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CHAPTER I

INTRODUCTION

The integration of physical systems through computing and networking has

become a trend, known as Cyber-Physical Systems (CPS). Many real-world CPS

such as automotive vehicles and distributed robotics, are monitored and controlled

by Networked Control Systems (NCS), where information among sensors, con-

trollers and actuators is exchanged via a communication network. NCS are in-

creasingly deployed over wireless networks, as they provide great convenience in

terms of fully mobile operation, rapid deployment and flexible installation. Study

of the wireless NCS has formed a multidisciplinary research topic and attracted

great interest from both academia and industry [37], finding applications in un-

manned robotic vehicles, automated highways and factories, smart homes and

appliances, remote telemedicine, etc [32].

Problem Description and Research Goal

This dissertation investigates the problem of resource management in wireless

networks that supports NCS with stringent Quality of Service (QoS) requirements.

We address two design objectives, stability and performance, in two design spaces.

Stability of the control system is ensured using a passivity-based architecture [56]
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at the control system, and the performance of the NCS is optimized via the cross-

layer interaction of the network. In particular, we examine a representative class

of wireless NCS, where multiple physical plant and digital controller pairs com-

municating over a multi-hop wireless network. The plants follow the reference

trajectories provided by the controllers. We consider the NCS performance in

terms of tracking error minimization in the control system.

The capability of adaptive resource management is crucial for NCS to fully

exploit the available resource for optimal performance, while avoiding network

congestion. Specifically, the following wireless communication characteristics

significantly affect the stability and performance of the control systems.

• The wireless communication is unreliable. Signals propagating through the

air makes wireless transmission vulnerable to noise and interference. If

the transmitter, receiver, or surrounding objects are moving, the shadowing

effect, multipath fading, and interference from other devices will make the

channel conditions fluctuate unpredictably, causing random packet loss and

time-varying delay.

• The wireless resource is constrained. The fast growing of wireless usage

leads to increasing demand for the shared resources, e.g., limited bandwidth

and power. Moreover, the usage of wireless spectrum is strictly adminis-

tered, placing restrictions on the available resource. On the other hand, dif-

ferent control systems may require different amount of resource depending

on their operation needs.

2



Building a wireless networking system that supports mission-critical NCS re-

quires fresh design approaches to address these difficulties. This Ph.D. research

work studies dynamic allocation of the network resource for optimizing the NCS

performance. The research goal is to design wireless networks that deliver the

best support for the optimal NCS operation.

Research Approach and Dissertation Contributions

Three major directions have been explored in literature to address the chal-

lenges in building wireless NCS. One direction, independent of the network de-

sign, studies the strategies of control systems. The goal is to maintain stability

and provide certain level of performance assurance of control systems despite of

underlying network uncertainties [37, 101]. Another direction focuses on reli-

able and timely network packet delivery, independent of the control systems. Yet

without cooperation between the network and the control systems, it is hard for the

above two approaches to achieve the overall optimal system performance [79, 12].

The third direction is to integrate and perform a joint design of the wireless net-

worked control system. While theoretically this approach can achieve optimal

system performance, it requires tight coupling of communication and control, and

inevitably involves too many interactions across different components, which is

unrealistic for deployment [11, 71, 87].
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In this Ph.D. research work, we perform cross-layer resource management in

order to optimize the performance of NCS. While the NCS can naturally be de-

composed into two essential components: wireless network and networked con-

troller, more vitally is the interaction between the components. We optimize the

performance of the wireless networked control systems via decomposition and in-

teraction. That is, the network layer and the control layer perform their individual

tasks and coordinate with each other via cross-layer signals.

The decomposition and interaction facilitate efficient layer abstraction and en-

capsulation by defining a clean interface. Each component will retain its imple-

mentation details, with only the vital information exposed to the other component,

e.g., system requirements and performance status. This brings the following ad-

vantages:

• Flexible maintenance. Internal states of one component can update locally

without changing or even notifying the other component. Components work

more independently as long as the interaction is intact.

• Clear Focus. With the shared information specified explicitly, NCS design-

ers only need to focus on these parameters without touching the major part

of the components. Also the interactions are relatively independent and

convenient to modify.

Two key questions about the decomposition and interaction remain unanswered

though:
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1. How to define a clean interface so that only essential parameters are shared

across the components.

2. How to process the received interaction signals so that the components’

stability is maintained and their performance is optimized.

Our main research task is to define the interface between the control system

and the network layer, with the complexity of the interactions regulated. In this

work, we first investigate one-way interaction between the control system and the

wireless network. From the control system to the network, the performance in-

formation of the control system is delivered, and the network adjusts its operation

parameters to best support the performance optimization of the control system.

From the wireless network to the control system, the congestion signal of the

wireless network is passed, and the control system dynamically adapts its sam-

pling time to preserve the optimal performance. Next, we explore the cross-layer

interactions between the two systems and among the layers within the networking

protocol stack, which integrate the control system sampling rate adaptation with

network scheduling. The work is described in more details as follows:

Dynamic Tuning of the Wireless Networks

We first study how the network loss and delay may affect the NCS perfor-

mance in chapter III. We observe that both factors have negative impact on the

NCS performance, and they can be balanced through the Medium Access Con-

trol (MAC) retransmission limit of the network. Thus we adjust the operation

5



parameters of the wireless network based on the NCS tracking error passed from

the control system. In particular, we present a MAC controller that dynamically

tunes the retransmission limit to track the optimal trade-off between packet loss

and transmission delay and thus optimizes the control system performance. Sim-

ulation results show that our approach significantly improves the performance of

the NCS.

Cross-layer Sampling Rate Adaptation of the Control Systems

In Chapter V, we present optimization formulations for minimizing the track-

ing errors introduced due to (1) discretization and (2) packet delay and loss.

In the first step, we consider the problem of dynamic rate adaptation for NCS

so that they can fully utilize the scarce wireless resource to minimize the dis-

cretization induced tracking errors. The ability of using different sampling rates in

control systems provides the flexibility for adapting their resource needs based on

the dynamic resource availability in the wireless networking environment. From

the control perspective, the more a controller knows about the system, the better

the controller will perform [71]. This can be done by exchanging messages more

frequently. However this increases the communication burden on the network and

may lead to congestion. The congestion results in longer delays and more packet

losses, which will degrade the control performance. We employ a price-based ap-

proach, where prices are generated to reflect the congestion level of the contention

6



regions in the wireless network and used as the basis for rate adaptation. A dis-

tributed solution for sampling rate adaptation is then developed using utility-based

optimal resource allocation, where a utility function quantifies the relationship be-

tween the sampling rate and the capacity of disturbance rejection of the control

system (i.e., minimizing the discretization-induced tracking errors).

In the second step, we minimize both tracking errors by joint design of control

system sampling rate adaptation and network scheduling. The optimization prob-

lem maximizes the utility function in the first step. The optimization constraints

are from the wireless network capacity and the end-to-end delay requirements.

The solution leads to a joint design of sampling rate adaptation and network

scheduling, which can be naturally deployed over existing layered networking

systems. Based on a passivity-based control framework, we show that the pro-

posed cross-layer design can achieve both stability and performance optimality.

We conduct simulation studies in Networked Control System Wind Tunnel

(NCSWT) [99], an integrated simulation environment consisting of Matlab/Simulink

and ns-2. The results demonstrate that our algorithm is able to provide agile and

stable sampling rate adaptation and achieve optimal wireless NCS performance.

To arbitrate the resource sharing among multiple control systems, we further

define new end-to-end fairness models based on a game theoretical framework for

wireless networks with non-convex capacity region, and evaluate the impact of

the resource sharing regions approximated by different neighborhood information

on the fairness performance.
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End-to-End Fairness of Non-convex Wireless Networks

In Chapter VI, we present a new fairness model for IEEE 802.11 wireless

network where the capacity region is non-convex. Fair resource allocation for

end-to-end flows is an important yet challenging problem in multi-hop wireless

networks. Recent research on fair resource allocation is mainly based on the as-

sumption of convex resource regions, which has been theoretically proven untrue.

To characterize the desired fairness property, we adopt an axiomatic approach

based on the game theoretic framework. The new fairness model grounds on the

Nash Extension Solution (NES), which is shown to be consistent with the concept

of proportional fairness under the convex cases, while approximating it under the

non-convex cases. We further present an efficiency enhanced version of Nash ex-

tension solution to push the NES to the strong Pareto frontier. A time-decomposed

price-based rate allocation algorithm is then presented and its stability is proven.

End-to-End Fairness of Neighborhood-Information Impacted Wireless Network

In Chapter VII, we evaluate the different heuristic rate allocation solutions that

simplify the scope of resource sharing regions using different neighborhood mod-

els. A baseline fairness model (i.e., proportional fairness) is established using the

price-based resource allocation framework. In this framework, price represents

the cost of the resource usage incurred by unit flow. The rate of a flow is directly

linked to its price, which is the aggregated price of the links it traverses. The link

price is the sum of the prices of all the resource sharing regions which it belongs
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to. Obviously, when the resource sharing regions are approximated by different

neighborhood models, link prices will manifest as different values. Six differ-

ent neighborhood models are constructed and their deviations from the baseline

proportional fairness model are assessed.

In addition, we present in Chapter II an overview of existing related literature,

which includes control system design, wireless network design, and joint design

for the NCS, emphasizing the problem of resource allocation. We conclude the

dissertation in Chapter VIII.
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CHAPTER II

BACKGROUND AND RELATED WORKS

A brief history on the use of communication networks as parts of a control sys-

tem has been summarized in [139, 37]. We will give a literature review emphasiz-

ing the recent developments of resource allocation in wireless networks support-

ing the design of NCS.

NCS Overview

Control with Network Effects

Introducing networks into control loops provides great convenience and flex-

ibility for control operations, while it also complicates the analysis and design of

the NCS. The behavior of NCS largely depends on the network effects of the un-

derlying networks [140, 71]. These effects including time-varying delay, random

packet dropouts, undetermined channel capacity, and etc., all can lead to network

uncertainties. Specifically, the following network effects are mainly addressed in

literature.
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• End-to-end delay. The end-to-end delay can be captured by the plant-to-

controller delay and controller-to-plant delay. An early introductory tuto-

rial [17] addresses that analysis and design of control systems when the

communication delays are varying in a random fashion are complex. To

overcome these problems, the delays can be modeled as either constant,

jittered, time varying with known probability distribution or independently

random [85, 86, 67]. [76] reviews the effects of constant and varying time

delays on the performance of closed-loop control systems for different con-

trol models.

• Packet dropouts. Packets can get lost during transmission due to congestion,

collision or unreliable hardware. The loss probability can be defined as the

reliability of the network paths. Usually network protocols have retransmis-

sion scheme, but will drop the packets after retrying for a limited number

of times. It has though been addressed that discarding old, untransmitted

message and transmiting the new one if available is advantageous for the

control system to always get fresh data [140].

• Network throughput. The throughput defines how many bits per time unit

can be transferred along a given path. When the paths of different control

systems share network channels, each system can only get certain portion

of the constrained bandwidth.
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Some other network effects include delay or loss jitter, quantization error, and

packet ordering. [106, 139] provide literature reviews categorized according to the

different network effects.

Category of Methodologies

The research of NCS has been widely explored in existing literature [140, 106,

43, 101, 41, 37] along the following three major directions.

• Control over network. Develop of the control strategies that explicitly takes

the network uncertainties into account over given networks [27].

• Control of network. Study of the different layers in the networks to mini-

mize the effects of the network uncertainties on designed control systems,

e. g., congestion regulation, route selection, MAC scheduling [5, 77], and

etc.

• Control with network. Joint design combining the efforts from both the

control systems and the networks.

Our research focuses on the last two categories. That is, how wireless net-

works can work more efficiently with the control systems via the design of wire-

less networking systems and the design of the joint operation. Several solutions

to packet loss and end-to-end delay in the wireless NCS have adopted similar

approaches to those in wired networks. However, the design is usually more com-

plicated with wireless networks. Note that the framework in [89] presents a new
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paradigm different from the classical NCS model, which obtains the controller’s

behavior from the aggregate computation of different nodes in the network.

Control over Network

[41, 101, 37] provide overviews mainly on the direction of control over net-

work. It has been emphasized that the choice of network depends upon the desired

application. The applications of the control systems can be classified based on

their real-time requirements.

• Hard deadline, where all given deadlines must be met under any circum-

stance, otherwise the system will fail. Hard guarantees are impractical on

platforms such as wireless networks since the networks’ load and resource

capacities are very difficult to predict and manage.

• Soft deadline, where missing a deadline will degrade the system perfor-

mance. Guaranteed delivery and best effort are two subsets of this require-

ment. The former does not have any particular constraints on the actual

delay of a packet, while the latter attempts to deliver packets as fast and

errorless as possible, without successful delivery guarantees. Many modern

applications require some form of performance assurances.

To control over networks, different state estimation methods are used to track

the network effects. [41] provides a survey on problem of state estimation over
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imperfect communication channels. [48] uses a two-state Markov model to esti-

mate the frame loss over time of a moving window. It detects the network dis-

turbances and predicts the system operation in terms of stability and disturbance

rejection. [73] models the wireless delay dynamics with a Kalman filter, which

produces an optimal delay estimate with a stochastic model.

Many control-based approaches have been applied to NCS to provide stability

guarantee and performance enhancement, such as state augmentation, queuing

and probability theory, nonlinear control and perturbation theory. Following are

two commonly used methods.

Compensation Method

Compensation methods are used for the end-to-end delay and packet loss. Dif-

ferent mathematical, heuristic, and statistical-based approaches are presented for

compensation in NCS [79]. Advanced techniques include queuing/buffering [74],

optimal stochastic control [86], robust control [137], linear matrix inequality (LMI)

[61], gain scheduler middleware (GSM) [116], predictive gain scheduler [52], pre-

dictive control [68], and etc. Detailed descriptions can be found in [37]. Recent

work [59] focuses on compensating for exponentially bounded long dropout bursts

in the network by reconfiguring the controller or the network to guarantee stability.

14



Reduced communication

The idea of reduced communication control is to under-utilize the network re-

source. Results in [19, 43] demonstrate that when it is blocked either from sudden

bursts of traffic or from long periods of poor channel conditions, under-utilizing

the bandwidth of the channel during periods can ensure sufficient bandwidth, pre-

vent queue buildup, and optimize the control and network performances simulta-

neously.

Significant research efforts have been devoted to the problem of determining

the minimum bit rate that is needed to stabilize a linear system through feedback

over a channel with finite capacity [123, 28, 39, 81, 113, 13]. Kim et. al. [51]

defines a Maximum Allowable Delay Bound (MADB) guaranteeing stability in

terms of LMI. [75] proposes a less conservative MADB. Other literatures derive

bounds on transmission period to guarantee NCS stability. Branicky [141] obtains

the bound on the time-varying transmission period. Walsh et. al. [119] introduces

the notion of Maximum Allowable Transfer Interval (MATI). Nešić et. al. [82]

presents less conservative MATI bounds that can be applied to a general class of

NCS with static and dynamic protocols. Several other subsequent improvements

of MATI bounds are reported in [15] and [112]. [40] and [111] further relax the

MATI bounds by considering stochastic stability properties instead of determin-

istic ones. [38] provides tradeoffs between MATI and the maximally allowable

delay. Deadbands [88] are also used to reduce traffic in NCS. A node with a dead-

band compares the previous value it sent to the network to the most recent one. If
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their absolute difference is within the deadband, no update is sent to the network.

The optimal size of the deadband is determined by the tradeoff between traffic

and control performance. [78] employs model-based NCS that explicitly uses the

knowledge about the plant dynamics and only places critical information about

the plant on the network to reduce traffic load.

Control of Network

Kumar [57] provides the first critical analysis on the use of wireless control.

It explores a wide spectrum of issues of the wireless network effects on control

performance, from the physical layer up to the networking layer. In a network

system, the Internet protocol stack consists of five layers from top to bottom: the

application layer, the transport layer, the network layer, the link layer, and the

physical layer [58]. For the NCS, control systems reside in the application layer.

The control of network is thus mainly about design of the other four layers.

• Transport layer. The transport layer provides end-to-end communication

services for the application layer. There are two transport protocols, TCP

and UDP. TCP provides connection-oriented service with guaranteed deliv-

ery and flow control, while UDP provides connectionless service with no

reliability, no flow control, and no congestion control. The NCS prefers

UDP over TCP, considering its distinct advantages of low overhead, small

latency and flexibility over TCP [106].
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• Network layer. The network layer is responsible for routing packets from

one network host to another.

• Link layer. The link layer is primarily about how channel is shared among

multiple transmitters, with the Medium Access Control (MAC) protocol

defining the access scheduling and collision arbitration policies. The MAC

can be either of random access or with scheduling [107]. In the stan-

dard protocols, random accessed network often uses Carrier Sense Multiple

Access (CSMA), whereas scheduling commonly employs Token Passing

(TP) and Time Division Multiple Access (TDMA). CSMA is used in De-

viceNet and Ethernet, with possible packet collision and unbounded worst-

case transmission time. TP protocol appears in token bus (IEEE Standard

802.4), token ring (IEEE Standard 802.5) and Fiber Distributed Data In-

terface (FDDI) MAC architectures; TDMA is used in FireWire. TP and

TDMA eliminate contention and with bounded and constant packet trans-

mission delays [140].

• Physical layer defines point-to-point communication transmitting individual

bits from one node to the next. Its services include modulation and coding.

The standard layer design usually cannot meet the real-time requirements of

the control applications. Thus, some NCS research work assumes simplified net-

work without layering, some focuses on the design of one layer, and other work

highlights the cross-layer design [69, 70, 71]. The cross-layer design has been ap-

plied to network applications, such as video over wireless [135], sensor networks
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with energy constraints [24], and in wireless ad hoc networks [104]. In the NCS, it

optimizes the end-to-end control performance by designing the network protocol

stack layer by layer.

To analyze the effects of networks on the NCS performance, several work

studies the trade-offs between network communication parameters. [140] illus-

trates the relationship between the sampling period and allowable time delay by

a stability region plot. [69] examines the trade-offs between the data rate, error

correction coding and the maximum number of retransmissions of the link layer

design in Linear Quadratic (LQ) gaussian control. It then determines the opti-

mal selection of these parameters to achieve the best control performance. Later

work [70] examines the effects of different wireless network MAC layer protocols

on the NCS performance, including centralized TDMA, polling and decentral-

ized random access without ACK, random access with ACK, and CSMA/CA of

802.11. The 802.11b MAC layer is studied in details in [19, 18]. They investigate

the properties of the wireless hard real-time NCS under heavy contention from

control-only and mixed-traffic data, as well as their performance under channel er-

ror and different bandwidth. [138] investigates the trade-off between the sampling

rate and the data accuracy, with given fixed average throughput. It demonstrates

that the controller prefers more frequent communication with the plant even if the

information is crude to obtaining a piece of more precise information with a long

delay.
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Control with Network

The joint optimization considers attributes of the control systems and features

of the wireless networks simultaneously. The join design is of two-fold: the con-

troller needs to be robust and adaptive to communication faults such as random

delays and packet losses, while the network should be designed with the goal of

optimizing control performance [71]. One important concept of joint design [11]

is that the co-design approach begins by expressing both the control and network

constraints. The separation of concerns allows the control community to focus

on the control design without worrying about the details of how the network is

implemented. At the same time, it allows the network community to focus on de-

velopment of scheduling theory and computational models to provide guaranteed

services without thorough understanding of how the control system needs to be

constructed [96].

[26, 25, 80] design controllers and protocol simultaneously, producing larger

bound on MATI. [4] uses play-back buffers to remove the uncertainty in the delay.

The increased loop delay of the buffers is then compensated by model predic-

tive controllers. [84] adjusts the data retransmissions attempts based on the QoS

factors monitored by counting the lost packets. It also periodically tunes the con-

troller’s minimum gain to decrease the control system’s sensitivity. The gains

are computed via the combination of LMI-theory and a point-and-shoot algorithm

in an ad hoc procedure. [44] investigates the data transmission rate, power con-

sumption, and congestion levels in the wireless network. Co-design is pursued by
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formulating communication and control systems as a state-space model that help

meet the desired signal-to-interference ratio and stability.

Resource Allocation

Among all the works of NCS, resource allocation has drawn great attention of

both control and network engineers. Traditionally, NCS operates at a fixed sam-

pling rate based on its average or worst-case resource requirements. However,

with the rapid growth of network traffic, control systems need to compete for fi-

nite network resources, such as network bandwidth. Without proper coordination,

congestion is a common consequence. [121] has suggested that resource alloca-

tion can be an effective method to improve performance of control loops under

such conditions. In addition, [138] shows that each application may have differ-

ent requirements for timing and sampling periods according to the control strategy

used and the noise in the data. [87] also addresses that the amount of data to be

transferred through the network may vary for different control systems, which re-

quires the need to allocate the network resources according to the necessity of a

control loop.

The problem of resource allocation is usually formulated into an optimization

problem with an objective function subject to constraints. The objective function

is the sum of the utility functions Uf (·), which relates control performance with
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system characterization like sampling rate, or control characterization like con-

trolled system error. For example, Uf (r) expresses the degree to which a particu-

lar system f can benefit from sampling rate r [2]. In this case, the utility function

is monotonically increasing, reflecting that higher sampling rates lead to better

control performance. It is also strictly concave, reflecting the law of diminishing

returns as the rate increases. In the NCS literature, quadratic and exponential util-

ity functions are commonly used. The constraints incorporate the resource limits

and other NCS requirements. [102] is the initial work that uses an utility function

to capture the relationship between the sampling rate and control performance. It

leads to an offline solution that deals with fixed computing resources.

An allocation scheme can be either static or dynamic.

• Static. The pattern of allocation is determined in advance and fixed during

system operation. It ensures average control performance at the expenses

of permanently occupying certain amount of resource. But it may not be

efficient as the pre-assigned resources can be under or over utilized.

• Dynamic. The access to the shared resources is determined at runtime,

based on the dynamic changes of the information. It is flexible and adapt-

able to dynamic changes, so that under-utilized resource can be made avail-

able to other applications to provide new functionality or otherwise improve
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performance; over-utilize of the resource can be regulated. However, the dy-

namic allocation may take more computation time. [116] argues that com-

putation time of a properly designed bandwidth management system might

not be substantial when compared to other delay in NCS.

[98, 11, 127] study the problem of static resource allocation. [98] considers

the case of several control systems sharing one communication channel, and only

one controller can use it at each communication instant. Its objective function is

formulated to minimize the difference between the sampled-data closed-loop per-

formance and that of the continuous control. Exhaustive search is then employed

to find the optimal communication sequence. [11] associates each NCS with a per-

formance measure as a function of transmission period. Its optimization problem

is to minimize/maximize the performance function with RM schedulability con-

straints and NCS stability constraints. [127] presents a linear system transmitting

several signals over communication channels with bit rate limitations during each

sampling period. With the fixed linear system, it minimizes the quantization error

of a white-noise model with the constraint of resource limitations.

Recent work has identified the need for dynamic resource management of

NCS. [2] addresses that an economical resource allocation of NCS needs to ex-

hibit the following features:

• It ensures stability of all control systems, if feasible.

• It attains the maximum aggregate performance of all control systems.
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• It is efficient and controls congestion to minimize delays and losses, and is

fair by fulfilling performance objectives of different control loops.

• It provides a fully distributed, an asynchronous, and a scalable solution.

Each node executes independently using local information with no central

managing entity. It scales up as the number of controlled systems and/or the

size of the network increase.

• It is dynamic and flexible. It dynamically reallocates network resources as

different control systems acquire and release the network.

The dynamic resource allocation can be used to accommodate network changes.

For instance, NCS on the move, such as the automated highway systems, need

to take the time-varying channel into account. The amount of resource required

could also depend on different factors according to the nature of the control sys-

tem and the operating environment local to each agent in the system. Dynamic

resource allocation can be achieved by sampling rate adaptation in the control sys-

tem, or scheduling in the network. Other approaches include market auction [117],

where each control loop in the NCS competes for the bandwidth using market

based technology with reward systems to control the auction price.

Sampling rate adaptation

Sampling rate adaptation implicitly regulates traffic injected into the network.

Several papers [122, 69, 70] have shown that faster sampling extends the range
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of stability with respect to packet loss, but higher sampling rates in turn pro-

duce larger rates of data loss. The advantages [21] of sampling rate adaptation

include no requirement for plant models as well as being controller- and protocol-

independent, making it convenient to integrate with current commercial-off-the-

shelf networking technology.

Motivated by the goal of maintaining low levels of data loss while keeping

to the highest possible rate of sampling and control [43], positive results have

been obtained by dynamically adjusting sampling rates to reflect varying network

conditions. [33] proposes an heuristic algorithm to adapt bandwidth allocation of

control systems over a CAN bus based on two factors, network load and stability

threshold. [48] varies the sampling period of each controller based on the state

estimation of network conditions, system stability/performance requirements, and

computation/bandwidth limits of the hardware. In [2], control systems vary their

sampling periods based on the congestion level of Wide Area Networks (WANs)

fed back from the network. It allocates bandwidth to avoid network congestion

of WANs and preserve high performance level of NCSs. A convex optimization

is lower bounded by the minimum rates that guarantee system stability, and upper

bounded by the total network capacity. It is then solved by dual Lagrange multi-

pliers in a fully distributed manner. [21] adapts the sampling interval based on the

measurement of round-trip delay and assures stability in the mean square sense

using discrete-time Markov Jump Linear System (MJLS) theory. The MJLS is

based on an ‘a priori’, static sampling policy, with network dynamics described
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as linear time-invariant systems switching between a finite combination of sam-

pling interval and delay. Bao [7] proposes a rate allocation technique to minimize

the distortion introduced by quantization over a noisy channel. An optimization

problem is constructed with the objective of minimizing the LQ cost by means

of Mean Squared Error (MSE). It is constrained by the total rate, and solved us-

ing Lagrange duality. The MSE is derived for the instantaneous distortion, and the

system state is not affected by the rate allocation. [100] presents a methodology for

determining optimal sampling rates for feedback loops focusing on WirelessHart

networks.

Some sampling rate adaptation schemes are also based on the control system

dynamics. [118] presents a resource management approach in NCS that allows

control loops to locally consume network’s available bandwidth according to the

dynamics of the controlled process while attempting to optimize overall control

performance. [62] always allocates larger sampling rates constrained by the avail-

able network bandwidth to signals with higher priority. A sampling rate good-

ness measurement function and a system cost function are defined to assign the

controlled plants experiencing faulty conditions with higher priorities. Thus the

signal sampling and reconstruction error due to limited network bandwidth will

be minimized. [87] calculates the sampling time according to the internal status

of the control systems as well as their environmental condition. It first ensures the

NCS stability with minimum bandwidth requirement and then improves the NCS

performance by allocating the remaining bandwidth considering the normalized

value of curvature and speed of each vehicle.

