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CHAPTER I 

 

INTRODUCTION 

 

The basic unit of life, a cell, is anything but basic.  It requires multiple, 

enormously complex networks of signaling pathways to maintain existing conditions and 

complete the fundamental task of passing on an exact copy of its genetic information to 

the next generation of cells.  The genetic information of the cell encoded by the DNA is 

referred to as the genome.  The process by which the cell replicates involves a highly 

ordered sequence of events called the cell cycle, in which the genetic information of the 

cell is duplicated and segregated into two identical daughter cells.  Replication of the 

genome must be an exact process to maintain cellular viability and prevent changes to the 

genetic information that can produce an array of human genetic diseases, including 

cancer. 

Cells are continually faced with an abundance of insults that can disrupt the 

integrity of the genome.  Challenges to genome integrity come from environmental 

mutagens, byproducts of cellular respiration, and errors during nucleic acid metabolism, 

including DNA replication.  Cells must recognize and repair the DNA damage caused by 

these mutagens in order to faithfully reproduce the genetic information.  To accomplish 

this task, cells have evolved genome surveillance machinery that responds to these 

diverse genotoxic insults and ensures that the integrity of the genetic information is 

maintained.  The necessity of these genome surveillance mechanisms is exemplified by 
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the observations that disruption of these protective pathways is associated with a variety 

of developmental defects and genetic diseases [1, 2].   

In this chapter, I will discuss how cells faithfully duplicate their genetic 

information, the role of the ATR-mediated DNA damage response in preserving genome 

integrity, and the importance of these genome surveillance pathways in the prevention, 

diagnosis, and treatment of cancer. 

 

DNA Replication 

 

Duplication and segregation of the genetic information is regulated by an ordered 

series of events termed the cell cycle.  The cell cycle is divided into four canonical 

phases.  Exactly one copy of the genome is produced during S-phase (DNA synthesis 

phase), and in M-phase (mitosis) one copy of the genome in segregated into each of two 

daughter cells.  Separating these phases of the cell cycle are two gap phases (G1 and G2), 

during which the cell grows and monitors the internal and external environment to ensure 

conditions are suitable for duplication and division.  Progression through the cell cycle is 

directed by fluctuations in the activities of specific cyclin-dependent kinases (CDKs) [3].  

CDK activity is regulated by three distinct mechanisms.  First, CDK activation requires 

the association with a cyclin binding partner, whose availability is strictly controlled 

during the cell cycle by transcription factors and ubiquitin-mediated proteolysis.  Second, 

phosphorylation of the CDK-cyclin complex can inhibit or promote CDK activity.  And 

third, CDK-cyclin complexes can be inactivated if bound by CDK inhibitors.  Once 

activated, phosphorylation of target proteins by various CDK-cyclin complexes directs 
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the major events of the cell cycle.  Those events specifically required for duplication of 

the genome can be divided into two discrete steps: origin licensing and initiation.      

 

Replication origin licensing 

DNA replication is regulated by the recruitment of the replication machinery to 

chromosomal origins of replication.  These origins have conserved and identifiable 

sequences in budding yeast.  However, a limited number of sites consistently function as 

origins in human cells and the mechanisms that select these sites remain unclear [4-6].  

Replication origins in metazoans typically lack identifiable sequences, and increasing 

evidence suggests replication may initiate from several potential origins within a zone of 

initiation [7].  

Licensing of an origin occurs through the sequential recruitment of specific 

proteins during late M and G1 phases, resulting in the formation of a pre-replication 

complex (pre-RC).  The origin recognition complex (ORC) is a six-subunit protein 

complex that identifies the sites of replication initiation by binding to origins [6].  ORC 

binding at origins of replication is required for the subsequent and independent 

recruitment of CDC6 and CDT1, which cooperatively promote loading of the MCM2-7 

helicase complex and formation of the pre-RC [8-10].  Origins are licensed for replication 

upon loading of the MCM helicase, and considered competent for replication initiation 

upon entry into S phase [11]. 
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Figure 1.1.  Initiation of DNA replication.  (A) Representation of the cell cycle, 
showing the nucleus and the replication of the genome during DNA synthesis (S) 
phase.  The duplicated genome is segregated into two identical daughter cells during 
mitosis.  (B) Pre-replication complexes containing ORC, CDT1, CDC6, and the 
MCM2-7 helicase are loaded onto origins of replication by the end of G1 phase.  
Upon entry into S phase, activation of the DDK and CDK kinases is necessary to 
promote the association of proteins that facilitate origin unwinding and replisome 
loading.  The recruitment of the replication machinery initiates duplication of the 
genome in a bi-directional manner.  Yeast proteins are shown.    

A 

B 
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Initiation of DNA replication 

 The formation of pre-RCs marks potential sites for initiation of DNA replication, 

but additional proteins must associate with an origin to begin DNA synthesis.  Unwinding 

of the DNA at origins requires activation of the MCM2-7 helicase and loading of the 

replication machinery, two events that require CDK- and DDK (CDC7/DBF4-dependent 

kinase)-mediated phosphorylations.  CDK-dependent phosphorylation promotes the 

formation of a multiprotein complex containing GINS at the G1/S boundary, and its 

association with origins [12, 13].  Phosphorylation of the MCM2-7 complex by DDK 

recruits a CDC45-containing complex to origins [14-16].  The association of these 

proteins with origins of replication allows loading of the replisome and activation of the 

MCM2-7 helicase [13, 16-18].  

 The ultimate goal of the replication initiation machinery is to assemble the 

replisome, including RPA, PCNA, and DNA polymerases, at origins of replication [12].  

After local unwinding and recruitment of the ssDNA binding protein RPA, an RNA/DNA 

primer is formed by DNA primase/DNA polymerase alpha.  This primer is extended by 

DNA polymerases epsilon and delta as the replisome commences DNA replication in a 

coordinated and bi-directional fashion.  Thousands of origins fire during S phase to 

ensure the rapid and accurate duplication of the genome.  The timing of origin firing 

during S phase is largely correlated with the association of the replication initiation 

factors, as well as the surrounding chromatin structure [14, 15, 19, 20].  ATR and CHK1 

(discussed below) also appear to influence regulatory mechanisms that control the timing 

of origin firing by inhibiting the kinase activity of CDK and DDK [6, 21]. 
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Mechanisms to ensure a single round of replication 

 Multiple origins of replication fire simultaneously during S phase to rapidly 

duplicate the genetic information.  To ensure that reproduction is accurate, it is essential 

that no segment of the genome be duplicated more than once.  Thus, mechanisms exist to 

ensure that multiple initiations from the same origin (a process termed re-replication) are 

prevented once cells enter S phase.  During late M and G1, low CDK activity allows pre-

RC assembly, but initiation is inhibited.  When cells enter S phase, increased CDK 

activity allows initiation of DNA replication but prevents new pre-RC assembly.  This 

separation into two distinct phases ensures that no origin can initiate more than once 

during a cell cycle. 

