

TOWARD ENHANCING REUSABILITY OF COMPONENT MIDDLEWARE

DSMLS USING GENERALIZATION AND STEP-WISE REFINEMENT

By

Ritesh Neema

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May, 2010

Nashville, Tennessee

Approved:

Professor Aniruddha Gokhale

Professor Jules White

 ii

To my family.

 iii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere gratitude towards my

academic and research advisor Dr. Aniruddha Gokhale for helping me through this

academic pursuit. I am grateful to him for providing me with the necessary guidance and

supervision, for constantly motivating me to finish this research, and for his humbleness

and kindness to allow me to study at Vanderbilt University and conduct this research.

I also extent my sincere thanks to Dr. Jules White, my second reader, for his

thorough evaluation of this thesis and providing his detailed and invaluable feedback.

I am indebted to many in ISIS, including Sumant Tambe, Anantha Narayanan,

Csaba Toth, and Peter Volgyesi, for technical assistance and help.

I am also thankful to Vanderbilt University for giving me the opportunity to study

and pursue my Masters degree.

On the personal note I own my loving thanks to my brother Himanshu Neema and

sister-in-law Reena Neema for understanding, supporting, motivating, and cheering me

and for always being there for me. Finally, but not the least, I offer my sincere thanks to

my family including, Suresh Chandra Neema, Geeta Neema, Himanshu Neema, Reena

Neema, Kavish Neema, Supriya Neema, Vaibhav Doshi, Purvashi Doshi, Raina Neema,

Sanya Neema, and Hiya Doshi, who’s love, support, best wishes and prayers were always

with me.

Ritesh Neema

Vanderbilt University

May 2010

 iv

TABLE OF CONTENTS

Page

DEDICATION.. ii

ACKNOWLEDGEMENTS... iii

LIST OF FIGURES ... vi

LIST OF TABLES.. vii

LIST OF ABBREVIATIONS.. viii

Chapter

I. INTRODUCTION ...1

 I.1. Motivation..1

 I.2. Problem Statement ...3

 I.3. Research Approach ..4

 I.4. Thesis Organization ...6

II. RELATED WORK..7

 II.1 Research on Model Transformation Techniques7

 II.2 Research on Enhancing Reusability in MDE...................................8

III. BACKGROUND: MODEL-DRIVEN ENGINEERING FOR COMPONENT

 MIDDLEWARE TECHNOLOGIES...10

 III.1. Overview of Component Middleware ...10

 III.2. Overview of Model-Driven Engineering17

 III.3. DSMLs for Component Middleware Technologies.......................19

 III.3.1. PICML ...20

 III.3.2. J2EEML...21

IV. AUTOMATED AND SIMPLIFIED MODEL MIGRATION AND DSML

 REUSE...22

 IV.1. Motivational Application Scenario ..22

 IV.1.1. Developing Application Models using Current DSMLs ...23

 IV.1.2. Upgrading Component Middleware Technology25

 IV.1.3. Migration of Component Middleware DSMLs..................27

IV.2. Open Issues in the Reusability of Component Middleware

 DSMLS ..30

 v

V. GENERALIZATION AND STEP-WISE REFINEMENT32

 V.1. Commonality/Variability Analysis ..32

 V.2. Step-Wise Refinement ...33

 V.3. Generic Component Modeling Language......................................36

 V.4. Graphical User Interface ..38

 V.5. Interpreters ...42

VI. CASE STUDY...44

VII. EXPERIMENTAL RESULTS...49

VIII. CONCLUSION..51

REFERENCES ..53

 vi

LIST OF FIGURES

Figure Page

1. Key Elements in the CORBA Component Model ...14

2. EJB Architecture..17

3. PICML Modeling Language ..24

4. Basic Single Processor Application Model..26

5. Generic Component Modeling Language (GCML).. 36

6. GUI for J2EEML Specific Features...39

7. GUI for PICML Specific Features...41

8. Basic Single Processor...45

9. GME Model of BasicSP...46

10. Abstract Model of BasicSP..47

11. J2EEML Model of BasicSP...47

 vii

LIST OF TABLES

Table Page

1. Comparison Chart between .NET, Java, and PHP...28

2. Commonality/Variability Analysis of PICML and J2EEML33

3. Complexity of BasicSP Application ..46

4. Modeling Effort in Approaches ...50

5. Complexity of Application Scenarios..50

 viii

LIST OF ABBREVATIONS

AOP Aspect-Oriented Programming

API Application Programming Interface

CCM CORBA Component Model

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-The-Self

CVA Commonality/Variability Analysis

DLL Dynamic Link Library

DRE Distributed Real-time and Embedded systems

DSML Domain Specific Modeling Language

EJB Enterprise JavaBeans

ESML Embedded Systems Modeling Language

GCML Generic Component Modeling Language

GME Generic Modeling Environment

GPS Global Positioning System

GReAT Graph Rewriting And Transformation

GUI Graphical User Interface

J2EE Java 2 Platform, Enterprise Edition

J2EEML Java 2 Platform, Enterprise Edition Modeling Language

J2SE Java 2 Platform, Standard Edition

MBSE Model-Based Software Engineering

MDE Model-Driven Engineering

MMS Magnetospheric Multi-Scale

OS Operating System

PICML Platform Independent Component Modeling Language

QoS Quality-of-Service

SCE Shipboard Computing Environment

 1

CHAPTER I

INTRODUCTION

Standardized component middleware technologies, such as CORBA Component

Model (CCM) [1], Enterprise JavaBeans (EJB) [2], and Component Object Model

(COM) are used to build large-scale Distributed Real-time and Embedded (DRE)

systems. A key requirement of these middleware is that they remain highly flexible and

support a large number of features since they have to be applicable to a wide range of

domains and applications. To enhance flexibility of component middleware technologies,

there exist Domain Specific Modeling Languages (DSMLs) [4], such as Platform

Independent Component Modeling Language (PICML) [5] for CCM and Java 2 Platform

Enterprise Edition Modeling Language (J2EEML) [6] for EJB, that are used to apply

Model-driven Engineering (MDE) [3] approaches to DRE systems for different

platforms.

I.1 Motivation

The emergence of DSMLs for commercial-off-the-self (COTS) component

middleware technologies significantly enhances the application development process by

addressing several challenges including level of abstraction, reusability, and automation.

Despite these improvements, the full potential of DSMLs remains to be realized.

Although these component middleware DSMLs reduces the complexity of the

middleware technologies by increasing the level of abstraction, these modeling languages

 2

are themselves complex enough to overwhelm the developers. In the early stages of

computing the languages included only a few hundred features. However, with the

growth of platform complexity that has evolved faster than the ability of the languages to

mask it, these languages have also become complex with hundreds and thousands of

features. Even for a simple application the developers have to work with a very complex

language with thousands of features. This deficiency of the middleware DSMLs can

divert the application developers to focus on the important features of the applications

such as components and cause them to easily miss or make mistake with the important

features. This will considerably increase the development efforts of developing and

debugging application models.

Furthermore, we have seen that every second a new technology is taking birth.

The world is moving fast with constant innovation of new technologies. For example, in

middleware technologies, when the term middleware first appeared, there were only few

middleware technologies known. The term was associated mainly with relational

databases for many practitioners in the business world. This is no longer the case now.

Concepts similar to today’s middleware previously went under the names of network

operating systems, distributed operating systems, and distributed computing environment.

The middleware technologies are upgraded to more advanced level where they are highly

flexible and support a large number of features. In addition, as the practitioners keep

moving to new middleware technologies, several existing middleware technologies fall

behind and no longer remain useful.

 3

I.2 Problem Statement

As a consequence of evolution in middleware technologies, the middleware

DSMLs become complex and causes the development process of the application models

to consume excessive time and effort. Even a simple application requires considerable

amount of time and effort thereby making the development process arduous. Also, the

application models that are developed for the outdated middleware technologies must

also be upgraded to preserve intellectual property and investments. Furthermore, to move

the application model from one middleware technology to another can also be required

because of client requirements or other business reasons. While developing, upgrading,

and moving these application models, software developers are increasingly faced with the

challenges of complexity and migration. One of the possible ways of addressing the issue

of migration is to use the traditional approach of creating the application model in one of

the COTS middleware technologies from scratch by referring to the existing application

model. Although this traditional approach reduces the development efforts to some extent

by allowing software developers to leverage an existing application model for developing

application models in multiple middleware technologies, it is still largely low-level,

tedious, complex, error-prone, and technology specific. Moreover, it also assumes that

the earlier models are well-documented and fully capture all design decisions.