25



Network Scheduling

The availability of time on a shared network for communication is an im-

portant factor limiting the performance of a NCS. [63] performs an experimental

study of communication network characteristics. It shows that the transmission

time of a message in the most used networks can be neglected and the delays in

NCS are mainly due to the contention between messages sent by different nodes.

The most efficient way of delay reduction is thus through the design of appropriate

message scheduling strategies.

In the real-time systems, scheduling techniques, e. g., Rate Monotonic (RM)

and deadline monotonic, are used in processors. Network scheduling is initially

derived from these techniques, and later takes different forms to be compatible

with network properties. One main difference between processor scheduling and

network scheduling lies in that task executions can be preemptive while network

transmissions are typically not. The network scheduling algorithm is a set of rules

that, at any time, determine the order in which messages are transmitted [11].

When a set of control systems share network resources, with no coordination,

concurrent transmissions can occur and backoff schemes are important to avoid

collisions or bandwidth violations. However, backoff will result in transmission

delays or even packet drops if the waiting queues are full. Good scheduling algo-

rithms should minimize such system performance loss. Term schedulable is often

used for control systems with hard deadlines. A scheduling algorithm is said to

be schedulable if a set of NCS transmissions can all be completed before their
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deadlines. The scheduling algorithm can be static like token rings and polling, or

dynamic.

The priority function is a convenient way to formally define the schedul-

ing policies for controllers so existing standard control techniques can be imple-

mented. It distinguishes different types of data with classified priorities. Network

resources are then allocated according to the highest priority first paradigm. Dif-

ferent priority assignment will result in distinct resource allocations [125]. Ac-

cordingly, the assignment of nodes’ priorities can be used to distribute network

resources among control loops. Therefore, the problem of network scheduling be-

comes how to dynamically assign priorities to the control systems, with the goal

to achieve optimal resource allocation and maximize the overall control perfor-

mance. [34] highlights a class of online scheduling policies targeted at scheduling

frames in the MAC layer on top of the CAN priority bus.

The scheduling can be based on the information related to the states of the

controlled systems or to the message deadlines. [119, 134, 125] determine the

controllers’ priorities based on the control errors. Walsh et al. [119] study two

scheduling methods: token-ring-type scheduling and dynamical Try-Once-Discard

(TOD) for MIMO continuous NCS. In TOD, the plant with the greatest weighted

error from its last report value to the controller will transmit. The error is defined

as the difference between the signal out of the network and that into the network.

It is set to 0 at the transmission time if a plant transmits over the network. [134]

presents a Large Error First (LEF) scheduling paradigm, which adjusts node pri-

orities based on the state errors of the controlled plants. The control application
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demand is expressed using a dynamic cost function. [125] presents a maximum ur-

gency first scheduler, in which the urgency of each control loop is computed based

on the setpoints and current system outputs in a central master node. Further, sig-

nals with low priorities may be discarded to give network resources to more urgent

control loops. The scheduling of [124, 91] are based on message deadlines. [124]

proposes a distributed dynamic message scheduling method based on Deadline of

Message (DM) to satisfy timeliness of messages and improve the system’s flexibil-

ity on CAN. Identifier of message is dynamically changed: the longer the elapsed

time is since the preceding message is transmitted or the shorter DM is, the higher

the priority level of message will be. [91] develops a new wireless MAC proto-

col with static-priority scheduling in a wireless industrial network. The goal is

to schedule all messages such that all transmissions are accomplished before their

relative deadlines without any collision of data bits. [133, 105] develop new proto-

cols that assign priority to controller or measurement type data, and then propose

algorithms for dynamical scheduling: constant penalty, estimated error order and

lag first-order schemes in [133], ID initialization in [105].

Joint Design

The co-design of sampling rate adaptation and network scheduling is another

topic in literature. [11] computes the smallest transmission period with RM

schedulability and NCS stability. If a set of NCSs cannot be scheduled with the

given time constraint, some packets of the faster sampling NCSs will be dropped
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to guarantee stability. [90] allows for heuristic sampling period adjustment to al-

locate bandwidth to different types of messages and exchanges the transmission

orders of data. [126] develops an integrated feedback scheduler. It encompasses

a cascaded feedback scheduling module for sampling period adjustment and a di-

rect feedback scheduling module for priority modification. The sampling period

is adjusted according to an optimization problem. It minimizes the aggregated

absolute instantaneous control error, and constrained by the total utilization ob-

tained via the control error of deadline miss ratio. The controller priorities will be

switched according to individual’s absolute instantaneous control error.

[127, 71, 65, 20] study the joint optimization of control systems’ sampling

rate adaptation with other network control schemes. Xiao [127] jointly solves the

controller synthesis and rate allocation over communication channels with bit rate

limitations. It iteratively fixes one set of variables, and then uses dual decomposi-

tion method to optimize over the rest of variables. It applies the conventional uni-

form quantization method with a white-noise model and focuses on the trade-off

between the transmission power and the bandwidth allocated to channels. Liu [71]

highlights the network cross-layer design problem, and optimizes the control per-

formance by investigating the interaction of the physical layer design, the MAC

protocol selection, and the controller sampling period. A LQ cost function is used

as the optimization object. And a suboptimal iterative method jointly solves the

controller synthesis and communication rate allocation. Liberatore [65] proposes

an algorithm to integrate a play-back buffer with sampling time adaptation and

contingency control. Colandairaj [20] uses data rate scaling to improve the frame
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error ratio of the IEEE 802.11b wireless channel under poor channel conditions.

The resulted variation in channel bandwidth is compensated by sampling interval

adaptation [21].

[76, 42, 31, 142, 120] work on the co-design of network scheduling policies

and other control techniques. Assuming bounded network delay, [76] shows that

the co-design of adaptive controller and LEF scheduling allows for the optimiza-

tion of the overall Quality of Control (QoC). The adaptive controller adapts the

control decisions online according to the dynamics of both the application and

executing platform through message scheduling. The scheduling is considered

as a bandwidth allocation problem with the optimization goal of maximizing the

QoC. It takes into account system states, and subject to the communication band-

width constraint. [42] studies scheduling and control co-design based on robust

H∞ fault-tolerant control. Parametric expression of controller is given based on

feasible solution of LMI. Two classes of scheduling: task scheduling and net-

work scheduling are considered. The network scheduling employs EDF, and for

the task scheduling, the plant integral absolute error index is adopted to assign

task priority. [31] uses the model predictive control to find the optimal control

sequence and optimal network allocation sequence that minimize a quadratic cost

function, based on the prediction of the future system evolution over a horizon

of N sampling periods. It first computes the off-line scheduling with branch

and bound algorithm over limited bandwidth deterministic networks, and then

addresses a heuristic pointer placement online scheduling as a compromise. [142]
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proposes a predictive control co-designed with preemptive RM and dynamic feed-

back scheduling. [120] proposes a predictive control and static RM scheduling co-

design. The predictive controller generates the predictive control sequences using

sensor data and previous control information, and a communication constraint

compensator is designed at the actuator side to actively dynamically compensate

for the communication constraint in the forward path.

Some other co-design of resource allocation includes [127]. [127] optimizes

the stationary performance of a linear system by jointly allocating the number of

bits transmitted during each sampling period in the communication network and

tuning parameters of the linear systems. It sequentially fixes one set of variables,

and then uses dual decomposition method to optimize over the others.
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CHAPTER III

DYNAMIC TUNING RETRANSMISSION LIMIT OF IEEE 802.11 MAC
PROTOCOL FOR NETWORKED CONTROL SYSTEMS

Introduction

The integration of physical systems through computing and networking has

become a trend now known as Cyber-Physical Systems (CPS). Many CPS such

as automotive vehicles and distributed robotics, are monitored and controlled by

Networked Control Systems (NCS) which exchange information among sensors,

controllers and actuators over a communication network. Wireless network is

gaining increasing popularity with NCS, as it provides great convenience in terms

of deployment and mobility support. Yet building NCS over wireless networks is

an extremely challenging task. The wireless communication characteristics, such

as random packet loss, time-varying delay and limited channel capacity, signifi-

cantly affect the stability and the performance of the control systems.

Two major approaches have been investigated in the existing literature to ad-

dress the challenges in building wireless networked control systems. One ap-

proach, independently of the network protocol design, investigates the design of

the control layer (e.g., controller). The goal is to achieve a desired control system

performance despite of the underlying network difficulties. For example, several

works [12, 56] have been done to ensure the stability of the NCS in presence of

packet losses and time-varying delay. Other works have focused on improving
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the performance of the NCS [114, 76, 115, 97, 85]. Yet without any support from

the network, it is quite hard for the control layer to achieve stability and optimal

performance simultaneously. For the works that ensure the NCS stability [12, 56],

the issue of performance degradation is not addressed. For the works that im-

prove the NCS performance [114, 76, 115, 97, 85], it is not clear whether they

can achieve stability in wireless environment. The other approach is to perform

a co-design of the control layer and the communication layer (e.g., network pro-

tocols) [71, 83, 19, 128, 84]. While this approach can achieve both stability and

optimal performance of NCS, its design inevitably involves too many interactions

between the control and the communication layers, which prevents efficient layer

abstraction and encapsulation and also hinders broader adoption.

To address the above open issues, we present a novel approach to the design

of wireless networked control system. This approach decomposes the design con-

cerns into two factors and addresses them separately in two design spaces – stabil-

ity of the system is ensured through controller design at the control layer; perfor-

mance of the system is optimized through adjusting network protocol parameters

at the communication layer. At the control layer, we leverage our previous work

on using a passivity-based architecture in designing NCS that is robust to network

delay and packet loss [56, 54]. In this chapter, we focus on studying the impact

of MAC layer packet retransmission on the performance of the passive controller

and investigating the optimal design of retransmission strategies.

In IEEE 802.11 MAC protocol, a frame will get retransmitted up to a certain

limit, if it is lost due to random channel errors. It is obvious that allowing a higher
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retransmission limit increases the chance of successful packet transmissions at

the cost of longer packet transmission delays; while a lower limit will result in

a larger packet loss probability with smaller delays for delivered packets. Since

both packet loss and transmission delay have negative impact on the performance

of the controller, the key questions we would like to answer are, what is the packet

retransmission limit that optimizes the controller performance and how to achieve

it. We consider a passive controller which produces a trajectory for the plant (a

robotic arm in our system) to track and define the performance of this NCS as

its absolute tracking error. We observe that the relationship between the NCS

performance and the MAC retransmission limit can be characterized by convex

functions depending on the channel error probability. Using this convex prop-

erty, we design a heuristic control algorithm that dynamically adjusts the MAC

retransmission limit to track the optimal retransmission limit under time-varying

channel errors. Simulation results show that the MAC controller can converge

quickly to a proper retransmission limit which optimizes the performance of the

control system.

The main contributions of this chapter are as follows. First, we present a

novel approach to NCS design. By ensuring the stability of NCS at the controller

layer and optimizing its performance at the communication layer, this approach is

able to achieve both design goals of NCS while maintaining a clean cross-layer

interaction. Second, we present a control algorithm that dynamically adjusts the

MAC retransmission limit to track the best trade-off between packet loss and delay

that optimizes NCS performance.
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The rest of the chapter is organized as follows. The system models are de-

scribed in Section III. Section III shows the observation of the effect of loss and

delay to the performance of the NCS. The MAC controller is designed in Sec-

tion III. The experiment evaluation results are presented in Section III. summa-

rizes this chapter.

System Models

We consider a networked control system consisting of a controller and a plant

communicating through a UDP connection over an IEEE 802.11-based wireless

network. The controller controls the plant, which is a robotic arm, to follow.

Control Layer

Figure III.1: Passivity Based Control Architecture Over Wireless Networks

Fig. V.3 shows the structure of the system in the control layer. The figure

depicts a passive control architecture for the digital control of a continuous plant,

over a wireless Local Area Network (LAN). In [56], the architecture is shown to
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be passive by design, which means it ensures stability of the NCS in the presence

of network uncertainties such as time varying delays and packet losses. A control

system is considered stable if its output will stay bounded for any bounded input,

and the system performance is considered as how fast and accurate the plant can

track the control signal within the bound. Using this passive architecture allows

us to focus solely on system performance. We provide a brief description of this

architecture, and refer the reader to [56] for a detailed description and proofs

pertaining to the passive control architecture.

In Fig. V.3, Gp(τu) is the plant system to be controlled. The plant is a contin-

uous linear time-invariant system and the composite dynamics of the plant is by

design, strictly output passive. The plant system takes the torque control command

τu(t) as input, and outputs velocity Θ̇(t). Gc(ė[i]) denotes the digital controller

which controls the plant to behave in a desired manner. The digital controller is a

discrete-time linear time-invariant system and is also designed to be strictly output

passive. The controller takes as input, the error velocity ė[i] between the reference

and the plant output, and outputs torque command τuc[i].

The block b transforms the power variables (i.e., the direct input and output

of plant and controller) into wave variables for communication over a wireless

network. These wave variables preserve the passivity of the system. On the plant

side, the wave variable vucd(t) and the velocity measurement θ̇(t) are considered

inputs to the wave transform block and the wave variable up(t) and delayed torque

command τucd(t) are considered outputs of the wave transform block. On the con-

troller side, the wave variable upd[i] and the control torque τuc[i] are considered
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inputs to the wave transform block and the wave variable vuc[i] and delayed ve-

locity measurement, θ̇d[i] are considered outputs of the wave transform block.

The [PS, Ts] and [PH, Ts] blocks represent the passive sampler and passive

hold respectively. The passive sampler, at a sampling time Ts, interconnects the

plant to the digital controller. It converts the continuous wave variable up(t) to an

appropriately scaled discrete wave variable up[i]. The passive hold, on the other

hand, converts the discrete time wave variable vucd[i] to an appropriately scaled

wave variable vucd(t) which is held for Ts seconds.

Communication Layer

The controller and the plant are implemented on two separated nodes which

send their commands and measurements (precisely wave variables) using UDP

protocol. The UDP packet rate naturally corresponds to the sampling rate of the

controller.

The two nodes communicate with each other directly over wireless channel

using the IEEE 802.11 MAC protocol. Here we consider a wireless channel with

random errors. In IEEE 802.11, if a frame is corrupted due to channel errors, it

will be retransmitted. When the number of retransmission reaches a certain limit,

the frame will be dropped. According to [1], the value of retransmission limit

depends on the size of the frame. For frames with sizes larger than RTSThreshold,

LongRetryLimit of 4 times will be used; for frames smaller than RTSThreshold,

ShortRetryLimit of 7 times will be used. To simplify the system model, we disable
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the RTS/CTS mechanism by setting RTSThreshold to a very large value in the

IEEE 802.11 MAC protocol.

It is obvious that the MAC retransmission strategy may affect the NCS per-

formance. Given a packet loss probability, allowing a larger retransmission limit

increases the chance of successful transmission of a particular packet. However, it

can also result in a longer delay in the packet transmission, which can be harmful

especially if the system is delay-sensitive. On the other hand, if a small retrans-

mission limit is used, the packets may experience a higher drop rate, which can

also degrade the system performance especially if the system is loss-sensitive.

Yet, to identify the optimal MAC retransmission strategy, we need to investigate

how much the delay and the loss will be factored into the NCS performance.

Observations

To understand how the network loss and delay may affect the performance of

the NCS and how retransmission strategy should be designed to minimize such

effect, we perform a set of experiments using ns-2 simulator.

Methodology

We implement the passive control architecture on top of IEEE 802.11 wireless

network in ns-2 simulator. In our experiment, the sampling rates of the plant and

the controller are both 20 samples/sec, which is also the UDP packet rate. The
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packet size is 210 bytes. The wireless network has a capacity of 1Mbps. Each

simulation runs for 100 seconds.

The velocity of the plant system Gp(τu) tracks a sinusoidal reference input

θ̇r[i] = sin(ωi) with ω = 2π
10

. The performance of the system is evaluated using

the instantaneous tracking error J [i] = |θ̇[i]−θ̇r[i]|, where θ̇[i] is the plant’s output

and θ̇r[i] is the reference input the plant is supposed to track. J [i] demonstrates

the tracking ability of the system.

In what follows, we first inspect how the network loss affects the plant output

when network delay is negligible, then test the effect of network delay to the NCS

in a loss free condition. We finally investigate the effect of the MAC retransmis-

sion limit on the NCS, which will establish the basis of our control algorithm for

retransmission limit.

Effect of Packet Loss

In this experiment, we disable the retransmission mechanism of IEEE 802.11

MAC so that each packet will only be transmitted once. In this case, the packet

error directly translates to a packet loss.

Fig. III.2 demonstrates the system performance with different packet error

probabilities. Fig. III.2(a) shows the average tracking error J̄ over all sampling

points with standard deviation Jd. Fig. III.2(b) shows the maximum tracking error

Jm experienced out of all samples corresponding to different error probabilities.

With the increase of the error probabilities, J̄ , Jd and Jm all increase. When the
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Figure III.2: Impact Of Loss Rate On System Performance

error probability is small, only a few packets are dropped. If the samples are

exchanged frequently enough, the plant and the controller can still keep track of

each other’s status. However, when too many packets are dropped, the plant can-

not interpret the control command correctly, while the controller no longer has

the right velocity information of the plant. For example, when the packet error

probability is 70%, the errors suddenly become very large. Further experiments

using different passive controllers on different signals and with different sampling

rates all show the same trend. Yet the exact mathematical relation between error

probability and tracking error varies depending on these system parameters (e.g.,

signal, sampling rate).

Effect of Network Delay

In this experiment, the controller and the plant work in a loss free network.

A varying amount of delay D is introduced before the packet transmission at the

MAC layer. The value of D can be regarded as the time a packet spends in channel
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contention. Thus it is an indicator of the intensity of background traffic in the

wireless network. Fig. III.3 shows the NCS performance in terms of average and

maximum tracking error under different values of D.
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Figure III.3: Impact Of Transmission Delay On System Performance

We observe that when D is small, the system performance does not change

much. When exceeding certain value, the performance degrades significantly.

Consider that the controller is a discrete time system, when the delay is smaller

than one discrete time step, the controller can still receive the signals for the next

sampling period in time, so the performance does not deteriorate. However, when

a larger delay is experienced, signals cannot reach the other end within one sam-

pling period. In this case, When the controller receives a signal from the plant,

the state of the continuous plant may have already changed considerably. But the

controller will still produce a control signal for the plant using the received plant

state information. This control signal will also experience transmission delay be-

fore it arrives at the plant. When these two delays are combined, the plant will
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deviate more from the expected trajectory. It is important to note that increasing

D also reduces the departure rate of the packets and may cause queueing delay

(e.g., when D = 0.023s1), so the actual delay experienced by the system is much

larger. Due to this reason, this delay threshold (0.02 in this experiment) highly

depends on the sampling rate, the signal of the system and the channel capacity.

Further experiments on different signals and with different sampling rates validate

the same observation.

Effect of MAC retransmission

In IEEE 802.11-based wireless networks, packet loss will be recovered through

retransmission up to a limit. As a result, a packet may experience higher delay

before getting successfully transmitted. In the first two experiments, we have

demonstrated that increasing either the network loss or delay will harm the per-

formance of the control system. To achieve the optimal NCS performance, the

retransmission strategy needs to be carefully designed to provide the best trade-

off between the packet delay and the loss. Here, we exam the impact of MAC

retransmission strategy by varying the retransmission limit and measure the sys-

tem performance.

Fig. III.4 shows the average and maximum tracking errors of the system under

different retransmission limits, with varied packet error probabilities and delay

1To have a controlled environment, where only the impact of delay is assessed, the queue
length and the value of D are carefully chosen in this experiment, making sure no queuing loss is
incurred.
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Figure III.4: Impact Of Retransmission Limit On System Performance

parameters D. We observe that the relationship between the tracking error and the

retransmission limit follows a convex curve in all experiments. When the retrans-

mission limit is small, high packet loss rate leads to relatively large tracking errors.

When the limit is too high (e.g., 7 defined as ShortRetryLimit in IEEE 802.11),

the tracking error raises due to large delay. Experiments with different signals

and sampling rates confirm the convex relation between the retransmission limit

and the tracking error. This observation implies that there exists a unique opti-

mal value for retransmission limit. Yet this optimal value varies depending on the

channel error probability, background traffic, signal property, etc. We summarize

our observations below:
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• The NCS performance based on passive controller is negatively affected by

network factors, including packet losses and transmission delays.

• The MAC-layer packet retransmission limit and the NCS performance fol-

lows a convex relation, which shows the existence of a unique value for

retransmission limit that optimizes the NCS performance. This optimal

value depends on many control system properties, such as sampling rate,

signal type, as well as network factors, such as channel error probability,

background traffic, etc.

• The fixed retransmission limit (4 as LongRetryLimit, 7 as ShortRetryLimit)

used in IEEE 802.11 is not optimal for the NCS performance, considering

the dynamics in wireless network with bursty traffic and fluctuating channel

conditions. To achieve the optimal NCS performance, the retransmission

limit needs to be dynamically adjusted based on the system property.

MAC Control Design

In this section, we present a MAC-layer controller that dynamically adjusts

the retransmission limit under different network conditions. Most NCS systems

define a maximum performance error they can tolerate. We use J̃ to represent

this threshold. Our MAC controller can achieve the following two goals: (1)

keep the NCS performance within this error threshold; (2) minimized the NCS

performance error (when the error threshold is not achievable, or set to a very

small value).
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Figure III.5: MAC Controller Architecture

Fig. III.5 is an overview of the MAC controller architecture, which consists

of a monitor, a controller and an actuator. The monitor resides on the same node

as the NCS controller. It interfaces with the NCS and measures the average track

error J̄ [k] of the last m samples in the current MAC sampling period k2. The

monitor will then derive the difference e[k] between J̄ [k] and J̃ as e[k] = J̄ [k]− J̃

and pass it to the controller. Let r[k + 1] be the retransmission limit that will be

used in the MAC layer at time k+1 andΔr[k+1] be the adjustment of r[k+1]. The

controller will compute Δr[k + 1] based on e[k], and send it to the actuator. The

actuator interfaces with the wireless network and tunes the retransmission limit to

r[k+1] = r[k]+Δr[k+1]. For the node on which the NCS controller resides, the

actuator will directly pass the new retransmission limit to the MAC layer. For the

node on which the plant resides, the MAC actuator sends the new retransmission

limit information on a separate packet or piggyback on a data packet.

2As explained below, the sampling period of the MAC controller is larger than the sampling
period of the NCS controller.
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The MAC controller at the communication layer and the “main” NCS con-

troller at the control layer form a time-scale-decomposed system, where the MAC

controller is the slow system that evolves with a larger time scale and operates

with a lower sampling rate. This allows the NCS performance to converge with

the new retransmission limit.

Figure III.6: MAC Controller Design

To indicate whether the NCS system is within its error threshold, the MAC

controller maintains two states, IDLE and BUSY, as in Fig. III.6. Initially the

controller is at the IDLE state. If the measured error is within the threshold (i.e.,

e[k] < 0), the controller will remain at the IDLE state with Δr[k + 1] set to

0, meaning no changes to the retransmission limit. When the measured error is

greater than the threshold (i.e., e[k] > 0), the controller will transit from the IDLE

state to the BUSY state and set Δr[k + 1] to 1.

At the BUSY state, the MAC controller will determine the change of retrans-

mission limit for time slot k + 1 based on the change of the tracking error from

time k−1 to k Δe[k] = ẽ[k]− ẽ[k−1]. If the tracking error becomes smaller (i.e.,
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Δe[k] < 0), which means the previous change of the retransmission limit Δr[k]

decreases the tracking error of the NCS, the controller will keep the same change

to the limit:

Δr[k + 1] = Δr[k] (III.1)

If Δe[k] > 0, which means Δr[k] increases the tracking error, the controller will

then change the retransmission limit towards the opposite direction:

Δr[k + 1] = −Δr[k] (III.2)

Whenever the tracking error falls below J̃ , the controller will transit the state back

to IDLE.

Discussion. We make the following important notes about the MAC controller

design:

• This MAC controller will adjust the retransmission limit so that the NCS

performance error is within a predefined threshold. When there are multiple

values of the retransmission limit that can enable the system to perform

within the error threshold, the MAC controller may bring the limit to any of

these values.

• If the threshold is too small that no feasible retransimission limit value can

bring the NCS system within this threshold, the MAC controller will bring

the retransmission limit close to the optimal value where the NCS perfor-

mance error is minimized. This is ensured by the convexity property in the

47



relationship between retransmission limit and the NCS performance as we

have demonstrated in Section III. We can exploit this feature to achieve the

goal of optimal NCS performance by manually setting the threshold to a

very small value.

• In its current design, though the MAC controller can bring the retransmis-

sion limit to the optimal value, it can not stay at this point. Rather it will

oscillate around it. To ensure the controller stabilizes at the optimal value,

we improve its design in two ways. First, a counter is used to count the num-

ber of times the controller oscillates around one retransmission limit. If the

counter exceeds a certain value, we consider the limit as the optimal value

and fix the retransmission limit to it. After some time, the MAC controller

will resume to the BUSY state in case the optimal retransmission limit has

changed.

Simulation Study

Simulation Setup

We implement the MAC controller in the ns-2 simulator and use it to evaluate

the NCS performance under a variety of network scenarios. The NCS used in the

experiment consists of a passive controller and a plant. It has the same configura-

tion as the one presented in Section III. The error threshold J̃ is set to 0.1 in all
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experiments. Two aspects of the NCS system will be examined: (1) performance

of the MAC controller in terms of the convergence behavior of the retransmission

limit, and (2) performance of the overall NCS in terms of the absolute tracking

error of the plant output. We will compare the performance of NCS that operates

with our MAC controller which dynamically adjusts the retransmission limit, with

the NCS that operates over traditional IEEE 802.11-style MAC, where retransmis-

sion limit is fixed.

Simulation Results

Impact of Initial Value of Retransmission Limit

In this experiment, the controller and the plant operate and communicate in

a network with no background traffic. The wireless channel error probability is

83%.
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Figure III.7: Convergent Retransmission Limit With Different Initial Values
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Fig. III.7 (a) and (b) display the retransmission limit adjusted by the MAC

controller from initial values of 0 and 7 respectively. In both cases, the MAC

controller converges after 25 seconds. The retransmission limit has different stable

values. This is because the tracking error of the NCS performance is below the

error threshold for both retransmission limits of 4 and 5. When the initial value

is 7, a larger delay may cause a long queue in the MAC, and the change of the

retransmission limit cannot be reflected onto the NCS performance immediately.

