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CHAPTER I

INTRODUCTION

Objective

A successful surface based image-to-physical space registration in image-guided

liver surgery (IGLS) is critical to provide reliable guidance information and pertinent

surface displacement data for use in deformation correction algorithms. The current

protocol used to perform the image-to-physical space registration involves an initial

pose estimation provided by a point based registration of anatomical landmarks iden-

tifiable in both the pre-operative tomograms and the intra-operative presentation.

The surface based registration is then performed via a traditional iterative closest

point algorithm between the pre-operative liver surface, segmented from the tomo-

graphic image set, and an intra-operatively acquired point cloud of the liver surface

provided by a laser range scanner (LRS). Using the aforementioned method, the reg-

istration accuracy in IGLS can be compromised by poor initial pose estimation as

well as intra-operative soft tissue deformation. Based on the lack of robustness and

propensity for traditional surface registration methods to converge to unreasonable

solutions given poor initial pose, a more robust registration method is needed.

Similar to the well documented brain shift experienced during neurosurgical proce-

dures, intra-operative soft tissue deformation in open hepatic resections is the primary

source of error in current IGLS applications. Numerous avenues have been suggested

to aid in the compensation for the experienced soft tissue deformation, including the

use of intra-operative tomography and ultrasound. However, intraoperative computed

tomography and magnetic resonance imaging equipment is extremely expensive and
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cumbersome in the operating room environment. Additionally, intraoperative ultra-

sound provides low signal-to-noise images with a limited field of view of the patient’s

anatomy. Ultimately, the goal for image-guidance is to update the high contrast, high

resolution pre-operative tomograms to match the intra-operative presentation.

Mathematical models, which have been used to model various mediators of the

deformation in neurological surgery, have been proposed to provide the missing link

between the pre-operative and intra-operative presentations. While the direct solution

of mathematical models, utilizing intra-operatively determined displacements, during

surgery is promising in facilitating deformation compensation, more recent work in

atlas-based methods seem to provide a more realistic alternative. By simulating the

range of deformation sources in a pre-operatively computed atlas and matching the

intra-operative data to the atlas, compensation for soft tissue deformation can be

performed with minimal user interaction and in a fraction of the time needed to

directly solve the model.

Specific Aims

Specific Aim 1. Implement a method to robustly register intra-operatively acquired

liver LRS data with surfaces reconstructed from pre-operative tomograms. The

robustness characteristics of the developed method will be determine via rig-

orous testing with the ultimate goal of providing proper alignments even in

conditions where no initial pose estimation is given. Additionally, the proposed

method will be evaluated, relative to the traditional method, in terms of the

feasibility of incorporation into an image-guided liver surgery system based on

solution time and required user interaction.

Specific Aim 2. Measure the extent of soft tissue deformation experienced in open
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liver resection procedures. A method for the quantification and analysis of intra-

operative surface deformation and shape change in open hepatic procedures will

be developed. Further, analysis of the deformation will be performed in order to

determine the similarities of deformation experienced between similar surgical

procedures in hopes of providing further insight into potential novel methods of

deformation compensation.

Specific Aim 3. Develop an atlas-based model updating scheme for the correction of

soft tissue deformation, relative to the pre-operative presentation, imposed upon

the liver by the mobilization and packing procedure performed prior to resection.

Emphasis will be placed on the determination of the feasibility of utilizing an

atlas-based approach within the context of model updating in IGLS. A combina-

tion of simulation and phantom data will be used to demonstrate the feasibility

of the developed algorithm in comparison with other proposed methods. Fur-

ther, the impact of incorporating salient anatomical feature weighting within

the developed method will be evaluated.
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CHAPTER II

BACKGROUND AND SIGNIFICANCE

The information provided by diagnostic, pre-operative computed tomography

(CT) or magnetic resonance (MR) images allow surgeons to determine the operative

plan for patients presenting with primary or metastatic liver diseases. Additionally,

a significant body of research has been geared toward the processing and analysis

of the pre-operative tomograms such that extensive surgical planning and simulation

can be performed [89, 132]. Based on the value of the information provided by pre-

operatively obtained data, it is desirable to place this information in the context of the

patient’s anatomy during the surgical procedure. The field of image-guided surgery

(IGS) serves to provide the link between pre-operative data and the intra-operative

anatomical presentation by utilizing thee-dimensional (3D) localization devices, al-

gorithms developed in the field of image registration, and current visualization and

display techniques [65, 120, 119]. While the techniques of IGS are constantly improv-

ing, the field is in a relative infancy and many fundamental problems exist in the

current implementation of many IGS systems. More specifically, a vast majority of

proposed IGS systems rely, to some extent, on the assumption of rigidity between the

pre-operative image data and the intra-operative patient anatomy. This assumption

is known to be invalid and is one of the primary sources of error in current systems.

The soft tissue deformation problem, as well as other procedure specific difficulties,

provide the motivation for ongoing research in the field of image-guided liver surgery

(IGLS).
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Overview of Hepatic Cancer and Surgical Procedures

In order to understand the specific limitations and difficulties with the implemen-

tation of IGS for liver applications and to provide a general rationalization for ongoing

research in the field, a knowledge of general liver anatomy, prevalence of liver disease,

and common surgical practices is needed.

Physiological and Anatomical Characteristics of the Liver

The liver is the largest abdominal organ in the human body and is charged with

the physiological duties of degradation of body wastes and hormones, synthesis of

plasma proteins, storage of glycogen and fats, activation of Vitamin D, removal of

bacteria and worn-out red blood cells, excretion of cholesterol and bilirubin, and

secretion of bile salts [136]. The liver is located inferior to the diaphragm, to which

it is attached by the left and right triangular ligaments (illustrated in Figure II.1

on segment II), on the right side of the abdominal cavity. The falciform ligament

(illustrated in Figure II.1 between segment IV and segments II and III) divides the

left and right lobes and serves to attach the liver to the abdominal wall.

Figure II.1: Artistic depiction of the segmental nature of the liver anatomy (left)
and superior view of liver showing the primary ligament structures. The portal and
hepatic venous structure as well as the gallbladder are highlighted.

The liver can be divided into a set of eight functionally distinct regions with respect
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to vascular supply and biliary drainage. These regions are termed the Couinaud seg-

ments [45] and the numbering convention of this characterization are is demonstrated

in Figure II.1 and Figure II.2. Based on the functional independence of these regions

and the information concerning the anatomical relationships between the vascula-

ture and biliary tree, resections are often performed based on the Couinaud segments

[66, 67, 131].

Figure II.2: 3D surface rendering of the liver surface depicting the division of the
anatomy via the Couinaud segments from anterior (left) and posterior (right) views
[154].

Being as one of the major physiological roles of the liver is the processing and

degradation of body wastes and hormones, the organ is highly vascularized and con-

tains significant blood volume. The portal vein and hepatic artery provide the blood

flow into the liver tissue while the blood leaves the liver through the hepatic vein. The

hepatic artery provides 25% of the inflowing blood and virtually all of the oxygen,

while the portal vein provides the remaining 75% for detoxification [11].

Prevalence of Primary and Metastatic Liver Cancer

In 2006, an estimated 18,510 patients will be diagnosed with cancer of the liver

and intra-hepatic bile duct [2]. Additionally, primary liver cancers occur in African

and Asian populations at rate approximately ten times that seen in the United States
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and Northern Europe [128]. The most common form of primary malignancy found

in the liver is hepatocellular carcinoma (HCC). Most cases of HCC are secondary

to either hepatitis infections or cirrhosis. The mitigation of the primary risk factors

for HCC provides a rationalization for the low incidence of these malignancies in

developed countries.

Metastatic liver disease is approximately 20 times more prevalent in developed

countries than primary malignancies. Since the portal vein receives a large volume of

blood directly from the gastrointestinal system, a majority of metastatic liver tumors

originate from primary colorectal malignancies. Other sources of metastases include

the lung, pancreas, breast, gallbladder, prostate, and melanoma [100]. Based on

the American Cancer Society statistics, an estimated 148,610 new cases of colorectal

cancer will be diagnosed in 2006 [2]. It is suspected that roughly half of these patients

will develop a liver metastases during the course of their illness, with 20% to 30% of

patients having liver metastases at the time of diagnosis [129].

Treatment of Liver Cancer

The only treatment method that provides a potential for cure of both primary

malignancies and certain metastases is resection, or surgical removal of the diseased

region [131]. Studies have shown that five year survival rates after metastases re-

section are in the 25% to 40% range and from 0% to 2.5% for un-resected patients

[129]. Unfortunately, however, 70% to 90% of all patients that present with primary

liver tumors are ineligible for resection procedures based on tumor location, severe

cirrhosis, extent of liver disease or extrahepatic disease [128].

In situations where resection is not feasible, other procedures, such as transplan-

tation and various ablation methods can be performed. The reader is pointed to the

article by Frezza which provides an extensive review of alternative treatments for

patients with un-resectable hepatic cancers [60]. Transplantation for primary tumor
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cases has shown survival rates similar to conventional resection [123, 159]. A less

invasive alternative to the treatment of liver tumors comes in the form of ablation

methods. Currently, there are two forms of ablation therapy. Cryoablation utilizes a

probe cooled to sub-zero temperatures to freeze and ultimately destroy tumor cells

[31, 69]. However, the effect of cryoablation on normal tissue as well as the inci-

dence of post-operative complications has been a concern [32, 33, 142]. In contrast

to cryoablation, radiofrequency ablation (RFA), which uses electromagnetic energy

to heat tissue and induce cell death, produces fewer complications [77, 160, 51]. Ulti-

mately, the success of ablation procedures depends on the ability to accurately localize

tumors during procedures, such that no residual tumor is left untreated. A number

of interventional imaging techniques have been proposed to facilitate the guidance of

ablation procedures.

Intraoperative Imaging for Surgical Guidance

The use of intra-operative imaging for the guidance of various hepatic procedures

has been the subject of extensive research. The most ubiquitous imaging modality

used in liver resection procedures is intra-operative ultrasound (iUS). The use of iUS

has been shown to impact the choice of resection treatment, relative to that deter-

mined by analysis of pre-operative computed tomography (CT) images, for patients

with a variety of primary diseases [114, 122, 116]. In addition to its use in deter-

mining resection plans during procedures, iUS has also been used to guide open,

percutaneous, and laparoscopic radio-frequency (RF) thermal ablation of liver tu-

mors [87, 143]. While it is apparent that iUS provides invaluable information intra-

operatively and is relatively inexpensive, this modality is limited by poor signal-to-

noise as well as the limited field of view of the acquired images.

In addition to iUS, intra-operative magnetic resonance (iMR) imaging has also

been proposed for the guidance of RF ablation treatment of hepatic tumors [158, 24,
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48]. While intra-operative tomographic imaging provides the distinct advantage of

yielding full three-dimensional (3D) images of the surgical regions of interest, the util-

ity of such modalities and corresponding widespread implementation is limited by a

variety of factors, such as the exorbitant cost of the equipment and the cumbersome

nature of incorporating the imaging equipment into the operating room (OR) set-

ting. The limitations of the aforementioned intra-operative imaging modalities have

provided the impetus for the development of the field of image-guided surgery (IGS)

whereby the high resolution, high contrast, low noise diagnostic tomographic image

volumes, acquired pre-operatively, are placed within the context of the intra-operative

patient anatomy.

Introduction to Image-Guided Liver Surgery

Driven by the success of IGS research for neurosurgical applications and the de-

sire to provide surgeons with the improved navigational information by placing the

pre-operative image data in the context the intra-operative presentation, IGLS was

proposed for both open and laparoscopic hepatic resections at Vanderbilt Univer-

sity by Herline et al. in 1999 [73, 71, 72, 70, 144]. More recently, Cash et al. have

incorporated laser range scanner (LRS) technology into IGLS for the acquisition of

intra-operative surface data [29, 30, 25]. Other groups have studied the incorpo-

ration of co-registered, 3D freehand ultrasound imaging data of the abdomen for

intra-operative guidance of needle placement for tumor ablation [18, 118]. Bao et

al. have recently proposed the use of co-registered laparoscopic ultrasound for use in

minimally invasive liver tumor resection and ablation [9]. Additionally, the incorpora-

tion of a novel electromagnetic tracking system for use in the image-guidance of liver

tumor biopsy has also been investigated [8]. For further information on the use of

image-guidance for other applications, the reader is referred to the extensive reviews

of image-guided procedures by Peters [120, 119] and Galloway [62]. The following
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discussion will outline the major components required to perform IGLS, with specific

emphasis on the protocol as described by Cash [26], since that work provides the basis

for the proposed research described herein.

Pre-operative Image Data and Processing

The wealth of information that is possessed by the high resolution, 3D image sets

acquired by current imaging technology provides the desire to incorporate this data

into the decision making process performed during surgical procedures. While the

most commonly used modalities in the acquisition of diagnostic anatomical image

data for liver applications are CT and magnetic resonance (MR) imaging, the use

of functional imaging methods such as positron emission tomography (PET), single

photon emission tomography (SPECT) and function magnetic resonance imaging

(fMRI) can be used to to provide functional information for use in IGS [102, 17, 151,

157].

The visualization of pertinent surgical structures described by the pre-operatively

obtained image sets and, as will be discussed later, the ability to perform a map-

ping between the intra-operative patient space and the pre-operative image space

are greatly facilitated by the performance of image processing on the image data.

Being that manual methods of segmentation are extremely time consuming, a sig-

nificant amount of research has been devoted to the development of automated and

semi-automated segmentation routines used to extract pertinent anatomical regions

from pre-operatively obtained images of the liver. Many of these developed segmen-

tation and processing routines are used to provide information and renderings used

for pre-operative treatment planning [132]. Dawant et al. have developed a robust

liver segmentation algorithm [47, 74, 115] based on the level set technique proposed

by Sethian [133]. The level set formulation incorporates the boundary of an object as
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the zero level set in a higher order function (φ). The function is computed iteratively

using the following relation:

φn+1
i,j,k − φni,j,k

∆t
+ F |∇i,j,kφ

n
i,j,k| = 0 (II.1)

where F is the speed function that specifies the speed at which the contour evolves

in a normal direction. The novelty of the level set implementation proposed by

Dawant et al. is based upon the concept of an accumulative speed function (F )

whereby not only the value of the function at a particular location but also the history

of propagating contour determine the speed at which the contour evolves. Example

slices of manual and semi-automatic segmentations are shown in Figure II.3.

Figure II.3: Examples of slices of a CT image volume of the liver segmented with
manual and semi-automatic level set techniques. These images were taken from [26].

Once segmentation of pertinent structures has been obtained, tessellated surfaces

of these objects can be generated via the Marching Cubes Algorithm [84]. Being

that the surface representation provided by Marching Cubes is extremely dense and

lacks the true smoothness of the liver surface due to segmentation error and image

sampling artifacts, the surface can be further refined using smoothing and decimation

techniques [130] or surface fitting packages [23]. The decimation of the segmented

liver surfaces is particularly important in situations where the surface is used in image
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registration routines and extremely dense surface representations can cause the point

search time to become infeasible for OR use. Figure II.4 shows sample renderings of a

liver surface tessellated using the Marching Cubes algorithm as well as the smoothed

surface using the FastRBF toolkit (FarField Technology, Christchurch, NZ) and a

sample rendering including segmented vasculature and tumors.

Figure II.4: Examples of the Marching Cubes (left) and FastRBF radial basis function
(center) tessellations of a liver surface segmented from pre-operative images. A sample
rendering of portal venous (red), hepatic venous (blue), and tumor (yellow) structures
is also shown (right).

The research in the fields of vascular image segmentation and pre-operative plan-

ning and simulation have provided surgeons with valuable tools with which to de-

termine the appropriate treatment options before the surgical procedure. However,

the ability to provide a link between the wealth of information provided by the pre-

operative images and the surgical presentation would be of great utility for surgeons

and ultimately improve patient care. The link between the surgical field-of-view (or

”physical space”) and the pre-operative images (or ”image space”) is provided by the

field of image registration.

Surface-Based Image Registration

While point-based landmarks can be reliably identified in neurosurgical IGS appli-

cations where fiducial markers can be fixed to the skull prior to the acquisition of the
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pre-operative images [63, 91], the ability to utilize rigid anatomical landmarks or im-

planted fiducial markers is complicated in IGLS due to the mobilization and packing

of the organ prior to resection. Due to the lack of reliably useful point fiducials for use

in point-based registration (PBR) techniques, Herline et al. [72, 71] suggested the use

of surface-based registration algorithms to facilitate the mapping of physical-space to

image-space. An extensive review of surface based image registration is provide by

Audette et al. [4].

One of the most popular surface registration techniques, as well as the basis of a

vast number of surface registration algorithms, is the Iterative Closest Point (ICP)

algorithm proposed by Besl and McKay [12]. Given a source point set (S) and target

point set (T ), the ICP algorithm seeks to minimize the following objective function:

f(Ω) =

√√√√NS∑
i=1

‖Ω(S)− C(Ω(si), T )‖2 (II.2)

where C denotes the closest point operator used to determine correspondence

between the two point sets. Once correspondence is established, the transformation

(Ω) between the point sets is determined via a closed-form PBR [76, 3]. Once Ω

has been determined, the computation of point correspondence is then repeated and

so the algorithm continues until some convergence criteria is met. Besl and McKay

also proved that the process is guaranteed to converge, thus eliminating the need for

the use of an optimization scheme. It should be noted that the ICP algorithm is

extremely sensitive to initial pose and is prone to convergence to a local minimum.

Maurer et al. proposed an extension to the ICP algorithm called the Weighted

Geometrical Features (WGF) algorithm [90]. This method described a way to incor-

porated multiple surfaces and point sets within an iterative matching process whereby

each of the surfaces or point sets (called features) were assigned a particular weight
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within the closest point cost function. Maurer et al. also describes the use of a multidi-

mensional binary search tree (or kd-tree) data structure to perform the point searches

in a more computationally efficient manner [10, 61]. Given NS source points and NT

target points, the k-d tree can be constructed in O(NT log(NT )) time. Each closest

point search can be performed in O(log(NT )) time. Thus, in order to find NS closest

points, the kd-tree searching process takes O(NS log(NT )) time, in comparison to the

computational complexity of O(NTNS) for an exhaustive search. A similar approach

where point sets and surface regions are combined within an ICP based approach was

also proposed by Collignon et al. [40].

In order to curb some of the local minima convergence issues with the traditional

closest point operator used in the ICP algorithm, an interpolated closest point trans-

form was proposed by Cao et al. [22]. Building on the work of Ge et al. [68] and

Kapoutsis et al. [80], the interpolated closest point method first computes a closest

point transform, which is a variant on the distance transform whereby each voxel in

a target image volume analog contains the location of it’s closest point. The pro-

posed method computes the closest point transform using a variation on the Fast

Marching Method proposed by Sethian [134]. In order to circumvent discretization

error of standard closest point transform methods, a novel interpolation scheme is

implemented on the closest point transform.

In addition to the use of geometrical information in surface based registration

methods, a number of studies have also incorporated texture information to drive the

matching process. Miga et al. [99] proposed the SurfaceMI algorithm which incorpo-

rated the mutual information metric [155, 88, 147] into the registration of textured

cortical LRS data to textured brain surfaces extracted from MR volumes. Johnson

and Kang propose the incorporation of color information to improve point correspon-

dence determination in the registration of textured 3D data [79]. In addition to the

incorporation of texture information to bias point correspondence, other groups have
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proposed the use of geometric invariant features to guide correspondence determina-

tion [135, 55, 162].

While the initial focus of ICP and the aforementioned studies were primarily

concerned with the use of surface registration methods to determine rigid transfor-

mations, ICP based approaches can also be used in non-rigid registration algorithms.

Feldmar et al. [56] proposed a multi-level, multi-resolution approach and utilized

the thin-plate spline transformation [20] within the ICP paradigm. The thin-plate

spline provides a very convenient non-rigid transformation for use in an ICP based

approach being as the splines provide a smooth warping between corresponding point

sets. More recently, Chui et al. [34, 35, 36] introduced the Robust Point Matching

(RPM) algorithm which utilizes the notion of fuzzy correspondence, rather than the

implied binary correspondence used in ICP algorithms. While the results presented

in these works provide an substantial contribution to the problem of non-rigid point

matching, it is unclear how the RPM algorithm performs in situations where the data

contained within the source point set (S) comprises only a subset of that contained

within the target data (T ).

Physical-Space Tracking and Intra-operative Data Acquisition

In order to perform the mapping of the intra-operative patient space to the pre-

operative images and to provide a useful visualization of this mapping in IGS, the

ability to establish a coordinate system within the OR and accurately track objects

within this coordinate system is needed. While articulated arm systems were used

in the earliest image guided procedures [63], the current de facto method of intra-

operative localization is provided by optical tracking systems. Optical tracking sys-

tems use the principle of triangulation to localize objects within the field of view of

the sensor. These systems are either passive or active, meaning that the tracked ob-

jects either act to reflect the infrared light (e.g. photo-reflective spheres) or actively
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emit the light (e.g. infrared emitting diodes (IREDs)) that is detected by the sensor.

Based on the known configuration of the photo-reflective spheres or IREDs on the

object being tracked, optical tracking systems are also able to determine the pose of

the tracked objects of interest. The primary manufacturer of the optical tracking sys-

tems used in surgical navigation is Northern Digital, Inc. (Waterloo, Ontario), whose

Optotrak and Polaris units have been validated to provide sub-millimetric localization

errors [64, 112, 110].

