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CHAPTER I

INTRODUCTION

I.1 Groups acting on hyperbolic spaces

One of the main goals of geometric group theory is to understand the relationship between the algebraic

properties of a group and the geometric properties of the spaces on which the group acts. Of course, any

group admits a trivial action on any space, so in order to derive any useful information, some restrictions

need to be placed on the types of actions and spaces which can be considered. For finitely generated groups,

it is quite natural to consider actions which are proper and cobounded. Here an action of a group G on a

metric space (X ,d) is called proper if for all x ∈ X and all N ∈ N,

|{g ∈ G | d((x,gx)≤ N}|< ∞

and an action is called cobounded if there exists a bounded subset B⊆ X such that

X =
⋃

g∈G

gB.

To any group G generated by a set S, one can associate to the pair (G,S) a metric space on which G acts

coboundedly, called the Cayley graph of G with respect to S and denoted by Γ(G,S). (For the definition of

the Cayley graph see Chapter II.) If in addition the set S is finite, then the action of G on Γ(G,S) is also

proper. In fact, the reason that proper and cobounded actions are natural is the well-known Svarč–Milnor

Lemma (see [16]):

Lemma I.1.1 (Svarč–Milnor Lemma). Suppose a group G acts properly and coboundedly on a metric space

X. Then G is generated by a finite set S and X is quasi-isometric to Γ(G,S).

Recall that quasi-isometry is a coarse analogue of the notion of isometry between metric spaces; for

details and motivation we refer to [33]. In particular, this lemma says that the space Γ(G,S) is an invariant

of the group itself and does not depend on the choice of finite generating set, at least up to quasi-isometry.

In his seminal paper [34], Gromov introduced the class of hyperbolic groups which revolutionized the

study of geometric group theory. Gromov called a space hyperbolic if all geodesic triangles in the space were

uniformly thin, and he called a group hyperbolic if it acts properly and coboundedly on a hyperbolic metric

space (or equivalently, if the Cayley graph of G with respect to any finite generating set is hyperbolic). This

definition was motivated by the fact that the “thin triangle” condition is shared both by simplicial trees and

by manifolds of negative curvature. Thus, the notion of hyperbolicity connected both the “discrete” world

of graphs and free groups and the “continuous” world of negatively curved manifolds and their fundamental

groups.

In the same paper, Gromov also suggested the notion of relatively hyperbolic groups. Intuitively, rel-

atively hyperbolic groups are similar to hyperbolic groups with the restriction that triangles are uniformly
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“thin” modulo some fixed collection of subgroups (called peripheral subgroups). For example if a complete

Riemannian manifold with pinched negative sectional curvature is finite volume, then it is hyperbolic rela-

tive to the cusp subgroups. Also if a group admits a Bass-Serre decomposition with finite edge groups, then

it is hyperbolic relative to the vertex groups; by a famous theorem of Stallings every infinitely ended finitely

generated group carries such a structure.

In [12] this idea was elaborated on by Bowditch, who suggested a definition of relative hyperbolicity

in terms of the dynamics of properly discontinuous isometric group actions on hyperbolic spaces. Alter-

natively, another definition was suggested by Farb in [28] who looked at the geometry of a certain graph

associated to a group and a collection of subgroups, called the coset graph. Other equivalent definitions

of relative hyperbolicity were given by Groves-Manning who looked at the hyperbolicity of the Cayley

graph with certain “cusps” attached [32], and by Osin who gave an isoperimetric characterization of relative

hyperbolicity [66].

Hyperbolic and relatively hyperbolic groups arise in a variety of contexts, and the presence of negative

curvature has many important consequences for the structure of these groups. However, many groups which

are not hyperbolic or relatively hyperbolic still admit natural and useful actions on hyperbolic metric spaces.

For example, mapping class groups act on the curve complex, and Out(Fn) acts on the free-splitting complex

and the free-factor complex; all of these spaces have been shown to be hyperbolic [52] [10] [38], while in

most cases these groups do not carry a hyperbolic or relatively hyperbolic structure [7]. These groups play

an important role in low dimensional topology, and have many connections with the classical theory of the

arithmetic group Sln(Z) [48].

Motivated by these examples and others, different people have introduced and studied several other types

of group actions on hyperbolic spaces, which typically involve some weak version of properness. We will

mention just a few of these actions.

The action of a group G on a metric space (X ,d) is called acylindrical if for all ε there exist R > 0 and

N > 0 such that for all x, y ∈ X with d(x,y)≥ R, the set

{g ∈ G | d(x,gx)≤ ε,d(y,gy)≤ ε}

contains at most N elements. This definition was given first by Sela [69] for the special case of groups

acting on trees and in general by Bowditch [12]. One can think of this acylindricity condition as a version

of properness for the induced action of G on X×X minus a “thick diagonal.”

It is not hard to see that any proper, cobounded action is also acylindrical. Osin showed that the action

of a relatively hyperbolic group on the relative Cayley graph is acylindrical [65], and Bowditch showed that

the action of any “non-exceptional” mapping class group on the curve complex is acylindrical [13].

Notice, however, that any group action on a bounded space (for example, a point) trivially satisfies the

aclyindricity condidtion. Since bounded spaces are always hyperbolic, there needs to be some condition

to rule out trivial actions on bounded spaces. Hence we will usually only consider actions which are non-

elementary. Recall that for a proper geodesic hyperbolic metric space X , the Gromov boundary ∂X is defined

as the set of equivalence classes of infinite geodesic rays starting at a fixed base point, where two rays are

equivalent if they are within bounded Hausdorff distance of each other. This definition can be naturally
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extended to any (not necessarily proper or geo7desic) hyperbolic metric space (see [34]). Then the action

of a group G on a hyperbolic metric space is called non-elementary if for some (equivalently, any) x ∈ X ,

the Gromov boundary of the G-orbit of x contains at least three points (in which case, it contains infinitely

many). For cobounded actions, this is equivalent to saying that ∂X contains at least three points. Note that a

group action on a bounded space X cannot be non-elementary, since ∂X = /0; for further motivation for only

considering acylindrical actions which are non-elementary, see Theorem III.2.3.

A weaker condition (a priori) than acylindricity is the notion of an element satisfying weak proper

discontinuity or WPD, introduced by Bestvina-Fujiwara in [11]. Recall that for a group G acting on a space

X , h∈G is called loxodromic if h admits an invariant, bi-infinite quasi-geodesic axis in X on which h acts as a

non-trivial translation. Loosely speaking, a loxodromic element h satisfies WPD if the group action satisfies

the aclyindricity condition when the points x and y belong to an axis of h. Thus if an action is acylindrical,

then every loxodromic element satisfies WPD. For the (non-exceptional) mapping class groups acting on the

curve complex, this means that every pseudo-anosov element satisfies WPD. Also, given a fully irreducible

element g of Out(Fn), Bestvina-Feighn [9] have constructed a hyperbolic complex on which Out(Fn) acts

such that g is a loxodromic WPD element.

In [24], Dahmani-Guirardel-Osin introduced the notion of a hyperbolically embedded subgroup. Loosely

speaking, a subgroup H of a group G is said to be hyperbolically embedded if G acts on a hyperbolic metric

space such that the action of H is proper, orbits of H are quasi-convex, and distinct orbits of H “quickly

diverge.” The idea here is that one replaces “global properness” with the “local properness” of the subgroup

H. Dahmani-Guirardel-Osin showed that this condition led to a quite natural generalization of peripheral

structure of subgroups of relatively hyperbolic groups, and they developed machinery for translating re-

sults about relatively hyperbolic groups to groups which contain non-degenerate (i.e. proper and infinite)

hyperbolically embedded subgroups.

There is a clear progression when studying these types of actions on hyperbolic spaces; if a group acts

acylindrically on a hyperbolic metric space, then every loxodromic element satisfies WPD. Also, if a group

G acts on a hyperbolic metric space and G contains a loxodromic, WPD element g, then g is contained in

a maximal virtually cyclic subgroup which is hyperbolically embedded in G [24]. In fact, the Bestvina-

Fujiwara WPD condition was part of the motivation for the actions considered by Dahmani-Guirardel-Osin.

However, a recent result of Osin [65] shows that if G contains a non-degenerate, hyperbolically embedded

subgroup, then there exists a (possibly infinite) generating set A ⊂ G such that Γ(G,A ) is hyperbolic and

the action of G on Γ(G,A ) is non-elementary and acylindrical. This gives the following theorem:

Theorem I.1.2. [65] Let G be a group. The following are equivalent:

1. G admits a non-elementary, acylindrical action on a hyperbolic metric space.

2. G contains a loxodromic, WPD element with respect to a non-elementary action on a hyperbolic

metric space.

3. G contains a non-degenerate hyperbolically embedded subgroup.

4. For some A ⊂ G, Γ(G,A ) is hyperbolic and the action of G on Γ(G,A ) is non-elementary and

acylindrical.
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That is, if you consider groups which act non-elementarily and acylindrically on hyperbolic metric

spaces, groups which have non-elementary WPD actions on hyperbolic metric spaces, or groups which

contain non-degenerate hyperbolically embedded subgroups, you will get exactly the same class of groups.

Motivated by this theorem, we will introduce the following notation for this class.

Definition I.1.3. Let A H denote the class of groups which admit a non-elementary, acylindrical action on

a hyperbolic metric space. We will call such groups acylindrically hyperbolic.

The term “acylindrically hyperbolic” is due to Osin [65]. In fact, there are other types of actions such

as those studied by Hamenstädt [39] and Sistro [69] which lead to equivalent definitions of A H . The fact

that so many people have developed distinct definitions of the same class of groups is evidence that A H is

worth studying. A H also contains many interesting examples of groups, such as:

(a) Non-elementary hyperbolic groups.

(b) Non-elementary groups hyperbolic relative to proper subgroups.

(c) All but finitely many mapping class groups of closed, orientable surfaces (possibly with punctures).

(d) Out(Fn) for n≥ 2.

(e) Groups which act properly on proper CAT (0) spaces and contain rank-1 elements, for example di-

rectly indecomposable non-cyclic right angled Artin groups.

(f) The Cremona group of birational transformations of the complex projective plane.

(g) All one-relator groups with at least three generators.

(h) Many fundamental groups of 3-manifolds. Specifically, if G is the fundamental group of a 3-manifold,

Then G satisfies exactly one of the following:

(1) G ∈A H .

(2) G contains an infinite normal cyclic subgroup Z, and G/Z ∈A H .

(3) G is virtually solvable.

(g) and (h) are shown in [57], and (e) is due to [69]. All other examples are from [24].

While being quite general and containing many interesting examples, A H is still restrictive enough to

allow one to build an interesting theory. Indeed, modulo the equivalence of seemingly distinct definitions

mentioned above, many results about acylindrically hyperbolic groups can be found in [11, 13, 24, 39, 65,

69]. The goal of this thesis will be to build some new results about acylindrically hyperbolic groups, and to

generalize a version of small cancellation theory to this class of groups.

In the second chapter we will set our notation and give some background material. In the third chapter

we will give the basic properties of acylindrically hyperbolic groups which we will need for the remaining

chapters; in particular, we will present some of the different characterizations of A H and explore the
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relationship between them. The remaining three chapters will be dedicated to our main results, which we

describe in detail in the next three sections.

Except for minor changes, Chapter IV and Section I.2 represent joint work with Osin which is published

in [45]. Similarly, Chapter VI, Section I.4 and most of Section V.3 are joint with Osin and are published in

[44]. Other results of Chapter V are more recent and will appear as [43].

I.2 Quasi-cocycles

Let V be a normed G-module. A map q : G→ V is called a quasi-cocycle if there exists a constant ε > 0

such that for every f ,g ∈ G we have

‖q( f g)−q( f )− f q(g)‖ ≤ ε.

The vector space of all quasi-cocycles on G with values in V is denoted by QZ1(G,V ).

The study of quasi-cocycles is partially motivated by the fact that the kernel of the comparison map

H2
b (G,V ) → H2(G,V ) from the second bounded cohomology to the ordinary second cohomology with

coefficients in V can be identified with the quotient QZ1(G,V )/(`∞(G,V ) + Z1(G,V )), where `∞(G,V )

and Z1(G,V ) are the subspaces of uniformly bounded maps and cocycles, respectively. In the last decade,

techniques based on quasi-cocycles and bounded cohomology have led to new breakthroughs in the study

of rigidity of group von Neumann algebras, measure equivalence and orbit equivalence of groups, and low

dimensional topology (see [18, 21, 58, 68] and references therein).

If V = R with the trivial action of G, quasi-cocycles on G with values in V are called quasimorphisms.

The classical examples are counting quasimorphisms of free groups introduced by Brooks [17]. Let F be

a free group with a basis S and let w be a reduced word in S∪ S−1. Given an element g ∈ F , denote by

cw(g) the number of disjoint copies of w in the reduced representative of g. Then hw = cw− cw−1 defines a

quasimorphism F→R [17]. Observe that hw(g) extends the obvious cocycle (i.e., homomorphism) H→R
of the cyclic subgroup H = 〈w〉 ≤ F that sends wn to n for all n ∈ Z.

This construction was extended to hyperbolic groups by Epstein-Fujiwara [27] and later to all groups

which admit a WPD action on a hyperbolic metric space (or in our language, all acylindrically hyperbolic

groups) by Bestvina-Fujiwara [11]. In fact, the motivation for the Bestvina-Fujiwara WPD condition was

that it provided the “right” condition for a group acting on a hyperbolic metric space to allow one to build

linearly independent counting quasimorphisms, and hence to guarantee that the kernel of the comparison

map H2
b (G,R)→ H2(G,R) is infinite dimensional. As an application of this, they provide a new proof of a

rigidity theorem of Farb-Kaimanovich-Masur which says that high rank lattices do not appear as subgroups

of mapping class groups.

In Chapter IV, we will prove an extension theorem for quasi-cocycles defined on hyperbolically em-

bedded subgroups. This can be considered as a generalization of the Bestvina-Fujiwara result, as their con-

struction essentially extends certain quasimorphisms defined on (hyperbolically embedded) virtually cyclic

subgroups. We state here a simplified version of our main result and refer to Theorem IV.2.2 for the full
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generality. A quasi-cocycle q ∈ QZ1(G,V ) is called anti-symmetric if for every g ∈ G,

q(g−1) =−g−1q(g).

For a group G and a normed G-module V , let QZ1
as(G,V ) denote the subspace of all anti-symmetric

quasi-cocycles on G with coefficients in V .

Theorem I.2.1. Let G be a group, H a hyperbolically embedded subgroup of G, V a normed G-module, U

an H-submodule of V . Then there exists a linear map

ι : QZ1
as(H,U)→ QZ1

as(G,V )

such that for any q ∈ QZ1
as(H,U), we have ι(q)|H ≡ q.

It is well-known and easy to prove that every quasi-cocycle is anti-symmetric up to a bounded perturba-

tion (see Lemma IV.0.6). In the notation of Theorem I.2.1, this gives the following.

Corollary I.2.2. There exists a linear map κ : QZ1(H,U)→ QZ1(G,V ) such that for any q ∈ QZ1(H,U),

κ(q)|H ∈ QZ1(H,U) and

sup
h∈H
‖κ(q)(h)−q(h)‖< ∞.

In Section IV.3, we obtain some other corollaries of our main result. Recall that the class Creg of Monod-

Shalom is the class of groups for which H2
b (G, `2(G)) 6= 0. This definition was proposed as cohomological

characterization of the notion of “negative curvature” in group theory [61]. In [60] Monod and Shalom

develop a rich rigidity theory with respect to measure equivalence and orbit equivalence of actions of groups

in Creg. These results have a variety of applications to measurable group theory, ergodic theory and von

Neumann algebras.

Another similar class of groups is the class Dreg introduced by Thom [71]. G ∈ Dreg if G is non-

amenable and there exists some q ∈QZ1(G, `2(G)) which is unbounded. Thom proved rigidity results about

the subgroup structure of groups in Dreg and showed that this class is closely related to Creg. However

neither inclusion is known to hold between these two classes.

Using Corollary I.2.2 and the fact that every group G ∈A H contains a virtually free (but not virtually

cyclic) hyperbolically embedded subgroup [24], we recover the following result of Hamenstädt.

Corollary I.2.3. For any G ∈ A H , the dimension of the kernel of the comparison map H2
b (G, `p(G))→

H2(G, `p(G)) is infinite. In particular, A H ⊆ Creg∩Dreg.

This corollary was first proved in [39]; however, it was not known that these results covered the same

class of groups until the recent result of Osin [65] mentioned in the previous section. In addition, Bestvina,

Bromberg, and Fujiwara [8] announced a proof showing that the dimension of the kernel of the comparison

map H2
b (G,E)→ H2(G,E) is infinite for any group which admits a WPD action on a hyperbolic metric

space and any uniformly convex Banach G-module E. Thus the result of Bestvina, Bromberg, and Fujiwara

is stronger than Corollary I.2.3.
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As another application, we show that hyperbolically embedded subgroups are undistorted with respect

to the stable commutator length, scl. For the definition of scl we refer to Section IV.3. Given a group G and

a subgroup H ≤G it is straightforward to see that sclG(h)≤ sclH(h) for any h ∈ [H,H], where sclG and sclH
are the stable commutator lengths on [G,G] and [H,H], respectively.

On the other hand, recall that every torsion free group H can be embedded in a group G where every ele-

ment is a commutator (see [49, Theorem 8.1] or [67] for a finitely generated version of such an embedding).

In particular, sclG vanishes on G, while sclH can be unbounded on [H,H]. Thus, in general, there is no upper

bound on sclH in terms of sclG. In what follows, we say that H is undistorted in G with respect to the stable

commutator length if there exists a constant B such that for every h ∈ [H,H], we have sclH(h)≤ BsclG(h).

Using Theorem I.2.1 and the Bavard duality, we obtain the following.

Corollary I.2.4. Let G be a group, H a hyperbolically embedded subgroup of G. Then H is undistorted in

G with respect to the stable commutator length.

Even the following particular cases seem new. Recall that a subgroup H ≤ G is almost malnormal if

|Hg∩H|< ∞ for every g ∈ G\H.

Corollary I.2.5. Every almost malnormal quasiconvex subgroup of a hyperbolic group is undistorted with

respect to the stable commutator length. In particular, so is every finitely generated malnormal subgroup of

a free group.

In Section IV.3 we show that the almost malnormality condition cannot be omitted even for free groups

(see Remark IV.3.7).

I.3 Small cancellation theory

Classical small cancellation theory involves the study of groups which are given by presentations where the

relations have a “small overlap” between each other. The basic ideas of small cancellation theory go back

to the work of Dehn in the early 1900’s and his formulation and solution to the word problem for surface

groups. These ideas were further developed in the 60’s and 70’s by Greendlinger, Lyndon, Schupp, and

others (see [49]). Small cancellation ideas also played an important role in Olshanskii’s construction of

various “exotic” groups, such as the Tarski monsters (see [63]).

In fact, the ideas of small cancellation theory are closely connected with the notion of hyperbolicity.

Indeed, Gromov’s definition of hyperbolic groups was motivated in part by the fact that hyperbolicity had

been used implicity in the ideas of small cancellation theory going back to the work of Dehn. In fact, Dehn’s

solution to the word problem for surface groups involved embedding their Cayley graphs in the hyperbolic

plane and applying the Gauss-Bonnet theorem to show that any closed loop must contain a large segment

of a defining relator. One could then use this defining relator to find a shorter loop which represented the

same group element. This process became known as Dehn’s Algorithm, and it turns out that a group has

a presentation where this algorithm can be used to solve the word problem if and only if that group is

hyperbolic.
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Gromov noticed that many small cancellation arguments could be simultaneously simplified and gener-

alized by explicitly using hyperbolicity. As group presentations represent quotients of free groups, Gromov

suggested that the theory could be adapted to study quotients of hyperbolic groups. This idea was formal-

ized by several people, including Champetier [19], Delzant [25], Olshanskii [62], and others. Olshanskii’s

approach was generalized to relatively hyperbolic groups by Osin in [67].

In Chapter V we generalize Osin’s version of small cancellation over relatively hyperbolic groups to

the class of acylindrically hyperbolic groups. In particular, this verson of small cancellation covers (for

sufficiently small λ ) both the classical C′(λ )-condition for free groups, as well as the C′(λ )-condition for

amalgamated products and HNN-extensions developed in [49]. We will leave the rather technical definitions

of the small cancellation conditions for Chapter V; here we will state a version of our main small cancellation

theorem and present some applications of this theorem. In order to state this theorem, we will need the notion

of a suitable subgroup, which is a simplification of the notion of a G-subgroup given in [62].

Definition I.3.1. Given G ∈ A H , a generating set A of G and a subgroup S ≤ G, we will say that S is

suitable with respect to Γ(G,A ) if the following holds:

1. Γ(G,A ) is hyperbolic and the action of G on Γ(G,A ) is acylindrical.

2. The action of S on Γ(G,A ) is non-elementary.

3. S does not normalize any finite subgroups of G.

We will further say that a subgroup is suitable if it is suitable with respect to some Γ(G,A ).

Given a generating set A of G, we denote by BA (N) the subset of G which belongs to the ball of radius

N centered at the identity in Γ(G,A ). The following is a simplification of our main technical theorem

proved using small cancellation theory; for the full generality, see Theorem V.6.1:

Theorem I.3.2. Suppose G ∈A H and S is suitable with respect to Γ(G,A ). Then for any {t1, ..., tm} ⊂G

and N ∈ N, there exists a group G and a surjective homomorphism γ : G→ G which satisfies

(a) G ∈A H .

(b) γ|BA (N) is injective.

(c) γ(ti) ∈ γ(S) for i = 1, ...,m.

(d) γ(S) is a suitable subgroup of G.

(e) Every element of G of order n is the image of an element of G of order n.

Remark I.3.3. It should be noted that in [24] a geometric version of small cancellation is developed for

A H based on Gromov’s notion of a rotating family of subgroups. However, this theory focuses on the

algebraic and dynamical properties of the generated normal subgroup, while our theory focuses on the

resulting quotient group.
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If G is finitely generated we can choose t1, ..., tm to be a generating set and we get that the restricion of

γ to S is surjective. A more general version of this observation can be found in Corollary V.6.5.

It is our hope that this theorem will become a useful tool for studying acylindrically hyperbolic groups.

We will give a few applications of this theorem which illustrate the variety of problems to which it can be

applied.

Our first application is to the study of Frattini subgroups of groups in A H . The Frattini subgroup of

a group G, denoted Fratt(G), is defined as the intersection of all maximal subgroups of G, or as G itself

if no such subgroups exist. It is not hard to show that the Frattini subgroup of G is exactly the set of non-

generators of G, that is the set of g ∈ G such that for any set X which generates G, X \ {g} also generates

G.

The study of the Frattini subgroup is related to the study of the generation problem and the rank problem.

Given a group G and a subset Y ⊂ G, the generation problem is to determine whether Y generates G. The

rank problem is to determine the smallest cardinality of a generating set of a given group G. Since Fratt(G)

consists of non-generators these problems can often be simplified by considering G/Fratt(G). Hence these

problems tend to be more approachable for classes of groups which have “large” Frattini subgroups. We

will show, however, that this is not the case for acylindrically hyperbolic groups.

Theorem I.3.4. Let G ∈A H . Then Fratt(G)≤ K(G); in particular, the Frattini subgroup is finite.

Here K(G) denotes the maximal finite normal subgroup of G, also called the finite radical. Such a

subgroup is shown to always exist in [24]. This theorem generalizes several previously known results. For

example, it was known that the free product of any non-trivial groups has trivial Frattini subgroup [40], and

that free products of free groups with cyclic amalgamation have finite Frattini subgroup [73]. Also, in [46]

Kapovich proved that all subgroups of hyperbolic groups have finite Frattini subgroup. All of these groups

are either virtually cyclic or belong to A H .

Another useful Corollary of our small cancellation theorem is the following:

Corollary I.3.5. Let G1,G2 ∈ A H , with G1 finitely generated, G2 countable. Then there exists a non-

virtually cyclic group Q and surjective homomorphims αi : Gi→ Q for i = 1,2. If in addition G2 is finitely

generated, then we can choose Q ∈A H .

This corollary provides a general way to construct interesting quotients. For example, since Property (T )

is preserved under taking quotients and the existence of non-elementary hyperbolic groups with Property

(T ) is well-known, as an immediate consequense of Corollary I.3.5 we get:

Corollary I.3.6. Every countable G ∈A H has an infinite quotient with property (T ).

This generalizes a result of Gromov which says that all non-elementary hyperbolic groups have infinite

property (T ) quotients [34].

In addition, we can also apply Corollary I.3.5 to study the topology of marked group presentations. This

topology provides a natural framework for studying groups which “approximate” a given class of groups.

For example, Sela’s limit groups, which were used in the solution of the Tarski problem, can be defined
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as the groups which are approximated by free groups with respect to this topology (see [20]). In [4], this

topology is used to define a preorder on the space of finitely generated groups.

Let Gk denote the set of marked k-generated groups, that is Gk = {(G,x1, ...,xk) | x1, ...,xk ∈G,〈x1, ...,xk〉=
G}. Given a group G, let [G]k denote the (possibly empty) subset of Gk corresponding to the group

G, and let [G]k denote its closure with respect to the topology mentioned above. Let [G] =
⋃

∞
k=1 [G]k.

Also, let A H0 denote the class of aclyindrically hyperbolic groups G for which K(G) = {1}, and let

[A H0] =
⋃

∞
k=1{(G,x1, ...,xk) ∈ Gk | G ∈A H0}.

Theorem I.3.7. Let C be a countable subset of [A H0]. Then there exists a finitely generated group D such

that C ⊂ [D].

Roughly speaking, this theorem says that we can find a group D which approximates every group in C .

In the language of [4], the group D preforms G for every G which belongs to C .

Finally, we show that our results can be used to build “exotic” quotient groups. Higman, B. H. Neumann

and H. Neumann showed that any countable group G could be embedded in a countable group B in which

any two elements are conjugate if and only if they have the same order [41]. Osin, using small cancellation

over relatively hyperbolic groups, showed that the group B could be chosen to be finitely generated [67]; in

fact, this allowed him to produce the first known examples of infinite, finitely generated groups with exactly

two conjugacy classes. We show that any countable, torsion free G ∈A H has such a quotient group. Here

we let π(G)⊆ N∪{∞} be the set of orders of elements of G.

Theorem I.3.8. Let G∈A H be countable. Then G has an infinite, finitely generated quotient group C such

that any two elements of C are conjugate if and only if they have the same order and π(C) = π(G/K(G)).

In particular, if G is torsion free, then C has two conjugacy classes.

A group is called divisible if for all g ∈ G and n ∈ N, there exists x ∈ G such that xn = g. A natural

example of such a group is Q; The first finitely generated examples were given by Guba [36].

More generally, a group G is called verbally complete if for any k≥ 1, any g∈G, and any freely reduced

word W (x1, ...,xk) there exists g1, ...,gk ∈ G such that W (g1, ...,gk) = g in the group G. The existence of

finitely generated verbally complete groups was shown by Mikhajlovskii and Olshanskii [53], and Osin

showed that every countable group could be embedded in a finitely generated verbally complete group [67].

Theorem I.3.9. Let G ∈ A H be countable. Then G has an infinite, finitely generated quotient group V

such that V is verbally complete.

I.4 Conjugacy growth

In the final chapter, we apply our small cancellation techniques to study conjugacy growth of finitely gener-

ated groups.