For the rest of the simulation, the initial values of the retransmission limit are all

0.

Impact of Background Traffic

Background traffic in the wireless network will increase the time a packet

spends on contending for the medium access, which in turn will increase the

packet delay. We now study how the background traffic will affect the behav-

ior of the MAC controller and the overall system performance. With 50% packet

error probability, three pairs of background traffic nodes are introduced to the net-

work. The traffic between each pair of nodes follows a poisson distribution with

rate of 200 packets/sec and packet size of 210 bytes.

Fig. III.8 (a) and (b) show the tracking errors of using the MAC controller and

using different fixed retransmission limits. Note that In Fig. III.8 (b), the retrans-

mission limits of 6 and 7 are not shown as the tracking errors are in much larger

scales than the others. We could see that the optimal values of retransmission
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Figure III.8: Tracking Errors with Different Background Traffic

limit differ under different background traffic. The MAC controller converges to

the optimal retransmission limits of 4 and 3, respectively in both scenarios. We

could also see that the NCS performance under the MAC controller is close to

the optimal fixed retransmission limit. The slight difference is due to the sub-

optimal NCS performance during the initial transient phase when MAC controller

is adjusting the retransmission limit.

Impact of Channel Error Probability

This experiment tests the impact of packet error probability on the MAC con-

troller and the NCS performance. With one pair of poisson background traffic

as in the previous experiment, we simulate the scenarios with the packet error

probability of 40% and 80%.

When the packet error probability is 40% as in Fig. III.9, several retransmis-

sion limits can provide optimal performance for the MAC controller. In this case,

the MAC controller can converge to any of the retransmission limits to achieve
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Figure III.9: Tracking Errors With Different Error Probability

the optimality of the NCS. Here it converges to 3. When the error probability in-

creases to 80%, the MAC controller must adjust to the correct retransmission limit

to best support the NCS, and here it converges to 5. The deviation of the tracking

error in the MAC controller from the optimal fixed retransmission limit is due to

the initial adaptation of the MAC controller.

52



CHAPTER IV

DISTRIBUTED SAMPLING RATE ADAPTATION FOR WIRELESS
NETWORKED CONTROL SYSTEMS

Introduction

Networked Control Systems (NCS) are control systems where actuators, sen-

sors, controllers and the systems to be controlled exchange information and co-

ordinate their operation via a communication network. NCS are increasingly de-

ployed over wireless networks, as they provide great convenience in terms of de-

ployment and mobility support. In wireless networks, where channel resource is

constrained and available bandwidth varies due to dynamic user behaviors and

external interference sources, the capability of adaptive resource management is

crucial for NCS to fully exploit the available resource for better performance, and

avoid network congestion.

This chapter investigates sampling rate adaptation as a mechanism of adaptive

resource management for wireless NCS. In a digital control system, sampling

rate specifies how often the system components exchange information, and thus

determines how well the digital controller approximates its continuous equivalent.

Environmental disturbances can lead to system instability and cause uncertainty

in system behavior. Intuitively, the larger the sampling rate, the more frequent

state updates the components of a NCS will receive. Consequently, it can have

a better ability to reduce the effect of such disturbances. On the other hand, the
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sampling rate is naturally linked to traffic load on the network. From the network

perspective, the sampling rates should be limited to avoid congestion and packet

losses, which will deteriorate the NCS performance [6].

In this chapter, we formulate the objective of NCS sampling rate adaptation

as an optimal resource allocation problem, where the NCS performance is max-

imized subject to the wireless bandwidth constraint. The key challenge is how

to quantify the relationship between the NCS performance and its sampling rate.

In this chapter, we focus on the NCS robustness, i.e., its capability in handling

disturbances. Formally, we use the noise covariance matrix of the control sys-

tem to characterize system performance with respect to its ability of disturbance

rejection. We then use a utility function to characterize the relationship between

the NCS robustness to disturbance and the sampling rate, and formally define it

as the ratio of its digital controller robustness to the robustness of its continuous

equivalent. We show that this utility function is a strictly concave function of the

sampling rate, when random white noise is considered as the model of control sys-

tem disturbance. The concavity of the utility function reflects the marginal return

on the NCS performance when its sampling rate increases.

Based on this optimal rate allocation problem, a price-based algorithm is de-

veloped for distributed sampling rate adaptation. In this algorithm, a price signal

is generated for each contention region of the wireless channel as a function of

the traffic load in the region. The NCS then adapts its sampling rate based on its

utility function so that its net profit, which is the difference between the utility and
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the cost (product of price and rate), is maximized. The stability of this sampling

rate adaptation algorithm is proved under our NCS utility model.

Figure IV.1: Overview of the Networked Control System

Fig. IV.1 shows an overview of our NCS system model and outlines our price-

based sampling rate adaptation solution. Pairs of plant and controller components

communicate via networks. When a sender sends a packet into the network, based

on the aggregated rates at each contention region, a price is computed reflecting

the channel congestion levels according to a price generation algorithm. The price

is then piggy-backed onto the packet from the receiver and fed back to the sender.

A rate adaptation algorithm plugged in the components calculates the proper rate

using the information of the congestion price as well as a utility function.
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The main contributions of this chapter are summarized as follows. First, we

formally characterize the relationship between the NCS performance and its sam-

pling rate using a utility function, which is based on its ability of disturbance

rejection using the ratio and derive a utility metric as a function of its sampling

rate. Our work provides a fully distributed dynamic network resource manage-

ment solution for wireless NCS. It fully exploits wireless network resources and

maximizes the NCS performance. Second, the NCS sampling rate adaptation al-

gorithm is evaluated in an integrated simulation environment [99] that consists of

Matlab and ns-2. Using ns-2 – a packet-level network simulator that implements

all the details of the network protocol stack, allows highly accurate evaluation

of network effects on the NCS performance, which is impossible by using Mat-

lab/Simulink alone.

The remainder of this chapter is organized as follows. In Sec. IV, we present

the control system model and formally define the utility function to characterize

its performance. In Sec. IV, we present the wireless network model, formulate

the problem of optimal rate allocation and derive the price-based rate adaptation

algorithm. Finally we evaluate the algorithm using our Networked Control System

Wind Tunnel (NCSWT) simulation environment in Sec. IV.

Control System Model

In this section, we present on the model of control system and provide a for-

mal description of the control system performance as a function of the sampling
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rate. We consider the passivity-based networked control architecture in this chap-

ter. In the sub-sections we describe the continuous-time and discrete time control

systems used to determine our utility function, which is described in the last sub-

section. In Fig. V.3, Gp(s) is the plant system to be controlled. The composite

Figure IV.2: Passivity Based Control Architecture Over Wireless Networks

dynamics of the plant is by design passive, which means it ensures stability of

the NCS in the presence of network uncertainties such as packet losses and time

varying delays. The controller, Gc(s) which is also passive, controls the plant to

behave in a desired manner. The block b transforms the power variables (i.e., the

direct inputs and outputs of plant and controller) into wave variables for communi-

cation over a wireless network. These wave variables preserve the passivity of the

transmitted information over the network. The inner product equivalent sampling
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(IPES) and zero order hold (ZOH) blocks on both the plant and control sides are

used to implement the passive discretization of the continuous time systems. We

refer readers to [56] for a detailed description and proofs pertaining to the passive

control architecture.

Continuous-time Control System

Figure IV.3: Continuous-time control system block diagram

The continuous-time control system involves a continuous-time plant interact-

ing with a continuous-time controller as shown in Fig. IV.3. The plant Gp(s) is

described by the following state-space representation.

ẋp(t) = Apxp(t) + Bpup(t) +Bww(t) (IV.1)

yp(t) = Cpxp(t) (IV.2)
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where xp(t) ∈ �n denotes the plant states, up(t) ∈ �m denotes the control input,

w(t) ∈ �m is the disturbance input modeled as a zero-mean white noise process,

and yp(t) ∈ �m is the plant output. Ap, Bp, and Bw define the plant state matrices

and Cp defines the plant output matrix.

The state space of the continuous-time controller Gc(s) is

ẋc(t) = Acxc(t) + Bcuc(t) (IV.3)

yc(t) = Ccxc(t) +Dcuc(t) (IV.4)

where xc(t) ∈ �n denotes the controller state, and uc ∈ �m denotes the error

signal, or the difference between the plant output yc(t) ∈ �m and the reference

signal input r(t) ∈ �m. Ac and Bc define the controller state matrices, while Cc

and Dc define the controller output matrices.

From the plant and controller state-space description, the closed loop state

space form of the system can be represented as follows:

ẋ =

⎡
⎢⎣ ẋp(t)

ẋc(t)

⎤
⎥⎦

=

⎡
⎢⎣ Ap − BpDcCp BpCc

−BcCp Ac

⎤
⎥⎦
⎡
⎢⎣ xp(t)

xc(t)

⎤
⎥⎦

+

⎡
⎢⎣ BpDc

Bc

⎤
⎥⎦ r(t) +

⎡
⎢⎣ Bw

0

⎤
⎥⎦w(t) (IV.5)
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y =

⎡
⎢⎣ yp(t)

yc(t)

⎤
⎥⎦

=

⎡
⎢⎣ Cp 0

−DcCp Cc

⎤
⎥⎦
⎡
⎢⎣ xp(t)

xc(t)

⎤
⎥⎦+

⎡
⎢⎣ 0

Dc

⎤
⎥⎦ r(t) (IV.6)

The covariance matrix of the zero-mean white noise process of the continuous

system can be defined by [30]

E[w(t)wT (t+ τ)] = Qδ(τ) (IV.7)

where E denotes the expected value and Q represents the power spectral density of

w, or the continuous-time noise covariance matrix. The power spectral density can

also be referred to as the “white noise intensity” or mean-square spectral density.

The continuous-time state covariance matrix Pc can be described by

Pc(t) = E[x(t)xT (t)] (IV.8)

Based on the knowledge of Q, the steady state value of the state covariance

can be obtained by the equation [60]

AclPc + PcAcl +BwclQBT
wcl = 0 (IV.9)
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where the matrices Acl and Bwcl denote the closed loop matrices, or the coeffi-

cients of x(t) and w(t) in Eq. (IV.5) respectively. From the resulting state co-

variance matrix, the root mean square of a state can then be determined. The

Root-Mean-Square (RMS) of the plant state is equivalent to the standard devia-

tion. For example in the response to white noise, assuming the system has only

one plant state variable xp1 and the result obtained for the plant state covariance

is v. The RMS of the plant state will be equal to
√
v. If a plant has several states,

we can use the one of the states as long as we compare it to the same discrete state

obtained from the minimal realization of the discretized continuous system.

Discrete-time Control System

Figure IV.4: Discrete-time Control System Block Diagram

The continuous-time control system is usually implemented as a discrete-time

control system via discretization. The discretization is executed with a sampling

time Ts using an inner-product equivalent sample and hold (IPESH) transform in
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order to preserve the passivity properties of the system [54]. The resulting system

is equivalent to a system with a discrete plant and discrete controller.

Gp(z) represents the discrete-time equivalent of the continuous-time plant

Gp(s). The discrete-time state space of the plant can be given by

xp(k + 1) = Φpxp(k) + Γpup(k) + Γww(k) (IV.10)

yp(k) = Cpdxp(k) +Dpdup(k) +Dww(k) (IV.11)

The state space of the discrete-time controller Gc(z) equivalent to the continuous-

time Gc(s) can be given by

xc(k + 1) = Φcxc(k) + Γcuc(k) (IV.12)

yc(k) = Ccdxc(k) +Dcduc(k) (IV.13)

The overall closed-loop state equation can be determined from the discrete plant

and discrete controller’s state space representation. This can be described by

x(k + 1) =

⎡
⎢⎣ xp(k + 1)

xc(k + 1)

⎤
⎥⎦

=

⎡
⎢⎣ Φp − ΓpDcdSfCpd ΓpDcdSfDpdCcd

−ΓcSfCpd Φc − ΓcSfDpdCcd

⎤
⎥⎦
⎡
⎢⎣ xp(k)

xc(k)

⎤
⎥⎦

+

⎡
⎢⎣ ΓpDcd(1− SfDpdDpc)

Γc(1− SfDpdDcd)

⎤
⎥⎦ r(k)
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+

⎡
⎢⎣ Γw − ΓpDcdSfDw

−ΓcSfDw

⎤
⎥⎦w(k) (IV.14)

where Sf = (I + (Dcd ∗Dcd))
−1, and I is the identity matrix.

Based on the knowledge of the continuous-time noise covariance matrix Q,

the discrete-time noise covariance matrix Qd can be obtained using the Van Loan’s

algorithm [30] and can be defined as

Qd =

∫ Ts

0

Φ(τ)BwclQBT
wclΦ

T (τ)dτ (IV.15)

The steady state discrete-time state covariance matrix can then be obtained

from the following equation

ΦPdΦ
T +Qd = Pd (IV.16)

From the resulting state covariance matrix, the discrete RMS of the plant state

can then be determined similar to the continuous-time case.

Utility Function

When the system is discretized using certain sampling rate to implement a

digital controller over a network or computer, the control system response to dis-

turbances degrades compared to the continuous closed loop case. The level of

degradation depends on the sampling rate. To characterize the impact of sampling
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rate on the disturbance rejection ability of a digital controller, we consider the

RMS ratio of the discrete-time system plant state and its continuous-time coun-

terpart. Intuitively, increasing the sampling rate will decrease the RMS of the

system’s discrete plant state, where the continuous-time system establishes the

lower bound of the RMS.

Formally, let’s assume that the traffic from the controller to the plant shares

the same data path as the traffic from the plant to the controller. We define the

utility function of system f as a function of its sampling rate pf as follows.

Uf (pf ) =
RMScontinuous
RMSdiscrete(pf )

(IV.17)

If T f
s is the sampling time, pf = 1/T f

s .

Essentially, the utility function is established by comparing the performance of

the discrete-time system with the continuous-time system. Using the continuous-

time control system, we determine the ability of the control system to reject dis-

turbance in the form of white noise. We then proceed to repeat a similar process

when a digital implementation of the controller is used. This digital implemen-

tation depends on the chosen sampling rate. This utility function is essentially

determined by the amount of degradation of the system response to white noise

compared to the continuous closed loop system.

To demonstrate our utility function definition, we consider the following single-

input-single output (SISO) linear-time invariant (LTI) system, without loss of gen-

erality and for simplicity. A plant system represents a single joint of a robotic arm,
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Figure IV.5: System Utility Function

with the transfer function Gp(s) =
1
Js

. The transfer function of the controller is

given by Gc(s) =
Kp+Kds

s
. With the following parameters, J = 2.93, Kd = 32.1

and Kp = 8.2. The utility function that characterizes the relationship between the

sampling rate and this NCS system performance (as defined by the RMS ratio) is

shown in Fig. V.4 as the red squares. It shows that the utility function is strictly

concave, with the blue solid line perfectly fitting the utility function. The fitted

function is in the form of

Uf (pf ) =
p1 ∗ p4f + p2 ∗ p3f + p3 ∗ p2f + p4 ∗ pf + p5

p4f + q1 ∗ p3f + q2 ∗ p2f + q3 ∗ pf + q4
(IV.18)

where p1, p2, p3, p4, p5, q1, q2, q3, q4 are the fitted parameters.
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Optimal Sampling Rate Adaptation

In this section, we first review the theoretical framework for optimal resource

allocation in multi-hop wireless networks [131], and then present our price-based

sample rate adaption algorithm.

Wireless network model

We consider a network that consists of a collection of wireless nodes V . Nodes

within the transmission range of each other can communicate directly, forming

a wireless link l ∈ L. While nodes that are far away communicate via relays

of other nodes. Here we consider the protocol model [36] to characterize the

location-dependent contention and spatial reuse of the wireless communication

in this network. We further adopt the model presented in [131] where maximal

cliques in the contention graph of a wireless network are used to characterize the

independent resource elements in wireless networks. Here we denote a resource

element as e ∈ E. Each resource element has a finite capacity Ce.

Such a network is shared by a set of control systems F . For each control

system f ∈ F , its plant and controller are hosted on two different nodes in the

network. We assume the traffic from the controller to the plant and the traffic

backwards share the same network path. Then the control system f generates a

bi-directional flow between these two nodes. The flow may go through multiple

hops in the network and traverse a sequence of resource elements. Let Ref be the

amount of resource element e used by system f .
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Optimal sampling rate allocation formulation

The problem of optimal rate allocation in the sense of maximizing the ag-

gregated utility of all control systems in the network can be formulated into the

following nonlinear optimization problem:

P : maximize
∑
f∈F

Uf (pf ) (IV.19)

R · p ≤ C (IV.20)

p ≥ 0 (IV.21)

The constraint (VII.3) comes from the resource constraint of the shared wireless

channel, where p = (pf , f ∈ F ) and C = (Ce, e ∈ E) are vectors of sampling

rates and resource capacities respectively. R = (Ref )|E|×|F | ·mf . Ref is a matrix

with element Ref at row e and column f [131], and mf is the packet size of f .

mf × pf will convert the sampling rate pf in the control system to the flow rate in

the network. By optimizing toward such an objective, the solution guarantees the

optimal resource utilization.

Price-based algorithm

In the above formulation, the representation of the utility function is essen-

tial to further inspect the optimization problem and implement the price-based

framework. We observe that the utility function of NCS defined in Sec. V is dif-

ferentiable and strictly concave. Thus, the objective function of P in Eq. (VII.2) is
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differentiable and strictly concave. Further, the feasible region of the optimization

problem in inequality (VII.3) and (VII.4) is convex and compact [131]. Accord-

ing to the non-linear optimization theory, unique optimal solution to the resource

allocation problem P exists.

Now we consider the dual problem D of P using its Lagrangian form:

D : minμ≥0D(μ) (IV.22)

D(μ) = maxpf≥0L(p;μ)

=
∑
f∈F

max(Uf (pf )− pfmf

∑
e∈E

μeRef )

+
∑
e∈E

μeCe (IV.23)

μ = (μe, e ∈ E) is a vector of Lagrange multipliers, and may be interpreted as

the implied cost, or penalty, of a subflow accessing the resource element e. In

other words, μe is the shadow price of resource e. The price of a control system

f , λf =
∑

e∈E μeRef can be interpreted as that system f needs to pay for all the

resources it uses. Note that for each wireless link, its price is the aggregated price

of all the resources that it belongs to.

By solving the dual problem D, the optimal rate for system f can be derived

from

U ′f (pf )− λf = 0 (IV.24)
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Figure IV.6: Derivative of the Utility Function

Considering that the utility function is complicated as shown in Eq. (IV.18),

we use an approximated approach to solve pf from Eq. (IV.24). Following the

example in Sec. V, Fig. IV.6 represents the relationship between the sampling rate

and price. By switching the x and y axes and curve fitting the plot, the sampling

rate pf can be represented as a function of price λf

pf (λf ) = a ∗ λb
f (IV.25)

where a and b are the fitted parameters. Thus the optimal rate for system f can be

approximated by substituting λf into Eq.(IV.25).

Detailed derivation of D can be found in [131], while the adjustment of μ can

be represented as follows:

d

dt
μe(t) = γ�(

∑
e∈E

pf (λf (t))mfRef − Ce)	+ (IV.26)
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Alternatively, the price update algorithm can be represented in the following dis-

crete time system.

μe(i+ 1) = �μe(i)− γ(Ce −
∑
e∈E

pf (λf (i))mfRef )	+ (IV.27)

Eq. (VII.7) reflects the law of supply and demand. If the demand for channel

e exceeds its supply Ce, the resource constraint is violated. This will cause the

increase of the channel price μe. Otherwise, μe is reduced. The discrete time

index i in Eq. (VII.7) is different from k in the control system to ensure system

convergence. As NCS is closed-loop, prices to controllers are appended onto the

packets from the plants occupying only few bytes, and vise versa. This will not

affect the overall network bandwidth much. Now we show the stability property

of the price-based rate adaptation algorithm in the following theorem.

Theorem 1. Let V(μ) be defined as

V(μ) =
∑
f∈F

∫ ∑
e∈f μe

0

(U ′f (η))
−1dη −

∑
e∈E

∫ μe

0

qe(η)dη

V(μ) is a strictly concave function and a Lyapunov function for the system of

equations (IV.24)-(VII.7). The unique value μ maximizes V(μ) and is also a stable

point of the system where all trajectories converge.

Proof. We first will prove the strict concavity of the first term in V(μ). As

Uf (·) is strictly concave, its derivative U ′f (·) exists and is strictly decreasing. Con-

sidering the utility function obtained in Sec. V, its derivative is shown in Fig. IV.6
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as an example. Further we observe that U ′′f (·) ≤ 0 is increasing. In addition,

(U ′f (·))−1, the inverse function of U ′f (·) has the same monotonicity as U ′f (·). By

integrating (U ′f (·))−1, the resulted function will have the same monotonicity as

Uf (·), which is strictly concave. Further, as the definition domain of Uf (·) is the

codomain of the inverse function of U ′f (·), which is greater than 0, the first term

of V(μ) is also greater than 0.

Second, we prove the convexity of the second term in V(μ). Let qe(η) =

Ceη/(η + ε) [50]. It is a continuous and strictly increasing function of η. qe(η)

arbitrarily closely approximates Ce for a small positive ε. The strict concavity

and positivity of the first term in V(μ), as well as the assumptions on qe ensure

that V(μ) is strictly concave on μ ≥ 0 with an unique interior maximum μ. It is

determined by setting V ′(μ) = 0.

∂

∂μe

V(μ) =
∑
e∈f

(U ′f (
∑
h∈f

μh))
−1Ref − qe(μe)

≥
∑
e∈f

(U ′f (
∑
h∈f

μh))
−1Ref − Ce (IV.28)

With Eq. (IV.24), we have (U ′f (λf ))
−1 = pf , so

d

dt
V(μ(t)) =

∑
e∈E

∂V
∂μe

· d
dt
μe(t)

≥ γ
∑
e∈E

(
∑
e∈f

pf (
∑
h∈f

μh(t))Ref − Ce)
2
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This establishes that V is strictly increasing with t unless μ(t) = μ, where the

unique value μ maximizes V . Thus function V is a Lyapunov function for the

system (IV.24)-(VII.7), and the theorem follows. �

Performance Evaluation

In this section, we evaluate the price-based sampling rate adaptation algorithm

in the wireless networks using an integrated simulation environment named Net-

worked Control System Wind-Tunnel (NCSWT) environment [99]. NCSWT inte-

grates two simulators Matlab and ns-2. It is built based on the HLA standard. The

tool allows us to simulate control system models in Matlab/Simlink and network

models in ns-2. Using ns-2 – a packet-level network simulator that implements

all the details of the network protocol stack, allows us to perform highly accurate

evaluation of network effects on the NCS performance, which is impossible by

using Matlab/Simulink alone.

Simulation Setup

In our experiment, the network system consists of three pairs of plants and

controllers, all of which have the same utility function as presented in Section V.

The interfere range is set to 250m. The wireless network uses a single channel

with the capacity of 1Mbps. The packet size is 500 bytes. Each simulation runs

for 250 seconds.
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The velocity of the plant system tracks a sinusoidal reference input r[k] =

sin(ωk) with ω = 2π
40

unless explicitly addressed. The power spectral density of

the white noise is set to 1. The default value of γ is set to 3× 10−8.

Three aspects of the system are examined:

1. performance of the control algorithm in terms of the convergence behavior

of the plant output.

2. performance of the network in terms of its convergence behavior of the flow

rate.

3. performance of the overall NCSWT in terms of the difference between the

plant output and the reference signal.

Simulation Results

Comparison with Fixed-Rate Control Systems

We first inspect how our price-based dynamical sampling rate adaptation al-

gorithm performs. It is also compared with classical systems with fixed sampling

rates. The initial sampling time of plants or controllers is 0.1 second, which is

40Kbps of flow rate. In the price-based rate adaptation system, the initial price is

set to 5× 10−5, corresponding to the sampling flow rate is 80Kbps.

Fig. IV.7 (a) and (b) show the plant outputs of three control systems. In

Fig. IV.7 (b), the velocity of the plant system tracks a faster sinusoidal reference

input r[k] = sin(ωk) with ω = 2π
30

. Both outputs closely follow the reference
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Figure IV.7: Plant Outputs with Price-Based Algorithm and Fixed Sampling
Times
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trajectory. The differences between the plant outputs and the reference trajectory

quickly diminish every time when noise signal appears.

We then implement the classical rate allocation scheme with a fixed sampling

flow rate different from the converged optimal sampling flow rate. Fig. IV.7 (c)

and (d) show the plant outputs using fixed sampling times of 0.01s and 0.5s, cor-

responding to the rates of 400Kbps and 8Kbps for each flow. The outputs hardly

track the reference trajectory. In Fig. IV.7 (c), the aggregated flow rate, which is

400× 6 = 2400Kbps, is much larger than the channel capacity, and is also much

larger than the converged optimal flow rate of 80Kbps. Many packets are dropped

due to congestion in the network, and long-time delay is also introduced due to

severe channel contention. With white noise disturbance in the system, the plants

suffer large tracking error and long convergence time. In the passive system, it is

exhibited as a decreased amplitude. In Fig. IV.7 (d), the flow rate is too small, so

the controller cannot be notified in time about the occurrence of the white noise

disturbance. Thus the outputs of the plants experience big oscillations and cannot

converge.

Impact of Parameters

We now study the stability of the system and the impact of different parameters

by investigating the instantaneous behavior of the plant output and the flow rate.

The impact of initial value of the price is evaluated. Fig. V.9 shows the con-

vergence of plant outputs and flow rates when different initial prices of 10−5 and
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Figure IV.8: Flow Rate Convergence with Different Initial Prices

76



10−3 are set. Independent of the initial prices, the flow rates converge within 40

seconds. In Fig. V.9 (a) and (c), a smaller price leading to a larger flow rate,

network channel gets overflowed, and the price immediately rises. Consequently

flow rates are dropped, and later increase gradually and converge. The plant out-

puts then experience some oscillation due to the sudden rate drop. In Fig. V.9 (b)

and (d), with a larger price, both the flow rate and plant output converge much

faster. This experiment shows that a larger initial price value is better to preserve

a faster system stabilization.