While optical localization provides the most accurate method with which to track

objects and digitize points within the OR, these methods are not without disad-

vantages. The primary disadvantage of optical tracking is the line of sight required

between source and detector. If this line of sight is broken, it becomes impossible for

the camera to sense the tracked object’s location. Additionally, the configuration of

the source points (i.e. photo-reflective spheres or IREDs) attached the tracked object

are assumed to remain in a rigid configuration relative to each other. Any deviation

in the locations of these source points, relative to their ”known” positions by the

tracking system, can result in erroneous tracking results. In order to overcome some

of the constraints imposed by optical tracking, a significant body of work has been

performed to validate the used of magnetic localization systems.

Magnetic localization systems use a reference field generator that produces a spa-

tially varying magnetic field and a sensor coil placed within the tracked probe. The

orientation and position of the tracked probe can be determined by the current in-

duced within the sensor coil by generated magnetic field. The primary advantages of

magnetic localization are provided by the facts that line of sight between the refer-

ence generator and the sensor coils is not needed and the engineering of the sensor

coils to be small enough that they can fit inside the tip of non-rigid objects (e.g.

catheters) for tracking. A number of studies have been performed to validate the

usefulness of magnetic tracking in IGS [15, 16, 121, 8]. However, due to distortions
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in the generated magnetic field by ferrous objects and electronic devices, the accu-

racy of electromagnetic systems has not reached the standard set by optical systems

[14, 111, 113].

In the initial work proposed by Herline et al. [72, 73, 71], an optically tracked

probe was used to obtain liver surface data by continuously collecting the probe tip

location as the surgeon moved the probe across the liver surface (shown in Figure

II.5). More recently, the work of Cash et al. has incorporated the use of a tracked

LRS system (shown in Figure II.5) capable of capturing spatially dense point clouds

representing the liver surface in a non-contact fashion [29, 30, 25]. The use of LRS

data has also been proposed by Audette et al. [5, 6] and Sinha et al. [138, 139] for

use in neurosurgical IGS. More specifically, these groups discuss the use of LRS data

in the determination of intra-operative brain shift. Similarly, Skrijar et al. [140, 141]

and Sun et al. [149, 150] have utilized stereo-camera pairs to obtain cortical surface

point cloud representations for the measurement of intra-operative brain shift and,

ultimately, for use in deformation compensation routines.

Figure II.5: Digitization methods employed during surgery to identify anatomical
points and surfaces. An optically tracked pen probe (left) can be used to digitize
anatomical fiducial points and surface regions while tracked LRS hardware (right) is
used to acquire high resolution surface scans of the liver.

In addition to the acquisition of intra-operative surface data using stereo-camera
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pairs and LRS technology, a significant body of work has been performed on the

incorporation of co-registered iUS for use in IGS. Trobaugh et al. [153] and Comeau

et al. [41, 42] performed the initial work in the calibration and display of tracked iUS

for neurosurgical IGS. More recently, Lunn et al. has used co-registered iUS to perform

displacement estimation for use in deformation compensation methods [85]. The use

of co-registered iUS has also been proposed for use in guidance of needle placement

for tumor ablation in hepatic surgery [18, 118]. Aylward et al. has proposed the

integration of iUS data via a vessel based registration with pre-operative CT and

MR angiograms for guidance of hepatic tumor radio-frequency ablation [7]. More

recently, Bao et al. has reported the incorporation of tracked laparoscopic US for use

in minimally invasive hepatic procedures used to treat decompensated cirrhotics [9].

The acquisition of intra-operative data using tracking systems and imaging modal-

ities, such as LRS, stereo-pair cameras, and iUS, provides a key component to the

determination of the image-to-physical-space registration. However, current IGS sys-

tems use rigid body assumptions to determine this registration and a number of

studies have shown that these assumptions are invalid and a primary source of error.

Therefore, the compensation for the soft tissue deformation that occurs during sur-

gical procedures is of great importance and, as we shall see, is greatly facilitated by

the data acquired in the OR using the aforementioned technology.

Compensation for Soft Tissue Deformation

Intra-operative soft tissue deformation studies have shown that the incidence of

brain shift during neurosurgical procedures is a significant contributor to error in

IGS with maximum gravity induced displacements found to be on the order of 1

cm [81, 105, 124, 75, 93, 103, 107]. While no studies of intra-operative tissue defor-

mation in open liver procedures has been performed, it is quite apparent that soft

tissue deformations play a significant role in current IGLS system inaccuracies. In
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order to rectify the error that exists between the pre-operative image volumes and

intra-operative presentation due to soft-tissue deformation, two different avenues for

compensation have been proposed: intra-operative tomographic imaging and non-

rigid image registration. While we will consider each of these methodologies as being

separate entities for the sake of discussion, many studies have combined aspects of

each within their proposed systems.

The use of iMR technology to rectify the brain shift problem was initially proposed

by Nimsky et al. [107, 108, 109] Additionally, Ferrant et al. proposed the use of finite

element methods (FEM) to solve a mathematical model for computing the deforma-

tion and providing an interpolation between intra-operative and pre-operative image

volumes [57, 58]. While the use of iMR to provide a viable solution to the soft tissue

deformation problem is appealing, several limitations ultimately make the reliance

on intra-operative tomographic imaging to be impractical for widespread implemen-

tation. Namely, iMR hardware is exorbitantly expensive and is also susceptible to

imaging artifacts due to magnetic field inhomogeneities caused by ferrous materials in

the operating room. Ultimately, the use of a more practical intra-operative imaging

technology (e.g. iUS or LRS) would be more amenable to widespread use.

The most popular framework for non-rigid image registration in soft tissue defor-

mation compensation involves the use of the FEM to solve bio-mechanical models.

In addition to the work of Ferrant et al. [57, 58], several other groups have proposed

the use of and developed bio-mechanical models for the compensation of soft tissue

deformation. Miga et al. [117] developed a model of the brain based on the theory of

consolidation [13], which was demonstrated to compensate for pharmacological agents

(e.g. mannitol) and resection and retraction [95, 98]. Their developed model was val-

idated in animal studies to recover 75% to 85% of the error due to brain shift [96].

More recent work has involved the incorporation of intra-operatively acquired sparse

data to drive the developed bio-mechanical brain models. Skrinjar et al. [140, 141]
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and Sun et al. [149, 150] have demonstrated the utility of stereo-camera pairs in

calculating cortical surface deformations. Sinha et al. have demonstrated the use of

LRS to acquire serial scans of the cortical surface and, via deformable registration

methods, track the shift of the brain surface [139]. Lunn et al. have proposed the use

of the adjoint equations to assimilate sparse intra-operative data with bio-mechanical

models [86].

The use of LRS data to drive a bio-mechanical model of the liver was initially

proposed by Miga et al. [94]. Building on this work, Cash et al. proposed an incre-

mental approach to solving the model [28]. Additionally, this work demonstrated the

use of a deformation identifying rigid registration which provided a more meaningful

alignment than a traditional ICP registration. Other groups, such as Brock et al. [21],

have used time dependent models to describe the liver motion due to respiration.

Recently, the use of atlas-based methods have been proposed for incorporation into

IGS systems for the compensation of deformation. Dumpuri et al. have proposed the

computation of a deformation atlas, provided by FEM solutions of a bio-mechanical

model under a variety of conditions determined by a priori knowledge of the surgical

procedure [53, 52]. The individual surface displacements predicted by the deformation

atlas are then matched with those determined via cortical surface tracking with LRS

using a constrained linear inverse model. Similar methods have been proposed by

Davatzikos et al. [46] wherein a statistical approach based on principal component

analysis (PCA), inspired by the work of Cootes et al. [43, 44], is used to fit deformed

data to the atlas.

Several groups have proposed the incorporation of non-rigid registration using

spline-based transformations for the compensation of a variety of intra-operative de-

formation sources. Lange et al. have proposed the use of a combined algorithm

using ICP and multi-level B-Splines to match iUS images of liver vasculature with

the segmented vessels from pre-operative CT/MR angiograms [82]. Rohlfing et al.
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presented a method to model liver motion due to respiration using an MI based

multi-dimensional non-rigid registration between gated respiratory MR images [126].

While spline-based methods of deformation modeling have shown potential, the use

of bio-mechanical model based methods seem more appealing due to the fact that

the solutions will be based on constitutive physical laws. Further, the spline-based

methods that utilize iUS data can only perform the model-updating in the region

where iUS data has been acquired as opposed to bio-mechanical models which can

perform deformation compensation over the entire liver volume.

Summary

The recent developments towards realizing IGLS are very exciting. However, a

number of shortfalls are apparent. First, the de facto utilization of ICP methods for

the performance of image-to-physical space registration is very much dependant on

accurate initialization and can easily converge to an inaccurate local minimum. The

development of methods that provide for more robust methods of intra-operative reg-

istration is paramount to the continued success and utility of image-guided methods

within the context of open hepatic procedures. Further, the development of a more

robust method of registration will facilitate the analysis of intra-operative soft tissue

deformation and provide insight into practical methods of model-updating for IGLS.
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CHAPTER III

MANUSCRIPT 1 - ROBUST SURFACE REGISTRATION USING
SALIENT ANATOMICAL FEATURES FOR IMAGE-GUIDED LIVER

SURGERY: ALGORITHM AND VALIDATION

Original form of the manuscript appears in Medical Physics, Vol. 35, No. 6, pp.

2528-2540, 2008.

Abstract

A successful surface-based image-to-physical space registration in image-guided

liver surgery (IGLS) is critical to provide reliable guidance information to surgeons

and pertinent surface displacement data for use in deformation correction algorithms.

The current protocol used to perform the image-to-physical space registration in-

volves an initial pose estimation provided by a point based registration of anatomical

landmarks identifiable in both the pre-operative tomograms and the intraoperative

presentation. The surface based registration is then performed via a traditional itera-

tive closest point (ICP) algorithm between the pre-operative liver surface, segmented

from the tomographic image set, and an intra-operatively acquired point cloud of

the liver surface provided by a laser range scanner (LRS). Using this more conven-

tional method, the registration accuracy can be compromised by poor initial pose

estimation as well as tissue deformation due to the laparotomy and liver mobilization

performed prior to tumor resection. In order to increase the robustness of the cur-

rent surface-based registration method used in IGLS, we propose the incorporation

of salient anatomical features, identifiable in both the pre-operative image sets and

intra-operative liver surface data, to aid in the initial pose estimation and play a

more significant role in the surface based registration via a novel weighting scheme.

Examples of such salient anatomical features are the falciform groove region as well
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as the inferior ridge of the liver surface. In order to validate the proposed weighted

patch registration method, the alignment results provided by the proposed algorithm

using both single and multiple patch regions were compared with the traditional ICP

method using six clinical data sets. Robustness studies were also performed using both

phantom and clinical data to compare the resulting registrations provided by the pro-

posed algorithm and the traditional method under conditions of varying initial pose.

The results provided by the robustness trials and clinical registration comparisons

suggest that the proposed weighted patch registration algorithm provides a more ro-

bust method with which to perform the image-to-physical space registration in IGLS.

Further, the implementation of the proposed algorithm during surgical procedures

does not impose significant increases in computation or data acquisition times.

Introduction

The determination of an accurate image-to-physical space registration is a fun-

damental step in providing meaningful guidance information to surgeons via image-

guided surgery (IGS). A significant body of research has been dedicated to the use

of IGS techniques for neurosurgical applications and has resulted in several com-

mercially available systems (e.g. StealthStation, Medtronic Navigation, Louisville,

CO). A common feature of the developed IGS technology for neurosurgery is the

use of point-based landmarks, via bone-implanted or skin-affixed fiducial markers, to

provide the registration of image- and physical-space. The use of such point-based

techniques is greatly facilitated in neurosurgical IGS by the rigid anatomy (i.e. skull)

surrounding the organ of interest. Unfortunately, the use of such point-based tech-

niques is not applicable for open abdominal IGS due to the lack of rigid anatomical

landmarks and the inability to pre-operatively attach a set of extrinsic fiducials that

will remain rigid relative to the organ of interest after laparotomy and organ mobi-

lization.
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Since the use of rigid, point-based landmarks is not feasible in image-guided liver

surgery (IGLS), surface-based techniques were proposed to determine the registra-

tion between the pre-operative images and the intra-operative presentation [73, 72].

Specifically, the iterative closest point (ICP) algorithm, proposed by Besl and McKay

[12], has traditionally been used to determine the transformation between the image-

space surface of the liver, derived from pre-operative image segmentations, and the

intra-operative liver surface. Intra-operative data were initially acquired using an

optically tracked probe while more recent efforts have utilized a laser range scanner

(LRS) to provide spatially dense, textured delineations [29, 30]. In addition to be-

ing used for IGLS, LRS technology has also been employed to provide surface data

in neurosurgical procedures for the purpose of tracking intra-operative brain shift

[5, 6, 99, 139]. Several groups have also explored the use of intra-operative ultra-

sound (iUS) to acquire sparse data for use in abdominal IGS [18, 118].

The current protocol for surface-based image-to-physical space registration in

IGLS (described in detail by Cash et al. [30, 27]) begins with the selection of anatom-

ical fiducial points in the pre-operative image sets prior to surgery. The homologous

physical-space location of these anatomical fiducials are then digitized during the

surgical procedure such that a point-based initial alignment registration can be per-

formed. The point-based registration serves to provide a reasonable initial pose for the

ICP algorithm, which is used to register the liver surface derived from pre-operative

images and LRS data acquired intra-operatively.

Being that the surface alignment provided by the ICP algorithm is highly depen-

dent on the initial pose of the surfaces, gross errors in the initial alignment provided

by the point-based registration can result in erroneous surface alignments. A failed

surface-based registration not only compromises the guidance information relayed to

the surgeon but also impairs deformation correction efforts due to inaccurate surface

displacement data that are used to drive mathematical models [28]. In IGLS, the
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quality of the initial alignment registration can be compromised by the large fiducial

localization errors (FLE) inherent in using anatomical landmarks that undergo defor-

mation relative to the pre-operative images. Additionally, gravity and the effects of

the liver mobilization and packing performed prior to open liver resections can lead

to liver deformations that can compromise the results of a rigid ICP surface registra-

tion. Figure III.1 shows an example clinical data set where a poor initial alignment

registration, due to high FLE of the anatomical fiducials, and large liver deforma-

tions resulted in the convergence of the rigid ICP algorithm to a gross misalignment.

A similar lack of robustness of ICP in the presence of planar LRS data has been

exemplified in the work of Cash et al. [27]

In order to circumvent erroneous surface registrations due to gross misalign-

ments in the initial pose, we propose the incorporation of reliably identifiable, salient

anatomical features into the ICP algorithm. As shown in Figure III.2, the falciform

ligament region is one such feature. This ligament divides the medial and lateral

segments of the left lobe and can be identified on the pre-operative image surface via

the ligament’s distinctive groove in the surface. The falciform ligament region can be

delineated in the intra-operative LRS surface presentation via the difference in tex-

ture between the ligament and liver parenchyma. In addition to the falciform groove,

the inferior ridge of the liver between the falciform and right triangular ligaments

along sections IV, V, and VI would also be a potential salient feature to utilize. For

the purposes of this study the salient anatomical features were delineated in the pre-

operative CT image space via manual segmentation of liver surface (generated via the

Marching Cubes Algorithm [84]). With regards to intra-operative LRS salient feature

segmentation, the homologous regions were delineated by the surgeon via optically

tracked pen probe. These point sets, as well as the texture information provided by

the LRS, were then used to guide the manual segmentation of the salient features in
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Figure III.1: Example of poor initial alignment (a),(b) and resulting misregistration
(c),(d) of clinical data obtained using a traditional ICP algorithm. The combination
of poor initial alignment and significant soft tissue deformation from the mobilization
and packing procedure performed by the surgeon resulted in a significant misalign-
ment of the two surfaces. Note that the LRS scan of the anterior surface of the liver
is registered to the posterior liver surface via ICP.
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the intra-operatively acquired sparse data. A preliminary formulation allowing the

incorporation of a single salient anatomical feature has been described previously [37].

Figure III.2: Anatomical schematic (left) and examples of pre-operative image (mid-
dle) and intra-operative LRS liver data (right) with corresponding falciform ligament
regions outlined. Note that the falciform ligament region can be located on the pre-
operative image surface via the groove in the surface and texture can be used to
delineate the falciform region in the LRS surface.

Related Work

The proposed use of salient anatomical features to weight the ICP registration is

similar to the weighted geometrical features (WGF) algorithm described by Maurer et

al. [90] This method described a way to incorporate multiple surfaces and point sets

within an iterative matching process whereby each of the surfaces or point sets (called

features) were assigned a particular weight within the closest point cost function. The

WGF algorithm was shown to facilitate the registration of computed tomography

(CT) and T2-weighted magnetic resonance image volumes of the head. The work

also provides the closed form solution to perform a weighted point-based registration

(PBR) that is utilized in this work. A similar approach where point sets and surface

regions are combined within an ICP based approach was also proposed by Collignon

et al. [40]

In order to curb some of the local minima convergence issues with the traditional
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closest point operator used in the ICP algorithm, an interpolated closest point trans-

form was proposed by Cao et al. [22] Building on the work of Ge et al. [68] and

Kapoutsis et al. [80], the interpolated closest point method first computes a closest

point transform, which is a variation on the distance transform whereby each voxel

in a target image volume analog contains the location of it’s closest point. The pro-

posed method computes the closest point transform using a variation on the Fast

Marching Method proposed by Sethian [134]. In order to circumvent discretization

error of standard closest point transform methods, a novel interpolation scheme is

implemented on the closest point transform.

In addition to the use of geometrical information in surface based registration

methods, a number of studies have also incorporated texture information to drive the

matching process. Miga et al. [99] proposed the SurfaceMI algorithm which incorpo-

rated the mutual information metric [155, 88, 147] into the registration of textured

cortical LRS data to textured brain surfaces extracted from MR volumes. Johnson

and Kang propose the incorporation of color information to improve point correspon-

dence determination in the registration of textured 3D data [79]. In addition to the

incorporation of texture information to bias point correspondence, other groups have

proposed the use of geometric invariant features to guide correspondence determina-

tion [135, 55, 162].

Additionally, a deformation identifying rigid registration (DIRR) has been pro-

posed by Cash et al. [28] The DIRR provides a marked improvement in surface align-

ments relative to ICP with respect to the facilitation of deformation compensation

algorithms. However, the algorithm relies on a Powell’s method optimization scheme

to determine the rigid-body transformation and, thus, is more time consuming to

perform and may not be feasible for intra-operative implementation at the present

time. Additionally, the ability of the DIRR to provide reasonable alignments using

clinical data has not yet been demonstrated.
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Objective

The objective of this work is to implement a surface based registration method

that utilizes the homologous, salient anatomical features to ensure convergence to

reasonable solutions under conditions of poor initial alignment. Similar to our pre-

liminary work, we propose that these extracted anatomical regions be used to bias

both the point correspondence determination as well as guide the traditional ICP

method via a dynamic weighting scheme such that convergence to an extremum is

avoided. Further, we seek to demonstrate that the use of multiple salient features

will allow the surface registration algorithm to converge to favorable solutions in the

absence of initial pose information. The ability to provide robust, favorable align-

ments in the absence of an initial PBR presents a significant advancement to the

performance of intra-operative image-to-physical space registrations in IGLS.

Methods

Weighted Patch ICP Algorithm

The algorithm proposed in this work is an extension to the WGF algorithm pro-

posed by Maurer et al. [90] The homologous anatomical features, or patches, will be

used to both bias point correspondence determination as well as play a more signif-

icant role in the PBR performed at each iteration of the algorithm. The weighting

scheme used to bias the PBR is dynamic over the course of the algorithm where the

homologous patch regions play an overwhelming role early in the registration pro-

cess to ensure the patches are initially aligned and a more supportive role at later

iterations in the algorithm.

For the following explanation, let S = {sm} for m = 1, . . . , NS be the source

point set and T = {tn} for n = 1, . . . , NT be the target point set. Assume that the

point sets S and T each contain a number of patch point sets (Np) that describe the

homologous anatomical features that are used to drive the registration. Further, let
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{pS
m} and {pT

n } be integer arrays that contain values along the interval [0, Np], where

an array value of 0 corresponds with the non-patch point indices and a value greater

than 0 indicates the patch point indices (i.e. a value of 1 indicates that the particular

point index refers to a point within the first anatomical feature). Let {wm} be a set

of weights where wm = 1 for pS
m = 0 and wm = wPBR, a dynamic weighting factor

used to bias the PBR at each iteration, for pS
m > 0.

Point Correspondence Determination

In order to bias the point correspondence determination for the patch point sets,

we introduce a weighting factor wPC , where 0 < wPC << 1. The weighting factor is

used to bias the closest point operator, Cm, by significantly decreasing the Euclidian

distances (d) between patch point pairs via the following relationship:

dm,n =


wPC‖sm − tn‖ if pSm = pTn

‖sm − tn‖ otherwise
(III.1)

In other words, Euclidean distances identified as being between source and tar-

get patch points are multiplied by the fractional weighting factor (wPC). Since the

weighting factor is presumably a very small fraction, the corresponding point found

for a source patch point will primarily be contained within the target patch point

set. This method of point correspondence determination is different, and to a degree

more general, than that that proposed by Maurer et al. [90] Specifically, there is no

constraint placed on the points that are determined as non-patch points and these

points are allowed correspondence to the identified patch regions as well. Further,

the fractional weight factor (wPC) does not impose a hard correspondence constraint

and, hence, even patch regions are allowed to correspond with other regions under

particular circumstances.