A solution to this problem is to provide a mechanism that raises the level of

abstraction and enhances the reusability and automation capabilities of the DSMLs to

reduce the development efforts significantly. Visualization has always been an effective

way to communicate both the abstract and concrete ideas. Visual tools such as DSMLs

for MDE and Graphical User Interfaces (GUI) for third generation programming

 4

languages hold the same promise for middleware application development. A visual tool

that raises level of abstraction and enhances the reusability and automation during

middleware application development process to make the applications reusable for

migration and to simplify the development process is urgently needed. Researches in

techniques such as Step-wise Refinement [7] have shown promise in simplifying the

application development processes by increasing the level of abstraction and by applying

generalization/specialization techniques in a step-wise manner. Similarly, GUI and MDE

have also shown promise in increasing the level of abstraction while enhancing the

reusability, efficiency and ease of use for the underlying logical design. These GUI and

MDE tools combined with the step-wise refinement technique largely simplify the

development process of applications by reducing complexity and by eliminating the

overhead of repetitive and error-prone manual process, thus enhancing the reusability and

automation of the application models.

I.3 Research Approach

In this research we synthesize the capabilities of Commonality/Variability

Analysis (CVA) [8], Step-Wise Refinement [7], and Model Integrated Computing (MIC).

In this context, we develop a Model-driven Feature-Refinement Programming tool chain.

This tool chain comprises of a DSML called Generic Component Modeling Language

(GCML), platform specific GUIs, and model interpreters that apply the combination of

MDD and Feature Refinement technologies to component middleware technologies.

Using this model-driven feature-refinement technique to generate application model can

result in the automation and simplification of migration and development of application

 5

model by enhancing reusability, increasing level of abstraction, and by removing the

error-prone manual steps involved in migration and specialization of middleware.

We demonstrated our design by considering two main aspects of the application

development process: (a) develop an application model for a given middleware platform

from scratch using one of the existing DSMLs is shown, and (b) transform an existing

application model from one middleware platform to another. In the first aspect, we

describe the step-wise feature refinement technique –which is a powerful paradigm for

developing a complex program from a simple program by adding features incrementally.

The steps in this technique include: (a) development of a generalized DSML called

GCML, based on CVA technology, which enables the developers to define the

component modeling features at a very high level of abstraction and reuse it to generate a

platform specific model for any of the supported middleware technologies, (b)

development of the GUIs for providing middleware technology specific features to refine

the abstract model developed using GCML, and (c) development of the platform specific

application model using the middleware technology specific DSMLs. In the second

aspect, we describe an automation technique for migration of an existing application

model developed in one of the middleware technology DSMLs to a different middleware

platform or to a newer version of the same middleware platform. In this automation

technique, the existing application model is first generalized into a GCML abstract

model, which can be further transformed into an application model specific to any of the

middleware technology DSMLs using the steps described in the first aspect.

 6

I.4 Thesis Organization

The rest of the thesis is organized as follows: In Chapter II, we introduce model-driven

engineering and component middleware. We also describe PICML and J2EEML –

DSMLs developed using model-driven engineering for CCM and EJB respectively.

Chapter III illustrates the problem in using model-driven engineering across multiple

middleware technologies and lists the issues involved with using the existing approaches.

In Chapter IV, we describe the related research work used for model transformation and

to enhance the reusability in model-driven engineering. Chapter V describes our solution

approach and presents the modeling details of GCML along with platform-specific GUIs

and Interpreters. In Chapter VI, we describe a case study using our proposed approach to

address various challenges in developing a middleware application model using PICML

paradigm and then migrating it into a J2EEML application model. We present this case

study for an application model called Basic Single Processor (BasicSP) developed using

PICML. In Chapter VII, we present our experimental results and analyze the

effectiveness of our approach with respect to abstraction, reusability, automation,

flexibility, and efficiency. Finally, in Chapter VIII, the thesis concludes and identifies

areas for future work.

 7

CHAPTER II

RELATED WORK

DSMLs significantly enhance the component middleware application

development process by addressing several challenges including simplification,

abstraction, reusability, and automation. Despite this improvement, the reusability and

complexity of the component middleware DSMLs remain low with respect to the

concepts and concerns of the application domains. In this chapter, we describe current

techniques for reusability enhancement of DSMLs and for simplification and automation

of the application model development process. We also emphasize on how our work

differs from existing techniques.

II.1 Research on Automation of Application Model Development

There exists a wide range of techniques that focus on automation of the

application model development process and on increasing the reusability of the DSMLs.

For instance, model transformation technique - that takes a model conforming to a given

metamodel as input, and converts it into another model conforming to a different

metamodel. Model transformation is a highly active area of research focusing on

automation and reusability of models and modeling systems. To list a few, the work

presented by Y. Lin et. al. [9] describes a high-level aspectual model transformation

language that is designed to specify tasks of model construction and evolution, and uses a

model transformation engine to execute transformation specifications in an automated

 8

manner. Also, the work presented by Amogh Kavimandan [10] focuses on reusable

model transformation techniques for automating middleware QoS configuration in DRE

systems. Furthermore, the Graph Rewriting And Transformation (GReAT) [11] tool –

developed using GME at the Institute for Software Integrated Systems (ISIS) – can be

used to define transformation rules using its visual language in terms of source and target

languages (i.e., metamodels), and to execute these transformation rules to automatically

generate target models using the GReAT execution engine (GR-Engine).

II.2 Research on Enhancing Reusability in Model-driven Engineering

One of the approaches used to enhance the reusability in model-driven

engineering is Aspect-Oriented Programming (AOP) [12]. AOP is primarily used for

separation of concerns that cut across multiple application domains and reduction of

development efforts needed to support the evolution of large-scale system models. For

example, the work presented by C. Zhang et. al. describes a Modelware methodology

[15] that combines the capabilities of Model-Driven Architecture (MDA) approach and

AOP to separate the intrinsic and extrinsic functionalities of middleware. It reduces the

development efforts needed to support the evolution of middleware functionalities by

lowering the concern density per component and enhancing the reusability of components

of middleware architectures. Also, POSAML [14] is yet another technique that uses the

MDE and AOP approaches for middleware specialization. It allows modifying an

existing functionality without refactoring any code, addresses concerns with minimum

coupling, and makes it easy to add new functionality by creating reusable aspects. With

 9

these capabilities, POSAML significantly enhances the reusability of component

middleware DSMLs and considerably automates middleware specialization.

Our work differs from existing approaches in the following way. Model

transformation is an application-specific technique to reuse models and automate their

migration across various platforms. On the other hand, the AOP approach is a domain-

specific approach that automates middleware specialization only for newer versions of

the same domain (with added functionalities). It does not support reusability and

automation across multiple middleware platforms. However, our work enables reusability

of component middleware DSMLs and simplification and automation of the development

process for developing a new application as well as for migration of application models

to newer versions of the same platform and across multiple middleware platforms.

 10

CHAPTER III

BACKGROUND: MODEL-DRIVEN ENGINEERING FOR COMPONENT

MIDDLEWARE TECHNOLOGIES

“Model-driven engineering technologies offer a promising approach to address

the inability of third-generation languages to alleviate the complexity of platforms and

express domain concepts effectively.”

- Douglas C. Schmidt, MDE, February 2006

In this chapter we provide an overview of component middleware and model-

driven engineering which are integral to this research. We describe CCM and EJB

component middleware which are chosen as the base of illustration of the conceptual idea

behind our research. We also illustrate how domain-specific modeling languages for

component middleware technologies alleviate the complexity and express domain

concepts effectively using the examples of PICML and J2EEML DSMLs for CCM and

EJB respectively.