Let G be a group generated by a set X . Recall that the word length of an element g ∈ G with respect to

the generating set X , denoted by |g|X , is the length of a shortest word in X ∪X−1 representing g in the group

G. If X is finite one can consider the growth function of G, γG : N→ N, defined by

γG(n) = |BG,X(n)|,
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where

BG,X(n) = {g ∈ G | |g|X ≤ n}.

It was first introduced by Efremovic [26] and Svarč [69] in the 50’s, rediscovered by Milnor [54] in the 60’s,

and served as the starting point and a source of motivating examples for contemporary geometric group

theory. In Chapter VI we focus on a similar function ξG,X : N→ N called the conjugacy growth function of

G with respect to X . By definition ξG,X(n) is the number of conjugacy classes in the ball BG,X(n).

It is straightforward to verify that γG,X and ξG,X are independent of the choice of a particular finite

generating set X of G up to the following equivalence relation. Given f ,g : N→ N, we write f � g if there

exists C ∈ N such that f (n)≤ g(Cn) for all n ∈ N. Further f and g are equivalent (we write f ∼ g) if f � g

and g� f . In what follows we always consider growth functions up to this equivalence relation and omit X

from the notation.

The conjugacy growth function was introduced by Babenko [1] in order to study geodesic growth of

Riemannian manifolds. Obviously free homotopy classes of loops in a manifold M are in 1-to-1 correspon-

dence with conjugacy classes of π1(M). If M is a closed Riemannian manifold, the Svarč–Milnor Lemma

then implies that ξπ1(M) is equivalent to the function counting free homotopy classes of loops of given length

in M. The later function serves as a lower bound for the geodesic growth function of M, which counts

the number of geometrically distinct closed geodesics of given length on M. Moreover if M has negative

sectional curvature, then all these functions are equivalent.

Geodesic growth of compact Riemannian manifolds has been studied extensively since the late 60’s (see,

e.g., [2, 3, 47, 50]). The most successful results were obtained in the case of negatively curved manifolds by

Margulis [50, 51]. He proved that the number of primitive closed geodesics of length at most n on a closed

manifold of negative sectional curvature is approximately equal to ehn/(hn), where h is the topological

entropy of the geodesic flow on the unit tangent bundle of the manifold. Coornaert and Knieper [22, 23]

proved a group theoretic analogue of this result and found an asymptotic estimate for the number of primitive

conjugacy classes in a hyperbolic group similar to that from Margulis’ papers. Our next theorem gives a

similar result for all (finitely generated) acylindrically hyperbolic groups.

Recall that a conjugacy class of a group G is called primitive if some (or, equivalently, any) element g

from the class is not a proper power, i.e., hn = g implies n =±1. For a group G generated by a finite set X ,

let πG(n) denote the function counting primitive conjugacy classes in BG,X(n).

Theorem I.4.1. Let G ∈A H be finitely generated. Then ξG ∼ πG ∼ 2n.

Theorem I.4.1 can be used to completely classify conjugacy growth functions of subgroups in mapping

class groups (see Section VI.1).

Counting primitive conjugacy classes does not make much sense for general groups. For instance if the

group G is torsion without involutions, then there are no primitive conjugacy classes in G at all. Moreover

this can happen even for torsion free groups; for example, the finitely generated divisible groups constructed

by Guba [36]. Thus in the context of abstract group theory it seems more natural to consider the conjugacy

growth function ξG.

The algebraic study of the conjugacy growth function is strongly motivated by its similarity to the
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ordinary growth function. Recall that a function f is exponential if f ∼ 2n, polynomial if f ∼ nd for some d ∈
N, and polynomially bounded if f � nd for some d ∈N. In [54], Milnor conjectured that γG is always either

exponential or polynomial. Counterexamples to this conjecture were constructed by Grigorchuk in [30].

It turns out, however, that Milnor’s dichotomy does hold for some important classes of groups including

solvable and linear ones [55, 72, 74]. Gromov [35] proved that any group with polynomially bounded

growth function contains a nilpotent subgroup of finite index. Combining this with a result of Bass [5]

saying that every nilpotent group has a polynomial growth function, one can easily derive that if the growth

function of a group is polynomially bounded, then it is in fact polynomial. Despite these advances, it is still

far from being clear which functions can occur as growth functions of finitely generated groups. For instance

it is unknown whether there exists a group G with non-polynomial growth function satisfying γG � 2
√

n. For

a comprehensive survey we refer the interested reader to [31].

Recently some similar results were proved for the conjugacy growth function. Breuillard and Cornulier

[15] showed that for a finitely generated solvable group G, the conjugacy growth function is either polyno-

mially bounded or exponential and, furthermore, ξG is polynomially bounded if and only if G is virtually

nilpotent. (For polycyclic groups this result was proved independently and simultaneously by the author

in [42].) This dichotomy was also proved for finitely generated linear groups by Breuillard, Cornulier,

Lubotzky, and Meiri [14]. Motivated by the Milnor conjecture, Guba and Sapir [37] suggested that ‘nat-

ural’ groups have either polynomially bounded or exponential conjugacy growth. They proved that many

HNN-extensions and diagram groups, including the R. Thompson group F , have exponential conjugacy

growth.

Note however that the ordinary and conjugacy growth functions can behave differently. For instance, the

conjugacy growth of a nilpotent group is not necessarily polynomial. Indeed let H be the Heisenberg group

H = UT3(Z)∼= 〈a,b,c | [a,b] = c, [a,c] = [b,c] = 1〉.

Then it is fairly easy to compute that ξH(n) ∼ n2 log(n) (this example can be found in [1] and [37]). Note

also that there exist finitely generated groups of exponential growth with finitely many conjugacy classes

[63, Theorem 41.2] and even with 2 conjugacy classes [67]. Thus γG and ξG can be very far apart, actually

on the opposite sides of the spectrum.

In Chapter VI we address the following realization problem: Which functions can be realized (up to

equivalence) as conjugacy growth functions of finitely generated groups? Unlike in the case of ordinary

growth, the realization problem for conjugacy growth admits a complete solution.

Theorem I.4.2. Let G be a group generated by a finite set X, f the conjugacy growth function of G with

respect to X. Then the following conditions hold.

(a) f is non-decreasing.

(b) There exists a≥ 1 such that f (n)≤ an for every n ∈ N.

Conversely, suppose that a function f : N→ N satisfies the above conditions (a) and (b). Then there exists

an infinite finitely generated group G such that ξG ∼ f .
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The first claim of the theorem is essentially trivial. Note, however, that even realizing simplest growth

functions, e.g., f (n) = logn, is nontrivial; moreover, we are not aware of any groups other than the ones

constructed in this paper that have unbounded conjugacy growth functions satisfying f (n) = o(n).

When speaking about asymptotic invariants of groups it is customary to ask whether these invariants are

geometric, i.e. invariant under quasi-isometry. Many asymptotic invariants of groups are invariant under

quasi-isometry up to suitable equivalence relations, e.g., the ordinary growth function, the Dehn function,

and the asymptotic dimension growth function, just to name a few. However it turns out that the conjugacy

growth function is not a geometric invariant in the strongest possible sense. More precisely, we construct

the following example.

Theorem I.4.3. There exists a finitely generated group G and a finite index subgroup H ≤ G such that H

has 2 conjugacy classes while G is of exponential conjugacy growth.

Since every (non-trivial) group has at least two conjugacy classes and at most exponential conjugacy

growth, this theorem shows that the conjugacy growth of two quasi-isometric groups can be as far apart as

possible. Note also that it is fairly easy to prove that for every finitely generated group G and a finite index

subgroup H ≤ G, one has ξH � ξG.

The proofs of Theorems I.4.2 and I.4.3 will be accomplished by constructing groups which are direct

limits of relatively hyperbolic groups. The main tool in constructing these sequences will be a more general

version of Theorem I.3.2. While these results can be proved entirely using relatively hyperbolic groups, one

still needs a stronger version of the small cancellation theorem than the one proved in [67] (see [44] for more

details).
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CHAPTER II

PRELIMINARIES

Notation We begin by standardizing the notation that we will use. Given a group G generated by a subset

S ⊆ G, we denote by Γ(G,S) the Cayley graph of G with respect to S. That is, Γ(G,S) is the graph with

vertex set G and an edge labeled by s between each pair of vertices of the form (g,gs), where s ∈ S. We let

|g|S denote the word length of an element g with respect to S, that is |g|S is equal to the length of the shortest

word in S which is equal to g in G. Similiarly, dS will denote the word metric on G with respect to S, that is

dS(h,g) = |h−1g|S. Clearly dS(h,g) is the length of the shortest path in Γ(G,S) from h to g. We denote the

ball of radius n centered at the identity with respect to dS by BG,S(n) (or simply BS(n) if omitting G does not

lead to confusion); that is BG,S(n) = {g ∈ G | |g|S ≤ n}. We will assume all generating sets are symmetric,

that is S = S∪ S−1. If p is a (combinatorial) path in Γ(G,S), Lab(p) denotes its label, `(p) denotes its

length, p− and p+ denote its starting and ending vertex.

In general, we will allow metrics and length functions to take infinite value. For example, we will

sometimes consider a word metric with respect to a subset Y which is not necesarily generating; in this case

we set dY (h,g) = ∞ when h−1g /∈ 〈Y 〉. Given two metric d1 and d2 on a set X , we say that d1 is bi-Lipschitz

equivalent to d2 (and write d1 ∼Lip d2) if for all x,y ∈ X , d1(x,y) is finite if and only if d2(x,y) is, and the

ratios d1/d2 and d2/d1 are uniformly bounded on X×X minus the diagonal.

For a word W in an alphabet S, ‖W‖ denotes its length. For two words U and V we write U ≡ V to

denote the letter-by-letter equality between them, and U =G V to mean that U and V both represent the same

element of G. Clearly there is a one to one correspondence between words W in S and paths p in Γ(G,S)

such that p− = 1 and Lab(p)≡W .

The normal closure of a subset K ⊆ G in a group G (i.e., the minimal normal subgroup of G containing

K) is denoted by 〈〈K〉〉 . For group elements g and t, gt denotes t−1gt. We write g∼ h if g is conjugate to h,

that is there exists t ∈ G such that gt = h. We also say that g and h are commensurable if for some n,k ∈ Z,

gn ∼ hk.

Van Kampen Diagrams. Recall that a van Kampen diagram ∆ over a presentation

G = 〈A | O〉 (II.1)

is a finite, oriented, connected, simply–connected, planar 2–complex endowed with a labeling function

Lab : E(∆)→ A , where E(∆) denotes the set of oriented edges of ∆, such that Lab(e−1) ≡ (Lab(e))−1.

Labels and lengths of paths are defined as in the case of Cayley graphs. Given a cell Π of ∆, we denote by

∂Π the boundary of Π; similarly, ∂∆ denotes the boundary of ∆. The labels of ∂Π and ∂∆ are defined up to

a cyclic permutation. An additional requirement is that for any cell Π of ∆, the boundary label Lab(∂Π) is

equal to a cyclic permutation of a word P±1, where P ∈ O . The van Kampen Lemma states that a word W

over the alphabet A represents the identity in the group given by (II.1) if and only if there exists a diagram

∆ over (II.1) such that Lab(∂∆)≡W [49, Ch. 5, Theorem 1.1].
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Remark II.0.4. For every van Kampen diagram ∆ over (II.1) and any fixed vertex o of ∆, there is a (unique)

combinatorial map γ : Sk(1)(∆) → Γ(G,A ) (where Sk(1)(∆) denotes the 1-skeleton of ∆) that preserves

labels and orientation of edges and maps o to the vertex 1 of Γ(G,A ).

Hyperbolic spaces Here we will mention some well-known properties of hyperbolic spaces which will

be used in the remaining chapters. A geodesic metric space X is called δ -hyperbolic if given any geodesic

triangle T in X , each side of T is contain in the union of the closed δ -neighboorhoods of the other two

sides. It is well-known that a space is hyperbolic if and only if it satisfies a linear isoperimetric inequality.

This can be translated to the context of Cayley graphs of groups in the following way. A group presentation

of G of the form (II.1) is called bounded if sup{‖R‖ | R ∈ O} < ∞. Given a van Kampen diagram ∆

over (II.1), let Area(∆) denote the number of cells of ∆. Given a word W in A with W =G 1, we let

Area(W ) = min∂∆≡W{Area(∆)}, where the minimum is taken over all diagrams with boundary label W .

The presentation (II.1) satisfies a linear isoperimetric inequality if there exists a contant L such that for all

W =G 1, Area(W )≤ L‖W‖. The following is well-known and can be easily derived from the results of Sec.

2, Ch. III.H in [16];

Theorem II.0.5. Given a generating set A of a group G, the Cayley graph Γ(G,A ) is hyperbolic if and

only if G has a bounded presentation of the form (II.1) which satisfies a linear isoperimetric inequality.

Remark II.0.6. A group is called hyperbolic if for some finite A , Γ(G,A ) is hyperbolic. In this case, a

bounded presentation is necessarily finite. However, we will be interested in Cayley graphs Γ(G,A ) where

A is infinite, which is why we work in this generality.

Given a subset T a geodesic metric space (X ,d), we denote by T+σ the σ -neighborhood of T . T is

called σ -quasi-convex if for any two elements t1, t2 ∈ T , any geodesic γ in X connecting t1 and t2 belongs

to T+σ . Let Q = {Qp}p∈Π be a collection of subsets of a metric space X . One says that Q is t-dense for

t ∈R+ if X coincides with the t-neighborhoods of
⋃

p∈Π

Qp. Further Q is quasi-dense if it is t-dense for some

t ∈R+. Let us fix some positive constant c. A c-nerve of Q is a graph with the vertex set Π and with p,q∈Π

adjacent if and only if d(Qp,Qq) ≤ c. Finally we recall that Q is uniformly quasi-convex if there exist σ

such Qp is σ -quasi-convex for any p ∈ Π. The lemma below is an immediate corollary of [12, Proposition

7.12].

Lemma II.0.7. Let X be a hyperbolic space, and let Q = {Qp}p∈Π be a quasi-dense collection of uniformly

quasi-convex subsets of X. Then there for any large enough c, the c-nerve of Q is hyperbolic.

A path p in a metric space is called (λ ,c)–quasi–geodesic for some λ > 0, c≥ 0, if

d(q−,q+)≥ λ l(q)− c

for any subpath q of p. p is called a k-local geodesic if any subpath of p of length at most k is geodesic.

Lemma II.0.8. [16] Let r be a k-local geodesic in a δ -hyperbolic metric space for some k > 8δ . Then r is

a (1
3 ,2δ )-quasi-geodesic.
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The “thin triangle” condition can be easily translated to a “thin quadrangle” condition by simply drawing

the diagonal and applying the thin triangle condition twice. The next lemma states this idea for quasi-

geodesic quadrangles.

Lemma II.0.9. [67, Corollary 3.3] For any δ ≥ 0, λ > 0, c ≥ 0, there exists a constant K = K(δ ,λ ,c)

with the following property. Let Q be a quadrangle in a δ–hyperbolic space whose sides are (λ ,c)–quasi–

geodesic. Then each side of Q belongs to the closed K–neighborhood of the union of the other three sides.

The next lemma is a simplification of Lemma 10 from [64]. Here two paths p and q are called ε-close if

either d(p−,q−)≤ ε and d(p+,q+)≤ ε , or if d(p−,q+)≤ ε and d(p+,q−)≤ ε .

Lemma II.0.10. Suppose that the set of all sides of a geodesic n–gon P = p1 p2 . . . pn in a δ–hyperbolic

space is partitioned into two subsets A and B. Let ρ (respectively θ ) denote the sum of lengths of sides from

A (respectively B). Assume, in addition, that θ > max{ξ n, 103ρ} for some ξ ≥ 3δ · 104. Then there exist

two distinct sides pi, p j ∈ B that contain 13δ -close segments of length greater than 10−3ξ .

HNN-extensions and Amalgamated products. Given a group G containing two isomorphic subgroups A

and B, the HNN-extension G∗At=B is the group given by

G∗At=B = 〈G, t | t−1at = ϕ(a), a ∈ A〉

where ϕ : A→ B is an isomorphism. Recall that for a word W in the alphabet {G \ {1}, t}, a pinch (in

the HNN-extension G∗At=B) is a subword of the form t−1at with a ∈ A or tbt−1 with b ∈ B. a word

g0tε0g1tε1 ...gn−1tεn−1gn, where each gi ∈ G and each εi = ±1, is called reduced if there are no pinches.

Given such a word, we define its t-length as the number of occurrences of the letters t and t−1. In G∗At=B,

any pinch can be replaced by a single element of G. It follows that each element w ∈ G∗At=B is equal to a

reduced word. The converse to this statement is known as the Britton Lemma (see [49, Ch. 4, Sec.2]).

Lemma II.0.11 (Britton Lemma). Let W be a word in {G\{1}, t} with t-length at least 1 and no pinches.

Then W 6= 1 in G∗At=B.

An immediate consequence of this lemma is the well-known fact that G naturally embeds in the HNN-

extension G∗At=B. We will use the following corollary of the Britton Lemma. Here a reduced word W is

called cyclicly reduced if it is not conjugate to an element of shorter t-length, or equivalently, no cyclic shift

contains a pinch.

Lemma II.0.12. Let G be a group, and A,B isomorphic subgroups of G. Suppose that some f ∈ G is not

conjugate to any elements of A∪B in G. Then in the corresponding HNN-extension G∗At=B,

1. f is conjugate to another element g ∈ G in G∗At=B if and only if f and g are conjugate in G.

2. If f is primitive in G, then f is primitive in G∗At=B.
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Proof. Since f is not in A or B, if W is any reduced word then W−1 fWg−1 contains no pinches. Thus, f is

not conjugate to g. The second assertion will immediately follow if we can show that if w∈G∗At=B such that

wn ∈G, then either w ∈G or wn is conjugate to an element of A or an element of B (here we identify G with

its image in G∗At=B). To show this we induct on the t-length of the reduced form of w. If a reduced word

representing w contains no t letters, then w ∈ G. Clearly wn ∈ G implies that w has even t-length, since the

sum of the exponents of t letters must be 0. Suppose w has t-length 2. Then for some g0,g1,g2, ε ∈ {0,1},
we have that w = g0tεg1t−εg2. The Britton Lemma implies that t−εg2g0tε must be a pinch or freely trivial,

that is t−εg2g0tε = h for some (possibly trivial) h in A or B. Without loss of generality, let h ∈ A, and note

that this implies that g2g0 ∈ B. Then wn = g0tε(g1hg1)
nt−εg2. Again, by the Britton Lemma tε(g1hg1)

nt−ε

must be a pinch or trivial, and since the orientation of the t is reversed, we get that tε(g1hg1)
nt−ε = h′ for

some h′ ∈ B. Finally, observe that wn = g0h′g2g0g−1
0 , thus wn ∼ h′g2g0 ∈ B.

Now suppose we have shown the above claim for all elements of G∗At=B with shorter t-length then w.

As before, w = g0tε0 ...t−ε0gn, and t−ε0gng0tε0 = h, for some h ∈ A∪B. Let u′ = g1tε1 ...gn−1h. Now let u

be a conjugate of u′ which is cyclicly reduced. Since u ∼ u′ = t−ε0g−1
0 wg0tε0 , we have that u ∼ w and so

un ∼ wn ∈ G. Since u is cyclicly reduced, un is cyclicly reduced, hence un ∈ G. Since u has fewer t letters

then w, by the inductive hypothesis, un (and thus wn) is conjugate to an element of A or an element of B.

Given groups A and B which contain isomorphic subgroups K ≤ A and J ≤ B, the amalgamated product

A∗K=J B is the group given by

A∗K=J B = 〈A,B | a = ϕ(a), a ∈ K〉

where ϕ : K→ J is an isomorphism. We will usually work with HNN-extensions, and when necessary

translate these results to amalgamated products using the standard “retraction trick;” recall that a subgroup

H ≤ G is called a retract if there exists a homomorphism r : G→ H such that r2 = r.

Theorem II.0.13. [49] Let P = A ∗K=J B, and let G = (A ∗B)∗Kt=J; that is, G is an HNN extension of the

free product A∗B. Then P is naturally isomorphic to the retract 〈At ,B〉 ≤ G.
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CHAPTER III

ACYLINDRICALLY HYPERBOLIC GROUPS

III.1 Hyperbolically embedded subgroups

As we mentioned in the introduction, there are several equivalent characterizations of acylindrically hy-

perbolic groups. In this chapter we will present some of these characterizations and study the relationship

between them. The first such characterization is the through the notion of hyperbolically embedded sub-

groups which was introduced in [24].

Let G be a group, {Hλ}λ∈Λ a collection of subgroups of G. Set

H =
⊔

λ∈Λ

(Hλ \{1}). (III.1)

Given a subset X ⊆ G such that G is generated by X together with the union of all Hλ ’s, we denote by

Γ(G,X tH ) the Cayley graph of G whose edges are labeled by letters from the alphabet X tH . Note that

some letters from X tH may represent the same element in G, in which case Γ(G,X tH ) has multiple

edges corresponding to these letters.

We think of the Cayley graphs Γ(Hλ ,Hλ \ {1}) as (complete) subgraphs of Γ(G,X tH ). For every

λ ∈ Λ, we introduce a relative metric d̂λ : Hλ ×Hλ → [0,+∞] as follows. Given h,k ∈ Hλ , let d̂λ (h,k) be

the length of a shortest path in Γ(G,X tH ) that connects h to k and has no edges in Γ(Hλ ,Hλ \{1}) (such

paths are called admissible). If no such a path exists, we set d̂λ (h,k) = ∞. Clearly d̂λ satisfies the triangle

inequality. It is convenient to extend the metric d̂λ the whole group G by assuming d̂λ ( f ,g) : = d̂λ ( f−1g,1)

if f−1g ∈ Hλ and d̂λ ( f ,g) = ∞ otherwise. In case the collection consists of a single subgroup H ≤ G, we

denote the corresponding relative metric on H simply by d̂.

Definition III.1.1. Let G be a group, X a (not necessary finite) subset of G. We say that a collection of

subgroups {Hλ}λ∈Λ of G is hyperbolically embedded in G with respect to X (we write {Hλ}λ∈Λ ↪→h (G,X))

if the following conditions hold.

(a) The group G is generated by X together with the union of all Hλ ’s and the Cayley graph Γ(G,X tH )

is hyperbolic.

(b) For every λ ∈Λ, (Hλ , d̂λ ) is a locally finite metric space; that is, any ball of finite radius in Hλ contains

finitely many elements.

Further we say that {Hλ}λ∈Λ is hyperbolically embedded in G and write {Hλ}λ∈Λ ↪→h G if {Hλ}λ∈Λ ↪→h

(G,X) for some X ⊆ G.

Examples III.1.2. (a) Let G be any group. Then G ↪→h G. Indeed take X = /0. Then the Cayley graph

Γ(G,X tH) has diameter 1 and d̂(h1,h2) = ∞ whenever h1 6= h2. Further, if H is a finite subgroup of

a group G, then H ↪→h G. Indeed H ↪→h (G,X) for X = G. These cases are referred to as degenerate.

In what follows we are only interested in non-degenerate examples.
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Figure III.1: Cayley graphs Γ(G,X tH) for G = H×Z and G = H ∗Z.

(b) Let G=H×Z, X = {x}, where x is a generator of Z. Then Γ(G,XtH) is quasi-isometric to a line and

hence it is hyperbolic. However d̂(h1,h2) ≤ 3 for every h1,h2 ∈ H. Indeed let ΓH denote the Cayley

graph Γ(H,H \{1}). In the shift xΓH of ΓH there is an edge (labeled by h−1
1 h2 ∈ H) connecting h1x

to h2x, so there is a path of length 3 connecting h1 to h2 and having no edges in ΓH (see Fig. III.1).

Thus if H is infinite, then H 6↪→h (G,X). Moreover, a similar argument shows that H 6↪→h G.

(c) Let G = H ∗Z, X = {x}, where x is a generator of Z. In this case Γ(G,X tH) is quasi-isometric to a

tree (see Fig. III.1) and d̂λ (h1,h2) = ∞ unless h1 = h2. Thus H ↪→h (G,X).

The group G can also be regarded as a quotient group of the free product

F = (∗λ∈ΛHλ )∗F(X), (III.2)

where F(X) is the free group with the basis X . Let N denote the kernel of the natural homomorphism

F→G. If N is the normal closure of a subset Q ⊆ N in the group F , we say that G has relative presentation

〈X , H |Q〉. (III.3)

The relative presentation (III.3) is said to be bounded if sup{‖R‖ | R ∈Q} < ∞. Furthermore, it is called

strongly bounded if in addition the set of letters from H which appear in relators R ∈Q is finite.

Given a word W in the alphabet X tH such that W represents 1 in G, there exists an expression

W =F

k

∏
i=1

f−1
i R±1

i fi (III.4)

with the equality in the group F , where Ri ∈Q and fi ∈ F for i = 1, . . . ,k. The smallest possible number k
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in a representation of the form (III.4) is called the relative area of W and is denoted by Arearel(W ).

Theorem III.1.3. [24, Theorem 4.24] The subgroups {Hλ}λ∈Λ are hyperbolically embedded in G with

respect to X if and only if there exists a strongly bounded relative presentation for G with respect to X and

{Hλ}λ∈Λ and there is a constant L > 0 such that for any word W in X tH representing the identity in G,

we have Arearel(W )≤ L‖W‖.

Observe that the relative area of a word W representing 1 in G can be defined geometrically via van

Kampen diagrams. Let G be a group given by the relative presentation (III.3) with respect to a collection of

subgroups {Hλ}λ∈Λ. We denote by S the set of all words in the alphabet H representing the identity in

the group F defined by (III.2). Then G has the ordinary (non–relative) presentation

G = 〈X ∪H |S ∪Q〉. (III.5)

A cell in van Kampen diagram ∆ over (III.5) is called a Q–cell if its boundary is labeled by a word from Q.

We denote by NQ(∆) the number of Q–cells of ∆. Obviously given a word W in X tH that represents 1 in

G, we have

Arearel(W ) = min
Lab(∂∆)≡W

{NQ(∆)},

where the minimum is taken over all van Kampen diagrams with boundary label W . Thus, {Hλ}λ∈Λ ↪→h G

if G has a strongly bounded presentation with respect to {Hλ}λ∈Λ and all van Kampen diagrams over (III.5)

satisfy a linear relative isoperimetric inequality.

In fact, hyperbolically embedded subgroups can be thought of as a natural generalization of relative

hyperbolicity. Indeed, when this isoperimetric characterization of hyperbolically embedded subgroups is

compared with Osin’s isoperimetric characterization of relatively hyperbolic groups, the following theorem

becomes obvious.

Theorem III.1.4. [24] Let {Hλ}λ∈Λ be a collection of subgroups of a group G. Then G is hyperbolic

relative to {Hλ}λ∈Λ if and only if there exists a finite set X ⊂ G such that {Hλ}λ∈Λ ↪→h (G,X).

Based on this theorem, many basic properties of relatively hyperbolic groups can be translated to anal-

ogous results for groups with hyperbolically embedded subgroups. The following lemmas are examples of

this process.

Lemma III.1.5. [24] Suppose {Hλ}λ∈Λ ↪→h G. Then for all g ∈ G, the following hold:

1. If g /∈ Hλ , then |Hλ ∩Hg
λ
|< ∞.

2. If λ 6= µ , then |Hλ ∩Hg
µ |< ∞.

Lemma III.1.6. [24] Let G be a group, {Hλ}λ∈Λ a collection of subgroups, and X1, X2 ⊆ G relative

generating sets of G with respect to {Hλ}λ∈Λ such that |X14X2| < ∞. Then {Hλ}λ∈Λ ↪→h (G,X1) if and

only if {Hλ}λ∈Λ ↪→h (G,X2).
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The following two lemmas are simplifications of [24, proposition 4.35] and [24, proposition 4.35] re-

spectively.