Figure III.3 shows a pictorial representation of the weighted point correspondence
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method in the case where only a single patch region is used. Biasing the point

correspondence determination alone, however, will not be enough to facilitate a robust

surface alignment under conditions of poor initial pose and soft tissue deformation.

As described in the next section, biasing the rigid PBR performed at each iteration

will provide increased robustness in the proposed algorithm. For clarification, we will

use the notation of C∗m to represent the closest point operator biased by Equation

III.1.

Figure III.3: Graphical depiction of the weighted point correspondence method. Only
the Euclidean distances computed from source patch point to target patch point are
biased by the weighting factor wPC (i.e. dashed lines). The point correspondence
determination for non-patch points is not effected by the weighting (i.e. solid lines)
Note that the graphical depiction represents the case where only a single patch region
is used.

Weighted Point-Based Registration

Once point correspondence has been determined, the weighted rigid PBR method

described by Maurer et al. [90] is implemented. This method seeks to find the rigid-

body transformation (Ω) that minimizes the following objective function (f):
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f(Ω) =

√√√√NM∑
m=1

wm‖C∗m(sm, T )− Ω(sm)‖2 (III.2)

where {wm} is a set of weights letting wm = 1 for pS
m = 0 and wm = wPBR, where

wPBR ≥ 1, for pS
m > 0. The weighting factor (wPBR) serves to increase the role of

the patch points within the determination of the transformation, Ω. A closed form

solution for the special case of wm = 1/Nm for m = 1, . . . , Nm has been presented

by Arun et al.[3] The solution is based on the singular value decomposition of the

covariance matrix of the position vectors in the two spaces. The closed form solution

presented by Maurer et al. [90], which is valid for all wm > 0 is an extension of the

aforementioned solution.

In the WGF algorithm, the weights used within the PBR for the geometrical fea-

tures used in the registration (i.e. wPBR) remain constant throughout the registration

process. We seek to modify this implementation by creating a dynamic scheme by

which the patch point weight, wPBR, is dynamic as the algorithm progresses.

Dynamic Weighting Scheme

Being that FLE and soft tissue deformation impose error in the accurate selection

of homologous anatomical points, the initial alignment provided by the anatomical

fiducial based PBR can be quite poor. In order to circumvent incorrect, local minima

convergence issues, the alignment of the homologous patch regions is made to play

a very strong role early in the weighted patch ICP algorithm. However, due to

segmentation inaccuracies and the fact that a one-to-one correspondence between

source and target patch regions most likely will not exist, it is important that the bias

in the PBR towards the patch regions be less significant as the registration continues.

In other words, since patch regions identified in the source data will not likely contain

the entire target patch point set and by biasing the registration too heavily throughout
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the registration process could lead to convergence to an incorrect local minima. In

order to address these problems, we allow for the remainder of the surface data to

play a more significant role as the registration proceeds. By employing this dynamic

weighting, the patch regions serve as an anchor at later iterations within the algorithm

such that deformation will not cause a divergence in the final registration result. The

following equation describes the behavior of the dynamic weighting scheme, where

wPBR is described as a function of iteration (i, i ≥ 1):

wPBR(i) = wPBR,maxe
−α(i−1) + wPBR,base(1− e−α(i−1)) (III.3)

In the above equation, wPBR,max is the maximum patch PBR weight factor and

corresponds to the patch weight at the very first iteration of the algorithm. The weight

factor wPBR approaches wPBR,base, the baseline patch weight where wPBR,max ≥

wPBR,base ≥ 1, as i becomes significantly large. The rate at which wPBR approaches

wPBR,base is determined by the relaxation constant α, where α ∈ [0, 1]. A graphi-

cal representation of Equation III.3 and the effects of the relaxation constant α are

graphically described in Figure III.4.

Phantom Validation

Silicon Liver Phantom and Phantom Data Acquisition

In order to quantitatively compare the developed weighted patch ICP algorithm

with the traditional ICP method, the imaging phantom shown in Figure III.5 was

used. Poly (dimethyl) siloxane (rubber silicone) was used to fabricate the liver model.

The liver model was surrounded by seven Teflon spheres (Small Parts Inc., Miami

Lakes, FL) which served as a set of point-based fiducials for the performed exper-

iments. A more detailed description of the imaging phantom can be found in the

publications of Cash et al. [29, 25, 30] Imaging data of the described phantom were
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Figure III.4: Plots of dynamic PBR weighting factor function with various relaxation
parameter (α) values. Decreasing the value of α increases the length of time that
the patch region dominates the PBR at each iteration. As the value of α approaches
zero the PBR weighting scheme becomes more akin to that proposed by Maurer et
al. [90].
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acquired using both CT (Mx8000, Phillips Medical Systems, Bothell, WA) and LRS

(Real Scan 200C, 3-D Digital Corporation, Bethel, CT) modalities. The RealScan

200C is capable of acquiring spatially dense 3-D point cloud surface representations

of 500 lines per scene with as many as 512 samples per line and a spatial resolution on

the order of 0.5 mm. The scanner specifications state that the average deviation from

planarity is 300 µm at 300 mm depth and 1000 µm at 800 mm depth. In addition

to the geometrical data, a digital image of the LRS field of view is simultaneously

acquired and texture mapped to the point cloud via a pre-determined calibration.

A detailed validation of the imaging capabilities of the LRS system used has been

provided by both Sinha et al. [139] and Cash et al. [29, 30]

Figure III.5: Digital photograph (left), raw LRS scan (center) and sample CT slice
(right) of imaging phantom. The silicon liver model, located in the center of the
phantom, is surrounded by a set of seven white Teflon spheres. These spheres, which
can be localized in both LRS and CT image spaces, are used in the determination of
the ”gold standard” ICP registration and serve as targets in the robustness studies.

Once imaging data were acquired, the sphere points were localized in the LRS scan

using a least squares sphere fitting method described by Ahn et al. [1] and the sphere

centroids were computed in the CT image volume using a region growing algorithm

implemented within the Analyze software package (Analyze AVW Version 6.0, Mayo

Clinic, Rochester, MN). Once the fiducial points and surfaces were extracted from

both CT and LRS images, a PBR was computed using the seven sphere fiducial
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points via Horn’s quaternion method [76]. This PBR served as an initial alignment

registration from which the ”gold standard” ICP registration was computed using the

entire LRS surface. Additionally, the sphere fiducials were also used as targets for

computation of target registration error (TRE), defined by Fitzpatrick et al. [59], in

the validation experiments.

Simulated falciform and inferior ridge patch regions were manually selected from

the full LRS data as shown in Figure III.6. The ”gold standard” ICP registration

was then used to extract the analogous region on the CT image surface of the liver

phantom. The CT image falciform region contained all the points within a 3 mm

radius of each of the LRS surface falciform points. This was done to simulate seg-

mentation errors in accurately delineating the homologous patch region on the image

surface (shown in Figure III.6). Additionally, only a sub-region of the LRS data was

used in the robustness studies since the LRS scans acquired intraoperatively very

rarely contain the amount of surface information shown in the complete LRS scan.

The region was selected based on the authors’ experience of the most scanned regions

during the observed surgical procedures (shown in Figure III.6).

Figure III.6: Phantom LRS simulated falciform patch selected from full scan (left) was
used to delineate the homologous region in the CT image surface (center). To more
accurately simulate the typical LRS surface field of view obtained during surgery, a
subregion of the LRS was manually selected for use in the robustness trials.
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For reference, the number of points contained within the CT image liver surface,

simulated falciform region, and simulated inferior ridge region were 106,661, 2,066,

and 1,393, respectively. The number of points contained within the full and partial

liver LRS scans were 34,546 and 12,376 with 1,125 and 802 falciform points in the

respective full and partial scans. The number of inferior ridge points in the full and

partial scans were 404 and 303, respectively.

Phantom Data Robustness Trials

In order to describe the robustness of the proposed algorithm, a series of regis-

tration experiments were performed which involved perturbing the LRS data from

the ”gold standard” ICP alignment with a random six degree-of-freedom, rigid-body

transformation. The random transformations were computed by generating a set of

six random parameters (three translation and three rotation). In order to simulate

the variety of initial alignments corresponding with those provided by an anatomical

fiducial PBR and without performing any initializing registration, two magnitudes

of perturbation (termed ”small scale” and ”large scale”) were utilized. The signifi-

cance of performing robustness trials over two different magnitudes of perturbation is

to test the hypothesis that utilizing salient feature information within the proposed

algorithm provides the ability to reliably obtain reasonable surface registrations with-

out the use of anatomical fiducial points to provide an initial pose. By alleviating

the need to use an anatomical fiducial based PBR as an initial alignment, a primary

error source in the current IGLS registration procedure will have been eliminated.

Three different surface registration methods were used for comparison within the

robustness trials: traditional ICP, patch ICP using a single feature (falciform), and

patch ICP using multiple features (falciform and inferior ridge). The ”large scale”

and ”small scale” robustness trials were run over 250 perturbations per registration

method and the data were compared in terms of sphere TRE and surface root mean
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square (RMS) residuals (i.e. the RMS of the closest point distances between the source

and target surfaces) provided by the registration algorithms. The parameters used for

the ICP implementation for these trials were a maximum iteration number of 1000

and convergence criterion of 1e−4 mm RMS residual difference between iterations.

The parameters used for the weighted patch ICP registration were as follows: 1000

maximum iterations, wPBR,max = 1000, wPBR,base = 25, wPC = 1e−4, α = 0.01, and

a convergence criterion of 1e−4 mm RMS residual difference between iterations.

A uniformly distributed random number generator was used to supply the rota-

tion parameters (θx, θy, θz) and translation parameters (tx, ty, tz) for the perturbation

transformation matrices. For the ”large scale” perturbation trials, the rotation pa-

rameters were generated on the interval [-180◦,180◦] (µ = -0.7±106.1) and the transla-

tion parameters were generated on the interval [-200 mm,200 mm] (µ = -3.4±119.3).

For the ”small scale” perturbation trials the intervals for the rotation and transla-

tion parameters were set to [-45◦,45◦] (µ = 0.6±26.6) and [-50 mm,50 mm] (µ =

-1.0±28.9), respectively.

Clinical Validation

Clinical Image and Intra-operative Data Acquisition

Using an Institutional Review Board (IRB) approved patient protocol, CT or MR

image sets and intra-operative data were acquired for six patients undergoing hepatic

tumor resections at Barnes-Jewish Hospital in St. Louis, MO. The intra-operative

protocol involved a series of pre-planned apneic periods during the acquisition to

minimize errors in the data due to respiratory liver motion. The apneic periods

were part of the IRB approved protocol and were performed at the same point of

the respiratory cycle (end-expiration) such that the liver would reside approximately

in the same location during each period of data acquisition. Specifically, the intra-

operative protocol involved the acquisition of both anatomical point fiducial data
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using an optically tracked probe (OPTOTRAK 3020, Northern Digital, Waterloo,

Ontario) and LRS surface data. Further, the LRS unit used was optically tracked

(description of the tracked LRS design provided by Sinha et al. [139] and Cash et al.

[25, 30]) such that the anatomical fiducial data and the LRS surface data were both

acquired relative to the same reference coordinate system.

Clinical Data Registration Experiments

The six clinically acquired data sets were then used in a set of registration trials

to determine the effectiveness of the proposed patch ICP registration algorithm. For

each data set, falciform and inferior ridge regions were segmented from both the pre-

operative image surface and intra-operative LRS data. Comparisons were performed

between the results obtained using a traditional ICP method, patch ICP using a sin-

gle feature (falciform), and patch ICP using multiple features (falciform and inferior

ridge). Additionally, registrations were performed under conditions of no initial pose

transformation and an initial alignment provided by the anatomical fiducial based

PBR. The parameters used for the ICP implementation for these trials were a max-

imum iteration number of 1000 and convergence criterion of 1e−4 mm RMS residual

difference between iterations. The parameters used for the weighted patch ICP reg-

istration were as follows: 1000 maximum iterations, wPBR,max = 3000, wPBR,base =

25, wPC = 1e−4, α = 0.005, and a convergence criterion of 1e−4 mm RMS residual

difference between iterations.

Clinical Data Robustness Trials

Finally, one of the clinical data sets (patient 4) was used to perform robustness

tests similar to those described for the phantom data. The particular clinical data

set was chosen for the robustness trials due to the minimal soft tissue deformation

in this particular case and the fact that the ICP registration provided a particularly
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good alignment (shown in Figure III.7), based on visual inspection. For reference,

the number of points containing the pre-operative liver, falciform, and inferior ridge

regions derived from CT images were 57,873, 2,220, and 1,291, respectively. The

number of points in the LRS scan representation of the liver, falciform, and inferior

ridge regions for this clinical data set were 17,848, 594, and 101, respectively.

As in the phantom trials, three different surface registration methods were used

for comparison within the robustness trials: traditional ICP, patch ICP using a sin-

gle feature (falciform), and patch ICP using multiple features (falciform and inferior

ridge). The ”large scale” and ”small scale” robustness trials were run over 250 per-

turbations per registration method and the robustness data is reported in terms of

the RMS residual relative to the ”gold standard” ICP registration. The parameters

used for the ICP implementation for these trials were a maximum iteration number

of 1000 and convergence criterion of 1e−4 mm RMS residual difference between iter-

ations. The parameters used for the weighted patch ICP registration were as follows:

1000 maximum iterations, wPBR,max = 3000, wPBR,base = 25, wPC = 1e−4, α = 0.005,

and a convergence criterion of 1e−4 mm RMS residual difference between iterations.

As with the phantom robustness trials, a uniformly distributed random number

generator was used to supply the rotation parameters (θx, θy, θz) and translation

parameters (tx, ty, tz) for the perturbation transformation matrices. For the ”large

scale” perturbation trials, the rotation parameters were generated on the interval [-

180◦,180◦] (µ = -0.5±105.4) and the translation parameters were generated on the

interval [-200 mm,200 mm] (µ = 5.5±113.3). For the ”small scale” perturbation trials

the intervals for the rotation and translation parameters were set to [-45◦,45◦] (µ =

0.4±26.1) and [-50 mm,50 mm] (µ = 0.3±28.5), respectively.
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Figure III.7: Traditional ICP registration results (left) and overlaid image and falci-
form patch regions (right) for the clinical data used in the robustness trials (Patient
3). Note the large contrast in the accuracy of the alignment in this case than that
shown in Figure III.1. The RMS residual for this registration was 3.4 mm. Note that
for this data set the CT image and LRS surfaces contained 57,873 points and 19,863
points, respectively. The CT image and LRS falciform regions consisted of 3,148 and
594 points, respectively.
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Results

Phantom Data Robustness Trials

The results of the ”small scale” perturbation experiments over all 250 trials for

each registration algorithm with respect to both RMS residual and sphere TRE values

are shown in histogram format in Figure III.8. A summary of the results for the ”small

scale” perturbation robustness trials is shown in Table III.1. For reference, the PBR

calculated between the CT and LRS sphere point sets yielded an FRE of 1.4 mm.

The ”gold standard” ICP registration based off this PBR gave a TRE of 2.3 mm and

an RMS residual of 0.6 mm. Based on the distributions of the TRE values shown, a

”failed” registration was defined as that which yielded a sphere TRE value of greater

than 5.0 mm. The mean TRE for ”failed” registrations for the ICP and patch ICP

using a single feature were found to be 149.8±60.7 mm (N = 118) and 256.2±95.8

mm (N = 7), respectively.

Using aforementioned criterion to determine registration success, it can be seen

in Figure III.8 and Table III.1 that the traditional ICP algorithm had a significantly

higher failure rate than the patch ICP algorithm using both single and multiple fea-

tures. Further, the weighted patch ICP algorithm using multiple patches provided

successful registrations over all trials whereas using a single feature yielded failures

for seven trials, suggesting that multiple features is more robust. It is also notable

that the average RMS residual and sphere TRE values over the ”successful” registra-

tions is higher for the patch ICP method than those provided by the traditional ICP

registration.

Table III.2 shows a summary of the results from the ”large scale” perturbation

robustness trials and Figure III.9 displays the results over all 250 trials in histogram

format with respect to both RMS residual and sphere TRE values. As with the

”small scale” perturbation trials, a ”failed” registration was determined as that which
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Figure III.8: Histogram representations of the RMS residual (top) and TRE (bottom)
results from the ”small scale” phantom robustness trials. Note that for these trials
the ”gold standard” RMS residual and TRE values were found to be 0.6 mm and 2.3
mm, respectively. Note the far greater number of ICP RMS residual results that fell
>2 mm and TRE results that were >5 mm as compared to the weighted patch ICP
results.
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Successful Reg.
Registration Success Residual TRE Residual TRE

method (No.) (mm) (mm) (mm) (mm)
ICP 132 (52.8%) 3.0±2.9 72.1±81.4 0.6±0.002 2.7±0.2

PICP 243 (97.2%) 0.9±1.5 9.9±44.5 0.6±0.01 2.8±0.2
PICP2 250 (100%) 0.7±0.01 3.0±0.5 0.7±0.01 3.0±0.5

Table III.1: Summary of results for the ”small scale” perturbation robustness trials
using the phantom data set shown in Figure III.6 and histogram representation in
Figure III.8. The number of successful trials (out of 250), RMS residual and TRE
over all trails, and RMS residual and TRE over ”successful” trials is reported for
each registration method. A ”successful” trial is determined as that which yields a
TRE of less than 5.0 mm. For reference, the ”gold standard” ICP registration for the
phantom yielded RMS residual and TRE values of 0.6 mm and 2.3 mm, respectively.

yielded a sphere TRE value larger than 5.0 mm. The mean TRE values for ”failed”

registrations for the ICP and patch ICP using a single feature were found to be

240.1±43.5mm (N = 239) and 293.9±24.0 mm (N = 127), respectively. Similar to

the results for the ”small scale” perturbation trials, the rate of failure of the patch ICP

registration method is significantly lower than that of the traditional ICP method and

the use of multiple features provides successful registration methods over all ”large

scale” perturbation trials.

Successful Reg.
Registration Success Residual TRE Residual TRE

method (No.) (mm) (mm) (mm) (mm)
ICP 11 (4.4%) 5.4±2.4 229.7±64.7 0.6±0.002 2.5±0.3

PICP 123 (49.2%) 4.6±4.9 150.7±146.8 0.6±0.01 2.9±0.3
PICP2 250 (100%) 0.7±0.003 2.9±0.5 0.7±0.003 2.9±0.5

Table III.2: Summary of results for the ”large scale” perturbation robustness trials
using the phantom data set shown in Figure III.6 and histogram representation in
Figure III.9. The number of successful trials (out of 250), RMS residual and TRE
over all trails, and RMS residual and TRE over ”successful” trials is reported for
each registration method. A ”successful” trial is determined as that which yields a
TRE of less than 5.0 mm. For reference, the ”gold standard” ICP registration for the
phantom yielded RMS residual and TRE values of 0.6 mm and 2.3 mm, respectively.
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Figure III.9: Histogram representations of the RMS residual (top) and TRE (bottom)
results from the ”large scale” phantom robustness trials. Note that for these trials
the ”gold standard” RMS residual and TRE values were found to be 0.6 mm and 2.3
mm, respectively. Note the far greater number of ICP RMS residual results that fell
>2 mm and TRE results that were >5 mm as compared to the weighted patch ICP
results.
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Clinical Data Registration Experiments

Summaries of the clinical data registration experiments in terms of the RMS resid-

ual obtained by the performed registration method and over the six patients are shown

in Table III.3 and Table III.4. The results are shown for the ICP, patch ICP with sin-

gle feature, and patch ICP with multiple features using both the anatomical fiducial

based PBR initial alignment (Table III.4) and with no initial pose transformation

(Table III.3). In addition to reporting the RMS residuals over the entire surfaces,

”feature errors” were computed for each registration result as RMS residuals of the

homologous patch regions. For the feature errors, feature 1 indicates the falciform

ligament region and feature 2 represents the inferior ridge. The registrations that

yielded gross misalignments are indicted with a superscript, which was evaluated via

visual inspection. The most notable result shown in Tables III.3 and III.4 is the fact

that given no initial alignment, the traditional ICP method was unable to provide a

reasonable alignment for any of the clinical data sets. However, the multiple feature

patch ICP algorithm yielded reasonable alignment for all cases even without any ini-

tial alignment. Further, it is apparent that the patch ICP algorithm with a single

patch is not quite as robust as that using multiple patches since the single patch

ICP trials yield gross misalignments for two of the patients when no initial pose is

provided.

In addition to reporting numerical summaries, visualizations of the clinical data

registrations for all six patients are shown in Figure III.10 through Figure III.15. The

visualizations shown are the results of the ICP (panels (a) and (b)) and patch ICP

using a single feature (panels (c) and (d)) given the anatomical fiducial PBR initial

alignment. The results of the patch ICP registration with multiple features given no

initial alignment is also shown (panels (e) and (f)) for the six patients. For each of the
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RMS Residual (mm) Feature 1 Error (mm) Feature 2 Error (mm)
Patient ICP PICP PICP2 ICP PICP PICP2 ICP PICP PICP2

1 5.2† 4.5 4.7 40.2† 1.7 1.8 107.1† 3.0 1.7
2 5.7† 6.2 7.0 43.9† 3.8 4.9 61.8† 10.9 3.4
3 7.3† 5.5 6.2 86.3† 2.6 4.2 106.3† 12.5 7.2
4 7.5† 10.8† 3.7 64.4† 7.1† 3.5 140.6† 46.3† 5.9
5 11.6† 6.6 6.4 138.6† 3.2 3.5 11.6† 5.4 5.0
6 11.3† 10.8† 5.9 74.5† 4.1† 3.7 37.5† 104.4† 3.3

Table III.3: Summary of the registration results for the six clinical data sets using
no initial alignment transformation. The results are shown for the ICP, patch ICP
registration with a single feature (PICP), and patch ICP registration with multiple
features (PICP2) in terms of the RMS residual between the entire surfaces as well
as the homologous patch regions. Feature 1 represents the falciform ligament region
and feature 2 denotes the inferior ridge region. Grossly misaligned registrations are
noted with a superscript (†) and were determined by visual inspection.

