loss	of	function	deleterious	mutation	often	have	

notable	physiologic	consequences	[251].		Notably,	compensatory	changes	in	G-

protein	subunit	subtype	accumulation	have	been	observed	in	vitro	after	silencing	of	

individual	subunit	genes	[252]	[253].	Thus	because	this	is	a	developmental	model	a	

compensatory	mechanism	may	occur	in	our	proposed	model.	Nevertheless,	we	

thought	this	unlikely	with	heterozygous	expression	of	Gas	specifically	in	MC4R	cells,	

making	the	Gas	flox;	MC4R-Cre	mouse	model	a	useful	tool	to	understand	G-protein	

dependent	signaling	through	MC4R.		

CNS	expression	of	Gas,	encoded	by	the	Gnas	gene,	is	maternally	imprinted	

except	for	in	the	NTS,	thus	the	paternal	copy	of	Gnas	is	epigenetically	silenced	

hypothalamic	nuclei	[254]	[255].		This	leads	to	a	parent-of-origin-specific	metabolic	

phenotype,	which	manifests	in	conditions	with	Gas	loss	of	function	mutations	like	

Albright	hereditary	osteodystrophy	[256].		The	Weinstein	laboratory	has	

progressively	used	Gas	parent-of-origin-specific,	Gas	tissue	specific,	and	most	

recently	Gas	cell	type	specific	deletion	models	to	elucidate	the	role	of	Gas	and	other	

G-protein	subunit	signaling	pathways	in	metabolic	syndrome	[257]	[94]	[258]	[259]	

[260].		While	it	is	apparent	that	functional	maternal	allele	Gas	is	necessary	for	
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energy	homeostasis,	it	remained	unclear	which	G-protein	subunits	are	necessary,	

for	features	of	MC4R	regulated	response,	and	in	what	nuclei.			

When	Gas	expression	was	deficient	in	PVH	and	amygdala,	via	SIM1-Cre	

targeted	deletion,	animals	had	a	small	reduction	in	energy	expenditure,	no	change	in	

linear	growth,	a	gender	specific	gain	in	lean	and	fat	mass,	no	change	in	

thermogenesis,	reduced	food	intake	response	to	MTII,	reduced	baseline	systolic	

blood	pressure	(BP),	lack	of	BP	induction	to	MTII,	and	gender	specific	change	in	

glucose	metabolism	[260]	[259].		Gas	deficiency	in	the	DMH	results	in	obesity	with	

reduced	energy	expenditure,	reduced	heart	rate,	reduced	UCP1	BAT	activation	with	

no	metabolic	response	to	cold,	yet	no	change	in	food	intake	[258].		Mice	with	Gq/11a	

specific	loss	in	the	PVH,	which	stimulates	phospholipase	C,	developed	severe	

hyperphagic	obesity,	increased	linear	growth,	impaired	glucose	metabolism	only	in	

older,	male	mice,	with	no	effect	on	energy	expenditure	[259].		Thus	Gq/11a	may	

selectively	target	appetite	regulation.		However	these	studies	targeted	whole	

hypothalamic	nuclei,	and	thus	did	not	directly	address	MC4R	-	Gas	coupling.	

A	more	recent	study	in	mice	where	Gas	is	excised	by	Cre-lox	recombinase	

specifically	in	MC4R	cells	recapitulated	the	MC4R	deletion	syndrome	with	morbid,	

early	onset	obesity,	increased	food	intake,	decreased	energy	expenditure,	impaired	

insulin	sensitivity,	increased	linear	growth,	and	reduced	cold-induced	

thermogenesis	[94].		Curiously,	these	animals	have	reduced	heart	rate,	but	unlike	

prior	deletion	model	no	impairment	of	blood	pressure.		Likewise	animals	lack	a	

response	to	exogenous	agonist	MTII	in	stimulating	L-cell	PYY	release,	yet	PYY,	a	

post-prandial	hormone	whose	secretion	is	stimulated	by	MC4R-	a-MSH-induced-

cAMP	pathway,	is	elevated	at	baseline.	These	discrepancies	indicate	potential	

dysfunction	in	MC4R	cells	due	to	off-target	effects	of	Cre	recombinase	or	aberrant	

expression	defects,	as	Gas	and	MC4R	are	widely	present	in	many	cell	types	early	in	

the	developing	embryonic	brain	[261].		Thus,	MC4R-specific	deletion	of	Gas	largely	

recapitulates	the	metabolic	syndrome	observed	with	MC4R	deficiency.	However,	no	

controls	were	included	that	could	address	a	potential	developmental	effect	of	Gas	

deletion	on	the	development	of	MC4R	neurons.	
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At	the	beginning	of	our	studies	of	Kir7.1,	we	exchanged	mouse	model	lines	

with	the	Weinstein	lab	(MC4R-t2A-Cre	in	exchange	for	Gas	fl/fl)	in	order	to	study,	

compare,	and	cross-validate	the	loss	of	Gas	in	MC4R	cells	to	the	loss	of	Kcnj13	in	

MC4	cells	under	the	same	conditions	and	with	the	same	experimenter.		

Unfortunately,	my	work	to	characterize	the	phenotype	of	Gas	fl/fl	;MC4R-Cre	Tg	was	

stalled	by	inability	to	surmount	postnatal	P0	lethality	of	mice	with	this	genotype	in	

our	facilities,	despite	mimicking	Weinstein	lab	breeding	pair	conditions	and	

paradigm	precisely.		Indeed	the	Weinstein	lab	along	with	many	other	groups	has	

reported	lethality	of	Gnas	germline	knockout	models	as	early	as	10.5	days	post	

coitum	(dpc).	[254]	[251].		This	is	to	be	expected	for	total	deficiency	of	a	key	cellular	

signaling	molecule	that	is	ubiquitously	expressed.		In	many	inbred	genetic	

background	strains	heterozygous	deletion	of	Gnas	was	also	lethal.		Even	in	the	CD-1	

outbred	strain,	only	20%	of	heterozygous	pups	survived	to	weaning	though	they	

were	born	at	expected	Mendelian	ratios.		Thus	there	appears	to	be	a	flaw	with	the	

Gas	fl/fl	;MC4R-Cre	Tg	model	system.		In	our	subsequent	studies	we	characterize	the	

phenotypic	response	of	Gas	fl/+	;MC4R-Cre	Tg	on	a	Black	Swiss	mixed	C57BL/6	

mixed	background	with	the	Gas	flox	allele	inherited	from	the	maternal	allele	

(breeding	pairs	=	Gαsfl/fl	dam	on	100%	Black	Swiss	background	x	MC4R-t2A-	Cre	Tg	

sire)	in	order	to	achieve	full	PVN	penetrance	of	Gas	flox	under	various	parameters	

of	known	MC4R	action.			

	
Results	

	
Chow	diet	response	in	Gαs	heterozygote	
	

To	determine	the	effect	of	heterozygous	deletion	of	Gas	fl/+	;MC4R-Cre	Tg	we	

studied	male	and	female	mouse	weight	gain	from	four	weeks	to	22	weeks	of	age	

compared	to	control	Gas	fl/+	;MC4R-Cre	wt	littermate	control	animals	(Fig	2-1).		

Contrary	to	the	Weinstein	results,	during	this	time	no	significant	difference	was	

detected	at	any	week	or	overall	by	multiple	t-test	and	one-way	ANOVA	respectively.		

Body	composition	was	also	unchanged	(not	shown).			
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Figure	2-1.	No	obesigenic	effect	from	heterozygous	loss	of	Gαs	in	male	and	
female	mice	on	chow	diet.	
Growth	curves	on	chow	of	Gαsfl/+;	MC4R-Cre	Tg	and	Gαsfl/+;	MC4R-Cre	wt	males	and	
females.		Flox	allele	inherited	from	Gαsfl/fl	dam	on	100%	Black	Swiss	background	.		
One	way	ANOVA	with	multiple	comparisons.		(n	=	6-9/group,	*P<0.05,	**P<0.005,	
***P<0.0005,	****P<	0.0001)	
	
Diet-induced	obesity	and	glucose	tolerance	response	in	Gαs	heterozygote	
	
	 The	loss	of	MC4R	in	neurocircuitry	pathways	regulating	energy	homeostasis	

impacts	response	to	chow	and	high	fat	diet	[130].		In	order	to	test	effective	response	

to	a	metabolic	stressor,	mice	were	fed	high	fat	diet	(Research	Diets	D12492,	60%	

kcal	fat	by	volume)	to	induce	obesity.		Effective	utilization	of	caloric	excess	is	an	

indicator	of	normally	functioning	MC4R	signaling.		Dually	housed	male	and	female	

mice	of	the	same	genotype	were	switched	from	chow	to	HFD	at	7-8	weeks	of	age	and	

maintained	on	ab	libitum	HFD	until	groups	were	19-20	weeks	of	age.		Growth	and	

food	intake	were	monitored	weekly	for	11	weeks.		Heterozygous	loss	of	maternal	G-

protein	subunit	Gas	resulted	in	significant	weight	gain	compared	to	control	growth	

curves	(Fig	2-2.A)	starting	at	5	weeks	and	continuing	through	11	weeks.		The	overall	

weight	gain	growth	profile	of	female	Gas	fl/+	;MC4R-Cre	Tg	was	significantly	greater	

than	Gas	fl/+	;MC4R-Cre	wt	mice	as	measured	by	one	way	ANOVA	with	multiple	

comparisons.		No	obesigenic	effect	was	observed	in	males	over	this	time	course.		
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HFD	energy	intake	as	measured	by	the	sum	of	kcal	consumed	per	mouse	from	1	to	14	

days	was	assessed	to	determine	if	hyperphagia	occurred	in	mice	on	HFD.		Female	Gas	
fl/+	;MC4R-Cre	Tg	mice	trended	toward	hyperphagic	from	1-7	days,	however	normal	

intake	compared	to	control	animals	had	resolved	by	14	days	and	there	was	no	

significant	difference	overall	as	measured	by	multiple	t-tests	with	Holm’s	Sidak	

correction.		There	was	no	significant	difference	in	male	HFD	consumption.		Feed	

efficiency	calculation	(Fig	2-2.C)	showed	that	female	Gas	fl/+	;MC4R-Cre	Tg	mice	

weight	gain	on	HFD	(energy	density	5.21	kcal/g)	was	due	to	a	significant	change	in	

feeding	efficiency	from	1-14	days	on	HFD	as	determined	by	two-way	ANOVA	with	

multiple	comparisons	(95%	CI	of	diff	15.3	to	44.2,	P****)	and	this	efficiency	appears	

to	continue	through	the	duration	of	HFD	exposure.		Measurements	of	body	

composition	by	NMR	scan	showed	that	after	consuming	HFD	for	20	weeks,	

heterozygous	loss	of	Gas	caused	a	significant	elevation	in	both	female	%fat	mass	

(Fig	2-2.D),	*P	=	0.0013,	and	%lean	mass	(Fig	2-2.E),	*P	=	0.0011,	while	we	did	not	

measure	an	effect	in	males	as	measured	by	multiple	t-tests	with	Holm’s	Sidak	

correction.	

	 Another	means	of	challenging	energy	homeostasis	is	via	HFD	and	chow	diet	

cycling.		In	order	to	test	animals	weight	and	feeding	response	and	utilization	of	

fluctuating	energy	source,	ab	libitum	chow	and	HFD	were	intermittently	switched	

every	seven	days.		No	significant	effect	was	observed	in	growth	curves	of	male	(Fig	

2-3.A)	or	female	(Fig	2-3.C)	or	corresponding	energy	intake	measured	by	kcal	

consumed	in	male	(Fig	2-3.B)	or	female	(Fig	2-3.D)	mice.	
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Figure	2-2.		Obesity	by	increase	in	%fat	mass	in	female	mice	with	heterozygous	
loss	of	Gαs	function	in	MC4R	cells.			
A)	Diet	induced	obesity	(DIO)	growth	curves	of	male	and	female	mice	on	high	fat	diet	
(HFD)	for	12	weeks	in	Gαs	fl/+;	MC4R-Cre	Tg	and	control	genotype	Gαs	fl/+;	MC4R-Cre	
wt.		Fed	HFD	from	8	to	20	weeks	of	age.		Female	Gαs	fl/+;	MC4R-Cre	Tg		vs.	Gαs	fl/+;	
MC4R-Cre	wt		*P	<	0.05,	one	way	ANOVA	with	multiple	comparisons	and	by	multiple	
t-tests	with	significant	difference	beginning	at	5	weeks	–	12	weeks	on	HFD.		B)	HFD	
energy	intake	as	measured	by	sum	of	kcal	consumed/day.		NS	difference	in	female	
and	male	mice	consumption		over	7	days,	multiple	t-tests	with	Holm	Sidak’s	
correction.		C)	Female	mice	are	significantly	more	efficient	than	control	mice	in	
allocating	HFD,	while	males	are	NS	from	1-14	days	on	HFD.		2-way	ANOVA	with	
multiple	comparisons	95%	CI	of	diff	15.3	to	44.2,	P****.		D)	%Fat	mass	and	%lean	
mass	in	male	and	female	groups.		Female	Gαs	fl/+;	MC4R-Cre	Tg		vs.	Gαs	fl/+;	MC4R-
Cre	wt		%fat	mass	**P	=	0.0013,	%lean	mass	**	P	=	0.0011.	Multiple	t-tests.		(n	=	14-
21/group,	*P<0.05,	**P<0.005,	***P<0.0005,	****P<	0.0001).	
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Figure	2-	3.	Gαsfl/+;	MC4R-CreTg	respond	normally	to	acute	fluctuations	in	
dietary	fat	from	cycling	chow	diet	and	HFD		
Normal	chow	diet	and	HFD	switched	every	7	days	for	2	cycles	in	group	housed	Gαsfl/+;	
MC4R-CreTg	and	control	Gαsfl/+;	MC4R-Crewt	mice.		No	significant	difference	in	
growth	curves	of	change	in	weight	in	A)	male	and	C)	female	experimental	and	
control	groups.		No	significant	difference	in	energy	intake	in	kcal	indicating	week	to	
week	fluctuations	in	consumption	from	chow	to	HFD	in	B)	male	and	D)	female	mice.		
One	way	ANOVA	with	multiple	comparisons.		(n	=	10-	15	animals	/group,	*P<0.05,	
**P<0.005,	***P<0.0005,	****P<	0.0001).	
	
	 HFD	is	known	to	challenge	energy	homeostasis	and	drive	imbalance	toward	

metabolic	syndrome.		To	test	the	efficiency	of	Gαsfl/+;	MC4R-CreTg	animals	in	

responding	glucose	after	sustained	dietary	conditions	of	caloric	excess,	glucose	

utilization	was	tested	by	IPGTT	in	DIO	mice	on	HFD	for	20	weeks.		After	a	10	hour	

fast,	a	dose	of	2	mg/kg	glucose,	adjusted	in	proportion	to	lean	mass,	was	

administered	to	mice	and	glucose	levels	were	measured	from	0-120	minutes	(Fig	2-

4.A).		At	60	-120	minutes	post	injection,	glucose	was	significantly	elevated	in	female	
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Gαsfl/+;	MC4R-CreTg	vs.	control	mice	with	p	values	of	P	=	0.0006	at	60	minutes	and	P	

=	0.0001	at	120	minutes.		Likewise	area	under	the	curve	(AUC)	analysis	by	one-way	

ANOVA	with	multiple	comparisons	confirmed	that	female	Gαsfl/+;	MC4R-CreTg	had	

significantly	reduced	glucose	tolerance	compared	with	control	littermates	(Fig2-

4.B).		In	agreement	with	prior	characterization	of	response	to	HFD,	no	significant	

difference	was	observed	in	males.		These	physiologic	characterization	data	from	

heterozygous	female	mice	inconclusively	indicate	that	Gαs	in	MC4R	cells	has	a	role	

in	maintaining	proper	response	to	metabolic	challenge	and	that	this	may	be	a	

sexually	dimorphic	effect.		

	

	
	
Figure	2-4.	Glucose	intolerance	in	female	Gαsfl/+;	MC4R-CreTg	mice	on	HFD.	
A)	Plasma	glucose	concentration	during	intraperitoneal	glucose	tolerance	test	
(IPGTT)	2	mg/kg	glucose,	normalized	to	%	lean	body	mass	was	administered	to	
each	animal.		IPGTT	was	performed	after	ten	hour	daytime	fast	in	mice	fed	HFD	for	
five	months	in	male	(blue	and	black	plot)	and	female	(pink	and	black	striated	plot)	
animals.		Multiple	t-tests	with	Holm’s	Sidak	correction	sig	dif	in	female	60	min	**P	=	
0.0006	and	120	min	****P	=	0.0001.		B)	Comparison	of	the	%	difference	in	total	AUC	
shows	that	Gαsfl/+;	MC4R-CreTg	differed	significantly	from	control	Gαsfl/+;	MC4R-
Crewt	mice	in	females.	(n	=	6-11/group,	*P<0.05,	**P<0.005,	***P<0.0005,	
****P<0.0001	one-way	ANOVA	with	Tukey’s	multiple	comparisons	test).	 	
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PYY	response	
	

Post-prandial	release	of	PYY	is	part	of	a	hormonal	feedback	loop	contributing	to	

satiety.		Peripheral	administration	of	a-MSH	or	MC4R	agonist	has	been	shown	to	

induce	PYY	and	GLP1	release	from	intestinal	L-cells	and	this	is	known	to	be	driven	

by	cAMP	release,	an	intracellular	signaling	protein	downstream	of	Gαs	activation.		

