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Thyroid and parathyroid diseases combine the fields of endocrinology and oncology leading 

to a complex combination of pathological conditions.  When the disease cannot be treated by 

other methods, surgical means are used to remove the diseased gland(s).  Parathyroid glands are 

difficult to distinguish from the thyroid and surrounding tissues in the neck.  The situation is 

further complicated by its small size and variability in position.  Surgeons must ultimately rely 

on visual inspection to identify the different tissues, which can be subjective and inconclusive. 

Complications occur when the parathyroid is accidentally injured or removed during 

thyroidectomies or only partially removed in the case of parathyroidectomies. In the former, 

hypoparathyroidsim and hypocalcemia can occur resulting in serious side effects.  Therefore, 

there is a need for a sensitive tool that can identify parathyroid glands intraoperatively, 

regardless of disease state.  

Current technology relies on histopathology or post-operative diagnosis of symptoms to 

determine if the parathyroid was accidentally or incompletely removed.  This project is focused 

on the development of imaging technology specifically, optical imaging and spectroscopy as it 

pertains to tissue identification. Imaging modalities cover a wide range of topics; within this 

area, optical techniques deal with the application of light from the ultraviolet to the infrared for 

identification and visualization of relevant structures. Here, a precursor to optical imaging - 

optical spectroscopy will be developed for identification and potential imaging of parathyroid 

tissues for direct clinical application in endocrine surgery. In particular the research and 

development of near infrared fluorescence spectroscopy and imaging will be presented.  

 

 

Motivation 
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This thesis presents a unique application of optical spectroscopy for a critical surgical need in 

endocrine surgery today. Of the numerous optical techniques, fluorescence spectroscopy is 

particularly suited for the proposed application. In particular, near-infrared autofluorescence 

provides a unique avenue for the detection of parathyroid tissues during endocrine surgery 

regardless of its disease state. It should be noted that biological fluorophores typically exhibit 

fluorescence in the UV/VIS wavelengths. As excitation wavelengths become longer, 

autofluorescence decreases. In fact, this reduced fluorescence “background” accounts for the 

move towards near infrared wavelengths in tissue Raman spectroscopy studies. Thus there are no 

published accounts of near infrared autofluorescence being observed in tissues.  

Near-infrared wavelengths are attractive due to their increased penetration depth in biological 

tissues. Research in near-infrared fluorescence has mostly involved exogenous contrast agents, 

the most common of which are polymethines.  In particular, indocyanines, such as indocyanine 

green, and cardio-green has been used extensively as contrast agents for many applications.  

Inorganic fluorescent semiconductor nanocrystals (quantum dots) solve many instability 

problems of organic fluorophores and have been used to help identify esophageal sentinel lymph 

nodes.  However, contrast agents are associated with many problems such as potential toxicity, 

photobleaching and localization. Further, the use of exogenous agents requires additional steps in 

the safe application of such technology in patients and for future widespread clinical use. Thus, 

for the speedy implementation of such technology towards a problem that is a practical surgical 

need today, intrinsic optical spectroscopy is suggested as the most viable candidate for the 

problem of parathyroid detection. This thesis seeks to develop a method to detect parathyroid 

tissue through near infrared autofluorescence.  This method has the advantages of intrinsic 

fluorescence and avoids the problems associated with exogenous contrast agents 
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Specific Aims 

The current method for resection of thyroid and parathyroid tissues indicates the need for a 

diagnostic tool that provides sensitive real-time detection of parathyroid glands during 

thyroidectomies and parathyroidectomies. The main objective of this project then is to develop a 

technique based on near- infrared (NIR) autofluorescence that enables intra-operative detection 

of parathyroid glands such that accidental removal is minimized by supplementing the standards 

of visual inspection.  Since current procedures are guided solely by visual inspection, this thesis 

presents a novel automated method of surgical guidance that can minimize surgical error and 

improve patient outcome. The following specific aims are proposed; 

 

 

Specific Aim (1): Fully characterize the NIR fluorescence signatures of parathyroid and 

thyroid tissues as well as creating evaluation discrimination algorithms for the detection of 

parathyroid glands - Fluorescent signatures of thyroid and parathyroid tissues will be 

characterized in vivo from human patients undergoing thyroidectomies and parathyroidectomies 

at the Vanderbilt University Medical Center. Fat, muscle and lymph nodes found in the region 

will also be studied. Tissue will be classified as normal, hyper, hypo or cancerous. Patients will 

be selected to distribute tissue evenly across all categories. Based on the spectral characteristics 

of thyroid and parathyroid tissue, discrimination algorithms will be developed using empirical 

methods. If necessary, multivariate statistical techniques will employed to increase accuracy. The 

diagnostic algorithms will be implemented on spectra obtained from patients retrospectively. The 
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capability of NIR fluorescence in predicting the location of the parathyroid glands will be 

evaluated by comparing it to the sensitivity of visual inspection and using histology when 

feasible. Thus, a method of validating the ability to provide anatomical guidance regardless of 

disease state will be identified 

 

 

Specific Aim (2): Study the basis of observed differences in the spectral characteristics - In 

developing optical spectroscopy as a tool for endocrinology, the scientific basis for the success 

of the technique needs to be understood. First, the optical and fluorescence properties of thyroid 

and parathyroid tissues will be analyzed.  Possible candidates with the observed properties will 

be evaluated by correlating their optical measurements to the spectral characteristics of thyroid 

and parathyroid tissues. These experiments will provide information to evaluate the biological 

constituents of the parathyroid and thyroid and identify those that may be responsible for the 

NIR autofluorescence signal. 

 

 

Specific Aim (3): Develop a next-generation clinical imaging system - In this section of the 

project, the goal is to implement new technologies for the hardware of the clinical system. The 

successful implementation of imaging would provide spatial information increasing utility to the 

surgeon. This will be accomplished through imaging techniques capable of detecting NIR 

fluorescence such as a CCD and photo-multiplier tube. If imaging proves unable to provide the 

same level of sensitivity and accuracy achieved with the fiber-based system, the feasibility of 

incorporating the fiber system with an endoscope or using a guide-wire will be examined. The 
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achievement of this goal will simplify the application of fluorescence spectroscopy for tissue 

differentiation and improve the likelihood of successful translation to the clinic. 

 

The specific aims described above will not only prove the ability of NIR fluorescence to 

provide consistent and accurate detection, but will also help in developing an understanding of 

the scientific basis for the success of the technique. The results of this work will have a 

significant impact on health care by providing guidance towards dissection and resection of 

thyroid and parathyroid tissues.  This would potentially result in fewer complications due to 

accidental injury or incomplete removal of parathyroid tissue. 
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Figure 1: Anatomy of the central 
neck (2). 

Anatomy of the Neck 

Endocrine surgery involves exploration of the neck in order to visualize vital tissues 

for the treatment of benign and malignant conditions of the thyroid and parathyroid 

glands (1). The general anatomy of this region is illustrated in Figure 1 (2). The thyroid 

gland is positioned antero-lateral to the larynx 

and trachea. Generally, there are four 

parathyroid glands, two superior and two 

inferior, which tend to lie symmetrically on 

the posterior surface of the thyroid gland.  

Important vocal nerves also pass close to the 

posterior capsule of the thyroid gland 

including the superior laryngeal and recurrent 

laryngeal nerves (3, 4). The neck also 

contains an abundance of lymphatic, vascular, musculoskeletal and adipose tissues as 

well. 

The parathyroid glands are approximately 6 to 8 mm in size and bean shaped with a 

yellow-tan to caramel color (size of a grain of rice) (4, 5). The position of the parathyroid 

glands may vary greatly from patient to patient. The superior and inferior parathyroids 

make an embryological descent from the 3rd and 4th pharyngeal pouch down to their final 

resting places behind the thyroid.  Aberrant patterns in their migration lead to a large area 

of the neck and chest in which ectopic parathyroids may be located.  Despite this 

variability, there tends to be symmetry in the positions of the glands on the two sides of 

the neck. The parathyroid glands are suspended by a small vascular pedicle and 
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Figure 2: Thyroid (blue arrows), 
and parathyroid (yellow arrows) 
glands under H&E (1). 

enveloped within a pad of fatty tissue (6). They are comprised of densely packed cells 

that fall into one of three main types: chief, oxyphil and adipose cells. The glands are 

primarily composed of chief cells which contain cytoplasmic fat droplets and it is these 

cells that are primarily responsible for the production of parathyroid hormone (PTH) (7).  

Parathyroid hormone is an 84-amino acid polypeptide, the secretion of which is 

responsible for release of calcium and phosphate from bone matrix, calcium reabsorption 

by the kidney, and regulating renal production of calcitriol, which in turn increases 

calcium absorption in the intestine. The final effective result of PTH secretion is an 

increase in plasma calcium concentration  (7).  Thus, the parathyroid glands maintain the 

range of calcium concentration in the body important for normal function. While figure 1 

clearly indicates the anatomy of the region, it should be noted that conditions are rarely 

so lucid during endocrine surgeries. The presence of fat, varying locations of the glands 

and disease state can and does often confound 

the identification the parathyroid. 

The thyroid consists of right and left lobes 

lying on either side of the trachea joined by the 

isthmus.  Each lobe is about 5 cm long with the 

total gland weighing 10 to 20 g (3) (8).  . 

Histologically, the functional unit of the thyroid 

is the follicle.  Follicles are a group of epithelial 

cells spherically arranged around colloid, a solution rich in the protein thyroglobulin (9). 

Thyroglobulin is a glycoprotein synthesized in the follicular cells and secreted into the 

colloid.  The iodination of tyrosine residues on the thyroglobulin molecule by the enzyme 
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thyroid peroxidase creates both the T3 and T4 forms of thyroid hormone (8). These two 

forms of thyroid hormone have diverse and widespread physiologic effects throughout 

the human body (9).  Histology can be used to identify the various normal tissues 

discussed previously.  Figure 2 is a histological section showing the transition between 

thyroid and parathyroid tissue.  The blue arrows in the figure highlight the thyroid tissue 

where follicles surrounding large collections of colloids are evident.  Yellow arrows mark 

parathyroid tissue containing the chief and oxyphil cells.   

 

 

Diseases in the neck   

Primary hyperparathyroidism (HPT) is a relatively common condition with annual 

incidence rates of 25-28 cases per 100,000 people (10, 11). The rate is higher in 

Caucasian women above 60 years old, approaching 190 cases per 100,000 annually (11).  

Typically, HPT is characterized by excessive secretion of PTH, which in turn results in 

elevated levels of plasma calcium. In approximately 80% of cases, primary HPT is 

caused by a benign tumor designated as parathyroid adenoma (12). In about 15% of 

these cases, more than one gland is involved making accurate identification of the 

parathyroids of paramount importance. Surgical excision of abnormal glands is advocated 

for young (<50 years of age) or symptomatic patients with primary HPT.  Symptoms vary 

widely and include such complaints as muscle weakness, bone pain, nephrolithiasis, 

fatigue, constipation, peptic ulcers, and severe osteoporosis (13). The thyroid gland, 

parathyroid glands, nerves, adipose tissue, and lymph nodes are closely positioned in the 

central neck (Level VI).  Due to their close proximity and tendency to blend into one 
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another, many of these structures, specifically the parathyroid glands, are difficult to 

distinguish visually during endocrine surgery.  

Functional thyroid disease occurs when the thyroid gland does not supply the 

appropriate amount of thyroid hormone needed. Currently, about 20 million Americans 

have some form of thyroid disease. People of all ages and races can get thyroid disease; 

however, women are five to eight times more likely than men to have thyroid problems 

(14). If the thyroid is overactive, it releases too much thyroid hormone into the 

bloodstream, resulting in hyperthyroidism. An underactive thyroid produces too little 

thyroid hormone, resulting in hypothyroidism. Both conditions can result in the thyroid 

becoming larger than normal. When it is large enough to see easily, it's called a goiter. 

Graves disease, an autoimmune disorder, is the most common cause of hyperthyroidism 

wherein increased abnormal antibodies result increased production of thyroid hormone. 

Eventually, the thyroid gland enlarges, which can result in a goiter. When the condition 

cannot be controlled with medication, surgery is often performed to remove the diseased 

thyroid gland.  

Thyroid nodules can sometimes occur in a normal working thyroid.  With physican 

awareness and the use of ultrasound, up to 20% of the population may be diagnosed with 

a thyroid nodule (14).   While most nodules are benign, approximately 5 to 15% may 

harbor some form of thyroid cancer (14). Approximately 37,200 new cases of thyroid 

cancer will be diagnosed in the United States in 2009. The disease is most common in 

young people, with nearly two-thirds of diagnosed cases in people between the ages of 20 

and 55. Since 1997, there has been a 6% yearly increase in the likelihood of being 

diagnosed with thyroid cancer. This may be due to the increasing use of ultrasound to 
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detect small thyroid nodules. The main treatment of thyroid cancer is a thyroidectomy, or 

surgical removal of all or part of the affected thyroid gland (15).  Thyroid surgery is 

considered one of the safest surgical procedures; however, it necessitates careful 

dissection of the thyroid avoiding injuring vital structures such as the parathyroids (16).   

There are several possible complications related to thyroid surgery such as 

hypocalcemia and hypoparathyroidism (5).  Within 2 to 5 days after total or subtotal 

thyroidectomy, a decrease of serum calcium, a condition known as hypocalcemia, is 

frequently observed. The incidence of hypocalcemia is reported to occur in 1.6% to more 

than 50% of thyroidectomies. The most probable cause is hypoparathyroidism due to 

trauma, devascularization, or inadvertent removal of one or more parathyroid gland(s) 

during surgery (17). This condition is categorized as either transient or permanent. In the 

case of transient hypocalcemia, within a few weeks to months serum calcium levels 

normalize as function of the parathyroid is recovered. Permanent hypocalcemia lasts 

more than 6 months and is associated with significant impairment of quality of life. 