The mechanisms that restrict origin firing to once per cell cycle inhibit the 

licensing of replication origins [6].  After MCM2-7 is loaded at origins, ORC, CDC6, and 

CDT1 are no longer required for initiation of DNA replication [22-24].  Thus, these 

components of the pre-RC can be inactivated upon entry into S phase to inhibit further 

origin licensing without compromising replication initiation.  In mammalian cells, re-

replication is prevented primarily through destruction or functional inhibition of CDT1.  

Two independent ubiquitin ligase complexes target CDT1 for proteosomal degradation 

during S phase, SCFSKP2 and DDB1-CUL4CDT2.  The binding of Geminin also 

functionally inhibits CDT1 during S and G2 phases of the cell cycle.  A role for ORC or 

CDC6 in preventing re-replication in mammalian cells is less clear, but dissociation of 

ORC subunits from origins of replication, or the nuclear export or degradation of CDC6 

may also be important [25]. 
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Challenges to DNA replication and genome integrity 

 Genome maintenance requires the accurate completion of DNA replication.  Cells 

are continually challenged by endogenous and exogenous DNA damaging events, as well 

as by the complex task that DNA replication presents.  Reactive oxygen species (ROS) 

are normal byproducts of metabolism that can cause lipid peroxidation, protein damage, 

and a variety of DNA lesions, including single-strand and double-strand DNA breaks, 

base adducts, and DNA crosslinks [26].  ROS can also arise from environmental sources 

of damage such as ultraviolet (UV) and ionizing radiation (IR), but these mutagens 

directly induce DNA lesions as well.  UV can produce DNA adducts and crosslinks, 

while IR can generate base modifications, single-strand breaks, and DNA double-strand 

breaks (DSBs). Double-strand breaks can arise endogenously during rearrangements of 

immunoglobin loci in B cells, rearrangement of the T-cell receptor loci in T cells, during 

meiotic recombination in germ cells, or from aberrant activity of cellular enzymes such as 

DNA topoisomerases [2, 27].  Also challenging the accurate completion of DNA 

replication are DNA secondary structures, repetitive sequences, fragile sites, and tightly 

associated proteins, which can impede replication fork progression and are associated 

with increased chromosomal rearrangements [28-31]. 

 Some of these lesions, such as interstrand crosslinks, inhibit progression of both 

the replicative helicase and polymerases, and thus require removal of the lesion before 

replication can continue.  Many lesions, including base adducts and intrastrand 

crosslinks, will block DNA polymerases without affecting the progression of the helicase.  

Replication stress agents such as aphidicolin and hydroxyurea also selectively inhibit 

polymerase activity without disrupting helicase progression.  Aphidicolin prevents 
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RNA/DNA primer formation by inhibiting DNA polymerase alpha/primase, while HU 

indirectly stalls polymerases by depleting cellular dNTP pools.  These physical or 

functional barriers to DNA polymerase activity result in the uncoupling of polymerase 

and helicase activities, and generate stretches of ssDNA as the helicase continues to 

unwind duplex DNA in the absence of any polymerization [32-34].   

 Repair mechanisms such as base excision repair, nucleotide excision repair, and 

mismatch repair are key for repairing these DNA damaging events before replication 

begins.  Lesions that are encountered by the replication machinery and stall fork 

progression can be dealt with by two primary mechanisms.  Post-replicative repair 

pathways simply bypass the DNA damage.  Special translesion synthesis polymerases 

can temporarily replace the replicative polymerase when it encounters a lesion.  These 

polymerases have greater flexibility in base-pairing properties that allow nucleotide 

incorporation across from damaged bases, thus preventing prolonged replication fork 

stalling that can result in the formation of DSBs.  However, lesion bypass occurs at the 

expense of an increased error rate, because translesion polymerases have low fidelity and 

no proofreading activity [2, 35].  Also activated by stalled replication forks is the DNA 

damage response (DDR), which will be the focus of the remainder of this chapter due to 

its relevance for the context of my thesis work. 

 

The DNA Damage Response 

 

With the abundance of challenges that cells face to maintain the integrity of their 

genetic information, the evolution of cellular responses to deal with these challenges and 
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maintain genome integrity is of critical importance.  Eukaryotic cells have thus developed 

genome surveillance machinery, collectively referred to as the DNA damage response 

(DDR), which functions to maintain genome integrity by coordinating DNA replication, 

cell cycle progression, DNA repair, apoptosis, and cellular senescence [36]. 

The DDR is a signal transduction cascade regulated by the phosphoinositide-3-

kinase-related protein kinases (PIKKs).  The PIKK enzymes are large proteins that share 

a common domain structure (Figure 1.2).  The kinase domain is located near the C-

terminus and is flanked by two regions of sequence similarity among all PIKKs called the 

FAT (FRAP, ATM, TRRAP) and FATC (FAT C-terminus) domains.   The FAT domain 

consists of HEAT (Huntingtin, Elongation factor 3, A subunit of protein phosphatase 2A 

and TOR1) repeats that are weakly conserved among the family members.    The FATC 

domain is a small domain required for PIKK kinase activity; however, the precise 

functions of the FAT and FATC domains remain unclear.   Since these domains flank the 

PIKK kinase domain, it has been suggested that they may interact and participate in 

kinase regulation [37].   The N-terminus of each protein contains additional HEAT 

repeats that may serve as a protein-protein interaction surface [38].   

Ataxia-telangiectasia mutated (ATM) and ATM-and Rad3 related (ATR) are two 

PIKKs that function at the apex of DDR signaling pathways.  In addition to sharing 

similar domain architectures, these kinases phosphorylate an overlapping set of target 

proteins to coordinate cell cycle and DNA repair activities.  ATM and ATR preferentially 

phosphorylate serine and threonine residues that are followed by a glutamine in hundreds 

of target proteins [36].  However, these kinases differ in the type of DNA damage to 

which they respond.  ATM is activated primarily by infrequently occurring DSBs.  ATR  
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Figure 1.2.  Functional domains of the PIKKs ATR and ATM.  The PIKK kinase 
domain is flanked by two regions of sequence similarity termed the FAT and FATC 
domains.  The FAT domain consists of an alpha-helical HEAT repeat structure, and the 
FACT domain is required for kinase activity.  The precise functions of the FAT and 
FACTC domains are unclear.  Situated between the kinase domain and the FATC domain 
is a PIKK regulatory domain (PRD).  This region of ATR interacts with TopBP1 and is 
necessary for ATR activation [39].  In ATM, acetylation of the PRD by Tip60 is required 
for kinase activation [40].   
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is activated by a variety of DNA lesions including base adducts, crosslinks, DSBs, and 

compounds that directly promote replication stress such as hydroxyurea and aphidicolin.  