Heterozygous	loss	of	Gαs	in	MC4R	cells	did	not	alter	PYY	release	as	measured	by	

plasma	ELISA.		Thus	MC4R	function	is	able	to	compensate	for	the	maternally	inherited	

heterozygous	loss	of	Gαs.		

	
	

	
Figure	2-5.		Normal	melanocortin-stimulated	PYY	release	in	Gαsfl/+;	MC4R-
CreTg	mice.		
Female	27-30	week	old	Gαsfl/+;	MC4R-CreTg	and	control	Gαsfl/+;	MC4R-Crewt	mice	
were	injected	with	3	mg/kg	saline	or	LY2112688	intraperitoneally		after	a	6	hour	
daytime	fast.		15	minutes	following	the	injection,	blood	was	collected	and	plasma	
prepared.		Plasma	was	then	assayed	for	peptide	YY	(PYY)	using	ELISA	(Luminex).		
Points	indicate	mean	PYY	concentrations	determined	in	duplicate	from	individual	
mouse	serum	samples,	bars	indicate	means	from	multiple	mice.		Significant	
induction	of	PYY	response	with	LY2112688,	mimicking	postprandial	induction	of	
PYY.		(n=3-4/group,	*P<0.05,	student’s	t-test).	
	

Summary	and	Conclusions	
	

Global	deletion	and	haploinsufficiency	of	MC4R	results	in	a	rapid	onset	

obesity	phenotype,	and	studies	from	Podyma	et	al.	who	have	deleted	Gαs	specifically	

from	MC4R	cells,	indicate	loss	of	G-protein	dependent	signaling	pathway	through	

the	Gαs	subunit	recapitulates	the	majority	of	the	MC4R	knockout	phenotype.		Here	
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we	show	that	in	our	hands	the	same	model	causes	P0	lethality,	and	that	maternally	

inherited	heterozygous	loss	of	Gαs	(Gαsfl/+;	MC4R-CreTg)	has	a	minor	obesigenic	

effect	observable	by	DIO.	Because	Gαs	flox	allele	is	passed	from	maternally	inherited	

floxed	alleles	it	will	be	preferentially	expressed	(ie	Gαs	deletion)	in	maternal	

imprinted	regions	like	PVN.	The	Weinstein	group	has	shown	that	Sim-1-Cre,	Gαs	

maternal	flox/wt	reduced	PVN	Gαs	expression	to	30%	of	control	compared	to	Gαs	

paternal	flox/wt	which	reduced	expression	to	70%	of	control.		Thus	in	critical	nuclei	

like	the	PVN,	our	Gαsfl/+;	MC4R-CreTg	may	have	more	complete	transmission	of	Gαs	

knockdown.		However	our	difficulty	in	generating	an	experimental	colony	of	mice	

with	homozygous	deletion	of	Gαs	indicates	that	the	development	and	function	of	

native	PVN	MC4R	cells	with	Gαs	deletion	should	be	assessed	and	more	rigorously.	A		

developmental	defect	has	not	been	ruled	out.	

Podyma	et	al.	have	shown	that	complete	deletion	of	Gas	in	MC4R	cells	causes	

rapid	weight	gain	due	to	an	increase	in	both	lean	and	fat	mass	on	chow	diet	from	4-

12	weeks	of	age	due	to	hyperphagia	and	reduced	energy	expenditure	[94].		The	

Weinstein	maternal	inherited	Gas	fl/+	;MC4R-CreTg,	had	lesser,	yet	still	significant	

weight	mainly	in	males	with	most	of	the	weight	stored	as	an	increase	in	fat	mass.		

Our	results	differ	in	that	we	observed	no	obesigenic	effect	on	chow	diet.		

Furthermore	we	observe	significant	weight	gain,	driven	by	loss	of	Gas,	in	DIO	

females	exclusively	(Fig	2-2.A),	which	appears	to	be	due	to	changes	in	energy	

expenditure	as	there	was	no	consistent	change	in	HFD	intake	(Fig	2-2.B)	yet	feed	

efficiency	was	elevated	in	Gas	fl/+	;MC4R-CreTg,	females	(Fig	2-2.C).		In	contrast	to	

Podyma	(and	Weinstein),	loss	of	Gas	was	more	deleterious	to	energy	homeostasis	in	

females	than	males	as	shown	by	significant	increase	in	percent	fat	mass	at	and	

percent	lean	mass	(Fig	2-2.D-E)	and	reduced	glucose	tolerance	in	females	(Fig	2-4).		

MC4R	is	required	for	acute	homeostatic	responses	to	fluctuations	in	dietary	fat	

[144],	however	Gas	fl/+	;MC4R-CreTg,	males	and	females	are	unaffected	and	drop	

weight	and	energy	intake	during	chow	exposure	as	expected	(Fig	2-3).		Complete	

deletion	of	Gas	resulted	in	abnormal	glucose	metabolism	as	measured	by	both	

elevated	GTT	and	ITT	on	chow	fed	animals	[94].		Furthermore	when	Podyma	et	al.	
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repeated	these	assays	in	maternally	inherited	Gas	fl/+	;MC4R-CreTg	mice	(the	same	as	

our	model),	insulin	induction	is	normal	and	glucose	utilization	is	still	impaired	

although	at	a	~30%	decrease	from	the	effect	in	Gas	fl/fl	(no	mention	to	gender	of	

animals	tested).		In	our	hands	after	Gas	fl/+	;MC4R-CreTg	animals	had	matured	on	

HFD,	a	glucose	tolerance	was	administered	to	test	glucose	utilization.		Similar	to	the	

aforementioned,	glucose	metabolism	was	impaired	by	loss	of	Gas,	although	this	was	

only	observed	in	females	(Fig	2-4).		This	confirms	that	Gas	may	augment	MC4R	

signaling	to	integrate	the	insulin	hormone	pathway	through	the	ANS.		

Our	studies	indicate	that	haploinsufficiency	of	Gas	does	not	contribute	to	a	

notable	obesigenic	phenotype.	However,	the	variable	results	between	labs,	and	the	

possibility	the	Gas	deletion	produces	a	developmental	defect	in	MC4R	neurons	

suggest	the	need	for	further	study.	

	
	



	 65	

	
CHAPTER	3	

	
	

KIR7.1	CRISPR	KNOCKOUT	EMBRYONIC	LETHALITY	
	

	
Introduction	

	
Kir7.1	has	been	detected	in	a	wide	variety	of	cells	and	tissue	types,	however	

it	plays	a	common	role	in	these	locations—maintaining	resting	membrane	potential	

near	the	potassium	equilibrium	potential	[206].		This	is	accomplished	by	its	inward	

rectifying	potassium	current,	whose	proper	function	and	dysfunction,	as	detected	by	

mutations	in	protein	coding	motifs	by	genome	sequencing,	is	implicated	in	a	number	

of	physiologic	processes.		In	humans	KCNJ13	is	found	on	chromosome	2,	in	mice	

Kcnj13	is	on	chromosome	3.		The	Kir7.1	sequence	is	highly	conserved	and	the	mouse	

gene	is	comprised	of	1349	nucleotides	with	three	exons,	two	coding	and	one	

noncoding.		This	gene	is	translated	into	a	360	amino	acid	protein	~40.5	kDa.		The	

channel	subunit	is	comprised	of	two	transmembrane	segments	and	cytoplasmic	

amino	and	carboxy	terminals	predicted	to	be	360-	amino	acids	protein	with	very	

low	sequence	structural	homology	to	even	its	nearest	Kir	channel	family	member.		

These	subunits	combine	into	a	homo-	or	heterotetramer	to	form	the	channel,	

although	it	is	unknown	what	type	of	tetramer	Kir7.1	preferentially	forms	or	if	there	

is	variability	in	different	tissues.			

After	the	discovery	of	a	role	for	Kir7.1	in	G-protein	independent	regulation	of	

MC4R	signaling,	we	immediately	set	out	to	develop	whole	body	and	site-specific	

transgenic	models	for	reduced	or	ablated	Kcnj13	expression	in	the	mouse	for	further	

physiologic	characterization	or	Kir7.1	in	the	melanocortin	system	[104].		Because	

CRISPR-Cas9	is	an	efficient	and	expedient	method	for	generating	gene	specific	

mosaic	mice,	we	utilized	this	system	to	study	the	physiologic	effects	of	whole	animal	

Kcnj13	knockout	[262]	[263].		CRISPR	guide	RNAs	or	crRNAs	specific	to	a	target	

region	of	the	gene	of	interest	that	is	predicted	to	cause	loss	of	function	(LOF)	are	

injected	with	Cas9,	an	RNA-guided	DNA	endonuclease	into	zygotes.			These	editing	

primed	zygotes	are	then	implanted	into	pseudo-pregnant	dams.		When	the	target	
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DNA	is	found,	Cas9	binds	to	the	DNA	and	cuts	it	at	a	random	site	within	or	near	the	

target	sequence.		Thus,	pups	born	will	have	a	mosaic	variety	of	unique	deletions,	and	

following	germline	transmission	they	can	then	be	sequenced	and	characterized	for	

predicted	changes	in	protein	function.	

While	initial	reports	disputed	the	presence	of	Kir7.1	in	kidney,	

improvements	in	methodology	and	reagents	have	confirmed	the	presence	of	Kir7.1	

in	the	kidney.		Herein	its	unusual	properties	such	as	low	single	channel	conductance	

(50fS),	low	sensitivity	to	blockade	by	external	Ba2+	or	Cs+,	very	low	dependence	on	

conduction	on	external	K+,	localization	close	to	Na-K-ATPase	channel	suggest	it	may	

be	involved	in	a	number	of	processes.		Historically	the	role	of	Kir7.1	in	the	kidney	

has	been	muddled	by	conflicting	reports	of	subcellular	localization.		For	example	

some	reports	have	ascertained	that	Kir7.1	may	be	involved	in	K+	recycling	across	

basolateral	membranes	or	it	may	facilitate	renal	K+	excretion	under	the	condition	of	

K+	overload	[264].		Kidney	expression	profiles	from	PCR	and	Western	blot	in	guinea	

pig,	human,	and	micro-dissected	rat	nephron	kidney	have	identified	Kir7.1	in	

several	regions.		Immunostaining	has	shown	Kir7.1	along	the	basolateral	membrane	

of	cell	types	along	the	nephron	including	distal	convoluted	tubule	and	principal	

cells.			Recently	the	most	thorough	characterization	to	date	by	Kir7.1-HA	has	

identified	Kir7.1	in	the	inner	medulla,	but	not	the	cortex	or	outer	medulla	of	the	

kidney	[223].		Furthermore	Kir7.1	was	observed	in	inner	medulla	collecting	ducts,	

but	not	thin	limbs	of	the	loop	of	Henle	in	isolated	tubules.	

	 Loss	of	Kcnj13	function	has	been	published	in	zebrafish	and	humans	(Table	

1-3),	however	to	our	knowledge,	no	known	metabolic	defects	have	been	observed.	

In	2015	Zhong	et	al.	described	F0	CRISPR	Kcnj13	mosaic	mice	used	to	study	RPE	

function	where	mutations	in	Kir7.1	expression	are	known	to	cause	congenital	

blindness	such	as	LCA	and	SVD		[250].		F0	animals	were	used	rather	than	germline	

transmitted	F1—Fx	mice	because	it	was	determined	that	homozygous	deletion	of	

Kcnj13	caused	P0	embryonic	lethality.		This	is	an	unanticipated	finding,	meriting	

further	understanding	of	Kcnj13	mutation	penetrance	in	other	organ	systems	of	

affected	humans.		Our	studies	were	conducted	before	publication	of	Zhong	et	al	and	

are	focused	on	the	metabolic	phenotype	of	Kcnj13.		Although	Kcnj13	-/-	was	post-
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natal	lethal	with	our	mutant	alleles	as	well,	we	used	heterozygous	mice	to	study	the	

physiologic	phenotype	in	pathways	commonly	mediated	by	MC4R.		Because	the	

tissue	and	cellular	location,	tetramer	construction,	and	regulating	signaling	partners	

can	each	impact	channel	function,	this	CRISPR	knockout	mouse	model	will	be	a	

useful	tool,	however	future	studies	will	also	need	to	be	conducted	in	a	model	where	

Kcnj13	is	specifically	ablated	in	MC4R	cells	produce	viable	animals	for	study.				

	
Results	

	
Generation	of	CRISPR	Kir7.1	loss	of	function	mouse	strains	
	
In	order	to	generate	a	Kcnj13	specific	knockout	model,	guide	RNAs	honing	into	the	

Kcnj13	sequence	just	before	the	transmembrane	1	domain	(TM1)	(cDNA	146-159)	

were	injected	into	zygotes	along	with	guide	RNA	for	the	Tyrosinase	gene	(Fig	3-1.B)	

[265].		Small	mutations	that	are	either	an	insertion	or	deletion	(INDEL)	in	this	

region	of	Kcnj13	are	predicted	to	cause	frameshifts	resulting	in	loss	of	function	

(LOF).		Genetic	mutations	in	Tyrosinase	do	not	introduce	deleterious	effects	on	

organ	systems	other	than	coat	color	pigmentation,	which	serves	as	a	positive	

indicator	of	CRISPR-Cas9	genome	editing	in	the	animal.		There	were	27	live	P0	

mosaic	pups	born,	27	of	which	survived	through	weaning.		At	least	seven	(six	

female,	one	male)	carried	Kcnj13	mutations	(29%)	as	determined	by	Surveyor	assay	

for	positive	Kcnj13	mutation.		All	of	these	pups	also	displayed	coat	pigmentation	

variability	due	to	variable	penetrance	of	tyrosinase	from	the	original	black	coat	

color,	from	albino	to	piebald,	to	seal-point,	and	gray	or	brown	(Fig	3-1.A).		Of	the	

seven	Kcnj13	mutant	pups,	three	females	with	different	frameshift	mutations	were	

successful	breeders	with	germline	transmission	and	an	efficient	genotyping	strategy	

(12.5%).		The	mutant	alles	are	described	below	(Fig	3-1.C):		Mouse	6	mutant	allele:	

heterozygous	for	a	1-base	deletion	in	the	CRISPR	target	sequence.		Mouse	10A/B	

mutant	allele:	compound	heterozygote	for	two	mutations.		One	allele	has	a	4-base	

deletion	in	the	CRISPR	target	sequence.		Second	allele	has	a	3-base	deletion	in	the	

CRISPR	target	and	also	a	1-base	deletion	nine	bases	downstream	from	CRISPR	

target	sequence	(4-bases	total	deleted).	Mouse	22	mutant	allele:	heterozygous	for	a	
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1-base	deletion	in	the	CRISPR	target	sequence.		Only	mutant	alleles	6,	10B,	and	22	

were	efficiently	transmitted	and	detected	by	PCR.		During	the	course	of	breeding	

experimental	animals,	one	homozygous	male	Kcnj1322/22	was	born	and	survived	to	

adulthood,	however	we	were	unable	to	further	transmit	this	allele	to	homozygosity.	

Sanger	sequencing	of	an	ear	tissue	sample	from	animal	and	a	heterozygous	

Kcnj1322/+	littermate	confirmed	the	presence	of	the	mutant	allele	(Fig	3-1.D).	

	
Autopsy	determined	mechanism	of	homozygous	lethality	
 
	 Upon	discovery	of	Kcnj13	-/-	mice	in	all	mutant	alleles	generated	from	

heterozygous	crossings,	we	set	out	to	understand	the	time	and	origin	of	peri-natal	

lethality.		This	was	the	case	no	matter	the	breeding	pairs	combination,	be	it	a	

homozygous	allele	deletion	(example	22/+	x	22/+)	or	compound	heterozygote	deletion	

(example	10B/+	x	22/+).		Dissection	of	pregnant	dams	from	staged	bred	pairs	

determined	that	Kcnj13	null	embryos	develop	in	utero	with	expected	Mendelian	

ratios,	but	did	not	survive	at	expected	ratios	(Table	3.1).		