Chronic gastrointestinal discomfort, painful myalgias, parathesias, changes in bone 

metabolism and development of cataracts are a few of the possible resulting symptoms 

(18).  A patient with permanent hypoparathyroidism requires large amounts of calcium 

and vitamin D supplements for the remainder of their life often necessitating 12 to 15 

pills evey day to maintain physiologic calcium levels [4]. This represents a significant 

source of morbidity to the patient (5). Hypocalcemia is the most common cause of 

malpractice litigation after endocrine surgery (17). Accordingly, effective management of 

thyroid diseases is dependent on parathyroid preservation during thyroidectomy (5). In 

the literature, the incidence of inadvertent parathyroidectomy ranges from 8% to 19% of 



  13

patients undergoing total thyroidectomy (19). Complication rates have been shown to be 

directly proportional to the extent of the thyroidectomy, and inversely proportional to 

operating surgeon’s experience level. The rate is also related to the extent of the invasion 

of the thyroid cancer. Consequently, the surgeon’s familiarity of the parathyroid glands’ 

anatomy and blood supply is imperative to safe tissue removal (5).  

 

 

Current localization techniques 

Existing methods for identifying parathyroid glands are limited in their applicability 

and sensitivity and are, thus, not adequate enough to prevent surgical complications (20).  

Primary means include ultrasound, sestamibi scintigraphy, CT, MRI and intraoperative 

intact Parathyroid Hormone (iPTH) assay.  Ultrasound is one of the most common 

techniques for imaging the neck and has sensitivity ranging from 27 – 85% (13, 21).  The 

normal parathyroid gland is not typically visualized because of its deep location and 

small size; ultrasound is mainly used to locate parathyroid adenomas larger than 1 cm.  It 

has the advantages of being fast cheap and relatively harmless but yields suboptimal 

results patients with a short thick neck requiring a lower frequency transducer which 

decreases spatial resolution and adenomas located in “silent,” low contrast, US areas of 

the neck (13, 21).  Thyroid complications often occur simultaneously with parathyroid 

disease which further restricts the use of US because in patients with multi-nodular 

thyroid disease, nodules can mimic or mask adenomas.   Lymph nodes can also easily be 

mistaken for adenomas. 
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Nuclear imaging is based on the different radiotracer uptake patterns and kinetics 

between the thyroid gland, normal parathyroid and abnormal parathyroid.  Specifically, 

radioiodine is taken up and organified by the thyroid (which uptakes iodine normally) 

whereas blood flow tracers such as 201thallous chloride and 99mTc sestamibi are used to 

identify both the thyroid and enlarged parathyroid glands.  The most common use is the 

injection of Technetium 99mTc labelled 2 –methoxy-isovutyl-isonitrile (sestamibi) and is 

often considered the gold standard for pre-operative localization of hyperfunctioning 

parathyroid tissue.  Overactive parathyroid glands tend to absorb the tracer more than the 

surrounding tissue.  Patients are imaged using single photon emission computed 

tomography (SPECT) after the tracer is administered.  Sestamibi scintigraphy can detect 

abnormally located parathyroid adenomas with more than 90% accuracy but requires 

administration of a radiopharmaceutical, use of sophisticated scanning equipment and 

well-trained operators.  Due to the small size of the parathyroid gland the sestamibi scan 

can give false-negatives or recognize some thyroid diseases as a false-positive due to 

uptake of the tracer (13, 21).  As a result, a second image is usually taken hours after the 

initial image because adenomas should display delayed washout of the tracer due to their 

hyperactivity.  

In order to overcome the limitations with sensitivity of imaging techniques, some 

physicians have tried supplementing preoperative imaging with CT and MRI. Thin-

section, contrast-enhanced CT has been used with reported sensitivity ranging from 46 – 

87%.  CT is most often used in addition to ultrasound in order to find abnormal glands in 

nonresponsive areas.  It is also used to agree with sestamibi findings.  CT is better at 

detecting harder to find parathyroid adenomas over ultrasound but is susceptible to 
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movement artifacts during imaging and exposes the patient to ionizing radiation. As in 

ultrasound, lymph nodes can also be mistaken for adenomas.  (13, 21).  Similarly, MRI 

has been used in recent years with a sensitivity of 65 – 80%.  MR is another option that is 

used to confirm results rather than a first line technique.  Adenomas can appear much 

more intense in T2-weighted images but only 40% of masses exhibit this effect.  Due to 

limited availability, high cost and long examination time, MRI is still not widely used 

(13).   

Current intraoperative techniques include iPTH and radio-guided parathyroidectomy.  

Intra-operative assays are a measure of the levels of parathyroid hormone in the blood.  

Once the hyperfunctioning gland is removed, the amount of PTH will gradually return to 

normal.  However, PTH starts to degrade around four minutes so the samples must be 

rushed to the testing lab which is located outside the OR.  Additionally, the assays are 

expensive and are only available at centers that perform a high volume of 

parathyroidectomies (10).  Radio-guided parathyroidectomy involves the intravenous 

administration of technetium-99m-sestamibi 1-2 hours before surgery.  A hand-held 

gamma probe is used to localize the abnormal glands, however, the radiation background 

is unvalidated and the technique is susceptible to non-selective uptake of the 

radionucleotide as in the preoperative method (10, 13). There is the need to guide surgery 

in real-time with high accuracy. 

 

 

Optical Spectroscopy 
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Optical spectroscopy has been studied for many years as a non-intrusive, real-time 

automated tool for tissue detection. However, these studies have typically been pursued 

for detection of pathology.  In this proposal, I suggest the application of optical 

spectroscopy for the physiological detection of the parathyroid because it can detect 

differences in tissue architecture and biochemical composition.  One such optical 

technique studied extensively for optical diagnosis in recent years is Raman 

spectroscopy, a technique that has been used for many years to probe into the 

biochemistry of various biological molecules (22, 23).  Raman scattering is an inelastic 

scattering process, which arises from perturbations of the molecule that induces 

vibrational or rotational transitions (24). Thus Raman spectroscopy is a molecular 

specific technique that can be used as a biochemical tool for the study of different 

materials; in particular this technique has the capability to provide differential diagnosis 

of pre-cancers and cancers. While many challenges prevented the widespread application 

of Raman spectroscopy for disease detection, recent developments in detector and source 

technologies have resulted an increased number of reports published on the application of 

Raman spectroscopy for the detection of cancers in vivo, in organs such as the cervix, 

skin, breast and the gastrointestinal tract (GI) (25-29) with high sensitivities and 

specificities. Raman spectroscopy is extremely sensitive to subtle changes in tissue 

physiology as well as pathology. However, it is a weak phenomenon and in vivo imaging 

with Raman spectroscopy is not yet feasible. Other optical techniques applied to medical 

diagnosis include diffuse reflectance/elastic scattering spectroscopy, optical coherence 

tomography, and infrared spectroscopy to name a few.  
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Application of optical spectroscopy to endocrine surgery is currently limited. Several 

groups have applied autofluorescence spectroscopy with excitation in the ultraviolet and 

visible wavelengths as well as Raman spectroscopy for the discrimination of laryngeal 

and thyroid cancers from normal tissues (30-36). One group demonstrated the use of 5-

aminolevulimic acid (ALA) to guide parathyroidectomies due to secondary 

hyperparathyroidism. Increased ALA fluorescence with HPT resulted in strong 

fluorescence contrast of (hyper) parathyroid tissue compared to background soft tissues 

and thyroid thereby demonstrating the potential of using 5-ALA to guide dissection in 

parathyroidectomies [36]. Early work was performed in rats and the most recent 

publication (in 2006) presented the application of this technique in 1 patient [ref n]. No 

further publications were found by this group. Das et al. used NIR Raman spectroscopy 

for ex-vivo diagnosis of adenoma and hyperplasia in parathyroid tissue in patients 

undergoing parathyroidectomies. The results showed a detection sensitivity of 95% for 

parathyroid adenomas and 93% for hyperplasia [35].  However, all of these studies are 

focused on disease detection. No papers were found that applied optical methods for the 

identification of normal parathyroid compared to all other tissues.  

Of the many optical techniques, fluorescence spectroscopy has been of considerable 

interest in the development of new clinical diagnostic tools. Fluorescence measurements 

of human tissue can be made in real-time, without tissue removal and diagnosis based on 

tissue fluorescence can be easily automated (37). Fluorescence spectroscopy is the most 

commonly tested optical technique for the in vivo detection of diseases.  Further, 

fluorescence imaging is feasible and can reveal the localization and measurements of 

intracellular molecules, sometimes at the level of single-molecule detection.  
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Figure 3: Jablonski diagram 
illustrating the various processes 
including fluorescence (40). 

Fluorescence is now a dominant methodology used extensively in biotechnology, flow 

cytometry, medical diagnostics, DNA sequencing and forensics to name just a few.  

Fluorescence spectroscopy of both exogenous and endogenous fluorophores has been 

successfully used to identify neoplastic cells and tissues in a variety of organ systems 

(38). Studies have successfully demonstrated the potential of fluorescence to improve 

diagnosis in various organ systems [42-50]. Intrinsic tissue fluorescence 

(autofluorescence) has been used to differentiate normal and non-normal tissues in the 

human breast and lung [44], brain [43], oral mucosa [47], cervix [46].  

 

 

Fluorescence Spectroscopy 

The unique electron structure associated 

with a molecule exist in distinct energy states 

which they can occupy known as singlet states.  

Electrons normally occupy the ground state, So, 

which requires the least energy.  Within each 

singlet state the electron can have slightly 

different energy corresponding to different 

vibrational frequencies.  When light interacts 

with tissue it can be reflected, scattered or 

absorbed.  The amount of energy absorbed is dictated by the singlet states of the 

electrons.  When incident photons contain energy equal to gap between singlet states, 

electrons will absorb enough energy to jump up to one of the higher states.  The electron 
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Figure 4: Typical absorption and 
emission spectra (40). 

does not remain excited and will eventually drop back down to the ground state.  With a 

few rare exceptions, molecules in condensed phases rapidly relax to the lowest 

vibrational level of S1 (39).  So, if it is excited to a higher state, it will first lose energy 

due to heat and vibrational movement to drop, this is known as internal conversion.  Once 

it returns to the ground state it releases energy in the form of a photon. Due to energy lost 

from heat and vibration the photon is released at a longer wavelength than was absorbed.  

This phenomenon is illustrated in figure 3 which is known as a Jablonski diagram (39).  

One of the important factors is the energy of the excitation light.  Electrons are more 

likely to absorb a photon if the energy is approximately the difference between the 

different singlet states.  So, there is an optimal wavelength for each material that will 

induce the maximum fluorescence in a given region of the electromagnetic spectrum. 

Due to the discrete levels of energy each molecule has a characteristic emission 

spectrum which is generally the mirror image of the absorption spectrum.  The symmetry 

is the result of the same energy transitions 

being involved in both absorption and 

emission.  The loss of energy between 

absorption and emission causes the emitted 

photon to have a lower frequency and longer 

wavelength.  This shift is known as the Stokes 

Shift.  An important property of fluorescence 

is that the same emission spectrum is observed 

in regards to wavelength of light despite the 

excitation wavelength used.  So, based on the 
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molecules that fluoresce in a given compound, each compound has characteristic 

excitation emission wavelength(s) at which peak fluorescence occurs (39).  Examples of 

typical absorption and emission spectra are presented in figure 4. 

The actual molecule that fluoresces is known as the fluorophore.  Fluorophores 

are classified as either intrinsic or extrinsic.  Intrinsic fluorophores occur naturally while 

extrinsic fluorophores are added in order to induce fluorescence.  For example, cell 

membranes and DNA do not typically fluoresce strongly, therefore an extrinsic 

fluorophore in the form of a specific molecule or dye that will bind to the target is added.  

Extrinsic fluorophores typically have stronger fluorescence than intrinsic and are used to 

produce contrast.  Intrinsic fluorophores are typically aromatic compounds containing 

one or more benzene rings.  Aromatic compounds have an excess of conjugated bonds 

forming an electron cloud resulting in delocalized electrons that are free to absorb light 

and produce fluorescence.   

The majority of research in near-infrared fluorescence has mostly involved exogenous 

contrast agents, the most common of which are polymethines.  In particular, 

indocyanines, such as indocyanine green, and cardio-green has been used extensively as 

contrast agents for many applications.  Inorganic fluorescent semiconductor nanocrystals 

(quantum dots) solve many instability problems of organic fluorophores and have been 

used to help identify esophageal sentinel lymph nodes [37, 38].  However, contrast agents 

are associated with many problems such as potential toxicity, photobleaching and 

localization. Further, the use of exogenous agents requires additional steps in the safe 

application of such technology in patients and for future widespread clinical use. Thus, 

for the speedy implementation of such technology towards a problem that is a practical 
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surgical need today, intrinsic optical spectroscopy is suggested as the most viable 

candidate for the problem of parathyroid detection. This method has the advantages of 

intrinsic fluorescence and avoids the problems associated with exogenous contrast agents. 

Biological fluorophores mostly emit light between the UV and visible portions of the 

spectrum or about 400-700 nm (39). As excitation wavelengths become longer, 

autofluorescence decreases (40).. In fact, this reduced fluorescence “background” 

accounts for the move towards near infrared wavelengths in tissue Raman spectroscopy 

studies. Thus there are no published accounts of near infrared autofluorescence being 

observed in tissues. However, near-infrared wavelengths are attractive due to their 

increased penetration depth in biological tissues. There have been recent efforts to use 

NIR wavelengths for fluorescence spectroscopy in the diagnosis and detection of disease.  

One group took advantage of NIR autofluorescence in conjunction with cross-polarized 

light scattered images to detect breast cancer, but this work was on the edge of the NIR 

window using 632.8 nm excitation (41).  Another group used NIR autofluorescence to 

detect melanin distribution in the skin (42).   