RMS Residual (mm) Feature 1 Error (mm) Feature 2 Error (mm)
Patient ICP PICP PICP2 ICP PICP PICP2 ICP PICP PICP2

1 2.8 4.6 4.7 35.9 1.8 1.8 5.0 2.7 1.7
2 5.2† 5.7 7.0 63.5† 3.1 4.9 39.9† 38.6 3.4
3 5.2 5.5 6.2 7.1 2.8 4.2 10.4 11.5 7.2
4 3.4 3.5 3.7 3.9 3.7 3.5 7.1 7.2 5.8
5 3.4 6.5 6.4 30.2 3.1 3.5 5.3 8.6 5.0
6 5.4 5.6 5.9 4.3 2.9 3.7 5.9 6.5 3.3

Table III.4: Summary of the registration results for the six clinical data sets using the
anatomical fiducial based PBR initial alignment. The results are shown for the ICP,
patch ICP registration with a single feature (PICP), and patch ICP registration with
multiple features (PICP2) in terms of the RMS residual between the entire surfaces
as well as the homologous patch regions. Feature 1 represents the falciform ligament
region and feature 2 denotes the inferior ridge region. Grossly misaligned registrations
are noted with a superscript (†) and were determined by visual inspection.
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registrations performed, the patch regions are highlighted in both the pre-operative

image surface (red) and intra-operative LRS data (blue).

Similar to that shown in Tables III.3 and III.4, the most notable result is the fact

that the patch ICP algorithm using multiple features with no initial alignment was

able to provide similar results to those obtained by both the ICP and single feature

patch ICP given the anatomical fiducial PBR initial pose. Further, for several of the

patients, the patch ICP registration provides a much more reasonable alignment as

compared with that provided by the traditional ICP method. Most noticeably, for

patient 2 (shown in Figure III.11) the ICP registration resulted in a gross misalign-

ment of the surfaces, even given the anatomical fiducial PBR initial alignment, where

the LRS scan of the anterior liver surface was aligned with the posterior surface. The

improvement in the surface alignment provided by the weighted patch ICP algorithm

is also visible in the registration for patient 1 shown in Figure III.10. Specifically,

the alignment near the umbilical fissure is significantly improved relative to the ICP

registration result. Similar to the results for patient 1, the alignment provided by

the weighted patch ICP algorithm for patient 5 seems to be an improvement in com-

parison of that provided by the traditional ICP method (see Figure III.14). This is

shown, specifically, by the alignment near the region of the umbilical fissure between

segments III and IV of the liver surface. The improved alignments for patients 1, 2,

and 5 using the weighted patch ICP algorithm is also supported by the lower feature

error results shown in Tables III.3 and III.4.

Clinical Data Robustness Trials

The clinical robustness results for the ”small scale” perturbation trials are sum-

marized in Table III.5. Additionally, a histogram representation of the ”small scale”

perturbation experiments over all 250 trials for each registration algorithm with re-

spect to RMS residual is shown in Figure III.16. For reference, the RMS residual of
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Figure III.10: Clinical results for Patient 1 showing visualizations of the ICP registra-
tion (a-b) and patch ICP registration using a single (falciform) patch (c-d) initialized
using the anatomical fiducial PBR, as well as patch ICP registration using multi-
ple patches (falciform and inferior ridge) given no initial alignment registration (e-f).
The LRS and ICP inferior ridge and falciform patches are highlighted for the ICP
and patch ICP registrations in (b,d,f). The ICP registration shows an apparent mis-
alignment which is corrected via the proposed method.
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Figure III.11: Clinical results for Patient 2 showing visualizations of the ICP registra-
tion (a-b) and patch ICP registration using a single (falciform) patch (c-d) initialized
using the anatomical fiducial PBR, as well as patch ICP registration using multiple
patches (falciform and inferior ridge) given no initial alignment registration (e-f). The
LRS and ICP falciform patches are highlighted for the ICP and patch ICP registra-
tions in (b,d,f). The ICP registration shows a gross misalignment which is corrected
via the proposed method.
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Figure III.12: Clinical results for Patient 3 showing visualizations of the ICP registra-
tion (a-b) and patch ICP registration using a single (falciform) patch (c-d) initialized
using the anatomical fiducial PBR, as well as patch ICP registration using multiple
patches (falciform and inferior ridge) given no initial alignment registration (e-f). The
LRS and ICP falciform patches are highlighted for the ICP and patch ICP registra-
tions in (b,d,f).
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Figure III.13: Clinical results for Patient 4 showing visualizations of the ICP registra-
tion (a-b) and patch ICP registration using a single (falciform) patch (c-d) initialized
using the anatomical fiducial PBR, as well as patch ICP registration using multiple
patches (falciform and inferior ridge) given no initial alignment registration (e-f). The
LRS and ICP falciform patches are highlighted for the ICP and patch ICP registra-
tions in (b,d,f).
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Figure III.14: Clinical results for Patient 5 showing visualizations of the ICP reg-
istration (a-b) and the patch ICP registration using a single (falciform) patch (c-d)
initialized using the anatomical fiducial PBR, as well as patch ICP registration using
multiple patches (falciform and inferior ridge) given no initial alignment registration
(e-f). The LRS and ICP inferior ridge and falciform patches are highlighted for the
ICP and patch ICP registrations in (b,d,f). The ICP registration shows an apparent
misalignment which is corrected via the proposed method.
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Figure III.15: Clinical results for Patient 6 showing visualizations of the ICP registra-
tion (a-b) and patch ICP registration using a single (falciform) patch (c-d) initialized
using the anatomical fiducial PBR, as well as patch ICP registration using multiple
patches (falciform and inferior ridge) given no initial alignment registration (e-f). The
LRS and ICP falciform patches are highlighted for the ICP and patch ICP registra-
tions in (b,d,f).
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the ”gold standard” ICP registration in this case was found to be 3.4 mm, which is

shown in Figure III.7. Based on the distribution of RMS residuals shown, a ”failed”

registration was determined to be one which yielded an RMS residual of greater than

5.0 mm. The mean RMS values >5.0 mm for the ICP and patch ICP using a single

feature were found to be 6.6±0.9 mm (N = 63) and 15.9±4.8 mm (N = 22), respec-

tively. Similar to that shown by the results of the phantom ”small scale” robustness

trials, the traditional ICP algorithm was shown to have a higher ”failure” rate than

both the single feature and multiple feature patch ICP algorithm. Further, over the

”successful” registrations the mean RMS residual provided by the ICP algorithm is

lower than either the patch ICP using a single feature and using multiple features.

The higher RMS residuals over the successful trials is expected for the patch ICP

algorithm based on the fact that utilizing the salient features imposes constraints on

the final alignment.

Registration Success Residual Residual (Success)
method (No.) (mm) (mm)

ICP 187 (74.8%) 4.2±1.4 3.4±5e-4
PICP 228 (91.2%) 4.7±3.8 3.6±0.014
PICP2 250 (100%) 3.7±0.05 3.7±0.1

Table III.5: Summary of results for the ”small scale” perturbation robustness trials
using the clinical data set shown in Figure III.7 and histogram representation in
Figure III.16. The number of successful trials (out of 250), mean residual over all
trails, and mean residual over ”successful” trials is reported for each registration
method. A ”successful” trial is determined as that which yields a RMS residual of
less than 5.0 mm over the entire surface. For reference, the ”gold standard” ICP
registration (shown in Figure III.7) yielded an RMS residual of 3.4 mm.

Table III.6 shows a summary of the results of the ”large scale” perturbation trials

for the clinical data and Figure III.16 depicts a histogram representation of the RMS

residual data obtained by the 250 trials of the ”large scale” perturbation experiment

over the three registration methods. As with the ”small scale” trials, a ”failed”

registration was defined as that which yielded an RMS residual of greater than 5.0
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Figure III.16: Histogram representation of the RMS residual data obtained from
”small scale” (top) and ”large scale” (bottom) robustness trials performed on clinical
data (Patient 3). The ”gold standard” ICP registration is shown in Figure III.7 and
this registration yielded an RMS residual of 3.4 mm. Note the drastic improvement
in robustness provided by the patch ICP method with multiple features (PICP2).
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Registration Success Residual Residual (Success)
method (No.) (mm) (mm)

ICP 30 (12.0%) 7.3±2.6 3.3±0.2
PICP 93 (37.2%) 8.9±5.6397 3.6±0.01
PICP2 249 (99.6%) 3.7±0.5 3.7±0.01

Table III.6: Summary of results for the ”large scale” perturbation robustness trials
using the clinical data set shown in Figure III.7 and histogram representation in
Figure III.16. The number of successful trials (out of 250), mean residual over all
trials, and mean residual over ”successful” trials is reported for each registration
method. A ”successful” trial is determined as that which yields a RMS residual of
less than 5.0 mm over the entire surface. For reference, the ”gold standard” ICP
registration (shown in Figure III.7) yielded an RMS residual of 3.4 mm.

mm. The mean RMS values for ”failed” registrations for the ICP and patch ICP using

a single feature were found to be 7.9±2.2 mm (N = 220) and 12.0±4.9 mm (N = 157),

respectively. The results shown in TableIII.6 and Figure III.16 provide similar results

as those shown in both the phantom and clinical robustness trials. Based on the

incidence of the ”failed” registrations, the patch ICP implementation, specifically the

one that utilized multiple features, provides a much more robust method with which

to achieve reasonable alignments. However, in the ”large scale” trials, the multiple

feature weighted patch ICP implementation failed on one of the trials. By modifying

the algorithm parameters (wPBR,max = 4000 and α = 0.001) for the particular random

perturbation transform that resulted in a failure, it was found that the multiple feature

patch ICP algorithm was able to achieve a reasonable alignment for this case.

Discussion

Weighted Patch ICP Robustness and Validation

The data presented from both the phantom and clinical studies provide strong

evidence that the proposed weighted patch ICP algorithm is more robust to poor

initial alignment than the traditional ICP method. Further, it is reasonable to con-

clude from this work that by including the multiple features (falciform and inferior
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ridge) and the correct algorithm parameters, the weighted patch ICP algorithm can

provide alignments under virtually any possible initial pose routinely experienced

during surgery. The ability to circumvent the need to provide an initial alignment

registration is quite powerful in the case of IGLS, since the determination of this

transformation is the most error prone step within the current process. As mentioned

previously, the accurate determination of homologous, rigid anatomical landmarks is

complicated in the case of IGLS due to amount of deformation and non-rigid move-

ment of the liver upon laparotomy and mobilization. A success or failed registration

for the phantom robustness trials is much easier to determine than for the clinical ex-

periments since the liver phantom data set includes a set of target points from which

the TRE of the transformations can be determined. Being that we do not currently

have the ability to acquire accurate sub-surface targeting data in a clinical setting,

the RMS residual between the two surfaces is the only metric that can be used to

evaluate the alignments in the clinical data experiments.

While the RMS residual between two surfaces is not the most objective measure

of registration accuracy, it is highly unlikely that registrations resulting in large RMS

residuals correspond with reasonable alignments. While it is quite possible that in-

correct alignments may still provide small RMS residuals (as shown by the RMS

residuals of the ICP alignments for patient 2 in Tables III.3 and III.4), the compar-

atively large number of high RMS residual alignments resulting from the traditional

ICP implementation under condition of both ”small scale” and ”large scale” pertur-

bation in initial pose (shown in Table III.5, Table III.6, and Figure III.16) suggests

that the proposed weighted ICP algorithm is much more robust. Further, the patch

ICP registration algorithm provided much improved registrations for three of the sets

(patients 1, 2, and 5) of clinical data where the traditional ICP method resulted in

obvious misalignments as determined by visualization and further indicated by the

significantly lower feature error measurements indicated in Tables III.3 and III.4.
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Algorithm Parameter Selection and Optimization

One of the primary advantages of the proposed algorithm is the use of the dynamic

PBR weighting scheme described by Equation III.3. This dynamic weight factor al-

lows for the registration to be significantly biased towards patch alignment at early

iterations, while utilizing this patch alignment as an anchor at later iterations. The

fact that the registration is so heavily biased towards the alignment of the patch re-

gions at the early iterations of the algorithm provides the means by which variations

in initial alignment are rendered less significant to the final outcome. Further, by

lowering the PBR weight factor of the patch points at later iterations the remaining

surface information is utilized to provide a more unbiased alignment of the surfaces.

Additionally, the dynamic weighting scheme also compensates for segmentation errors

in the delineation of exactly homologous patch regions. Since the non-patch regions

of the surfaces play a more significant role later in the registration process, the reg-

istration is given the opportunity to converge to a more globally correct alignment.

For the phantom and clinical robustness trials and registrations performed in

this work, all of the algorithm parameters were determined empirically via real-time

visualization of the behavior of the proposed registration method and retrospective

analysis of the registration results for the sample initial alignments of the phantom

and clinical data sets. Ultimately, the factors that dictate the parameters required for

the proposed weighted patch ICP algorithm to achieve reasonable alignments are the

quality of the initial pose and the relative fraction of source (i.e. LRS scan) feature

points to total source points. It stands to reason that the algorithm will require a

higher maximum PBR weighting factor (wPBR,max) and smaller relaxation parameter

(α) when the fraction of source patch points is relatively small and/or the initial

alignment is extremely poor.

In terms of parameter determination, the primary difference between the clinical
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and phantom data sets is the relative fraction of the source (i.e. LRS scan) data that

the anatomical features comprise. For example, the salient patch regions (falciform

and inferior ridge) for the phantom data comprise approximately 9% of the total

source points while these features represent only 4% of the total source points in the

clinical data set used in the perturbation studies. Based on the differences in the

relative fraction of patch points to total size of the LRS data between the phantom

and clinical data sets, it can be seen that if a smaller fraction of the source data is

comprised of patch regions then a larger value of the maximum patch PBR weight

factor (wPBR,max) and smaller value of the relaxation constant (α) are required to

achieve similar algorithm robustness.

In order to optimize the parameter selection for a given data set it is important to

take several points into consideration. As discussed in previous paragraph, the values

of the maximum patch PBR weight factor (wPBR,max) and the relaxation constant

(α) are directly dependent on the relative fraction of points that are contained in the

patch point data sets. It is important that α not be too small and that wPBR,base

not be too large, less the algorithm be too heavily biased to patch regions at later

iterations. Biasing towards the patch regions too heavily throughout the registration

process could lead to less optimal alignments since, in most cases, the source data (i.e.

LRS scan) will not contain data to represent the entire region delineated from the pre-

operative image set. Optimizing the value for the point correspondence weight factor

(wPC) is a bit more obvious, as the only negative effect of an extremely small value

for this factor would be to potentially increase negative effects of over segmentation

of the anatomical features in the LRS data or outliers contained in the source patch

data. These effects are more appropriately minimized by conservative segmentation

of the salient anatomical features in the LRS data.
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Segmentation Effects on Algorithm Performance

While the preliminary data is promising, a number of caveats exist with the pro-

posed algorithm in its current form. In contrast to the ease of accurately delineating

the falciform region within the LRS data, the ability to accurately segment the fal-

ciform region, based on the surface groove, is highly dependant on patient anatomy,

image quality, and the quality of segmentation. As one would expect, if the segmenta-

tions of the salient anatomical features are grossly inaccurate, then the algorithm will

most likely provide grossly inaccurate alignments. Based on the current implementa-

tion, however, favorable results can be facilitated by being a little more conservative

in the segmentation of the LRS anatomical patches while being a bit more liberal in

the pre-operative anatomical feature delineation. As long as homologous target patch

points exist for all source patch points (the opposite does not have to be true), the

current implementation will not cause a bias towards an incorrect registration.

Concerns Regarding Intra-operative Implementation

Being that the proposed algorithm requires additional point searches to be per-

formed at each iteration of the algorithm, one of the potential concerns for intra-

operative implementation is the increase in computation time. In order for the guid-

ance information provided by IGLS to be relevant and useful, the ability to compute

the registration must be as fast as possible. In order to address this concern, k-d

dimensional trees were used to decrease point search times [162, 61] for both the ICP

and weighted patch ICP implementations used in the aforementioned studies.

To more accurately characterize the effects of the computational overhead imposed

by additional point searches, the time to solution for each trial within the robustness

studies performed for both the clinical and phantom data sets were recorded. A

summary of the timing data is shown in Table III.7, which displays the average times

to solution both in terms of total time (in seconds) and in time per iteration (in
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”Small scale” trials ”Large scale” trials
Registration Phantom Clinical Phantom Clinical

method (sec / sec/itr) (sec / sec/itr) (sec / sec/itr) (sec / sec/itr)
ICP 60.77 / 0.24 70.73 / 0.37 59.06 / 0.24 92.04 / 0.37

PICP 76.77 / 0.34 88.99 / 0.54 108.09 / 0.38 141.87 / 0.62
PICP2 43.60 / 0.36 52.70 / 0.51 52.08 / 0.38 54.77 / 0.54

Table III.7: Comparative summary of the time to solution of each algorithm under
the condition of ”large scale” and ”small scale” perturbations for both phantom and
clinical data sets. The reported solution times were averaged over the successful
registration runs for each trial and reported both as mean total time as well as mean
time per iteration for each algorithm.

seconds per iteration). In order to remove bias from failed registrations, only the

times to solution for the registrations that were determined as successful (based on

the aforementioned criteria) were reported. For reference, the robustness trials were

performed on a Dell XPS with Pentium D 3.20 GHZ CPU and 2 GB RAM, which is

not unlike what would be used during an IGLS procedure.

The results shown in Table III.7 show the increased computation for the weighted

patch ICP algorithm using both single and multiple patch regions normalized per

iteration, with respect to the ICP results, is modest. The increase in total com-

putation time imposed by the weighted ICP algorithm using a single patch is only

significantly greater than the ICP results for the ”large scale” perturbation experi-

ments. Additionally, the total time to solution for the weighted patch ICP algorithm

using multiple patch regions over all trials was lower than the results provided by

ICP. While the computation time per iteration is greater for the weighted patch ICP

algorithm, when multiple patch regions are used the number of iterations required to

reach a given convergence criterion is lowered, thus facilitating faster solution times

when compared with ICP.

A second concern of utilizing the proposed method in the clinical setting is the ad-

ditional time required to delineate the pertinent anatomical features from either LRS
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data or via digitization with a tracked probe. Since the utilization of the proposed

method with two salient features (falciform ligament and inferior ridge) alleviates the

need for an anatomical fiducial-based initial alignment, we feel that the manual selec-

tion of the salient anatomical features in the LRS data will have a negligible influence

on the time and work flow for intra-operative data acquisition. In essence, there will

be no increase in the OR time requirements for data acquisition while a consider-

able increase in algorithm robustness will be achieved. Furthermore, utilization of

differential geometry similar to the crest line extraction work published by Monga

et al. may provide an avenue for the automatic delineation of the salient anatomical

features, particularly the inferior ridge regions [101].

Conclusion

The results of the proposed weighted patch ICP algorithm suggest that this

method is more robust to poor initial alignments than the traditional ICP based

approach. As shown in several of the clinical data sets, the proposed weighted ICP

method was able to achieve reasonable alignments under conditions where the tradi-

tional ICP method failed. Additionally, the use of multiple anatomical features (i.e.

falciform ligament and inferior ridge) showed increased robustness in both the clinical

and phantom perturbation trials, provided reasonable alignments for all clinical data

sets under conditions where no initial pose transformation was provided. As such, the

proposed method, using multiple anatomical features, allows the ability to neglect the

use of an anatomical fiducial PBR initial registration used in current IGLS methods.

Further, the incorporation of the proposed algorithm does not impose any additional

computational time and requires a trivial additional effort, in terms of intra-operative

data collection and pre-operatively data processing, relative to the current technique.
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CHAPTER IV

MANUSCRIPT 2 - ORGAN SURFACE DEFORMATION
MEASUREMENT AND ANALYSIS IN OPEN HEPATIC SURGERY:

METHOD AND PRELIMINARY RESULTS FROM 12 CLINICAL
CASES

Abstract

The incidence of soft tissue deformation has been well documented in neurosur-

gical procedures and is known to compromise the guidance information provided

by current image-guided surgery systems. Within the context of image-guided liver

surgery (IGLS), no detailed method to study and analyze the observed organ shape

change between pre-operative imaging and the intra-operative presentation has yet

been developed. Contrary to the studies of deformation in neurosurgical procedures,

the majority of deformation in IGLS is imposed prior to the resection and is due to

laparotomy and mobilization. As such, methods of analyzing the organ shape change

must be developed to utilize the sparse intra-operative data (e.g. laser range scan

(LRS) surfaces) acquired with the organ in its fully deformed shape. To achieve this

end we utilize a pair of deformation metrics, mean curvature difference and signed

closest point distance, computed based on the rigid alignment of the intra-operative

LRS data with organ surfaces generated from the pre-operative tomograms. The rigid

alignment between the intra-operative LRS surfaces and pre-operative image data was

computed with a feature weighted surface registration algorithm. In order to compare

the deformation metrics across patients, an inter-patient non-rigid registration of the

pre-operative CT images was performed. Given the ability to determine inter-patient

liver registrations, a statistical analysis was performed to determine the potential

similarities in the distribution of measured deformation between patients who had

undergone similar procedures. In addition to the statistical analysis, a qualitative
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comparison of the deformation metric distributions was also performed. The results

of the statistical and qualitative analysis suggests a similarity in imposed deformation

within similar procedure types.