	
Table	3-1.	Allelic	Distribution	and	Chi-Squared	Analysis	for	Kir7.1	LOF	
Heterozygous	Breeding	Pairs	
Pup	Genotype	

(P0)	
Kir7.1	LOF	

-/-	
Kir7.1	LOF	

-/+	
Kir7.1	LOF	

wt	
Total	Pups	
(16	litters)	

Number	
(actual)	

2	 67	 34	 103	

Ratio	
(actual)	

0.019	 0.65	 0.33	 Χ2	=	29.214	

Number	
(expected)	

25.75	 51.5	 25.75	 df	=	2	

Ratio	
(expected)	

0.25	 0.50	 0.25	 P	=	>0.0001	
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Figure	3-1.	Generation	of	CRISPR	Kir7.1	Loss	of	Function	mouse	strains.	
A)	Four	founder	mice	from	CRISPR-	Cas9	genomic	deletion	strategy	to	generate	
Kir7.1	LOF	mutant	alleles.		Color	variation	due	to	guide	RNA	for	random	insertion	of	
tyrosinase	with	Kir7.1	guide	RNA.		B)	DNA	sequences	of	wildtype	(wt)	CRISPR	
Kir7.1	target	highlighted	in	yellow	and	corresponding	mutations	of	four	strains,	6,	
10A,	10B,	and	22,	in	pink	as	determined	by	sequencing.		C)	Kcnj13	open	reading	
frame	(ORF)	showing	CRISPR	target	in	pink	predicted	to	cause	LOF	and	or	protein	
degredation.	D)	Sanger	sequencing	for	Kir7.1	heterozygous	mutant	22/+	and	one	
surviving	Kir7.1	homozygous	mutant	22/22.	
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Gross	histological	analysis	of	deceased	P0	Kcnj13	-/-	pups	determined	the	

likely	cause	of	death	was	suffocation	by	respiratory	failure,	as	the	lungs	were	not	

inflated.		Just	recently,	defective	tracheal	tubogenesis	has	been	repeated	in	a	

homozygous	Kcnj13	mutant	mouse	[266].	Additionally	abnormalities	in	both	the	

brain	and	spinal	cord	were	observed,	possibly	due	to	abnormal	migration	of	cells	

during	development	or	perhaps	due	to	defects	in	choroid	plexus	formation.		These	

defects	are	also	noted	by	Villanueva	et	al.	and	indeed	lung	developmental	

retardation	is	reported	as	the	main	cause	of	post-natal	lethality	in	their	Kcnj13	

knockout	model	[224].	

	
Kidney	pathology	
	

Briefly,	changes	in	structural	morphology	of	P0	CRISPR	Kcnj13	pups	was	examined	

in	collaboration	with	Dr.	Jerod	Denton.		Changes	in	renal	tubule	integrity	as	

described	by	Cornejo	et	al.	were	confirmed	[223].		Additionally,	Kcnj13	-/-	kidney	

capsular	surface	was	lobular	rather	than	a	normal	smooth,	thin	membranous	

surface	indicating	surface	development	was	affected	[267]	[268]	[269].		Sagittal	

slice	dissection	of	kidney	showed	that	renal	papilla	had	a	disorganized	papillary	

vascular	network	and	irregular	duct	patterning.		This	phenotype	may	be	linked	to	

respiratory	system	development	failure	[270].			The	presence	of	Kir7.1	in	renal	

papilla	has	been	shown	where	it	is	found	in	the	inner	medullary	collecting	duct	

[223].		Its	papillary	presence	has	led	to	speculation	that	Kir7.1	function	may	

contribute	to	the	urinary	concentration	process.		This	has	been	supported	by	a	

recent	single	cell	transcriptomic	analysis	that	reveals	high	expression	of	Kir7.1	in	

intercalated	rather	than	principal	cells	of	mouse	kidney	collecting	ducts	[271].	

	
Heterozygote	phenotype	on	chow	diet	and	Ay	effect	
	

In	order	to	study	potential	metabolic	defects	with	loss	of	Kir7.1,	

heterozygous	experimental	mice	were	bred	and	for	the	majority	of	experiments	are	

represented	by	the	alleles	Kcnj13	22/+	or	Kcnj13	10B/+(hets).		Ex	vivo	slice	studies	

have	shown	that	the	AgRP	is	effective	at	hyperpolarizing	MC4R	cells	through	Kir7.1.		
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We	used	the	Agouti	(Ay)	mouse	to	study	whether	continuous	ectopic	endogenous	

overexpression	of	agouti,	exhibits	reduced	activity	in	mice	with	haploinsuffcient	

Kir7.1	[31].		Agouti	mice	are	known	for	their	brilliant	yellow-orange	coat	color	due	

to	antagonism	of	MC1R	and	subsequent	follicular	production	of	pheomelanin	[272].		

Likewise	they	exhibit	obesity	and	hyperinsulinemia,	insulin	resistance,	

hyperglycemia,	increased	linear	growth,	and	hyperleptinemia	due	to	action	of	agouti	

both	centrally	and	peripherally	and	this	phenotype	is	worsened	by	loss	of	MC4R	

[35].		We	crossed	Kir7.1	hets	with	Ay	to	determine	if	loss	of	Kir7.1	further	

exacerbates	agouti	driven	obesity.		

By	measuring	the	growth	curve	of	male	and	female	mice	in	four	genotypes:	

Kir7.1	het;	Ay	Tg/+	and	its	control	Kir7.1	wt;	Ay	Tg/+,	followed	by	Kir7.1	het;	Ay	wt	

and	its	control	Kir7.1	wt;	Ay	wt,	from	5	to	27	weeks	of	age	we	observed	that	ectopic	

expression	of	Ay	does	lead	to	accelerated	weight	gain	on	chow	diet	in	both	males	and	

females	(Fig	3-2.A,C).		Haploinsuffienciency	of	Kir7.1	does	not	adversely	effect	males	

(Fig	3-2.A),	however,	we	observe	a	significant	increase	in	Kir7.1	het;	Ay	Tg/+	female	

weight	gain	compared	to	Kir7.1	wt;	Ay	Tg/+	as	measured	by	one-way	ANOVA.		This	

was	not	due	to	an	increase	in	chow	consumption	as	both	sets	of	male	(Fig	3-2.B)	and	

female	(Fig	3-2.D)	experimental	and	control	group	were	not	significantly	different.		

The	only	trend	observed	is	an	increase	in	chow	intake	for	Kir7.1	wt;	Ay	Tg/+	males	

and	females.		Additionally,	body	composition	and	body	length	were	measured	at	27	

weeks	of	age.		We	did	not	observe	any	significant	difference	in	%fat	or	%lean	mass	

in	males	(Fig	3-2.E,F)	or	females	(Fig	3-2.H,I)	of	any	genotype.		This	was	surprising	

in	Kir7.1	het;	Ay	Tg/+	females,	however	there	may	be	a	trend	toward	an	increase	in	

%fat	mass	in	these	females	hidden	due	to	a	low	experimental	n	for	Kir7.1	wt;	Ay	

Tg/+	(data	for	other	Kir7.1	wt;	Ay	Tg/+	animals	lost	due	to	technical	error).		Body	

length	measurements	showed	that	Ay	does	indeed	incur	an	increase	in	longitudinal	

length	in	both	males	and	females.		The	loss	of	Kir7.1	alone	leads	to	a	further	increase	

in	body	length	in	both	males	(Fig	3-2.G)	P	=	0.003	and	females	(Fig	3-2.J)	P	=	0.006.		

An	increase	in	body	length	in	Kir7.1	het	with	the	presence	of	Ay	is	only	observed	in	

males	P	=	0.044.		These	studies	indicate	that	Kir7.1	may	have	a	role	in	agouti	

signaling	pathways	via	the	MC4R.	
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Figure	3-2.	Minor	physiologic	perturbance	in	response	to	loss	of	Kir7.1	
function	in	the	presence	or	absence	of	Ay	on	chow	diet.			
A)	Male	growth	curves	and	B)	chow	diet	consumption	per	week	.		C)	Female	growth	
curves	and	D)	chow	diet	consumption	per	week.	Female	Kir7.1	het;	Ay	Tg/+	versus	
Kir7.1	wt;	Ay	Tg/+	*	P	<	0.05.		E)	%fat	mass,	F)	%	lean	mass,	and	G)	length	(tip	of	
nose	to	base	of	tail)	of	male	mice.	H)	%fat	mass,	I)	%lean	mass,	and	J)	length	of	
female	mice.		Body	composition	and	body	length	at	27	weeks	of	age.		All	conditions	
tested	in	four	genotypes:	Kir7.1	het;	Ay	Tg/+,	Kir7.1	wt;	Ay	Tg/+,	Kir.1	het;	Ay	wt,	and	
Kir7.1	wt;	Ay	wt.		(A-D)	One	way	ANOVA	with	multiple	comparisons.	(E-J)	Multiple	t-
tests	with	Holms-Sidak	multiple	comparisons	test.		(n	=	12-21/group	for	growth	
curves	from	2	cohorts	interspersed	across	age,	n=	4-14	body	composition	and	body	
length	*P<0.05,	**P<0.005,	***P<0.0005,	****P<	0.0001).	
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Heterozygote	fasting-induced	re-feed		
	

A	hallmark	role	of	MC4R	is	to	assimilate	peripheral	and	central	feedback	of	

energy	stores,	intake,	and	expenditure	and	orchestrate	responses	affecting	multiple	

organ	systems	to	maintain	energy	homeostasis.		Global	deletion	and	

haploinsufficiency	of	MC4R	effect	caloric	preference,	meal	size,	and	meal	duration.		

To	study	the	role	of	Kir7.1	in	mediating	MC4R	response	to	endogenous	

melanocortin,	we	used	a	fast-induced	refeeding	model.		After	fasting,	AgRP	neurons	

increase	production	and	release	of	AgRP,	GABA,	and	NPY	onto	MC4R	neurons.		We	

studied	the	kinetics	of	refeeding	by	chow	consumption	after	a	16	hour	overnight	

fast	in	male	and	female	Kir7.1	het	and	wildtype	mice	(Fig	3-3).		While	there	was	no	

significant	change	in	the	orexigenic	response	of	Kir	het	males	from	1-24	hours	post	

refeeding,	there	was	a	trend	toward	blunted	feeding	in	Kir	het	females	from	1-4	

hours,	which	became	significant	at	6	hours	post	refeeding	P	=	0.0019,	as	measured	

by	multiple	t-tests	with	Holm’s	Sidak	correction.		This	reduction	in	feeding	is	lost	

after	6	hours,	nevertheless	this	finding	argues	that	global	haploinsufficiency	of	

Kir7.1	may	have	an	effect	on	AgRP	activation	on	MC4R	neurons.	

	

	
Figure	3-3.	Blunted	orexigenic	response	in	female	Kir7.1	heterozygous	mice	at	
six	hours	after	fast-induced	reefed.	
Feeding	response	on	dark	cycle	after	16	hour	overnight	fast	in	male	and	female	
10B/+	or	22/+	heterozygous	mutant	mice	or	wildtype	(wt)	mice.			Female	six	hour,	
P	=	0.0019		Age	of	mice	10-11	weeks	old.	(n	=	14-20/group,	*P<0.05,		Multtiple	
paired	t-tests	h	multiple	comparisons	test).	
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Heterozygote	diet	induced	obesity	
	

Diet	induced	obesity	by	high	fat	diet	is	a	metabolic	challenge	that	is	further	

complicated	by	loss	of	MC4R	or	its	pathway	signaling	partners.			Haploinsufficiency	of	

MC4R	is	sufficient	to	induce	early	onset	morbid	obesity	in	mice	and	humans,	and	high	

fat	hyperphagia	in	mice	[111].		Thus	reduction	of	Kir7.1	expression	may	also	

irrevocably	alter	MC4R	response	to	conditions	of	caloric	fat	excess.		Dually	housed	male	

and	female	Kir7.1	het	and	wildtype	sibling	mice	were	switched	to	high	fat	diet	at	10	-	12	

weeks	of	age.		Similar	to	previous	studies,	there	was	no	significant	difference	in	weight	

gain	of	male	Kir7.1het	mice	compared	to	Kir7.1	wildtype.		However,	female	Kir7.1	het	

(which	reflects	either	10B	or	22/+)	gain	significantly	more	weight	on	HFD	compared	

to	wildtype	controls	as	measured	by	one-way	ANOVA	with	multiple	comparisons.		

This	suggests,	in	agreement	with	prior	analysis,	that	reduction	in	Kir7.1	may	

augment	MC4R	signaling	in	vivo	and	whereas	these	effects	were	not	observable	on	

chow	diet	in	males	or	females,	the	challenge	of	HFD	unmasks	the	physiologic	action	

of	Kir7.1.		

	
	

	
Figure	3-4.	Obesity	in	female	Kir7.1	LOF	heterozygous	mice	on	high	fat	diet.	
Growth	curve	on	high	fat	diet	from	male	and	female	mice	in	genotypes	Kir7.1	10B	or	
22/+	and	wildtype	(wt).		Female	Kir7.1	10B	or	22/+	versus	female	wildtype	(wt)	
*P<0.05.		One	way	ANOVA	with	multiple	comparisons..	(n	=	5-12	/	group,)	
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Summary	and	Conclusions	
	

Using	a	CRISPR-Cas9	global	deletion	model,	we	have	confirmed	the	

discovery,	recently	published	by	other	labs,	that	global	deletion	of	Kir7.1	is	

postnatal	lethal	due	to	respiratory	development	defects.		It	is	curious	that	

homozygous	nonsense	mutations	such	as	one	found	in	a	human	patient	with	LCA	

(Arg166X)	do	not	cause	death.		This	may	be	due	to	an	incomplete	loss	of	Kcnj13	

function	at	this	sequence	location.	Therefore	it	may	be	the	case	that	Kcnj13	has	a	

developmentally	critical	role	in	mice	that	is	not	conserved	in	humans.		Although	the	

CRISPR	method	is	comparatively	less	arduous	than	making	a	conditional	loss-of-

function	transgenic	model,	in	order	to	study	the	role	of	Kcnj13	more	effectively	it	is	

necessary	to	use	such	an	animal	model	in	the	future.	

We	further	characterized	kidney	defects,	alluded	to	by	the	presence	of	lacZ	

expression	marker	in	Kir7.1-HA,	in	E20	and	P0	mice	[223].		Kir7.1.		The	main	

function	of	Kir7.1	in	the	kidney	may	in	renal	papilla	due	to	observable	defects	in	

disorganized	renal	papilla	and	irregular	duct	patterning.		The	subcellular	

localization	of	Kir7.1	in	epithelial	cells	is	unknown,	however	Kir7.1	expression	has	

been	detected	in	papilla	IMCD	isolated	tubules.		Kir7.1	most	likely	contributes	to	

urine	concentration	or	to	acid-base	balance	as	it	is	regulated	by	intracellular	and	

extracellular	pH	[273].			

	 By	using	a	haploinsufficient	model	of	Kir7.1,	we	show	Kir7.1	does	contribute	

to	some	physiologic	responses	typical	for	MC4R	signaling.		Ectopic	expression	of	

agouti	is	a	proxy	for	AgRP,	which	induces	an	orexigenic	physiologic	state.		Because	

Kir7.1	in	the	slice	and	in	vitro	results	in	channel	opening,	we	originally	hypothesized	

that	Kir7.1	hets	would	gain	weight,	which	would	be	driven	further	by	agouti	

expression,	however	we	did	not	observe	significant	changes.		We	also	observed	a	

minor	and	sexually	dimorphic	phenotype.		Kir	het;	Ay	Tg/+	females	have	increased	

growth	(Fig3-2).		Interestingly,	Kir	het;	Ay	Tg/+	males	and	Kir	het;	Ay	wt	males	and	

females	also	exhibited	increased	linear	growth.		MC4R	deficient	linear	growth	is	

proposed	to	be	driven	by	hyperphagia,	which	induces	hyperinsulinaemia	and	may	
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promote	growth	by	suppressing	the	growth	hormone-insulin-like-growth-	factor-1	

axis	[274].		Despite	an	absence	of	hyperphagia	with	reduced	Kir7.1	expression,	it	

appears	Kir7.1	may	be	involved	in	regulating	linear	growth.		Additionally,	in	a	fast-

induced	refeeding	model	of	MC4R	agonist	regulated	signaling	we	observe	that	

female	Kir7.1	have	a	reduced	kinetic	response	to	energy	intake	by	chow	

consumption	after	a	prolonged	fast	(Fig	3-3).		This	effect	is	lost	after	six	hours,	

nevertheless	this	may	be	indicative	of	a	role	for	Kir7.1	in	sustained	response	to	

pharmacotherapy	with	melanocortin	agonists.		Exposure	to	high	fat	diet	induces	

more	rapid	weight	gain	in	female	Kir7.1	het	mice	(Fig	3-4),	arguing	for	a	role	of	

Kir7.1	in	maintaining	energy	balance.	

	 Much	remains	to	be	understood	regarding	the	role	of	G-protein	independent	

MC4R	signaling	through	the	Kir7.1	channel.		A	multiplicity	of	physiologies	further	

complicates	these	efforts	to	deconvolute	MC4R	biology,	however	this	work	confirms	

the	place	of	Kir7.1	as	a	player	in	MC4R	neurocircuitry	and	merits	further	studies	in	

the	localization	of	Kir7.1	and	MC4R	coexpression,	pharmacologic	responses,	and	

mechanism	for	MC4R	-Kir7.1	intracellular	cascades.	
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CHAPTER	4	

	
	

CONDITIONAL	KNOCKOUT	OF	KIR7.1	IN	MC4R	
	
	

Introduction	
	

					Haploinsufficiency	of	the	MC4R	in	humans	is	the	most	common	monogenic	cause	

of	severe	obesity	known,	accounting	for	approximately	2%	of	cases	[275]	[276].	The	

composite	prevalence	of	obesity-causing	deleterious	alleles	in	the	human	

population	has	been	demonstrated	to	be	approximately	1/1500	[123].		Recent	

reports	provide	a	detailed	clinical	picture	of	the	syndrome	[120]	[277].	Remarkably,	

the	syndrome	is	virtually	identical	to	that	reported	for	the	mouse	[278]	[279]	[280]	

with	increased	adipose	mass,	lean	mass,	linear	growth,	hyperinsulinemia,	and	

severe	hyperphagia.	Genome-wide	association	studies	have	also	identified	SNPs	

adjacent	to	the	MC4R	gene	that	are	associated	with	obesity	[281]	[282]	

[283].		These	non-coding	changes	support	the	notion	that	small	changes	in	the	

expression	level	of	the	MC4R	may	impact	adiposity.		Humans	with	

haploinsufficiency,	or	even	homozygous	null	status	at	the	MC4R	are	relatively	

normal	outside	of	the	obesity	syndrome,	with	only	mild	hypotension	and	

hyperinsulinemia	reported.	Another	unique	feature	of	the	central	melanocortin	

system	are	the	gene	dosage	effects	for	MC4R	[71]	[280],	a	highly	unusual	finding	for	

G	protein	coupled	receptor	signaling	systems.	