III.1 Overview of Component Middleware

Middleware: Middleware is the reusable software that lies between the

applications and the underlying operating systems, network protocol stacks, and

hardware. The primary function of middleware is to connect application programs with

the hardware and software components and to mediate interactions between the parts of

an application, or between applications. One of the major achievements in introducing

 11

middleware in the software development process is that it alleviates complexities

associated with developing software applications to a great extent. Middleware is a high-

level building block that shields application-specific functionality from complex lower-

level details. This decoupling of application from lower-level details allows developers to

focus on application-specific functionalities, rather than spending excessive amount of

time with lower-level infrastructure challenges. Recently, middleware has emerged as

highly effective in building enterprise applications. These enterprise applications are

complex, scalable, distributed, and component-based, and require mission-critical

application software that can perform business functions such as accounting, production

scheduling, and customer information management and maintenance. They are frequently

hosted on servers and PCs and simultaneously provide services to a large number of

enterprises, typically over a computer network and are developed using COTS

component middleware.

Component middleware is a special class of middleware that manages the life-

cycle of components, handles interactions between them, and enables reusable

component-based services to be composed, configured and installed to build enterprise

applications and DRE systems more rapidly and robustly. Component middleware

overcomes the limitations of object-oriented middleware, such as excessive manually

performed tasks, difficult to understand application structure, difficult to modify or

extend an existing application, and many more. It addresses these limitations by shifting

the main focus of programming from objects to components provided with well-defined

interfaces to interact with them. These components are then assembled to build and

 12

execute applications on the servers. In particular, the motivations for component

middleware for enterprise application developers are as follows:

• Building applications by composing existing components.

• Illustrating interactions between components with formalism.

• Notion of connector: Defining software architecture by connecting

components with one another.

• Describing deployment of components with formalism

• Separation of functional and non-function aspects to allow reusability and

thereby enabling developers to focus on application concerns (functional)

rather than low-level integration problems (non-functional).

Examples of COTS component middleware include the Common Object Request Broker

Architecture (CORBA), Component Model (CCM), Enterprise JavaBeans (EJB), and

Common Object Model (COM) – each of which varies in the APIs, protocols, and

component models that it uses. In the next section, we describe two of these component

middleware technologies in more detail, viz. CCM and EJB.

CORBA Component Model (CCM)

CCM is a server-side component model for building and deploying CORBA

applications. It uses accepted design patterns and facilitates their usage by enabling a

large amount of code to be generated. This also allows system services to be

implemented by the container provider rather than the application developer. The CCM

extends the CORBA object model by defining features and services in a standard

environment that enables application developers to implement, manage, configure and

 13

deploy components that integrate with commonly used CORBA services. These server-

side services include transactions, security, persistence, and events.

The CCM specification introduces the concept of components and a

comprehensive set of interfaces and techniques for specifying implementation,

packaging, and deployment of components. Components encapsulate business logic and

interact with other components via ports. Figure 1 show the key elements of the CCM

model which includes:

• Container: This provides a run-time execution environment, encapsulates

component implementations, and provides system services such as lifecycle,

transactions, persistence, and security. These services act as the interface between

a component and the outside world and allow access to any component through

container-generated methods which in turn invoke the component’s methods.

• Component Assembly: This is a higher-level abstraction that is used to describe

component compositions, including component locations and interconnections

between components.

• Components: These are the implementation entities that export a set of interfaces

to clients. Components can also express their intent to collaborate with other

components by defining ports that specify how components interact.

• Component Home: This provides operations to manage components in an

application. It consists of two main operations: Factory operations, which are used

to create an instance of the specific component type, and Lookup operations,

which are used to retrieve components from a database or repository.

 14

• Component Ports: These allow components to interact with the outside world as

well as other components. These ports have an extension interface pattern that

provides multiple interfaces for the clients and other components to interact with

the components. CCM comprises of four kinds of ports: (i) Facets, which provide

access to specific component methods through different interfaces with unique

names, thus provide multiple views to its clients, (ii) Receptacles, which are

interfaces that allow components to interact with each other by connecting them

with the interacting components’ objects and invoking methods upon these

objects, (iii) Event sources/sinks, which are interfaces that allow components to

establish a publisher/subscriber pattern between them. A component is called a

publisher if it publishes or emits an event by declaring an event source, whereas a

component is called a subscriber if it shows interest in consuming those events by

declaring event sinks, and (iv) Attributes: These are named configurable

properties that can be accessed and modified by the corresponding operations to

perform an action or to raise exceptions based on the value of the attributes.

Figure 1: Key Elements in the CORBA Component Model

 15

Enterprise JavaBeans (EJB)

Java 2 Platform Enterprise Edition (J2EE) is a Java-platform centric environment

that allows developers to develop, build and deploy enterprise applications. J2EE reduces

the complexity of enterprise applications by building them as assembly of well-defined

and easy to use components by supporting with component services and performing

several functions automatically. J2EE is the advanced version of Java 2 Platform

Standard Edition (J2SE) - takes advantages of many features of J2SE and provides full

support for Enterprise JavaBeans (EJB) (i.e., business logic layer), Java Servlets API, and

JavaServer Pages (i.e., presentation layer).

The Enterprise JavaBeans (EJB) is an architecture that enables a simplified

approach for the development and deployment of component-based robust business

applications. This EJB is essentially a managed component that resides in the J2EE

container, which manages the life-cycle of the components. EJB technology allows

component developers to focus on business logic by concealing application complexity in

a multitier application development.

EJB technology enables developers to model full range of objects that are useful

in the enterprise applications. As shown in Figure 2, the key elements of the EJB

architecture include:

• EJB Server: This is a process or application that provides a run-time

environment for the execution of server applications that uses enterprise

beans. It contains the EJB container and provides the services required by the

enterprise beans.

 16

• EJB Container: This provides life-cycle management and other services for

the EJB components. An EJB container intercedes between clients and

components and manages the invocation of component methods by clients or

other containers running on different servers or machines.

• EJB Component or EJB Bean: This is a server component consisting

methods that typically provide business logic in distributed applications.

These methods are invoked by the EJB Client and result in a database update.

The types of EJB components that can be implemented are as follows: (i)

Session Beans, which are the non-persistent enterprise beans that represent

client session’s behaviors. Session beans are of two types: stateless and

statefull. Stateless session beans are client specific and maintain single client’s

session information related to multiple method calls and transactions. Statefull

session beans are not client-specific and are used by their container to handle

multiple clients’ requests, (ii) Entity Beans, which are the persistent enterprise

beans that represent the collections of data and encapsulate operations on the

data they represent. For example, rows of tables in a relational database, and

(iii) Message-driven Beans, which are the enterprise beans that receive and

process messages asynchronously. A message-driven bean typically works as

a JMS message listener, which receives JMS messages instead of events.

These messages may be originated by either an application client or another

enterprise bean.

 17

Figure 2: EJB Architecture

III.2 Overview of Model-Driven Engineering

Model-Driven Engineering (MDE) is a technique used for software development

that primarily focuses on models instead of programs as first-class entities for

development. MDE emphasizes on raising the level of abstraction and the need to have

useful models that can be manipulated automatically by programs, thus increasing

automation in software development. To make these models useful and increase the level

of abstraction, it is necessary to define these models completely and formally at different

levels of abstraction for developing systems. These definitions are created using

metamodels. Based on these metamodels the executable model transformations are

implemented that increase automation in software development by automatically

composing, refining, and reversing or refactoring models. The key elements of MDE

approach includes:

• DSML: This enables developers to model meaningful applications within the

application domain it abstracts.

 18

• Metamodeling: This involves the analysis, construction, and development of

the key characteristics, rules, constraints, and models related to DSMLs and

for the purpose of modeling a predefined class of problems within a particular

domain. It is the process of designing languages through meta and meta-meta

notations.

• Model Transformation: This enables developers to automate and ensure the

consistency of software implementations via analysis information and

requirements captured in the models of domain-specific structure and

behavior.

During the life span of computing, consistent efforts have been made at

developing higher-level platform and language abstractions. MDE technologies yield

such higher-level abstractions in software development by focusing on architecture and

corresponding automations. For example, DSMLs, developed using metamodeling,

specify the domain’s semantics and syntax more accurately. This increased abstraction

and automation promotes a simpler software development process (i.e., using models)

with a greater focus on problem space and thus ensures that the user needs are satisfied

by the software system. Moreover, MDE tools allow developers to perform model

checking by enforcing constraints and identify and avoid many errors early in the

software development process. Furthermore, when developers apply MDE tools to model

large-scale systems containing thousands of elements, they can quickly examine several

design alternatives, and identify and evaluate various compatible configurations.