Lemma III.1.7. [24] Suppose {Hi}n
i=1 ↪→h G, and {K j}m

j=1 ↪→h H1. Then {Hi}n
i=2∪{K j}m

j=1 ↪→h G.

Lemma III.1.8. [24] If H ↪→h G, then for any t ∈ G, Ht ↪→h G.

Lemma III.1.9. [24] Let {Hλ}λ∈Λ ↪→h G. Then for each λ ∈ Λ, there exists a finite subset Yλ ⊆ Hλ such

that d̂λ is bi-Lipschitz equivalent to the word metric with respect to Yλ .

Recall that K(G) denotes the maximal finite normal subgroup of a group G; [24] shows that such a sub-

group exists for any group containing a non-degenerate hyperbolically embedded subgroup. Using Lemma

III.1.5, it is not hard to show that for any H ↪→h G, K(G)≤ H.

Lemma III.1.10. [24] Suppose G contains a non-degenerate hyperbolically embedded subgroup. Then for

all n≥ 1, G contains a free subgroup Fn of rank n such that Fn×K(G) ↪→h G.

Components. Let {Hλ}λ∈Λ ↪→h (G,X). Let q be a path in the Cayley graph Γ(G,X tH ). A (non-trivial)

subpath p of q is called an Hλ -subpath, if the label of p is a word in the alphabet Hλ \{1}. An Hλ -subpath

p of q is an Hλ -component if p is not contained in a longer Hλ -subpath of q; if q is a loop, we require in

addition that p is not contained in any longer Hλ -subpath of a cyclic shift of q. Further by a component of

q we mean an Hλ -component of q for some λ ∈ Λ. If q is an Hλ -component of some path, then we definề
λ (q) = d̂λ (q−,q+); similarly, for any h ∈ Hλ , ̂̀λ (h) = d̂λ (1,h)).

Two Hλ -components p1, p2 of a path q in Γ(G,X tH ) are called connected if there exists a path c in

Γ(G,X tH ) that connects some vertex of p1 to some vertex of p2, and Lab(c) is a word consisting only

of letters from Hλ \{1}. In algebraic terms this means that all vertices of p1 and p2 belong to the same left

coset of Hλ . Note also that we can always assume that c has length at most 1 as every non-trivial element

of Hλ is included in the set of generators. We say that a component p of a path q is isolated in q if p is not

connected to any other components of q.

One important tool is the following, which is an easy consequence of [24] (see also [45, Lemma 2.4]).

Recall that a (λ ,c) quasi-geodesic n-gon is a closed path p = p1 p2...pn such that each pi is a (λ ,c) quasi-

geodesic.

Lemma III.1.11. There exists a constant C =C(λ ,c) > 0 such that for any (λ ,c) quasi-geodesic n-gon p

in Γ(G,X tH ) and any isolated Hλ component a of p, we have ̂̀λ (a)≤Cn.

III.2 Acylindrical and WPD actions

Recall the definition of an acylindrical action mentioned in Chapter I.

Definition III.2.1. Let G be a group acting by isometries on a metric space (X ,d). We say that the action is

acylindrical if for for all ε there exists R > 0 and N > 0 such that for all x, y ∈ X with d(x,y)≥ R, the set

{g ∈ G | d(x,gx)≤ ε,d(y,gy)≤ ε}
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contains at most N elements.

Given a group G acting on a hyperbolic metric space (X ,d) and g ∈ G, the translation length of g is

defined as τ(g) = limn→∞
1
n d(x,gnx) for some (equivalently, any) x ∈ X . g is called loxodromic if τ(g)> 0.

Equivalently, an element is loxodromic if it admits an invariant, bi-infinte quasi-geodesic axis on which

it acts as a non-trivial translation. An element g is called elliptic if some (equivalently, any) 〈g〉-orbit is

bounded.

The next lemma characterizes acylindric isometries of hyperbolic metric spaces and is due to Bowditch.

Lemma III.2.2. [13] Suppose G acts acylindrically on a hyperbolic metric space. Then every element of G

is either elliptic or loxodromic.

In fact, this result can be generalized to describe the actions of subgroups of a group acting acylindrically

on a hyperbolic metric space. Recall that if g is loxodromic, then the orbit of g has exactly two limit points

{g±∞} on the boundary ∂X . Loxodromic elements g and h are called independent if the sets {g±∞} and

{h±∞} are disjoint.

Theorem III.2.3. [65] Suppose G acts acylindrically on a hyperbolic metric space. Then G satisfies exactly

one of the following:

1. G has bounded orbits.

2. G is virtually cyclic and contains a loxodromic element.

3. G contains infinitely many pairwise independent loxodromic elements.

Notice that the last condition holds if and only if the action of G is non-elementary.

In [11], Bestvina-Fujiwara defined a weak form of acylindricity, which they called weak proper discon-

tinuity condition.

Definition III.2.4. [11] Let G be a group acting on a hyperbolic metric space X , and h a loxodromic element

of G. We say h satisfies the weak proper discontinuity condition (or h is a WPD element) if for all κ > 0 and

x ∈ X , there exists N such that

|{g ∈ G | d(x,gx)< κ,d(hNx,ghNx)< κ}|< ∞. (III.6)

Note that if G acts acylinrically on a hyperbolic metric space, then every loxodromic element satisfies

the WPD condition.

Using hyperbolicity, it suffices to verify the WPD condition with κ equal to some multiple of the hyper-

bolicity constant. The proof is the same as [24, Proposition 3.6].

Lemma III.2.5. Let G be a group acting on a δ -hyperbolic metric space X, and h a loxodromic element of

G. If for κ = 100δ and for all x ∈ X there exists N such that (III.6) is satisfied, then h is a WPD element.
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Lemma III.2.6. [24] Let G be a group acting on a hyperbolic metric space X, and let h be a loxodromic

WPD element. Then h is containted in a unique, maximal elementary subgroup of G, called the elementary

closure of h and denoted EG(h). Furthermore, for all g ∈ G, the following are equivalent:

1. g ∈ EG(h)

2. There exists n ∈ N such that g−1hng = h±n

3. There exists k, m ∈ Z\{0} such that g−1hkg = hm

Further, for some r ∈ N,

E+
G (h) = {g ∈ G | ∃n ∈ N,g−1hng = hn}=CG(hr)

An element g of a group G is called primitive if g is not a proper power of an other element of G; that

is, the equation xn = g has a solution in G if and only if n =±1.

Corollary III.2.7. Let f and g be primitive, loxodromic WPD elements in a torsion free group. Then f is

commensurable with g if and only if f±1 ∼ g.

Proof. If f k = (gl)x, then 〈 f 〉= EG( f ) = EG(gx) = 〈gx〉, thus f±1 = gx.

The connection between WPD elements and hyperbolically embedded subgroups is given by the follow-

ing results of [24].

Lemma III.2.8. [24] Suppose G acts on a hyperbolic metric space X and h1,...,hn, is a collection of non-

commensurable loxodromic WPD elements. Then {EG(h1), ...,EG(hn)} ↪→h G.

Also, when a subgroup H ↪→h (G,X), then there are usually many loxodromic, WPD elements with

respect to the action of G on Γ(G,X tH). The lemma shows explicitly how to find such elements.

Lemma III.2.9. [24] Suppose H ↪→h (G,X) is non-degenerate and finitely generated. Then for all g ∈ G,

there exist h1, ...,hk such that gh1, ...,ghk is a collection of non-commensurable, loxodromic WPD elements

with respect to the action of G on Γ(G,X tH). Moreover, if H contains an element of infinite order h, then

each hi can be chosen to be a power of h.

The next theorem is a recent result of Osin which shows that hyperbolically embedded subgroups can

be used to build aclyindrical actions.

Theorem III.2.10. [65]

Let G be a group, {Hλ}λ∈Λ a finite collection of non-degenerate subgroups of G, X a subset of G such

that {Hλ}λ∈Λ ↪→h (G,X). Then there exists Y ⊆ G such that X ⊆ Y and the following conditions hold:

1. {Hλ}λ∈Λ ↪→h (G,Y ). In particular, Γ(G,Y tH ) is hyperbolic.

2. The action of G on Γ(G,Y tH ) is acylindrical.
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This action will also be non-elementary by Lemma III.2.9 and Theorem III.2.3. Since a non-elementary,

aclyindric action on a hyperbolic metric space must contain loxodromic elements, combining Lemma III.2.8

and Theorem III.2.10 gives:

Corollary III.2.11. A group G belongs to A H if and only if G contains a non-degenerate hyperbolically

embedded subgroup.

As a consequence of this result and Theorem III.2.10, we can always choose the metric space from the

definition of A H to be a Cayley graph of G with respect to some (possibly infinite) generating set.

We will occasionally want to modify the Cayley graph on which G is acting without changing which

element are loxodromic. The next two lemmas show how to do this.

Lemma III.2.12. Suppose h is loxodromic with respect to the action of G on Γ(G,A1) and A ⊂A1 gener-

ates G. Then h is a loxodromic with respect to the action of G on Γ(G,A ).

Proof.

lim
n→∞

1
n

dA (x,hnx)≥ lim
n→∞

1
n

dA1(x,h
nx)> 0.

Lemma III.2.13. Suppose G act acylindrically on Γ(G,A ), and B is a bounded subset of Γ(G,A ). Then

the action of G on Γ(G,A ∪B) is acylindric and both actions have the same set of loxodromic elements.

Proof. Γ(G,A ) and Γ(G,A ∪ B) are quasi-isometric; all conditions are cleary preserved under quasi-

isometries.

III.3 A hyperbolic embeddability criterion

Next we will prove a criterion for a subgroup to be hyperbolically embedded with respect to a given gener-

ating set. This result is, in some sense, a weaker version of [24, Theorem 4.42]; However, in this theorem it

is only shown that the subgroups are hyperbolically embedded with respect to some relative generating set,

while we will need that the subgroups are hyperbolically embedded with respect to a specific generating set.

It should be possible to repeat the proof of [24, Theorem 4.42] and keep track of the relative generating set

produced there, but this would require quite a bit of technical detail and for our purposes a direct proof is

easier.

An important part of our criterion is the notion of a collection of geometrically separated subgroups,

which is inspired by the Bestvina-Fujiwara WPD condition.

Definition III.3.1. [24] Let G be a group acting on a metric space (X ,d). A collection of subgroup

{Hλ}λ∈Λ ≤ G is called geometrically separated if for all ε ≥ 0 and x ∈ X , there exists R > 0 such that

the following holds. Suppose that for some g ∈ G and some λ , µ ∈ Λ,

diam(Hµ(x)∩ (gHλ (x))
+ε)≥ R

Then λ = µ and g ∈ Hλ .
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Theorem III.3.2. Let G be a group, {Hλ}λ∈Λ a finite collection of subgroup of G. Suppose that the following

conditions hold.

(a) G is generated by a (possibly infinite) set X such that Γ(G,X) is hyperbolic.

(b) For every λ ∈ Λ, Hλ is quasi-convex in Γ(G,X).

(c) {Hλ}λ∈Λ is geometrically separated.

Then the relative Cayley graph Γ(G,X tH ) is hyperbolic and there exists C > 0 such that for every λ ∈ Λ,

we have d̂λ ∼Lip dΩλ
, where Ωλ = {h ∈ Hλ | |h|X ≤C}.

In particular, if every Hλ is locally finite with respect to dX , then {Hλ}λ∈Λ ↪→h (G,X).

Proof. Let us first show that the graph Γ(G,X tH ) is hyperbolic. Let Q be the collection of all left cosets

of subgroups Hλ , λ ∈ Λ. We think of Q as a collection of subsets of Γ(G,X). Since Λ is finite and every

Hλ is quasi-convex in (G,X), Q is uniformly quasi-convex. Clearly Q is quasi-dense. Hence by Lemma

II.0.7 there exists c ≥ 1 such that the c-nerve of Q is hyperbolic. Let Σ denote the nerve, and let Γ̂ be the

conned-off graph of G with respect to X and {Hλ}λ∈Λ. That is, Γ̂ is the graph obtained from Γ(G,X) by

adding one vertex vgHλ
for each left coset of each subgroup Hλ and then adding an edge between vgHλ

and

each vertex of gHλ .

Let dΣ and d
Γ̂

denote the natural path metrics on Σ and Γ̂ respectively. It is easy to see that Σ and Γ̂ are

quasi-isometric. Indeed let ι : V (Σ)→ V (Γ̂) be the map which sends gHλ ∈Q to vgHλ
. If u,v ∈ V (Σ) are

connected by an edge in Σ, then there exist elements g1,g2 of the cosets corresponding to u and v such that

dX(g1,g2) ≤ c in Γ(G,X). This implies that d
Γ̂
(ι(u), ι(v)) ≤ c+ 2. Hence d

Γ̂
(ι(u), ι(v)) ≤ (c+ 2)dΣ(u,v)

for any u,v ∈ V (Σ). On the other hand, it is straightforward to check that ι does not decrease the distance.

Note that ι(V (Σ)) is 1-dense in Γ̂. Thus ι extends to a quasi-isometry between Σ and Γ̂.

Further observe that Γ̂ is quasi-isometric to Γ(G,X tH ). Indeed the identity map on G induces an

isometric embedding V (Γ(G,X tH ))→ Γ̂ whose image is 1-dense in Γ̂. Thus Σ is quasi-isometric to

Γ(G,X tH ) and hence Γ(G,X tH ) is hyperbolic.

Now choose σ such that Q is σ -uniformly quasi-convex, fix λ ∈ Λ, and let p be an admissible path in

Γ(G,X tH ) from h to h′ such that `(p) = d̂λ (h,h′), where h, h′ ∈ Hλ . Let e represent the Hλ -edge from

h to h′ in Γ(G,X tH ), and let c be the cycle pe−1. Note that c has two types of edges; those labeled by

elements of X and those labeled by elements of H . Now for each edge of c labeled by an element of H ,

we can replace this edge with a shortest path in X with the same endpoints. This produces a cycle c′ which

lives in Γ(G,X). We consider c′ = q1q2...qn as a geodesic n-gon where the sides conside of two types:

1. single edges of c′ which represent X-edges of c.

2. geodesics in X which represent H -edges of c.

Let qn be the X geodesic which represents the edge e−1. We will first show that `(qn) is bounded

in terms of `(p). Partion the sides of c′ into A and B, where A consists of sides of the first type and B

consists of sides of the second type. As in Lemma II.0.10, let Let ρ (respectively θ ) denote the sum of
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lengths of sides from A (respectively B). Note that n = `(c) = `(p) + 1, ρ ≤ `(p), and θ ≤ `(qn). Let

R be the constant given by the definition of geometric separated subgroups for ε = 13δ + 2σ . Choose

ξ = max{103(R+2σ),103`(p),3δ ·104(`(p)+1)}.
Suppose `(qn)≥ ξ . Then we can apply Lemma II.0.10 to find two distinct B-sides, qi and q j of c′ which

contain 13δ -close segments of length at least 10−3ξ ≥ R+2σ . This means that there exist vertices u1, u2 on

qi and v1, v2 on q j, and paths s1 and s2 in Γ(G,X) such that for i = 1,2, we have that (si)− = ui, (si)+ = vi,

and `(si) ≤ 13δ . We assume i < j, and let g = Lab(q1...qi−1) and g′ = Lab(q1...q j−1) if j < n and g′ = 1

otherwise. Then (qi)−,(qi)+ ∈ gHµ for some µ ∈ Λ, and thus qi belongs to the σ -neighborhood of gHµ .

Similarly, (q j)−,(q j)+ ∈ g′Hη for some η ∈Λ, and thus q j belongs to the σ -neighborhood of g′Hη . Now for

i = 1,2, choose vertices u′i ∈ gHµ such that dX(ui,u′i)≤ σ and v′i ∈ g′Hη such that dX(vi,v′i)≤ σ . It follows

that dX(u′i,v
′
i)≤ 13δ +2σ = ε . Also, dX(u′1,u

′
2)≥ (R+2σ)−2σ = R. Thus, by the definition of geometric

separability, µ = η and gHµ = g′Hµ .

Now, let hi, h j be the H -edges of c corresponding to qi, q j. We have shown that these two edges

belong to the same Hµ coset; hence, there exists and an edge f in Γ(G,X tH ) such that f− = (hi)− and

f+ = (h j)+. If j < n, we can replace the subpath of p from (hi)− to (h j)+ by the single edge f , resulting in

a shorter admissible path from h to h′, which contradicts our assumption that `(p) = d̂λ (h,h′). If j = n, we

get that µ = λ and hi ∈ gHλ = g′Hλ = Hλ , which violates the definition of an admissible path. Therefore,

we conclude that `(qn)< ξ ≤ D`(p), where D = max{103(R+2σ),6δ ·104}.
Now denote the vertices of qn by h = v0,v1, ...,vm = h′. For each vi, we can choose hi ∈ Hλ such that

dX(vi,hi)≤ σ . It follows that dX(hi,hi+1)≤ 2σ +1. Let C = 2σ +1 and define Ωλ accordingly. Note that

h−1h′ = (h−1h1)(h−1
1 h2)...(h−1

m−1h′).

Since each h−1
i hi+1 ∈Ωλ , we have that dΩλ

(h,h′)≤m = `(qn)≤D`(p) = Dd̂λ (h,h′). Finally, it is clear

that dX(h,h′) ≤ CdΩλ
(h,h′). Since any path labeled only by X is admissible in Γ(G,X tH ), we get that

d̂λ (h,h′)≤ dX(h,h′)≤CdΩλ
(h,h′), and thus d̂λ ∼Lip dΩλ

.

Our main application of Theorem III.3.2 is due to the fact that all of the assumptions are satisfied by

the elementary closures of a collection of pairwise non-commensurable loxodromic WPD elements; this is

shown in the proof of [24, Theorem 6.8]. Thus, we have the following corollary.

Corollary III.3.3. Suppose X is a generating set of G such that Γ(G,X) is hyperbolic and {g1, ...,gn} is

a collection of pairwise non-commensurable loxodromic WPD elements with respect to the action of G on

Γ(G,X). Then {EG(g1), ...,EG(gn)} ↪→h (G,X).

Remark III.3.4. We will only make use of the special case of Corollary III.3.3; however, the proof of Theo-

rem III.3.2 is essentially the same as the proof of the special case, and we believe the more general statement

may be of independent interest.

Finally, we will sometimes need to control which elements of G are elliptic.

Lemma III.3.5. Let {Hλ}λ∈Λ ↪→h (G,X), and let a1, ...,am ∈ G. Then there exists Y ⊇ X such that
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1. {Hλ}λ∈Λ ↪→h (G,Y )

2. For each i = 1, ..,m, ai is elliptic with respect to the action of G on Γ(G,Y tH ).

Proof. Clearly it suffices to prove the case when m = 1 and the general case follows by induction. By

Theorem III.2.10 we can choose relative generating set Y0 ⊃ X such that {Hλ}λ∈Λ ↪→h (G,Y0) and G acts

acylindrically on Γ(G,Y0 ∪H ). If a is elliptic with respect to this action, we are done. Thus, by Lemma

III.2.2 we can assume that a is loxodromic. Since the action is acylindric, all loxodromic elements satisfy

WPD, so by Corollary III.3.3, EG(a) ↪→h (G,Y0∪H ).

We claim that in fact, {Hλ}λ∈Λ ↪→h (G,Y0 tEG(a)). Clearly the relative Cayley graph is hyperbolic,

so we only need to verify that the relative metrics are locally finite. Fix λ ∈ Λ and n ∈ N. Let p be an

admissible path of length at most n, and suppose p is the shortest admissible path between its endpoints.

Let c be the cycle pe, were e is the edge in Hλ connecting the endpoints of p. If x ∈ EG(a) is the label of

an edge of p, then x must be isolated in c; indeed e is not EG(a) component, and x cannot be connected

to another component of p or we would have a shorter admissible path with the same endpoints. Thus by

Lemma III.1.11, ̂̀(x) ≤ C(n+ 1), where C = C(1,0) is the constant from Lemma III.1.11. Since EG(a)

is locally finite with respect to ̂̀, there is a finite set F ⊂ EG(a) such that the label of any edge of any

shortest admissible path of length at most n belongs to Y0tF tH . Thus, we may consider p as a path in

Γ(G,Y0tF tH ). Furthermore, by Lemma III.1.6, {Hλ}λ∈Λ ↪→h (G,Y0tF ). Thus there are only finitely

many elements of H which can be connected by a shortest admissible path of length at most n. Thus, Hλ is

locally finite with respect to d̂λ . It only remains to set Y = Y0tEG(a); clearly every 〈a〉 orbit has diameter

1 in Γ(G,Y tH ).
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CHAPTER IV

QUASI-COCYCLES

For a discrete group G, by a normed G-module we mean a normed vector space V (over some subfield of

C) endowed with a (left) action of the group G by isometries. Given a subgroup H ≤G, by an H-submodule

of a G-module V we mean any H-invariant subspace of V with the induced action of H.

Let V be a normed G-module. A map q : G→V is called a quasi-cocycle if there exists a constant ε > 0

such that for every f ,g ∈ G we have

‖q( f g)−q( f )− f q(g)‖ ≤ ε.

The vector space of all quasi-cocycles on G with values in V is denoted by QZ1(G,V ).

Recall that a quasi-cocycle q ∈ QZ1(G,V ) is called anti-symmetric if

q(g−1) =−g−1q(g)

for every g ∈ G.

For a quasi-cocycle q ∈ QZ1(G,V ) we define its defect D(q) by

D(q) = sup
f ,g∈G
‖q( f g)−q( f )− f q(g)‖. (IV.1)

Note that

‖q(1)‖= ‖q(1 ·1)−q(1)−1q(1)‖ ≤ D(q). (IV.2)

We will use the following elementary fact.

Lemma IV.0.6. Let G be a group, V a G-module. Then there exists a linear map

α : QZ1(G,V )→ QZ1
as(G,V )

such that for every q ∈ QZ1(G,V ) we have

sup
g∈G
‖α(q)(g)−q(g)‖< D(q).

Proof. Take α(q)(g) = 1
2(q(g)− gq(g−1)). Verifying all properties is straightforward. Indeed for every

g ∈ G, we have

‖α(q)(g)−q(g)‖= 1
2
‖−q(g)−gq(g−1)‖ ≤ 1

2
‖q(1)−q(g)−gq(g−1)‖+ 1

2
‖q(1)‖ ≤ D(q),
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where the last inequality uses (IV.2). Further,

α(q)(g−1) =
1
2
(q(g−1)−g−1q(g)) =

1
2

g−1(gq(g−1−q(g)) =−g−1
α(q)(g).

Bounded cohomology. Recall the definition of the bounded cohomology of a (discrete) group G with

coefficients in an arbitrary normed G-module V . Let Cn(G,V ) be the vector space of n-cochains with

coefficients in V , i.e., functions Gn→V . The coboundary maps dn : Cn(G,V )→Cn+1(G,V ) are defined by

the formula

dn f (g1, ...,gn+1) =g1 f (g2, ...,gn+1)+
n

∑
i=1

(−1)i f (g1, ...,gi−1,gigi+1,gi+2, ...,gn+1)

+(−1)n+1 f (g1, ...,gn).

Let Zn(G,V ) and Bn(G,V ) denote the cocycles and coboundaries of this complex respectively; that is,

Zn(G,V ) =Kerdn and Bn(G,V ) = Imdn−1 for n> 0 and B0(G,V ) = 0. Recall that the ordinary cohomology

groups are defined by

Hn(G,V ) : = Zn(G,V )/Bn(G,V ).

Restricting to the subspaces Cn
b(G,V ) of Cn(G,V ) consisting of functions whose image is bounded with

respect to the norm on V , we get the complex of bounded cochains. Similarly let Zn
b(G,V ) and Bn

b(G,V )

denote its cocycles and coboundaries. Then the group

Hn
b (G,V ) : = Zn

b(G,V )/Bn
b(G,V )

is called the n-th bounded cohomology group of G with coefficients in V .

Note that there is a natural map c : Hn
b (G,V )→ Hn(G,V ) which is induced by the inclusion map of the

cochain complexes. This map is called the comparison map, and the kernel of c is denoted EHn
b (G,V ). The

following lemma is proved in [59] (see also [71]) in the case when V is a Banach space. The same proof

works in the general case. We briefly sketch the argument for convenience of the reader.

Lemma IV.0.7. Let G be a discrete countable group, V a normed G-module. Then there exists an exact

sequence

0→ `∞(G,V )+Z1(G,V )→ QZ1(G,V )
δ→ H2

b (G,V )
c→ H2(G,V ),

where `∞(G,V ) is the vector space of all uniformly bounded functions G→V .

Proof. We can identify QZ1(G,V ) with the subspace of 1-cochains q for which d1q is uniformly bounded,

that is d1q∈C2
b(G,V ). Since d2 ◦d1 ≡ 0, d1q is in fact a bounded 2-cocycle. Let δ : QZ1(G,V )→H2

b (G,V )

denote the composition of d1 and the natural quotient map Z2
b(G,V )→ H2

b (G,V ). Then δq represents a

trivial element of H2
b (G,V ) if and only if d1q= d1 p for some bounded cochain p, which means p∈ `∞(G,V )
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and q− p ∈ Z1(G,V ). Further if q is a bounded 2-cocycle and [q]b : = q+B2
b(G,V ) ∈ H2

b (G,V ) is in the

kernel of c, then q = d1 f for some 1-cochain f , which means f ∈ QZ1(G,V ) and δ f = [q]b.

IV.1 Separating cosets

Throughout this section, we denote by G a group with hyperbolically embedded collection of subgroups

{Hλ}λ∈Λ ↪→h G. Let X denote a subset of G such that {Hλ}λ∈Λ ↪→h (G,X). We also keep the notation H

and Γ(G,X tH ) introduced in the previous chapter. By a coset of a subgroup we always mean a left coset.

We begin by introducing the notion of a separating coset for a pair of elements f ,g ∈ G, which plays a

crucial role in our construction.

Definition IV.1.1. We say that a path p in Γ(G,X tH ) penetrates a coset xHλ for some λ ∈ Λ if p de-

composes as p1ap2, where p1, p2 are possibly trivial, (p1)+ ∈ xHλ , and a is an Hλ -component of p. If,

in addition, ̂̀λ (a) > 3C, where C = C(1,0) is the constant from Lemma III.1.11, we say that p essentially

penetrates xHλ . Note that if p is geodesic, it penetrates every coset of Hλ at most once; in this case the

vertices a− and a+ are called the entrance and the exit points of p in xHλ and are denoted by pin(xHλ ) and

pout(xHλ ), respectively.

Given two elements f ,g ∈ G, we denote by G ( f ,g) the set of all geodesics in Γ(G,X tH ) going from

f to g. Further we say that a coset xHλ is ( f ,g)-separating if there exists a geodesic p ∈ G ( f ,g) that

essentially penetrates xHλ . For technical reasons we will also say xHλ is ( f ,g)-separating whenever f and

g are both elements of xHλ and f 6= g; in this case we say xHλ is trivially ( f ,g)-separating. The set of all

( f ,g)-separating cosets of Hλ is denoted by Sλ ( f ,g).

The following lemma immediately follows from the definition and the facts that if f ,g,h ∈ G and p ∈
G ( f ,g), then p−1 ∈ G (g, f ) and hp ∈ G (h f ,hg).

Lemma IV.1.2. For any f ,g,h ∈ G and any λ ∈ Λ, the following holds.