Unlike ATM, ATR is essential for the viability of replicating somatic cells [41, 42].  ATR 

is activated during every cell cycle to regulate origin firing, repair damaged replication 

forks, and prevent mitotic entry in the presence of DNA damage (Figure 1.3) [43-45].  

Disruption of ATR results in an accumulation of DSBs during S phase, cell cycle arrest 

or apoptosis, and early embryonic lethality in mice [41, 42]. 

 

Recognition of replication stress and DNA damage by ATR 

Recruitment of ATR to sites of replication stress and DNA damage promotes 

kinase activation.  While ATR is reported to have some affinity for nucleic acids, the 

primary mechanism of lesion recognition is dependent on protein-protein interactions 

mediated by a common DNA structure.  Importantly, the diverse ATR-activating DNA 

lesions have in common the ability to expose single-stranded DNA (ssDNA), often as a 

consequence of stalling the replicative polymerases.   The relative insensitivity of the 

replicative helicase to these lesions causes an uncoupling of polymerase and helicase 

activities, resulting in ssDNA gaps [32].  End resection of DSBs can also generate 

ssDNA.   Thus, the common ATR-activating signal among these diverse lesions is the 

formation of ssDNA [46, 47].    

 The ssDNA serves as a platform for the recruitment of proteins required for ATR 

activation.  Initially, ssDNA is rapidly coated by the heterotrimeric ssDNA binding 

protein RPA.  Several observations have highlighted the importance of RPA-coated 

ssDNA in ATR activation [48].   The extent of ssDNA generated by a lesion influences  



  

 12 

 

 

 

 

 

 

Figure 1.3.  ATR-dependent genome maintenance activities.  Activation of ATR in 
response to replication stress and DNA damage results in the phosphorylation and 
activation of a key effector protein, CHK1.  ATR and CHK1 cooperate to phosphorylate 
numerous downstream target proteins to genome integrity. 
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the amount of DDR activation observed, with larger regions producing greater ATR 

activation [32].   Additionally, mutation or knockdown of RPA in both mammalian cells 

and S. cerevisiae impairs activation of ATR (Mec1) [49-51].   These defects may be 

partially reflective of the important role that RPA has in the recruitment of ATR to DNA 

lesions in eukaryotic organisms. 

RPA is involved in the independent recruitment and co-localization of the two 

sensor proteins in the ATR signaling pathway.  ATR recruitment to RPA-ssDNA requires 

ATR-interacting protein (ATRIP) [42, 47].  These proteins are obligate binding partners 

whose stability and functions are interdependent [42].  An evolutionarily conserved RPA 

binding surface in ATRIP called the checkpoint protein recruitment domain (CRD) binds 

an N-terminal domain of RPA70 [52].  Deletion of the ATRIP CRD severely 

compromises the localization of ATR-ATRIP to DNA lesions; however, it has only mild 

effects on ATR signaling [52, 53].  The absence of a significant signaling defect may be 

explained by additional RPA interactions, alternative mechanisms of ATR-ATRIP 

recruitment, or possibly ATR activation with only transient localization to ssDNA gaps. 

Recruitment of the RAD9-RAD1-HUS1 (9-1-1) complex is also required for ATR 

activation.  The 9-1-1 complex is a heterotrimeric ring similar to the replicative sliding 

clamp PCNA, and is loaded onto ssDNA-dsDNA junctions by the RAD17-RFC2-5 clamp 

loader [49, 54-56].   In vitro, the 9-1-1 complex is preferentially loaded at ssDNA gaps at 

the free 5’ DNA end and a 5’ primer end appears to be the relevant checkpoint-activating 

structure [56, 57].   Single stranded DNA gaps with a 5’ primer end can be found at the 

ATR-activating structures formed by resection of DSBs, deprotection of telomeres, 

nucleotide excision repair, and at stalled replication forks.  A checkpoint recruitment 
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domain on RAD9 with sequence similarity to the ATRIP CRD binds the same RPA70N 

binding surface as ATRIP and may help direct 9-1-1 loading or retain it at the 5’ junction 

[58].   Recent work in Xenopus egg extracts indicates topoisomerase binding protein 1 

(TopBP1) is also required for loading the 9-1-1 complex [59].  TopBP1 promotes the 

hyperloading of DNA polymerase alpha, which generates the 5’ primer end necessary for 

9-1-1 loading.  TopBP1 has an additional function in 9-1-1 loading that is distinct from 

DNA polymerase alpha recruitment, which may be to concentrate RAD17-RFC and 9-1-1 

on the DNA for efficient loading.  Thus, multiple protein interactions promote the 

assembly of two checkpoint complexes (ATR-ATRIP and 9-1-1) at ssDNA gaps formed 

as a consequence of many types of DNA lesions. 

 

Activation of ATR kinase activity 

 The localization of ATR to sites of replication stress and DNA damage promotes 

kinase activation by concentrating it with an activating protein. TopBP1 directly 

stimulates ATR kinase activity [60].  TopBP1 is not required for the localization of ATR 

to sites of damage or for the basal kinase activity of ATR [39, 61].   However, TopBP1-

mediated activation of ATR is required for the damage-induced phosphorylation of all 

ATR substrates, and is essential for cell viability in the absence of exogenous DNA 

damage [39].  TopBP1 is recruited to lesions independently of ATR-ATRIP, and may be 

retained or appropriately positioned through an interaction with the phosphorylated C-

terminal tail of RAD9 [62-65].   The concentration of these proteins at sites of replication 

stress and DNA damage is hypothesized to facilitate an interaction between TopBP1 and 

the ATR-ATRIP complex, which allows TopBP1 to promote activation of ATR kinase 
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activity.  The requirement for the independent recruitment of two distinct complexes to 

sites of replication stress and DNA damage may prevent the inappropriate activation of 

ATR-ATRIP [66]. 

 

CHK1 is a prominent mediator of ATR-dependent DDR signaling 

 The phosphorylation of downstream target proteins is necessary for ATR to 

coordinate replication, cell cycle progression, and DNA repair.  The most prominent 

substrate of ATR is another kinase, checkpoint kinase 1 (CHK1).  CHK1 is activated by 

ATR-mediated phosphorylation of serines 317 and 345 [67, 68].  ATR-dependent 

phosphorylation of CHK1 requires the adaptor protein Claspin, which facilitates 

sustained CHK1 activation through interactions with the phosphorylated form of RAD17, 

one component of the 9-1-1 clamp loader [69, 70].  Intermolecular interactions between 

the C-terminus and kinase domains of CHK1 suggest the presence of an auto-inhibitory 

domain [71, 72].  This is further supported by the findings that deletion of the CHK1 C-

terminus or mutation of the ATR-mediated phosphorylation sites to phospho-mimetic 

residues abolishes the intermolecular interaction and activates the kinase in the absence 

of DNA damage [72-74].  Thus, ATR-mediated phosphorylation of CHK1 may disrupt an 

inhibitory, intermolecular interaction that activates the kinase and allows phosphorylation 

of target proteins. 