 19

III.3 DSMLs for Component Middleware Technologies

The essential idea of MDE is to shift the attention from program code to models.

This way models become the primary development artifacts that are created with the

particular DSMLs. A DSML formalizes the application structure, behavior, and

requirements within particular domains, such as avionics mission computing, online

financial services, or even the domain of middleware platforms. DSMLs are described

using metamodels, which define the relationships among concepts in a domain and

precisely specify the key semantics and constraints associated with these domain

concepts. Developers use DSMLs to build applications using elements of the type

systems captured by metamodels and express design intent declaratively rather than

imperatively. DSMLs facilitate the model-based design, development, and analysis of

vertical application domains, such as industrial process control and telecommunications.

They are also applicable to horizontal application domains, such as component

middleware for DRE systems - which provide the infrastructure for many vertical

application domains. Regardless of whether the DSMLs target vertical or horizontal

domains, model interpreters can be used to generate various artifacts (such as code and

metadata descriptors), which can be integrated with component frameworks to form

executable applications and/or simulations. For example, DSMLs for horizontal platform

include PICML, which facilitates the development of QoS-enabled component-based

DRE systems, and J2EEML, which facilitates the development of EJB applications.

 20

III.3.1 PICML

PICML is a DSML, defined as a metamodel using Generic Modeling

Environment (GME) [13], to support development of DRE systems. PICML is defined

for describing components, types of allowed interconnections between components, and

types of component metadata for deployment. Using GME tools, the PICML metamodel

can be compiled into a modeling paradigm, which defines a domain-specific modeling

environment. From this metamodel, the metamodel interpreters generates ~20,000 lines

of C++ code representing the modeling language elements as equivalent C++ types. The

generated code allows manipulation of modeling elements, i.e., instances of language

types using C++, and forms the basis for wiring model interpreters, that traverse the

model hierarchy to perform various kinds of generative actions, such as generating XML-

based deployment descriptors. These descriptors are based on the OMG Deployment and

Configuration Specification [16] and include: component interface descriptor, which

describes a single component’s interfaces, ports, and attributes; implementation artifact

descriptor, which describes a single component’s implementation artifacts; component

implementation descriptor, which describes a specific implementation of a component

interface and also contains component interconnection information; component package

descriptor, which describes a single component’s multiple alternative implementations;

package configuration descriptor, which describes a component package configured for a

particular requirement; component deployment plan, which describes the plan that guides

the runtime deployment; and component domain descriptor, which describes the

deployment target – the nodes and networks – on which the components are to be

deployed.

 21

III.3.2 J2EEML

J2EEML is a DSML that formally captures the design of EJB systems, their QoS

requirements, and the autonomic adaptation strategies of their EJBs. J2EEML constraint

checkers help ensure that autonomic applications are constructed correctly and its models

capture autonomic properties and reduce the design and implementation complexity of

autonomic systems. The key aspect of J2EEML is the formal mapping from QoS

requirements to application components. The formal mapping allows developers to

address several design challenges. For example, developers can clearly understand which

components to monitor in the application since they can visualize the relationships

between components and QoS goals. This understanding facilitates intelligent decisions

about what to monitor and where monitoring logic should reside. Developers can also

design hierarchical QoS goals to divide and conquer complex QoS analyses, which

provide the ability to understand what type of analysis engine to choose and the ability to

understand how to decompose the analysis engine into layers. Developers can also

associate adaptation plans with each QoS goal to design the planning aspects of the

autonomic application and aid in choosing a single-layer or multi-layered planning

architecture and in specifying the actions that the autonomic layer is responsible for

choosing from in the event of a QoS failure.

 22

CHAPTER IV

AUTOMATED AND SIMPLIFIED MODEL MIGRATION AND DSML REUSE

Although DSMLs address many challenges including, complexity, level of

abstraction, reusability, flexibility and many more in developing DRE systems relative to

component middleware technologies, unresolved challenges remain. In this chapter we

describe the motivational application scenario in the context of the simplification and

reusability of component middleware DSMLs using the examples of PICML and

J2EEML that also help in model migration. We also describe the open issues in the

scenario which are remaining to be resolved.

IV.1 Motivational Application Scenario

The motivation for designing a tool for reusing and simplifying the component

middleware DSMLs during the application development process comes from the non-

intuitive and non-reusable nature of traditional approaches. Furthermore, these traditional

approaches could be error-prone, complex and tedious, as they are usually attempted

manually, with respect to the large application domains and could cause large

performance overheads. There are many scenarios possible in which the simplification

and reusability of component middleware DSMLs can play a major role in the application

development process. Out of these many scenarios, to describe the problems with the

present DSMLs for component middleware technologies, we choose the main scenarios

as follows:

 23

IV.1.1 Developing Application Models using Current DSMLs

Over the past few decades, software developers and researchers have been

creating abstraction and reusability that help them to simplify the program development

process and shield them from the complexities of this environment. For example, early

programming languages and operating systems (OS), such as assembly language, Unix

OS abstract the complexities involved in programming in machine code directly to

hardware. Despite this maturation of third-generation languages, several challenges

remain. Of these problems, the primary problem is the growth of platform complexities,

which has evolved faster than the ability of general-purpose languages to overcome it.

For example, popular middleware platforms, such as CORBA and J2EE have hundreds of

classes and methods with many dependencies and side effects that require huge amount

of effort to program and run properly. Furthermore, most application and platform code is

still written and maintained manually using third-generation languages, which bring upon

excessive time and effort and complexity. For example, it is hard to write Java or C# code

correctly and efficiently for large-scale distributed systems with thousands of

interconnected software components.

To address this platform complexity and the lack in third-generation languages to

alleviate the complexity and efficiently develop the large-scale distributed systems,

software developers and researchers rely on MDE technologies. The main component of

MDE technologies is DSMLs, which are described using metamodels, which define the

relationships among concepts in a domain and precisely specify the key semantics and

constraints associated with these domain concepts. These DSMLs for the component

 24

middleware technologies, considerably enhances the application development process by

addressing several challenges including level of abstraction, reusability, and automation.

Although the imporovements are huge, these component middleware DSMLs are still

complex enough that the developers have to put a considerable amount of time and

efforts even for a simple application. For example, Figure … show the DSML of CCM

called PICML.

Figure 3: PICML Modeling Language

PICML is a modeling language for building CCM application models that can be

used to generate application code using model transformation and code generation

techniques. PICML is a vast modeling language with thousands of features available for

building application models, which makes it so complex that even for simple application

model developers has to work around through huge number of features. This lack of

simplicity may deflect the primary focus of developers from the important features and

 25

may result into developing an inefficient and complex application model. Thus it is an

important motivation for research to simplify the application model development process

while maintaining the flexibility, reusability and efficiency of the component middleware

DSMLs.

IV.1.2 Upgrading Component Middleware Technology

Today the world is moving forward at a very fast pace. Every second a new

technology is invented. These evolutions in technologies also result in the increased

complexity of the platforms and languages. From the early days of computing,

abstraction and reusability become the most important aspects of language and platform

technologies to reduce complexity. Although these early languages and platforms raised

the level of abstraction, they still lack in the reusability of programs and platforms. As a

result, they had relatively little impact on commercial software development, focusing

primarily on a few domains.