	

							Thus,	the	Melanocortin-4	receptor	(MC4R)	is	a	well-validated	target	for	the	

treatment	of	common	obesity	(8,	9),	and	cachexia	[284]	[285]	[286]	[287].	Other	

studies	suggest	potential	applications	in	diabetes	[279]	[175]	[288]	and	metabolic	

syndrome	[289]	[290],	depression	related	anorexia	and	anhedonia	[291],	and	

obsessive-compulsive	disorder	[292].		The	MC4R	appears	to	be	at	the	heart	of	the	

adipostat,	in	that	administration	of	melanocortin	agonists	inhibits	food	intake	[71]	

and	increases	energy	expenditure	[293].		Chronic	administration	of	potent	
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melanocortin	agonists	has	produced	significant	weight	loss	in	model	systems	from	

rodents,	to	primates	[294].		However,	clinical	trials	of	potent	small	molecule	

orthosteric	agonists	of	the	MC4R	have	failed	due	to	target-mediated	pressor	effects.	

Despite	the	target-mediated	pressor	response	resulting	from	most	melanocortin	

agonists,	two	peptide	analogues	of	the	native	MC4R	ligand,	a-MSH,	have	been	

demonstrated	to	cause	weight	loss	without	a	pressor	response	[295]	[296]	

[297].		One	of	these	compounds,	setmelanotide,	has	been	used	successfully	in	a	

clinical	trial	in	two	patients	with	compound	heterozygous	mutations	in	

proopiomelanocortin	(POMC),	the	preprohormone	precursor	for	a-MSH	and	in	a	

clinical	trial	in	patients	with	homozygous	mutations	in	the	gene	encoding	the	leptin	

receptor	[150]	[187].		There	is	no	data	available	explaining	why	some	MC4R	

agonists	are	capable	of	inducing	weight	loss	without	the	target-mediated	pressor	

response,	although	biased	agonism	must	be	considered	in	the	event	that	multiple	

signaling	pathways	are	activated	downstream	of	MC4R.	

In	this	regard,	it	is	already	appreciated	that	MC4R	exhibits	different	signaling	

modalities	on	the	cellular	level	in	vivo.		The	MC4R	couples	to	GaS	in	all	cells	

tested,	and	it	has	been	demonstrated	that	deletion	of	GaS	from	MC4R	neurons	

recapitulates	the	phenotype	seen	in	MC4R	knockout	mice	[237].	However,	the	

complexity	of	MC4R	signaling	in	vivo	is	also	clear.	a-MSH	activates	IML	neurons	via	a	

putative	non-specific	cation	channel	[298],	whereas	it	inhibits	MC4R	neurons	in	the	

dorsal	motor	nucleus	of	the	vagus	nerve	via	activation	of	a	KATP	channel	

[176].		Recently,	using	hypothalamic	slice	preparation	in	the	mouse,	we	

demonstrated	that	a-MSH	appears	to	depolarizes	and	activate	MC4R	neurons	in	the	

PVN	via	a	G	protein	independent	mechanism	involving	inhibition	of	the	inward	

rectifier	Kir7.1	[45].		This	is	a	highly	unusual	finding,	requiring	further	validation	in	

vivo.		Furthermore,	a	better	understanding	of	the	role(s)	of	variant	MC4R	signaling	

modalities	in	vivo	might	lead	to	a	rationale	pharmacological	approach	to	the	

development	of	small	molecule	biased	agonists	of	MC4R	that	could	discriminate	

between	weight	loss	and	pressor	activities.		Aiming	toward	these	two	goals,	we	
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specifically	deleted	the	inward	rectifier	Kir7.1	from	MC4R	neurons	in	the	mouse,	

and	conducted	pharmacological	and	physiological	studies	of	the	resulting	animals.	

	
	

Results	
	

Constructs	and	breeding	process		
	
Global	and	tissue-specific	deletion	of	Kcnj13		

In	order	to	analyze	the	potential	roles	of	Kir7.1	in	MC4R	neurons	in	vivo,	we	

developed	a	versatile,	transgenic	mouse	strategy	(Fig.	4-1)	using	the	Knockout	

Mouse	Project	(KOMP)	mutant	allele	repository.		After	germ	line	transmission,	the	

first	generation	mutant	was	a	homozygous,	global	null	mouse	(Kcnj13KO).		As	

previously	reported	using	a	Velocigene	method,	we	confirmed	the	Kcnj13KO	resulted	

in	early	(P0)	postnatal	lethality	(Fig	4-S1)	[224].		Pathological	analyses	indicated	

retardation	of	lung	and	kidney	development	and	failure	to	suckle	as	likely	sources	of	

lethality.		We	next	derived	a	floxed	line	by	crossing	these	animals	with	a	flippase	

recombinase	transgenic	C57Bl/6NJ	line.	Mice	expressing	Kcnj13	flanked	by	loxP	

sequences	(Kcnj13	fl/fl)	were	confirmed	by	genotyping.	Tissue	specific	Kcnj13	

knockout	mice	were	then	derived	using	the	Cre-loxP	method.	Kcnj13fl/fl	mice	were	

crossed	with	mice	expressing	the	alleles	Kcnj13	fl/fl	and	MC4R-t2A-Cre	Tg/+	

(MC4RCre)	to	generate	a	MC4R	cell	specific	Kcnj13	knockout	experimental	animal,	

hereafter	referred	to	as	Kcnj13ΔMC4RCre	(Table	4-1).			
	

Table	4-1.	Nomenclature	of	mouse	strains	used	in	this	study.	
	 MGI	name	 Common	name	
Global	knockout	 C57BL/6J-Kcnj13tm1a(KOMP)Wtsi	 Kcnj13	KO	

Floxed	allele	 C57BL/6J-Kcnj13tm1c(KOMP)Wtsi	 Kcnj13	fl/fl	 	
Cell-specific	knockout	 C57BL/6J-Kcnj13tm1d(KOMP)Wtsi	 Kcnj13ΔMC4RCre	
Cre	driver	 Tg:	C57BL/6J-MC4R-t2a-Cre	 Kcnj13+/+;MC4RCre	
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Fig.	4-S1.	P0	lethality	from	homozygous	deletion	of	Kir7.1	in	mice	
(A)	Mass	of	P0	pups	with	genotypes	Kcnj13+/+,	Kcnj13+/-,	and	Kcnj13KO	(B)	
Representative	gross	pathology	of	Kcnj13KO	and	Kcnj13+/+	E20	embryos	(C)	
Genotype	distribution	of	offspring	from	Kcnj13+/-	intercrosses	examined	by	PCR	(n	=	
10-20,	****P<0.0001,	one-way	ANOVA	with	Tukey’s	multiple	comparisons	test).	
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Fig.	4-1.	Creation	of	global	and	tissue-specific	Kcnj13	knockout	mice.	
Transgene	construct	and	breeding	strategy	for	promoter-driven,	knockout-first,	
Kcnj13	targeted	selection	germline	transmissible	line	(Kcnj13KO),	crossed	with	Flp	
recombinase	transgenic	mice	and	then	with	MC4R-t2a-Cre	recombinase	mutant	
mice	to	generate	a	MC4R-Cre	site-specific	Kcnj13	knockout	(Kcnj13ΔMC4RCre)	line.	
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Electrophysiology	recordings	
	
Defective	α-MSH-induced	depolarization	of	MC4R	PVN	neurons	from	
Kcnj13ΔMC4RCre	mice	
	
	 Kcnj13	is	expressed	at	low	levels	in	the	sparsely	distributed	MC4R	neurons	in	

the	CNS	[45].	Thus,	it	is	challenging	to	demonstrate	tissue	specific	deletion	of	Kcnj13	

using	mRNA	expression.		However,	we	had	previously	developed	a	functional	assay	

of	Kir7.1	in	a	hypothalamic	slice	preparation	[45].		In	this	assay,	Kir7.1	was	

demonstrated	pharmacologically	to	be	required	for	a-MSH-induced	depolarization	

of	MC4R	neurons	in	the	paraventricular	nucleus	of	the	hypothalamus.	We	chose	to	

use	this	assay	to	test	for	Kir7.1	activity	in	MC4R	neurons	in	Kcnj13ΔMC4RCre	mice.		

In	order	to	characterize	the	necessity	of	Kir7.1	for	a-MSH	induced	depolarization	of	

MC4R-expressing	neurons	within	the	paraventricular	nucleus	(PVN),	

electrophysiological	slices	were	prepared	from	control	Kcnj13+/+;MC4RCre	and	

Kcnj13ΔMC4RCre	mice,	in	which	MC4R	neurons	are	transgenically	labeled	with	GFP.		
Whereas	a	250nM	bath	application	of	α-MSH	successfully	depolarized	PVN	MC4R	

neurons	in	recordings	from	control	mice	(Fig	4-2A),	depolarization	did	not	occur	in	

recordings	from	PVN	MC4R	neurons	from	Kcnj13ΔMC4RCre	mice	(Fig	4-2B).		These	
data	show	the	absence	of	a	characterized	Kir7.1	response,	thereby	supporting	the	

argument	that	Kir7.1	is	not	expressed	in	mutant	Kcnj13ΔMC4RCre	PVN	neurons.		

Furthermore,	these	findings	indicate	that	Kir7.1	is	required	for	a-MSH	induced	

depolarization	in	this	electrophysiological	slice	assay.	
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Fig.	4-2.	Defective	α-MSH-induced	depolarization	of	MC4R	PVN	neurons	in	
Kcnj13ΔMC4RCre	mice.		
Slice	electrophysiology	of	PVN	MC4R-GFP	positive	neurons	recorded	in	current	
clamp	with	bath	application	of	250nM	α-MSH.		(A)	Recordings	from	
Kcnj13+/+;MC4RCre;MC4R-GFP	mice	in	response	to	vehicle	or	α-MSH	showing	
induction	of	action	potential	differed	significantly	between	and	control	and	a-MSH	
in	bath	and	a	representative	depolarizing	response	of	a	PVN	MC4R	neuron		(B)	
Recordings	from	Kcnj13ΔMC4RCre;MC4R-GFP		mice,	,	ns	response	to	α-MSH,	P=0.11,	
and	a	representative	lack	of	depolarizing	response	in	a	PVN	MC4R	neuron.		Bar	
graph	represents	mean	+/-	SEM	of	15-35	cells.		(***P<0.0001,	paired	t-test).		Vm,	
membrane	potential	in	millivolts	(mV).	
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LY2112688	response	
	
Defective	anorexic	response	to	melanocortin	peptides	in	Kcnj13ΔMC4RCre	mice		
	
	 Because	the	absence	of	Kir7.1	disrupted	a-MSH	induced	neuronal	

depolarization	in	PVN	MC4R	neurons	in	an	ex	vivo	slice	preparation,	we	

hypothesized	that	feeding	behavior	in	response	to	α-MSH	administration	might	also	

be	adversely	affected.	To	investigate	the	physiological	effect	of	an	MC4R	agonist	on	

MC4R	neurons	in	the	absence	of	Kir7.1	in	vivo,	we	administered	the	potent	α-MSH	

analogue,	LY2112688,	at	the	beginning	of	the	dark	cycle,	after	a	16-24	hour	fast,	and	

measured	food	intake.		Despite	powerful	drivers	to	restore	energy	stores	resulting	

from	a	state	of	nutritional	deficit,	LY2112688	blunts	the	fasting-induced	refeeding	

response	in	control	genotype	groups,	however	in	Kcnj13ΔMC4RCre	male	(Fig	4-3A)	
and	female	(Fig	4-3B)	mice	the	duration	of	LY2112688	action	is	reduced.		Notably,	

from	three	hours	post	refeeding	in	males	and	four	hours	post	refeeding	in	females	to	

twelve	hours	later,	mice	with	MC4R	specific	deletion	of	Kir7.1	show	a	significantly	

reduced	anorectic	response	to	LY2112688	compared	to	Kcnj13fl/fl	in	males	and	

Kcnj13fl/fl		and	Kcnj13+/+;MC4RCre	control	groups	in	females.		Additionally,	at	13	and	

24	hours	there	is	no	significant	difference	between	the	action	of	saline	or	

LY2112688	administered	to	Kcnj13ΔMC4RCre	males,	while	feeding	in	control	
Kcnj13fl/fl	animals	injected	with	LY2112688	remains	suppressed.					

							This	study	paradigm	was	repeated	using	male	mice	following	bilateral	lentiviral	

Kcnj13	shRNA	knockdown,	or	administration	of	a	scrambled	control	lentivirus	in	the	

PVN	(sc	shRNA).		After	3	weeks	recovery	mice	were	acclimated	to	handling	and	

injection	before	beginning	the	fast-induced	refeeding	study	(Fig	4-3C).		Similar	to	

genetic	deletion	of	Kir7.1,	viral	knockdown	of	Kir7.1	exclusively	in	the	PVN	also	

reduced	the	duration	of	the	anorectic	activity	of	LY2112688.	LY2112688	was	no	

longer	effective	at	reducing	food	intake	compared	to	saline	in	Kir7.1	knockdown	

animals	from	12	hours	post	refeeding	through	40	hours.		Conversely,	LY2112688	

significantly	reduced	chow	consumption	in	mice	with	intact	Kir7.1	for	the	duration	

of	the	study.		Successful	targeting	and	delivery	of	Kcnj13	shRNA		or	sc	shRNA	

lentiviral	vectors	were	confirmed	by	GFP	expression	localized	to	the	PVN	in	post-
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mortem	mice(not	shown).		Taken	together	these	data	show	that	Kir7.1	expression	is	

required	for	the	extended	duration	of	anorectic	response	to	a	melanocortin	peptide.	

	
	

	
	
Fig.	4-3.	Defective	anorexic	response	to	melanocortin	agonist	LY2112688	in	
Kcnj13ΔMC4RCre	mice.	
Feeding	response	on	dark	cycle	after	IP	injection	of	saline	or	LY2112688	in	male	
(A),	female	(B)	Kcnj13ΔMC4RCre	,	Kcnj13fl/fl,	and/or	Kcnj13+/+;MC4RCre,	
Kcnj13+/+;MC4R+/+		and	male	(C)	Kcnj13	shRNA	or	sc	shRNA	lentiviral	knockdown	
mice	following	16-24hr	fast.		Dose	of	10mg/kg		(n	=	4-9/group,	*P<0.05,	**P<0.005,	
****P<0.0001,	2-way	ANOVA	with	multiple	comparisons	test).	

A

B

C



	 86	

AgRP	response	
	
	 We	have	previously	shown	the	role	of	Kir7.1	in	mediating	a	G-protein	

independent	MC4R	response	in	both	hypothalamic	slices	and	in	cells	transfected	

with	MC4R	and	Kir7.1	[45].		These	electrophysiological	and	pharmacological	

experiments	also	demonstrated	that	AgRP	appeared	to	open	Kir7.1	channels	in	a	

MC4R-dependent	manner	[45].	To	study	whether	Kir7.1	is	necessary	for	AgRP-

induced	stimulation	of	food	intake	we	delivered	AgRP	intracerebrventricularly	(ICV)	

to	mice	in	a	fed	state.		Cannulas	were	implanted	in	the	lateral	ventricle	of	

Kcnj13fl/flKcnj13+/+;MC4RCre	,	and	Kcnj13ΔMC4RCre		male	mice,	and	animals	were	

allowed	to	recover	for	5	days.		Two	days	after	a	saline	injection	to	establish	baseline	

conditions,	1	µg	of	the	peptide	AgRP	was	injected	ICV	during	light	cycle.		While	

Kcnj13ΔMC4RCre	had	a	slight	trend	in	lower	food	intake,	we	observed	no	sustained	

significant	difference	in	central	AgRP	induced	feeding	initiation	or	duration	between	

genotypes	(Fig	4-4A).		This	suggests	Kir7.1	is	not	required	for	the	orexigenic	

response	to	AgRP.	Likewise,	all	genotypes	responded	to	AgRP	with	an	increase	in	

body	weight	in	proportion	to	the	increase	in	food	intake	(Fig	4-4B).		There	was	no	

significant	difference	in	change	in	body	weight	between	genotypes.		
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Fig.	4-4	Normal	orexigenic	response	to	AgRP	in	Kcnj13ΔMC4RCre	mice.		
Change	in	chow	consumption	(A)	and	change	in	body	weight	(B)	from	day	0	central	
administration	of	AgRP	at	a	dose	of	2nmol.		(A)	Chow	consumption	differed	
significantly	between	Kcnj13ΔMC4RCre	and	Kcnj13+/+;MC4RCre	mice	at	day	2.		(B)	NS	
in	change	in	body	weight	at	any	time	between	Kcnj13ΔMC4RCre	and	
Kcnj13+/+;MC4RCre	mice.	(n	=	2-5/group,	*P<0.05,	**P<0.005,	2-way	ANOVA	with	
multiple	comparions	test).	
	