 Several studies suggest that CHK1 mediates many of the ATR-dependent cellular 

functions.  Disruption of CHK1 in mice leads to early embryonic lethality [75, 76].  

CHK1-deficient cells also display many phenotypes similar to those observed with loss of 

ATR, including the accumulation of DSBs in the presence and absence of replication 
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stress [77-79].  The ATR-CHK1 signaling pathway is important during S phase for 

regulating late origin firing, arresting cell cycle progression, and preventing replication 

fork collapse [44, 45].  The essential functions of ATR and CHK1 may be related to their 

fork-stabilization activity [80].  The existence of endogenous DNA damaging events and 

inherent difficulties in the replication process may necessitate ATR and CHK1 to 

stabilize stalled replication forks and promote replication restart during every cell cycle.  

The essential function of ATR (Mec1) in yeast includes regulating nucleotide levels 

through activation of ribonucleotide reductase (RNR) [81, 82].  Whether ATR regulates 

nucleotide levels in higher eukaryotes remains unclear.     

 

Replication-dependent genome maintenance activities of ATR and CHK1 

CHK1 is phosphorylated by ATR at sites of replication stress and DNA damage, 

and is subsequently released from chromatin to transmit the damage signal throughout the 

nucleus by phosphorylating target proteins [83].  ATR-mediated regulation of cell cycle 

progression is largely accomplished through CHK1 phosphorylation of CDC25 

phosphatases, which function to activate CDKs by removing inhibitory phosphorylations 

[84].  As described earlier, CDK2 is important for the initiation of DNA replication by 

promoting the recruitment of proteins that facilitate origin unwinding and replisome 

loading [6].  Activation of the DDR in S-phase inhibits late origin firing to slow DNA 

synthesis while the damaged DNA is repaired [85-88].  One mechanism through which 

this may be accomplished involves inhibition of CDK2 activity.  ATR-mediated 

phosphorylation and activation of CHK1 results in the phosphorylation of additional 

downstream target proteins, including CDC25A.  Phosphorylation of CDC25A inhibits 
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the phosphatase activity of this protein, and allows the accumulation of a phosphorylated 

and inactivated form of CDK2 that cannot promote initiation at late replicating origins 

[89].  ATR signaling through CHK1 is also critical for replication progression in the 

absence of exogenous DNA damage to regulate origin firing, but the precise mechanisms 

by which this is accomplished remain unclear [44, 90].   

In addition to slowing DNA synthesis in the presence of DNA damage, ATR and 

CHK1 promote genome integrity by stabilizing stalled replication forks and facilitating 

the recovery of stalled forks to ensure complete replication of the genome.  One 

mechanism by which ATR accomplishes this is to prevent dissociation of the replisome 

from the DNA.  In the absence of yeast ATR (Mec1), the association of DNA 

polymerases alpha and epsilon with a stalled replication fork was significantly reduced 

[91, 92].  In higher eukaryotes, chemical inhibition of ATR signaling or mutation of 

ATRIP prevented completion of DNA synthesis, and resulted in the release of MCM2-7 

and PCNA from chromatin after aphidicolin treatment [93, 94].  CHK1-deficient cells 

also show release of PCNA from chromatin and an inability to resume DNA synthesis in 

the presence of this replication stress [78, 79, 86].  These findings suggest that 

components of the replisome dissociate from chromatin in the absence of ATR signaling.  

The requirement for ATR in re-loading polymerase epsilon onto chromatin after 

treatment with DNA damaging agents also indicates that ATR has a role in restarting 

replication from a collapsed fork [95]. 

Several replisome components are phosphorylated by ATR in response to 

replication stress, including RFC, RPA1, RPA2, the MCM complex, and DNA 

polymerases [96-101].  The functional significance of these phosphorylation events is 
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largely unknown.  Recently, the phosphorylation of MCM2 was shown to be a docking 

site for polo-like kinase 1 (PLK1).  PLK1 recruitment to a stalled replication fork 

promotes the firing of adjacent origins by recruiting CDC45, thus ensuring that 

replication near the stalled fork is completed [102].   

 

Regulation of mitotic entry by ATR and CHK1 

ATR-induced inhibition of mitotic entry in the presence of DNA damage is also 

mediated largely by CHK1-dependent phosphorylation of the phosphatase CDC25C.  

CDK1/cyclin B is rendered inactive in G2 phase of the cell cycle by inhibitory 

phosphorylations mediated by WEE1 and MYT1 [103, 104].  Activation of CDK1/cyclin 

B and entry into mitosis requires removal of these phosphorylations by CDC25C.  

Phosphorylation of CDC25C by CHK1 inhibits the phosphatase activity of this protein, 

either directly, or indirectly by facilitating an association with 14-3-3 proteins.  This 

interaction masks the nuclear localization site of CDC25C and restricts the protein to the 

cytoplasm [105-108].  PLK1-mediated phosphorylation of CDC25C also activates the 

phosphatase activity of this protein.  ATR-dependent phosphorylation, either directly or 

indirectly through CHK1, inhibits PLK1 activity as another mechanism of CDC25C 

inhibition [109, 110].  Additionally, CHK1 phosphorylation of WEE1 can also increase 

WEE1 activity [111, 112].  The regulation of CDC25C, PLK1, and WEE1 activities by 

the DDR cooperate to prevent activation of CDK1/cyclin B and thus inhibit entry into 

mitosis (Figure 1.4).  

This signaling pathway likely predominates for the initiation of the G2 checkpoint 

by ATR but additional mechanisms may contribute to the maintenance of the checkpoint 
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response.  Transcriptional mechanisms in particular may be important, since 

phosphorylation of p53 by ATR results in the transcriptional activation of Gadd45, p21, 

and 14-3-3 sigma, all of which inhibit CDK1.  Binding of cyclin B to CDK1 is also 

required for its activity, and repression of the CDK1 gene by p53 may also contribute to 

the persistent inhibition of mitotic entry [113].  Innumerable proteins appear to be 

involved in the G2 checkpoint response, but the precise mechanisms by which many of 

these additional proteins promote cell cycle arrest is unknown. 