Advances in languages and platforms during the past two decades have raised the

level of abstractions and increases the reusability available to developers, thereby

alleviating the complexity and reducing programming efforts. For example, languages

like C++, Java, or C# instead of FORTRAN or C. Similarly, today’s reusable libraries

and application framework platforms minimize the need to reinvent common and

domain-specific middleware services. Due to these advances of third-generation

languages and reusable platforms, software developers are now better equipped to

alleviate complexities and efforts associated with application development using earlier

technologies. Despite these improvements third-generation languages still lack in the

 26

ability to alleviate the complexity of creating component middleware applications. To

overcome this deficiency of third-generation languages the methodology of building

applications evolved into MDE technologies, which uses DSMLs to create application

model to generate the component middleware applications. However, as we have seen

from above that technologies often evolve rapidly, these component middleware

technologies are also evolving at a fast rate. Researchers keep creating new versions of

these technologies. These also require the simultaneous modification of the middleware

DSMLs to accommodate the rapid growth of middleware technologies. Since these

platforms DSMLs are evolving rapidly, developers expend considerable amount of effort

and time by manually porting application models to newer versions of the same platform

DSML. Moreover, the application models themselves may also be needed to be upgraded

depending upon the client requirements. This upgrade in the application models due to

the upgrade in middleware DSMLs or due to client requirements may involve a huge

amount changes, For instance, in a given application model a component which occurs

hundreds of times in the application at different places or which has hundreds of

dependency with other components or even other objects is required to change.

Figure 4: Basic Single Processor Application Model

 27

Figure 3 shown above is the application model of Component Assembly of Basic

Signal Processor (BasicSP), which was developed using the paradigm (or DSML)

PICML. This component assembly contains 4 components: EC, BMDevice,

BMClosedED, and BMDisplay. This is a very small part of a small application. These

components are the references to the actual components which are defined in the

interface definitions folder of the application model. Now if situations occur in which all

of this components have to be modified or even change than you have to manually

modify them at all the places where they are declared and where they are used, which

could be tedious, error-prone and complex if it is a large-scale application model with

thousands of components. Similarly, if the paradigm itself is modified and updated, then

the whole application model needs to be changed to become compatible with the new

updated paradigm. In many situations even the developers will choose to develop the

application model right from scratch instead of modifying the existing one. As a result,

the process of upgrading the application models will require developer’s excessive time

and efforts in the modification of complex large-scale application model.

IV.1.3 Migration of Component Middleware DSMLs

It is always a topic of competition for the developers to choose the language for

developing the application. Right from the early days of computing, the process of

choosing the application development language becomes the most vital part of the

analysis process of the software development life cycle. Every time there is a new project

to be developed, there is a long evaluation period where one decides what technology to

use. There are so many pros and cons of all these languages that it becomes the important

 28

aspect to decide what language to use. For example, developing a web application can be

done using .NET or using Java, or using PHP. But to decide the right language to develop

the particular web application needs a well performed evaluation. Table 1 below is a

comparison chart between .NET, Java, and PHP, showing the key differences between

these languages.

Table 1: Comparison chart between .3ET, Java, and PHP

Feature .3ET Java PHP

Compiled Code – Increases

website speed (precompiled is

the fastest)

Yes – both

precompiled and

dynamically

compiled when a

page is requested

Yes – both

precompiled and

dynamically

compiled when a

page is requested

No – a 3
rd
 party

accelerator can be used

to increase performance

but it is not installed on

most shared hosting

servers

Scripted Language – results in

poor website performance

No No Yes – a 3
rd
 party

accelerator can be used

to increase performance

but it is not installed on

most shared hosting

servers

Object Oriented – Increases the

ability for code reuse and

provides enhanced features as

well as reduced development

time; since code is more

reusable, results in fewer bugs

that can be discovered by any

client and fixed for everyone;

encourages developers to write

more maintainable code

Yes Yes No

Supported Development

Languages – easier to find

developers

C++, C#, Visual

Basic.NET,

Jscript.NET,

Python, Perl,

Java(J#), COBOL,

Eiffel, Delphi – 25

Java PHP

Browser Specific HTML

Rendering – different HTML is

automatically sent to IE than to

Netscape, reducing

incompatibility issues

Yes No No

Open Source No Yes Yes

 29

Advances in these languages lead the developers to build the application with

increased performance and more advanced features. For example, the precompiled and

dynamically compiled code increases considerably the performance of the web

applications developed using .NET or Java. Due to this advances of third-generation

languages software developers make a best choice of the language most of time.

Unfortunately, this is not the case all the time. For example, at a later stage of application

development, situation may arise that it would have been more beneficial if the

application was developed using other language. In this situation the developer might

compromise the benefits of using other language or might think of re-developing the

application using the other language. This required the application to be converted into

another language, which is often cumbersome and error prone.

Software developers and researchers over the past few decades put a lot of effort

to increase the reusability available for programming, thereby reducing the programming

efforts. For example, API’s and libraries to a great extent reduce the effort associated

with application development by minimizing the need to re-create the common services.

Despite these efforts, the problem remains due to the growth of platform complexities,

which has evolved faster than the ability of general purpose languages to overcome it.

For example, component middleware application platforms, such as EJB and CCM have

thousands of methods and classes with many dependencies and side effects that require

huge amount of effort to program. This increasing complexity has driven the need for

reusability in the design and development of the software systems. This has led to the

adoption of the traditional engineering practice of modeling into software engineering.

Model-Based Software Engineering (MBSE) is a software development methodology

 30

that places emphasis on the formal understanding of the features and structure of a

product family, by creating and using reusable models, thus reducing the application

development efforts. This methodology has a set of abstractions, termed as DSML, which

can be used to describe an entire class of systems. DSML become one of the major tool

for developing complex component middleware applications as they significantly reduces

the programming efforts by allowing developers to use the reusable metamodels to build

applications using elements of the type systems captured by metamodels and express

design intent declaratively rather than imperatively. However, as we know the component

middleware technologies are evolving at a considerable fast rate, the newer platforms

appearing regularly. Although the reusability feature of DSMLs for the component

middleware technologies considerably enhances the application development process and

reduces the development efforts, they are not reusable across these multiple platforms.

For example, an application model in one platform DSML may need to be converted into

another platform DSML for reasons including, client requirements, incorporating

capabilities specific to a particular platform DSML, etc. This issue of model

transformation usually done by creating the application either from scratch or writing

application specific model transformation rules, which require developers to expend

considerable effort.

IV.2 Open Issues in the Reusability of Component Middleware DSMLs

Although the emergence of DSMLs for the component middleware technologies

greatly reduces the application development efforts by addressing the challenges

involving simplification, abstraction and reusability, software developers still spend an

 31

excessive amount of time and effort in developing application models using complex

languages and converting existing application models to make it compatible in the

following situations: a) during the upgrade of the component middleware DSMLs to

create newer version, and b) during the transformation of application model from one

component middleware DSML to another. For instance, J2EEML and PICML, which are

the DSMLs for CCM and EJB comprises of hundreds and thousands of features. These

require developers to spend considerable amount time and effort to create application

models. Also, different version of J2EE platform are available and to make the J2EEML

(DSML for J2EE platform) compatible to the latest version of J2EE, it also needed to be

upgraded. Similarly, many of the software industries are now considering Web Sphere

instead of CCM for middleware applications, which require them to convert the existing

application from CCM to Web Sphere to use them with the new applications. As this

component middleware DSMLs are not reusable in the above two situations, the issue of

conversion usually done by creating the application model either from scratch or by

writing application specific model transformation rules. In both the cases the approach

will be tedious, complex, error-prone, and technology specific for hundred or thousand of

large-scale applications.

 32

CHAPTER V

GENERALIZATION AND STEP-WISE REFINEMENT

In this chapter we describe our research approach and the mechanisms developed

to simplify and automate the development and migration of component middleware

application models. This include the Commonality/Variability Analysis approach in

which we analysis the J2EEML and PICML to determine the features that are common

and variable in them. We also describe the step-wise refinement approach, discussed by

Dr. Don Batory, to simplify the application development process. Based on this

approaches we describe the modeling details of GCML, the graphical user interface and

the model interpreters used in our research approach to enhance the reusability,

simplification, and automation of component middleware DSMLs while developing and

migrating to newer version of same platform or across multiple middleware platforms.

V.1 Commonality/Variability Analysis

Increasingly, software engineers spent their time creating software families

consisting of similar systems with many variations. They search or the right

decomposition of their software into modules or classes, but have limited guidance in

finding those decompositions, especially in the face of constraints on performance,

reliability, and ease of use. Commonality and variability analysis (CVA) gives software

engineers a systematic way of thinking about and identifying the product family they are

creating. Among other things, it helps developers

 33

• Create a design that contributes to reuse and ease of change by increasing

the level of abstraction

• Predict how a design might fail or succeed as it evolves, and

• Identify opportunities for automating the creation of family members

When commonalities are invariant and variabilities precisely defined, developers create

opportunities for high-payoff automation to simplify and improve the application

development process. Based of this CVA approach we capture the key characteristics of

the two platform specific DSMLs (i.e., J2EEML and PICML). As shown in the Table 2

below, between these two DSMLs we determine the commonalities, which describe the

attributes that are common in them and variabilities, which describe the attributes that are

unique in them.