(a) Sλ ( f ,g) = Sλ (g, f ).

(b) Sλ (h f ,hg) = {hxHλ | xHλ ∈ Sλ ( f ,g)}.

The terminology in Definition IV.1.1 is justified by the first claim of following.

Lemma IV.1.3. For any λ ∈ Λ, any f ,g ∈G such that f−1g /∈Hλ , and any ( f ,g)-separating coset xHλ , the

following hold.

(a) Every path in Γ(G,X tH ) connecting f to g and composed of at most 2 geodesics penetrates xHλ .

(b) For any p,q ∈ G ( f ,g), we have

d̂λ (pin(xHλ ),qin(xHλ ))≤ 3C

and

d̂λ (pout(xHλ ),qout(xHλ ))≤ 3C.
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Proof. Let xHλ ∈ Sλ ( f ,g) be ( f ,g)-separating coset. Since f−1g /∈ Hλ , xHλ is non-trivially separating.

Thus there exists a geodesic p ∈ G ( f ,g) that essentially penetrates xHλ ; let a denote the corresponding

Hλ -component of p. Let r be any other path in Γ(G,X tH ) connecting f to g and composed of at most 2

geodesics. If a is isolated in the loop pr−1, we obtain ̂̀λ (a) ≤ 3C by Lemma III.1.11. This contradicts the

assumption that p essentially penetrates xHλ . Hence a is not isolated in pr−1. Since p is geodesic, a cannot

be connected to a component of p. Therefore a is connected to a component of r, i.e. r penetrates xHλ .

Further let p,q ∈ G (a,b) and xHλ ∈ Sλ ( f ,g). By part (a) we have p = p1ap2 and q = q1bq2, where

(p1)+ ∈ xHλ , (q1)+ ∈ xHλ and a, b are Hλ -components of p and q, respectively (see Figure IV.1). (Of

course, pi or qi, i = 1,2, can be trivial). Then a and b are connected. Let e be an edge or the trivial

path connecting a− to b− and labeled by a letter from Hλ \{1}. Applying Lemma III.1.11 to the geodesic

triangle p1eq−1
1 , we obtain d̂λ (e−,e+) ≤ 3C, which gives us the first inequality in (b). The proof of the

second inequality is symmetric.

Corollary IV.1.4. For any f ,g∈G and any λ ∈Λ, we have |Sλ ( f ,g)| ≤ dXtH ( f ,g). In particular, Sλ ( f ,g)

is finite.

In this section we will use the following elementary observation several times.

Lemma IV.1.5. Let p be a geodesic in Γ(G,X tH ). Suppose that p penetrates a coset xHλ . Let p0 be the

initial subpath of p ending at pin(xHλ ). Then `(p0) = dXtH (p−,xHλ ).

Proof. Clearly dXtH (p−,xHλ )≤ `(p0). Suppose that dXtH (p−,xHλ )< `(p0). Since xHλ has diameter 1

with respect to the metric dXtH , we obtain

dXtH (p−, pout(xHλ ))≤ dXtH (p−,xHλ )+1 < `(p0)+1.

However we obviously have `(p0)+1 = dXtH (p−, pout(xHλ )). A contradiction.

Definition IV.1.6. Given any f ,g ∈ G, we define a relation � on the set Sλ ( f ,g) as follows:

xHλ � yHλ iff dXtH ( f ,xHλ )≤ dXtH ( f ,yHλ ).

The next lemma is an immediate consequence of Lemma IV.1.3 and Lemma IV.1.5.
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Lemma IV.1.7. For any f ,g ∈ G and any λ ∈ Λ, � is a linear order on Sλ ( f ,g) and every geodesic

p ∈ G ( f ,g) penetrates all ( f ,g)-separating cosets according to the order �. That is, Sλ ( f ,g) = {x1Hλ �
x2Hλ � . . .� xnHλ} for some n ∈ N and p decomposes as

p = p1a1 · · · pnan pn+1,

where ai is an Hλ -component of p and (pi)+ ∈ xiHλ for i = 1, . . . ,n (see Fig. IV.2).

Given f ,g ∈ G and xHλ ∈ Sλ ( f ,g), we denote by E( f ,g;xHλ ) the set of ordered pairs of entrance-exit

points of geodesics from G ( f ,g) in the coset xHλ . That is,

E( f ,g;xHλ ) = {(pin(xHλ ), pout(xHλ )) | p ∈ G ( f ,g)}.

Lemma IV.1.8. For any λ ∈ Λ and any f ,g,h,x ∈ G, the following hold.

(a) E(g, f ;xHλ ) = {(v,u) | (u,v) ∈ E( f ,g;xHλ )}.

(b) E(h f ,hg;xHλ ) = {(hu,hv) | (u,v) ∈ E( f ,g;xHλ )}.

(c) |E( f ,g;xHλ )|< ∞.

Proof. Parts (a) and (b) follow immediately from Lemma IV.1.2. To prove (c), note that if xHλ trivially

separates f and g, then E( f ,g;xHλ ) = {( f ,g)}. Further if xHλ separates f and g non-trivially, fix any

(u,v) ∈ E( f ,g;xHλ ). Then for any other (u′,v′) ∈ E( f ,g;xHλ ), we have d̂λ (u,u′)< 3C and d̂λ (v,v′)< 3C

by part (b) of Lemma IV.1.3. Recall that (Hλ , d̂λ ) is a locally finite metric space by the definition of a

hyperbolically embedded collection of subgroups. Hence |E( f ,g;xHλ )|< ∞.

The main result of this section is the following.

Lemma IV.1.9. For any f ,g,h ∈ G and any λ ∈ Λ, the set of all ( f ,g)-separating cosets of Hλ can be

decomposed as

Sλ ( f ,g) = S′tS′′tF,

where
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(a) S′ ⊆ Sλ ( f ,h)\Sλ (h,g) and for every xHλ ∈ S′ we have E( f ,g;xHλ ) = E( f ,h;xHλ ).

(b) S′′ ⊆ Sλ (h,g)\Sλ ( f ,h) and for every xHλ ∈ S′′ we have E( f ,g;xHλ ) = E(h,g;xHλ ).

(c) |F | ≤ 2.

Proof. First, if |Sλ ( f ,g)| ≤ 2 the statement is trivial, so we can assume |Sλ ( f ,g)|> 2. Let

Sλ ( f ,g) = {x1Hλ � x2Hλ � . . .� xnHλ}.

We fix any geodesics q ∈ G (h,g) and r ∈ G ( f ,h). By the first claim of Lemma IV.1.3, every coset from

Sλ ( f ,g) is penetrated by at least one of q, r. Without loss of generality we may assume that at least one of

the cosets from Sλ ( f ,g) is penetrated by r. Let xiH be the largest coset (with respect to the order �) that is

penetrated by r. Thus if i < n, then xi+1H is penetrated by q.

Let

S′ = {x jHλ | 1≤ j < i},

S′′ = {x jHλ | i+1 < j ≤ n},

and

F = Sλ ( f ,g)\ (S′∪S′′).

Obviously |F | ≤ 2. It remains to prove (a) and (b). We will prove (a) only, the proof of (b) is symmetric.

Fix any 1≤ j < i. Let p be any geodesic from G ( f ,g). By Lemma IV.1.7, p decomposes as

p = p1a1 p2a2 p3,

where a1, a2 are Hλ -components of p, (p1)+ ∈ x jHλ , and (p2)+ ∈ xiHλ . Similarly by the choice of i, r

decomposes as

r = r1br2,

where b is an Hλ -component of r and (r2)− ∈ xiHλ (see Fig. IV.3).

Since (r2)− and (p2)+ belong to the same coset of Hλ , there exists a path e in Γ(G,X tH ) of length

at most 1 such that e− = (p2)+ and e+ = (r2)−. By Lemma IV.1.5, we have `(p1a1 p2) = `(r1). Hence the

path t = p1a1 p2er2 has the same length as r, i.e., t ∈ G ( f ,h). Also,

pin(x jHλ ) = tin(x jHλ ) (IV.3)

and

pout(x jHλ ) = tout(x jHλ ). (IV.4)

So far all our arguments were valid for any p ∈ G ( f ,g). Since x jHλ ∈ Sλ ( f ,g), there exists p ∈ G ( f ,g)

that essentially penetrates x jHλ , i.e., ̂̀λ (a1)) > 3C in the above notation. In this case t also essentially

penetrates x jHλ . Thus x jH ∈ Sλ ( f ,h). Moreover since we have (IV.3) and (IV.4) for every p ∈ G ( f ,g), we

obtain E( f ,g;x jHλ ) = E( f ,h;x jHλ ).
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To complete the proof of (a) it remains to show that x jHλ /∈ Sλ (h,g). Clearly g /∈ x jHλ , or p would

not be geodesic, so x jHλ does not trivially separate g and h. Thus, if x jHλ ∈ Sλ (h,g) there must be a

geodesic from h to g which essentially penetrates x jHλ . Hence by Lemma IV.1.3, every geodesic from h to

g penetrates x jHλ , which means q penetrates x jHλ . Then using Lemma IV.1.5, the fact that every coset of

Hλ has diameter 1 with respect to the metric dXtH , and the triangle inequality, we obtain

`(q) = dXtH (h,x jHλ )+1+dXtH (g,x jHλ )

> dXtH (h,xiHλ )+1+dXtH (g,xiHλ )

≥ `(r2)+dXtH ((r2)−,(p3)−)+ `(p3)

≥ dXtH (h,g).

Since one of the inequalities is strict, this contradicts the assumption that q is geodesic.

IV.2 Extending quasi-cocycles

We keep all assumptions and notation from the previous section. For each λ ∈ Λ, let

Fλ = {h ∈ Hλ | h ∈ Hµ for some µ 6= λ}.

In particular, if {Hλ}λ∈Λ consists of a single subgroup H, the corresponding subset F = /0.

It follows from Lemma III.1.11 that every h ∈ Fλ satisfies d̂λ (1,h) ≤ 2C, where C is the constant from

Lemma III.1.11. Indeed for every such h there is a loop e1e2 in Γ(G,X tH ), where e1 is an edge labeled

by h ∈ Hλ \ {1} and e2 is an edge labeled by the copy of h in Hµ \ {1} for some µ ∈ Λ. Since the metric

space (Hλ , d̂λ ) is locally finite by the definition of a hyperbolically embedded collection of subgroups, we

obtain the following.
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Lemma IV.2.1. |Fλ |< ∞ for all λ ∈ Λ.

Also, for qλ ∈ QZ1(Hλ ,Uλ ), let

Kλ = max{‖qλ (g)‖ : d̂λ (1,g)< 15C}. (IV.5)

Observe that the constant Kλ is well-defined by local finiteness of (Hλ , d̂λ ).

We can now state our main extension theorem in its full generality. Recall that for a quasi-cocycle q,

D(q) denotes its defect defined by (IV.1).

Theorem IV.2.2. Let G be a group, {Hλ}λ∈Λ a hyperbolically embedded collection of subgroups of G, V a

normed G-module. For each λ ∈ Λ, let Uλ be an Hλ -submodule of G. Then there exists a linear map

ι :
⊕
λ∈Λ

QZ1
as(Hλ ,Uλ )→ QZ1

as(G,V )

such that for any q = (qλ )λ∈Λ ∈
⊕

λ∈Λ

QZ1
as(Hλ ,Uλ ) the following hold.

(a) For any λ ∈Λ and any h∈Hλ \Fλ , we have ι(q)(h) = qλ (h). In particular, sup
h∈Hλ

‖ι(q)(h)−qλ (h)‖<
∞.

(b) D(ι(q))≤ ∑λ (54Kλ +66D(qλ )).

Notice that the sum in part (b) is finite because qλ ≡ 0 for all but finitely many λ , and thus Kλ =

D(qλ ) = 0 for all but finitely many λ . If G contains a singe hyperbolically embedded subgroup, Theorem

IV.2.2 obviously reduces to Theorem I.2.1 mentioned in the introduction.

Throughout the rest of the section, we use the notation of Theorem IV.2.2. Although our proof can be

entirely written in the language of quasi-cocycles, the following concept helps make some arguments more

symmetric and easier to comprehend. In the definition below, we write s(a) = t(a) for two partial maps

s, t : A→ B if the value s(a) is defined if and only if t(a) is, and these values are equal whenever defined.

Definition IV.2.3. A partial bi-combing of G with coefficients in V is a partial map r : G×G→V . We say

that

(a) r is G-equivariant if hr( f ,g) = r(h f ,hg) for any f ,g,h ∈ G;

(b) r is anti-symmetric if r( f ,g) =−r(g, f ) for any f ,g ∈ G.

(c) r has bounded area if there exists a constant A such that for any f ,g,h ∈ G for which r( f ,g), r(g,h),

and r(h, f ) are defined, we have

‖r( f ,g)+ r(g,h)+ r(h, f )‖ ≤ A. (IV.6)

The infimum of all A satisfying (IV.6) is called the area of r and is denoted by A(r).
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Let us fix λ ∈ Λ. Given qλ ∈ QZ1
as(Hλ ,Uλ ), we define a partial map rλ : G×G→V by

rλ ( f ,g) = f qλ ( f−1g).

Thus rλ ( f ,g) is defined if and only if f and g belong to the same coset xHλ .

Lemma IV.2.4. The partial map rλ : G×G→V is an anti-symmetric equivariant partial bi-combing of G

of area

A(rλ )≤ D(qλ ). (IV.7)

Proof. Equivariance of rλ is obvious and anti-symmetry follows immediately from anti-symmetry of qλ .

By equivariance it suffices to verify the bounded area condition for the a triple 1,g,h ∈ G. We have

‖rλ (1,g)+ rλ (g,h)+ rλ (h,1)‖= ‖qλ (g)+gqλ (g
−1h)−qλ (h)‖ ≤ D(qλ ).

Corollary IV.2.5. For any n ∈ N, any x ∈ G, and any g0, . . . ,gn ∈ xHλ , we have∥∥∥∥∥rλ (g0,gn)−
n

∑
i=1

rλ (gi−1,gi)

∥∥∥∥∥≤ (n−1)D(qλ ).

Proof. The claim follows from anti-symmetry, the definition of area, and (IV.7) by induction.

Our next goal is to construct a globally defined anti-symmetric bounded area G-equivariant bi-combing

r̃λ : G×G→V that extends rλ . To this end, for each f ,g ∈ G and each coset xHλ , we define the average

Rav( f ,g;xHλ ) =
1

|E( f ,g;xHλ )| ∑
(u,v)∈E( f ,g;xHλ )

rλ (u,v).

If xHλ /∈ Sλ ( f ,g), we assume Rav( f ,g;xHλ )= 0. Note that Rav( f ,g;xHλ ) is well-defined since E( f ,g;xHλ )<

∞ by part (c) of Lemma IV.1.8.

Lemma IV.2.6. For any f ,g,h,x ∈ G, the following hold.

(a) Rav( f ,g;xHλ ) =−Rav(g, f ;xHλ ).

(b) Rav(h f ,hg;hxHλ ) = Rav( f ,g;xHλ ).

(c) For any (u,v) ∈ E( f ,g;xHλ ), we have

‖rλ (u,v)−Rav( f ,g;xHλ )‖ ≤ 2D(qλ )+2Kλ . (IV.8)

Proof. The first claim follows from parts (a) of Lemma IV.1.8 and anti-symmetry of rλ . The second claim

follows from parts (b) of Lemma IV.1.8 and the equivariance of rλ .

36



To prove (c), note that for any (u′,v′) ∈ E( f ,g;xHλ ), we have

max{d̂λ (u,u
′), d̂λ (v,v

′)} ≤ 3C

by Lemma IV.1.3. Thus, using the triangle inequality and applying Corollary IV.2.5 to elements u,u′,v′,v ∈
xHλ , we obtain

‖rλ (u,v)− rλ (u′,v′)‖ ≤ ‖rλ (u,v)− rλ (u,u′)− rλ (u′,v′)− rλ (v′,v)‖

+ ‖rλ (u,u′)‖+‖rλ (v′,v)‖ ≤ 2D(qλ )+2Kλ .

This obviously implies (IV.8).

Let

r̃λ ( f ,g) = ∑
xHλ∈Sλ ( f ,g)

Rav( f ,g;xHλ ).

Note that r̃λ is well-defined as Sλ ( f ,g) is finite for any f ,g ∈ G by Corollary IV.1.4.

Lemma IV.2.7. The map r̃λ : G×G→V is an anti-symmetric G-equivariant bi-combing of area

A(r̃λ )≤ 66D(qλ )+54Kλ . (IV.9)

Proof. Equivariance and anti-symmetry of r̃λ follow immediately from Lemma IV.1.2 and Lemma IV.2.6.

In order to show that r̃λ satisfies the bounded area condition, we need to estimate the norm of r̃λ ( f ,g)+

r̃λ (g,h)+ r̃λ (h, f ) uniformly on f ,g,h ∈ G. Since Rav( f ,g;xHλ ) = 0 if xHλ /∈ Sλ ( f ,g), we have

r̃λ ( f ,g)+ r̃λ (g,h)+ r̃λ (h, f ) = ∑
xHλ∈G/Hλ

ρ( f ,g,h;xHλ ),

where

ρ( f ,g,h;xHλ ) : = Rav( f ,g;xHλ )+Rav(g,h;xHλ )+Rav(h, f ;xHλ ).

Of course, ρ( f ,g,h;xHλ ) is nontrivial only if xHλ ∈ Sλ ( f ,g)∪Sλ (g,h)∪Sλ (h, f ).

Fix f ,g,h∈G. We start by estimating ρ( f ,g,h;xHλ ) for cosets from Sλ ( f ,g). Let Sλ ( f ,g) = S′tS′′tF

be the decomposition provided by Lemma IV.1.9. Suppose first that xHλ ∈ S′. Then xHλ ∈ Sλ ( f ,h) =

Sλ (h, f ) and E( f ,g;xHλ ) = E( f ,h;xHλ ) by Lemma IV.1.9. Hence

Rav( f ,g;xHλ ) = Rav( f ,h;xHλ ) =−Rav(h, f ;xHλ ). (IV.10)

by Lemma IV.2.6 (a). On the other hand, Lemma IV.1.9 also states that xHλ /∈ Sλ (h,g) = Sλ (g,h). Hence

Rav(g,h;xHλ ) = 0. (IV.11)

Summing up (IV.10) and (IV.11), we obtain ρ( f ,g,h;xHλ ) = 0. Similarly, ρ( f ,g,h;xHλ ) = 0 for any
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xHλ ∈ S′′. Thus

∑
xHλ∈Sλ ( f ,g)

ρ( f ,g,h;xHλ ) = ∑
xHλ∈F

ρ( f ,g,h;xHλ ). (IV.12)

Fix a coset xHλ ∈ F and any p ∈ G ( f ,g), q ∈ G (h,g), r ∈ G ( f ,h). There are three cases to consider.

Case 1: xHλ ∈ Sλ (g,h)∩Sλ (h, f ). In this case we have p = p1ap2, q = q1cq2, r = r1br2, where a, c, and

b are Hλ -components of p, q, and r, respectively, corresponding to the coset xHλ (i.e., a±,b±,c± ∈ xHλ ).

Let e1, e2, e3 be paths of lengths at most 1 labeled by elements of Hλ and connecting a− to b−, b+ to c−,

and c+ to a+ (see Fig. IV.4).

Since a geodesic in Γ(G,X tH ) can penetrate a coset of Hλ at most once, e1 is either trivial or is an

isolated component of a geodesic triangle (namely p1e1r−1
1 ). The same holds true for e1 and e2. Hence by

Lemma III.1.11, we obtain

d̂λ ((ei)−,(ei)+)≤ 3C, i = 1,2,3. (IV.13)

In particular,

‖rλ ((ei)−,(ei)+)‖ ≤ Kλ , i = 1,2,3. (IV.14)

by the definition of Kλ (see (IV.5)). Using the triangle inequality, applying Lemma IV.2.5 to the vertices of

the hexagon e1be2ce3a−1, and using (IV.14), we obtain

‖rλ (a−,a+)+ rλ (b+,b−)+ rλ (c+,c−)‖

≤

∥∥∥∥∥rλ (a−,a+)− rλ (b−,b+)− rλ (c−,c+)−
3

∑
i=1

rλ ((ei)−,(ei)+)

∥∥∥∥∥+
∥∥∥∥∥ 3

∑
i=1

rλ ((ei)−,(ei)+)

∥∥∥∥∥
≤ 5D(qλ )+3Kλ .
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Now Lemma IV.2.6 (c) implies

‖ρ( f ,g,h;xHλ )‖ = ‖Rav( f ,g;xHλ )+Rav(g,h;xHλ )+Rav(h, f ;xHλ )‖

≤ ‖rλ (a−,a+)+ rλ (c+,c−)+ rλ (b+,b−)‖+6(D(qλ )+Kλ )

≤ 11D(qλ )+9Kλ .

(IV.15)

Case 2: xHλ ∈ Sλ (h, f )\Sλ (g,h) or xHλ ∈ Sλ (g,h)\Sλ (h, f ). Since the proof in these cases is the same,

we will only consider the case xHλ ∈ Sλ (h, f )\Sλ (g,h). Let p = p1ap2, r = r1br2, and e1 be as in Case 1

and let e be the path of length at most 1 in Γ(G,X tH ) connecting b+ to a+ and labeled by an element of

Hλ . There are two possibilities to consider.

2a) First assume that e is isolated in the quadrilateral ep2q−1r−1
2 (see Fig. IV.5). Then we have

d̂λ (e−,e+)≤ 4C by Lemma III.1.11 and hence

‖rλ (e−,e+)‖ ≤ Kλ .

Note that (IV.14) remains valid for i = 1. Applying Corollary IV.2.5 to the vertices of the quadrilateral

e1bea−1 as in Case 1 we obtain

‖rλ (a−,a+)+ rλ (b+,b−)‖ ≤ ‖rλ (a−,a+)− rλ ((e1)−,(e1)+)− rλ (b−,b+)− rλ (e−,e+)‖

+‖rλ ((e1)−,(e1)+)‖+‖rλ (e−,e+)‖ ≤ 3D(qλ )+2Kλ .

Since xHλ /∈ Sλ (g,h), we have Rav(g,h;xHλ ) = 0. Finally Lemma IV.2.6 (c) implies

‖ρ( f ,g,h;xHλ )‖ = ‖Rav( f ,g;xHλ )+Rav(h, f ;xHλ )‖

≤ ‖rλ (a−,a+)+ rλ (b+,b−)‖+4(D(qλ )+Kλ )

≤ 7D(qλ )+6Kλ .

(IV.16)

2b) Suppose now that e is not isolated in the quadrilateral ep2q−1r−1
2 . Then e is connected to a compo-

nent c of q. Let q = q1cq2 and let e1 and e2 be as in Case 1 (see Fig. IV.4). Then (IV.14) remains valid. In

addition, we have d̂λ (c−,c+)≤ 3C as xHλ /∈ Sλ (g,h) and hence q can not essentially penetrate xHλ . Hence

‖rλ (c−,c+)‖ ≤ Kλ . The reader can easily verify that arguing as in the Case 1 and then as in (IV.16), we can

obtain

‖rλ (a−,a+)+ rλ (b+,b−)‖ ≤ 5A(rλ )+4Kλ

and consequently

‖ρ( f ,g,h;xHλ )‖ ≤ 9D(qλ )+8Kλ . (IV.17)
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Case 3: xHλ /∈ Sλ (h, f )∪Sλ (g,h). Let p = p1ap2 be as in Cases 1 and 2. There are three possibilities to

consider.

3a) a is an isolated component of pq−1r−1. In this case d̂λ (a−,a+)≤ 3C.

3b) a is connected to a component of exactly one of q, r. For definiteness, assume that a is connected to

a component b of r. Then, in the notation of Case 2 (see Fig. V.5), e is isolated in ep2q−1r−1
2 and we have

d̂λ (e−,e+) ≤ 4C by Lemma III.1.11. As in Case 1, we have (IV.13) for i = 1. Since xHλ /∈ Sλ (h, f ), r can

not essentially penetrate xHλ . Thus d̂λ (b−,b+) ≤ 3C. Applying the triangle inequality to the quadrilateral

e1bea−1, we obtain

d̂λ (a−,a+)≤ 10C.

3c) a is connected to a component b of r and a component c of q. Then in the notation of Case 1 and

Fig. V.4, inequalities (IV.13) remain valid and we also have d̂λ (b−,b+) ≤ 3C and d̂λ (c−,c+) ≤ 3C as in

Case 3b). Applying the triangle inequality to the hexagon e1be2ce3a−1, we obtain

d̂λ (a−,a+)≤ 15C.

Thus, in all cases 3a) - 3c) we have ‖rλ (a−,a+)‖ ≤ Kλ . Since Rav(g,h;xHλ ) = Rav(h, f ;xHλ ) = 0 in

this case, using Lemma IV.2.6 (c) we obtain

‖ρ( f ,g,h;xHλ )‖= ‖Rav( f ,g;xHλ )‖ ≤ 2A(rλ )+3Kλ . (IV.18)

in Case 3.

Summarizing (IV.12), (IV.15), (IV.16), (IV.17), (IV.18), and taking into account that |F | ≤ 2, we obtain∥∥∥∥∥ ∑
xHλ∈Sλ ( f ,g)

ρ( f ,g,h;xHλ )

∥∥∥∥∥=
∥∥∥∥∥ ∑

xHλ∈F
ρ( f ,g,h;xHλ )

∥∥∥∥∥≤ 22D(qλ )+18Kλ .
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Repeating the same arguments for Sλ (h, f ) and Sλ (g, f ) and summing up, we obtain

‖r̃λ ( f ,g)+ r̃λ (g,h)+ r̃λ (h, f )‖ ≤ 66D(qλ )+54Kλ .

We are now ready to prove the main extension theorem.

Proof of Theorem IV.2.2. Let q = (qλ )λ∈Λ ∈
⊕

λ∈Λ

QZ1
as(Hλ ,Uλ ). For each λ ∈ Λ, let r̃λ be the bi-combing

constructed above and let q̃λ (g) = r̃λ (1,g). Then q̃λ ∈ QZ1
as(G,V ). Indeed we have

‖q̃λ ( f g)− q̃λ ( f )− f q̃λ (g)‖ = ‖r̃λ (1, f g)− r̃λ (1, f )− f r̃λ (1,g)‖

= ‖r̃λ (1, f g)+ r̃λ ( f ,1)+ r̃λ ( f g, f )‖

≤ A(r̃λ ).

(IV.19)

Anti-symmetry of q̃λ follows from that of r̃λ .

Further we define

ι(q) = ∑
λ∈Λ

q̃λ .

Since q is supported on only finitely many λ , ι(q) is equal to a finite linear combination of quasi-cocycles,

so ι(q) ∈ QZ1
as(G,V ). It is easy to see that the maps QZ1

as(Hλ ,Uλ )→ QZ1
as(G,V ) defined by qλ 7→ q̃λ are

linear. Hence so is ι .

If h∈Hλ \Fλ , then Sλ (1,h) = {Hλ} and Sµ(1,h) = /0 for any µ 6= λ . Obviously E(1,h;Hλ ) = {(1,h)}.
Thus r̃λ (1,h) = rλ (1,h) = qλ (h) and r̃µ(1,h) = 0 whenever µ 6= λ . Thus

ι(q)(h) = ∑
µ∈Λ

q̃µ(h) = ∑
µ∈Λ

r̃µ(1,h) = qλ (h).

This finishes the proof of (a). Part (b) follows from (IV.19) and (IV.9).