 

Activation of the DDR kinase ATM 

 Another PIKK at the apex of the DDR signaling cascade is ATM.  As stated 

earlier, ATM is very similar to ATR in protein structure and sequence, and both kinases 

phosphorylate an overlapping set of target proteins preferentially on serine and threonine 

residues that are followed by a glutamine.  Unlike ATR, ATM is not essential for the 

viability of replicating cells.  Mutations in ATM are present in approximately 0.5-1.0% 

the population, resulting in a neurodegenerative and cancer predisposition disorder called 

ataxia-telangiectasia [114-116]. 

 ATM is activated by DNA double strand breaks to arrest cell cycle progression 

and facilitate DNA repair [117].  Reminiscent of ATR activation, ATM is recruited to 

DSBs by a binding partner to facilitate co-localization with an activator protein.  The 

recruitment of ATM to DSBs is dependent on an interaction with NBS1 [118].  The co-

localization of ATM/NBS1 with MRE11/RAD50 at sites of damage results in activation  
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Figure 1.4.  Inhibition of mitotic entry by ATM and ATR in the presence of DNA 
damage.  The formation of DSBs directly activate ATM, and resection of the DSB to 
reveal ssDNA results in ATR activation as well.  The G2 checkpoint is initiated by 
phosphorylation of the ATM and ATR target proteins CHK2 and CHK1.  These kinases 
then phosphorylate and inactivate the CDC25 phosphatase.  This prevents 
dephosphoryaltion of CDK1/cyclin B, which is required for activation of this complex 
and entry into mitosis. 
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of ATM kinase activity [119, 120].  Upon activation, ATM undergoes a transition from a 

dimeric to a monomeric form, and acetylation of ATM is required for this transition [40, 

121].  The autophosphorylation of ATM at serine 1981 correlates with formation of the 

monomeric form, however it is unclear whether this event is necessary for ATM 

activation [119, 121-123]. 

 ATM activation results in the phosphorylation of histone H2AX (γH2AX) at sites 

of DSBs, which is the initial signal for accumulation of additional DDR proteins.  This 

phosphorylation event mediates the recruitment of MDC1 (mediator of DNA damage 

checkpoint 1) through its BRCT domain.  MDC1 is among the first proteins to 

accumulate at DSBs, and the assembly and retention of MDC1 are required for retention 

of most other proteins at the DSB [124].  MDC1 directly interacts with NBS1 (Nijmegen 

Breakage Syndrome) to localize the MRN complex (MRE11-RAD50-NBS1), resulting in 

the recruitment and activation of additional ATM proteins [125].  ATM phosphorylation 

of MDC1 promotes association of the ubiquitin ligase RNF8 through an interaction with 

its FHA domain.  The ubiquitin ligase activity of RNF8 is required for the subsequent 

recruitment of 53BP1 and BRCA1 [126-128].  RNF8-mediated ubiquitination at DSBs is 

thought to promote a chromatin restructuring event, revealing methylated histones that 

can localize 53BP1 through its tudor domains.  The assembly of these DDR proteins at 

DSBs promote amplification of the DNA damage signal by ATM and increases the 

efficiency of DSB repair.   

The primary effector protein of ATM is another kinase, checkpoint kinase 2 

(CHK2).  CHK2 displays many similarities in functions to the ATR effector kinase 

CHK1, but these two protein kinases have no sequence homology outside the protein 
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kinase domain.  ATM-mediated phosphorylation of threonine 68 promotes CHK2 

autophosphorylation and activation [129-131].  Like CHK1, CHK2 also mediates the cell 

cycle arrest function of ATM largely through phosphorylation and inactivation of CDC25 

phosphatases (Figure 1.4) [45].        

      

Crosstalk between the ATR and ATM pathways 

 ATM and ATR phosphorylate an extensive and overlapping set of target proteins, 

and have some redundancy in cell cycle progression mechanisms.  The distinct DNA 

structures that these kinases recognize (ssDNA for ATR and DSB for ATM) suggest 

unique roles for these proteins in response to DNA damaging agents.  However, the 

ability of each of these structures to be converted into the other suggests some 

interdependency of these pathways as well.  ATR activation and recruitment in response 

to IR is dependent on ATM and the nuclease activity of MRE11, which process DSB 

ends to generate RPA-coated ssDNA.  ATM-dependent regulation of ATR activation in 

response to IR is restricted to S and G2 phases of the cell cycle, suggesting that the 

MRE11-mediated DSB resection is mediated by CDKs [132].  This is consistent with 

data from budding yeast indicating that ATR (Mec1) activation after DSB induction by 

HO endonuclease requires CDK1-dependent DSB resection [133].  Additionally, the 

ATM-mediated phosphorylation of the ATR activating protein TopBP1 places ATM 

upstream of ATR in a common signaling pathway [134].  ATM can also be activated by 

replication stress.  The collapse of a stalled replication fork can leave the unprotected 

DNA susceptible to nuclease cleavage, resulting in the formation of an ATM-activating 
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DSB.  The activities of ATM and MRE11 may also be important to prevent replication 

fork stalling prior to DSB formation [95, 135].   

 

The DDR and tumorigenesis 

 

 The biochemical data indicates the DDR has a critical role in preventing genome 

instability by regulating DNA replication, cell cycle progression, and DNA repair 

activities.  The biological significance of these genome surveillance pathways is evident 

from the observations that disruptions to DDR pathways result in developmental defects, 

premature ageing, and genetic diseases including cancer (Table 1.1).   

The DDR is an inducible barrier to tumorigenesis at its earliest stages of 

development [136, 137].  Genome instability is evident in pre-cancerous lesions by the 

presence of constitutive DDR signaling and DNA damage.  The activation of oncogenes 

and inactivation of tumor suppressors promotes replication stress and DDR activation 

through inappropriate origin firing, premature termination of fork progression, and the 

generation of DSBs.  DDR activation serves to restrict the proliferation of cells with 

mutated or unstable genomes by inducing cell cycle arrest, senescence, or apoptosis.  The 

progression to a malignant disease is thus often associated with inactivation of DDR 

pathways, typically by mutations in the transcription factor p53, to overcome the growth 

restriction imposed by the DDR.  

Understanding the mechanisms that promote genome instability and DDR 

activation in pre-cancerous lesions is an important avenue of investigation.  It may 

produce biomarkers for early identification of disease and suggest the most effective 
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treatments based on the genetic and functional profiles of the tumor.  DDR pathways are 

also activated by many chemotherapeutic agents.  Further insight into the mechanisms 

and functions of the DDR can facilitate a better understanding of the etiology and 

progression of cancer, as well as how to more effectively treat it. 

 

Table 1.1.  DDR genes associated with inherited disorders.  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Cell Culture 

U2OS, HeLa, Phoenix-amphotropic, and HEK293 cell lines were maintained in 

Dulbecco’s modified Eagle medium supplemented with 7.5% fetal bovine serum at 37°C 

in 5% CO2.  The RPE-hTERT cell line was maintained in Dulbecco’s modified 

Eagle/F12 medium supplemented with 10% fetal bovine serum and 0.2% sodium 

bicarbonate at 37°C in 5% CO2. 