A 

B 
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PYY	response	
	
Normal	melanocortin-stimulated	PYY	release	in	Kcnj13ΔMC4RCre	mice	
					Whereas	MC4R	is	expressed	in	many	brain	nuclei,	peripheral	expression	has	also	

been	mapped.		Notably,	MC4R	is	expressed	in	enteroendocrine	L	cells,	and	

peripheral	administration	of	a-MSH	has	been	demonstrated	to	induce	MC4R-

dependent	release	of	PYY	and	GLP1	from	these	cells	[82].	Thus,	the	function	of	

MC4R	on	L	cells	can	be	assessed	using	an	assay	for	increased	plasma	PYY	following	

peripheral	administration	of	an	MC4R	agonist.	We	next	examined	the	requirement	

for	Kir7.1	in	MC4R-mediated	PYY	release	from	L	cells.	The	absence	of	Kir7.1	in	

MC4R	cells	does	not	interfere	with	the	release	of	the	satiety	factor	PYY	into	plasma	

(Fig.	4-5).		Thus,	the	role	of	Kir7.1	in	MC4R	function	appears	to	be	important	in	

neurons	of	the	PVN,	but	not	enteroendocrine	L	cells.	

	
	
Fig.	4-5	Normal	melanocortin-stimulated	PYY	release	in	Kcnj13ΔMC4RCre	mice.	
Male	and	female	C57BL/6J	Kcnj13ΔMC4RCre	and	Kcnj13fl/fl	control	mice	were	
administered	saline	or	saline	containing	5mg/kg	LY2112688	intraperitoneally.		15	
minutes	following	treatment,	blood	was	collected,	and	plasma	prepared.		Plasma	
was	then	assayed	for	peptide	YY	(PYY)	using	ELISA	(Luminex).		Points	indicate	
mean	PYY	concentrations	determined	in	duplicate	from	individual	mouse	serum	
samples,	bars	indicate	means	from	multiple	mice.	(n=6-7/group,	*P<0.05,	student’s	
t-test).		
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Chow	diet	response	
	
Phenotypic	characterization	of	Kcnj13ΔMC4RCre	mice		
	
					Global	deletion	of	MC4R	in	the	mouse	can	produce	measurable	increases	in	

adipose	mass	as	early	as	5	weeks	of	age	[280].		To	determine	the	effects	of	Kir7.1	

ablation	on	MC4R	signaling,	we	studied	body	weight,	body	composition,	feeding	

behavior,	and	glucose	tolerance	in	Kcnj13ΔMC4RCre		and	control	Kcnj13fl/fl,	
Kcnj13+/+;MC4RCre	,	and	Kcnj13+/+;MC4R+/+	mice.		At	20	weeks	of	age,	we	did	not	

observe	differences	in	body	weight	in	the	four	strains	maintained	on	normal	mouse	

chow	(Fig.	4-6A-B).	Moreover,	when	lean	and	fat	mass	accrual	was	compared	in	

young	12	week	old	mice	and	mature,	no	significant	difference	was	detected	in	lean	

or	fat	mass	between	groups	(Fig	4-6F-G).	However,	by	26	weeks	of	age	in	female	and	

50	weeks	of	age	in	male	Kcnj13ΔMC4RCre	showed	significantly	greater	weight	
compared	with	all	three	control	strains	(Fig	4-6A,	B).		One-way	ANOVA	analysis	

showed	Kcnj13ΔMC4RCre	male	and	female	mice	gained	significantly	more	weight	
over	the	time	course	than	the	control	genotypes.		No	significant	difference	was	

observed	in	daily	chow	consumption	between	groups	(Fig	4-6	E).		At	28	weeks	of	

age	female	Kcnj13ΔMC4RCre	mice	weight	were	observed	to	have	significantly	more	
absolute	and	%fat	mass	compared	to	control	genotypes	(Fig.	4-6F,	H),	while	lean	

mass	was	unchanged	(Fig.	4-6G,	I).		Both	male	and	female	30	week	Kcnj13ΔMC4RCre	

animals	also	exhibited	significant	increased	length	compared	to	controls	(Fig.	4-6C-

D).	

					Glucose	utilization	was	assessed	by	IP	glucose	tolerance	test	(GTT)	in	female	mice	

at	28	weeks	of	age.		The	2mg/kg	dosage	of	glucose	was	adjusted	in	proportion	to	

lean	body	mass.		Whereas	all	genotypes	initially	responded	to	the	bolus	of	glucose	

similarly	(Fig.	4-6J),	Kcnj13ΔMC4RCre	mice	showed	impaired	glucose	metabolism	
from	45-120	minutes	(Fig.	4-6L).		No	significant	difference	was	detected	from	0-120	

minutes	(Fig.	4-6K).		
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Fig.	4-6.	Late	onset	obesity	develops	in	chow	fed	Kcnj13ΔMC4RCremice.	
(A-I)	Growth	curves	on	chow	diet	of	(A)	male	and	(B)	female	mice	interspersed	
across	3	age	cohorts	from	9	to	58	weeks	(C)	male	and	(D)	female	linear	length	
measured	from	snout	to	anus	in	euthanized	mice	at	approximately	30	weeks.	Each	
dot	represents	the	snout-anus	distance	of	one	individual	animal	(n	=	6-25	per	
group)	(E)	Daily	chow	consumption	per	mouse	during	week	of	mouse	age	indicated	
One-way	ANOVA	test	with	Tukey’s	multiple	comparisons.	Absolute	fat	(F)	and	lean	
(G)	mass		and	%fat	(H)	and	%lean	(I)	mass	body	composition	of	12wk,	22wk,	and	
28wk	female	mice.	Multiple	t-tests	with	Holms-Sidak	multiple	comparison	test.	
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Fig.	4-6.	Late	onset	obesity	develops	in	chow	fed	Kcnj13ΔMC4RCremice.	
(J-L)	Plasma	glucose	concentration	during	intraperitoneal	glucose	tolerance	test	
(IPGTT)	2g/kg	glucose,	normalized	to	%	lean	body	mass	was	administered	to	each	
animal.		IPGTT	was	performed	after	six	hour	daytime	fast	in	28wk	female	animals	
(H)	female	animals.		Comparison	of	the	%	difference	in	total	AUC	shows	(K)	AUC	
from	0-120	is	similar,	whereas	Kcnj13ΔMC4RCre	differed	significantly	from	control	
genotypes	from	(L)	45-120min.	(J)	multiple	t-tests	(K-L)	One-way	ANOVA	with	
multiple	comparisons.	(n	=	6-12/group,	*P<0.05,	**P<0.005,	***P<0.0005,	****P<	
0.0001).	
	
	
Diet-induced	obesity	response	
	
					To	attempt	to	accelerate	the	differences	in	growth,	male	and	female	animals	of	all	

four	genotypes	were	placed	on	high	fat	chow	(HFD).		Mice	were	acclimated	to	single	

housing	at	8-10	weeks	old	and	switched	from	chow	to	HFD	at	10-13	weeks	of	age,	

during	which	time	intake	and	growth	were	monitored	weekly	for	3	months.		A	clear	



	 92	

obesogenic	effect	of	the	Cre	transgene	was	apparent	under	these	conditions,	

perhaps	due	to	reduction	of	functional	MC4R	resulting	from	the	method	of	Cre	

expression,	requiring	cleavage	of	an	MC4R-Cre	fusion	protein	under	the	control	of	

the	endogenous	MC4R	promoter.		Nonetheless,	increased	growth	of	male	and	female	

Kcnj13ΔMC4RCre	was	apparent,	when	compared	with	MC4R-Cre	controls.		A	mixed	
linear	effect	statistical	model,	an	alternative	to	ANOVA	with	repeated	measures,	was	

used	to	analyze	the	growth	curves.		This	modeling	tool	determined	that	while	the	

Kcnj13+/+;MC4RCre	male	and	female	control	weight	gain	profiles	are	significantly	

different	than	the	non-Cre	expressing	Kcnj13fl/fl	control	genotype,	the	male	

Kcnj13ΔMC4RCre	weight	gain	profile	(Fig	7A)	is	also	significantly	different	than	the	

Kcnj13+/+;MC4RCre		control.	Female	weight	gain	is	significantly	different	from	70-84	

days	on	HFD	as	determined	by	multiple	student’s	t-tests	(Fig	7C).		We	were	unable	

to	measure	an	effect	of	any	genotype	on	food	intake	(Fig	7B,	D).			After	consuming	

high	fat	diet	for	3	months	there	was	a	significant	increase	in	fat	mass	in	both	

Kcnj13ΔMC4RCre	and	Kcnj13+/+;MC4RCre	groups	(Fig	7E-H),	however	we	were	unable	
to	measure	an	effect	of	Kir7.1	deletion,	probably	due	to	the	significant	background	

effect	of	the	Cre	transgene	(Fig	7E-H).		

	

Glucose	tolerance	

					We	next	tested	glucose	utilization	by	IP	glucose	tolerance	test	(GTT).		Glucose	

doses	were	adjusted	in	proportion	to	lean	mass.		Despite	the	lack	of	difference	in	

adipose	mass	between	Kcnj13ΔMC4RCre	and	Kcnj13+/+;MC4RCre	mice,		male	and	

female	Kcnj13ΔMC4RCre	mice	had	significantly	reduced	glucose	tolerance	compared	
with	all	control	strains,	including	Kcnj13+/+;MC4RCre	(Fig	7I-L).	
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Fig.	4-7.	Obesity	and	glucose	intolerance	in	Kcnj13ΔMC4RCre	mice	on	high	fat	
diet.	
(A-H)	Growth	curves	on	high	fat	diet	from	(A)	male	and	(C)	female	mice	(n	=	7-
11/group,	Mixed	linear	effect	model	of	DIO	male	Kcnj13+/+;MC4RCre	vs.	Kcnj13fl/fl	P	
value	<	1.1e-6,	female	P	value	<	2.2e-16.	Kcnj13+/+;MC4RCre	vs.	Kcnj13ΔMC4RCre	
male	P	value	=	0.01,	female	P	value	=	0.8).	(*P<0.05,	**P<0.005	via	multiple	students	
t-test	Kcnj13+/+;MC4RCre	vs.	Kcnj13ΔMC4RCre).		Daily	high	fat	diet	consumption	of	(B)	
male	and	(D)	female	mice.	One-way	ANOVA	test.	(E-H)	Fat	and	lean	mass	body	
composition	of	male	(E-F)	and	female	(G-H)	on	chow	vs	HFD.	Two-way	ANOVA	with	
Tukey’s	multiple	comparison	test.			
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Fig.	4-7.	Obesity	and	glucose	intolerance	in	Kcnj13ΔMC4RCre	mice	on	high	fat	
diet.	
(I-L)	Plasma	glucose	concentration	during	intraperitoneal	glucose	tolerance	test	
(IPGTT)	1g/kg	glucose,	normalized	to	%	lean	body	mass	was	administered	to	each	
animal.		IPGTT	was	performed	after	eight	hour	daytime	fast	in	mice	fed	HFD	for	five	
months	in	(I)	male	and	(K)	female	animals.		Comparison	of	the	%	difference	in	total	
AUC	shows	that	Kcnj13ΔMC4RCre	differed	significantly	from	control	genotypes	in	(J)	
males	and	(L)	females.	(n	=	6-8/group,	*P<0.05,	**P<0.005,	***P<0.0005,	one-way	
ANOVA	with	Tukey’s	multiple	comparisons	test).	
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Summary	and	Conclusions	
	
					MC4R	is	known	to	signal	through	the	Gas-cAMP	signaling	pathway	in	cell	assays	

and	in	vivo.	However,	our	data	on	MC4R	signaling	in	a	hypothalamic	slice	

preparation	from	the	mouse	suggested	that	the	MC4R	depolarizes	neurons	in	the	

PVN	via	G	protein	independent	regulation	of	the	inward	rectifier	Kir7.1.		To	assess	

the	potential	physiological	role	of	this	MC4R-Kir7.1	signaling	pathway,	we	used	Cre-

loxP	technology	to	delete	Kir7.1	from	MC4R-expressing	cells	in	the	mouse,	and	

investigated	the	consequences	on	MC4R	signaling	as	well	as	on	MC4R-mediated	

physiological	responses.	

					Homozygous	loss	of	Kir7.1	is	known	to	cause	degenerative	eye	diseases	such	as	

snowflake	vitreoretinal	degeneration	(SVD)	and	Leber	congenital	amaurosis	(LCA)	

[242]	[244]	in	humans,	and	a	pigmentary	defect	in	the	jaguar	zebrafish	[233],	and	

thus	we	anticipated	being	able	to	conduct	our	studies	in	the	global	Kir7.1	knockout	

mouse.		Surprisingly,	however,	we	discovered	that	homozygous	deletion	of	Kir7.1	in	

the	mouse	caused	perinatal	lethality.	Histological	analysis	demonstrated	stunted	

lung	and	kidney	development	as	well	as	reduced	body	mass	(Fig	4-S1),	and	this	

same	finding	was	reported	by	another	laboratory	[299].		It	is	unclear	why	Kir7.1	is	

an	essential	developmental	gene	in	the	mouse	but	not	zebrafish	or	humans,	

although	the	observation	suggests	variable	physiological	functions	of	this	channel	in	

different	species.	

					After	proceeding	through	a	breeding	strategy	to	obtain	animals	with	a	

floxed	Kcnj13	allele,	we	generated	animals	with	MC4R-site	specific	deletion	of	

Kir7.1.		Because	Kir7.1	is	expressed	at	very	low	levels	in	the	sparsely	distributed	

MC4R	neurons	[45],	we	were	unable	to	readily	validate	the	absence	of	Kir7.1	mRNA	

from	MC4R	neurons.	Recording	from	MC4R	labeled	cells	in	the	PVN	is	a	well-

established	tool	for	characterizing	MC4R	firing	activity	[300].	Likewise,	the	

depolarization	signature	of	MC4R	cells	via	closure	of	Kir7.1	has	been	defined	in	the	

slice	preparation.		Using	this	functional	assay,	we	observed	depolarization	of	

Kcnj13+/+;MC4RCre	cells	in	response	to	α-MSH	(Fig	4-2A).		By	contrast,	with	the	

deletion	of	Kir7.1	in	Kcnj13ΔMC4RCre	cells,	α-MSH	induced	depolarization	was	no	
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longer	observed		(Fig	4-2B),	supporting	the	hypothesis	that	Kir7.1	is	required	for	α-

MSH-induced	depolarization	of	PVN	MC4R	neurons	in	the	slice	preparation.		We	

have	not	surveyed	this	requirement	for	Kir7.1	in	other	MC4R	neurons	depolarized	

by	α-MSH.	Furthermore,	we	do	not	know	how	depolarization	of	PVN	MC4R	neurons	

in	the	slice	preparation	correlates	with	the	physiological	sequelae	of	MC4R	

activation	in	vivo.	Interestingly,	although	administration	of	MC4R	agonists	rapidly	

inhibits	food	intake	(Fig	4-2),	inhibition	of	food	intake	via	opotogenetic	or	

chemogenetic	activation	of	POMC	neurons	has	a	latency	of	several	hours.	Thus,	it	is	

possible	that	activation	of	MC4R	neurons	in	a	slice	preparation	reflects	

pharmacological	but	not	necessarily	physiological	activation	of	MC4R.	

					To	investigate	the	role	of	Kir7.1	in	mediating	the	pharmacological	response	to	α-

MSH	in	vivo,	we	began	by	quantifying	the	feeding	response	on	regular	chow	in	

response	to	an	anorexigenic	dose	of	exogenously	administered	α-MSH	analogue,	

LY2112688.		No	significant	difference	is	observed	in	baseline	daily	chow	

consumption	in	control	vs	Kcnj13ΔMC4RCre	mice	(Fig	4-6D).			Although	food	intake	

was	potently	inhibited	by	IP	delivery	of	LY2112688	in	animals	with	intact	Kir7.1	in	

MC4R	cells,	male	and	female	animals	lacking	Kir7.1	exhibited	a	reduced	

responsiveness	to	LY2112688	throughout	the	study,	and	also	exhibited	a	greatly	

reduced	duration	of	response.		Specifically,	animals	lacking	Kir7.1	in	MC4R	cells	lost	

LY2112688	responsiveness	typically	by	12	hours,	whereas	control	strains	sustained	

responsiveness	for	24-40	hours	(Fig	4-3A-C).		These	results	suggest	that	sustained	

activity	of	an	administered	MC4R	agonist	requires	Kir7.1.		Experiments	using	viral	

knockdown	of	Kir7.1	in	the	PVN	produced	very	similar	findings,	indicating	that	the	

effect	is	a	result	of	the	acute	loss	of	function	of	Kir7.1	in	PVN	neurons,	rather	than	a	

developmental	defect.		