An accurate, automated diagnostic method could allow faster, more effective patient 

management.  The application of optical spectroscopy is suggested because it can detect 

differences in tissue architecture and biochemical composition. Fluorescence 

measurements of human tissue can be made in real-time, without tissue removal and 

diagnosis based on tissue fluorescence can be easily automated. Fluorescence 

spectroscopy is the most commonly tested optical technique for the in vivo detection of 

diseases.  Fluorescence imaging can reveal the localization and measurements of 

intracellular molecules, sometimes at the level of single-molecule detection. Thus this 
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proposal presents a unique application of optical spectroscopy for a critical surgical need 

in endocrine surgery today. Of the numerous optical techniques, we propose to use 

fluorescence spectroscopy for this purpose. In particular, we propose to use near-infrared 

autofluorescence for the detection of parathyroid tissues during endocrine surgery,  

regardless of disease state. 

 

 

Previous Research 

Preliminary to the proposed research, a set of feasibility studies were performed to 

evaluate the potential application of optical spectroscopy for discrimination between 

thyroid and parathyroid tissues. Fluorescence, diffuse reflectance and Raman spectra 

were acquired from thyroid, parathyroid and other normal tissues found in the neck 

region.  Results from the Raman analysis as well as early fluorescence analysis show that 

parathyroid tissues have a distinct signature compared to all other tissues in the near 

infrared that can be used to differentiate parathyroid tissues automatically in real time.  

The results of these studies are discussed below. 

 

 

In vitro studies 

The feasibility of differentiating various endocrine tissues, particularly the 

parathyroid, was first evaluated using a fiber optic based combined fluorescence and 

diffuse reflectance system that excites fluorescence at 337 nm and acquires diffuse 

reflectance between 400-800 nm. However, spectra acquired from canine as well as 
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Figure 5: Fluorescence spectra of 
parathyroid and thyroid tissues at 337 nm 
excitation. 

human tissues showed no significant consistent differences between the various tissue 

types (Figure 5). Raman spectroscopy is sensitive to biochemical differences between 

tissues, so the application of Raman 

spectroscopy was evaluated in an in 

vitro study. Swine and canine fat, 

lymph node, thyroid, and parathyroid 

samples were obtained to evaluate 

spectral signatures of each sample type. 

Like humans, canines have four 

parathyroid glands located in the neck.  

Grossly, the parathyroid glands of canines appear similar to humans, having the same 

fleshy color and ranging from 2-6 mm in size [16].  Histologically, both canine and 

human parathyroid glands are made of chief and oxyphil cells as well as fibrovascular 

stroma and adipose tissue.  The parathyroid glands of canines function similar to their 

human counterparts, serving to regulate the body’s calcium levels. Like humans, canine 

parathyroid glands modulate levels of calcium based on a delicate balance between PTH, 

calcitonin and Vitamin D [15].  In addition, canine parathyroid glands are subject to the 

same disease processes as humans, including hyperplasia and adenomas [17, 18]. 

A portable Raman spectroscopy system, shown in Figure 6, assembled at the 

Vanderbilt University Biomedical Optics Laboratory was used to acquire the Raman 

spectra.  The system consists of a 785 nm diode laser (Innovative Photonic Solutions, 

NJ), a fiber optic probe (EMVision, FL), imaging spectrograph (Kaiser Optical Systems, 

Inc., MI), and back-illuminated, deep-depletion, charge coupled device (CCD) camera 
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(a)                                                                                        (b) 

Figure 6: (a) Image of the clinical Raman system, (b) Schematic of the Raman system. 
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(Andor Technology, CT), all controlled with a laptop computer. The fiber optic probe 

delivered 80 mW of the incident light to the tissue and collected the scattered light for up 

to 3 s. The fiber optic probe was maintained in contact with the tissue during each 

measurement with the overhead fluorescent lights turned off.  

The most striking characteristic seen in these measurements was the saturation of the 

raw signal acquired from the parathyroid tissue of both animal models. The integration 

time was reduced from 3 s to 30 ms before a non-saturated signal could be acquired and 

processed for Raman signal extraction. Conversely, the raw Raman spectra of the other 

tissue types did not saturate with an integration time of 3s. Additionally, the 

subcutaneous adipose tissue spectra contained distinct Raman peaks characteristic of fat. 

To evaluate if the signal saturation observed in parathyroid tissue was distinct to animal 

tissues, in vitro human tissue samples were then measured. The same Raman system was 

used as before. Spectra were collected in the same manner with the lights off. Similar 

saturation from parathyroid tissues was observed down till 30 ms before Raman signal 

could be acquired; similar to spectra from swine and canine samples. 
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In vivo Raman study 

The initial in vitro studies demonstrated that a distinctly strong signal was acquired at 

785 nm excitation from parathyroid tissue, animal and human compared to all other 

tissues. However, such signal behavior had not been previously observed and thus the 

validity of the observation was questioned. Since our lab has successfully applied Raman 

spectroscopy in vivo, a pilot study was designed to verify the presence of the strong 

parathyroid signal in patients undergoing surgery. This would allow for the realization of 

the full potential of optical spectroscopy to provide real-time, automated information of 

parathyroid and surrounding tissue for identification intraoperatively. 

Thus, Raman spectra of parathyroid, thyroid, neck lymph nodes, nerve and 

subcutaneous fat in 26 patients were collected. These spectra were obtained using the 

same Raman system shown in Figure 4. The probe was sterilized between each case. 

Patient consent was received from each patient following the approval of the protocol by 

the Vanderbilt University Institutional Review Board (IRB). Dr. John Phay, an assistant 

professor of the Department of Surgical Oncology at VUMC, recruited the patients. Each 

patient’s final eligibility for participating in the study was determined during preoperative 

evaluation deeming the individual as a safe and acceptable candidate. Only adult patients 

between the ages of 18-99 years with primary thyroid or parathyroid pathophysiology 

undergoing thyroidectomy or parathyroidectomy were considered. 

Following exposure of the relevant region of the neck, the sterilized optical probe was 

placed on various tissues and Raman spectra were acquired from each of those sites. The 

tissue type was noted, and the physician’s confidence in visual identification was 
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Figure 7: Raman spectra of a typical patient. 

Parathyroid at 3s 

Parathyroid at 1s 

Thyroid at 3s 

Fat and nerve at 3s 

recorded. Spectra were collected using a 3 s signal collection time. If the signal saturated, 

the fiber optic probe was kept in contact with the tissue and the signal collection time was 

reduced to 1 s. If saturation was observed at 1 s, the signal collection time was again 

reduced to 0.1 s. In all cases, the overhead fluorescent lights were turned off during the 

measurements. Any luminescent lights left on were turned away from the measurement 

site. When the tissue was removed in the course of the surgery, histological identification 

of the specimens from which measurements were taken was obtained following routine 

surgical histopathology.  

Figure 7 demonstrates 

a sample series of spectra 

acquired from a typical 

patient. As can be clearly 

seen, parathyroid tissue 

continued to demonstrate 

raw signal saturation at 3 

s. The relative signal 

strength acquired at 3 s 

integration compared to 1 s can also be observed. Such results were consistently observed 

in most patients in this study. These results clearly indicated that there was a stronger 

intrinsic fluorescence/luminescence signal that was observed in the parathyroid tissue as 

compared to thyroid as well as other tissues at 785 nm. The level of fluorescence 

observed in the fat and neural tissues was found to be typical to that observed in other 

tissue studies such as the skin and the cervix. Processed Raman spectra were difficult to 
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evaluate due to the poor signal to noise of the parathyroid spectra (acquired at 0.1 s 

integration).  

 

 

Summary 

This initial study aimed to investigate if parathyroid tissue had unique optical signals 

that could be used to identify the parathyroid glands and differentiate them from other 

tissues in the neck intra-operatively.  These results clearly indicated (a) the feasibility of 

acquiring optical signals from various tissues in a clinically feasible time, and (b) the 

strong signal from parathyroid tissues that allows its identification. This study showed the 

potential for optical spectroscopy, specifically Raman, to differentiate parathyroid glands 

from the surrounding tissues in the neck region. However, this study also negated the 

need for Raman spectroscopy for the identification of the parathyroid. Since the most 

significant differences were observed in the broadband signal acquired at 785 nm, it was 

hypothesized that sensitive Raman instrumentation was not necessary for this study.  

Instead, a simple NIR fluorescence instrument would suffice for the goal of this project – 

parathyroid identification.  In order to test this hypothesis, another pilot study was 

conducted to assess the feasibility of intrinsic NIR fluorescence at 785 nm excitation to 

identify parathyroid tissue intra-operatively.  
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Introduction 

Disease of the parathyroid and thyroid glands are common, with 25-28 cases per 

100,000 of hyperparathyroidism and approximately 20 million people affected by some 

sort of thyroid disease (1, 2). Surgical means are used to remove the affected gland(s) 

when the disease cannot be treated by other methods (3). Endocrine surgery has 

traditionally involved meticulous dissection and resection of diseased glands while 

leaving the normal glands intact. Serious complications can occur when one or more of 

the parathyroid glands is unintentionally injured or removed during thyroidectomies or 

incompletely removed during parathyroidectomies (4). The incidence of inadvertent 

parathyroidectomy ranges from 8% to 19% in patients undergoing total thyroidectomy 

and depends of the level of experience of the surgeon (5). Such accidental removal or 

injury of the parathyroid may lead to complications such as postoperative hypocalcaemia 

and hypoparathyroidism that may have lifelong deleterious consequences on calcium 

homeostasis.   

The parathyroid glands can be difficult to distinguish surgically because of their small 

size and appearance that is often similar to lymph nodes, fat and occasionally thyroid 

tissue. In addition, parathyroid identification is often confounded by variability in 

location of the glands and overlying layers of fat. Existing methods rely on 

histopathology or post-operative evaluation to determine if the parathyroids were 

accidentally or incompletely removed (6). Surgical biopsy of the parathyroid for 

identification can lead to devascularization and destruction of the functional gland; 

consequently, surgeons must ultimately rely on visual inspection to identify the different 

tissues, which can be subjective and inconclusive, especially for an inexperienced 
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surgeon (7, 8). In fact, thyroidectomies are typically performed by general or ear nose 

and throat surgeons, rather than endocrine surgeons, thus, an accurate, automated tissue 

identification method would allow safer, more effective patient management (9, 10). 

The goal of this study then was to develop an optical method to intra-operatively 

discriminate parathyroid tissue from all other anatomical structures in the neck. This 

paper presents a method for identification of parathyroid tissue regardless of disease state 

based on intrinsic NIR autofluorescence. In a pilot study, data was collected in vivo from 

21 patients undergoing surgery. In every patient, parathyroid tissue exhibited more 

intense autofluorescence above 800nm allowing us to distinguish it from the surrounding 

tissue. 

 

 

Methods 

Measurements were performed at the Vanderbilt University Medical Center under 

approval by the Vanderbilt Institutional Review Board. All patients with primary thyroid 

or parathyroid pathophysiology undergoing thyroid/parathyroidectomy were considered. 

Initial evaluation was conducted by the participating endocrine surgeon (Dr. John Phay) 

while seeing the patients at the Vanderbilt Clinic and final eligibility was determined 

preoperatively based on the clinical condition and safety of the patient.  Twenty-one 

patients, aged 18-99, regardless of race and gender, were enrolled in the study following 

informed written consent. 

Near infrared fluorescence was excited with a 785 nm diode laser (U-type, IPS, 

Monmouth Junction, NJ) that delivered 80 mW at the tissue surface with a spot size of 



  36

400 m. Fluorescence spectra were detected using a fiber optic spectrometer (S2000-FL, 

Ocean Optics, Dunedin, FL) with a spectral resolution of 10.5 nm (FWHM). The entire 

system is computer controlled by custom software developed in LabView (National 

Instruments, Austin, TX).  Light was delivered and collected from the tissue site with a 6-

around-1 sterilized fiber optic probe. Inline filtering in the probe prevents 785 nm light 

from interfering with the collected fluorescence light (11). An additional 3 mm diameter 

longpass filter was placed in the fiber port of the spectrometer to further reduce the 

amount of 785 nm light entering the detector.  

Fluorescence spectra were measured from multiple locations in the thyroid, 

parathyroid, fat, muscle and lymph depending on the accessibility of the tissues. All 

measurements were made with the room and operating lights turned off. The fiber optic 

probe was placed firmly in contact during each measurement while maintaining uniform 

pressure after removal of any excess blood that might be present at the investigated site. 

Background measurements were recorded with the laser turned off prior to 

measurements. Six spectra were acquired at each site with an integration time of 300 ms 

and averaged. In each case, visual inspection by the attending surgeon determined the 

tissue type corresponding to the acquired spectrum; the level of confidence in the 

surgeon’s identification of each tissue was noted as high, medium or low.  All sites rated 

as low confidence by the surgeon were excluded from analysis. Visual inspection 

therefore served as the gold standard of detection unless the investigated site was excised, 

in which case spectra were correlated with histology. In each of the 21 patients studied, 

histology was obtained from either the parathyroid or the thyroid, or both, depending on 

patient diagnosis and related surgical resection. In total, histology was obtained from 16 
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Figure 1: (a) Fluorescence spectra measured 
from parathyroid, thyroid, fat, muscle and 
trachea of a typical patient. (b) Fluorescence 
spectra from parathyroid and thyroid tissue 
normalized to their respective peaks. 

excised thyroid samples and 10 excised parathyroid samples and found to validate the 

anatomical identity of the measured gland.  

Near-infrared fluorescence spectra were processed using MATLAB (Mathworks Inc., 

Natick, MA). First, background was subtracted and the data was corrected for the 

wavelength dependent response of the system with a National Institute of Standards and 

Technology (NIST) calibrated light source. Calibrated spectra were smoothed with a 

moving average filter of size 10 then normalized to the maximum intensity of the mean 

thyroid spectrum from that patient. 