 

DNA constructs and transfections 

The DDB1 construct resistant to degradation by siRNA-mediated silencing was 

created using site-directed mutagenesis.  The following primer and its complement were 

used to introduce selected wobble base pair mutations:  5’-

GGAGAGCAAGGATCTACTCTTTATCTTGACAGC-3’.  Calcium phosphate 

transfections of the Phoenix-amphotropic packaging cell line were performed to produce 

retroviruses.  Following infection of U2OS cells with the viral media, stable cell lines 

were selected using puromycin.  C-terminal HA-tagged CDT1 expression constructs were 

generated by PCR in the pLPCX vector.  Mutagenesis was performed using the following 

primers: 5’-TATGAAGCTTATGGAGGCTCGCCGCGCTACCGACGCAGCTGCGC 

GCCGCCGC-3’ and 5’-CAAGCTGGCCTGCCGGGCCCCCAGC-3’.  
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Fragile site analysis 

Fragile sites were induced by treatment of U2OS cells with 0.1µM aphidicolin for 

24 hours.  Metaphase cells were enriched by treating with Demecolcine solution (Sigma) 

for 1 hour at 37°C.  Cells were then incubated in a hypotonic solution (3:1 0.566% 

KCl:0.8% NaCit) for 15 minutes at 37°C, fixed by multiple washes with Carnoy fixative 

(3:1 methanol:acetic acid), and dropped onto slides.  Slides were baked at 90°C for 30 

minutes and stained with Giemsa.  Metaphase spreads were scored for chromosomal gaps 

and breaks, and common fragile sites were identified based on the idiogram in Richards 

[138].  

 

RNAi constructs and transfections 

All small interfering RNA oligonucleotides (siRNA) used in Chapter III were 

purchased from Dharmacon, Inc.  The siRNA duplexes were as follows:  non-targeting 

siRNA sense strand, 5’-AUGAACGUGAAUUGCUCAAdTdT; DDB1 siRNA sense 

strand, 5’-GCAAGGACCUGCUGUUUAUUU; CUL4A siRNA sense strand, 5’-

GAACCCAUAUUAUUAGUGAUU; DDB2 siRNA sense strand, 5’-

GAUAUCAUGCUCUGGAAUUUU; XPC siRNA sense strand, 5’-

GCAAAUGGCUUCUAUCGAAUU; XPA siRNA sense strand, 5’-

GGAGACGAUUGUUCAUCAAUU; CDT1 siRNA sense strand, 5’-

GCGCAAUGUUGGCCAGAUCUU.  The SKP2 depletions were achieved using a 

SMARTpool of four gene-silencing siRNAs.  Transfections were performed with 100nM 

siRNA using Oligofectamine reagent according to the manufacturer’s instructions 

(Invitrogen).  For the RNAi screen in Chapter IV, HeLa cells were transiently transfected 
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with the shRNA plasmids using Lipofectamine 2000 (Invitrogen).  Individual siRNA 

oligonucleotides targeting the candidate genome maintenance genes were purchased from 

Qiagen. The siRNA transfections of U2OS and RPE-hTERT cells in Chapters IV and V 

were accomplished using HiPerFect (10nM, Qiagen) and Oligofectamine (100nM, 

Invitrogen), respectively.     

  

RNAi screen 

Plasmid-based shRNAs were selected from a genome-wide shRNA library 

commercially available from Open Biosystems [139], and maintained by the Vanderbilt 

Microarray Shared Resource (http://array.mc.vanderbilt.edu/).  Selected shRNA plasmids 

were provided in 96-well plates as frozen cultures of E. coli in low salt LB broth with 8% 

glycerol, carbenicillin (100µg/ml), and zeocin (25µg/ml).  Liquid cultures of 1.5ml low 

salt LB were inoculated in 96-well blocks with 10µl of the glycerol stock, and incubated 

at 37°C, 200rpm for ~24 hours.  Plasmids were isolated using the QIAprep 96 Turbo 

Miniprep Kit according to the manufacturer’s instructions (Qiagen).  A non-targeting 

RNAi molecule was used as a negative control, and an RPA1 RNAi molecule was used as 

a positive control for genetic disruptions that activate DDR pathways.  Additionally, 

several internal positive controls were present among the genes screened (i.e. BRIP1, 

CHK1, DDB1, and POLA).   

HeLa cells were transfected with 200ng of the shRNA plasmids in 96-well plates 

using Lipofectamine 2000 (Invitrogen).  Cells were split into two plates 24 hours after 

transfection, and 0.1µM aphidicolin was added to one plate for 24 hours prior to fixing 

cells for analysis at 96 hours after transfection.  After immunostaining for KAP1 S824 
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phosphorylation, the wells of the 96-well plates were manually scored as positive or 

negative for DDR activation.  KAP1 pS824 is visible as pan-nuclear staining in cells 

where the DDR is activated.  This robust level of phosphorylation and the absence of 

non-specific staining allowed positive wells to be readily identified.   

Quantitative analysis of DDR activation was then obtained by examining the 

percentage of cells with γH2AX staining.  Four individual siRNAs were obtained 

(Qiagen) for each gene target that induced KAP1 phosphorylation in the shRNA screen.  

U2OS cells were transfected in duplicate with 10nM of each gene-silencing siRNA in 24-

well plates using HiPerFect (Qiagen).  Transfected cells were split into 12-well plates 

containing glass coverslips at 24 hours, and fixed for analysis at 96 hours after 

transfection.  The percentage of cells with γH2AX staining after siRNA-mediated gene 

silencing in the absence and presence of 0.1µM aphidicolin (24 hour treatment prior to 

analysis) was manually determined with 3-4 counts of >100 cells from each transfection. 

Statistical significance was determined using a two-tailed, unpaired t test comparing each 

gene-silencing siRNA to the non-targeting control. The p values were adjusted to 

minimize type I error using a false-discovery rate of 0.05. 

 

Immunofluorescence 

For γH2AX and MRE11 immunostaining after silencing of DDB1, cells grown on 

glass coverslips were fixed and permeabilized with 100% methanol at -20°C for 15 

minutes.  After rinsing twice with PBS, cells were incubated in 100% acetone at -20°C 

for 30 seconds.  The cells were then air dried for 1 minute, rinsed six times with PBS, and 

blocked for 15 minutes at room temperature with 5% BSA in PBS.  Primary antibodies 
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recognizing γH2AX (Bethyl Laboratories) or MRE11 (GeneTex) were diluted in 1% 

BSA/PBS and incubated on cells for 20 minutes at 37°C, 5% CO2.  After washing three 

times with PBS, cells were incubated in the secondary antibodies, fluorescein (FITC)-

conjugated goat anti-rabbit IgG or Rhodamine Red-X-conjugated donkey anti-mouse IgG 

(Jackson ImmunoResearch Laboratories, Inc.), diluted in 1% BSA/PBS for 20 minutes at 

37°C, 5% CO2.  Cells were washed and counterstained with 4’6-diamidino-2-

phenylindole (DAPI).  