					This	study	parallels	prior	work	using	a	Tl+	flux	assay	in	HEK293	cells	expressing	

MC4R	and	Kir7.1	to	characterize	the	regulation	of	ion	flux	through	Kir7.1	mediated	

by	MC4R	[103].	These	data	suggested	that	the	G-protein	mediated	cAMP	response	

peaks	rapidly	after	α-MSH	exposure,	whereas	inhibition	of	Tl+	flux	through	Kir7.1	

continued	long	after	cAMP	response	ebbed	[45].		Although	our	data	clearly	

demonstrated	pharmacological	defects	in	response	to	melanocortin	agonists	in	the	
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absence	of	Kir7.1,	whereby	stimulation	causes	rapid	inhibition	of	food	intake,	

chronic	stimulation	of	ARC	POMC	neurons	using	opto-	or	chemogenetic	methods	

reduces	food	intake	only	after	several	hours	[63]	[70].		This	indicates	that	Kir7.1	

may	also	be	important	for	the	anorexigenic	effects	of	endogenous	melanocortins	

released	by	POMC	neurons,	and	suggests	that	it	would	be	interesting	to	examine	the	

effects	of	chronic	stimulation	of	POMC	neurons	in	the	Kcnj13ΔMC4RCre	mouse.	

					AgRP	engages	the	MC4R	at	high	affinity,	but	does	not	couple	the	receptor	to	G	

proteins	or	stimulate	arrestin	recruitment	[301].		Thus,	when	we	determined	that	

AgRP	stimulates	MC4R-dependent	opening	of	Kir7.1	[33},	we	predicted	that	AgRP	

was	a	biased	agonist,	signaling	specifically	via	Kir7.1.		We	anticipated	that	

the	Kcnj13ΔMC4RCre			would	have	reduced	physiologic	response	to	the	inverse	

agonist	AgRP	as	well.		However,	a	preliminary	study	demonstrated	that	exogenous	

ICV	delivery	of	AgRP	to	the	hypothalamus	induced	similar	hyperphagia	and	4	days	

of	weight	gain	in	Kcnj13ΔMC4RCre		and	control	mice	(Fig	4-4A-B).		Thus	in	contrast	to	

our	hypothesis,	AgRP	may	not	require	Kir7.1	for	normal	signaling.	Of	course,	these	

studies	were	also	limited	by	virtue	of	being	pharmacologic	in	nature,	and	additional	

studies	will	need	to	be	conducted	to	determine	if	a	compensatory	signaling	pathway	

has	been	activated	in	this	knockout	model,		such	as	AgRP	activation	of	ERK	

phosphorylation.	Other	explanations	include	the	possibility	that	a)	AgRP	functions	

exclusively	as	an	inverse	agonist	and	competitive	antagonist	of	MC4R	driven	Gαs	

signaling,	or	b)	AgRP	also	signals	via	an	as	yet	unidentified	mechanism	[302]	[303]	

[304].	

					Not	only	is	MC4R	widely	expressed	in	the	CNS,	but	also	sites	of	peripheral	

expression	have	been	detected,	namely	in	the	peripheral	nervous	system	and	

enteroendocrine	L-cells	[77]	[305]	[26]	[82].		Transcriptional	profiling	of	L	cell	

negative	and	L	cell	positive	populations	from	both	intestinal	ileum	and	colon	

determined	that	whereas	MC4R	is	enriched	in	L-cells,	Kcnj13	expression	values	are	

similar	in	these	populations	(correspondence	with	Arora	Tulika	using	ArrayExpress	

database	accession	numbers	E-MTAB-6322	and	E-MTAB-6324)	[306].		Using	an	

assay	for	detecting	MC4R-dependent	L-cell	release	of	PYY	in	response	to	exogenous	

administration	of	the	α-MSH	analogue	LY2112688,	we	found	that	the	absence	of	
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Kir7.1	in	MC4R	cells	has	no	effect	on	PYY	release	(Fig	4-5).	These	data	clearly	show	

that	MC4R	induces	PYY	release	in	a	Kir7.1	independent	manner,	emphasizing	the	

point	that	there	are	multiple	modes	of	MC4R	signaling,	and	that	some	physiological	

signaling	events	are	Kir7.1	independent.		Elevation	of	cAMP	in	L	cells	has	been	

demonstrated	to	stimulate	PYY	release	[82].	

					Deletion	and	haploinsufficiency	of	MC4R	results	in	a	rapid	onset	of	phenotypes,	

most	prominently	early	onset	obesity	characterized	by	both	hyperphagia,	reduced	

energy	expenditure,	hyperinsulinemia,	and	protection	from	obesity	associated	

hypertension,	observable	by	8	weeks	of	age	[307]	[280]	[83].	To	address	the	

physiological	phenotype(s)	of	site-specific	loss	of	Kir7.1	in	MC4R	cells	we	

investigated	the	weight	gain	profile,	caloric	consumption,	body	mass	composition,	

linear	growth,	and	glucose	metabolism	of	Kcnj13ΔMC4RCre	mice	maintained	on	

normal	mouse	chow.		Initially,	at	the	9-15	week	time	points,	we	observed	no	change	

in	body	weight,	body	composition,	or	metabolism	in	these	mice.		However,	because	

mice	were	measured	beyond	15	weeks,	we	observed	the	Kcnj13ΔMC4RCre	mice	

tended	to	gain	more	weight	than	control	genotypes,	particularly	in	females.		At	1	

year	of	age,	we	observed	weight	gain	in	Kcnj13ΔMC4RCre	male	and	female	mice	

compared	to	Kcnj13fl/fl,	Kcnj13+/+;MC4RCre,	and	Kcnj13+/+;MC4R+/+	mice,	moreover	

female	Kcnj13ΔMC4RCre	mice	gained	weight	more	rapidly	than	males.		(Fig	4-6A,	

B).			It	was	interesting	to	note	a	large	effect	of	Kir7.1	loss	on	linear	growth	at	30	

weeks	of	age	(Figure	4-6C-D),	reminiscent	of	an	effect	seen	on	MC4R	deletion.	The	

late	onset	obesity	was	not	accompanied	by	any	measurable	hyperphagia	(Fig.	4-6E).		

By	the	28	week	time	point	female	Kcnj13ΔMC4RCre	mice	gained	significantly	more	fat	

as	measured	by	absolute	mass	(Fig.	4-6F)	and	%fat	mass	(Fig.	4-6H)	than	control	

genotypes.		There	was	no	concordant	change	in	absolute	lean	mass	(Fig.	4-6J)	

although	%lean	mass	was	altered	reciprocally	(Fig.	4-6I).	Thus	the	late	onset	weight	

gain	was	clearly	a	result	of	increased	adipose	mass	and	not	lean	mass.	
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					The	lean	mass	adjusted,	low	dose	glucose	tolerance	test	indicates	deterioration	of	

peripheral	glucose	metabolism	in	Kcnj13ΔMC4RCre	mice,	associated	with	significant	

fat	accrual	(Fig.	4-6J-L).	MC4R	signaling	regulates	glucose	homeostasis	in	addition	to	

excess	adipose	mass	animals,	both	of	which	may	have	contributed	to	defective	

glucose	utilization	shown	here	[279].	It	is	possible	that	hyperphagia	exists,	although	

it	is	too	small	to	be	detected	in	parallel	with	the	very	slow,	late	onset	obesity.	

					To	potentially	accelerate	the	effects	of	Kir7.1	deletion,	we	conducted	similar	

experiments,	placing	mice	on	high	fat	diet.		Notably,	the	expression	of	MC4R-t2a-

Cre-recombinase	alone	in	the	Kcnj13+/+;MC4RCre	control	genotype	has	an	obesigenic	

effect	on	high	fat	diet	fed	mice	(Fig	4-7A,	C).		Given	the	morbid	early	onset	obesity	

arising	from	a	50%	reduction	in	MC4R	expression	in	mice	or	humans,	even	a	very	

small	reduction	of	MC4R	mRNA	production,	or	reduced	production	or	function	of	

the	MC4R	protein	resulting	from,	for	example,	inefficient	cleavage	of	the	t2a	site	

needed	for	release	of	Cre	recombinase	from	the	MC4R-Cre	fusion	protein	could	

explain	the	obesity	seen	in	Kcnj13+/+;MC4RCre	mice	fed	high	fat	chow.		Similarly,	it	is	

possible	that	the	18-22	amino	acid	carboxy-terminal	extension	on	the	MC4R	protein,	

resulting	from	cleavage	of	MC4R	and	Cre-recombinase,	produced	an	MC4R	with	

slightly	reduced	activity.	However,	these	remain	hypotheses	because	there	is	no	

data	available	regarding	the	MC4R	mRNA	or	protein	made	by	the	MC4R-t2a-Cre-

recombinase	construct.	

					Nonetheless,	When	Kir7.1	is	ablated	from	MC4R	cells,	male	and	female	mice	are	

more	sensitive	to	diet	induced	weight	gain	than	the	Kcnj13+/+;MC4RCre	controls		(Fig	

4-7A,	C).		This	does	not	appear	to	be	due	to	the	result	of	a	sustained	hyperphagic	

response	(Fig	4-7B,	D).		A	comparison	of	body	mass	composition	by	NMR	reveals	a	

significant	increase	in	fat	mass	in	both	male	and	female	Kcnj13ΔMC4RCre		animals	

compared	to	Kcnj13+/+;MC4R+/+	and	Kcnj13fl/fl	controls,	but	not	compared	

to	Kcnj13+/+;MC4RCre	(Fig4-7	E-H).	Given	the	significant	increase	in	total	weight,	we	

hypothesize	that	the	lack	of	a	difference	in	fat	mass	in	Kcnj13ΔMC4RCre		animals	vs	

controls	by	be	the	result	of	a	lack	of	sensitivity	of	the	whole	animal	NMR	

method.			This	phenotype	diverges	from	global	loss	of	MC4R,	which	manifests	a	
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rapid	obesigenic	response	to	high	fat	diet,	while	Kcnj13ΔMC4RCre	mice	display	

milder,	delayed	onset	obesity	[308].		Likewise	MC4R	deletion	results	in	an	increase	

in	both	lean	and	fat	mass	[76].		The	obesigenic	effect	of	the	MC4RCre	allele	is	clearly	

problematic,	and	a	MC4R-Cre	allele	with	no	background	activity	is	clearly	needed	to	

advance	the	field.		

					After	mice	had	matured	on	high	fat	diet,	a	glucose	tolerance	test	was	conducted	to	

test	glucose	utilization.		A	low	glucose	dose	(1	mg/kg)	adjusted	to	lean	mass	was	

used	as	mice	on	high	fat	diet	already	have	compromised	glucose	homeostasis	[309,	

310].		Here	the	Cre-driver	line	had	no	intermediate	phenotype,	whereas	

the	Kcnj13ΔMC4RCre	male	and	female	mice	had	perturbed	tolerance	to	glucose	as	

confirmed	by	a	significant	increase	in	area	under	the	curve	(Fig	4-7I-L).	The	

autonomic	nervous	system	governs	central	glycemia	via	its	two	

arms:	ChATMc4r	expressing	sympathetic	neurons	and	Phox2bMc4r	expressing	

parasympathetic	neurons	[307].		Mice	lacking	MC4R	present	with	hyperglycemia	

and	hyperinsulinemia	that	is	further	exacerbated	during	fat	accrual	into	

maturity.		Although	parasympathetic	nervous	system	outflow	stimulates	insulin	

release,	sympathetic	nervous	system	outflow	via	ChATMc4r	neurons	has	been	

demonstrated	to	modulate	glycemic	tone	[175].		The	deteriorating	weight	

maintenance	and	glucose	intolerance	in	Kcnj13ΔMC4RCre	mice	suggests	that	Kir7.1	

may	also	augment	MC4R	signaling	in	autonomic	nervous	system	pathways	

regulating	glucose	homeostasis.	

The	data	presented	here	show	a	measurable	requirement	for	Kir7.1	in	MC4R	

neurons	for	pharmacological	responses	to	melanocortin	agonists,	but	not	

antagonists.	In	particular,	Kir7.1	may	be	required	for	sustained	responses	to	

pharmacotherapy	with	melanocortin	agonists	such	as	setmelanotide.		It	will	be	

informative	to	determine	if	the	delayed	anorexigenic	effect	of	optogenetic	

stimulation	of	POMC	neurons	requires	Kir7.1.		Likewise,	given	the	apparent	role	of	

Kir7.1	in	sustained	anorexia,	it	may	be	informative	to	investigate	the	role	of	Kir7.1	

in	mediating	the	demonstrated	role	of	MC4R	signaling	in	disease	cachexia	in	the	
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mouse.		Similarly,	other	physiological	responses	to	melanocortins,	such	as	those	

involved	in	the	control	of	glucose	homeostasis,	may	depend	on	Kir7.1.		Importantly,	

these	data	do	not	prove	a	physiologically	relevant	direct	coupling	of	MC4R	to	the	

channel,	since,	of	course,	the	loss	of	this	channel	could	alter	the	function	of	MC4R	

neurons	in	a	non-specific	manner.		Furthermore,	we	provide	a	direct	example	of	a	

physiologically	mediated	MC4R	pathway,	PYY	release,	from	L	cells,	that	appears	

Kir7.1	independent.		Likewise,	we	found	no	evidence	for	a	compromised	response	to	

AgRP.	

Given	the	requirement	of	Kir7.1	in	a-MSH	induced	depolarization	of	PVN	

MC4R	neurons,	we	were	anticipating	a	larger	obesity	phenotype	in	the	

Kcnj13ΔMC4RCre		mice.		We	were	surprised	to	note	the	very	modest	effect	of	Kir7.1	

on	body	weight,	as	well	as	the	divergence	of	the	phenotype	from	that	seen	in	MC4R	

knockout	mice	and	patients	with	MC4R	mutations.	Indeed,	all	mutations	leading	to	

defective	MC4R	signaling,	including	mutations	in	MC4R,	POMC,	deletion	of	Gas	in	

MC4R	cells	and	even	overexpression	of	AgRP,	lead	to	a	similar	melanocortin	obesity	

phenotype	characterized	by	early	onset	obesity,	with	hyperphagia,	increased	linear	

growth,	and	increased	lean	mass.	A	very	different	phenotype,	involving	modest	late	

onset	obesity,	with	no	measurable	hyperphagia,	increased	linear	growth,	and	no	

increase	in	lean	mass,	was	instead	observed	in	mice	lacking	Kir7.1	in	MC4R	cells.	

There	are	many	potential	explanations	for	these	findings,	including	changes	that	

compensate	early	on	for	the	absence	of	Kir7.1.	Recently,	a	rather	dramatic	example	

was	reported	illustrating	the	tremendous	compensatory	plasticity	of	the	

melanocortin	circuits	in	response	to	early	developmental	gene	knockout	[311].	

Deletion	of	leptin	receptor	from	AgRP	neurons	is	found	to	produce	only	a	minor	

obesity	and	disease	phenotype	relative	to	global	leptin	receptor	deletion	[312].	By	

contrast,	CRISPR-mediated	deletion	of	the	gene	in	AgRP	neurons	in	adult	animals	

produced	a	morbid	obesity	syndrome	almost	paralleling	that	seen	in	the	db/db	

mouse	[312].	Even	more	relevant	to	the	present	study,	leptin	hyperpolarizes	

neurons	by	opening	the	KATP	channel	[313].	Although	global	deletion	of	the	Kir6.2	

subunit	of	this	channel	had	a	limited	effect	on	glucose	homeostasis	and	no	
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obesogenic	effect,	CRISPR-mediated	mutagenesis	of	Kir6.2	in	AgRP	neurons	alone	

yielded	a	morbid	obesity	syndrome	with	diabetes	[312]	[314]	[315].	Thus,	it	is	

possible	that	a	wholly	different	phenotype	may	be	seen	upon	deletion	of	Kir7.1	in	

the	adult	mouse.	

Alternatively,	the	results	reported	in	the	present	study	may	indicate	that	

Kir7.1	plays	a	very	specific	and	limited	role	in	the	physiological	functioning	of	

MC4R.	Additionally,	the	data	obtained	do	not	rule	out	the	possibility	that	the	

phenotype	results	from	a	minor	developmental	alteration	in	a	subset	of	MC4R	

neurons.	Furthermore,	we	proved	a	direct	example	of	a	physiologically-mediated	

MC4R	pathway.	PYY	release,	from	L-cells,	which	appears	to	be	Kir7.1-independent.	

Interestingly,	irrespective	of	the	physiological	role(s)	for	Kir7.1	in	MC4R	signaling,	

the	present	study	demonstrates	a	significant	pharmacological	effect	of	Kir7.1	in	vivo	

and	in	the	slice	preparation.	These	data	may	thus	be	important	for	the	ongoing	

challenge	with	respect	to	the	development	of	therapeutics	acting	at	the	MC4R,	

further	highlighting	the	complexities	of	MC4R	signaling	that	remain	to	be	solved.	
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CHAPTER	5	
	
	

DISCUSSION	AND	FUTURE	DIRECTIONS	
	

	
Through the studies undertaken in this work a novel understanding of MC4R 

signaling partners, Gαs,	and	in	particular	Kir7.1,	in	regulating	energy	homeostasis	

has	been	elucidated.		This	is	the	first	description	of	Kir7.1	in	whole	animal	metabolic	

physiology.		This	work	shows	that	Kir7.1	global	haploinsufficient	animals	have	a	

heightened	response	to	weight	gain	on	high	fat	diet,	have	increased	linear	growth,	

and	are	more	responsive	to	MC4R	antagonist	agouti.		To	hone	in	on	the	effect	of	

Kir7.1	specifically	in	MC4R	cells,	a	Cre-loxP	model	shows	that	Kir7.1	is	required	for	

MC4R	signaling	as	ex	vivo	PVN	cells	exposed	to	α-MSH	fail	to	depolarize	in	the	

absence	of	Kir7.1,	confirming	and	further	implicating	Kir7.1	in	resistance	to	

sustained	anorexic	effect	of	exogenously	delivered	α-MSH	analogue.		Furthermore,	

late	onset	obesity	on	chow	confirms	a	heightened	response	to	high	fat	diet,	as	well	

as	reduced	glucose	tolerance.		Other	MC4R-mediated	pathways	do	not	appear	to	be	

adversely	affected	by	Kir7.1	deletion	including	centrally	delivered	AgRP-induced	

stimulation	of	food	intake	and	induction	of	PYY	release	from	intestinal	L-cells.		Thus	

Kir7.1	mediates	the	magnitude	and	kinetics	of	the	overall	response	to	α-MSH,	

whereas	the	response	attributed	to	AgRP	does	not	appear	to	be	significantly	altered,	

at	least	in	the	limited	AgRP	analysis	conducted	herein.		These	findings	have	putative	

implications	for	development	of	biased	pharmacotherapies.	