Remark IV.2.8. Our proof essentially uses the fact that the quasi-cocycles qλ are anti-symmetric. In fact, our

approach provably fails for non-anti-symmetric ones. This can be illustrated in the case when G = F(x,y),

the free group of rank 2, and H = 〈x〉. Indeed take q ∈ QZ1(H,R) defined by

q(xn) =

{
1, if n≥ 0,

0, if n < 0.

Let q̃ be the extension obtained as above using the subset X = {x,y} of G. Take any n ∈ N such that

d̂(1,xn) > 3C (in fact, C = 0 in this case, but we will not use this). Then it is straightforward to verify

that q̃((yxn)k) = k while q̃((yxn)−k) = q̃((x−ny−1)k) = 0 for every k ∈N. This contradicts the quasi-cocycle

identity as k→ ∞.
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IV.3 Applications

Bounded cohomology. Our goal here is to prove Corollary I.2.3. We begin with an auxiliary result.

Proposition IV.3.1. Let G be a group, H a hyperbolically embedded subgroup of G, V a G-module, and U

an H-submodule of V . Suppose that there exists a continuous projection π : V →U. Then there is a linear

map ϕ : QZ1(H,U)→ EH2
b (G,V ) such that Kerϕ ⊆ `∞(H,U)+Z1(H,U). In particular,

dimH2
b (G,V )≥ dimEH2

b (G,V )≥ dimEH2
b (H,U).

Proof. We define ϕ to be the composition δ ◦κ , where κ is given by Corollary I.2.2 and δ is the natural

map QZ1(G,V )→ EH2
b (G,V ) (see Lemma IV.0.7). Note that if ϕ(q) = 0 for some q ∈ QZ1(H,U), then

κ(q) = h+b, (IV.20)

where b∈ `∞(G,V ) and h∈ Z1(G,V ). Since κ(q)(x)∈U for all x∈H, composing both sides of this equality

with π and restricting to H we obtain

κ(q)|H = π ◦h|H +π ◦b|H .

Obviously π ◦ h|H ∈ Z1(H,U) and π ◦ b|H ∈ `∞(H,U) since π is continuous. By Corollary I.2.2, (q−
κ(q)|H) ∈ `∞(H,U), thus q ∈ `∞(H,U)+Z1(H,U).

We are now ready to prove Corollary I.2.3.

Proof of Corollary I.2.3. It is easy to see that the assumptions of Lemma IV.3.1 hold in the case V = `p(G)

and U = `p(H). It is well known that dimEH2
b (H) = ∞ for every virtually free group which is not virtually

cyclic (see. e.g., [39]). To complete the proof it remains to note that every group G ∈ A H contains a

virtually free but not virtually cyclic hyperbolically embedded subgroup by Lemma III.1.10.

Stable commutator length. Let G be a group, and let g∈ [G,G]. The the commutator length of g, denoted

clG(g), is defined as the minimal number of commutators whose product is equal to g in G. The stable

commutator length is defined by

sclG(g) = lim
n→∞

clG(gn)

n
.

It is customary to extend sclG to all elements g for which have some positive power gn ∈ [G,G] by letting

sclG(g) =
scl(gn)

n . Basic facts and theorems about stable commutator length can be found in [18].

Following [18], we will denote space of quasimorphisms on G by Q̂(G). Recall that this is the same as

QZ1(G,R) where R is considered as a G-module with the trivial action. Note that in this setting Theorem

I.2.1 says that any anti-symmetric quasimorphism on H can be extended to a quasimorphism on G.

A quasimorphism ϕ on G is called homogeneous if for all g ∈ G and all n ∈ Z, ϕ(gn) = nϕ(g). In

particular, all homogeneous quasimorphisms are anti-symmetric. We denote the subspace of homogeneous

42



quasimorphisms by Q(G). The connection between quasimorphisms and stable commutator length is pro-

vided by the Bavard Duality Theorem [6].

Theorem IV.3.2 (Bavard Duality Theorem). For any g ∈ [G,G], there is an equality

sclG(g) = sup
ϕ∈Q(G)

ϕ(g)
2D(ϕ)

. (IV.21)

Where the supremum is taken over all homogeneous quasimorphisms of non-zero defect.

In fact, it is not hard to see that this supremum is always realized by some quasimorphism.

Given any quasimorphism ϕ , there is a standard way to obtain a homogeneous quasimorphism ψ , called

the homogenization of ϕ . This is done by defining

ψ(g) = lim
n→∞

ϕ(gn)

n
.

Lemma IV.3.3 ([18, Corollary 2.59]). Let ϕ ∈ Q̂(G) with homogenization ψ . Then D(ψ)≤ 2D(ϕ).

Our plan for proving Corollary I.2.4 will be to take an element h ∈H and apply Bavard Duality to find a

homogeneous quasimorphism which which realizes (IV.21) with respect to sclH . Then we can use Theorem

I.2.1 to extend this to a quasimorphism on all of G, then apply Bavard Duality again to find a lower bound

on sclG(h). In order to do this we will need to understand the defect of the extended quasimorphism.

Let H be a group, and let ξ : H→H/[H,H]⊗Q be the natural map. A subset Y ⊆H will be called nice

if Y can be decomposed as Y = Y1∪Y2 such that ξ (Y1) is linearly independent and ξ |Y2 ≡ 0.

Lemma IV.3.4. Every finitely generated subgroup of H has a nice finite generating set.

Proof. Let H ′ be a finitely generated subgroup of H, and let X be a finite generating set of H ′. Then ξ (H ′)

is a finitely generated subgroup of a torsion-free abelian group, and hence ξ (H ′) is a finitely generated free

abelian group. Let {v1, ...,vn} be a basis for ξ (H ′) as a free abelian group and let yi ∈H ′ be such that ξ (yi) =

vi. Then for each x ∈ X , there exist integers ax,1, ...ax,n such that ξ (x) =
n
∑

i=1
ax,ivi. Let x̂ = xy−ax,1

1 ...y−ax,n
n .

Now let Y1 = {y1, ...yn}, and let Y2 = {x̂ | x ∈ X}. Then clearly Y = Y1∪Y2 is nice, and 〈Y 〉= 〈X〉= H ′.

Lemma IV.3.5 ([28, Theorem 16.1]). Let B be a subgroup of an abelian group A, and let D be a divisible

abelian group. Then every homomorphism from B→ D can be extended to a homomorphism from A→ D.

The reason we are interested in nice subsets is the following lemma.

Lemma IV.3.6. For any group H, any nice finite subset Y ⊆ H, and any ϕ ∈ Q(H), there exists ϕ ′ ∈ Q(H)

such that ϕ ′|[H,H] ≡ ϕ|[H,H], D(ϕ ′) = D(ϕ), and for all y ∈ Y ,

|ϕ ′(y)| ≤ 2D(ϕ ′)sclH(y).
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Proof. Let Y = Y1 ∪Y2 be the decomposition given by the definition of a nice subset. If y ∈ Y2, then there

exists some n such that yn ∈ [H,H]. Then for any ϕ ∈ Q(H), Bavard Duality gives

|ϕ(y)| ≤ 2D(ϕ)sclH(y). (IV.22)

Now, let A = H/[H,H], and let B be the image of 〈Y 〉 inside A. Let θ be the quotient map θ : H → A.

Then by definition of nice subsets we can define a homomorphism α : B→ R such that α(θ(y)) = ϕ(y)

for all y ∈ Y1. Since R is divisible, Lemma IV.3.5 allows us to extend α to all of A. Composing α with

θ gives a homomorphism β : H → R which satisfies β (y) = ϕ(y) for all y ∈ Y1. Now we set ϕ ′ = ϕ −β .

Since β vanishes on [H,H], ϕ ′|[H,H] ≡ ϕ|[H,H]. Since ϕ ′ is a shift of ϕ by a homomorphism, D(ϕ ′) = D(ϕ).

Furthermore, combining the fact that ϕ ′(y) = 0 for all y ∈ Y1 with (IV.22), we get that for all y ∈ Y ,

|ϕ(y)| ≤ 2D(ϕ ′)sclH(y).

We are now ready to prove Corollary I.2.4.

Proof of Corollary I.2.4. Let H ↪→h (G,X), and by Lemma III.1.9 there exists Y ′ a finite subset of H such

that the relative metric d̂ on H is bi-Lipschitz equivalent to the word metric with respect to Y ′. By Lemma

IV.3.4 the subgroup 〈Y ′〉 has a nice finite generating set Y . Let dY be the word metric with respect to Y .

Then dY is bi-Lipschitz equivalent to the relative metric d̂ on H, so there exists a constant L such that for all

f ,g ∈ H,

dY ( f ,g)≤ Ld̂( f ,g). (IV.23)

Fix some h ∈ [H,H], and let ϕ ∈Q(H) be the quasimorphism which realizes the Bavard Duality; that is,

sclH(h) =
ϕ(h)

2D(ϕ) . Let ϕ ′ be the modified quasimorphism provided by Lemma IV.3.6.

Let ι : Q(H)→ Q̂(G) be map provided by Theorem IV.2.2. Then by part (b) of Theorem IV.2.2 we have

D(ι(ϕ ′))≤ 54K +66D(ϕ ′)

where K is defined by K = max{|ϕ ′(k)| : d̂(1,k) < 15C}. However, by (IV.23) we get K ≤ max{|ϕ ′(k)| :
dY (1,k) < 15CL}. Inductively applying the definition of a quasimorphism along with Lemma IV.3.6, for

any such k we get

|ϕ ′(k)| ≤ 15CL(D(ϕ ′)+2D(ϕ ′)max
y∈Y
{sclH(y)}).

That is, we have bound K as a constant multiple of D(ϕ ′). Thus there exists a constant M (which is

independet of ϕ ′) such that

D(ι(ϕ ′))≤ 54K +66D(ϕ ′)≤MD(ϕ ′). (IV.24)

Now, ι(ϕ ′) is a quasimorphism on G, and in order to apply Bavard Duality we homogenize ι(ϕ ′) to

get a quasimorphism ψ , satisfying D(ψ) ≤ 2D(ι(ϕ ′)). Then applying the definition of ψ , along with the
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homgeneity of ϕ ′ and the conditions of Theorem IV.2.2 gives

ψ(h) = lim
n→∞

ι(ϕ ′)(hn)

n
= ϕ

′(h) = ϕ(h).

Also, (IV.24) and Lemma IV.3.3 show that D(ψ) ≤ 2D(ι(ϕ ′)) ≤ 2MD(ϕ ′) = 2MD(ϕ). Applying Bavard

Duality again gives

sclG(h)≥
ψ(h)

2D(ψ)
≥ ϕ(h)

4MD(ϕ)
=

1
2M

sclH(h).

Proof of Corollary I.2.5. If H is an almost malnormal quasi-convex subgroup of a hyperbolic group, then G

is hyperbolic relative to H [12]. Hence H is hyperbolically embedded in G by [24, Proposition 2.4] and the

claim follows from Corollary I.2.4.

Remark IV.3.7. Note that the malnormality condition can not be dropped in Corollary I.2.5 even for free

groups. For example, let F = F(x,y, t) be the free group of rank 3 with basis {x,y, t}. In what follows we

write ab for b−1ab and [a,b] for a−1b−1ab. Let H = 〈x,y,xt ,yt〉 and let

hk = [x,y]−k[xt ,yt ]k.

Since the subset {x,y,xt ,yt} ⊆ G is Nielsen reduced, the subgroup H is freely generated by x,y,xt ,yt .

Therefore sclH(hk) = k+1/2 (see [18, Example 2.100]). On the other hand, we have

sclG(hk) = sclG([x,y]−k([x,y]k)t) = sclG([[x,y]k, t])≤ 1.

Thus sclH(hk)/sclG(hk)→ ∞ as k→ ∞.
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CHAPTER V

SMALL CANCELLATION THEORY

V.1 Small cancellation conditions

Given a set of words R in an alphabet A , we say that R is symmetrized if for any R ∈R, R contains all

cyclic shifts of R±1. Further, if G is a group generated by a set A , we say that a word R is (λ ,c)–quasi–

geodesic in G if any path in the Cayley graph Γ(G,A ) labeled by R is (λ ,c)–quasi–geodesic.

We begin by giving the small cancellation conditions introduced by Olshanskii in [62] and also used in

[67], [56], [44].

Definition V.1.1. Let G be a group generated by a set A , R a symmetrized set of words in A . For ε > 0, a

subword U of a word R ∈R is called an ε–piece if there exists a word R′ ∈R such that:

(1) R≡UV , R′ ≡U ′V ′, for some V,U ′,V ′;

(2) U ′ = YUZ in G for some words Y,Z in A such that max{‖Y‖, ‖Z‖} ≤ ε;

(3) Y RY−1 6= R′ in the group G.

Similarly, a subword U of R ∈R is called an ε ′–piece if:

(1′) R≡UVU ′V ′ for some V,U ′,V ′;

(2′) U ′ = YU±1Z in the group G for some Y,Z satisfying max{‖Y‖,‖Z‖} ≤ ε .

Definition V.1.2. We say that the set R satisfies the C(ε,µ,λ ,c,ρ)–condition for some ε ≥ 0, µ > 0, λ > 0,

c≥ 0, ρ > 0, if

(1) ‖R‖ ≥ ρ for any R ∈R;

(2) any word R ∈R is (λ ,c)–quasi–geodesic;

(3) for any ε–piece of any word R∈R, the inequality max{‖U‖, ‖U ′‖}< µ‖R‖ holds (using the notation

of Definition V.1.1).

Further the set R satisfies the C1(ε,µ,λ ,c,ρ)–condition if in addition the condition (3) holds for any ε ′–

piece of any word R ∈R.

Suppose that G is a group defined by

G = 〈A | O〉. (V.1)

Given a set of words R, we consider the quotient group of G represented by

G = 〈A | O ∪R〉. (V.2)
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Figure V.1: Contiguity subdiagram.

A cell in a van Kampen diagram over (V.2) is called an R–cell if its boundary label is a word from R.

Let ∆ be a van Kampen diagram over (V.2), q a subpath of ∂∆, and Π an R–cell of ∆. Suppose that there is

a simple closed path

p = s1q1s2q2 (V.3)

in ∆, where q1 is a subpath of ∂Π, q2 is a subpath of q, and

max{l(s1), l(s2)} ≤ ε (V.4)

for some constant ε > 0. By Γ we denote the subdiagram of ∆ bounded by p. If Γ contains no R–cells,

we say that Γ is an ε–contiguity subdiagram (or simply a contiguity subdiagram if ε is fixed) of Π to the

subpath q of ∂∆ and q1 is the contiguity arc of Π to q. The ratio `(q1)/`(∂Π) is called the contiguity degree

of Π to q and is denoted by (Π,Γ,q). In case q = ∂∆, we talk about contiguity subdiagrams, etc., of Π to

∂∆. Since Γ contains no R–cells, it can be considered a diagram over (V.1).

A van Kampen diagram ∆ over (V.2) is said to be reduced if ∆ has minimal number of R–cells among

all diagrams over (V.2) having the same boundary label. When dealing with a diagram ∆ over (V.2), it is

convenient to consider the following transformations. Let Σ be a subdiagram of ∆ which contains no R-

cells, Σ′ another diagram over (V.1) with Lab(∂Σ)≡Lab(∂Σ′). Then we can remove Σ and fill the obtained

hole with Σ′. Note that this transformation does not affect Lab(∂∆) and the number of R-cells in ∆. If two

diagrams over (V.2) can be obtained from each other by a sequence of such transformations, we call them

O-equivalent. [67, Lemma 4.4] provides an analogue to the well-known Greendlinger Lemma. We will

make use of the more general version of this lemma appearing in the appendix of [67].

Lemma V.1.3 ([67], Lemma 9.7). Let G be a group with presentation (V.1). Suppose that the Cayley

graph Γ(G,A ) of G is hyperbolic. Then for any λ ∈ (0,1], c ≥ 0, there exists ε ≥ 0 such that for all

µ ∈ (0,1/16], there exists ρ > 0 with the following property. Let R be a symmetrized set of words in A

satisfying the C(ε,µ,λ ,c,ρ)–condition, ∆ a reduced van Kampen diagram over the presentation (V.2) such

that ∂∆ = q1 · · ·qr for some 1≤ r≤ 4, where q1, . . . ,qr are (λ ,c)-quasi-geodesic. Assume that ∆ has at least

one R–cell. Then up to passing to an O-equivalent diagram, then there is an R-cell Π of ∆ and disjoint
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ε-contiguity subdiagrams Γ j of Π to sections q j, j = 1, . . . ,r, of ∂∆ (some of them may be absent) such that

r

∑
j=1

(Π,Γ j,q j)> 1−13µ.

This is actually a slight restatement of [67, Lemma 9.7], since we will need to choose ε independent of

µ . However, this follows immediately from the choice of ε in the proof of this lemma (see [67, equation

36]). In fact, aside from the inductive proof of this lemma, [67] only makes use of the special case when

r = 1; we will need the more general statement for the proof of Lemma V.3.7.

V.2 Small cancellation quotients

Is this section we prove various properties of small cancellation quotients. Analogous statements for rela-

tively hyperbolic groups can be found in [67], and the proofs here are essentially the same. Throughout this

section, we fix a group G and suppose {Hλ}λ∈Λ ↪→h (G,X). By Theorem III.1.3, there exists a constant L

such that G has a strongly bounded relative presentation 〈X , H |Q〉which satisfies Arearel(W )≤ L‖W‖ for

any word W in XtH equal to the identity in G. Set A = XtH and O =S ∪Q, where S is defined as in

(III.5). Hence G is given by the presentation (V.1). Let G denote the quotient of G given by the presentation

(V.2).

Lemma V.2.1. For any λ ∈ (0,1], c ≥ 0, N > 0, there exists µ > 0, ε > 0, and ρ > 0 such that for any

strongly bounded symmetrized set of words R satisfying the C(ε,µ,λ ,c,ρ)-condition, the following hold.

1. The restriction of the natural homomorphism γ : G→G to BA (N) is injective. In particular, γ|{Hλ }λ∈Λ

is injective.

2. {γ(Hλ )}λ∈Λ ↪→h G.

Proof. Clearly G is given by the strongly bounded relative presentation 〈X , H |Q∪R〉; let Arearel
1 (W ) (re-

spectively, Arearel
1 (∆)) denote the relative area of a word W (respectively, diagram ∆) over this presentation.

We will show that that any word W in A satisfies Arearel
1 (W )≤ α‖W‖, where

α =
3L

λ −13µλ −14µ
.

We procede by induction on the length of W . Let p be a path in Γ(G,A ) labeled by W . First suppose

that p is not a (1
2 ,0)-quasi-geodesic. Then up to passing to a cyclic shift of W , we can assume that p = p0 p1,

where dA ((p0)−,(p0)+)<
`(p0)

2 . Let W =W0W1 be the corresponding decomposition of the word W . Let q

be a geodesic in Γ(G,A ) from (p0)− to (p0)+, and let U be the label of q. Then W = (W0U−1)(UW1). Now

W0U−1 represents 1 in G, and ‖W0U−1‖ ≤ `(p0)+ `(q) ≤ 3`(p0)
2 . Thus, Arearel(W0U−1) ≤ 3L

2 `(p0). Now,
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‖UW1‖ ≤ `(q)+ `(p1)≤ `(p0)
2 + `(p1). Thus, applying the inductive hypothosis gives

Arearel
1 (W )≤ Arearel(W0U−1)+Arearel

1 (UW1)

≤ 3L
2
`(p0)+α(

`(p0)

2
+ `(p1))

≤ α‖W‖

For α ≥ 3L.

Now suppose p is a (1
2 ,0)-quasi-geodesic. Since the C(ε,µ,λ ,c,ρ)-condition becomes stronger as λ

increases, without loss of generality we can assume λ ≤ 1
2 , so p is a (λ ,c)-quasi-geodesic. Thus, we

can apply Lemma V.1.3 to find an R-cell Π and an ε-contiguity subdiagram Γ from Π to ∂∆ such that

(Π,Γ,∂∆)> 1−13µ . Let ∂Γ = s1 p1s2q1, where p1 is a subpath of ∂Π, q1 is a subpath of ∂∆, and `(si)≤ ε .

Also let ∂Π = p0 p1 and ∂∆ = q0q1. Let ∆′ be the subdiagram of ∆ bounded by q0s−1
1 p0s−1

2 . Then

`(q1)≥ dA ((q1)−,(q1)+)≥ dA ((p1)−,(p1)+)−2ε ≥ λ`(p1)−c−2ε ≥ λ (1−13µ)`(∂Π)−c−2ε. (V.5)

Also,

`(s−1
1 p0s−1

2 )≤ 13µ`(∂Π)+2ε. (V.6)

Note that `(s−1
1 p0s−1

2 ) can be made smaller then `(q1) by taking sufficiently small µ and sufficiently

large `(∂Π) (which can be done by taking large enough ρ). Thus, `(∂∆′) ≤ `(∂∆). If n1 is the number of

cells in ∆′ which contribute to the relative area of ∆, by the induction hypothosis, (V.5), and (V.6), we have

n1 ≤α`(∂∆
′)≤ α(`(∂∆)− `(q1)+ `(s−1

1 p0s−1
2 ))

≤α(`(∂∆)− (λ −13µλ −13µ)`(∂Π)+4ε + c).

Now, as q1 is a (1
2 ,0) quasi-geodesic, we have

`(q1)≤ 2dA ((q1)−,(q1)+)≤ 2dA ((p1)−,(p1)+)+4ε ≤ 2(`(∂Π))+4ε.

So,

`(∂Γ)≤ `(p1)+ `(q1)+2ε ≤ 3(`(∂Π))+6ε.

Thus if n2 is the number of cells of Γ which contribute to the relative area of ∆, we have

n2 ≤ L`(∂Γ)≤ 3L`(∂Π)+6ε ≤ α(λ −13µλ −14µ)`(∂Π)+6ε.
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Thus,

Arearel
1 (∆) = n1 +n2 +1≤ α(`(∂∆)− (λ −13µλ −13µ)`(∂Π)+4ε + c)+α(λ −13µλ −14µ)`(∂Π)+6ε +1

≤ α`(∂∆)−µ`(∂Π)+10ε + c+1≤ α`(∂∆).

when ρ is sufficiently large. Thus,

Arearel
1 (W )≤ Arearel

1 (∆)≤ α‖W‖.

This completes the proof of the first condition. For the second condition, equation (V.5) along with the

condition µ < 1
26 gives that

‖W‖ ≥ λ

2
ρ− c−2ε. (V.7)

And thus is only remains to choose ρ > 2(N+c+2ε)
λ

.

V.3 Torsion and conjugacy in the quotient

For this section, we keep the same assumptions about G, G, and A as in the previous section; in addition,

we assume that the action of G on Γ(G,A ) is acylindrical. This can be done with loss of generality by

Theorem III.2.10. By a loxodromic element, we will mean an element which is loxodromic with respect

to the action of G on Γ(G,A ). Also, let δ denote the hyperbolicity constant of Γ(G,A ). Recall that τ(g)

denotes the translation length of the element g.

Theorem V.3.1. [13] Suppose G acts acylindrically on a hyperbolic metric space. Then there exists d > 0

such that for all loxodromic elments g, τ(g)≥ d.

Given a word W in A , we say that a word U is W-periodic if it is a subword of W n for some n∈Z\{0}.

Corollary V.3.2. Suppose that W is a word in A representing a loxodromic element g ∈G such that |g|A =

‖W‖ ≤ N for some N > 0. Then any path in Γ(G,A ) labeled by a W-periodic word is ( d
N ,2(N + d))

quasi-geodesic.

Proof. First observe that for any n ∈ N,

|gn|A ≥ n inf
i

(
1
i
|gi|A

)
≥ nd ≥ d

N
n|g|A (V.8)

where d is the constant from Lemma V.3.1. Now suppose p is a path labeled by a W -periodic word. Let q

be a maximal (maybe empty) subpath of p, labeled by W n for some n ∈ Z (we identify W 0 with the empty

word). Then, `(p)≤ n|g|A +2N. Combining this with (V.8) and the triangle inequality, we get

dA (p−, p+)≥ dA (q−,q+)−2N = |gn|A −2N ≥ d
N

n|g|A −2N ≥ d
N
`(p)−2N−2d.
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Since a subword of a W -periodic word is also W -periodic, we are done.

Lemma V.3.3. Suppose g ∈ G is the shortest element in its conjugacy class and |g|A > 8δ . Let W be a

word in A representing g such that ‖W‖ = |g|A . Then W n is a (1
3 ,2δ ) quasi-geodesic for all n ∈ N. In

particular, g is loxodromic.

Proof. Since no cyclic shift of W can have shorter length then W , any path p labeled by W n is a k-local

geodesic where k > 8δ , and hence W n is a (1
3 ,2δ ) quasi-geodesic by Lemma II.0.8.

Combining Corollary V.3.2 and Lemma V.3.3, we get uniform quasi-geodesic constants for any path

labeled by W n, where W represents a loxodromic element g ∈ G and W is the shorest word representing an

element in the conjugacy class of g. Specifically,

Corollary V.3.4. There exists α and a such that the following holds: Let g be loxodromic and the shortest

element in its conjugacy class, and let W be a word in A representing g such that ‖W‖ = |g|A . Then any

path p labeled by W n is a (α,a) quasi-geodesic for all n ∈ N.

Lemma V.3.5. For any λ ∈ (0,1], c≥ 0 there are µ > 0, ε ≥ 0, and ρ > 0 such that the following condition

holds. Suppose that R is a symmetrized set of words in A satisfying the C1(ε,µ,λ ,c,ρ)-condition. Let

γ : G→ G, where G is the quotient given by (V.2). Then every element of G of order n is the image of an

element of G of order n.

Proof. Note that it suffices to assume λ < α and c > a, as the C1(ε,µ,λ ,c,ρ)-condition becomes stronger

as λ increases and c decreases. Now we can choose µ , ε , and ρ satisfying the conditions of Lemma V.1.3

and Lemma V.2.1 with N = 8δ +1. Now suppose ḡ ∈ G has order n. Without loss of generality we assume

that ḡ is the shortest element of its conjugacy class. Let W be a shortest word in A representing ḡ in G, and

let g be the preimage of ḡ represented by W . Suppose towards a contradiction that gn 6= 1.

Suppose first that g is elliptic. Then gn is elliptic, and hence gn is conjugate to an element h where

|h|A ≤ 8δ by Lemma V.3.3. But then h 6= 1 and γ(h) = 1, which contradicts the first condition of Lemma

V.2.1.

Thus, we can assume that g is a loxodromic, and hence any path labeled by W n is a (λ ,c) quasi-geodesic

by Lemma V.3.4. Now if ∆ is a diagram over (V.2) with boundary label W n, then ∆ must contain R-cells

since gn 6= 1. Now for sufficiently small µ and sufficiently large ε and ρ , ∆ will violate the C1(ε,µ,λ ,c,ρ)

condition; the proof of this is identical to the proof of [67, Lemma 6.3].

The next lemma provides a bound on contiguity degrees of R-cells to paths with periodic labels and

on a possible overlap between two contiguity subdiagrams to a geodesic if R satisfies a small cancellation

condition.

Lemma V.3.6. For any λ ∈ (0,1], c ≥ 0, ε > 0, and N ∈ N, there exist constants D = D(ε,λ ,c,δ ,N) and

ε1 ≥ ε such that for all µ > 0 and ρ > 0 and any set of words R satisfying the C1(ε1,µ,λ ,c,ρ) condition,

the following holds.
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(a) Let W be a word in A representing g ∈ G such that |g|A = ‖W‖ ≤ N. Then for any R ∈R and any

quadrangle Q = s1q1s2q2 in Γ(G,A ), where `(si) ≤ ε for i = 1,2, Lab(q1) is a subword of R, and

Lab(q2) is W-periodic, we have `(q1)≤ Dµ‖R‖+D.