The impact of γ is then studied. Fig. IV.9 demonstrates the plant outputs and

the flow rate variation of the system with γ of 10−8 on the left and 10−10 on

the right. In Fig. IV.9 (a) and (c), with a larger γ, the flow rate converges much

faster. However, the fast change of the flow rate introduces instability to the con-

trol systems, which may cause larger and longer oscillations to the plant outputs.

Conversely in Fig. IV.9 (b) and (d), a smaller γ leads to a slower convergence

speed. The control system may keep experiencing small oscillations during the

converging period.

Impact of Dynamic NCS Join

It is important that an algorithm is able to dynamically reallocate network

resources properly and responsively.

Fig. V.10 (a) and (b) show the plant outputs of the three control systems and

Fig. V.10 (c) and (d) show the variation of the flow rates with time at the bottom.
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Figure IV.9: Plant Output and Flow Rate Convergence with Different γ
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Figure IV.10: Plant Output and Flow Rate with Dynamic Join
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In the first experiment, three control systems start at the beginning, Two back-

ground Constant Bit Rate (CBR) traffic flows join the channel at 100 second. The

two background traffic both uses fixed rate of 80Kbps. At the beginning as in

Fig. V.10 (a) and (c), the rates quickly converge to 80Kbps with the plant outputs

stabilize to the sinusoidal reference. When the background traffic joins in, the

rates re-converge to around 50Kbps. The plant outputs experience some oscil-

lation before convergence. This is because that using the old converged rate, the

network demand exceeds the channel capacity. During the time of resource reallo-

cation, packets can be dropped from the network queues, and the communication

delay becomes relatively large until the law of demand and supply is satisfied

again.

In the second experiment, one pair of plant and control system starts first, with

the second pair starting at 50 seconds, and the third pair starts at 150 seconds. At

the beginning as in Fig. V.10 (b) and (d), the flow rates quickly converge around

240Kbps and the plant outputs stabilize at the sinusoidal reference. When the

second pair joins in, the flow rates re-converge to around 120Kbps. The first pair

experiences much larger oscillation and takes much longer time to re-converge

than the newly joined pair. This is because the first pair has a higher flow rate

than the initial flow rate of the new pair, and affected more by the temporary

congestion. Similarly, the systems closely follow the reference trajectory after

short period of time.
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Multihop Communication

Direct connection in wireless networks requires two nodes within the trans-

mission range of each other. When they are out of range, relay nodes are required

to provide relay to route packets.
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Figure IV.11: Plant Output and Flow Rate in Multihop Scenario

A chain topology is used to test such a multi-hop wireless scenario. Five nodes

are formed in a chain structure with a fixed distance of 250m between neighboring

nodes.The plant and controller are located at the edges of the network. Fig. IV.11

shows the simulation results. At the beginning of the simulation, the plant output

has more oscillation than the case of single hop, as the packets experience higher

delay. When the plant output and the flow rate has converged, the plant output

performs similar to the single-hop plant systems.
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CHAPTER V

OPTIMAL CROSS-LAYER DESIGN OF SAMPLING RATE
ADAPTATION AND NETWORK SCHEDULING FOR WIRELESS

NETWORKED CONTROL SYSTEMS

Introduction

The integration of physical systems through computing and networking has

become a trend, known as Cyber-Physical Systems (CPS). Many real-world CPS

such as automotive vehicles and distributed robotics, are monitored and controlled

by Networked Control Systems (NCS), where information among sensors, con-

trollers and actuators is exchanged via a communication network. NCS are in-

creasingly deployed over wireless networks, as they provide great convenience

in terms of deployment and mobility support [37, 43]. However in a wireless

networking environment, the stability and performance of the control system are

greatly affected by its limited and dynamic resource availability.

Three major approaches have been investigated in the literature to address

the challenges in designing wireless NCS. The first approach, independent of the

network protocol design, investigates the design of the control layer with a goal of

achieving the desired performance despite of the underlying network uncertainties

(e.g., [37, 101]). Alternatively, the network-centric approach focuses on reliable

and timely packet deliveries, independent of the control system. Yet without the

knowledge and support from the other components of the NCS, these approaches
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can hardly achieve both stability and optimal performance simultaneously (e.g.,

[79, 12]). To ensure the stability and optimize the performance of NCS, co-design

of the control system and the networking system has been investigated. Existing

work ([11, 71, 87]) either makes simplifying assumptions on the network models

or involves too many interactions between the control and the networking systems,

which prevents efficient layer abstraction and encapsulation, hindering broader

adoption for real-world deployment.

In this chapter, we consider NCS consisting of multiple physical plant and

digital controller pairs communicating via a multi-hop wireless network, where

the plants follow the reference trajectories provided by the controllers. The per-

formance of the NCS is characterized by the tracking errors of the plants which

are introduced from two sources: (1) discretization of the controller and the noise

disturbance from the operating environment; (2) packet delay and loss caused by

network congestion and dynamics. Both sources of error are related to the sam-

pling rate of the control system. Intuitively, high sampling rates allow frequent

state updates and provide NCS with better capability to reduce the effect of en-

vironmental disturbances. On the other hand, high sampling rates increase the

network load, which increases the possibility of packet loss and delay [64].

We transform the NCS performance objective in terms of tracking error min-

imization into an optimization problem. The optimization aims at maximizing

a utility function that characterizes the relationship between the sampling rate

and the capability of disturbance rejection of the control system (i.e., minimiz-

ing the discretization-induced tracking error); and the constraints of the sampling
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rate come from the wireless network capacity and the requirement of packet (i.e.,

bounding the network-induced tracking errors). The solution to this optimization

problem leads to a cross-layer design of control system sampling rate adaptation

and network scheduling, where the sampling rate adaptation determines the band-

width demands of the network, and the scheduling at the media access control

layer resolves the location-dependent interference and determines the available

resource capacity of each wireless link.

This sample rate optimization problem, however, is non-trivial to solve. The

tight coupling of the sampling rate and the required delay bound of the control

system (i.e., the delay needs to be less than the sampling time) poses a nonlin-

ear constraint, which has never been addressed in the existing rate optimization

solutions ([2, 21]). To solve this problem, we present a coupled-loop approach.

In the inner loop, a relaxed problem, where the delay bound is fixed and inde-

pendent of the sampling rate, is solved via dual decomposition. In particular, a

double-price scheme is employed to regulate the sampling rate traffic demand and

the wireless capacity supply. The capacity price regulates the resource usage at

the wireless link level, and the delay price regulates the relationship between the

achieved packet delay and the required delay bound at the end-to-end flow level.

The control system then adapts its sampling rate based on its utility function so

that its net profit, which is the difference between the utility and the cost (product

of price and rate), is maximized. The outer loop determines the optimal delay

bounds progressively based on the converged sampling rate from the inner loop.
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The proposed algorithm naturally leads to a distributed cross-layer implementa-

tion.

The main contributions of this chapter are summarized as follows. First, we

present a new formulation for NCS performance optimization by decoupling its

performance metric (tracking error) into two parts – discretization and network

effect, which are formulated into the objective and the constraints of an optimiza-

tion problem respectively. This formulation leads to a cross-layer joint design of

sampling rate adaptation and network scheduling which can be easily deployed

on existing control systems and networks. We employ a control design approach

based on passivity, and we formally prove that the stability and the performance

optimality of NCS can be simultaneously achieved. Second, we present a dis-

tributed algorithm that solves the NCS performance optimization problem and

resolves the complex interdependency between delay and sampling rate. By in-

troducing a novel Virtual Link Capacity Margin (VLCM) parameter that can be

adjusted to control the delay and the rate over a wireless link, our solution does not

depend on a specific model of packet arrival processes and is suitable for NCS sys-

tems with packet arrivals that are not characterized by Poisson processes (which

is an assumption usually used in networking delay analysis). Third, our solution

is evaluated in an integrated simulation environment that consists of Matlab and

ns-2 [99]. Using ns-2 – a packet-level network simulator that implements all the

details of the network protocol stack, allows highly accurate evaluation of network

effects on the NCS performance, which is impossible by using Matlab/Simulink

alone.
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The remainder of this chapter is organized as follows. In Sec. V, we present

the control system model and the wireless network model. In Sec. V and V, we

formulate the problem of optimal rate allocation and derive the double-price-based

rate adaptation algorithm. We evaluate the algorithm in different multi-hop sce-

narios using our Networked Control System Wind Tunnel (NCSWT) simulation

tool in Sec. VI.

Figure V.1: NCS over multi-hop wireless networks

Problem Description

We consider NCS consisting of multiple plants and digital controllers commu-

nicating via a multi-hop wireless network, as shown in Fig. V.1. The objective of

the control system is that the plants follow the reference trajectories provided by

the controllers to complete certain tasks. For example, in a manufacturing factory,

a group of robotic operators perform the task of moving objects from one place

to another. The network controllers receive desired reference trajectory from the
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operators and are responsible for ensuring the movement of each robot tracks the

desired trajectory.

Control System Model

A continuous-time plant is described by

ẋp(t) = Apxp(t) + Bpup(t) +Bww(t) (V.1)

yp(t) = Cpxp(t) (V.2)

where xp(t) ∈ �n denotes the plant state, up(t) ∈ �m denotes the control input,

w(t) ∈ �m is the disturbance input, and yp(t) ∈ �m is the plant output. Ap, Bp,

and Bw define the plant state matrices and Cp defines the plant output matrix.

The state-space representation of the continuous-time controller is

ẋc(t) = Acxc(t) + Bcuc(t) (V.3)

yc(t) = Ccxc(t) +Dcuc(t) (V.4)

where xc(t) ∈ �n denotes the controller state, and uc ∈ �m denotes the error

signal, or the difference between the plant output yp(t) ∈ �m and the reference

signal input r(t) ∈ �m. Ac and Bc define the controller state matrices, while Cc

and Dc define the controller output matrices. Let the reference signal denote by

87



r(t). The tracking error of the system is

err(t) = r(t)− yp(t) (V.5)

The controller is implemented as a discrete-time control system. We consider

sampling instants tk ∈ R, k = 0, 1, · · · , with tk+1 > tk, t0 = 0 and we define the

sampling interval as Tk = tk+1−tk. In order to simplify the notations, let x(k+1)

represent x(tk+1), the signal x(t) sampled at time instant tk+1.

Wireless Network Model

We model a multi-hop wireless network as a directed graph G = (V, L), where

V is the set of wireless nodes in the network. The nodes communicate with each

other via directed wireless links l ∈ L. Such a network supports a set of control

systems H . For each h ∈ H , the traffic from the controller to the plant and the

traffic backwards generate two end-to-end flows denoted as F (h). We collect

all end-to-end flows in the network into a set F . An end-to-end flow f may go

through multiple hops in the network and traverse a sequence of links defined by

the routing policy. We use set L(f) to represent all the links along the route of

flow f and F (l) to denote all the flows that traverse link l.
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Figure V.2: Decompose tracking error based on its source

NCS Performance Optimization

The NCS performance can be characterized by the tracking error of the con-

trol systems. The main focus of this chapter is to minimize the tracking error of

the NCS deployed over the multi-hop wireless network while maintaining certain

level of fairness among the plant-controller pairs. As shown in Fig. V.2, there are

two main sources of error. When a continuous-time control system is discretized,

its response to environmental disturbances degrades compared to the response of

the idealized continuous system. The level of the degradation depends on the

sampling rate, which determines how well the digital controller approximates the

continuous controller. High sampling rate allows frequent state updates and thus

provides better capability to reduce the effect of environmental disturbances and

minimize the tracking error. Packet loss and delay also deteriorate the tracking

error. We focus on the congestion-induced packet loss and delay. Network con-

gestion appears when the traffic demand overwhelms the capacity supply. While

the sampling rate determines the network traffic demand, the network resource
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management mechanisms such as media access control scheduling allocate ap-

propriate capacity to each wireless link.

Optimizing the NCS performance requires the coordination between the con-

trol system and the networking system. The control system needs to have the

capability to adapt its sampling rate based on the resource utilization information

from the network. The networking system should schedule its wireless transmis-

sion to meet the resource needs from the control system. This chapter studies how

to minimize the NCS tracking error via joint sampling rate adaptation and net-

working scheduling. Note that this chapter assumes fixed network routing, which

is known a priori.

Optimization Framework For Tracking Error Minimization

In this section, we present the control system design and formulate the prob-

lem of NCS tracking error minimization as a sampling rate optimization problem.

We first show that our passivity-based control system design is able to ensure sys-

tem stability with time-varying sampling time. Then we define the optimization

objective through a utility function which characterizes the relationship between

the sampling rate and the capability of disturbance rejection of the control system

(i.e., minimizing the discretization-induced tracking errors). The optimization

constraints are based on the wireless network schedulability and the NCS delay

requirement.
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Passivity-based control system – ensuring system stability with time-varying

sampling time

Figure V.3: Passivity Based Control Architecture Over Wireless Networks

Fig. V.3 shows the passivity-based control system architecture. A passive sys-

tem is defined as a system with bounded output energy such that the system does

not produce more energy than what is initially stored. We assume the plant sys-

tem is passive. A large class of systems can be “passified” by adding local control

and filter components [49][55]. The controller Gc(s) is designed so that the plant

tracks the reference r(k) and is also assumed to be passive. The control archi-

tecture uses (1) a discretization approach defined by the Inner Product Equivalent

Sampling and Hold (IPESH) transform, which is composed by the Inner Product

Equivalent Sampling (IPES) and Zero Order Hold (ZOH) blocks and (2) a bilinear

transform b for converting the control signals into wave variables for communica-

tion over a wireless network [55, 56]. These transformations ensure that the NCS
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are passive and stable in the presence of time-varying delay and packet loss.1

Next, we show that the NCS are ensured stable with time varying sampling time,

which allows us to use sampling rate adaptation.

A passive continuous-time linear time invariant (LTI) system can be converted

to a discrete-time passive system at a varying sampling time, Tk, with the discrete-

time state space equations described as

x(k + 1) = Φkx(k) + Γku(k) (V.6)

y(k) = Cdkx(k) +Ddku(k) (V.7)

In [55][110], it is shown that in order to obtain a passive discrete-time equivalent

of a LTI passive continuous-time system for a given fixed sampling time Tk, the

IPESH is used to compute the system coefficients,Φk, Γk, Cdk and Ddk to preserve

passivity.

Discretization with time-varying sampling time can be performed by applying

the IPESH for each resulting sampling time, Tk, hence ensuring passivity of the

discretization at each sampling time and thus the overall passivity of the discrete-

time system for a given time interval. This implies that the new system coefficients

are redefined as Φk = Φ(Tk), Γk = Γ(Tk), Cdk = Cd(Tk) and Ddk = Dd(Tk). By

ensuring the passivity of the discrete-time system, the stability is also ensured.

1We refer readers to [55, 56] for a detailed description and proofs.
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Utility function - modeling error from discretization

To characterize the impact of the sampling rate on the tracking error, we first

introduce a utility function which characterizes the disturbance rejection capabil-

ity of the discrete-time system compared with its continuous-time counterpart.

Continuous-time control system

The covariance matrix of the zero-mean white noise process of the continuous-

time system can be defined as

E[w(t)wT (t+ τ)] = Qδ(τ) (V.8)

where E denotes the expected value and Q represents the power spectral density of

w, or the continuous-time noise covariance matrix. The power spectral density can

also be referred to as the “white noise intensity” or mean-square spectral density.

The continuous-time state covariance matrix Pc can be described by

Pc(t) = E[x(t)xT (t)] (V.9)

Based on the knowledge of Q, the steady state value of the state covariance

can be obtained by [60]

AclPc + PcAcl +BwclQBT
wcl = 0 (V.10)
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where the matrices Acl and Bwcl denote the closed loop matrices of the continuous-

time system, or the coefficients of x(t) and w(t) respectively. From the resulting

state covariance matrix, the root mean square of a state can then be determined.

The Root-Mean-Square (RMS) of the plant states is equivalent to the standard

deviation of one of the plant states. For example, if a system has only one plant

state variable xp, and its plant state covariance is v(xp), the RMS of the plant state

is equal to
√

v(xp). When a system has several plant state variables, we can use

the plant state covariance from one of them to calculate the RMS of all the plant

states.

Discrete-time control system

Based on the knowledge of the continuous-time noise covariance matrix Q,

the discrete-time noise covariance matrix Qd can be obtained using the Van Loan’s

algorithm [30] and can be defined as

Qd =

∫ Tf

0

Φ(τ)BwclQBT
wclΦ

T (τ)dτ (V.11)

where Φ is the closed loop matrix, or the discrete-time state coefficient of x(k),

and Bwcl denote the closed loop matrix of the continuous-time system, or the

coefficient of x(t).
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The steady state discrete-time state covariance matrix can then be obtained

from the following equation

ΦPdΦ
T +Qd = Pd (V.12)

From the resulting state covariance matrix, the discrete RMS of the plant state

can then be determined in a similar way as the continuous-time case.

Utility function formulation

We now define the utility function of a control system as a function of its

sampling rate 1/Tk using the ratio of RMS between the discrete-time system with

its continuous-time counterpart. Thus, the utility function reflects the degradation

amount of the system response to the white noise compared to the continuous

closed loop system.

U(1/Tk) =
RMScontinuous
RMSdiscrete(Tk)

(V.13)

To demonstrate the definition of our utility function, we consider a single-

input-single-output (SISO) LTI system without loss of generality. As shown in

Fig. V.4, its utility function is a strictly concave function of the sampling rate.

The concavity of the utility function reflects the marginal return on the control

performance when its sampling rate increases.
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Figure V.4: Example utility function for the control system where the transfer
function of the plant is Gp(s) =

1
Js

, transfer function of the controller is Gc(s) =
Kp+Kds

s
, with J = 2.93, Kd = 32.1 and Kp = 8.2.

Relationship between utility function and tracking error

In a closed-loop continuous-time system, the system response of the plant can

be described as

xp(t) = eAcltxp(0) + eAclt

∫ t

0

e−AclτBclr(τ)dτ

+eAclt

∫ t

0

e−AclτBwclw(τ)dτ (V.14)

yp(t) = Ccle
Acltxp(0) + Ccle

Aclt

∫ t

0

e−AclτBclr(τ)dτ

−Ccle
Aclt

∫ t

0

e−AclτBwclw(τ)dτ (V.15)

Recall that the tracking error of the system err(t) = r(t)−yp(t). From (V.15),

the output response of the plant has two main components that contribute towards

the tracking error. The first component is the plant response to the reference in-

put r(t), and the other is the plant response to the disturbance input w(t). The
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passive controller is designed to ensure the plant’s response to the reference input

minimizes the tracking error. The system achieves a certain level of disturbance

rejection. The contribution of the input disturbance can be characterized by the

covariance of the tracking error.

From (V.15) and the fact that r(t) is not stochastic, we have E[r(t)yT (t)] =

E[rT (t)y(t)] = E[r(t)rT (t)] = 0. The covariance of the tracking error can be

described by

Ce(t) = E[e(t)eT (t)] = E[y(t)yT (t)] (V.16)

This essentially implies that the covariance of the error is equal to the output

covariance. Based on the knowledge of Q, the steady state value of the output

covariance is [60]

Ce = CclPcC
T
cl (V.17)

Capacity and delay constraints – bounding error from network

Figure V.5: Impact of Delay On the NCS Average Tracking Error
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Capacity constraint

To limit the effect of packet loss caused by network congestion on the tracking

error, we need to restrain the network load within its capacity. Wireless network

communication is subject to location dependent interference. Thus the achievable

capacity of each wireless link is related to the scheduling algorithm. We adopt

the conflict graph concept to model wireless interference [46]. Each vertex in

the conflict graph represents a wireless link of the original network and there is an

edge between two vertices if their corresponding wireless links interfere with each

other. The communications along wireless links are scheduled on a slotted time

basis. In each time slot, one independent set2 I of the conflict graph is selected and

only the links corresponding to the vertices in I are allowed to transmit because

they are interference free. Let cl be the channel capacity. A L-dimension column

vector rI is used to represent the capacity vector of I , where rIl = cl if l ∈ I ,

and rIl = 0 otherwise. We adopt the concept of feasible capacity region Λ to

model the feasible link capacity allocation [16]. The feasible capacity region is

a convex hull, which is defined as Λ :=
∑

I αIr
I , where

∑
I αI = 1 and αI ≥

0. Scheduling essentially determines the capacity allocation ĉ = (ĉl, l ∈ L) of

the links, where ĉl is the average capacity over time based on the scheduling.

Obviously, ĉ ∈ Λ. To limit the packet congestion loss, the aggregated traffic load

on any wireless link l ∈ L should be no more than its achievable capacity ĉl.

2The independent set of a graph is a set of vertices within which no edge exists between any
two vertices.
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Delay effect on tracking error

To determine the effect of delay on the tracking error, we perform a set of

simulation studies using NCSWT [99] over NCS with one pair of plant and con-

troller. Based on the assumption that the discrete plant/controller systems update

and process data received only at sampling instants, the delay viewed from the

control systems’ perspective are integral multiples of the sampling interval. We

vary the sampling time and manually introduce delay which are integral multi-

ples of the sampling time. Then we evaluate the average tracking error difference,

which is the difference between the time-averaged tracking error with delay intro-

duced and that without any delay.

From the experiment, we observe that when the delay is within one sampling

time, the tracking error difference remains zero. Fig. V.5 shows the effect of delay

on the tracking error difference when it is larger than the sampling time. We

observe that the error increases superlinearly when the delay increases beyond

one sampling time. Based on the observations, we bound the average end-to-end

delay of control system flows to their system sampling time.

Controlling delay with V LCM

Providing delay assurance is notoriously difficult in wireless networks. The

main difficulty comes from the complex interactions between traffic arrival and

departure, which is shaped by the network scheduling. Most of the existing works

on delay analysis make explicit assumptions on the packet arrival process (e.g.,
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Poisson arrivals) [35], which do not reflect the NCS traffic characteristics. Here

we employ a general method which is not limited to a predefined packet arrival

process. In order to regulate the maximum allowable rate ml, we introduce a

parameter Virtual Link Capacity Margin (V LCM) σl of link l defined by

σl = ĉl −ml, with ml < ĉl, ∀l ∈ L (V.18)

We regard the link delay (i.e., average packet delay along the link) as a function

of the V LCM ϕ(σl). Then the average delay of flow f is the sum of all link delay

along its route.

Optimization Framework

Recall that each control system is associated with two flows. Let zh = sample size
Th

be the traffic rate of one flow for the control system h, where sample size is the

size of the sample and Th is its sampling time. Th(f) is the sampling time of con-

trol system h which flow f is associated with. Thus, the maximum allowable rate

satisfies ml ≥
∑

h∈H:f∈F (h)&f∈F (l) zh. We overload Uh as a function of traffic rate

for control system h, as defined by Eq. (V.13). Now we formulate the optimal

sampling rate allocation problem as follows:

W : max
∑
h∈H

Uh(zh) (V.19)

s.t.
∑

h∈H:f∈F (h)∩F (l)

zh ≤ ĉl − σl, ∀l ∈ L (V.20)
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∑
l∈L(f)

ϕ(σl) ≤ Th(f), ∀f ∈ F (V.21)

over ĉ ∈ Λ (V.22)

The objective of the nonlinear problem is to maximize the aggregate utility of

all control systems in the network. This objective minimizes the tracking er-

ror induced by discretization and maintains certain fairness among all the plant-

controller pairs [50]. Inequality (V.20) represents the wireless capacity constraint

for each wireless link. Note that the V LCM σl is introduced here to control the

link delay. Inequality (V.22) defines the scheduling feasibility. Inequality (V.21)

is the flow delay constraint where the average flow delay is bounded by the sam-

pling time of its control system. It is important to note that there is a possibility

that the optimal solution of sampling time that minimizes the tracking error may

fall below the delay bound. We choose to incorporate this delay bound (V.21) in

our problem formulation for two reasons. First, from Fig. V.5, we observe that

the tracking error increases super-linearly with respect to delay when the delay

goes beyond the sampling time; while the utility only increases sub-linearly with

respect to sampling rate. Intuitively, this implies the marginal benefit of increas-

ing the sampling rate is overweighed by the marginal penalty of pushing the delay

beyond the sampling time. Based on this intuition, we bound the average delay

by the sampling time. On the other hand, without this delay bound constraint,

providing a formulation that fully captures the complex interaction among sam-

pling time/rate, delay, delay-introduced error, and discretization-introduced error
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will lead to an intractable optimization problem, where identifying a distributed

solution is even harder.

Distributed Cross-Layer Algorithm

Solution overview

Problem W is non-trivial due to the complicated interactions between the

V LCMs, the sampling rate and the end-to-end delay. The tight coupling of the

sampling rate and the required delay bound of the control system (i.e., the delay

needs to be less than the sampling time) poses a nonlinear constraint, which has

never been addressed in the existing rate optimization solutions ([2, 21, 72]). To

solve this problem, we first relax the delay constraint and consider the optimiza-

tion problem with a fixed delay requirement. Then we show how to adjust the

delay requirement to achieve the optimal solution of the original problem W .

Cross-layer algorithm with fixed delay

The optimization framework with a fixed delay requirement can be written as

W1 : max
∑
h∈H

Uh(zh) (V.23)

s.t.
∑

h∈H:f∈F (h)∩F (l)

zh ≤ ĉl − σl, ∀l ∈ L (V.24)
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∑
l∈L(f)

ϕ(σl) ≤ Dh(f), ∀f ∈ F (V.25)

over ĉ ∈ Λ (V.26)

where the constraint (V.21) is replaced by (V.25), in which Dh(f) is the delay

requirement of control system h.