	
Role	of	Kir7.1	in	MC4R	signaling	in	vivo	

	

Since	the	initial	description	of	the	prominent	role	of	MC4R	as	the	rheostat	of	

energy	homeostasis,	much	effort	has	been	spent	on	understanding	MC4	and	its	

corresponding	signaling	and	regulatory	partners.		Kir7.1	is	an	apparent	contributor	

to	this	pantheon	of	players	albeit	with	a	comparatively	modest,	late	onset	role.		In	

these	the	interaction	of	MC4R	and	Kir7.1	is	most	profoundly	pharmacological	and	

pertaining	to	the	POMC	arm	of	MC4R.	However	there	is	also	a	clear	effect	on	linear	



	 104	

growth	which	recapitulates	a	MC4R	phenotype.	The	dampened	and	late	onset	

phenotype	observed	herein	may	be	due	to	modes	of	signaling	controlled	primarily	

by	G-protein	or	due	to	developmental	compensatory	effect	from	Cre-lox	

mutagenesis.	Because	energy	intake	is	a	highly	protected	function	with	many	central	

cell	and	nuclei	type	specific	neuronal	circuits	feeding	into	the	behavioral	

manifestation	of	eating,	Kir7.1	may	have	a	role	in	energy intake	that	is	currently	

masked	by	compensatory	effects	in	this	developmental	knockout	model.		This	would	

be	similar	to	initial	studies	of	AgRP	driven	food	intake,	where	knockout	of	AgRP	

displayed	a	late	onset	lean	phenotype	including	reduced	adiposity	and	increased	

metabolic	after	6	months	of	age	[316].		Likewise	developmental	deletion	of	Npy	

results	in	compensatory	adaptations	[317].		Using	a	centrally	delivered	adeno-

associated	virus	CRISPR	model	in	adult	mice	the	Kong	group	recently	confirmed	

developmental	compensatory	effect	had	obscured	leptin	signaling	pathways	

through	AgRP	neurons	in	mice	[311].	Additionally,	the	Gαs	story	is	far	from	

concluded.	A	notable	gap	that	remains	to	be	addressed	is	whether	neurons	lacking	

GNAS	remain	fully	functional,	have	normal	projections,	and	whether	the	Cre	

obesigenic	phenotype	background	also	affects	the	model	of	MC4R	specific	deletion	

Gαs.	Thus	while	my	data	shows	a	clear	pharmacological	role	for	Kir7.1	in	MC4R	

cells,	the	physiologic	role	may	better	be	determined	via	site	specific	deletion	system	

such	as	CRISPR	or	hormone	inducible-Cre	in	adults	an	approach	that	would	also	be	

useful	for	further	study	of	Gαs	signaling	in	MC4R.	

Single	cell-specific	pull	down	and	transcriptome	analysis	could	elucidate	if	

Kcnj13	is	co-expressed	with	MC4R	in	other	nuclei	known	to	contribute	to	autonomic	

energy	expenditure	such	as	the	hindbrain	DMX.		Future	studies	using	a	viral	or	

inducible	knockdown	of	Kcnj13	could	be	used	to	further	explore	the	mechanism	of	

Kcnj13	in	MC4R	cells.		These	types	of	models	would	be	ideal	because	it	would	limit	

the	mutation	opportunities	for	compensatory	changes	during	development.	

While	the	absence	of	clinically	noted	metabolic	deficiencies	in	humans	with	

Kcnj13	mutations	is	surprising,	it	is	also	indicative	of	complexities	in	Kir7.1.		

Furthermore,	late	onset	obesity	probably	would	not	have	been	noted	in	the	few	

cases	of	Kir7.1	blindness	reported.		It	is	known	that	Kir7.1	can	form	homo-	or	
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heteromeric	assemblies,	however	it	is	unknown	what	combination	or	combinations	

of	tetramer	exist	in	the	PVN	or	in	other	regions	of	Kir7.1	expression.		These	protein	

adaptations	may	confer	distinct	properties	to	Kir7.1	that	are	site	specific	or	

compensatory.		This	may	explain	the	absence	of	death	and	metabolic	dysfunction	in	

patients	with	Kir7.1	mutation	channelopathies	leading	to	SVD	or	LCA.		Some	

mutations	may	therefore	be	tolerated.		Perhaps	in	the	future	genomic	screening	of	

patient	cohorts	with	obesity	or	metabolic	syndrome	will	lend	further	understanding	

of	what,	if	any	Kcnj13	mutations	contribute	to	these	syndromes.			Mutations	might	

alter	ion	channel	function	either	due	to	defective	trafficking	to	the	membrane,	

defective	channel	opening	and	closure,	less	ion	selectivity,	and/or	reduced	/	

heightened	interaction	with	intracellular	signaling	partners.		Molecular	

understanding	for	the	functional	abnormalities	associated	with	a	specific	mutation	

need	to	be	established.		Severity	in	pathological	consequence	is	perhaps	directly	

linked	to	severity	of	the	outcome	of	mutation.			

Until	additional	tools	are	developed,	obesity-linked	variants	of	the	human	

MC4R	can	be	examined	for	defective	MC4R-	Kir7.1	signaling.		Some	alleles	with	

normal	G-protein	cAMP	activity	yet	an	obese	phenotype	are	already	known	and	may	

be	linked	to	changes	in	Kir7.1	coupling.		With	this	knowledge	future	therapies	could	

circumvent	pathologies	driven	by	obesity	through	drugs	or	gene	or	cell	therapy	

	
MC4R	and	targeted	drug	therapies	

	

The	discovery	of	a	G-protein	independent	pathway	for	MC4R	signaling	

opened	potential	avenues	for	development	of	biased	pharmacotherapies	that	would	

avoid	harmful	cardiopressor	effects,	which	have	been	the	bane	of	marketable	MC4R,	

targeted	compounds.		By	characterizing	the	physiologic	phenotype	and	

pharmacologic	action	of	Kir7.1	in	multiple	animal	models	and	experimental	assays	

indicative	of	MC4R	function,	we	have	shown	that	Kir7.1	is	indeed	a	downstream	

intracellular	mediator	of	MC4R	ligand	bound	activity.		In	particular	Kir7.1	appears	

to	be	important	in	regulating	energy	expenditure	under	metabolic	challenge	and	

response	to	agonist.		It	remains	to	be	fully	understood	which	molecule,	Gαs	or	
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Kir7.1,	mediates	different	processes	regulated	by	MC4.		Our	studies	in	combination	

with	Podyma	et	al.	seem	to	indicate	that	in	at	least	some	MC4R	processes,	Gαs	and	

Kir7.1	act	in	harmonious	synergy	where	some	physiologic	functions	are	maintained	

by	influence	from	Kir7.1	(for	example	linear	growth)	and	other	by	Gαs	(for	example	

hyperphagia).	It	is	reasonable	that	many	phenotypes	require	input	from	both	

pathways,	yet	these	studies	foreshadow	potential	avenues	for	drug	therapies.	

Specifically,	Kir7.1	impacts	the	length	of	MC4R	response	to	ligand,	which	may	prove	

important	for	MC4R	pharmacology.	Indeed,	30-50%	of	catalogued	MC4R	human	

mutations,	such	as	MC4R	H76R,	have	been	shown	to	traffic	and	interact	normally	

with	G-protein	pathway	yet	still	manifest	in	clinical	obesity.	The	deleterious	

mechanism	of	these	mutations	may	be	related	to	Kir7.1-MC4R	signaling.	Isolating	a	

biased	ligand	would	still	be	useful	to	provide	insight	into	obesity	pathogenesis	and	

pharmacology	of	neural	MC4Rs	and	of	course	ultimately	as	a	therapy	[318].	In	the	

meantime	a	knockin	model	for	mutation(s)	like	MC4R	H76R	could	further	elucidate	

features	of	this	signaling	modality.	

Several	attempts	have	been	made	to	crystallize	MC4R,	however	MC4R	

constitutive	activity	and	extremely	hydrophobic	characteristics	are	likely	hindering	

its	purification	and	crystallization.		As	future	efforts	are	undertaken,	a	crystal	

structure	of	either	inactive	ligand-free,	ligand	bound	complex,	or	complex	with	even	

partial	bound	Gαs	or	Kir7.1	would	be	a	tremendous	breakthrough	in	understanding	

MC4R	function.		While	MC4R	and	Kir7.1	can	be	co-immunoprecipitated,	no	data	yet	

proves	they	interact	directly.	

Finally,	a	pitfall	of	MC4R	drug	development	has	been	that	stimulation	of	

MC4R	causes	a	cardiovascular	pressor	response.	Thus	it	is	critical	to	determine	the	

effects	of	Kir7.1	on	pressor	response.	During	these	studies,	I	began	examining	

pressor	response	via	telemetry	and	blood	pressure	tail	cuff,	yet	because	the	weight	

loss	was	gradual	and	more	modest,	ultimately	these	studies	were	forestalled	until	

full	analysis	of	cardiovascular	profile	can	occur	in	model	system	unhindered	by	

developmental	compensation	and/or	in	acute	studies	with	greater	granularity.	It	
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would	certainly	be	meaningful	if	there	were	a	differential	effect	of	body	weight	and	

the	pressor	effect	due	to	Kir7.1	function	in	MC4R.		

Overall	many	advances	have	been	made	in	understanding	MC4R	and	its	

therapeutic	potential	(Fig	5-1).		Now	with	novel	insight	in	the	roles	for	Kir7.1	in	this	

process,	scientific	progress	through	inquiry	can	continue	unraveling	the	

complexities	of	energy	homeostasis.		

	
	

 
	
Figure	5-1.	Biased	signaling	at	neural	MC4R	in	regulation	of	energy	
homeostasis.	
Therapeutic	relevance	of	biased	signaling	at	neural	MC4R.	The	MC4R	could	couple	
to	Gs,	Gq	and	Kir7.1.	Normal	balanced	agonist	activates	MC4R	and	non-selectively	
induces	Gs	and	Gq	signaling	and	closure	of	Kir7.1,	resulting	in	a	negative	energy	
balance	with	side	effects.	However,	biased	ligand	activates	MC4R	and	selectively	
induces	Gq	signaling	and	closure	of	Kir7.1,	resulting	in	negative	energy	balance	
without	side	effects.		Modified	from	(Yan,	LK	et	al.,	2017).	
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CHAPTER	6	
	
	

METHODS	
	
	

Mouse	Husbandry	
	

Mouse	Handling	
	
All	mice	were	housed	in	standard,	infection–free	housing	conditions	at	25°C,	in	a	

facility	on	a	12	hr	light:12	hr	dark	cycle.		Strictly	pathogen-free	quality	of	the	

mouse	colonies	was	maintained	through	quarterly	serology,	quarterly	

histopathologic	exams,	and	daily	veterinarian	monitoring	of	the	general	health	

and	welfare	of	animals.	Male	and	female	mice	were	used	for	these	experimental	

procedures.		Mice	were	weaned	at	four	weeks	of	age	and	kept	with	4-5	mice	per	

cage,	unless	animals	were	used	for	feeding	studies.		Animals	used	in	feeding	analysis	

were	singly	housed	for	acute	studies	and	dually	housed	for	long	term	feeding	

studies.		Unless	otherwise	described,	all	mice	were	fed	a	standard	chow	diet	(Lab	

Diet;	St.	Louis,	MO;	S-5LOD	-	13.5	kcal%	fat,	32.98	kcal%	Protein,	56.7	kcal%	

Carbohydrate).		Diet	induced	obesity	was	promoted	by	high	fat	diet	(Research	Diets;	

New	Brunswick,	NJ;	D12492	-	60	kcal%	fat,	20	kcal%	Protein,	20	kcal%	

Carbohydrate).		Post	mortem	studies	were	conducted	by	giving	animals	a	dose	of	

5mg/kg	tribromoethanol	in	order	to	deeply	anesthetize	the	mice	before	sacrifice	via	

decapitation.		Tissues	of	interest	were	rapidly	excised	and	flash	frozen	by	liquid	

nitrogen.		All	procedures	were	carried	out	with	approval	from	the	Institutional	

Animal	Care	and	Use	Committee	of	Vanderbilt	University	Medical	Center.		

	

Mouse	Lines	

	

Mouse	Strains	and	Genotyping		

We	used	promoter-driven,	knockout-first,	Kcnj13	targeted	selection	clones	from	the	

Knockout	Mouse	Project	(KOMP)	Repository	at	UCDavis	for	the	generation	of	our	

transgenic	mice.	Embryonic	stem	cell	(ESC)	clones	expressing	the	mutant	allele	
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Kcnj13tm1a(KOMP)wtsi	were	expanded	at	Vanderbilt’s	Transgenic	Mouse	/	ES	Cell	

Shared	Resource	(TMESCSR),	where	chimeric	mice	were	generated	on	the	

C57BL/6N	background.		Germ	line	transmission	was	confirmed	by	crossing	chimeric	

male	mice	to	wildtype	C57BL/6N	females.			Genotyping	confirmed	the	presence	of	

the	mutant	allele,	Kcnj13tm1a(KOMP)wtsi	,	in	progeny.		This	allele	also	carries	an	En2	

splice	acceptor	sequence	and	a	poly-A	transcription	termination	signal,	which	

disrupts	Kcnj13	gene	function.		Following	the	KOMP	breeding	strategy	for	mutant	

allele	generation,	Kcnj13tm1a(KOMP)wtsi	mice	were	bred	to	mice	expressing	the	

recombinase	flippase	to	generate	the	Kcnj13tm1c(KOMP)wtsi	allele.			The	expression	of	

FLP	recombinase	excised	the	promoter	driven	Neo	cassette,	converting	allele	tm1a	

into	conditional	mutant	allele	tm1c.	Mutant	Kcnj13tm1c(KOMP)wtsi	mice	were	mated	to	

sibling	mice	in	order	to	build	a	colony	of	Kcnj13tm1c		mice	(referred	to	as	Kcnj13fl/fl	

mice).		The	Kcnj13fl/fl	colony	was	crossed	with	a	MC4R-t2A-Cre	Tg/+	line	(kindly	

provided	by	Dr.	Bradford	Lowell)	to	generate	a	MC4R	cell	specific	Kcnj13	knockout	

experimental	animal	(referred	to	as	Kcnj13ΔMC4RCre).		This	allele	is	referred	to	as	

Kcnj13tm1d		in	KOMP	nomenclature.			All	mouse	lines	were	maintained	on	a	

C57BL/6NJ	background	with	annual	backcrosses	to	wild	type	C57BL/6NJ	mice	

(Jackson	Laboratory;	Sacramento,	California	-	Jax	Stock	No:	005304).	

	

Mc4r-tau-Sapphire	mice	for	electrophysiological	studies	were	obtained	from	the	

Jackson	Laboratory	(Jax	Stock	No:	008323).		

	

Primers	for	genotyping	Kcnj13fl/fl	or	Kcnj13+/+	alleles	were:	

Kcnj13_ttR	CCAGAGGGTGAGGCTTATAATTTGTGC			

Kcnj13_F	GGTCAGTGAGATATGGCCTAGTGGG		

	

Primers	designed	to	amplify	CRISPR	Kcnj13	mutant	alleles	
	
Blue=bases	that	are	3’	to	the	deleted	bases.	
	
6-F1	 	 GGAATCCTAATGGACATGG	 	 TM=52.4		
	
10A-F1	 GGAATCCTAATGGACGCT	 	 TM=53.7	
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10A-F2		 GGGGAATCCTAATGGACG	 	 TM=54.1	
	
10B-F1	 GGGGAATCCTAATGGACC	 	 TM=53.6	
	
22-F1	 	 GGGAATCCTAATGGACATC	 	 TM=52.1	
	
Forward	primers	paired	in	Platinum	PCR	SuperMix	High	Fidelity	(Invitrogen)	with	
the	reverse	primer:	
	Kcnj13-R1	 CAGACTTGTCTTAACCAAC	 	 TM=51.0	
	

	

Electrophysiology	

	

Hypothalamic	Slice	Electrophysiology	

Mc4r-tau-Sapphire	mice,	backcrossed	onto	the	C57BL/6J	background,	were	

previously	characterized	by	dual	immunohistochemistry	and	in	situ	hybridization	

to	validate	that	GFP-positive	neurons	in	the	PVN	expressed	MC4R	RNA	[79].		