The analysis of RPA34 foci formation in DDB1-silenced cells was accomplished 

by fixing cells with 3% paraformaldehyde at room temperature for 10 minutes and 

permeabilizing with 0.5% Triton X-100 for 10 minutes on ice.  After blocking at room 

temperature for 15 minutes with 5% BSA/PBS, the RPA34 antibody (Neomarkers) was 

diluted in 1% BSA/PBS and incubated on cells for 20 minutes at 37°C, 5% CO2.  

Following three washes with PBS, cells were incubated in FITC-conjugated goat anti-

mouse secondary antibody (Jackson ImmunoResearch Laboratories, Inc.), diluted in 1% 

BSA/PBS, for 20 minutes at 37°C, 5% CO2.  The cells were washed and counterstained 

with DAPI.   

To analyze KAP1 pS824 by immunostaining for the shRNA screen, cells were 

plated in BD Falcon Optilux 96-well clear-bottom plates, fixed with 3% 

paraformaldehyde for 10 minutes at room temperature, and permeabilized with 0.5% 

triton X-100 for 10 minutes on ice. After blocking at room temperature for 15 minutes 

with 5% BSA/PBS, the cells were incubated with KAP1 pS824 (Bethyl Laboratories) 

diluted in 1% BSA/PBS for 1 hour at 37°C, 5% CO2.  Following three washes with PBS, 

cells were incubated with an Alexa fluor 546-conjugated goat anti-rabbit secondary 
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antibody (Invitrogen) diluted in 1% BSA/PBS for 20min at 37°C, 5% CO2.  The cells 

were then washed and counterstained with DAPI.   

The γH2AX immunostaining for the RNAi screen followed the same fixation, 

permeabilization, and blocking protocol as that described for KAP1 pS824, with the 

exception that the cells were grown on glass coverslips.  The antibody recognizing 

γH2AX pS139 (Upstate Biotechnology) was diluted in 1% BSA/PBS and incubated on 

cells for 1 hour at 37°C, 5% CO2.  Following three washes with PBS, cells were 

incubated with a Rhodamine red-conjugated goat anti-mouse IgG antibody (Jackson 

ImmunoResearch Laboratories, Inc.) diluted in 1% BSA/PBS for 20min at 37°C, 5% 

CO2.  After three washes in PBS the cells were counterstained with DAPI.  All images 

were obtained with a Zeiss Axioplan microscope equipped with a Zeiss camera and 

software. 

 

HU sensitivity 

U2OS cells were transfected with siRNA and split into four 96-well plates the day 

after transfection.  Three days after transfection cells were incubated in media with (2 

plates) or without (2 plates) 3mM HU for 24 hours, followed by 24 hours in fresh growth 

media.  Cell viability was quantified using the WST-1 cell proliferation reagent (Roche).   

The sensitivity of gene-silencing siRNAs to HU was calculated by two separate 

methods.  First, cell viability after HU treatment was expressed as the ratio of the mean 

absorbance at 450nM for the two HU-treated wells to the mean 450nM absorbance of the 

two untreated wells.  Ratios for each gene-silencing siRNA were then normalized to the 

mean ratio of the non-targeting siRNAs within each plate to control for plate-to-plate 
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variation.  The log2 of these viability ratios was calculated for determination of statistical 

significance.   

Secondly, the effect of siRNA silencing on HU sensitivity was calculated as an 

index of antagonism or sensitivity (SI) using a previously described method, which 

accounts for the individual effects of the siRNA and the HU on cell viability [140].  For 

this calculation, the viability effect of the untreated siRNA compared to the untreated 

non-targeting control siRNA is designated Rc/Cc.  The effect of HU on the viability of 

control transfected cells is designated Cd/Cc.  The expected combined effect of the 

siRNA and HU on cell viability is therefore Rc/Cc*Cd/Cc.  The observed combined 

effects of HU and the siRNA on cell viability compared to untreated control-transfected 

cells is designated Rd/Cc.  The SI for each gene-silencing siRNA was determined by 

subtracting the observed combined effects of HU and siRNA from the expected total 

viability effect (SI = (Rc/Cc*Cd/Cc)-(Rd/Cc)).  The mean viability ratio and sensitivity 

index values were calculated from three independent transfections, and statistical 

significance was determined using a two-tailed, unpaired t test comparing each gene-

silencing siRNA to the non-targeting siRNA. 

 

HU Recovery 
 

U2OS cells were transfected with siRNAs targeting genome maintenance genes 

that exhibited both γH2AX foci formation and HU sensitivity after silencing.  Three days 

after siRNA transfection cells were treated with 2mM HU for 16 hours to arrest cell cycle 

progression in early S phase.  The cells were released into nocodazole-containing media 

(0.33ng/µl) to capture those reaching mitosis, and harvested at 16 hours.  Mitotic cells 
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were quantified by flow cytometry analysis of propidium iodide (25µg/ml)- and histone 

H3 pS10-stained cells.  Where indicated, cells were pulsed with 10µM of the thymidine 

analog bromodeoxyuridine (BrdU) in cell culture medium for 20 minutes prior to 

harvesting, and DNA synthesis was monitored by flow cytometry analysis of propidium 

iodide- and BrdU-stained cells.  All cells quantified by flow cytometry were also treated 

with 0.1mg/ml RNase A for at least 30min prior to analysis. 

 

Histone H3 phospho-S10 immunostaining 

 Both adherent and detached cells were harvested and washed once with PBS.  

Cells were pelleted by centrifuging at 1800xg for five minutes, and resuspended in 300µl 

cold PBS.  Cells were fixed by adding 700µl cold 100% ethanol and incubated at -20°C 

for at least one hour.  The cells were pelleted, the supernatant was removed by pipetting, 

and the cells were resuspended in 1ml cold PBS to rehydrate.  After incubating on ice for 

10 minutes, cell were again pelleted, the PBS was removed by pipetting, and the cells 

were resuspended in 1ml cold 0.25% triton X-100 in PBS to permeabilize.  After 

incubating on ice for 15 minutes, the cells were rinsed once with 1% BSA/PBS (without 

pipetting).  The cells were then resuspended in 100µl of room temperature 1% BSA/PBS 

containing the Histone H3 phospho-S10 antibody (DC-Bethyl Laboratories, diluted 

1:2000).  The samples were incubated at room temperature for 1.5 hours, and the cells 

were resuspended every 15 minutes by flicking the tube.  The cells were washed twice 

with 1% BSA/PBS, and resuspended in 100µl of 1% BSA/PBS containing the fluorescein 

(FITC)-conjugated goat anti-rabbit IgG diluted 1:75 (Jackson ImmunoResearch 

Laboratories, Inc.).  The samples were incubated at room temperature for 1 hour 
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protected from light, and resuspended every 15 minutes by flicking tube.  After washing 

once with 1% BSA/PBS and once with PBS, the DNA was labeled by incubating in 

25µg/ml propidium iodide in PBS containing 0.1mg/ml RNase A for 30 minutes at 37°C.  