 

 

Results 

In each patient, fluorescence 

from the parathyroid was 

compared to the fluorescence from 

the thyroid and other tissues in the 

neck. Figure 1a shows the NIR 

fluorescence spectra from a typical 

patient. The fluorescence intensity 

of the parathyroid was found to be 

the strongest among measured 

tissues. Further, thyroid 

fluorescence is observed to be 
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Figure 2: (a) Average fluorescence peak 
intensity and (b) normalized peak intensity 
from parathyroid and thyroid measurements 
from each patient.  

stronger than surrounding muscle and fat but weaker than the parathyroid. Figure 1b 

presents the fluorescence spectra from parathyroid and thyroid tissues, normalized to 

their respective peak intensities demonstrating the similarity in their spectral lineshape. 

Since no fluorescence (intensity and lineshape above the level of noise) was measured 

from the muscle, fat and trachea, these signals were excluded from further analysis.  

Average peak intensity for parathyroid fluorescence was consistently greater than that 

of the thyroid and other tissues in all 21 patients (fig. 2a). The in vivo parathyroid 

fluorescence was observed to be 2 – 11 

times more intense than the thyroid 

fluorescence (fig. 2b). Analysis by 

student’s t-test shows that the 

parathyroid exhibits more intense 

fluorescence than thyroid tissue with a 

p-value of .0000235 at a 99.9% level 

of significance indicating that the 

difference in intensity is statistically 

significant.  

Both parathyroid and thyroid 

histology was available in the same 

patient in 4 of the 21 cases studied due 

to concurrent disease. In these 4 

patients, the fluorescence intensity of the parathyroid was found to be 2 - 10 times greater 

than that of the thyroid which is consistent with the observed results in the rest of the 
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patients. Thus, these 4 patients provide histological validation to the increased intensity 

of the parathyroid as compared to the thyroid. It should be noted that either parathyroid or 

thyroid histology was available in all other patients, confirming the anatomical identity of 

that gland. Spectra from glands that were not excised (where identification relied on 

visual inspection) were found to match the spectral characteristics of the histologically 

correlated parathyroid and thyroid autofluorescence signals. 

The 21 patients enrolled in this study represent a variety of disease states. The first 7 

patients in figure 2 were diagnosed with primary hyperparathyroidism, having either 

parathyroid disease (patients 1-3) or parathyroid disease with concomitant thyroid 

nodules or goiter (patients 4-7). The remaining 14 patients presented with thyroid disease 

and apparently normal parathyroids. In all 21 patients, the parathyroid fluorescence 

intensity was found to be consistently greater than that of the thyroid indicating that both 

normal and hyperfunctioning parathyroid tissue produce a much stronger fluorescence.  

 

 

Discussion 

Results presented here show that NIR fluorescence can successfully detect 

parathyroid tissue in vivo, in real-time and non-intrusively during endocrine surgery with 

near-perfect accuracy. This method improves on the sensitivity and specificity of visual 

recognition - a highly subjective measure that is dependent on the experience of the 

surgeon. More importantly, NIR autofluorescence can be used to identify parathyroid 

glands, regardless of thyroid or parathyroid disease. This is a major advantage over 
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current intra-operative localization methods such as radio-nucleotide uptake, ultrasound 

and iPTH assay, which are only effective when the parathyroid is hyper-active (9).   

Tissue autofluorescence is typically observed in the ultraviolet-visible (UV/VIS) 

wavelength range (12). However, studies performed across multiple tissues in vitro 

(unpublished data) as well as in vivo (presented here) indicate that the near infrared 

spectra measured from thyroid and parathyroid tissues are repeatable (within the same 

tissue) and highly reproducible (across all patients) reinforcing the validity of the 

detected signal. The observed signal exhibits the typical Stokes’ shift associated with 

fluorescence and the peak emission wavelength does not vary, indicating that this is a 

form of luminescence and is most likely due to tissue autofluorescence. Studies also show 

that the observed signal is not an effect of the system or its various components (13). In 

particular, changing the longpass filter does not affect the signal intensity or shape ruling 

out artifacts arising from the filters’ transmission characteristics. Additionally, optical 

properties in this region of the spectrum were found to be fairly uniform between 

parathyroid and thyroid tissues indicating that the effect is not explained by differences in 

scattering or absorption.  These observations lead to the conclusion that the signal is 

indeed due to tissue autofluorescence; the basis for this fluorescence is, however, 

presently unknown. 

Near infrared wavelengths are considered the optical window and are attractive in 

biomedical applications due to their increased penetration depth and decreased scattering 

and absorption in tissues relative to UV/VIS wavelengths. This makes the NIR region 

optimal for biological studies spurring research efforts to use NIR wavelengths in the 

diagnosis and detection of disease (14). Research in NIR fluorescence has mostly 
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involved exogenous contrast agents, most commonly polymethines (15). Notably, 

indocyanines, such as indocyanine green (cardio-green) have been used extensively (15). 

However, contrast agents are difficult to translate to the clinic due to potential problems 

such as toxicity, photobleaching, and localization.  

Autofluorescence uses biological fluorophores that occur naturally in tissues and thus 

negates the need for the introduction of exogenous agents, however, tissue typically 

exhibits peak autofluorescence in the UV/VIS wavelengths (400-700 nm) (12). Except, it 

is well documented in the Raman spectroscopy literature that tissue spectra measured at 

785 or 830 nm excitation display residual broadband signal that is believed to be 

fluorescence background. Several groups have exploited this broadband signal to assist in 

the detection of a variety of pathologies ranging from cutaneous melanin in pigmented 

skin disorders to neoplastic breast tissue (16-19). The tissue autofluorescence in these 

studies was attributed to fluorophores such as melanin and porphyrins but none of these 

studies documented peak fluorescence in the NIR region (16-19). 

Intrinsic biological fluorophores are typically reported to exhibit peak fluorescence 

below 800 nm of the NIR region (12). However, this paper clearly demonstrates the 

consistent presence of autofluorescence with peak emission at 820 nm in parathyroid and 

thyroid tissues. Das et al. used Raman spectroscopy to examine parathyroid pathology but 

used 830 nm excitation, thus missing the fluorescence peak (20). Since the peak 

fluorescence emission from the parathyroid and thyroid occurs at the same wavelength, it 

is hypothesized that the same fluorophore is responsible. Potential candidates are likely to 

be present in both the thyroid and parathyroid glands. The increased fluorescence in the 

parathyroid implies that they would occur in greater amounts or concentrations in the 



  42

parathyroid or that the fluorescence is somehow quenched in the thyroid. Porphyrins are 

known to be the longest emitting fluorophores in biological tissues with peak emission in 

the 600 – 700nm range, however, the fluorescence shown here has peak emission above 

800nm (12). Melanin was hypothesized to be the primary contributor to the observed NIR 

autofluorecence in the eye and skin, but melanin is not known to be present in 

parathyroid and thyroid tissues (17, 18). A potential candidate based upon physiological 

examination is the calcium-sensing receptor present in both parathyroid and thyroid 

tissues but nowhere else in the neck. Ultimately, detailed analysis beyond the scope of 

this initial feasibility study will need to be performed to determine the responsible 

fluorophore(s). 

 

 

Conclusion 

In conclusion, this paper presents the potential of using NIR autofluorescence for the 

real-time anatomic guidance of endocrine surgery. Even though the basis for this 

fluorescence is not understood, the intensity of the measured signal allows for the 

feasibility of an imaging approach increasing the likelihood of its successful 

implementation in the operating room. Translation of this technology would reduce the 

rate of complications from accidental or incomplete removal of parathyroid tissue; 

anatomical guidance would also decrease operative time especially during lengthy 

parathyroidectomies where the surgeon must search for parathyroid glands. 
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Introduction 

The Endocrine system is a complex network within the body that primarily consists 

of ductless glands that secrete hormones into the blood stream to alter metabolic 

functions (1). Of these glands, the parathyroid glands are of vital importance for many 

bodily processes, such as hormone production and proper function of nervous and 

muscular systems. These glands are small, 6-8 mm long and 15-20 mg, with some 

variation in location which is dependent upon individual embryonic development. The 

average patient will have 3 to 5 parathyroid glands, generally in the neck near the thyroid 

gland which lies over the trachea and under the larynx. The tan coloration, small size, 

variable location, and potential inclusion within the thyroid gland increase the difficulty 

of locating the parathyroid gland during Endocrine surgery. The parathyroid glands 

produce and secrete Parathyroid Hormone (PTH), which is responsible for control of 

calcium hemostasis and constitutes the only mechanism to raise blood calcium levels. A 

lack of PTH would cause an inability to induce action potentials and lead to eventual 

death. 

Disease of the parathyroid and thyroid glands can lead to a complex combination of 

conditions from fields of endocrinology and oncology (2). Cases of thyroid cancer and 

hyperparathyroidism often require surgery when alternative treatments fail. The primary 

complications in endocrine surgery occur during parathyroidectomy and thyroidectomy 

procedures. Parathyroidectomy is generally characterized by long surgical times and can 

result in incomplete removal of a parathyroid gland leading to a secondary surgery for 

persistent symptoms. During thyroidectomy procedures, accidental removal or damage to 

the parathyroid glands, or the failure to leave an adequate blood supply to the glands can 
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lead to hypoparathyroidism. This disorder has been variably reported in 2-50% of 

thyroidectomy procedures (3-5). The prevalence is directly proportional to a surgeon’s 

experience and accounts for the major source of mortality and malpractice for endocrine 

surgical procedures.  Furthermore, patient quality of life can be affected, requiring 

calcium and vitamin D supplements for the rest of their life and potential hypocalcemia 

symptoms of swelling of limbs, gastrointestinal (GI) discomfort, cataracts, and increased 

bone metabolism. 

Current techniques to localize the parathyroid glands are all based on preoperative 

imaging. Ultrasound, CT, MRI and radionucleotide methods each offer potential benefits 

but are all plagued by high false-positive rates, can only be used with parathyroid disease, 

potential exposure to ionizing radiation, and ultimately still rely on visual recognition of 

the gland structure. Thus, there is a distinct need for a real-time and intra-operative 

system that is highly accurate and can provide feedback to a surgeon during endocrine 

procedures to locate the parathyroid glands. 

Previous studies have indicated that an optical solution may exist for real-time 

anatomical detection of the parathyroid. The parathyroid and thyroid tissues demonstrate 

a consistent and repeatable near-infrared (NIR) autofluorescence signal. The peak 

fluorescence from the tissues is emitted above 800nm. Using 785nm excitation, a point-

based fiber optic probe fluorescence spectroscopy system provided consistent and 

accurate performance across all patients (N=44). Compared with other tissues in the neck, 

only parathyroid and thyroid tissues exhibited NIR fluorescence, and the parathyroid 

signal is between 2 and 30 times stronger than that of the thyroid (6). 
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Figure 1: Proposed structural model of the predicted 
bovine parathyroid Ca2+-sensing receptor protein 

The consistent presence of the autofluorescence signal above 800nm has sparked 

examination of potential sources for a biological basis for the observed signal. Biological 

fluorophores naturally occurring in tissue typically exhibit peak autofluorescence in 

UV/VIS wavelengths (7). Aside from reports of melanin autofluorescence signal near 900 

nm, there are no reports of other fluorophores endogenous to tissue with emission 

maxima in the NIR region (8).  

There are a number of criteria that potential tissue components must meet to act as the 

differential source of autofluorescence. Based on the studies conducted thus far, the 

fluorophore must exhibit an emission peak of ~820 nm, must be present in significantly 

high quantities in the parathyroid with small to moderate quantities in the thyroid and 

none in the surrounding other tissues in the neck.  Since no melanin is present in this area 

of the body, potential 

candidates include the 

various forms of 

porphyrins and the 

parathyroid hormone. 

However, the PTH 

hormone exhibited no 

fluorescence in the NIR 

and porphyrin peaks 

were identified to be at 

shorter wavelengths 

than was observed in 
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these studies. We therefore hypothesize that Calcium Sensing Receptor (CaSR), a large 

transmembrane receptor, acts as the endogenous fluorophore responsible for the observed 

signal. CaSR is involved in controlling the synthesis and secretion of PTH and calcitonin 

and is most abundant in the parathyroid. It is present to a lesser extent in C-cells of the 

thyroid. This receptor is also widely expressed in other tissues, including specific cell 

types within the kidney, osteoblasts, hematopoietic cells in bone marrow, GI mucosa, and 

squamous cells of the esophagus. In disease, CaSR is shown to activate mutations leading 

to disorders with hypocalcemia and neonatal hyperparathyroidism making it a viable 

candidate as the potential fluorophore responsible for the signals observed in this project. 

The goal of this chapter therefore was to characterize the fluorescence and optical 

properties of thyroid and parathyroid tissues in order to validate the excitation-emission 

maxima as well as absorption and scattering properties of the potential fluorophore. This 

evaluation would further allow the identification of the optimal excitation wavelength for 

the instrument. Next the in vivo fluorescence signatures were evaluated to assess the 

effect of disease on the emission intensity of the parathyroid to further elucidate the 

contributor of this signal and the consistency of the observed signal was validated. 

Finally, the potential of CaSR as the contributing fluorophore was evaluated by assessing 

the fluorescence of other tissues where these receptors might be present (or absent).  

 

 

In vivo NIR fluorescence properties 
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Measurements were performed at the Vanderbilt University Medical Center under 

approval by the Vanderbilt Institutional Review Board. All patients aged 18-99, 

regardless of race and gender, with primary thyroid or parathyroid pathophysiology 

undergoing thyroid/parathyroidectomy were considered. Initial evaluation was conducted 

by the participating endocrine surgeon (Dr. John Phay) at the Vanderbilt Clinic and final 

eligibility was preoperatively determined based on the clinical condition and safety of the 

patient. Twenty-one patients were enrolled in the study following informed written 

consent. 