Randomly	selected	MC4R-GFP	male	and	female	mice,	8–16	weeks	of	age,	were	

deeply	anaesthetized	with	isoflurane	before	decapitation.	The	brain	was	entirely	

removed	and	immediately	submerged	in	ice-cold,	gassed	(95%	O2,	5%	CO2)	

artificial	cerebrospinal	fluid	(aCSF),	containing	(in	mM):	126.2	NaCl,	3.1	KCl,	2	

CaCl2,	1	MgCl2,	1	NaH2PO4,	26.2	NaHCO3,	10	glucose	and	11	sucrose	(320	mosm	

per	kg,	pH	7.39	when	gassed	with	95%	O2,	5%	CO2	at	room	temperature).	Brain	

blocks	of	containing	hypothalamus	were	made	by	trimming	the	whole	brains	

while	immersed	in	oxygenated,	near-freezing	aCSF	and	glued	to	a	dental-cement	

cast	customized	to	the	size	of	the	block	mounted	on	a	plate	with	adjustable	angle.	

Brain	slices	of	200-μm	thicknesses	were	then	cut	at	angle	range	between	44°	and	

49°	in	reference	to	horizontal	plane	and	transferred	to	a	glass	beaker	containing	

oxygenated	ACSF	at	31	°C.	After	an	incubation	period	lasting	at	least	one	hour,	a	

slice	was	transferred	to	a	recording	chamber	(∼2.0	ml	in	volume),	then	

submerged	and	immobilized	with	nylon	strands	drawn	taut	across	a	C-shaped	

platinum	wire	(1	mm	outer	diameter),	and	perfused	with	warmed	(31–32	°C)	

oxygenated	ACSF	at	a	rate	of	2–3	ml	min−1.	EGFP-fluorescent	neurons	were	
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unambiguously	identified	and	patched	using	combined	epifluorescence	and	IR-

DIC	optics.	Fluorescent	neurons	of	healthy	IR-DIC	appearance	but	of	every	level	of	

fluorescence	brightness	were	chosen	for	electrophysiological	recordings.	Drugs	

were	added	to	aCSF	and	bath	applied	to	the	slice	via	the	perfusion	system	for	

extracellular	applications.	The	small	volume	of	the	recording	chamber	relative	to	

the	flow	rate	assured	a	complete	exchange	of	solution	occurring	in	less	than	

1	min.	The	persisting	effects	of	a	peptide	were	therefore	due	to	prolonged	effects	

rather	than	a	slow	wash	out.	 	

In	this	study,	whole-cell	patch-clamp	recordings	were	used	to	obtain	

information	about	action	potential	firing	activity,	and	membrane	potentials	and	

currents.	Unless	stated	otherwise,	whole	cell	recordings	were	performed	using	

patch	pipettes	of	3.4	MΩ	to	5	MΩ	resistance	when	filled	with	a	solution	containing	

(in	mM);	125	K	gluconate,	8	KCl,	4	MgCl2,	10	HEPES,	5	NaOH,	4	Na2ATP,	0.4	

Na3GTP,	5	Na2-creatine	phosphate,	7	sucrose	and	7	KOH	which	resulted	in	a	

pH	∼7.23	and	osmolality	of	295–300	mosmol	per	kg.	The	permeability	of	the	α-

MSH	regulated	channels	was	investigated	by	replacing	K	gluconate	and	KCl	with	

130	RbCl	and	4	KCl,	but	otherwise	similar	condition.	The	examination	of	effects	of	

Mg2+-free	internal	solution	on	the	α-MSH-induced	current	was	conducted	in	

voltage	clamp	mode	from	PVN	neurons	held	at	−55	mV.	The	Mg2+-free	internal	

solution	contained	103	K-gluconate,	30	KCl,	10	HEPES-KOH,	0.5	CaCl2,	5.5	EDTA-

KOH,	pH	7.23,	with	osmolality	304	mosmol	per	kg.	The	ATP	free	solution	

contained	83	K-gluconate,	30	KCl,	10	HEPES-KOH,	0.5	CaCl2,	4	MgCl2,	5.5	EGTA-

KOH,	pH	7.2	and	osmolality	298	mosmol	per	kg.	

Neuronal	integrity	was	assessed	by	all	of	the	following:	small	holding	current	

(≤30	pA	at	−70	mV)	when	voltage-clamped,	large	amplitude	rebound	spikes,	the	

ability	to	fire	and	lack	of	obvious	morphological	deterioration	(that	is,	lack	of	

blebbing	and	nucleus	not	visually	present).	
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In	order	to	quantify	the	action	potential	firing	and	amplitude	of	depolarization	

induced	by	α-MSH,	current	clamp	recordings	were	performed	in	continuous	mode	

while	the	membrane	potential	of	neurons	were	held	between	−55	and	−60	mV	to	

prevent	continuous	spontaneous	action	potential	firing.		The	firing	frequency	and	

membrane	potential	of	neurons	was	measured	during	a	3-min	period	before	the	

application	of	the	peptides,	and	for	another	3-min	period	7–11	min	after	

administration	of	peptide,	and	results	compared.	

Data	were	acquired	at	10	kHz	using	a	MultiClamp	700A	amplifier	(2,000×	gain,	–

3	dB	filter	frequency	5	kHz)	and	Clampex	10.0.1	software	(Axon	Instruments,	

Union	City,	CA).	GraphPad	Prism	5.0	(Graphpad	Software,	Inc.,	San	Diego,	CA)	and	

Excel	2010	(Microsoft)	were	used	for	data	analysis.	Statistical	tests	used	included	

the	paired	t-test,	when	examining	response	of	the	same	neurons	before	and	after	

treatment	with	a	compound,	and	the	unpaired	t-test	when	comparing	the	

responses	of	different	sets	of	neurons.		

Fast-induced	Re-feeding	

	

Age	and	litter	matched	male	and	female	mice	were	used	for	this	study	from	young	

(not	shown)	and	mature,	35-45	weeks	of	age,	cohorts.		Studies	were	repeated	at	

least	three	times	across	multiple	cohorts.		One	week	before	the	study,	mice	were	

singly	housed	and	accustomed	to	handling	with	IP	injections	of	100µl	saline	while	

provided	with	ab	libitum	standard	chow	and	water.		One	day	before	the	study	

mice	were	moved	to	clean	cages	with	fresh	bedding	to	minimize	coprophagia.			

Mice	were	food	deprived	for	16-24	hours,	before	drug	was	administered	at	the	

beginning	of	dark	cycle.			

	

Mice	were	food	deprived	for	16	h	before	drug	treatment,	starting	shortly	before	

the	beginning	of	the	dark	cycle.	Experiments	were	blinded;	drug	compounds	were	

prepared	and	coded	the	morning	of	the	injections	by	an	individual	who	would	not	

be	conducting	the	experiment.	The	randomly	selected	experimental	groups	
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consisted	of	animals	given	vehicle,	10.0	mg/kg	saline	or	10.0	mg/kg	LY2112688	

(LY).		For	repeated	studies,	animals	rested	at	least	seven	days	between	fasting	

periods	and	opposite	treatments	were	given.		Numbers	needed	to	achieve	

significant	inhibition	of	food	intake	by	a	melanocortin	compound	versus	saline	

were	based	on	prior	experience.	Food	intake	was	measured	at	multiple	time	

points	after	injection,	beginning	at	2	hours	and	extending	as	far	as	40	hours	after	

injection.	In	viral	knockdown	studies	a	ground	feeding	cylinder	canister	with	a	

wire	mesh	bottom	was	used	rather	than	the	cage	hopper.		Mice	were	accustomed	

to	the	presence	of	the	canister	in	their	cage	for	one	week	before	the	experiment.		

The	reduced	accessibility	of	this	apparatus	is	reflected	in	the	reduced	chow	

consumption	in	viral	knockdown	mice	compared	to	cell	specific	genetic	deletion	

mice	studies.		Statistical	significance	was	established	using	two-way	ANOVA	and	

Tukey’s	post-hoc	with	a	P	<	0.05	significance	value.		

	

shRNA	Lentiviral	Design	and	Injection	

	

Plasmids	and	recombinant	lentiviruses		

Mouse	Kcnj13	shRNA	and	scramble	shRNA	were	constructed	using	the	vector	

pSico	(Addgene).		

Kcnj13	shRNA	plasmid	(TRCN0000262099)	was	from	Sigma,	MO	with	sequence:	
CCGGCGCCTTACTTGCCATACAAATCTCGAGATTTGTATGGCAAGTAAGGCGTTTTTG	

	Scramble	shRNA	(plasmid#	1864)	was	purchased	from	Addgene.	

Scramble	shRNA	construct	in	pLKO.1	vectors	was	subcloned	into	pLL3.7	

(Addgene,	plasmid	#:11795),	which	also	encodes	GFP.	pLL3.7	plasmid	with	

shRNA	(scramble	vs.	Kcnj13).	Kcnj13	shRNA	was	cloned	into	pLKO.1	expressing	

mCherry.		



	 114	

293T	 cells	 were	 transfected	 with	 12,6	 µg	 of	 plasmids	 containing	 the	 shRNA	

(scramble	vs.	Kcnj13),	and	6,3	µg	each	of	the	following	plasmids:	pRSV-Rev,	pVSVG,	

and	pMDLp/g	(gift	of	Dr.	Roger	Colbran)	using	Lipofectamine	2000	(Invitrogen,	CA)	

on	15	cm	dishes.	96	hours	post-transfection,	culture	medium	from	five	15cm-plates	

per	shRNA	clone	were	collected,	and	filtered	through	a	0.45µm	filter.	Viral	particles	

were	isolated	by	ultracentrifugation	at	4˚C,	26000	rpm	for	2	hours	using	a	SW32Ti	

rotor.	The	pellet	was	resuspended	in	sterile	PBS,	aliquoted	and	frozen	at	-80	̊ C	until	

further	use.		

Viral	 titer	was	quantified	as	 follows:	100,000	293T	cells	were	plated	on	24-well	

plates.	Cells	were	transduced	by	ten-fold	serial	dilutions	of	the	viral	particles	with	

dilution	range	between	1:10	–	1:105	using	polybrene.	GFP	(for	scramble	shNA)	or	

mCherry	(for	shRNA	against	Kcnj13)	positive	cells	were	counted	in	triplicate.	

Purified	lentivirus	suspended	in	550-600	nl	artificial	CSF	was	injected	bilaterally	

and	infused	over	15	minutes	into	the	PVN	using	a	stereotactic	frame	and	the	

coordinates	of	0.82	mm	posterior	to	bregma,	0.31	mm	lateral	to	the	midline	of	the	

brain	and	4.68	mm	below	the	surface	of	the	skull,	via	a	26-gauge	guide	cannula	

and	a	33-gauge	internal	injector	(Plastics	One,	Roanoke,	VA)	connected	to	a	2	μl	

Hamilton	syringe.	

Cannulation	Surgery	and	Intracerbroventricular	Injection	

To	study	the	effect	of	ICV	injection	of	MC4R	neuropeptide,	mice	were	anesthetized	

with	isoflurane	and	a	stainless-steel	cannula	(Plastics	One,	Roanoke,	VA)	was	

surgically	implanted	into	the	right	lateral	ventricle	using	the	stereotaxic	coordinates	

of	0.46	mm	posterior	to	the	bregma,	1.0	mm	lateral	to	the	midline,	and	2.2	mm	

below	the	surface	of	the	skull.		Mice	were	allowed	to	recover	for	approximately	5	

days	while	monitoring	food	intake	and	body	weight	with	acclimatization	to	handling	

and	manipulation	of	the	dummy	cannula.		After	recovery,	cannula	placement	was	

verified	by	injecting	10	ng	angiotensin	II	(Sigma,	MO)	diluted	in	0.5	μl	sterile	saline.		
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Animals	that	did	not	exhibit	drinking	response	within	30	minutes	were	excluded	

from	the	study.		A	day	later	experimental	procedures	were	initiated	during	the	light	

cycle.		Peptides	(AgRP,	kindly	provided	by	Glenn	Millhauser)	or	vehicle	were	infused	

in	a	0.5	μl	volume	over	a	1-min	period	with	a	2.0	μl	Hamilton	syringe	(Plastics	One,	

Roanoke,	VA)	coupled	to	an	injection	cannula	by	a	polyethylene	tubing.		After	

injection	the	injector	was	kept	in	place	for	1-min	to	ensure	diffusion	from	the	

injector	tip.		Food	intake	and	body	weight	was	monitored	after	injection.		When	

experimental	procedures	concluded,	cannula	placement	was	also	verified	

histologically.		

Post-Prandial	Hormone	EMSA	

	

Male	and	female	experimental	mice	(Kcnj13ΔMC4RCre;	Kcnj13fl/fl)	age	25-27	weeks	

were	acclimated	to	scruffing	and	injections	for	up	to	5	days	prior	to	blood	collection.		

The	day	of	the	study,	postprandial	plasma	PYY	was	reduced	to	baseline	levels	by	6	h	

daytime	fast.	Mice	were	randomly	selected	to	receive	intraperitoneal	injection	of	

vehicle	(saline)	or	5	mg/kg	of	LY2112688	in	100-200	uL	volumes	according	to	body	

weight.		Numbers	chosen	based	on	prior	experience	suggesting	significance	can	be	

achieved	with	6	animals	per	treatment.		At	10	min	post-injection,	approximately	200	

μl	of	blood	was	collected	via	submandibular	bleeding	in	conscious	mice	or	by	

decapitation	under	anesthesia	for	trunk	bleed.		Blood	was	collected	into	vials	

containing	appropriate	volumes	of	EDTA	and	protease	inhibitor	cocktail	for	

mammalian	tissues	(Sigma	P8340)	to	prevent	degradation	of	PYY	and	kept	on	ice.		

Upon	collection	of	all	blood	samples,	the	vials	were	spun	at	3000	X	G	at	4°C	for	30	

minutes.	Plasma	was	removed	and	spun	at	10000	×	G	at	4°C	for	1	minute	to	pellet	

remaining	blood	cells.	Plasma	was	frozen	at	−80°C	until	PYY	was	assayed.	Plasma	

hormones	were	assayed	in	10	μL	duplicate	samples	using	the	MilliplexMAP	Mouse	

Metabolic	Hormone	-	Magnetic	Bead	Panel	Immunoassay	(Millipore	MMHMAG-44K	

1-plex	kit	for	total	PYY),	with	undiluted	plasma	to	detect	PYY	(total).	The	assay	was	

read	on	a	Luminex	100	analyzer.	Results	were	analyzed	against	a	standard	curve	

and	concentrations	were	determined	using	Milliplex	Analyst	5.1	software.	Values	
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were	plotted	and	analyzed	using	GraphPad	Prism.	Statistical	analyses	were	

conducted	using	multiple	t-tests.	

	

Growth	Phenotyping	

	

Male	and	female	mice	were	dually	housed	with	same	sex,	same	genotype	animals	of	

similar	weight	to	collect	weekly	food	intake	(standard	chow	or	DIO)	and	growth	

data.				Mouse	lean	and	fat	mass	body	composition	was	obtained	by	NMR	(mq10	

Minispec;	Bruker;	Billericia,	Massachusetts).		

	

Glucose	Tolerance	Test	

	

Glucose	tolerance	testing	was	conducted	as	previously	described	[319].		Three	days	

prior	to	GTT,	body	composition	was	obtained	to	determine	lean	body	mass.		Mice	

were	then	habituated	to	consecutive,	daily	handling	sessions.		On	the	study	day,	

mice	were	fasted	for	6	h	from	8am-	3pm.		Mice	were	scruffed	to	obtain	a	basal	

glucose	read	by	tail	nick,	then	injected	with	1(DIO)	to	2	(chow)	mg/kg	lean	mass	

dose	of	glucose	in	sterile	PBS.		Glucose	readings	were	obtained	by	tail	vein	bleed	at	

15,	30,	45,	60,	90,	and	120	min	following	injections.		Lean	mass	was	determined	by	

NMR	body	composition	scan	(mq10	Minispec;	Bruker;	Billericia,	Massachusetts).		

Repeated	sampling	by	tail	vein	bleeding	was	done	at	least	1	week	apart	to	allow	for	

complete	recovery	from	blood	loss.		Area	under	the	curve	(AUC)	was	calculated	by	

the	trapezoidal	rule.			

	

Statistics	

	

Sample	size	for	growth	curve	studies	was	chosen	using	the	power	equation	(α	<0.05,	

β	=	0.1,	Δμ	=	25%	σ	=	5),	whereas	sample	sizes	for	remaining	studies	were	estimated	

based	on	previous	publications.	All	statistical	tests	were	conducted	using	GraphPad	

Prism	6	software	(Scientific	Software;	La	Jolla,	California).	Data	is	presented	as	

mean	±standard	error	of	the	mean.	All	data	with	P<0.05	was	considered	statistically	
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significant.	Statistical	nomenclature:	*	=P	<	0.05;	**P<0.005;	***P<0.001;	

****P<0.0001.		Experimental	performers	were	generally	blinded	for	initial	studies	

and	partially	blinded	for	genotype	identity	for	repeated	studies.	Experiments	were	

repeated	at	least	three	times	with	age	and	litter	matched	animals	across	

experimental	and	control	groups.	
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