Double-Price Algorithm

Direct solution to W1 requires global coordination of all network components,

such as flows and links, which is computationally expensive. We consider its dual

decomposition. Let ν = {νl, l ∈ L} and μ = {μf , f ∈ F} be the Lagrange mul-

tipliers with respect to constraints (V.24) and (V.25) respectively. The Lagrangian

of W1 is:

L(z,ν,σ,μ, ĉ)

=
∑
h∈H

Uh(zh)−
∑
l∈L

⎛
⎝νlσl +

∑
f∈F (l)

ϕ(σl)μf

⎞
⎠

−
∑
h∈H

⎛
⎝zh

∑
l∈L(f)&f∈F (h)

νl

⎞
⎠+

∑
f∈F

μfDh(f) +
∑
l∈L

νlĉl

The dual of W1 is

D̄(ν,μ) = min
ν≥0,μ≥0

D(ν,μ) (V.27)
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where

D(ν,μ) (V.28)

= max
z,σ,ĉ

L(z,ν,σ,μ, ĉ)

= max
σ

⎧⎨
⎩−

∑
l∈L

⎛
⎝νlσl +

∑
f∈F (l)

ϕ(σl)μf

⎞
⎠
⎫⎬
⎭

+max
z

⎧⎨
⎩
∑
h∈H

⎛
⎝Uh(zh)− zh

∑
l∈L(f)&f∈F (h)

νl

⎞
⎠
⎫⎬
⎭

+max
ĉ

{∑
l∈L

νlĉl

}
+
∑
f∈F

μfDh(f)

The solution (z∗,σ∗, ĉ∗) to (V.28) should satisfy:

z∗h = argmax
zh

⎧⎨
⎩
∑
h∈H

⎛
⎝Uh(zh)− zh

∑
l∈L(f)&f∈F (h)

νl

⎞
⎠
⎫⎬
⎭ (V.29)

σ∗l = argmax
σl

⎧⎨
⎩−

∑
l∈L

⎛
⎝νlσl +

∑
f∈F (l)

ϕ(σl)μf

⎞
⎠
⎫⎬
⎭ (V.30)

ĉ∗l = argmax
ĉl∈Λ

(
∑
l∈L

νlĉl) (V.31)

Here the multiplier νl can be seen as the implicit congestion price [72] of link l,

which represents the cost of delivering a unit of data through link l. The multi-

plier μf can be interpreted as the implicit delay price of flow f , which represents

the cost of imposing a unit of delay on flow f . If ν and μ are given, we can
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obtain the maximizers z∗h and σ∗l by taking the derivative with respect to zh and σl

respectively.

z∗h(κh) = U
′−1
h (κh). κh =

∑
l∈L(f)&f∈F (h)

νl, ∀h ∈ H (V.32)

σ∗l (λl, νl) = ϕ
′−1
l (

−νl
λl

). λl =
∑

f∈F (l)

μf , ∀l ∈ L (V.33)

(V.32) implies that the optimal sampling rate of a control system h is determined

by its price κh, which is the aggregated price of the links along its flow routes.

(V.33) implies that the optimal V LCM of a link is relevant to its congestion price

νl and link margin price λl. The intuition is: 1) the congestion price determines

the available capacity margin that can be used for V LCM adjustment; and 2)

the link margin price implicitly reflects the overall delay requirement (from all of

its supporting flow delay requirement) on its V LCM . The maximizer ĉ∗l can be

generated from a maximum weight based scheduling policy.

Now W1 is converted into three sub-problems: the sampling rate adaptation

problem (V.29), the VLCM assignment problem (V.30) and the scheduling prob-

lem (V.31). The link congestion price ν and the flow delay price μ can be com-

puted iteratively, from the opposite direction to the gradient ∇(L(ν,μ)) [9].

This adaptation approach is called double-price scheme. Based on the in-

formation of two price signals, the algorithm iteratively reaches a global opti-

mum. The property of this algorithm is formally characterized in Proposition 1

and Proposition 2.
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Proposition 1 There is no duality gap between (V.23) and (V.27). For any

(ν∗,μ∗) that minimizes (V.28), if (z∗,σ∗, ĉ∗) solves (V.29), then (z∗,σ∗, ĉ∗) is

the unique maximizer of (V.19).

Proposition 2 If ||β||2 and ||γ||2 are sufficiently small, starting from any initial

values z(0), σ(0), ĉ(0) and prices ν(0) ≥ 0, μ(0) ≥ 0, the cross-layer algorithm

converges to the optimal solution (z∗,σ∗, ĉ∗,ν∗,μ∗). The proof of these two

propositions are provided in [92].

Cross-Layer Rate Allocation Implementation

Figure V.6: NCS over multi-hop wireless networks

Our algorithm naturally leads to a cross-layer implementation via joint VLCM

assignment, sampling rate adaptation and scheduling, as shown in Fig. V.6. Schedul-

ing is performed at the MAC layer. At the network layer, the margin calculation

generates the optimal VLCMs for a wireless interface queue; the congestion price
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calculation provides per-hop congestion price, which reflects the level of conges-

tion at this queue. They can be implemented as part of the queue management

mechanism. At the application layer, the per-hop congestion price is aggregated

to calculate the sampling rate; the end-to-end delay is measured to calculate the

delay price.

Our algorithm implementation only requires the knowledge of the first order

derivative of the link delay with respect to the capacity margin ∂ϕ(σl)
σl

based on

(V.33), rather than some statistical characteristics, such as the mean or the variance

of the packet arrival rate. The derivative of link delay can be profiled online.

According to (V.31), we need to find a scheduling policy so that the aggregate

link weight
∑

l∈L νlĉl could be maximized. We achieve this by using a maximum

matching based scheduling policy [72].

Delay Bound Tuning

After obtaining the optimal sampling rate solution to the problem W1 with

fixed delay requirement, we now solve the original optimal problem W by de-

termining the optimal delay requirements for all NCS. We proceed in two steps.

First we determine the ranges of the delay requirements. Then, we adjust the de-

lay requirements to find the ones which yield the optimal sampling rate allocation

within the range.
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Range of delay requirement determination

The lower bound D = (Dh, h ∈ H) of the delay range can be computed via

the optimization problem of

W : max
∑
h∈H

Uh(zh) (V.34)

s.t.
∑

h∈H:f∈F (l)&f∈F (h)

zh ≤ ĉl, ∀l ∈ L (V.35)

over ĉ ∈ Λ (V.36)

This is a simplified form of W , with the V LCM σl = 0 for all l ∈ L and without

the delay constraints. The solution to this problem z is the maximum achievable

sampling rate considering only the network capacity constraint. This maximum

achievable rate corresponds to the minimum sampling time of the NCS Th(zh).

As our delay constraint in the original problem W is that the flow delay should

not exceed one sampling time, we can treat the minimum sampling time as the

lower delay bound D = (Th(zh), h ∈ H).

Fixing the sampling rate to z, we allow the maximum amount of traffic satis-

fying only the network capacity constraint to be injected into the network. Thus

the measured delay d̄ = (d̄f , f ∈ F ) is the upper bound of the end-to-end delay.

If d̄f ≤ Th(zh), ∀f ∈ F (h), ∀h ∈ H , then z will also be the optimal sampling

rate for the original problem W . If there exists d̄f > Th(zh), then we set the upper

bound of the delay requirement to D̄ = d̄.
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Optimal delay requirement adjustment

Starting from the lower bound of the delay requirement, we adjust the delay

requirement of each control system based on the algorithm shown in Table V.1.

In the algorithm, we gradually adjust the delay requirements of all the systems

from their lower bounds until 1) they are all smaller than the corresponding op-

timal sampling times based on problem W1; and 2) at least for one system, the

difference between its delay requirement and the optimal sampling time is within

the constant bound ε. The initial adjustment size ah, h ∈ H is set to half of the

difference between Dh and D̄h, and becomes half of its previous value on each

round of iteration.

Table V.1: Delay requirement adjustment
Adjustment of Delay Requirement D
0) initialization

let D = D, a = (D̄ −D)/2 be the initial adjustment sizes,
ε be a sufficiently small constant, ε be a vector of ε;

1) compute z by solving W1 where the delay requirements are D;
derive the corresponding sampling time T (z);
If D ≤ T (z) and ∃h, Th(zh)−Dh ≤ ε, stop;

2) If D < T (z)− ε, increase its delay requirement:
D = D + a

3) If ∃h,Dh > Th(zh), decrease the delay requirement:
D = D − a

and reduce the adjustment size:
a = a/2

repeat 1) to 3)
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Theorem 1 The adjustment algorithm in Table V.1 converges within in �log2 ah/ε	
number of iteration.

Proof: We start with a simple scenario with one pair of plant and controller in

a single-hop topology.

We first show the existence of the optimal delay requirement in the simple

scenario. In this scenario, df is a strictly decreasing function of Th. In the cross-

layer algorithm with fixed delay, given a reachable delay requirement Dh, the

algorithm can drive the average end-to-end delay df of a flow close to the delay

requirement: 0 ≤ Dh−df ≤ ε. Thus, we can consider Dh as a decreasing function

of Th. From the definition of the lower and upper bound of the delay requirements

Dh and D̄h, we have

D̄h > Th(zh)

Dh < Th(z̄h)

Based on the fixed point theorem, there exists

0 ≤ D̃h − Th(z̃h) ≤ ε

According to the binary search algorithm, the maximum number of iteration

will be �log2 ah/ε	. This proves the convergence of the optimal delay requirement

algorithm in the simple scenario. �
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Next we will prove the convergence of the delay requirement adjustment al-

gorithm in the general cases.

Lemma 1 The maximum number of iteration in the delay requirement adjust-

ment algorithm is �log2max(ah)/ε	.
Proof: During each iteration, the binary search algorithm reduces the search

space for the optimal delay requirement by half. Moreover, according to condition

3) of our algorithm, as long as the delay requirement of any system is greater than

its corresponding sampling time, the delay requirements of each system h will

decrease ah. Thus, the ranges of the delay requirements always satisfy one of the

following conditions:

• The lower bound of the delay requirement is smaller than the corresponding

sampling time, and the upper bound of the delay requirement is larger than

the corresponding sampling time.

• Both the lower bound and the upper bound of the delay requirements are

smaller than the corresponding sampling times.

As the binary search algorithm reduces the search space by half during each

iteration, after �log2max(a)/ε	 number of iterations, the search space of system

h becomes

(D̄h −Dh)

2�log
max(D̄−D)/ε
2 	

≤ ε · D̄h −Dh

max(D̄ −D)
≤ ε
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Thus, the algorithm converges after at most �log2max(a)/ε	 number of iter-

ations. Note that when all the systems have same utility function and network

topology in terms of route and inteference, our algorithm converges after log2 a/ε

number of iterations, and leads to the optimal solution. �

In general cases, when the routes of different systems overlap or interfere with

each other, Dh not only is a function of Th, but is also affected by sampling time

of other systems. This complicates the search for the optimal solutions. Our

algorithm simplifies the problem by providing a feasible but sub-optimal solution.

Performance Evaluation

In this section, we evaluate our cross-layer sampling rate adaptation and net-

work scheduling algorithm using an integrated simulation tool named Networked

Control System Wind-Tunnel (NCSWT) [99]. NCSWT integrates two simula-

tors Matlab and ns-2, which allows us to simulate the control system models in

Matlab/Simlink and the networking systems in ns-2. Using ns-2, a packet-level

network simulator that implements all the details of the network protocol stack,

we can perform highly accurate evaluation of the network effects on the NCS per-

formance, including queueing delay and network scheduling, which is impossible

by using Matlab/Simulink alone.
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Simulation Setup

In our experiments, the NCS consists of three pairs of plants and controllers.

Each of the three plant systems used in the experiments is the model of a single

joint of a robotic arm. They are described by the continuous time state space

representation as defined in (V.1) and (V.2), with the parameters Ap = 0, Bp =

1, Cp = 0.3413. Each of the controllers is described as in (V.3) and (V.4) with

Ac = 0, Bc = 1, Cc = 32.1, Dc = 8.2. The plants and controllers are discretized

based on the sampling time Th to obtain the discrete time equivalent. The utility

function used in the experiments is the same as the function presented in Sec-

tion V. The objective is the joint velocity of each robotic arm tracks a sinusoidal

reference input r[k] = sin(ωk) for k = 0, 1, 2, · · · with ω = 2π
80

. The disturbance

inputs for Plant2 and Plant3 are white noise with the power spectral density of

1. Plant1 does not have any white noise input. In the wireless network, the in-

terference range and the transmission range are set to 250m. The capacity of the

wireless channel is 2Mbps. The packet size is 260 bytes. Each simulation runs

for 180 seconds.

Four aspects of the system are evaluated after the first period of the reference

signal when the adaptation converges:

1. The average tracking error ērr, which is the average absolute difference

between the plant output and its reference signal.3;

3The results with the optimal delay requirements are presented with the mean and its range of
error based on 7 times of simulation runs.
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2. The sampling time Th;

3. The end-to-end delay of flows associated with system h;

4. The channel utilization, which is the ratio of the total network load to the

channel capacity.

Simulation Results

Single-hop Scenario

In the first experiment, there are six nodes in the wireless network, each host-

ing either a plant or a controller. All the nodes are within the transmission range

of each other, forming a single-hop network topology.
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Figure V.7: Velocity Outputs with the Optimal Delay Requirement in Single-hop

Fig. V.7 presents the simulation results with the optimal delay requirement

derived from the delay requirement adjustment algorithm. Fig. V.7 (a) shows the

plant outputs, and Fig. V.7 (b) illustrates the sampling time convergence of the
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three plant-controller pairs. The sampling time quickly converges, and the plant

outputs closely follow the reference trajectory. In Plant2 and Plant3, white noise is

introduced at a period of 15 seconds, when the outputs deviate from the reference

trajectory. Their gaps quickly diminish after a short period of time.

0 20 40 60 80 100 120 140 160 180
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

Ve
loc

ity
 (m

/s
)

(a) Delay Bound= 0.05s
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Figure V.8: Velocity Outputs with Different Delay Requirements in Single-hop

Table V.2: Performance Metrics for Different Delay Requirements
Delay Average Sampling Average Channel

Requirements Track Error Time Delay Utilization
Optimal 0.007 ± 0.0043 0.0125 0.0121 50 %

0.05 0.0251 0.0087 0.0481 72 %
0.0085 0.0428 0.2013 0.0087 3 %

Next we compare the performance of the NCS with fixed delay requirements,

which are different from the optimal one in Tab. V.2. Fig. V.8 (a) illustrates the

plant outputs using the delay requirement of 0.05s. Fig. V.8 (b) demonstrates

the plant outputs using the delay requirement of 0.0085s. We observe that both
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outputs are much worse than those in Fig. V.7. In addition, Plant2 and Plant3 suf-

fer from larger oscillations than Plant1, and cannot track the reference trajectory

closely, as shown in Fig. V.8 (b). With a larger delay requirement, the control

systems are allowed to send packets with a larger sampling rate, which increases

the traffic load of the networks. The average end-to-end delay experienced by

the control systems is more than 5 times of the sampling time. Thus, the outputs

exhibit a lot of oscillation. On the other hand, a small delay requirement leads to

small sampling rates, which degrade the system capability of white noise rejec-

tion. Thus, the controller cannot be notified in time about the occurrence of the

white noise disturbance.

Multi-hop Scenario

Direct communication in wireless networks requires two nodes to be within

the transmission range of each other. When they are out of range, intermediate

nodes can provide relays to route packets. We evaluate our solution over a multi-

hop wireless network with 12 nodes organized in a grid topology. The plants

and controllers are deployed on nodes at the network edges. Plant2 resides in the

middle of the network. The paths of all the control system pairs are set up using

the shortest-path routing algorithm.

Fig. V.9 (a) shows the velocity outputs of the three plants with the optimal de-

lay requirements. Tab. V.3 compares their performance metrics. Compared with

the single hop case, the plants experience larger oscillation at the beginning of the
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Table V.3: Performance Metrics with Optimal Requirements
Delay Average Sampling Average

Requirements Track Error Time Delay
Plant1 0.024 0.0020 ± 5.705e-5 0.026 0.031
Plant2 0.035 0.0186 ± 5.797e-7 0.038 0.048
Plant3 0.024 0.0159 ± 3.549e-4 0.026 0.023

simulation. Because it takes longer time to set up the routes between the plant

and controller pairs. Plant1 does not have white noise disturbance, so after con-

vergence its velocity output follows the reference signal closely. Although Plant2

and Plant3 have the same amount of white noise input, Plant2 has larger oscillation

than Plant3. This is because flows of Plant2 experience larger interference than

those of Plant3. As a result, it has a larger sampling time and is more vulnerable

to noise.

Table V.4: Performance Metrics of the NCS with Fixed Sampling Time
Average Sampling Average

Track Error Time Delay
Plant1 0.0132 0.0117 0.0807
Plant2 0.0223 0.0176 0.2044
Plant3 0.0139 0.0117 0.0519

We further run the experiment with fixed sampling time for the three control

systems. In Tab. V.4, we show the average tracking error with the fixed sampling

time. Comparing with the errors under optimal sampling time, we observe that the

three plants experience larger tracking error. Their sampling rates are about twice

of the optimal rates, which leads to much longer delay in a multi-hop network.
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When the average delay exceeds the sampling time by orders of magnitude, the

tracking error increases significantly.

Impact of wireless random packet loss
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(b) Single−hop Wireless Network with 10% packet loss
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Figure V.9: Velocity outputs

We now set up a single-hop wireless network with 10% random packet loss

that may be caused by wireless interference or noise. In Fig. V.9 (b), we show the

velocity outputs of the three plants with the optimal delay requirements. Com-

pared with the case without any packet losses, plants experience larger oscillation

at the peaks of the sinusoidal outputs. At the peaks, the acceleration of reference

velocities changes to the opposite direction, as communication between the plants

and the controllers becomes unreliable due to random packet loss, plants need

longer time to know the changes. While after the peaks, plants quickly track the

reference closely.
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Figure V.10: Velocity Outputs with Background Traffic in Single-hop

Impact of background traffic

We then set up a single-hop wireless network with two pairs of plant and con-

troller and two pairs of background traffic. All of them start at the beginning,

while the two background Constant Bit Rate (CBR) traffic flows leave the chan-

nel at 80 seconds. The two pairs of background traffic both use fixed sampling

time of 0.02s. At the beginning as in Fig. V.10 (b), plants’ sampling time quickly

converges to around 0.012s with the plant outputs stabilize to the sinusoidal refer-

ence. When the background traffic leaves, plants’ sampling time re-converges to

around 0.010s. and plant outputs still closely follow their reference. This exper-

iment demonstrates that with our algorithm, NCS smoothly handles background

traffic in the network.

Impact of NCS dynamics

In this experiment, Plant1 and Plant2 start first, with Plant3 starting at 80 sec-

onds. At the beginning as in Fig. V.11 (b), the sampling times of Plant1 and Plant2
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Figure V.11: Velocity Outputs with Dynamic NCS Join in Single-hop

quickly converge to 0.011s and their plant outputs stabilize to the sinusoidal ref-

erences as in Fig. V.11 (a). When the third pair joins in, all the sampling times

re-converge to around 0.013s after short period of time. Plant1 and Plant2 do not

experience much additional oscillation, and their sampling times transit smoothly

to the new values. It is because their scheduling is controlled by price, which does

not change abruptly.

Impact of utility function

Last we change the transfer function of Plant3 to G(s) = 1
5s

. The parameters

of its continuous time state space representation become Ap = 0, Bp = 0.5, Cp =

0.4. Its utility function is plotted in Fig. V.12. Compared with the old transfer

function as in Fig. V.4, only J is changed from 2.93 to 5. This leads to a faster

increase of the utility function as a function of sampling rate. With the new utility

function, when sampling rate is smaller than 10Hz, Plant3 is more sensitive to

price change; when sampling rate is larger than 10Hz, it is more robust to price
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Figure V.12: Utility function for the control system where the transfer function of
the plant is Gp(s) =

1
Js

, transfer function of the controller is Gc(s) =
Kp+Kds

s
,

with J = 5, Kd = 32.1 and Kp = 8.2.

0 20 40 60 80 100 120 140 160 180
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

Ve
lo

cit
y 

(m
/s

)

(a)

Plant 1 Velocity
Plant 2 Velocity
Plant 3 Velocity
Reference Velocity

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  20  40  60  80  100  120  140  160  180

S
am

pl
in

g 
Ti

m
e 

(s
)

Time(s)

(b)

 Plant1 
 Plant2 
 Plant3 

Figure V.13: Velocity Outputs with Plants using Different Utility in Single-hop

change. As a result, in Fig. V.13 (a), Plant3 experiences relatively smaller oscilla-

tion than Plant2. And the converged sampling time of Plant3 is larger than that of

Plant1 and Plant2 as in Fig. V.13 (b). This is because the utility function of Plant3

is smoother when the sampling time is relatively small (sampling time is inverse

of sampling rate in the figure), steeper when the sampling time is relatively large.

So the velocity of Plant3 is less sensitive to price changes, in turn more robust to

network dynamics, as compared with Plant2. In addition, because of the change of
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the utility function, the correlation between price and sampling time also changes.

Same price in the network is then interpreted to different sampling times when

plants use different utility functions.
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CHAPTER VI

END-TO-END FAIRNESS OVER NON-CONVEX CAPACITY REGION
IN IEEE 802.11-BASED WIRELESS NETWORKS

Introduction

Fair resource allocation for end-to-end flows in multi-hop wireless networks is

an essential but challenging problem. The key challenge comes from the location-

dependent resource contention. Essentially, the packet transmission along a wire-

less link will block the packet transmission in its vicinity. As a result, the achiev-

able capacity of a wireless link depends on the scheduling algorithm which de-

termines the set of active transmissions at each time slot. Existing approaches

to this problem largely fall into two categories: 1) Joint optimization of schedul-

ing and rate allocation [29, 66, 109, 131, 136] where the resource capacity re-

gion is rigorously defined by the schedulability of link-level flows. Though these

methods provide theoretically sound solutions for fair resource allocation, they

can hardly be implemented in a cost-efficient way due to the intrinsic complex-

ity in the multi-hop scheduling, and are rarely seen in practical deployment due

to their incompatibility with the standard IEEE 802.11; 2) Heuristic rate alloca-

tion solutions [129, 95], which simplify the scope of resource sharing regions

using different neighborhood models and partially rely on the underlying packet

scheduling, e.g., IEEE 802.11, to resolve the resource contention among link-level
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flows. These works are practical for implementation, but their fairness properties

are usually only evaluated on special topologies, like diamond or stack [95].

To date, the following essential questions still remain unanswered: 1) How

to define end-to-end fairness under IEEE 802.11. It is known that the capacity

region of IEEE 802.11 is non-convex [47]. Under the non-convex capacity re-

gion, the proportionally fair rate allocation is not unique and not consistent with

the trivial fairness in simple analyzable network scenarios. Defining fairness un-

der non-convex regions needs a fresh treatment. 2) How to achieve end-to-end

fairness. End-to-end fairness is usually achieved via rate allocation algorithms,

whose stability and convergence are critical for the overall network performance.

The new definition of fairness has to be implementable via a stable rate controller.

In this chapter, we present a new fairness model for IEEE 802.11 wireless net-

work where the capacity region is non-convex. To characterize the desired fairness

property, we adopt an axiomatic approach based on the game theoretic framework.

Recall that Nash Bargaining Solution (NBS), only defined over convex regions,

from cooperative game theory has been applied in [132] as a unified framework

for network fairness and efficiency. In particular, NBS is consistent with the con-

cept of proportional fairness defined by the optimal resource allocation frame-

work [50]. Here we seek a solution that is unique, coincides with the NBS under

the convex cases and approximates the NBS under the non-convex cases. Our new

fairness model is based on the Nash extension solution (NES), which is shown to

meet all these requirements [23, 22]. The NES can be constructed from the NBS

of the smallest convex regions that contain the original problem with non-convex
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regions. The solution to the convex problem is then scaled until all the rate al-

location intersects with the non-convex region. We further present an efficiency

enhanced version of Nash extension solution, which pushes the NES to the strong

Pareto frontier by increasing the benefits of some players when the utilities of the

rest players remain the same.

Based on the construction method of NES and its extension solution, we

present a time-decomposed price-based rate allocation algorithm. To best char-

acterize the convex hull that contains the non-convex region as defined by the

NES concept, we adopt the maximal clique approximation model [131]. The

price-based rate allocation algorithm is similar to the traditional dual-based rate

allocation algorithm. With the clique-formed price-based algorithm, the NES is

approached by scaling the capacity of convex cliques. To do so, a region scaler

β is defined in a slowly varying system and iteratively scales the capacity of the

regions to approach the IEEE 802.11 achievable capacity. We prove that both the

price-based rate allocation algorithm and the scaler update algorithm are stable by

Lyapunov functions, and the overall system is stable when the scaler varies slowly.

The algorithm is further extended to utilize the slack resource in the network,

which leads to the efficiency enhanced NES. Fully distributed implementation of

the rate allocation algorithms based on the gossip protocol is also presented. The

simulation study over a variety of topologies (e. g., random and dynamic) vali-

dates the performance of our algorithms and demonstrates this theoretically sound

new fairness model for IEEE 802.11 networks.
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This chapter makes the following contributions to the field. First, it defines

a new fairness model for non-convex capacity regions based on Nash extension

solution. It further presents an efficiency enhanced fairness model to address

the limit of weak Pareto optimality of NES. Both models will lead to a unique

rate allocation solution under non-convex capacity regions. While the NES co-

incides with the fair allocation of NBS under the convex cases and approximates

the NBS under the non-convex cases, the efficiency enhanced model leverages

fairness to improved resource utilization. Second, we present a time-decomposed

price-based rate allocation algorithm that iteratively converges to the fair solu-

tion and prove its stability. Distributed implementation of the algorithm is also

presented and evaluated using a simulation-based study.

The rest of this chapter is organized as follows. We first describe the problems

in Sec. VI. A new fairness model in IEEE 802.11 is defined in Sec. VI. The rate-

based algorithm to implement the new fairness model is presented and its stability

is formally proved in Sec. VI, VI and VI. Finally we present our evaluation results

in Sec. VI.
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Problem Description

Non-convex capacity region in IEEE 802.11 networks

The problem of identifying the achievable capacity region is extremely com-

plicated in IEEE 802.11 due to its nature of random-access-based scheduling. [47]

points out two important properties of the capacity region in IEEE 802.11:

• The capacity region under IEEE 802.11 scheduling is not convex.

• Asymmetric knowledge of the source or destination nodes leads to asym-

metric capacity regions.

Figure VI.1: Scenarios of two contending one-hop flows

Here we demonstrate these two properties via a ns-2 based simulation study.

Fig. VI.1 shows the simulation scenarios and Fig. VI.2 plots their achievable ca-

pacity regions respectively.
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Figure VI.2: Achievable capacity regions of two contending one-hop flows under
IEEE 802.11. In the experiment, RTS/CTS is enabled. The channel capacity is
1Mbps. The packet size is 1000 bytes.

Limitation of existing fairness models over the non-convex problem

We first review the existing fairness models and identify their limitations when

the network capacity region is not convex. Let x = (xf , f ∈ F) denote the

rate vector of the end-to-end flows f ∈ F and Π be the set of all feasible rate

vectors. Two widely used fairness criteria are proportional fairness and max-min

fairness. Recent literature [93] has shown that the max-min fairness model leads to

severe resource inefficiency in wireless networks, as all the flow rates are bounded

by the worst one, without considering the differences of their location-dependent

resource consumption. Thus, we focus on the proportional fairness model in the

discussion below.