(b) Let U and V±1 be disjoint subwords of some R∈R, and let r be a geodesic path in Γ(G,A ). Suppose

q1s1r1t1 and q2s2r2t2 are quadrangles in Γ(G,A ) such that Lab(q1) ≡U, Lab(q2) ≡ V , r1, r2 are

subpaths of r±1, and `(si), `(ti) ≤ ε for i = 1,2. Then the overlap between r1 and r2 is at most

µ‖R‖+ ε1.

Proof. Without loss of generality we can assume that s1,s2 are geodesic. Since the C1 condition becomes

stronger as λ increases and c decreases, it suffices to assume that λ ≤ d
N and c ≥ 2N + 2d. Thus Q is a

(λ ,c)-quasi-geodesic quadrangle by Corollary V.3.2. Choose

ε1 = 2(K + ε),

where K = K(λ ,c,δ ) is the constant provided by Lemma II.0.9.

Our proof of part (a) will closely follow the ideas from the proof of [67, Lemma 6.3]. Passing to a cyclic

shift of W±1, we can assume q2 is labeled by a prefix of W n for some n ∈ N. We will derive a contradiction

under the assumption that q1 is sufficiently long; the exact constant D can be easily extracted from the proof.

First, note that the triangle inequality gives

`(q1)≤
1
λ
(dA ((q1)−,(q1)+)+ c)≤ 1

λ
(`(q2)+2ε + c). (V.9)

Now, if `(q2)≤ 4
3‖W‖ we have

`(q1)≤
1
λ

(
4
3

N +2ε

)
+ c.

Thus, it suffices to assume `(q2)>
4
3‖W‖. Then we can decompose Lab(q2) as Lab(q2)≡UV1UV2, where

λ 2`(q2)

5
≤ ‖U‖ ≤ λ 2`(q2)

4
(V.10)

and

‖V1‖>
`(q2)

3
. (V.11)

Let q2 = u1v1u2v2 be the corresponding decomposition of the path q2 (see Fig. V.2). Then by Lemma

II.0.9, we can find an initial subpath r1 of q−1
1 and a subpath r2 of q±1

1 such that

dA ((ri)±,(ui)±)≤ K + ε (V.12)

for i = 1,2. Now, we claim that for sufficiently long q1, r1 and r2 will be disjoint. Indeed using (V.10) we

obtain

`(r1)≤
1
λ
(dA ((r1)−,(r1)+)+ c)≤ 1

λ
(`(u1)+2ε +2K + c)≤ λ`(q2)

4
+

2ε +2K + c
λ

.
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≤ K+ ε

t2 r2 t1 r1

s1

v2
u2 v1 u1

s2

Figure V.2: Decompositions of q1 and q2 in the proof of Lemma V.3.6 (a).

However, if r1 contains (r2)−, then by (V.11) we have

`(r1)≥ dA ((r1)−,(r2)−)≥ λ`(u1v1)− c−2ε−2K ≥ λ`(q2)

3
− c−2ε−2K.

These inequalities contradict each other for sufficiently large `(q2), which can be ensured if q1 is long

enough by (V.9).

Thus, we can decompose q−1
1 = r1t1rξ

2 t2, for some ξ =±1 and t1, t2 where at least t1 is non-empty. Let

Lab(q1)
−1 ≡ R1T1R2T2 be the corresponding decomposition of the label of q−1

1 . Then by (V.12) we have

R1 = Y1UZ1 and R2 = Y2U±1Z2 in G, where ‖Yi‖,‖Zi‖ ≤ K + ε for i = 1,2. Thus, there exist Y , Z such that

‖Y‖,‖Z‖ ≤ 2(K+ε) = ε1 and R1 =Y R±1
2 Z in G. Now, since R satisfies the C1(ε1,µ,λ ,c,ρ)–condition and

R1, R2 are disjoint subwords of R, we have that ‖R1‖ ≤ µ‖R‖. Finally, using (V.10) we obtain

`(q2)≤
5

λ 2 ‖U‖ ≤
5

λ 3 (dA ((u1)−,(u1)+)+ c)

≤ 5
λ 3 (`(r1)+2ε +2K + c)≤ 5

λ 3 (µ‖R‖+2ε +2K + c).

Combining this with (V.9) produces a contradiction for sufficiently long q1. This completes the proof of (a).

To prove (b) let r′ denote the overlap of r1 and r2 with arbitrary orientation (see Fig. V.3). By Lemma

II.0.9, we can choose points x1, x2 on q1 such that dist((r′)−,x1) ≤ K + ε and dist((r′)+,x2) ≤ K + ε .

Similarly we choose y1 and y2 on q2 satisfying the same conditions. Now, if x1 = x2 or y1 = y2, then

`(r′) = dA ((r′)−,(r′)+)≤ 2(K + ε) = ε1.

Otherwise, we take p1 to be the subpath of q±1
1 with endpoints x1,x2, and p2 the subpath of q±1

2 with

endpoints y1,y2. Then dA ((p1)±,(p2)±) ≤ 2(K + ε). Thus, by the C1(ε1,µ,λ ,c,ρ)–condition, we have

that `(p1)≤ µ‖R‖. Thus,

`(r′) = dA ((r′)−,(r′)+)≤ µ‖R‖+2(K + ε) = µ‖R‖+ ε1.
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Figure V.3: The proof of Lemma V.3.6 (b).

Lemma V.3.7. For any λ ∈ (0,1], c≥ 0, and N ∈N, there exist ε1 > 0, µ > 0, and ρ > 0 such that the follow-

ing holds. Suppose R satisfies the C1(ε1,µ,λ ,c,ρ)–condition. Let γ : G→ G be the natural epimorphism.

Let g, h be loxodromic elements of G such that |g|A , |h|A ≤ N, and x ∈ G such that γ(x−1gnxhn) = 1 in G

but x−1gnxhn 6= 1 in G. Then there exists y such that |y|A < |x|A , and γ(y−1gnyhn) = 1 in G. Furthermore,

x ∈ 〈g,y〉 in G.

Proof. Again, as in the proof of Lemma V.3.6, it is sufficient to assume λ ≤ d
N , c≥ 2N+2d. Let ε be chosen

according to Lemma V.1.3. Now choose D and ε1 according to Lemma V.3.6. Recall that D is independent

of µ and ρ . We will show that the conclusion of the lemma holds for sufficiently small µ and sufficiently

large ρ .

Let W , V , and X be shortest words in A representing g, h, and x respectively. Let ∆ be a reduced van

Kampen diagram over (V.2) with ∂∆ = p1 p2 p3 p4, with Lab(p1)
−1 ≡ Lab(p3) ≡ X , Lab(p2) ≡W n, and

Lab(p4) ≡ V n. Then p1 and p3 are geodesic paths by our choice of X , and p2 and p4 are (λ ,c) quasi-

geodesics by Corollary V.3.2. Since x−1gnxhn 6= 1 in G, ∆ must contain an R-cell. Since ε1 ≥ ε , R also

satisfies C1(ε,µ,λ ,c,ρ), hence we can apply Lemma V.1.3 for µ ∈ (0,1/16] and large enough ρ . That is,

passing to an O-equivalent diagram if necessary, we can find an R-cell Π of ∆ and disjoint ε-contiguity

subdiagrams Γ j of Π to p j, j = 1, . . . ,4, (some of which may be empty) such that

4

∑
j=1

(Π,Γ j, p j)> 1−13µ. (V.13)

Further by Lemma V.3.6,

(Π,Γ2, p2)+(Π,Γ4, p4)≤ 2
(

Dµ +
D

`(∂Π)

)
. (V.14)
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Figure V.4: Case 1 in the proof of Lemma V.3.7.

Thus, for at least one of i = 1,3, we have

(Π,Γi, pi)>
1
2

(
1− (13+2D)µ− 2D

`(∂Π)

)
. (V.15)

Without loss of generality, we assume this holds for i = 1. Let ∂Γ1 = s1r1t1q1, where `(si) ≤ ε for

i = 1,2, q1 is a subpath of ∂Π, r1 is a subpath of p1. There are two cases to consider.

Case 1. First suppose Γ3 is empty. Then (Π,Γ1,q1) >
(

1− (13+2D)µ− 2D
`(∂Π)

)
, so `(q1) > (1− (13+

2D)µ)`(∂Π)−2D. Let ∂Π = q1z (see Fig. V.4). Then the path s−1
1 zt−1

1 has the same start and end vertices

as r1. However,

`(s−1
1 zt−1

1 )≤ `(∂Π)− `(q1)+2ε < `(∂Π)− (1− (13+2D)µ)`(∂Π)+2D+2ε

= (13+2D)µ`(∂Π)+2D+2ε

while

`(r1)≥ dA ((q1)−,(q1)+)−2ε ≥ λ`(q1)− c−2ε

> λ ((1− (13+2D)µ)`(∂Π)−2D)− c−2ε.

Thus, for sufficiently small µ and suffiently large `(∂Π) (which can be ensured by choosing large enough

ρ), we will get that `(r1)> `(t1zs1). However, this contradicts the fact that r1 is a subpath of a geodesic p1.

Thus, we can assume that Γ3 is non-empty.

Case 2. Let ∂Γ3 = s2r2t2q2, where `(t2), `(s2) ≤ ε , q2 is a subpath of ∂Π, and r2 is a subpath of p3.

Also, let ∂Π = q1z1q2z2. Now, we decompose p1 = u1r1v1 and p3 = u2r2v2. For definiteness we suppose

that `(v2) ≤ `(u1) (in the case `(v2) ≥ `(u1) the proof is similar). Let ∆′ be a copy of ∆. Given a path a in
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Figure V.5: Case 2 in the proof of Lemma V.3.7.
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∆, we denote its copy by a′. Let us glue ∆ and ∆′ by identifying p3 to (p′1)
−1(see Fig. V.5). Let j denote the

(possibly empty) intersection of r′1 and r−1
2 . Consider the path p = v−1

2 r−1
2 s−1

2 z2t−1
1 v1. We want to show that

`(p)< ‖X‖= `(p1). (V.16)

Observe that `(p) = `(p1)− `(r1)+ `( j)+ `(s−1
2 z2t−1

1 ). Thus, we only need to show that `(r1)> `( j)+

`(s−1
2 z2t−1

1 ). By Lemma V.3.6, `( j)≤ µ`(∂Π)+ ε1. Also,

`(z2)≤ `(∂Π)− `(q1)− `(q3)≤ (13+2D)µ`(∂Π)+2D

by (V.13) and (V.14). Thus,

`( j)+ `(s−1
2 z2t−1

1 )≤ µ`(∂Π)+ ε1 +(13+2D)µ`(∂Π)+2D+2ε

= (14+2D)µ`(∂Π)+ ε1 +2D+2ε.

However, by (V.15)

`(r1)≥ dA ((q1)−,(q1)+)−2ε ≥ λ`(q1)− c−2ε >

λ

2
(1− (13+2D)µ)`(∂Π)−λD− c−2ε.

Thus, we will have `(r1) > `( j)+ `(s−1
2 z2t−1

1 ) as long as µ is sufficiently small and `(∂Π) is sufficiently

large; the later condition can be guaranteed by choosing sufficiently large ρ . This completes the proof of

(V.16).

Now let y be the element of G represented by Lab(p). By (V.16), we have |y|A < |x|A . Observe

that pp2(p′)−1 p′4 is a closed path (it is represented by the bold line on Fig. V.5), hence ygny−1hn =

Lab(p)Lab(p2)Lab((p′)−1)Lab(p′4) = 1 in G. Finally, observe that pp2 p3 is also a closed path, so

ygnx = 1, therefore x ∈ 〈g,y〉.

Corollary V.3.8. For all λ ∈ (0,1], c ≥ 0 and N ∈ N, there exist ε1 > 0, µ > 0, and ρ > 0 such that if R

satisfies the C1(ε1,µ,λ ,c,ρ) and γ is the natural epimorphism from G to G, then the following conditions

are satisfied:

(a) If g,h ∈ BG,A (N), then γ(g)∼ γ(h) if and only if g∼ h.

(b) If g ∈ BG,A (N) is loxodromic and x ∈ G, then there exists n such that γ(x−1gnxg±n) = 1 if and only if

γ(x) ∈ γ(EG(g)).

Proof. First, choose ε1, µ , ρ satisfying the conditions of Lemma V.3.7. Suppose g and h are non-conjugate

elements of G which become conjugate in G, and g,h ∈ BG,A (N). For convenience we identify g and h with

their images in G. Suppose x is the shortest element in G satisfying gx = h. But then by Lemma V.3.7 there

exists a strictly shorter element y such that gy = h, contradicting our choice of x. This proves (a).

Note that the “only if” part of (b) follows immediately from Lemma III.2.6. Now suppose g ∈ BG,A (N)

is a loxodromic element, and let x be a shortest element such that for some n, γ(x−1gnxg±n) = 1 but γ(x) /∈
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γ(EG(g)). Thus, x /∈ EG(g), so x−1gnxg±n 6= 1 by Lemma III.2.6. so we can apply Lemma V.3.7 to find

a strictly shorter element y satisfying γ(y−1gnyg±n) = 1. By our choice of x, γ(y) ∈ γ(EG(g)), so we can

replace y with y′ such that y′ ∈ EG(g) and γ(y) = γ(y′). However, Lemma V.3.7 also gives that γ(x) ∈
〈γ(g),γ(y′)〉 ≤ γ(EG(g)), a contradiction.

Remark V.3.9. If g ∈ BG,A (N) is loxodromic and γ(g) is a loxodromic, WPD element of G, then part (b) of

Corollary V.3.8 along with Lemma III.2.6 give that γ(EG(g)) = EG(γ(g)).

V.4 Small cancellation words and suitable subgroups

Let {Hλ}λ∈Λ ↪→h (G,X). We will consider the the set of words W in X tH which satisfy:

(W1) W contains no subwords of the form xy where x, y ∈ X .

(W2) If W contains h ∈ Hλ , then ̂̀λ (h)≥ 50C, where C =C(1,0) is the constant from Lemma III.1.11.

(W3) If W contains a subword h1xh2 (respectively, h1h2) where x ∈ X , h1 ∈ Hλ and h2 ∈ Hµ , then either

λ 6= µ or the element of G represented by x does not belong to Hλ (respectively, λ 6= µ).

Recall that paths p and q are called oriented ε-close if d(p−,q−)≤ ε and d(p+,q+)≤ ε .

Lemma V.4.1. [24, Lemma 4.27]

1. If p is a path in Γ(G,X tH ) labeled by a word which satisfies (W1)− (W3), then p is a
(1

4 ,1
)

quasi-geodesic.

2. For all ε > 0 and k ∈ N, there exists a constant M = M(ε,k) such that if p and q are oriented ε-close

paths in Γ(G,X tH ) whose labels satisfy (W1)− (W3) and `(p) ≥M, then at least k consecutive

components of p are connected to consecutive components of q.

We will also consider words W which satisfy

(W4) All components of W belong to Hα ∪Hβ , where Hα ∩Hβ = {1}.

Lemma V.4.2. Suppose p and q are oriented ε-close paths in Γ(G,X tH ) which are labeled by words

which satisfy (W1)− (W4). If `(p)≥M(ε,3). Then p and q have a common edge.

Proof. By Lemma V.4.1, p = p1u1u2u3 p2 and q = q1v1v2v3q2, where each ui is a component of p connected

to the component vi of q (note that each component consists of a single edge). Without loss of generality

we assume that u1 and u3 are Hα components and u2 is an Hβ component. Now if e is an edge from

(u1)+ = (u2)− to (v1)+ = (v2)−, then Lab(e) ∈Hα ∩Hβ = {1}. Thus, these vertices actually coincide, that

is (u2)− = (v2)−. Similarly, (u2)+ = (v2)+, and since there is a unique edge labeled by an element of Hβ

between these vertices, we have that u2 = v2.
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Proposition V.4.3. Suppose W = xa1..an satisfies (W1)− (W4), where x ∈ X ∪{1} and each ai ∈Hα ∪Hβ .

Suppose, in addition, a±1
1 , ...,a±1

n are all distinct. Let M = M(ε,3) be the constant given by Lemma V.4.1.

Then the set R of all cyclic shifts of W±1 satisfies the C1(ε,
M
n ,

1
4 ,1,n)-condition.

The proof is essentially the same as [67, Theorem 7.5].

Proof. Clearly R satisfies the first condition of Definition V.1.2. Lemma V.4.1 gives that R satisfies the

second condition of Definition V.1.2. Now suppose U is an ε-piece of some R∈R; without loss of generality

we assume ‖U‖= max{‖U‖,‖U ′‖}. Assume

‖U‖ ≥ M
n
‖R‖ ≥M (V.17)

By the definition of a piece, there are oriented ε-close paths p and q in Γ(G,X tH ) such that Lab(p)≡
U , Lab(q)≡U ′. (V.17) gives that p and q satisfy the conditions of Lemma V.4.2, and thus p and q share a

commone edge e. Thus, we can decompose p = p1ep2 and q = q1eq2; let U1Lab(e)U2 be the corresponding

decomposition of U and U ′1Lab(e)U ′2 the corresponding decomposition of U ′. Let u be a path from q− to

p− such that `(u)≤ ε , and let Y = Lab(u). Then

R≡U1Lab(e)U2V

and

R′ ≡U ′1Lab(e)U ′2V ′.

Since Lab(e) only appears once in W±, we have that R and R′ are cyclic shifts of the same word and

U2VU1 =U ′2V ′U ′1.

Also Y =U ′1U−1
1 since this labels the cycle up1q−1

1 . Thus,

Y RY−1 =U ′1U−1
1 U1Lab(e)U2VU1(U ′1)

−1 =U ′1Lab(e)U ′2V ′ = R′

which contradicts the definition of a ε-piece.

Similiarly, if U is an ε ′-piece, then R ≡UVU ′V ′, and arguing as above we get that U and U ′ share a

common letter from X tH . However each letter a ∈ X tH appears at most once in R, and if a appears

then a−1 does not.

Suitable subgroups Our goal now will be to give conditions under which we can find words which satis-

fying the conditions of Theorem V.4.3.

Fix A ⊂ G such that Γ(G,A ) is hyperbolic and G acts acylindrically on Γ(G,A ). For the rest of this

section, unless otherwise stated a subgroup will be called non-elementary if it is non-elementary with respect

to the action of on Γ(G,A ). Similarly, an element will be called loxodromic if it is loxodromic with respect

to this action. In particular, all loxodromic elements will satisfy WPD.
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Lemma V.4.4. Suppose S is a non-elementary subgroup. Then for all k ≥ 1, S contains pairwise non-

commensurable loxodromic elements f1, ..., fk, such that E( fi) = E+( fi).

Proof. We will basically follow the proof of [24, Lemma 6.16]. By Theorem III.2.3, since S is non-

elementary, it contains a loxodromic element h, and an element g such that g /∈ EG(h). By Lemma III.2.9,

for sufficiently large n1,n2,n2, ghn1 ,ghn2 ,ghn3 are pairwise non-commensurable loxodromic elements with

respect to Γ(G,A tEG(h)), and by Lemma III.2.12 these elements are loxodromic with respect to Γ(G,A ).

Thus, letting Hi = EG(ghni), we get that {H1,H2,H3} ↪→h (G,A ) by Corollary III.3.3. Now we can choose

a ∈H1∩S, b ∈H2∩S which satisfy ̂̀1(a)≥ 50C and ̂̀2(b)≥ 50C, where C is the constant given by Lemma

III.1.11. Then ab cannot belong to H3 by Lemma III.1.11, so by Lemma III.2.9 we can find c1,...,ck ∈H3∩S

such that ̂̀3(ci) ≥ 50C and the elements fi = abci are non-commensurable, loxodromic WPD elements

with respect to the action of G on Γ(G,A1), where A1 = A tH1 tH2 tH3. Next we will show that

EG( fi) = E+
G ( fi). Suppose that t ∈ EG( fi). Then for some n ∈ N, t−1 f n

i t = f±n
i . Let ε = |t|A1 . Then there

are oriented ε-close paths p and q labeled by (abci)
n and (abci)

±n. Passing to a multiple of n, we can as-

sume that n ≥ M where M = M(ε,2) is the constant provided by Lemma V.4.1. Then the labels of p and

q satisfy (W1)-(W3), so we can apply Lemma V.4.1 to get that p and q have two consecutive components.

But then the label of q must be (abci)
n, because the sequences 123123... and 321321... have no common

subsequences of length 2. Thus, t−1 f n
i t = f n

i , hence t ∈ E+
G ( fi). Finally, note that each fi is loxodromic with

respect to the action of G on Γ(G,A ) by Lemma III.2.12.

Now given a subgroup S ≤ G, let LS = {h ∈ S | h is loxodromic and EG(h) = E+
G (h)}. Now define

KG(S) by

KG(S) =
⋂

h∈LS

EG(h).

The following lemma shows that KS(G) can be defined independently of Γ(G,A ).

Lemma V.4.5. Let S be a non-elementary subgroup of G. Then KG(S) is the maximal finite subgroup of G

normalized by S. In addition, for any infinite subgroup H ≤ S such that H ↪→h G, KG(S)≤ H.

Proof. By Lemma V.4.4, LS contains non-commensurable elements f1 and f2. Then by Lemma III.1.5

KG(S)⊂ EG( f1)∩EG( f2) is finite. KG(S) is normalized by S as the set LS is invariant under conjugation by

S and for each g ∈ S, h ∈LS, EG(g−1hg) = g−1EG(h)g. Now suppose N is a finite subgroup of G such that

for all g ∈ S, g−1Ng = N. Then for each h ∈LS, there exists n such that N ≤CG(hn), and thus N ≤ EG(h)

for all h ∈LS.

Suppose now that H ≤ S and H ↪→h G. Then a finite-index subgroup of H centralizes KS(G), and hence

KS(G)≤ H by Lemma III.1.5.

In our notation, the finite radical K(G) is the same as KG(G). Now if S is a non-elementary subgroup of

G ∈A H , then S ∈A H , so S has a finite radical K(S). Clearly K(G)∩S≤ K(S)≤ KG(S), but in general

none of the reverse inclusions hold. Indeed suppose S ∈A H with K(S) 6= {1}. Let G = (S×A)∗H, where

A is finite and H is non-trivial. Then K(G) = {1} and KG(S) = K(S)×A.
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Lemma V.4.6. Let S be a non-elementary subgroup of G. Then we can find non-commensurable, loxodromic

elements h1, ...,hm such that EG(hi) = 〈hi〉×KG(S).

Proof. First, since KG(S) is finite, we can find non-commensurable elements f1,..., fk ∈LS such that KG(S)=

EG( f1)∩ ...∩EG( fk), and we can further assume that k ≥ 3. By Lemma III.3.3, {EG( f1), ...,EG( fk)} ↪→h

(G,A ). Let A1 = A tEG( f1)t ...tEG( fk), and consider the action of G on Γ(G,A1). For each 1≤ i≤ k

set ai = f ni
i where ni is chosen such that

1. EG( fi) =CG(ai)

2. h = a1...ak is a loxodromic WPD element with respect to Γ(G,A1).

3. ̂̀i(ai)≥ 50C.

(Here ̂̀i denotes the relative length of elements of EG( fi)). The first condition can be ensured by Lemma

III.2.6, the second by Lemma III.2.9 (note that a1...ak−1 /∈ EG(hk) by lemma III.1.11), and the third by

passing to a sufficiently high multiple of a power which satisfies the first two. We will show that, in fact,

EG(h) = 〈h〉×KS(G). Let t ∈ EG(h), and let ε = |t|A1 . Then by Lemma III.2.6, there exists n such that

t−1hnt = h±n. (V.18)

Up to passing to a multiple of n, we can assume that

n≥ M
k

Where M = M(ε,k) is the constant provided by Lemma V.4.1. Now (V.18) gives that there oriented ε-close

paths p and q in Γ(G,A1), such that p is labeled by (a1...ak)
n and q is labeled by (a1...ak)

±n; notice that

the label of these paths satisfy the conditions (W1)− (W3). Furthermore, there is a path r connecting p− to

q− such that Lab(r) = t. Now we can apply Lemma V.4.1 to get k consecutive components of p connected

to consecutive components of q. As in the proof of Lemma V.4.4, this gives that q is labeled by (a1...ak)
n

(not (a1...ak)
−n) since k ≥ 3. Let p = p0u1...uk p1 and q = q0v1...vkq1, where each ui is a component of p

connected to the component vi of q. Let e0 be the edge which connects (u1)− and (v1)−, and let ei be the

edge which connects (ui)+ to (vi)+. Let c = Lab(e0).

Since EG( fi) = CG(ai) for each 1 ≤ i ≤ k, we get that c commutes with Lab(u1) = Lab(v1). Thus,

c = Lab(e1), and repeating this arguement we get that c = Lab(ei) for each 0≤ i≤ k. Thus, c ∈ EG( f1)∩
...∩EG( fk) = KG(S). Now observe that Lab(p0) = (a1...ak)

la1....a j and Lab(q0) = (a1...ak)
ma1....a j for

some m, l ∈ N and 0 ≤ j ≤ k. Now rq0e−1
0 p−1

0 is a cycle in Γ(G,A1) and c commutes with each yi, so we

get that

t = (a1...ak)
la1....a jca−1

j ...a−1
1 (a1...ak)

−m = hl−mc

Thus, we have shown that EG(h) = 〈h〉KS(G). Finally, note that all elements of KG(S) commute with each

ai and hence commute with h. Therefore, EG(h) = 〈h〉×KG(S). Now if we set hi = a1...a
li
k for sufficiently

large li, the elements h1...hm will all be loxodromic, WPD elements with respect to Γ(G,A1) by Lemma
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III.2.9, and the same proof will show that each hi will satisfy EG(hi) = 〈hi〉×KG(S). It only remains to note

that these elements are all loxodromic with respect to Γ(G,A ) by Lemma III.2.12.

Definition V.4.7. A subgroup S of a group G ∈ A H is called suitable with respect to Γ(G,A ) if the

following holds:

1. Γ(G,A ) is hyperbolic and the action of G on Γ(G,A ) is acylindrical.

2. The action of S on Γ(G,A ) is non-elementary.

3. KG(S) = {1}.

We will further say that a subgroup is suitable if it is suitable with respect to some Γ(G,A ).

The next two results characterize suitable subgroups by the cyclic hyperbolically embedded subgroups

they contain. The first is an immediate corollary of Lemma V.4.6 and Lemma III.3.3.

Corollary V.4.8. Suppose S is suitable with respect to Γ(G,A ). Then for all k ∈ N, S contains non-

commensurable, loxodromic elements h1, ...,hk such that EG(hi)= 〈hi〉 for i= 1, ...,k. In particular, {〈h1〉, ...,〈hk〉} ↪→h

(G,A ).

Proposition V.4.9. If S contains an infinite order element h such that 〈h〉 is a proper subgroup of S and

〈h〉 ↪→h (G,X), then S is suitable with respect to Γ(G,A ) for some A ⊃ X.

Proof. Note that Lemma III.1.5 gives that 〈h〉 does not have finite index in any subgroup of G, so S is not

virtually cyclic. By Theorem III.2.10, there exists X ⊂ Y ⊂ G such that 〈h〉 ↪→h (G,Y ) and the action of G

on Γ(G,Y t〈h〉) is acylindrical; set A = Y t〈h〉. Now if g ∈ S \ 〈h〉, then there exists n ∈ N such that ghn

is loxodromic with respect to Γ(G,A ) by Lemma III.2.9. Since S is not virtually cyclic, the action of S on

Γ(G,A ) is non-elementary by Theorem III.2.3. Finally, by Lemma V.4.5, KG(S) is a finite subgroup of 〈h〉,
thus KG(S) = {1}.