Table 2: Commonality/Variability Analysis of PICML and J2EEML

Features PICML J2EEML

Component
Component Assembly
Component Interaction
Factory Operations
Lookup Operations
Ports

Attributes

File/Package

Different types of component

interactions

Folders

Post Create Factory Operation
Attributes of the Factory and

Lookup Operation

Different types of components

V.2 Step-wise Refinement

Step-wise refinement is a powerful paradigm for developing a complex program

from a simple program by adding features incrementally where a feature is a product

 34

characteristic that is used in distinguishing programs within a family of related programs.

The concept of “step-wise refinement” is to take an object and move it from a general

perspective to a precise level of details. But to do so, it has been realized that it cannot

simply go from the general to the specific in one felled swoop, but instead, in increments

(steps). Step-wise refinement is the top-down presentation of a software system’s

functionality as a sequence of layers of increasing detail, beginning with the very abstract

and ending with the very concrete, and with each layer an incremental refinement of the

previous one. The refinement framework is in practice provides a framework for

encouraging correct, accountable and even efficient application. As refinements reify

levels of abstraction, feature refinements are often called layers – a name that is visually

reinforced by their vertical stratification. The advantage of Step-wise refinement is that it

allows for incremental development but on a much finer level of granularity. It also uses

unit tests as an integral feature of the development process. The software is also rapidly

build as step-wise refinement lends itself naturally to producing working prototypes of

the software as it develops, and it is often possible to build prototypes in remarkably short

periods of time. Step-wise refinement is highly scalable, as large systems can developed

in a structures and predictable fashion from it.

In our research, we describe the step wise refinement approach by using the

middleware application DSMLs, J2EEML and PICML. We used step wise refinement by

considering the two aspects of the middleware application development process. Firstly,

the process of developing the application model from scratch and secondly, transforming

an existing application model from one middleware application DSML to another. In the

first aspect, we use 3 steps in the step-wise refinement: 1) Using the CVA mechanism we

 35

determine the attributes that are common in both J2EEML and PICML. Based on this

analysis we build an abstract DSML at a very high level of abstraction called GCML.

GCML is a generalized DSML that allows the developer to define the component

modeling features at a very high level of abstraction and that are common to both

J2EEML and PICML. As these features are common to both J2EEML and PICML, they

can be reuse to generate the platform specific model for both of them. 2) In the second

incremental step we refine the abstract model created using GCML by adding more

features and attributes that are associated with the features that are selected in the abstract

model. To add these features we use the GUI which is a human-computer interface for

third-generation programming languages that uses windows, icons and menus and which

can be manipulated by a mouse. Advantages of GUI includes, intuitiveness by making it

easier to learn and to use and providing users with immediate, visual feedback about the

effect of each action, increases the level of abstraction and enhance the efficiency and

ease of use for the underlying logical design. 3) Once the platform specific features are

selected in the GUI, the next step involve the automatic generation of the platform

specific application model. This generated model is again refined, using the platform

specific paradigm of J2EEML or PICML, by adding application specific features. This

will make ready the application model to generate the executable application that can be

deployed.

In the second aspect of application development process in which an existing

application model is transform from one middleware application DSML into another, we

use 4 steps in the step-wise refinement: 1) In the first step, we generate the abstract

model, which is compatible with GCML, from an existing platform specific application

 36

model. In our case it could be a J2EEML application model or PICML application model.

This reverse generation of the abstract model from an existing application model is done

automatically using the model transformation capability of the model-driven engineering.

Once the abstract model is generated the remaining 3 steps are same as discussed above

in the first aspect of application development process to generate the application model of

either J2EEML or PICML.

V.3 Generic Component Modeling Language

Generic Component Modeling Language (GCML) is a DSML defined at a very

high level of abstraction and enables the developers to define the component modeling

features that are common to both J2EEML and PICML and reuse that abstract model to

generate the platform specific model which is compatible to either J2EEML or PICML.

Figure 4 shows the metamodel of the GCML that describe the common component

features of both PICML and J2EEML.

Figure 5: Generic Component Modeling Language (GCML)

 37

The key characteristics of the platform specific DSMLs that we captured in

GCML include: System, which is the root model that we build using the GCML

paradigm. This model is the base model which will be transformed into the platform

specific application model. Component Assembly, which is an abstraction for composing

components into larger reusable entities. A component assembly typically includes a

number of components connected together in an application-specific fashion. Unlike the

other entities, there is no runtime entity corresponding to a component assembly. This

component assembly has a cardinality of 0..*, which means that a system model can have

n number of component assemblies. The J2EEML feature corresponding to the

component assembly of GCML is named as J2EE_Solution. Components are the

centerpieces of the component applications. These Components separate application logic

from the underlying middleware infrastructure. A Component’s main function is to tie

together and organize the features of the objects and other types it uses. The cardinality of

component is also 0..*. The J2EEML feature corresponding to the component of GCML

is named as Bean. In J2EEML this bean is further refined into two types of beans as:

Session Bean and Entity Bean. This component of GCML supports only the session bean

of the J2EEML. FactoryOperation is a type of operation that creates something and

returns it. In this context, this FactoryOperation in GCML creates the instances of the

components and the implicit return type is the type of the component in which they are

defined. A component may contain any number of FactoryOperations. LookupOperation

is optionally found in the component. The corresponding feature of FactoryOperation of

GCML in J2EEML is a combination of EJBCreate and EJBPostCreate features. A

LookupOperation is intended to function in an application by looking up the component

 38

(in which it is defined) in a database or repository. In J2EEML the corresponding feature

of LookupOperation of GCML is named as finder. And Interaction, which are the

connection between the components. These connections are made to indicate component-

to-component interactions. In J2EEML this interactions are indicate bean-to-bean

interactions. Beans can have any number of interactions between them. In PICML this

interactions are more specific. It can be publish/deliverTo interaction or an invoke

interaction between components. The cardinality of these interactions also varies in

J2EEML and PICML.

V.4. Graphical User Interface

GUI is a computer environment that simplifies the user’s interaction with the

computer by representing programs, commands, files, and other options as visual

elements, such as icons, pull-down menus, buttons, windows, and dialog boxes.

Advantages of GUI include: it provides a standard method for performing a given task

each time the user requests that option, rather than crating a set of commands unique to

each potential request. GUI also allow users to take full advantage of the powerful

multitasking (the ability for multiple programs and /or multiple instances of single

program to run simultaneously) capabilities of operating systems which result in increase

in the flexibility of GUI use and consequent rise in user’s productivity. The major

advantage of GUI is in increasing the level of abstraction while enhancing the efficiency

and ease of use for the underlying logical design.

We have developed the GUIs as our second step in the step-wise refinement

technique for both J2EEML and PICML to add the platform specific features associated

 39

with the features that are selected in the abstract model of GCML. The features included

in the GUI of J2EEML and PICML are based on the variability analysis of the CVA

approach as shown in Table 2. The GUI is designed in such a manner that it allows the

user to select the features in a hierarchical manner. For instance, in the beginning the user

will be able to select the top most assembly from the drop-down list of the assemblies.

Once the user made his selection, he can select the attributes of that assembly, features

which are present in that assembly and attributes of those features, and features of the

features of assembly and their attributes. This hierarchical fashion is used to simplify this

step of refinement in the application development process and reduces the development

efforts. Figure 5 shows the GUI for J2EEML and Figure 6 shows the GUI for PICML.