According to [50], a rate allocation x̂ = (x̂f , f ∈ F) ∈ Π satisfies propor-

tional fairness, if

∀x ∈ Π,
∑
f∈F

xf − x̂f

x̂f

≤ 0 (VI.1)
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Intuitively, if x̂ satisfies the proportional fairness, the rate increase of one user

(f ∈ F) will result in the rate decrease of another user f ′ ∈ F . Moreover, the

proportion by which x̂f ′ decreases will be larger than the proportion of xf ’s in-

crease. It has been shown in [50] that the proportionally fair rate allocation can be

derived from the solution of the network utility maximization problem, where the

utility function is a logarithm function, i.e., max
∑

f∈F ln(xf ),x ∈ Π. Further,

the work of [132] has shown that the proportionally fair rate allocation is also the

solution of Nash Bargaining Solution (NBS) problem. When Π is a convex set,

there exists a unique proportionally fair rate allocation vector. When the feasible

rate vector set is non-convex, as in the case of IEEE 802.111, there may exist mul-

tiple allocation vectors that satisfy proportional fairness, as shown in Fig. VI.2(a).

The two points (192.8, 327.3) and (327.3, 192.8) marked by black “+” signs both

satisfy the proportional fairness criteria (Inequality (VI.1)). Further, both points

deviate from the trivially fair point (247.2, 247.2) marked by the red circle. To

summarize, the above observations significantly challenge the feasibility of using

proportional fairness in IEEE 802.11-based wireless network, as 1) the propor-

tionally fair allocation is not unique; 2) the proportionally fair allocation is not

consistent with the trivial fairness even in simple network scenarios, when the

feasible rate vector set is non-convex.

1Since the capacity region, defined as the set of feasible edge rate vectors, is shown to be non-
convex under IEEE 802.11 [47], it is trivial to show that the set of feasible end-to-end flow rate
vector will also be non-convex.
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Nash-Extension-Solution-based Fairness Model

In this section, we define a new fairness model for IEEE 802.11 wireless net-

works where the capacity region is non-convex. There are three basic require-

ments for the new fairness model.

1. Uniqueness. Only one rate vector within the capacity region is the fair allo-

cation point.

2. Pareto optimality. No alternative allocation within the capacity region can

improve the rate of any individual in the fair allocation.

3. Convexity consistence. The fair allocation is consistent with the propor-

tional fairness (e.g., NBS), when the capacity region is convex,

To characterize the desired fairness properties, we seek a solution in the game

theoretic framework that is unique, coincides with the NBS under convex cases

and approximates the NBS under non-convex cases. The Nash extension solu-

tion has been shown to meet all these requirements in the cooperative game the-

ory [23, 22]. Here we formally define the Nash extension solution in the settings

of wireless rate allocation.

In a multi-hop wireless network, the end-to-end flows F constitute the set of

players in the game, which compete for the shared wireless bandwidths. The rate

allocation vector x = {xf , f ∈ F} denotes the utility vector of all the players.
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Π ⊂ �F (F = |F |) is the set of all feasible utility vectors. To formally define the

bargaining problem, we first introduce the following definitions and notations2:

• d-comprehensive. Give a point d ∈ �F and a set Π ⊂ �F . Π is d-

comprehensive if d ≤ x ≤ z and z ∈ Π implies x ∈ Π;

• convex hull of a set Π ⊂ �F is the smallest convex set containing the set Π,

specified as con(Π);

• weak Pareto frontier ofΠ is denoted as WP (Π) ≡ {x ∈ Π|y � x implies y /∈
Π};

• strong Pareto frontier ofΠ is denoted as SP (Π) ≡ {x ∈ Π|y ≥ x implies y /∈
Π}.

Let Π ∈ �F be the set of all feasible rate allocations. It is non-empty,

compact, but not necessarily convex. Further, we denote the initial agreement

point of the game as x0, which represents the initial utilities of the players with-

out any cooperation in order to enter the game. The domain of Nash extension

(NE) bargaining problem considered in the context of wireless rate allocation

is denoted as ΣB = {(Π,x0)}, which satisfies 1) Π is x0-comprehensive; 2)

{x ∈ Π|x � x0} �= ∅, which is a set of rate allocations x that are acceptable to

all the flows.

2The vector inequality notations in this chapter are defined as follows: 1) x > y means that
xi ≥ yi, ∀i ∈ F with strict inequality for at least one i; 2) x ≥ y means that xi ≥ yi, ∀i ∈ F ; 3)
x� y means that xi > yi, ∀i ∈ F .
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Then a NE bargaining solution becomes a function ϕ : ΣB → �F , such that

∀(Π,x0) ∈ ΣB, ϕ(Π,x
0) ∈ Π. It specifies a rate allocation within the feasible

utility set, with three reasonable properties satisfied: 1) fair allocation among all

players; 2) efficient usage of resources; 3) consistency with NBS when Π is con-

vex. These properties are precisely encapsulated by the following axioms of NE

solution.

Definition 1 Nash Extension Solution (NES). A bargaining solution ϕ : ΣB →
�F is a Nash extension solution, if x∗ = ϕ(Π,x0) satisfies the Axioms A1-A6.

A1 Individual rationality: x∗ ≥ x0;

A2 Feasibility: x∗ ∈ Π;

A3 Weak Pareto optimality: ∀x, if x� x∗, then x /∈ Π;

A4 Scale invariance: ∀λ, ϕ(λ(Π), λ(x0)) = λ(ϕ(Π,x0)), where λ is an affine

transformation on �F : λ(x) = a + bx, b > 0, λ(Π) = {z ∈ �F |z =

λ(x),x ∈ Π};

A5 Independence of Irrelevant Alternatives: IfΠ′ ⊂ Π, z0 = x0, and ϕ(Π,x0) ∈
Π′, then ϕ(Π′, z0) = ϕ(Π,x0);

A6 Symmetry: If for all permutation operator φ, φ(Π) = Π and φ(x0) = x0

then ϕf (Π,x
0) = ϕf ′(Π,x0), ∀f, f ′ ∈ F ;

A7 Ethical monotonicity: If Π ⊂ Π′,x0 = z0, and ϕ(con(Π′), z0) ∈ con(Π),

then ϕ(Π,x0) ≤ ϕ(Π′, z0).
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The above axioms encapsulate both concepts of fairness in rate allocation (A4-

A7) and weak Pareto optimality in resource utilization (A3). Among these ax-

ioms, A1-A6 are similar to the definition of NBS [130]. The scale invariance

axiom (A4) states that the NE bargaining solution is scale-invariant, i.e., the so-

lution does not change if the utility is positively scaled. The symmetry axiom

(A6) implies that the bargaining solution does not depend on any specific labels

and no player is superior than others, i.e., players with the same initial points

and objectives will achieve the same final utility. The ethical monotonicity axiom

(A7) requires that if the feasible set of a bargaining problem is reduced in a way

that leaves the “ethical point” unchanged, then no agent should benefit from the

decrease of opportunities. This captures the notion of “fairness” that all agents

should share any such gains or losses. Here the “ethical point” is defined as the

NBS of the convex hull of the feasible set (con(Π)). The NES compromises away

from the most ethically desirable point to the maximal feasible allocation in a way

that it distributes the losses over all the players [23]. As a result, the NES is co-

incident with the NBS if the problem is convex, and approximates the NBS under

non-convex cases.

The weak Pareto optimality (A3) shows that no other distributions of the re-

source will strictly benefit all the players simultaneously, which indicates efficient

resource utilization when fairness is guaranteed. However, the weak Pareto opti-

mality condition implies that there are solutions which can increase the benefits

of some players with the utilities of the rest players remaining the same. Thus,
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we further present an efficiency enhanced version of Nash extension solution as

follows:

Definition 2 Nash Extension Solution with Efficiency Enhancement(NESEE).

A Nash extension solution ϕe : ΣB → �F is a Nash extension solution with

efficiency enhancement, if xe = ϕe(Π,x0) satisfies the following conditions:

C1 Strong Pareto optimality: xe ∈ SP (Π);

C2 Consistency to Nash Extension Solution: x∗ ≤ xe, where x∗ is the Nash

extension solution.

NES Implementation in Wireless Networks

In this section, we show how Nash extension solution can be formulated as a

rate allocation problem in wireless networks. The works of [23, 22] show that

the NES over a non-convex set can be constructed via its convex hull as follows.

First, let the mapping M : ΣB → �F defined as:

M(Π,x0) ≡ line(ϕ(con(Π),x0),x0). (VI.2)

M(Π,x0) is the line segment connecting x0 to the NES3 of the convex hulls

con(Π) and x0. Then the NES can be constructed as:

ϕ(Π,x0) ≡ max
x
{x ∈M(Π,x0) ∩ Π}. (VI.3)

3It is also the NBS, since the vector set is convex.
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where “max” indicates the maximal element with respect to the partial order on

�F . The point ϕ(Π,x0) is the intersection of the weak Pereto frontier of Π and

the line segment M . Since M is a line segment, this maximal element exists and

is unique. Thus, NES is nonempty and unique on ΣB. Based on this construction

x

x

Figure VI.3: An Example of the NES Implementation

method, four sub-problems need to be solved to obtain x∗ for the NES implemen-

tation, with an illustrative example in Fig. VI.3.

1. Identify con(Π), the smallest convex set containing Π;

2. Identify NBS of con(Π);

3. Identify the line segment M(Π,x0) as in Eq. (VI.2);

4. Identify ϕ(Π,x0), the NES on M as in Eq. (VI.3).
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Identify con(Π)

The convex hull con(Π) needs to satisfy the following three properties.

• Feasibility, in terms of the schedulability of the region. The convex hull

con(Π) has to contain the IEEE 802.11 schedulable region Π. Thus we

look for a region that satisfies the necessary condition of schedulability.

• Convexity, in terms of the shape of the capacity region.

• Smallest set, in terms of the size of the capacity region. Thus we look for a

region that approximates the sufficient condition of schedulability.

Characterizing the channel resource sharing region is related to the issue of

schedulability, i.e., whether the edge rate vector y is schedulable given the chan-

nel capacity and the network topology. However, it is known [45] that satisfying

the sufficient and necessary condition of schedulability in a wireless network in-

volves finding the independence number of a graph, which is an NP-hard problem.

Several approximation models of resource sharing units are proposed in the ex-

isting literature [45, 131, 53, 3]. In this chapter, we adopt the maximal clique

approximation [131] to model the capacity regions as it has a better approxima-

tion factor compared with the interference set models [53, 3]. In this clique-based

wireless resource allocation framework, the resource sharing regions are charac-

terized by maximal cliques in the wireless link contention graph Gc of the network.

In a wireless link contention graph, the vertices in a maximal clique represent a

maximal resource sharing region. They are mutually contending wireless links,
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among which at most one subflow may transmit at any given time. Formally, let

Q be the set of all maximal cliques in Gc. For a maximal clique q in the wireless

link contention graph Gc, V (q) ⊆ L is the set of its vertices. The resource con-

straint under this clique model is formulated based on the necessary condition of

schedulability, as
∑

l∈V (q) yl ≤ C, ∀q ∈ Q, where C is the channel capacity.

After the feasible capacity regions have been constructed, next we adjust it

to the tightest convex set. For each capacity region, the maximum achievable

capacity under IEEE 802.11 is proved to depend on the number of users in the

region [10], which can be computed analytically, if the ideal value of the capacity

is known. Under IEEE 802.11, we are able to identify one Pareto point in this

region. Consider the scenario where only one link is active, this active link itself

can achieve the maximum capacity. This non-convex capacity region is tightly

bounded by this maximum achievable capacity on the dimension of each wireless

link. Thus we define C as the maximum achievable capacity of a single active

link for each clique. This set of linear equations defines a convex edge rate vector

region which we consider to be the smallest one that contains the IEEE 802.11

capacity region. Let the clique-flow matrix R = {Rqf} represent the “resource

usage pattern” of each flow where Rqf = |V (q)⋂E(f)| represents the number

of subflows that flow f has in clique q. The convex hull con(Π) of the flow rate

vector can be derived from Rx ≤ C.
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Identify NBS of con(Π)

If we take the initial agreement point x0 as a vector of zero, then the NBS of

con(Π) can be derived from the following rate allocation problem [130, 132].

P̂ : maximize
∑
f∈F

ln(xf ) (VI.4)

subject to R · x ≤ C (VI.5)

x ≥ 0 (VI.6)

The objective function Eq.(VII.2) has the form of the proportional fairness, which

maximizes the aggregated utility of all flows. Constraint (VII.3) characterizes

con(Π). Constraint (VII.4) shows that the rate of each flow is greater than the

initial agreement point.

Identify M(Π,x0)

The line segment M is determined by the two end points: the NBS of the

convex problem x̂ = ϕ(con(Π),x0) and x0. Let xm be a point on the line segment

M , then ∀i, j ∈ F, i �= j, the flow rates need to satisfy

xm
i − x0

i

xm
j − x0

j

≡ x̂i − x0
i

x̂j − x0
j
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Assuming that the minimum rate vector x0 = 0, the above equation can be written

in the vector form as

xm = βx̂, β ∈ [0, 1]. (VI.7)

With constraint (VII.3), we have R · xm ≤ βC. Thus, points on the segment line

M can be solved in the following non-linear optimization problem by varying

region scaler β ∈ [0, 1].

Pm : maximize
∑
f∈F

ln(xf )

subject to R · x ≤ βC (VI.8)

x ≥ 0

Identify ϕ(Π,x0)

After M being determined, we need to find the point on the line corresponding

to its intersection with Π. The NES is the intersection of M , the solution to the

non-linear optimization problem Pm and the feasible allocation set Π:

ϕ(Π, 0) = {x∗|x∗ ∈ WP (Π),R · x∗ = βC, β ∈ [0, 1]} (VI.9)

Assuming that the achievable capacity vector under IEEE 802.11 is C̃ for the

clique approximation of the resource sharing units, identifying NES is equivalent
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to find a β, which solves the linear optimization problem below:

M : maximize β

subject to βC ≤ C̃ (VI.10)

0 ≤ β ≤ 1

NES-Fair Rate Allocation Algorithm

Based on the construction of NES, we present a rate allocation algorithm that

achieves NES-fairness in wireless networks. The algorithm consists of two dy-

namic systems evolving at two timescales:

• The boundary-layer system, where the region scaler β remains constant.

Flows adapt their rates towards the fixed target capacity of βC according to

Pm.

• The reduced system or slow system, where the flow rates have converged

for a particular set of βC. The capacity regions, or the cliques then tune the

region scaler β to approach the achievable capacity under IEEE 802.11.
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The Boundary-layer System

With the value of β fixed, the optimal resource allocation of problem Pm can

usually be solved by a price-based dual problem D of Pm: minμ≥0D(μ).

D(μ) =
∑
f∈F

maxxf
(ln(xf )− xf

∑
q:E(f)∩V (q) 
=∅

μqRqf )

+
∑
q∈Q

μqβCq (VI.11)

where the vector of Lagrange multipliers μ = (μq, q ∈ Q) is called price and

interpreted as the cost of a unit flow accessing the resource sharing region char-

acterized by the maximal clique q. The dual problem D is solved via a gradient

projection algorithm [131]. This leads to an iterative algorithm that can be exe-

cuted in a distributed way to achieve the optimal solution of Pm. In particular, the

price μq at clique q is adjusted as follows:

μq(t+ 1) = [μq(t)− γ(βCq −
∑

f :E(f)∩V (q) 
=∅
xf ·Rqf )]

+ (VI.12)

The flow rate xf can be adjusted at the source of the flow when it receives an ack

packet from the destination node, so that its net benefit (difference between utility

and cost) is maximized:

maximize ln(xf )− λfxf
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It is easy to see that xf = 1/λf at optimum. Here λf is the price of a flow f :

λf =
∑

q:E(f)∩V (q)
=∅Rqfμq.

The Reduced System

In the reduced system, β is adjusted towards the optimal solution to M. Ex-

panding constraint (VI.10) in a matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

βC1 − C̃1

βC2 − C̃2

...

βC|Q| − C̃|Q|

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0.

The inequations can be replaced by: maxq∈Q(βCq − C̃q) ≤ 0.

Hence, β can be updated according to the ordinary differential equation (ODE):

β̇ = −αγmax
q∈Q

(βCq − C̃q(x
m)) (VI.13)

where α > 0 is a damping factor. The ODE increases the region scaler when all

the cliques are under-utilized, i.e., ∀q ∈ Q, βCq < C̃q; and decreases the region

scaler when any clique is over utilized, i.e., ∃q ∈ Q, βCq > C̃q.
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Stability of the Time-decomposed Algorithm

We first show that the two systems are stable individually. Then we study

the condition when the entire system is semi-globally stable and converges to the

equilibrium point exponentially fast.

First, the boundary-layer model of the system is shown to be globally asymp-

totically stable in [131]. Here we focus on the stability of the reduced system.

Theorem 1 Let W(β) =
∑

q∈Q(βCq − C̃q)
2. The strictly convex function

W is a Lyapunov function for the system of Eq. (VI.8) and Eq. (VI.13). The

unique value β at W = 0 is a stable point of the system, to which all trajectories

converge.

Proof :
dW(β)

dt
=

∂W(β)

∂β

dβ

dt

= 2Cq

∑
q∈Q

(βCq − C̃q(x
m))

·(−αγ)max
q∈Q

(βCq − C̃q(x
m))

≤ −2αγCq

∑
q∈Q

(βCq − C̃q(x
m))2

Therefore, W(β) = 0 at maxq∈Q(βCq − C̃q(x
m)) = 0. By LaSalle’s invariance

principle, the reduced system Eq. (VI.8), (VI.13) converges to the optimal point

of the system. �

Finally, we show the overall system is semi-globally exponentially stable.
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Theorem 2 The boundary-layer system given by (VI.12) is locally exponen-

tially stable uniformly in {β}. That is, there exists a r > 0, such that

||μ(t, ||x(0)||, β)− μ∗(β)|| ≤ K||x(0)− x∗(β)||exp[−γt],

∀(μ, β) ∈ {||μ− μ∗(β)|| ≤ r} × Bβ .

Proof: Assuming that μq > 0, q ∈ Q, (VI.12) can be written in the continuous

form: μ̇q = −γ(βCq −
∑

f∈F xf · Rqf ). Linearizing the boundary-layer system

(VI.12) around the equilibrium point we get: δμ̇ = Aδμ, where A is the diagonal

matrix defined as

−γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
f∈F (R1fx

∗
f )

2 · · · 0

0 · · · 0

...
... 0

0 · · · ∑
f∈F (RQfx

∗
f )

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with x∗f = x∗f (μ
∗(β)). Since A is strictly negative definite, i.e.,A < 0, all the

eigenvalues of A are negative. Therefore, the system is locally exponentially sta-

ble. The eigenvalues are continuous functions of the elements of A, the elements

of A are continuous functions of β where β lies in a compact set Bβ . Hence A is

uniformly Hurwitz in β. �
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Efficiency Enhancement

First we introduce two states of a clique: balanced and active. If the measured

capacity of a clique C̃q is close to the scaled capacity βCq, the clique is balanced;

otherwise, it is active. Formally, a flag hq marks the clique state information,

hq =

⎧⎪⎨
⎪⎩

B balanced, if |βCq − C̃q| < ε

A active, otherwise.

where ε is a constant value satisfying ε� Cq.

By the definition of NES, the time-decomposed algorithm can achieve the

same rate proportion among different users as in their convex counterparts. How-

ever, at weak Pareto optimality, the flow rates may no longer increase when cer-

tain region is balanced, while it is possible that some flows can utilize the residual

resource without affecting the balanced regions. This condition is precisely char-

acterized in our proposed Nash Extension Solution with Efficiency Enhancement

(NESEE).

To achieve NESEE, we define a slack clique set Sq to keep track of regions

with residual capacities. If all the cliques a flow traverses are in Sq, the flow can

increase its rate without affecting the balanced regions. These flows are recorded

by a slack flow set Sf .

Table. VI.1 describes the NESEE algorithm in detail. Precisely, when the

maximum difference between the scaled capacity βCq and the measured capacity

C̃q of all the active cliques is within the range of [−ε, 0], the status of the clique
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q with the maximum difference will be set to balanced. At the same time, all the

flows passing q will be notified and they will no longer update their price. If active

cliques exist, the region scaler will continuously increase to further distribute the

available resource in the network.

Table VI.1: Implementation of NESEE algorithm
NESEE Rate Adaptation
1) Initialization

∀q ∈ Q, hq = A.
Create the slack clique set Sq and slack flow set Sf ,
which contain all the cliques and all the flows respectively.

2) Sq filtering

If −ε < max
q∈Sq

(βCq − C̃q) < 0, let i = argmax
q∈Sq

(βCq − C̃q),

Sq ⇐ Sq − {i}.
3) Sf filtering

∀f ∈ Sf , if f passes clique i, set Sf ⇐ Sf − {f}.
4) Scaler update

β(t+ 1) = β(t)− αγmax
q∈Sq

(β(t)Cq − C̃q).

5) Price update

∀q ∈ Sq, μq(t+ 1) = [μq(t)− γ(βCq −
∑

f :E(f)∩V (q)
=∅
xf ·Rqf )]

+

6) Flow rate adaptation

∀f ∈ Sf , xf (t+ 1) = 1/λf (t+ 1).
If Sf �= ∅, go to 2); Else Done.

Fully Distributed Rate Allocation Algorithm

The algorithms presented in Section VI require the update of β based on the

knowledge of the achievable capacities of all the cliques in the reduced system,
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which is done in a centralized manner. Nevertheless, the unique graphical prop-

erties of the wireless link contention graph have the potential to facilitate decen-

tralized algorithms. We allow flows communicate with the cliques they traverse

to help propagate the scaler information.

In the distributed algorithms, each clique has two states: frozen and active. If

the value of a clique’s region scaler is obtained from another clique, its state is

frozen; otherwise it is active. Formally, the state of clique q is marked by flag hq,

hq =

⎧⎪⎨
⎪⎩

O frozen, if idq �= q

A active, otherwise.

We also define a region scaler information set B containing: β, the value of

the region scaler; id, an id identifer marking the source clique from which β is

acquired; t: a time stamp to ensure the freshness of β. Each clique q maintains a

set Bq. Each flow also has a set Bf to help facilitate the scaler exchanges among

cliques.

Distributed NES Algorithm

We present a distributed implementation of the NES algorithm in Table. VI.2.

In the flow-clique signal exchange phase, a larger or older scaler will always get

replaced. When a flow f reaches its destination, it will feedback Bf to the source

node to keep track of the β information.
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Table VI.2: Distributed Implementation of NES algorithm
Distributed NES Rate Adaptation
1) Initialization

∀q ∈ Q, βq = 1, idq = q, tq = 0, hq = A.
∀f ∈ F, βf = 1, idf = −1, tf = 0.

2) Flow-Clique signal exchange

When a flow f passes clique q,
if idf ! = idq&&βq < βf ||idf == idq&&tf < tq,

Bf = Bq

if idf ! = idq&&βf < βq||idf == idq&&hq = O&&tq < tf ,
Bq = Bf , hq = O.

3) Clique price update

μq(t+ 1) = [μq(t)− γ(βqCq −
∑

f :E(f)∩V (q)
=∅
xf ·Rqf )]

+

4) Clique scaler update

if hq == O and βqCq − C̃q > ε, then hq = A

if hq == A, βq(t+ 1) = βq(t)− αγ(βq(t)Cq − C̃q).
5) Flow rate adaptation

∀f ∈ F, xf (t+ 1) = 1/λf (t+ 1).
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As every flow may traverse several cliques, and each clique is passed by sev-

eral flows, the minimum value of βq can quickly get propagated by the flow-clique

signal exchange.

Efficiency Enhancement

To further utilize the available resource in the network when flow rates have

been allocated according to the distributed NES algorithm, each frozen clique

maintains an additional self region scaler βqs other than the global scaler set Bq.

βqs adapts based on the capacity information of the clique itself. An additional

self price μqs of clique q is created, which updates based on βqs .

To determine which price to use, a flow f carries a flow state hf and a clique

state recorder hfq . Both of them have two states: active and frozen. hfq is set by

the cliques it passes:

hfq =

⎧⎪⎨
⎪⎩

A active, if ∃q ∈ Q(f), hq = A

O frozen, otherwise.

After the flow reaches its destination, hfq is feedback to the source node to set

hf = hfq . If hf is active, flow f uses the normal price μq of clique q; otherwise, it

will use the self price μqs to calculate its flow price λf . In this way, a flow whose

traversed cliques are all frozen can further increase its rate to utilize the available

resources of these cliques. Table. VI.3 describes the algorithm for the distributed

NES with efficiency enhancement.
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Table VI.3: Distributed Implementation of NESEE algorithm
Distributed NESEE Rate Adaptation
1) Initialization

∀q ∈ Q, βq = 1, idq = q, tq = 0, hq = A.
∀f ∈ F, βf = 1, idf = −1, tf = 0, hf = A, hfq = O.

2) Flow-Clique signal exchange

When a flow f passes clique q,
if idf ! = idq&&βq < βf ||idf == idq&&tf < tq,
Bf = Bq.

if idf ! = idq&&βf < βq||idf == idq&&hq = O&&tq < tf ,
Bq = Bf , hq = O.

3) Price update

Clique q updates its price
if hq == O and

∑
f :E(f)∩V (q)
=∅

xf ·Rqf > βqCq,

μqs(t+ 1) = [μqs(t)− γ(βqsCq −
∑

f :E(f)∩V (q)
=∅
xf ·Rqf )]

+.

else, μq(t+ 1) = [μq(t)− γ(βqCq −
∑

f :E(f)∩V (q) 
=∅
xf ·Rqf )]

+,

μqs = μq.
Flow f updates its price

if hf = A, λf (t+ 1) =
∑

q:E(f)∩V (q)
=∅
Rqfμq(t+ 1)

else, λf (t+ 1) =
∑

q:E(f)∩V (q)
=∅
Rqfμqs(t+ 1)

4) Clique scaler update

if hq == O, βqs(t+ 1) = βqs(t)− αγ(βqs(t)Cq − C̃q)
if βqs < βq, then hq = A.

if hq == A,
βq(t+ 1) = βq(t)− αγ(βq(t)Cq − C̃q), hfq = A.