The cells were filtered and analyzed using a flow cytometer. 

 

BrdU labeling and immunostaining 

 Equal numbers of cells were labeled by incubation in DMEM containing 10µM 

BrdU at 37°C and 5% CO2 (do not wash cells prior to incubation with BrdU).  Fifteen to 

twenty minutes is sufficient to label replicating cells; for the analysis of re-replication in 

DDB1-silenced cells the labeling was extended to two hours.  After labeling, the cells 

were pelleted by centrifuging at 1000rpm for 5 minutes, and washed once with PBS.  

Cells were resuspended in 300µl cold PBS, and 700µl cold 100% ethanol was added to 

fix the cells.  After incubating at -20°C for at least one hour, cells were centrifuged at 

1800xg for 5 minutes and the supernatant was removed using a pipette.  The cell pellets 

were loosened by vortexing briefly, and 1ml of 2N HCl/0.5% triton X-100 was slowly 

added to the cells, a few drops at a time, while maintaining a vortex.  Samples were 

incubated at room temperature for 30 minutes to denature the DNA.  The cells were 

centrifuged, the supernatant was removed by pipetting, and the cells were resuspended in 

1ml 0.1M Na2B4O7 x 10 H2O, pH 8.5, to neutralize the acid.  The cells were centrifuged, 

the supernatant was remove, and the cells were resuspended in 1ml of 0.5% Tween 

20/1% BSA/PBS.  For indirect immunostaining, 20µl of anti-BrdU antibody (BD 

Biosciences) was added per 0.5 x 106 cells and samples were incubated at room 

temperature for 1.5 hours.  Cells were resuspended every 15 minutes by flicking the tube.  
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The cells were centrifuged and resuspended in 100µl of 0.5% Tween 20/1% BSA/PBS 

containing fluorescein (FITC)-conjugated goat anti-mouse IgG diluted 1:50 (Jackson 

ImmunoResearch Laboratories, Inc.).  Samples were incubated at room temperature for 

one hour protected from light, and the cells were resuspended every 15 minutes by 

flicking the tube.  After immunostaining, the cells were washed once with PBS and the 

DNA was stained with propidium iodide as described above prior to analysis by flow 

cytometry. 

 
 
Yeast two-hybrid 
 

A two-hybrid screen was performed with full-length ATRIP cloned into pDAB1 

containing the DNA-binding domain of GAL4.  This bait was used to screen a B-cell 

cDNA library using the PJ694A yeast strain.  Of the approximately 330,000 

transformants screened, eleven interacting clones were identified that specifically 

interacted with the ATRIP bait and did not interact with two unrelated test baits.  Two of 

the eleven interacting clones encoded full-length CINP.  The two-hybrid assay was also 

used to map the interacting surfaces between ATRIP and CINP.  Full-length CINP was 

cloned into pDAB1 containing the DNA-binding domain of GAL4, and used as bait to 

screen the pACT-ATRIP cDNA fragment library described previously [141].  The pACT-

ATRIP fragment plasmids from 14 positively selected yeast colonies were rescued and 

sequenced.  This screen was performed by Gloria Glick. 
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Co-immunoprecipitation of CINP with ATR-ATRIP 

HEK293 cells were transiently transfected with Flag-tagged ATR or ATRIP and 

HA-tagged CINP, or Flag-tagged CINP alone.  Cells were lysed in CHAPS lysis buffer 

(50mM Tris, pH 7.5, 0.15M NaCl, 0.75% CHAPS, 5 µg/ml aprotinin, 5 µg/ml leupeptin, 

1 mM NaF, 20 mM µ-glycerolphosphate, 1 mM sodium vanadate, 0.5 mM dithiothreitol, 

and 0.2 mM phenylmethylsulfonate).  Flag purifications were separated by SDS-PAGE 

and co-precipitating proteins were identified by immunoblotting.  For endogenous co-

precipitations, HeLa cells were lysed in CHAPS lysis buffer or nuclear extracts were 

prepared from HEK293 cells by dounce homogenization.  CINP immunoprecipitations 

from HeLa whole cell lysates and HEK293 nuclear extracts were separated by SDS-

PAGE and co-precipitating proteins were identified by immunoblotting. 

 

G2 checkpoint assay 

U2OS cells were transfected with siRNA and the integrity of the G2 checkpoint 

was examined as described previously [142], with the following modifications.  

Nocodazole (0.33ng/µl) was added one hour after irradiation, and mitotic cells were 

quantified 17 hours after irradiation by flow cytometry analysis of propidium iodide 

(25µg/ml)- and histone H3 pS10-stained cells. Transfections were performed in triplicate, 

and 10,000 cells were counted per experiment.  

 

Cell lysis 

For the immunoblot analyses performed after silencing of DDB1 and CINP, cells 

were lysed in Igepal lysis buffer for 30 minutes on ice (20mM Tris, pH 7.5, 0.1M NaCl, 
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1mM EDTA, 0.5% Igepal CA 630, 5 µg/ml aprotinin, 5 µg/ml leupeptin, 1 mM NaF, 20 

mM µ-glycerolphosphate, 1 mM sodium vanadate, 1 mM dithiothreitol, and 1 mM 

phenylmethylsulfonate).  Cell lysates were cleared by centrifugation at 13,000xg, 4°C, for 

20 minutes and the supernatants were transferred to new pre-chilled microfuge tubes.  

Protein concentrations of the lysates were determined using the Bio-Rad Protein Assay 

Solution according to the manufacturer’s instructions.   

 

Antibodies 

 The antibody dilutions used for analysis by immunoblot (IB) and 

immunofluorescence (IF) are indicated below in Table 2.1.  The antibodies are diluted in 

1% nonfat dry milk (NFDM)/TBST for immunoblot analysis and incubated at room 

temperature for 1-1.5 hours unless indicated otherwise.  All antibodies used for 

immunofluorescence are diluted in 1% BSA/PBS.  See the Immunofluorescence section 

of this chapter for incubation times. 
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Table 2.1. Antibody sources and dilutions for immunoblotting and 
immunofluorescence. 
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