Figure 6: GUI for J2EEML-Specific Features

 40

In the GUI of J2EEML we capture the features as: all the assemblies, which

represent the J2EE_Solution in J2EEML, in order of their hierarchy, are captured in the

combo-box with label “Select_J2EE_Solution”. The two text-boxes "RootPackage” and

“Description” under the J2EE_Solution combo box represent the attributes for the

J2EE_Solutions. This J2EE_Solution and its attributes are included in the

ComponentAssembly – J2EE_Solution panel. For each assembly, in the Component –

SessionBean panel the user is allowed to select a Bean captured corresponding to the

component and the attributes of the bean represented under the Select_Bean combo box

in the Bean Attribute panel. Next in the hierarchy are the three features, EJBCreate,

EJBPostCreate, and Finder, that a user can select for each bean. There can any number

of these three features a bean can contain. The user can provide values for the attributes

of each of these three features represented in their corresponding panels. Finally, we have

4 buttons in the bottom and their function, as the name suggest, is defined as: Clear,

which allow the user to clear all the entries he made in the GUI. Save, which allows user

to save all the entries in a text file, which we called as configuration file, to persist the

data. This will reduce the development effort if user wants to regenerate a model with

minimum change in some of the features in the GUI. Load allows the user to load the

configuration file and fill all the entries automatically in the GUI. Generate, which allows

user to generate the J2EEML application model compatible to the J2EEML paradigm.

In the GUI of PICML we capture the features as: all the assemblies, which

represent the ComponentAssembly in PICML, in order of their hierarchy, are captured in

the combo-box with label “Select_Assembly”. The two text-boxes for the name of

”ComponentImplementationFolder” and “ComponentImplementationContainer” with

 41

the Component Assembly combo box represent the Component Implementation Folder

which contain the Component Implementation Container which is the parent of the

Component Assembly in the generated PICML model.

Figure 7: GUI for PICML-specific features

For each assembly, in the Component panel the user is allowed to select a

Component and the attributes of the Component represented in the ComponentAttributes

panel. Next in the hierarchy are the three features, File, Package, and Attributes, that a

user can select for each Component. The File allows the user to enter the name of the file

which will contain the Package as enter by the user in the PackageName text-box. This

Package will contain the Component, selected in the Component combo-box, in the

generated PICML model. The user can provide values for the attributes of each of these

three features represented in their corresponding panels. Finally, we have 4 buttons in the

 42

bottom and their function, as the name suggest, is defined as: Clear, which allow the user

to clear all the entries he made in the GUI. Save, which allows user to save all the entries

in a text file, which we called as configuration file, to persist the data. This will reduce

the development effort if user wants to regenerate a model with minimum change in some

of the features in the GUI. Load allows the user to load the configuration file and fill all

the entries automatically in the GUI. Generate, which allows user to generate the PICML

application model compatible to the PICML paradigm.

V.5 Interpreters

GME is a generic, configurable modeling environment. For some GME

applications, the only motivation for a modeling project is the desire to describe a system

in a structured way. Usually, however, we also want the computer to be able to process

data from the model automatically. Typical processing tasks range from the simple to the

sophisticated: 1) generating program code or system configuration. 2) Building models

automatically from information provided by another data source (e.g. a model). 3) Using

the models as a data exchange formats to integrate tools that are incompotible with each

other. A common theme for all these applications is that they require programmatic

access to the GME model information. To meet this requirement, GME provides several

ways to create programs that access its data. The most popular technique is writing a

GME interpreter.

Interpreters are not standalone programs; they are components (usually DLLs)

that are loaded and executed by GME upon a user’s request. In our research work we

have used Java Component to write my interpreters. As discuss above in the step-wise

 43

refinement section that we consider the two aspects of the application development

process. For the same reason we write interpreters for both this aspects. In the first aspect,

our interpreter initially asks the user to select the platform (i.e., J2EEML or PICML) in

which he/she want to generate the resulting model. After this our interpreter reads the

abstract model created based on GCML and fill that data into the GUI of the appropriate

platform and open that GUI. Behind the scene, we use TreeMap are the data structure to

store and manipulate the data. Therefore, the interpreter reads the data from the abstract

model and the GUI and stores them in the TreeMaps of different objects. As mentioned

above our interpreter also has the functionality for the user to load the configuration text

file and fill the data in the GUI, to save the data from the GUI into the configuration text

file, and to generate the output application model using the configuration text file. Once

this model is generated it could be open using the platform specific paradigm to which it

is compatible.

In the second aspect of the application development process, we have second

interpreter which allow the user to generate the abstract model from an existing

application model. This interpreter is attached to both, J2EEML or PICML paradigm, so

that the user will be able to generate the abstract model from the existing application

model of either J2EEML or PICML. In this aspect the interpreter reads the application

model for all the common features, as described in the Table 2 of

Commonality/variability analysis, and based on that generate the abstract model which is

compatible to the GCML paradigm. Finally, this generated abstract model can be used to

generate the application model in any of the two platform paradigms using our first

interpreter.

 44

CHAPTER VI

CASE STUDY

Over the past decades many DSMLs and associated tools has developed for a

wide range of modeling concerns, specially platform specific as well as platform

independent component structural middleware technologies, such as PICML [5] for

CORBA Component Model, J2EEML [6] for Enterprise JavaBeans, and Embedded

Systems Modeling Language ESML [17] for embedded systems. It still needed constantly

to develop DSMLs for new domains. To show-case the application development efforts

and complexity of reusing DSMLs and DSML transformation for new requirement sets,

we provide a case study based on our research approach. In this case study we have

focused on DSMLs developed using GME since GCML is also developed using GME.

However, the concept behind our approach can be applied in other tool environments. We

chose the following DRE system as the application scenario for our experiments:

BasicSP – The Basic Single Processor (BasicSP) [18] is a scenario from the Boeing Bold

Stroke component avionics computing product line [19]. BasicSP uses a

publish/subscribe service for event-based communication among its components, and has

been develop and configured using a QoS-enabled component middleware platform. The

application is deployed using a single deployment plan on two physical nodes. A Global

Positioning System (GPS) device sends out periodic position updates to a GUI display

that presents these updates to a pilot. The desired data request and the display frequencies

are fixed at 20 Hz. The scenario shown in Figure 7 begins with the GPS component being

 45

invoked by the Timer component. On receiving a pulse event from the Timer, the GPS

component generates its data and issues a data available event. The Airframe component

Figure 8: Basic Single Processor

retrieves the data from the GPS component, updates its state and issues a data available

event. Finally, the :avDisplay component retrieves the data from the Airframe and

updates its state and displays it to the pilot.

The configuration complexity of the application scenario can be represented using

3-tuple {C;I;D} where, 1) C defines the number of components in the application. 2) I

defines distinct number of interactions between components of the application. An

interaction exists between two components if the outgoing port of one is connected to

incoming port of the other. And 3) D defines the distinct number of dependencies

between components of the application. A dependency exists between two components if

a change in the QoS configuration of one necessitates a change in configuration of the

other. The level of configuration complexity of BasicSP can be summarized using the 3-

tuple definition as shown in Table 3. Figure-8 shows model for the BasicSP developed in

 46

Table 3: Complexity of BasicSP application

Application

Scenario

of

components

of component

interactions

of component

dependencies

BasicSP 4 5 6

the GME using the PICML paradigm. This BasicSP application model comprises four

components, which is an example with very less configuration complexity as shown

Figure 9: GME model of BasicSP

in the Table 3. Although component middleware and existing MDE tools provide several

advantages in software development, several challenges need to be addresses in order to

reduce the complexity and development effort. One of the challenges, with respect to

complexity and development efforts, involves in the transformation of the BasicSP

model, which is developed using the PICML paradigm, into another paradigm, for

example, J2EEML paradigm.

 47

Figure 10: Abstract Model of BasicSP

Our research addresses this challenge by using the step-wise refinement approach.

Initially, as discussed in solution approach chapter, using our second interpreter we

generated the abstract model (Figure 9) which is compatible with the GCML paradigm.

Secondly, using our first interpreter read the abstract model and J2EEML GUI pop-up (as

we are developing J2EEML model from the PICML model). This J2EEML GUI will

allow the user to provide the values of the J2EEML specific features. Finally, by pressing

the generate button the J2EEML application model (Figure 10) will be generated

automatically.

Figure 11: J2EEML Model of BasicSP

 48

As we are using the visual tools and the step-wise refinement technique by

creating an abstract model, the transform of the BasicSP application model from PICML

paradigm to J2EEML paradigm is done with minimal user interaction and in a simplified

manner. Thus reduces the complexity of the application model and the development

effort significantly, and yet enhances the reusability in the model-driven engineering.