5) Flow adaptation

∀f ∈ F, xf (t+ 1) = 1/λf (t+ 1), hf = hfq , hfq = O.
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Simulation Evaluation

Simulation Setup

We evaluate our new fairness models and the associated resource allocation

algorithms using ns-2. All the simulation uses the IEEE 802.11 protocol with

RTS/CTS enabled. The wireless network has a channel capacity of 1Mbps with

the two-ray ground reflection propagation model, and the routing algorithm se-

lects the shortest path. Both the transmission range and interference range are

250m. The achievable clique capacity C̃q is estimated by aggregating the achiev-

able bandwidth of all the wireless links [103] the clique contains.

Figure VI.4: Simulation Scenarios

We consider two wireless network topologies as shown in Fig. VI.4. The

following aspects of the algorithms are evaluated:

• Throughput. It is the aggregated rate of all the flows in the network.

• Fairness. To evaluate the fairness model of IEEE 802.11 with non-convex

capacity region, we compare it with the fairness model of the same network
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under ideal scheduling where a convex capacity region can be achieved. In

particular, we define the normalized throughput of a flow x̄f as xf

x̂f
, where

xf is the converged rate, and x̂f is its ideal rate under the convex hull [131].

Then we leverage Jain’s fairness index defined over the normalized through-

put J =
(
∑F

f=1 x̄f )
2

n
∑n

f=1 x̄
2
f
, J ∈ [0, 1] to characterize our fairness model in compar-

ison with the ideal one. A larger J indicates a closer approximation.

Convergence

Compared with the price-based algorithm for convex capacity regions [131],

the convergence speed of our algorithms is relatively slower. As our algorithms

take the additional step of setting the optimal region scalers, they involve extra

processing and space overhead. We now show the convergence behavior of the

four fairness resource allocation algorithms in the topology of Fig. VI.4 (a), with-

out flow f4. The instantaneous flow rates are shown in Fig. VI.5. The flow rates

quickly converge in each algorithm. We observe that 1) in the NES algorithms,

the flow rates of f1 and f3 are the same, both twice of that of f2; 2) in the NESEE

algorithms, the rate of f3 further increases with the rates of f1 and f2 decrease

for certain amount. 3) The NESEE algorithms converge relatively slower than the

NES algorithms, and the distributed NESEE experiences more oscillation than the

centralized NESEE.

The reason behind the observations can be intuitively explained as follows.

Considering the link contentions, f1, f2 are in one clique q1, and f2, f3 are in
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Figure VI.5: Flow Rate Convergence of a Static Network

another clique q2. In the NES algorithms, both cliques will have the same capacity

scaler. As both cliques also contain the same number of active links, they will

have the same clique price, which leads to the same rates for f1 and f3. f2 passes

both cliques, so its price is the sum of the two clique prices, leading to a flow

rate half of f1 or f3. According to Fig. VI.2, both q1 and q2 form non-convex

regions. f2 is affected by the hidden terminal problem, and f1 is further affected

by the hidden terminal problem. This results in asymmetric bandwidths, with q2

viewing larger capacity than q1. In the NES algorithms, the capacity scaler is

constrained by the capacity of q1. While in the NESEE algorithms, f3 utilizes

the remaining capacity of q2 when the network resource has been allocated by the

NES algorithms, as it is independent of q1. Thus, NESEE takes a little longer

time to converge. With the rate increase of f3, q1 views fewer capacity due to
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the hidden terminal problem. This causes the rate changes of f2 and f3. When

the distributed NESEE keeps track of the available capacities of the time-varying

channels in the wireless network, the flows experience more oscillation than the

centralized NESEE.
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Figure VI.6: Flow Rate Convergence of a Dynamic Network

Next, we test the convergence of our distributed algorithms under network

dynamics. We use the topology of Fig. VI.4 (a). Flow f1, f2, f4 joins the network

at the beginning, f3 joins at 200 seconds, and later f1 leaves the network at 400

seconds. We observed that 1) The flow rates quickly re-converge each time after

network dynamic occurs as shown in Fig. VI.6. 2) Flow f4 always converges

faster than other flows. 3) The distributed NESEE takes longer time to converge

when all the flows are in the network. For 2), f4 has more hops, which provide it

with a broader view and more frequent update of the region scaler in the network.

For 3), more flows lead to longer convergence time considering the redistribution

of the slack network resource.
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Comparison Studies

To evaluate the optimality of our fairness algorithms, we perform a series of

comparison studies with the topologies in Fig. VI.4. Note that we do not use flow

f4 in Fig. VI.4 (a).

Centralized NES and NESEE

Table VI.4: Performance Metrics for CNES & CNESEE
Fairness Fairness Throughput

Topology Model Index (Mbps)
Fig. VI.4 (a) CNES 1 0.984

CNESEE 0.985 1.017
DNES 1 0.925

DNESEE 0.978 1.018
TCP 0.333 0.663

Fig. VI.4 (b) CNES 1 0.436
CNESEE 0.898 0.548

DNES 1 0.440
DNESEE 0.784 0.496

TCP 0.502 0.308

Comparing the performance metrics of Centralized NES (CNES) and Central-

ized NESEE (CNESEE) as in Tab. VI.4, the fairness indices of the CNES in both

topologies are 1, showing that the CNES always follows the ideal fair allocation of

its convex counterpart. With the efficiency enhancement, the throughput achieved

by the CNESEE is higher than CNES, which in turn costs lower fairness indices.
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Centralized and Distributed

Next we compare the performance of the centralized the distributed algo-

rithms. The Distrusted NES (DNES) perfectly follows the fair allocation as the

CNES, while the achieved throughput varies somewhat considering the fluctuation

of the wireless network. The fairness index of the Distributed NESEE (DNESEE)

is smaller than the CNESEE, as in the distributed algorithm, the distribution of

the remaining capacity will lead to the rate increase of certain flows, which can

decrease the previous rate allocation of some other flows. This can also cause

relatively smaller improvement of the throughput as in Fig. VI.4 (b).

Distributed and TCP

We further compare the performance of TCP with our distributed algorithms.

We use standard TCP on IEEE 802.11, so the only difference from our algorithm

is the rate allocation. Both the fairness index and throughput are much lower

than those of our algorithms. In either topology, only one TCP flow occupies the

network (f3 in Fig. VI.4 (a), and f2 in Fig. VI.4 (b)) while all the others get starved.

This is caused by the hidden terminal problem. With the severe asymmetry, TCP

also hardly achieves high throughput.
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Random Networks

We finally study the applicability of the distributed fairness algorithms in ran-

dom topologies. We simulate 5 topologies. Each topology has 25 nodes randomly

deployed over a 1000m× 1000m area, with 5 flows randomly generated.
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Figure VI.7: Performance Metrics in Random Topologies

Fig. VI.7 displays the fairness indices and the throughput of the flows using

the distributed algorithms and TCP. We observe that the distributed NES always

allocates the network resource fairly. The distributed NESEE improves the overall

throughput from distributed NES, but with the cost of relatively lower fairness in-

dices. Comparing with TCP, our distributed NESEE has larger fairness index and

larger throughput most of the time. When the distributed NESEE has a lower fair-

ness index than TCP as in topology 1, it in turn achieves higher throughput; vice

versa in topology 2. These results are consistent with those from the comparison

studies.
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CHAPTER VII

UNDERSTANDING THE IMPACT OF NEIGHBORHOOD
INFORMATION ON END-TO-END FAIRNESS IN MULTI-HOP

WIRELESS NETWORK

Introduction

A multi-hop wireless network consists of a collection of wireless nodes with-

out a fixed infrastructure. Nodes within the transmission range of each other com-

municate directly, while nodes that are far away communicate via relays of inter-

mediate nodes. In such a network, each end-to-end flow traverses multiple hops

from a source to a destination. It is important to allocate the limited bandwidth re-

sources in multi-hop wireless networks to contending flows, in a way that is both

efficient with respect to resource utilization, and fair across contending multi-hop

flows.

Resource allocation for end-to-end flows is an extremely challenging prob-

lem in multi-hop wireless networks. The key challenge comes from the compli-

cated wireless resource contention model, namely location-dependent contention

and spatial channel reuse. Depending on the scheduling algorithm, transmission

of unit flow along a link may block the transmissions of different sets of flows,

thus virtually uses different amounts of resources. In recent years, significant

progress has been made on this topic. Existing works on this problem largely fall

into two categories: 1) Theoretical methods for joint optimization of scheduling
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and rate allocation [29] [66] [109] [131], where the scope of resource sharing

regions is rigorously defined by the schedulability of link-level flows. Though

these methods provide a theoretically sound optimal and fair resource allocation

solution, they can hardly be implemented in a cost-efficient way due to the in-

trinsic complexity in the optimal multi-hop scheduling; 2) Heuristic rate alloca-

tion solutions [129] [94], which simplify the scope of resource sharing regions

using different neighborhood models and partially rely on the underlying packet

scheduling (e.g., IEEE 802.11) to resolve the resource contention among link-level

flows. These works are practical for implementation, but their fairness properties

are usually only evaluated on special topologies, as their concept of fairness is

not well-defined on general topologies. To date, the following essential question

on end-to-end fairness still remains unanswered: how well these practical heuris-

tic neighborhood-aware rate allocation solutions approximate the optimal point

defined in the theoretical resource allocation framework.

The objective of this chapter is to evaluate the impact of different neighbor-

hood models on end-to-end fairness. Towards this goal, we first establish a base-

line fairness model using the optimal resource allocation framework [131]. In this

framework, the optimization objective is defined as maximizing the aggregated

utility of all flows and the resource constraints are characterized by the necessary

condition of schedulability defined using maximal cliques in the contention graph

of the wireless network. It is shown [50] that this optimal resource allocation

framework can achieve different fairness models, when different utility functions
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are specified. In this work, we consider the proportional fairness model as our

baseline fairness model, which can be achieved under logarithm utility function.

To evaluate different heuristic rate allocation solutions that use various neigh-

borhood models to approximate the resource sharing regions, we consider the

price-based model which provides a distributed solution to resource allocation. In

the price-based model, price represents the penalty of the resource usage incurred

by unit flow (i.e., congestion penalty). The price of a flow is the aggregated price

of the links it traverses. And the link price is the sum of the prices of all the max-

imal cliques (scope of resource sharing regions), to which it belongs. The rate

of a flow is then determined by its price so that its net profit, which is the dif-

ference between its utility and the cost its pays, is maximized. Obviously, when

the resource sharing regions are approximated by different neighborhood models

in the heuristic solutions, link prices will be manifested as different values. We

introduce a normalized fairness index to quantify the deviations of these heuristic

neighborhood-aware solutions from baseline fairness models,

Six different neighborhood models are evaluated in this chapter: 1) clique

approximation, which provides clique price estimation for the optimal clique-

based solution in IEEE 802.11-style networks via the achievable capacity mea-

surement; 2) asymmetric neighborhood (1-hop and 2-hop, respectively), which

approximates the resource sharing region using link-centered neighborhood with

different scopes, as in the work of [95]; 3) symmetric neighborhood (1-hop and

2-hop, respectively), which improves the asymmetric neighborhood model by en-

suring the maximal neighborhood knowledge symmetrically shared by the links
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within the neighborhood; and 4) single link, where only the congestion penalty

observed on its own link is considered, as in traditional TCP.

This chapter makes the following contributions to the field. First, it presents a

price-based fairness model and a normalized fairness index model, where heuris-

tic rate allocation solutions with different neighborhood information can be com-

pared within a common framework. With the advance of the wireless communi-

cation technology, medium access and routing protocols, the solution space of the

fairness problem may continue to evolve, but its nature of fairness resource al-

location remains unchanged. This fairness theoretical framework can effectively

decouple the “core” of the problem and its other components, so that the basic

problem formulation and its solving methodology survive. Second, extensive

simulation study is conducted over a variety of carefully designed and random

topologies. Our study makes two significant observations: 1) symmetric knowl-

edge on the construction of a neighborhood is important in achieving fairness.

Such a knowledge has not been considered in any of the existing neighborhood-

aware rate allocation algorithms; 2) while using 1-hop neighborhood information

brings noticeable gain in fairness compared with link-only solutions, the knowl-

edge of 2-hop neighborhood information does not bring additional benefit from

1-hop neighborhood information.

The rest of this chapter is organized as follows. We first introduce the price-

based fairness model in multi-hop wireless networks in Sec. VII. Then the neigh-

borhood models to be evaluated and the fairness index model are presented in

Sec. VII. Finally we present our evaluation results in Sec. VII.
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System Models

Network Model

We model a multi-hop wireless network as a bidirectional graph G = (V,E),

where V is the set of nodes. E ⊆ 2V denotes the set of wireless links. A wireless

link e ∈ E is represented by its end nodes i and j, i.e., e = (i, j).

Let us consider a set of end-to-end flows, denoted as F . Each flow f ∈ F

has a rate of xf . We use x = {xf , f ∈ F} to denote the flow vector. Flow f

goes through multiple hops in the network, passing a set of wireless links E(f).

A single-hop data transmission in the flow f along a particular wireless link is

referred to as a subflow of f . Obviously, there may exist multiple subflows along

the same wireless link. We use the notation L(L ⊆ E) to represent a set of

wireless links in G, such that each of the wireless links in L carries at least one

subflow. A link l ∈ L is called an active link. The rate vector of active links is

denoted as y = {yl, l ∈ L}, where yl =
∑

f :l∈E(f) xf .

Resource Sharing and Contention Model

Flows in the multi-hop wireless network contend for wireless resource in a

location-dependent manner. In this chapter, we consider the protocol model [36],

where two subflows contend with each other if either the source or destination of

one subflow is within the interference range of the source or destination of the
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other. Formally, a wireless link contention graph is defined as Gc = (Vc, Ec),

where the vertex set corresponds to the wireless links Vc = L, and there exists an

edge between two vertices if the subflows along these two wireless links contend

with each other.

The key challenge of optimal resource allocation in multi-hop wireless net-

work comes from the modeling of wireless resource capacity region. A wireline

link is simply a resource sharing unit, and thus represents an independent dimen-

sion for the resource capacity region. However, in the case of multi-hop wire-

less networks, channel resource is shared in a location-dependent way. Thus the

achievable capacity of a wireless link is interrelated with other wireless links in

its vicinity. As a matter of fact, characterizing the channel resource sharing region

is related to the issue of schedulability, i.e., whether rate vector y is schedulable

given the channel capacity and the network topology. However, it is known [45]

that establishing the sufficient and necessary condition of schedulability in a wire-

less network involves finding the independence number of a graph, which is an

NP-hard problem.

Several approximation models of resource sharing units are proposed in the

existing literature [45, 131, 53, 3]. In this chapter, we adopt the maximal clique

approximation model [131] as the baseline fairness model for two of its properties:

1) better approximation factor compared with the interference set models [53, 3]

and 2) similarity to the neighborhood approximation models which are widely

used in the existing rate allocation heuristics [129, 95]. In this clique-based wire-

less resource allocation framework, the resource sharing regions are characterized
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by maximal cliques1 in the wireless link contention graph of the network. In a

wireless link contention graph, the vertices in a maximal clique represent a maxi-

mal resource sharing region. They are mutually contending wireless links, among

which at most one subflow may transmit at any given time. Formally, let Q be the

set of all maximal cliques in Gc. For a maximal clique q in the wireless link con-

tention graph Gc, V (q) ⊆ L is the set of its vertices. The resource constraint under

this clique model is formulated based on the necessary condition of schedulability,

as follows:

∀q ∈ Q,
∑

l∈V (q)

yl ≤ Cq (VII.1)

where Cq is the schedulable region of clique q.

Baseline End-to-end Fairness Model

Optimal Resource Allocation

We first briefly review the optimal resource allocation framework under clique

model and its relationship to end-to-end fairness [50].

Let the utility function for an end-to-end flow f ∈ F be Uf (xf ), with its as-

sociated end users at rate xf . This function is increasing, strictly concave and

1In a graph, a complete subgraph is referred to as a clique. A maximal clique is defined as a

clique that is not contained in any other cliques.
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continuously differentiable. The problem of optimal rate allocation can be formu-

lated as:

P : maximize
∑
f∈F

Uf (xf ) (VII.2)

subject to R · x ≤ C (VII.3)

x ≥ 0 (VII.4)

The objective function (VII.2) is to maximize the aggregated utility of all

flows. In inequality (VII.3), the matrix R represents the “resource usage pat-

tern” of each flow. If we treat a maximal clique as an independent resource,

R = {Rqf} is the clique-flow matrix. Note that
∑

f∈F Rqfxf =
∑

l∈V (q) yl,

the constraint comes from the schedulability condition (VII.1). Further, decom-

posing R = RA
ql · RP

lf , where RA
ql can be understood as the scheduling matrix and

defined as follows:

RA
ql =

⎧⎪⎨
⎪⎩

1 if l belongs to q

0 otherwise

and RP
lf is the routing matrix as

RP
lf =

⎧⎪⎨
⎪⎩

1 if f passes through l

0 otherwise
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When a network contains only link-level flows, RP becomes an identity matrix.

Rqf = |V (q) ∩ E(f)| represents the number of subflows that flow f has in the

clique q. Let C = {Cq, q ∈ Q} be the vector of achievable channel capacities in

each of the cliques. If the channel capacity of clique q under ideal scheduling is C,

Cq ≤ C. This optimization constraint characterizes the schedulability condition

of wireless channel resource.

Figure VII.1: Wireless Flow Price Model: An Example

We present an example to illustrate the concepts and notations defined so far.

Fig.VII.1(a) shows the topology of the network, with its ongoing flows. The corre-

sponding wireless link contention graph is shown in Fig.VII.1(b). We assume that

the interference range is the same as transmission range in this chapter. In this ex-

ample, there is one flow f = {0→ 4}. As such, there are two maximal cliques in

the contention graph: q1 = {(0, 1), (1, 2), (2, 3)} and q2 = {(1, 2), (2, 3), (3, 4)}.
The aggregated rate yij of all subflows along a wireless link {i, j} equals to the

rate of the flow. That is, yij = x. In each clique, the aggregated rate may not
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exceed the corresponding channel capacity:

y01 + y12 + y23 ≤ C1

y12 + y23 + y34 ≤ C2

where

RA =

⎛
⎜⎝ 1 1 1 0

0 1 1 1

⎞
⎟⎠ , and RP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

P achieves Pareto optimality with respect to the resource utilization and end-

to-end fairness when appropriate utility functions are specified and when the fea-

sible region of C is convex and compact [131]. In , proportional fairness can be

achieved when the utility function takes the logarithm function form Uf (xf ) =

log xf .

Price-based Fairness Model

The optimal resource allocation in terms of both utilization and fairness is

achieved by solving the dual problem D of P as follows:

D : minμ≥0D(μ) (VII.5)
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where

D(μ) =
∑
f∈F

maxxf
(Uf (xf )− xf

∑
q:E(f)∩V (q) 
=∅

μqRqf )

+
∑
q∈Q

μqCq (VII.6)

a vector of Lagrange multipliers μ = (μq, q ∈ Q) is called price. It is interpreted

as the cost of a unit flow accessing the resource sharing region characterized by

the maximal clique q. In other words, μq is the price of clique q.

The dual problem D is solved via a gradient projection algorithm [131]. This

leads to an iterative algorithm that can be executed in a distributed way to achieve

the optimal solution of P. In particular, the price μq at clique q is adjusted as

follows:

μq(t+ 1) = [μq(t)− γ(Cq −
∑

q:E(f)∩V (q)
=∅
xf ·Rqf )]

+ (VII.7)

The optimal flow rate for f can be adjusted at the source of the flow so that its

net benefit (difference between utility and cost) is maximized:

maximize Uf (xf )− λfxf (VII.8)
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The optimal flow rate for f can be derived from

U ′f (xf )− λf = 0 (VII.9)

Here λf is the price of a flow f and can be interpreted in the following two

alternative ways.

λf =
∑

q:E(f)∩V (q)
=∅
Rqfμq (VII.10)

=
∑

l:l∈E(f)

μl =
∑

l:l∈E(f)

∑
q:l∈V (q)

μq (VII.11)

In Eq. (VII.10), flow f needs to pay for all the resource sharing regions (i.e.,

maximal cliques in our baseline model) it uses. For each maximal clique, the cost

is the product of the number of wireless links that f traverses in this region and its

price. In the second representation (VII.11), flow price is the aggregated price of

all wireless links it passes. For each wireless link, its price is the aggregated price

of all the regions that it belongs to.

As shown in Fig. VII.1, let the prices of the two cliques be μ1 and μ2. The

price of flow f that traverses these two cliques is given by λf = 3μ1 + 3μ2,

which is the sum of the product of the number of subflows of f in each clique

and the price of this clique. Alternatively, the price can also be written as λf =

μ1 + (μ1 + μ2) + (μ1 + μ2) + μ2, which is the sum of the prices of its subflows.
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Discussion

This pricing model reflects the fundamental concept of fairness in a wireless

network. Essentially, if two subflows are within the same resource sharing region,

they should share the same price as the cost of using this region. If a link belongs

to multiple regions, all the region prices should be aggregated into the link price.

As the transmission along this link would influence all the links in these regions, it

should receive the penalty from all. Obviously, when the resource sharing regions

are approximated by different neighborhood models in heuristic solutions [129,

95], link prices will be manifested as different values, thus affect the fairness

properties of end-to-end flow rate allocation.

Neighborhood Models

In our baseline fair resource allocation model (which we denote as OPT), a

maximal clique is regarded as an independent resource sharing region with ca-

pacity C. While theoretically sound, this model has two limitations that need to

be addressed before it can be applied as a practical solution of wireless rate allo-

cation. First, Eq. (VII.1) only gives an upper bound on the rate allocations to the

wireless links. In practice, however, such a bound may not be tight, especially with

carrier-sensing-multiple-access-based wireless networks such as IEEE 802.11. In

this case, the achievable channel capacity Cq needs to be estimated at each re-

gion q. Second, calculating the price of a maximal clique involves information

exchange within the 3-hop neighborhood [131], which is inevitably expensive. To
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limit the communication overhead, different neighborhood models can be used to

approximate the maximal clique construction. The goal of this chapter is to ex-

amine the impact of various approximation models on fairness. The optimal rate

allocation problem can still be formulated as P , while the matrix R represents

the “resource usage pattern” of each flow in the approximation models, and C is

the vector of achievable channel capacities observed by different neighborhoods.

A wireless link neighborhood graph Gn = (Vn, En) is used to describe the views

of the resource sharing regions in the different models. Vn = L is the vertex set

corresponds to the active wireless links, and En is the edge set in which an edge

between two vertices exists if the two links are considered contend with each other

in the neighborhood model. Specially, when the resource sharing regions are the

same as OPT, the neighborhood graph is identical to the link contention graph. In

particular, we consider the following approximation models, LNK, ANB-1, ANB-

2, SNB-1, SNB-2, CLQ.

In the neighborhood approximation models, let N be the set of all the neigh-

borhoods in Gn, where n ∈ N represents a neighborhood in the model. The capac-

ity of the neighborhood n is defined as Cn = {Cn, n ∈ N}. In particular, it uses

the approach presented in [103] to measure the achievable bandwidth (Cl) of each

wireless link l based on its historical data transmission results. And Cn aggregates

the available bandwidth within the neighborhood, Cn =
∑

l∈n Cl, (l ∈ L). The

rate allocation methods of these approximation models follow the similar price-

based approach as in the baseline model. Specifically, let μn be the neighborhood
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price, it is updated based on the following equation

μn(t+ 1) = [μn(t)− γ(Cn −
∑
f∈F

xf ·Rnf )]
+ (VII.12)

where Rnf = RA
nl · RP

lf is the number of subflows of f in the neighborhood n.

The link price μl =
∑

l∈V (n) μn is the aggregated price of all the neighborhoods it

belongs to. The corresponding flow rate for f can still be derived from Eq. (VII.9),

where λf =
∑

l:l∈E(f) =
∑

l:l∈E(f)

∑
n:l∈V (n) μn. The following lemma formally

proves Eq. (VII.12) is globally and asymptotically stable, which converges to a

unique point under convex capacity regions.

Let V be defined as

V(μ) =
∑
f∈F

log(
∑
n∈f

μn)−
∑
n∈N

∫ μn

0

pn(η)dη

and for n ∈ N , pn(0) = 0 and pn(η), η ≥ 0, is a continuous, strictly increasing

function of μ.

Lemma 1 V is a strictly concave function and a Lyapunov function for the

system of equations (VII.12) and (VII.9). The unique value μ maximizes V and is

also a stable point of the system where all trajectories converge.

Proof. We first prove the strict concavity of V . The first term
∑

f∈F log(
∑

n∈f μn)

is strictly concave and its derivative to μn is strictly decreasing considering the

properties of log function. The second term is convex. Let pn(η) = C̃nη/(η + ε),
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for n ∈ N, η > 0. C̃ is the actual achievable capacity, with C̃n ≤ Cn and defined

as

C̃n = max
μn

∑
f∈n

xf (μn, ·) (VII.13)

pn(η) is a continuous and strictly increasing function of η, and it arbitrarily

closely approximates C̃n for a small positive ε. Thus V is strictly concave on

μ > 0 with an unique interior maximum μ. By setting V ′(μ) = 0.

∂

∂μn

V(μ) =
∑
f :n∈f

1∑
k∈f μk

− pn(μn)

=
∑
f :n∈f

1

λf

− pn(μn)

≥
∑
f :n∈f

1

λf

− Cn (VII.14)

As
∑

n:E(f)∩V (n)
=∅ xf · Rnf =
∑

f :n∈f xf and with xf = 1/λf from Eq.

(VII.9),

d

dt
V(μ(t)) =

∑
n∈N

∂V
∂μn

· d
dt
μn(t)

≥ γ
∑
n∈N

(
∑

n:E(f)∩V (n)
=∅
xf ·Rnf − Cn)

2
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establishes that V is strictly increasing with t unless μ(t) = μ, where the

unique value μ maximizes V . Thus function V is a Lyapunov function for the

system (VII.12) and (VII.9), and the lemma follows. �

Figure VII.2: A Special Scenario

We use a special scenario as an example in Fig. VII.2 (a) to illustrate the

different neighborhood models. Since the topology contains only per-hop flows,

the routing matrix RP is a 4 × 4 identity matrix. We can solely consider the

scheduling matrix RA. Fig. VII.2 (b) shows the wireless neighborhood graphes

of the different neighborhood models.
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Definition of the approximation models

We first define the basic concepts of the approximation models.

Link only (LNK)

In this model, a link only considers itself as a resource sharing region, thus the

scheduling matrix RA is a 4× 4 identity matrix, and C = {Cl} is the achievable

capacity of each link. Its neighborhood graph is just a collection of isolated nodes

as in Fig. VII.2 (b). The link capacities rely entirely on the underlying (possibly

suboptimal) MAC scheduling protocol (i.e., IEEE 802.11 in our study) to resolve

the resource allocation among wireless links. This model well characterizes the

TCP rate control mechanism.