Near-infrared fluorescence was excited with a 785-nm diode laser (U-type, IPS, 

Monmouth Junction, New Jersey) that delivered 80 mW at the tissue surface with a spot 

size of 400 μm. Fluorescence spectra were detected using a fiber optic spectrometer 

(S2000-FL, Ocean Optics, Dunedin, Florida) with a spectral resolution of 10.5 nm 

(FWHM). The entire system is computer controlled by custom software developed in 

LabView (National Instruments, Austin, Texas). Light was delivered and collected from 

the tissue site with a 6-around-1 sterilized fiber optic probe. Inline filtering in the probe 

prevents 785 nm light from interfering with the collected fluorescence light (9). An 

additional 3-mm diameter longpass filter was placed in the fiber port of the spectrometer 

to further reduce the amount of 785 nm light entering the detector. 

Fluorescence spectra were measured from multiple locations in the thyroid, 

parathyroid, fat, muscle, and lymph depending on the accessibility of the tissues. All 

measurements were made with the room and operating lights turned off. The fiber optic 

probe was firmly placed in contact during each measurement while maintaining uniform 

pressure after removal of any excess blood that might be present at the investigated site. 
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Figure 2: Normalized fluorescence from 
various tissues in the neck.  

Background measurements were recorded with the laser turned off prior to each tissue 

measurement. Six spectra were acquired at each site with an integration time of 300 ms 

and averaged. In each case, the tissue type assigned to each acquired spectrum was 

visually determined by the attending surgeon; the level of confidence in the surgeon’s 

identification of each tissue was noted as high, medium, or low. All sites rated as low 

confidence by the surgeon were excluded from analysis. Visual inspection therefore 

served as the gold standard of detection unless the investigated site was excised, in which 

case spectra were correlated with histology.  

Near-infrared fluorescence spectra were processed using MATLAB (Mathworks Inc., 

Natick, Massachusetts). First, background was subtracted and the data was corrected for 

the wavelength dependent response of the system with a National Institute of Standards 

and Technology calibrated light source. Calibrated spectra were smoothed with a 10-

point moving average filter and then normalized to the maximum intensity of the mean 

thyroid spectrum from that patient. 

 

 

Analysis 

A comparison of the fluorescence 

spectra acquired from the different tissues in 

the neck showed that fluorescence emission 

was consistently observed at 822 nm in the 

thyroid and parathyroid tissues; no 

measurable signal was measured from all other tissues (Figure 2). The peak was found to 
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(a)                                                                       (b) 

 

 
(c)                                                                      (d) 

 

Figure 3: Fluroescence spectrum of the (a) thyroid. And (b) Parathyroid. (c) 
Histological confirmation of thyroid tissue and (d) parathyroid tissue. 

be repeatable within the same tissue and consistent across different patients. Further, in 

each of the 44 patients studied, histology was obtained from either the parathyroid or the 

thyroid, or both, depending on patient diagnosis and related surgical resection. In total, 

histology was obtained from 16 excised thyroid samples and 10 excised parathyroid 

samples and found to validate the anatomical identity of the measured gland. 

Average peak intensity for parathyroid fluorescence was consistently greater than that 

of the thyroid and other tissues in all 44 patients. Analysis by student’s t-test shows that 

the parathyroid exhibits more intense fluorescence than thyroid tissue with a p-value of 

0.0000235 at a 99.9% level of significance indicating that the difference in intensity is 
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Figure 4: Receiver Operator Characteristic 
comparing NIR fluorescence to other 
techniques: Ultrasound (+), sestamibi (*), 
and CT (). Area under ROC curve (AUC) 
for NIR fluorescence is 1. 

 

Figure 5: Average peak fluorescence intensity of the 
thyroid and parathyroid gland in the presence of 
disease. 

statistically significant. A receiver-

operator characteristic (ROC) curve 

was plotted to compare the ability to 

detect the parathyroid by 

autofluorescence in comparison to 

other methods such as ultrasound, 

sestamibi and CT. Figure 4 shows the 

ROC curve obtained. The figure 

clearly presents the superior 

identification using fluorescence as 

compared to these other methods. At the current study power, this technique has 100% 

classification accuracy, with higher sensitivity and specificity than all other parathyroid 

gland localization techniques currently used (10-18).  

Further the variability of 

the observed signal was 

compared as a function of 

disease state of the 

parathyroid and thyroid. 

Figure 5 demonstrates that 

the strong signal in the 

parathyroid glad was 

observed regardless of the disease state of the parathyroid. Similarly, the intensity of the 

thyroid signal did not vary with thyroid disease. Therefore, autofluorescence is capable of 
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detecting normal parathyroid glands, unlike currently available techniques applicable to 

diseased or hyperfunctioning glands. 

 

Analysis of variance (ANOVA) 

Reports have been made that optical signals are influenced by factors inherent to 

biological tissues (19, 20). To determine whether the observed autofluorescence signal 

was affected by systematic inter-patient variations, ANOVA was performed separately 

for parathyroid and thyroid data with factors such as disease source, gender, and age. As 

seen in Table 1, no significant differences were found as a function of age or gender with 

averaged parathyroid intensities. For analysis using normalized intensities, the result was 

less significant. The large within-group variance can be accounted for by the large 

patient-to-patient differences and may be improved with increased sample size.  

In order to determine the tissue component(s) responsible for the generation of the 

autofluorescence and to more fully understand the difference in signal strength, it is 

necessary to measure the intrinsic optical properties of the tissues of interest. 

Table 1. ANOVA Results: Average Parathyroid Intensity 

Source of Variation SS Df MS F P-value F crit 

Between Groups 31372.49 10 3137.249 0.771026 0.65632 1.909792 

Within Groups 492340.2 121 4068.927       

Total 523712.7 131         
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Optical properties  

 

Method 

In order to better characterize the optical signal detected in the clinical studies, the 

optical and fluorescent properties of bulk thyroid and parathyroid tissues were measured 

in the Biomedical Photonics Laboratories at Vanderbilt University under a protocol 

approved by the Vanderbilt University Medical Center Institutional Review Board.  Bulk 

tissue specimens of healthy thyroid and parathyroid tissue were obtained fresh, frozen 

and prepared for optical measurement by placing the tissue between two fused silica glass 

slides. Transmission and reflectance measurements were collected in the near-infrared 

(NIR) using a spectrophotometer (Perkin-Elmer, Lambda 900). Measurements were 

collected from 700 to 900 nm. Optical absorption (a) and reduced scattering (s’) 

coefficients were calculated using the inverse adding-doubling algorithm (21). 

Fluorescent properties were also measured using a spectrofluorometer (Photon 

Technology International, Xenon continuous wave lamp, photomultiplier detection). 

Excitation-emission matrices (EEM’s) were created in the NIR with excitation 

wavelengths ranging from 690 to 825 nm in 5 nm increments, and emission wavelengths 

detected from 700 to 1000 nm in 1 nm increments. Measurements consisted of an average 

of two 0.5 s acquisitions.  

 

 

Analysis 
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Figure 6: (a) Reduced scattering, s’ spectra and (b) absorption spectra of thyroid 
and parathyroid tissue from 700 – 900 nm.   

The reduced scattering coefficient, s’, of both the thyroid and parathyroid is fairly 

constant over the 700-900 nm wavelength range (Figure 6a). Parathyroid exhibits greater 

scattering, with a s’≈ 2 mm-1 across this entire wavelength range. Thyroid scattering is 

lower, at s’ ≈ 1.1 mm-1.  The absorption coefficient of both thyroid and parathyroid is 

approximately equal across the NIR (Figure 6b). Absorption decreases linearly from a ≈ 

0.02 mm-1 at 700 nm to less than a ≈ 0.005 mm-1 at 800 nm. Parathyroid absorption 

increases slightly starting at 860 nm up to a ≈ 0.01 mm-1 at 900 nm. 

 

EEM 

The thyroid NIR EEM is shown in Figure 7a. Figure 7b is a plot of the thyroid emission 

spectrum when excited at 785 nm, and clearly shows the strong emission peak at 822 nm. 

Autofluorescence emission at 822 nm generally increases with longer excitation 

wavelengths, as seen in Figure c. The EEM clearly illustrate the presence of the 822 nm 

emission peak regardless of NIR excitation wavelength, as well as the general increase in 

emission intensity at longer wavelengths. 
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Figure 8: Excitation emission matrix of the parathyroid. 

 

Figure 7: Excitation emission matrix of the thyroid.

 

The parathyroid NIR EEM is shown in Figure 8a is a plot of the parathyroid emission 

spectrum when excited at 785 nm. Again, the presence of a single, prominent emission 
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peak at 822 nm is clear. Parathyroid autofluorescence emission at 822 nm (Figure 8c) is 

also similar to the thyroid, and generally increases with longer excitation wavelengths.  

 

 

Molecular basis of NIR fluorescence 

The presence NIR autofluorescence signal in the thyroid and parathyroid tissues 

poses an interesting question that currently has no explanation. The potential biological 

constituents which account for the detected signal must have a higher concentration in the 

parathyroid and a reduced concentration in the thyroid (or is somehow quenched in the 

thyroid). These same tissue components should also not be present in the other tissue 

types found in the neck cavity as no detected autofluorescence signal was observed in 

them. Examination of physiological and biological properties of the tissues of interest 

suggests that potential sources of this autofluorescence include parathyroid hormone 

(PTH), various forms of porphyrins, and calcium sensing receptors (CaSR).  

The parathyroid glands are responsible for the production of Parathyroid 

Hormone (PTH), the principal regulator of calcium within the human body. These minute 

glands are of great importance as plasma calcium levels require tight regulated and have a 

role in neuromuscular excitability, excitation-contraction coupling in both cardiac and 

smooth muscle cells, stimulus-secretion coupling functions, maintenance of tight-

junctions, and blood-clotting.1 In order to maintain the body’s ability to create heart 

contractions, PTH ensures constant plasma calcium levels by mobilizing calcium from 

bone fluid, stimulating calcium conservation in the kidneys and activating vitamin D in 

the intestines, resulting in an increased reabsorption of calcium and phosphate. Figure 12 
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Figure 9: Negative-feedback loops 
controlling calcitonin and Parathyroid 
Hormone (PTH) secretion 

shows a diagram of the physiological 

interactions responsible for the regulation of 

plasma calcium. Due to the necessity for 

constant and precise regulation of plasma 

calcium levels, both the superior and inferior 

parathyroid glands receive a rich supply of 

blood via the inferior thyroid artery.2 Such 

strict control of plasma calcium level 

necessitates properly functioning parathyroid 

glands for a person’s well-being and survival. 

While PTH makes for the most viable candidate for the observed fluorescence, it is 

unique to the parathyroid, and is found in no other tissues within the neck region 

including the thyroid. Furthermore, hyperfunctioning parathyroid tissue does not exhibit 

increased signal and in vitro studies found no fluorescence signal associated with PTH, 

discrediting it as a potential fluorophore. Porphyrins are known as the longest emitting 

fluorophores in biological tissues, with peak emissions in the 600-700nm range (7). 

However, there are no reports of porphyrins as tissue components in the thyroid or 

parathyroid glands, decreasing their likelihood as the fluorophore of interest. 

We therefore, hypothesize that CaSR acts as the endogenous fluorophore 

responsible for the observed signal. Calcium-sensing receptors are ;arge amino acids 

involved in controlling synthesis and secretion of PTH and calcitonin. They are unique 

and share sequence and topology similar only to the metabotropic glutamate receptors (18 

– 24% identity overall) and no other G protein-coupled receptors (22).  Together these 
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receptors form a novel subfamily within the G protein-coupled receptors possibly 

explaining why this effect has not been previously reported. 

The highest levels of CaSR expression are found in parathyroid cells (23-25).  

The CaSR is also present in smaller concentrations almost exclusively in the C-cells of 

the thyroid (which comprise roughly 5% of the gland) but nowhere else in the muscle, fat 

or lymph of the neck region (26). This provides a fluorophore that is present in high 

concentrations in parathyroid tissue and low concentrations in thyroid tissue making 

CaSR a highly probable candidate for the observed fluorescence.The calcium-sensing 

receptor can also be found in most of the renal tubule and is present at the highest levels 

in the cortical thick ascending limb of the nephron, brain, bone and epithelial lining of the 

colon.  If our hypothesis is correct, then these tissues expressing CaSR should display a 

NIR fluorescence signal as well.  

Evidence that CaSR is the source of the autofluorescence signal observed in the 

thyroid and parathyroid was gathered by acquiring optical measurements from other 

tissues known to express CaSR as well as from tissues with pathological conditions 

known to affect CaSR expression. Analyzing and comparing the autofluorescence signal 

from parathyroid, thyroid, kidney and colon tissues may yield useful information about 

the status of CaSR as the potential fluorophore candidate, as well as comparing the 

results of disease models that are reported to effect expression has the potential to yield 

further useful information. Hyperparathyroidism is one such condition in which there is 

variable down-regulation of CaSR reported in 35-76% of cases (27). Wilm’s tumor, a 

particular type of cancer found in the kidney is another disease model, where CaSR is 
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down-regulated. These tissues and disease model may also be examined to further 

evaluate CaSR as a potential fluorophore of interest in this project.  

 

 

Tissue NIR fluorescence 

The impact of hyperparathyroidism on the autofluorescence signal was analyzed 

using data collected from the in vivo study plus which includes 57 patients in all. The 

data was partitioned into cases of thyroid disease (n=36) and parathyroid disease (n=19). 

Student’s t-test for two samples was used to analyze the data for differences between 

peak intensity for cases of thyroid disease compared with those of parathyroid disease. 