 49

CHAPTER VII

EXPERIMENTAL RESULTS

In this chapter we discussed the evaluation of our approach’s modeling and

transformation capabilities in the context of DRE system case study discussed in chapter

VI. All the measurements use GME 9.8.28 software package on Windows Vista SP2

workstation. Our prototype implementation of GCML uses PICML and J2EEML

paradigms. In order to find the reduction in modeling effort using our approach, we

compare its modeling and transformation capabilities with those of traditional approach

using the example of BasicSP discussed in the previous chapter.

In order to compare our approach, we use class counts that are created manually

to evaluate the modeling effort in using our approach. Class count is an important metric

for model-based quantitative software measurements and has been applied and adopted in

industrial contexts. For our measurements, while transformation of BasicSP application

model of PICML paradigm into J2EEML paradigm or into new version of PICML

paradigm, we use the following counts from the (meta) models: 1) number of components

created in the application, 2) number of connections created between components of the

application, and 3) number of dependencies created between the components of the

applications. A comparison of our approach with the traditional approach in terms of the

manual creation of class counts given above is tabulated in Table 4. In this table all the

data are shown in term of number of counts created manually by the user during the

transformation process of the BasicSP application mentioned above.

 50

Table 4: Modeling effort in approaches

Approach # of components

created

of component

interactions created

% of component

dependencies created

Our Approach 0 0 ~50

Traditional Approach 4 5 100

Using this approach, the number of components and the interactions between

them created manually are reduced by an average of ~100% while the number of

component dependencies created manually are reduced by an average of ~50%, thus

results indicate that on an average the modeling effort is reduced by ~75%. Furthermore,

the components are known to be the main aspect of the component modeling

technologies and the reduction of ~75% in the modeling effort include the ~100%

reduction in the effort of creating components manually in the application development

process.

These results of our approach show great improvement in the application

development process even if the number of components in the BasicSP application

example is small. These improvements will increase significantly with the large-scale

component modeling applications, such as Magnetospheric Multi-scale (MMS) space

mission and Shipboard Computing Environment (SCE). The complexity of these large-

scale application scenarios as compare to BasicSP in terms of the manual creation of

class counts given above is shown below in the Table 5.

Table 5: Complexity of application scenarios

Application Scenarios # of components

created

of component

interactions created

of component

dependencies created

BasicSP 4 5 6

MMS 12 11 43

SCE 150 260 950

 51

CHAPTER VIII

CONCLUSION

In this thesis, the approach presented used to enhance the reusability of model-

driven engineering with respect to middleware technologies by incorporating the

capabilities of automation and abstraction and reduces the development efforts in the

scenario of porting the application models when technology refreshed. To apply our

approach we include two main techniques that are developed separately to reduce the

application development efforts as: Step-wise refinement [D. Batory et. al.] and

Commonality/Variability Analysis [J. Coplien et. al.]. After defining the approach, this

thesis presented the case study for Basic Single Processor (BasicSP) example by

converting the PICML model of BasicSP into the J2EEML model. The main

contributions of this work are listed below:

1. Background research for enhancing the reusability of model-driven

engineering and for reducing the application development efforts. This

involves:

a. Model Transformation Techniques.

b. Enhancing the reusability of Model-driven Engineering

c. Commonality/Variability Analysis (CVA)

d. Step-wise Refinement

2. Development of a complete approach for enhancing the reusability of model-

driven engineering and for reducing the application development efforts in the

 52

scenario when technology refreshes with respect to middleware technologies.

This involves:

a. Designing a Generic Component Modeling Language (GCML) by

applying the CVA technique on the middleware DSMLs.

b. Designing the graphical user interfaces as the second step of

refinements after the abstract model created using GCML.

c. Developing two interpreters to incorporate the capabilities of

automation.

i. First for generating the application model right from

scratch using GCML and GUI.

ii. Second for converting an existing application model from

one middleware DSML to another. This interpreter will

generated the abstract model which then will be converted

to a different middleware DSML using the first interpreter.

3. This thesis also presented a detailed case study for applying our approach to

convert an existing application model from PICML paradigm to the J2EEML

paradigm. The experiments conducted in the thesis used the example of

BasicSP of the PICML paradigm. The experimental results showed a

significant reduction in the development efforts while enhancing the

reusability of model-driven engineering when middleware technology

refreshed.

 53

REFERENCES

[1]: Object Management Group, CORBA Component Model Specification, OMG

Document formal/06-04-01, April 2006

[2]: V. Matena and M. Hapner, Enterprise Java Beans Specification, Version 1.1, Sun

Microsystems, Dec. 1999.

[3]: D. C. Schmidt. Model-Driven Engineering. IEEE Computer, pp. 25-31. February’06.

[4]: A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle, and G.

Karsai. Composing Domain-Specific Design Enviroments. IEEE Computer, Nov. 2001.

[5]: K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. C. Schmidt.

A Platform-Independent Component Modeling Language for Distributed Real-time and

Embedded Systems. Journal of Computer Systems Science, 73(2):171-185, 2007.

[6]: J. White, D. C. Schmidt, and A. Gokhale. Simplifying Autonomic Enterprise Java

Bean Applications VIA Model-driven Engineering and Simulation. Journal of Software

and System Modeling, 7(1):3-23, 2008.

[7]: D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE

Transactions on Software Engineering, 30(6):355-371, June 2004.

[8]: J. Coplien, D. Hoffman, and D. Weiss. Commonality and Variability in Software

Engineering. IEEE Software, 15(6):37-45, Nov. /Dec. 1998.

[9]: Y. Lin and J. Gray. A Comprehensive Model Transformation Approach to

Automatic Model Construction and Evolution. In 20th ACM Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA), pp 104-105,

San Diego, CA, USA, 2005.

[10]: A. Kavimandan and A. Gokhale. Automated Middleware QoS Configuration

Techniques for Distributed Real-time and Embedded Systems. IEEE Real-Time and

Embedded Technology and Application Symposium 2008: 93-102.

[11]: G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the Use of Graph Transformation

in the Formal Specification of Model Interpreters. Journal of Universal Computer

Science, 9(11):1296-1321, 2003. http:/www.jucs.org/jucs_9_11/on_th_use_of.

[12]: G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-Oriented Programming. In Proceedings of the 11
th

 European

Conference on Object-Oriented Programming, pages 220-242, June 1997.

 54

[13]: The Generic Modeling Environment, Institute of Software Integrated Systems,

Vanderbilt University, (www.isis.vanderbilt.edu/Projects/gme/GME reference).

[14]: D. Kaul and A. Gokhale. Middleware Specialization Using Aspect Oriented

Programming. In ACM-SE 44: Proceedings of the 44
th

 Annual Southeast Regional

Conference, pages 319-324, New York, NY, USA, 2006. ACM Press.

[15]: C. Zhang, D. Gao, and H.-A. Jacobsen. Generic Middleware Substrate Through

Modelware. In Proceedings of the 6
th

 International ACM/IFIP/USE:IX Middleware

Conference, pages 314-333, Grenoble, France, 2005

[16]: Object Management Group, Deployment and Configuration Adopted Submission,

OMG Document ptc/03-07-08 ed., July 2003.

[17]: G. Karsai, S. Neema, B. Abbott, and D. Sharp. A Modeling Language and Its

Supporting Tools for Avionics Systems. In Proceedings of 21
st
 Digital Avionics Systems

Conference, Los Alamitos, CA, August 2002. IEEE Computer Society.

[18]: K. Balasubramanian, A. S. Krishna, E. Turkay, J. Balasubramanian, J. Parsons, A.

Gokhale, and D. C. Schmidt. Applying Model-Driven Development to Distributed Real-

time and Embedded Avionics Systems. Invited Paper to International Journal of

Embedded Systems, Special Issue on Design and Verification of Real-time Embedded

Software, Vol. 2, No.3/4, 2006, pp. 142-155.

[19]: D. C. Sharp. Reducing Avionics Software Cost through Component Based Product

Line Development. In Software Product Lines: Experience and Research Directions,

Vol. 576, pages 353-370, Aug 2000.