Asymmetric neighborhood: 1-hop (ANB-1) and 2-hop (ANB-2)

Under this model, a resource sharing region is centered at each wireless link

and includes its n-hop neighboring links (n = 1 or 2).

RA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0

1 1 1 0

0 1 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, and

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0

1 1 1 0

1 1 1 1

0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

in the 1-hop and 2-hop neighboring models separately.
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This model aligns well with the existing heuristic neighborhood-aware rate

allocation solutions [129, 95]. However, as these heuristic solutions only pass the

signals of a congested link to all the contention regions that contain the link, the

constructed asymmetric neighborhood regions cannot be reflected directly by the

price-based approach.

Symmetric neighborhood: 1-hop (SNB-1) and 2-hop (SNB-2)

As the price-based approach is driven by the net benefit instead of certain

congested links in the heuristic neighborhood-aware rate allocation solutions, this

symmetric model approximates those heuristic solutions with the price-based method.

It ensures that the maximal neighborhood knowledge is symmetrically shared by

the links within the neighborhood. Specifically, each link will first generate its

own neighborhood as a neighborhood candidate. If a neighborhood of a link is

contained by the neighborhood of another link, it will adopt the larger neighbor-

hood. Thus, in the scheduling matrix RA = {Rnl}, n is a neighborhood that is

not contained by any other neighborhoods.

RA =

⎛
⎜⎝ 1 1 1 0

0 0 0 1

⎞
⎟⎠ , and

(
1 1 1 1

)

in the 1-hop and 2-hop neighborhood models separately. In the 1-hop neighbor-

hood, as the neighborhoods of links 1 and 3 are contained by that of link 2, both of
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them are removed. Similarly in the 2-hop neighborhood, the neighborhood graph

contains only one large neighborhood overshadowing the other three smaller ones.

Clique approximation (CLQ)

This approximation model adopts the same definition of resource sharing re-

gion (i.e., maximal clique) as the baseline model (OPT), with the scheduling ma-

trix of

RA
a =

⎛
⎜⎝ 1 1 1 0

0 0 1 1

⎞
⎟⎠ ,

and the contention graph is shown in Fig. VII.2 (b).

The difference of this model from the baseline model is that it does not assume

an ideal scheduling algorithm which works with the rate allocation algorithm to

jointly optimize the resource allocation. Instead, it performs online estimation

of the region capacity Cq under the IEEE 802.11 protocol. The region capacity

Cq =
∑

l∈V (q)Cl.

Evaluation of the approximation models

The performance and correlation between the different models are explained

here.
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LNK & SNB-1

The result of LNK is topology dependent, and with no price regulation. While

the prices of SNB-1 are regulated within each neighborhood composed of 1-hop

neighboring links, or the directly connected ones.

SNB-1 does not take into account the contention between the unattached links

which are still within the interference range of each other. Thus the SNB-1 model

performs the same as LNK in a topology where active links are at least 2 hops

away from each other. For example, in Fig. VII.2, link l5 considers itself as an

independent neighborhood in SNB-1 like in LNK.

As SNB-1 does consider information sharing between directly connected neigh-

bors, it can correctly find more neighbors via its one-hop neighbors. In Fig. VII.2,

SNB-1 considers l1 and l2 as neighbors, but LNK does not. Thus, the number of

neighbors found by LNK is always greater than or equal to that of SNB-1, accord-

ingly, the sizes of neighbors, considering the number of links contained by each

neighbor, will not larger in LNK than those of SNB-1 .

SNB-1 & SNB-2

Comparing SNB-1 and SNB-2, the number of neighbors found by SNB-1 is

always larger than or equal to that of CLQ, and the number of neighbors found by

SNB-2 is always smaller than or equal to that of CLQ.
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SNB-1 performs the same as CLQ if all the flows form a connected graph.

Considering a graph constructed by all the links that have flows on it in the topol-

ogy, we call it a flow graph. Assuming symmetric links, in the graph, if any node

can find a route from one node to any other node, it becomes a connected flow

graph. As links can find their 2-hop neighbors via the 1-hop neighbors, the SNB-1

model performs the same as the CLQ model. For example in Fig. VII.2 (b), SNB-1

has the same neighborhood q1 as CLQ. However, as long as the graph is not a con-

nected flow graph, SNB-1 will result in different neighborhoods from CLQ like q2

in Fig. VII.2 (b).

SNB-2 performs the same as CLQ when all the links interfere with each other.

Usually SNB-2 has a much larger neighborhood in terms of number of links con-

tained comparing with other models. It always tends to regulate the prices of

larger groups of links equally. Like in Fig. VII.2 (b), SNB-2 considers all the links

within the same neighborhood. But in a small dense region where almost all the

flows may contend with each other, SNB-2 can sometimes out-perform CLQ.

To sum up. SNB-1 does not carry its full responsibility of the contention, while

SNB-2 over-emphasizes the contention in the network.

ANB-n & SNB-n

In the ANB-n models, each link has its own view of neighborhood. However,

as the links do not coordinate with other links, this may cause information asym-

metry. In Fig. VII.2 (b) in ANB-1, q2 considers l1 and l3 are neighbors, but l1 and
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l3 do not treat each other as a neighbor. The same problem exists in ANB-2 when

q3 considers all the links are neighbors, but at least l1 and l5 do not see each other

as neighbors. The neighborhood covering can lead to severe problems, as each

contention region has its own price regulation and the price regulation line of the

covered neighborhood may not overlap with that of the covering neighborhood.

So the links viewing the larger neighborhood will over-use the channel if available

capacity is sensed, or get over-punished when the demand in the neighborhood is

high. Affected by the covering problems of the neighborhood information, ANB-n

cannot provide reasonable results.

With SNB-n when all the covered neighborhoods are removed, the asymmetry

problem no longer exist, which is why in the future comparison, the results of

ANB-n may not be displayed.

Summary

Figure VII.3: Scenario to show price regulation lines
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Fig. VII.3 shows the price regulation under different neighborhood models in

the ideal capacity region. In the 3-flow topology on the left, the ideal region is

a pyramid. As f1 and f3 do not contend with each other, their capacity region

is a square. While f1 and f2, as well as f2 and f3 both contend with each other,

their capacity regions are isosceles right triangles under ideal scheduling. The 3

flows belong to the same neighborhood in the SNB-2 model, each of which gets

the same neighborhood price. Under the price regulation, the rate of each flow

will increase equally. If viewed by flow pairs, without considering f3, the rates of

f1 and f2 will increase along the plane of x1 = x2, and without considering f1,

the rates of f2 and f3 will increase along the plane of x2 = x3. The two planes

at the top in Fig. VII.3 intersect in the dark line in the middle, which is the price

regulation line of the three flows in the SNB-2 model. The regulation line starts

from 0, and ends when it hits the exterior boundary of the capacity region.

In the CLQ model, there are two neighborhoods. As f2 belongs to both of

them, its price is the sum of the two neighborhood prices. Thus, with the price

regulation, in the capacity region of f1 and f2, the rates will increase along the

plane of x1 : x2 = 2 : 1. Similarly, the rates of f2 and f3 will increase along the

plane of x3 : x2 = 2 : 1. The two planes at the bottom of Fig. VII.3 also intersect

in a line in the middle, which regulates the rates of the three flows to increase from

0 to the exterior of the capacity region in the CLQ model.

Note that the SNB-1 model has the regulation line between the SNB-2 and CLQ

models. In this example, SNB-1 as well as ANB-1 has the same neighborhood of

LNK model, which follows the IEEE 802.11 scheduling. It regulates f1 and f2, f2
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and f3 with x1 : x2 = x3 : x2 = a : 1, where a ∈ (1, 2). This results the price

regulation line between those of SNB-2 and CLQ models.

Discussion

Two fairness models are often used in network resource allocation, namely

max-min fairness [8] and proportional fairness [50]. Existing works on fair wire-

less rate allocation [129] [95] usually use the max-min fairness model to evaluate

their solutions. In this chapter, we adopt the proportional fairness model where

region prices and link prices are used as the basis of fairness definition. This ap-

proach reflects the recent work on fairness [14], which states that comparing flow

rates should not be used for fairness indexing in production networks. Instead,

the fairness should be determined by how flows share out the cost in the network.

Our fairness model is also easier to be generalized to handle the different neigh-

borhood models.

It is also important to note that our approximation models provide an abstrac-

tion for the heuristic neighborhood-aware rate allocation solutions. There may

not fully characterize the details of individual solutions. For example, the work

of [129] actually uses a node-centered neighborhood model, where the neighbor-

hood region includes the node itself and the nodes which can interfere with this

node’s signals. This creates another level of asymmetry even from our NB1a

model, as the sender and receiver nodes have different neighborhood regions.

The implementation details are also abstracted out in our model. For example,
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to calculate the region price (congestion signal), different solutions have applied

different methods, including using distributed queue length, channel conditions,

etc, and delivered the price using the active queue management mechanism. The

relationship along price-based resource allocation, active queue management, and

congestion control has been extensively discussed in [108]. Our approximation

models abstract out these details so that they will not introduce unnecessary noise

to our study and thus allow us to focus on evaluating the impact of neighborhood

information.

Simulation Evaluation

Simulation Setup

We implement the approximation models in ns-2. Unless explicitly men-

tioned, all the experiments use the following settings. RTS/CTS is enabled in the

IEEE 802.11. The bandwidth of the channel is 1Mbps, and its propagation model

is the two-ray ground reflection model. The transmission range and interference

range are both 250m.
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Evaluation Metrics

To compare the fairness achieved by the different neighborhood models and

evaluate the impact of neighborhood information, we introduce the following eval-

uation metrics.

Normalized Link Price

Let the allocated rate vector in the baseline fairness model be x∗ = {x∗f |f ∈
F}, and the rate vector of the neighborhood model to be evaluated as x = {xf |f ∈
F}. The normalized flow rate vector is then defined as x̄ = {x̄f , f ∈ F}, where

x̄f =
xf

x∗
f
.

Normalized Flow Rate

Let the converged link price vector in the baseline fairness model be μ∗l =

{μ∗l |l ∈ L}, and the link price vector of the neighborhood model to be evaluated

as μl = {μl|l ∈ L}. The normalized flow rate vector is then defined as μ̄l =

{μ̄l, l ∈ L}, where μ̄l =
μl

μ∗
l
.

Normalized Fairness Index

The rate-based fairness index for x is then defined as follows:

J (x) = (
∑

f∈F x̄f )
2

|F |∑f∈F x̄2
f

(VII.15)
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where |F | is the number of flows in F . This fairness index is bounded between

0 and 1. The higher the fairness index is, the better a rate allocation achieves

fairness.

Normalized Utility Function

As the optimization objective is captured in the utility function, the efficiency

level of the neighborhood models can be evaluated in terms of the optimization

criterion of

U(x) =
∑

f∈F Uf (xf )∑
f∈F Uf (x∗f )

(VII.16)

Figure VII.4: Simple Scenarios

Formulation Validation

We first experiment on the topology of Fig. VII.2. Fig. VII.5 shows that fol-

lowing Eq. (VII.12), the link prices and the flow rates all converge quickly in
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Figure VII.5: Instantaneous Price and Rate of Scenario 1
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Table VII.1: Evaluation Metrics for the Special Scenario
LNK ANB-1 ANB-2 SNB-1 SNB-2 CLQ

J (x) 0.933 0.685 0.269 0.967 0.889 1

U(x) 0.919 0.854 0.634 0.921 0.929 0.927

each neighborhood model. Fig. VII.6 displays the link prices, the normalized

link prices and the normalized flow rates of the models after convergence. Ta-

ble. VII.1 presents the values of the normalized fairness index and utility function

of the models.
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Figure VII.6: Price and Rate Comparison for the Special Scenario
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In the OPT model, f1 and f2 only belong to clique q1, so they have the same

price of q1. f4 only belong to clique q2, so it takes the price of q2. f3 belongs to

both cliques, so its price is the addition of the two clique prices.

In the LNK model, each link converges to different prices which directly reflect

the underlying IEEE 802.11 scheduling. Though intuitively the LNK model does

not form any concept of regions, noticeably it does not perform far from the OPT

model. In the example, only f1 on link l1 drifts from the baseline model. It

verifies the result in [47] that the performance of 802.11 is surprisingly good and

it is decent enough to be used as the underlying protocol.

In the ANB-n models, some of the prices and rates converge to extremes. With

each link arranging its own neighborhood, the simulation results show that these

models do not work well with the price-based approach.

In the SNB-n models, some links converge to the same price, as links gather

into different regions, and links view the same price within the same neighbor-

hood.

In the CLQ model, the link prices converge to the similar share to the OPT

model, while the absolute values of the link prices and flow rates are different, as

the CLQ is based on 802.11 instead of an ideal scheduling protocol. Note that the

fairness level of CLQ is the same as OPT. Though there are two exposed terminal

pairs in the topology, f1, f3 and f3 and f4, as in each clique, and the two cliques

share the flow f3. Considering in an exposed terminal pair the flow cannot hear

the other flow as the “bad” flow, and the other flow as “good” flow. Then both q1
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and q2 have a “bad” flow and a “good” flow. In such an even distribution of the

problem, CLQ can still result in relatively fair resource distribution.

Simple Topologies

Three simple scenarios in Fig. VII.4 are then evaluated to compare the dif-

ferent neighborhood models. Fig. VII.7,VII.8,VII.9 display the link prices, the

normalized link prices and the normalized flow rates of the models after conver-

gence for the three scenarios.
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Figure VII.7: Price and Rate Comparison for Scenario 1
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Figure VII.8: Price and Rate Comparison for Scenario 2
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Figure VII.9: Price and Rate Comparison for Scenario 3

190



LNK & SNB-1

Scenario 1 shows that the LNK model and the SNB-1 model can have the same

performance. In scenario 1, as the two flows interfere with each other, they are

in the same clique in the OPT and CLQ models, and they get the same price.

However, with no price regulation in the LNK model, the two flows are affected by

the exposed terminal problem and result in different prices and rates. In scenario

1, the SNB-1 model performs the same as the LNK model, as the two links are not

directly connected.

Scenario 2 shows that the SNB-1 model can perform better than the LNK

model. In scenario 2, the three flows all interfere with each other, they are still in

the same clique in the OPT and CLQ models. The LNK follows the underlying

scheduling and the three flows do not converge to the same rate. While in the

SNB-1 model, l1 gets l3 as its neighbor via l2, and the same for l3. Thus three

flows converge to the same rate in the SNB-1 model.

SNB-1 & SNB-2

In scenario 2, SNB-1 performs the same as CLQ, when scenario 2 forms a

connected flow graph. However in scenario 1 and 3, SNB-1 performs differently

from CLQ for it does not handle unattached links but grouping them into different

neighborhoods.

In scenario 1, SNB-2 performs the same as CLQ because SNB-2 considers 2-

hop neighboring. However in scenario 3, SNB-2 still treats all the links in one
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neighborhood, while l1 and l3 do not interfere with each other like in CLQ. Thus,

in the CLQ model, the price of l2 is the addition of the prices of l1 and l3, but in the

SNB-2 model, all of them have the same price. Similar in Fig. VII.2, all the links

are of the same price for l3 interfere with all the other links, though for example,

l1 and l5 do not interfere each other, which is considered in CLQ.

ANB-n & SNB-n

The ANB-n models have the problem of information asymmetry. In scenario

2, in the ANB-1 model, as l1 and l3 have different neighborhoods, they converge to

different price values under the effect of underlying IEEE 802.11 scheduling. But

the link l2 has a larger neighborhood and considers both l1 and l3 as neighbors.

While l1 and l3 utilize the capacity viewed by l2, l2 aggregates the demands on

both l1 and l3 as its neighborhood demand. Due to this information asymmetry,

the price of l2 increases continuously and the rate of f2 drops close to 0. Accord-

ingly, l1 and l3 gain the resource of l2. Similarly in scenario 3, the ANB-2 model

encounters the same problem, but the link l2 interferes with both l1 and l3 gets all

the resources with the other two links starved.

The ANB-n models cannot provide reasonable results in most scenarios, and

we will replace it with SNB-n in all the subsequent experiments.
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Table VII.2: Evaluation Metrics for the simple scenarios
LNK SNB-1 SNB-2 ANB-1 ANB-2 CLQ

scen1 0.961 0.961 1 0.961 1 1

J scen2 0.828 1 1 0.567 1 1

scen3 0.957 0.959 0.889 0.953 0.342 1

scen1 0.940 0.940 0.933 0.940 0.933 0.933

U scen2 0.935 0.969 0.969 0.830 0.964 0.969

scen3 0.946 0.946 0.950 0.947 0.600 0.945

CLQ & OPT

Note that in all the three scenarios, the normalized fairness indexes of CLQ

are 1. Although both scenario 1 and 2 have exposed terminal problem, but as

the problem is within one clique, CLQ can drive the prices equal. Also with

symmetric topology as in scenario 3, the CLQ model can exactly follow the OPT

model.

Discussion

Table VII.2 displays the normalized fairness indices and utility function val-

ues of all the neighborhood models. Note that the fairness index and the utility

function no longer consist with each other. That is, a model with the maximum

fairness index among all the models may not have the maximum value of the ag-

gregated utility function. In scenario 2, V and U are both the maximum for the

CLQ model. However, all the other scenarios including the special scenario no

longer have the same model for the maximum values.

193



Common Topologies

The chain topology and the stack topology in Fig. VII.10 are commonly stud-

ied by several papers [47, 129, 95]. the converged link prices and flow rates are

plotted in Fig. VII.11 and VII.12 separately, with J and U summarized in Ta-

ble VII.3.

Figure VII.10: Common Scenarios

In scenario 1, the LNK model is severely affected by the exposed terminal

problem. It shows the most asymmetric distribution of rates, with the l1 and l2 of

large prices, and l3 and l4 of small prices.

In the OPT model, l1 and l4 are at the symmetric position and converge to

the same price. However in the CLQ model, flows f1 and f4 have the largest and

smallest normalized rates separately. The exposed terminal problem also affects

the capacity estimation on the links, which leads to the asymmetric convergence

of links l1 and l4. Thus, although the CLQ model approximates the OPT model

and try to regulate the link prices, it inevitably inherits some properties of the

underlying protocol. CLQ is greatly affected by the direction of the flows. In the
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Figure VII.11: Price and Rate Comparison for Common Topology 1

clique of l1, l2, and l3, it contains two “bad” flows and one “good” flow, but in the

other clique, it contains two “good” flows and one “bad” flow. The clique with

more “bad” flows consequently results in a higher price.

In scenario 2, the flow in the middle gets completely starved in the LNK model,

which conforms to the result of the TCP connection in [95].

The CLQ again follows the OPT model well in such a symmetrical topology.

Note that SNB-1 performs much better than LNK. With coordination between

each two connected active links, the middle flow gets enhanced for resource com-

petition and finally settles with resource over the amount it is supposed to take.
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Figure VII.12: Price and Rate Comparison for Common Topology 2

In both scenarios, SNB-2 acts in an egalitarian manner when other models have

varying flow rates and link prices, because all the links are in the same neighbor-

hood in the SNB-2 model.

Discussion

The CLQ model can exactly follow the OPT model when the topology is sym-

metric or the nodes with hidden terminal problem symmetric within the same

clique. Overall, the CLQ model is stable and can perform better than the LNK

model, and most times better than SNB-1 and SNB-2. As it is a theoretical frame-

work, the construction of clique is complicated compared with other models.
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Table VII.3: Evaluation Metrics for the common scenarios
LNK SNB-1 SNB-2 CLQ

J scen1 0.699 0.952 0.900 0.953

scen2 0.701 0.991 0.889 1

U scen1 0.948 0.984 0.869 0.984

scen2 0.848 1 1 1

The SNB-1 model enables the information exchange between directly con-

nected links based on the LNK model, and this can relieve some of the problems

of LNK to some extend.

The SNB-2 model always tends to make the prices of large groups of links

evenly. In a topology where links are dense, it may perform well. However when

a topology is diverse, it can perform very bad.

Grid Topologies

A 5× 5 grid topology is studied in this subsection. First 20 per-hop horizontal

flows are simulated on the topology and then 5 horizontally paralleled multi-hop

flows are tested.

The simulation shows that in the per-hop flow scenario, the SNB-2 performs

much better with fairness index of 0.838, compared with the CLQ, SNB-1 and LNK

with fairness indices of 0.650, 0.647, 0.600. In such a scenario where flows are

independent in the sense of originating from different source nodes, SNB-2 evens

the link prices in the largest region and tries to make the short flows coordinate

with each other.
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In the multi-hop scenario, the fairness indices of SNB-2, CLQ, SNB-1 and LNK

become 0.770, 0.762, 0.784, 0.722. SNB-1 turns to be the relatively best approach,

followed by CLQ, SNB-2 and LNK. In the SNB-1 model, the clique-concept within

a flow is correctly followed, so the flow prices are constrained along the path. In

addition, flows do not consider the information from other flows, which in turn is

beneficial in a symmetric topology. In this scenario when SNB-2 tries to equalize

link prices, a flow price is not easy to change as it is determined by all the link

prices along the path.

Random Topologies

We further study the fairness level of the heuristic approaches in random

topologies. 25 nodes are deployed over a 1000 by 1000 area. 2 sets of node

topologies are randomly generated. 7 different flow sets of 15 or 25 per-hop flows

are established in the topologies as in Fig. VII.13. Topo 1 − 3 use the first topol-

ogy, and topo 4− 7 use the second topology. The rate fairness indices are shown

in Table VII.4. The dense topologies have smaller fairness indices compared with

the sparse ones.

15 flows in topo 1 mainly form three separated groups. SNB-1 model performs

the best in this scenario. In the SNB-1 model, flows attached with other flows

correctly find cliques via its neighbors. Also small regions composed of connected

links symmetrically interfere with one another. The other two groups at the bottom

distribute their own channels without contending with each other. The SNB-2
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Figure VII.13: Random Topologies

199



Table VII.4: Flow Fairness Index Comparison in Random Topologies
CLQ LNK SNB-1 SNB-2

topo1 0.918 0.869 0.910 0.434
topo2 0.927 0.832 0.520 0.404
topo3 0.626 0.535 0.623 0.672
topo4 0.904 0.745 0.831 0.940
topo5 0.908 0.803 0.892 0.337
topo6 0.949 0.816 0.611 0.341
topo7 0.667 0.562 0.623 0.604

model performs the worst in this scenario, as it evenly distributes the channel

resources in each isolated group.

Comparing topo 2 with topo 1, the SNB-2 model has the same neighborhood

as in topo 1, so its fairness index does not get better. The NB1s model no longer

performs well in topo 2, as the flows become more unattached and asymmetric in

the top region.

Topo 3 has 10 more flows than topo 1 and 2. With increased number of flows

in the top isolated region, SNB-2 model out-performs all the other approaches,

especially when the top isolated region becomes symmetric centered by the node

in the middle. Also SNB-1 model performs the second best in this scenario.

Topo 4-7 are implemented on the other node topology, and the simulation

results are consistent with the first three topologies. Topo 7 is quite symmetric

with two unattached flows on the two sides and connected flows in the middle.

The fairness indices of both SNB-1 and SNB-2 are larger than the LNK model.

Note the CLQ model almost always has the largest fairness index.

200



CHAPTER VIII

CONCLUDING REMARKS

This dissertation studies the design of wireless networked control systems.

When the control loop is closed via wireless networks, the system performance

will be greatly affected by the communication properties. Among all the network-

ing problems, resource allocation has been widely investigated to economically

assign the available resources. It implicitly influences the end-to-end delay, data

loss and throughput of all the control systems. Our work is mainly about optimal

and fair resource allocation that improves the performance of wireless networked

control systems.

The contributions of the dissertation are as follows. First, the design concern

of the NCS is decomposed into two design spaces. The NCS is guaranteed stable

by using a passive control structure in the control layer. The overall NCS perfor-

mance is then optimized by adjusting the network protocol parameters. Through

experiment study, the important convex relationship between the retransmission

limit of IEEE 802.11 and the NCS performance is revealed. Based on this ob-

servation, we present a MAC-layer control algorithm that dynamically tunes the

retransmission limit so that the NCS performance can be either bounded by an

error threshold or optimized. The results of the simulation study show that our
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MAC controller can achieve robust adaption and enable desirable NCS perfor-

mance under a variety of network conditions including highly lossy channel and

with heavy background traffic.

Second, we investigate the problem of NCS performance optimization in terms

of tracking error minimization. It presents an optimization formulation where the

objective is to maximize a utility function that characterizes the relationship be-

tween the sampling rate and the disturbance rejection capability of the control

system. The constraints come from the wireless network capacity and the packet

requirements. A distributed double-price-based algorithm is presented to solve

the problem. Our solution has desired properties from both theoretical and prac-

tical aspects. From theoretical perspective, it is shown to achieve both system

stability and performance optimality. From the view of practice, it can be nat-

urally deployed over the existing layered networking systems with well-defined

cross-layer interactions. Simulation studies conducted in an integrated simula-

tion environment consisting of Matlab/Simulink and ns-2 demonstrate that our

algorithm is able to provide agile and stable sampling rate adaptation and achieve

optimal NCS performance.

Third, we redefine the concept of fairness for non-convex capacity regions. We

adopt an axiomatic approach based on the game theoretic framework and define

the new fairness model based on the Nash extension solution (NES). We further

present an efficiency enhanced version of Nash extension solution, which pushes

the NES to the strong Pareto frontier. Both presented fairness models will lead
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to a unique rate allocation solution under non-convex capacity regions, which co-

incides with the NBS under the convex cases and approximates the NBS under

the non-convex cases. we present a time-decomposed price-based rate allocation

algorithm that iteratively converges to the fair solution and prove its stability. Dis-

tributed implementation of the algorithm is also presented and evaluated using a

simulation-based study.

Fourth, we aim at understanding the gap between heuristic fair rate allocation

solutions and the optimal solution. It characterizes the heuristic solutions using

neighborhood models to differentiate the shared resource regions. Then a price-

based fairness model is established where the impact of neighborhood informa-

tion on end-to-end flow fairness can be evaluated on a common framework. The

simulation-based study has revealed several important properties, including the

importance of symmetric knowledge on the construction of a neighborhood and

the limitation of 2-hop neighborhood information. We believe that these proper-

ties discovered in this dissertation have significant implications to future fair rate

allocations in multi-hop wireless networks.
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