Introduction

The goal of image-guided surgery is to utilize pre-operatively acquired tomo-

graphic images interactively within the surgical setting. In order for this to be possible

a mathematical mapping, or registration, of the intra-operative presentation to the

pre-operative image volume is required. A significant body of work has been dedicated

to exploring methods to provide this registration within the context of open hepatic

procedures [30, 38, 72, 73] allowing for the realization of image-guided liver surgery

(IGLS) [27]. However, the de facto methods of obtaining the image-to-physical space

registration for IGLS have required the use of rigid body assumptions. These assump-

tions are known to be invalid due to the incidence of soft tissue deformation. For

example, brain deformations (commonly referred to as ”brain shift”) have been well

documented within the literature and have been shown to compromise the guidance

information provided by commercially available neurosurgical image-guidance sys-

tems [124, 92, 75, 93]. Unfortunately, the measurement techniques applicable within

the neurosurgical context such as the tracking of cortical features do not translate to

IGLS readily since a large component of the observed liver deformation does not have

a time varying component.

Within this study we will rely on the use of intra-operatively obtained laser range

scan (LRS) data of the liver surface acquired after the performance of laparotomy

and liver mobilization. Due to the nature of open-hepatic procedures, in contrast to

neurosurgical procedures, the majority of deformation occurs before the acquisition of

surface data via LRS is possible. Since distinct features are not present within IGLS,

new techniques of visualization and analysis to properly understand the nature of the
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shape change experienced in open hepatic procedures will be developed and tested in

this work.

Related Work

While a number of techniques have been proposed for the compensation of intra-

operative deformation, a proper study of this behavior has not been performed within

the context of IGLS. As mentioned previously, a number of studies have been per-

formed to measure and analyze the brain shift encountered during neurosurgical pro-

cedures. Roberts et al. performed a quantitative analysis of cortical displacement in

28 cases by tracking specific features on the brain surface throughout the procedures

[124]. Maurer et al. performed similar studies where point features on the brain sur-

face were digitized wi anth optical tracking system immediately upon durotomy and

after performing functional mapping prior to resection [92, 75]. Additional studies

were performed by Maurer et al. utilizing an interventional MR scanner to collect

images throughout the surgical procedure [93].

The analysis of deformation for hepatic procedures has mainly been focused on

the motion due to respiration. Cash et al. tracked the motion of a point on the liver

surface due to respiration using an optically tracked pen probe during an open liver

resection case [27]. A study by Shimizu et al. has been performed to analyze the

motion of a liver tumor due to respiration via high speed MR imaging to estimate

potential errors inherent associated with radiotherapy procedures [137]. Rohlfing et

al. utilized gated, serial MR images to analyze respiratory motion via deformable

registration methods [126].

Objective

The objective of this study is to develop a protocol to determine the extent and

nature of intra-operative soft tissue deformation encountered in open liver surgical
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procedures. Due to the nature of deformation in open hepatic procedures, intra-

operative imaging can only be acquired after a majority of the deformation has oc-

curred. As such, previous methods of tracking features throughout the surgery are

not feasible in this case and new methods of determining the organ shape change must

be developed. Further, the measured deformation will be analyzed to determine the

similarities between the measured deformations between similar resection procedures.

The performance of this measurement and analysis will provide valuable insight for

the development of methods which will facilitate the intra-operative compensation of

soft tissue deformation for IGLS procedures. To the best of our knowledge, this is the

first study to report the extent of intra-operative liver deformations due to surgical

manipulation.

Methods

Patient Overview

Institutional Review Board (IRB) approval was obtained for the intra-operative

acquisition of liver surface data as well as the use of the ORION surgical navigation

system [145] at Barnes-Jewish Hospital in St. Louis, MO. A summary of the patient

information for 12 of the cases performed between November 2004 and August 2006

for which intra-operative data was acquired is shown in Table IV.1.

Pre-Operative Image Acquisition and Processing

For each of the patients included in this study, CT image volumes were acquired

approximately one week prior to performance of the surgical procedure (SOMATOM

Sensation 64, Siemens Medical Solutions, Munich, Germany). A triphasic imag-

ing protocol was employed for acquisition of arterial phase, venous phase, and non-

contrast liver parenchymal tomographic volumes. The venous phase image sets, which
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Case Age Sex Pathology Surgical Procedure
1 42 F T2 staged tumor in

gallbladder fossa
Exploratory laparotomy including mul-
tiple wedge liver and peritoneal biop-
sies; no resection performed

2 75 M T2 staged cholangio-
carcinoma with posi-
tive cystic duct mar-
gin

Resection of extrahepatic bile duct and
gallbladder bed including segments IV
and V

3 67 M Extensive hilar
cholangiocarcinoma

Resection of extrahepatic biliary tree
with bile duct tumor

4 81 M Suspected gallbladder
and bile duct cancer

Partial liver resection of IV-B and V
with en bloc gallbladder resection; re-
section of extrahepatic bile ducts

5 51 F Suspected left hilar
cholangiocarcinoma

Multiple tumor biopsies with bi-lobar
multifocal involvement in segments III,
V, and VI; no resection performed

6 65 M Cholagiocarcinoma
involving left bile duct

Left hepatectomy with caudate lobe re-
section; resection of entire extrahepatic
biliary tree

7 54 M Metastatic chon-
drosarcoma in left
lobe

Hepatic resection including segments II
and III

8 49 F Hilar cholangiocarci-
noma in left lobe

Exploratory laparotomy including right
lobe wedge biopsy; no resection per-
formed

9 66 M Metastatic colorectal
carcinoma in right
lobe

Right hepatectomy for removal of three
foci

10 36 M Hepatocellular carci-
noma in left lobe

Left hepatectomy performed midway
along segment IV for removal of tumor
involving segments II and III with par-
tial extension into segment IV

11 62 M Metastatic colorectal
cancer in right lobe

Exploratory laparotomy with multiple
right lobe and intraperitoneal tumor
biopsies

12 82 M Metastatic colorectal
cancer in segment VI

Resection of segment VI and wedge ex-
cision of segment V tumor

Table IV.1: Summary of patient information including the pathological and surgical
details for the cases performed under the IRB protocol approved at Barnes-Jewish
Hospital, St. Lous, MO.
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capture the hepatic venous and portal venous structures in high contrast, were used

for the analysis methods proposed in this study.

In order to facilitate the analysis of the intra-operative shape change, the organ

surfaces for each of the cases must be generated from the pre-operative image volumes.

A semi-automatic method developed by Dawant et al. [47, 115], based on the level set

method proposed by Sethian [134], was used to segment the liver from the surrounding

anatomical structures in the pre-operative tomograms. Isosurfaces were generated

from the liver segmentations via the Marching Cubes Algorithm [84] and smoothed

via radial basis functions (FastRBF toolkit, FarField Technology, Christchurch, New

Zealand) to facilitate accurate computation of geometric invariants.

Intra-Operative Surface Acquisition and Processing

The intra-operative surface data utilized for this study were acquired using an off

the shelf laser range scanner (LRS). The RealScan 200C (3-D Digital Corporation,

Bethel, CT) is capable of acquiring spatially dense 3-D point cloud surface represen-

tations of 500 lines per scene with as many as 512 samples per line and a spatial

resolution on the order of 0.5 mm at the typical range acquired in this study (45-60

cm). In addition to the geometrical data, a digital image is also acquired of the scan-

ners field of view. Via a pre-determined calibration, the color data from the digital

image can be texture mapped on the 3-D point cloud. A detailed validation of the

imaging capabilities of the LRS system used has been provided by Sinha et al. [139]

and Cash et al. [30] The liver parenchyma was segmented from the raw LRS data

and the FastRBF toolkit was utilized to provided a smooth, regularly sampled rep-

resentation of the intra-operative surface, which facilitated the computation of the

geometric invariants for use in the deformation analysis methods. An example LRS

data set is shown in Figure IV.1.
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Figure IV.1: The intra-operatively collected LRS data set acquired for Case 9. The
texture map of the OR scene is shown in panel (a), the raw LRS point cloud is shown
in panel (b), the segmented and texture mapped liver LRS surface data is shown panel
(c), and panel (d) shows the RBF interpolation of the texture mapped liver surface
shown in (c). The RBF interpolation is used to facilitate accurate computation of
surface curvature utilized in the deformation measurement.
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In accordance with the IRB protocol, the LRS data was acquired during pre-

planned apneic periods to minimize errors due to respiratory liver motion. The data

was acquired at end expiration during the respiratory cycle and the time within the

surgical procedure where the surface data was acquired is summarized in Table IV.2.

In addition to the timing of data acquisition, the coverage of the scan data is also

summarized.

Case Group Scan Time Scan Coverage
1 O post-laparotomy† III-V,VIII
2 O post-laparotomy† II-V,VIII
3 N/A pre-cholecystectomy II-V,VIII
4 N/A pre-cholecystectomy III,IV
5 B pre-cholecystectomy II-V,VIII
6 A post-cholecystectomy II-V,VIII
7 A post-laparotomy† II-V,VIII
8 B post-cholecystectomy II-V,VIII
9 C pre-cholecystectomy III-V,VIII
10 A pre-cholecystectomy III-V,VIII
11 C post-cholecystectomy III-V,VIII
12 C post-cholecystectomy III-V,VIII

Table IV.2: Summary of patient intra-operative LRS acquisition including the time of
the scan and the scan coverage. All of the scans were acquired prior to the performance
of liver resection. Note that the data for patient 3 and patient 4 were not included
in the deformation analysis studies due to the limited field of view obtained in the
intra-operative LRS data. †Patients with previously performed cholecystectomy.

To facilitate the inter-patient deformation measurements within similar proce-

dures, the patients were separated into three groups as noted in Table IV.2. The

three patients for which left hepatectomy procedures were performed were placed in

Group A. The two patients that presented with left hilar cholangiocarcinoma includ-

ing bi-lobular, multi-focal involvement were comprised Group B. The three patients

for which right lobe biopsies and resections were performed comprised Group C. Fi-

nally, the patients placed in Group O did not fit in the aforementioned groups and

were themselves different procedures. It should be noted that the data for patient 3
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and patient 4 were excluded from the deformation analysis due to the lack of sufficient

coverage of the acquired intra-operative LRS surface digitization.

Inter-Patient Deformable Registration

In order to effectively compare the measured intra-operative surface deformation

across the 12 patients, it is necessary to compute an inter-patient transformation

between the pre-operative CT image volumes. As the shape and volume of hepatic

anatomy is highly variable between patients, a non-rigid image registration method is

required. The adaptive basis algorithm (ABA) developed by Rodhe et al. was selected

to provide the required non-rigid transform for the intra-patient liver registration

required for this work [125]. This algorithm has been utilized to perform inter-patient

brain registrations to create atlases for the placement of electrodes in deep brain

stimulation procedures as well as to provide registrations between whole body images

of mice for utilization in a variety of temporal and longitudinal studies [83, 49, 50].

Similar to the registration method proposed by Rueckert et al. [127], ABA employs

a multi-scale, multi-resolution approach whereby the deformation field is modeled as

the linear combination of a set of basis functions irregularly spaced over the image

domain:

v(x) =
N∑
i=1

ciΦ(x− xi) (IV.1)

where x is the coordinate vector in <d with d being the dimensionality of the

image sets, Φ is a Wu radial basis function with compact support [161], and ci

represents the coefficient weighting for each of these basis functions. The values

of the coefficients are optimized such that the mutual information (MI) calculated

between the deformed source and target images is maximized . For ABA, a steepest
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gradient descent optimization algorithm is used to solve for the optimal basis function

coefficients.

To provide the initial alignment required for ABA, a surface based registration was

performed between the patient volumes via a rigid implementation of the iterative

closest point (ICP) algorithm [12]. The surfaces were extracted from the segmented

image volumes via the aforementioned segmentation and surface tessellation methods.

Once transformed by the rigid transformation, the segmented source image volumes

were then non-rigidly registered to the target volume via ABA. The ABA registra-

tion was implemented in a multi-level fashion with multi-resolution and multi-scale

components similar to that described by Li et al. [83] Three image resolution lev-

els were used for the inter-patient liver registrations (77×77×64, 154×154×128, and

308×308×255) and the scale of basis functions used varied from a 3×3×3 matrix for

the lowest resolution to a 50×45×46 matrix at the highest image resolution for a total

of 15 levels. The parameters with regards to the multilevel approach were determined

empirically.

For the purposes of this study, the segmented images were used to compute the

inter-patient liver registration due to anatomical differences with respect to gallblad-

der anatomy. The fact that some of the patients had prior cholecystectomies while

others presented with extremely distended gallbladders could confound the non-rigid

registration algorithm and result in incorrect deformation fields in the neighborhood

of the gallbladder fossa. The ABA registrations were performed such that all of the

pre-operative image volumes could be mapped to a single target space (i.e. patient 8

for this study) which facilitated the inter-patient statistical comparison of the distri-

bution of measured deformation.
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Rigid Surface Registration of Intra-Operative Data

Quantification of the surface deformation measured via the intra-operative LRS

data relies on the ability to register this data with the liver surface generated from

segmentation of the pre-operative tomograms. To provide this registration we utilize

the rigid surface salient feature registration algorithm developed in Chapter III. The

developed algorithm utilizes salient anatomical features that are easily identifiable

in the pre-operative tomogram and intra-operative LRS presentation [38] and was

inspired by the weighted geometrical features algorithm proposed by Maurer et al.

[90]. The salient features utilized for the performance of the rigid surface regions in

this study were the falciform ligament and inferior ridge along segments IV, V, and

VI. An example data set highlighting the feature segmentations and the resulting

salient feature preregistration is shown in Figure IV.2.

As mentioned previously, the lack of surface coverage provided by the LRS data

for patients 3 and 4 allowed the use of only a single patch region for the rigid surface

registrations performed for these cases. In these registrations, only the falciform

ligament or inferior ridge along segments IV, V, and VI was used.

Tissue Deformation Metrics and Analysis

The rigid surface alignment of the intra-operative LRS and pre-operative CT

liver surfaces was processed further by computing a signed distance metric. The

performance of point searches was used to facilitate the determination of both the

region of liver covered by the LRS data and the Euclidean distance calculations. The

directional sign for the distance value was determined by comparing the closest point

distance vector with the surface normal. The closest point values were computed

from target (i.e. CT liver surface) to source (i.e. LRS scan).

In addition to the use of a closest point distance metric, the mean curvature (H)

was also chosen as a geometric invariant for use in the quantification of observed soft
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Figure IV.2: The LRS surface data (a-b), CT surface data (c-d) and resulting weighted
patch ICP registration (e-f) for Case 8. The segmentations of the patch regions are
shown for the LRS and CT surfaces in panels (b) and (d), respectively. The falciform
region is highlighted in green while the inferior ridge of segments IV, V and VI is
shown in blue.
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tissue deformation. In order to approximate H at each point in the interpolated LRS

and CT surfaces, a quadric was fit to the local area around the point [146]. The local

quadric surface is parametrically represented as follows:

S(x, y, z)⇒ S(u, v) = (u, v, au2 + 2buv + cv2) (IV.2)

In a neighborhood of n surface points, the quadric patch can be expressed in

matrix form Ax = b:
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(IV.3)

The local quadric surface fit begins by using the surface normal n (provided by the

surface tessellation) at the inspection point and then drawing two orthogonal vectors

u and v on the tangent plane to serve as the u and v axes. The surrounding points to

be used in the quadric fit are projected into the (u,v) plane along the surface normal

n and the distance between the point in the (u,v) plane and the neighbor point is

also determined (h(u, v)). In this way, the surrounding points can be transformed

into the local (u,v,h(u, v)) coordinate system whereby a least squares quadric fit can

be performed via Equation (IV.3). The resulting parameters from the quadric fit can

then be used to compute H as follows:

H = a+ c (IV.4)

Once the curvatures were calculated at each point on both the pre-operative CT

and intra-operative LRS surfaces, differences between the values were computed.

Point correspondence for the difference calculation was determined via the closest
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point operator as with the signed distance measurements. For reference, a neighbor-

hood of four points was used for the quadric fit.

Given the inter-patient registration computed with the ABA algorithm, it is pos-

sible to compare the distribution of curvature difference and signed closest point

distance measurements across patients to determine the correlation between the intra-

operative surface deformation and surgical procedure. In order to compare the data

across all patients, the regions of the liver surface for which LRS data existed over

all cases had to first be computed. Note that we excluded two of the data sets (Case

3 and Case 4) from the computation of the overlap region due to insufficient LRS

surface coverage. The computed overlap region for the 10 included data sets mapped

on the target liver surface is shown in Figure IV.3.

Figure IV.3: Display of the overlap region (left panel) calculated via the inter-patient
registration on the target image surface. The overlap region contained 5065 points
and contained measurements within segments II, III, IV, V, and VI. The right panel
shows the Couinaud segment delineation for the patient provided by MeVis Medical
Solutions (Bremen, Germany).

The correlation coefficient (CC) image similarity metric was chosen to compare the

distribution of curvature difference and signed closest point distance measurements

78



across patients. The CC metric is not biased by absolute differences in the underlying

data and simply assumes a linear relationship. The CC value is determined via the

following equation:

CC =

∑
i (T (i)− T )(S ′(i)− S ′)[∑

i (T (i)− T )2∑
i (S ′(i)− S

′
)2
]1/2 ∀ i ∈ T ∩ S ′ (IV.5)

where S ′ is the transformed source data set, T is the target data set, and i rep-

resents the collection of overlapping surface points between the data sets. The mean

deformation metric values in the transformed source and target data sets calculated

for the overlap region are represented by S
′

and T , respectively.

The CC values were computed between each of the patient data sets over both

deformation metrics (shown in Tables IV.5 and IV.6). The CC values were then aver-

aged within the groups of patients for which similar procedures were performed (”in

group”). For statistical comparison, CC average values were computed for the groups

patients for which the procedures were different (”out group”). For the procedure

groups with more than two patient data sets (Group A and Group C), an indepen-

dent two-sample t-test for unequal sample sizes and assumed unequal variances was

performed between the ”in group” and ”out group” CC mean values (SigmaPlot,

Systat Software, Inc., Chicago, IL).

Results

Inter-Patient Deformable Registration

The results of the inter-patient deformable registrations provided by ABA are

summarized in Table IV.3. A qualitative visualization of registration result for a single

case in terms of surface renderings is shown in Figure IV.4. Overall, the closest point

distance measurement of error suggests that the registration results are of sufficient

accuracy to be viable for use in the statistical comparison of deformation across
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patients. The largest errors reported in Table IV.3 were for the registration performed

for Case 9 which was due to the presence of an atypical anatomical extension of liver

parenchyma visible at the left lateral segment which was not present in the target

liver (i.e. Case 8) or any other data set. Further, it should be noted that the closest

point distance measure of errors was much smaller when averaged over the region of

LRS data overlap as compared with the average computed over the entire surface.

This seems to indicate that the registration errors are minimal in the region where

the statistical analysis of the deformation was to be performed.

TARGET
Case 8

SOURCE SRC→TAR TAR→SRC Overlap
Case Mean±St.d. Max Mean±St.d. Max Mean±St.d. Max

1 0.94±0.48 6.05 1.11±0.80 15.55 0.94±0.37 2.78
2 1.20±0.59 5.01 1.26±0.88 14.21 1.08±0.46 2.59
3 0.85±0.58 15.99 0.81±0.60 13.76 N/A N/A
4 1.12±1.11 22.73 0.98±0.46 5.12 N/A N/A
5 1.80±1.10 15.41 1.73±1.03 11.96 1.04±0.55 3.29
6 1.11±0.83 17.27 1.13±0.65 13.23 0.98±0.42 3.15
7 0.95±0.49 6.90 0.93±0.65 12.88 0.83±0.34 1.99
9 2.22±5.54 57.06 1.30±0.63 5.32 0.88±0.36 2.53
10 0.94±0.93 24.39 0.94±0.41 6.78 0.76±0.29 2.12
11 0.83±0.35 4.99 0.83±0.77 16.48 0.70±0.28 2.35
12 0.86±0.37 4.81 0.83±0.52 11.65 0.71±0.29 1.91

Table IV.3: Summary of inter-patient deformable registration validation in terms of
closest point distance values. These values were calculated both from the transformed
source (SRC) surface to the target (TAR) surface and from the TAR to SRC surface.
Additionally, the closest point distance values were reported as averages over the
entire surface and over the region of overlap for which LRS data existed across all
patients (shown in last two columns). Note that the maximum closest point distance
values were significantly lower in the overlap region as compared with the entire
surface.

The qualitative registration results shown in Figure IV.4 echo the numerical sum-

mary in Table IV.3. While the ABA result does not provide definite point to point
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correspondence, the accuracy of the registration, particularly in the region of the an-

terior surface of segments III, IV, V, and VIII, indicate that it is sufficient for the

inter-patient statistical comparison. It should be noted that the maximum closest

point distance error, computed from deformed source surface to the target surface,

for this particular registration was approximately 5 mm. The region of largest mis-

alignment was located on the posterior surface and not in the overlapping region used

for the inter-patient deformation comparison.

Rigid Surface Registration and Deformation Quantification

The results of the weighted patch ICP rigid surface registrations between the

pre-operative CT data and intra-operative LRS liver surfaces for the cases included

in Groups A, B, and C are shown in Figures IV.5, IV.6, and IV.7, respectively.