The next lemma follows from Proposition V.4.9 and Lemma III.1.7.

Lemma V.4.10. Suppose H ∈ A H , S is a suitable subgroup of H, and H ↪→h G. Then S is a suitable

subgroup of G.

Notice a subgroup S will contain words which satisfy the conditions of Proposition V.4.3 if and only

if S is suitable. Since G is a suitable subgroup of itself if and only if K(G) = {1}, the main obstruction to

finding words which satisfying the assumptions of Theorem V.4.3 is the existence of finte normal subgroups.

However, the following lemma (which is an easy exercise) shows that for most purposes this is a minor

obstruction:

Lemma V.4.11. Let G ∈A H . Then G/K(G) ∈A H and G/K(G) has trivial finite radical.
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V.5 Suitable subgroups of HNN-extensions and amalgamated products

Next we want to show that suitable subgroups can be controlled with respect to taking HNN-extensions and

amalgamated products.

Lemma V.5.1. Suppose S is suitable with respect to Γ(G,A0), and A and B are cylic subgroups of G. Then

there exists A0 ⊆A ⊂ G such that A∪B⊂A and S is suitable with respect to Γ(G,A ).

Proof. By Corollay V.4.8, S contains an infinite order element y such that 〈y〉 ↪→h (G,A0), and an element

g ∈ S \ 〈y〉. By Lemma III.3.5, we can find a subset A0 ⊆ Y0 ⊂ G such that 〈y〉 ↪→h (G,Y0) and A and B

are both elliptic with respect to the action of G on Γ(G,Y0t〈y〉). By Theorem III.2.10, we can find Y ⊃ Y0

such that 〈y〉 ↪→h (G,Y ), and the action of G on Γ(G,Y t 〈y〉) is acylindrical. Clearly A and B are still

elliptic with respect to Γ(G,Y t 〈y〉). By Lemma III.2.9, for some n ∈ N, gyn is loxodromic with respect

to Γ(G,Y t 〈y〉). Thus, the action of S on Γ(G,Y t 〈y〉) is non-elementary by Theorem III.2.3. Letting

A = Y t〈y〉∪A∪B, Lemma III.2.13 gives that the action of G on Γ(G,A ) is acylindric, and the action of

S is still non-elementary, hence S is suitable with respect to Γ(G,A ).

Proposition V.5.2. Suppose S is a suitable subgroup of a group G ∈A H . Then for any isomorphic cyclic

subgroups A and B of G, the corresponding HNN-extension G∗At=B belongs to A H and contains S as a

suitable subgroup.

Proof. Let A be the set given by Lemma V.5.1 with respect to S, A and B. Since S is suitable with respect to

Γ(G,A ), Corollary V.4.8 gives that S contains an element h which is loxodromic with respect to Γ(G,A )

and which satisfies EG(h) = 〈h〉.
Let G1 denote the HNN-extension G∗At=B; we identify G with its image in G1. We will first show that

Γ(G1,A ∪{t}) is a hyperbolic metric space. Since Γ(G,A ) is hyperbolic, by Theorem II.0.5 there exists a

bounded presentation of G the form

〈A |S 〉 (V.19)

such that for any word W in A such that W =G 1, the area of W over the presentation (V.19) is at most

L‖W‖ for some constant L. Then G1 has the presentation

〈A ∪{t} |S ∪{at = ϕ(a) | a ∈ A}〉 (V.20)

where ϕ : A→ B is an isomorphism. Note that (V.20) is still a bounded presentation, as we only added

relations of length 4 (we use here that A∪B ⊂A ). We will show that (V.20) still satisfies a linear isoperi-

metric inequality, which is enough to show that Γ(G1,A ∪{t}) is a hyperbolic metric space by Theorem

II.0.5.

Let W be a word in A ∪{t} such that W =G1 1. Let ∆ be a minimal diagram over (V.20). Then is it well-

known (and easy to prove) that every t-band of W starts and ends on ∂∆. Furthermore, since A∪B ⊂ A ,

minimality of ∆ gives that each t-band consists of a single cell. Let Π1, ...,Πm denote the t-bands of ∆. Then

∆ \
⋃

Πi consists of m+ 1 connected components ∆1, ...,∆m+1 such that each ∆i is a diagram over (V.19).
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Thus, for each i, Area(∆i)≤ L`(∂∆i). Clearly m≤ `(∂∆), and it is easy to see that

m+1

∑
i=1

`(∂∆i) = `(∂∆).

It follows that

Area(∆) =
m+1

∑
i=1

Area(∆i)+m≤
m+1

∑
i=1

L`(∂∆i)+ `(∂∆)≤ (L+1)`(∂∆).

Thus, Area(W )≤ (L+1)‖W‖, and hence Γ(G1,A ∪{t}) is a hyperbolic metric space.

Next, we will show that h is loxodromic with respect to the action of G1 on Γ(G1,∪{t}). Observe that

any shortest word W in A ∪{t} which represents an element of G contains no t letters. Indeed by Britton’s

Lemma if W represents an element of G and contains t letters, then it has a subword of the form t−1at for

some a ∈ A or a subword of the form tbt−1 for some b ∈ B. However, since A∪B ⊂ A , each of these

subwords can be repalced with a single letter of A∪B, contradicting the fact that W is a shortest word.

Since h is loxodromic, if W is the shortest word in A representing h in G then any path p labeled by W n is

quasi-geodesic in Γ(G,A ) . It follows that p is still quasi-geodesic in Γ(G1,A ∪{t}) thus h is loxodromic

in G1.

Finally, we will show that h satisfies the WPD condition. Let κ = 100δ . By Lemma III.2.5, it suffices

to verify (III.6) with respect to κ .

Choose M such that for all r1 and r2 satisfying if |ri|A ≤ κ for i = 1,2, then r1Ar2 ∪ r1Br2 ⊂ BA (M).

Now choose N such that hN /∈ BA (M). Suppose g ∈ G1 such that dA t{t}(1,g)≤ κ and dA t{t}(hN ,ghN)≤
κ . Consider the quadrilateral s1 p1(s2)

−1(p2)
−1 in G1 where `(si) ≤ κ , Lab(s1) = g, and Lab(pi) = hN .

Without loss of generality, we assume each si and each pi is a geodesic. As shown above, this means that no

edges of pi are labeled by t±. Suppose that s1 contains an edge labeled by t±. Filling this quadrilateral with

a van Kampen diagram ∆, for each edge of s1 labeled by t±, there exists a t-band connecting this edge to an

edge of s2. Let e be the last t edge of s1, and let r1 be the subpath of s1 from e+ to (s1)+. Similarly, let r2 be

the subpath of (s2)
−1 from (s2)+ to f−, where f is the edge of (s2)

−1 connected to e by a t-band. Note that

the label of the top edge of the t-band is an element of A or B; for concreteness we assume it is equal to an

element a ∈ A. Now we have

hN = r−1
1 ar2

Moreover, this is equality in G which violates our choice of N. Therefore, s1 must not contain any t-letters,

and hence g ∈ G. Thus,

{g ∈ G1 | dA t{t}(1,g)< κ,dA t{t}(h
N ,ghN)< κ} ⊂ {g ∈ G | dA (1,g)< κ,dA (hN ,ghN)< κ}.

and this last set is finite because h satisfies WPD with respect to the action of G on Γ(G,A ). Thus, h is

a loxodromic, WPD element with respect to the action of G1 on Γ(G1,A ∪{t}), hence EG1(h) ↪→h G1 by

Theorem III.2.8. Thus G1 ∈A H by Theorem III.2.10.

Since h is loxodromic with respect to the action of G on Γ(G,A ), it is not conjugate with any elliptic
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element, in particular it is not conjugate with any element of A or B. It follows from Lemma III.2.6 and

Lemma II.0.12 that EG1(h) = EG(h) = 〈h〉. Therefore S is a suitable subgroup of G1 by Proposition V.4.9.

We now prove a similar result for amalgamated products using a standard retraction trick. The following

lemma is a simplification of [24, Lemma 6.21]

Lemma V.5.3. Suppose G is a group, R a subgroup which is a retract of G, and H ≤ R such that H ↪→h G.

Then H ↪→h R.

Proposition V.5.4. Suppose A ∈A H , S a suitable subgroup of A. Let P = A∗K=ϕ(K) B, where K is cyclic.

Then P ∈A H and S is a suitable subgroup of P.

Proof. Clearly, A ↪→h A ∗ B, so by Lemma V.4.10, if S is suitable in A, then S is suitable in A ∗ B. By

the previous lemma, S is suitable in the HNN extension G = (A ∗B)∗Kt=ϕ(K). By Theorem II.0.13 P is

isomorphic to 〈At ,B〉 ≤ G via an isomorphism which sends A to At and B to B. Futhermore, 〈At ,B〉 is a

retract of G. Thus if h ∈ S≤ A satisfies 〈h〉 ↪→h G, then 〈ht〉 ↪→h G by Lemma III.1.8 and 〈ht〉 ↪→h 〈At ,B〉 by

Lemma V.5.3. Thus St is a suitable subgroup of 〈At ,B〉 by Proposition V.4.9, and passing to P through the

isomorphism gives the desired result.

V.6 Main theorem and applications

Our main technical small cancellation result is the following Theorem.

Theorem V.6.1. Suppose G ∈A H and S is suitable with respect to Γ(G,A ). Then for any {t1, ..., tm} ⊂G

and N ∈ N, there exists a group G and a surjective homomorphism γ : G→ G which satisfies

(a) G ∈A H

(b) γ|BA (N) is injective

(c) γ(ti) ∈ γ(S) for i = 1, ...,m.

(d) γ(S) is suitable with respect to Γ(G,A ′), where γ(A )⊂A ′.

(e) Every element of G of order n is the image of an element of G of order n.

(f) For all g, h ∈ BA (N), g∼ h if and only if γ(g)∼ γ(h)

(g) If g ∈ BG,A (N) is loxodromic and x ∈ G, then there exists n such that γ(x−1gnxg±n) = 1 if and only if

γ(x) ∈ γ(EG(g)).

Remark V.6.2. It is easy to see from the proof of Theorem V.6.1 that

G = G/〈〈t1w1, . . . , tmwm〉〉

for some elements w1, . . . ,wm ∈ S.
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Proof. Clearly it suffices to prove the theorem with m = 1, and the general statement follows by induction.

Since S is suitable with respect to Γ(G,A ), by Corollary V.4.8 S contains infinite order elements h1 and h2

such that {〈h1〉,〈h2〉} ↪→h (G,A ). Let A1 = A t〈h1〉t 〈h2〉, and fix ε , µ , and ρ satisfying the conditions

of Lemma V.2.1, Theorem V.3.5, and Corollary V.3.8 for λ = 1
4 and c = 1. Choose n such that M

2n ≤ µ and

2n ≥ ρ , where M = M(ε,3) is the constant given by Lemma V.4.1. Now if m1, ...,mn and l1, ..., ln to be

sufficiently large, distinct positive integers, then the word

W = t−1hm1
1 hl1

2 ...h
mn
1 hln

2

will satisfy all the assumptions of Proposition V.4.3 (here W is considered as a word in A1). Thus, the set

R of all cyclic shifts of W±1 satisfies the C′(ε, M
2n ,

1
4 ,1,2n)-condition by Proposition V.4.3. Let

G = G/〈〈R〉〉.

Lemma V.2.1 gives that γ is injective on BA1(N), and hence it is also injective on BA (N). Lemma V.2.1

also gives that {γ(〈h1〉),γ(〈h2〉)} ↪→h G, thus G ∈ A H by Corollary III.2.11. Theorem V.3.5 gives that

every element of G of order n is the image of an element of G of order n. Corollary V.3.8 gives (f) and (g).

Furthermore, since t−1hm1
1 hl2

2 ...h
mn
1 hln

2 ∈R, we have that γ(t) = γ(hm1
1 hl2

2 ...h
mn
1 hln

2 ) ∈ γ(S). Finally, Lemma

V.2.1 gives that γ(〈h1〉) = 〈γ(h1)〉 ↪→h (G,γ(A )). Since γ(h2) /∈ 〈γ(h1)〉, γ(S) is suitable with respect to

Γ(G,A ′) for some A ′ ⊃ γ(A ) by Proposition V.4.9.

Remark V.6.3. Since the proof uses the same small cancellation conditions as [62] and [67], it follows

from these papers that if G is non-elementary hyperbolic, then G is non-elementary hyperbolic, and if G is

hyperbolic relative to {Hλ}λ∈Λ, then G is hyperbolic relative to {γ(Hλ}λ∈Λ.

Note that we can always choose N such that BA (N) contains any given finite subset of G. We will next

record some useful corollaries of this theorem.

Corollary V.6.4. Suppose S is a subgroup of a finitely generated group G and for some infinite order ele-

ments h1, h2 ∈ S and some subgroup H ≤ G, we have {〈h1〉,〈h2〉,H} ↪→h (G,X). Then for any N ∈ N and

A = X t〈h1〉t 〈h2〉tH there exists a group Q ∈A H and a surjective homomorphism η : G→ Q such

1. η |S is surjective.

2. η |BA (N) is injective

3. η(H) ↪→h Q

4. η(S) is a suitable subgroup of Q (equivalently, K(Q) = {1}).

5. Every element of Q of order n is the image of an element of G of order n.

Proof. The proof is the same as Theorem V.6.1 with t1, ..., tm chosen as a generating set of G and W

considered as a word in the alphabet A = X t 〈h1〉 t 〈h2〉 tH; in this case Lemma V.2.1 also gives that

η(H) ↪→h Q.
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We will also make use of an infinitely generated version of this corollary; in this case we will take a

sequence of groups, and we can not guarantee that the limit group will belong to A H , but only that it will

not be finite or even virtually cyclic.

Corollary V.6.5. Suppose G ∈A H is countable and S is suitable with respect to Γ(G,A ). Then for any

N ∈ N, there exists a non-virtually cyclic group Q and a surjective homomorphism η : G→ Q such that

1. η |S is surjective.

2. η |BA (N) is injective

Proof. By Lemma V.5.1, without loss of generality, we can assume that A contains infinite subgroups 〈h〉
and 〈 f 〉 such that 〈h〉∩ 〈 f 〉= {1}.

Let G = {1 = g0,g1, ...}. Let G0 = G, and define a sequence of quotient groups

...� Gi � Gi+1 � ...

where the induced map ηi : G � Gi satisfies

1. ηi(S) is suitable with respect to Γ(ηi(G),Ai), where ηi(A )⊂Ai.

2. ηi(gi) ∈ ηi(S).

3. ηi|BA (N) is injective.

Given Gi, we apply Theorem V.6.1 to Gi with t = ηi(gi+1) and suitable subgroup ηi(S). Theorem V.6.1

gives that the map γ : Gi→Gi+1 will be injective on BAi(N) which contains Bηi(A )(N), and further for some

Ai+1 ⊃ γ(Ai), γ(ηi(S)) is suitable with respect to Γ(G,Ai+1). Hence the induced quotient map ηi+1 = ηi ◦γ

will satisfy all of the above conditions. Let Q be the direct limit of this sequence (that is, Q=G(0)/
⋃

kerηi)

and η : G→Q the induced epimorphism. Then for each gi ∈G, ηi(gi)∈ ηi(S), thus η(gi)∈ η(S). It follows

that η(S) = Q. Finally, η |BA (N) is injective, since each ηi is injective on this set. Since η is injective on

〈h〉∪ 〈 f 〉, we get that Q is not virtually cyclic.

Corollary V.6.6. Let G1,G2 ∈ A H with G1 finitely generated, G2 countable. Then there exists a non-

virtually cyclic group Q and surjective homomorphims αi : Gi→ Q for i = 1,2. In addition, if G2 is finitely

generated, then we can choose Q ∈A H with K(Q) = {1}, and if K(Gi) = {1}, then for any finite subset

Fi ⊂ Gi, we can choose αi to be injective on Fi.

Proof. Since each Gi can be replaced with Gi/K(Gi), it suffices to assume K(Gi) = {1} for i = 1,2. Let Fi

be any finite subset of Gi. Let F = G1 ∗G2, and let ιi : Gi → F be the natural inclusion. We will identify

G1 and G2 with their images in F . By Corollary V.4.8, there exist h1, h2 ∈G1 such that {〈h1〉,〈h2〉} ↪→h G1.

Since {G1,G2} ↪→h F , Lemma III.1.7 gives that {〈h1〉,〈h2〉,G2} ↪→h F . Thus, S = 〈h1,h2〉 is suitable in F

by Proposition V.4.9.

By Corollary V.6.4, there exists a group F ′ and a surjective homomorphism η1 : F → F ′, such that η1|S
is surjective, η1|G2∪F1∪F2 is injective and η1(G2) ↪→h F ′. Since S⊂G1, we also have that η1|G1 is surjective.
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From now on we identify G2, F1, and F2 with their images in F ′. Now since K(G2) = {1}, G2 will be a

suitable subgroup of itself. Since G2 ↪→h F ′, G2 will be a suitable subgroup of F ′ by Lemma V.4.10. Now

applying Corollary V.6.5 gives a non-virtually cyclic group Q and a surjective homomorphism η2 : F ′→Q,

such that η2|G2 is surjective and η2|F1∪F2 is injective. Now since η1|G1 is surjective and η2|G2 is surjective,

it follows that each of the compositions

Gi
ιi
↪→ F

η1
� F ′

η2
� Q

is surjective. Furthermore, each of these maps in injective on Fi. Now if G2 is finitely generated, we can

apply Corollary V.6.4 to F ′ instead of Corollary V.6.5. Then we will get that Q ∈ A H and η(G2) is a

suitable subgroup, thus K(Q)≤ KQ(η(G2)) = {1}.

By fixing G1 as a non-elementary, hyperbolic (hence finitely generated) group with Property (T), we get

Corollary V.6.7. Every countable G ∈A H has an infinite property (T) quotient.

Frattini subgroups.

Definition V.6.8. The Frattini subgroup Fratt(G) of G is the intersection of all maximal subgroups of G,

provided one such subgroup exists, otherwise Fratt(G) = G.

An element g ∈ G is called a non-generator if for all X ⊂ G such that 〈X〉= G, we have 〈X \{g}〉= G.

Conversely, if X is a generating set of G such that 〈X \{g}〉 6= G, then we say that g is an essential member

of the generating set X .

The following lemma is well-known.

Lemma V.6.9. For any group G,

Fratt(G) = {g ∈ G | g is a non-generator of G}.

Lemma V.6.10. Let ϕ : G→ G′ be a homomorphism. If ϕ(g) /∈ Fratt(ϕ(G)), then g /∈ Fratt(G).

Proof. Let X be a subset of G such that ϕ(X) generates ϕ(G) and ϕ(g) is an essential member of this

generating set. Then g is an essential member of the generating set X ∪ker(ϕ) of G.

Theorem V.6.11. Let G ∈A H . Then Fratt(G)≤ K(G); in particular, the Frattini subgroup is finite.

Proof. First, by Lemma V.4.11 and Lemma V.6.10 we can replace G with G/K(G), so it suffices to assume

K(G) = {1}.
Let g ∈ G \ {1}. Since K(G) = {1}, Corollary V.4.8 gives that G contains infinite order elements h1

and h2 such that 〈h1〉∩ 〈h2〉 = {1} and {〈h1〉,〈h2〉} ↪→h G. In particular, this means that G contains some

infinite order element h such that 〈h〉 ↪→h G, and such that g /∈ 〈h〉. Let S = 〈g,h〉. By Proposotion V.4.9, S

is a suitable subgroup of G. Now we can apply Corollary V.6.5 to find a non-virtually cyclic group Q and

a homomorphism η : G→ Q such that η |S is surjective, thus Q is generated by X = {η(g),η(h)}. Now
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η(g) is an essential member of the generating set X since Q is not cyclic, so η(g) /∈ Fratt(η(G)). Therefore

g /∈ Fratt(G) by Lemma V.6.10.

Topology of marked group presentations. Let Gk denote the set of marked k-generated groups, that

is Gn = {(G,x1, ...,xk) | x1, ...,xk ∈ G,〈x1, ...,xk〉 = G}. We will typically refer to elements of Gk simply as

groups, although it should be understood that several elements of Gk will correspond to the same group. Now

each element of Gk can be naturally associated to a normal subgroup N of the free group on k generators by

the formula

G = F(x1, ...,xk)/N.

Given two normal subgroups N, M of the free group Fk, we can define a distance

d(N,M) =

min
{

1
‖W‖ |W ∈ N∆M

}
if M 6= N

0 if M = N

This defines a metric (and hence a topology) on Gk. It is not hard to see that this topology is equivalent

to saying that a sequence (Gn,Xn)→ (G,X) in Gk if and only if there are functions fn : Γ(G,Xn)→ Γ(G,X)

which are label-preserving isometries between increasingly large neighboorhoods of the identity.

Given a group G, let [G]k denote the (possibly empty) subset of Gk corresponding to the group G, and let

[G]k denote its closure with respect to the topology mentioned above. Let [G] =
⋃

∞
k=1 [G]k. In the language

of [4], a group H ∈ [G] if and only if G preforms H, that is for some generating set Y of H and some sequence

of generating sets X1, ... of G,

lim
n→∞

(G,Xn) = (H,Y )

Where this limit is being taken in some fixed Gk. Also, let A H0 denote the class of aclyindrically

hyperbolic groups G for which K(G) = {1}, and let [A H0] =
⋃

∞
k=1{(G,x1, ...,xk) ∈ Gk | G ∈A H0}.

Theorem V.6.12. Let C be a countable subset of [A H0]. Then there exists a finitely generated group D

such that C ⊂ [D].

Proof. For each (G,x1, ...,xk) ∈ C , let XG = {x1, ...,xk}. Now enumerate all pairs (Gi,ni) where Gi belongs

to C and ni ∈ N. Let Q1 = G1, and suppose we have defined groups Q1, ...,Qm and for each Qk, we have

surjective homomorphisms α(k,k) : Gk→ Qk and β(k−1,k) : Qk−1→ Qk.

For i≤ j, let β(i, j) be the natural quotient map from Qi to Q j, and let α(i, j) = β(i, j) ◦α(i,i). Suppose that

for each 1≤ k ≤ m, Qk satisfies

1. Qk ∈A H and K(Qk) = {1}.

2. for each 1≤ i≤ k, α(i,k)|BXGi
(ni) is injective.

Let F = ∪m
i=1α(i,m)(BXGi

(ni)) ⊂ Qm. Now, by Corollary V.6.6, there exists a group Qm+1 and sur-

jective homomorphisms β(m,m+1) : Qm → Qm+1 and α(m+1,m+1) : Gm+1 → Qm+1, such that Qm+1 ∈ A H ,
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K(Qm+1) = {1}, β(m,m+1) is injective on F and α(m+1,m+1) is injective on BXGm+1
(nm+1). Thus the the above

conditions are satisfied for Qm+1.

G1 G2 Gm

�

α(1,1)

�

α(2,2)

�

α(m,m)

Q1
β(1,2)
� Q2

β(2,3)
� ...

β(m−1,m)

� Qm � ... � D

Now define D to be the direct limit of the sequence Q1, .... That is, D=Q1/
⋃

∞
n=1 kerβ1,n. Let γi : Gi→D

denote the composition of α(i,i) and the natural quotient map from Qi to D. Let Xi = γi(XGi). We will show

that γi bijectively maps BXGi
(ni) ⊂ Γ(Gi,XGi) to BXi(ni) ⊂ Γ(D,Xi). Clearly γi is surjective. now suppose

g,h ∈ BXGi
(ni), g 6= h and γi(g) = γi(h). By construction, α(i,i)(g) 6= α(i,i)(h). However α(i,i)(gh−1) ∈⋃

∞
n=i kerβi,n, thus there must exists some k ≥ i such that β(i,k)(α(i,i)(g)) = β(i,k)α(i,i)(h). But this means that

α(i,k)(g) = α(i,k)(h), which contradicts one of our injective assumptions. Thus, γi bijectively maps BXGi
(ni)

to BXi(ni).

Now let (G,XG) ∈ C , and let (Gi j ,ni j) be the subsequence corrosponding to G.Now γi j bijectively maps

BXG(ni j)⊂ Γ(G,XG) to BXi j
(ni j)⊂ Γ(D,Xi j).

Therefore,

lim
j→∞

(D,Xi j) = (G,XG).

Exotic quotients. Given a group G, let π(G)⊂ N∪{∞} denote the set of orders of elements of G.

Theorem V.6.13. Let G ∈ A H be countable. Then G has infinite quotient group C such that any pair of

elements of C are conjugate if and only if they have the same order and π(C) = π(G/K(G)). In particular,

if G is torsionfree, then C has two conjugacy classes.

Proof. Since G can be replaced by G/K(G), it suffices to assume K(G) = {1}.
Let O ⊂ G such that the orders of any two elements of O are different and π(O) = π(G). By Corollary

V.4.8, G contains an infinite order element h such that 〈h〉 ↪→h G. Let g ∈ G\ 〈h〉, and let S = 〈g,h〉. Then S

is suitable subgroup by Proposition V.4.9. Now enumerate G as {1 = g0,g1, ...}. Let G(0) = G, and suppose

we have constructed G(n) and a surjective homomorphism αn : G→ G(n) satisfying:

1. G(n) ∈A H .

2. αn(S) is a suitable subgroup of G(n).

3. π(G(n)) = π(G).

4. For each 1≤ i≤ n, αn(gi) is conjugate to an element of αn(O) and αn(gi) ∈ αn(S).

We construct G(n+ 1) in two steps; first, let f ∈ O such that f has the same order as gn+1. Now let

G(n+ 1
2) be the HNN-extension with associated subgroups 〈 f 〉 and 〈gn+1〉. By Lemma V.5.2, αn(S) is a

70



suitable subgroup of G(n+ 1
2). Applying Theorem V.6.1 to G(n+ 1

2) with αn(S) as a suitable subgroup

and {t,gn+1} as a finite set of elements and N = 8δ produces a group G(n+ 1) ∈ A H and a surjective

homomorphism γ : G(n+ 1
2)→ G(n+ 1), such that γ(t), γ(gn+1) ∈ γ(αn(S)) and γ(αn(S)) is a suitable

subgroup of G(n+ 1). Also, if g has order k in G(n+ 1
2), then for each 1 ≤ i < k, gi is conjugate to an

element of length at most 8δ by Lemma V.3.3. Hence the order of g in G(n+ 1) is k, and combining this

with Theorem V.6.1 gives π(G(n+1)) = π(G(n+ 1
2)) = π(G(n)) = π(G). Since G(n+ 1

2) is generated by

G(n) and t and γ(t) ∈ γ(G(n)), it follows that the restriction of γ to G(n) is surjective. Let αn+1 = γ ◦αn.

Thus G(n+1) will satifies the inductive assumptions. Let C be the direct limit of the sequence G(1), ..., and

let α : G→C be the natural quotient map. First note that for each gi ∈G, αi(gi) ∈ αi(S), thus α(gi) ∈ α(S).

Therefore the restriction of α to S is surjective; in particular, C is two-generated. Since each G(n) satisfies

π(G(n)) = π(G), we get that π(C) = π(G). Finally suppose gi1 and gi2 have the same order in G. Then for

some f ∈ O , αi1(gi1)∼ αi1( f ) and αi2(gi2)∼ αi2( f ). Therefore α(gi1)∼ α( f )∼ α(gi2).