Figure 6 shows the comparison of the peak intensities. When including all cases both raw 

and normalized data found no significant evidence of difference (p>0.05). Review of the 

data found cases that were significant outliers were exerting influence on the statistical 

model. When these cases were removed and the analysis was rerun significant differences 

were found for the normalized data at p=0.00226. For the comparison of raw data 

between diseases after removing the influential observations, the data was not 

significantly different between groups, confounding simple interpretation. A summary of 

the raw data can be found in Table 2, while Table 3 reports the data after influential 

outliers are removed. The comparison of group means when including all cases to those 

of removing the outliers and the p-values for the normalized data is summarized in Table 

4. The significant change associated with 3 influential observations is found when 

comparing the normalized results, but further analysis of differences within the raw data 

remains. 
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Table 2: Summary of all cases for disease groupings 

Source of Disease

Average Thyroid 

Intensity 

Average 

Parathyroid 

Intensity 

Normalized 

Parathyroid 

Intensity 

Thyroid Disease 

(N = 36) 13.8745 63.93011 4.607742 

Parathyroid 

Disease (N = 19) 19.6608 72.974 3.71165 

 

Table 3: Summary of disease groupings after removing influential observations 

Source of 

Disease 

Average Thyroid 

Intensity 

Average 

Parathyroid 

Intensity 

Normalized 

Parathyroid 

Intensity 

Thyroid Disease 

(N = 35) 14.2545 64.1386 4.499533 

Parathyroid 

Disease (N = 17) 20.8924 56.4419 2.701552 
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Figure 10: NIR Fluorescence spectra of CaSR 
model tissues. Wilm's Tumor is expected to have 
reduced signal compared with healthy kidney 
samples based on the down-regulation of CaSR 
expression. 
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Table 4: Ratios of normalized parathyroid signal to thyroid signal and resulting p-values 

Normalized PT All included Outlier Removed 

Thy Disease 4.6077 4.5 

PT Disease 3.7117 2.7015 

p-value 0.5401 0.00226 

 

To further examine the 

potential of CaSR as the NIR 

fluorophore of interest, fresh, 

frozen Wilms’ Tumor samples, a 

disease model of fetal kidney, 

were acquired from the 

Department of Pediatric Surgery 

and compared to normal tissue 

samples from the Vanderbilt-

Ingram Cancer Center tissue 

bank after IRB approval. Prior to 

measurement with instrumentation and parameters used for the in vivo study of 

parathyroid and thyroid tissues, the samples were thawed in phosphate-buffered saline 

until approximately room temperature, then placed on a non-fluorescent background and 
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measured with the fiber optic probe. The obtained autofluorescence signal for the Wilm’s 

Tumor compared with that of Thyroid, Parathyroid, and normal Kidney are presented in 

Figure   13. The signal from the tumor samples was absent when processed and 

normalized when compared to the other tissue samples tested. These results are 

promising as CaSR is known to be down-regulated in Wilm’s tumor as compared to 

normal kidneys. These results need to be validated using a sufficiently powered study. 

Since CaSR is known to be intrinsically present in normal colon and kidney tissues, 

bulk colon and kidney tissue specimens were obtained from the Vanderbilt Tissue Bank 

for measurement of NIR autofluorescence. Tissue samples were flash frozen in liquid 

nitrogen and thawed to room temperature prior to optical measurement. All 

measurements were made under protocol approved by the Vanderbilt University IRB. 

Characterization of fluorescence signal was initially performed with the 785 nm NIR 

autofluorescence system previously used for clinical measurements of thyroid and 

parathyroid autofluorescence. NIR EEMs of the tissue specimens were also collected 

using a spectrofluorometer (Photon Technology International, Xenon continuous wave 

lamp, photomultiplier detection) with excitation wavelengths ranging from 690 to 825 nm 

in 5 nm increments, and emission wavelengths detected from 700 to 1000 nm in 1 nm 

increments. Measurements consisted of an average of two 0.5 s acquisitions.  

Figure 11a is a comparison of the NIR autofluorescence of the colon with spectra 

obtained from the thyroid and parathyroid. The observed peak intensity is much lower 

than the parathyroid and on par with that from thyroid tissues. A noticeable local 

maximum near 822 nm is observed. A similar comparison of the NIR autofluorescence of 

the kidney specimens (Figure 11b) shows a strong autofluorescence peak at 822 nm.  
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Figure 11: NIR fluorescence spectra from normal (a) Colon and (b) Kidney. 

Figure 12: EEM of (a) Colon Tissue and (b) Kidney Tissue. 

Further, EEMs were acquired for both the colon (Figure 12a) and the kidney (Figure 12b) 

in an effort to confirm that the optical signatures observed were the result of fluorescence 

emission similar to that observed in the parathyroid. The data collected also shows a clear 

emission maximum at 822 nm with increasing emission as the excitation  
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Discussion 

Based upon observations shown in Chapter 3, the elevated fluorescence signal of the 

parathyroid gland compared to other tissues in the neck was studied in vivo using fiber 

optic probe-base fluorescence spectroscopy. The consistent and highly repeatable 

differences between the measured tissues are of great interest to endocrine surgeons who 

may be able to utilize this phenomenon for anatomical guidance and gland localization in 

real-time during procedures. The unexpected signal intensity from the parathyroid gland 

compared with other tissues in the same region poses many interesting questions. Since 

melanin, the only fluorophore known to emit above 800nm found in biological tissue, is 

not present in the thyroid or parathyroid, a new mechanism to explain the signal must be 

found. Even without a thorough understanding of the signal source, the results of the in 

vivo study are clear. The autofluorescence signal generated is variable between patients, 

but parathyroid is consistently stronger than that of the thyroid between 2 and 35 times. 

Both signals have the same underlying waveform, which may suggest a common 

underlying source of signal. The results were consistent even when filtering and other 

instrumentation specifics were changed over the course of the study, further suggesting 

the presence of an unexplained biological mechanism. 

The classification performance of this technique based upon the in vivo data is 

unparalleled by other modern detection techniques for localizing the parathyroid glands. 

Unlike these other methods which are insensitive to normal glands and are either 

preoperative or low resolution, autofluorescence detection has been demonstrated in vivo 

in real-time. Furthermore, across 57 cases, the classification accuracy is 100%, without 

accounting for patient variables that may affect signal variability like age, gender, and 
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presence of disease. Classification performance should be further evaluated with an 

increased sample size, allowing for an appropriately powered study of multiple disease 

groups, genders, and ages for a parametric analysis. It is possible that within the data 

obtained, there are systemic changes that we have not been able to discern between 

certain patient groups. Regardless of the potential differences between patients, the 

measured signal is consistent and the difference great enough to merit further 

development of this technology and exploration of the underlying mechanism. 

Even when the in vivo dataset was partitioned into diseases of the thyroid and 

parathyroid, there was no detected change in the autofluorescence peak location or 

intensity. These results imply that the underlying mechanism by which we are 

distinguishing these tissues is not affected by tissue disease. From 44 patients, 84 

parathyroid glands were measured, 18 of which were abnormal and 66 normal. By 

analyzing the gland data as opposed to a patient peak intensity and removing influential 

observations, there is a significant difference in the intensity of signal between the normal 

and abnormal parathyroid tissues (p<0.05). Even with this change in intensity, there is 

still no report of a change in peak location. As fluorescence spectroscopy generally 

distinguishes between tissues when altered absorption, scattering, or fluorescence 

properties of the endogenous biomolecules and tissue structures change with pathology, it 

is unconventional that no signal difference is detected when disease is present. These 

findings would seem to suggest that the fluorophore responsible for the generation of the 

signal is either a biomolecule or structure that is not affected by the diseases or that the 

signal is strong enough that the change in tissue properties consistent with disease does 

not affect detection. 
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Measurement of the absorption and reduced scattering coefficients was an important 

step for characterization of the optical signals observed in the clinical measurements. 

Table 5 is a compilation of the optical properties of the thyroid and parathyroid we have 

measured along with optical properties of tissues encountered during thyroid surgery 

(28).  

Table 5: Optical Properties of Tissues in the Neck 

Tissue µs’ (mm-1) µa (mm-1) 

Skin 1.2-1.3 0.015-0.02 

Fat 1.2 0.002-0.003 

Muscle 0.5-0.6 0.00-0.04 

Thyroid 1.16 0.004 

Parathyroid 1.9 0.004 

 

The optical properties of the thyroid and parathyroid are on the same scale as other 

tissues in the neck, and the dramatic differences observed in the clinical data cannot be 

explaind by differences in the optical properties alone. The moderate difference in 

scattering between the parathyroid and the thyroid may result in greater parathyroid 

diffuse reflectance. However, the signal observed in the in vitro and in vivo 

measurements is stokes’ shifted from the excitation, which implies that the origin of the 

signal is autofluorescence. The absorption spectra of parathyroid and thyroid are nearly 

identical, and the spectral band where differences are observed (> 860 nm) does not 

overlap with the band where differences are observed in the clinical measurements. 

Although the optical absorption of both parathyroid and thyroid are fairly low in 
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comparison to other tissues in the neck, their similarity with one another does not indicate 

that measurements of optical properties alone could produce signals distinct enough to 

differentiate tissue types.  

Collection of EEM for thyroid and parathyroid tissues verify the emission observed in 

the fiber optic probe based measurements, and confirm that autofluorescence is indeed 

the optical origin of the signal. The appearance of the emission peak at 822 nm with NIR 

excitation from 740 to 820 nm for both the thyroid and the parathyroid suggests that the 

same fluorophore is present in both tissues. There are, to our knowledge, no existing 

reports of endogenous tissue fluorophores with emission maxima near 822 nm. In an 

effort to thoroughly characterize fluorescence from the thyroid and parathyroid, EEMs 

were also collected. Regardless of the origin of the optical signal, the EEM data provides 

valuable data for optimizing the optical design for efficient measurement of parathyroid 

NIR fluorescence. The general increase in emission intensity with excitation from 740 to 

820 nm explains the promising clinical results obtained using 785 nm excitation, and 

indicates that the use of longer excitation wavelengths, such as with the commonly 

available 808 nm diode source may benefit fluorescence yield and improve signal-to-

noise. Detection of fluorescence emission could also be simplified and the 

instrumentation complexity could also be significantly reduced by employing a single 

photodiode for detection with a filter set designed to maximize collection near the 822 

nm emission maxima. Moving forward, identification of the molecular origin of the 

optical signal will allow an improved understanding of the physiological origin of the 

signal, facilitate a better understanding of biological sources of signal variability, and 
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potentially to open the door to applications related to specific pathological conditions in 

the thyroid and parathyroid, as well as forms of tissue pathology in other tissue types.  

The fluorescence emission spectra and EEMs obtained from colon and kidney tissues 

support the hypothesis that CaSR is the source of the NIR autofluorescence peak seen at 

822 nm. The relative intensities of the fluorescence emission seen in the colon and kidney 

tissues are also in agreement with the CaSR hypothesis. CaSR expression in the epithelial 

lining of the colon is relatively low in comparison to kidney, where it is expressed 

throughout the renal tubule and particularly high levels in the cortical thick ascending 

limb of the nephron. In combination with the pathological data, these findings further 

strengthen the argument that NIR emission originates from some feature within the 

CaSR. In addition, the findings suggest NIR autofluorescence can be utilized to 

investigate CaSR mediated pathology in the kidney and colon, as well as other tissues 

where it is expressed, such as the bone. In fact, the clinical data acquired from thyroid 

and hyperparathyroid disease, along with the in vitro data acquired from Wilm’s tumor 

specimens contributes to the evidence that CaSR is in fact responsible for fluorescence 

emission at 822 nm.  

 

 

Future studies 

To characterize and further validate CaSR as the fluorophore responsible for the 

signal generated in the parathyroid gland, we propose that a number of protocols are 

carried out. Investigating the optical properties and EEM measurements of tissues and 

disease models known to express or alter the expression of CaSR, including kidney, 
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colon, brain, prostate cancer, breast cancer, and Wilms’ tumor may shed light on the 

signal source. Comparison of CaSR transfected  and wild-type HEK-293 cells will give a 

controlled model to assess the impact of the presence of CaSR on generation of 

autofluorescence signal and will yield valuable information. As multiple antibodies are 

available for CaSR assays, repeating the previous studies for the disease and normal 

tissue models may should clarify the impact of CaSR regulation and concentrations on 

the generated fluorescence. Finally, analysis of the inherent bond structure and bandgap 

energies for CaSR may explain its inherent ability to generate the fluorescence detected 

in numerous tissues, and provide further information to optimize excitation for future 

applications. 
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Introduction   

The current intra-operative method for identifying parathyroid glands involves a 

systematic exploration of the neck in which the surgeon is primarily relying on visual 

distinction to identify target tissues. The complications that arise due to this method have 

an incidence that is directly proportional to the extent of thyroid tissue removed and 

inversely proportional to the experience of the operating surgeon (1). Other existing 

limitations of this process are the duration of the surgery, the exploratory nature of the 

procedure, and the difficulty in correlating preoperative images with real-time 

exploration of the anatomy. The preoperative technique, Sestamibi scintigraphy has a 

reported sensitivity varying widely from 43-100% and has proven to be the best initial 

preoperative modality for locating hyper-functioning parathyroid tissue (2). This method 

yields no precise location for parathyroid glands, no way of knowing if all of a gland has 

been removed during surgery, and no context for the other parathyroid glands that must 

be preserved during the course of the operation. In fact, current standards rely on 

histopathology or the post-operative diagnosis of symptoms to determine if the 

parathyroid glands have been accidentally or incompletely removed during a procedure 

(3). Therefore, the development of an accurate, automated diagnostic method could allow 

faster, more effective patient management (4, 5). 