Additionally, the computed signed distance and mean curvature differences using the

rigid surface registration are texture mapped on the pre-operative image surfaces

for qualitative evaluation of the observed deformations over the particular groups of

cases. A summary of the signed closest point distances for all clinical cases is shown

in Table IV.4 to indicate the range of intra-operative surface shift experienced in open

hepatic procedures.

Overall, the visualizations of the distribution of signed closest point distance in-

dicate a general similarity within the patient groups. While the absolute magnitudes

of the distances are different with each group there seems to be a general similarity

in the nature of the deformation. The qualitative results for the mean curvature dif-

ference calculation do not seem to show any discernable pattern within the patient

groups.

As with the other qualitative visualizations, the signed distance distributions for

the left hepatectomy cases (Group A) shown in the middle column of Figure IV.5

seem to display a similar pattern in the distribution of deformation. The pattern
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Figure IV.4: Example result of the inter-patient deformable registration between
Case 2 (source) and Case 8 (target). The the target and source surfaces for Case 8
and Case 2 are shown in panels (a) and (b), respectively. The transformed source
surface is shown in panel (d) and the closest point distances between the target and
transformed source surfaces textured mapped on the target surface is shown in panel
(c). A numerical summary of the visualized deformable registration result in terms
of closest point surface distances can be found in Table IV.3.
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Figure IV.5: Visualizations of the results of the rigid surface registration (left column)
for the three group A cases (i.e. left hepatectomies). The signed distance (middle
column) and curvature difference (right column) values texture mapped on the pre-
operative surfaces are also shown. For reference, the visualizations for case 6, case 7,
and case 10 are shown in the top, middle and bottom rows, respectively.
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Patient Mean±St.d. Median Range
1 -1.30±4.20 -2.01 18.15,-9.36
2 0.74±3.39 0.79 12.10,-7.60
3 -0.82±4.91 -1.85 19.73,-19.75
4 -0.60±4.32 -0.74 8.39,-10.90
5 -2.61±4.71 -2.74 12.79,-18.80
6 -1.17±4.54 -1.44 14.12,-13.92
7 1.61±8.41 0.77 22.89,-16.40
8 -3.87±4.27 -3.32 9.33,-15.21
9 -1.28±6.20 -1.31 18.86,-13.61
10 1.35±5.34 2.01 19.45,-15.61
11 0.06±5.5 -0.71 18.62,-12.52
12 0.67±4.73 -0.42 19.55,-7.62

Table IV.4: Summary of the signed closest point distance information over all 12
clinical cases. The values of mean, standard deviation, median, and range of distance
measurements are reported in mm units. Note that the range of surface error indicates
surface displacements on the order of 1 to 2 cm.

of the deformation across the Group A patients where the central scan region is the

location of a majority of the negative closest point distances and the peripheral scan

regions lie above the pre-operative surface indicate an overall flattening of the surface

in the intra-operative presentation. It should be noted that the overall shape change

indicted by the signed closest point distance distribution for Group A is very similar

to that for the Group C cases shown in Figure IV.7. However, the region where a

majority of the flatting of the organ is evident seems to be shifted closer to the left

lobe for the Group A cases and towards the right lobe of the liver for the Group C

cases.

While the general pattern of shape change with regards to the signed closest

point distance distribution for the left hilar cholangiocarcinoma patients (Group B)

is markedly different than the qualitative results shown for Group A and Group B,

the in group similarity in the distribution of this metric is evident. The peripheral

scan regions for the Group B cases yield negative closest point distances since the
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Figure IV.6: Visualizations of the results of the rigid surface registration (left column)
for the two group B cases (i.e. left hilar cholangiocarcinoma with bi-lobular, multi-
focal involvement). The signed distance (middle column) and curvature difference
(right column) values texture mapped on the pre-operative surfaces are also shown.
For reference, the visualizations for case 5 and case 8 are shown in the top and bottom
rows, respectively.
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intra-operative LRS data lies below the pre-operative surface. This seems to indicate

a substantially different change in the overall organ shape for the Group B patients

as compared with the other groups. Generally speaking, the intra-operative surface

seems to be generally more curved and less flat than the pre-operative organ shape.

However, the distribution of mean curvature differences for this patient group, as with

the others, does not show any significant qualitative similarity.

As mentioned, the general distribution of the signed closest point measure of

deformation for the Group C cases indicates a qualitative similarity in the organ shape

change for the right lobe biopsy and resection procedures. While the magnitude of

the measured distances varies within the patient group, signed distance distribution

indicates a generally flattening of the organ as in the Group A cases. The difference

in between the observed organ shape change in Group C, as compared with the Group

A cases, is the the shift to the right of the region of negative closest point distances.

The difference in the location of the flattening shape change is due, presumably, to

the differences in the mobilization methods used for these procedures. As with the

other groups, the distribution of mean curvature differences does not seem to indicate

a recognizable pattern within the patient group.

Summary of the Deformation Analysis

The CC values computed between all the cases over the computed overlap region

(shown in Figure IV.3) for the signed distance and curvature difference deformation

measurements are shown in Table IV.6 and Table IV.5, respectively. In order to

determine the similarity in measured deformation between similar surgical procedures,

the mean CC values were then computed within the three groups of clinical cases (i.e.

”in group” mean). Where possible, a statistical comparison was then performed with

the mean value of the out of group CC values. The mean CC values computed for
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Figure IV.7: Visualizations of the results of the rigid surface registration (left column)
for the three group C cases (i.e. right lobe biopsies and resections). The signed dis-
tance (middle column) and curvature difference (right column) values texture mapped
on the pre-operative surfaces are also shown. For reference, the visualizations for case
9, case 11, and case 12 are shown in the top, middle and bottom rows, respectively.
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both signed distance and curvature difference, as well as the results of the statistical

comparisons, are shown in Table IV.7.

Case 1 2 5 6 7 8 9 10 11 12
1 1.0 -0.63 -0.09 -0.42 -0.27 -0.02 0.77 0.42 0.22 0.22
2 xx 1.0 0.22 0.27 0.49 -0.16 -0.78 -0.39 -0.44 -0.17
5 xx xx 1.0 -0.35 -0.36 0.35 -0.24 -0.31 -0.06 -0.28
6 xx xx xx 1.0 0.50 -0.15 -0.43 0.02 0.17 0.28
7 xx xx xx xx 1.0 -0.38 -0.45 0.18 -0.21 0.19
8 xx xx xx xx xx 1.0 0.21 -0.39 0.60 0.08
9 xx xx xx xx xx xx 1.0 0.27 0.49 0.33
10 xx xx xx xx xx xx xx 1.0 0.17 -0.12
11 xx xx xx xx xx xx xx xx 1.0 0.39
12 xx xx xx xx xx xx xx xx xx 1.0

Table IV.5: Summary of the CC calculations for the signed closest point distance
measurements of surface deformation made on the points contained within the overlap
region shown in Figure IV.3. The data for cases 3 and 4 have been omitted since the
LRS data acquired intra-operatively did not contain sufficient surface coverage.

Case 1 2 5 6 7 8 9 10 11 12
1 1.0 -0.03 -0.08 -0.18 -0.06 -0.11 0.18 0.17 -0.14 0.00
2 xx 1.0 0.00 0.03 0.26 0.12 -0.01 -0.01 -0.08 0.27
5 xx xx 1.0 0.36 0.43 0.07 0.14 0.04 0.13 -0.01
6 xx xx xx 1.0 0.40 0.33 0.24 0.26 0.14 0.07
7 xx xx xx xx 1.0 0.17 0.09 0.15 0.22 0.13
8 xx xx xx xx xx 1.0 0.18 0.06 0.26 0.06
9 xx xx xx xx xx xx 1.0 0.13 0.10 0.00
10 xx xx xx xx xx xx xx 1.0 0.07 0.02
11 xx xx xx xx xx xx xx xx 1.0 0.02
12 xx xx xx xx xx xx xx xx xx 1.0

Table IV.6: Summary of the CC calculations for the curvature difference measure-
ments of surface deformation made on the points contained within the overlap region
shown in Figure IV.3. The data for cases 3 and 4 have been omitted since the LRS
data acquired intra-operatively did not contain sufficient surface coverage.

Similar to the qualitative visualizations, analysis of mean CC values computed for

the signed distance deformation measurement shows markedly larger evidence of a

correlation in the imposed organ shape change within similar procedures than those

reported for the curvature difference measure. While the results of the statistical
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Signed Distance Curvature Difference
Group In-Group Out-Group P Value In-Group Out-Group P Value

A 0.23±0.24 -0.09±0.32 0.11 0.27±0.13 0.13±0.14 0.12
B 0.35 -0.11±0.27 N/A 0.07 0.13±0.16 N/A
C 0.40±0.08 0.00±0.37 0.08 0.04±0.05 0.10±0.11 0.37

Table IV.7: Statistical analysis of the CC calculations for the signed distance and
curvature difference measurements made for the overlapped surface region. For each
group, ”in-group” and ”out-group” mean CC values are shown. Where applicable,
the p values for t-tests performed are also shown.

analysis of the CC data is not significant to a 95% confidence interval, the small

number of patient cases impedes the ability to make strong statistical conclusions

with regards to the analysis. However, the absolute magnitude of the difference

between the ”in group” and ”out group” CC means for the signed distance measure

implies a similarity in the imposed deformation among similar procedure types.

Discussion

The qualitative visualizations and quantitative measurements of intra-operative

surface deformation experienced in open hepatic procedures suggest a correlation be-

tween surgical procedure and the imposed organ shape change. In particular, the

proposed analysis shows a larger correlation in the distribution of the signed clos-

est point distance measure of intra-operative deformation within groups of similar

procedures than does that performed for the curvature measure of deformation. This

suggests that the mean curvature difference measure may not be an appropriate defor-

mation metric for IGLS due to the small magnitude of the computed curvature values

or that the proposed technique to compare the measured intra-operative deformation

may not be amenable to the curvature difference metric.

The fact that similar deformation patterns are reflected among similar resection

procedures provides a very powerful insight into potential solutions for the compensa-

tion for soft tissue deformation in IGLS. The proposed methods to compensate for soft
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tissue deformation in IGLS have primarily been to use the forward solution of FEM

liver models using a driving force computed via sparse intra-operative data [94, 28].

A number of other groups have focused on deformable registration techniques using

B-spline interpolation to warp to the pre-operative images to the intra-operative ul-

trasound acquisitions [104, 19, 82]. A common theme with these proposed methods is

the incurred time expense due to the computational complexity and user interaction

required to execute the algorithms during the surgical procedure. Given the simi-

larity in deformation measured between similar surgical procedures in open hepatic

surgery, it may be reasonable to utilize an atlas shape based approach wherein an

array of FEM solutions are computed pre-operatively given the a priori information

regarding the surgical procedure to minimize the intra-operative time associated with

deformation compensation. A promising atlas-based technique has been proposed for

model updating in image-guided neurosurgery [53] and a preliminary study has been

conducted to make these methods amenable to IGLS deformation compensation [39].

While the qualitative and statistical results outlined herein seem to suggest a cor-

relation between the imposed deformation and the surgical procedure, it is important

to note that all of the data acquired was for surgeries performed by a single surgeon

(W. Chapman). It seems reasonable that the deformations imposed on the organ per

procedure may vary based on the tendencies of the particular surgeon performing the

procedure. A clinical trial by Pathfinder Therapeutics, Inc. (Nashville, TN) where

LRS and other intra-operative digitizations are being acquired across three individ-

ual clinical sites (University of Pittsburg Medical Center, Memorial Sloan-Kettering

Cancer Center, and Shands at University of Florida Cancer Hospital) is ongoing and

will provide valuable data to supplement the findings reported here.
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Conclusions

We have developed a protocol suitable to determining the extent of intra-operative

surface deformation as well as establishing statistical similarity between patterns of

surface deformation and the surgical procedure performed. While the statistical rel-

evance of the computed results is limited due to the small number of patient data,

a correlation between surgical procedure and the distribution of signed closest point

distance measure of deformation seems quite likely. The results with respect to cur-

vature differences seem to be less significant with regards to statistical results but

qualitative observation suggests new methods of analysis may be required. Finally,

the impact of the individual surgeon with respect to surgical presentation of the organ

and the subsequent variations in deformation imparted needs to be studied further;

but nevertheless, it is encouraging that the deformations imparted by the individual

surgeon in this study seemed to express a trend across procedures of similar types.
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CHAPTER V

MANUSCRIPT 3 - ATLAS-BASED DEFORMATION
COMPENSATION USING SALIENT ANATOMICAL FEATURE

WEIGHTING FOR IMAGE-GUIDED LIVER SURGERY:
PRELIMINARY INVESTIGATION

Abstract

Similar to the well documented brain shift experienced during neurosurgical proce-

dures, intra-operative soft tissue deformation in open hepatic resections is the primary

source of error in current image-guided liver surgery (IGLS) systems. The use of bio-

mechanical models has shown promise in providing the link between the deformed,

intra-operative patient anatomy and the pre-operative image data. More specifically,

the current protocol for deformation compensation in IGLS involves the determina-

tion of displacements via registration of intra-operatively acquired sparse data and

subsequent use of the displacements to drive solution of a linear elastic model via the

finite element method (FEM). However, direct solution of the model during the surgi-

cal procedure has several logistical limitations including computational time and the

ability to accurately prescribe boundary conditions and material properties. Recently,

approaches utilizing an atlas of pre-operatively computed model solutions based on

a priori information concerning the surgical loading conditions have been proposed

as a more realistic avenue for intra-operative deformation compensation. Similar to

previous work, we propose the use of a simple linear inverse model to match the

intra-operatively acquired data to the pre-operatively computed atlas. Additionally,

an iterative approach is implemented whereby point correspondence is updated dur-

ing the matching process, being that the correspondence between intra-operative data

and the pre-operatively computed atlas is not explicitly known in liver applications.

Further, salient anatomical feature weighting and point correspondence biasing are
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utilized within the algorithm. Preliminary validation experiments of the proposed

algorithm were performed using both simulation and phantom data. The proposed

method provided comparable results in the phantom experiments with those obtained

using the traditional incremental FEM approach and yielded more accurate and ro-

bust results when salient feature information was utilized.

Introduction

Intra-operative soft tissue deformation in open hepatic resections is known to be

the primary source of error in current image-guided liver surgery (IGLS) systems

due to the rigid body assumptions required for image-to-physical space registration.

Numerous avenues have been proposed to aid in compensation for the experienced soft

tissue deformation, including the use of intra-operative tomography and ultrasound.

However, intra-operative computed tomography (iCT) and magnetic resonance (iMR)

imaging equipment is extremely expensive and cumbersome in the operating room

environment. Additionally, intra-operative ultrasound (iUS) provides low signal-to-

noise, sparse images of the patient’s anatomy. Ultimately, the goal for image-guidance

is to update the high contrast, high resolution pre-operative tomograms to match the

intra-operative presentation.

Mathematical models, which have been used to model the various mediators of

deformation in neurosurgery, have been proposed to provide the link between the pre-

operative and intra-operative presentations. While direct solution of mathematical

models, utilizing intra-operatively acquired displacements, during surgery seems to be

of promise in facilitating deformation compensation, more recent work in atlas-based

methods seems to provide a more realistic alternative. By simulating the range of

deformation sources in a pre-operatively computed set of model solutions, or atlas,
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and matching the intra-operative data to the atlas, compensation for soft tissue de-

formation can be performed with minimal user interaction and in a fraction of the

time needed to directly solve the model.

While useful guidance information is provided by the rigid, surface-based regis-

trations used in current IGLS procedures, it is quite clear that this information can

be compromised by intra-operative soft tissue deformation. The significance of soft

tissue deformation in the form of ”brain shift” has been widely documented in neuro-

surgical procedures [81, 105, 124, 75, 93, 103, 107] and has been observed in our initial

clinical experience in the performance of IGLS [27]. Figure V.1 illustrates the range

of soft tissue deformation imposed during clinical cases by the liver mobilization and

packing procedures performed prior to resection (see Chapter IV for a more detailed

summary of intra-operative deformation in IGLS).

Figure V.1: Results of the salient feature registration [38] and the corresponding
signed closest point distances for a single clinical case. The data set indicates the
potential for closest point distances between the pre-operative CT and intra-operative
LRS surfaces to be on the order of 2 cm which could likely compromise the guidance
information provided by IGLS systems.

Based on the observed incidence of soft tissue deformation in IGLS, we seek to
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provide compensation via an atlas-based approach similar to that originally proposed

by Davatzikos et al. [46] Atlas-based approaches to deformation compensation have

shown great promise in neurosurgery applications [52, 53] and we seek to expand on

this work such that it will be amenable to IGLS. It should be noted that the implemen-

tation of atlas-based deformation compensation techniques to IGLS presents a unique

challenge based on the fact that exact correspondence between the intra-operatively

acquired sparse data (i.e. laser range scan (LRS) surface) and the pre-operative liver

surface is not known. In neurosurgical applications, this point correspondence can be

determined and allows for the computation of intra-operative brain shift [139]. The

atlas-based techniques developed for neurosurgical applications are formulated based

on these computed displacements which is not possible within the context of IGLS.

Related Work

The use of LRS data to drive a bio-mechanical model of the liver was initially pro-

posed by Miga et al. [94] Building on this work, Cash et al. proposed an incremental

approach to solving the model [28]. Additionally, this work demonstrated the use of a

deformation identifying rigid registration (DIRR) which provided a more meaningful

alignment than a traditional ICP registration. Other groups, such as Brock et al.,

have used time dependent models to describe the liver motion due to respiration [21].

Recently, the use of atlas-based methods have been proposed for incorporation into

IGS systems for the compensation of deformation. Dumpuri et al. have proposed the

computation of a deformation atlas, provided by FEM solutions of a bio-mechanical

model under a variety of conditions determined by a priori knowledge of the surgical

procedure [53, 52]. The individual surface displacements predicted by the deformation

atlas are then matched with those determined via cortical surface tracking with LRS

using a constrained linear inverse model. Similar methods have been proposed by

Davatzikos et al. [46] wherein a statistical approach based on principal component
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Figure V.2: Flow chart illustrating the incremental model-updating procedure for
IGLS proposed by Cash et al.[28] The incremental model-update relies on multiple
forward solutions of the FEM equations within the OR and, more importantly, a
proper alignment of the intra-operatively acquired LRS data provided by the DIRR
algorithm.

analysis (PCA), inspired by the work of Cootes et al. [43, 44], is used to fit deformed

data to the atlas.

Objective

The objective of this work is to develop an atlas-based model updating method

that is amenable to the application of IGLS. Given the results of the intra-operative

liver deformation analysis in Chapter IV, the use of such a method seems appropri-

ate within the context of IGLS given the implied similarity in deformation observed

among similar surgical procedures. As mentioned previously, the development of such

a method represents novel work due to the lack of point correspondence information

as opposed to brain applications. While an initial version of the algorithm yielded

comparable results to those provided by Cash et al. [28], a propensity to converge to

local minima was observed [39]. Inspired by the increased robustness in rigid surface
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based registrations provided by the algorithm developed in Chapter III, the incorpo-

ration of salient anatomical feature weighting in the proposed method will be explored

to increase the robustness of the previously reported weighted patch ICP (PICP) al-

gorithm [39]. Preliminary validation of the proposed atlas matching algorithm will

be provided in the form of simulation and phantom experiments.

Methods

Overview

Figure V.3 outlines the four primary components of the proposed atlas-based

model updating method for IGLS. The first two components of mesh and atlas gen-

eration, highlighted in grey, are performed pre-operatively using the diagnostic tomo-

graphic image volume as well as a priori information about the surgical procedure.

This information is used to generate a relevant set of model solutions (i.e. model at-

las) that will fully encompass the range of deformations that will be observed during a

particular surgical procedure. The second two components (III and IV) of the defor-

mation compensation paradigm are performed intra-operatively. Within the context

of this work, the acquisition of intra-operative sparse data (d) will be assumed to

be LRS surface data of the liver. Further, we are utilizing the salient feature sur-

face registration developed within Chapter III as the method to initially register the

intra-operative sparse data to the pre-operative CT data. It should be noted that the

atlas-based method proposed herein would be amenable to other methods of intra-

operative data acquisition and registration (e.g. iUS within the context of a vessel

based registration framework).
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Figure V.3: Block diagram showing a general overview of the four primary compo-
nents of the atlas-based model updating technique proposed for IGLS. The regions
highlighted in grey indicated that they are performed pre-operatively while compo-
nents III and IV are performed during the surgical procedure.
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Model Equations and Boundary Condition Implementation

We begin with the assumption that the liver is an isotropic solid with a linear

stress-strain relationship as in the work of Cash et al [28]. The equation for a linear-

elastic 3D solid at static equilibrium is:

∇ · σ̃ = B (V.1)

where σ̃ represents the stress tensor and B represents the body forces acting on

the object. Hooke’s law relates mechanical stress tensor (σ̃) to the mechanical strain

tensor (ε̃) via the following relationship:

σ̃ = Cε̃ (V.2)

where C represents the material stiffness matrix, which is dependent on the

Young’s Modulus (E) and Poisson’s ratio (ν) material properties. Expanding Equa-

tion V.2 for the individual components of the stress tensor (σ̃) yields the following

relationships:

σx = λ(εx + εy + εz) + 2Gεx τxy = Gγxy

σy = λ(εx + εy + εz) + 2Gεy τxz = Gγxz

σz = λ(εx + εy + εz) + 2Gεz τyz = Gγyz

(V.3)

where σi is the normal stress in the i direction, τij is the shear stress on the i

face in the j direction, εi us the normal strain in the i direction, and γij is the shear

strain in the ij plane. The variables G and λ represent Lamé constants that can

be expressed in terms of the Young’s Modulus (E) and Poisson’s ratio (ν) by the

following equations:

G = E
2(1+ν)

λ = Eν
(1+ν)(1−2ν)

(V.4)

100



Normal strain (εi) and shear strain (γij) can also be expressed in terms of the

displacement vector (u = {ux, uy, uz}) as follows:

εx = δux

δx
γxy = δux

δy
+ δuy

δx

εy = δuy

δy
γxz = δux

δz
+ δuz

δx

εz = δuz

δz
γyz = δux

δy
+ δuy

δx

(V.5)

By combining Equation V.1 through Equation V.5, a system of partial differential

equations can be expressed in terms of the displacement vector (u):

E

2(1 + ν)
∇2u +

E

2(1 + ν)(1− 2ν)
∇(∇ · u) = B (V.6)

In order to solve the system equations in Equation V.6 over the liver mesh domain,

the Galerkin weighted residual method is applied using linear basis functions. Using

this technique, the system of equations reflecting the displacement vectors (u) at

each node in the tetrahedral mesh can compiled in matrix form using the following

relation:

Ku = B (V.7)

The driving force behind generating deformations with a FEM model is provided

by the prescription of the appropriate conditions along the boundary of the tetrahedral

mesh. Similar to the conditions described by Cash et al. [28], a set of three general

boundary condition types will be used in the creation of the liver deformation atlas.