Theorem V.6.14. Let G ∈A H be countable. Then G has a finitely generated quotient V which is verbally

complete.

Proof. As before, it suffices to assume K(G) = {1}, and we can fix a two-generated suitable subgroup

S of G. Enumerate all pairs {(g1,v1), ...} where gi ∈ G and vi = vi(x1, ...) is a non-trivial freely reduced

word in F(x1, ...). Let G(0) = G, and suppose we have constructed G(n) and a surjective homomorphism

αn : G→ G(n) satisfying

1. G(n) ∈A H .

2. αn(S) is a suitable subgroup of G(n).

3. The equation gi = vi(x1, ...) has a solution in G(n)

4. αn(gi) ∈ αn(S) for each 1≤ i≤ n.

Given G(n), choose m such that vn+1 is a word in x1, ...,xm, and let J = F(x1, ...,xm) if gn+1 has infinite

order, and J = 〈x1, ...xm | vk
n+1 = 1〉 if gn+1 has order k. In the case where gn+1 has order k, it is well-known

that the order of vn+1 in J is k (see [49]). Thus the amalgamated product G(n+ 1
2) = G(n) ∗gn+1=vn+1 J is

well-defined in either case. By Lemma V.5.4, the αn(S) is a suitable subgroup of G(n+ 1
2), so we can

apply Theorem V.6.1 to get a group G(n + 1) ∈ A H and a surjective homomorphism γ : G(n + 1
2)→

G(n+1) such γ(αn(S)) is suitable, and {γ(x1), ...,γ(xm),γ(gn+1)} ⊂ γ(αn(S)). Since G(n+ 1
2) is generated

by {G(n),x1, ...,xm} and γ(xi) ∈ γ(G(n)) for each 1 ≤ i ≤ m, it follows that the restriction of γ to G(n) is

surjective. Thus there is a natural quotient map αn+1 : G→ G(n+ 1). It is easy to see that the inductive

assumptions still hold in G(n+1). Let V be the direct limit of the sequence G(0), ..., and let α : G→V be

the natural quotient map. For each g ∈ G, there exists n such that αn(g) ∈ αn(S); thus, the restriction of α

to S is surjective, so V is two-generated. It is straightforward to verify that V is verbally complete.
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CHAPTER VI

CONJUGACY GROWTH

VI.1 Conjugacy growth of acylindrically hyperbolic groups

Theorem VI.1.1. Let G ∈A H be a finitely generated. Then ξG ∼ πG ∼ 2n.

Proof. Let K = F2×K(G) ≤ G be the subgroup provided by Lemma III.1.10. Note first that if gm = f for

some g ∈ G, f ∈ K, and m ∈ Z \ {0}, then the intersection Kg ∩K contains the subgroup 〈 f 〉. Hence if f

has infinite order, g ∈ K by Lemma III.1.5. Thus every element of K of infinite order that is primitive in K

is also primitive in G. Furthermore, if two elements of K of infinite order are conjugate in G, then they are

conjugate in K for the same reason. Thus we obtain πG � πK and the later function is obviously exponential

(this also follows from the results of [22] as K is non-elementary hyperbolic). Since πG � ξG � 2n for every

finitely generated group G, we are done.

Theorem VI.1.1 can be used to completely classify conjugacy growth functions of subgroups of certain

groups, e.g., mapping class groups.

Corollary VI.1.2. Let Σ be a (possibly punctured) closed orientable surface, G a subgroup of the mapping

class group of Σ. Then either G is virtually abelian (in which case ξG is polynomial), or ξG is exponential.

Proof. By Theorem 2.21 from [24], G is either virtually abelian, or has a finite index subgroup G0 which

surjects on a group with a non-degenerate hyperbolically embedded subgroup, that is an aclyindrically

hyperbolic group. In the later case ξG0 is exponential by Theorem VI.1.1. It is straightforward to prove that

one has ξG0 � ξG whenever [G : G0]< ∞ (see, e.g., [42]). Hence the claim.

VI.2 Constructing groups with specified conjugacy growth

The goal of this section is to prove Theorem I.4.2 For the rest of this chapter, we will work with relatively

hyperbolic groups. Recall that G is hyperbolic relative to {Hλ}λ∈Λ if and only if {Hλ}λ∈Λ ↪→h (G,X) for

some finite set X . In this case, we call an element g∈G parabolic if g is conjugate some an element of some

Hλ . Also, any infinite order element which is not parabolic is loxodromic with respect to the action of G on

Γ(G,X tH ); furthermore, this action is acylindrical [65].

We will also make use of following version of Proposition V.5.2 for torsion free relatively hyperbolic

groups.

Lemma VI.2.1. [44, Corollary 2.16] Let G be a torsion free group hyperbolic relative to {Hλ}λ∈Λ, S a

suitable subgroup of G, and g a loxodromic element of G. Then for any h ∈H , there is an isomorphism

ι : EG(g)→〈h〉 and the corresponding HNN-extension G∗EG(g)t=〈h〉 is hyperbolic relative to {Hλ}λ∈Λ. Fur-

thermore, S is a suitable subgroup of G∗EG(g)t=〈h〉.
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Groups with 2 conjugacy classes were first constructed in [67] as direct limits of relatively hyperbolic

groups; our proof of Theorem V.6.13 is based on the same ideas. The proof of Theorem VI.2.3 is also based

on these ideas; however its implementation is not automatic. Before proceeding to the proof of Theorem

VI.2.3, we give a brief outline of the main difficulties which occur in adapting these ideas to our situation.

To prove Theorem VI.2.3, instead of trying to make all elements conjugate we want to control the

number of conjugacy classes inside each ball with respect to a fixed finite generating set. So at the ith

step of our construction we fix the desired number of conjugacy classes on the sphere of radius i (up to

some constants), making all other elements of the sphere conjugate. The main problem, however, is that

the conjugacy relations which we want to add may also produce “unwanted” conjugacy relations between

elements we want to keep unconjugate. For instance conjugating two elements x and y, we also make xn

conjugate to yn for all n. Induced conjugations of this particular type can be controlled by working with

primitive conjugacy classes and making all elements in our group conjugate to all their nontrivial powers.

However this does not solve the problem completely as “unwanted” conjugations can occur even between

primitive elements. More precisely, the problem splits into two parts. When dealing with the sphere of

radius i at step i, we have to make sure that

1) “Unwanted” conjugations do not occur inside the ball of radius (i−1).

2) We keep enough non-conjugate primitive elements on spheres of radii > i to continue the construction.

To overcome the first difficulty we “attach” a new parabolic subgroup with 2 conjugacy classes to a

representative of each conjugacy class which we want to keep inside the ball of radius (i−1). Then Lemma

III.1.5 guarantees that such classes remain different at all steps of the inductive construction, and hence in

the limit group.

The second part of the problem is more complicated and is typical for such inductive proofs. It is, in

fact, the main obstacle in implementing the ideas from [67] in the proof of Theorem VI.2.3. To guarantee 2)

we construct sets Ui of elements with ordinary word length i but relative length at most 4. Then parts (f) and

(g) of Theorem V.6.1 come into play and allow us to control these elements during the small cancellation

substep of each step; Lemma II.0.12 is used to control them during the HNN-extension substep.

Remark VI.2.2. Note that every torsion free group G with 2 conjugacy classes has exponential growth.

Indeed every element g ∈G is conjugate to its square. If g 6= 1, this easily implies that the intersection of the

cyclic subgroup 〈g〉 with a ball of radius n with respect to a fixed finite generating set of G has exponentially

many elements.

Theorem VI.2.3. Let G be a group generated by a finite set X, f the conjugacy growth function of G with

respect to X. Then the following conditions hold.

(a) f is non-decreasing.

(b) There exists a≥ 1 such that f (n)≤ an for every n ∈ N.

Conversely, suppose that a function f : N→ N satisfies the above conditions (a) and (b). Then there exists

an infinite finitely generated group G such that ξG ∼ f .
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Proof. The ‘only if’ part of the theorem is obvious. Let us prove the other one. Suppose f : N→ N is a

non-decreasing function such that f ≤ an for some a > 1. If f ≡ 1, the statement is obvious. Otherwise

passing to an equivalent function if necessary, we can assume that f (n) ≥ 2 for all n. Let f̄ denote the

function defined by f̄ (n) = f (n)− f (n−1).

Let A be a finitely generated torsion free group with two conjugacy classes. Clearly, it suffices to

assume that f (n)≤ γA(n), since γA is exponential by Remark VI.2.2. Set G(1) = A∗ 〈h〉, where h generates

an infinite cyclic group. Let X ′ be a finite generating set for A. Then we take X = X ′ ∪ h−1X ′h∪{h} as a

finite generating set for G(1). Let B = h−1Ah, and fix a0 ∈ A and b0 ∈ B such that |a0|X = |b0|X = 1.

Further for each i ≥ 2, we create a collection of subsets Ui = {ab : a ∈ A\{1},b ∈ B\{1}, |ab|X = i}.
Note that all elements of U =

⋃
∞
i=1Ui ∪ {a0} have word length at most 4 with respect to the generators

A∪{h}. Clearly |Un| � γA(n), and since γA is exponential, there exists a constant L such that

|ULn| ≥ (γG(1)(n−1))(γG(1)(n−1)+1)+ f̄ (n). (VI.1)

Suppose we have constructed a group G(k), an epimorphism ϕk : G(1)→ G(k), and a collection of

subsets {a0}=W1 ⊂ ...⊂Wk ⊂U , such that the following conditions are satisfied.

(a) ϕk is injective on X , A, and U (so we identify these sets with their images in G(k)).

(b) G(k) is hyperbolic relative to a collection Ck of proper subgroups with two conjugacy classes.

(c) G(k) is a suitable subgroup of itself.

(d) G(k) is torsion free.

(e) Every g ∈ BG(k),X(k−1) is parabolic in G(k).

(f) Each element of Wk is parabolic, and there is exactly one element of Wk inside each parabolic conjugacy

class. In particular, distinct elements of Wk are non-conjugate.

(g) For all 1≤ n≤ k, |Wn|= f (n)−1, and for all w ∈Wn, |w|X ≤ Ln.

(h) if u,v are two different elements of U±1 and u ∼ v in G(k), then u ∼ v ∼ a0 in G(k). Furthermore at

most γG(1)(k−1) elements of U are conjugate to a0 in G(k).

(i) For all u∈U such that u is loxodromic in G(k), u is also primitive in G(k). In particular, EG(k)(u) = 〈u〉.

Obviously (a)-(f) hold for G(1) with ϕ1 the identity map and C1 = {A}. Passing to an equivalent func-

tion, we can assume that f (1) = 2 without loss of generality. This gives (g) for G(1). It is clear (e.g. from

[49, Chapt. IV, Theorem 1.4]) that all elements of U are pairwise non-conjugate in G(1). If u ∈U is loxo-

dromic in G(1), then u 6= a0 and so u = a1h−1a2h for some a1,a2 ∈ A\{1}. The normal form theorem for

free products [49, Chapt. IV, Theorem 1.2] implies that u is primitive in G(1). Thus (h) and (i) also hold for

G(1).

74



Now we construct G(k+ 1) in a sequence of four steps. The intermediate groups constructed in each

step will be denoted as follows.

G(k)
ι1
↪→ G′(k)

α1
� G′′(k)

ι2
↪→ G′′′(k)

α2
� G(k+1).

Here ι1 will be the natural embedding into an HNN-extension of the previous group, while ι2 will be the

natural embedding into an HNN-extension of a a free product, where the previous group is one of the

factors. α1 and α2 will be epimorphisms which will correspond to taking a small cancellation quotient of

the previous group. We will first show how to construct the group G(k+1), and then verify that it satisfies

all the inductive conditions.

Step 1. Let g1, ...,gn be the list of all elements in G(k) such that |gi|X = k and gi is loxodromic in G(k)

for each 1 ≤ i ≤ n. Note that n ≤ γ̄G(1)(k). Since G(k) is torsion free, for each i there exists some hi such

that EG(k)(gi) = 〈hi〉. Now we define G′(k) as the multiple HNN-extension

G′(k) = 〈G(k), t1, ..., tn | hti
i = a0〉.

Let ι1 : G(k) ↪→ G′(k) be the natural embedding; for convenience we identify G(k) with its image in

G′(k). Suppose u,v ∈U±1 such that u ∼ v in G′(k). If u ∼ v in G(k), then by (h) u ∼ v ∼ a0 in G(k) and

hence also in G′(k). Otherwise, by Lemma II.0.12 either u or v is conjugate to some element hm
i in G(k). If

this holds for u, we have u∼ hm
i ∼ am

0 ∼ a0 in G′(k), and similiarly if it holds for v. Thus, two elements of

U±1 are either non-conjugate in G′(k) or they are both conjugate to a0.

Further if u ∼ a0 in G′(k) but not in G(k), then u must be conjugate to a power of some hi in G(k) by

Lemma II.0.12. For each hi, u ∼ hm
i in G(k) implies that m = ±1 since u is primitive in G(k) by (i). By

(h), for each 1 ≤ i ≤ n, there is at most one element u ∈U conjugate to h±1
i in G(k). Thus, the number of

elements of U conjugate to a0 in G′(k) is at most γG(1)(k− 1)+ n ≤ γG(1)(k). By Lemma II.0.12 and (i),

all elements u ∈U which are loxodromic in G′(k) are primitive in G′(k). By Lemma VI.2.1, G′(k) will be

hyperbolic relative to Ck and G(k) is suitable in G′(k).

Step 2. Let G′′(k) be the quotient group of G′(k) provided by applying Theorem V.6.1 to G′(k) with

{t1, ..., tn} as our finite set, G(k) as our suitable subgroup, and N = 4. Let α1 : G′(k) � G′′(k) be the

corresponding epimorphism.

Since elements of U ∪X all have relative length at most 4, α1 will be injective on U ∪X , so we identify

these sets with their images. The final two assertions of Theorem V.6.1 give that two elements of U±1

are conjugate in G′′(k) if and only if they were conjugate in G′(k), and for each loxodromic u ∈U , 〈u〉 =
EG′(k)(u) = EG′′(k)(u). Hence, all loxodromic elements of U are still primitive in G′′(k). Let us prove that

α1 ◦ ι1 is surjective. Since G′(k) is generated by G(k)∪{t1, ..., tn} and for each 1≤ i≤ n, α1(ti)⊂ α1(G(k)),

we have that G′′(k) is generated by α1(G(k)). Thus, α1 ◦ ι1 will be surjective, and G′′(k) will be finitely

generated by (the image of) X . Theorem V.6.1 also gives that α1(G(k)) = G′′(k) will be a suitable subgroup

of G′′(k).

Now let U ′L(k+1) be the set of u ∈U such that |u|X = L(k+1) in G′′(k). Then |U ′L(k+1)| ≥ |UL(k+1)|; this

follows from the fact that for each u ∈UL(k+1), we have |u|X ≤ L(k+1) in G′′(k), so we can choose j ∈ N
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such that |ub j
0|X = L(k+ 1). An element u ∈U ′L(k+1) will be called good if for all elements v conjugate to

u in G′′(k), we have |v|X ≥ k+1; otherwise it will be called bad. We want to show that U ′L(k+1) contains at

least f̄ (k+1) good elements.

Indeed otherwise by (VI.1), U ′L(k+1) must contain (γG(1)(k))(γG(1)(k)+1) bad elements, each of which

is conjugate to some element of X-length at most k. Since there are at most γG(1)(k) such elements in G′′(k),

there exists V ⊂U ′L(k+1) such that V contains (γG(1)(k)+1) pairwise conjugate elements. Then all elements

of V must be pairwise conjugate in G′(k), and thus all elements of V are conjugate to a0 in G′(k). But this

contradicts the fact that there are at most γG(1)(k) elements of U conjugate to a0 in G′(k). Thus U ′L(k+1)

contains at least f̄ (k+1) good elements.

Step 3. Let W ′k+1 = {w1, ...,ws} be a subset of the good elements of U ′L(k+1) such that s = |W ′k+1| =
f̄ (k+ 1). Note that if u is a good element, then u is not conjugate to a0, hence u is not conjugate to any

other element of U±1. Thus all elements of W ′k+1 are loxodromic and hence primitive; furthermore, they

are pairwise non-commensurable by Corollay III.2.7. Then we define Wk+1 = Wk ∪W ′k+1. Now, for each

1≤ i≤ s, let Ci be a torsion free group with two conjugacy classes, generated by {xi,yi}. Consider the group

G′′(k) ∗ (∗s
i=1Ci), which naturally contains an isometrically embedded copy of G′′(k). By Theorem III.1.4

and Lemma III.1.7, this group will be hyperbolic relative to Ck+1, where Ck+1 =Ck∪(∪s
i=1Ci). Also, clearly

primitive elements of G′′(k) remain primitive in G′′(k) ∗ (∗s
i=1Ci), and any two non-conjugate elements of

G′′(k) remain non-conjugate. Since each wi is primitive and loxodromic, we get that EG′′(k)∗(∗s
i=1Ci)(wi) =

〈wi〉. Now we take a multiple HNN-extension and form the group

G′′′(k) = 〈G′′(k)∗ (∗s
i=1Ci),d1, ...,ds|wdi

i = xi〉.

Let ι2 : G′′(k) ↪→G′′′(k) denote the natural embedding, and again we identify G′′(k) with its image. Since the

elements wi are pairwise non-commensurable, by Lemma II.0.12 we can inductively apply Lemma VI.2.1

to get that G′′′(k) is hyperbolic relative to Ck+1 and contains G′′(k) as a suitable subgroup.

Step 4. Finally, we obtain G(k+ 1) as the quotient group of G′′′(k) by applying Theorem V.6.1 to the

finite set {di,xi,yi : 1 ≤ i ≤ s}, suitable subgroup G′′(k), and N = 4. Let α2 : G′′′(k) � G(k + 1) be the

corresponding epimorphism, and define ϕk+1 = α2 ◦ ι2 ◦α1 ◦ ι1 ◦ϕk. Let us prove that ϕk+1 is surjective. We

have shown that α1 ◦ ι1 is surjective. Similarly, since G′′′(k) is generated by G′′(k)∪{di,xi,yi : 1 ≤ i ≤ s}
and α2({di,xi,yi : 1≤ i≤ s})⊂ α2(G′′(k)), we get that G(k+1) is generated by α2(G′′(k)), hence α2 ◦ ι2 is

surjective. Thus, ϕk+1 is surjective being the composition of surjective maps.

Let us now prove that G(k) satisfies all the inductive assumptions. First, Theorem V.6.1 gives that α1

and α2 are injective on all elements of relative length at most 4, which includes all elements in U , X and

Ck+1. Hence ϕk+1 will be injective on these sets being the composition of these maps and the injective maps

ι1 and ι2. G′′′(k) is hyperbolic relative to Ck+1, and Theorem V.6.1 gives that G(k+ 1) will be hyperbolic

relative to Ck+1 and α2(G′′(k)) = G(k+1) is a suitable subgroup of itself. Taking HNN-extensions and free

products of torsion free groups gives torsion free groups, and combining this with Theorem V.6.1 gives that

G(k+ 1) will be torsion free. Clearly, every element of BG(k),X(k− 1) is parabolic in G′(k), thus they are

also parabolic in G(k+ 1). By construction, each w ∈Wk+1 is parabolic in G′′′(k) and the conjugacy class

of w corresponds to a unique parabolic subgroup. The definition of Wk+1 gives that |Wk+1| = f (k+1)−1,
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and for all w ∈Wk+1, |w|X ≤ L(k+1); clearly this also holds for all 1≤ n≤ k as passing to quotient groups

can only decrease word length. We have shown that in G′(k), two elements of U±1 are conjugate if and

only if they are both conjugate to a0, and furthermore at most γG(1)(k− 1) elements of U are conjugate to

a0 in G′(k). At all other steps non-conjugate elements of U±1 remain non-conjugate, so this also holds in

G(k+1). Finally, loxodromic elements of U are primitive in G′′(k)∗ (∗s
i=1Ci), and Lemma II.0.12 gives that

they are primitive in G′′′(k). Hence for all loxodromic u ∈U , 〈u〉 = EG′′′(k)(u) = EG(k+1)(u) by Theorem

V.6.1, so u is still primitive in G(k+1). Thus, G(k+1) satisfies all the inductive conditions.

Now, we take G to be the limit of this sequence of groups; that is, let G = G(1)/N, where N =⋃
∞
i=1 Kerϕi. We will show that every conjugacy class in G has a representative in

⋃
∞
k=1Wk. Suppose

g ∈ BG,X(n), and let g0 be a pre-image of g in G(1) such that |g0|X ≤ n. Then g0 is parabolic in the group

G(n+1) by condition (e), so g0 is conjugate to an element of Wn+1 in G(n+1) by (f). Hence g is conjugate

to an element of Wn+1 in G. Thus we have

ξG(n)≤ |Wn+1|+1 = f (n+1)≤ f (2n).

On the other hand, all elements of Wn are pairwise non-conjugate, and for each w ∈Wn, |w|X ≤ Ln. Hence

f (n) = |Wn|+1≤ ξG(Ln). Therefore ξG ∼ f .

VI.3 Conjugacy growth and subgroups of finite index

We now move to the proof of Theorem I.4.3. We start with an ‘infinitely generated version’ of Theorem

I.4.3.

Lemma VI.3.1. There exists a short exact sequence

1→ N→C→ Z2→ 1

such that the following hold.

(a) The group C is countable and torsion free.

(b) The subgroup N has exactly 2 conjugacy classes.

(c) There is a free subgroup F ≤N of rank 2 and an element a ∈C such that for any two distinct elements

f1, f2 ∈ F, a f1 and a f2 are not conjugate in C.

Proof. We proceed by induction. Let A0 = 〈a,b,c〉 be the free group of rank 3 and let ε0 : A0→ 〈a | a2 =

1〉 ∼= Z2 be the natural epimorphism. Assume that An is already constructed together with an epimorphism

εn : An→ Z2.

Let Kn denote the kernel of εn. We enumerate all elements of Kn = {1,k0,k1, . . .} and let An+1 be the multiple

HNN-extension

〈An,{ti}i∈N | kti
i = k0〉.
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The map sending Kn and all stable letters to 1 (here 1 denotes the identity element of Z2) extends to a

homomorphism εn+1 : An+1→ Z2.

Let C =
∞⋃

n=0
An and N =

∞⋃
n=0

Kn. Clearly N is a normal subgroup of index 2 in C. Since all nontrivial

elements of Kn are conjugate in Kn+1, N has exactly 2 conjugacy classes. On the other hand, Lemma II.0.12

implies by induction that for any distinct f1, f2 ∈ 〈b,c〉, the elements a f1 and a f2 are not conjugate in An.

Hence the same holds true in C.

Theorem VI.3.2. There exists a finitely generated group G and a finite index subgroup H ≤ G such that H

has 2 conjugacy classes while G is of exponential conjugacy growth.

Proof. Let

1→ N→C ε→ Z2→ 1

be the short exact sequence provided by Lemma VI.3.1. The desired group G is constructed as an inductive

limit of relatively hyperbolic groups as follows. Let

G(0) =C ∗F(x,y),

where F(x,y) is the free group of rank 2 generated by x and y. We enumerate all elements of

C = {1 = c0,c1,c2, . . .}

and

G(0) = {1 = g0,g1,g2, . . .}.

Without loss of generality we may assume that

ε(c1) = 1. (VI.2)

Suppose that for some i ≥ 0, the group G(i) has already been constructed together with an epimor-

phism ϕi : G(0) → G(i) and an epimorphism αi : G(i) → Z2. We use the same notation for elements

x,y,c0,c1, . . . ,g0,g1, . . . and their images in G(i). Assume that G(i) satisfies the following conditions. It

is straightforward to check these conditions for G(0), the identity map ϕ0 : G(0)→ G(0), and the epimor-

phism α0 : G(0)→ Z2 which is induced by ε and the map sending x and y to 1.

(a) The restriction of ϕi to the subgroup C is injective. In what follows we identify C with its image in

G(i).

(b) G(i) is hyperbolic relative to C.

(c) The elements x and y generate a suitable subgroup of G(i).

(d) G(i) is torsion free.

(e) In G(i), the elements c0, . . . ,ci are contained in the subgroup generated by x and y.
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(f) The diagram
G(0) α0−−−−→ Z2

ϕi

y yid

G(i) αi−−−−→ Z2

is commutative.

(g) In G(i), for every j = 1, . . . , i, if αi(g j) = 1 then the element g j is conjugate to c1 by an element of

Kerαi .

The group G(i+1) is obtained from G(i) in two steps.

Step 1. If gi+1 is a parabolic element of G(i) or αi(gi+1) 6= 1, we set G′(i) = G(i). Otherwise, since G(i)

is torsion free, there is an isomorphism ι : EG(i)(gi+1)→ 〈c1〉. Now we define G′(i) to be the corresponding

HNN–extension

G′(i) = 〈G(i), t | et = ι(e), e ∈ EG(i)(gi+1)〉.

Then G′(i) is hyperbolic relative to C and 〈x,y〉 is suitable in G′(i) by Lemma VI.2.1. Note also that G′(i) is

torsion free being an HNN-extension of a torsion free group.

Step 2. We now apply Theorem V.6.1 to the group G′(i), the subgroup S = 〈x,y〉 ≤ G′(i), and the set of

elements {t,ci+1} (or just {ci+1} if G′(i) = G(i)). Let G(i+1) = G, where G is the quotient group provided

by Theorem V.6.1. Since t becomes an element of 〈x,y〉 in G(i+1), there is a naturally defined epimorphism

ϕi+1 : G(0)→ G(i+ 1). Using Theorem V.6.1 and the inductive assumption it is straightforward to verify

properties (a)–(e) for G(i+1).

Observe that the group G′(i) admits an epimorphism βi to Z2 which sends the stable letter and Ker(αi) to

1. Indeed this follows immediately from the inductive assumption and our construction of G′(i). By Remark

V.6.2 and part (f) of the inductive assumption, the kernel of the natural epimorphism G′(i)→ G(i+ 1) is

contained in Kerβi. Hence βi induces an epimorphism αi+1 : G(i+1)→ Z2. Obviously (f) and (g) hold for

G(i+1).

Let G = G(0)/M, where M =
⋃

∞
i=1 Kerϕi. By (d) G is torsion free. It is also easy to see that G is

2–generated. Indeed, G(0) is generated by x,y,c1,c2, . . . and hence condition (e) implies that G is generated

by x and y.

Further notice that M ≤ Kerα0 by (f). Let H = (Kerα0)/M. Then G/H is isomorphic to G(0)/Kerα0,

so |G/H| = 2. Let h be a nontrivial element of H. We take an arbitrary preimage g ∈ G(0) of h. Observe

that αi(g) = 1 for every i by (f). Hence (the image of) the element g becomes conjugate to c1 by an element

Kerαi at a certain step according to (g). Therefore, all non-trivial elements of H are conjugate in H.

Finally let F and a be the free subgroup and the element of C provided by Lemma VI.3.1, respectively.

By part (c) of Lemma VI.3.1, parts (a), (b), (d) of the inductive assumption, and Lemma III.1.5, for any two

distinct elements f1, f2 ∈ F , a f1 and a f2 are not conjugate in G(i). Hence the same holds true in G. Since

the natural map from C to G is injective by (a) and the (ordinary) growth function of F is exponential, the

conjugacy growth function of G is exponential as well.
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[39] U. Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces, J. Eur. Math. Soc.

10 (2008), no. 2, 315-349.

[40] G. Higman and B. H. Neumann, On two questions of Itô, J. London Math. Soc. 29 (1954), 84-88.
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