Optical spectroscopy has been demonstrated as a technique to accurately detect 

differences in tissue architecture and biochemical composition in a fast and non-invasive 

fashion. In particular, the use of fluorescence spectroscopy has been of great interest in 

the development of clinical diagnostic tools. Measurements of human tissues can be 

made in situ in real-time without the need for tissue preparation, and subsequent 



  79

diagnosis could potentially be automated with the creation of a robust algorithm based on 

tissue fluorescence properties (6). The intrinsic fluorescence of some tissue, known as 

autofluorescence, is typically exhibited in the range of ultraviolet and visible wavelengths 

of light, 400-700nm, but is generally more common at the lower excitation wavelengths 

(7). Early studies have demonstrated the difference in autofluorescence intensity of the 

parathyroid and thyroid tissues using near infrared (NIR) light to excite the tissues in 

question (Chapter 3). Specifically, the intensity of the parathyroid gland autofluorescence 

has consistently been shown to be between 2-35 times greater than the autofluorescence 

of the thyroid gland and even higher for other tissues in the vicinity including adipose, 

lymph, muscle, and nerve tissue. The ongoing study uses a fiber-optic probe-based 

fluorescence spectrograph and 785 nm excitation source and has shown promise in 

distinguishing between parathyroid and thyroid tissue in real-time measurements of 

approximately 300 ms. This detection system is capable of providing information to the 

surgeon that would otherwise not be available for help in distinguishing between these 

visually similar tissues. 

Despite the aid provided by this new technique, this probe-based system has several 

limitations to its direct clinical translation and implementation. The nature of probe-based 

measurements yields only localized information about tissues for the surgeon. Therefore, 

there is no spatial context available during the surgery without time-prohibitive 

measurements of the entire region of interest. The system requires that the surgeon pause 

during the surgery to hold the fiber-optic probe, both interfering with other instruments 

that are important and consuming time that could otherwise be used during the procedure. 

This fiber optic probe based spectrograph system may also be cost-prohibitive for general 
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Figure 1: Top: Image of spectral 
imaging camera for proof-of-
concept. Bottom: Flowchart 
schematic of imaging system 
components.

surgeons due to the expenses associated with purchasing a fluorescence spectrograph and 

processing system with an approximate value of $12,000. 

To circumvent these limitations, an imaging 

solution is proposed in which the surgeon could 

obtain a spatial context for the tissues in question 

in a real-time manner. Because the 

autofluorescence signal emits at approximately 

822 nm, most low-cost CCD cameras are not 

capable of detecting the light with the necessary 

efficiency. In order to demonstrate the potential 

of this method, a proof-of-concept test was 

performed using the Princeton Instruments 

PhotonMax 512 spectral imaging camera 

attached to a surgical microscope for detection of 

the light. The sample tissues, ex vivo thyroid and parathyroid glands, were illuminated 

with an unfocused beam using a laser power of 80mW at the fiber tip. The system and 

procedure utilized during this demonstration, depicted in Figure 1, yielded promising 

results which led to further investigation of potential solutions. Figure 2 shown the 

resulting image obtained where the brighter signal is obtained from the parathyroid tissue 

as compared the less intense thyroid gland. The spectral imaging camera is optimized for 

the detection of NIR wavelengths with the necessary high quantum efficiency and 

successfully demonstrated feasibility of optical detection of the relative higher intensity 

of the parathyroid gland. Major drawbacks to this system, however, includes the size of 
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Figure 2: NIR image of thyroid 
(left) and parathyroid (right) 
tissue placed adjacent to each 
other in a petridish. 

the system, which employs a large surgical 

microscope, the timely post-acquisition processing 

of the images to clearly distinguish the tissues in 

question, and the cost of the system, approximately 

$30,000 for the spectral imaging camera alone. 

This cost is potentially the most daunting limitation 

to the clinical translation of the system into use in 

surgical suites, and thus the investigation of a low-

cost alternative began. 

Here, an alternative to the spectral imaging camera using a commercial NIR viewer is 

presented. FJW Optical’s Find-R-Scope© is a relatively low cost commercial NIR viewer 

that is intended for applications ranging from laser system alignment to viewing art and 

historical documents (8). The proposed system is intended to allow the surgeon to 

visualize the different tissues and borders in the field of view based upon the observed 

tissue fluorescent intensity. Other surgical considerations were addressed in a limited 

fashion, including integration with existing technology into the surgical suite. The system 

design described in this paper would improve the design of the IR viewer to integrate the 

system into a surgical suite with existing equipment. The system developed would also 

yield information not available via other technology based techniques, be informative and 

easy to use, requiring little or no training. It should operate in real-time with little user 

interaction and provide intuitive feedback to the surgeon. The system should also serve to 

reduce the time and error-rate associated with current surgical procedures, hopefully 

eliminating the need for costly reoperative cases. 
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Focusing on some considerations provided by Dr. Phay and Dr. Broome of the 

Vanderbilt Endocrine Surgery Center, the outcome of the design process needed first and 

foremost, to be useful to the surgeons. This would be best accomplished by providing 

visual feedback and imaging data, giving morphological and spatial context to the tissues 

of interest. The system must not interfere with the surgical procedure. One proposed 

method was to develop a head-mounted device based upon CMOS technology. This 

method was abandoned due to the inherent drawbacks of current standard of image 

intensifier technology, which allows the visualization of the NIR autofluorescence that 

this method employs. Not only are third and fourth generation image intensifiers cost-

prohibitive, but they lack the needed sensitivity in the spectral region for which this 

application is intended. To address this, the older, reliable photomultiplier tube (PMT) 

based device was selected as a low-cost alternative. This option would allow the images 

captured to be displayed on the video screens in the surgical suite that the surgeons are 

familiar with. A subsequent design constraint followed form the necessity of obtaining 

these images while remaining outside the sterile halo, a 3 foot diameter space 

surrounding the patient in surgery. This constraint directly led to the need for improved 

optics for the necessary resolution at three feet as well as the ability to focus on ranges 

from the surgical incision of about 6 inches to the margins of the parathyroid gland itself 

of at least 2mm. In order to address these needs, the design process was undertaken to 

produce a system that would provide real-time feedback in distinction of these tissues for 

the surgeons benefit. 
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Figure 3: An image of a Kaiser© filter 
product label demonstrating spherical 
aberrations of imaging system. 

Methods and Materials 

Several limitations existed within the 

inherited system that required attention 

prior to consideration for translation into a 

clinical or surgical setting. The most 

notable of these was the limiting 

inadequacy of optical components within 

the commercial viewer. This device had 

internal parts that were necessary to the 

functioning of the system, detecting wavelengths from 350-1350 nm and with a peak 

sensitivity reported at 800nm, but other system components required attention. The first 

major concern faced was the presence of spherical aberration in the imaging system. This 

distortion that appears radially from the center of the lens allowed for precise resolution 

at the center of the images but the edges remained out of focus, as seen in Figure 3. For 

the developed system to be clinically useful, the entire field of view must be undistorted 

to give the surgeon maximum information regarding the area of interest. As this 

distortion was the result of both the PMT and the low-quality lens in combination, the 

lens configuration was investigated. Along with the image distortion, the viewer lacked 

magnification and was incapable of providing the requisite focus for imaging the field of 

view with the needed resolution. The minimal resolution was determined to be higher 

than the size reported for parathyroid gland dimensions, requiring the system be capable 

of resolving structures smaller than 1-2 mm. Attaining this resolution from outside the 

sterile halo of three feet and incorporating the design into the surgical suite led to the 
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(a)                                                  (b) 
 
Figure 4: (a) Original commercial Find-R-Scope intended for 
handheld use. (b) Modified IR viewer mounted with a c-mount 
adapter and lens 

redesign of the body of the IR viewer, to allow mounting of the system to an arm over the 

patient, clear of the surgeon and sterile halo. In addition, an adapter was designed such 

that the attachment of standard c-mount lenses could be introduced in place of the 

proprietary lens mount that the viewer originally had. These plans were carried out by the 

Vanderbilt Physics machine shop. As seen in figure 4, the viewer was altered from a 

handheld device to one intended for mounting with an improved lens. 

To test this 

design, an initial 

spatial resolution 

test was performed 

using a NBS 1963A 

resolution test card 

for the original lens, 

a potential 

replacement c-

mount lens (Navitar 7000) and for the CCD directly coupled to the Navitar lens as a 

benchmark for optimal performance. These images were collected with a separation of 

the lens and target card of three feet, using a diffuse reflectance standard (Spectralon© 

from Labshpere, Inc.) as a background illuminated by a halogen lamp. The overhead 

room lights, both fluorescent and incandescent were shut off so that the only illumination 

detected was that of the target. Images were collected at the maximum magnification for 

the lenses in question, sequentially focusing on line pairs of increasing resolution. The 
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Figure 5: Left: Redesigned viewer front that allows optimal coupling of c-mount 
lenses. Right: The assembled IR viewer and CCD system. 

 

collected images were then analyzed using Matlab to determine the existing limits of 

resolution. 

As the needed resolutions were not met with this configuration, the design for the lens 

adapter was revisited and found to be insufficient for coupling the c-mount lens to the 

PMT acceptance region. By disassembling the IR viewer body and designing a new front 

end attachment to account for the appropriate image distance for c-mount lenses into the 

acceptance field of the PMT, a new interface was developed to accomplish multiple 

goals. These requirements were 1) the attachment of the desired c-mount lens to the 

viewer, and 2) the inclusion of a filter to remove the strong signal of the laser excitation 

wavelength.  This redesign was completed and subsequent spatial resolution tests were 

carried out under the same conditions as previously described for both the Navitar 7000 

and Nikon 50mm lenses, with the exception that a 1951 USAF resolution target was used 

in place of the 1963 NBS target card. The new front end and assembled viewer can be 

seen in figure 5. 
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With the desired performance for the distance at three feet, other issues were 

subsequently addressed. In order to block the excitation light from the laser source that 

was saturating the field of view, several filters were tested resulting in the inclusion of a 

Semrock RazorEdge filter© in the beam path for consistent rejection of the excitation 

light. As this filter offers excitation rejection via 808nm long pass filter function, it was 

also necessary to investigate methods for co-registration that would allow the surgeon to 

distinguish where in the field he or she is operating. Rather than incorporating a second 

camera, the use of another NIR light source, an LED, was adopted such that the intensity 

would not saturate the detector and the filter would not block the NIR wavelengths that 

the PMT was capable of detecting. 

For the display and processing, a VI was created using LabView 8.5 with an IMAQ 

card that would allow images to be collected in real-time and displayed on any computer 

monitor. The developed instrument integrates a MATLAB node that is capable of speckle 

reduction, reduction of spherical aberration, and application of false color in a limited 

capacity. The spherical aberration program is based on work performed by Dr. Mark 

Mackanos which was originally intended to address aberrations associated with 

endoscopic cameras used in surgery. Likewise the application of false color is limited by 

the wide range of inter-patient variation in fluorescence levels. Further investigation is 

required as this variation must be accounted for, but possibilities for this will be address 

later on. The interface also allows the user to capture still frame images from the camera 

for later analysis or record keeping applications. 
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Figure 6: An image of parathyroid 
and thyroid glandular tissue on 
matting under illumination by 785nm 
excitation light along with three grains 
of rice for comparison 

In order for this system to operate successfully, light from the laser must reach the 

tissues in question. Therefore, the calculated excitation irradiance was determined as a 

function of the separation between the light 

delivery method and the detector. This was 

undertaken to determine if the use of the 

Newport Liquid Light Guide was merited or if 

delivery through an Ocean Optics fiber optic 

cable was more appropriate, as demonstrated in 

Figure 6. This light guide was originally 

purchased to create a method of illuminating 

the entire sample region of tissue with 

sufficient power from the laser. Collected data 

and calculations from theoretical models of the 

behavior of the light from each of these 

delivery methods were found. This data was 

collected by translating a power meter in one 

dimension, incrementally measuring the maximum incident power at a given distance. 

While this is not irradiance by definition, the ray approximation and Gaussian 

approximation for light were used to determine a theory-based calculated irradiance at 

which the system was capable of delivering the energy necessary for excitation as defined 

by the conventions adopted by the probe-based fluorescence detection study. 

The limits of detection for the system also needed testing, which was quantified as the 

signal to noise ratio of the system as a function of irradiance. The IR viewer was focused 
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onto black matting that had been determined to have no reflectance or fluorescence signal 

using the probe-based system. Using the Ocean Optics fiber optic cable, and with the 

room lights turned off, the fiber tip was mounted perpendicular to the surface of the 

matting at a measured height. The power from the laser source was then measured at the 

fiber tip and used to calculate irradiance at the matting. The viewer was used to image the 

spot produced by the laser light at 785 nm from 3 feet away. For the purposes of this 

measurement, the signal was defined as the total number of counts in a standard region of 

interest at a calculated irradiance. The noise was calculated as the standard deviation of 

the region of interest with the laser turned off. These measurements were acquired at near 

threshold levels for visual distinction of the laser light. This determination was made for 

785 nm light which is not exactly what is expected for 822 nm light, but based upon the 

response of the IR viewer, no significant differences are expected. 

The final validation for the system was to combine all the various, individual parts 

into a functioning whole. The ability of the system to detect the differential 

autofluorescence of tissue was validated with ex vivo tissue samples that had been 

resected by the Endocrine Surgery Center. Using tissues that had been frozen at -80°C 

after excision, the system was setup with design characteristics in mind. The viewer was 

mounted three feet above the sample location and connected to the LabView interface for 

data collection. The laser source, fiber optic delivery, and NIR LED light were oriented 

such that they would illuminate the tissue samples simultaneously. The samples were 

removed from the freezer, rinsed and allowed to thaw in a saline bath. The tissue surface 

was then dried and placed on the non-fluorescent black matting to reduce image artifacts, 
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Figure 7: Resolution target under 
NIR illumination, boxes correspond 
to previous (green) and current (red) 
resolutions.

as seen in Figure 6. With the room lights off, images where acquired with the LabView 

software to capture the differential autofluorescence intensity of the tissues. 