The first type of condition we use is a Dirichlet zero displacement condition that is

used to signify fixed regions of the liver that do not experience any displacement.

This condition is generally prescribed to regions on the posterior surface of the right

lobe and is described mathematically by the following relation:
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u(x, y, z) = 0 (V.8)

The second type is condition used is a Dirichlet condition of specified non-zero

displacement. We use these conditions to model the liver packing performed prior to

resection and is typically prescribed to regions beneath the left lobe. The mathemati-

cal representation of this Dirichlet condition is similar to that shown in Equation V.8.

However, the right hand side contains a function of the specified non-zero displace-

ment. The final type of condition used in the liver model is a Neumann stress free

condition used to signify regions that are unrestricted by force. This stress free condi-

tion is prescribed to a majority of the liver surface and is represented mathematically

as follows:

∂u

∂n

∣∣∣∣∣
x,y,z

= 0 (V.9)

In the application of displacement boundary conditions for anatomical soft tissue

(i.e. the aforementioned Dirichlet conditions), it is often desirable to express the

movement of the boundary in a coordinate system that is relative the the shape of

organ of interest. A number of studies have shown that the specification of displace-

ment boundary conditions normal to the surface of interest can be quite helpful in

providing tissue-mimicking deformations [28, 94, 97]. One such strategy to imple-

ment a normal displacement condition is to convert the normal displacement to its

Cartesian representation:


dn

dt1

dt2


=


~x · ~n ~y · ~n ~z · ~n

~x · ~t1 ~y · ~t1 ~z · ~t1

~x · ~t2 ~y · ~t2 ~z · ~t2




dx

dy

dz


(V.10)

where ~n, ~t1, and ~t2 represent an orthogonal coordinate system with the normal (to
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the organ surface) and two orthogonal tangential axes, respectively. By utilizing the

inverse of the relationship shown in Equation V.10 a displacement specified normal to

the organ boundary can be imposed via it’s Cartesian components. However, using

the above relation, it is not possible to implement so called ”mixed” boundary con-

ditions. In certain scenarios it may be useful to allow an organ surface to slide along

a supporting plane tangent to the surface and not deform in the normal direction.

Additionally, it may also be useful to apply deformation in a direction normal to the

surface and also allow the tissue to slide tangent to the displacing surface (e.g. the

depression of a tissue surface with a retractor). These types of conditions require

stress-free conditions to be imposed tangent to (i.e. ~t1 and ~t2) the specified normal

displacement direction (~n):

σt1 = σt2 = 0, un = us (V.11)

where σt1,t2 are the stresses applied tangent to the organ surface and us signifies

the specified displacement normal the surface.

Being that the framework described by Equation V.10 does not posses the ability

to achieve the necessary degrees of freedom for ”mixed” boundary condition employ-

ment, the normal-tangential procedure described by Engelman et al. [54] is used. The

normal-tangential framework is performed by rotating the equations for the nodes of

interest via application of rotation matrices at the local element assembly level:

[R]i[K]i[R
T ]j{u}j = [R]i{b}i (V.12)

where pre-multiplication of by [R]i (the rotation matrix shown in Equation V.10

associated with the normal and tangential coordinate reference of the ith node) on

the left and right-hand side rotates the equilibrium equation and body force vector,

and the [RT ]j matrix rotates the displacement vector from the Cartesian coordinate
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frame into the normal-tangential frame. In Equation V.12, the i and j indices are

reference to the ith weighted residual equation and the jth displacement coefficient.

Deformation Atlas Creation

A primary factor in determining the success of atlas-based methods of registra-

tion is the process of atlas creation to ensure that the range of possible deformations,

based on the pre-operative plan for a particular patient and a priori knowledge of

surgical loading conditions, are contained within the atlas. The process of atlas con-

struction begins with the generation of a volumetric mesh of the liver which is derived

from the surface description provided by a segmentation of the pre-operatively ob-

tained tomographic image volumes. As in previous work, a semi-automatic method

developed by Dawant et al. [47, 115], based on the level set method proposed by

Sethian [134], was used to segment the liver from the surrounding anatomical struc-

tures in the pre-operative tomograms. The liver isosurfaces were generated from the

liver segmentations via the Marching Cubes Algorithm [84] and smoothed via radial

basis functions (FastRBF toolkit, FarField Technology, Christchurch, New Zealand).

Given the interpolated liver surface, we employ the algorithm described by Sullivan

et al. [148] to generate the tetrahedral volumetric liver mesh. Once the mesh has

been created, a set of boundary conditions, range of patient orientations (i.e. gravity

directions), and range of material properties are selected based on a priori informa-

tion about the surgical procedure. Once the set of conditions have been determined,

the model is run for each permutation of the sets of conditions and the deformed vol-

umetric and surface meshes for each model solution are then saved for incorporation

into the surface matching algorithm (see Figure V.3).
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Iterative Closest Atlas Algorithm

Once the set of model solutions have been computed and the deformed liver volume

meshes and surfaces have been compiled, the collected intra-operative data (i.e. LRS

scan of the liver surface) is then fit to the atlas via the Iterative Closest Atlas (ICAt)

Algorithm. Similar to the work performed by Dumpuri et al. [52, 53], a simple

linear model is used within algorithm to fit the intra-operative sparse data to the

pre-operatively computed atlas of model solutions. Due to the problem of point

correspondence mentioned previously, the linear model is formulated in terms of the

actual surface data, rather than in terms of computed displacements in the work of

Dumpuri et al., as follows:

Wf Sφ = d (V.13)

where Wf is an [(N×3)×(N×3)] diagonal matrix of point weighting parameters,

S is an [(N×3)×M ] model atlas matrix, φ is an [M×1] vector representing weighting

coefficients for each model solution, d is an [(N×3)×1] vector representing the intra-

operative data, M represents the number of model solutions contained in the atlas,

and N is the total number of nodes in the intra-operative sparse data acquisition d.

It should be noted that the Wf is populated on the diagonal with the weight factor

(wPBR) based on the indices of the salient feature points in d and with a value of

one for the non-feature indices. Similar to the work in Chapter III, the relaxation

schedule shown in Equation III.3 is utilized to reduce the salient feature weighting

within Wf as the algorithm proceeds. We choose a least squares formulation to obtain

the solution of Equation V.13, which is equivalent to the following formulation:

φ = (STWf S)−1STWf d (V.14)

Due to the fact that the condition number of the matrix STWf S is extremely
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large, the inverse formulation is V.14 is ill-conditioned in the sense of Hadamard

[152]. In order to stabilize the results of the solution of Equation V.14, we employ a

Tikhonov regularization process where we seek to find a φ to minimize:

Wf ‖Sφ− d‖2 + β2‖φ‖2 (V.15)

where ‖ · ‖ is the Euclidean norm and β is called the Tikhonov factor. The least

squares formulation in Equation V.14 now becomes:

φ = (STWf S + β2I)−1STd (V.16)

where I is the M ×M identity matrix. We chose to use the following Tikhonov

factor (β2) used by Jaochimowicz et al. [78] for the solution of a similar inverse

problem:

β2 = λ
[
1/N

N∑
j=1

STWf S(j, j)
]
[derr]

2 (V.17)

where the parameter λ is a weighting parameter that represents the magnitude of

β2, which is empirically determined based on the convergence of the problem. The

middle term represents the trace of the matrix STWf S, which improves the condi-

tioning of the matrix by reducing the gap between its higher and lower eigenvalue.

The final term ([derr]
2) is a relative mean square error term used to decrease the

weight of β2 as the method converges and is defined as follows:

derr =

√√√√∑N
i=1 |∆dk(i)|2∑N
i=1 |d(i)|2

(V.18)

where ∆di = Scp − d at iteration i and j is the point index. In other words,

derr represents the relative error between the true point location (d) and the atlas
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reconstructed point location (S) at each iteration. The difference in ∆di = Scp − d

between iterations is used as one of the stopping criteria.

Note that the expression in Equation V.13 inherently implies a known correspon-

dence between mesh surface points and the intra-operative surface data points. Being

that this correspondence is not known with any certainty within the context of IGLS,

an iterative approach is used whereby point correspondence is updated at each it-

eration following computation of the current atlas solution based on the values of

the weighting coefficients (φ) at the current iteration. Given an initial alignment of

the intra-operative data set (d) with the pre-operative CT surface using the salient

feature registration algorithm described in Chapter III, the algorithm proceeds as

follows:

Algorithm Initialization:

Step 1. Let iteration number i= 0. Initialize wPBR = wPBR,max and generate weight-

ing matrix Wf. Using the weighted point correspondence method (C∗d→S) de-

scribed in Equation III.1, compute the set of closest points to d on the pre-

operative CT surface mesh, denoted as Scp.

Step 2. Generate a new atlas matrix using the closest point indices computed Step

1, Scp and solve for the initial set of atlas weighting parameters (φ0) by solving

Equation V.16. Compute the current model solution using the relationship

S = Sφ0.

Weighted Point Registration Phase:

Step 3. Increment iteration count (i = i + 1). Compute the weighted rigid body

transformation (Td−S) between the data point set (d) and S using the weighted

point correspondence method (C∗d→S) as in the salient feature registration algo-

rithm developed in Chapter III.
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Step 4. Transform the data point set (d) using transformation computed in Step 3

and re-compute the closest points on S to the transformed data points d, which

we will call Scp, again using the weighted point correspondence method. Build

a new atlas matrix (Scp) containing only the indices of the points in Scp.

Linear Model Solution Phase:

Step 5. Compute the new set of weighting parameters (φi) by solving the linear

equation WfScpφi = dcp using the least squares formulation of Equation V.16.

Step 6. Compute new model solution using the relationship S = Sφi. Increment

wPBR using the relaxation schedule described in Equation III.3 and update the

weighting matrix Wf. Repeat Step 3 through Step 6 until i exceeds maximum

number or residual error tolerance (∆di) is satisfied.

Validation: Simulation Experiment

The initial validation experiments for the ICAt algorithm involved the perfor-

mance of a set of simulation trials. First, an atlas was created using one of the liver

meshes obtained from the segmentation of a clinical data set (shown in Figure V.4).

The following parameters were used in the generation of the atlas: initial gravity

vector (~g) = (0.7071,0.7071,0.0), Young’s modulus (E) = 15 kPa, Poisson’s ratio

(ν) = 0.47 and ρ = 1000.0 kg/m3. The distribution of boundary conditions used

to generated the atlas are shown in Figure V.4. The patient orientation was varied

to create a atlas of 121 solutions by rotation of ~g about the y- and z-axes where

the values of the rotation angles (θy and θz) were varied between -50◦ and 50◦ in

increments of 10◦. In order to generate a set of source data, simulating deformed

LRS scans, five separate deformed meshes were created by using randomly generated

rotation angles for θy and θz within the range of that used to create the atlas (i.e.

θy, θz ∈ [−50◦, 50◦]). Once the deformed meshes were created, a subset of the surface
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points, which were obtained by extracting the region corresponding with the coverage

of the acquired LRS data (shown in Figure V.4), were used to realistically simulate

the surface coverage of true intra-operative data. The falciform region was manually

segmented on the CT liver surface (shown in Figure V.4) and was used for biasing

the point correspondence determination and within the feature weighting described

previously. It should be noted that the parameters used to create the deformation

atlas were chosen such that considerable deformations would be imposed and not to

reflect parameters that would be used in the generation of a deformation atlas to

model actual intra-operative data.

Figure V.4: The liver surface mesh (left), the ICP registration result (center), and
the boundary condition distribution (right) used to create the deformation atlas for
the ICAt simulation experiments. The ICP registration result is shown to give the
reader an indication of the size of the simulated scans relative to the full liver surface.
For the distribution of boundary conditions, the green area corresponds with the
Neumann ”stress free” condition, the light blue area corresponds with the Dirichlet
”fixed” condition, and the dark blue region corresponds with the normal-tangential
Dirichlet ”fixed” condition where un = 0.

Once the deformation atlas and the sets of simulated LRS data had been gener-

ated, ICAt solutions were computed using both the initial formulation described in

[39] (denoted as ICAt1) and the atlas matching algorithm utilizing feature weighting

1This version of the algorithm does not include any biasing in the point correspondence using
the method described in Equation III.1 nor is any sort of point weighting utilized. The Wf term
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described herein (denoted as ICAt∗) using both the simulated LRS scan and full sur-

face data. The errors are reported over all nodes in the mesh prior to rigid registration

and after rigid surface registration using ICP and the PICP for the ICAt and ICAt∗

trials, respectively. Finally, errors are reported for the ICAt and ICAt∗ solutions using

both the simulated LRS scan and full surface. For reference, the maximum number

of iterations was set to 1000 and the convergence tolerance was set to 1e-6 mm. The

weighting factor (λ) for the Tikhonov regularization parameter in Equation V.17 was

set to 0.01. For the ICAt∗ trials, the following empirically determined parameters

were used: wPBR,max = 2000, wPBR,base = 1, and α = 0.001.

Validation: Phantom Experiment

A set of experiments were performed using an anthropomorphic liver model cre-

ated using Smooth-On Ecoflex 00-10 (Smooth-On, Easton, PA). The liver phantom

was rigidly attached to the plexiglass base used in Chapter III with a Teflon screw

through the phantom in the region of the vena cava on the posterior surface, which

serves as an anatomically realistic method to affix a region of the liver. The plexi-

glass base has a set of seven white Teflon spheres resting atop cylindrical holders of

various heights which surround the liver phantom. These spheres can be localized

in both CT and LRS images reliably and serve to provide landmarks for point-based

registrations (PBR) between the various imaging data collected (see Figure III.5 for

example images of the Tephlon spheres from CT and LRS modalities). A set (N =

43) of 1 mm steel beads (Boca Bearing Company, Delray Beach, FL) were distributed

throughout the phantom to serve as sub-surface targets for error calculation. Also, a

stripe of white paint was placed on the phantom in the falciform ligament region to

is removed from this formulation and the algorithm is initialized with ICP instead of the salient
feature based surface registration.
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facilitate the delineation of this anatomical feature in the LRS data. The positions

of the distributed steel beads within the liver phantom are shown in Figure V.5.

As shown in Figure V.5, two separate deformations were then imposed on the

phantom using a surgical towel: left lobe and inferior ridge of right lobe. A set of

CT (Mx8000, Phillips Medical Systems, Bothell, WA) and LRS (RealScan 200C,3-D

Digital Corporation, Bethel, CT) imaging data were acquired in the pre-deformed

state and both deformed states of the anthropomorphic phantom. The phantom

was segmented from the three image volumes and isosurfaces were generated. A

tetrahedral volumetric mesh was generated from the pre-deformed phantom isosurface

for use in deformation atlas generation. The sphere fiducials were localized in the

LRS scan using a least squares sphere fitting method described by Ahn et al. [1]

and the sphere centroids were computed in the CT image volume using a region

growing algorithm implemented within the Analyze software package (Analyze AVW

Version 6.0, Mayo Clinic, Rochester, MN). Centroids of the implanted steel targets

were localized using the method developed by Wang et al. [156]

To perform the ICAt algorithm on the phantom data sets, an atlas of model

solutions was created based on the a priori knowledge that left lobe and inferior ridge

of the right lobe would experience deformation as well as the fact that the liver region

near the vena cava would not experience any displacement. Using the volumetric

mesh created from the un-deformed phantom, a set of 20 boundary conditions were

created with varying regions undergoing normal displacement corresponding with the

knowledge of the imposed deformation. A sample of the boundary condition set is

visualized in Figure V.6. The imposed normal displacement (un) was varied from 5

mm to 4.5 cm in 5 mm increments which yielded an atlas of 180 model solutions.

In solving the linear elastic FEM, the following parameters were utilized: Young’s

modulus (E) = 270 kPa, Poisson’s ratio (ν) = 0.47 and ρ = 1040.0 kg/m3.

Upon generation of the deformation atlas, ICAt and ICAt∗ solutions were for the
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Figure V.5: Image of the anthropomorphic liver phantom with the left lobe (top row)
and right lobe (bottom row) deformations. A surgical towel was placed underneath
the left and right lobes of the liver phantom to simulate deformation imposed by
liver packing performed during surgery. The left column shows the phantom along
with the surrounding Tephlon spheres. The right column shows the distribution of
sub-surface targets (N = 43) within the phantom.
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Figure V.6: Visualizations of a sample of the boundary conditions used to generated
the atlas of model solutions for the phantom trials. The green area corresponds with
the Neumann ”stress free” condition, the light blue area corresponds with the Dirich-
let ”fixed” condition, the dark blue region corresponds with the normal-tangential
Dirichlet ”fixed” condition where un = 0, and the yellow area represents the regions
over which a non-zero normal displacement (un) is specified.
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two imposed deformations. As in the simulation trials, both the full surface and

partial surface (i.e. LRS surface data) were utilized. The ICAt and ICAt∗ algorithms

were initialized with their corresponding ICP and PICP rigid body surface registration

results. For reference, the maximum number of iterations was set to 1000 and the

convergence tolerance was set to 1e-6 mm. The weighting factor (λ) for the Tikhonov

regularization parameter in Equation V.17 was set to 0.01. For the ICAt∗ trials, the

following empirically determined parameters were used: wPBR,max = 2000, wPBR,base

= 1, and α = 0.001. The output displacements from the ICAt and ICAt∗ solutions

were then interpolated via the mesh basis functions to deform the sub-surface bead

locations for error analysis.

Finally, a small robustness trial was performed by perturbing the initial align-

ment provided by the rigid surface registration method over 25 trials to ascertain the

impact of initial alignment on the determination of a unique solution. The perturba-

tions were achieved via generation of a random six degree-of-freedom transformations

using a uniformly distributed random number generator to supply the rotation pa-

rameters (θx, θy, θz) and translation parameters (tx, ty, tz). The rotation parameters

were generated on the interval [-5◦,5◦] and the translation parameters were generated

on the interval [-5 mm,5 mm]. The results of the perturbation trials were compared

by direct observation of the absolute differences in the solution LSQ weighting factors

(φ) as well as via comparison of the sub-surface target errors.

Results

Simulation Experiments

The simulation trial results are shown in Table V.1 and Table V.2. The error values

reported describe the true error averaged over all of the nodes in the mesh using the

known point correspondence. The errors shown in the first column of both Table

V.1 and Table V.2 represent the mean error prior to any registration between the
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Full Surface Partial Surface
Trial Pre Post-ICP Post-ICAt Post-ICP Post-ICAt

(mm) (mm) (mm) (mm) (mm)
1 11.8(50.8) 7.6(24.2) 0.1(0.1) 9.9(22.8) 0.2(0.3)
2 14.1(59.2) 6.6(22.8) 0.3(0.3) 8.6(25.4) 5.0(10.3)
3 9.1(72.2) 8.3(23.6) 0.1(0.2) 10.3(22.3) 3.2(5.5)
4 13.3(57.9) 5.7(15.5) 0.1(0.2) 7.9(19.3) 5.0(8.5)
5 10.3(69.1) 8.0(23.7) 0.2(0.2) 10.2(23.0) 3.1(5.4)

mean 11.7(64.4) 7.2(22.0) 0.2(0.2) 9.4(22.6) 3.3(6.0)

Table V.1: Summary of simulation results depicting the node errors over entire 3D
mesh for each deformation trial using both the full surface and partial surface (i.e.
simulated scan) to drive the ICAt algorithm without point weighting (described in
[39]). The values shown in parentheses are maximum errors. The relatively high
error value for the partial surface solution of Trials 2 through 5 seem to indicate
convergence to a local minimum.

five randomly deformed meshes and the pre-deformed mesh with the maximum error

value shown in parentheses. The final four columns shown in Figure V.1 summarize

the results of rigid ICP registration using both the full surface and the simulated LRS

scan data along with the results of the ICAt algorithm using both full and partial

surface data in terms of mesh node error. In general, the ICAt solution provides a

significant decrease in the overall mesh error in comparison with a rigid registration.

However, the ICAt solutions obtained using only the simulated LRS scan data provide

significantly larger errors for four of the five trials. Similar to the results shown in

[39], this result seems to indicate that the algorithm has a propensity for local minima

convergence when sparse surface data is utilized.