 

 

Results 

Following each alteration made to the IR viewer, the spatial resolution was tested for 

a three foot separation between lens and target card. This was the initial criterion 

considered as to whether or not a design might be feasible. The previously reported 

resolution was 0.71mm at a separation distance of 4 inches. After the initial alteration, the 

original viewer lens remained unchanged. With a 3 foot separation, the lens was not 

capable of distinguishing any of the line pairs on the target. With the adapter in place, the 

maximum resolution attainable 0.91mm, but the images at this resolution were blurry and 

not unfit for a surgical imaging system. Upon 

completion of the re-designed front end, the 

Nikon 50mm fixed zoom lens afforded clarity 

and depth of field but the resolution maximum 

was 1.12 mm. The Navitar 7000 lens, however, 

allowed variable zoom to encompass the entire 

surgical field as well as the resolution to focus on 

the tissues from three feet away. The final 

calculated system spatial resolution is 0.28mm and the target can be seen in figure 7. This 

resolution is sufficient to vary the field of focus but still retain the spatial features that are 

necessary for the surgeon to perform the operation. One consideration that follows for the 
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Figure 8: The plot of calculated irradiance as a function 
of separation for the system excitation optimization. 
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system to be clinically translated requires that the lens casing must be covered with a 

sterile drape in surgery to allow the surgeon or an assistant to reach up, position the 

viewer and adjust the zoom to the appropriate level without contaminating the sterile 

field.  

The excitation 

irradiance as a function of 

the separation between the 

delivery mode and the 

sample is given in figure 

8. The importance of this 

result is less quantitative 

in nature: primarily, this 

test excluded the Liquid 

Light Guide (LLG) from consideration as a design component as it was incapable of 

delivering the desired irradiance to the sample and back to the detector at distances 

comparable to the fiber optic alone. For the ray approximation, the fiber is the better 

option, but the underlying assumptions make it more likely that the Gaussian 

approximation is accurate, especially at distances greater than 3 times the core of the 

delivery device. For this more accurate approximation, both devices are predicted to give 

equal irradiance for approximately 87% of the light out of the medium, but because the 

LLG has a larger numerical aperture and is functioning in air, the irradiance is expected 

to diminish faster in this model than with the fiber. 
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Figure 9: System SNR from 3 feet as a function 
of laser irradiance. 
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Figure 10: Image of parathyroid and 
thyroid detected from 3 feet Right: Same 
image with overlay of fluorescent heat map 
to visualize tissue autofluorescence. 
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The calculated SNR for the system operating at 3 feet for 785nm light is shown in 

figure 9. Because the behavior of the 

PMT, which is responsible for the 

image conversion from NIR to 

visible wavelengths, is not 

considered to be linear in response, it 

is not possible to determine a 

threshold sensitivity for the system 

based on this data. This result does, however, explain that the irradiance associated with 

the minimum current at which the laser can operate with stability has a signal to noise 

ratio of over 100dB. The system is considered to be sensitive enough to detect the 

autofluorescence signal even from weak sources like the tissues. One caveat to this data 

is that the intensities collected here were all at 785nm. To truly characterize the response 

of the system, and excitation-emission matrix should be constructed, filtering a band of 

emission spectra and collecting values as a function of excitation wavelength. Finally the 

last validation method was to detect the differential autofluorescent signal from tissue 

samples ex vivo. Images of this result 

can be seen in figure 10. The intensity 

difference is visible even without 

application of the heat map.  

This image and others like it yield a 

final validation to the success of this 

method in providing a method of 
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System Cost   

Modfied IR Viewer $1,990 

Sony CCD camera $480 

Nazvitar 7000 lens $460 

Semrock © filter $420 

Ocean Optics© fiber $115 

Total cost $3,465 

differentiating the visually similar parathyroid and thyroid gland tissues ex vivo. To 

ensure that the observed signal was not specular reflectance of the excitation source that 

was improperly filtered, images were collected from the samples at 90º angles, during 

which the observed signal was maintained. This conservation of observed signal suggests 

that autofluorescence is imaged as the reflectance would change with angle.  

An economic analysis of the project was completed to determine the incurred costs 

and benefits of such a system, comparing the total system cost with the cost associated 

with current values for a minimally-invasive parathyroidectomy. The underlying 

assumption is that the cost of complications is the cost of a repeat surgery. This analysis 

also neglects other endocrine surgery cases that could result in inadvertent parathyroid 

damage or removal. 

The cost of a single parathyroidectomy has been 

reported as $4986 (9). Assuming that a hospital 

performs 50 of these procedures a year, that the 

failure rate of the procedure is 5%, and that this 

system is capable of resolving complications, then 

the annual savings by the hospital after purchasing 

the system is $9000. This assumption is that all 

cases of parathyroidectomy will be successfully handled by the use of this system which 

is optimistic, but also ignores other endocrine surgical procedure that might benefit from 

the use of this system. This also does not account for legal fees that would be reduced as 

well as the values associated with an improved quality of life after surgery. 
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Conclusions 

 The primary goal of this project was to develop a system that was capable of 

detecting the autofluorescent difference between parathyroid and thyroid tissues while 

fulfilling the requirements for integration into the surgical setting. Successful 

demonstration of these requirements has been carried out to some extent, taking into 

consideration the opinions of the surgeons consulted. The secondary goal of this design 

was to arrive at the system in a way that the price of the entire system would allow for 

reproduction and clinical translation even to small hospitals that would be most in need of 

a device of this type. In comparison to the previously mentioned Princeton Instruments 

PhotonMax spectral imaging camera alone, this entire system, not including the 785nm 

diode laser and the computer and LabView programming suite, is less than 12% of the 

cost. Another metric by which the system has yet to be verified is the actual time reduced 

in surgery through the use of the imaging system. Overall the design is successful in 

delivering the desired real-time feedback that affords a spatial context to the fluorescence 

information of the tissues examined. The system has a resolution that is now higher at 3 

feet than previously attained at 4 inches. The system has also made the initial steps in 

implementing algorithms to improve the images displayed on the surgical monitors so 

that there are no artifacts introduced by the system. Continuing forward, this project 

should address the few limitations with which it is faced, but holistically could soon be 

implemented in endocrine and general surgical suites to improve outcomes and quality of 

life. 
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Figure 11: Picture of entire 
system, with IR viewer 
mounted outside the 3 foot 
halo. 

 

Recommendations 

Some limitations to this design do exist and may need to be addressed in the 

future. One primary focus should be the investigation of a different method of capturing 

the NIR signal other than PMT. As a PMT ages, it develops black spots on its screen that 

are no longer able to transduce NIR to visible light, limiting its usefulness in providing 

images and contrast between intensities. While this may need to be addressed, it is 

unlikely that a better alternative will be found at a comparable price. Another limitation is 

the current implementation of the programming interface. Currently, the MATLAB 

algorithm that is used for correction of aberrations 

requires about one second to process images and 

remove distortion, a process that would limit the real-

time data acquisition. It is therefore necessary to 

determine if this system experiences enough distortion 

from these aberrations to merit the use of such a 

program and if so to develop a similar algorithm in a 

faster C-based language. 

The implementation of false color and heat 

mapping to distinguish fluorescence levels is also a 

factor that needs to be addressed. Because there is 

significant variability between patient fluorescence 

levels, as corroborated through the probe-based study, 

there is a need for a fluorescent standard that will retain constant intensity over time with 
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which the system can be calibrated and checked for variation over its operational lifetime. 

The use of soluble dyes, fluorescent microspheres, or even other intensity standards has 

been difficult to justify as most do not function in this spectral region, so further 

investigation is necessary. 

 An optimal method for incorporating this system into the surgical suite is needed, 

requiring some mounting device for the viewer as well as an improved method of 

exciting the tissues that does not require the current proximity to the patient. As seen in 

figure 11, the current configuration is optimized for mounting, but may not be as easily 

integrated into the surgical suite as necessary for regular use. This investigation may lead 

to expanded translatability of the device if the excitation light can be drawn further away 

from the patient. 

 Finally, more samples need to be collected and the development of a 

discrimination algorithm should be undertaken such that the system could potentially 

identify benign and healthy parathyroid and thyroid tissues and remove the surgeon’s bias 

in finding glands based on subjective anatomical markers. 
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Summary of Chapters 

Thyroidectomy is a commonly performed surgical procedure for the treatment of 

thyroid disease. Parathyroidectomy involves a similar procedure performed for treating 

parathyroid disease. Such endocrine surgeries traditionally require meticulous dissection 

and resection of diseased glands while leaving the normal glands intact, guided only by 

visual recognition. Inadvertent removal of parathyroid glands is a recognized 

complication of this procedure.  The incidence of inadvertent parathyroidectomy ranges 

from 8% to 19% out of patients undergoing total thyroidectomy (Sakorafas 2005). Such 

inadvertent removal or accidental injury of the parathyroid may lead to complications 

such as postoperative hypocalcemia and hypoparathyroidism that could have 

consequences on the longterm regulation of calcium homeostasis post-operatively.  

Thus there is a critical need for a diagnostic tool that provides sensitive real-time 

detection of parathyroid glands during thyroidectomies and parathyroidectomies.  This 

method should be highly effective at differentiating thyroid and parathyroid glands from 

each of other as well as the other tissues in the region thereby avoiding accidental injury 

or removal of the paraythyroid glands. This dissertation seeks to prove the hypothesis that 

intrinsic near-infrared fluorescence can provide sensitive, real-time identification of 

parathyroid tissues as compared to thyroid and other tissues to guide dissection and 

resection during surgery.  The main objective of this project then was to develop a 

technique based on near- infrared (NIR) autofluorescence that enables intra-operative 

detection of parathyroid glands such that accidental removal is minimized by 

supplementing the standards of visual inspection.  Since current procedures are guided 

solely by visual inspection, this proposal presents a novel automated method of surgical 
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guidance that can minimize surgical error and improve patient outcome. The broader 

scope of this project is to provide real-time spectroscopic images of the tissues in the 

neck with automated differentiation and high sensitivity that can be used to anatomically 

guide surgeons during thyroidectomies and parathyroidectomies. 

This dissertation consists of three manuscripts that outline this research towards the 

development of near infrared spectroscopy and imaging for the anatomical detection of 

the parathyroid gland in vivo to guide endocrine surgery. The three specific aims 

described in this document not only prove the stated hypothesis but also help in 

developing an understanding of the scientific basis for the success of the technique. The 

results of this work will have a significant impact on health care by providing guidance 

towards dissection and resection of thyroid and parathyroid tissues.  This would 

potentially result in fewer complications due to accidental injury or incomplete removal 

of parathyroid tissue. 

Each specific aim addressed in each of chapters 3, 4 and 5 describe the 

experimentation and analysis that leads to the proposed endpoint. Specifically, in chapter 

3 a pilot in vivo study was conducted to assess the ability of NIR fluorescence to identify 

parathyroid glands during thyroid and parathyroidectomies. Fluorescence measurements 

at 785 nm excitation were obtained intra-operatively from the different tissues exposed in 

the neck region in 21 patients undergoing endocrine surgery. The fluorescence intensity 

of the parathyroid gland was found to be consistently greater than that of the thyroid and 

all other tissues in the neck of all patients. In particular, parathyroid fluorescence was 2-

35 times higher than that of the thyroid tissues with peak fluorescence occurring at 822 



  100

nm. These results indicate that NIR fluorescence has the potential to be an excellent 

optical tool to locate parathyroid tissue during surgery  

In chapter 4, the fluorescence and optical properties of parathyroid and thyroid tissues 

were analyzed to obtain a better understanding of the behavior of these tissues and to 

arrive at a hypothesis for the basis of the observed high fluorescence. Based on these 

results, a hypothesis was derive whereby calcium sensing receptors (CaSR) was 

identified as the potential fluorophore in these tissues that yields a consistently high near 

infrared fluorescence. Preliminary analysis was performed on other tissues known to have 

CaSR and was shown to also exhibit increased fluorescence at the level of that observed 

in the thyroid. Further, in a disease model of Wilm’s tumor known to have compromised 

levels of CaSR, significantly reduced levels of this fluorescence was also observed 

attesting to the validity of the results described in Chapter 3.  

In chapter 5, a practical design towards an imaging system was developed and tested 

in order to provide spatial as well as spectral information during the surgical procedure 

for realtime feedback. This system was successfully prototyped and tested in vitro and 

relevant hardware and software was designed.  

Thus this dissertation successfully demonstrates the feasibility of applying near 

infrared fluorescence for the detection of parathyroid glands. The implications of this 

work extends to beyond the detection of the parathyroid tissue. The increased 

fluorescence allows for detection of metastatic tumor cells from these tissues that have 

migrated in to the lymph node without the the need for a lymph node resection. CaSR 

fluorescence also indicates that this technique can be used for the detection of conditions 
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where these receptors may be compromised such as Wilm’s tumor of the kidney. This 

technique can also be used to improve our fundamental understanding of CaSR.  

 

 

Future work 

There are several steps that need to be taken to further the research initiated by this 

dissertation. Chapter 3 indicates that the parathyroid fluorescence varies between 2-35 

times that of the thyroid. The variability of this observed in vivo fluorescence will need to 

be characterized in order to validate the accuracy of this technique. Potential sources of 

variability include gender, age, hormonal state etc. While Chapter 4 describes a 

preliminary basis for the hypothesis that CaSR is responsible for the near infrared 

fluorescence this hypothesis needs to be extensively validated through studies in wild-

type and knock-out models of these receptors in cells and animal models. 

Immunohistochemistry and mass spectrometry analysis can be additionally used to obtain 

a better understanding of what in this molecule engenders this fluorescence so far in the 

near infrared – never before observed in biological tissues. Finally, a feasible design for 

an imaging device was developed in Chapter 5 and tested in vitro. This system needs to 

be tested in vivo and a method of registration of the images obtained needs to be 

developed. Other options for such a device also need to be considered for seamless 

integration into the operating room. . Finally a critical step in the implementation of this 

technology will be a large scale clinical trial under FDA approval that will robustly verify 

the results of this dissertation and take it to the patient.  
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