The results shown in Table V.2 summarize the results of the rigid falciform region

based PICP registration using both the full surface and simulate LRS scan data

along with the result of the ICAt∗ algorithm using both full and partial surface data

in terms of mesh node error. When compared with the results show in Figure V.1,

it can be seen that algorithm provides significantly better results with respect to the

partial surface (i.e. simulated LRS scan) trials, where four of five trials are shown
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Full Surface Partial Surface
Trial Pre Post-PICP Post-ICAt∗ Post-PICP Post-ICAt∗

(mm) (mm) (mm) (mm) (mm)
1 11.8(50.8) 6.2(29.8) 0.1(0.2) 8.7(32.0) 0.1(0.3)
2 14.1(59.2) 5.8(28.3) 0.1(0.3) 11.8(30.7) 3.9(5.7)
3 9.1(72.2) 7.1(31.9) 0.04(0.1) 7.7(35.5) 0.2(0.4)
4 13.3(57.9) 6.2(17.6) 0.1(0.2) 8.4(22.3) 0.2(0.4)
5 10.3(69.1) 6.8(31.3) 0.1(0.2) 7.9(31.3) 0.1(0.3)

mean 11.7(64.4) 6.4(27.8) 0.1(0.2) 8.9(30.4) 0.9(1.4)

Table V.2: Summary of simulation results depicting the node errors over entire 3D
mesh for each deformation trial using both the full surface and partial surface (i.e.
simulated scan) to drive the ICAt algorithm. ICAt∗ denotes the version of the algo-
rithm utilizing patch point weighting. The values shown in parentheses are maximum
errors. The relatively high error value for the partial surface solution of Trial 2 seems
to indicate convergence to a local minimum.

to converge to results with sub-millimetric mesh errors. The large disparity between

the mesh errors reported between the ICAt∗ solution generated with full surface and

partial surface data for Trial 2 seems to indicate that the algorithm converged to an

inaccurate local minimum.

Phantom Experiments

Qualitative visualizations of the results of the phantom experiments are shown in

Figure V.7 and Figure V.8 for the right and left lobe deformations, respectively. The

visualizations display the closest point distance values between the deformed LRS

data and non-deformed CT surface after point based registration (PBR) using the

sphere fiducials. The closest point distances have been mapped on the non-deformed

phantom liver surfaces to provide an indication of the magnitude of deformation

imposed by the surgical towel packing and also to indicate the region over which

LRS data was acquired for the two deformation cases. Further, the closest point

distances computed between the deformed full CT surfaces and the non-deformed

phantom surface based on the rigid ICP and PICP rigid registration whereby the full

116



surfaces were transformed with the transformation generated by registration of the

deformed LRS data with the non-deformed CT phantom surface using the ICP and

PICP registration methods. Finally, the closest point distances are visualized upon

generation of solutions utilizing the ICAt and ICAt∗ methods via partial surface (i.e.

LRS data) and full surface input data.

The qualitative visualizations indicate that significant improvement in the surface

matching is achieved by utilizing the proposed atlas matching algorithm. In particu-

lar, the ICAt∗ algorithm converges to quite accurate results when the full deformed

surface, which is generated from the CT volumes of the deformed phantom, is utilized.

Also, the ICAt∗ algorithm achieves better results when compared with the original

ICAt implementation in the case where only partial surface (i.e. LRS data) is used.

While the results presented using the full deformed surface in determining the ICAt∗

does not have clinical relevance due to the inability to acquire the full liver surface in

a surgical environment, the results show the impact of surface coverage on the perfor-

mance of the algorithm. In general, the acquisition of more extensive intra-operative

surface digitizations will yield more accurate results.

The sub-surface target errors for the phantom trials are summarized in Table V.3

and Table V.4 for the ICAt and ICAt∗ trials, respectively. The target error mea-

surements displayed echo the qualitative visualization of the results. The solutions

provided by the ICAt and ICAt∗ algorithms when the full surface data was utilized

yields are quite accurate and provide a large improvement over the rigid registration

errors. The sub-surface target errors are lower in all cases for the ICAt and ICAt∗

solutions using full surface data which indicates the importance of intra-operative

surface coverage. Further, the solutions provided by the ICAt∗ for the partial LRS

surface for both deformation cases are more accurate with respect to the sub-surface

target measurements than the analogous solutions provided by the ICAt implementa-

tion without feature weighting. Visualizations of the distribution of target errors for
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Figure V.7: Qualitative results for the left lobe phantom deformation via display of
the closest point distance between deformed LRS data and non-deformed CT surface
after point based registration (PBR) based on sphere fiducials (a). Closest point
distance between the deformed full CT surface and non-deformed CT surface after
PICP registration (b) and ICP registration (c) using the deformed LRS data are
also shown. The closest point distances between deformed CT surface and the ICAt∗

solution surfaces computed with the full surface and LRS surface are shown in (d) and
(e), respectively. The closet point distances between the deformed CT surface and
the ICAt solution surface computed using the LRS data is shown in (f). For reference,
the mean residuals for the PBR, PICP registration, ICP registration, ICAt∗ solution
using full surface, ICAt∗ using LRS surface and ICAt solution using LRS data were
found to be 7.3 mm, 2.1 mm, 1.8 mm, 1.0 mm, 1.3 mm and 1.7 mm, respectively.
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Figure V.8: Qualitative results for the right lobe phantom deformation via display of
the closest point distance between deformed LRS data and non-deformed CT surface
after point based registration based on sphere fiducials (a). Closest point distance
between the deformed full CT surface and non-deformed CT surface after PICP reg-
istration (b) and ICP registration (c) using the deformed LRS data are also shown.
The closest point distances between deformed CT surface and the ICAt∗ solution
surfaces computed with the full surface and LRS surface are shown in (d) and (e),
respectively. The closet point distances between the deformed CT surface and the
ICAt solution surface computed using the LRS data is shown in (f). For reference,
the mean residuals for the PBR, PICP registration, ICP registration, ICAt∗ solution
using full surface, ICAt∗ using LRS surface and ICAt solution using LRS data were
found to be 8.5 mm, 2.0 mm, 1.9 mm, 0.9 mm, 1.2 mm and 1.3 mm, respectively.
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the left lobe and right lobe inferior ridge deformation trials are shown in Figures V.9

and V.10, respectively. Note that the target error distribution figures are displayed in

an analogous fashion to the qualitative visualizations shown in Figure V.7 and Figure

V.8.

Figure V.9: Visualization of the distribution of target errors for the left lobe phantom
deformation case. The distributions are shown for the PBR (a), PICP registration (b),
ICP registration (c), ICAt∗ solution computed with the full surface (d), ICAt∗ solution
computed with partial surface (ie. LRS data) (e), and ICAt solution computed with
partial surface (i.e. LRS scan) (f). The error distributions shown are analogous to
the qualitative results shown in Figure V.7.

As shown in Figures V.9 and V.10, the regions where the deformation was imposed

(via placement of a surgical towel) correspond with those that experienced the largest

sub-surface target displacement as indicated by the errors calculated via point-based

registration. The results of the rigid surface registrations (ICP and PICP) performed

using the LRS data for both deformation cases yielded the largest target errors in the
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Figure V.10: Visualization of the distribution of target errors for the right lobe phan-
tom deformation case. The distributions are shown for the PBR (a), PICP regis-
tration (b), ICP registration (c), ICAt∗ solution computed with the full surface (d),
ICAt∗ solution computed with partial surface (ie. LRS data) (e), and ICAt solution
computed with partial surface (i.e. LRS scan) (f). The error distributions shown are
analogous to the qualitative results shown in Figure V.8.
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right lobe of the phantom. Incidentally, the regions showing the largest sub-surface

error corresponded with those regions where LRS data was not acquired (shown in

Figures V.7 and V.8). Similar results are shown for the distribution of sub-surface

errors for the ICAt and ICAt∗ solutions using partial surface data where regions

further away from where LRS coverage was obtained yielded the largest sub-surface

target error. The error distributions for the ICAt∗ solutions computed with the full

surface data are more evenly distributed with the smaller errors closer to the vena

cava region where displacement are minimized due to the placement of the Teflon

screw.

Figure V.11: Histogram summary of the sub-surface target errors from the pertur-
bation trial (N = 25) preformed using the ICAt algorithm with partial surface (i.e.
LRS) data and the ICAt∗ algorithm with both full and partial surface data. For
reference, the mean target errors over the trials were found to be 4.8±1.1, 4.0±2.3,
and 1.8±0.1 for the partial surface ICAt, partial surface ICAt∗, and full surface ICAt∗

solutions, respectively.
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The results of the perturbation trial are summarized in histogram format in Figure

V.11 using the sub-surface error values calculated for each trial solution. As implied

by the sub-surface target results and confirmed by manual observation of the ICAt

and ICAt∗ solutions, the algorithm does not converge to a unique solution regardless

of variations in initial pose. The results for the perturbation trials for the ICAt∗

algorithm using the full surface data indicate that when extensive surface informa-

tion is available the algorithm becomes robust to variations in initial alignment with

respect to the sub-surface target errors. When only partial surface data is used, the

performance of the ICAt∗ algorithm seems to be more robust to variations in initial

alignment than the initial ICAt formulation. The behavior illustrated by the results

of the perturbation study indicate that the algorithm behaves in a similar fashion to

ICP-based surface registration methods which are also sensitive to initial pose. This

behavior seems to be due to the lack of known point correspondence within these

applications and the reliance on the closest point operator or some similar variant to

establish correspondence between the source and target data sets.

Discussion

The preliminary validation results from the simulation trials summarized in Table

V.1 and Table V.2 indicate that the incorporation of point weighting into the previ-

ously proposed ICAt implementation (described in [39]) improves the robustness of

the algorithm. In particular, for the trials in which the simulated LRS (i.e. partial

surface) data was used within the generation of ICAt and ICAt∗ solutions the feature

weighted implementation was able to converge to the true solutions for four of the

five trials. This is a large improvement over the previous ICAt implementation which

converged to the true solution for only a single one of the five trials. While the im-

proved robustness of the algorithm via incorporation of feature weighting is exciting,
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the reliance on full surface data for ensured convergence to an accurate solution sug-

gest that further improvements in the robustness of the algorithm must be developed

since an acquisition of the full liver surface intra-operatively is not feasible using the

current IGLS system [27].

The results of the anthropomorphic liver phantom study provide some compelling

preliminary results and also echoes the importance of surface coverage (i.e. the

amount of data acquired intra-operatively when the liver is in a deformed state)

on the ability of the proposed atlas-based deformation compensation technique to

provide accurate results. In the case of the trials using partial surface (i.e. LRS)

data, for both the qualitative surface distance and quantitative sub-surface target

measurements the largest error values were found in the far field regions in relation

to the location of the acquired LRS scans. While the results provided by the ICAt∗

method, which includes salient feature weighting and point correspondence biasing,

are more robust and accurate, it is clear that further improvements must be made to

ensure that robust and accurate solutions can be obtained in the situation where only

minimal intra-operative surface data is acquired. Further, the error values shown for

the ICAt and ICAt∗ solutions generated with the full surface data also indicate the

importance of the creation of model solution atlases that fully encompass the true

deformation imposed on the organ of interest. A potential, and very likely, source

of error over all of the phantom results is the fact that the generated model solution

atlas may not fully contain the imposed left and right lobe deformations.

While different phantoms were utilized in the two studies, the sub-surface target

error data shown in Table V.3 and Table V.4 indicate that the proposed atlas-based

approach provided comparable results to those achieved by the incremental FEM ap-

proach developed by Cash et al [28]. There are several key advantages of the proposed

atlas-based technique over the incremental FEM method. First, the incremental FEM

method uses the DIRR algorithm to initially orient the acquired surface data to the
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pre-operative mesh. It is not clear that the DIRR will be robust when clinical data

is utilized nor that the assumption that part of the acquired intra-operative data ex-

periences no deformation. In contrast, the salient feature registration (developed in

Chapter III) that is utilized within in the ICAt∗ implementation has been extensively

utilized in registrations of clinical data. Futher, the proposed atlas-based method has

the potential for faster intra-operative solution times and requires minimal user inter-

action in the surgical environment when compared with the traditional incremental

FEM approach.

While the the presented method uses a very simple linear objective function with-

out any constraining terms. Other work, such as that presented by Dumpuri et al.

[53], have demonstrated the effectiveness of incorporating shape constraints within

the linear model to improve accuracy. When making the transition from phantom and

simulation to clinical data, it will likely be necessary to incorporate such constraints

into the algorithm. Ultimately, the viability of utilizing an atlas-based approach to

model updating is reliant on the ability to pre-operatively compute complete atlases

that contain the full array of the deformations imposed by the various surgical loads.

Incomplete atlases will limit the utility of the proposed ICAt algorithm in terms of

yielding pertinent information to guide surgical procedures. Based on the analysis

performed in Chapter IV, there are notable similarities in the imposed deformation

across similar surgical procedures. However, it is unclear whether these similarities

hold true across different surgeons due to the subtle differences in employing various

surgical techniques. It may be needed to be both procedural and surgeon specific

model solution atlases to achieve the most robust and accurate results.
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Conclusion

The preliminary data provided in validation of the proposed atlas-based approach

to model updating in IGLS indicate that the method should provide a more real-

istic and viable method to compensate for soft tissue deformation during surgical

procedures. The ability to use a priori information to pre-compute an alas of model

solutions allows for faster solution times and circumvents the need to prescribe bound-

ary conditions within the OR is very exciting. However, the the amount of surface

coverage acquired when the liver is in the deformed state (i.e. intra-operative sparse

data) plays a large role in the performance of the proposed atlas-based deformation

compensation method and additional work will be needed to ensure robust and ac-

curate solutions for clinical data sets. By increasing our knowledge of the soft tissue

deformation imposed by the surgical procedure in open hepatic resections we hope to

be able to create more complete deformation atlases and ultimately provide model-

updated images for guiding these procedures. Future work will entail improving the

linear LSQ objective function by incorporating shape constraints to further improve

robustness and validation of the proposed method using clinical data sets.
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CHAPTER VI

SUMMARY

The research described within the previous chapters presents a significant ad-

vancement to the field of image-guided liver surgery (IGLS) via the incorporation

of anatomical features that can be reliably identified both in the pre-operative and

intra-operative image data. In Chapter III, the utilization of these features has been

shown to vastly improve the robustness of the rigid surface based registrations used

to compute the mathematical mapping between the pre-operative images and the

intra-operative presentation of the patient anatomy. Improving the robustness of the

image-to-physical space registration method has proven to be invaluable in the per-

formance of IGLS over multiple clinical sites and has shown a significant improvement

in qualitative accuracy of the guidance information provided by the current state of

the art IGLS system (Pathfinder Therapeutics, Nashville, TN).

In Chapter IV, the surface registration method enhanced with salient feature in-

formation was used to facilitate the quantitative evaluation of surface shift and organ

shape change imposed during open hepatic resection procedures. The impact of soft

tissue deformation is known to compromise the guidance information provided IGLS

systems and no formal study of this deformation has heretofore been completed. Fur-

ther, the evaluation of the nature of measured tissue shift and shape change over a

variety of surgical procedures yields valuable insight into new deformation compen-

sation methods that could further improve intra-operative guidance information and,

ultimately, patient outcomes.

Finally in Chapter V, based on the improved surface registration method and sur-

face deformation analysis, a new model-updating paradigm has been developed and

studied for its feasibility for use within the context of IGLS. While preliminary, the
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simulation and phantom results show that an atlas-based method for model-updating

in IGLS is feasible and provides similar results to those previously reported by Cash

et al. [28] Similar to the robust surface registration method developed, the incorpora-

tion of salient anatomical features within the atlas-based deformation compensation

provides a marked improvement in accuracy and robustness when compared with the

initial formulation without the incorporation of feature information.

Future Work

While the algorithms and methods developed in this work have facilitated a sub-

stantial advancement in the state of the art IGLS technology, there are a vast array of

improvements and further studies that must be performed to transform IGLS into a

standard of patient care for open hepatic resections. While a large body of work has

been performed in the development of algorithms to use for registration and model-

updating in IGLS, there is a dearth of analogous studies focused on clinical validation

of the developed algorithms. Additionally, the extension of the IGLS methods de-

veloped for open procedures into the realm of laparoscopic and minimally invasive

procedures is one of the next major challenges.

Targeting Accuracy Assessment of Image-Guided Liver Surgery

While qualitatively accurate registrations have been acquired intra-operatively via

the algorithm developed within this work, a formal determination of the targeting ac-

curacy provided by current IGLS systems has not been performed. An ongoing clinical

study being performed by Pathfinder Therapeutics in collaboration with researchers

at Vanderbilt University and clinicians at Memorial Sloan Kettering Cancer Center

(MSKCC), University of Pittsburgh Medical Center (UPMC) and Shands Hospital at

the University of Florida is seeking to acquire a large data set for the quantification

of IGLS accuracy as well as provide the ability to validate potential model-updating
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techniques. In addition to the acquisition of intra-operative digitizations for valida-

tion experiments, post-operative CT images of the remnant liver are also acquired for

use in validating and gaining insight into model-updating techniques (shown in Fig-

ure VI.2). Preliminary data acquired for two patients from two of the participating

clinical trial sites are shown in Figure VI.1 and Figure VI.2.

In addition to intra-operative digitizations of the resection contours, post-operative

CT scans are also acquired of the remnant liver for retrospective analysis of the

resection and registration (shown in Figure VI.2). While a vast majority of the

post-operative CT data has not yet been useful for validation due, presumably, to

parenchymal hypertrophy, the data shown in Figure VI.2 indicate that the post-

operative CT imaging may have utility in studying deformation and for retrospective

validation of the registrations and deformation compensation techniques. Ultimately,

intra-operative acquisition of sub-surface information via co-registered C-arm CT or

intra-operative ultrasound (iUS) is required to validate the targeting accuracy pro-

vided by IGLS registrations.

Movement Towards Minimally Invasive Image-Guided Liver Surgery

The results of recent research suggests that blood loss and hospital lengths of stay

can be decreased by the performance of laparoscopic liver resections [106]. However,

the loss of tactile information and the proximity of lesions near vascular structures can

be contraindications for the use of minimally invasive techniques. The development of

the appropriate registration techniques to make the current IGLS systems amenable

to laparoscopic procedures would facilitate a more widespread implementation of

minimally invasive methods for liver resection and treatment. While a large body

of work has been dedicated to the development of algorithms for use in minimally

invasive IGLS [144, 9, 104], no current system seems to exist whereby these methods
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Figure VI.1: Preliminary validation results of IGLS via comparison of pre-operative
resection plan with intra-operative digitization of resection contour acquired for a case
performed at UPMC . The pre-operative CT surface showing the planned resection
plane (a) is shown along with a depiction of the surface registration result provided
by the weighted patch ICP algorithm developed in Chapter III (b). The falciform
ligament feature used in the registration is visualized. The intra-operative digitization
(red) is displayed on the pre-operative CT data using the transformation generated
by the salient feature registration (c),(d).
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Figure VI.2: Comparison of the the pre-operative transection plane (yellow) with
the intra-operative transection contour digitization (blue) for a case performed at
MSKCC (a),(b). The intra-operative data is transformed via a registration computed
by the salient feature surface registration developed in Chapter III. Comparison of
post-operative CT liver surface with the pre-operative CT plan are also shown in (c).
A direct comparison of the post-operative CT liver surface (purple) with the planned
remnant liver (white) mesh is show in (d).
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are implemented in a real-time fashion and results have only been shown for off-line

and/or retrospective analysis.

The primary problem with the implementation of minimally invasive IGLS is

the performance of image-to-physical registration. The surface registration methods

utilized in open IGLS will likely not be useful or require significant modification due

to the inability to acquire spatially accurate surface digitizations intra-operatively.

Further, it is unclear whether the iUS registration methods proposed can be performed

robustly and in a time frame that is reasonable for use in a surgical environment.

Specifically, the ability to extract features and vasculature from liver iUS image data

for use within image-registration techniques in an accurate, robust, and real-time

manner has yet to be achieved. While the implementation of IGLS techniques in

laparoscopic and hand-assisted laparoscopic procedures has not yet been realized,

it is within the context of minimally invasive procedures that image-guidance will

provide the greatest clinical utility.

Research Considerations

Before the beginning of this research on human subjects, there were two major

considerations: the protection of the health and confidentiality of patients enrolled

in this study and what contributions this research would have on society. The role of

these factors is discussed below:

1. Protection of Research Subjects: Because human subjects were used in this

research, all techniques were documented and approved by the Institutional

Review Board (IRB) of Barnes-Jewish Hospital in St. Louis, MO. Informed

consent was obtained from all patients before the procedure, and their confi-

dentiality has been protected. Any information that could identify the patient
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was removed from the medical imaging data and any photography acquired dur-

ing surgery. Storage of all the patient documents and data pertaining to this

research has been completed in accordance with IRB protocol.

2. Societal implications: By combining principles from the fields of computer vi-

sion, computer graphics, image processing, image registration, and finite ele-

ment modeling, this work has made an effective contribution to the field of

biomedical engineering and image-guided surgery. The ability to provide better

therapeutic outcomes for patients in liver cancer will be a significant contribu-

tion to society. Liver metastases will continue to be a significant problem in the

U.S. due to the tendency for other cancers to spread to the liver. In addition,

primary tumors will be a growing concern, as the number of hepatitis C cases,

one of the main risk factors for hepatocellular carcinoma, increases around the

world. This work will not only be applicable to open abdominal resections and

ablation procedures, but it will also aid in the targeting of minimally invasive

procedures as well.
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